import gradio as gr import torch from transformers import T5Tokenizer, AutoModelForCausalLM, pipeline from utils import translate_from_jp_to_en tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt-1b") model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b") generator = pipeline("text-generation", tokenizer=tokenizer, model=model) def generate(text, max_length=512): out = generator(text, do_sample=True, max_length=max_length, num_return_sequences=1) text = out[0]['generated_text'] return text, translate_from_jp_to_en(text) title = "JP GPT Demo" description = "Demo for generating text in Japanase using a GPT model" article = "Built by Narrativa" examples = [['日本のeスポーツ障害者がステレオタイプを撃ち落とす', 128]] gr.Interface(fn=generate, inputs=[gr.inputs.Textbox(lines=4, label="Prompt"), gr.inputs.Slider(minimum=8, maximum=1024, step=8, default=64, label="Number of tokens")], outputs=["text", "text"], title=title, description=description, article= article, examples=examples).launch(enable_queue=True)