# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import os from openai import AsyncOpenAI # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from dotenv import load_dotenv load_dotenv() # ChatOpenAI Templates system_template = """\ ###Instruction### You are an expert assistant answering technical questions on machine learning and deep learning subject. Ensure that your response is unbiased and generic, you will be 'AWARDED' for giving really good clarity and correct answers. """ user_template = """{input} + Think and only give code along with response, if you think giving code is necessary for any given question. """ @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): settings = { "model": "gpt-3.5-turbo", "temperature": 0, "max_tokens": 500, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, } cl.user_session.set("settings", settings) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: cl.Message): settings = cl.user_session.get("settings") client = AsyncOpenAI() print(message.content) prompt = Prompt( provider=ChatOpenAI.id, messages=[ PromptMessage( role="system", template=system_template, formatted=system_template, ), PromptMessage( role="user", template=user_template, formatted=user_template.format(input=message.content), ), ], inputs={"input": message.content}, settings=settings, ) print([m.to_openai() for m in prompt.messages]) msg = cl.Message(content="") await msg.send() # Call OpenAI async for stream_resp in await client.chat.completions.create( messages=[m.to_openai() for m in prompt.messages], stream=True, **settings ): token = stream_resp.choices[0].delta.content if not token: token = "" await msg.stream_token(token) # Update the prompt object with the completion prompt.completion = msg.content msg.prompt = prompt # Send and close the message stream await msg.send()