from pathlib import Path from rembg import remove import io # Apply the transformations needed from torch import autocast, nn import torch import torch.nn as nn import torch import torchvision.transforms as transforms import torchvision.utils as utils import torch.nn as nn import pyrootutils from PIL import Image import numpy as np from utils.photo_wct import PhotoWCT from utils.photo_smooth import Propagator #from utils.smooth_filter import smooth_filter # Load models root = Path.cwd() device = "cuda" if torch.cuda.is_available() else "cpu" # Load model p_wct = PhotoWCT() p_wct.load_state_dict(torch.load(root/"models/components/photo_wct.pth")) p_pro = Propagator() stylization_module=p_wct smoothing_module=p_pro #Dependecies - To be installed - #!pip install replicate #Token - To be authenticated - #API TOKEN - 664474670af075461f85420f7b1d23d18484f826 #To be declared as an environment variable - #export REPLICATE_API_TOKEN = import replicate import os import requests def stableDiffusionAPICall(text_prompt): os.environ['REPLICATE_API_TOKEN'] = 'a9f4c06cb9808f42b29637bb60b7b88f106ad5b8' model = replicate.models.get("stability-ai/stable-diffusion") #text_prompt = 'photorealistic, elf fighting Sauron' gen_bg_img = model.predict(prompt=text_prompt)[0] img_data = requests.get(gen_bg_img).content # r_data = binascii.unhexlify(img_data) stream = io.BytesIO(img_data) img = Image.open(stream) del img_data return img def memory_limit_image_resize(cont_img): # prevent too small or too big images MINSIZE=400 MAXSIZE=800 orig_width = cont_img.width orig_height = cont_img.height if max(cont_img.width,cont_img.height) < MINSIZE: if cont_img.width > cont_img.height: cont_img.thumbnail((int(cont_img.width*1.0/cont_img.height*MINSIZE), MINSIZE), Image.BICUBIC) else: cont_img.thumbnail((MINSIZE, int(cont_img.height*1.0/cont_img.width*MINSIZE)), Image.BICUBIC) if min(cont_img.width,cont_img.height) > MAXSIZE: if cont_img.width > cont_img.height: cont_img.thumbnail((MAXSIZE, int(cont_img.height*1.0/cont_img.width*MAXSIZE)), Image.BICUBIC) else: cont_img.thumbnail(((int(cont_img.width*1.0/cont_img.height*MAXSIZE), MAXSIZE)), Image.BICUBIC) print("Resize image: (%d,%d)->(%d,%d)" % (orig_width, orig_height, cont_img.width, cont_img.height)) return cont_img.width, cont_img.height def superimpose(input_img,back_img): matte_img = remove(input_img) back_img.paste(matte_img, (0, 0), matte_img) return back_img def style_transfer(cont_img,styl_img): with torch.no_grad(): new_cw, new_ch = memory_limit_image_resize(cont_img) new_sw, new_sh = memory_limit_image_resize(styl_img) cont_pilimg = cont_img.copy() cw = cont_pilimg.width ch = cont_pilimg.height cont_img = transforms.ToTensor()(cont_img).unsqueeze(0) styl_img = transforms.ToTensor()(styl_img).unsqueeze(0) cont_seg = [] styl_seg = [] if device == 'cuda': cont_img = cont_img.to(device) styl_img = styl_img.to(device) stylization_module.to(device) cont_seg = np.asarray(cont_seg) styl_seg = np.asarray(styl_seg) stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg) if ch != new_ch or cw != new_cw: stylized_img = nn.functional.upsample(stylized_img, size=(ch, cw), mode='bilinear') grid = utils.make_grid(stylized_img.data, nrow=1, padding=0) ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() stylized_img = Image.fromarray(ndarr) #final_img = smooth_filter(stylized_img, cont_pilimg, f_radius=15, f_edge=1e-1) return stylized_img def smoother(stylized_img, over_img): final_img = smoothing_module.process(stylized_img, over_img) #final_img = smooth_filter(stylized_img, over_img, f_radius=15, f_edge=1e-1) return final_img if __name__ == "__main__": root = pyrootutils.setup_root(__file__, pythonpath=True) fg_path = root/"notebooks/profile_new.png" bg_path = root/"notebooks/back_img.png" ckpt_path = root/"src/models/MODNet/pretrained/modnet_photographic_portrait_matting.ckpt" #stableDiffusionAPICall("Photorealistic scenery of a concert") fg_img = Image.open(fg_path).resize((800,800)) bg_img = Image.open(bg_path).resize((800,800)) #img = combined_display(fg_img, bg_img,ckpt_path) img = superimpose(fg_img,bg_img) img.save(root/"notebooks/overlay.png") # bg_img.paste(img, (0, 0), img) # bg_img.save(root/"notebooks/check.png")