import torch import torch.nn as nn from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no? from diffusers.models.modeling_utils import ModelMixin from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalControlnetMixin class LPIPSWithDiscriminator(ModelMixin, ConfigMixin, FromOriginalControlnetMixin): def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge"): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight # output log variance self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm ).apply(weights_init) self.discriminator_iter_start = disc_start self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward(self, inputs, reconstructions, optimizer_idx, global_step, posteriors=None, last_layer=None, cond=None, split="train", weights=None, return_dic=False): rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights*nll_loss weighted_nll_loss = torch.mean(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.mean(nll_loss) / nll_loss.shape[0] if self.kl_weight>0: kl_loss = posteriors.kl() kl_loss = torch.mean(kl_loss) / kl_loss.shape[0] # now the GAN part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) g_loss = -torch.mean(logits_fake) if self.disc_factor > 0.0: try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: # assert not self.training d_weight = torch.tensor(1.0) * self.discriminator_weight else: # d_weight = torch.tensor(0.0) d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) if self.kl_weight>0: loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } if return_dic: loss_dic = {} loss_dic['total_loss'] = loss.clone().detach().mean() loss_dic['logvar'] = self.logvar.detach() loss_dic['kl_loss'] = kl_loss.detach().mean() loss_dic['nll_loss'] = nll_loss.detach().mean() loss_dic['rec_loss'] = rec_loss.detach().mean() loss_dic['d_weight'] = d_weight.detach() loss_dic['disc_factor'] = torch.tensor(disc_factor) loss_dic['g_loss'] = g_loss.detach().mean() else: loss = weighted_nll_loss + d_weight * disc_factor * g_loss log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } if return_dic: loss_dic = {} loss_dic["{}/total_loss".format(split)] = loss.clone().detach().mean() loss_dic["{}/logvar".format(split)] = self.logvar.detach() loss_dic['nll_loss'.format(split)] = nll_loss.detach().mean() loss_dic['rec_loss'.format(split)] = rec_loss.detach().mean() loss_dic['d_weight'.format(split)] = d_weight.detach() loss_dic['disc_factor'.format(split)] = torch.tensor(disc_factor) loss_dic['g_loss'.format(split)] = g_loss.detach().mean() if return_dic: return loss, log, loss_dic return loss, log if optimizer_idx == 1: # second pass for discriminator update if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean() } if return_dic: loss_dic = {} loss_dic["{}/disc_loss".format(split)] = d_loss.clone().detach().mean() loss_dic["{}/logits_real".format(split)] = logits_real.detach().mean() loss_dic["{}/logits_fake".format(split)] = logits_fake.detach().mean() return d_loss, log, loss_dic return d_loss, log