import streamlit as st import cv2 import numpy as np import mediapipe as mp import joblib import pandas as pd from numpy.linalg import norm import matplotlib.pyplot as plt import os st.set_page_config(layout="wide") # Function to load the Random Forest model @st.cache_resource def load_model(): try: return joblib.load('best_random_forest_model.pkl') except Exception as e: st.error(f"Error loading model: {e}") return None # Load the model using the cached function model = load_model() # Ensure the model is loaded before proceeding if model is None: st.stop() # Initialize MediaPipe Hands @st.cache_resource def load_mediapipe_model(): mp_hands = mp.solutions.hands return mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5) hands = load_mediapipe_model() mp_drawing = mp.solutions.drawing_utils # Function to normalize landmarks def normalize_landmarks(landmarks): center = np.mean(landmarks, axis=0) landmarks_centered = landmarks - center std_dev = np.std(landmarks_centered, axis=0) landmarks_normalized = landmarks_centered / std_dev return np.nan_to_num(landmarks_normalized) # Function to calculate angles between landmarks def calculate_angles(landmarks): angles = [] for i in range(20): for j in range(i + 1, 21): vector = landmarks[j] - landmarks[i] angle_x = np.arccos(np.clip(vector[0] / norm(vector), -1.0, 1.0)) angle_y = np.arccos(np.clip(vector[1] / norm(vector), -1.0, 1.0)) angles.extend([angle_x, angle_y]) return angles # Function to process image and predict alphabet def process_and_predict(image): if image is None: st.error("Failed to load the image. Please check if the file exists and is not corrupted.") return None, None try: image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) except cv2.error: st.error("Failed to convert the image. The image might be corrupted or in an unsupported format.") return None, None try: results = hands.process(image_rgb) except Exception as e: st.error(f"An error occurred while processing the image: {str(e)}") return None, None if not results.multi_hand_landmarks: st.warning("No hands detected in the image.") return None, None landmarks = np.array([[lm.x, lm.y] for lm in results.multi_hand_landmarks[0].landmark]) landmarks_normalized = normalize_landmarks(landmarks) angles = calculate_angles(landmarks_normalized) angle_columns = [f'angle_{i}' for i in range(len(angles))] angles_df = pd.DataFrame([angles], columns=angle_columns) probabilities = model.predict_proba(angles_df)[0] return probabilities, landmarks # Function to plot hand landmarks def plot_hand_landmarks(landmarks, title): fig, ax = plt.subplots(figsize=(10, 10)) ax.scatter(landmarks[:, 0], landmarks[:, 1], c='blue', s=50) for connection in mp.solutions.hands.HAND_CONNECTIONS: start_idx = connection[0] end_idx = connection[1] ax.plot([landmarks[start_idx, 0], landmarks[end_idx, 0]], [landmarks[start_idx, 1], landmarks[end_idx, 1]], 'r-', linewidth=2) ax.invert_yaxis() ax.set_title(title, fontsize=16) ax.axis('off') return fig # Streamlit app st.title("ASL Recognition App") # Debug information st.write("Current working directory:", os.getcwd()) image_directory = 'asl test set' st.write("Image directory path:", os.path.abspath(image_directory)) if os.path.exists(image_directory): image_files = os.listdir(image_directory) st.write("Files in the image directory:", image_files) else: st.error(f"The directory '{image_directory}' does not exist.") # Create tabs for different functionalities tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"]) with tab1: st.header("Predict ASL Sign") uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: col1, col2 = st.columns(2) with col1: image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1) st.image(image, caption="Uploaded Image", use_column_width=True) with col2: probabilities, landmarks = process_and_predict(image) if probabilities is not None and landmarks is not None: st.subheader("Top 5 Predictions:") top_indices = np.argsort(probabilities)[::-1][:5] for i in top_indices: st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}") fig = plot_hand_landmarks(landmarks, "Detected Hand Landmarks") st.pyplot(fig) with tab2: st.header("View Hand Landmarks") all_alphabets = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' excluded_alphabets = 'DMNPTUVXZ' available_alphabets = ''.join(set(all_alphabets) - set(excluded_alphabets)) selected_alphabets = st.multiselect("Select alphabets to view landmarks:", list(available_alphabets)) if selected_alphabets: cols = st.columns(min(3, len(selected_alphabets))) for idx, alphabet in enumerate(selected_alphabets): with cols[idx % 3]: image_path = os.path.join(image_directory, f'{alphabet.lower()}.jpeg') st.write(f"Attempting to load: {image_path}") if os.path.exists(image_path): image = cv2.imread(image_path) if image is None: st.error(f"Failed to load image for {alphabet}. The file might be corrupted.") continue probabilities, landmarks = process_and_predict(image) if landmarks is not None: fig = plot_hand_landmarks(landmarks, f"Hand Landmarks for {alphabet}") st.pyplot(fig) else: st.error(f"Image not found for {alphabet}") # Release MediaPipe resources hands.close()