from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch import gradio as gr import spaces # --- Model Loading --- base_model_id = "unsloth/Meta-Llama-3.1-8B" lora_model_id = "Nlpeva/lora_model" # Replace with your LoRA Hub path try: model = AutoModelForCausalLM.from_pretrained( base_model_id, torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(base_model_id) model = PeftModel.from_pretrained(model, lora_model_id) print("Model and LoRA loaded successfully!") except Exception as e: print(f"Error loading model or LoRA: {e}") model = None tokenizer = None # --- Generation Function --- @spaces.GPU def generate_response(information, input_text): if model is None or tokenizer is None: return "Model not loaded. Please check the logs." prompt = f"Information: {information}\n\nInput: {input_text}\n\nResponse:" input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) try: with torch.no_grad(): output = model.generate( input_ids=input_ids, max_length=300, # Adjust as needed num_return_sequences=1, temperature=0.7, top_p=0.9, # Add other generation parameters as desired ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text.strip() except Exception as e: return f"Error during generation: {e}" # --- Gradio Interface --- iface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(label="Information", placeholder="Provide any relevant context or information here."), gr.Textbox(label="Input", placeholder="Enter your query or the text you want the model to process.") ], outputs=gr.Textbox(label="Output"), title="Llama-3 with Custom LoRA", description="Enter information and an input, and the model will generate a response based on both." ) iface.launch()