import gradio as gr from huggingface_hub import InferenceClient import spaces from transformers import AutoModelForCausalLM, AutoTokenizer import torch from transformers import pipeline #pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True) #client = InferenceClient("microsoft/Phi-3-mini-128k-instruct") #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") #client = InferenceClient("google/gemma-1.1-7b-it") pipe = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct") @spaces.GPU def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in pipe.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a cybersecurity analyst who can interpret different types of logs resulting from various cyberattacks such as phishing attacks, malware attacks, advanced persistent threats, denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks, man-in-the-middle (MitM) attacks, SQL injection attacks, and zero-day exploits. Using logs such as login failures, event logs, firewall logs, and brute force logs, analyze the data and respond in English with your interpretation of the analysis.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()