import gradio as gr import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.express as px from strings import api_descriptions, func_definitions # Define your HTML content for the bubble, ensure it's suitable for inline display # Define your HTML content for the bubble, ensure it's suitable for inline display bubble_html = """
{text}
""" bubble_style = """ padding: 10px; margin: 5px; background: linear-gradient(to bottom right, #FFFFFF, #E8E8E8); /* Lighter background for contrast */ border-radius: 15px; border: 1px solid #a1a1a1; /* Lighter border for subtle definition */ box-shadow: 2px 2px 10px rgba(255,255,255,0.1); /* Softer shadow with a hint of white for depth */ font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; font-size: calc(4vw + 4vh) / 2; /* Scales dynamically with the viewport */ text-align: center; display: flex; align-items: center; /* Centers text vertically */ justify-content: center; /* Centers text horizontally */ min-height: 50px; /* Adjust as needed */ max-height: 140px; /* Adjust as needed */ max-width: 100%; color: #333333; /* Dark text for contrast against light background */ overflow-wrap: break-word; /* Allows long words to be broken and wrap onto the next line */ """ # Add a hover effect using """ # Updated results reflecting the new screenshot RESULTS = { 'Climate': {"GPT4": 0.6808, "NexusRaven-V2": 0.7234}, 'Heldout_Combined': {"GPT4": 0.4814, "NexusRaven-V2": 0.5990}, 'Places_API': {"GPT4": 0.3541, "NexusRaven-V2": 0.5000}, 'OTX': {"GPT4": 0.9130, "NexusRaven-V2": 0.9021}, 'VirusTotal': {"GPT4": 0.8940, "NexusRaven-V2": 0.7815}, 'VT_Multi_Dependency': {"GPT4": 0.3469, "NexusRaven-V2": 0.3673}, 'VT_Multi_Disconnected': {"GPT4": 0.2380, "NexusRaven-V2": 0.3809}, 'CVECPE': {"GPT4": 0.5769, "NexusRaven-V2": 0.4480}, 'CVECPE_Multi_Dependency': {"GPT4": 0.1071, "NexusRaven-V2": 0.1607}, } SAMPLES = { 'OTX': "data/OTX.json", 'CVECPE' : "data/CVECPE.json", 'CVECPE_Multi_Dependency' : "data/CVECPE_MultiAPIs.json", 'VirusTotal' : 'data/VirusTotal.json', 'VT_Multi_Dependency': 'data/VT_MultiAPIs_Nested.json', 'VT_Multi_Disconnected': 'data/VT_MultiAPIs_Disconnected.json', 'Climate' : 'data/Climate.jsonl', 'Places_API' : 'data/Places_API.jsonl' } import json import random import gradio as gr def read_json_or_jsonl(file_path): """ Read a file and determine if it's JSON or JSONL. Return the data as a list of items. """ try: with open(file_path, 'r') as file: if file_path.endswith('.jsonl'): # Read JSONL file data = [json.loads(line) for line in file] else: # Read JSON file data = json.load(file) for item in data: if "input" in item: item["Input"] = item["input"] return data except Exception as e: print(f"Error reading file: {e}") return [] def sample_data(data, sample_size=5): """ Randomly sample items from the data. """ if not data: return [] sample_size = min(sample_size, len(data)) return random.sample(data, sample_size) def highlight_row(s, column, value, color='yellow'): """ Highlight a row where the column has a specified value. Args: s (pd.Series): Row of the DataFrame. column (str): Column name to check the value. value (any): Value to check against. color (str): Background color for highlighting. Default is yellow. Returns: [str]: A list of CSS strings for each cell in the row. """ return [f'background-color: {color}' if v == value else '' for v in s[column]] def create_bar_chart(data, title, theme): df = pd.DataFrame.from_dict(data, orient='index', columns=['Score']).reset_index() df.rename(columns={'index': 'Model'}, inplace=True) # Choose colors based on the theme colors = ['#636EFA', '#EF553B'] if theme == 'dark' else ['#00CC96', '#AB63FA'] fig = px.bar( df, x='Model', y='Score', title=title, color='Model', color_discrete_sequence=colors, text='Score', barmode='group' ) # Update layout for better contrast based on theme fig.update_layout( plot_bgcolor='rgba(0,0,0,0)' if theme == 'dark' else 'rgba(255,255,255,1)', paper_bgcolor='rgba(0,0,0,0)' if theme == 'dark' else 'rgba(255,255,255,1)', font_color='white' if theme == 'dark' else 'black' ) # Update the bar chart to enable hover information fig.update_traces( hoverinfo='all', hovertemplate='Model: %{x}
Score: %{y:.2f}' ) # Normalization for relative scaling max_score = df['Score'].max() fig.update_yaxes(range=[0, max_score + max_score * 0.1]) return fig # Define the task categories simple_tasks = ['OTX', 'CVECPE', 'VirusTotal', 'VT_Multi_Disconnected', 'Heldout_Combined'] difficult_tasks = ['VT_Multi_Dependency', 'Climate', 'Places_API', 'CVECPE_Multi_Dependency'] # Define the formatting function def format_scores(val): if isinstance(val, float): val = val * 100 return f"{val:.4g}" # 'g' format specifier for significant figures return val # Function to calculate averages def calculate_averages(results): all_tasks_avg = pd.DataFrame(results).mean(axis=1) simple_tasks_avg = pd.DataFrame({k: results[k] for k in simple_tasks}).mean(axis=1) difficult_tasks_avg = pd.DataFrame({k: results[k] for k in difficult_tasks}).mean(axis=1) avg_data = pd.DataFrame({ 'All Tasks': all_tasks_avg, 'Tasks with Single Call (simple)"': simple_tasks_avg, 'Tasks with Nested/Parallel Calls (challenging)': difficult_tasks_avg }).reset_index().rename(columns={'index': 'Model'}) return avg_data # Function to display the averages in Gradio def display_averages(): avg_data = calculate_averages(RESULTS) return avg_data # Define the capability categories single_calls = ['OTX', 'CVECPE', 'VirusTotal', 'Heldout_Combined'] nested_calls = ['VT_Multi_Dependency', 'Places_API', 'CVECPE_Multi_Dependency', 'Heldout_Combined'] parallel_calls = ['Climate', 'VT_Multi_Disconnected'] otx = ["OTX"] cvecpe = ['CVECPE'] virustotal = ['VirusTotal'] vt_multi_dependency = ['VT_Multi_Dependency'] places = ['Places_API'] cvecpe_multi_dependency = ['CVECPE_Multi_Dependency'] heldout = ['Heldout_Combined'] climate = ['Climate'] vt_multi_disconnected = ['VT_Multi_Disconnected'] # Function to calculate capability scores def calculate_capability_scores(results, type): if type == "general ability": single_calls_avg = pd.DataFrame({k: results[k] for k in single_calls}).mean(axis=1) nested_calls_avg = pd.DataFrame({k: results[k] for k in nested_calls}).mean(axis=1) parallel_calls_avg = pd.DataFrame({k: results[k] for k in parallel_calls}).mean(axis=1) capability_data = pd.DataFrame({ 'Capability': ['Single Calls', 'Nested Calls', 'Parallel Calls'], 'GPT4': [single_calls_avg['GPT4'], nested_calls_avg['GPT4'], parallel_calls_avg['GPT4']], 'NexusRaven-V2': [single_calls_avg['NexusRaven-V2'], nested_calls_avg['NexusRaven-V2'], parallel_calls_avg['NexusRaven-V2']] }).melt(id_vars=['Capability'], var_name='Model', value_name='Score') elif type == "many apis many args": otx_avg = pd.DataFrame({k: results[k] for k in otx}).mean(axis=1) cvecpe_avg = pd.DataFrame({k: results[k] for k in cvecpe}).mean(axis=1) virustotal_avg = pd.DataFrame({k: results[k] for k in virustotal}).mean(axis=1) vt_multi_dependency_avg = pd.DataFrame({k: results[k] for k in vt_multi_dependency}).mean(axis=1) places_avg = pd.DataFrame({k: results[k] for k in places}).mean(axis=1) cvecpe_multi_dependency_avg = pd.DataFrame({k: results[k] for k in cvecpe_multi_dependency}).mean(axis=1) heldout_avg = pd.DataFrame({k: results[k] for k in heldout}).mean(axis=1) climate_avg = pd.DataFrame({k: results[k] for k in climate}).mean(axis=1) vt_multi_disconnected_avg = pd.DataFrame({k: results[k] for k in vt_multi_disconnected}).mean(axis=1) capability_data = pd.DataFrame({ 'Capability': ['OTX (Single)', 'VirusTotal (Single)', 'VT_Multi (Nested)', 'VT_Multi (Parallel)', 'CVECPE (Single)', 'CVECPE_Multi (Nested)', 'Places (Nested)', 'Climate (Parallel)', 'Stack (Nested)'], 'GPT4': [otx_avg['GPT4'], virustotal_avg['GPT4'], vt_multi_dependency_avg['GPT4'], vt_multi_disconnected_avg['GPT4'], cvecpe_avg['GPT4'], cvecpe_multi_dependency_avg['GPT4'], places_avg['GPT4'], climate_avg['GPT4'], heldout_avg['GPT4']], 'NexusRaven-V2': [otx_avg['NexusRaven-V2'], virustotal_avg['NexusRaven-V2'], vt_multi_dependency_avg['NexusRaven-V2'], vt_multi_disconnected_avg['NexusRaven-V2'], cvecpe_avg['NexusRaven-V2'], cvecpe_multi_dependency_avg['NexusRaven-V2'], places_avg['NexusRaven-V2'], climate_avg['NexusRaven-V2'], heldout_avg['NexusRaven-V2']] }).melt(id_vars=['Capability'], var_name='Model', value_name='Score') return capability_data # Function to create and display the radar chart with improved style def display_radar_chart(type): if type == "general ability": data = calculate_capability_scores(RESULTS, "general ability") fig = px.line_polar(data, r='Score', theta='Capability', color='Model', line_close=True, markers=True, # Adding markers color_discrete_sequence=px.colors.qualitative.Pastel, # Using Pastel color scheme template='plotly_dark', title='Capability Radar Chart on General Abilities') elif type == "many apis many args": data = calculate_capability_scores(RESULTS, "many apis many args") fig = px.line_polar(data, r='Score', theta='Capability', color='Model', line_close=True, markers=True, # Adding markers color_discrete_sequence=px.colors.qualitative.Pastel, # Using Pastel color scheme template='plotly_dark', title='Capability Radar Chart on All Subtasks') # Customize the lines and markers fig.update_traces(marker=dict(size=10), line=dict(width=4)) return fig INTRO_TEXT = """ # Nexus Function Calling Leaderboard Welcome to the Nexus Function Calling Leaderboard! We provide a focused benchmarking platform that evaluates a range of models on their ability to perform zero-shot function calling and API usage. Our leaderboard features the following highlights: - **Nine Varied Tasks**: We cover a broad spectrum, from cybersecurity and climate APIs to recommendation systems, along with some pure Python functions. - **Zero-Shot Challenges**: Models are tested on their innate ability to handle tasks they haven't seen before, showcasing their versatility and comprehension from the function definitions and user queries ONLY. - **Diverse Model Participation**: We included a mix of both open-source and closed-source models. We initially benchmarked three models, and we are more than happy to work together with the community to involve more models. This leaderboard is an exciting step towards understanding and improving the capabilities of large language models in diverse, real-world applications with building semantic interfaces around APIs! """ CSS = """ .intro-text { font-size: 26px; } footer { visibility: hidden; } """ # Custom CSS to change the font size in Markdown custom_css = """ """ with gr.Blocks(theme='dark') as demo: # Set the theme here gr.HTML( """

Nexusflow

""" ) with gr.Row(): gr.Image( "raven.png", show_label=False, show_share_button=True, min_width=40, scale=1, ) with gr.Column(scale=4): gr.HTML(custom_css) gr.Markdown(INTRO_TEXT, elem_classes="markdown-class") with gr.Tab("Overall"): # Compute overall # Create the Gradio interface with gr.Accordion("Task Averages:"): gr.Dataframe(display_averages().map(format_scores)) with gr.Accordion("Model Capabilities:"): with gr.Row(): gr.Plot(display_radar_chart("general ability")) gr.Plot(display_radar_chart("many apis many args")) for key, value in RESULTS.items(): tab_names = { 'OTX': 'OTX (Single)', 'CVECPE': 'CVECPE (Single)', 'VirusTotal': 'VirusTotal (Single)', 'VT_Multi_Dependency': 'VT_Multi (Nested)', 'Places_API': 'Places (Nested)', 'CVECPE_Multi_Dependency': 'CVECPE_Multi (Nested)', 'Heldout_Combined': 'Stack (Nested)', 'Climate': 'Climate (Parallel)', 'VT_Multi_Disconnected': 'VT_Multi (Parallel)' } tab_name = tab_names.get(key, key) with gr.Tab(tab_name): # Create and display DataFrame with gr.Accordion("Details of the " + tab_name + " :", open=False) as accordion: gr.Markdown(api_descriptions[key]) if key == "Heldout_Combined": accordion.open = True else: func_definition_list = func_definitions[key] with gr.Group(): for i in range(len(func_definition_list)): with gr.Accordion(func_definition_list[i][0], open=False): gr.Markdown(func_definition_list[i][1]) df = pd.DataFrame.from_dict(value, orient='index', columns=['Score']).reset_index() df.rename(columns={'index': 'Model'}, inplace=True) gr.Dataframe(df.map(format_scores)) if key in SAMPLES: file_path = SAMPLES[key] data = read_json_or_jsonl(file_path) samples = sample_data(data) # Spat the data # Generate samples with inline style and formatted text #samples = [[hover_css + bubble_html.format(style=bubble_style, text=sample['Input']), hover_css + bubble_html.format(style=bubble_style, text=sample['Output'])] for sample in samples] for sample in samples: s = sample["Output"] # FIXME: Do this via screen n = 90 from black import Mode, format_str if isinstance(s, list): sample['Output'] = ''.join([format_str(item, mode=Mode()) for item in s]) else: sample['Output'] = format_str(s, mode=Mode())#'\\ \n'.join(s[i:i+n] for i in range(0, len(s), n)) samples = [[hover_css + bubble_html.format(style=bubble_style, text=sample['Input']), f"```python\n{sample['Output']}\n```".replace("; ", ";\n")] for sample in samples] gr.Dataset( #components=[gr.Textbox(visible=False, text_align="left"), gr.Textbox(visible=False, text_align="left")], components=[gr.HTML(), gr.Markdown()], headers= ["Prompt", "API Use"], label=f"{key} Samples", samples=samples ) demo.load( None, None, js=""" () => { const params = new URLSearchParams(window.location.search); if (!params.has('__theme')) { params.set('__theme', 'dark'); window.location.search = params.toString(); } }""", ) demo.launch(share=True, allowed_paths=["logo.png", "raven.png"])