# Copyright (c) 2021 Justin Pinkney import dlib import numpy as np import os from PIL import Image from PIL import ImageOps from scipy.ndimage import gaussian_filter import cv2 MODEL_PATH = "shape_predictor_5_face_landmarks.dat" detector = dlib.get_frontal_face_detector() def align(image_in, face_index=0, output_size=256): try: image_in = ImageOps.exif_transpose(image_in) except: print("exif problem, not rotating") landmarks = list(get_landmarks(image_in)) n_faces = len(landmarks) face_index = min(n_faces-1, face_index) if n_faces == 0: aligned_image = image_in quad = None else: aligned_image, quad = image_align(image_in, landmarks[face_index], output_size=output_size) return aligned_image, n_faces, quad def composite_images(quad, img, output): """Composite an image into and output canvas according to transformed co-ords""" output = output.convert("RGBA") img = img.convert("RGBA") input_size = img.size src = np.array(((0, 0), (0, input_size[1]), input_size, (input_size[0], 0)), dtype=np.float32) dst = np.float32(quad) mtx = cv2.getPerspectiveTransform(dst, src) img = img.transform(output.size, Image.PERSPECTIVE, mtx.flatten(), Image.BILINEAR) output.alpha_composite(img) return output.convert("RGB") def get_landmarks(image): """Get landmarks from PIL image""" shape_predictor = dlib.shape_predictor(MODEL_PATH) max_size = max(image.size) reduction_scale = int(max_size/512) if reduction_scale == 0: reduction_scale = 1 downscaled = image.reduce(reduction_scale) img = np.array(downscaled) detections = detector(img, 0) for detection in detections: try: face_landmarks = [(reduction_scale*item.x, reduction_scale*item.y) for item in shape_predictor(img, detection).parts()] yield face_landmarks except Exception as e: print(e) def image_align(src_img, face_landmarks, output_size=512, transform_size=2048, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False): # Align function modified from ffhq-dataset # See https://github.com/NVlabs/ffhq-dataset for license lm = np.array(face_landmarks) lm_eye_left = lm[2:3] # left-clockwise lm_eye_right = lm[0:1] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = 0.71*(eye_right - eye_left) mouth_avg = lm[4] eye_to_mouth = 1.35*(mouth_avg - eye_avg) # Choose oriented crop rectangle. x = eye_to_eye.copy() x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) x *= x_scale y = np.flipud(x) * [-y_scale, y_scale] c = eye_avg + eye_to_mouth * em_scale quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) quad_orig = quad.copy() qsize = np.hypot(*x) * 2 img = src_img.convert('RGBA').convert('RGB') # Shrink. shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, Image.Resampling.LANCZOS) quad /= shrink qsize /= shrink # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) blur = qsize * 0.02 img += (gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) img = np.uint8(np.clip(np.rint(img), 0, 255)) if alpha: mask = 1-np.clip(3.0 * mask, 0.0, 1.0) mask = np.uint8(np.clip(np.rint(mask*255), 0, 255)) img = np.concatenate((img, mask), axis=2) img = Image.fromarray(img, 'RGBA') else: img = Image.fromarray(img, 'RGB') quad += pad[:2] # Transform. img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), Image.Resampling.LANCZOS) return img, quad_orig