import time
import os
import re
import torch
import gradio as gr
import spaces
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
from huggingface_hub import model_info
try:
import flash_attn
FLASH_ATTENTION = True
except ImportError:
FLASH_ATTENTION = False
import yt_dlp # Added import for yt-dlp
MODEL_NAME = "NbAiLab/nb-whisper-large"
lang = "no"
logo_path = "home/angelina/Nedlastinger/Screenshot 2024-10-10 at 13-30-13 Nasjonalbiblioteket — Melkeveien designkontor.png"
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
auth_token = os.environ.get("AUTH_TOKEN") or True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Bruker enhet: {device}")
@spaces.GPU(duration=60 * 2)
def pipe(file, return_timestamps=False):
asr = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=28,
device=device,
token=auth_token,
torch_dtype=torch.float16,
model_kwargs={"attn_implementation": "flash_attention_2", "num_beams": 5} if FLASH_ATTENTION else {"attn_implementation": "sdpa", "num_beams": 5},
)
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
language=lang,
task="transcribe",
no_timestamps=not return_timestamps,
)
return asr(file, return_timestamps=return_timestamps, batch_size=24)
def format_output(text):
# Add a newline after ".", "!", ":", or "?" unless part of sequences like "..."
text = re.sub(r'(? {end_time}] {chunk['text']}"
text.append(line)
formatted_text = "\n".join(text)
formatted_text += "\n\nTranskribert med NB-Whisper demo"
return formatted_text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'
'
" "
)
return HTML_str
def yt_transcribe(yt_url, return_timestamps=False):
html_embed_str = _return_yt_html_embed(yt_url)
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'audio.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'quiet': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
text = transcribe("audio.mp3", return_timestamps=return_timestamps)
return html_embed_str, text
# Lag Gradio-appen uten faner
demo = gr.Blocks()
with demo:
gr.Image(value=logo_path, label="Nasjonalbibliotek Logo", elem_id="logo")
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
gr.components.Checkbox(label="Inkluder tidsstempler"),
],
outputs="text",
title="NB-Whisper",
description=(
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede"
f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter."
),
allow_flagging="never",
show_submit_button=False,
)
# Uncomment to add the YouTube transcription interface if needed
# yt_transcribe_interface = gr.Interface(
# fn=yt_transcribe,
# inputs=[
# gr.components.Textbox(lines=1, placeholder="Lim inn URL til en YouTube-video her", label="YouTube URL"),
# gr.components.Checkbox(label="Inkluder tidsstempler"),
# ],
# examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
# outputs=["html", "text"],
# title="Whisper Demo: Transkriber YouTube",
# description=(
# "Transkriber lange YouTube-videoer med et enkelt klikk! Demoen bruker den fintunede modellen:"
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler av"
# " vilkårlig lengde."
# ),
# allow_flagging="never",
# )
# Start demoen uten faner
demo.launch(share=share).queue()