import streamlit as st
import os
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain_groq import ChatGroq
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.vectorstores import VectorStoreRetriever
import streamlit.components.v1 as components
from streamlit_pdf_viewer import pdf_viewer
from io import BytesIO
import base64
if 'pdf_ref' not in st.session_state:
st.session_state.pdf_ref = None
# Initialize the Groq API Key and the model
os.environ["GROQ_API_KEY"] = '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'
# config = {'max_new_tokens': 512, 'context_length': 8000}
llm = ChatGroq(
model='llama3-70b-8192',
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2
)
# Define OCR functions for image and PDF files
def ocr_image(image_path, language='eng+guj'):
img = Image.open(image_path)
text = pytesseract.image_to_string(img, lang=language)
return text
def ocr_pdf(pdf_path, language='eng+guj'):
images = convert_from_path(pdf_path)
all_text = ""
for img in images:
text = pytesseract.image_to_string(img, lang=language)
all_text += text + "\n"
return all_text
def ocr_file(file_path):
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == ".pdf":
text_re = ocr_pdf(file_path, language='guj+eng')
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
text_re = ocr_image(file_path, language='guj+eng')
else:
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.")
return text_re
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
chunks = text_splitter.split_text(text)
return chunks
# Function to create or update the vector store
def get_vector_store(text_chunks):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
# Ensure the directory exists before saving the vector store
os.makedirs("faiss_index", exist_ok=True)
vector_store.save_local("faiss_index")
return vector_store
# Function to process multiple files and extract vector store
def process_ocr_and_pdf_files(file_paths):
raw_text = ""
for file_path in file_paths:
raw_text += ocr_file(file_path) + "\n"
text_chunks = get_text_chunks(raw_text)
return get_vector_store(text_chunks)
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
# new_vector_store = FAISS.load_local(
# "faiss_index", embeddings, allow_dangerous_deserialization=True
# )
# docs = new_vector_store.similarity_search("qux")
# Conversational chain for Q&A
def get_conversational_chain():
template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information.
Core Responsibilities:
1. Language Processing:
- Identify the language of the user's query (English or Gujarati)
- Respond in the same language as the query
- If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology
- For technical terms, provide both English and Gujarati versions when relevant
2. Document Understanding:
- Analyze the OCR-processed text from the uploaded files
- Account for potential OCR errors or misinterpretations
- Focus on extracting accurate information despite possible OCR imperfections
3. Response Guidelines:
- Provide direct, clear answers based solely on the document content
- If information is unclear due to OCR quality, mention this limitation
- For numerical data (dates, percentages, marks), double-check accuracy before responding
- If information is not found in the documents, clearly state: "This information is not present in the uploaded documents"
4. Educational Context:
- Maintain focus on educational queries related to the document content
- For admission-related queries, emphasize important deadlines and requirements
- For scholarship information, highlight eligibility criteria and application processes
- For course-related queries, provide detailed, accurate information from the documents
5. Response Format:
- Structure responses clearly with relevant subpoints when necessary
- For complex information, break down the answer into digestible parts
- Include relevant reference points from the documents when applicable
- Format numerical data and dates clearly
6. Quality Control:
- Verify that responses align with the document content
- Don't make assumptions beyond the provided information
- If multiple interpretations are possible due to OCR quality, mention all possibilities
- Maintain consistency in terminology throughout the conversation
Important Rules:
- Never make up information not present in the documents
- Don't combine information from previous conversations or external knowledge
- Always indicate if certain parts of the documents are unclear due to OCR quality
- Maintain professional tone while being accessible to students and parents
- If the query is out of scope of the uploaded documents, politely redirect to relevant official sources
Context from uploaded documents:
{context}
Chat History:
{history}
Current Question: {question}
Assistant: Let me provide a clear and accurate response based on the uploaded documents...
"""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
new_vector_store = FAISS.load_local(
"faiss_index", embeddings, allow_dangerous_deserialization=True
)
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)
qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),})
return qa_chain
def handle_uploaded_file(uploaded_file, show_in_sidebar=False):
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
file_path = os.path.join("temp", uploaded_file.name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Show document in the main panel and optionally in the sidebar
if show_in_sidebar:
st.sidebar.write(f"### File: {uploaded_file.name}")
# if file_extension == ".pdf":
# st.session_state.pdf_ref = uploaded_file # Save the PDF to session state
# binary_data = st.session_state.pdf_ref.getvalue() # Get the binary data of the PDF
# # Use the pdf_viewer to display the PDF
# # sidebar.pdf_viewer(input=binary_data, width=700)
if file_extension == ".pdf":
# Display the PDF in the sidebar by embedding the PDF file
with open(file_path, "rb") as pdf_file:
pdf_data = pdf_file.read()
# Use the HTML iframe to display the PDF in the sidebar
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8')
st.sidebar.markdown(f'', unsafe_allow_html=True)
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
img = Image.open(file_path)
st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_container_width=True) # Updated here
else:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
st.sidebar.text_area("File Content", content, height=300)
# Optionally show document in the main content area
# st.write(f"### Main Panel - {uploaded_file.name}")
# if file_extension == '.pdf':
# st.write("Displaying PDF:")
# st.components.v1.html(f'