import numpy as np import torch import torch.nn.functional as F import gradio as gr from ormbg import ORMBG from PIL import Image import requests model_path = "ormbg.pth" net = ORMBG() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") net.to(device) if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)) net = net.cuda() else: net.load_state_dict(torch.load(model_path, map_location="cpu")) net.eval() def resize_image(image): image = image.convert("RGB") model_input_size = (1024, 1024) image = image.resize(model_input_size, Image.BILINEAR) return image def inference(image): orig_image = image w, h = orig_image.size image = resize_image(orig_image) im_np = np.array(image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) im_tensor = torch.unsqueeze(im_tensor, 0) im_tensor = torch.divide(im_tensor, 255.0) if torch.cuda.is_available(): im_tensor = im_tensor.cuda() result = net(im_tensor) result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) im_array = (result * 255).cpu().data.numpy().astype(np.uint8) pil_im = Image.fromarray(np.squeeze(im_array)) new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) new_im.paste(orig_image, mask=pil_im) return new_im # Ссылка на файл CSS css_url = "https://neurixyufi-aihub.static.hf.space/style.css" # Получение CSS по ссылке response = requests.get(css_url) css = response.text + "h1{text-align:center}" with gr.Blocks(css=css) as demo: gr.Markdown("# Удаление фона") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Загрузите изображение с фоном", type="pil") submit_button = gr.Button("Удалить фон") with gr.Column(): output_image = gr.Image(label="Изображение без фона", type="pil") submit_button.click( fn=inference, inputs=input_image, outputs=output_image, concurrency_limit=10 ) if __name__ == "__main__": demo.launch(share=False)