# Copyright 2020 Nagoya University (Tomoki Hayashi) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import torch from Architectures.GeneralLayers.Attention import MultiHeadedAttention as BaseMultiHeadedAttention class GSTStyleEncoder(torch.nn.Module): """Style encoder. This module is style encoder introduced in `Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis`. .. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis`: https://arxiv.org/abs/1803.09017 Args: idim (int, optional): Dimension of the input features. gst_tokens (int, optional): The number of GST embeddings. gst_token_dim (int, optional): Dimension of each GST embedding. gst_heads (int, optional): The number of heads in GST multihead attention. conv_layers (int, optional): The number of conv layers in the reference encoder. conv_chans_list: (Sequence[int], optional): List of the number of channels of conv layers in the reference encoder. conv_kernel_size (int, optional): Kernel size of conv layers in the reference encoder. conv_stride (int, optional): Stride size of conv layers in the reference encoder. gst_layers (int, optional): The number of GRU layers in the reference encoder. gst_units (int, optional): The number of GRU units in the reference encoder. """ def __init__( self, idim: int = 128, gst_tokens: int = 512, # adaspeech suggests to use many more "basis vectors", but I believe that this is already sufficient gst_token_dim: int = 64, gst_heads: int = 8, conv_layers: int = 8, conv_chans_list=(32, 32, 64, 64, 128, 128, 256, 256), conv_kernel_size: int = 3, conv_stride: int = 2, gst_layers: int = 2, gst_units: int = 256, ): """Initialize global style encoder module.""" super(GSTStyleEncoder, self).__init__() self.num_tokens = gst_tokens self.ref_enc = ReferenceEncoder(idim=idim, conv_layers=conv_layers, conv_chans_list=conv_chans_list, conv_kernel_size=conv_kernel_size, conv_stride=conv_stride, gst_layers=gst_layers, gst_units=gst_units, ) self.stl = StyleTokenLayer(ref_embed_dim=gst_units, gst_tokens=gst_tokens, gst_token_dim=gst_token_dim, gst_heads=gst_heads, ) def forward(self, speech): """Calculate forward propagation. Args: speech (Tensor): Batch of padded target features (B, Lmax, odim). Returns: Tensor: Style token embeddings (B, token_dim). """ ref_embs = self.ref_enc(speech) style_embs = self.stl(ref_embs) return style_embs def calculate_ada4_regularization_loss(self): losses = list() for emb1_index in range(self.num_tokens): for emb2_index in range(emb1_index + 1, self.num_tokens): if emb1_index != emb2_index: losses.append(torch.nn.functional.cosine_similarity(self.stl.gst_embs[emb1_index], self.stl.gst_embs[emb2_index], dim=0)) return sum(losses) class ReferenceEncoder(torch.nn.Module): """Reference encoder module. This module is reference encoder introduced in `Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis`. .. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis`: https://arxiv.org/abs/1803.09017 Args: idim (int, optional): Dimension of the input features. conv_layers (int, optional): The number of conv layers in the reference encoder. conv_chans_list: (Sequence[int], optional): List of the number of channels of conv layers in the reference encoder. conv_kernel_size (int, optional): Kernel size of conv layers in the reference encoder. conv_stride (int, optional): Stride size of conv layers in the reference encoder. gst_layers (int, optional): The number of GRU layers in the reference encoder. gst_units (int, optional): The number of GRU units in the reference encoder. """ def __init__( self, idim=80, conv_layers: int = 6, conv_chans_list=(32, 32, 64, 64, 128, 128), conv_kernel_size: int = 3, conv_stride: int = 2, gst_layers: int = 1, gst_units: int = 128, ): """Initialize reference encoder module.""" super(ReferenceEncoder, self).__init__() # check hyperparameters are valid assert conv_kernel_size % 2 == 1, "kernel size must be odd." assert ( len(conv_chans_list) == conv_layers), "the number of conv layers and length of channels list must be the same." convs = [] padding = (conv_kernel_size - 1) // 2 for i in range(conv_layers): conv_in_chans = 1 if i == 0 else conv_chans_list[i - 1] conv_out_chans = conv_chans_list[i] convs += [torch.nn.Conv2d(conv_in_chans, conv_out_chans, kernel_size=conv_kernel_size, stride=conv_stride, padding=padding, # Do not use bias due to the following batch norm bias=False, ), torch.nn.BatchNorm2d(conv_out_chans), torch.nn.ReLU(inplace=True), ] self.convs = torch.nn.Sequential(*convs) self.conv_layers = conv_layers self.kernel_size = conv_kernel_size self.stride = conv_stride self.padding = padding # get the number of GRU input units gst_in_units = idim for i in range(conv_layers): gst_in_units = (gst_in_units - conv_kernel_size + 2 * padding) // conv_stride + 1 gst_in_units *= conv_out_chans self.gst = torch.nn.GRU(gst_in_units, gst_units, gst_layers, batch_first=True) def forward(self, speech): """Calculate forward propagation. Args: speech (Tensor): Batch of padded target features (B, Lmax, idim). Returns: Tensor: Reference embedding (B, gst_units) """ batch_size = speech.size(0) xs = speech.unsqueeze(1) # (B, 1, Lmax, idim) hs = self.convs(xs).transpose(1, 2) # (B, Lmax', conv_out_chans, idim') time_length = hs.size(1) hs = hs.contiguous().view(batch_size, time_length, -1) # (B, Lmax', gst_units) self.gst.flatten_parameters() # pack_padded_sequence(hs, speech_lens, enforce_sorted=False, batch_first=True) _, ref_embs = self.gst(hs) # (gst_layers, batch_size, gst_units) ref_embs = ref_embs[-1] # (batch_size, gst_units) return ref_embs class StyleTokenLayer(torch.nn.Module): """Style token layer module. This module is style token layer introduced in `Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis`. .. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis`: https://arxiv.org/abs/1803.09017 Args: ref_embed_dim (int, optional): Dimension of the input reference embedding. gst_tokens (int, optional): The number of GST embeddings. gst_token_dim (int, optional): Dimension of each GST embedding. gst_heads (int, optional): The number of heads in GST multihead attention. dropout_rate (float, optional): Dropout rate in multi-head attention. """ def __init__( self, ref_embed_dim: int = 128, gst_tokens: int = 10, gst_token_dim: int = 128, gst_heads: int = 4, dropout_rate: float = 0.0, ): """Initialize style token layer module.""" super(StyleTokenLayer, self).__init__() gst_embs = torch.randn(gst_tokens, gst_token_dim // gst_heads) self.register_parameter("gst_embs", torch.nn.Parameter(gst_embs)) self.mha = MultiHeadedAttention(q_dim=ref_embed_dim, k_dim=gst_token_dim // gst_heads, v_dim=gst_token_dim // gst_heads, n_head=gst_heads, n_feat=gst_token_dim, dropout_rate=dropout_rate, ) def forward(self, ref_embs): """Calculate forward propagation. Args: ref_embs (Tensor): Reference embeddings (B, ref_embed_dim). Returns: Tensor: Style token embeddings (B, gst_token_dim). """ batch_size = ref_embs.size(0) # (num_tokens, token_dim) -> (batch_size, num_tokens, token_dim) gst_embs = torch.tanh(self.gst_embs).unsqueeze(0).expand(batch_size, -1, -1) # NOTE(kan-bayashi): Shoule we apply Tanh? ref_embs = ref_embs.unsqueeze(1) # (batch_size, 1 ,ref_embed_dim) style_embs = self.mha(ref_embs, gst_embs, gst_embs, None) return style_embs.squeeze(1) class MultiHeadedAttention(BaseMultiHeadedAttention): """Multi head attention module with different input dimension.""" def __init__(self, q_dim, k_dim, v_dim, n_head, n_feat, dropout_rate=0.0): """Initialize multi head attention module.""" # NOTE(kan-bayashi): Do not use super().__init__() here since we want to # overwrite BaseMultiHeadedAttention.__init__() method. torch.nn.Module.__init__(self) assert n_feat % n_head == 0 # We assume d_v always equals d_k self.d_k = n_feat // n_head self.h = n_head self.linear_q = torch.nn.Linear(q_dim, n_feat) self.linear_k = torch.nn.Linear(k_dim, n_feat) self.linear_v = torch.nn.Linear(v_dim, n_feat) self.linear_out = torch.nn.Linear(n_feat, n_feat) self.attn = None self.dropout = torch.nn.Dropout(p=dropout_rate)