from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained("merve/chatgpt-prompt-generator-v12") model = AutoModelForSeq2SeqLM.from_pretrained("merve/chatgpt-prompt-generator-v12", from_tf=True) def generate(prompt): batch = tokenizer(prompt, return_tensors="pt") generated_ids = model.generate(batch["input_ids"], max_new_tokens=150) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return output[0] input_component = gr.Textbox(label = "Input a persona, e.g. photographer", value = "photographer") output_component = gr.Textbox(label = "Prompt") examples = [["photographer"], ["developer"]] description = "This app generates Chattensor prompts, it's based on a BART model trained on [this dataset](https://huggingface.co/datasets/neuralinternet/awesome-chattensor-prompts). πŸ““ Simply enter a persona that you want the prompt to be generated based on. πŸ§™πŸ»πŸ§‘πŸ»β€πŸš€πŸ§‘πŸ»β€πŸŽ¨πŸ§‘πŸ»β€πŸ”¬πŸ§‘πŸ»β€πŸ’»πŸ§‘πŸΌβ€πŸ«πŸ§‘πŸ½β€πŸŒΎ" gr.Interface(generate, inputs = input_component, outputs=output_component, examples=examples, title = " :pushing_taowhite: Chaττensor Prompt Generator v12 :pushing_taowhite:", description=description).launch()