Spaces:
Runtime error
Runtime error
NahuelCosta
commited on
Commit
•
354059a
1
Parent(s):
e23681c
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,8 @@ import matplotlib.pyplot as plt
|
|
5 |
from matplotlib import cm
|
6 |
from PIL import Image
|
7 |
import pandas as pd
|
8 |
-
from dtaidistance import dtw
|
9 |
-
|
10 |
def getDTWImage(IC_reference, sample, size):
|
11 |
d, paths = dtw.warping_paths(IC_reference, sample, window=int(size/2), psi=2)
|
12 |
x = np.array(paths)
|
@@ -19,9 +19,10 @@ def getDTWImage(IC_reference, sample, size):
|
|
19 |
# reshape the array
|
20 |
x = np.expand_dims(x, -1).astype("float32")
|
21 |
return x
|
22 |
-
|
23 |
-
data = np.load('./
|
24 |
-
|
|
|
25 |
|
26 |
def predict(Cell_number, Duty_Cycle, Cycle_number):
|
27 |
# ------------------------ Prediction ------------------------
|
@@ -33,7 +34,7 @@ def predict(Cell_number, Duty_Cycle, Cycle_number):
|
|
33 |
|
34 |
IC_reference = data[0][0]
|
35 |
sample = data[Duty_Cycle-1][cycle]
|
36 |
-
sample_DTW = getDTWImage(IC_reference, sample, size)
|
37 |
prediction = model.predict(np.expand_dims(sample_DTW, axis=0))
|
38 |
pred = {"LLI ": str(prediction[0][0]), "LAMPE ": str(prediction[0][1]), "LAMNE ": str(prediction[0][2])}
|
39 |
|
|
|
5 |
from matplotlib import cm
|
6 |
from PIL import Image
|
7 |
import pandas as pd
|
8 |
+
#from dtaidistance import dtw
|
9 |
+
'''
|
10 |
def getDTWImage(IC_reference, sample, size):
|
11 |
d, paths = dtw.warping_paths(IC_reference, sample, window=int(size/2), psi=2)
|
12 |
x = np.array(paths)
|
|
|
19 |
# reshape the array
|
20 |
x = np.expand_dims(x, -1).astype("float32")
|
21 |
return x
|
22 |
+
'''
|
23 |
+
data = np.load('./data.npy')
|
24 |
+
data_DTW = np.load('./data/data_DTW.npy')
|
25 |
+
model = tf.keras.models.load_model('./models/model.h5',compile = False)
|
26 |
|
27 |
def predict(Cell_number, Duty_Cycle, Cycle_number):
|
28 |
# ------------------------ Prediction ------------------------
|
|
|
34 |
|
35 |
IC_reference = data[0][0]
|
36 |
sample = data[Duty_Cycle-1][cycle]
|
37 |
+
sample_DTW = data_DTW[Duty_Cycle-1][cycle] #getDTWImage(IC_reference, sample, size)
|
38 |
prediction = model.predict(np.expand_dims(sample_DTW, axis=0))
|
39 |
pred = {"LLI ": str(prediction[0][0]), "LAMPE ": str(prediction[0][1]), "LAMNE ": str(prediction[0][2])}
|
40 |
|