import os os.system("pip install -r requirements.txt") os.system("pip freeze") import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-code-to-text") model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-code-to-text") pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, num_return_sequences=1, device=-1) def make_doctring(gen_prompt): return gen_prompt + f"\n\n\"\"\"\nExplanation:" def code_generation(gen_prompts, max_tokens=8, temperature=0.6, seed=42): set_seed(seed) prompts = [make_doctring(p) for p in gen_prompts] generated_text = pipe(prompts, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_tokens)[0] return generated_text["generated_text"] title = "Code Explainer" description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](https://huggingface.co/codeparrot/codeparrot-small-code-to-text),\ a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text) a dataset of Python code followed by a docstring explaining it, the data was originally extracted from Jupyter notebooks." EXAMPLES = [ ["def sort_function(arr):\n n = len(arr)\n \n # Traverse through all array elements\n for i in range(n):\n \n # Last i elements are already in place\n for j in range(0, n-i-1):\n \n # traverse the array from 0 to n-i-1\n # Swap if the element found is greater\n # than the next element\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]"], ["from sklearn import model_selection\nX_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.2)"], ["def load_text(filename):\n with open(filename, 'r') as f:\n text = f.read()\n return text"] ] iface = gr.Interface( fn=code_generation, inputs=[ gr.inputs.Code(language="python", label="Python code snippet", lines=10), gr.inputs.Slider(minimum=8, maximum=256, step=1, default=256, label="Number of tokens to generate"), gr.inputs.Slider(minimum=0, maximum=2.5, step=0.1, default=0.1, label="Temperature"), gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=42, label="Random seed") ], outputs=gr.outputs.Code(language="text", label="Generated explanation", lines=10), examples=EXAMPLES, layout="horizontal", theme="monochrome", description=description, title=title ) iface.launch()