import torch import gradio as gr import spaces from inference_gradio import inference_one_image, model_init MODEL_PATH = "./checkpoints/docres.pkl" HEADER = """

DocRes: A Generalist Model Toward Unifying Document Image Restoration Tasks

ArXiv Paper   GitHub Repository

🖼️ Upload an image of a document (or choose one from examples below). ✔️ Choose the tasks you want to perform on the document. 🚀 Click "Run" and the model will enhance the document according to the selected tasks! """ possible_tasks = [ "dewarping", "deshadowing", "appearance", "deblurring", "binarization", ] @spaces.GPU(duration=60) def run_tasks(image, tasks): device = "cuda" if torch.cuda.is_available() else "cpu" # load model model = model_init(MODEL_PATH, device) # run inference bgr_image = image[..., ::-1].copy() bgr_restored_image = inference_one_image(model, bgr_image, tasks, device) if bgr_restored_image.ndim == 3: rgb_image = bgr_restored_image[..., ::-1] else: rgb_image = bgr_restored_image return rgb_image with gr.Blocks() as demo: gr.Markdown(HEADER) task = gr.CheckboxGroup(choices=possible_tasks, label="Tasks", value=["appearance"]) with gr.Row(): input_image = gr.Image(label="Raw Image", type="numpy") output_image = gr.Image(label="Enhanced Image", type="numpy") button = gr.Button() button.click(run_tasks, inputs=[input_image, task], outputs=[output_image]) gr.Examples( examples=[ ["input/218_in.png", ["dewarping", "deshadowing", "appearance"]], ["input/151_in.png", ["dewarping", "deshadowing", "appearance"]], ["input/for_debluring.png", ["deblurring"]], ["input/for_appearance.png", ["appearance"]], ["input/for_deshadowing.jpg", ["deshadowing"]], ["input/for_dewarping.png", ["dewarping"]], ["input/for_binarization.png", ["binarization"]], ], inputs=[input_image, task], outputs=[output_image], fn=run_tasks, cache_examples="lazy", ) demo.launch()