"""
Build txtai workflows.
Based on this example: https://github.com/neuml/txtai/blob/master/examples/workflows.py
"""
import os
import re
import uuid
import nltk
import yaml
import pandas as pd
import streamlit as st
from txtai.embeddings import Documents, Embeddings
from txtai.pipeline import Segmentation, Summary, Tabular, Translation
from txtai.workflow import ServiceTask, Task, UrlTask, Workflow
from textractor import Textractor
class Application:
"""
Main application.
"""
def __init__(self, directory):
"""
Creates a new application.
"""
# Workflow configuration directory
self.directory = directory
# Component options
self.components = {}
# Defined pipelines
self.pipelines = {}
# Current workflow
self.workflow = []
# Embeddings index params
self.embeddings = None
self.documents = None
self.data = None
# Workflow run id
self.runid = None
def load(self, components):
"""
Load an existing workflow file.
Args:
components: list of components to load
Returns:
(names of components loaded, workflow config)
"""
with open(os.path.join(self.directory, "config.yml")) as f:
config = yaml.safe_load(f)
names = [row["name"] for row in config]
files = [row["file"] for row in config]
selected = st.selectbox("Load workflow", ["--"] + names)
if selected != "--":
index = [x for x, name in enumerate(names) if name == selected][0]
with open(os.path.join(self.directory, files[index])) as f:
workflow = yaml.safe_load(f)
st.markdown("---")
# Get tasks for first workflow
tasks = list(workflow["workflow"].values())[0]["tasks"]
selected = []
for task in tasks:
name = task.get("action", task.get("task"))
if name in components:
selected.append(name)
elif name in ["index", "upsert"]:
selected.append("embeddings")
return (selected, workflow)
return (None, None)
def state(self, key):
"""
Lookup a session state variable.
Args:
key: variable key
Returns:
variable value
"""
if key in st.session_state:
return st.session_state[key]
return None
def appsetting(self, workflow, name):
"""
Looks up an application configuration setting.
Args:
workflow: workflow configuration
name: setting name
Returns:
app setting value
"""
if workflow:
config = workflow.get("app")
if config:
return config.get(name)
return None
def setting(self, config, name, default=None):
"""
Looks up a component configuration setting.
Args:
config: component configuration
name: setting name
default: default setting value
Returns:
setting value
"""
return config.get(name, default) if config else default
def text(self, label, config, name, default=None):
"""
Create a new text input field.
Args:
label: field label
config: component configuration
name: setting name
default: default setting value
Returns:
text input field value
"""
default = self.setting(config, name, default)
if not default:
default = ""
elif isinstance(default, list):
default = ",".join(default)
elif isinstance(default, dict):
default = ",".join(default.keys())
return st.text_input(label, value=default)
def number(self, label, config, name, default=None):
"""
Creates a new numeric input field.
Args:
label: field label
config: component configuration
name: setting name
default: default setting value
Returns:
numeric value
"""
value = self.text(label, config, name, default)
return int(value) if value else None
def boolean(self, label, config, name, default=False):
"""
Creates a new checkbox field.
Args:
label: field label
config: component configuration
name: setting name
default: default setting value
Returns:
boolean value
"""
default = self.setting(config, name, default)
return st.checkbox(label, value=default)
def select(self, label, config, name, options, default=0):
"""
Creates a new select box field.
Args:
label: field label
config: component configuration
name: setting name
options: list of dropdown options
default: default setting value
Returns:
boolean value
"""
index = self.setting(config, name)
index = [x for x, option in enumerate(options) if option == default]
# Derive default index
default = index[0] if index else default
return st.selectbox(label, options, index=default)
def split(self, text):
"""
Splits text on commas and returns a list.
Args:
text: input text
Returns:
list
"""
return [x.strip() for x in text.split(",")]
def options(self, component, workflow):
"""
Extracts component settings into a component configuration dict.
Args:
component: component type
workflow: existing workflow, can be None
Returns:
dict with component settings
"""
# pylint: disable=R0912, R0915
options = {"type": component}
st.markdown("---")
# Lookup component configuration
# - Runtime components have config defined within tasks
# - Pipeline components have config defined at workflow root
config = None
if workflow:
if component in ["service", "translation"]:
# Service config is found in tasks section
tasks = list(workflow["workflow"].values())[0]["tasks"]
tasks = [task for task in tasks if task.get("task") == component or task.get("action") == component]
if tasks:
config = tasks[0]
else:
config = workflow.get(component)
if component == "embeddings":
st.markdown("**Embeddings Index** \n*Index workflow output*")
options["path"] = self.text("Embeddings model path", config, "path", "sentence-transformers/nli-mpnet-base-v2")
options["upsert"] = self.boolean("Upsert", config, "upsert")
elif component in ("segmentation", "textractor"):
if component == "segmentation":
st.markdown("**Segment** \n*Split text into semantic units*")
else:
st.markdown("**Textract** \n*Extract text from documents*")
options["sentences"] = self.boolean("Split sentences", config, "sentences")
options["lines"] = self.boolean("Split lines", config, "lines")
options["paragraphs"] = self.boolean("Split paragraphs", config, "paragraphs")
options["join"] = self.boolean("Join tokenized", config, "join")
options["minlength"] = self.number("Min section length", config, "minlength")
elif component == "service":
st.markdown("**Service** \n*Extract data from an API*")
options["url"] = self.text("URL", config, "url")
options["method"] = self.select("Method", config, "method", ["get", "post"], 0)
options["params"] = self.text("URL parameters", config, "params")
options["batch"] = self.boolean("Run as batch", config, "batch", True)
options["extract"] = self.text("Subsection(s) to extract", config, "extract")
if options["params"]:
options["params"] = {key: None for key in self.split(options["params"])}
if options["extract"]:
options["extract"] = self.split(options["extract"])
elif component == "summary":
st.markdown("**Summary** \n*Abstractive text summarization*")
options["path"] = self.text("Model", config, "path", "sshleifer/distilbart-cnn-12-6")
options["minlength"] = self.number("Min length", config, "minlength")
options["maxlength"] = self.number("Max length", config, "maxlength")
elif component == "tabular":
st.markdown("**Tabular** \n*Split tabular data into rows and columns*")
options["idcolumn"] = self.text("Id columns", config, "idcolumn")
options["textcolumns"] = self.text("Text columns", config, "textcolumns")
if options["textcolumns"]:
options["textcolumns"] = self.split(options["textcolumns"])
elif component == "translation":
st.markdown("**Translate** \n*Machine translation*")
options["target"] = self.text("Target language code", config, "args", "en")
return options
def build(self, components):
"""
Builds a workflow using components.
Args:
components: list of components to add to workflow
"""
# Clear application
self.__init__(self.directory)
# pylint: disable=W0108
tasks = []
for component in components:
component = dict(component)
wtype = component.pop("type")
self.components[wtype] = component
if wtype == "embeddings":
self.embeddings = Embeddings({**component})
self.documents = Documents()
tasks.append(Task(self.documents.add, unpack=False))
elif wtype == "segmentation":
self.pipelines[wtype] = Segmentation(**self.components[wtype])
tasks.append(Task(self.pipelines[wtype]))
elif wtype == "service":
tasks.append(ServiceTask(**self.components[wtype]))
elif wtype == "summary":
self.pipelines[wtype] = Summary(component.pop("path"))
tasks.append(Task(lambda x: self.pipelines["summary"](x, **self.components["summary"])))
elif wtype == "tabular":
self.pipelines[wtype] = Tabular(**self.components["tabular"])
tasks.append(Task(self.pipelines[wtype]))
elif wtype == "textractor":
self.pipelines[wtype] = Textractor(**self.components["textract"])
tasks.append(UrlTask(self.pipelines[wtype]))
elif wtype == "translation":
self.pipelines[wtype] = Translation()
tasks.append(Task(lambda x: self.pipelines["translation"](x, **self.components["translation"])))
self.workflow = Workflow(tasks)
def yaml(self, components):
"""
Builds a yaml string for components.
Args:
components: list of components to export to YAML
Returns:
(workflow name, YAML string)
"""
# pylint: disable=W0108
data = {"app": {"data": self.state("data"), "query": self.state("query")}}
tasks = []
name = None
for component in components:
component = dict(component)
name = wtype = component.pop("type")
if wtype == "embeddings":
upsert = component.pop("upsert")
data[wtype] = component
data["writable"] = True
name = "index"
tasks.append({"action": "upsert" if upsert else "index"})
elif wtype == "segmentation":
data[wtype] = component
tasks.append({"action": wtype})
elif wtype == "service":
config = dict(**component)
config["task"] = wtype
tasks.append(config)
elif wtype == "summary":
data[wtype] = {"path": component.pop("path")}
tasks.append({"action": wtype})
elif wtype == "tabular":
data[wtype] = component
tasks.append({"action": wtype})
elif wtype == "textractor":
data[wtype] = component
tasks.append({"action": wtype, "task": "url"})
elif wtype == "translation":
data[wtype] = {}
tasks.append({"action": wtype, "args": list(component.values())})
# Add in workflow
data["workflow"] = {name: {"tasks": tasks}}
return (name, yaml.dump(data))
def find(self, key):
"""
Lookup record from cached data by uid key.
Args:
key: uid to search for
Returns:
text for matching uid
"""
text = [text for uid, text, _ in self.data if uid == key][0]
if key and key.lower().startswith("http"):
return "%s" % (key, text)
return text
def process(self, data, workflow):
"""
Processes the current application action.
Args:
data: input data
workflow: workflow configuration
"""
if data and self.workflow:
# Build tuples for embedding index
if self.documents:
data = [(x, element, None) for x, element in enumerate(data)]
# Process workflow
for result in self.workflow(data):
if not self.documents:
st.write(result)
# Build embeddings index
if self.documents:
# Cache data
self.data = list(self.documents)
with st.spinner("Building embedding index...."):
self.embeddings.index(self.documents)
self.documents.close()
# Clear workflow
self.documents, self.pipelines, self.workflow = None, None, None
# Generate workflow run id
self.runid = str(uuid.uuid1())
st.session_state["runid"] = self.runid
if self.runid != self.state("runid"):
st.error("Workflow data changed in another session. Please re-build and re-run workflow.")
elif self.embeddings and self.data:
default = self.appsetting(workflow, "query")
default = default if default else ""
# Set query and limit
query = st.text_input("Query", value=default)
limit = min(5, len(self.data))
# Save query state
st.session_state["query"] = query
st.markdown(
"""
""",
unsafe_allow_html=True,
)
if query:
df = pd.DataFrame([{"content": self.find(uid), "score": "%.2f" % score} for uid, score in self.embeddings.search(query, limit)])
st.write(df.to_html(escape=False), unsafe_allow_html=True)
def parse(self, data):
"""
Parse input data, splits on new lines depending on type of tasks and format of input.
Args:
data: input data
Returns:
parsed data
"""
if re.match(r"^(http|https|file):\/\/", data) or (self.workflow and isinstance(self.workflow.tasks[0], ServiceTask)):
return [x for x in data.split("\n") if x]
return [data]
def run(self):
"""
Runs Streamlit application.
"""
with st.sidebar:
st.image("https://github.com/neuml/txtai/raw/master/logo.png", width=256)
st.markdown("# Workflow builder \n*Build and apply workflows to data* ")
st.markdown("Workflows combine machine-learning pipelines together to aggregate logic. This application provides a number of pre-configured workflows to get a feel of how they work. Workflows can be exported and run locally through FastAPI. Read more on [GitHub](https://github.com/neuml/txtai)")
st.markdown("---")
# Component configuration
labels = {"segmentation": "segment", "textractor": "textract", "translation": "translate"}
components = ["embeddings", "segmentation", "service", "summary", "tabular", "textractor", "translation"]
selected, workflow = self.load(components)
selected = st.multiselect("Select components", components, default=selected, format_func=lambda text: labels.get(text, text))
# Get selected options
components = [self.options(component, workflow) for component in selected]
st.markdown("---")
# Export buttons
col1, col2 = st.columns(2)
# Build or re-build workflow when build button clicked or new workflow loaded
build = col1.button("Build", help="Build the workflow and run within this application")
if build or (workflow and workflow != self.state("workflow")):
with st.spinner("Building workflow...."):
self.build(components)
# Generate API configuration
_, config = self.yaml(components)
col2.download_button("Export", config, file_name="workflow.yml", help="Export the API workflow as YAML")
with st.expander("Data", expanded=not self.data):
default = self.appsetting(workflow, "data")
default = default if default else ""
data = st.text_area("Input", height=10, value=default)
# Save data and workflow state
st.session_state["data"] = data
st.session_state["workflow"] = workflow
if selected:
# Parse text items
data = self.parse(data) if data else data
# Process current action
self.process(data, workflow)
@st.cache(allow_output_mutation=True)
def create():
"""
Creates and caches a Streamlit application.
Returns:
Application
"""
return Application("workflows")
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
try:
nltk.sent_tokenize("This is a test. Split")
except:
nltk.download("punkt")
# Create and run application
app = create()
app.run()