import os import PIL import cv2 import math import numpy as np import torch import torchvision import imageio from einops import rearrange def save_videos_grid(videos, path=None, rescale=True, n_rows=4, fps=8, discardN=0): videos = rearrange(videos, "b c t h w -> t b c h w").cpu() outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x / 2.0 + 0.5).clamp(0, 1) # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) #x = adjust_gamma(x, 0.5) outputs.append(x) outputs = outputs[discardN:] if path is not None: #os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, duration=1000/fps, loop=0) return outputs def convert_image_to_fn(img_type, minsize, image, eps=0.02): width, height = image.size if min(width, height) < minsize: scale = minsize/min(width, height) + eps image = image.resize((math.ceil(width*scale), math.ceil(height*scale))) if image.mode != img_type: return image.convert(img_type) return image