|
import json |
|
import time |
|
from typing import Dict, List |
|
|
|
from pydantic import BaseModel, Field |
|
|
|
|
|
class GenerationOptions(BaseModel): |
|
preset: str | None = Field(default=None, description="The name of a file under text-generation-webui/presets (without the .yaml extension). The sampling parameters that get overwritten by this option are the keys in the default_preset() function in modules/presets.py.") |
|
min_p: float = 0 |
|
dynamic_temperature: bool = False |
|
dynatemp_low: float = 1 |
|
dynatemp_high: float = 1 |
|
dynatemp_exponent: float = 1 |
|
top_k: int = 0 |
|
repetition_penalty: float = 1 |
|
repetition_penalty_range: int = 1024 |
|
typical_p: float = 1 |
|
tfs: float = 1 |
|
top_a: float = 0 |
|
epsilon_cutoff: float = 0 |
|
eta_cutoff: float = 0 |
|
guidance_scale: float = 1 |
|
negative_prompt: str = '' |
|
penalty_alpha: float = 0 |
|
mirostat_mode: int = 0 |
|
mirostat_tau: float = 5 |
|
mirostat_eta: float = 0.1 |
|
temperature_last: bool = False |
|
do_sample: bool = True |
|
seed: int = -1 |
|
encoder_repetition_penalty: float = 1 |
|
no_repeat_ngram_size: int = 0 |
|
min_length: int = 0 |
|
num_beams: int = 1 |
|
length_penalty: float = 1 |
|
early_stopping: bool = False |
|
truncation_length: int = 0 |
|
max_tokens_second: int = 0 |
|
prompt_lookup_num_tokens: int = 0 |
|
custom_token_bans: str = "" |
|
auto_max_new_tokens: bool = False |
|
ban_eos_token: bool = False |
|
add_bos_token: bool = True |
|
skip_special_tokens: bool = True |
|
grammar_string: str = "" |
|
|
|
|
|
class CompletionRequestParams(BaseModel): |
|
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.") |
|
prompt: str | List[str] |
|
best_of: int | None = Field(default=1, description="Unused parameter.") |
|
echo: bool | None = False |
|
frequency_penalty: float | None = 0 |
|
logit_bias: dict | None = None |
|
logprobs: int | None = None |
|
max_tokens: int | None = 16 |
|
n: int | None = Field(default=1, description="Unused parameter.") |
|
presence_penalty: float | None = 0 |
|
stop: str | List[str] | None = None |
|
stream: bool | None = False |
|
suffix: str | None = None |
|
temperature: float | None = 1 |
|
top_p: float | None = 1 |
|
user: str | None = Field(default=None, description="Unused parameter.") |
|
|
|
|
|
class CompletionRequest(GenerationOptions, CompletionRequestParams): |
|
pass |
|
|
|
|
|
class CompletionResponse(BaseModel): |
|
id: str |
|
choices: List[dict] |
|
created: int = int(time.time()) |
|
model: str |
|
object: str = "text_completion" |
|
usage: dict |
|
|
|
|
|
class ChatCompletionRequestParams(BaseModel): |
|
messages: List[dict] |
|
model: str | None = Field(default=None, description="Unused parameter. To change the model, use the /v1/internal/model/load endpoint.") |
|
frequency_penalty: float | None = 0 |
|
function_call: str | dict | None = Field(default=None, description="Unused parameter.") |
|
functions: List[dict] | None = Field(default=None, description="Unused parameter.") |
|
logit_bias: dict | None = None |
|
max_tokens: int | None = None |
|
n: int | None = Field(default=1, description="Unused parameter.") |
|
presence_penalty: float | None = 0 |
|
stop: str | List[str] | None = None |
|
stream: bool | None = False |
|
temperature: float | None = 1 |
|
top_p: float | None = 1 |
|
user: str | None = Field(default=None, description="Unused parameter.") |
|
|
|
mode: str = Field(default='instruct', description="Valid options: instruct, chat, chat-instruct.") |
|
|
|
instruction_template: str | None = Field(default=None, description="An instruction template defined under text-generation-webui/instruction-templates. If not set, the correct template will be automatically obtained from the model metadata.") |
|
instruction_template_str: str | None = Field(default=None, description="A Jinja2 instruction template. If set, will take precedence over everything else.") |
|
|
|
character: str | None = Field(default=None, description="A character defined under text-generation-webui/characters. If not set, the default \"Assistant\" character will be used.") |
|
user_name: str | None = Field(default=None, description="Your name (the user). By default, it's \"You\".", alias="name1") |
|
bot_name: str | None = Field(default=None, description="Overwrites the value set by character field.", alias="name2") |
|
context: str | None = Field(default=None, description="Overwrites the value set by character field.") |
|
greeting: str | None = Field(default=None, description="Overwrites the value set by character field.") |
|
chat_template_str: str | None = Field(default=None, description="Jinja2 template for chat.") |
|
|
|
chat_instruct_command: str | None = None |
|
|
|
continue_: bool = Field(default=False, description="Makes the last bot message in the history be continued instead of starting a new message.") |
|
|
|
|
|
class ChatCompletionRequest(GenerationOptions, ChatCompletionRequestParams): |
|
pass |
|
|
|
|
|
class ChatCompletionResponse(BaseModel): |
|
id: str |
|
choices: List[dict] |
|
created: int = int(time.time()) |
|
model: str |
|
object: str = "chat.completion" |
|
usage: dict |
|
|
|
|
|
class EmbeddingsRequest(BaseModel): |
|
input: str | List[str] | List[int] | List[List[int]] |
|
model: str | None = Field(default=None, description="Unused parameter. To change the model, set the OPENEDAI_EMBEDDING_MODEL and OPENEDAI_EMBEDDING_DEVICE environment variables before starting the server.") |
|
encoding_format: str = Field(default="float", description="Can be float or base64.") |
|
user: str | None = Field(default=None, description="Unused parameter.") |
|
|
|
|
|
class EmbeddingsResponse(BaseModel): |
|
index: int |
|
embedding: List[float] |
|
object: str = "embedding" |
|
|
|
|
|
class EncodeRequest(BaseModel): |
|
text: str |
|
|
|
|
|
class EncodeResponse(BaseModel): |
|
tokens: List[int] |
|
length: int |
|
|
|
|
|
class DecodeRequest(BaseModel): |
|
tokens: List[int] |
|
|
|
|
|
class DecodeResponse(BaseModel): |
|
text: str |
|
|
|
|
|
class TokenCountResponse(BaseModel): |
|
length: int |
|
|
|
|
|
class LogitsRequestParams(BaseModel): |
|
prompt: str |
|
use_samplers: bool = False |
|
top_logits: int | None = 50 |
|
frequency_penalty: float | None = 0 |
|
max_tokens: int | None = 16 |
|
presence_penalty: float | None = 0 |
|
temperature: float | None = 1 |
|
top_p: float | None = 1 |
|
|
|
|
|
class LogitsRequest(GenerationOptions, LogitsRequestParams): |
|
pass |
|
|
|
|
|
class LogitsResponse(BaseModel): |
|
logits: Dict[str, float] |
|
|
|
|
|
class ModelInfoResponse(BaseModel): |
|
model_name: str |
|
lora_names: List[str] |
|
|
|
|
|
class ModelListResponse(BaseModel): |
|
model_names: List[str] |
|
|
|
|
|
class LoadModelRequest(BaseModel): |
|
model_name: str |
|
args: dict | None = None |
|
settings: dict | None = None |
|
|
|
|
|
class LoraListResponse(BaseModel): |
|
lora_names: List[str] |
|
|
|
|
|
class LoadLorasRequest(BaseModel): |
|
lora_names: List[str] |
|
|
|
|
|
def to_json(obj): |
|
return json.dumps(obj.__dict__, indent=4) |
|
|
|
|
|
def to_dict(obj): |
|
return obj.__dict__ |
|
|