import string import argparse import torch import torch.backends.cudnn as cudnn import torch.utils.data import torch.nn.functional as F from utils import CTCLabelConverter, AttnLabelConverter from dataset import RawDataset, AlignCollate from model import Model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def demo(opt): """ model configuration """ if 'CTC' in opt.Prediction: converter = CTCLabelConverter(opt.character) else: converter = AttnLabelConverter(opt.character) opt.num_class = len(converter.character) if opt.rgb: opt.input_channel = 3 model = Model(opt) print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction) model = torch.nn.DataParallel(model).to(device) # load model print('loading pretrained model from %s' % opt.saved_model) model.load_state_dict(torch.load(opt.saved_model, map_location=device)) # prepare data. two demo images from https://github.com/bgshih/crnn#run-demo AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) demo_data = RawDataset(root=opt.image_folder, opt=opt) # use RawDataset demo_loader = torch.utils.data.DataLoader( demo_data, batch_size=opt.batch_size, shuffle=False, num_workers=int(opt.workers), collate_fn=AlignCollate_demo, pin_memory=True) # predict model.eval() with torch.no_grad(): for image_tensors, image_path_list in demo_loader: batch_size = image_tensors.size(0) image = image_tensors.to(device) # For max length prediction length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) if 'CTC' in opt.Prediction: preds = model(image, text_for_pred) # Select max probabilty (greedy decoding) then decode index to character preds_size = torch.IntTensor([preds.size(1)] * batch_size) _, preds_index = preds.max(2) # preds_index = preds_index.view(-1) preds_str = converter.decode(preds_index, preds_size) else: preds = model(image, text_for_pred, is_train=False) # select max probabilty (greedy decoding) then decode index to character _, preds_index = preds.max(2) preds_str = converter.decode(preds_index, length_for_pred) log = open(f'./log_demo_result.txt', 'a') dashed_line = '-' * 80 head = f'{"image_path":25s}\t{"predicted_labels":25s}\tconfidence score' print(f'{dashed_line}\n{head}\n{dashed_line}') log.write(f'{dashed_line}\n{head}\n{dashed_line}\n') preds_prob = F.softmax(preds, dim=2) preds_max_prob, _ = preds_prob.max(dim=2) for img_name, pred, pred_max_prob in zip(image_path_list, preds_str, preds_max_prob): if 'Attn' in opt.Prediction: pred_EOS = pred.find('[s]') pred = pred[:pred_EOS] # prune after "end of sentence" token ([s]) pred_max_prob = pred_max_prob[:pred_EOS] # calculate confidence score (= multiply of pred_max_prob) confidence_score = pred_max_prob.cumprod(dim=0)[-1] print(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}') log.write(f'{img_name:25s}\t{pred:25s}\t{confidence_score:0.4f}\n') log.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--image_folder', required=True, help='path to image_folder which contains text images') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--batch_size', type=int, default=192, help='input batch size') parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation") """ Data processing """ parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length') parser.add_argument('--imgH', type=int, default=32, help='the height of the input image') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image') parser.add_argument('--rgb', action='store_true', help='use rgb input') parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label') parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode') parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize') """ Model Architecture """ parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS') parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet') parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM') parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. CTC|Attn') parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN') parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor') parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor') parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state') opt = parser.parse_args() """ vocab / character number configuration """ if opt.sensitive: opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). cudnn.benchmark = True cudnn.deterministic = True opt.num_gpu = torch.cuda.device_count() demo(opt)