import os import sys sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) # os.chdir("../") import cv2 import gradio as gr import numpy as np from pathlib import Path from matplotlib import pyplot as plt import torch import tempfile from stable_diffusion_inpaint import fill_img_with_sd, replace_img_with_sd from lama_inpaint import ( inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama, ) from utils import ( load_img_to_array, save_array_to_img, dilate_mask, show_mask, show_points, ) from PIL import Image from segment_anything import SamPredictor, sam_model_registry import argparse def setup_args(parser): parser.add_argument( "--lama_config", type=str, default="./lama/configs/prediction/default.yaml", help="The path to the config file of lama model. " "Default: the config of big-lama", ) parser.add_argument( "--lama_ckpt", type=str, default="pretrained_models/big-lama", help="The path to the lama checkpoint.", ) parser.add_argument( "--sam_ckpt", type=str, default="./pretrained_models/sam_vit_h_4b8939.pth", help="The path to the SAM checkpoint to use for mask generation.", ) def mkstemp(suffix, dir=None): fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir) os.close(fd) return Path(path) def get_sam_feat(img): model["sam"].set_image(img) features = model["sam"].features orig_h = model["sam"].orig_h orig_w = model["sam"].orig_w input_h = model["sam"].input_h input_w = model["sam"].input_w model["sam"].reset_image() return features, orig_h, orig_w, input_h, input_w def get_fill_img_with_sd(image, mask, image_resolution, text_prompt): device = "cuda" if torch.cuda.is_available() else "cpu" if len(mask.shape) == 3: mask = mask[:, :, 0] np_image = np.array(image, dtype=np.uint8) H, W, C = np_image.shape np_image = HWC3(np_image) np_image = resize_image(np_image, image_resolution) mask = cv2.resize( mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST ) img_fill = fill_img_with_sd(np_image, mask, text_prompt, device=device) img_fill = img_fill.astype(np.uint8) return img_fill def get_replace_img_with_sd(image, mask, image_resolution, text_prompt): device = "cuda" if torch.cuda.is_available() else "cpu" if len(mask.shape) == 3: mask = mask[:, :, 0] np_image = np.array(image, dtype=np.uint8) H, W, C = np_image.shape np_image = HWC3(np_image) np_image = resize_image(np_image, image_resolution) mask = cv2.resize( mask, (np_image.shape[1], np_image.shape[0]), interpolation=cv2.INTER_NEAREST ) img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device) img_replaced = img_replaced.astype(np.uint8) return img_replaced def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape k = float(resolution) / min(H, W) H = int(np.round(H * k / 64.0)) * 64 W = int(np.round(W * k / 64.0)) * 64 img = cv2.resize( input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA, ) return img def resize_points(clicked_points, original_shape, resolution): original_height, original_width, _ = original_shape original_height = float(original_height) original_width = float(original_width) scale_factor = float(resolution) / min(original_height, original_width) resized_points = [] for point in clicked_points: x, y, lab = point resized_x = int(round(x * scale_factor)) resized_y = int(round(y * scale_factor)) resized_point = (resized_x, resized_y, lab) resized_points.append(resized_point) return resized_points def get_click_mask( clicked_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size ): # model['sam'].set_image(image) model["sam"].is_image_set = True model["sam"].features = features model["sam"].orig_h = orig_h model["sam"].orig_w = orig_w model["sam"].input_h = input_h model["sam"].input_w = input_w # Separate the points and labels points, labels = zip(*[(point[:2], point[2]) for point in clicked_points]) # Convert the points and labels to numpy arrays input_point = np.array(points) input_label = np.array(labels) masks, _, _ = model["sam"].predict( point_coords=input_point, point_labels=input_label, multimask_output=False, ) if dilate_kernel_size is not None: masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks] else: masks = [mask for mask in masks] return masks def process_image_click( original_image, point_prompt, clicked_points, image_resolution, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size, evt: gr.SelectData, ): if clicked_points is None: clicked_points = [] # print("Received click event:", evt) if original_image is None: # print("No image loaded.") return None, clicked_points, None clicked_coords = evt.index if clicked_coords is None: # print("No valid coordinates received.") return None, clicked_points, None x, y = clicked_coords label = point_prompt lab = 1 if label == "Foreground Point" else 0 clicked_points.append((x, y, lab)) # print("Updated points list:", clicked_points) input_image = np.array(original_image, dtype=np.uint8) H, W, C = input_image.shape input_image = HWC3(input_image) img = resize_image(input_image, image_resolution) # print("Processed image size:", img.shape) resized_points = resize_points(clicked_points, input_image.shape, image_resolution) mask_click_np = get_click_mask( resized_points, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size ) mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0 mask_image = HWC3(mask_click_np.astype(np.uint8)) mask_image = cv2.resize(mask_image, (W, H), interpolation=cv2.INTER_LINEAR) # print("Mask image prepared.") edited_image = input_image for x, y, lab in clicked_points: color = (255, 0, 0) if lab == 1 else (0, 0, 255) edited_image = cv2.circle(edited_image, (x, y), 20, color, -1) opacity_mask = 0.75 opacity_edited = 1.0 overlay_image = cv2.addWeighted( edited_image, opacity_edited, (mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8), opacity_mask, 0, ) no_mask_overlay = edited_image.copy() return no_mask_overlay, overlay_image, clicked_points, mask_image def image_upload(image, image_resolution): if image is None: return None, None, None, None, None, None else: np_image = np.array(image, dtype=np.uint8) H, W, C = np_image.shape np_image = HWC3(np_image) np_image = resize_image(np_image, image_resolution) features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image) return image, features, orig_h, orig_w, input_h, input_w def get_inpainted_img(image, mask, image_resolution): lama_config = args.lama_config device = "cuda" if torch.cuda.is_available() else "cpu" if len(mask.shape) == 3: mask = mask[:, :, 0] img_inpainted = inpaint_img_with_builded_lama( model["lama"], image, mask, lama_config, device=device ) return img_inpainted # get args parser = argparse.ArgumentParser() setup_args(parser) args = parser.parse_args(sys.argv[1:]) # build models model = {} # build the sam model model_type = "vit_h" ckpt_p = args.sam_ckpt model_sam = sam_model_registry[model_type](checkpoint=ckpt_p) device = "cuda" if torch.cuda.is_available() else "cpu" model_sam.to(device=device) model["sam"] = SamPredictor(model_sam) # build the lama model lama_config = args.lama_config lama_ckpt = args.lama_ckpt device = "cuda" if torch.cuda.is_available() else "cpu" model["lama"] = build_lama_model(lama_config, lama_ckpt, device=device) button_size = (100, 50) with gr.Blocks() as demo: clicked_points = gr.State([]) # origin_image = gr.State(None) click_mask = gr.State(None) features = gr.State(None) orig_h = gr.State(None) orig_w = gr.State(None) input_h = gr.State(None) input_w = gr.State(None) with gr.Row(): with gr.Column(variant="panel"): with gr.Row(): gr.Markdown("## Upload an image and click the region you want to edit.") with gr.Row(): source_image_click = gr.Image( type="numpy", interactive=True, label="Upload and Edit Image", ) image_edit_complete = gr.Image( type="numpy", interactive=False, label="Editing Complete", ) with gr.Row(): point_prompt = gr.Radio( choices=["Foreground Point", "Background Point"], value="Foreground Point", label="Point Label", interactive=True, show_label=False, ) image_resolution = gr.Slider( label="Image Resolution", minimum=256, maximum=768, value=512, step=64, ) dilate_kernel_size = gr.Slider( label="Dilate Kernel Size", minimum=0, maximum=30, value=15, step=1 ) with gr.Column(variant="panel"): with gr.Row(): gr.Markdown("## Control Panel") text_prompt = gr.Textbox(label="Text Prompt") lama = gr.Button("Inpaint Image", variant="primary") fill_sd = gr.Button("Fill Anything with SD", variant="primary") replace_sd = gr.Button("Replace Anything with SD", variant="primary") clear_button_image = gr.Button(value="Reset", variant="secondary") # todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): gr.Markdown("## Mask") with gr.Row(): click_mask = gr.Image( type="numpy", label="Click Mask", interactive=False, ) with gr.Column(): with gr.Row(): gr.Markdown("## Image Removed with Mask") with gr.Row(): img_rm_with_mask = gr.Image( type="numpy", label="Image Removed with Mask", interactive=False, ) with gr.Column(): with gr.Row(): gr.Markdown("## Fill Anything with Mask") with gr.Row(): img_fill_with_mask = gr.Image( type="numpy", label="Image Fill Anything with Mask", interactive=False, ) with gr.Column(): with gr.Row(): gr.Markdown("## Replace Anything with Mask") with gr.Row(): img_replace_with_mask = gr.Image( type="numpy", label="Image Replace Anything with Mask", interactive=False, ) source_image_click.upload( image_upload, inputs=[source_image_click, image_resolution], outputs=[source_image_click, features, orig_h, orig_w, input_h, input_w], ) source_image_click.select( process_image_click, inputs=[ source_image_click, point_prompt, clicked_points, image_resolution, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size, ], outputs=[source_image_click, image_edit_complete, clicked_points, click_mask], show_progress=True, queue=True, ) lama.click( get_inpainted_img, inputs=[source_image_click, click_mask, image_resolution], outputs=[img_rm_with_mask], ) fill_sd.click( get_fill_img_with_sd, inputs=[source_image_click, click_mask, image_resolution, text_prompt], outputs=[img_fill_with_mask], ) replace_sd.click( get_replace_img_with_sd, inputs=[source_image_click, click_mask, image_resolution, text_prompt], outputs=[img_replace_with_mask], ) def reset(*args): return [None for _ in args] clear_button_image.click( reset, inputs=[ source_image_click, image_edit_complete, clicked_points, click_mask, features, img_rm_with_mask, img_fill_with_mask, img_replace_with_mask, ], outputs=[ source_image_click, image_edit_complete, clicked_points, click_mask, features, img_rm_with_mask, img_fill_with_mask, img_replace_with_mask, ], ) if __name__ == "__main__": demo.launch(debug=False, show_error=True)