import os import gradio as gr import copy from llama_cpp import Llama from huggingface_hub import hf_hub_download # huggingface-cli download microsoft/Phi-3-mini-4k-instruct-gguf Phi-3-mini-4k-instruct-q4.gguf --local-dir . # huggingface-cli download LoneStriker/OpenBioLLM-Llama3-8B-GGUF --local-dir ./llama3-gguf llm = Llama( # model_path="./Phi-3-mini-4k-instruct-q4.gguf", model_path="./llama3-gguf/OpenBioLLM-Llama3-8B-Q5_K_M.gguf", n_ctx=2048, n_gpu_layers=50, # change n_gpu_layers if you have more or less VRAM ) # print("here") def generate_text( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): temp = "" input_prompt = f"[INST] <>\n{system_message}\n<>\n\n " for interaction in history: input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " [INST] " input_prompt = input_prompt + str(message) + " [/INST] " output = llm( input_prompt, temperature=temperature, top_p=top_p, top_k=40, repeat_penalty=1.1, max_tokens=max_tokens, stop=[ "<|prompter|>", "<|endoftext|>", "<|endoftext|> \n", "ASSISTANT:", "USER:", "SYSTEM:", ], stream=True, ) for out in output: stream = copy.deepcopy(out) temp += stream["choices"][0]["text"] yield temp demo = gr.ChatInterface( generate_text, title="llama-cpp-python on CPU", description="Running LLM with https://github.com/abetlen/llama-cpp-python", examples=[ ['How to setup a human base on Mars? Give short answer.'], ['Explain theory of relativity to me like I’m 8 years old.'], ['What is 9,000 * 9,000?'], ['Write a pun-filled happy birthday message to my friend Alex.'], ['Justify why a penguin might make a good king of the jungle.'] ], cache_examples=False, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()