import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
from strings import api_descriptions, func_definitions
# Define your HTML content for the bubble, ensure it's suitable for inline display
# Define your HTML content for the bubble, ensure it's suitable for inline display
bubble_html = """
{text}
"""
bubble_style = """
padding: 10px;
margin: 5px;
background: linear-gradient(to bottom right, #FFFFFF, #E8E8E8); /* Lighter background for contrast */
border-radius: 15px;
border: 1px solid #a1a1a1; /* Lighter border for subtle definition */
box-shadow: 2px 2px 10px rgba(255,255,255,0.1); /* Softer shadow with a hint of white for depth */
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
font-size: calc(4vw + 4vh) / 2; /* Scales dynamically with the viewport */
text-align: center;
display: flex;
align-items: center; /* Centers text vertically */
justify-content: center; /* Centers text horizontally */
min-height: 50px; /* Adjust as needed */
max-height: 140px; /* Adjust as needed */
max-width: 100%;
color: #333333; /* Dark text for contrast against light background */
overflow-wrap: break-word; /* Allows long words to be broken and wrap onto the next line */
"""
# Add a hover effect using
"""
# Updated results reflecting the new screenshot
RESULTS = {
'Climate': {"GPT4": 0.6808, "NexusRaven-V2": 0.7234},
'Heldout_Combined': {"GPT4": 0.4814, "NexusRaven-V2": 0.5990},
'Places_API': {"GPT4": 0.3541, "NexusRaven-V2": 0.5000},
'OTX': {"GPT4": 0.9130, "NexusRaven-V2": 0.9021},
'VirusTotal': {"GPT4": 0.8940, "NexusRaven-V2": 0.7815},
'VT_Multi_Dependency': {"GPT4": 0.3469, "NexusRaven-V2": 0.3673},
'VT_Multi_Disconnected': {"GPT4": 0.2380, "NexusRaven-V2": 0.3809},
'CVECPE': {"GPT4": 0.5769, "NexusRaven-V2": 0.4480},
'CVECPE_Multi_Dependency': {"GPT4": 0.1071, "NexusRaven-V2": 0.1607},
}
SAMPLES = {
'OTX': "data/OTX.json",
'CVECPE' : "data/CVECPE.json",
'CVECPE_Multi_Dependency' : "data/CVECPE_MultiAPIs.json",
'VirusTotal' : 'data/VirusTotal.json',
'VT_Multi_Dependency': 'data/VT_MultiAPIs_Nested.json',
'VT_Multi_Disconnected': 'data/VT_MultiAPIs_Disconnected.json',
'Climate' : 'data/Climate.jsonl',
'Places_API' : 'data/Places_API.jsonl'
}
import json
import random
import gradio as gr
def read_json_or_jsonl(file_path):
"""
Read a file and determine if it's JSON or JSONL.
Return the data as a list of items.
"""
try:
with open(file_path, 'r') as file:
if file_path.endswith('.jsonl'):
# Read JSONL file
data = [json.loads(line) for line in file]
else:
# Read JSON file
data = json.load(file)
for item in data:
if "input" in item:
item["Input"] = item["input"]
return data
except Exception as e:
print(f"Error reading file: {e}")
return []
def sample_data(data, sample_size=5):
"""
Randomly sample items from the data.
"""
if not data:
return []
sample_size = min(sample_size, len(data))
return random.sample(data, sample_size)
def highlight_row(s, column, value, color='yellow'):
"""
Highlight a row where the column has a specified value.
Args:
s (pd.Series): Row of the DataFrame.
column (str): Column name to check the value.
value (any): Value to check against.
color (str): Background color for highlighting. Default is yellow.
Returns:
[str]: A list of CSS strings for each cell in the row.
"""
return [f'background-color: {color}' if v == value else ''
for v in s[column]]
def create_bar_chart(data, title, theme):
df = pd.DataFrame.from_dict(data, orient='index', columns=['Score']).reset_index()
df.rename(columns={'index': 'Model'}, inplace=True)
# Choose colors based on the theme
colors = ['#636EFA', '#EF553B'] if theme == 'dark' else ['#00CC96', '#AB63FA']
fig = px.bar(
df, x='Model', y='Score', title=title,
color='Model', color_discrete_sequence=colors,
text='Score', barmode='group'
)
# Update layout for better contrast based on theme
fig.update_layout(
plot_bgcolor='rgba(0,0,0,0)' if theme == 'dark' else 'rgba(255,255,255,1)',
paper_bgcolor='rgba(0,0,0,0)' if theme == 'dark' else 'rgba(255,255,255,1)',
font_color='white' if theme == 'dark' else 'black'
)
# Update the bar chart to enable hover information
fig.update_traces(
hoverinfo='all', hovertemplate='Model: %{x}
Score: %{y:.2f}'
)
# Normalization for relative scaling
max_score = df['Score'].max()
fig.update_yaxes(range=[0, max_score + max_score * 0.1])
return fig
# Define the task categories
simple_tasks = ['OTX', 'CVECPE', 'VirusTotal', 'VT_Multi_Disconnected', 'Heldout_Combined']
difficult_tasks = ['VT_Multi_Dependency', 'Climate', 'Places_API', 'CVECPE_Multi_Dependency']
# Define the formatting function
def format_scores(val):
if isinstance(val, float):
val = val * 100
return f"{val:.4g}" # 'g' format specifier for significant figures
return val
# Function to calculate averages
def calculate_averages(results):
all_tasks_avg = pd.DataFrame(results).mean(axis=1)
simple_tasks_avg = pd.DataFrame({k: results[k] for k in simple_tasks}).mean(axis=1)
difficult_tasks_avg = pd.DataFrame({k: results[k] for k in difficult_tasks}).mean(axis=1)
avg_data = pd.DataFrame({
'All Tasks': all_tasks_avg,
'Tasks with Single Call (simple)"': simple_tasks_avg,
'Tasks with Nested/Parallel Calls (challenging)': difficult_tasks_avg
}).reset_index().rename(columns={'index': 'Model'})
return avg_data
# Function to display the averages in Gradio
def display_averages():
avg_data = calculate_averages(RESULTS)
return avg_data
# Define the capability categories
single_calls = ['OTX', 'CVECPE', 'VirusTotal', 'Heldout_Combined']
nested_calls = ['VT_Multi_Dependency', 'Places_API', 'CVECPE_Multi_Dependency', 'Heldout_Combined']
parallel_calls = ['Climate', 'VT_Multi_Disconnected']
otx = ["OTX"]
cvecpe = ['CVECPE']
virustotal = ['VirusTotal']
vt_multi_dependency = ['VT_Multi_Dependency']
places = ['Places_API']
cvecpe_multi_dependency = ['CVECPE_Multi_Dependency']
heldout = ['Heldout_Combined']
climate = ['Climate']
vt_multi_disconnected = ['VT_Multi_Disconnected']
# Function to calculate capability scores
def calculate_capability_scores(results, type):
if type == "general ability":
single_calls_avg = pd.DataFrame({k: results[k] for k in single_calls}).mean(axis=1)
nested_calls_avg = pd.DataFrame({k: results[k] for k in nested_calls}).mean(axis=1)
parallel_calls_avg = pd.DataFrame({k: results[k] for k in parallel_calls}).mean(axis=1)
capability_data = pd.DataFrame({
'Capability': ['Single Calls', 'Nested Calls', 'Parallel Calls'],
'GPT4': [single_calls_avg['GPT4'], nested_calls_avg['GPT4'], parallel_calls_avg['GPT4']],
'NexusRaven-V2': [single_calls_avg['NexusRaven-V2'], nested_calls_avg['NexusRaven-V2'], parallel_calls_avg['NexusRaven-V2']]
}).melt(id_vars=['Capability'], var_name='Model', value_name='Score')
elif type == "many apis many args":
otx_avg = pd.DataFrame({k: results[k] for k in otx}).mean(axis=1)
cvecpe_avg = pd.DataFrame({k: results[k] for k in cvecpe}).mean(axis=1)
virustotal_avg = pd.DataFrame({k: results[k] for k in virustotal}).mean(axis=1)
vt_multi_dependency_avg = pd.DataFrame({k: results[k] for k in vt_multi_dependency}).mean(axis=1)
places_avg = pd.DataFrame({k: results[k] for k in places}).mean(axis=1)
cvecpe_multi_dependency_avg = pd.DataFrame({k: results[k] for k in cvecpe_multi_dependency}).mean(axis=1)
heldout_avg = pd.DataFrame({k: results[k] for k in heldout}).mean(axis=1)
climate_avg = pd.DataFrame({k: results[k] for k in climate}).mean(axis=1)
vt_multi_disconnected_avg = pd.DataFrame({k: results[k] for k in vt_multi_disconnected}).mean(axis=1)
capability_data = pd.DataFrame({
'Capability': ['OTX (Single)', 'VirusTotal (Single)', 'VT_Multi (Nested)', 'VT_Multi (Parallel)', 'CVECPE (Single)', 'CVECPE_Multi (Nested)', 'Places (Nested)', 'Climate (Parallel)', 'Stack (Nested)'],
'GPT4': [otx_avg['GPT4'], virustotal_avg['GPT4'], vt_multi_dependency_avg['GPT4'], vt_multi_disconnected_avg['GPT4'], cvecpe_avg['GPT4'], cvecpe_multi_dependency_avg['GPT4'], places_avg['GPT4'], climate_avg['GPT4'], heldout_avg['GPT4']],
'NexusRaven-V2': [otx_avg['NexusRaven-V2'], virustotal_avg['NexusRaven-V2'], vt_multi_dependency_avg['NexusRaven-V2'], vt_multi_disconnected_avg['NexusRaven-V2'], cvecpe_avg['NexusRaven-V2'], cvecpe_multi_dependency_avg['NexusRaven-V2'],
places_avg['NexusRaven-V2'], climate_avg['NexusRaven-V2'], heldout_avg['NexusRaven-V2']]
}).melt(id_vars=['Capability'], var_name='Model', value_name='Score')
return capability_data
# Function to create and display the radar chart with improved style
def display_radar_chart(type):
if type == "general ability":
data = calculate_capability_scores(RESULTS, "general ability")
fig = px.line_polar(data, r='Score', theta='Capability', color='Model', line_close=True,
markers=True, # Adding markers
color_discrete_sequence=px.colors.qualitative.Pastel, # Using Pastel color scheme
template='plotly_dark',
title='Capability Radar Chart on General Abilities')
elif type == "many apis many args":
data = calculate_capability_scores(RESULTS, "many apis many args")
fig = px.line_polar(data, r='Score', theta='Capability', color='Model', line_close=True,
markers=True, # Adding markers
color_discrete_sequence=px.colors.qualitative.Pastel, # Using Pastel color scheme
template='plotly_dark',
title='Capability Radar Chart on All Subtasks')
# Customize the lines and markers
fig.update_traces(marker=dict(size=10), line=dict(width=4))
return fig
INTRO_TEXT = """
# Nexus Function Calling Leaderboard
Welcome to the Nexus Function Calling Leaderboard! We provide a focused benchmarking platform that evaluates a range of models on their ability to perform zero-shot function calling and API usage. Our leaderboard features the following highlights:
- **Nine Varied Tasks**: We cover a broad spectrum, from cybersecurity and climate APIs to recommendation systems, along with some pure Python functions.
- **Zero-Shot Challenges**: Models are tested on their innate ability to handle tasks they haven't seen before, showcasing their versatility and comprehension from the function definitions and user queries ONLY.
- **Diverse Model Participation**: We included a mix of both open-source and closed-source models. We initially benchmarked three models, and we are more than happy to work together with the community to involve more models.
This leaderboard is an exciting step towards understanding and improving the capabilities of large language models in diverse, real-world applications with building semantic interfaces around APIs!
"""
CSS = """
.intro-text {
font-size: 26px;
}
footer {
visibility: hidden;
}
"""
# Custom CSS to change the font size in Markdown
custom_css = """
"""
with gr.Blocks(theme='dark') as demo: # Set the theme here
gr.HTML(
"""
Nexusflow
"""
)
with gr.Row():
gr.Image(
"raven.png",
show_label=False,
show_share_button=True,
min_width=40,
scale=1,
)
with gr.Column(scale=4):
gr.HTML(custom_css)
gr.Markdown(INTRO_TEXT, elem_classes="markdown-class")
with gr.Tab("Overall"):
# Compute overall
# Create the Gradio interface
with gr.Accordion("Task Averages:"):
gr.Dataframe(display_averages().map(format_scores))
with gr.Accordion("Model Capabilities:"):
with gr.Row():
gr.Plot(display_radar_chart("general ability"))
gr.Plot(display_radar_chart("many apis many args"))
for key, value in RESULTS.items():
tab_names = {
'OTX': 'OTX (Single)',
'CVECPE': 'CVECPE (Single)',
'VirusTotal': 'VirusTotal (Single)',
'VT_Multi_Dependency': 'VT_Multi (Nested)',
'Places_API': 'Places (Nested)',
'CVECPE_Multi_Dependency': 'CVECPE_Multi (Nested)',
'Heldout_Combined': 'Stack (Nested)',
'Climate': 'Climate (Parallel)',
'VT_Multi_Disconnected': 'VT_Multi (Parallel)'
}
tab_name = tab_names.get(key, key)
with gr.Tab(tab_name):
# Create and display DataFrame
with gr.Accordion("Details of the " + tab_name + " :", open=False) as accordion:
gr.Markdown(api_descriptions[key])
if key == "Heldout_Combined":
accordion.open = True
else:
func_definition_list = func_definitions[key]
with gr.Group():
for i in range(len(func_definition_list)):
with gr.Accordion(func_definition_list[i][0], open=False):
gr.Markdown(func_definition_list[i][1])
df = pd.DataFrame.from_dict(value, orient='index', columns=['Score']).reset_index()
df.rename(columns={'index': 'Model'}, inplace=True)
gr.Dataframe(df.map(format_scores))
if key in SAMPLES:
file_path = SAMPLES[key]
data = read_json_or_jsonl(file_path)
samples = sample_data(data)
# Spat the data
# Generate samples with inline style and formatted text
#samples = [[hover_css + bubble_html.format(style=bubble_style, text=sample['Input']), hover_css + bubble_html.format(style=bubble_style, text=sample['Output'])] for sample in samples]
for sample in samples:
s = sample["Output"]
# FIXME: Do this via screen
n = 90
from black import Mode, format_str
if isinstance(s, list):
sample['Output'] = ''.join([format_str(item, mode=Mode()) for item in s])
else:
sample['Output'] = format_str(s, mode=Mode())#'\\ \n'.join(s[i:i+n] for i in range(0, len(s), n))
samples = [[hover_css + bubble_html.format(style=bubble_style, text=sample['Input']), f"```python\n{sample['Output']}\n```".replace("; ", ";\n")] for sample in samples]
gr.Dataset(
#components=[gr.Textbox(visible=False, text_align="left"), gr.Textbox(visible=False, text_align="left")],
components=[gr.HTML(), gr.Markdown()],
headers= ["Prompt", "API Use"],
label=f"{key} Samples",
samples=samples
)
demo.load(
None,
None,
js="""
() => {
const params = new URLSearchParams(window.location.search);
if (!params.has('__theme')) {
params.set('__theme', 'dark');
window.location.search = params.toString();
}
}""",
)
demo.launch(share=True, allowed_paths=["logo.png", "raven.png"])