from PIL import Image, ImageDraw, ImageFont import cv2 import numpy as np from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor import torch import spaces import gradio as gr # Load PaliGemma device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "google/paligemma-3b-mix-224" model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device) processor = PaliGemmaProcessor.from_pretrained(model_id) # Function to draw bounding boxes (your original code) def draw_bounding_box(draw, coordinates, label, width, height): y1, x1, y2, x2 = coordinates y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) text_width, text_height = draw.textsize(label) draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red") # Draw label text draw.text((x1 + 2, y1 - text_height - 2), label, fill="white") # Draw bounding box draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2) @spaces.GPU def process_video(video_path, input_text): cap = cv2.VideoCapture(video_path) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4)))) while(True): ret, frame = cap.read() if not ret: break # Convert the frame to a PIL Image img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # Send text prompt and image as input. inputs = processor(text=input_text, images=img, padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda") inputs = inputs.to(dtype=model.dtype) # Get output. with torch.no_grad(): output = model.generate(**inputs, max_length=496) paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n") # print(paligemma_response) # For debugging detections = paligemma_response.split(" ; ") # Parse the output bounding box coordinates parsed_coordinates = [] labels = [] for item in detections: # Remove '' tags and split the string # print(item) detection = item.replace("= 2: coordinates_str = detection[0] label = detection[1] labels.append(label) else: # No label detected, skip the iteration. continue # Split the coordinates string by '>' to get individual coordinates coordinates = coordinates_str.split(">") coordinates = coordinates[:4] # Slicing to ensure only 4 values if coordinates[-1] == '': coordinates = coordinates[:-1] # print(coordinates) coordinates = [int(coord)/1024 for coord in coordinates] # location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)] # y1, x1, y2, x2 = [value / 1024 for value in location_values] parsed_coordinates.append(coordinates) width = img.size[0] height = img.size[1] # Draw bounding boxes on the frame using PIL draw = ImageDraw.Draw(img) for coordinates, label in zip(parsed_coordinates, labels): draw_bounding_box(draw, coordinates, label, width=width, height=height) # Convert the PIL Image back to OpenCV format frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) # Write the frame to the output video out.write(frame) cap.release() out.release() return "output_paligemma_keras.avi" with gr.Blocks() as demo: gr.Markdown("## Zero-shot Object Tracking with PaliGemma") gr.Markdown("This is a demo for zero-shot object tracking using [PaliGemma](https://huggingface.co/google/paligemma-3b-mix-448) vision language model by Google.") gr.Markdown("Simply upload a video and enter the candidate labels, or try the example below. Text input should be ; separated. 👇") with gr.Tab(label="Video"): with gr.Row(): input_video = gr.Video(label='Input Video') output_video = gr.Video(label='Output Video') with gr.Row(): candidate_labels = gr.Textbox( label='Labels', placeholder='Labels separated by a comma', ) submit = gr.Button() gr.Examples( fn=process_video, examples=[["./input.mp4", "detect person"]], inputs=[ input_video, candidate_labels, ], outputs=output_video ) submit.click(fn=process_video, inputs=[input_video, candidate_labels], outputs=output_video ) demo.launch(debug=False, show_error=True)