import streamlit as st from paddleocr import PaddleOCR from PIL import ImageDraw, ImageFont import torch from transformers import AutoProcessor,LayoutLMv3ForTokenClassification import numpy as np model_Hugging_path = "Noureddinesa/Output_LayoutLMv3_v5" ############################################################################# ############################################################################# def Labels(): labels = ['InvNum', 'InvDate', 'Fourni', 'TTC', 'TVA', 'TT', 'Autre'] id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} return id2label, label2id ############################################################################# ############################################################################# def Paddle(): ocr = PaddleOCR(use_angle_cls=False,lang='fr',rec=False) return ocr def processbbox(BBOX, width, height): bbox = [] bbox.append(BBOX[0][0]) bbox.append(BBOX[0][1]) bbox.append(BBOX[2][0]) bbox.append(BBOX[2][1]) #Scaling bbox[0]= 1000*bbox[0]/width # X1 bbox[1]= 1000*bbox[1]/height # Y1 bbox[2]= 1000*bbox[2]/width # X2 bbox[3]= 1000*bbox[3]/height # Y2 for i in range(4): bbox[i] = int(bbox[i]) return bbox def Preprocess(image): image_array = np.array(image) ocr = Paddle() width, height = image.size results = ocr.ocr(image_array, cls=True) results = results[0] test_dict = {'image': image ,'tokens':[], "bboxes":[]} for item in results : bbox = processbbox(item[0], width, height) test_dict['tokens'].append(item[1][0]) test_dict['bboxes'].append(bbox) print(test_dict['bboxes']) print(test_dict['tokens']) return test_dict ############################################################################# ############################################################################# def Encode(image): example = Preprocess(image) image = example["image"] words = example["tokens"] boxes = example["bboxes"] processor = AutoProcessor.from_pretrained(model_Hugging_path, apply_ocr=False) encoding = processor(image, words, boxes=boxes,return_offsets_mapping=True,truncation=True, max_length=512, padding="max_length", return_tensors="pt") offset_mapping = encoding.pop('offset_mapping') return encoding, offset_mapping,words def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def Run_model(image): encoding,offset_mapping,words = Encode(image) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load the fine-tuned model from the hub model = LayoutLMv3ForTokenClassification.from_pretrained(model_Hugging_path) model.to(device) # forward pass outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() width, height = image.size id2label, _ = Labels() is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] return true_predictions,true_boxes,words def Get_Json(true_predictions,words): Results = {} i = 0 for prd in true_predictions: if prd in ['InvNum','Fourni', 'InvDate','TT','TTC','TVA']: #print(i,prd,words[i-1]) Results[prd] = words[i-1] i+=1 key_mapping = {'InvNum':'Numéro de facture','Fourni':'Fournisseur', 'InvDate':'Date Facture','TT':'Total HT','TTC':'Total TTC','TVA':'TVA'} Results = {key_mapping.get(key, key): value for key, value in Results.items()} return Results def Draw(image): true_predictions, true_boxes,words = Run_model(image) draw = ImageDraw.Draw(image) label2color = { 'InvNum': 'blue', 'InvDate': 'green', 'Fourni': 'orange', 'TTC':'purple', 'TVA': 'magenta', 'TT': 'red', 'Autre': 'black' } # Adjust the thickness of the rectangle outline and label text position rectangle_thickness = 4 label_x_offset = 20 label_y_offset = -30 # Custom font size custom_font_size = 25 # Load a font with the custom size font_path = "arial.ttf" # Specify the path to your font file custom_font = ImageFont.truetype(font_path, custom_font_size) for prediction, box in zip(true_predictions, true_boxes): predicted_label = prediction # Check if the predicted label exists in the label2color dictionary if predicted_label in label2color: color = label2color[predicted_label] else: color = 'black' # Default color if label is not found if predicted_label != "Autre": draw.rectangle(box, outline=color, width=rectangle_thickness) # Draw text using the custom font and size draw.rectangle((box[0], box[1]+ label_y_offset,box[2],box[3]+ label_y_offset), fill=color) draw.text((box[0] + label_x_offset, box[1] + label_y_offset), text=predicted_label, fill='white', font=custom_font) # Get the Results Json File Results = Get_Json(true_predictions,words) return image,Results def Add_Results(data): # Render the table for key, value in data.items(): data[key] = st.sidebar.text_input(key, value) ############################################################################# ############################################################################# def Change_Image(image1,image2): # Initialize session state if 'current_image' not in st.session_state: st.session_state.current_image = 'image1' # Button to switch between images if st.sidebar.button('Remove'): if st.session_state.current_image == 'image1': st.session_state.current_image = 'image2' else: st.session_state.current_image = 'image1' # Display the selected image if st.session_state.current_image == 'image1': st.image(image1, caption='Output', use_column_width=True) else: st.image(image2, caption='Image initiale', use_column_width=True)