Spaces:
Runtime error
Runtime error
Doron Adler
commited on
Commit
•
2c5167f
1
Parent(s):
b558187
Sharper output with unsharp mask
Browse files- Sample00001.jpg +0 -0
- Sample00002.jpg +0 -0
- Sample00003.jpg +0 -0
- Sample00004.jpg +0 -0
- Sample00005.jpg +0 -0
- Sample00006.jpg +0 -0
- app.py +27 -3
Sample00001.jpg
CHANGED
Sample00002.jpg
CHANGED
Sample00003.jpg
CHANGED
Sample00004.jpg
CHANGED
Sample00005.jpg
CHANGED
Sample00006.jpg
CHANGED
app.py
CHANGED
@@ -6,12 +6,27 @@ import face_detection
|
|
6 |
import PIL
|
7 |
from PIL import Image, ImageOps, ImageFile
|
8 |
import numpy as np
|
9 |
-
|
10 |
import torch
|
|
|
11 |
torch.set_grad_enabled(False)
|
12 |
model = torch.jit.load('u2net_bce_itr_16000_train_3.835149_tar_0.542587-400x_360x.jit.pt')
|
13 |
model.eval()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def normPRED(d):
|
16 |
ma = np.max(d)
|
17 |
mi = np.min(d)
|
@@ -20,6 +35,12 @@ def normPRED(d):
|
|
20 |
|
21 |
return dn
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def array_to_image(array_in):
|
24 |
array_in = normPRED(array_in)
|
25 |
array_in = np.squeeze(255.0*(array_in))
|
@@ -82,8 +103,11 @@ def face2hero(
|
|
82 |
else:
|
83 |
input = torch.Tensor(aligned_img)
|
84 |
results = model(input)
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
del results
|
88 |
|
89 |
return output
|
|
|
6 |
import PIL
|
7 |
from PIL import Image, ImageOps, ImageFile
|
8 |
import numpy as np
|
9 |
+
import cv2 as cv
|
10 |
import torch
|
11 |
+
|
12 |
torch.set_grad_enabled(False)
|
13 |
model = torch.jit.load('u2net_bce_itr_16000_train_3.835149_tar_0.542587-400x_360x.jit.pt')
|
14 |
model.eval()
|
15 |
|
16 |
+
# https://en.wikipedia.org/wiki/Unsharp_masking
|
17 |
+
# https://stackoverflow.com/a/55590133/1495606
|
18 |
+
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
|
19 |
+
"""Return a sharpened version of the image, using an unsharp mask."""
|
20 |
+
blurred = cv.GaussianBlur(image, kernel_size, sigma)
|
21 |
+
sharpened = float(amount + 1) * image - float(amount) * blurred
|
22 |
+
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
|
23 |
+
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
|
24 |
+
sharpened = sharpened.round().astype(np.uint8)
|
25 |
+
if threshold > 0:
|
26 |
+
low_contrast_mask = np.absolute(image - blurred) < threshold
|
27 |
+
np.copyto(sharpened, image, where=low_contrast_mask)
|
28 |
+
return sharpened
|
29 |
+
|
30 |
def normPRED(d):
|
31 |
ma = np.max(d)
|
32 |
mi = np.min(d)
|
|
|
35 |
|
36 |
return dn
|
37 |
|
38 |
+
def array_to_np(array_in):
|
39 |
+
array_in = normPRED(array_in)
|
40 |
+
array_in = np.squeeze(255.0*(array_in))
|
41 |
+
array_in = np.transpose(array_in, (1, 2, 0))
|
42 |
+
return array_in
|
43 |
+
|
44 |
def array_to_image(array_in):
|
45 |
array_in = normPRED(array_in)
|
46 |
array_in = np.squeeze(255.0*(array_in))
|
|
|
103 |
else:
|
104 |
input = torch.Tensor(aligned_img)
|
105 |
results = model(input)
|
106 |
+
hero_np_image = array_to_np(results[1].detach().numpy())
|
107 |
+
hero_image = unsharp_mask(hero_np_image)
|
108 |
+
hero_image = Image.fromarray(hero_image)
|
109 |
+
|
110 |
+
output = img_concat_h(array_to_image(aligned_img), hero_image)
|
111 |
del results
|
112 |
|
113 |
return output
|