import streamlit as st from streamlit_lottie import st_lottie from typing import Literal from dataclasses import dataclass import json import base64 from langchain.memory import ConversationBufferMemory from langchain.callbacks import get_openai_callback from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationChain, RetrievalQA from langchain.prompts.prompt import PromptTemplate from langchain.text_splitter import NLTKTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import FAISS import nltk from prompts.prompts import templates # Audio from speech_recognition.openai_whisper import save_wav_file, transcribe from audio_recorder_streamlit import audio_recorder from aws.synthesize_speech import synthesize_speech from IPython.display import Audio def load_lottiefile(filepath: str): '''Load lottie animation file''' with open(filepath, "r") as f: return json.load(f) st_lottie(load_lottiefile("images/welcome.json"), speed=1, reverse=False, loop=True, quality="high", height=300) #st.markdown("""solutions to potential errors:""") with st.expander("""Why did I encounter errors when I tried to talk to the AI Interviewer?"""): st.write(""" This is because the app failed to record. Make sure that your microphone is connected and that you have given permission to the browser to access your microphone.""") st.markdown("""\n""") jd = st.text_area("""Please enter the job description here (If you don't have one, enter keywords, such as "communication" or "teamwork" instead): """) auto_play = st.checkbox("Let AI interviewer speak! (Please don't switch during the interview)") #st.toast("4097 tokens is roughly equivalent to around 800 to 1000 words or 3 minutes of speech. Please keep your answer within this limit.") @dataclass class Message: '''dataclass for keeping track of the messages''' origin: Literal["human", "ai"] message: str def autoplay_audio(file_path: str): '''Play audio automatically''' def update_audio(): global global_audio_md with open(file_path, "rb") as f: data = f.read() b64 = base64.b64encode(data).decode() global_audio_md = f""" """ def update_markdown(audio_md): st.markdown(audio_md, unsafe_allow_html=True) update_audio() update_markdown(global_audio_md) def embeddings(text: str): '''Create embeddings for the job description''' nltk.download('punkt') text_splitter = NLTKTextSplitter() texts = text_splitter.split_text(text) # Create emebeddings embeddings = OpenAIEmbeddings() docsearch = FAISS.from_texts(texts, embeddings) retriever = docsearch.as_retriever(search_tupe='similarity search') return retriever def initialize_session_state(): '''Initialize session state variables''' if "retriever" not in st.session_state: st.session_state.retriever = embeddings(jd) if "chain_type_kwargs" not in st.session_state: Behavioral_Prompt = PromptTemplate(input_variables=["context", "question"], template=templates.behavioral_template) st.session_state.chain_type_kwargs = {"prompt": Behavioral_Prompt} # interview history if "history" not in st.session_state: st.session_state.history = [] st.session_state.history.append(Message("ai", "Hello there! I am your interviewer today. I will access your soft skills through a series of questions. Let's get started! Please start by saying hello or introducing yourself. Note: The maximum length of your answer is 4097 tokens!")) # token count if "token_count" not in st.session_state: st.session_state.token_count = 0 if "memory" not in st.session_state: st.session_state.memory = ConversationBufferMemory() if "guideline" not in st.session_state: llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0.8, ) st.session_state.guideline = RetrievalQA.from_chain_type( llm=llm, chain_type_kwargs=st.session_state.chain_type_kwargs, chain_type='stuff', retriever=st.session_state.retriever, memory=st.session_state.memory).run( "Create an interview guideline and prepare total of 8 questions. Make sure the questions tests the soft skills") # llm chain and memory if "conversation" not in st.session_state: llm = ChatOpenAI( model_name = "gpt-3.5-turbo", temperature = 0.8,) PROMPT = PromptTemplate( input_variables=["history", "input"], template="""I want you to act as an interviewer strictly following the guideline in the current conversation. Candidate has no idea what the guideline is. Ask me questions and wait for my answers. Do not write explanations. Ask question like a real person, only one question at a time. Do not ask the same question. Do not repeat the question. Do ask follow-up questions if necessary. You name is GPTInterviewer. I want you to only reply as an interviewer. Do not write all the conversation at once. If there is an error, point it out. Current Conversation: {history} Candidate: {input} AI: """) st.session_state.conversation = ConversationChain(prompt=PROMPT, llm=llm, memory=st.session_state.memory) if "feedback" not in st.session_state: llm = ChatOpenAI( model_name = "gpt-3.5-turbo", temperature = 0.5,) st.session_state.feedback = ConversationChain( prompt=PromptTemplate(input_variables = ["history", "input"], template = templates.feedback_template), llm=llm, memory = st.session_state.memory, ) def answer_call_back(): '''callback function for answering user input''' with get_openai_callback() as cb: # user input human_answer = st.session_state.answer # transcribe audio if voice: save_wav_file("temp/audio.wav", human_answer) try: input = transcribe("temp/audio.wav") # save human_answer to history except: st.session_state.history.append(Message("ai", "Sorry, I didn't get that.")) return "Please try again." else: input = human_answer st.session_state.history.append( Message("human", input) ) # OpenAI answer and save to history llm_answer = st.session_state.conversation.run(input) # speech synthesis and speak out audio_file_path = synthesize_speech(llm_answer) # create audio widget with autoplay audio_widget = Audio(audio_file_path, autoplay=True) # save audio data to history st.session_state.history.append( Message("ai", llm_answer) ) st.session_state.token_count += cb.total_tokens return audio_widget ### ———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— if jd: initialize_session_state() credit_card_placeholder = st.empty() col1, col2 = st.columns(2) with col1: feedback = st.button("Get Interview Feedback") with col2: guideline = st.button("Show me interview guideline!") audio = None chat_placeholder = st.container() answer_placeholder = st.container() if guideline: st.write(st.session_state.guideline) if feedback: evaluation = st.session_state.feedback.run("please give evalution regarding the interview") st.markdown(evaluation) st.download_button(label="Download Interview Feedback", data=evaluation, file_name="interview_feedback.txt") st.stop() else: with answer_placeholder: voice: bool = st.checkbox("I would like to speak with AI Interviewer!") if voice: answer = audio_recorder(pause_threshold=2.5, sample_rate=44100) #st.warning("An UnboundLocalError will occur if the microphone fails to record.") else: answer = st.chat_input("Your answer") if answer: st.session_state['answer'] = answer audio = answer_call_back() with chat_placeholder: for answer in st.session_state.history: if answer.origin == 'ai': if auto_play and audio: with st.chat_message("assistant"): st.write(answer.message) st.write(audio) else: with st.chat_message("assistant"): st.write(answer.message) else: with st.chat_message("user"): st.write(answer.message) credit_card_placeholder.caption(f""" Progress: {int(len(st.session_state.history) / 30 * 100)}% completed. """) else: st.info("Please submit job description to start interview.")