Spaces:
Runtime error
Runtime error
NeuraFusionAI
commited on
Commit
•
123ab4d
1
Parent(s):
29a70a8
first commit
Browse files- README.md +58 -5
- app.py +220 -0
- .gitattributes → gitattributes +0 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,13 +1,66 @@
|
|
1 |
-
|
2 |
-
title: Arabic
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
+
title: Arabic Chatbot Arena
|
3 |
+
emoji: 🏆🇦🇪
|
4 |
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.28.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
+
tags:
|
12 |
+
- arabic
|
13 |
+
- nlp
|
14 |
+
- chatbot
|
15 |
+
- language-model
|
16 |
+
- comparison
|
17 |
+
---
|
18 |
+
|
19 |
+
# Arabic Chatbot Arena
|
20 |
+
|
21 |
+
## Overview
|
22 |
+
|
23 |
+
Welcome to the Arabic Chatbot Arena! This interactive space allows you to compare and evaluate different Arabic language models side-by-side. Test various chatbots, analyze their responses, and contribute to the advancement of Arabic NLP.
|
24 |
+
|
25 |
+
## Features
|
26 |
+
|
27 |
+
- **Model Selection**: Choose from a curated list of state-of-the-art Arabic language models.
|
28 |
+
- **Side-by-Side Comparison**: Evaluate two models simultaneously for easy comparison.
|
29 |
+
- **Customizable Prompts**: Use your own system prompts and user inputs to test specific scenarios.
|
30 |
+
- **Real-Time Generation**: Watch as the models generate responses in real-time.
|
31 |
+
- **Adjustable Parameters**: Fine-tune generation settings like temperature, top-p, and max tokens.
|
32 |
+
- **RTL Support**: Full right-to-left text support for a natural Arabic writing experience.
|
33 |
+
|
34 |
+
## How to Use
|
35 |
+
|
36 |
+
1. Select two models from the dropdown menus.
|
37 |
+
2. (Optional) Customize the system prompt to set the context.
|
38 |
+
3. Enter your question or prompt in Arabic.
|
39 |
+
4. Click "Generate" to see both models respond.
|
40 |
+
5. Compare the outputs and use the "Like" buttons to rate responses.
|
41 |
+
6. Adjust generation parameters as needed for different results.
|
42 |
+
|
43 |
+
## Models
|
44 |
+
|
45 |
+
This space features a diverse selection of Arabic language models, including:
|
46 |
+
|
47 |
+
- MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct
|
48 |
+
- silma-ai/SILMA-9B-Instruct-v1.0
|
49 |
+
- inceptionai/jais-adapted-7b-chat
|
50 |
+
- ... (and many more)
|
51 |
+
|
52 |
+
## Contributing
|
53 |
+
|
54 |
+
Your feedback is valuable! If you encounter any issues or have suggestions for improvement, please open an issue on the [GitHub repository](https://github.com/yourusername/arabic-chatbot-arena).
|
55 |
+
|
56 |
+
## License
|
57 |
+
|
58 |
+
This project is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
|
59 |
+
|
60 |
+
## Acknowledgements
|
61 |
+
|
62 |
+
Special thanks to all the model creators and the Arabic NLP community for their contributions to advancing Arabic language technology.
|
63 |
+
|
64 |
---
|
65 |
|
66 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from functools import lru_cache
|
7 |
+
|
8 |
+
|
9 |
+
from threading import Thread
|
10 |
+
import subprocess
|
11 |
+
import logging
|
12 |
+
subprocess.run('pip install -U flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
+
|
14 |
+
models_available = [
|
15 |
+
"MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct",
|
16 |
+
"silma-ai/SILMA-9B-Instruct-v1.0",
|
17 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
18 |
+
"MaziyarPanahi/calme-2.2-qwen2-72b",
|
19 |
+
"davidkim205/Rhea-72b-v0.5",
|
20 |
+
"dnhkng/RYS-XLarge",
|
21 |
+
"arcee-ai/Arcee-Nova",
|
22 |
+
"paloalma/TW3-JRGL-v2",
|
23 |
+
"freewheelin/free-evo-qwen72b-v0.8-re",
|
24 |
+
"dfurman/Qwen2-72B-Orpo-v0.1",
|
25 |
+
"MaziyarPanahi/calme-2.1-qwen2-72b",
|
26 |
+
"UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3",
|
27 |
+
""
|
28 |
+
"inceptionai/jais-adapted-7b-chat",
|
29 |
+
"inceptionai/jais-family-6p7b-chat",
|
30 |
+
"inceptionai/jais-family-2p7b-chat",
|
31 |
+
"inceptionai/jais-family-1p3b-chat",
|
32 |
+
"inceptionai/jais-family-590m-chat",
|
33 |
+
]
|
34 |
+
|
35 |
+
tokenizer_a, model_a = None, None
|
36 |
+
tokenizer_b, model_b = None, None
|
37 |
+
torch_dtype = torch.bfloat16
|
38 |
+
attn_implementation = "flash_attention_2"
|
39 |
+
|
40 |
+
def load_model_a(model_id):
|
41 |
+
global tokenizer_a, model_a
|
42 |
+
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
print(f"model A: {tokenizer_a.eos_token}")
|
44 |
+
try:
|
45 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
46 |
+
model_id,
|
47 |
+
torch_dtype=torch_dtype,
|
48 |
+
device_map="auto",
|
49 |
+
attn_implementation=attn_implementation,
|
50 |
+
trust_remote_code=True,
|
51 |
+
).eval()
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Using default attention implementation in {model_id}")
|
54 |
+
print(f"Error: {e}")
|
55 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
56 |
+
model_id,
|
57 |
+
torch_dtype=torch_dtype,
|
58 |
+
device_map="auto",
|
59 |
+
trust_remote_code=True,
|
60 |
+
).eval()
|
61 |
+
model_a.tie_weights()
|
62 |
+
return gr.update(label=model_id)
|
63 |
+
|
64 |
+
def load_model_b(model_id):
|
65 |
+
global tokenizer_b, model_b
|
66 |
+
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
|
67 |
+
print(f"model B: {tokenizer_b.eos_token}")
|
68 |
+
try:
|
69 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
70 |
+
model_id,
|
71 |
+
torch_dtype=torch_dtype,
|
72 |
+
device_map="auto",
|
73 |
+
attn_implementation=attn_implementation,
|
74 |
+
trust_remote_code=True,
|
75 |
+
).eval()
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error: {e}")
|
78 |
+
print(f"Using default attention implementation in {model_id}")
|
79 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
80 |
+
model_id,
|
81 |
+
torch_dtype=torch_dtype,
|
82 |
+
device_map="auto",
|
83 |
+
trust_remote_code=True,
|
84 |
+
).eval()
|
85 |
+
model_b.tie_weights()
|
86 |
+
return gr.update(label=model_id)
|
87 |
+
|
88 |
+
@spaces.GPU()
|
89 |
+
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
90 |
+
|
91 |
+
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
|
92 |
+
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
|
93 |
+
|
94 |
+
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
95 |
+
input_text_list = [{"role": "user", "content": input_text}]
|
96 |
+
|
97 |
+
chat_history_a = []
|
98 |
+
for user, assistant in chatbot_a:
|
99 |
+
chat_history_a.append({"role": "user", "content": user})
|
100 |
+
chat_history_a.append({"role": "assistant", "content": assistant})
|
101 |
+
|
102 |
+
chat_history_b = []
|
103 |
+
for user, assistant in chatbot_b:
|
104 |
+
chat_history_b.append({"role": "user", "content": user})
|
105 |
+
chat_history_b.append({"role": "assistant", "content": assistant})
|
106 |
+
|
107 |
+
base_messages = system_prompt_list + chat_history_a + input_text_list
|
108 |
+
new_messages = system_prompt_list + chat_history_b + input_text_list
|
109 |
+
|
110 |
+
input_ids_a = tokenizer_a.apply_chat_template(
|
111 |
+
base_messages,
|
112 |
+
add_generation_prompt=True,
|
113 |
+
return_tensors="pt"
|
114 |
+
).to(model_a.device)
|
115 |
+
|
116 |
+
input_ids_b = tokenizer_b.apply_chat_template(
|
117 |
+
new_messages,
|
118 |
+
add_generation_prompt=True,
|
119 |
+
return_tensors="pt"
|
120 |
+
).to(model_b.device)
|
121 |
+
|
122 |
+
generation_kwargs_a = dict(
|
123 |
+
input_ids=input_ids_a,
|
124 |
+
streamer=text_streamer_a,
|
125 |
+
max_new_tokens=max_new_tokens,
|
126 |
+
pad_token_id=tokenizer_a.eos_token_id,
|
127 |
+
do_sample=True,
|
128 |
+
temperature=temperature,
|
129 |
+
top_p=top_p,
|
130 |
+
repetition_penalty=repetition_penalty,
|
131 |
+
)
|
132 |
+
generation_kwargs_b = dict(
|
133 |
+
input_ids=input_ids_b,
|
134 |
+
streamer=text_streamer_b,
|
135 |
+
max_new_tokens=max_new_tokens,
|
136 |
+
pad_token_id=tokenizer_b.eos_token_id,
|
137 |
+
do_sample=True,
|
138 |
+
temperature=temperature,
|
139 |
+
top_p=top_p,
|
140 |
+
repetition_penalty=repetition_penalty,
|
141 |
+
)
|
142 |
+
|
143 |
+
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
|
144 |
+
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
|
145 |
+
|
146 |
+
thread_a.start()
|
147 |
+
thread_b.start()
|
148 |
+
|
149 |
+
chatbot_a.append([input_text, ""])
|
150 |
+
chatbot_b.append([input_text, ""])
|
151 |
+
|
152 |
+
finished_a = False
|
153 |
+
finished_b = False
|
154 |
+
|
155 |
+
while not (finished_a and finished_b):
|
156 |
+
if not finished_a:
|
157 |
+
try:
|
158 |
+
text_a = next(text_streamer_a)
|
159 |
+
if tokenizer_a.eos_token in text_a:
|
160 |
+
eot_location = text_a.find(tokenizer_a.eos_token)
|
161 |
+
text_a = text_a[:eot_location]
|
162 |
+
finished_a = True
|
163 |
+
chatbot_a[-1][-1] += text_a
|
164 |
+
yield chatbot_a, chatbot_b
|
165 |
+
except StopIteration:
|
166 |
+
finished_a = True
|
167 |
+
|
168 |
+
if not finished_b:
|
169 |
+
try:
|
170 |
+
text_b = next(text_streamer_b)
|
171 |
+
if tokenizer_b.eos_token in text_b:
|
172 |
+
eot_location = text_b.find(tokenizer_b.eos_token)
|
173 |
+
text_b = text_b[:eot_location]
|
174 |
+
finished_b = True
|
175 |
+
chatbot_b[-1][-1] += text_b
|
176 |
+
yield chatbot_a, chatbot_b
|
177 |
+
except StopIteration:
|
178 |
+
finished_b = True
|
179 |
+
|
180 |
+
return chatbot_a, chatbot_b
|
181 |
+
|
182 |
+
def clear():
|
183 |
+
return [], []
|
184 |
+
|
185 |
+
arena_notes = """## Important Notes:
|
186 |
+
- Sometimes an error may occur when generating the response, in this case, please try again.
|
187 |
+
"""
|
188 |
+
|
189 |
+
with gr.Blocks() as demo:
|
190 |
+
with gr.Column():
|
191 |
+
gr.HTML("<center><h1>Arabic Chatbot Comparison</h1></center>")
|
192 |
+
gr.Markdown(arena_notes)
|
193 |
+
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="أنت متحدث لبق باللغة العربية!", rtl=True, text_align="right", show_copy_button=True)
|
194 |
+
with gr.Row(variant="panel"):
|
195 |
+
with gr.Column():
|
196 |
+
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
|
197 |
+
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
198 |
+
with gr.Column():
|
199 |
+
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
|
200 |
+
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
201 |
+
with gr.Row(variant="panel"):
|
202 |
+
with gr.Column(scale=1):
|
203 |
+
submit_btn = gr.Button(value="Generate", variant="primary")
|
204 |
+
clear_btn = gr.Button(value="Clear", variant="secondary")
|
205 |
+
input_text = gr.Textbox(lines=1, label="", value="مرحبا", rtl=True, text_align="right", scale=3, show_copy_button=True)
|
206 |
+
with gr.Accordion(label="Generation Configurations", open=False):
|
207 |
+
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
|
208 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
|
209 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
210 |
+
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
211 |
+
|
212 |
+
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
|
213 |
+
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
|
214 |
+
|
215 |
+
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
216 |
+
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
217 |
+
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|
218 |
+
|
219 |
+
if __name__ == "__main__":
|
220 |
+
demo.queue().launch()
|
.gitattributes → gitattributes
RENAMED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.44.1
|
2 |
+
torch
|
3 |
+
accelerate==0.33.0
|
4 |
+
sentencepiece==0.2.0
|
5 |
+
spaces
|