diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..f0668e9eefc504041f556aca9e624ebae17eafeb 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +lama/saicinpainting/evaluation/masks/countless/images/gcim.jpg filter=lfs diff=lfs merge=lfs -text diff --git a/lama/.gitignore b/lama/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..7b642c8aa0f86b4ddbc960cc4be045bafebee3f4 --- /dev/null +++ b/lama/.gitignore @@ -0,0 +1,137 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +pip-wheel-metadata/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# temporary files +## IDEA +.idea/ +## vscode +.vscode/ +## vim +*.sw? diff --git a/lama/LICENSE b/lama/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..4285773e5e5f706a6a0f47bc4fc973b999b1c986 --- /dev/null +++ b/lama/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [2021] Samsung Research + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/lama/LaMa_inpainting.ipynb b/lama/LaMa_inpainting.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..dd63f6d7e6fb82bc2b5e92ecac96048d16a9e51f --- /dev/null +++ b/lama/LaMa_inpainting.ipynb @@ -0,0 +1,869 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "_pRpIwnaOnb3" + }, + "source": [ + "# 🦙 **LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions**\n", + "\n", + "[[Project page](https://advimman.github.io/lama-project/)] [[GitHub](https://github.com/advimman/lama)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)]\n", + "\n", + "

\n", + "Our model generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.\n", + "

\n", + "\n", + "# Try it yourself!👇\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "RwXRMaNHW4r5", + "outputId": "9092f5d8-2864-4d19-ec04-1098f86ffb46", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + } + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "> Cloning the repo\n", + "Cloning into 'lama'...\n", + "remote: Enumerating objects: 399, done.\u001b[K\n", + "remote: Counting objects: 100% (198/198), done.\u001b[K\n", + "remote: Compressing objects: 100% (129/129), done.\u001b[K\n", + "remote: Total 399 (delta 94), reused 69 (delta 69), pack-reused 201\u001b[K\n", + "Receiving objects: 100% (399/399), 6.52 MiB | 18.61 MiB/s, done.\n", + "Resolving deltas: 100% (140/140), done.\n", + "\n", + "> Install dependencies\n", + "Collecting wldhx.yadisk-direct\n", + " Downloading wldhx.yadisk_direct-0.0.6-py3-none-any.whl (4.5 kB)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from wldhx.yadisk-direct) (2.27.1)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->wldhx.yadisk-direct) (1.26.16)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->wldhx.yadisk-direct) (2023.7.22)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->wldhx.yadisk-direct) (2.0.12)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->wldhx.yadisk-direct) (3.4)\n", + "Installing collected packages: wldhx.yadisk-direct\n", + "Successfully installed wldhx.yadisk-direct-0.0.6\n", + "Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)\n", + "Collecting pip\n", + " Downloading pip-23.2.1-py3-none-any.whl (2.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: pip\n", + " Attempting uninstall: pip\n", + " Found existing installation: pip 23.1.2\n", + " Uninstalling pip-23.1.2:\n", + " Successfully uninstalled pip-23.1.2\n", + "Successfully installed pip-23.2.1\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mCollecting scikit-survival\n", + " Obtaining dependency information for scikit-survival from https://files.pythonhosted.org/packages/08/46/db69f0de908e6cd6db742bb333dd22b2958f7e73fecafb7bac5569d0282f/scikit_survival-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Downloading scikit_survival-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (48 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.0/49.0 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: ecos in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (2.0.12)\n", + "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (1.3.1)\n", + "Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (2.8.4)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (1.22.4)\n", + "Collecting osqp!=0.6.0,!=0.6.1 (from scikit-survival)\n", + " Obtaining dependency information for osqp!=0.6.0,!=0.6.1 from https://files.pythonhosted.org/packages/dd/d1/a091ae0a5fb583147184592011952aeb7827cde73a0fe7b7e95d84d752fd/osqp-0.6.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Downloading osqp-0.6.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.7 kB)\n", + "Requirement already satisfied: pandas>=1.0.5 in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (1.5.3)\n", + "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (1.10.1)\n", + "Requirement already satisfied: scikit-learn<1.3,>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-survival) (1.2.2)\n", + "Requirement already satisfied: qdldl in /usr/local/lib/python3.10/dist-packages (from osqp!=0.6.0,!=0.6.1->scikit-survival) (0.1.7.post0)\n", + "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->scikit-survival) (2.8.2)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->scikit-survival) (2022.7.1)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn<1.3,>=1.2.0->scikit-survival) (3.2.0)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas>=1.0.5->scikit-survival) (1.16.0)\n", + "Downloading scikit_survival-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/3.3 MB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading osqp-0.6.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (298 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m298.8/298.8 kB\u001b[0m \u001b[31m15.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: osqp, scikit-survival\n", + "Successfully installed osqp-0.6.3 scikit-survival-0.21.0\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Skipping kornia as it is not installed.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mCollecting kornia\n", + " Downloading kornia-0.6.12-py2.py3-none-any.whl (653 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m653.4/653.4 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: kornia\n", + "Successfully installed kornia-0.6.12\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mCollecting kornia-rs\n", + " Downloading kornia_rs-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: kornia-rs\n", + "Successfully installed kornia-rs-0.0.8\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mCollecting pytorch-lightning\n", + " Obtaining dependency information for pytorch-lightning from https://files.pythonhosted.org/packages/26/b1/f0cbbabeceab4470bde31c025e4ce22084ff446a3f022100f032db9ea88b/pytorch_lightning-2.0.6-py3-none-any.whl.metadata\n", + " Downloading pytorch_lightning-2.0.6-py3-none-any.whl.metadata (23 kB)\n", + "Requirement already satisfied: numpy>=1.17.2 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (1.22.4)\n", + "Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (2.0.1+cu118)\n", + "Requirement already satisfied: tqdm>=4.57.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (4.65.0)\n", + "Requirement already satisfied: PyYAML>=5.4 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (6.0.1)\n", + "Requirement already satisfied: fsspec[http]>2021.06.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (2023.6.0)\n", + "Collecting torchmetrics>=0.7.0 (from pytorch-lightning)\n", + " Obtaining dependency information for torchmetrics>=0.7.0 from https://files.pythonhosted.org/packages/d1/d3/3027b6b3936c5f139b64a7fa884a14eb485c8c19ae2e94bd1af9a44fa4c7/torchmetrics-1.0.1-py3-none-any.whl.metadata\n", + " Downloading torchmetrics-1.0.1-py3-none-any.whl.metadata (21 kB)\n", + "Requirement already satisfied: packaging>=17.1 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (23.1)\n", + "Requirement already satisfied: typing-extensions>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning) (4.7.1)\n", + "Collecting lightning-utilities>=0.7.0 (from pytorch-lightning)\n", + " Obtaining dependency information for lightning-utilities>=0.7.0 from https://files.pythonhosted.org/packages/46/ee/8641eeb6a062f383b7d6875604e1f3f83bd2c93a0b4dbcabd3150b32de6e/lightning_utilities-0.9.0-py3-none-any.whl.metadata\n", + " Downloading lightning_utilities-0.9.0-py3-none-any.whl.metadata (4.6 kB)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from fsspec[http]>2021.06.0->pytorch-lightning) (2.27.1)\n", + "Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]>2021.06.0->pytorch-lightning) (3.8.5)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->pytorch-lightning) (3.12.2)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->pytorch-lightning) (1.11.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->pytorch-lightning) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->pytorch-lightning) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->pytorch-lightning) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.11.0->pytorch-lightning) (3.25.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch>=1.11.0->pytorch-lightning) (16.0.6)\n", + "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (23.1.0)\n", + "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (2.0.12)\n", + "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (6.0.4)\n", + "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (4.0.2)\n", + "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (1.9.2)\n", + "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (1.4.0)\n", + "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp!=4.0.0a0,!=4.0.0a1->fsspec[http]>2021.06.0->pytorch-lightning) (1.3.1)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.11.0->pytorch-lightning) (2.1.3)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch-lightning) (1.26.16)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch-lightning) (2023.7.22)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->fsspec[http]>2021.06.0->pytorch-lightning) (3.4)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.11.0->pytorch-lightning) (1.3.0)\n", + "Downloading pytorch_lightning-2.0.6-py3-none-any.whl (722 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m722.8/722.8 kB\u001b[0m \u001b[31m10.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading lightning_utilities-0.9.0-py3-none-any.whl (23 kB)\n", + "Downloading torchmetrics-1.0.1-py3-none-any.whl (729 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m729.2/729.2 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: lightning-utilities, torchmetrics, pytorch-lightning\n", + "Successfully installed lightning-utilities-0.9.0 pytorch-lightning-2.0.6 torchmetrics-1.0.1\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mCollecting hydra-core\n", + " Downloading hydra_core-1.3.2-py3-none-any.whl (154 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.5/154.5 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting omegaconf<2.4,>=2.2 (from hydra-core)\n", + " Downloading omegaconf-2.3.0-py3-none-any.whl (79 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.5/79.5 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting antlr4-python3-runtime==4.9.* (from hydra-core)\n", + " Downloading antlr4-python3-runtime-4.9.3.tar.gz (117 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m117.0/117.0 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from hydra-core) (23.1)\n", + "Requirement already satisfied: PyYAML>=5.1.0 in /usr/local/lib/python3.10/dist-packages (from omegaconf<2.4,>=2.2->hydra-core) (6.0.1)\n", + "Building wheels for collected packages: antlr4-python3-runtime\n", + " Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.9.3-py3-none-any.whl size=144552 sha256=582f3f5898e31109b663a0613a474ad6577676355a408669b9e27c021fb34d39\n", + " Stored in directory: /root/.cache/pip/wheels/12/93/dd/1f6a127edc45659556564c5730f6d4e300888f4bca2d4c5a88\n", + "Successfully built antlr4-python3-runtime\n", + "Installing collected packages: antlr4-python3-runtime, omegaconf, hydra-core\n", + "Successfully installed antlr4-python3-runtime-4.9.3 hydra-core-1.3.2 omegaconf-2.3.0\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "pydevd_plugins" + ] + } + } + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting webdataset\n", + " Downloading webdataset-0.2.48-py3-none-any.whl (51 kB)\n", + "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/51.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.9/51.9 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting braceexpand (from webdataset)\n", + " Downloading braceexpand-0.1.7-py2.py3-none-any.whl (5.9 kB)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from webdataset) (1.22.4)\n", + "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from webdataset) (6.0.1)\n", + "Installing collected packages: braceexpand, webdataset\n", + "Successfully installed braceexpand-0.1.7 webdataset-0.2.48\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0mRequirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.0.1+cu118)\n", + "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.15.2+cu118)\n", + "Requirement already satisfied: torchaudio in /usr/local/lib/python3.10/dist-packages (2.0.2+cu118)\n", + "Requirement already satisfied: torchtext in /usr/local/lib/python3.10/dist-packages (0.15.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.12.2)\n", + "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch) (4.7.1)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.11.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.1)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.2)\n", + "Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.0.0)\n", + "Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (3.25.2)\n", + "Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch) (16.0.6)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.22.4)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from torchvision) (2.27.1)\n", + "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (9.4.0)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from torchtext) (4.65.0)\n", + "Requirement already satisfied: torchdata==0.6.1 in /usr/local/lib/python3.10/dist-packages (from torchtext) (0.6.1)\n", + "Requirement already satisfied: urllib3>=1.25 in /usr/local/lib/python3.10/dist-packages (from torchdata==0.6.1->torchtext) (1.26.16)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.3)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2023.7.22)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (2.0.12)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->torchvision) (3.4)\n", + "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m29.8/29.8 MB\u001b[0m \u001b[31m40.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.5/7.5 MB\u001b[0m \u001b[31m64.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " \u001b[1;31merror\u001b[0m: \u001b[1msubprocess-exited-with-error\u001b[0m\n", + " \n", + " \u001b[31m×\u001b[0m \u001b[32mPreparing metadata \u001b[0m\u001b[1;32m(\u001b[0m\u001b[32mpyproject.toml\u001b[0m\u001b[1;32m)\u001b[0m did not run successfully.\n", + " \u001b[31m│\u001b[0m exit code: \u001b[1;36m1\u001b[0m\n", + " \u001b[31m╰─>\u001b[0m See above for output.\n", + " \n", + " \u001b[1;35mnote\u001b[0m: This error originates from a subprocess, and is likely not a problem with pip.\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25herror\n", + "\u001b[1;31merror\u001b[0m: \u001b[1mmetadata-generation-failed\u001b[0m\n", + "\n", + "\u001b[31m×\u001b[0m Encountered error while generating package metadata.\n", + "\u001b[31m╰─>\u001b[0m See above for output.\n", + "\n", + "\u001b[1;35mnote\u001b[0m: This is an issue with the package mentioned above, not pip.\n", + "\u001b[1;36mhint\u001b[0m: See above for details.\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Building wheel for wget (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m\n", + "> Changing the dir to:\n", + "/content/lama\n", + "\n", + "> Download the model\n", + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + " 0 0 0 0 0 0 0 0 --:--:-- 0:00:01 --:--:-- 0\n", + "100 363M 0 363M 0 0 9922k 0 --:--:-- 0:00:37 --:--:-- 9932k\n", + "Archive: big-lama.zip\n", + " inflating: big-lama/config.yaml \n", + " inflating: big-lama/models/best.ckpt \n", + ">fixing opencv\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[31mERROR: Could not find a version that satisfies the requirement opencv-python-headless==4.1.2.30 (from versions: 3.4.10.37, 3.4.11.39, 3.4.11.41, 3.4.11.43, 3.4.11.45, 3.4.13.47, 3.4.15.55, 3.4.16.59, 3.4.17.61, 3.4.17.63, 3.4.18.65, 4.3.0.38, 4.4.0.40, 4.4.0.42, 4.4.0.44, 4.4.0.46, 4.5.1.48, 4.5.3.56, 4.5.4.58, 4.5.4.60, 4.5.5.62, 4.5.5.64, 4.6.0.66, 4.7.0.68, 4.7.0.72, 4.8.0.74)\u001b[0m\u001b[31m\n", + "\u001b[0m\u001b[31mERROR: No matching distribution found for opencv-python-headless==4.1.2.30\u001b[0m\u001b[31m\n", + "\u001b[0mRequirement already satisfied: opencv-python in /usr/local/lib/python3.10/dist-packages (4.7.0.72)\n", + "Collecting opencv-python\n", + " Obtaining dependency information for opencv-python from https://files.pythonhosted.org/packages/34/7c/8a5043f362b0a55f07812a0db3f86092cdbd0fe41b933d7bc6fce3ab6c15/opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n", + " Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB)\n", + "Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.10/dist-packages (from opencv-python) (1.22.4)\n", + "Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m61.7/61.7 MB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: opencv-python\n", + " Attempting uninstall: opencv-python\n", + " Found existing installation: opencv-python 4.7.0.72\n", + " Uninstalling opencv-python-4.7.0.72:\n", + " Successfully uninstalled opencv-python-4.7.0.72\n", + "Successfully installed opencv-python-4.8.0.74\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m\n", + "> Init mask-drawing code\n" + ] + } + ], + "source": [ + "#@title Run this sell to set everything up\n", + "print('\\n> Cloning the repo')\n", + "!git clone https://github.com/advimman/lama.git\n", + "\n", + "print('\\n> Install dependencies')\n", + "!pip install wldhx.yadisk-direct\n", + "!pip install --upgrade pip\n", + "!pip uninstall --yes --quiet osqp\n", + "!pip install -U scikit-survival\n", + "!pip uninstall kornia -y\n", + "!pip install kornia --no-dependencies\n", + "!pip install kornia-rs\n", + "!pip install pytorch-lightning\n", + "!pip install hydra-core\n", + "!pip install webdataset\n", + "!pip install torch torchvision torchaudio torchtext\n", + "!pip install -r lama/requirements.txt --quiet\n", + "!pip install wget --quiet\n", + "\n", + "\n", + "print('\\n> Changing the dir to:')\n", + "%cd /content/lama\n", + "\n", + "print('\\n> Download the model')\n", + "!curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip\n", + "!unzip big-lama.zip\n", + "\n", + "print('>fixing opencv')\n", + "!pip uninstall opencv-python-headless -y --quiet\n", + "!pip install opencv-python-headless==4.1.2.30 --quiet\n", + "!pip install --upgrade opencv-python\n", + "\n", + "\n", + "print('\\n> Init mask-drawing code')\n", + "import base64, os\n", + "from IPython.display import HTML, Image\n", + "from google.colab.output import eval_js\n", + "from base64 import b64decode\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import wget\n", + "from shutil import copyfile\n", + "import shutil\n", + "\n", + "\n", + "\n", + "canvas_html = \"\"\"\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\"\"\"\n", + "\n", + "def draw(imgm, filename='drawing.png', w=400, h=200, line_width=1):\n", + " display(HTML(canvas_html % (w, h, w,h, filename.split('.')[-1], imgm, line_width)))\n", + " data = eval_js(\"data\")\n", + " binary = b64decode(data.split(',')[1])\n", + " with open(filename, 'wb') as f:\n", + " f.write(binary)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "23WaUHiJeyBO" + }, + "source": [ + "
\n", + "

Predefined photo: uncomment any line\n", + "
\n", + "Local file: leave the fname = None

\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "IFIDDD4IhPXd" + }, + "outputs": [], + "source": [ + "fname = None\n", + "# fname = 'https://ic.pics.livejournal.com/mostovoy/28566193/1224276/1224276_original.jpg' # <-in the example\n", + "# fname = 'https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/1010286.jpeg'\n", + "# fname = 'https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/1010287.jpeg'\n", + "# fname = \"https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/alex.jpg\"" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "cellView": "form", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "-VZWySTMeGDM", + "outputId": "46e3097c-2faf-40ea-b91c-16d9f6040846" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + " \n", + " \n", + " Upload widget is only available when the cell has been executed in the\n", + " current browser session. Please rerun this cell to enable.\n", + " \n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving 2222.png to 2222.png\n", + "Will use ./data_for_prediction/2222.png for inpainting\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAACT0AAAL+CAYAAABlzCJfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9ebQuWV3Y/7/3UPVMZ7znjt23B3qAhoamQYYQEAMGE0w0+lMjGDUak/DVlUHXci2VJC5ZKjHRpa4YSfAbB5bRJWoSkxV/YQygqAiNNNB0Q8/D7TvfMz5TDXt/vn/squd5zu3bE1PT9OcFp+8Z6tRTT1Wd2rU/n/rsbUREUEoppZRSSimllFJKKaWUUkoppZRSSqmnCftUb4BSSimllFJKKaWUUkoppZRSSimllFJKPRn60JNSSimllFJKKaWUUkoppZRSSimllFLqaUUfelJKKaWUUkoppZRSSimllFJKKaWUUko9rehDT0oppZRSSimllFJKKaWUUkoppZRSSqmnFX3oSSmllFJKKaWUUkoppZRSSimllFJKKfW0og89KaWUUkoppZRSSimllFJKKaWUUkoppZ5W9KEnpZRSSimllFJKKaWUUkoppZRSSiml1NOKPvSklFJKKaWUUkoppZRSSimllFJKKaWUelrRh56UUkoppZRSSimllFJKKaWUUkoppZRSTyv60JNSSimllFJKKaWUUkoppZRSSimllFLqaUUfelJKKaWUUkoppZRSSimllFJKKaWUUko9rehDT0oppZRSSimllFJKKaWUUkoppZRSSqmnFX3oSSmllFJKKaWUUkoppZRSSimllFJKKfW0og89KaWUUkoppZRSSimllFJKKaWUUkoppZ5W9KEnpZRSSimllFJKKaWUUkoppZRSSiml1NOKPvSklFJKKaWUUkoppZRSSimllFJKKaWUelrRh56UUkoppZRSSimllFJKKaWUUkoppZRSTyv60JNSSimllFJKKaWUUkoppZRSSimllFLqaUUfelJKKaWUUkoppZRSSimllFJKKaWUUko9rehDT0oppfb5vu/7PowxGGP4rd/6rad6c5RSSimllFJfRFdfffXsfv/+++9/qjdHKaWUUkop9STpPb16utB8k1Lqy0EfelJKKaWUUkoppZRSSimllFJKKfVVq31YTCml1FcXfehJKaWUUkoppZRSSimllFJKKaWUUkop9bSiDz0ppZRSSimllFJKKaWUUkoppZR62hsOh1+W31FKKfWVQR96UkoppZRSSimllHqGuP/++xERRISrr776qd4cpZRSSiml1JOk9/SP7fWvfz3f9E3fxD333PO4y545c4bv+77v48UvfjFFUXwZtk4ppdQXmz70pJRSSimllFJKKaWUUkoppZRS6mnt9OnTDIdD/vf//t/ceOON/Jt/82+YTCaPWK6ua375l3+Z5zznObzjHe8gxviEHpJSSin1lUcfelJKKaWUUkoppZRSSimllFJKKfW0dvToUf7qr/6K3/3d3+WKK67gZ37mZ3juc5/Lf//v/322zAc/+EFuvvlmfuRHfoRer8ev/uqvcscdd/C85z3vKdxypZRSny996Ekp9YxljJl9tG699VZ+8Ad/kOc85zksLS2xtLTEy1/+ct72trdR1/Uj1nHLLbfwfd/3fTz3uc9lMBiwsbHBa17zGn7nd37nCW1DjJE//dM/5Sd/8if5hm/4Bq688kr6/T6dTodjx47x2te+lp/92Z/l/PnzT/h9PfTQQ7zlLW/h1a9+NUeOHKHT6ZDnORsbG7zwhS/ku77ru/hP/+k/cfr06Se8zkfzvve9j+Xl5dl+fNOb3kSM8Qter1JKKaWUUupL4+qrr57dv99///2P+Pnf+Bt/Y/bzD37wgwCcOnWKt7zlLbzoRS/iwIEDdLtdbrjhBn78x3+czc3NR6zjxIkTvPnNb+ZFL3oR6+vrLC8vc/PNN/PWt771klXWj2YymfBLv/RLvPKVr+TgwYP0ej2uvfZa3vjGN/L+97//Cb8npZRSSimlvpo8kfvfZ/J9vTGGN77xjdxxxx287W1voyxLvu3bvo0HHngAgNe85jWcOHGCn/3Zn+Wee+7hh37oh8iy7PN+vfY1Nd/0hdF8k1Lq8yZKKfUMBcw+RET+3b/7d+Kc2/f9xY+/9bf+lkynUxERqetafvAHf/BRlwXkDW94g9R1/aivX5alXH755Y+5jvZjMBjIb//2bz/ue3r7298uvV7vCa3zla985SXX8Q//4T+cLfObv/mbj/pa73znOyXP89myb37zmx93+5RSSimllFJPrauuump2D3/fffc94udf93VfN/v5Bz7wAXn3u98tGxsbj9qvuOqqq+T++++f/f6v//qvS6fTedTlb7zxRjl79uzjbuenPvUpufbaax+zT/OmN71JyrJ83PeklFJKKaXUV5Mncv+r9/Vz58+flxtvvHG27qNHj8pdd931RVu/iOabNN+klHoqeZRSSvH2t7+dH/uxHwPgpptu4uabb8Y5x1/+5V9y++23A/Dud7+bf/Ev/gVvf/vb+aEf+iF+7dd+DWstL33pS3nuc587e4r+vvvuA+D3fu/3eOELX8iP//iPX/I1Qwg8/PDDACwtLXHjjTdyzTXXsLKyQlVVnDhxgo985CPs7u4yGo34nu/5HrIs4zu/8zsvub4/+qM/4k1vetPs65WVFV7xildw/PhxvPfs7Oxw5513ctttt1GW5Re0v972trfxz//5PyfGiDGGX/zFX+SHf/iHv6B1KqWUUkoppb6y3Hrrrbz5zW9mMplw/PhxXvnKV7K8vMydd97Jn/7pnyIiPPDAA7z+9a/n05/+NO985zv5gR/4AQCuv/56Xvayl9Htdvn0pz/NRz/6UQA+85nP8D3f8z28613vetTXvfvuu/n6r/96zp07N/veC17wAm6++Wastdx666188pOf5O1vfzvLy8tf2p2glFJKKaXU09wz9b6+rmt+4zd+g7e85S2cPHly9v3Tp0/z0pe+lB/7sR/jX/7Lf0mv1/uivq7mm54czTcppb5gT/VTV0op9VRh4Sn0TqcjR48elQ984AOPWO4XfuEXZst57+UXf/EXBZDnPve5cuutt+5btq5r+eEf/uHZ8ktLSzIcDi/5+kVRyPd///fLBz7wASnL8pLLTKdT+ff//t+L914AWVtbk729vUsue/PNN89e95/9s38mo9Hoksvt7e3J7//+78uP/diPXfLnj/fk/U/91E/t2x9PpCJAKaWUUkop9ZXhyYz01Ol0JMsy+dVf/VUJIexb7oMf/KAMBoPZsm9961tlaWlJVlZW5A//8A8fsd53vvOd+yqdP/ShD11y+2KM8upXv3q23MbGhrzrXe96xHLvf//75fDhw2KM2VcRrCM9KaWUUkqpr3ZPdqSnZ9p9fYxRfv/3f1+e/exnCyBXXnml/OEf/uFsv33gAx+Yjfx02WWXydvf/napqurzfj0RzTdpvkkp9VTSh56UUs9Yizeh3W5Xbrvttkdd9m/+zb+5b/nDhw/LmTNnLrlsXdfynOc8Z7bsO9/5zi94W3/u535utr63ve1tj/j53t7e7OdXXHGFxBg/79d6tJvQEIL80A/90OxnvV5P/viP//jzfh2llFJKKaXUl9+TeegJkP/yX/7Lo67rZ37mZ/Yta4yR97///Y+6/D/+x/94tuwP/uAPXnKZ//N//s9sGWutfPjDH37U9X3sYx97xJQR+tCTUkoppZT6avdkH3p6Jt3Xnz59Wl7ykpfMHj76V//qX80e2Gn3m4hIVVXyi7/4i7KysiKAPPvZz5bbb7/983pNEc03PRrNNymlvhwsSimleNOb3sSNN974qD9/4xvfuO/rN7/5zRw+fPiSyzrn+Pt//+/Pvm6He/1CfP/3f//s8/e9732P+Pnu7u7s842NDYwxX/BrLirLkje+8Y287W1vA2B9fZ33vve9fOM3fuMX9XWUUkoppZRSXzle+MIXzqa1uJSL+0l/7+/9PV772tc+oeUfrZ/067/+67PP3/CGN/DKV77yUdf3kpe8hO/93u991J8rpZRSSimlnln39YcPH6bT6fB3/s7f4TOf+Qw/8zM/Q7/ff8Ry3nt+5Ed+hDvvvJPv/d7vJcbIs571rC/KNmi+6bFpvkkp9cXmn+oNUEqprwTf/u3f/pg/f8ELXvCkln/+858/+7ydc/mxxBj5+Mc/zq233sqJEyfY3d2lqqpLLnvrrbc+4nsHDx6k2+0ynU657bbb+LM/+7PH7EQ8GcPhkG/91m+d3fxedtllvPvd7973HpVSSimllFJffR6v33PNNdcwGAwYjUZPaPkn0k/60Ic+NPv8u7/7ux93G7/7u7+b3/zN33zc5ZRSSimllHqmeibd1xtjeNe73sXS0tITWv7IkSO84x3vYDgc0u12v+DXB803PRbNNymlvhT0oSellILHvaFaX1+ffb66usrll1/+mMsfOHBg9vniU/EXq+ua//Af/gO/9Eu/xIkTJ57Qtp4/f/4R38vznG/5lm/h937v96jrmte+9rV853d+J9/+7d/Oq1/9atbW1p7Qui/1Wq997Wv52Mc+BsD111/Pe97zHq6++urPa31KKaWUUkqpp48nEnheW1ubJUceq5oZHr+f9PDDD3Pu3LnZ1y9/+csf9/Vf+tKXYoxBRB53WaWUUkoppZ6Jnmn39U/0gacv9HcejeabHv21NN+klPpS0IeelFKKdGP5WLyfXy4fb9mLl3+0J+iLouCbv/mbec973vMEtzLZ29u75Pd/6Zd+iY9//OPcddddlGXJb//2b/Pbv/3bWGu58cYb+dqv/Vpe97rX8frXv55Op/OEXusnfuInqOsagJtuuon3vve9jzrMqlJKKaWUUuqry5Pt+zyZflXbz1i0mBjp9/v7gvuPZnl5mdXVVba3tx93WaWUUkoppZ6J9L7+y0vzTZem+Sal1JeKfao3QCmlvhI8mTmJv1jzF7/lLW+Z3YAaY/jO7/xOfv/3f5877riDnZ0dyrJERGYfrUerdDh69Ci33HIL//pf/2uOHDky+36MkU9/+tO87W1v41u/9Vs5duwYP/dzP0cI4XG3Mcuy2ednzpy55FP/SimllFJKqa9OT7bv84X2lYbD4ezzfr//hH/vi1mVrZRSSiml1Fcbva9P7r///i/LCLGab7o0zTcppb5U9KEnpZR6ChRFwa/8yq/Mvv6t3/otfu/3fo/v+I7v4IYbbmBlZWXfDeCjPW1/sZWVFX76p3+ahx9+mI985CP8/M//PN/yLd/CwYMHZ8tsbW3xEz/xE3zbt33b497g/9t/+2952cteBqSb0Ne+9rXcfvvtT+atKqWUUkoppdQTspjkGI/HT/j32mk4lFJKKaWUUk89va//8tJ8k1LqmU4felJKqafARz/60Vm1w4033sj3fu/3PubyDzzwwJNav3OOl7/85fzoj/4o/+N//A/OnDnDn/7pn/LN3/zNs2X+5//8n/y3//bfHnM9q6urvOc973nEjegdd9zxpLZHKaWUUkoppR7PYvB8PB6ztbX1uL8zHA6/KqbAUEoppZRS6quF3td/eWm+SSn1TKcPPSml1FPg5MmTs89f8IIXPO7yf/Inf/IFvZ61lle96lX80R/9Ea973etm3/9f/+t/Pe7vtjeiL33pS4F0I/qa17xGb0SVUkoppZRSX1THjx/flyD5y7/8y8f9nVtuueXLMkWFUkoppZRS6onR+/ovL803KaWe6fShJ6WUegpYO7/8Pt7wrjFGfu3Xfu2L8rrGGL7pm75p9vWZM2ee0O+trq7y3ve+V29ElVJKKaWUUl9SX/d1Xzf7/Hd+53ced/n/+l//65dyc5RSSimllFKfB72v//LRfJNS6plOH3pSSqmnwDXXXDP7/EMf+hA7OzuPuuzP//zP88lPfvIx17e3t0dZlk/otR966KHZ54cPH35CvwOXvhHVoUeVUkoppZRSX0z/6B/9o9nnv/u7v8tHPvKRR132r/7qr3jHO97x5dgspZRSSiml1JOg9/VfPppvUko90+lDT0op9RR40YtexOWXXw7Azs4O3/Ed37FvCFKAoij4yZ/8SX78x3+cwWDwmOv7+Mc/ztVXX81P/dRPcfvtt19ymRAC73znO/mVX/mV2fde//rXP6ntvnjo0dOnT+uNqFJKKaWUUuqL5vWvfz2vetWrgFSF/E3f9E28733ve8RyH/zgB/nGb/xGQgjkef7l3kyllFJKKaXUY9D7+i8fzTcppZ7p/FO9AUop9UxkreWnf/qnZ9UO733ve3n2s5/NX//rf52rrrqKCxcu8MEPfpCtrS0Afu3Xfo1/8A/+wWOu89SpU7zlLW/hLW95C0ePHuXmm2/m6NGjeO85c+YMH//4x/fd6H7t134tb3jDG570tq+trfGe97yH173uddxyyy2zG9EPfOAD3HDDDU96fUoppZRSSinVMsbwG7/xG7ziFa/gwoULnD9/nte97nW88IUv5Oabbwbgk5/8JLfeeisAP/qjP8of/MEf8MADDwD7p3ZQSimllFJKPTX0vv7LR/NNSqlnOn3oSSmlniLf//3fz913381b3/pWAEajEe9973v3LdPtdvnlX/5lvuu7vusxb0J7vR7ee+q6BtIT8e9617sedflv//Zv5zd+4zc+747D2toa733ve/fdiL7mNa/RG1GllFJKKaXUF+z666/n/e9/P9/6rd/KfffdB6SEyMXTMPzTf/pPeetb38rv/u7vzr63srLyZd1WpZRSSiml1KXpff2Xj+ablFLPZPrQk1JKPYV+9md/lte//vX8x//4H/nwhz/MuXPnWF5e5vjx4/ztv/23+YEf+AGuv/76x13Py1/+cs6ePcv73vc+PvzhD/OJT3yCe+65hwsXLhBCYGVlhWuvvZa/9tf+Gt/93d/Ny172si942/VGVCmllFJKKfWl8sIXvpDbbruN//yf/zN/8Ad/wJ133sl4PObYsWO87GUv45/8k3/C13/91wPMKpattZocUUoppZRS6iuI3td/+Wi+SSn1TGVERJ7qjVBKKaWUUkoppZRS6sm66667ePaznw3ADTfcwB133PEUb5FSSimllFLqydL7eqWUUp8vnRBVKaWUUkoppZRSSj0tvfOd75x9/tKXvvQp3BKllFJKKaXU50vv65VSSn2+9KEnpZRSSimllFJKKfW0c9999/ELv/ALs6+/67u+6yncGqWUUkoppdTnQ+/rlVJKfSH0oSellFJKKaWUUkop9RXlG77hG3jXu95FXdeX/Pkf//Ef86pXvYqdnR0Abr75Zr7hG77hy7mJSimllFJKqceh9/VKKaW+1IyIyFO9EUoppZRSSimllFJKtYwxAKyvr/PiF7+YK664gjzPOX/+PB/96Ec5ceLEbNnl5WX+7M/+jBe84AVP1eYqpZRSSimlLkHv65VSSn2p6UNPSimllFJKKaWUUuorSpsceTzXX389f/AHf8ALX/jCL/EWKaWUUkoppZ4sva9XSin1paYPPSmllFJKKaWUUkqpryif+cxn+KM/+iP+/M//nAceeIDz58+zublJt9vl0KFDvOxlL+Pv/t2/yxve8Aacc0/15iqllFJKKaUuQe/rlVJKfanpQ09KKaWUUkoppZRSSimllFJKKaWUUkqppxX7VG+AUkoppZRSSimllFJKKaWUUkoppZRSSj0Z+tCTUkoppZRSSimllFJKKaWUUkoppZRS6mlFH3pSSimllFJKKaWUUkoppZRSSimllFJKPa3oQ09KKaWUUkoppZRSSimllFJKKaWUUkqppxV96EkppZRSSimllFJKKaWUUkoppZRSSin1tKIPPSmllFJKKaWUUkoppZRSSimllFJKKaWeVvShJ6WUUkoppZRSSimllFJKKaWUUkoppdTTij70pJRSSimllFJKKaWUUkoppZRSSimllHpa8V/sFRpjvtirVEoppZRS6otGRJ7qTVBf4a553gsu+X1pPuZfff7a87DtP7Vrs83XFjDNN2tADCCCWXjdtKjBGIu1dn9fzAjWQpa1dS77tzdEEGmWM5BnGc45Qojs7k6oyhojhvX1VWKMTKdTyqrC+Zyyqul5w1LHc3B9mbquqOtAFQJVDVnm8c7hrCHUJQbBYIhiqEIEa9O+FPDOIlXJlUcPcP1Vx7jm8kOcObfJpKjwWc6r/9rXcHJzjw984k7e/4k7Ic/JvcNiIIILNeV4lxgDGJr94EDSPq4lgpRcvd7na648xLe+/CaWV5ax3hNJ+8tg0mfG4L3HNvtaRMC6Zr/Olmp3PMYazMLrRYlAIMQAxmCtxVpHVVfEWCESyGxGFMPmcId7T5/gLz53N1vTgLOOw4Meb/zaV3FkfR2fdSmaGiUjgpkdwbQtYi46ogJRBAQs0rwf2/woLX9pZnY+xnZVMYLE2TkaRRCa/SHNb7SvhxDbfV3X1OWU5tuICGVVEuoaBLIs45YH7+OBvfNMKLj6+Cp91+HjnzzN7Z87x6mze/R6edqvBkxzhF5y4+XccP1Rlg6tMbmwjexNGG5P+Og92yx3hd1Jze6kpq6Fm65e5uBlaywfWkb6GQ/c8TBbp/bY2SrYCZ49An1rGFjwdcW1z97g2GUHWVtdZrg15IETp3jo3JBTWyVR+lxztMNly46DXYvLHEtXHcP2coLAiXs2+ditJ9ibVnhved4Bz3WXr9LJ0vlt8WQHDuM7XaoQ+dAtd/DQmW0O9IRrD2RcdXgFm3WZliWTqsSsHeTKy49hMWxvD/mjD32a6w8vcWylw8YgYzSN9Pt9YozUoWb90AaHD1/Gua0Rt99zgs3tXa47fpTVQZeOs4Ryj83dLQKRvNfl+OXXYMoIVYkUY4Z1QEJBXU2pyjH9fo+Hzo8IdFhdO8RNz76S4XiP6WiHYu8CdV1jfZc88+Te8r5PPsQw5Fx25CCvuulaqKdsnjvHeLRHVY8xmcPEyNZuyd2nRmysrnLjdZdxaGOdLB+QATHW1FXBeLxHALyFKgTODUs+ec9pcI61lQHPufIIVx89SF1MGY9H7Ozu0un1GRfChd0J95y+QLfjObzc59DaMpcdOURmSqbTKXUtZFmXe09v8vCFLcZFxerSCl0PS/2MA8tLXHPsMs6MCs5Pa7ZHBdubW+zunMf5Dnmvz8rqKnldcnipx1q/i80cD+1OOb+5w/buHtPxiKzbY3llNW1XOWE1Ey5f7nOg12EUhdsePM3m9i7TaUHeyTlw+DBYj0RwxZQbLz/AwY1VXJZx25338tHP3IXNuiytrLK+toIFqrKkChU+D1x3fB2LYW845ZZP3YeIIcty8jzDGYt3hqIqgMDzr7+GG668nLPnd/jcA6e4/b77uezYUazPqKKlEMN4d4flnuPYgQE33XCMM7tDHnxokwcf3KSLgywQm+t4OS0xJnDZZetcd90RDhxy3PbpM9x5zwXueWibtUEHb9JfQY1lczzmxuOHeN7xIzzv+JF0zk+HLPcyjh9Y5fqNA1R1CRis91jn0oe1WO/Sdco4MBZjbLq2WYcxFmnbPdP+R4gIIQSEeRtrRLCAM+niGYnpugZY07SfZn6db6/6WJeug6FGJECs0tek37EivPvW2/jEyQfYrsesHuxz1MCLj17FVQeOsr52BOgRrCAmYkxsrqtx1v4AxDi/5lpAQoQopMtuJMYIyOwewRiDNRYxdnbtTtfNeZsg80t8+kQgNC1Hus7LbB+Ydn82r0Pzb7r+p+0VwDmHR8BEQgwMxyV/+Jd/xZ1ntjm7V+C9B+r0eyKEKrLeXSaznjzLuPz4cc5ubvHQw6c4ffYsvX6fsqrI+wOOHDnKd33Lt3DtVVeQeYOEirwK3PrJT3PrHXfwqbvuZHM8JvMeI9JsK9gsxziLcZZuz2GoiVUglBGDoRao6kAVIj7v4F2GNQZroNPrEsVgTGp3dkZj/sYrXsrfvvwQ39QxnPi9d5AP+pjmnqGoKrqdHssbG6wfOwKDKeQCFiTdqGGE5l6tPTLtITHzYwEYO69DnndNAkQwWY/QX+WWc4HbprBZQx0i9506wV1nNjm3O2J3POXBz96OUo9G+zPan9H+jPZntD+j/Rntzzy9+jMGg2h/ZtYmaH9G+zNP1hf9oSellFJKKaWUenp79ASAecyfPrE1P5EykfY1FruUj/a6ly48eczfaH7aBH2tmQWB245yG2yIsQ1OLOSUTQoQBxEEQx2EOgRCHbFArCsiEWccvU4HJFDV6ec0AZ66rgkhYMiIIVJWdUo+dHscWF+nrCPWOibjMdOipgpCxJJZ1wSpmwhIE4iYJ13AmtmPiJICzdK8Ke8t1ljAEKUJKs12kxBjhbVmtk8taZuNTfvZAKZZJ9ECETHpqM7SMSYFYEKoiU0gwhiDWI+xDhvBGofBIpISG9aASEi/E6XZ74LYtN72iEWRJpDVBsvaXTFPYcV5OqMJfjXb1b7R+Tead90GL+b7UDD7T0IxaR+0L2MEMwtope211qZAkzBbV0aOsx4QrHPpvImR2ATKUqLFYJzF5zku883+Ery1dPOc1UGP5Y4njIes5I7j11yJDZ4zO7dzcK3Lya0hfntIZmpuuvYQMc+Y1JEwLTm40mNFPKN+4L7tklCUrOaew72cq5Y7DA5mmBxGYYLJhRc9+xoGvS1qOce5nYK/fsNVvOjqg1x1aMBwOuUzu9tslQXTomZ5kHPgwCqyM8TZyCu/5kZe8qwlbCwZjqcMpy69ZmlwNmfQW2ZpUHH98VVe+4LLePG1hxiOhkyLkmFR8rntCgkVBZ7gOywvLfE1z72W5122whUHckbTmiiWOsCkFB7e3MOUAVPWLHnLTS+5npc//3pW+n1iKVTjPZAxe+MR53aGbI4mIIbl1S7HDh1h48AG1XALqac4GxkcOsitn7qHB07tcG5nSiim9Ezg2JEVrrrxCJ6KrLuEy3sE4zk5DHz24S2sqZEYiHXg2ssOMPAr5K6gvzTAGsdDZ3Zw5n6uvOoarjhyAOcc53fG4NK5eejgGs+97gW4bo4JFePRmIdOn6fbH4DxOOfIrWP7wh5HN1a49vJjHDt+FOcce3sTTp3f5tZ7H+LIkSO4qqCcTNjc2uXAsucFz3kWx44ewa2s88Cd93HfqXMMpzUHDxzhyLFj3Hf/XWyePc3mubM86/rn8vLrbiDrL/HgPfdw792fJe/12Th0mOfddBN33PpJztx7N8OtC6yuDPg7X/83mJY1m5ub3Hf33Rw8coTjVz+LtYMHGZUFH/vge6l3LjAeFRy//gaeffOLOf3wSbbOnWewvMKNL7yJwdIyInDqwYe457OfYXdc0O1Errv6Sg4ePkLe7bOyus6111+PMw4xMBrv8Wcf/RPGu2foOMdqL+eVNz+HgxuHWF9fY3l5AHXNyvIKZ7e2eOj0KU4/fILpeJfcC1ce2+A5z76aF938QnzepaiEKlqqsuDsmYc4c+p+hns7THb3OLCUc/nNz+E1L/kaxuMtYi2AIxrPZ+76HHvTXSbDEfXGCniPzTzOWqw1dLIMjMWKxRcFzrnZh3cW7x2Zz8iyDp1+H1dnKWDv3CwBYEy6Poi1YNOVMF2IXPOvwRnbJLyZJSeNxNn1ylqTrn2zi6IFBCcLCXRpkwRN22fa1zKz17HOgkQMGQZHNBZnLZmFbreLMza1ZXVNyDxZp0On18X59H6wEE3TzgJW5hdYkQi2za42bbQTmgwsEiq8k33XcWtSOyXGtE8RLDzUb9Kbl2YdxszXHQWsbVMTSKjTe2za8xjDPEFiTAp4iyDNthBAPM3rgbUpidMeq323HsI8kO8dWaeDyzJ29/YoqxKf+dSGtZlnUuLD2pRkF5knRNp7E5EmifFYN1KL9wRN6sgs/E9k3mIaY9J7M6ldzrOMuqrZ3trh4Tgmz/PmwYHUslqJsyZ0f1am3V/Nflq8/9q3rfsfNti/3e1Oa+4jMsekGrM7rNgLFpfliPULv/uFPayingm+dP2ZJ7sF2p/R/oz2Z7Q/o/0Z7c9of+aJ9WfQ/gzan9H+zOdLH3pSSimllFJKqSeg7fumYHnqpEkbWG36arPKl4v7f092hDGZ/7PvdRf/m3q4sw70Yud8cdl97+FSHdOLvtd2pGGeJGgTCO1a21hDWaUEQB1SADsFz2MTrDeQWUQCUSBIqqIFCFGo64C1DgmRKkiqmsbQ6/XoGof3GZ0sJ8QpdRBCFDJjmqR2qhKXizrJbXVb+mIeVJE28NJUkEubHGgXX9guY5ugkDEpmNJWRy9U2LUphFnmpK2eNmCjEIhITNtnnYVZ4mFe294mKEwbYGkCYNKENGR2bGbRrRScN6YJoNkmoi9NYKx5TwtV98Y1gbA2+GDm50C7X+ZHP0UmxDQBJNsETpokhLS7dBaAibNkjGCIgBg725kCGOfSfhTw3oExRIlp/xhwPgWEjDXgLNZZDBEjqYLRe4vPDM4JgZrcWVYGObnp0s8ty92crnd0nGGt57h8o8dODcW0JtRC30N/kNEl4/RYsGVN5izLHc9VG31C3zBywiRWeBM5uNTj7GBKN+8QKTm6tsRVh1a45sgS25Me90z2MNNArCsyn5HnGd6nSsFjG8scW80JleBjCeKxUhCjYK3BZTnWepYHfS4/dIBnHVnn9NmSsY90Mzg9CezEVK+JS8Gq9UGPI2sDLt/oMK0CVRkoasOoMJzdniDRItHgjeX4wXWuObbOIO8yGZUwMHR9l63dDEJke28XrCfPMwaDHgdXe0hWYoMn85Glg8ucWO5x/sKIs1KCcViEjoXVbsZy15N1u1ifU+FZ7nuyLCWPBJAgLHcyDvQtS1lkaaVLp9uHKKz2c9YGHZa7efO3X2PFknlLt5NxxdENuoMOoSzZ2ckYj8YcWltBrCdGQ1nUlJMx3jpWlgc86/hRjDFsbe2CRE5tL3PFsYPE8YjtTTh75gIxOlaXBhw7fIDe+kHizh5FHdibBg4dPMLVz3oWO9vn2T53lsloyFK/xxXHjrB84CB+OmK6eYbOYMDhY0e44brr2Dx5is0TD1KHGpHI5ceOEAVW+h1GF85w2bGDXHPlZRw8chnjasqdH+uxvZcqcAeDAVcev5wsBnpGWF0/yHVXX8Xq2hoAHYR77rqTqirIXODA+jJr6+vk3R4rq6vccO1VOJNhnGV3uMtnPvtXPLz1MNFA5h0HVte5/NhRjh45xIEDa8RyyvrqOifPr+CdcObEA9R1iTOOlV7O1Vcc5fnXX0Xe7VFWgkhGkMjnOpHRzimGO5vUVUW30+WyQ+u89AXPZmfrHLGOODw2y5gMt7j/TMmF8Va6jljbjAbR/u2mQH6o0zXG2RRUd02CwNcOZ136PZ/hSAFv6+wsmUwTeDY2XUPbJIFI+neWSJDU/rWJbyspoI80QeA2aNtmkWmvmW17ZpvVz0fJaBPLbTIWScFmawBSEsM5S+4MmfdptA5JFdnRZ1jv8VmO9X7f6zbx6LTKWTDdYhfas9l2NQH6dgST9nuzhD6m2Z55O9C+5/Y9SmxroWf5B9oK8PYqbqR97eZ3TNP+NNf6NvAtMc5H0EAIEhFZSA4YwRhm7XzbuIhISvblOUEiw9GIqq5w3s+2azFRbZvdFWkrxheTN49nflcwSx7N3/386+Z90rRvRlL73et0GI3GbMaSTZlyPM+JNu2fhZZ54R7LzLa83e3zNnV+HGbn1r6NmG/L4k9nx8layrpiNJ0yqi25WKoqpAcIFh4MUOrJ0v6M9mfSarU/o/0Z7c9of0b7M9qf0f6M9me+uvoz+tCTUkoppZRSSj1Zs6rQhZBoE0RoAwow7wrOhmtu/52X1jR99kd29h6t+7cvbNx09i+O/S8uk17vEitpX99w8dKzwEoIIQ2rLamDnpITEYwjiGE4Lgihog3exBgQiQRMGm67rKhDTQxCiBAkYARC83VRVUgQygBVgMm0pNPJyXs9+oMBRw4f5u5zQ8oQqUKkC4gERKSNYTf7rw1SmFln3DRB/linSu6IYIzDGkeUJqjSBJ5MirTgjGmGIm8DXgbrUpBH4vyYX7y/ZsF8I2ACUM8yO3X77eZohxBSMsLYdPQlYjF458jyHOP8bAhy7/3svQhm9trzxJBZqFxP7ynGNMz5vilCpA3pz8+92ATJIAWCIi4FfNokSFt5TZtQSEGi9LE4TLgQBGqBQFPlJ+0w603gzxp8lqXqaKCKEbEGn3msa4NrKQyTqvkC0UAMjjKUFFS4riMUFaPJDuN6yKQcMhpGpqMRoShYWrWsdCPTqcWkkCMmTMlIQ8t7A2VRU5uI6RmW8y6lyygFJiLEUDKd7FAWU+pgqSWjrEqGe9tsuxETuoTKINEAkSqUVCESguAIMN3l3JlAUUzZ3isZSY9IhnUeMSmJMq0rpkVBMR6zeeE8J06eYTieUgTB2i7eCQEwVoDA3tYWW4PIAd+nFiHWgWkNw8JQicX7LsGVVFhiKRS7I8QM2dnZY9AFm9WU0wlVURLJcL5LFS1b23vIeJclF/EUmDilHO6yeeYcw1GB+C62u0Q9nLK1tcfdowsc2ehhrMcaSxRhb287TbfiHGIdBMN0MmYcC7yfYEJBtn4YCYGiFna2tjk0yDEuIwClCM4IMVSM93bISs+0mLK3vceFzW1GkxKcSX8LxmGzjLKuGI9HDHe2cEbY2dxiZ2uTYrTDdLhDHiMZQt5U0e7sjdk8v8WRYJhMJozHJcNJIOsVTKYVsU7VjlGgKkomO9tYhGK4SzUcQoyMd3bYvnCBYjoFDDbLEe/YHQ8JMbA72mZ3uMXKaI3dnW3yvMO0KvEGut0O3pi0v3aGjEYTplVFPwR2dveITZB7PC0wtAFvCFWJAKWJTCaG0d4Wmckx1jGdDLEGXJYqboNxROMoy4pQB1zz9xvKKV4C/dzTyfPmGhYhBJgMqYcXcKGPEUvuegRj8VKCVCnhhwfjMAYyE/FNhXJmLLmt6GeQOzsL3LrZR0qwemcJAiHWEAOZt3hvcdbQyXKqukhVz22S0TRJxLYq2jpMUyE7D0KnUSFibK9PTbC7zQu3bVSzLbOkqZm3p+nSL/NkKqm6t00OzALukJK71iJG5m2qGCK2SSCbdtYdrJE0FY+kZLc1KQniXLquCqREwiz6P2+3pYkwt9daRNIIHgYkCsbms+u+gyYB3b7n+egZBubtgUltS5RAXddt/gDj086IUZDoiMTmetk0YZlP7aWka32McSE5DEikljTCRZCYksrWQTPCiml2dhv0dtYSouC9p9PrMimn7I72KOuAc36+re0xkoAl7csoQlVVhFin5Io1ONe0a7NMxEXMwsFu1tG2Ve0PzMJxCDG0RxYEBoMBFy5scr7vmQwyfN6hlmI2vQUmzs+P2avwiK8Xg/5tGuTih0ja0UXahIxZ2I72viJIzbSoGFWGMjqG4zFlVc2Os1JfsM+zP9PS/oz2Z7Q/o/0Z7c9of0b7M9qf0f6M9me+Uvoz+tCTUkoppZRSSj1RF/cGDRjaytsmKtz8c9Fij1nDcnEMfzFOMft5W5lL07lcjDBEM1+JQEpLpMD9I9bdJAaMpG6rXNzhbQLNhjTMNcB4PKEoCjLvsC5Vt06riiqkgP3spdthtEOEsoRxOasYMs0UAkbsbH/VURhNJuQ7e6xsDggYzl24gJgtlpZWee711zEe7THe26GajGFlMAvWt2VIKTAkzbQMqXMuEpvlDMY4RKCua6pQE0jVz9aYNHS5S8EpaZMMTVAhxkgMkJESBm3FeHSu2a8mBUeabZklbiQFOHIDYpkFgyyCi1DXkeg8G7Emz+9HihGRgLOCz1I1ncu6xGhwVmYJJtsEDaKkcL9pExzOzYNexixMycC+wEi7nYtHu82VtFWGACwGH5p91Gr3i4uRzORUdZ2q3hB8zKiLutkWUoAq1Aj1LNERSEmTiBAIqdi7+RuKcSH4Mjv/28pES5BADKEpl7NUtVBGQzCWYGB7NGZ3XFKQE3x6nW7mGGQZwXtCnFKGtPrMCdiKqgR8hjOeOkw4uztia1pSEDBGOH3qLNsDODY4yNhGdqZTxnWgNg4QqjoSxCPOMhpPKbO0fd7mTEcVUTwWAZPOT7GG89vbfPqOCcUZRxkd3cEqS6vrDHGUezuUoSJWJk0TURmGhWE4Fqp6yvrqEnhhXJdYqTCmAFchNjDZm1KPCryrkOICw3pCHPQoRcAJVayw4siNZdV5Bg46uUFqoSoKnOmT5Rk+j5jaIKEgcxYbHZNpxX3377AzHGGcpTcYMCqEorZU0SF4xBomVcVqz7Nx6CjbW1ucPXeB8xfK9HNJFa0ihjqmpJHEwHg04eTJU2xnQlmWjMqA9Z7pdAoevM/pOk9mDLlxeDxGfFOlmVGQsVeRppAhgoE8t3hrCE01ObZDFE9RBcqywptUhxqtJVpHhaXGpq8xTMuaIqbLaAikqW5sBjYjkhElJ0ZLrCOxNki0TItAFQ1ispR7tDnRZQQLQdK0Bd6lxGNVF0BEpA3eRpwhBV4rIQQoJOCznMxk1ICJ9WzqlXRBcERrCESqEKhDoK4K6nJC7i15J0eMoSgrgpCm1ImGgGFSB7Z3tugWo5QYJMNkXSbFmNgkIPLM4KSmLiZMRkMm0zESoTAZLgijqqYWSYnqKDiJaaj82EwrgCHEFKA2zfvPnSPPHNNpRTktyYBoDDWGmjTlgKlTtXeM7fVc6FiPJZXgCykBYEjX9dgm5hfiq/sCwrNq2vR3OPtpW/1sLc659oI3uzDOrno2bUN7/UvtQ5MEjmDqiLMG5x1Z7hh0MzoGYpneYycLiG3eHzJLSKfZGpptkf0vTxQiITVx1iImBfVp97dt2puF6/wsQG/nO0KsQbBg5qHfNK0DiM1AMnzWS21mG9q2DhNrYl1S1+VstBCLmwW1Q4xp+8ThfM6gP6CT7zaJEgjNPVB7i1KHGp/n9AcDtoe7TKdTYmSWJGgfdmgZCVjAWShCpCprYgj772UWvmgT5u2UTe1rz4PuF93nND8zbcKoOdoxBLbOX+C1X/cqvu6Ko7yia7j/1z9Bd6mHcXZ2zszOorbdbdu8+Qa1DWvzMX+c5JJmyy68txgxVcWhjUNcP8hZr2A8LRlXY86NS8y0AopHX6dSj0f7M9qf0f7M06A/Y7Q/o/0Z7c9of0b7M9qf0f7Mk6APPSmllFJKKaXUE7UQ7X9k8B3mNTGP7BBeavmFbvG+n0tb6XtRAH8WCzHmovXJQtBAZis27fD8zfcXK2Ufsd0LgYq2sx1CaDrYcbZO21QJR1LneH9XWGZVtACx+SVjZN55XwxgCxjnGU5LTl3YYnc0pt/rs7Wzx8Nn7uHEiQeYBksn8xw5fJBxOaXTDBceJQWLFt9Cs2vS3pAm8NG8H2ssph10WyIxRKzxtJFq0wR6RNL7E4F+5sh8CkkFEaZljaOtWjNIDG00IsXoraUdpllEMBGixPnr2wxIlZh1HZpkTDOctKQpL9phyNukhWkrkNs8UFsxZ5oAehNgEJoA0sIOkVkCi/TeF86pNAB5e+Y01fAIxLTOGFJ1XAhhtv42QWNMSq542vebtt/7NmYSIUZCXUJMAdA8z8k7Hax3SEj7JUqYB1nqCol5s+UWsZYolhBTtZ9tIjNVFZDSUFRQ1ClJ5PBsbtc8eHoIgz5kGcEZrHdQB6qyZDKZEGqh4z3rgx4bgyX2xgVFhMJDScBXGaEGG9I5e2Gv5uxOxcbSlFGYIlWZzmVn8b4kyyzWGYLA7mRKdqhHr9ulJznDc2PO7aYh6W1znGKM5HmPtfUNsk5JZj29QZdO1xOHY6pYM42GcYBKIsYKmRNyK4ymY7YJVFimpcU6jxWLjWCJRNklyDYiERcLptMJwWWYOgXMfQbG1jQnD0v9DjGWRBPJck9/0CXLUmLKNH/VFiHPLEvdHrEK4NJ0IT7rYOIUF8FLen2xKQgbJVLFQMQwHk0YjYsm2GmoJYWP0+j+ghUhVjWjvREhI00NQhrivt/rU0vztxdjSjrNEnnpipllXTqdPs51mBZVSqpJxGYZ0Visd1jrqEMkWAfOgasJUuGc0OQHCSKp8lwkXQ6yjMoI3ghiBWsFiTVInMVgaYK2s+HhXU60jrpJXmJArBBtxJoKiTUhCkEMsR1ZQJoRDrBUBKIRsiYhGUMgVukjVcc2Iz40wXhnaiwOohDqALHGxAjpT4/YXtKb0RpEAoIjGsuoqqmqmtynZGk0UBWRupxiYyTLcyqGGKkJMY2OYUIFQTAmJWesAW8NmTfUUlNIoG4SsAZDHQJlHdI0P6aZ9sEZnE0BeIvF+Yw872CcJ5YVUQTbHm9rIKb3XIaIc20r0ySG2+l+mo/YTP/QNgLz5iymM7kZsSGFzdNIBfOLYzoGi781+8fE5rpomrbL4MziVDoG53wKxmPpdDwdbNpea9OUJt43gelmmqTFV2mSBW3Q2aQLRnN9bH5Ok7EiVXHHmEbXmCcZ2sSszJPkzd6JbcJ8IZCecrhppIvUpNj2LEbqkJKaUbC0Venzhw2MMcRY4zOPM44869PJ0wgAViKZ94QY0igps/UbnPf4LKMoimZT2mSJmeVu0jGJOJMqoME1iQQze3hhdks0+1fm+Z/2WzHOpkxo2+rFaZDanS+ktixNZdR8M8LyYEDuLcVoByPtzEjNNCTNVCD7nslo309blX1x0of2BWT/9xZ/3LyV2X5u/xuEWJWEUoh1lY5t855l/x2QUk+O9me0P6P9Ge3PaH9G+zPan9H+TLOQ9me0P/PV0p/Rh56UUkoppZRSaoFZ6MTvC6a3CQLzyB9cajqHfet81J+0XfNHLrGQj3jEeha3cbHDjdkftJ9F4hd+R/atYx6xFxPbVEP6mdAMI90EDIyd9XGl+Y/s7yqz2EPet+2Sfse0gfuF9+ucp6xrtnaHnDy/zXVXXQbGMJ1O2D6/x/Err+bwgVW2g+POB08Qbb7vvS2+H9NWZjc7S2ITFLIG7z3Oe4yxTVxammBCAIkQzWwKBecc1ljEOh44fQ4xhuWlJdaWe8SqAgkpcNIED4AUQIipolYW330MCAZx8yq+FChKQ6GnSuc0hLozNgXZmiCYmcfFLjrW5qLjOD87Zvkl0nklTUBrVqY2Ox/a37KXOC+aGN3sbUibJpi/jjTbJ2ZWmb1vW9pk0+xfg3UXDYEuKbpjEGKISIikkdZTYKqOUMVUQd9tgjmTqqKc1EyrVBGaTkrDpLBs7ZR0fUb0FjEpwFzXdRoqP9SpqttaOnlGz3tinFBLpDKGSgLeeTIiLpbEKExDZHtScn5nRJApzgiuSbSkosp0PENMVZN5J6fb7WBiRp7XqXK52ZdGUnWjc45uv8/Kco8oFp9lKREUayqJFBGmQQgSMRLxFnqZZc8aqrKgEkuIGcbkxKbS2ADWVhgzbaYwMUgwhLImxpQOct6koLWJiI3kmaEoUkDQOkeeWTKXAvQi4IzFuTT8fy+3iM9wmcc6h/MdOn6Io8SIYJtgupACurvjktGkZDwpGRclRQizKV2slZTnaoK6BoO1DmuZ/f2mYngH0SFAQNLfqE2Bf595TKzT37TzIA6kSQA2ybAgMSWQfI7pDMB3iMYTKQHBe9ucZ/MkqHVpaPtoDGUUcgBnsJlLCYzmD0sknaMiKWlStcPzG4txabQC48E4wdiINWmChRAlVSiLwdi07cZYjPPUC3/kKYgLUguEFDT1zdQLztrmGIVmKpZAFEMd07QsEQghJUGNCNaCGElJCFLVaqpcdRgsRgJGauqqJFQpqWe9JZiUOAkhJXKoawgRMSnRISFiDHifEtFBpAm2puta1SQIQnNdmF2zJTbXtiY9aVOywPoKoqSRHmxT/TubaiBdi2fXLDOf6qZNCpt2xIg2Gr8v5N9O4yLN+WrT8m0iFjsLJs+vpW1bZvZ/a/+nTfIjS+1KFKqyhjzDOTdrc8T7WQK3GccjrUWaa6qAiUJqISSd52KIbd5DwHmLs+Cso65okj4y35BZu9tOf5BO1DZp/8h7hzYD0bx+c3JLlNRWY1IS3S1MY9C8eWtcmpLEpsC/Na65psus/VlYdUoS2NQGlGXZHNd2zzZp9dQY0jZVaSqhNIXIxbcZs+TIwjbNj13btuzb5H2fL97KGdO0ZZK2M8szRsMhF6Tg7Og8nTyfX5eaIzhf4f77nf1nz6Xu4B7LPOFjZH7u2qaFtga8s2Teza4FSj0e7c9of0b7M9qf0f6M9me0P6P9Ge3PaH/mifRnuOg1nq79GX3oSSmllFJKKaUW2IV+3TzIAG2lbVPrc+nAv3nEJ00lz+JKZV+Hdv/vy3yZxdcwpl3RfNEm8Np+zLfZIMQmMBD2he8XNzT9hkNiXEgQWGa9dKCoKmIMqaNqUzBImu0xTZDD2PlQzvGibWyrCBcDNws7BQRyZ5hWgZ1hyafueZhjx47S7XY4emCV7tEjPOuaq9jYLaj8OT77wAmqIGAjmVncjWkfuGbqB4wgFiRGTEzDdXc6GZ1+D2t9qkhuqn5DjE1XP0U0vHHkvQ69QZcH9yre+cFPYJ3ja256Dv+/V9/EzrlzlFUK6TlSZSFNQCNKqlwyC++1mbWhGQY84ixkztLNOqkgWAIOS+Yc3TzHuQzjHI5UhdgG3C1NYJKUwIlRmkC8nUU90pDZZrbP09QdNMHTVOmWDlsKjJo2BCvz8zTSVKpZcDIP6iNp6Pl2SPRQB0RiGsI+RkJdLwRxgBhTILNO00FIqAmxItXLSwpQtvvPpqBuXddkmWvCIkJZ10yrmjIEVpynQNgcTxjtBsZFSagtkYC4SKTLtBKoqybw3KMOASki02k6TyXUqcbQGGysEakJWGqx1DGy2uuxmVlcLCmrgM1gVE44vVUzyC2dtQwvMVUJiyFKTR1riDDo5vT6fQyWclrhsVjrU9C+maYgxkgIKUh57MhB9iYVRVExHZdYcZQSmYZAUQeQGhNrOs6w3O8wDUuMx0OkCniBGDwxWgJppIA8t+RWyLzFd3PMJFAUFVUEIxaXGSoDwRuiM2Dj/GpmPc7U5D5N/xEjeOfIyejYktxHvDP0ux063R7dwYCl/i7WpoSZMQHrQYxlVFScODtksrcNzrNTBc5PC3qTiklR0zEWawRCqp62Pmd5bZ2uDYyLmlAJ0RqmVaRugsSekP52ck/e65L1OlBUpNikIQYhdz2ch7qWdExqqMUgWZ/8wDF4eJdQe6rSIqQkYEpMpKu6M5B5j/cZZR2ZVEIHi3iPyT1ZJwULQ5O0yvIMqcys0risK4yJZN4RDJCBzSKe2CQjPHUQyjIQosG7nDzrYqzFZ55IMyx+kxyL4lLiMhpy6+l4j3GWovJYZ6hi2ic2VgTrmdSWSYAiCj4GQlVgJOBtGsZ+YgOhjhAi3mRNRTnEosJSURUVZVVQR8G6iBhDHdM0G/WkIBapcllMZDKumE5LQhCc82QpE9EkrST93UVD3QTubTtAR4yEUGNMQAgECdQh4rOM3PSb9afrm7EOZ5vKWGfnicZmKh/TtENi0vuzC4Hi9LM2eSvzhORiVWyIiynmeZLA2JTIaPZvu0wkNgnXZmQNAWMcxmXYLG+C94EL53Y5eKiHcx06nQ4+t+CyhTZXmv+ngHyIYR7jllTHbVLWD+sgRIeIo9dxeAehqnCmgw2ROoY0Ooc07URzDQ8hNt9L9xFR5ncttqmCFsN8pAzbjPQhgnHp/G6T1SCzXZdWX6eEWbNPY6zS1EkxVWFH6ub6nu4nIqmq3drUJozHRUqsyP7g/azhMJa2ytwZIc9cOiTtTlq8xzApKYWzs5uNlLBuG11mSbfZeXGp+7vmnsEAyytL3PW5O8nDlOVql69dXWZa19SSkm2W9JBBRBBJSerFaSeaJwcuYZ5k33dfN9uu9u5y/2MUmfd0u55+Bi5ElpcGdDu7KXkiEaUei/Zn0P6M9me0P6P9Ge3PaH9G+zPan9H+zDOoP6MPPSmllFJKKaXUpSzGu838n0evR7nUJBDMKllTZEBmw1Dvq8B+xJoeuQmPpxksvH2lWad3tp7FvrXZ/z2RmCrHLlFt01ZEt4mLecXPQkS4Dcgs7qgnSiKdPCNGz233PMzG6oDnXH6QZx05xPEjxzh59iR7F3Yx4yHH1lc4t7VLcI5O3oFYzSp/TRMYSF3teTrHWYvEyHQ6YWf7Av18AMYQYsB6i/Ue7z15lmPE4IgUZcm58ZSfe+e7+dBf3UcRAu+//R4GXcNLjx+hZz27kykx7yIxkKqvA864/ZklAzEIYgRjapxNAZxYV0iI1GVBHQsyPFihmEwoelNcFEItOAuxiaYYDGVRU4eAwZJn+fy8NACWuq6hqZQ1pglqmPmQ0bE5djIrHbso6WXmyZ72aBPbQNv+CjsR0hD5IWJFsIYUtFo4sSTWSAyICFXZTg8RsFi8zdJQ29Zgm3H505DuNlUKh1RtWVc1sYpkWMbBMi1LxpMCEyuC6TMNNWUMbPQD1xzNGXYNmxIweIqioo/Q6Vjyjsd5w2RasrW7SW36rBzssltaQhHwNiPLJkQ3YWLGlDUc9DlHMs+6g71iwlQs0xiYlBVhaqiKklCUWLH0XE6nk1HXNbXUDFaWkL1tCur0fqzH2xwJMBlPGO5uE3B0vae/0md7MqYaR0qBgMOI0M88vcyTeceg1yUjUFQ1pohMywLfTYFKaxyTUcV0OMF1U/VhOdliY9CjsBm7EaYC2JoQplTjbWJvQBYEYz2+08X1c4w3RCOUUdjZKzjQs/i8Q69fs3P2HMZ2MQh5nlNMp1RVQSU9Kgc28wz3poyKMbYu6ThLVQX2xjWjSaSqKsqqwmap8thZqCOc3h1y9lN7pGHqLQFPiWd3WmEsZB46uaXXXWJvXHP/yQsMi0DHwu6k5vzulCCOzb0pRkpCPcFag8ssJy5ss1Pey93nJzz00DnOnN+mqErsuU3MHZ/j1LnzVDEwWOozGQ15+KGTZBf22NwckmddqjJw7twmt336Ds6eOkVVTFMixQlnHj5BHYW9vT263R6T0R7nTp4kFBVVNOzsbkOosJlha3eHIp5jOJkSBIajCadOnWFnZw9BOHnm4Sag31SQWk9ZQ6yFvUnB/Q89jCFVXI/LCRf2JhQmBV6dEwRHITmnNsfsjqasdnrsDGsubG/z4OltpgEkTDDicabHuIQ7HjyLtxCrkrKYMA6RveGUOnoGdkI/d0z2KjYvnOeuz90OUlNLZBqFzb2K+09vYjqW5QNLdFxNZkya3kMioQ0oG0uWpeSpNwZnDNZZQllSSw1G8N7T63aIw5qqDdyLpZZAMBHnIibzTdDaYE1MQeY2QW6bK35TLd3GvYWUmE2V/Kmytb2GxdiMwDAP2xMkgjTJBkJKnEt7bUzbjZtPSWDxaQQN7wkhJUzTq1iqWggxbYjEmjLMLphAaILYbTuRkgIS2wSwQeoaQzNVTg1Hjxzm7HDCLXc+wDv+4H/xLX/rG3jJ867h6IEVdjYvYGzeXpUByF2cfSlNgjo200fEWWDZNfsjJQ6ixPTeCHjbBrSbhIaJhDqma3nTYohYogh1tcu0mBARXOZxmaEuZm8OAbqdDs4Y6qJgPJ6ANZg429xZc9keU0lDI2BsqgbGpDYpNNNLtEH02Z2ImecPZm1Vc/7NcgUL+6fVtoJtXN8AzjkePnGStThhry9kx1aYNFMjSXNPJcbMpm3ar9ki84iXuvT3Lvp5WzPPbPsd4/GYnQls11AJ7G3vUBVFSg4p9URpfwbQ/oz2Z7Q/o/0Z7c9of0b7M9qf0f7MV3t/Rh96UkoppZRSSqlFbWfOLMS620osDEYu1dMzCyHXNgK/uAK5aD2zLy9ay/wbMtuYx9tcMwt2tL+Z+q9mX4JC9m33PJLdVvGmAPA8edFWhC3+d/4q8x5vGxRuh/5/5BQRj/beFn5mUhWYEHj47BbL3YyVXod+dgEM1GVBOdrl+Vcd49TqEue2h2ztjOhlbp7AMNBOSzDv/adhwKOQAs6hIoYCaz3OGTJvcb6t2grUoWRlZYUzO2M+cfcJ/vzWO/FL61hr2ZxWvOP//Dmd172S5115mEPry2ztjQguR4wAEYkC2CbYk6oLZzHzkIYij3VIAdNiiveGnvF0vJtVDcZQpwrMOqYh9ptjaY1hOh5T1RXOZWTWLhyj9L7T1ABNsqSpso+mDeo0+6P9jWa/yTx/1RwL0yw3P74psBYWDlz6pRgjMYRUXd9URM6XEaq6JtYhJQOa5QWBpsLQ2DQVgHPtNB7tFBmzE6uZdiJNWeCMYIh4apBIGQyTaaAqag4e7nPN9Zfx0HDE1s6IaT3lwFKX450+tnL85QP3MqlLjO2w0u9y7NhlDCeBc9sTqCY44+h0+/h8ijFTrJTUZaTX7XLs2BJHc7i9mrA1nRIQyhCIIR1PCEh3mX53lViVjPMh2+OSohpTZQ5jO4irsBJSZafvICYnc55+p0OWZzgpCLGijoZIRsQQracyjmmA8big1+0jPuKkwrCHjRNsnGJjANOlCB5bRYoq0B0MCC5jXFp2q0hE8F4wHioDW1t7OAM26+CjpTeqmVYVEqv06lJSVYGqI4jvM1g/zGhSMwqW0V7F7qRKgVlnCUTqNlkollgLkxrwGaWQquPjOCXSrMGQIb4gRMNwXHLuwpDaZGRZhndNtanvzU7MEAK222Vc1Uy3hpzfnWJwVAJVhLzTZVSWhHKMiSX9rIO1sDsu2R5vEs7tUdepyrmTZ9QSeej0aXZ2tqmrgvVul/Fkwn33P0i0HSZFBUBdBrYv7DEZ38Xu2dOYckKWGaDmvnvvxmUdghh6nQ5GDGdPn+X8mfOMi5Lhzh7LfYPPPMPJDnvTnBAcWd4nYLjr3vvp5B2MgQtbF6jLkk4zRUWIEes6BBH2hmPuuPs+vM2b6VAmbO3sEayATcFTazsUBVRVyc5e5LQUZNku42LK7rjC5zk2jlMizsKp4ZTT95wgRghBqEJkOp3ipWbJRzY2cvI8Y0LFeDLk1NnTGBMpY2RSBbZHgeFeQd8OyKzHmkho/lfTtAExkmZysGlKjVkbkqperWk+k4jUTYU9aRQOXFoGY1JA2Vmcc7M2rQ0Am6YiepbQnLUnzRUoNqNfXBwcbgL9zEYWmbdPMZp5cuERI4/MRwZBDN5aut7R7Xaw1pLlno1Dy3SsAQIxCt5muPZ+AAu4eZS7vcxJJNqUJBNSkpSQqtrXD6ywOxrz/o98gv/78du55d5zFP/3zzE28Mobr2Vt0GdYxFkFeJqSwTaB8qYtjCwke5m1le0yMaa2K0q7XwUTU3V1lHbMlHYfNpXoNh2P2EypJDJPTDRl3kBqH/Isx1o3G0EjNdcX3/wsBN2bbWtff+HIzRJBbSX5LJEhzKayWbz9stZirDRzoFz0kjTb0SYZgLpO12hvPVm2cC/R7Aczu7+ar2G2Amyzo+fHt11qX/u68O/svcv+f1OyJJ2rZVlTVEItUJQFdUjTdKXRapR6DNqfaZbQ/oz2Z7Q/o/0Z7c9of0b7M+01Tfsz2p/5au7P6ENPSimllFJKKbXg0gXLTfBcHnUB2vD4vsF8BdJw4+3KU6f04jncZyGIfUHYxSUWto95IJfZPxcH9NMQxbOOqCz8sy8J0i6zGPCfs7YJNoQ4DwK022EW3kfzr73o9RY3Wi5eeVoJbVmTweCdY3N3yNmtHhvLfdZ7GS73ZM6x1MnYOLRKkMBwNOZsXdHN/Gyf7KuIar5rUpd+/iEpEA+kocYRrDQBEdLUEdY7dscT7nzgYc5u7XF4eYNOJ6cOhk/cd5a/uPMhstzxkuuPkduacZAmaGKIIc4PnUmv1xyJNvJNDJGqqpmWBc4KHefJnJ0F+okRYhN4J7Zpp5RwiHX6uQnEUDf5qOZ9x6YKuk3yCGAk7d8meCSzBBCz783OmDjf7na9ppkChSZJMDuEks65OtSEdltjW7k2P3frukZCCpqk0avbv415oMQ0x942YaPYbLaZBXnSFAUYgzOQO0vIUrV3VQl1JdQ1TEJkrxYqsVjjcDYSjKGogSJS1YFIICKU0bIz8RRlQKLgmqTF3jgyLVJgylnYLSJbZWCnDuSZR8RhcBhrqUJN3RSniYEzw5KHzk+QqmRzd8LpSZUSCVkKGBoCxsC0Cpzdm/LQZhrqvpvX5JlnS2piGgweIwHjLOdGBfefH4IEdra3WFtdImDYK2pqA7mtMaamlsCZnQn3nnV0M6GqC/rdnOlkyl4R2arArQ3IM0sVK07tlJzbHdLxFpfl2LxgdWfKfaf32B5V5D4nzw1VqNkc1ZRVIDOWre2Soi6oTMn5YUltLM7btL0W9koYjwPjvQKLwWWGnXGgDKnCOXM0SQKbpgCJkTIE9iYFFZD5SJZ5shz6g25KTtFUnRqoQyDUFVU1JZqsGTLf4/KcKtSUVY2TgMk9RqCqI0UoKUOFz7pkeY73Hmcte8MdxtMJJlZY26WuK8bbOxTBEtozMQoiNaPxlNHuLj0rdLP0d721tUmW93FZF289sYZxMaKsSvZGY0IsYZBjvWMymVJVI5wf4FxOjIGtrR2cT4HWvb1dbF010wakv3lpArChDuyOR1iTpXO3LpgUJaGbzpXYJAfrIIQqEEJFqNP3y1BQhQrnPaaZziBiGBU1e6MhVRBCtFQRJqMRq97gVzze5Wm4eROp6pK90Q7GCGWIjMvAaCqE2mIEnHHNdkRCM/1D26ZYY9LfvZldcFKA2FicTX/Doa4IVQGxxkhMiSbS8ZZZexKbBKidNb9tsBZjZqNizOPYzZVf0rFqk5Nte9cm/OeXu4XkA6kdsyZVDO9r7hfa5zYk7A2IBGJM034MBmmqkiA1IUacsWmZ9rrajlzRXnclBentLARtMTHiXZfMO1ynwydvv5eP3HYXn7rnISZ4PnnXfbzw2su49ugGl99wDaNqt0k20JyzbYhemmv1/NpuFnbT/L5D5l+3Uz1Yi8T5vUWa0qH5TWtxTZKmrkMz1VFzVJqK8Pkui1jXnCMxNqNfzJPbZhZgX6han7VhQh3DLEne3vCke7H99yxm9v4uvt+avfX2RKRtGtudsbgfQojpoQXrsDbOGsvZPlzcn1wU7Kd9jUvc6ywsu7j9C784T0AtbLh1DmsFawWPSX/Lpk2q60NP6rFpf2ZO+zPan9H+jPZntD+j/RntzzBfv/ZntD8zW+9XV39GH3pSSimllFJKqQVm9p+Fr2k6ywuBhMXl5qHPJtgbzb6AKsz6p80v7+9YzoK27XoulYeYBTfmrAFjFgOzaUXzbW7nsE9rnnWGTds5X3yPF3c6mw4pUMWSGBYCCfNFmhU2FVdNsFcu7iRfus+cOsrtVBIGut0OO3tjTp3fYbnf5arDB8hDYHVliU6vTz7ocPJsgQkFxDALGLT7tn2fze6aBTgwFqzDWEcV6hTwDj51iG0KCmAMeSdjUtScurDNnQ+cpN9foi5G5BmsLg04t1Pxh3/5KTbHOxxYybh2zTPa2iOQYbvLSCyAOg1dbi0xSjoGTRIhJSkiZVUxnkyxBjqdFLQUA84YnERsjFgJQJxNi4DEVM2d5RgsMVQYa2aBJiIYZ+ZHuUkctAcgxe8Ni8Xj7Tk3q6JrgjACTbXcPEgixDSkeGxXINRVRYghBX5CqgSfVS8aQ6jrFHRpDkF7dKxNy8QmoGUwKWjYvJ9IqiLPrCXzjsxbQoxk1rHa93SCxTlDVRSYaAjB8ukHt8k+dh/rh1bor/ZZ6wbOXBjzwNld9jYLtqeRTscxDoZ7L1S8+2NncOsQlqA7sOxsV9xx/xanLhRUZUY3Fx4Y15Qnt7lvuE3XwOrxw5iOp5tnbIUpZS0Y7zHO8JHPPciZ0+cwdUVRFoTcsXL4AJnxhDriRcB6Tu+M+cs7T/DQ6R7g0rDeJrJyzSFiZun4gEwn+MzzyQfO88DpHVa7jmK8y+pSH+sdxjmOXn6MXmaImTCOgT//7GnuebhHJ3M45xgsD7j/5DnqULOy3OXVX/s8+v2cc+d3uP2uHe6//xzLvQxr0771EhlOheXlVa696gCraz3OXii579Q2Dz38ML3uMps720yrimAtp7YjS+sraQh4E8hzx727gQdPjnn49Cad3GONpxZLjWNp0KOXObwlTY8hkhJMRujnHgQiNQbIfIci1OlcNIIxAamn8+H7bXPtco7oDHWo0tD8xkGsCXVICQSxdHzO0qBPEDDW4pylm3WYAEIgxJoyVnSacy7UNTujMT73qerXOnAOk+UU1ZRYBAbWpSkPTMBLjfcdQggYK3hncC5NdWGswzpHjFXzN1IjYhAJYEh/O03g1MZADIYQalwulHWVkmfGYI2lrkusMTgECGnqFcBRU9U13mcpqRACEi11bKbgCAXdLoht84XpejIuK8o6EqKhjjAeT8k6jjK4JojfTI0ggVBPMRIJMSIhBb67WY/MuSYQb5tkRbrapESQwTpwRojOkop9YzOyg8O7DCIU4zF1MUaqMLtWR5OOnxgD1jbniUWcA+9w1qaq0NBMHbCQPGhLf9P1BKJJyY726mOa/Ukb2G6S3fMRQVKCyAoQ0ogC0gS2Z9dKaRKZ1hKjY7S3R1FMCTEly4owZVpNqeqyqYU2SJPojLFJPrTXZUkB4FkQXAwSI0vLy1ifcW5nj9/44w/x2YfOMIpw/OrLuPtTn+aOex/iuuPH+LpXvJTzO3tNkrdJRMQ4O69i2jtNsDm1tbG5fpvm2h7CvEramNRuSXPNbtvQdF23tH96bXtmTEXHe5xxzTFOyb/m0KUkwaxNSfs5Imn/mvkxiZKSgEVZpmNkDSGmRLNzDufT9BsiMsuwzJIbBoydJ38eebvRJqfa24PmdZukSnvPIAIhSkp2SZtgaUeMkdloI/OfmcWXaP/zyHu1hfNrYeFHfN0mOmYJH4nknQ5Lgy5ltIh1jKYTTu5OsaPppR+8UGrBM7U/Y5qE6+I71/6M9me0P6P9Ge3PaH9G+zPan9H+zFd/f0YfelJKKaWUUkqpi8k8WJ8eBWrmYaedAX6Bmf9O+tLMnx1qqlJngdbmc7v4e9BUwqWfxdlrL3YA5wu3VdGzbZv3fEFSmL+dE37xdwxtcICmcy4wq0dN/50FkBcqjFPVmJ0F89sO+sX7q91pj0gQPI750hFPJBrD5mjKg+d2eKk4vKRhqYkVlGOWcsdSP6fby1KV80JioF1fqhQOEGuscUQxFFVgazSm57Lm8JTkZYVv3ptzjiPdNT7w8U9xy92nuFAZ/tH3fDt/+pd/wdbODtUocOzAIbaGO3zw9od4+PQ2b/nev8WhbocYhL3xMPWwJTQBFYe1jigBMAQLWeaJJh3vOkZCFKIYrKSAeVWUhKpKRZl1nT4Wq8xiIBqXqrpd1iQ+2srAFITBtFX8kqZqaJJEKaCwEAACEJuSAaapgjfSbFNKBpj2d2cbkJIVMUTquqIOdbvDkRCpY53WJ2lo8bpOCZE61EQTGI2Gqeo4801Qt6lgNNDNspQMMKnC0tFWRYNLbwdnoOcNPrdYoKwF8UL08PC5muGtZ3j+TZbnHuhzeKXPZz475I4H9jh5esjaxiorPc+oFj5xco8/+fT9vPwlx7jymnXWVnqU1Hzy/pOMxwYxOUvLfe7dGXP7qTHldEJuA9/4d1c4dCSnmwvTsqCK4LMc4+HjD1zgw6UgdSB3cP3Vh3nxZV2sCOVkjA0BMZ7zk5Jzo5JPnZpQ4CknE0w15aXWcc11K1gq6rLE+R73np0wLcfUGJwEQj1ECHQ7ju88fBkHPJiOo8xyPnlyjHM1RixRoAonGRaR1aUO1x3v8woRjIO9MnDHmTEfuWvC2nLEeUMNmGma1uLay/pc4zJM1mFIzt0Xav7vJ04T3S7OW6wVjIkEybhqOf0lWSqMM1yYFty/NeTOU5ssL68S6ylWoJ87XLUOVUEpwt6kxhUpSL7SzXjeTZez0e9jfM6oEk7tTLj1nlMY30Eyz0QicbrL4QPrHD16iOuedRXT4R5ndoec3h3zwPkdDvZWWe2uQV0wHm2BEQ5vrLC+doCVAwc5t7nHiVOnGQ33sIMlXnzjDTx4qsO586coi4L+Sp/rrryOTm+Zhx46yb333EU3h7UDK1zz7Gfz8MkTnDnxEMPtbWzmuPn5LySKYW845N7772dteZkjx46xtr5ONJ7PfOYWJOxSjgo2Vg7R6R1lZ3fEcDQic55rr72S5eVlnLecO3eOOz71V4wnE0JV4aNjHDIQ6GWe515zFZlNSZS96S7nh/dyZncHmzkGHUvP7LICrPRyBp0+Riydrmc08WztVJzYPI1diunaECOr3nDltZfR9RaPEMop57Y7TKc1hpgSIBi8dywNulx57CA21lQxUkahAk5uG6K3VCHgjMUa30zxIHiEvJNhbWoziyCIcYh1GOMRExAxhBCoyimT4Q51UaaqYe9xWd4kU9LlpSIlXJxzeO/pdvKUkGySmin/2X6drm2xqbyO0rSZCw11MzvCrIGXtrq6afRNlIWGqb12Nh/tRgnUxjD1lno6QcQQxTEtUyJlPB0zGu8wGa5Q2W66FTCAxGbEkXnr1059YGJEqsDa2grD4R6fPXGWX/39P+Yv7jnNysoK68sZkwvnuPKyDcq64N4TD3H7Z+9mxVsk1FTNdDxtRbpxjii2Cf6ne5EQ0+vMRlfB4P38hkFiRJydvdXZfcsCYy1RIhJT+2KtSe1CHSCjaXMDQoAY8FmGNU2ltTGz/MwsoT/7bJ44TKMepGNonZ8lONqphwzNfQ7gvU/JpRBm62vD7inWng7YrCreWIwYrNAkK8zsNkKa5IkRaR75kH3b17ae+9MAzRKXujd6UuYrEImYOjBYWuXw8hIdkxEkJc4e3plwYVQQd4ZfyIupZ4pnYH+mfQ/an9H+jPZntD+j/Rntz2h/Ji2v/Zn9bfZXZX9m1sQ9s/sz+tCTUkoppZRSSi1oK39SvKCtpJr18JvBupkHxhc6hYv5gvbzeeXuvJu5uGxEZl3DWUe17YqahfUsbGOq1pn/D7MQK49pSGRDiuu3HXNIHV+gqV5m3gE2zRbMgslpVSGElMCQOB/yed/7bd6TIQWlRbC2+X47lcC+7d+/D2Y/MdKkK4RunlPVNWcubPOZex/mZTdeRc87okBRTDm8vsyoFkZl4NT5YXp/kvaVNImK2bGTdEBDjEzKkt3hmMo6aKqVM1eR+VQx5jJHXva59YFT3Lu5S8x7DHc2ObxxEO877OwOqXY3We52CLVw1+k9fu+Dt/Jtr7yRY6sDll3FsCwxrll/m16yponFpDnrTRQwNgXBMBhpqgtjCjzXdY0x6f2mWJW0uyjtu1gTJIIEiB5jXTojYnu+NcvJ4ina7vHmiJv5gsbaZv+l42Vnlc3z86Cd+kMkQrSIDRgjeOeIMRBCqtQkzodcb6fHcE0QzmLnybd0MqZKS0nni3NtwkMw0lTWGUkVmtbSZt7aBJoxhujS7Bg48MaR43CkQEptwfqIt5Ycj8dhpMLFiI91Mzy7xxlPZjzGpECUsYEoZQqkxQpLwFtLt5vjLdgmxGgseCtpyocIzsKyg9AMoW6MUMeSCqG0NZVEpI7YmJIiQSK5A+Obv5UYqINBxFOQUccKbyJ9H2Z//IV1GCz93CHVhHFhmdQVNTXYAFJijSMzlq412FjRswYjBWVIw/lHqclNxaov6ZOG88ca6Aq7kwnTYshoNKKe1hAiubesLXUpomBsO92JYTiZMB3vURRdgungbE7e7TAY9Diwtszq+jqZycisZaljWT10mN7aCtE5VrOS3OU4A4NexpGNAau9PllniVIs3bWC0vQxWU4nz1nq5pi6YLmfs768xGBliaVejvT7sDSh7g3IjCWzBgk9Ym6wFvJBH5tnBIksrQy4zB6hLCs6eYeDGxu4TFhbXWZnc4tuv4d1QpZFjh1eJeM4ee7pDfr0e7C60sNfcRn14Q3yLGNtYw0xhv5Kn6zrWF1aYnV1hf5gCWMziM+lKnaxBJaWD5Hn64zHYybTCc55Dh0+TL/Xw3vHxtoKmVRIXaS2xnWY1hYJkU7mueryo3RyS1WX7Ay7PGvzGH4rBVLzvM/AdOlZ4cBKxsbKAEJkZbnHeOrp5yX3nBphOp4QplALg+UVrr/8AEu5JZOafucwm+MpD58+z6mz56nrgARwWDLnWO718KTre0WksrA5KRhHoazKdOrNWoSUqHRmYeqB5vy1pKldQht4T4sidapQjwLUgSABZ30K3koa3wNJFd8x1gQjzXD9BmZVxk1TMrsAhiYf3gZw54l1jMGxeJ1sEuFNOxLbQur22tlOYzBr7yNWDMEYqghlWc3WU1QBG6CqK6qqREJFFN9UjkeMVGlqn4X2MMaIhBpnoJ/nTKuSP/nU5/jTz9zDpx88y+raClaEajoGEV7xNTdhQsl4MuWjH7+Vb3z5i4ghUhRlqmCnmfpHTFPBP78jCU2QvW0DhGYKjoVEisR549EmjNvrf4xCII0iYBBsls6B2FT/SrvPZkkGS57nOO+oypCu8/tGYEnrNtbgfEbeyYkxTQthgMzn86SCtIH+9t6iaVub42atxdkmASTzdTP/dZonGRAkJexTFqEdZoY2sRCZV5C364mkBxZmU1jMsx37b9Rk3wvyyIVYWGjx+81ZkUq9m+lQLJFUOR6jYJ3FuHTOx/iIR1aU2kf7M9qf0f6M9me0P6P9Ge3PaH9G+zPPoP6M1f6MPvSklFJKKaWUUgts2/E0zAKebVDTSvr5rAO6r0doZsHyfUELFoP0KaC+2Hdsu6Vm3zr3M/vWJbPswWL182whmkBrE5jetx5z0bLNcun7lrgvVbEQ0IVLdHgv3sh5x13aXvul+sHMX8I0gZvF5IF3jjoERpOCe06e48Zrj7HUzciyjElZstLPObzSY2fU49TZ7RScIFXNNnMiNFkLM3upgKRK5BBJo45HxNo0lHg05M5ijOX09oh7z2yyPYW1g4cIVUWW5XifIVGoJiP6uUewTOrAhz99N9dfcQh39VGuWBtQhJpoHEIaez1VR5smBiPpa5OCDNa0wz43xwyaYaib/WEthiagYtqAWhqCO1UeB0xMQbR9WaJmP0cxTfBn8Vi3Ve5AOz1DU71vBKxIE8AyiGUhKJN2ZIhgbESwKUHQBE1ShVoKPNnZGS1NQEXwBoz1KeBPm0IRaqQ554AmmWKbuEdTB0cTL2nOL9Pkd5qTdh71o+ss631PL0tJjzrAoGM5sJRRDjoQhVClquV+z7GULbPcy/DGICENyX5otYujZG8cKMuSA11Hb9Cj4xwus6x2DJlJlaHe2ZQACYEowuVrXQ53PHVVU1SBlWVPkIJSDMEKpQgSagaZZXXJ03UGXI5Eh5EOh5c8MdZUESqxVGXJRt+ylFmWupZa0hQD1jq6ucfIlO2JsD0qmBRDNvqWA0t9ut7hMXT8EuNqinGGpeWMEAKhjuTOcXStR7hilW7eIcs81qfh9E/tZKwO+qlaOlTkDg6t9bjhmiOMyyoFpYzFWs9oUrK+NmBjbY3eYJ1+N+fqy4VuZ5mjhw+ztLxCZhzOQMcKSxurZKs9jHccHAQy10k/8wabe0qT4bIO3uYs0+XyoxbjUgV9njmcEXIPLvcMywJTVVQx4pxlZakHIU1DIOKJNuKsxeUdorHUdU0n77CxtooAzjm6nQ4H1zfo97r0O32M81gTkVAw6Dryoxs4nwJyEqbkmcWtLGFYppNlOJ+SWlnWpdc9QjfPybMc7yzGGA4dOEBd9UGEXm8FZ7t0M0896OG8p9/L8d5gjbDU63DVlceRJjAaxVCW6e/cO8vSoEeWOergMTZyzeVXsba60lQEe4z0yERYXx6wttxH6oqlXhdvA+NJl0G3S+09Nel60cksSx3Pcm7wEhn0M3CGnR2HtzV1nQLFqUDVkGWO3FgE8AjOCs5VEIVYB+rYBFTN4lREzYcwCyi3F+S2HWqvfGl6EFIgPoJIhfHpXLfttRIwxKb9TdcWiba5rrbrmwdb0xQOiw3PQrKgXUrmrYRZWINZ+E5qElPGtg04C2m0C2ssIUJV1alSWNLUCkYMITQjUzQje6TAe8BIM1oFbarfIqHCSMR5h8s8n3noJH9x2118/M4HmdRwKM+oJmOINRvraxw/eoitzU1Ge7t89p77+YavuREJEakDSE0kIJLattBcn9vblhDTvmmbnjTyxeLoJylh2b739n2lqYHS71YSU2UxaaqLOoZ0HTftsWl3sE2jeHjfJBACrgl8zxodUpsGKchvnWv2TzoC1tpm/zcV0YvJDJqA/WxEkIUkkWmPo8xPAZobMFLipL3bSW1VmrrJGLswbQqzhx0icTbqR/sCQkrEzO80Fm/uHnkfN//+o9xLtbmctl2zzfrFgrgmUdXeAz7K6pVaoP0Z7c9of0b7M9qf0f6M9me0P6P9Ge3PPJP6M/rQk1JKKaWUUkotcG1pNNBWxcRZn8ykEf+bz+eB+RRUSENMP7IDaBYXNanKRVKfuwmqpqqr9vfb9bf9TdMmLBYKmMziMk2H0mCxoe2+Slq+rfICjLNAJMq8CiwFYlNgK4a2oil1xp2zOJuGWY4h4Fwbun1kH7Xd6nb47UdJdTTvZ/55W++agvkuBZWdoxa459R57j15jquOHmB1qYutSnIrHOx7qvUBt0lg1G6rMUQiFtvsrxSsb6fasN6R5zl5SDsxWkvey8m8ZanTo591+fCdJ3jg7Da9tQ2uveoKXKh44MwW29t7jEZjTF0xHe6Rd3qsLXX5zIMP8t//5OOMxzfyhq97Gf2OMAmBEFOQ3xqPcQZj2yGw07/ONvs1goQU3HDe4Ts5znus8xgBZ7NZrqUNNiERkZoYq/k6Zqdj8zqmCT4ZxyJj0tkmBqJrToqYEgVGgGiIkirGjLWzwNDisYvShlbScO4x1BBqLJKqrElV1KGuEamb6mJDL+uReYsLlmgj1kItQpB03ottkhWAlXTuSROemZ3A1qbkjo2AwQmYYHBiWOkarjyYsd43OBHKaeToco4/2mcJw31npgxLYWkt54qNHjccWqLqCdjIpCgwruKmq9d58OEpdz484tTmkFe84AAvOL7KFRt9NidTqiXHyEIVPb1ujncVVVVhTOBrn3+Ir71+naqsObs94SyWE/WEIniwGYUYYl1ydG3Ai649wFXrJR1j6HVz8l6Hh8uS23ZHFKUhYJiMRtx8fI3nHetz3eEORaxwWHzWw+Q9bjl7jtOjkvNbe2xvXuD5R5d4xY3PYq3nsXXB0uAAUwu70ynboxFZDEgNB/pLvOT6q3n19ULX98l8RpY5bC7cd36PSQ1Z3qUyFSsrjuetHeK5zz7I3nBEVaWK1V5nCWyOzToM+ktsHNhgtZtx3VXPBeuIxiIilMWEqpxSFGNG0yHS9XQ6GVd2U9ImBqEsKy7sjSjKIStlTreTzt3VlQEh1lRlyWhnwsraMlUQJsMJD585zXB3hJCGiu/0+mR5Z1ZBn/UHZFlOqCNlLRipya1npd+j08nAWkJV0slyuqsdVpZXmU7HTCYjir0JeZ6zurxCJFV97uxsE2tw1uOcJ/cZ0+EQ5y15nrG+tExVlEz3RtR1jSDk3QxvOwiWogzEYqf52zd4YxjtXqAqK0KI5HnOxtp6eg/OUteBUFUpYAmMRhOKqsRYQ573ufG655M7Q6gDZfMhpm4uxIKECupAjAZHxnVXXMtIaqoQkWBY7vSYjIZIAZbAhd0JZV2zs7NDUYwpyx51DAQCRiLRQrRtArptfBymCXpXzEcMMcyrb42kAK5rgrwxBkIMOJdGFWgTita4NF0ATYw5BASL8ZYs802bZ7DW4XzWtGNNkpcU3G7bHGn2wWLL1Daa0rSX7UgPiwFdaYPM2GYUkDRaBbEdTcKli2WMaTQTZxGb2vyiLqnqiiDNdATS7CdpHhywsUmGWKx4InVK4krafitCv9PBd3IK3+G33/vnfOyek2xOAocPHyFOR5hqylK/y03PezY2RqbTks3dMdvlhM3hkI7LmjuQmpqICYINAPVsO5tcR5rGhzZBkP4OxdiFUTbi4t5rAuiCNYI1pBEimnajrgJBzHyKjdmuT0nyzFuscYgEYqxSEi02+99ICta3iYU2GdDev0jKTMd6f4B+FvxvmqI03UNErBCibe5nZN+NyuLjD+mOS9LyZiFJgaQRPIDQJMWtpDYvfbTb0A5DYpukVpPEvzj4v+8pjvaVFzJki2RxC5sFTEqUedvBR0+IZXo4oDkW5hHrV2o/7c9of0b7M9qf0f6M9me0P6P9Ge3PoP2ZZ1B/Rh96UkoppZRSSqlFC/24torGzjpj0lSAtcssBL6ReX5gIckwC3zQDt+7P2iRFm+rv5oqpCaAYex82OTF3MPiJhoDtq1omiUaaCpN07D86fVTJ9RYixXT9MfT/PXOpeCAsSEN4x/TK8Q4S33MpoN4ZArkErvQpCH8Y11ftEMeaTEE3f7rncNZy9bODrc9dIrgIte4DYrplKXBUS7bWOGqqzJ2as///dhtTKYlzuRp+osgTeAgVYSFmPalt4ZOJ6OLx1mHsZbKRqw15HmXTr7KHfd8lK2dEaa7Ql0Fsk6XM6dPcfrcOUKouezoESQIdVkxnRYcvfwot955L8PdIZNp5P/51tciW+cpi4IQA8Gl6uYUOm/OgWb/eGexJqaAWkzVpp2mCtt6j21n3GlOgdicRNYurM020zQ0ey+EmM4F0/w8puk52mSStFVhTUqm3enzaT3MrAouBYpMChKKpPwEKVkkTSAnxIoY6pREigvVj0ZwHozxTOuSUAewgSApkCbG4LKsmbrENsHdeeLLNOdkmtbEYmaVdAZrPNY0AT5xxKrC1AVHNuD6a1dg2VHJlLK2rOeW5Y2MVVNzYmuTovLE6OkRuGZ9ykmXseeEMgo9U3HlwWWme4aHTleMSrjiQJ+XXjXg+Zf1eOB85COlMKwqtooS6ypGdWBnr8BVUw65KTccsnRtzs5K5JYzu9yxs0PpO3jf5eyFU9x/6mEOdA+z1lvmxdesshQCq0s9eksD3n/iAveNLNFBnlm8gUE/4/iRDW6+4TIyb+h4i7gOIzrsrh9i7LrEUsiKyPMOXcb1VxwkywLTaoTkPcR2Kcqa4XRCTaCsS0IACZa1fMBSbxmMoagrdkfbHLwKaiCIEOIU7y155ul0cpz11FWgqmrKaVsNC3UdmO5tstY9wJLPyXw6V89vb7N17hxFMcUYGI4uUOaGqtuBpRVMbBJ5Ar0oUJbE7U3GEYqioNvrsru7w2g0ZjKecOdwl6zjESLD0YjJZIpgCaRg3hXHjrO2toq3lr3dXabTaaruJVWxZ9aysb7OoN8nxsA0RKq6JiJkHcfecJe6rIghYHGsrq0iEinLit29IVUd8d7jncO7lASJMf0N9no9MLC3O2Q0GlNVFesb6+n6bSx51iVWgbW1JQ6ur3LZoQPEYkys0hQI0ukxKoaUZUVZVYj1sxEKjLUMBn2c84QYKWOgDhGf5andAHLnMK6brvnN1DahCnT6Gxw8dDXXOyhildqVCKGCKAUxVsRQUUxLRuMJq+sOcT18XrM3OUsoa6rJmEkdiR4y5/DOYEMzer41RGeppW6Sh+31qUlqN3/LbXI85SHTSAkSIUigaqYSaNsNYw3WO7Ksg3MpKWNI0xHNRnWYhXxjM33M/Bo2b1Xay1uT2JbIbEYHk677mDZw3l4LUxLSiKOO6fi218I2eZ6qigMhCsFavAVjHZHU1oQgUNeUVUVZ1+lrlxLXaYoBR5QmEC8RGypWuzlZf4n7L+zy//7xe/n/33I3g9UlNg70odzj/PkzHDt0gNWVAefPnydOuiwtrWJtxoc/8lE+8pk7+WvXPYtj6ytsjyPBeHApwWMlzZnTjuAABmddCpI3QXlrDSEKdVmm9y3NtEDtVBuxnt1LYMB414wCE4mhxtlmWqomoG6sJV1oItaYppq9SQJfHNhumwxSQJ4oZCYl0owxVAhBUuW1uCaRFCNWFqbREpl9RLnE4wmmPRubc7R9KCJGbGbpdDpg0rbXkqY1SrPdpXugeULJzG/mZitvnyBpq/efyB3S4ptf2N5Zux0hBogRn3sG3Q41Gd4ZOkNPnmV45x5tpUrNaX9G+zPan9H+jPZntD+j/Rntz2h/RvszX7L+zCM2lKe6P6MPPSmllFJKKaXUxdoYBAvh7UvGufd3CM0sHtIGXefFV8K809kGOhaHN05x/RSknQ9/3XwsRtJFmg5v+l6quk0d6igpCJOqhha7xcw66KbdUMDa2aezf2XhixhTYKWd396YZujuR9kVqYubEg/epUBCXYdmd+7vXM+myNj3wvOVGQO9bo8Tpy/QzxyrnZwrjx1GfAeTdVla6vPsqy7jlts+RzktqKoKl3VJAXGZ76cQMDFVtJmmetyYtM964qjEcGZvxPZkyP27I0x3mb0i8MnP3Y2LFR1vueHq46yvLLGzt8t4XFGYgIlCVRe4bp+Tu2P++C8+zo3XX8ZNlx9lqesZjoeULuKxbbl4UwY+D2g4Y6kkzLbVNmXQ6edmnogyzLa7OejpDDBt2iFJcYOUMEpJprg/4WXmX1pZ3P9mYajp5ryJKQBHe3Y2c5nYZrjsKIHMe8RYoovUoSaGqklmGbDp+PtOh5gFvEvvvQ41ZQllVZObjDbn5pqztX3FlLiKGOPAWKwzBIFJGSgmFTEKzgesTcmJehIY703JOg7pempbsleNKUcVu3s1UXKKusR7WFvOOXBgwH2be5QC4jt0nOP87pgz2zuc39lkPN5iZ/cgpy8YVrMJoxLqmBFjhhFDVwpWOwY50Cd3A8xgjaldwnvBDTwra55n2XXqLCfLOwxkhWdtXMmzDq9w/Koj9A+vMhlV7FSB8YWa88UyG2t9DmcdMt9lo3eUg10oBz3uHXuWBqv0siWs6yIu57orjhKzDMRio2XgM86FgNRCiD0oDP1uxPuclZU+07qCyZhJXVBUFXU/Z4RhWpRs7+0xnozJnMF7i/NpRIE6BCQG6rJMw9vXgVgFQlkxHKe/OYkRYwy7tqbc8c1w7zAqpkx3t4gi9JcGHFpZppqMsdMa50r6nT6drIsEmJRTlpZWkBhx1tHbWGdp0OfEicjIGvz6GidPRXb2dplMJ0hVcvnGGnvjCcNxwXBacvL++9jp9eh2cjp5Rm59OuckUo4LyhipcwtO6OQZe6Md9oYjyqoi72SsrK7glztIjEzGI4qdc1RVTYhCBwNVRc91yG2OkUBRlEgdCDGyt7eNcY5yOsVWFQPn2DvzcPobd46lpRW2t7fI66OYnmXZrTDdu4CJkY7PWV3qYqoh9XBIuTdkXFTYLCNIur6b1WU6nQ5RhKoODEcTsBneOrw1UNcEa/CdDlmng8vy9DcdIzEKnV6HTqeLcQ68IzqLGD+/Fi1FNhCOljVFVSBxymXbO4x2dqlGY9YPLmNiQOqCWE4RqaglUiOkQTYWrxOmCeibtkFIf9nSBMlNOxJC8xsuXXtCTB80CdQobQIgki4dqYrWSCTGFLBu8wUSauQSVaKmveAZs799awK+hiYJG9qq3iYJEJv2s2l322tjWqlgcLNRJmII+34eIqnSuJ1aAAghJVUlNabNyCjNFBDW4PoDPnrvQ/zZZ+7lg5+6k97SEh0HUkwYFhXHDh+m54TJ3g6bF7ZYvuE5FP8fe//1dM2Spfdhv5WmqrZ53WeP6e7TbiyAaYKgAFIBBq0MgwrdSZRudal/RHf6AxTBUOiCIelCFOWCQlBBBACaIRyHMz3T3dN9+pzuPuazr92mqtIsXWTW3vtrMwOAAxHC1HPi/c5r9q5dlZmVmet56lkrZR72Iy9u7vnxqxv+0kdfwVrDMPQk06CSEMkYLJryYS2fNimaMjnlcu5ydIxbKeUgdCKrKWUtpqwDxhok60E0KA5pxYpgTSlddHjQAfDeVRFhWqMsh3Qf0/JW9yUGaIylsQ5vLApYY+vx3unYMq7q/XG6N9NakkRPyPyJ32cSwcsii0FouwXOFME7xYDz/lC+ZNrPUF3uUztNTvy6aTuelJHaZtOHTn/6JZtH/flvpt3eyVhTLUJMDIg1dK3n6uKCrmtLO+b/FoLEjD8/mOMZ4B8vnpHDdc7xzBzPzPHMHM/M8cwczzDHM8zxzBzP/Kp45ucv6r/7eGZ+6GnGjBkzZsyYMWPGjBkzTjARD3BCZB/+eOq/0kOcd3zdRODXQPzkdQrVyXr8e/65lL5GhSxHZaGci6JyJESmEziGplLd0SfBMByC9F+8vqNwINWJcySf4eD8qcfJ+V1yn+mcTtrn2CLHkzBWMM6RJ/KnXCGnB/vT0hk33nP/sOf123teXZ7zja9+hfv9npwS++2G1mYerVp2255Nn6AKJdNnFIFFS0pvpTrYTPk+Zc5cx10/8LPbO77/4ppXuwHTLYkIX765Ztzc8usfPuejD57xwbPH/N4ffJfmbMWQErux59X9Busb9v3AH3/+kr/593+f58s1H16d471npwnUHIUjkSP5oFqJl+JALu1pOJj/yJVgK6T/oamqw+wwDoQq3MhJ206e++MLRaayJpN4NI3ZSZCSUsJiYvNk4j+kElwKWVAjqBRyqDgJCwFVnI/5ZPyU41rvUbVgC7GWciE6hzHgGnfopyKQlPeLFIdlTomUcnF8GyGKsB8D291AShlLKTmRUiL2ge3DyPKsxaZMigP7fmDYjNw9RMIAOSQaZzg767i4OsfebrFiEOMwtGzHSBJhtW75mlyxvnhEapdsjCN3ngvboVjOkuLcFhsG9lFwjePxh1eExYrBK9oGLr3yW08W4Ftc4/j205H9bwhXi4b3rlrkrOG63/Fms+ftZsdWDYuV0LUtbdOycOfkuGc08MUgXLYt53JBYxc03vN4bTHWkRFiUm7ub9jtt6QcISvDZsdqYenalqbt2A+BXb9nt9+x2/eECMZadn3P9d0dQ9+z9ELXOpaLhiyKFSXHSBxHwhhZdSta39Aay6hKDiPkTOMdebclGkMgE2JgN/SE/Q4xFg0G5xwxJowITsFlxeXiuHcp0zSehOKd4XLV4a2w8gbTepbLBam/xOSII9N5ywdPHnG/3XHf7ujcnjxGXA7YqCw7x3rZ0LYOQdnvylg/X7YsO0/btfRjQxj3oGBFuVgt6RYdAFsvbB5uIYNF8d6zbCxt0+CcI2elEercpowhMuaEbx1u4ThbrXn1+g3jOCJZ6STh84hJPTruCLstu9sbxFgWqxWr1jHu9+iwJWzv2D480C1XYEppgl3aol1X5q8M0o8kNQQg5kQcB6IItmmwvkGswzfNYQ1I+w5dLDHWg7Wo9fi2w1hXSF9naXwD6yJix9hztrwiPBnJY+DcKzEGhodb9uE1+2FHP0YCNSuHoQrVp2vlcR6f5D9FK98qtXxRFUbrunNwuNbSMO+sRZO7tWYBKXNi+f87a92JKn7QWSdR4PTk6px5mJu1rtJaRHGtxLBM5QomDncSQadjqB4znlB5W63XKAa0PhhAZirpo7mU2jFGcW3DZ7cb/svvf8J/9kc/4uX9hqfPnmJ1xOTEquu4Oj9j5TIpjGz299xu9uyHyN3DhhHDZ9cPvN7s+XAMhFTKLpTUA0qSuv5NZYMme3jNGKJVoJ7a15oiLhVyPDNla8m5lrQw07p60s3VpWzrgwRH0QisNcVRPZUIMeYdjeDdjiuloJwp2TJyFfYn4fy4nJ2udfWnw3p4/PzD32V6rGLKVFPO1xhBrGHVOaAhpMBDn+vY0KqRvPu0yOHKZHL9/9yG7PDNL9t/nT7t8UswPTBysocTKZkdWleyudwbiss9pV99nBkzKuZ45p8snjmc8RzPzPHMHM/M8cwcz8zxzOHbOZ6Z45k5nvn/h3hmfuhpxowZM2bMmDFjxowZM05gKlkulZiAo3Aw8QMnPHR97UTiv+s8Pv1eqeQnxWGEcHCV5YnELn85lHQ4BtuF0DDTl0wESSFybSVoppIBKpUgqb+fgs3D+eokFPwiYZ+VI3EAiJFjGu1K/r5rU/rlgoQRwXtX3JPU0hKHAP9d4YXTczk5lDUCCe7ue37y4oZf+/o9r16/5c3bGx4eHvjW157ztcfn5KB88vKWhFJKCGSgkhoqaBaSGtS09AlCiOSYOL9c8cWXN/zuD37M3/zD79OevUe3OgcxjOPI/WbL88dXfPPD93j/8SW//3uBD7/6FRLCm9trPvviNYu1xXlPTIn/43/8t/nK1VP++u/8Ot9+/5KH69dYA0ZquQ0xGI7168U4BMgCMStqpZIqFEe3KKJuorKKQ72mN89aiJriDAZVIeeSgluYnPLpQKoVLu5EgKokTHHxVcJEDFmVbMxRxMgnTrc8kVwZNZasiZxyaW8nZAHNWr4mQsQWN72xBusawBBiZNcHFq5FRI8lSyatqjr0Qkj0w0A/DIhZgjVs+5Hbhy1jStg8EGJkPwb2dz3bbcb2GT9E+jEw3EX2DyN3DwP9NmJDZtk2XDw65+LpMx693uByw+gWjMET3cgHH1zwwfsdjy6u+Ku/+Q2eXq5YLxtSgO8sPLQNxjW0I2QM2RqSFXIYSXFDbxLWCh/4ll9bPsK6FrGWhYOFWzOOgYftlp++fsWn+2u+3Bhudo5H51cYG9mGzH0fWUnGNp4BZVeJ9KU1NI3DtL60U1TiELjbbfmjj7/HqKGQgDHz+U8+J4tgrMUZx3bfoygxBVIaef7kCmcL+bvte/pdZO0N50vPo4sl1gmtbxj6npu316SQ+Au/9R0eXzzl8eUzxqst27tbSJHWWzYPG6xrGHNg199x+/YVMhFbw477OsZWyxWusfT9hrHflbIAIWHSWFyq2TJsMy+ubwhjcdqP+8zzp484O1syDD3jOPDo0QUIjOPI3c0DF2eX7LcPxLHHGVivz+mWC5wvZRTadllSB9SU/+urCx5vHtj1e2JMPHn8mKZpsUZIj864vl2y3+0JQ3F/P3n8iBADYQzkJHRNQ+tbnHHElHl5fU3XGM7WHe8/fc5Pf/o5t3d3DOPI+mzJ5VmHs45hv+MnP/kpr169YbFY8tg1dIsFu909IQ+E1LPf37FeNSy6BSJw8/YlyXc0TRF8np2dEWNmu92w3W4qKWzYb1MpQRAzq9WKpvF4Z4kID1lQMaixuK7j4tFjuuWKpu3ICKldYKwt81JOrJYL2qtHLNoFWTMhKzcvPuf2Ycertz/lbrMneke3cFgL1k4ZFcpaVpy2J2sEuf5HFT9McaCKKXOeGCxa57iyxllj8NagUhzmYixiXF2Hi8PWGHNYu8oUlSsRnMusaSbtsZyQsXX+zJUMVk6I6OPrDqUfJtb/5N+pNA51niIfS0Hlg5pQ1vl8WB+PpHxOCSOK9Q5zds7/9T/9W/w/fve/4ZOXb3n85BGSB3IKLBcLfu1b32Z3+5Zvf+1DlsuO5uPP+P6nP8Uag4pw8eQZn76957tfvmWxXPCosRDiYZ8SCWV+r9k09ETQEJGSIaO8oIjUKmRjyLk4vlUruT89UEBGxB3E91xFhInkn8ooTH1irS33VCqlIw6bq3fGBoc1xhqDFYOhrifTuWoRww1yyNhRrkRr6Yja5Jw8BMG7mH7OWYtbW4QxjDz/4BmX52vEWf7WP/w9qCWQYsiHfZ+eHCBPD0kYCxhUypibzmuS7N+B/sI3v4BJrC/vn0QTw/nZkqZZEmPk7vaa29sbttst5k8SHGbMYI5n5nhmjmfmeGaOZ+Z4Zo5n5nhmjmfmeObPVzwzP/Q0Y8aMGTNmzJgxY8aMGSfIpyGmnjpMAQxHP0oJmktw+HMB6cnPE3+u75D+x3+z5vKZlUBPWs9BS7Ct1cFlpAgCE5lbXl0IVmsNzjpWq5bbhy2JjNgasE6ksJjqOK0pjbU4f44BvR7MYYeSAlBJkkIqv3NBJyjneXL5mgthjaFpLOOo1R32ThNVYaWQMpNz6dDa9YDrZct2DPzws1d89MkFX3t+hTVP6BZnPHn0mG98dM7lk7dE9xN+8NkXLBZNPfsactuWMVve3vb83f/6+4XEcRbrHV/c9vzep1/y49cbVFc00uBTBBTRyLPHV3z66Sc8vH3B46tznn/tq9xudry5vuPlqzdcrK8IMWCMcLZa8WYb+D/8x/8pP/7ip/x7/9Zf4z0x7POebECsQxT2w8irm1s+//JLbu/vkfUCxNCPI5999hk8y7RtxxgjVhRnHcZarHXElI6i1IFkO3ZLiiW9d86ZlPRAmqWUiDHWJpV3+iBnSKo1LTikXIg6KlFnKtuUc0kJ7qogpqqkHIkxknIi58wYhZAiOZcyAikmNJVyAYvWcXf7QMrgmhZMKSthTHHjFedgvXcM1TVeaCk1BuscIpGQMtthZNvvOTt/zNMnC957v+Vs4fnLv/kEWTfoomF1ds7Fry8YHzK7beQmDKRFSeVvc+S//gIev/ebnMXEwxD44mGARxd869mH/NZXv8a/+he/SW4SKWRSFLIssGwwNaV7rxaTlTTu6ft7Pt+84IubzwGhbRZcrS4473sW3Tlde0afAhv2gCUC6/WS5+dbCHt8DoQY6JOQQ3HPRqtcrCyNM3jjeGQc52mPDxHB8NCP9Hc3jP2OYdzjHl7zxYvXPPQj+yjc7Aau7++JIWBUsRgab3He4Jzw+sXnLBvwzmCMZbvJ2MdXfHB1xW999A1cHFitz1CF4SsDq+4M4zr2IfHHP/6EcXeP00jnHWfLBcOw4+7NC+4f7rm5fcv97pambWgaT9u0BE2Ic+weHPdvP4eU8MZjMGjMbG63KMXNqVIySDRNhzGWjLJYLvFNW85nGBh2DxjnCCHx9voO5zuMMdimJefI9f0N5u413lrW6zNefPmCN7cP3D5suNtsMK1Hpcw9TdPw0Udfp/GeMI589uJLbjcb4hjIMUHOXF1ekFIghECIkaXraIwv6epF2A2BrnW0jeOPzMeMUUmqJM3kN9d0nWccR8YxkNXhfUez2/LFw8iPv3zDh08fQUpoMiz9kg8ePyfFwHa3xdsVr6/vub//gpQCf/Ev/gWePX1K1kTMCWNXnJ2dcXNzy9s3bzCacRoRLFkMpEzXdrhK2K5WFsId+faOXoSmXfKQIauAWNarFYMqe4Q74/HLC0y3xonlbH3OZ69ueXW3x60XyLmniREhYSSfULQT2V/qLeRc56Y616SccEYwvriycyhZCcQa2qbB+5Ly3hhDVVrrGmbRWiLmUALCmFqKoK6XOR9EAlOVglKS4ahx2yqIICWbhpV3xW5BSVVwMNYWeaOKCogWUcMYrFiWiyXeOUwYAWEIif0wMowjAnhnSVlIScgZcoLVxSW3/Z7/6D/5L/j3/+9/G3WOq7MzGk30Gbxb0KzOeO+qY7Bn2BTpdz2r1Yr77Y5uuWSxXPKoWfDxi7f8B3/j7/Bff/CE//W/+2/y/KwhhMwYcyXOS3trLsT3dO0HR7hIKQ+hCbCl74yUUhJZqvB+XDmMZETLen2cu49tZ8sh0AwWU0pMnO4ddBKeq3gtRQCPMRHDiKZYlPOsxJSwYg6O6UnQUOrDEJT1y0zCzLSHOXnI43RfIYc/lfGkmiEEnGa89VhnCDmRNJG0ZhCpAnmZn6qoZOoeSUoJjLK705Px/98Ck8JmDfe3N3z2EAndiuXZGWgtvXGqwM2Y8SswxzPlOud4Zo5n5nhmjmfmeGaOZ+Z4Zo5n5njmz0c8Mz/0NGPGjBkzZsyYMWPGjBkn2I3xnZ+PqaKrE+cYExYXS3UNlZit5lyWiVDnQEyUN1Rifsq3LxxS6UMREtKpE0upxy/vFSOV9Ji8soIRi8EhWFRr0MqUUr+4i6brKOSrlPIMenxNSXldznGKeY/e6ZPkykaQJIff/yqUlMxC1oyxgnWGnJUUtbjiTl8LR6eTylGUoJyDmkJU56B8+vlbzs+XOGPpGsvL19cYazGinK2XkAWTKuksmaSZZA1BIGSD2I7VssW1Ddla/uBnL/j+i7fc9pFmfUZOAykErLU01mBMyz6NvHjYczdGvmpaJI40kum846EPxFTcm85Yzi4v+Pz1K/7uH/yIy2XL/+rf+dexfV+uSUxpy5jJYkgJnGsQMYUsE2h9i3EecQ1OGqwVKvdVxA1rDuROGZdHx1b5vxbhQBWTMzlTSe0M6Vh6pJjaSspvo2AUUi7iglRb48RTTM65nNNh3JlKqGmenIEWydWNLoKoRTSDSeSsxSPoHWINJkv1DArWOox1VYDKHEqVqBZe0Aht29Atlji/wugeL5lFI1yer/i3//V/jbPzM5xziFG++v4lKhAUMpYGz7BMLPvIIo3ch5H7zY67fsfbzcCyUWIYCDHQdEtab9ntbvjpFyOfXVnOzpZFfEmKYtHqWMwpMRoh7UZCv2e/e+Cz25/x9uE1TdNxvjzjdtdzj9L6lq5dsFqusdJWB3tm198z3rwh3t0T7zeMIjy+uMB7EJdZr9d4yez3Ozaba677DbI/KyQWmf3DHWG/JcVYXIf9QKsjQQJJYNmAnLcYGlpnaK3BU7IoFLJN8ba0b9u13NxsaBuL5pGbh1tsGNj2Pd41OOd5ffOam+trHh423G8eGPc9RmDRtlyen2FF2e93jOOI1cTV6hzjhKa1LBct1vviiqWonfvdjpTGMh8mwfgiDKiCpkIkD2E4CKWb7RaMR7FkYBj2CIXgHUPkvv8YZ+vcopH1suGsdSwbj9n1vHrzmrvtnl0/EmNEjFZBFvoQeXN7jW9ahhB5df+AdRZ1HjEOJ4ZhLIKXqtA1XRUHIOTEdjew6xP7wdI6iwGGEIlahQIpn5OqeBcVWj/QeIe3Amlgs9nQOIdB0Bi42Q2kFBmD0izPebY8pzs7Y7/fEZPy6sXr4tROqRDG7QJzqXgD24cHosLdw5aHYWS33XN1cclqsWC1XCDOo5LxztG2LRfrNSFlQszElBFNdCgxBOJ4x3B/zXJ9Qdhtebh+ybbfE1MAdYya8FqdzFOGkMP8XShnI5AEEsVJGzWiTSYh7HPkfjMQQxFnTVbEJLIOxfWMkOBQXsFai7EeY8q8oTIJCMfPLIL3qSDPoUzQRA6LlLI2p6uNVIF+4petrc5hDLmK6NlMI9AVkcAaOl8EGElCQgkxk4wD3yGuwZiSIcDYDNnQrFr++MUb/uHHP+H/8rf+PskausbijZBiZNkuaLxB48CPPvmUD5484cvbe+62e17c7WjbFmsMOcbygIBz3O8HXt7suN4MfPODK/phRIdAQ0vSoYg0uTiPD/sVVXIV5Axa1hgRUp72M5UMz6Wsg7UW72zVbMoalERonceZMntbsUDi4L8WIaYiUJTezKgUsr3YqCGTQBRrwTl72FsYA05qBo+cmMo4TD1mOGaDKWWX6l5NYapMJNNaRcnqYereKFPEpJXzvLy9583Dhoxi1HB1ec6HFx1ff3rG5rNP0BgxZESUmKXsU6CKjBa0/O1k1/LO2EOPXunDwxF1/3d4lU77IK3HKONdstL3Ox62gYf7HZuHTSklYu1Ur2nGjF+JOZ6Z45k5npnjmTmemeOZOZ6Z45k5npnjmT9P8cz80NOMGTNmzJgxY8aMGTNmnMD9ssCrkqumKAMHghakBqJyfN2BO5cDeSvT36QQppUJBbS6hqTGtXpIaYxS004LxgjGlv9PHmKpYoARU0gPDDkpYJAahE/CwHSuUyA7kSBAreNez+fUCX7ivPmTBIGfa6jj26S8z1jBZkO2Sop5OvqB0JFj1FwFiSMRMH2uNYaU4cs3d3zl/jGPzlcsuobb6xt2ux0pJbwrqaxNJXvKCUSyEVQKQb0+O2d1tiAg3OxHPnl9w9s+kI2n61rY35NSQMhYafDG0EehHyO7MXGx3uFMAk1YZxBJOO9RzYQQSUAfApv9wPXDDtO12KwQcyGZTcYlxVgPFOeneIOVjCGzWq7wbYfzLWIE56Q20ETgSyGcTht5as/K5yglNblBK+maK6FPJeMLkZJyoeymMTyJBBPJIif9VFz05feGo4iVciWoqzOaEEl6HEcplt8bgc43tJsOx0gyqRBN1pyMv+l6qnhVv5y1NN5jrcehiINVZ7m6WPMXf+s3WK1aQhy422w4v7hCkzIMgZu7Hfd5T4iF/Awpsdvu2W57HrY92+0eLwFNAxC5wCAx0w/Cbbjj5Ysl+7tlce2hOGMPjs6smWyFtB2IYaQfevr9hmG3hRgZEUR6Qt8jKI2zXF4+xtoFOSthHLl/uOHm/oHNtmfYDUQjmKXBumIrzMGyj5HN5oH7+1v8uMGlHcYYQoqE3YYcQyGec3GhLr1BjMUkxThl1XY4Kyxbx8JJ+b0KFoMzFhFoWs9iuaAVSAoQuL69LmKY8TRNi+9adpstt29e0283hKFnvx8xWELTQBpZVdd548BZV+85xVuD90LTOGJSskISJaSETcWx7Y2naT05ZXLKpDrec5kAEZR+PxDyiIpBrONhu61jsrhpN8OAs66keddE1iVG2yJwpZ7tZkeMEYPSOYs4S1CIWu6Cfb9nsx/Yj4H7/cDZelVIOkNJ+64ZMbacr7XYOr/mKv5CSfMfyTX9fSgZBxCyGHbjUMqHqDDGzBAyjbN4B6SRF28N3rniAhWh/fJ1odRz5uJM8G2HuhbTKmNQ7u/uCDmiBmwVJhbdAmsEZy23D1tiH9j3gc2uB9mw2Q8091tut3usVZZdy/lqxcIvadsG6wzJgBrFWUvMgVED4zCARMaHBza3b4GMM0W8TppKX5vj3D8ZYCfKdCJlE8UpHsnQCCnDPo68uX1ANCJGsNYyxIQ1pnKghbTOda0y1uKqcGWsK/OhreSwHLnnw4xyOCnqmgjGFMe1yiTym0N2j6wnYmr9KmNxKpWUyzVrPqyvYRiruF3W8aRCPyY2+5H7bY+ziVwX/kI2Wz7+/AX/8Aef8N2Pf8bF1SOss4gRUirn763gjTIMI7sxFiL77oH7faDxXS1hUVz71gijwm0/8oMvXvFrHz1B6nyeYyZLLCUMFARXSOusNYNJEZNL6Yey3wgx1gwxpfxQzopxFmszNqaSMaOKDUmFMRQC30jZnUx7HFUt/Z5zefBAyh7mZOk6flOfbzC1ZEuGQ5unnA8lGE73JYe90MmeayplpfUaZRLaUz2p+rCFUq5ZVHnYD8SUGFMA4PkHz/n6B4/5ytM1ux/9AEfCmPr5k5Cphx1b+eTDpqaMRZXT8zosu9QVuo6x073mcV09FQ9Mda2HNNIPI8N+qA+W8E9FJJjxzxfmeKZ+P8czczwzfcIcz8zxzBzPzPHMHM/M8cwcz/xzHc/MDz3NmDFjxowZM2bMmDFjxgneP1/UlM/lK+dCckhlTeVAhMvRhFMD2KmsApT/lVTCk4um8hRaHDnlzRlRQ1QpDjpScSrl4pAOIaGmOJ+sM9hiBUIowkAhRaQ6kZUY4yFQlfo3Y07cxtPvJ2d1/dmYkqYaqKRJuYCcK8E8OZdzPhD5P4/T0P2dQF5K6m28EMJYjlXb7+Cj03L+Wgm7ybWtgFHFGAvO8Prmli9eX7PoGh4/OaPfbBiHgbGPpBCKU672QLnmjNGAM5ZFZ3j/g+eYruXTl2/5w5++5CdvtvizK5ZdR+ssSUd22y0hRSQLzrkD6TOmxMvrWxYLUwiFnOgWC7rFir7veXP9hjdvPuG9x1f8+re/xl/9zl9CVPHisRbUWLIpqfzbtsVYy2q9gkbIcYSh5/z8nOVyibW+kEW2jsEUCSEgIjjnQYSc0rFEB4chdyQqOJYNOfaFOYhLhRmqok0d4Cnlw/gwxlRi6UQ0yPmQah0gpZrmPWdSiqzyWAl+g5FKNqWEILTdisv9K94ykvMO7wVrCnWYNFPlsyOxSMaScJJxNc28c9B0Bjlref5kydMnF2x3N7x8+TN++MnPyPG3cMax3w386JOfcb25RYxFjCdE4X43kCox3PdbNI9YSTij5P0DOY08eXTJon3C9voVr+4fUDLOGa7WZ4Wg9h7jGqwpDnTvLLZtuGLFfn+DppFhf0/TLIj7DeO+5z6M7O/f0CyWhJDZbPZ8/uUrBhwBTzQe5+BhswER9iFwe/8TSAlIGJNotKNJAxYLWVj4FjGWURODBixwuVpwJspI5nY7EjJYI3SNZdG4ahkXRIVl25BSxDpDawV/sSbkRB9GXl+/IKdIKw4RQxIlx8TKey6uzmnsJdvtiKjFiqGxwvmy5eJiRdbM7d2GV28fcI0FUba7TD/E4iqkuGTvNzs627BsHE3XYVMihkiShJBRA2OMKMXNaZ0nxZLtAI0suoYQYiECjUGsLcSyEYw4hjGyUSEOyt5ENAud80hbSEzXOaIKEYiU+efN9VtuHnb0mVJ+pPL/SYSL1YLGOESVPA6oZqx1OOd4dL5i2UZyChgyy64jpQalEJ5JhevNPaVoAmy3gWEcQRLWedbn52z7kfGhON0b1/CzF6+KM7RxXJxdYrLBtA3tosNdNTzc7tiPG7IEWpfp91csFgsWyxXt6ox9fskqW6Bh0S7Y9j2fv3zN6+tbohqWjeVy1fH04ozr91/za9/8OmfrJYvWk63QLJdo44neEPaW/X7PfnPL9v6ay4VnEGG0QkoRNa4olIeMINVfXAlTY0pWiKiJoYoBsvCkIXC/2fGTt9tSqsKV9nS29FEh4QXN9rCuiBG8b2japrzWlBIcRVAqE5W37jiP2eqEPjmeNRmxE1GccMbVWUfrnDcRwcXRPg6BGItAWL5GUoKUMiGMfPnFF+z7PepAjEPF8vb6nk+HL8i7RLdYodaCASMJ7zx/8Mc/4kef/IQUIkomoqgY1Fn2Y8+yWXK2WPO1Z8/49MsXvLy+434/0CxWJaOElP1DGgM2K+IN13HgP/x7/5AnV2d87WzBwmRuNw/YBqzxGOOxkvB1r5E0k6qAXK4rE2NkGCbxsV5/ymVfUvc6SAN1zxHGgS/f3rEPEePtYW3QKizHNAkIZS7yzmGkHuewaJVvyvplULGELPRDZNMHokqZe09KUp0KA4eHKvTgxz4Q+UVUN6SkcCjmVfdkmul3e9rlCtdYNBlev3zBb/0P/g2+840P+MgG/miz4XzRHNfSKftIrmuoptOL+MeAvvPd6dZx+hy0iHVd52kj9GMpRxNTLb+h/ySfO+PPE+Z4Zo5n5nhmjmfmeGaOZ+Z4Zo5n5nhmjmf+acczh8v4ZyCemR96mjFjxowZM2bMmDFjxowTfHCxOJAdk6tUKolqKrGtVUUQY4koQ3UoZgohX1xH1ZkDpSi8KXXeJedyHNHqGjOHNNwxAa4hZGWMiR1gXINvPMaWtMgiuaTgl5IK3XmHqYKBETBaUuubg/FGjxadSpKIGCRnJl6l/OnE1Vx+c/L7U9K/usZ+VYB6YvABiiNXinuvaRzDEBA1hdCrr8n1CwXNCa0iQik7UKJnNYrtlnz62WsW3vPk4oxvfPQR++2Wm80N2+3ucP4ZyAKqltQPNGdrLi4vGZuWv/Nf/h4/+PwVP73dcv74PVbLJY0zNCi568jDSAgjYRhoRBELFiGr4dXDjvyQ8M6x8A2SeuyoXHnH8w+f88HvfIt/5S//Nr/19a/wax8+Y3/9mphsTVmeMSYRxpGciqP69ZsviSbTOcvz5YI4jqRY3FmxsFCFNNGjiyrWv5duPXbgNEbfEXakiiZaCP7T/pxc9qm+VqtzTqmuLikp3ieRQIttcGJfUFFCiIdU3TEmYuwLgVL7NcZICqW8im/3hHFL24DxDcuVwbeK8Qq29JmzFs0RaurtxgmkwLjfsd1v0DSwALwx5DjyvR98l6gj99sHIpmf/uxjXFbiGNhv7tAY2I+Jfoxst4mYDDEpKWWiRKxTHp0teXJxztOrNRfrBcvG0xjLm7evGWOkMYZldIzccXFxRusbbFNcy0PYMmpJ8e9yJsZESIGYIgsjNEZpWg/OEvueFEYEQwdcrjque2U3RO77kSyGL14+sBtHNv3IMA6cLzsuF54n64ZuochujzUesQ3b3Y7Nfot4S7vsGMOISZm2a3i0WrJuOsbq4haUrmlwy4YUMv0+0I+ZcRgxVggp4Vxx3FuxOOPBeCxFGIwxEkNCMkSTcCLsdyNd04IxRIVFd1Hu51xcs8vW0cdAnxWvjrN1i3VlDsIIrb1CQ0ZSpt9tyTEX0QnAWGJUYqyOSCc03tI4h3WWbtkxxsg4xipsFUf55HTVSk6GFCFk2q7jYt2iJEQy3gjWaREJxJDFYRpPjglnLNthZN06cgiQEsum4cwm1ouW1js0N4RxZNF1LJYLVoslYwh13CsxBlJIhBCJYyIF5cnykiFFhpzJjy7JmOKc1pIVoT3vikgSE8ZYrCjOWZwtpOnbuw277Y6HDfTbO548XtPlFomG0Pfc3bzl5lrZDyNv7nu+eHPL7XZHHyLvPX/K+vyc5ZhY7CO7XSlJ8zBk4s09i6bhmx99pZSOCSP3d7fY3Y5F17FsO1KIbPc3iMCTqzOSBvq7HTea2YcBlY4sSpIyLxxLKBWxkVQzE4SRu6FnQIku441hve54fn5O61qscYgt7mgjUtYM73F+WQVOCklr5SCOG2MwxlXBnLoO2lquAKSufXU1O7h6MQc6GZ0E/9ofk4Y6keJulQ9ZHpSExoTRIjyoRj6/2/DlF4H7cUs/9BiE9XrF40dXPHv+jHZ5jjpfXMKxR1H+J//j/yH/0r+85T//B9/lH/ze73Gz29HnjG87mmXHwz4yjrdsNgP3ux19VMR6cs5Yk0gpoymRouJbT7teEAU+eRj53/yf/t/8j37n1/lXfuNrfPP5BTfXN2Qp4oyKYnIkU/YrGFOEr+qUBkGcRbKZknKQcmSIiRBLeR+VUO6vENhst4SYMeJwAiHEw31QV5PyMIAAYkrbc9xDiEgpUYEhhMTnn3+JTYm7h3tevn7N9n5HiiMhBMxhHyLHRxXqQw6TaDEtjuWlpyJ5eWADhKjHsiApR/a7Is5mgeV6xaP33meI8Eff+wGrpmRVyXW/BRlJEWKAMEKbpt3L4bp+JQ6n/65A8kvfpWUQqiZEfB23ghjFGjlpixkzfjXmeGbCHM/M8cwcz8zxzBzPzPHMHM/M8cwcz/zTimd+Kf47imfmh55mzJgxY8aMGTNmzJgx4wTWyMGBU4w2ekKSF2GgEOSFECEX188xtXT5vjiIpihwIuRLCm1MSYNvxNR65opFMdagUsLfbME7QVypPW9MIVBLoFgJEFWcc2TV6qzOJX35FIMWvYBfIPwrgVNSWh///vMwpggTvwzyc0GqnvxbW+pELyjt0jSOGCKaMjkpxroDiQ1aXdATUa1knQL7Qvb4xrHrt7y6vuezl9dcrc8LCVHTiGuuDnUoQo8IzigpW262I7/73T/mB5+95rZPdKtzGm+xZEzKkAOaYiWihEwmxgzGIpqRFMhjALFYlNZlHq0c7z864+nVJe89fcrXnz3n/cdrzp1he3NNjFrSgBuKG68S71aKSDLGSJCMt4L1pqg8MrXZRKSUaxFjTgSq2sLv9J2ejNWSpvyQGhslm8OB0WlYVEFAqe7oSQyor5nMV5NYNp2Q1s/CUF3MhdATbY8iAoq1BqOuuiMF1YSm4noVLY41qffCqcMNI1jnyM4hYkENSYSEsKxpyfvhgX/w+79PSJExjqgK8azhvGtYesfT85b7QbhnIIWM5pGciqtYKmelWdntem40s2qE96/OQDObXU/sE6tuhbWGhDLue8bX1/izM/zVJbruCMOWPvbs08B2m9juAyGNGMm0WVmowSqQM2EfUetwzrJwnqcXhiQ7Qh4ZYiZYS0jUsWxYL1ueXq54tl7w3nrJ04XFxpGsUssYZLQSbiFkhmFk3XSIsaQYybkQ3opBdRKciqs9xsimTwzDiHcWrGM/DMQUSbmk7W+dx/tSwkRVyCGgqRBlapTGeRrncQZMztw/3DP2xREvCqvlAjNaomasMyy6DuemdPCCLkBDJoVEGhMpQ0iF9E91fhXN5FzJcmPIKWGsYdk6vDc4McSUEQzWFyd/SrmUSciBrjEs24azZUtOI8ZarBFaZ8kpMSQlqSDOk4xy0XkcK66WHRerRZnBNONQzrqGxpbzwBqSLlmvVkVk9J79flccq8YwhsBuu2G33dOnACHgrcNbocOSjWWIELOScpn7u8aRXc26MIbiIrVSSkYosGjovSeo4JYtpvF4HB0dV+t1FWAHNAU0BawUh3BMsNvuGcaBFDPrZcOiFdQKBqWpAt1uGGh6i7NC3/eE7Z5t09B4z9u311xfX5NzxBo4W7a0uxEJAyGOqJbsAdZOc34hbQ8rQhWGMkrIAcZIppRlEITGKsumlNkwzuKcxzmLtRbnXBHZpa6ZtU6MqaSziAHj3+Vbpayt75DVVezMgNgiKE1/LeU+yt8NxR1dxM5yVK9FBKT+zdUyJs4avINnT5/QXb9Ehw0xBKwkHl+u+fC9J3z43hOy7VBjUSDllpQSuI6L9RmPlit+44Nn/PTVa17e3PDy7Q3Xmy37YWSfE/fbPdaaKtyamjGkCAQ559ImztAYS2MccdmyT8ofvr7BL1s++tqHfONbzxn7niEEkjGoxoNo7Iyry07tMynrbynHoGgWQlJiztVdrBhTykXkrIQA/8WPf8zHL15z97BHxBzWizL1lacESncd9yGH38lhkICU/UbSRNe1PHn8iFWz5P7+jqZpsNZMq9ZhnSlZXo57jXceXpCJa88normpD1WU/U85Dz0IFqvVij/++BOMZHj1mu+slgw5VYFAQCM5RXIYSWHAYOqebvp7vZRfIgAclutftt1SKAfJR8OzKDnFIrbnIuJqPmas+fk92IwZP485njlijmfmeGaOZ+Z4Zo5n5nhmjmfmeGaOZ/75j2fmh55mzJgxY8aMGTNmzJgx4wTO1rTDWuO9k2BMAT0QmjUIVkWNQVCMFpdeEQRKPXsROSEktBLGlRytTlYx6RAAl0AcwJC8IRt7dBMpYKdgvogTzjlCzpBq3fop6JbjeR81jhqcHyPzXwrVk/ccfverX/8rjsIhcq+uJWMMzhQiLOWM2upKq69trDk4uhUYQibVa0EUaywxC3ebns9fXfPND9/D1mvOVZw5ROkU4sPahjEqr+83fH59w/V2RF3DcrHACZgcQRMpBVKM5f1SiK6YFVIhVg2ZdeNwtmHZeK6Wjq8+WvLhkwueP77ig2eP+ODxE1oXkTSy20aMWxYyTip1VsskmEpspKwkq2QB4ypZLtOXQaiuajGFLJ9YD/gFZ5SiaJrcz9M/JS27iGAmh/O7PXQg8aQyG5INk8PsKBTI1I0nBEftOSmCRCGHm0K8aCHTive9vM74QuylmBljZNhHrI3F/VoFNLSUX4maGceEZoPmQkyPVQCyzmE8DOPIZ1++LMRyzlhraXTBQpZYt6CzntEog1G8Ke65lFMRnjBV1BP6MaIpctc6tpc7oJC0Xi3EXByIOWI1EH/8GWHZIc+fEL71FcKwo+83bPs9bzeZ3TiSNeIkM5qRxrjCSsZMCjWjQS4lTpaNZ9E4ujHhh0SeNCIjWGfoGsv5quFy1XK5aFh5Q9JcUrMnxXlHZyrRHBMx5uIIRYqjLkayO4o8hdzzJc17yvRDIMYExpCyEMZEP4Qq7liMAVMFKm8twSg2lywB3kC2JbW7M4JoYhwHJFucs4WMt4bGO3wVP7umwfk6D9Y5Tp0hYQ7iSKpiJ0lpvEVTREVxRvDOksilRIJRFEO0RQQp7kqwClYEI5achdWi5Xy15OpsTQgDzlucM3hriONIMyZiUrIIIY2cLxpWbQsIq7YQ/qJKDiNni5amlpzAOTCW9XrNYrFARHFGca7BWscYA0IuKrNGjCacFdQ4EkLUcm3OglqDFcG7QlwmtQhFUGxaT2cd3a6n0UzvLL2xBBK2DxhrwFtSXUu8s3SNY9l61osWjKXxCTEQxrGkll+2GGOIJV0CFsVZuH+4J8ahrH8I282mCK3W8erNNbd3d3hnOFt1PLpc0t7tMbGU93HWlLYRIaVEnLKDSCn9kVM+CgVGySSgZBppjLJwhsaUNjQGnAVnBWvLnJGJlBnKYKUQ/LaugROpLZMGOpG5nE6XcpjRpjVdlcO6bDmWdiprVa7LaJk3RaSWjyjv8wYsBu8MbSM0jS/r/GFmzDTesuwaVl3DqIaMQVVJxhIA1cTSWr765IqFNTx+fMmXb97yyc8+55MvXnH9sGHT9+xjoJGmPhxQ7hPVkjGAXF3ipggIVizr1pHikhfbge9+ec1vfXnNv/pbv0ZnPWboGXIspTtyKangTLmHTS2lUvqJA8lfSmNUV7BqmedNPO4v1PG9Vy9wRogx4RpXRILaFiklkFoiyBhEqzhwwpaXjC+C9571esVqucA5y+XFOfv1nhgGnC37oF/cuuihr6dlb+rzSVSfrmX6SDGW06JWE3mvFCHh+z/6MUYyz8OWrvGMY64PjEzzVyn9kmPA4OpxzeFoUrO5/MIm6k9EbXut67CU+yfnTIpVvFXImg/nbv7sNYIZ/5xhjmfmeGaOZ+Z4Zo5n5nhmjmfmeGaOZ+Z45s9TPDM/9DRjxowZM2bMmDFjxowZJ2ibpga/JUAzFLKsUK4QAWuqS0Uz1uSjWJATzlYylxIgF3KXEgBaEGPq6wvBhwgyuUlTpu8HfFa8LQH5jvL+rLkQL9aQJ4HACL5xkDJZgJwqw681YK4O2WLr+aWGnHpyiBSCtrhuyu9Uj+mUf8EJ/Y/gzDmYaavbx6rinSPH4pCLKSC2XJ8RYbVocJIKEYfhYTty3wdUUukEVdp2xcN+5OPPXvLtrz3jw6tzEpn9MBTSrH4impGcsHbBbhi5ffHAkCOX5+/hmxZjBZcTEiOpBv0hBgKpiC3GEBDGfsAbZd1avvH4MUvXcLFseHKx4BvPLzjzDY112N2GN/olq1Upe+F8g8VjNWM0Yap4YSg6jxEphLURjCtuWOtsrelRHINWJvLp2M7m8H0lLDQdLrl29kGYwVgmZUAqiSE6CT6V5K8EylEIm8ibY3ptOXGxiWglqSbHvNbfC+oF1ZI5QKaxSCG2us7S2IZhl7nd93g1rM4GNvcDccyQIcfMOCRSGkghslqsGEdlHBL9rqfTjGs6rLfsh4T1DdlASCM39xserxtyzEiIpH1P3A1ILuKTbxqGhw0xFwHGeA9qyJrJMfHi9S2hH7hYei6WnvP1JXe3b2EY6VLim1cXDD/8hO0YeHh8RXyyZoxbQr+l32758m4gi6dxgvMGSWU+yCGhYyz3Z+cJKTH0W1oarHF4ozhRhhDRmCCV/nPW4iRB6glDYqQl58wYEyEojx89JuXIdrfn7mGDF4uhkDxeYEyZ3TgQcwZNtI3HugU5CzFlUgrlHqgkdcQiast9I2BzhJAQKzROyI3DJqE1hoW37DXgncc7izVKHPPBGayqjOOIdcXZ2jSOxnmylDINw34gxYRgiig0RgTDvu8JsWQnuFitIYwkVSwJm4/EcA6BmIWUpdK5guRIY01x1fqGfWu5Oj/n0cU5Ty+viJQSLMaa2i8jYyju8M39Hf0QuFivaNoOaz1hHIFCcO9zYtF2nK/XdF1LyhnTdCxWK5z3DEMPxtDUkgZtbVvfOrplw7jbl+wLxpBU2Oyr+9k5fONwVgjjgG0ajHMsFy2qmXaxoDUW//YGf/1Av+54WLa8fnVHy4KwaLhZNLy5v+c73/wqZ4uWs2VH0/Q43zKERMiZDAz9WMhvA85DiIkUIpoSC6+8fPEFSUGs46MP3ufu5pohJIYs3G8H3tzdsewarLf8xpP36V5vcOOIEzhbLdnYEUmZoR8xpmV0Fs1lDolBEWOw3uJbRyMKLrEwhjPruFx0jGMRucVoLaFhy3ucBTLGCMZYkvWVIC3ZQjBFRD2qy4XwztO8WYXZU245p9ImOonqKVVC/JQ4LgIROU0z7eEIkVouIpa19f72hmHYgyred4T9wH6/Z/twz371wKCOnIWclZQCoyh9CIxjpB8z6hou1x2rxXs8PT/j+eUVP3v1hpd3t7x+uGOISozlHI2BFNOBtDYlhwdJGwAaiTw+W/D2Yc8ffn7NF/+3v4ET+PbTK8685eb2mkXbVLG6XIszpmaEqc8YaCGkdRL4tTjSjRVULKlI3Ni6VmvcoxrJRks2lkp4K5kYAghYa/HOn2jMVcxXSvkca1ivV3zjo6/x4dNL2q5BgM3bO169/LJk1qD0rR4epJh6RUt/HR6KmEh6oFZMmrKtUAV5Rckx1/murncq3D1s+fhnX6Le8NsXC9ylHAUoDGWLkckpkVLEnZRqAnscZSJHh/MpjprGu78+CARV0jooHpkcAiEmxpyPZZ0oS/2MGX8S5nhmjmfmeGaOZ+Z4Zo5nYI5n5nhmjmfmeObPTzwzP/Q0Y8aMGTNmzJgxY8aMGSdoatppAdQWV6kVU0WBEtAKUgl4z8o6tDpBU04lmJ6CTiZCojqAq+M1A6kSqbm6yASwztK0FhUIqtgwEnsl5SIkJCkOoxryklVwFkCL6GBtIW/VFGJ+cpz+PCrfMTmSy3ukUthHOsWYo0iQUjq+/U91Ses7AbJQarenmFivOq6WnhwSP319hyw9XhIuR3Z7Q1KwVnFWsQKtFYIaUqZkS3ZCzsK2D3z348/48F/9q3SrQGMymiLRtlgUyaXVUwpgLW2zZOlbWt8UB6omyIEYQknvHCMp1nr208lby2XbcrlwPD9b8tHjx7gcaIzS6Uh/e4c0nrZp6BYLumVLwpLFIaYt9epFsOKwTgoxLR7TDhjvUBPBWpIK+zGVMhFaRaNCCVUH2S9H4REmJ3MRG1QP7E71Rde+KCwYKpPQoAemIuvUX8eU7jnnklLdHF9TOJhC6JMsxkl1GebqfuQwbqyzGGfIsYgFgyq3+z3juCcOPW9eZz79bI+qZ3nh+PpvnoMKMXWl7ImFZdtx7yO//+Vr9p+/oEX4dHVGo5YHVXZvb2lbz6pr+dZ7K7757JKVKHkI9Ps9zlsuO8+FcZy1I2mfuethSECOiPGI8RhjWa4MnYNLZ3jmGi6AZBLj7o789ob048/4+t6yGwKv0w1f/MH34P0LolOiM6hCiBGS4DJEC0mFHDOaMjEnUhiLW4+S1ttmxeaITSMmC841LK2wEGXpRhaiaApsQ+bRYkFnPEaroDXuGfuBnCJdY7HesDTCwjq6rgXbcfP2miEnfOPoFitEi3sxJMUgrLolXVuIfomWbIUQlRwSybVgSjkLSeB1ZNktcFgkKZISGgIhjOzDwLLtkEmkk+JwfdhsSCnjjKG53yLek4BhDIXoiwnRcp/71tN5y8WyZbXsWK4X5HFFCoE4DAzDgDUW13ja5YpdVDa7kf1+YLff0y7a4jbvOlarJbu95dGjS64ur7i6fMQ+jBjnsM7jnCeOfXHdpshm88Du4Q5rDM57fLfGdyvGfs847On7gdVqWUs/OOKwR/wC23aIcTjxiHE0vsFaj0kJdZ7F+hJq+Y3YD6SUyJp5okK/72malrbtcNYybO/BCOIswYDNkHZ79OYOl0bkJy8ZLles33vExXuPsX/wE+5T5k3nefn8HDFfZ31+wWrZsTrbI/qC/ZiJWfC+ZRhcdfkX16U7d2UNycrCN4AwjCNjinQry0VYY22Da1fchoj59Gelf1cr/sGrW94wkjphYT2MlsWi4enzNd/61iOc61i1vrRvzowhcXZm8Q3EFEgaubu+Z+MamvMGuWzxmAMpXeaQQkyXOa6WjpGSyl/EFoI0FwEyKxiVE9Faj+n4NVWx9GTWFMHUkgVZc3Fqm+Pxi6aeD9kajszutD5mVHI1ylpSLSWkOYNYjFrsQcQQNGoR5nIi5cguBIaYGWJmHzP3D7f0w55xHAljZNl6vvWV9/jqB8/YDT3X+8Cnn33B6+sb+l1fy1eUjBsKaFSCBlJ1qVvjuVyvWHQL3t5c87/9D/9j/q3f+XX+5V/7iN94csGYjyIxORIThIMIMq0/dd7PiRDTIWEHxhDxtaRTJIaRcSylVtq2JeeyvphauiLmRNaS1US8p+xV9EjaIzgMkiGEyOv7e54/OsOOIzFF9n1f+lZNedghHyXzLJPQM0kFJzCUJzEUTBJMSZ1SxaPyFldJ+SEmmsbz6GzFX/4Lv8kffPwxj29uGfZ7Su2ddNjjoQaTFEkRYkToCrmvJw8o/En4lct55rD3Oqzh5aEK3zq8gRQVK4qjZIGYMeNPwxzPzPHMHM/M8cwcz8zxzBzPzPHMHM/M8cyfp3hmfuhpxowZM2bMmDFjxowZM06wWi6Ao5umpJqfyjEUYjVN7mHlSOjWwC7XWG/ylarUcFyPROtEshsRnPNASWPurcOXOJghRYa9YMfxJJ1xDe6lpDrOuZB93hjUKIMcnTlS/zuF1vdy+mXgmKC5uMhSvc6DW/aENPhVAsGfmvm4EkA5BS7PzrjoOra7gVdjBCNY6xHNkJUsiSxC66DJFk2lbEZSQaSUzhAavnh5w09evCaFQOMcmnNxSKFYhEhN7a2CZENrPVYAjeQc0RRK2vyUylcVFsg1XTiJs7OOR+uWR8sFOgyoSZXktcWpXvs4S0ZjII2eoAGy4H0G78BbJJuSKj1mhjAyjD3GKhghaWY3jOSkaC6CipKApoyxqW3l1IUlh7IPUsUewbxDlWjOh/eKyombuQzw6bWm/quHEaNoNtXdVcdTHeeToa246IoLurjpIxzGN4XQUcEaR0qR++2GIe25fLTg7NGS/T6jO4vzHus8SiHnQkzknBARcorsQ6TfBfa7QA6Zz2WPoaT/F9eUvkiJTjILA50xWHGYxZJdGJCYcFZ5srRsHi1p98JdD/ebPTlRSwQ4Fq3hrBO6xmCsopJ4tGjwV+d0KIsffsmYAnnd4a9W2F0kPfSMrWUjwhAMm92exgmycLBoEGOKE1cznfOs2wXWlawKRjKYRNIiHrYh8WZbiENIXLSOi0WLN4Kpc0KsJLOxZVwbY3EqiElQTfWaMzGOqBHati0ke8psN3satYSQySHSOIdRJYdIiJEcA14EsYYkCqaIPYaSEr/1CyyFqMs50XhD44tbWVxTSrmUpPdYLzhniblljGVCHMZEHjIxK2OKJe0/sGgari7OWZ8tsTnjrNAtWrpVi+Ryfv2+Z9jvyDnhrGOxXrK2HVeXmX4YeHi4x1tL0zY03uN9Q9t4ztYruq4hU9rMGlvISwyIPbgku8UZRhyaE0YMTbfCdstSYqRpaLuxjFPvSukfv8A0HWKb6sptMDaDdah1iLG4KZsA0GiGlR4yT+QUOTuLOOexzgGGxWpZpV8hGqFRuN+/4OG+Z/jiltWQacXjuwXri3Pct7/GuQqXi473vvqM9z74gNWiw1nD2jd8xViGcWCIEVUY+lBFgiIUGG9RKZkRUigZPRZdQ9aMswZjLTFFhu09d7seq5GQhDcPD/zwywfUKVL7+fZ+g3h49v4Z3aohRfDGgCopZWJKNN7hbGa/6zEm0w+RPCqveaB/rpx1SwQhoqV0gC1rESLkKhCU+8mVVrVFIDXWkKtuaShlGw5r0mHaPIrWB+2grtdSRYODCGFsWce1ltI5Kf9EfTgArWuKEUQcbdvgvcOO5Zqtnf4mJfOFMeUepRToKaURpJSdMhGllIEqa0NiGAdCSqQq3mpKR7dsrgbaqoJkpYh2Guuc61DvMJJpLVydnXP7cMvvf/olXjO/9d6/xIJcxqFmxLhfoLWnlaFkuDA4aw/ZNMqHxsNrTM2GMG2PDAcbMYoSc6wPQQjOGA5PKNQ9jJzsM2LK3Gw2jDHR+FJSpgh7Tbl3KeuR6Ek/TkLB4YyEmv7juE5W0aiUNSpi1JTtxljHmAMhJcahZ7+5J457ssZS+utwKEWkPoCh1aFcRQOpa+fhE6dF8HRPdDL+fmGrdNS2mEqR1Aura2opjeLF0XhfSt6cDuYZM34F5nhmjmfmeGaOZ+Z4Zo5n5nhmjmfmeGaOZ/4s45lfCjl9TT69sP+fxzPzQ08zZsyYMWPGjBkzZsyYcYK2bQsRpkUgUCJiTA01FaOupD4+jdCmeFCkpp4+ifpOnMxT3Co1yHNYfNOU9Oti8M7RiSWmjI4jdugLGZsnkqIE7qY6tYnFTSumpmzmmCpY6ucUEuR4oiJy+JrkAaZUxPXd0/t+XhD40x3R72IiqLUGzFqJ34V3PL0446tPLnjz2Rv6qOAc75+1LFuHSGl/USWmSMj1TKtwY4xgcGx2D3z25Ru6xhdH4gkxN7VCERC1EjupEgwJrTXsi0CQq0DAQcwQhJSKzODE0FpbnFBSUk8bKolqDaY66A3lnCUrpIzaRAm7CxFVY/5DX1gjJIp4FFMhfaU69ERSlTvk0DVycKqfuACru6ycvDmIU4XBOSFjtJz3xObogW2aWskcW62wPQehrBAleuAw1FQyaBIRJNeiJYrmTNaSaru4MMt5DnHEeDhbdIh1WBdI1uC9xTqHWENIyjAWIUUV+iEzDsp2zPT7xDhGQkpYI7x3vippzLUQ014Uk0uJASuCbVqilnTfToTFouHROpGtkETZbHtiypBL2ncjSucd3hvEFTPl0lo6a+kwtPsR9WAen9G+94ilJvqHLXls2PuGMRr2QwAsqkX4K6JPab/WObx1OOuq2zzinbJoHRGFIXK764lS0pN33tP6Qr5bSnkIK0VUUlfIdDFlJBoxqM3VJV+IeGkcmCIkDiHgomItaMpoShhXSPEpMT45l5Twh3tIi2in5WfnihuypE9XWmdpnZRSG9ZXmszgvNC2nl1IxCS4mEkI/WY4fLamEdM42sZzfrbkvedPWZ8tyX2PqOI7j192pQJMyjTdkmHRkULAGGGxWmObNVhDjJHzsyU5FndmKdVjEetYLDqcc5RyAqaO7Wk+MvW+UqxraDtLTgERwfkWsQ4jeijTIrXkgCKoNUUQqE5ZYxzZNqgxRUTg6FysOh5ibZ2GcvkcLfd7yZQheLMo96VCEGFhDOlyIJ7fs8uWrIJFcAppGFlenbFcrri6vEC/9iEXZ2sM5fiuaThzDYsYCTEQY2IcQmn7nEs2DjPNzYW4d84d3Mg0hrEdGfqBYQiEYU9jhZgzmz7w6dt7zi9aFtbTqbDd71l3Dcu1p+0c/RBwGLSWeCmlkoq4FEMo5VKMJStsw8ioGeubMo5z6StrzIFkr5PfYX4sVZTKWNVpTtRcyfNpfpvWoOP6p4evw0JcSepaUqJ+iRRV7kBgT8dUPXxGmXbL671v8M5XEnxagKbsJZPgXn8/iQZZMaas5VZKqQtqeZRdPzKEQFbFGMuu39ef82E+PYry5R4va1tVlE1CbNlTrLqG2wfD/X7gdttjmgafR2KilP+o5LbU8xaFVFsoA0ZL5gut1w9AKqUfio4sOGuLfpETro7nMra0lq4oYrWpIsFR9D7pIyBlZTeMhBhRLaVbxJT5bcoR8qt2IIf91c89rFC0jZqbZlom8yQnCFrPN8TMdt/z+ctX3Nzfsx4DWWwRE6lrYlUnJgGFQ8sddxx6GGm/HMdu+2VPVejJkY77FxHBWIu3Fu891loOJS9mzPgTMMczczwzxzNzPDPHM3M8M8czczwzxzNzPAN/dvHMAb8injk2zJ8ez8g/yuf8Y2J+6GnGjBkzZsyYMWPGjBkzTmCtJYuiKR1KIOScmZzG1ljESUntXW3QYgpp3IjSOE9xSCupJuSPqsSaMl+gHMMUR03XdUzOHmsMjWvI/VgcjiFUIlcnDreIBJVEyZrxzmGtYGzC7IYS1FdupTi99BDQijGYiWSpaZWnIFTNFGgfA8/TEhByEtTKLw1wfw6TcytXnaSGtDEVAmbpHX/1N7/Bxy/f8rO39+wF/q3f+jV+5xvvkRPcbgZ++mrLdveSnow1EHOVBaUc0/mGT376BZcXF6zX57RNg6lkiVbGwFhT4/HMOGxopS0u9RRJYyTXdNWFy7VYAWsM3hg2+56b2w0LVZ60DevW0DjBW0NjDV1jWTQe70tK/aZxdI3DNx7nG5z3NK3HuuLywlo8sFosOFutsa4h50iW4orvlkt805TU5MYiOHKemBQqqVVJL61lG6rbeRJ9dCL0RSlu50n3OBGCZGpHmX4odMNEokzCQhlwp91Jlkku4yAeGFWsdUAhAnNOjHkghkRxPCveGZ48OmfQSNDMYmHJpj0Ml0wijZFhH9gPiTFmUsqEMUMqY7Xxxb3ZNI7lagX7EZsSjVWc8/TDiDGFkF0vz3DuDNWMGGGxXrIaYK+JPiaapiEPxSEfx0AYLdYtcG1Jv71wFh8y45tbxh9/wfmmp/vgAr7xlOar7/H09R3XP/sh964lLS8YkyclsMbTtktyUnb9DokZo0J7fkaKoaSO14SzkFLpSm8MjQjEgFGDb4uQEnGcNQ2PVi3nrjhuU86EGJBxYIyRKEK2HrWCaiJJBiljdLffcfewow+RxcUli25JGiL9diSGEbUWnMF5h6kkdkqFDLMk8jiiWlyjMRXC3lnoOsN553CS6RrDarVANdN2LYtuwXK15osvXmB0S0iZjOF2HEkZYoQwJlrvubpc8/zZE77xja8ixvBwe0sIAd+1mLZFE0hjaM88yzCS44gINE2L+BW+axELKfT0DzfEMZTSAMaDGKy1JfuEGKyUUjOlzEkpdaIyCQYZ4x3O++JYtZbJpVxEgEoUYisxXObWQp5KcTeLMLlVOby33DhaJ0Ktop+YUkIo6vSzQTF4W9yfWTP+fMl7zx7x3kcf8sXPXnJ3fc8YA3p7z/2LL2m++gHnT65YfPU93PvvE/qelFLNTO9QazFuQWcE0UwKoQg8OYNGQirEqebMoutQLWuf8x7Teqw4dts9brdnVNA2oP0A2x2jCrsIaYhEEucGUhLISoiJMUTE+pLGn+Kez6KH+aVrGnzXQIr4pIScSWKrSzeCsWVs2uogrmteESXr/GfMIQODkakNjy0/CQETyf/zIj3VQW3MJJCWvp7O09Y6OJPokCZSuBLxRUAtBH3TtHS+oXGOJJkoenA6p5jIExEvBoNFNZZ9gEBjobWG6C0pOYbRoghJhZgVzYkXb2+43Wzow0jj24M7uFLx5FwpbwWISJ1zxVpw0Gnga0+f8etf/xrdaok+jFgRMJYscnL1dS6ujnEjgrXmIBBMDuGOXAVQ8M6zXHQYgRRDKXlkDJogp0QYixBfPs4cznVaWpQy30wO55gyYwjE1ODFoqSyRmpZV8rrj2uWqWue6C/uS0RK1pGkqRRbqH053YtJasYVIMbEdh948faHbIeernWMZyuSXRfRMU/lQaa6VHXBlGmsnXz2L+Pu5eQVv0ogEJjW7Gk9xxpQg6jDGUvTLbDeI4d9zYwZvxpzPPNnFc9AmWvneGaOZ+Z4Zo5n5nhmjmfmeGaOZ+Z45s8qnuGXHea/JeaHnmbMmDFjxowZM2bMmDHjBDkrMUZSToAWomlyaalUd095XUrpQPgrkLSUjrCmBNbDOJIUNMZSMz4nMNC6Fu+KE4yskBNJM2OKqM9Y19AtliyHgZt+Uwjb6oYWU8oKqGa8MeQYsWIRVZyANXIglqsf+0Ak29OossagmRI0T+mtT3MtT4LBP64jurypfFZxElcCRhXJJcReOMu3P3zOv/dv/DWu77fs9j0LifzwJ29ALBiLF1g1hoRhl2Aci3tZtdBt3jfsI+TNwDbc4y2kOKWqnoiIfOi/YejJOR5SS+dciOgSoJd+TTkX4mO5IJHp93s2+57tfseTpoEEmg2qFkkNFsUZwVuhtRZnDc4avDM4V0mugwu9ELk5RWKMGGtIGULKjCFW9/H0egPUcgJVcEGP5IFWosFZV/taKoFRfp9VUaniViVHNeuBoLAcX6taBC05GR95KnkyDYaJYDHTtQBZCwGj1VWecrWNFZFDGcuZidD6BevFOa2NBE2I9OzGvpK0gneCTQYZC2nrneXx48eQlThGxn3PPkQQwRrD0gq7/VAJH4hZGcZA1zia1vP48oK77Z4QI1jougVwBzkhGmkaT0qKlcyyES7OVqCZNMRCeHYgZ2e4pxl9SLz6/pc8WXrufvo5d/t73rt8xjo1aDTcaKLvDO2ypXEWqZ8paHEvi633YcJRUu07yaiFmBMxRa43G/YpEUQISTH9yH7Y87D13G2XdNaSEbb7HZvthqfLM77xlacsrdLvN9zdbjG+RaJBR5AhsN/1xBQx1tKHwGa3w2bwznJze49vHMuupXGeWMdkrmU8vLUYBSuKs0LjCqnmrWHhPedti4YemzIyBtrVgsXFY5Znj1itLumud+wfbrF55Gx9ztPlY7CCaibHyHJ5Rtct6FbrSiIb2sWStgPXdcRCUwIGFYv4BslpUrxYXz2lDyP32wfevnrDR+8/ozkzaE7sdz1ihJSLkBtixDUdOZV51ijF/V7vhVyJyowWEjoLzjWoKrm6zcXYE1EtgREWixXWe4b9jrgfq3Anh+nvcB/rUbADRcWQYmQy3QIYlbIUWLCN5/7LLwhffsH46U/ov/eHhN3I1Xe+w6O//t+j/fCKT//9/z2f/+e/i/zoEz78X/7PWVJI6GgM2bhSGkRLURlnTSkUE0MVqhVrqhBiDOcX5V7QWibDtS2PnjRcXBaX6kfGoCHx8cuXvPn0Ex5297jmHGc9aixxlwg5IrZmcRAQo4jWTCEKY05ojkVYzxnni4DbZtjtd9zT4qwji2Kdx3uHJFud6o5D9oYqlhax5jhjHUWE8mdbxVQVOThrp7lO4ZBFA5Hi5FWOSmhty7LulvdYNVWUBau5lF8xBmMc69UZi66j3Vv2kjAG2qahaxc0TceYQFzJcCAxoo1gE7hcsnwUt3oh1DVFwtgTYmSMmT4m7nd7QsolXUMVMDTpIeMI07jSRK6CaqLMLbuHkX/ha0/5d/7FX+Ov/NpXyPtbdknL9RlByEUgr/PoMTOCICrlQAcFWQ/3n7UW4y3euuIsLwvzcfmv/7dGCKEnxWURkuWYOWYi140YNGXCONL3e2JWoipGy0MV5+sF60VH491RJDgsiWVeNVRX/9THtUZI0zRI09CPgTAEhCKyOudxzhM0kVLEILimA+9Q53jv0Tnf+soz+psv61pYBaLDrkoPruv6hMVBg/85yeAfDYemqxKXAM6wv+/58s0dL0cl24b77R232yL8HrSKGTN+BeZ45s8qnikfMsczczwzxzNzPDPHM3M8M8czczwzxzO/Av+MxDPzQ08zZsyYMWPGjBkzZsyYcYIQQgkwmdxYHALCEswXwn2KGVMqpEdWJeREtIXERCl17HOt205N5y0Wa0wNaAVvDBGtJQmU/TBgQyZkJcVK5EolHCeXVsrFldQ4rLM0TVPIOnbF5VxJZdXyHiPmEJBPAW/hcsu5mcpWFQGkBKk/H+ZOx/pVmISEAyE+EducHEoBMcUF7DyNEb797BLz3hPGqPzd733M7/7gU4aUaduGp+sO5ywdEIaEEZkqxNf+EVQsISoxDxhNFCfiRNales2KqYR5ihk1hQQaQ3G/l7PMxDzSWEeIkf2wI1fqPGQYQiTn4mA0VnBSHHs5JTQlyI6UImEcyJpJOdFSSSqlOHYRNMZSgqI6sscQUCmOy5gzNkZELWq0OLIOhUcqaT8RlYXe4VDaQ6SKAEx6AsWTag7Nn/W0BIQex3IlJYrGMB1ASXkiRmpPahUSqkvuMJa03hfKCVlkistSi2BBFJIeZCtSCoRQnbfGgCnlUFbLBY1XwHK2XpQMATHRewP9QIgZjZk4RlKIiCoJYT8GRmPIziIKcRjZbjf0MZAF9hrpx0iIiRgjaMI56LxntfAs2wYhk0JmjIHBBowx+MeXmCzcffePWVnl/PE5j7/xIevkebPLhDGyb4W7kFj7hGkNC29KeQpjq+nSEut1GGNKSQgNOGPx2eBcceZV1Y4YA2MlG7/Y9Pxwf8fzx09ZLJfEvGQwFpInv92yaoSlNTS+pY8jxXho8dnTupZRhSGVEhEhRgpHm1i2La13tNbhcibFgE0lnbtzFsaIs9C2jm7Z8fZuw4iDBLcp0ofMtz58j6uzJY23jERst0R9S7YLVhdP0NxjJHF28YhsGnIcyHEkhUDbLjB+iWkXBONr2nxf5w1LVsWKLW2iGecMTdcBQj9GXl/f8PLtNW9ubnhz/ZrXNxseXZxxsVrx6GyJM5m+70lTBgiZSrYUh2ZliOutpIdxr5iDE/own1mHiCvuTinksPqOlzcPDGPgydVFKZehtdSC/tz8WY8tNa2+UNzJk1PWoiQd0SyIOBa2ZXt9x9vvf8zmez/gcrenOeugFcY84HZb/KamzU8Z23g0lBJFU9p7Up2PCyVevtOS4h+dSPKaUl5AbPlsMb44y229j0VovMN1ltXDXRGhUyx/y0qKSvZKkrKOqEgRxE0tASAZI4KRTDZgMCWzROcQMj5kGl+yR5hKgjvnsc6VUjumONzFTKJAXaOmebD26zQHilKFOTlMR3J4X73Fanef6p560t+aT/QgpWSZqC8wAuT6WaaUHTk46rXMukbK/RxCrFOh+cU1UhJoIsXA0O+IQ08ae1IcGcaBISSGlBliKuu9CqLmsAar6NQFZczVYeZMxhCJte/WRvnO17/Ks9UCxp77PKAsMaYIU8ZSB0UtlyLmIBIUYb+Iy1P7TONXSmUYDIY8lQCq67tqPmwhnDOkVDKQ4FwR7N8pO1P7SnMV+AVjPNY4rIGFd6y6lrYp5Uqm8T3p19MoPowB1Vp+pJyD865kWKAIVE4EqfdorA8T2LIzgBS5v7vlN3/92/yLv/4N/srX3+P+P/oBtu59FAMmUW3c74gih8F1kAn/cTFdVL0na7cc+lgNSYVdH9j1Y8k+8E/4STP+/GCOZ+Z4Zo5n5nhmjmfmeOYwn83xzBzPzPHM4RrmeOaf33hmfuhpxowZM2bMmDFjxowZM06QUqrkCExu2UK61pTIExFLcbJRA+KkmZhTIeEqoZEngpRCDFgxuOrKpZIPk+O5fEwhemMKjDERQqB8WH4nSFfNZKlpm43grMNMDmQ5Vkafgucs+UByHAL4+gqqg2witSaJ4JcJBf+o+OVawjGltFCEFCeGq2XLcrEgq+V76zX7BA/7kSZlrlYNi9aRBPqQa0r3Sv0ISGGESpr3mPBVClGOzuF60aRDoE9NSZ1BFWvNgbDwYkELMdIPEawe2lM1YyXjjdBYofEWawRTJQkjYKSKEZoPKtIkVxzEGiPY+qUoIcRiBDf24O479M1EF0yOrAyYSg1Uwh1T3dQqh/ad3lLI/5L6+tgaehARyuv0nc+baJdCvh1FhIn4R0sq8iklOUykl2Fy1asKFjC+wVDEhFHH4jTVhBbWphBIVQdTLS5v03m6thBii86TUyYYg2bYp0zKgVTTkaecC/WnUsnvwoJqyozjwLbfM8RAQtnnyJBNId9COQcrgneG1lmsVCdgJWqohGrqGuTqjP7pBZu0Z9F4zhYt8nbPbjuyi5lBDLQO5xVvoLXQGMFYR1IlKsScSZPDro4ZK1Kc9NW5LxPhFxPYzHq5ZLvf8tn1hpuh4fGj4hJFHOIa8q6Uzjh3yuPGA0Nt34iJGS9CYxxJUyHGUizzV06sG0vnHM6A1Vj6zh1TwMccaBqP8Y6E4bZP0C1Q04IaxvsHvv71BYvLx6xXHffbe2g6xJTXLy8e4ZuEEWWxuiDgSMOWHIaSzcE68AukaVHXkEMAa+vYMxgD1nqMGFKOhDCQUiZn2A2RN3dbfvbyNS+vb3h9d8vLu4H3H1/y/qNLrDM8XncYI5jM0UFqBGoGiKkXygA+IZ4r+Xu4J6RkpaCKg9YI3hvebHp+/JPPuHvY8tu/8W3ev1rV9o3HmfPIZJbbujC6CAnRVEhaqKJBKK5swKiWrBnGosaQxWKXC7KDfnfH7voVaT/SrBfYyyuss6RxLHP7z8/FyOF+PV5zva5KSCpaiVtbHeC2ihhlzrLG0PkG73wVIws5XO47JQPZlGbUei+WuWpak4qga9SQBawVWu8gl3HaNi1tt8AaR0LxVTQQU9yuxrifI/vr/F7nHSOTKC0HMVsq839K/k+ikJmmOiYx4Lh2Us93IqJ16sPTPjV10prK9sjR6ytVYdAcSTGSUkbcSUkFlJItpLxWckRTQHLAasRLxltljFpn/1RduRwF2noaScsceKTwS7tb3xBDwAlcrhd87ckjVt4xDiNREs7pO4LzgbSXKtgeFpHSn0jJnKKnDXpYP45feZo7p1uH8uDBJIqj01pxHJ2H7+u+xpiSOULEIJrL/eYsrmaoKU0hh/tq6sRp2Sx9pod1zVhTRRY9PKwhlPVcc+krQ7kvcxzpNw9886Ov8Zu/9k0+fLLm4/2WVdNhrK17AXPcS/1cYxwvS36JgPBu072zHk/n9AuvKn9xvqERQ7INYh2KqVuCP3uRYMY/X5jjmTmemeOZOZ6Z45k5npnjmTmemeOZOZ75pxvPHH/+ZyGemR96mjFjxowZM2bMmDFjxowTpJwq+SmoJEQLSWKkOlUMhYBAIOUiKlCDUymGNNFjCYQaaR/IYmctaHXUiiFLCWJT1pIm3lt2u55+GNiP4RD01qi+/GwMUj8r1TTOVGJk4i8KGSH1swvMIX1wOV5xJMmBoORAP/wi/iRX9C9/w+Gf8ok1bk45EVIgpoB3ljEH7ndbEPhL33qfKL/Dm9tb+n7Ps4sVb+93JN3jbKJxEENxMhuZCAfBimCw6JQuvjCClKIH9ZoKn45zvhCxKbHuPKt1S+Md3pa03p+9uuZhu2UcR7yWNjZGabxw3loW3tE1jkXrWbYO31raxrLoLKtFQ9susb7BugbxDXZy+TmPb1sYHX2/Y71occYQUsJi8d5ztl4DDQkpAhL20JaKlnTi9XfTzxNldCoOHN8zdem7rnZ954Un76ukW2lXW9Ke1/fnOgZNjlQr3TukkdaxeDhezkVYMcU5l2zE90LIiayJRdfyvF3Rh8gwRPohYI2lsR5jLKrgnRC0kLTGOJy1RJOKCGcbVAxoxoqwbFq8FKYqxkg/DvRDz5hycae7TJ9gM2YehkTKhZzVFMkRwpBZtC2tb1j7hnXbkHNiTIkxDaRvvs+rz79gvL7l4bs9w+t7vtg88HrZEpaGDy8WnPnEuTc4DbS2wbmW3RgIw4ACZ12DaCKFjG8MYhSTFS/KerHk1WZTCS1LZxt++6Ovslre89O3A7/73Y957/EF5+sl52dLVt/8CLNYst3ecvPyFcsP3mPRdETd04cdw7gjB8FjsM5gY6TJGZMzmhNr5+lMSdduTGaxbPE1o0PKGeks/nzN9ZD5wcsH3gyOZ4+f0qzPiXg++f4/5Kt3G86ePeLJ0yfscyrp6o0Q08jy8gr//AJBiWNmHBRMg20T3oBqwvgO8Q04j+4eSn8K4D2LtinuabGEIfCjH/2QV69fst3vUfHss+HFw8DrTeTlzpIfHni7H3h1e8vb69f8te/8JZbe0pjMEGJxtx6I5ZpFoBKOgq3DeCoBYCphX+aRMvNmjG3wTUPbdfzBf/Wf8/d+77/h+vaOcdjz4b/x14ucG+OBMEZrloo615bfFVepk6M4qYCkhM2KSCYMPZff/IjzD54yfOe3+cl/8P8ktg7TQNxc84P/19/iSba89xd+gyf/4r8A1fWOghiDZD0IIWUuKMQ+OjmIHVPZGZnO6yD01ZIdKVVBtwh5xkzp9ouD2hqPiCFrRI1iGlPabVQ0CThbFkvKQiViMXZyhiuOkpkhxUi7WHJ2eYV3npTjUTTXmhbfTIWM6rwupvLbk4Bzsj7VMjY5w6Rilm+nLCOT8FOONx1XppJPUt3AeiwXMs2aqhzXe1UkZTJFzM8pQVYkK1aKe1i1CAXG2aMoUL8cGYzSeeGss1i1WCw2NwhrbneBh2Hkbp8Qo1WfrZ9phKhCyJnQ71i1tmQNSbDrM/ZqRQpbvMl8ePWEdefICkMSmrMLHGDFYozDVle3qePRWkuqgmbWjD1ZJxTIKeIO6kltfzkhrkn1uYPjvJ1jJMdUSl0ZexB6OOnnqQ9b60u7a3E3xxCKwADls3LRsKbzkbqxyHV9nypanYreOUdU07sPL+SERkWsLeW6xpEQeiDyl//Cb/L195+xffUzUgzgWw7DL5+I8Yc183gt9YL4E6F68vrDbPFOOxftSnHWcr5ekU2HNAtCDnxxveV206P3+z/5c2b8ucccz8zxzBzPzPHMHM/M8cwcz8zxzMkMOcczzPHMn308c7yW0+//u4pn5oeeZsyYMWPGjBkzZsyYMePnoCffaC3TMKWlTjV4Le5axXtHjPFQVkBViSqI1NT3qRKqE4ehGaOmBLKa6GNiTJGouYoQGcgUvq5SGJU7kzwF1eUcnffs9iOaSoryprH0KZRji5ykuS5uLHukrxBKxu9UGZXyWYVQFT3SJ//kjVjeX82Ih/Ow9WICiV0cmZzSApADX316ztc/eETXtXRW+Yff/zFDStzvRyovVOvd20JKVjZcNJOxTG4lU9uzsAq17VGGGLDAetnwv/i3//usVqA5EaPylfe+wv/5//N3+OOf7LjfKNHByhmerz2//nTJtx45uuUC6zxiHd41dG2L9x7vLZ0zOFsIRXKAbNAoJCCLYoMy7vbsNvfsNrc0Unohq5BDIo/FHZoRIhlvC3GiVKJrup5JchKt7Tz1lZ44xPSd/58S/YUfq4LTCbE/jY2JA5qck1L7UzUTK/mPlHGak5KSFjdkYSLLZ1XBxmDImujHHZoT1jjE2EO5E6eKWlBrcbYQsjmX40Y1CB5vIduBlbP41jOKsE8jQ44sFVpxPFkseNw4WgtYZZdKenxDIU6t9Ww3e+52kfsh03qHIyGiGFG8FcI4sFfFCdhNIG03OO9wztN8/X2+eNjx5nbH4q7n4sP3WP2lv8D7Tmhz5H6z4fLsvJQkSSOFWS3XtzCW89WSJ2dr2sbivGG5XnJzd88YB0zxeiNOCGNgv+85tw122HJpE++tWx6C4HeB+/0NfPmSP/qjH/E7v/kNvvZkzXsXa352/Zpff7rm3DvWZom9WrJ52JBzxIiSg3K1XLNeLFl3S5z3jKEHFOct5+szvHPl3kJ5/PSSH76+5wff+5z/5A9f8JBb9Ls/xTrH6vwRv/mtD/j7n37Jw7CntfDk4hFjErANZtHxd/6rv8f9dmC1XPHNj77CVx6viN4QkzBmigNWMz4rrbS0qwVDGBjHkc12z8OL19zf3bHZbrnfbbh7uGc/jEQMdOd8frfju3/8CZ98+Zovb/d8+MEHfPu9Sz68WHJzP7LPP+B3vvaE9y9XOOMhlbIsIgaHY8jjxInXOa8Q9CLmMP/nw+hXnG/o1mv6MfK3/9bv8t0/+kMSibPLNZ/+9BM+/tF7fOX956xXCza7LbW2SnEQ406IUIBIDsUxW3lHvHjUZFQgEAnZ4c8uaNdnvPc/+3fBOhbPH9GdLXny4beJcYO9vCBdXaKb/bHGQT35qCdlMBBydVqLmEnJRkXIQjlXnVzRpf/VZHIC1AGGmEdijqgKzhvElfGNRMiCSYpzoA3kRSkZEaOgYvBVdFEFUiKMiTQWQcbYjiieJLbMFcixbIYIRlwRkmpfZOQdB/hUzMegiB5FFz2IAFpflw/rkqly61FIVcjpIBJonQBVaokk1UPJA1XFWlfXT4M1lrOzc5quQ6wl5sTaO549fcRXP3yf9589Z1Qh5UTKiRgiQiblUhYoxpFx1bDZ9ex2e+4tdDqwUGEBmFFZOKVPkHOZ62MIWN/w+PEl3/not/mLX3/C86sLhiHxN/7L7/G3Pv4ZpMzCG1QTKgljSxmqIkhbrLEYsWRqZpHawrG6uSeRt/TD0dmNKiGmupqW0lSb3Z4YI6XKih7XHAxGHHGIpCFAE2kbX++JmllmeqCBml2k9lWuuxQjnlg/TQ4L1DuS3tHRbS1WygMX5fYzDEMgxVD2XQfne8ZoRuJIDELqA3EcSHnkm9/8AJtGPv3eH/P53/u7/NWzizoWACekUcscqSA5Hwn/g0jFPyH0+KU1A09WjErJDpIimRElFy3WnKztM2b8CZjjmTmemeOZOZ6Z45k5npnjmTmemeOZOZ758xLPzA89zZgxY8aMGTNmzJgxY8YJrLXFFaeF9FQoEVklD4wKKRdSSTN47yBPztRCxFZ+AoMhmRLsCpXcz1oIQQEjJcW4puoqFWEYR8YYGVM85X4ppyHVTRYARVsH4iv5m2t9eVMcbGJwTkiVXFCl/s2gKaEkUi1tISfkkhw/7h1MpM2vhLwrK8h0XIqiIYdWqO2g9Zrr31LOvLy94z/7/e8xIiyWZzw5WxOHAYuwaDwPY0RScRsWAgdymhpncknlIyGnudIRJYhPmgkpkVBitqxXa9YtpBQZJaHWoDmRVBnFMsTMV9YtH6w6Plx6nNHaZxbnHF3raZoG5yzWmsN1HdpQC/EhlIA/xZLauxD8hWCCUtYj1/M2U9txdGAV0uuXJJ+W03IR02ceeqxSDvpO354OqSpBnZANAlrKoRzc/dUlOL1nGudHp/7UuVN5iPKpkxikWckpk9OxFMJEI8VUUueXFOAciJapzESM1YWYy7g/pPOuztacM2It1lvEFAEu5lL6I8fSj2osiKPvI0NfBDRvTS37kpDG0jjHou0gRFSVIYxEZ2kzeGexVnCLhg/aFpU9Jkf8445n33zGagiY6zt294lxGEsK85xxq5YGg/OOpXe89/gxrSjOCb7xrBdrdtuevSQsEcmJJo1cWOVy1fD8bIFNkQ7l2bLhzASsWVQi14MafvyzV2y2W7bPz/nmsw5thIuLc55ePsUt1jw8vCAMW3IsosVyccZysWa1usAuFuyGXXGvW0PXNIgYvHV0jeftbs/v/vAlf/9HL3h9v2cbR1QjYgLX45dERtYSGPc93372mPceP0OdR7oF9mJN3N3zN/+z32cQz1/7a3+Fv/4bz3l6eYn3DVlgsTjjsxevePn6p7x4fce3PvoKIUb6YWCz29EPgaHvGcaRfRi43e643wfu9iMv777gxd2O2+2eXYRuuWDc7fnkZ4EXLxyrpePjzz6nNf8C5+tv8ezpE4ZhrOnfDWosYt1RUNPpDihE9GEm01zKNhhLt1zz6s09n718wycv73jbG3765Q39OPCd3/w2Qywp78u9fpIhQCeJT4FUvlSJJEyu2SrUkLQ6m8Xisy+VI/oBNZmzr38V2y4xjcMY4ezbX2e8e0s0hpyru/mgCE9ldyp5WRYijKnXlqmGZZkmmjoH1as/KLGu3N0Zck6HNbEQ5pEcR8RZvDM0zh3K4kApK5FyKsQ6qYqqFpcFNWV2LFkUStkXpKy1KUXGOOJEkFqmRwEzCSCUy8x1Lda67okpxymXZA6O6jKPTM7p48ypB3WgHlCmvp9mSQ79mOsadZwh5fD+DKSshBxJVZQWa1ES+2Fg2+8Ywkgw7jDjiggxRFKKpBgIY88wjMQQSCmCKm3TclZSsBBD5Kpx7PuRhwixadiHkavW8NUnV/xP//W/ztcetVw9uyKIYXXxhP/qf/cfsBkjIXusQEojYyjCuboeRwcO1CgqtQRLvf6p2pVwdP9qGQQHJ3tWRaklFurDEtN6X03N0/J0GI8iZZ53zh43AJNQzfReKWUXpvWqvmcSElRrmZTjtqLuq8qey9qSwUZP/hZCKIJt3f+Ue0yqLpQRY1h1HhoBPI/OL/n4+z9ke//A8zev6c46wjAWMWoSvY8bmuPAOoy3Oo6mDd8/Dk72YRNyTvTDyDYrKcJmt2cYBmJKf/J+bMYM5njmnzSe+fm/zfEMczwzxzNzPDPHM8zxzBzPzPHMHM/8qfhnIJ6ZH3qaMWPGjBkzZsyYMWPGjBOIHAPmyl4AJXbLuVAOOvFAE1dKdVChGJ3o2VPifHKhlsC4pNY2OOsKcR9C4Y+Y6tqX9MYYg6QpjC4wRg6Bcc6plKaYVImJNBYpqeZtOc8pKBYxWGvIqhjNJC1pymWyL1PJl8PV/6MHoT//yokH0Ikk10rXVAIrq5ZAN2cEiCmx7Uc+f3PDzW5E7DUfPnnCV686nLUsGo9zioypuOMOH3igGZhcWSKTSKCY6vU0lHYSisNtjImXb2+5c4VsHmPmeszcbfeMMQFCYw3vnzV8cNbwqLPF9WwMRgyuCgXOFce8tebQCieU+8kp1hIgVUXQYvE+EHVT2YoDTSkTwXhs0PJTPh5dTElzP5GDpx9+2jd6Sn1WKu9P4C+O1M3RDXf4zNMPkXeFhxNWqQoMJYuA5oTk2u85k0SJWsZ6cT8K1pZ08lmrYw4lpYhmRVUOzsRcxTlyrqSSwbkiMoiprai5ZhsAsQbEMoRAjBFRixPDmMrxjAiNs/hSXwRLdUo7ywqDbxvMokG8ZZUSIUSiRtzVksePL2nud+zutmjKDPseCxgrWCn+S2+lpPTuGvLYY42hsZbWN5jqETRZWRjh0gs0lq5teXq+YOkMzcrzredXfHDRckdGxeC8x+C42ewJmlErXJ4Xx/ji7IIPv/J1sB2rJYz9PbHvMar4ZoXv1rTLC+xqiYwrVHNxJIoglGPbtuGPP33DP/jkNd//4obNmEq5AedLVohhz0+/fEmrymXj2e0D1nv2QybHiIuJR+slD5stP73dkdZnXPiB3/5IeXp5SbfoWCwWvL554Pd+8An/4Ls/4l/7lwdyzgzjyMNuj4olhUSIiX0YePuw5a5P3GwHPn99y/1u4P/L3p/FWpJl6ZnYt/beZme8k88eHhEeGWNGDpWRQ2VlFYusKlaxilOTzalbbKlbIIjuF/VDg4/So14ECAIagl4E6Emg0EALLXU3QDan4lhDFqsq58yYRw+P8Nn9TuccM9t7Lz2sbXauRw5dHICmmPZHXL/3nnsGsz3a+n/716Kq8FXNfOKRtuPhuuVOyqgk4sUJx21CqwlhtqDpUlmPbN6YKtW7Lc9kGxi+zIfrBOrJhE2Xee+ju7z+7ofcuH/CjYcb3r59RNtuuP5MouvHZl9C5QyBZ07ebJ+j2QhWtAh/5r/OGjGvrcMRQDLN8SFxc8Jibw8/qUhtR7dZ432GLppghIfaIdkV4raf71sZsJ+rA7s6CAH9BDa3dD/Lc+80JZf1OiME0FJWIifQjCMQvH3Z3D4jTGDCZy7zPKAlw4dHJDNou8qwRmSxPU2LeDqsajkPa2JfSeDsHuWGNcnK6Gg5Py2ucDv1s/1RXi99eQzZks6F6JZkz899GYl+XXZuEF+17JcxJZLmoeRIUmXTNqw2G5quJQXBuyIvSHFZl1JSMUb7Slb2wDuYhMp47ZzppoGrO1NONolNG2lTpi0lchaTmicvXWBRZ8J0hgsVV69cwouNKe+EaeVJMZKSIzrBpUjOGZfFdhJnwlS/zGdVfMkUMAjE/QVPTqWMVS8+Z9tbh3b85E6iw3jr1/lQrpOG4XnGVWzPccNLhW0f9ofx2GdoEZxtw7CSFm67BzHsodvNbhCSSGgR6XaWUybBEbwwmy248e77dKen7DUb/MGc2HX0zL/01zM/6lTLFJNPPPTj8Nj+PsxN2b5SLAtA23VsopJUaNvOXNJl/xsx4idhjGf+9eKZT2KMZ8Z4ZoxnxnhmjGfGeGaMZ8Z4ZoxnfsRL/h2MZ8abnkaMGDFixIgRI0aMGDHiDCy1fV9zvRAF2YLaTEKLA1MLWdtt1uZIFktdPQSmJX4Tf4bwcJijdjqlqiqCr0g5s+laupxQBFdXlqKZjCchxJLm2oiZelLj/RmnqAg+eEt1HDNZLVUzkgcm2BxGhQZz4L2glvTbPtM7y0luRzkcb3/+P8kV/Xigu30s54RkE0TAiCuyUWIpK12XaNoGWnMuaYZlXfOFz77MOzdv8fGd+7jcspjtEVXp8EwaYN2hOZO0EP+FyOpJgZ7OUSA5T1Bn1JsI0+BxAl1KbDYd/+3f/U1SAJWSsj0qrRoRMlPl+b0ZX7gy4VMHgUXtqKZLpDK3q7kBLSW1FzFHvWy5j/68B6dxdlBSO6ecSWrfxRk5joCmbG41Mn0xCy/b8ePgjENatoSEmAA1dFEvbMnAqZ0h+s+IV7oVU3opzMgeTy7knRE55bVZ7XzKsamWx7JCMoK4d4FqEUWIZSwUkrSLHa1mugjgB2I2BHAu0MVMTJkY7SvnTJ91O2dzS8fOXKTTumZSOaogTAPMKwcZYjRXX6eCUyN2bM4WYksdisc7qLyndo60WTNRx7Ku2J1NuLQzZ1ZPCIspflpRH57y6OP7HD08Ii4nHByc56BakqqMrypSzKRmw6wO1PMJtB3ijBysHHTrQzQnnJsgVHgHKXXEdoPEhmu7U64uAt45JlXFzmLOwXLO7t4Bn5vs8I337vIPv/8+q1YJixnihel8TpMz790+pDtd86m9l2C+z84TVzk+bqjcRdx0gbQbXI7gajRMiWFKzA5fLxgINYWqMgfrUUz8vW+9zTduHPLxcSQ5YTZ1RFehzta508NTjtctq6vKwcEBblZx5+NbHJ2sqarAz375Ff78o5Z/9Ac/4Dd//5usTw+5+/CEL71wna9+/kXcMvDRg4f8wevv8T/83vepzu/gnKPrEqtNSzWd03Ydq9WG+w+O+fjuIclVSKgI9Yy9/TlRxUr15ESowYVAXLUc3X7EM1/5ea4/8zQXLp0jaiQ7E15LEZMyn4pr1rmBaCys6dZtWVXsXLjEb/3+9/iX33uD1z64xb1G+fp3XqeJkfms5vWbt2g0W0mflHDDLCilBcq4o4xBc6N7nPeIc0ZEiwlWeE/nPRI8p2/c4uj1N3i0U7P/8ovE4xXN3fuk44fsBEd15Qn8taeQxS60qXyopfF3/kzJAy0O35wLsWtiiZbVyiE4X8h9MQKaUgbBCjBkgvfmrlbFZU/lp9S+JogHAjEqTq2khp2PFDJWiTkjyTISVJVHxRNxtq85R9NsSLEjVBW19wNp3BO8KVpJExGB7Mp72zrmvS+O3WS7mXPgLQOI2c7LOW1V5X6RHDhqLWuliOCd27bPIE7IsM+JyLAcukIa217c31yQrexDTiYe5GzruriBXA5VwIniJSC5IqVIFQUNQjWbsNGWHDsbE1PHZ5+6SFShi494//AEpjNaFe4dnvC73/g2MW2opjOiBG7eW7HZRObecX5WcWl3juSIUOO9N4HRB+tjtvuACffWDrmM16z9Ot+LWljbipRkMUogUFc1TuyaZGhd7csGyXB9JBSRoJQNkiIISGnXfi/VrEUAELIo+CL1nCkDMuxlWPt7FPGCd54hIwt2vUWCnLtS+qiITUU+csD5gz0uHOyxs5hx9+4D3n3zBpPcEfZnRdjphSZbHhjWiq0g9snff9R10TACf+S11JnnF5FOBSvZkVtiiuRcIU6KGCKW4WDEiJ+AMZ4Z45kxnhnjmTGeGeOZMZ4Z45kxnhnjmZ+meGa86WnEiBEjRowYMWLEiBEjzkAw4qFQ24PzWUURzVgC+548LZR0CdwcrriLkpHBPVlC4eFypq4q5vM5VVVxenpC03Z0XUeOyYgJ1YE0bpoNCjhvAWNqNuwslnRtw6ZZcXR6wvmDfUIIFqSrkaNSnNeWMh8Gw40r4oErxGD+4TD3XwU/KhAGiDGSMkxdwEkNomSvgB1T0yVOVxu60xVeQJO56jzCf/oX/wzT5QJEWEw8v/svv8Gr73zA3ZPbzOdT3NGJHbf60ltnjr2cu25Pz8pGCNROOTd11G7CpkucNJGUO05ItDGRY6ZKjotzx7lZxbXlhFee2OXiMjMLSkOirjxVFXDebRO8a0ZyhpgJEwuxtZTs8MGRcsJKPzicC7Tdmk27puk2lorb2d+CFzQntGtBHCJqzkeNDI7jM4IBsDVJ0w+wXswpHvGUH6MvBr7S7JP2FjmTs6Vnd8Wlpr27MectyYmlz87RHHzmSEtkVVLMbNYNXddYaQdx5qDNiRwjOSeidDA3aq6NHY+OTsla0XsXxQneT4hJabvMZhNp21wIW4gp024iKWUj5LvWBJAiRAStOLfYpfYVOQsPTzbcefQx3kUmdcXCw/6sJimcdrCKsGkbdivBLQKXFwuWoWJ3NmVvMeNgb4FOp/hpjcRI/N3XyDfvcO65a+z84ivsf+EVqlaIj45p1ivmbcPB7pxQCS4IO7MJy/mU1Brhd3D+AhJMFMxAPV9ycP4C0/mcGCOL5YLKexPSklLVE2bzOYvdXcJsxq997Yv83rt3WT86QXICFTP34sgp8L3XbvPzz13h0fOnJG1ZE8nVLvg5VC2pXYPzSAgQJqXvtTCkljF9Z3+Pe4eP+P3v/IA/eP0djlfRiF4XOG0bVqs1MWWyZLqjQ37lK1/gl3/uCzz/3HNINeXe0Qm/9Y1X+ftf/w5/46/+OT772c8zv/QED5PyD/7p7/D8xT3yS8/gQoV2ievXLvPsM09R/f5b/LPvfUTleidgpCtjVxBqgXq2QEIFzojnBPjUURXS+9ZJQ9tuuLK/5H/zH/0af+s/+Uuc351QeUgpM53sICJkzWzWG5KaciqFwCT1wpw5OFPMzOY7qDh+8Ma7/KOvf4t37jzkw3uP+P77H+BnS+qc6bqG73//ddr1r+FFqENg4zpUqkHEc5LRCFnNFarevosPeOfRlIuYbMS2rx3L80vWmxZ98wYxZNxTT7G6/4CH73zA8p2bfOftd9n/2le48qf2uXj9GboHLUN6jZyM6HVGxKuWDi5p/ZUi4EkREntiXpyVdehJ8ZTQGHFO0RyJKdJ0HW3TsT5Zk7qOEITTlTKbVUwmgXoSTFAvwkSOmSxKFGjLPtkBfiN4gbn3xHbF5vgRWtfgLWOIikOcx/kA4kg59kN1IO5FhOQc4v1AQvfn2os+vXDbr4ImqleDyK9lPczFZZtUcc4/Rmyr5uG1Z8lqJxC8YzqdUFfe3M+qVDh250v2d3aZz2ZEtXI1IopVeVATg4NQBU8VPPPphNi1NJsNs+BZzDwpTsh5wabbsJwGrh7M+Zevvct7p8ecnNZ8++1jvvf9H9A4SDGjSRF1XD6Y8amL+zx36YAXrlzk3HKXneWC6XxKNZ1Rh+lW9BE1mais/YIziTqnYX9/7KYJEbv/gIxTxatjMZvhgy9OeC0iESXjiu0fKXWk1DKpLKMInbl7cVa+Q3QruLuz+1TppF5IOEO1ly4VfOVRoGsjLpx9LlShQp3dGJByJGBKiGnhdj6hmjCfLdjd2eHo8JTpbMqks3XgzAY7vKdI31793milO2xCRc6OuP4Yh8HWf/9xQkEv8PfCbV2znHv2kyfXE7zbZX73ESGc/Gtds4346cIYz/zRMcYzYzwzxjNjPDPGM2M8M8YzYzwzxjP//x/PjDc9jRgxYsSIESNGjBgxYsQZOO+L6wq0pF3WXFJbx2wuMhdKSQc/ECrG4/bpgksQWUoxiDgkKykDTlhv1mw2GzbrNdWkZlJXOO9JlNTSbTK3V8pG6hXXlvOelMx96kSoQigOJfty3uGckAcXWHFulXDSeahrR9ua6xTNA0lmL3Fbk7E87gj7Se7oH25DR/BWJmFQIQRQR8odMUViF8ldNGJOhCxC6jIfvvc+y4M95jsLdDFh02zImqnqYK65ni/HUu5HKcmi+/h7OHNwKN5lAsrEKZfmc3aCsOkyRx4W0wWr2JKyIHgmIbCcCgcTz6VZ4MJMqL31jfMOkc6IPjUiQzGiNWKu9tx1OKeIt5TuORqx5ZxD1JOz0jYNTdPQxg6clPfI5BSJbYN6QcWRBMRZOnrUyCuIDMzjGXlEMWHik9yDkflbWiVnHX7uXZE2dm2sZTe8pfX1QNSY00uzmlCgimoilfIWKSZy6kx3KH9DM5ojmsxpHqUjxUjUjpQS4MrxFEeoerquo4tKF024yGUwDn0qPTloP6cUwTnq4Dm3s2B/XjMLNaqOnIXcZurasawqZvNAe9Lw8GRDs2453sBEW3KqCKLMKmEhiksNm3XktM7MZjW569DDE47fvEFIGZcScXXK8eER5y9cRHMk33/AXmy4fvUpfB1Qgf3988xmM5rNmmazZrZ7gK/nxGxp4NXN2Nk9z2y+S8oJVwe8uNKZggsTJNQQakSVbrPC43HiYUjl7kgZmpjwFRzsL1jOJmjbIh0o2UoDiDNhwDnwHpyUkjAyzOlQebqu5e6DR3z/vZt89PCUh8cNmy7S5cy5+ZRnnr7EuZ05+7szKk38sS98mp957kmqIHSbxNWLF7l4/hYPTlb8d7/9XU66xNVzS/7yn/hZPnPtIn/sZ17g6oWLrDYZUuZTly/xyrNP8tIT+7x695jlYkZdmfjnnJHmgwvTlZIfmONScHQaWTctq/WG+WLJn/j8S/zsZ5/l13/pS+wvHN/+3g/4+O4DJosdrl65wsHOjOVswnKxYL1eDwSylvmlhQh24qinM1Q8D49P+dYP3uDG3YfcvPuQu4cnVD4gImxWKyYkvvqZl3n+6adZTKa0TWsEd+9Mpsw5X+HQUoLE2/xz5hL2AqqxlBQS2uMjjlaHpEePqNuO9viY9v5DljtLZi9+ivWd+1z73KeZP3ud2d4OedMWclEG8U9VTbwUR18SQYsDdluy4swRCuCMOnca0S6hKSEkck50Uei61ly8tSPUzgQxDz4IvnKEylNVHodnk1qSWlYDcY42dsXJDG4yocu29kewPk+JbrMhqTJfLOzgXBG9fShHaX1jGqcaJ4udjyvnKNrvd315IIZ9brux5+3PYsS+DGuNlZ8564RmaLdhIbU1URxIpFmviW2LpmRtAhAjGjuIXXGUyyBG9KKvlL2yCsH2KqxMU1DFO6VzShc7qq7jwswRzs+pnrvK5OYD7q6Fk05JeUb2mVmdmYpwYVpxaX/KE3szLi2nzL23vSqba19TJIll6+izpRQF4zGBuT9nGc63F1yKSzinUqJHTAjXss/9mDsO7HomUlVTpnXNqulIXbT97szOPQgRJauEFqd0Ptsfw/PtZxsTSowdLtt655z1fdu1kEsJDFfGjsMEMTGxv20jTRPpuiKseQeJss6cObbSBsNDwzWH3UBCX8riR+CTzTIIGWXTPqPF29/VSilVdcW5/SVQEX3AuchsMiH4YCLviBE/AWM8M8YzYzwzxjNjPDPGM2M8M8YzYzzDGM+ciWc4+/H/HsYz401PI0aMGDFixIgRI0aMGHEGXUr0ppesJQClBLk5W5DsLejPhWtIhTjtg7bMGeJJSk15hCzQxkhSxTuH96HEuhYYa7aA0bLrl9TidQUUkcCZSKA545wwn0yoisOJQhA755BkgX5PqCIKJZ2291Yn3s6xECsl9P+kBvCvUmO9J1BEwDtPCMV51Z9eL1gU8oHiHs85IpVHvEdz4vW33sHPZ8x3luzuzHlwdAwo89mE1VoLqWeutL6fBpKrHEgf2HtVK9kgSpDM+anj/NTTReW0VvbmU9atkfcijum0YlF7diphtxYmleB8hfPO2k16P3Qhq51DS+tlFE0JxEoQaAnykS05JIVYty8lo0a0AJqSpT0nksWTnQ79Qhl/WhpYhp7TgavoRYKzJGGffh474kLK96/bEgzWd1aSw1LGFy6t/G0gFs8yJJoLsWZCRnAmbmxNYDZHcGKkt/RJ8o14CaG2luyJGHHEZGKFzaezx1ZSd3tvx+OUhEM0MfGO3WnN5YN9dmtl4jyqnvXcUYswccIsCMvas1N5dipYhswDTcyCsDP17M4q5kGYlJT9OWdi7IBEPt3Q3X7A6uY9ptUE7RLNnQfow4ekvR309AT/6Jgr+3tcfeIKUlekrOztHVDXU5rN2sTA2Q5+ssRltTnsaiYzT5UjKSeSs4QFxtx6nJ/gQkUWZbVec+vufUQcVahtzOVMzEobI13b8dS1A56+domD3SWxiZC9jdeePPZ+cAIj/cNl3XAwqStWp6fcuvuA1z+6x+FpQ9e2VCLsLqZ89voVfub6NZ68uM/F8zvMpxNeuHaR8zsLUo6kJnHhYJenr1zgiYMdvv7dN5hI5Oc/8wy/8spLfOHl5zmYBmrnWW8SLiXOLRa88MR5vvTsZV699RZtGxERJsGXQg2hiKO5jOGybmkmxkTbtWQyi8WUV158lj/ztS/ytS+8yOc/9yyrD2/w4Ucf89033mctgedeOOVTVy9y7cI+9cX9Mg6NJMxlrqr0bliYTmc8PDnl5r2HvPbeh9x5dMyDwxOOT9cEX9N2HYsAT+7v8ms/+wpPnDvAaUvTdCCePtW9FiGuJ+GllICx9dmZWx0rx+NMLWC9OuHww5vo7XuElOlS5PTDj9l56irz2YTGOy5dvUia1bRHh/hHc0LlS1YIZ8v9GRLVjkW3a9Iwh8t62YvEhcDOETR1iEZUo2VOSMnGqSZ8cNS1p6494pSqEqoqEILDOylleso6JLYOxL5cjcdK56RIKuRv8EUoSUYk2zrqgISaWroVyuk9zbbU9WvTsP/AkK5/e04ZOFt2J6GmPA1tM6jj5Y019RtXL5Zmereq9J8nQpZIbDYmeueMd4LPCjmisUVjh1TBqoGwFVCHz1M1Idg2KhOXgrf5q0KOJnYvK8dkWTO7esC6i3x4nHi0Ubo0JbrE1MMyCFcXExYV7M1r9iYeL+ZqT6kjdY7oHahDncOV5dn+OfNV2s0EF7aiUt+rDrT0k2Qhdi2qamUK+msOzpREEMtIkHImBM+krvGyMhFb/Lbpy9NdKVnlvJV86ss7ZT2zz5ej0eEGBIZsNE4YMqSkFM3hn7diAvQ3RthoamOi7RIxZsT5Uoqh7OmfuAba7p76+HFsN6uyW515hj7+7OHhx1SH/kfZPqKK957lYkFyE6JzdLFhPp1QB1/25BEjfjzGeGaLMZ4Z45kxnhnjmTGeGeOZMZ4Z4xn6Xv0pjmfKp/57G8+MNz2NGDFixIgRI0aMGDFixBncOzomp0zvkjISI+C9LySlEe05Z5qmJaWEiCuuoUKyqJELzge6mKmrQAjmGnv04JDd3SUXDg54+uoTvPraG5w0jaXZjh31dEGXMlEVSHinZBxZzWmcc3GCOWFvvmB3OkER2pQKee6Bjt5x47ziKYFthq4VNDm8BNQrSkREcbIlpftU3s6ZQKGqxc36OHoR4ZNlIZw4gjeSUnuyQMHlTBbwDoKDLlsZhon31OJoneP3v/8eHx0ec9o0zKdTvvKZZzm/v+CJi3vcfv8RWe19nRMjVgpBcJaQsPMAUgJX0Tse9yeZp88tqN2MLkWaVuliYNO1bJoNU5/ZqSbU3pEVJNT42lNVjlA5fKjwvsL5Cu8DVVUjUlKpOyOxfVXhnEedEVAObw7IIAiJIB6vFaqBNje0OeLUgXpUUzkvMaJKdJAJjFgsNE5xsPVEpHV8T9AXMitnRN0gIogIFebQV1XS4DAtjjgX0OL+72tdCBTnuhErAN4ZkZkiSKCQIUrONTHGM1pNpuscOdhYCi4wrdbEnMA7nJvQJEVzS86RGHs3bE/SG7HnKGQPQjUxErJDaMjMq8ylZcX187u8dO0p4vEdutjR5cTe3pIL+zNcjtS5JbSZyzXsXprxxH7N4vaKvVnNp588zwtX9llqi7QtdV0zmc3ZWezgRNncvkfz6vukow3y7HXaTUP6wU32Pvcc69dOie98wPK043N/8U8Trl4m44ykVxDvqasZfhbRMCH5Chx4F9BStiIqZa6X0h+l/IKqZzlfsN6s+ODuEV9//V3EO6bTGU3KdGnDo4cndO2GxUT563/tT/MnvvwKF3eWrDYNVB5HT2pCThTqyvrWiSDFGe0cLCeBD27c4/X3b/G9Gw/pmg0XljOefeIyX/3s8/yVX/w8T5/bYzGb4CYVzHZYPXrEZtNw3HS40HGwrPjM0xf5m3/yC/zm/+lv89++8wbvv/0Cz146x5/9S3+eoxsfsDk+RiUTnNBp5PLulL/2Sz/D7711h3fvHXHYNFw4t0tWKyngRKg9DAQmgPfce/gQlxJPXTrHn/ulr/E3/sPf4OrBDlMPpzdvk7LnyoULvHvjFn/nn/42v/Xmu/zc517iZ555kvUT+1y/cp5QL3DeSoRoiiak2ApGtZzz3rvv8wevvc1bdx5x894hx6uWFJXs4NHhfX7jKy/zF772Bf7Gr/4C67iiVSX5YDM2RzIm+G65Zx1ENKFk1nCBLAxuahGlC8KHv/m7LB4esavK/OCA27/7TR699hbT3SX1zXtUCLdvfMBHLvPMb/wprn7m0xAq6JQiaw+fg5wRQlSR4HFnfjeGtRCOGStJQyQTUUlIqkFNSMjOhM/ptGYycaiWMjne6MWui2iKtF1H1pLNI2co2SV8FXAuFwUec/eLUk0qvDpcjOSkVurEmGE0JytZoZmcyioo3lS1nEqJi34vGk5j4PhNGIiobLN9aLT9UcSZSNMLAP0NAmUv8a6nTbeiaN+DNlIUF62kAuJRyUZwk3Da4bUjUxdBIyMplrFAKaXTFeduNAEB24uDs/eLCFU9JaeEl0i18PziMxc4XEVON5HTLpElU3vLEDGpPJvNhlB7JiER04Y2OnwHXopIFTrUmSgVQn9+ZTMtgr6d6pbo70lvBVSUnDsrKRKFZrUmd7G8Q/mvX2iwa4+EFSsJTphPKiovQ+YOe46QELImgheCc6Ucg5VFUgkkK1aCy2XPKVlVQlLEQRCHk/44y40PDnLqBwGDYNT3PWQb6QLZOXyY4FwN0hAloU7IRXBABCcKksgkG9eAkMr7n1EsetfzGchjooBsl7S+jctn9FlqrF0yVRAmVYWvJuy1LXuLObNphUpkxIifhDGeGeOZMZ5hjGfGeGaMZ8Z4ZoxnxnimnO0Yz/ybxzNnb6D6dzOeGW96GjFixIgRI0aMGDFixIgz+NSzLxBTMgeZmjNmNp1SVRUheFJOWCr6zGazoW07qsocfF2KRmiq4pxnMplxfLrGqxK8MJtNaNqG+WzGzmLBcneX/QvnqZuGLlnAOZkvcL5i00Vu3bnDvcOHaEm3DGLu7JyHzMOTqqZNyUorlJTLmrNxKMUxnfPWjNV1iT4tOCg5J8RJKQsB0DuqxWrU88MiwP8cemHACOgzzIsq3kPtHdMqMJlWEM0V52KHd45GYRWVoybx8PSYpx4esljU7C92LKW483g8wYeBCBiECMCXVOtZe1HDIQ68V+ogTIMw8Y6J9wSX6ZLDu4zTwHRas1xMqUMgeM90WlOFQBU8VVUxnU4w12oghIqqnqBiad9FnKkfYl/eeVyoEPGoOLIAOeGcHwSnoi1YynvvoDiycK6khndGFYilGPfIwHypgBm1i+vKO3JO2/4SI1nOeqMrCYUYzJa++gysvxVXFQelYuMol5ICiDmxBBDFhWADqzipNWdiLKRFsbqZVqF0MXLcnZJ2ivIgmZQ3pLRVI4I3P2X0lqZbU6bruoG8jL5CWyW1idgmJCuff+qAp5YTntqbmGCzdwFNIK7i/O55Pn94n5Ajs8qEJV/XaKhYJeXcuQd4lAu7c/bmE/bmBzgqfFUR6opqOeXR99/i0T/7Hqs/eJNzX3iZa3/uF7n/nVe58/Vvsvqdb/HGjZuEcxc49+JLzD/1GQ6PH5qjupQr0GIFVS/k4uTOKaMpMfEV4ntKzYGEkqbcnIVeoZ4vePvOQ/7RN9/mOzcfcbqB1XpNsznlypVz/OoXn+L5y+f47JMX+Yu/+vPMpjUpZzoEp6CF/NTibJWsiLfxKyEURyTGVwXPO7c+5rtvvsW777zP/+6v/yX+/C99hWcu7rKT1/jYsknC/aMNXT5iti+kBjI1LjgqP+Hk5BFTGn75M0/xf/tb/zm//eab7O0vuXDxgHT7Nto2tsY4G0OrNlJPZ/zCV17hv14e8N/84z/g66/f4O07h8wr2JlNCCHQJDfMr00XefDwkCf2ZvxHf/yL/MpXPsdXv/plposdHj24y/fefIf/z9/5J+xffY5nnzzHC5//HH9pNuP/8rf/Pq++fY8nL+zy5z5/jf/qf/3nmUwgC0i29PuqkcoH9i9d4LU33+S3/uW3+J3vFHx//wABAABJREFUvsm79065d7wiOaFzmaP7t/jf/okv87/6C7/KL7zyMnp6yFGzIvsKcRUky8YwkIX9nKAvB9BnH/B46yiSKrmNVC5w/dpz3Ll8iYbIcdfwqb2LrGNNe35JN69p3rhL9eExuy8+yd5nnsFdvECXFUcuJDi4UEjGXH53juwKGY4UDtPKHIEf1mdbFpSYOjIJRJn4ACVjR8y92NzhXSCUfca53mBrJLx4K6MUo6151WRiFK8mcuyoguBE8A6Ojx6xnLTU4k2cLWusOG+Chq+HLcT2kIDzYVgvVbG5Vj7fDY5mOcPTbkURP4hB5lRWcs9+23fncJQ1sGS7GLqRntuVIsYkgrf1Wsp8ylkRJ1Z+gEyXo4nJDBSy/ewcPgRI/TtG2wsA9Z7oPQLUOjXROCW6zZpK1kycp5tWZISkiS4lKzXiK2ZlbvsQmASh9oLTzvQUl4EJImE4Ju+KWCIlc0I5By1lL1LKlrWlP25VgjjEG7nvpG9Ly/SxFRaKtCCC9x4fAm3bMp1NmM2m1Jtm62IvjeO8M4e9375vL/p/MlPLUDqiH7vaf6ac+Z0yB3Xou20f2k/qAlLVVLM5ddMREJxqEai0CElajqLfw/hhnO3c/nP1zBrwR0QveIkqoQo471DNtM2Grm3pmg0pdj/yEEaMOIsxnhnjmTGeGeOZMZ4Z45kxnhnjmTGeGeOZn6Z4ZrzpacSIESNGjBgxYsSIESPOYDmbDgGxiFDX9UAqZM2IVIXAheV0BpgTOGumixFxzlxoYGQxAjnjBargCU6oqwrNmYeHjwhVxSJUIOZSys7RxgxdVz5n6/R1YoFzFiNsuxhpYyTmvA3OtX8ueO/M0VzS9CuFGOodT9IH8/bvJ+vLm+tbfkgkGEiAP1Lwu31PRQkixflkQTAoTnsi2uFdwPsK8eaw6zL4asJyuYtwczg2GYgAxTlHVVfUVc36dFXawtq/JwS8g2ldMa0CtYMuKTMRJpVjVk/ZW0zwwTGbVIQQCD4QqkBdVSYIBHNDG4HvEWeO5z61tBFbvrjviktOCzUhaoQQHu8TLjicF7yICSQihWgzwUF7sk6U3Pd/ITrK/1vCYrACJgQ948TUQqBIceWJCVxDr8gPkRdGumzHREqW4rucwuCUU+xYsyoqDjTjnCOEQJ9yXrO5WpNkkiptTGQVxAW8V4QOTbGUULHz1wya8ra0BX0JCSNscoa2U3LMLER4+mCPp/YXXNrdI8yX5FgTMngJ1NMZV598BmKLI5FTh1Q1hIoa4VmZoKljPqmYT6eEyQznZ7i6QuoKao+2QqfQzSvmL12hfnqP6tEF9P0LfPT+Lfx8zsGz17n4hZdp1ZP7aiGAuFDGh0dUcS7ggkMkkgWc92QyopZS3TyWYZB05pOaw6NT3rl5l2+98xGPVi3n5nM+dfEiT5x7hs+/+BSvPPcUlxY1ewHq5pRYO6J4svf4dEacE2fjVbZkIGpi1GAfDRWPNpFV07GshD/+hed59lNPslMJ3d0Tuq4hEkgoSTNdTtu1pnfLN5G4WpM3x/zyL3yOlz73LOIcF/d3OVmvbfw5cwD3zr+cM23T8plPfYr/+NdmfPHTd/juuzfZ253y8d2H3LjzgO+/f5t6tmSz2pBTx4XllP/iL/9ZfuGFizxzeY+8fsgqmWC62FmSRPkf/vnv8LOvvMSnP3WVl5+6xl/5pZ/lzZt3qIPw9LUrzBdLxHsT1rKl6A/eIyhHRyf83rdf5dV3b/Lx/WMenSaSONbrE6YB/vTPfpa//ie/ymeu7hG6E45zxvnJ0Oe5sJNOtqndt2uo9hoaQ4YDFN8vxwqtKpe/9BmOvp3YvPYWd2+8xf4vfon6c8+hOzNufu99NFTMn3mKxSuf5VT8UG7AgRHfGXqnZtYfsYajJjQOpGpxzfcH4QTB2/qPknKii4kYldkkMJ/VTCYe57IJv5WjqqwEUNdFRB3RZystQT8UBYcjVEKYVDgV6izkTvFTh3cmLPTCqTgj/EVMdHvs6DVBVlwpvVGMzSZ40e91+YxYfWYnKmV6zhLIZxle1USfzSP3e01PhPeKu/OlzFNifbqmbVsj07EbCNq2o2kae1wr6LOEpDgI9KqYqzuXEhj98TqHahGdfYBkbSJeINSkKqLlsZSVpP3RO0JVocXJ67xjGjxOM+RETpCcknJRdLKgahkBRLbUeT9etZTr6G8WMEFaC11u7nZNShtbE5uc7YV9h/fXB86ZSODEc7ppEe+ZTqcsZi2nq9OyXsqZ7WgrrAngRQhizm5VtaVDh6uWofukdLIdggzv1C9xw/P71hKhqmqaLnG6aVltWmbzKT54e17RxH25BsoCuZTVckWEf0wUGPbnT9xU0c+9M/ut9hv5D6G/vrFFIoRgNxwgkJUQXCm9Esr1wogRPx5jPANjPDPGM2M8M8YzYzwzxjNjPDPGM2M889MTz4w3PY0YMWLEiBEjRowYMWLEGfjiGHXi8MEzrSpUlZQjsTX3rvhgpK+Y+0gz5Cw41wf4Flx3KVGxdcPFNpFRIhC7ji5GYko4F/Ah4ESIMbJZb1ivzAUDIGL16kV0CHhVMRdkjIUY3v5t+yWDuKDi2JLKSp80WeSsOHAGwmPE0v+8INA/98zzhJ4NGwQK74TgTChwGLthAoGRKM57vA8EX6EeYgZf1SyXS2aTKdCTWUbeqGZ8qJhOJiwXSzartRHPPTtQjk2AOjimdSA4oIOqtK0UEtUc1J7gPSFUOB+KI77ChwopzmdXhALEFQKqPOYDA0tRHNJ9KQoZ3NIeX76cGDEWnJgTzLvH2krYkgtbGku3hFjpQxRzmPXtfYbMGbo85+I6lJ6C2JIXP6rv+z7vyZVCfKpKaU/ZlkABaxfvLUW4SHEqmpsy5UzMCRXBhYqgDue6klpbQI1wUde7LKWUEwHR4klTcxA6r2jKTL1ycW/JxYMD9nf2oZ6BeHzvZBNh5+AiuWvIqSXFdnDABee4KJ7UNQTnCD5AmCBhClUNlVElbjpn8sQlyJH60pzkWvyFJbPnn+b4+29x/vJFlpcOmOxOaTZrQKwcSxlP6vzQbs754pRURHNpH3O/942cMQecAJPJhBu37vPmBzd5/YOP6VLm6Uvn+Pzz1/jSy0/xucu7PP/kRWoizckxzXpFXi5JzpO9YsyhbsdfLxIUgUuH9O+FMHSekybTJWV3VnH90h7L5RyJHes2kZsGV9soVMlkTfTlY4RMzh3aZbo20m7WPP3kBa5Xc9o2c3J0StMlPIJ4Zy7x4jZMXctq3XH+ykW++vKS5596ghc/dY1J5fmn3/g+D45XgNAmpWsadqeBV158hv/gl3+Oy9Uanzecnpygkwl7ewsO9na4fu0S/80/+UOqmSellvPPPcGf+drnefbDW8Sc+MxLzxHqKTGD5mTlBlCqKpDFcefeA77z5nt8cPsBj047Nh2k3DIN8PTFPf7CL/8cX/vc89S10nVrGplY2QDnjaBlO3d7SjLTr6elJEEvuJV125WZlMlsYsvOU1dp3/uAdafc++gWT84rZpf2qXaX3HIOllPC5XNMr12leXBMajukXwNQcslQXyjfQUCmzPvcryM9H/uJdbtf1xBX9j8jpDXDdOKZzQJ17YGEc8qk9tR1IHhHg+LUkYPpL+lMuQYnQqihnk6QBKFRRAVfSi7llHFFcHXOlxIZli2Bst73jtie8vUIWbScSxmjZZ8T/aSrVs6se2f3tL7tZMjGoGVf7UUO669sZYZ8v3YlmmZjGUk0oyUzR4yRruuIMaHO3Ncm0Ee7HsBIePuKSC8+iAnpQ594B9kNIosPth/lKpvOFxNOCzkvjjAxkQAFcVYigjK+pIyDTMZptrFPEaJLe57d8/trjDONYc9XO1bRbP2b7H2kCDs9ud63+VlSvYuRlDMheOaTCafHx3aOFKGg79UzGmcQKwNkVzD9fmN7Q0/KP7bd2x+Hz972vA5d3o/vEGqaLnKyWnF8esLi3C7OyzBMHCayl9YpZUZkOwbPqlP/ljC8U9mvnXN48QRRqCsmdU0dKnhMOBsx4ocxxjMFYzwzxjNjPDPGM2M8M8YzYzwzxjNjPPNTEc+MNz2NGDFixIgRI0aMGDFixBmcPnxgxLq3EgCb40OMdMk0XUdKlk5aeseomN8LGMQB42wtmE4p0cZIUqv3nlIkVEZAR1VW65WRx86TgTYmVk3Luu1YNy1SVQTnyUJxOcsQpDpxxC4VF5vFrN5JCWSBnPBiRLi6PvjPJjYAYMS0OOFs6mwp/7mS3ronDozQ+qSo8Emi+YywcPZvKpDMZVR5+wqmfBQ3n6CpBO7OUXtHVXti1+Fw7C52ePLqVV5/7zabtiMD3nlyzngR5rMZ+wf73Lt7r3ygAyK9IJILwVFPamrv8SFts+GX86nq2sj8IhL4qsb3acm9L6SuGIHlPYhHSipw7wL4ygjAQrjgzelMSRUuCqGqqSYTJpMJ3gl1cNTOU1dWJkKcubJEkxHmpU21MH6iRthn3bqltSgBojIICZCN4CnuNXLGOY/6rfs6n7Xy9q8sgkSmECT05BDmpC1lUnLO5LR15EsvSxTi01LHZ5qYaGIiasJXNWFa41HWmw6RCsEjeLKIObFDRagSVZXAhYH4SRFiFk7XLV3TMEsr9nd32du/yGx5wDqb29ZLwpPoNiuyeLKvUAEfAhGHBHOw1hNHdGsb4+KIRdwJCC47aBKz555i/7mrVJsVh9/6Jg++832ml6/xzK9+jZ3nnsGdPKQ9fchH3/g9dr/6c1R7F3BMkKTEQYZjICozNseyKjFFE0B6h58mMuasr5wwm834zmtv8vvf/j6vv/Ue586d49e/9iV+5Ze+zJe/+hJ883eJJ/dYtS0nMeHrc+CmqK+BjHpbcwQjC23dYBAJHA58maUq5AzH60ybPLvzJccPHhDXHZVzIDU5JryPpQxNQnOHy9ZmKVkpGpM8AqqBR4ePYJqAgOAJLuB8RdJE23QsqokRqZsV7fqUaueISR24dGHBE595hrdffYe7RyfcenjE7v4eH91+yJ50fPFTT/J/+C/+Os89c5GHb7/O8fEJ1fknwQVSNNf0X/+1n+d3fu+b/M5rr/H6d77Dh89f47/+3/+X/Plf/3kmiznt8Zqjhw9LunuM+BVhsliyTsqr33uTVz+4w+3jDRv7E8f3b/ErX/0Z/uyvfI2/+Z/9NfjgDTZeaX0gpBpOOnNKOkEc5Ghtkkvf905T1UxWKxvk1BzRwVkGgFYykcRkfUo+XtNF2EymHJ9fcPyD7/JUc8qFxR7tR7eZX/s0cSJsckuKmUrZzsFhR+rXIgZRonebxpKBAM0E4Uw2EAcuWVkVPE4CaDSSt4jZkxlMZ466MgEhVJ7prKLyvpQyEEIttoI4I/5VelERhMxkOiV3GboW78D5ChcC3meEULJPmCCPiIkFCCVlRCnD0+832UrICKiU38s+ZsLcJ7cm2yPR7XrlXJ/hgmH/FLHsED0sIYrJErkIBjn3BHkRjovzX8pewSD2FpEm23VBX5oi54wmcy6D4gVSEBPxxKF9iYZyQM45XJcIgAtWPqNU5CnirCNRyio4T1XKzjjvccHKaDhn/eRUESljoifTXX9lUPZEb+2XS7YLxUpKyeAQLvtWYfSd84ikIrxbo/duac0gLnB8ekpOmWldERBi4dlVLDuMXVHZTQTBhyGjTN+OWt6vH8u9gj7c+MDjlL316+PXKTZVTdiOTcPx4SF3JXOwqG0ceSufYjd95GGNkKGiim4FlV7N0LJHFznjJ0HO/FsWiDN/2b5v7CK+9kzrCcEHooPlfMakrh8r0TFixI/CGM/8q8Yzn8QYz4zxzBjPjPHMozGeGeOZMZ4Z45kxnvkR+Hc1nhlvehoxYsSIESNGjBgxYsSIM5gvluZSdiXdLwykfxWjkQJaiHQn5Jzp/TyKG5xHoIgTUsxsuoaUMuIclQ/klOliIseW/d298mojbk/bhK8m1F2Hc6ecdl0heCAnNWJ9IDQcqfAPGQi+IvhIyhgp3LOUaqGzfY4nIeAyGQXtw3ExR1CPwX1mQfYn04mfeSKPB8TbNqO8Zy7EKApOlHldcW655GBnh65TVBNJE6ETJpOaxaxGSLTrSLfZoCmzM5vz8vPP8s9+/zvkJqOiRnj4QEZpu4aua8BJIUOckRrJzrwnsKaTCcv5nCye1HUYoWQkSphOcAhenKUZ9x5fT0xI6Qn83qFXCF8fjJxWhDZaCQ4TGTyurgeSSoGKDNrYubUrXCkNMnGO4NSchr7GqYkElSupvIvwIM4Pbr2+hXMhuVIhaXFGlCVNVpIhq5lf1SOhMgchJjZ0nQ5Eg/NCyoWt6QnBUk6kdwc6B7k4AB1CjCZcpVKORMSTBFI0RkhL+uqaGu+m/P733+e0y8QMIva62tcEV9k4yUrbZdoYWTctuMpI9AwuRiR4jpqWTdNw3G2Q7JmEimkInGSHlwmCETopZZxkXHHibjYbxFWIL3Mgg1KRlTLP1fpXgZgR76jCHD8LaDPn9P0Vd7/xbS589XNc+Y1zXPzql3nz7/193DqyXC6Y+TltMmdt0b4QjdtU776y9OtZ0ZRQV8jQYTyVzxfFuQxOWXWZ002kazquXb7M4eEjvvn1r3PzjW/yygvPcaXaRTcP2BzdZ/n0Nbw4vFT4aUW9LOIYSkqZ45MTG7NIEZgiCoRQU1dTjo4e8c4HN3n343ucbhL/8Pf/kDdv3uH65Uu8cO0Sk/mUmO29nAqVBhv3quScEOfxXskSibHBy4QYHaoJpx3nrl3j+9/7AQ8ePMSHmi/9zGfYnCRStyGkFUhmkx0pehabxP/4D3+bf/4vv8dbtx6yc+EyoWv4D3/pC/zpX/win33xaY5ufUSMHWE6oaocyWU2rSIpMnXwf/1b/xn/5Juv8/0btzjtIuzs0B4dkQ+P2CSha5vtMoeV/VkdHfHh3Yf8zh98lw8frnlw0rDaNGxWx/yVX/kF/tIv/yyvPPck3/tn/4w375+SvWNvueDLz3yKej5h3axoVhs0RUQ84vuU7VLWvy2x6ASqYKR7TplIRsm4lOH+KTd+8AaT3R2e/PO/xuzckma1Yv3xHW68/QHvr0648tKzhHPniOsWR6bChKmEQFXhs5Gb2CpvKMS2E8vKoP2CQSl1VGRBsOwDmUwWJTil7dZsNmtWpy2PHgmBNXXlcSJYlZw10pc3EUqGABl2A1+5IiJmZpMpTROJbUs6XbMJLV2zxqVAl9VI7NJ2khK+CuQcLcuA9qKXQ0VMXHQel/MZYtjIXNNqFc25lJ2xlvB92YIihmsvtg5lhIqYl7Wsa72Abu/h+vVQhFA5kiaS2q4vrpRaGTIemNvZtNXS99hiamuqQzyQk5HRORO7SF+SQpzDVWE4N/WeXEe7AQET9zYplf5TvIfVeoWI7S27i6qcr4l1muy8nM9kb/uVPWjr/rbPhu2/tJlAuZmh6xoTVrxjWs+YTq2EQk90ex/IGpFcBOz+jRScDzw6OaIWz7KasTtfcLo+IVHO1btyc8J2rnjXl0764ZsTRIR6Yut4TMXF3VuZdfv8be8DmgcZKbYt+4spO/MpO9OKu3dusW7WzFNiRSYNDmgG8SHlvqRW3j4IZy6F/k3J++3NGVkV8Q4fAuI9Tdty/OiQ48NDYor/hp8z4t93jPFMwR85nvkkxnhmjGfGeGaMZ8Z4ZoxnxnhmjGfGeOZfHf/LxTPjTU8jRowYMWLEiBEjRowYcRZ9CmpnKcu1kAdQgjWnhXCQ8hwZnD+okQ5Gyltw7GvPpIgJ5sAKRuVk8FJRVzWh1DQXcVRNy2pjBNbJkC5+C4vjizs6OCAhCE4gBG9igDNXUgiOTSyBpNrrvO+FDClO2oRzZ5xzmCAhWQsB3gfF2RzUPxaFaB1+62UC6alJsthP6y7zaNXgRWg6S5WdVTmJjrYzV9V8WnNQG2nQbRru3HvI+x8/IqYOkWyEVP9ZJZDvukiKETTjXWBaz0ldR5BMq8rtTeb2ScMmW9BNLunCRXCiuKjm9HJWpgHnkCaC2KdllKr0k6qdYRUqI4YQTlYNXUpGMNc1vq6Ko9DOAzKHJytu3LvHxw8OcTPHrA4EYN213Lp7n0ndgDhijgzp9sv55Twkw7axVB7XbCKBqhophlGDKXblHK2NsjFbw3jNhVjrHdY5RRO6KA672AsE5rbMORV3nLmjU4yDs9CEgkQXEzElK1OSxX5OiZVmXn/1NneOVjRdZj6bGGHpjLB0ZcT0aeeTZmvjwu74bO266iJdTOw55fS0o2ta8rQBzCXv7IRQ580RTjCHW2Wjs8uC5lhcblKIRBMEXU88okbySkDEg7b4BsJRhkZQVxHmO5x78TNI7JhMJzDdBRxanI+uiHk4b22tWlKiB3DVGVc7aEm5bxNPEALqAk9ducjlc3t4Bx/dvc/33pvw6GjGlYOKo5OOLzx5if3aMVsc4IFpNeFk03L7w4+5d3zIfD5jOZ+yt1iwv7ekaVpiykN5Gu8qQqipplP+5Xe/y/u373O0bqhnEzYivPfRBzTrQ2of+czz1zk5PiTHDTklnHjU29gTjBgUTlES6hXEERK4EKh3a9688SGvvfM+TpVXPvcyKeZhrQpirvHaOyS23L95k++8/i7H6w51gdVmwwtPXOArL13nM09dJq+OzdXvvY11yeS2sXVPI53CzmLGVz//Ai+++CxrP2M2mdPllpgTCVeeWxZGlNnOklffvsHvffcNfuubP+BkZY7fc7MFe5fmfO3zn2Y2qXnv1h3efvcd7mwqpnXNheUJFwWeePoKMbZ0XUtuW+rJFOesxE8/xtVZCv6YlbqsGxlIOAI1jgSS8dOKqy+9jJ/UhMUUNw0spGJ98T71+cvIYkH95BWSc8TDExM7VcA7cgiIBhMAtJzjQGYKiLOyMOX8eyKy38+cc+Rs3/t5gSokZXPacvfuKe+/f8zRTqKqzBFr2Rygn6wivUO2tK9qyfifQTLVZEaMiYmDS4uKS8/uMa0qgnNYlR2/LQlRMneURPxlnRBzKfdOYHGPcbU90T/83P+q28d6d2tRRSlVoOxd7CHECb4Is8ODanuGLy5ZXCYppJzI2XoyqYl8vVChZY1VoaynPQnOkBlhECackPNWWMZ7NJZMFJqJKbNpIzEmYpfoYmbTxFKOQqlCRRMtI0LMQl13hOLAd74vlaOkrHhVgha3tbNrCNGSEUVzyeySh3YRQLWDlExASonYrWnazgRpsXI+eXDZF7FYy57hwGUhdZkOJbrIfDFFTo+QnPEIwdk1R3/+Xkz8cFKq1pQj2e6E0Gep6ceeytkMIQ7kzHWJYmu7K/tczlZ+KlQgjsOjY6I4/KRi5mXriB46U4Fk106lXEq5uLIWEj0zloYDHK6HevTZTM62bf+X/hfpBam2IeHpvOfo6BEnJydsmrbcsDBixE/AGM+M8cwYz4zxzBjPjPHMGM+M8cwYzwztMsYz//7HM+NNTyNGjBgxYsSIESNGjBhxBubOCXjnMeK0EKXKmQC0uKpKcC0iluY55cFxldVIWR8CQYScSnp+59CUUedAPEr5vKqiqmpEhBgT3kkhE3qLV+F4xAgH5yB4V1JUW7BpAgBG7ngpxLT29MZWXJAiEJjFGyegbrD1FK5H8dgHJopL60wo+4lWYyBRhn97WMppKSRVzI7TNnF/1SIom1gcYShN9Gw6K3kxnU64MJnTNBti23L33kNufHzXHMByVoToQ2xH13WFrFFImboKSOVRVdqc+eg4cvnRik2XmU1qRDzma5bSjxHvPL6UeDDHnJFqSc2xW9dVcTtaW1ehIhQi62S1YbVpySImEARPcI4QAqGqaHPk7uExNx885O7Rivl8waQOSMo0KXH3wSE7s4xzzs5Dk5F5pUVjSshAfhnpbIIFpJQLAZULFyZ0XUdOaRjXMeZScqIIWZqHDABKRmNExVnpkaxs1g3DwMNEmN7dmLKVOrGxZA7pLnbEbH/rspWEMOc0RBc4PYzcvnXM4aphd7Fjsks/WPL2cwCbJ8VZJ2qEVnbQxuJerANto8SY0BRRMQEDKSRXEaQUh7qAVA7NkZSM0Bs400EscAPpkgVQh/eVEZIZXMwEaryfoKEii7Dz9HUjDb0DN4XUgfYOR4eEUIi1MpfFCC3nwkAKaiEFh7kCKJ42Zp66fJ4XnrrCU1fO8/HhI1770HO8mrPazDlZZWqEZy7t89T5XepqSj2Z0Bytef/mR3z9B69z6eJFrl444Prl80wnwdz/4knZ2s0TCFIB8M233uPWo2PWXaJaCoebyMnmCMkdB3u7fPFnvsBqtQI2g7CWRYwMVcGV96GQgQDBm8M1CnzzB29w78FDrp474PLF83RtIqmJKFLmU+U9Tdvw0Y2bvPnhLZqohFDTtBuevXyZ565e4Mr+gm59ahKhK+ubZnKXzOUpmSiQUK5dPsfT0yV5cZ7D+w9JqTNC3FQNpIiELgjqPW9/dJc/eO093rh5Fz/fY7lbc/5gwWevnePJy+e5f7zi1r27vPrWO6zzgoP5nNXunD3dMD83M6JbHJtU9ovSn8bN2zxVFE8AF2i6jqgt9XQXl20eqQhuUnPw1Dly5clBgMSsWhCqKdViyfLKHjghZyGtG2JsSCr4qrIKH1VFFj+si1pKKBhrbaPMlgBnc/Asky6uCIUgmlESlFIAzSZyeNhw9+6auJZBRN6SoD2RDOKLAFcYea+l9IBTqCInRydcXNZcvn6RncnUsoWUfVFUyDJUKylEcyGDi8htJG15Qvm7lWUoRQPydrd6LKuHfvIxZVsKSXAi5KHUgZQbBXpS157upJDCRQhIbN2yroguGTVSXCwzg61Jiqrg1DKNDJwzpZ0cRYBwVkJDHarmtE5ENJuDPSn0MnnMEDOkxCASIwFFSSpELWVIsuIo4qUU0SjZz5Vz29fSu8b7GwaS3fxQ1tMUk7ULzsraRBNH0FzapR8S5f00m8u7/C4IkoUuJTa+ZWcxpxIIav0dzux3QNnrzeFvpLlsLzes09Fc1lJsLScL2gsDOnS5zUc1UWu4psJe23WJjSon65YcAlVQpl5MtaafF2LHUW4GkcH93g/Us9dB+vjfhsurx8WCYQgOP5wp/STgUia1G9qsNOI5PT1h01imHef8D7/XiBFnMMYzYzwzxjNjPDPGM2M8M8YzYzwzxjNjPPPTFM+MNz2NGDFixIgRI0aMGDFixBlU9YTFfIYTR9u1tE1D72UCQHvyyyMu0AeCOWdibi2wEzcE8c55SystSizBdyfQqtJopFlHNrFlMqmZzQXtIjklcrZCBRlXyArF+eIOEsE7YVJXBCfEZMSEJnMybekaC4ydSHHvQtJkwgDmYJIiNlAcvLqNZgfiZxsKy2Oh7+P44UcfC5sF1Ac2bcejdeLuSctsOmOtSlIjWKIKq5SRqmK6nPLE+TkP798HTTw8OuLB8SkijuB78tWCftQcmpvNhpQyXduR25ZJ9uzvLkgENjHyxp0TJqo8ebDDpf0dcs5UIVD7QB0C3jmCz7hk6bKNfFdiMkda20Wyo4hIFTllqmClH0Jl6fE7cXQ5064bkip1FahCoKo6jto1N+4+4s7hCYcbmLtACNEIP6k4WnU4aamCkTzqjfAwIkNJUQcBAwdd0iJgFTKQ4hhT6++kjkQeelG9lHErJJTYRdyZ8SXByiAIkGMkumSuTudwONAWnJEqKUYiRRRTRaWM/8rI3spVNF2HxIhXZRFqXnnp00R5m/du38eHiTliJQ8E3XbclbHUE4sMHBoqGbISvCPUNS5URjSXNhoEPWfUEmLzdHAip9yrYPaRReTrSbsyxY0Qq2sqn4BM121wuwvc3g6ymHHSnKCVEXiiSkiNlSDBmSNbBPEBFY9q3BJvUo5JHElsjmtwoBGJHWQhdXD/wQOevHjAr3/tC4TK83/+2/8D79y6z2nT4kPg/DzzB6+9xf2TJ5DF5/jKxetIqIkccu/wmP/X3/2nfPrTL/H8tSu8cOUc733wLj/3s1/hwvlzeHE8ePiQOkxxCU7vP+S3v/0aR00kOeH45JQ//M47fOaZSxz4GUeNItWS4KdUfjO4x5MmUCVs2dgi6IBoYra3x0mbePWdd/kf/8E/58/84lf5zMsvsFhMuXN6RFQBqfChwoVAqAMPjg755quv8/bHd5HpPr7y5NURT5+bsjdzhACND+RkhKbLirRY2RdJ5v70jqaFuG6R7oTUCrRW+gXpRSLri6qq2dld8v7te/z+D97mD9+4gV9eJGlHXTmunt/jV3/hS9x69Ijf+8G7vPrOhzy4fZfDdebqhV2uX96j7fbZubTk5Wc+xcXz57knh2SUmJUcIy4lcBVOEyKZ6aTiaB25fecOm82az3/hS8R1RxQr0VN5JbVrNAneC8vKET++i3SZmXdMrz/F4YOHaNMibUtOHZs2UWcTjup6QpZML2SSTQzDlXT/PTstZadQIWlEczKndobYtMQYyTmzmE7IKdFF6NTEL0IYRBrQocSCG7j0UhRJweHB9wq3YxWF1Saye7DL5648werkkIdHK3I2oUMEvPfmWK1s7lahwgeP90aMeu/Nzeu2WRW0nJtzj2cUcWeI56zlWMufs+Yhc4RzDnGhENNbp7j4rfO2qCwmNjnABZL3ZHGomIAQUyKqkPA4VyG+MtFTFB9MBKHsXzknFHCuRpAhW0WK/XVARibmUs450bUt3gVi7MxdHhOzLllZHzVRtZpMiMkyjoTgCKHCl3W8X+t6cdgrVK7PBiJUlccHb8KbeqZ1Zdlc1DLExJjQEAanco6ZxbwmeG/XIFBuClCcMwe29u7oopgFV3O8OaaNHQfn9tipJ2RxkHK58cGVchnmiM6aimieBxGqv8DQnGmarmShsD5ToZQOKQKJ8Ng1nHMeFcg5MQmB0/Wa46MjcozMd3aYTGdUBCqFlBo0U24YoJD35UaRDOWkttc/4hC3LWXRv8j2aBMcRHQYA8Pfz4gH1oZF6E4dzeqUlWxYi6PrNnjvyrxgxIifiDGeGeOZMZ4Z45kxnhnjmTGeGeOZMZ4Z45l/+/FMmXpn//7vSDwz3vQ0YsSIESNGjBgxYsSIEWehymbToShd19HGWNyMlqrYiZEUOSkUhyVQ0jUrKZkztxSQAIE2RpIqLgRSF+m6SIylzn3ObNqGzemKk8NjHNBl6NpISgklIRJw9E4zkFKuwEsgxkQbM6k4NHNJ169ZiuNGBjftQMKWAN8V4sbct4Vs6cvIC4UYsLYoFuzHDT8/EUVWkOK+EyPynHNUkwmznSWz3T20beliIqVEjEp0Di/ggjCbBxazS+ztn6Oa7/KNGw8Gp5hQAWLnrJmubQlVwPuAhoxoxlVCRNEiLCw8XLl0mScvHXB5f4eu7airyvrVSSGOsjk/UROBxA2GXVXPpouFhHbmChMdyA9rRaVSqNTS1TtvLq1EZjKZIQ8slX3XNqgmnIfgPAs/YWexw3SxxFc1znt8FfDBFxLfyJ0QQnFxQ+y2TjbvPSpuIBcA4uDqMpef90YBZCD3RNdAnkhx49ObGRnSpYvRGCnlwfmckjnmslpGgNh1pBQHUUFEiF0sDr+M5MylK5c5Xq04OjrmzvEps/nc3N0Yse+c4MuxotmELLGU+V2X2FKPWPuEqnzVeJnSpXUhyyhZBhKU16dCDlazGlRYnR6W8hGWpp0yd50vLmkHtag50zYdq/UGFxxhOkPmO7ShZuECE/E4hEerFV5cSV/vbTybXdGO15lrL6uJF15sPYkaSTGRurU51b2jqmAxn6LAi889zaeefYpzB3v83/+73+T92/f5xhs3OT065bmnL3P4zk1+8O4Nkqv53Oc/w6UnLvLlVz7L3sE+r314h1V2zHb3SSHyT373D7l+9RKfff45losls1nFo8NjfvDWu7z74cd0XaKqaqpQ8cGtEz669YAXnrnKYv8SqpGcNqTUknB4G0D0xLsmI5WTOup6xt7+PjfuP+B3v/8Of/vv/mPOzRZ8+oVneebaFR49eIhzFa6qQWc4rzgfoJoR/Yzj1tEk8FGZTBxXdpc8e3nBsrZyCtnPULGsAU7zQMylQsS63BFIJj5qBu8o+QEQdQQgdWuSCLmuCLM9vv39P+Sdm3d4tNkwm50j6ob16Slvv/k2f/vomDc/us3+dMZzVy/zX/2VP8P/8f/533PjwT0+PrxHF6/yy1/9OUI1x9dT6llrK60UQjlFojgmkpl4z2wx4+/89j9nFjxPXrrAYuY5PNqQU0dE6WJkOZkRD095dPsO3/zt32H50S18lwi7e+z+hd9g7/o1Eo4uJnw9Z3cWbB33rohQ3tZJgSxCTjbGBUWGBU0GMlOcx1Um1qRVBxpLn2Y2klltVhytjtm0LRIqy6RRnK8emE8qglBkbcX7CVGVTZfYbCKIZSjIOI4ePuRLz1/hq89c5aVrF3jvo0dWnsg5XMzDeuZ9wnd9tgpzvvfigdLacauJ3L04aGuzpzD/gAkKZ0nbrJb1QyjuZ8cgRqJF3Cnrpgh0MRLLOgZKl1sSgaRCGyN/+P03ubs5ItfKpKrIznHv4RFvbxzNw45qsWs3FrjiqkYHkQKSlb9JSk5K7LpCbpsbXVWHshiu7PuqmdhF2rbldHVKUitT5Mqa2xw+YtVYmYZOlcVsQR2sNFFOieDDsO+RM947qspTV556UqE4upjJCvPZhPlihi+u7ZSVztd456z0Thc5bRJRHc5X5dwUySYIQREpfMCV8glaOTqU1DWcHp+ws7OgVWfXOg6CN+c+xWGeUhFBBjK9vwApwg/JuhtXxvgwvIcbIkwkM4d1LpkCJCtBhBCsZFAKnjCpyDianFhlh5tOyHk1ZIPor6EsQ4ieEY84c1w/Co+LBo///mOeL7Y72w0njqxCyv31nwyXZCNG/FgoYzzDGM+M8QxjPDPGM2M8M8YzYzwzxjNjPPNvNZ75o+B/mXhmvOlpxIgRI0aMGDFixIgRI87AhWogUXzwVDLBFedQcA4vUoh4BjdLHzpWlT0SkwkG4hzqYFLqyHsXaJoNbeiG2vJd7OhiV8ocONBM6hKIkf1maDMyo/IBS8+cB4InpkTbdaSsuMpSsit5KEfhSrkAYKh1bymlLb1yCFb+QHPv7CnEkcBsWtPFSGq74hztnXCfxCce0z4Nei8UgNOMd+BdxklCNKHaITnhc7aYWJUYI9PJlIOdBc88cYWu61js7EG9HOrXq9PiNCtFIQpJb+do7l9HIGbPprPPDJI5t6i4tDfn3HLCvPYkb23qS7toSYfdCyveB/oSAeasckYClZ5POZMwMqLPUo1Y2uwI5koWc5C2OdG2LbvLKU23pEkdVRBiglph5oW95YzpbGpOOrG01TJkru5dVXlw+fWlQCx1uVqqdWE4Xu+U3v1o/doNPeVxeMcZoqOUBykury0V05eZ0EJVmNMtxo62jeZiEyBbX1LclZozOWWbKzmTYsdeXfHkuX1untvjowePUFnY59IfopSxboRPECFhKc2ltLqUnwahAss+IGpklAznsyVysmZStB4RHCJ9SYwtUaioiQbOl/mcSF1HcIpXIQGVU4KDiQjMarh9yOp4Tdd1yPkDoLbPLGUpHocHVyNqRJhzgmqDxAa6hiCeMJsTaiNgX3/nLabTGef29jl3cMAv/+JXePv9j/itb73Gt979mA+PI5sP73N5t+b6uTk33n2DJ6+e5+D8eS49eYVnrl3i91+9wfs3blGJ54svXWe93pAzOBV+9oufx0nidHXMezc/5vC0BTHiUESQqubR4TEPjjds2gh0aGrQFBFXb+mwsg5pzlSzJVVwxMmED+484uuvvs+/+NZrfOf1t/grv/QVFtMK7yDGhAuVkbdVBTI1vcEFJEyQMCGrQE4EN+HKwR6XDnapQkXKRaBNgAQIoMGERbwHTeSYWD96QNjZw03mZOeG/nZFEJUYcJXHucDJyZofvHOT+ycbsgRcjlRiae83Ed64dcqt2w/4+V/8Er/+1c/z6esX0LQhpg7nAxJmBALkUpZF+rI7Ze0QIbjAZDJDc+Lbb77Pd197g1defJ6L589ZmRJNSFYqcUiYoL6CyZRqd5fdJ67Bh7eJJ2vUeXb2dvB1QEm4uqIOtZUcGpyphRQVc/Q69WTptvNC8/CzYCVb+gwBRsh7shOqKhCCmNDZuIGwlE+MbROdxbIVFJE3hJouKVk71kScOLqcaGLDhUXFH//si3zh6StcPViys1jiggmqzjkTRotztxc9LNtD//eSOUIpfeoHwRP60gA6EMUmghe9TpWUU5HEy9wvTl5bCzM+9YR0Ecq7Fpd6cjlDdDhqPA6Jid29c8wlkaUp5LplpYg4sqtwYWKZSQRUFM0mHpqD2EqYZEkkMtl5NCdz4vblTsSctTn35Rms1I5ZbH3JUmACZERIIuArpHKkCKsoNKmUa1ATPn0qpSFU8S7hu4z3Cbfp0GQZQQAm65bJavMYcd8mpcvQROX4pOHd24ecNB0hBLyzchXmHj6bU6WME++KCOtR8Rwen7KYTpnUFfNpDTnanoaW6xxbz10Zm7b+9wPP+jkUVzTlxgYptm1Jtv9l7Y+hFxm2g7+fp84pqg5xjpzLTicBcbHsiGXf3W6x5buNGyk3hAxv/Yk58phR+sehf02f3aPM1ZgTURwaKqTMT+f9D33GiBGfhAt9VpgxnhnjmTGeGeOZMZ4Z45kxnhnjmTGeGeOZf//jmfGmpxEjRowYMWLEiBEjRow4Ax/C4HbxEkpKaCPSvXMEdSRNxWmlW3LYqCcQR8yJrIrzDooryyEE8Wyqiq7rLLWxONq2oYktKWcER84R2bRENQK/6QoJ7MwV1nWxBM5bkSDGSJcyXraBqg5EggkPAN4JwXu6pBbIU9JqiyOJbomVEkrXVWWuVoz0xX+y5vqWSqa0wVkH2pZItKDfO8WL4sigJhQ4NXe5Bxpnzq06BM7t7vHM1Sc4PDmimi1pZULO5XzQx0hYESOQpDjZzJnr6bKDCJXL1EHZmQb25xWL2hMkU1VGavWuVTtvT2FxzYXck06lHcT7QSCyQgG9SGAkipHmjqzQ5o5IImbwKdE0if3llJwz63aNd4LPgsd83vNpRT2pEBfICirOSP4zrj20lE+Qnl7XIfU1xfGlpf9FgNzTIkIqJKITwcs2RTqFV+9peMUEpjKQUHIhLsqZx0TqGjarNVVVyN6UINq4N4HAUpmb4zjTdQ2LxZIrezs8ee4c3+B9sgqeno7rh+6W0Pkk0S5nxlrSXEjRngw11z3Z2stSrZf2wA1CR1Y1Gag4sAeX6A+ROnYOiMOFCreYkh8eEk+PiXfuQhfZfHiL9cmKiLJ3cR+K0EBKuB+aK1YqAgfiFYikboOmFk8m+Bm+ntFo5tHhCd9//U2eeeoppqFib7nkuetX+eqnr3Pr9l2+897HHLVwcveQ4HZ54co+Rw/u8ODWx0ynE2b7+zzz5BW+/eZHPDo64e0bH7O/t8vpTsVm05Kals9/+gXqqWPVrrl17wEnTaKqJ3hnYy5UFW2CJqbiRrc5i+aBnNrOfnMXumpBdIFNC69+cJff/e7rfOv1tzg+OubZJy4xrzw5RlLK5oZ2GCl6ZryL91STGhFXUvcL55YL6qomiyeqUY+mgFZGyDtbe9UHNAuaMs3hQ9x0XsoUuELGlnIBEhBfE6YTsvPcefCIV9+7yaPTFnEBzZHgcllDhPtHG3anE7746U/xtVc+zenxKU3bogjB1yAVmimiWGLr3pRhbarqgFQTjk/XfP177/Dhx3f54ksvcH5/l5RzLwGaeBdqsvf46YTZ3i6XP3Wdw+++Tte0+GmNjx2pbW2Nms2hzTg117gWB6cUF6pxrf3YLit77j+tFwkzqDP3Z8kgELEyQs57I/CdZV7IZ2fp8I+SMybeImU9dFsSvF9/UkeMa1588ipfee46z14+YOJhNt3BVzKIBFWozhC4QhZvh4wMIrB5ZkuafVcNgj1IaYeteNvvEf26mFMa3lvoxWEty10u65atSlkzoetsrSllDVI3JRFQPDlnLl9Ycz+t2WySZT0p7tWqrpnNF8yWS1trALAx0u/JYsw7LkUreZAUzXEo7yBiLu6iWJhQoYoPig+BLI6qJ64VfE6EXFNnJSaligzr8LBtqoALZPGDezgLRASSopmtsTw7YmNlJbwTPMqm2bCKcNIodx+uebhqabPiveCcknMpeVAydWxXCx3W3H6PXjUNdQjMpzPm0wmud+/barld8YuA/NgyXaaZCfwylH1wUtbzXpnQfjb2L3oc1iS9qFf6HdmKfWeP48xrtgfRH0p//fUjPuMn8vln5lM/cMujOWeatmODlWLpry1/zKmMGPEYxnjmXyWe+STGeGaMZ8Z4ZoxnxnhmjGfGeGaMZ8Z45szh/wT8uxPPjDc9jRgxYsSIESNGjBgxYsQZOB/IqYgA4qxkApZCWnKmLSmaRYxgL9UhcCo4LUSUd6izlNZ4SxfvxVF5z3K5KCUj0pDmOOWEea0dOSdOm4aHx6ecRlg9ejSQuOZuTUb6ZCEnqw0fc6JNCRrFeSxDeyFKe/q1D3SDN9eWqDmjtmFx+epJFTvrIb23tQFG0G0j9x/RglKIWyPHetECBC8BtMWpUItjHjxBM2RB1WGJxWE+n3P10hWeu/4cH3z4Pp04YgdNIWt6Z+n2CEpJC9eLFBbwRwWS4sUEkokXJh6cJlJUQj2hsNSFLDFBiEKwOSCIgBgJZv2Qy2dVRt4UF5ZzggRP8IE+LXWXWtrUmrMpVVQKbXZIVo6OJ6xig7gKMkYuJWUigg/OXHcIeBm4AB2I+k80vzAICX05BFd4kp5UQhlSWtt47MmNQq5oz6v0TtdUPlMGAsq+J4ImAhlPpJJA5QQkgPfE2JGTCUpZyxj1Rpr53HDtYIejJ65wsFxymhJaxmDURFYxF3VP4KeteHF2HEEp7xA83pnfLaWIxnYgxLz3pGjObSuxUJkoIR7B4Z25aKGQaGXuo1beQr3NN6oKt7Nk76Xr3Ln5IXe+8z0O79ymW+7RxsTsiYvsPX+d6d6S1fGaHBMuK+J9z09Zu2oix85ExxBoNhtOjk6Z1RV7O7vgpjxsO779+pv89h9+k6N79/ncCy+zu9gltRHu3ubZ80uevLDPbDqFSeB0taLLgqvmLKdTbr7zFiknLr/0aZ5//gWefOc23H5AjvBb3/gu1584xxPndjldbXjnjTd5+Ssv0kri4cma41XHQW1mTFHLyOCdp64nzGYzJASCC1TOkUWNDFdz7/uq4uDCBe48eMito2Pefv8B/+KN2/yjP3yVhw/v8fL1y/wHf/wrnJtPaFcbm+uxgRjRZOnwpaS5D6LsLCZMK09bBJ2pD3x0/5ir15S5VOxOK+IKUhEJfEpGwvkAxTnYnR5TN2t8TKC2yvXClzjwYcJsucdxjHzrvdf4g9ffomFCmEyBDtSRqSzzxOk9/uaf+Rq/+Ce+yvLpa/y//x//LQ9OFWSKdzUPjo551JzQZMs8YOPfshVImVyLac290w3fff8W/92/+B5Pzefs7SzZWU5ZqScXry7iccFB7aiSoyYweWKPdxc1fvcKYX/OzX/8m8y/8CV2n3uO+eXLHN+6ZWtO0RTtBMvKnhnWRBvsNqmy9vkd1NzsXSI1DaQIZLquI3UdTgJ7+/s4F8gqdMnEXsvQ0AuNjk0TaaNloRDAScRcrAIhsCklY5Yk/vqvfIXPXDvPxAvHJ6eIq8gxo9khIdBmW4wEV0ryxIHMVnWkHAdRQEq5nrMCooh1ee+cpoilA7ylm+jL+Njx+mGNLQ1V1h6YLxeDoJJzxgGa7IAcStPCzaM7PNg85KTtiG3LrApc2Fvy5NULyHwXiijriq83ZVvLh8wS/X5dMkn0wjpYiY2copWc6sWDfocuwm1/zSJiNzH01Voynk3TkFKybBJFtNXinNeByLfjE+xGgso7vC+lkNAi4AiezKZpaTO0Sbl20rJ+R7n58D4PV6eWNaGw+71gb18gJESsdIPLDodDBR6erqlnc5aTikVdEbByOd5561+lXCcNnugzAmVZX4XBMa3DbQ4GEyPtccp79eU4ttJSEZxieTwXQSYr7sx742QQpway/icKAD8aZ/n9reC2fUCcgxCIpx1HhyvuJUdb1WyODjk6PmW1bouMMmLEj8cYz1BeAf/z8cyPwhjPjPHMGM+M8cwYz4zxzBjPjPHMGM/8KPy7Gs+MNz2NGDFixIgRI0aMGDFixBm0TTPUngcrCSHOgvGUjMrp3Wd4EwdUC9EfO1wVqKqKKgR8CCS1uvZNSmjO1FVtZAMURscczDlDil1x/RnxoqoDOeKL+NCVaNKJYzmdWv12dSRacEImGgGUClnsBC3BrqrHStMLHl/SS5eAWvv02n2td9hsNnbehQzXIVT+cVGxbr9rBjyqWAr3DMFb2n7jRBSSkroIWgiZFMhNh5fAfLHDwYVztN2ao3XD0b1jVicnxJSoJJggkNVEnZxYr81pbK6r0raiJAE8+NqzO5sSnBGJ2TvwAfNpb9OCK4rTjKi5o2Ih+nrXUxIHGMEhzheHV2EpVEhxK8gIFQFBiIiDS/vnuP3gmNwlmi7xg/fu0Gjmws6Mg2uX2bSZKhsx6IvgkbXvGyUVR58r52ltpgMT7XpiUM3dlrs8kCVaCFIjpYSYlVTIOIXiMnYICc2JmDq868thbFP+qyaUjHeO5WJBipmua3EoKZpolbO5tzPmMowp0sSOrjlh4idcObfLM5cv8633PkTqCldVJIWqiD/mYiyuZ1Wc9mKGmH6DHcfJ6TGb9SlpPkHEI17MCQv4UNE5wYeaUNWo1OQcUTXiVGSKaigdJZAzPkMsju7JdEFOHW1jqfqvfOllVh9/SHywIp9E8jzyxFc/y96LLzB/6jrHRxmfW6wISKbtGkR9UTkydRUJvqaqFnRJ+O///r/gozsfc+H8Hs88eZXN+pTv3HjAG+/c4PatO/yt/+I/4bnnX6LOkdWjuzDfYbm3z2Jnj8oHMmt2JxUPH53wj//gdY6PL/OnfuYzzO4fc/d3vsE//51v0EZhPp/TNSv8bMmH9x9x6/59PvjoBl+8fsD1l66hTUvcbOjUhBfNfSmXGi+OANSq4APZVaj4QbDZ2dulqiaoKt/+/uu8c+s2N2494M0P7vM/ffc9bt24xQuXd/hPf/XneOLclKZJtDHjxZtgosncs17IMUOKVB4OdhbUwQjmJnW8+fFdruzW7Jy/x2S5x7lLl9k9OOBk3drYy7Z2pZjMkTqb4mcTUobYRWqx8d2vXlko7vTMyckJ33z1LY5aCDUEZ4/nPONk0yC55ctPLPkv//Jv8ORTV7h7eszh6RFJoa5t3L3x7ge89fEDXnj+OZ5aLPAnp+QUi8bkWUx3uHv7Ft949zb/7Hvv8/VX3+NLv/Yyu/tLcl2xPlRqNyFXkeRAagi3P+Tk9bdYvfYmm9ff4ejj+ywvXGSxvw9vv8ty7wLTS+eRy+cYEiMU8t9phlTS1+eyphdX71Yw6IVhcM5biZ4z1GU1mRFCjXOeehpQF0gq1sZsSfmMUDksJT/WD55MpZGIo8smEhw+fMCT+wv+2Esv8IufeYpu9YCTJAhTjlfH4GBST/Ghpi/ZoirkpDjf50swkbZ3els2DEVyZMikIBTCe/t8EVfcz+W4td8f+rN1iGzd4vaUbUmc3GeZcCaKASYCAV6UxdyBRGKKKIIXYW855+LBLpcOdli7ysQSkbJ2FXJfTczviWu1+k22lpW92PboCME/pgn3a7qUsk5DzymlXFVxGKuQlvVWNFAt+1wZAbm42oet28prDHt4L2T0BDuO6XJJTC2pa7jo4e7FOavumEfNmlB5BHN4x7MUvDicD/gMrrjxVRUJgRgjdx8+QhCOT45ZzGfUwdFtVtY7QXDB3mMrnWwHfewSOEWdUOGM1JdPNNSg1kq/OZdZYOU2bB5YRpOUba4UdcLOoOy7OdtNA7aaFGVdt3Pp3wi9qGUdA2RUHDFnuqR0klitNzRtQ84d7l9DnBjx04UxnhnjmTGeGeOZMZ4Z45kxnhnjmTGeGeMZ+OmJZ8abnkaMGDFixIgRI0aMGDHiDBbzeSE2E13XDbFoLiStJnNTiogR1lUFWGAZY8dyNiFUARGhbRu6LprTsgSRTW6MsFILUFNxNPUEfcAZ8YvVi9eSil1MnrDfxeO8Y1o+Z11FYjaybdV05mAutkwHFgRbZnBiyoOjp3c9GYkErn9+aQvjVQr5g+LJCD+uJERPwriBUEeMrE4xm8AiSiUQvFAFoQ6enCdkjWRNVFggHlNm1basuw2ZTFKIOZNiYy6r4I2sSd0QuGvOxTllxJEWR7crxLJ3if15zc5syrSuSaiJFsN/0LvkzCdmv/cpoY08ESPDSmkOxOFkKxLYpxvx07+PhIDHUVNROY90x6Qu0uWWLjm6nElJERKpbdGuQ50j+yLMqKUhzymxWRtp4r1nMpmQUrb04VrKUHjP2fIGmotHrIwvcULORvJZaveeBrMettIR2drOFYLNOrUIWz3N6hCs7AEpQc7WT3Hr3sspkwVz7sdEu+lou4Z6KviQuXKwg3/XCLNU2hmx9vVOzAFYRlThlEgpl5T1hWDyQpjVTJZzJM1Zb1ak2IFmctfRdS1tY2n7uxRJychEVWibFUgupUAcHljUU05PTzk+OSFh5VCW8xnLWY2rHPOXrhMfrdFVB3HD0c0buNkMP1lST/bpKg+uQtSRk5GTAwOXM6EKJE08eHTKv/jO66xjy9U20/ia1HV8692PSJ3y0vMv8MXPv8xsMUW6jvnOPlETN+7e597hEQ4H6vDe3v7hOvG7r73Ppy5e5ODSZZ557nmu/M63+d7bH3K4aZjMp1S+QkNN02y4dbTh3umKLmVm9YQrB7tUVSmbgcMVcTJrsvINbTdkAJAQqCZTJrt73H90yPHJiuPVio8enPD2zTu88+EdvvfWx9y+c5sLe3M+/+wT/MJL19HVMSkKOZU2cf2KYf0psSU3DZUqlw722VnMaJtMo5nDruPGgxPeuHEb5zxdhssXz1FVE2azCZWbsllvrHwKkBxQT5EwwUlANSJ93oUyn32Arms4OjzivRv3QCqzUBbyL5OIqWV/6vkTX3yZi5cOqF2GzSm+rG3inWXByC3kaJkggkdUmU0nSBXICPcePuLNDz7mD3/wHt/6wbs43fDZZy5ycXdmjmDxZTG2NWainlvf+QHtW2/TffAxx3dPOfeVL+PFsXl0zMnDU9z3XmUxnzALnvrcJfLpKX2pDlUTOksnYnLLtpyLcw5LfCAgpUwJhTR3Jn726fBxJjxsmpambck54opQ2hPL3jsmlceZLZuFV2pfcdop63XieNWwW3teuHyOn33xOrFZcbJekbIgktAivqfYstlAcAHxJq+qCJpsLxQR1JmAbk56bO3Mdt6F67W1SwsFrBkxVRBK7xaJobjIGURYW/97gVIH4UGzrZS9DmH7pWU/wSvr9Yqm7eiSolUgxm0pHFuDk61jQJ/dYvsZWxH4LNOfz/xu5yADz10ePCOEyHB8dow2h/s38Oqth/u3lO2OrTlvTePlu5O+dIaVZ4IikpjsgHgrCZRTxIkwDYFQxPI6BGLKdGLH3a/j/Y4IDvG92FtWHOdICMdNwze/930+//ILXDq/z2Q2odlsbK6VmxtyXyqhEOlVqGw8l37zXkzUF4c4254k23UIamtDNezPyiCAY8JCEhM3MkUs8cnWPi03IPQdMJRo6n8dVIcfDf2hHx7/k5b3UG97Kwo5ITi8D1R4pJ7QVBNC8LZvbf3aI0b8SIzxzBjPjPHMGM+M8cwYz4zxzBjPjPHMGM/8NMUz401PI0aMGDFixIgRI0aMGHEG0+mUnC0ddp/+GScWaFLq15doMCVwvio8g5AAHzzOezRn2rYjtiUFvFjd91TI7F4o6OKZ1NYYsWxERiGi6R1OOgT3IkYK14WEqnwghIz3wqopZERPmpTgtg/wU/5xUSxDoGqurPL63Fej1yGV9ZZb3tIUWwz0uP1FlZzMVZ7VhILghCqYgzzjycmRckdwjlB7Nm3D7XsPePfGTU4PD2my43TT4kWLE9mILKUrZicZCH6kz/xtxJgTc685EZbTmvlsxqQObFK0dNfFRSfSl0UwckiskaEUzIBCJjtzqLuSUtz1zxVnfVQ6qC+b4cSBBEtvnT2CN5ezRlwV8FFNaEBxmnA5ITlam4sbSCwjvltrevXk4K1NY+mTbMS9iRaFROtfSy9cmEt+SyjJmTElA4tk5x7oy54AOCkufYSerdIhNXlxXGqxwOeSnhz7nmIitZEUI/gGyFze32FeBRrMkdu3gYiRVCKF0CuHJRkTCArdpAonmw2PViump6fkVjlZHdN2DTlH6hBIXUvqopFWyUQ8741gWa1O8d5KbwTvCc4z2RHazYbV8QmrzZrlck5FYurmNJKZXX+CbveI9u4h7sNDTj78CHETvMxYXG6RxcQELHGoRLwKarZuNEMVKk6bjnuHD/jWOx8ymc9pXE0KE0SFG3cPuXb+PC8+/zxPXL5Ms95YavhQcXhywo3bd3l4fELwgQ7BCSSBVjNvfHiXG/ce8Yr3PP3sdV55/im+9cZbnK4jsUs4rwTnafCs247kjBxezmY8feUi86m5xHM2kjHlNKSD75rG+s45xFdkCajz3L57n5u373Dn0REPG3jzxi3e+fAub318h3Z9wkvPX+fLLz7NC1fP05yeEKVGtUJUURcG4lBUkdSS2w3eBS4d7HNxb8mjO0dsukQIno8PT3njw9s0beRw1fIzL3+KC+f2WcznpKrGuWBu2iIqqqsRX1la9UFoBYqIGerAetNw7/4hN249wIdgWSQwQjamjspnLu3v8sde+Rx17ZDUIrHFO4fDxF3nHBf35+xMLNW/iaHm0G9i4njT8v4HH/Odt27w7dfe5Z0PPuTJ/QkvX7/EwWJKaiMiwdza2NivCRx+eIv247twskIPLrD/lS+xuXOHw5M3SDtLTo5OyXfuw537nLv6NO16bSRjP5fLuqxn1+ZhPyhO4DKPc7+CO0GdlcTJZwVSgTZGYhdNZHRbirUXF7yjlGZxzGoIIdCQYZ1oNg3PXFzw4pXzfPrqBU6OT1i1HUlBnDIv6yM5kdoGfMKlWMruuEG8MvbfoY5B7OvLNzjXn6Kgud99rAX6MjiKFXlwZ/YLofiKe8VAtqKpiFjmkzMZREQobmRnQoEo6/WatoukDIiji4mYsonjMZN9Htbi4b0Kid/79fvz6I9He3dzEfv7FClaCO5hXcf2+nKPgZVK6s9Ai+tXCkkv/egvb6egzm4O6IdMv+b3yzkl60AvwtjzcsknYoK1d87GXlY8QhaHSOIstlJ8eRPpD8Da3VUVOVS8/+FN3rvxAbOJ59L5c3Teb4l4KWL2oGc5ptMJEVfKZJTj1P4jiphd9JK+xUsDlvc5I96AlbopHybOl310O1bo24Ftm/V6QT/i/iiQMz/3IoGe/YtmE/0UvFj5ouwCzgW7BnLyR/ykET/NGOOZMZ4Z45kxnhnjmTGeGeOZMZ4Z45kxnvlpimfGm55GjBgxYsSIESNGjBgx4gxScT4776mqGtgSlVVIpAnFzWzEaKgrXMnLO9WaSgIard68INR1TV3XBG+lA2LOxGhkS86KMqGNkZQtlT4InkDIig813goPDMfgi0PMiVBVNZu4wQVHyB4vUPuKpNFIYRFwJjgMQWghFNDH6KM+jjb2QC0oDpLImo2gtRzqUFJJc4ZYeByFcCmBeE+uqFq6dlRwvqKqJ1STGUgitdCRqeoJs+WUOw8f8Fu/9w0evvs2p+sjLl65ysHFy+wudzi8fwSF6HXB063XRtZ5x2w6Z71eQ0rkZA3mXMaLUvmAVDVhuiTUgTquS5+EQpoBYu5bECOtnS8OdiNT8N7ILDBRAAZHr/WJe6xRRKQQakAG9UI9n1LNJoRK2D+oWDfKdBIQV7OYz5nWdm5ZCiFWxAovnt3dg76XyCqEAEkSg2rjHOI9Tsy1F+QTRMLgyLNz6Qmb4YilJ6+kpABn6+JzistW3kGzPaeaTsgpmis9mrAhEpGYUKekGJGUcTnhi98sblagwvUnzvPEpfN89OiIVdOwmEzQDF3MRHIpTyHmSpOS5l4yXpy541X5vW+/yXvvvs+irqj8DsFFNs0KzZnr165RpRYt/Tlf7LBp1sznMyazCev1KVUVmEynhOkEMHfecmeXxXxJ7FpmywWhDgiZk0f3Ob+/z9GdB5y++x6rtz5CL19jffMedw//gLtNw4U/+StMLl0mLBYQM2YgdSa4JKirCQ9OTrn14DY3HhwyXzk27THHR5mo4JrMufmUC+d3uXP7lNOT+3TNitisuXXrY27fe0hKyu7OnAdHazIR5z21D4TsOW46VqsV07Tib/7VP8mlKwv+zj//Jv/f3/wGx5OWycRDVHbdjJeevs58UjPbnfDFV17m2rkdPn7U0uRMPa3ZbDZcOLfHub0F7eaU1b37hDCl9crd+4dsHqx5++bH3Hp4yN2TDd9640N+8N6H3D9e06nn4q7nr/6xn+HXvvA801r4+DRSuQpf1g/JhTjNgsuKyw2brqaa1TzxxBU+d+0iN24+4NHxhtneLrcePOR43fD2nWOevH3Io80JFw/2WExn1KHij33hs0wnU7IK6w3m6tREJuFFynhiEEDnsyXvf/whr75/i3du32Va1zb+k5BlwvHpPZ67eoGf/9zz/Mmfe4V0eI+4t2NzTB11amlXUM1rfuMXvsyLl3cI7YajB4fU0xkPjw9559Zd3vrwNt989W2++9Zt3nzvJjlu+M//3Nf47DNPUU2nbJqGEAKtmDjh1AGB6uIVDh+cEKsln/+zv87O1SscP7rFiTvm2l/+Fbq9q1QHu1Q7u+SuQ3wors2MhMrY4p7pdR58sPlORkKw9sfmswveniMekfK9lFUJPlDVU7y398y5pzFNDFGgiSYMOlGcJLoWCIk2gabInia+9uxTvPLUJQ4q5faDDdEHfHDUOGqvhMrW2778TNY8kLg+9IRyLudlGSE4sxbn3D8HkGS7ppQcFz2Jfubffh8biGvXi8GAp6fuUTGBtRckUs54LZJ7TiTNxKbFpYzPaq5oVcuskiNdTmTnhrIc2+2xX5t7Ycdtj66IN/2+fOZpUEQEI8PNQW2CQi8CbDNhGOnttvtRWe+zqinpqoNzuW/KXBzXWtb6XMrD9JZy8Y4uWmmbejEZymPllMhdZL3elDXP4UPA5yK2ONtTpFw8aH8BIULbthzs73H5iSc42FnyP/29f8DmF3+BX/+Tv8xyuVNKZWU0W6mTLinTqmYxnbKzu+T+4bGVwOqPW/syGhBCP54i6GOSP4NsMDjT+7aQx9p72wuljZ0b9kcE2+N/5LXQj4Jsx+DZR868frgfREFSJneJrkuctonj4xWbTaLr6HM9jBjxYzHGM2M8M8YzYzwzxjNjPDPGM2M8M8YzYzzz0xTPjDc9jRgxYsSIESNGjBgxYsQZ1JMazUqMkQ5FNRO8EcneO7qUqbx7nGDPaSBgT05OqOuK4AOzyQQRwXtnbjqBECqSc6SUSCkVpxYk9SSBHBUlUGfHdDLDOT8ErZoVKU4kX5y5XYpoTjiUqrj7vHjEWcp1EltywgniCz9g9h988ARvwaY5A5Wua3DiuHr1KsqE9z++z9G9Q/xsulVMfgzOEh/2o5SgmlJmIxczlKdLGIniBQkT9ic7PLVc8ur9j3jr9g0+/mhK2665ePM+ly7e5nS1pt2s0P8fe38Wa8uWpedh35hzRsRaa/d7n/7cvsmb995sqiqrKiuLrCqZLNpimVLBEmRLBOEGkGDApg0DfvCb4Ee/+sUNDMEwIBg2bHWgKFOUKIImxSqSxcqqzMr29s2597S7W21EzDmHH8aMtffNzCpRD34QM8bFuefsvdaKFTHbGP8f//g3a/rNkqauaLseUEL2zA4bUuzZZCWqIky4eTzjcJq5NUvcv7HHTi1UHrwGJAQUA6Ys6VeCGIAwqItN5Qq5YAKuqJWKftoSfFU0R7MCsBcNfhAttekzSXtycHREJHh2ZjvsZiWnnjoITVUhTompI3io6kDMQwlwG0MuGEiHgqqV5tctaVP6uIBjKmazcL2vtAA2BronU8mrXgMkrmC0pAb+D32pBfiywxlp5V3AiTcVdHY4nxDn8d7UrLEVKu9I2cZq7AM5dgTNhGbCl+7eIsXEo4vLLbiVsm6Vfjbor51jKQuu4hCpePjkFNae2wc7fOmVGzx/+yaxa9Gk3LnzAlVjpcKdD0wnU1LOhdBT1ssL2m6D8wHvK1SFqgqEusZXFSKO4AMx9sSuZTo94Nmnjzl/9wHzTx9xcHzErd/6FvPlBU/ff4eLf/xtpm+/jdvbR6ZT+q41YXtRuGXXsFwt2QmBL997jm+98Sp/8P4jHi+XtJVntVnyCy/cowkVf/jt7/N//A/+Fr/08gvcmAR2pGeyt8PpKrJoO+arSzQ4syYpoJ9UgReff5HbJyewWbI8f8Rf/LVf4OU7d/ja3Tv8O3/3H/Ph0yc8f/OY3/mVr/Pb3/oGbZ9IWnH3pRf51le+zN/4/36bi82GyWxKFKH2sD+rOT454J/86H2gIqnQxp73PnqPjx4/5ZPHp7z72RM+O13RaUadMEs9//b/9K/xl75yl5uN8vjRAzi4iVQ1SEAjaBVMxSlKyAFVT5QJDo/TyP/od77FYjHn73//I548PePGyTGr1LM8veCzJ894vFxy63Cfk70Jd/ZqqtTxlS+/xcnRodnW2AJHxqxkNBdQUgVVB77iweNTfvTBJzw6v+CF2ydW9V09PTVtm3jh5glfffV5psf7XC6fEBLkCKu2J2qNOEfuez58eMHjReTsvY/hvQfMJg1Pz075wcef8cOPP+dP3vuUz84iR0d7fOO11/kf/vY3kLwhxxmh2SV7U2Sqg+SFSOTF3/4tXvwLv4HGSL6c84P/5G9R1Q3P/dpf5O6/8E2Sr60QQUy066UB9s6hKljxf6uq4LwDFSO/nYHRSEB8RFSsYkOokJzBB7PZwRGqCWi2SgK+ItQTxIdiuROuVnoVUOhyUaBmz5JEVfVMPdyfCK/dPOKbr97luZuH9MDB7gyqGuc83gVq75HKLI6cOLPwGAhXEUIVrtZUpCjgy9cNgLmY5ncgQR0DOH6lPDalMEUtb+uLDpVDitI0Zy2fzEUsbb83W6GAePuOQcouPtPs7kDwJGOgaJqayXRCM5lQ1zV5sI4QKVU77H1D9Ywiki7rsLEIUta9rIPZg7J9eVjP1awwrB90uwdc23ytCZ2//hu896bQzmrWL+XAqorDKi7kHCFFFMw26UoWTd1MtoRb7QOTZkJTVXjvrNpL25HUCHLDz69IieCCtZ0WqLxcTNd2SIbf/Zd+l/e++4f88Mc/5p13fsRf+9f+++we7NNMavpuQ7vZMNufsb+3w87ODqenp6zWG7LaQwOKJwSHZCCaPUQemAEd2mDQh1vbhWDQeEzJ9ntNhUiiEPZFhW/0zBebuLzvT3li4mfEn37vlDGSp2x2DA8reImluksiBEGcInKtUs0YY/wpMeYzYz4z5jNjPjPmM2M+M+YzYz4z5jNjPvPzlM+MDz2NMcYYY4wxxhhjjDHGGGNcC0Fx3hRVmj0pKd4VG3SsDK+XAsSiRSlqYGooit2tsKbk7V4sWUZLCeVBTYOjEkcVKhJKAta5ZRB9+WJcn3MmobRdR9LIJEzwztN2nYEIYt9deV/MDSwnN6WuoipbgNWukaIaGy7adFpOHENpbHFQVxW4Cu+tTLod40ox+xMNd5X/6pWlghQLB+8NpM6aSTmRcy5gtrCJmS711LnncDJjfzqjqmpWAFXFxaajf/i04AxWQrvvMpqiqbyK0qvr+i0mLqI47Zl4x8Gs5tZR4NbRPk1VfOylIkwaVAwUA8E7wYkphgflmfPeAHdM0e4kbOkBKcSCoUXuCowZ1OAA4jGmxpv6u6mp6ooqeCa1o+2hqYVJEzg6OaTXbMqyypnKvqiuffmT89DYDh/8VlFlfw3gh51Vut4nGEkzkBopp0IalFPOCslKYWsBLMllfBcgqaba4lCCja/BMiXFSJcLsZAzpIzOEjkbGdb0PX0bTUGnmR7l/s09TueXdLFjEw3MpbTWdWBsGKOazToia0Z85o2X7/LWvQOev3HEzVsvsjerSakna2Yy3UULwSZiinHJrlx7JOZ01W6q5JSN7BhAMxESgoqBpPXEcRYzHB+z88aXqDeRfnFJ323IOzsc/sLX2Ll1k2oygZxtnhSFoqh1add31C5w6+CAv/rbv8bZv/+f8un5isuLzLJbsbvzHK+/eJvnbxzzd/7wn/APTy/ZnU052J9QV575xqwQEg7xAcHRdR3L9Yq7R7u89dLz3Ds+pF2v6aNStT13Dg/4rW9+nbPU8f0P3uO52zf57W99lcp7FssWxbPTCL/1C2/z7e+9R/v5U9p2zbQOrLrIp8/mfPv9BzDdwUlN22VOLxd8+zt/wuPLBfM2smgz7abHacuLNw/5za+/xW/+2i+wx5JudUGfwamShznhCsHlCinlPJo9OEeOic2i5dV7J/zuv/DLHB4d8e//w+8zv7hgOp3gQ0XKyidPLnlytuB4p6G7d8hrd+/y6PQc54SDnZqmqXAhFPJPzL6FAgaXMR88VB5EE3mAlQVUE7V33DrY5e7RHpIj4BE1EO14tzZ7n6pCneeDh+f8ve+8z42jQ2bTKR749NEjPnz0hE+enbNMjna94tUv3efPv/UK9168Q3d5ifG4tobIAA6KWiX4ZoL3AVJms1hy/OYrzA6O2bl9j1w39H1vYGtZy5Utn0ZW27OuzyBbtssviwp3IEK997bZOG9rmJb1DAPUnQ9kIGU1y4NrKmInBnYbH+lAPA7PYa0c1crtBl6/OeHGfs1s2uAmU5oGmqax/QkhAupkO1edGKlolR6KwnkoXVHWPrOJkO06O/TzFzHYQisIpQqJkQTOuS0wT7nG7Y+qeFUGm6ChcsRAGBjBquBsH3E+00ynuKooxyn2Ud7hijWUJFfG3WBZpFfMwLBibzuQosQu5KiaGcZwLYNCe2sf4Y0S0uE+RK/3uwwDeruGuu05iBEXmHWRDopotQcjjDgPQLb3iu15A2ltRVeMCBgqgHjv8b6ii5FtcwlX11oeVNiew5bT0IHxQYBvfOMbfPLRe3zwwXv87b/zd5g2DWcXF/gqcLC/y2x/B0S4XCxYrTelza7625Wxo64QKOi1NpYyvq/6vq6tAg69WZTotb4B2VY/UZEtmXM1Xsox/6viJ/bin/W6XHXz1VAH+pRoo9IFI+NiWUtHg7sx/qtizGfGfGbMZ8Z8ZsxnxnxmzGfGfGbMZ8Z85ucpnxkfehpjjDHGGGOMMcYYY4wxxrgWmlNJZJXKSykrbYk7IqYmK0ohzZmMksUUXU1dE+qKnHpTPScrWy0FxM45cj37EwEpgLoTMcGQZlJM9LEjpR7B1FE5Km3syCScE0Jw9LEnq4HwTigKZ7kCcge2oiSoW6Bl+LVyLdEcdL4lkffOQP0UDUBwV5/7s1NTvfZ/tgCCU1NwZh1K/ZvqCHFs+sTZak2KkZyVpq6ZznZYasL7mr6PXMxXBvSFQlKkaErdAmaRM6vlaotHOLEC/6SIo6KuGrJ4LlYbVCFloc5mu5ANqaQOAXFpS6B4zTjnyQJJE23f48RvXxdnoPMWhBbPoDAbVHgDASP0tJo4X7XMNx1tH2mawCRVBO/po3KxaVn2HVEV7wOVC2hRZzuEyvuC9xgh4d3VOALZnhtqisE8oAwDcKR5e34pJTu38pacFU3lPU6R0v+pAOcGtjnruwLKOPFbkiCmRJf7QhLYeHeIEQgpk1OmTwCBjNKnDSHAdBKYNTV9jvYxtKikbaRJQYBUhYyz8ZMzWRIv37/B116/y0t3bhGmd8v4ilvVd8xX+FhKSlIrbx5TootWzUBShhzJSckhkVPC5WyAp6FauFDh1OOaCbMXXqB+/nny+x9z+fBz4mzK7t177L75Faa3biJNTU5XJMEVcGU2Mlkc06bhX/zVN/mD7/wR8s5nfHC2waWWW/sTvvzyHb766su8ef+IP/zRUx5frvDzKZJ6Ysz4UFNPJjjxxJhp247Yrvn6m2/wxgt3Odnfod2sSRpIy5ambnj1pfv8t7s5Lx56btw44etfepmu6+nbzk6vb/iVN1/lzefvcLFY8nC5ZO/wmPUm8fn5ivjeA+r9fQI1q3XPo6fnfPe9B8y7niyeqp4wcXBrb5dfee15/tW/8Ku89vwtFp99yqYXcA2ulNS/WhNcAUsL1i3e+j33tN2avUnFn/uFLzPd2ee9z874/R9+QKoCzjUQaharjovYs1yumQThwbNLmskjBOXGyT3qukJ9QIb56ryRX7boojmxO6053p8xqzwxO4zjU1Lq2J1W3D7a5fbhLrlbG0CalMrBy7cP2J/WbHD0SXl8ueaf/PhT7t9ec7S/S+winz1+wpPLS85XG9rsONmb8LXnb/LN1+4xmTWsz5WsEMSAe9lKXhVRSJnSRo5c15y8/SWayS6hmbFqW/o+2jpAAaCzXiMKdLsuKEYAXm/77aYw7Glia4xtSIXo3NoTOESMLI9ZSXpVuWA4kjfcfnv8Csdx47gzUe7NMvePpxzOKqaTGtdM0SwQKqSQ57LdjGy/deINaHcGsqsOFQ2kKFcxALsAt0ou1yA/AdhqWaev7EBUCuGvV2sDhTQYZqtTU53Kdh/dDlUj39UqQXgnhNoznU6pqgpxYucKhRj3eB/waoC8OtvjXVmLB0MKZ8xDOYfhe+11V873iiTIxbLIGt+58sBCKiB2sUMYBoAU+wxFtm3hBCPFREqViYEmF/vWFJHs7XOq2wcRhn2C8iCEG0gHZ/NZSp/pcB9xrQ+GnwcrKynkxXUOAVU2mw1f/9KbzCaBGDu++0//KTvTGaeLFeIc+/u7hKZmuVkzXyzpY6QKtV370FcyXOMXQxCyfuFsAKiqisHqI8a03btt/lxvS64OOky24YeBePhnxO1/ilZQvtBOADghkVm3Pcs2s6yUVR/pUib95EMaY4zxM2LMZ8Z8ZsxnxnxmzGfGfGbMZ8Z8Zsxnxnzmqi355z6fGR96GmOMMcYYY4wxxhhjjDHGuBab9aoIoIoa1ZmngiWyHsFZyXnNWwBVVQk+WBnimOm7rgCFlojGWBSisSfljDizIMg5065buj5a0ld5MrBYb7hYrjh99gzvhJgTMUX62IOoqWqbGi+OtGmLPYQjBFNmaVFBD3jQANuLCD6ELbCbUUQTTtmCCAj4UOGc5+mTC1abnnWXaZoJAFnzFxLhrUL6p3JWQ2GceANypKikBULwVHWgqiq6pKzWPR9/+pTvfvCAncN9kquZ7e3j25bsEkl8sSeAnMBJxpXvy2qJfNbM06enTCZTQl0RqoCTzNPzOV3fsmkjtJ/QbzbEGK0fvGcTkwFyKuzOdkg52jk6R9gSLkqWTBIr551TAdnLZQvW2Opkq2ijgGlcAxk6Ec6WS9q4RnzH2197CT+bsZ73/NH7T/jBD/9DNgKp9EUjgAQGQCN4jxOPc8FKuGuELRVgRNUw5gaAjy1gaORWHkAkBxJMgZjVwB8phIvD1PzX+1dksDAx5bFQgPuido8pmeK9zIesSuWDgUo54zSS8fh6hgsB8oqPPv+U+Sqy7jMpRbOnEDFA0CnktL22LIJ6X9RjiZxbcrtG+x6NmS5GulxaQzwe8E7RpAyV6lEpZJpQNzO6zaqc72BzkXCqVKmMYAH1HvWedbfh5muvMDu5ST3b4ZH8F7z/7/2/eeEbv8wbv/kX2Ny8y+XTRxB7vFoZfgFIpugOKZFDYNP3bLTlzhH8L/7V3+Zv/eMf8B/9l9/lovX85huv8PVXnuPFl27xv//f/Fv8X/7D3+O/+PY7/KMffUQQx+HBAXVjlQpy1/Pk6RnkjruHM/5X//rv8sYLNwgucbnaEGSHLmW6NhLSmlePd3jhq28TpntMqJmfX5DaDRI9a0m88txNfvdf+GXUwb/7n/8es+kBvprQ5Z4PHp3y2d/9feiF2Cc2bWJ2dIQEJW1WrE+f8tXnb/Jv/vf+Mn/ul97izdfvMH/8KX3v0fqQgBA8+GI1kLJCSgxwmOFuHQErh56c8OTJOcd37/Hnv/FV7t2+y1//3/0f+N6Dc57GFXtHRxztNOQ8pesjf/jeQ+K65e2Xnmfx1dd58+2XUOeKlU4A/UJBfZBM22547vYJX33tRZ47OeRRZ4SlJ7HZzHntzh5fev42L9w6ZHnxFMnQdy1TD3/5W2/z7/3d7/KPf/yAR+eX3Lh9i0/O1nx2/jFeckGiPQmli3D27Bn/5l/5i/zut97kV1+8yfyjj1CZgQvEyuFSNisWUSATKoWkeFF8VZPvP4ePG1Yff0j/6CHN8/eob75AipncdgZgujJg5QrQtXlb5laKBZR1hODL2qnklJA+oinb+lzmupNA1kTOQsyZPvZlHwPwXCe/quAK2ZjxrmXHB+7szLgzgVsz2D864mh/l92dCdlX/PBpy3y5pPbKybTixdt7NJWB1qjbqrEp48VJ8cAZCE0F5+y7xQkqoaxThfAo1g4OGwO2priBTbX1qRwn5wKgFzLWgOGM5mRAfr7a2LaWONEIo+Ad00nN8e4+s7oiiBEITjJNHZhMGqaTGo1ayCr3BTsI21nKqNRSaSWlAvTbufrr500mp2jtUUil4UEAF4xo0mxk6Jak10JOZtunKueNdAgVKm67e4QQTCHvHJITXm0sJFVSikV5DutNTyThxCqJ1CJMphN8cKScoO9heOjBaBVwpla2hxkK61FuUIYrUwfZCV2KPDs95fatW9y/+9vcOTjgb//nf4dnp6e0baSZTDhfXLJcr9h0HXXVELy3/cGBF48Xq2SiZMhSHsJwZY7wU0QSUCyrHCl3w8Th+gMX1+gCu+fjap9Hh33+nw24/1PfteV+bP1Q79l0LU/PL/hsGVnWUxbnl5wvNqzbSPr/D08wxj9HMeYzYz4z5jNjPlPePuYzYz4z5jNjPrP93JjPjPnMP8/5zPjQ0xhjjDHGGGOMMcYYY4wxxrXo2pasqWASljjmHEk5GRAazTdesHL7UZWdZoZWlkwvFpeA4JwvibeU8tNaFM/9Vok2KJEMEDXF07rrmS8WzJcr+tSTnBKTERKiulUjOecIVYB1satwQlS17y2A/PWy0yIQnFLXQh+LXilnRCoAVBOJTMbsCzQrbRLWya5xwJ0MEGdLjvx0DADA1Y/DH1WonWdn0nCws8N00tA0DYu2Z/dizSI/pFt3IJmMwxd7A18F8IEcE5qz9cuWAJFr36OEqsJ5V5TdRk5cbBJnn57yvfc/R/DXiBPoOlNji3NMJ1PqyiMFrOm67gvXkMnkomgzwiJZ2e+i4DMAxoARVS0Ek703ZkVxtO0G75Td3YbD4wUpK+cXaz7+7JyLZ6dMd3epqspsRdRsCsxGA7x39r35So2cGIB1D+KLOMted9g5uG299vKXZvrU06WElYiX0gbejgPklIG4Be40O3IGFwQfhCp4UkrEaHNCM2hSEgmVjHeZKjnwNYQGmn308IDdm57DvT3uHdzjw3c+o110kFOxtjArFuccwVGqCljzZwRNpjrMCDEK5/Ml8+WSdbsm1AUUUkUKuNfnDKXkvVl1DIp3R8CRxRcltc2vWusC0ASznqCjDlOqegeaPZbdivnlHH9+wWTScOtrX0FuHfNkeU412YXOgNihzPp27LiiXvWVqUhTx+NPHvH84QF/7o3ncLohB8+vf+0tDnf2uHh0xu3bz/O//Ddu8Du//oA/+P47/O1/+If84JOnnF/MaaOS+563n7/Jt95+mb/8a2/zq68fktZzuuzwboqvBdcVsDMqGibopCH7QOw2SL/E5YTkitx3XD56xF/8la9xcnREU0/4v/7Nf8Dx7g4+eGuf+hDxiawdKa549PgRt/emvH3vkN94623+6n/nN7hz7y5VFTh7+IzeqsgTKkjJgRZrkwLSo+UNekVOSnYISsg9sapZnp9T1Q1v3tvj//xv/3X+09/7Q37vOz/kH/7xj3l8roTJlCye+Try+3/0Pd58+Xnu3L7BJHguNnPUN/h6SmBGLJp7QfAZNvM5hwcHvP7qK/zqGy/x//i7/4R+7wQfKi4ePeKbv/F1Xnv5RfZu3OTy7HOk8jiFoML+/gH/67/23+U/+gff5e995z1+/OgZq8WCugmExsb76mzOjuu5f7TDv/Wv/4v8z/7qv8KBLIiLJ6R2g+7sm6XH1rIHPIHgJlTThmc//CHtg4e42HP/d/4SebHm/I9+wPnv/SNmBwfc+av/A/zNG/TTmrReXy29AxCrOjCogMe5ii0V7AQJNZITTo0sTi7gXDB1K+BcqcIgIBLos9m1ZHKxNrI9wYswCRWSI5UTJgH2Zg1PNy2nq8x75/D9zWP+8NMVVVWRQs3Zc2/wJ+c9m01kNyW+efSUvf4Mn5dIbmmqCc5NTBnulKrM3yRKp2a3MHU1QQJeHOq4AvrLPDfCQAphYHuVK+dbe79V0mohM4M3MkEVxGVEclH/OlyoCzlSGlntB+ccEiq+9/EnfPjwKX3MHB5PCRGWXeKjp5d03eeg1p7OeXzwhOBKuw7Ac7GyEBiIF0Fs+85G+tgSogRXKBpVRIXgBS/hihhyUAtbm6qcI5PJZLtvD9ZCmm299HXNOvWs2iVdNLV97jurHiJCFIfPEZGMczAhmH2CVGQJUHmaZkoIwa5HrTLGwAWA3SgNBTMGEmc76bn2oIEt9PRtz/xiQe3hzS+9gbYtf/Dd7/H73/0+7378IT7YOK18KOvrVVWXK7A+l/Hurv0+ozLYWpX+xtGnaKRuuW+IqafPSl8OZfuvos7afPsVW/+G0n9O+DOR+5/mJn7idQXtrSpIShCVyc6EF5+7T50rNs0Onzz8jNXHH7PoW8L6J7XfY4zxxRjzmTGfGfOZMZ8Z85kxnxnzmWE5H/OZMZ8Z85mfh3xmfOhpjDHGGGOMMcYYY4wxxhjjWjix0to5Z1MY9QZ+mqpMEJIBflBA3EgXOxTFJ1fU0oAkUopbRaoIpJSJMV6V5kbIQMoG9qaiYkpFvZoV2mgl9k1s5y0Rz0rOCaGi8r6ovgzY9cVj3o4PFCsGAO9NzdSTiyIsg7otkGpJ71XkrMUTHq4Qo3LuIj+TJBD4girbwAIhb39RjqWZ4A0wmNaBWR2ofMB7U2yJCkEEwnAwUC9I1qvzFAo4DqCIg6oOeG/kDrl8XbZSz30d8K4yZbrzoELse+tLcTR1Q90ExEHOidV6jXeK8w4fHKJpCxANDSFD2e8QmHrZlu7OmvHbcuZKShlxwUAf1EicXCE5sTOd8uL9mnz3Bk3TFMDF4P6U8hfUyTnrVrGXVUhwRVrkfNVWqjgH3nsjHMDUj0Us3WdTE5euMAXz1urE3pSIBo5kRbOQMrjg8AXEj31nJEEyNWhOjl4zfc70fU/qhVg1pHpCnO1x8sorHN6+weHhPruzCXvvfkj+9GP6xZymrsuYLkA+FCDHxp0XRx/TFqBRhclkwmQ6pWkmRDXTDXQAx3JRUHIFHmazNtGcUeeRUOHUCDxcRkJDdo4kCS1jqLu4pF0/papn+JtHZhUxn3P5x9/jsJ5Q7+4jk4bYrtCUCpk0zO4yTBRUSsH1YsmRstC2Hfu7M9567SUkVDR1KPYZynIdqauKl+/fZn9nwp2bR/z9b/+ATx4+43yx4v6du3zzjRd46/4hb9zdI23mJLdrxAeeqBnNHaSMipDFoy6TxSw6nCjODaXZlb7v2d3d49UX7vGv/KU/z2cPH3Mw22HVtnz4+Akfnc6pgmNWe27fOuDF2zf5yvM3+dK9Y77y4h3uHu0jqacvCndVh3M2V52TYrlSxj0FT/viTAIcqhnJ2VbG3KN9Ji57XrxxzF/6xpd54WSX5492ee/hGfPlimXbsWwDv/obf4Hf/vVf5o0Xn6ObL8tYSGgyEupK3+hKZQgjoI73dvnNX/0F/sGf/IiLtsNp5tUXbvNrb7/O7d0ptGsMIfYFtM2s247Xn7vB7/75r/HaC7f5+997j/c//pw29kRNrLvEjVv3eOXOEW++cJu/8Ktf4+ZuTVopbS5aVDHbAy8eJSJejMB0FaGZIWTaBx8RP39Ifus1utyTL8/Rsws2D58SP/qAZlIRbt1ksbGS/wPhMKCzxUyFK7saympBKXfvCgAdrJqGcyhKypFcFk9xDh/CFkDXNFglZBxCcEJVpmktwsQJdag4W/e0vZWtf/j4kh89PMeHQLV7wAuv/iqraeZJXPPh+oLlsw07qx7XdtDNqdI5PgtOMt5Fs6aBUoEhoiJUrtmSBOL02rVuIVsUA7opn5VCmu7NrH2lAMdVMEse564I/VysEIxrcaSYCsgtVjGhvJYyfPToMYvYU+0EZkcVVRN458ET3vvgGSH9iLpqyhrk8MFf2x+HzdSIWlvjbd12ar9LWQlOqTwEXyp2OLfdhrwv1TBksPYxAt3IZQPK67q2eS5X3zEoyV2omG9WrNsNbd/bHU4fSaitFSJWrSBHZo3nG6+8zFsvvQRATLaOPD27YLFck1KmDrZWG5aeiwharv5cU0WXjQrUxlQlysQLtRPq4KiC4PuIL9UynHdMpjN8IahTKvsXxQpDMILWYWSXCB5nP8uwj+r2gQIKh3b91257ruWX+cpCSVWu2Xb85I3PcH+j2xVtGz/rYQr5GT/otXsbVSRnqjDhYL+m04ZNM6Xvj3h6fs58ueLsfPHTxx1jjGsx5jNXMeYzYz4z5jNjPjPmM2M+M+YzYz4z5jP//Ocz40NPY4wxxhhjjDHGGGOMMcYY10LEoSolr1NyUsOYSlLekUklx22cJwCxlMgPPqAqZDVlcYoUZbV92MDiZERCtuQ5o0TNJAzo2ILyWOnoTd8aGCOmhM7JlJw5m0q68kXJCgawQRHBWuLpRMgFJN6C56RyTgP4XHzshQKcWNqach4gpW37XCcGBtBBrymnh8+6AlpIAQlcSdoVJcZE3/Xk3BetYiRIJniPL2XAFcGTC1p8BYQYUmN9oyIFUDfgQ0Spam+g/ZYokW2OnsXhfYV3lQFjOCu/Xa4l+EDVVEVNl2nWa7zLhCBUlceTDSDDrsV5K9XtnMM7z8QEsChqOkznER8MFE6J4APOB1JSurZls1oBmaaq2dutmc5mpsQrQIVK6YMCTglCupLoIWLtlHMmxUhMadtWqor3ZhMidlJmy+AMTO8VYp/YWoMkA06980ZuOKFTO6YW4D0mtspLp5BiZ4CwgPhAoqZTR5eUZdvTpoq2quiamjSbcuetNzk4PmZnZ8YsOI6ee472/JS0XBSltTAgMEIBPYex5wpwc2041nVD00yoqtpUbHLV1zoghlsA7QosNCsUQUu5eVHFB0FCgzohkcELdT1h9fAJy48fUIeGo5vfRDTTXlxw+Z0fcPzay1RdwqsBYkkyYDYZiI1PUbkauwO3lRVcYNNHJtMpL+7sGomQE33fo86x2nTU3jObTjne3+G5e7fYmVR8/OARZxcL3n77K3z9+ROOqkjVX7JaL2G2Q3aOLI6sPRo7JCvqgpVL347Novp0rowrWzv6GDna2+HPff3LfPbhL9JUFc/OL/jOe0LXP6Rpak72d3jl7gnf+oW3+PpLt7h/tMvhrGK96tms12TxuKouoGcua0qxHigVJYalQhiw0aJevQ6WaYQspBzZbFr2d4/48nM3uXc4497BLj/49Bmfff6A84sLNkn41/7KX+TLr73E0e6UzeUp4hs7Wo7FVkTLnLIqACCkmJg1Fb/69bf4la+8xicPzwDH6y/d5euvv8BhLcTFpSnyi81DzpluHTmczfiVN57j9edvcPN4xp+8e8LZfM5iveJyvuStV1/hK6/c540X7vD6C3dIuWPT9/RJCbkA8CI4jEBxvpAkA2DcbsjPntJ//CGbd39MmjXk1RKXM+nZGZv33sMd7lPt7YHzhTxl27rXrWgUtiSwiBiATAFSkaKCVhBXQNNkBLLYe7z3tq8VQbsztgSrUFHIXAfemeWHE0fE0aK0qvSbnsv5Al9POKwPeGPvhMPgWPg55ynx7uqC0E3QTSZvIm45p44tlURq14G3ageSE6RoY0YqRKx2RvBXtj2QCRgBZLUdbB3I2dZ574T9/T08uRAFZk/kndkpVVUgRSP0U87EmOi6WKwwjHXMZR1JKdP3kWcXC3b39zmu98nJI3XFp08fc/r0ktU8Mpvs2hrsQLwRsNtdVtX6fdhWVUt1jYEkgNolqiBUzvbR4KotUG0VUdI1IN4sLayKiPV3VQW8c4U4GYBosXHmHIv1gq7viCnhgD5lsmCVKshE9fR9x8FOzZ2DA95+9RVEHH1ve8Lp+ZzFak1MmYkzC61MAdXLZV7dY3wRQNcy9x1K44S9pqEqVUFSyqwv5ywXC9q2RVWZzmaICF3XEmOxOCkPSQxNuCVNhjGuV/ceAxlgTV1utrYPHtiDIEP1GcEIZQqxm7M9cHH10MTPiO3B/9lf/FM/kjPeB6aTCbsyIdQ1tw4POdnf59nZ5c/+/jHGuBZjPjPmM2M+M+YzYz4z5jNjPjPmM2M+M+YzP0/5zPjQ0xhjjDHGGGOMMcYYY4wxxrVY94pmj1NLyqvGsU49y7bjbLHhyWLJsl8zqQIvH9/g3t4uy25N17f0vYHelncaYOHEMVgnxJS2KhtTnELSTFRTLIrzpKJ4zQhJlcVyQVM3+GbKZDplvSxqGBGqEApAiSXimI1BzmrgOpaYGxBffsbUmUJGvMdLwDvZEgzuGtDU9b0pGssnUa4y2mshBZzdkgUFsCj8BVqUXk4cWRPrtuX08oLdx6YNf3q25OJyzib21EzwVY0LgRw7s8Cw1J2sBtQNGEeKaoSA93gnpNhCD5oyuYC9LpTy4OWccgFKRQfl2BXZEfuWTd/jBiAcj8ZM3yWSROoAValArQXY00L6xBhJvR37esXoLhnYkVP6QttIAYhCKHYNKH0fSYW0cEV9jzp0W9KabR+IeOogoKaiTykV4M9vgaLhOGCq6aaqqIrKcdOnAb018ioP7SHFFsKZlYD5PIBGcszkLICRH+IrmE7x0ymz3QM4OESaHXyYMAlT9g5O6HBkUeoG7hwcoerQJHTBsXNyTJhOUSCWsWZjSIpq9qqvByWfOAMAXTY1b9v2tF0kV/Z60Z3jq6YQNjY2Y0yknMg5kXMkph4tilkRA3+2M0WVjGd6cEy3eY/uhz/g9N2PuPP2l1jljmeffczmwWM+/PFHHD274HY94eg3fo2nT09JfcINvEZRmmqya3BOoJRF91UF4qmaKbNmymZxSepacqVI3dh4VGG16WgXLZVXfv3NV/nzX/kSIVRMDvdZfvIu7cUpy82S6vA2KkYGiABRyZuNKeSrBkKgjM5tWfZhXco54x2sNyt8ikzqiv/xX/lNuuU5y8Ulf/kX7/O9zy6pQ8WN/X1evXeXo1degXZNOz/l2eMH9DlSz47woQYxcoqiqi8UqQFvpQ1SSuDDFpCL2axWbL4DKZFSB+KReo/L5QZt5wQv/NrX3+LXfuMml48fsFmc4xRO7j3PZr1mfbGGakK9d0jOpuAlx0IS2PzLAN6zatdUlee1F27zv/2f/084PV2iWXjxhdvs92fExTnrRYtOp4AnD+C4JhbnZ9RBOKgD//I3v8S//Bvf5HLVslhv2Gw2vPT8PVzu6Tcrnj1+wmT/mK5PdG3HZrlkdlDGNba+4QLZO5L0nH/yPpvvvUu9aql2Zjz542+zNzuE8znucBefEo//yR/h1hvq1Zob3/gmaEZTugJnXVnXMiS1fcdQ0y2Uuv3LOHA1eyA1klzcoABVELFz7xMxZWrMpkHFKNNY1tAojlYdkpTpbEKNkRWugtOdwN7BCS++8mW+fu8O91LNk/WGhxeHvP/JR5ydBDYZ+hyJ8zk7ObFLZs8pe2HFbuiZuczUZULIRmBm2+sqV+PqgHir2iCG4pfxV4iowXHBQXAeoVSAEAdiVTqqylPX1bbKREyJru/YbLovkIwxKUmtgklKSr+O9G0Hmgi90uZEM93l+M4OJ/ca6mqCd1IE0EpKWgiX8tBAH61ag6pVSSl7eFZw2BrSA70Wkb76LZGecqSPne0rhfTTnMlJzJ4nJrJutvcdKUe8l+3DEClFfHA0TWU2D2RUKpwXgii+X7NqA8sohK6mDjtMZ3t2j0NH8J5NFjYRYjK7DRccqbS9kaZGOLmB7N/uZTYWU8o4EWaThls3b9H3ay4uzrmcn/PswUMefv4pj548Zb5cknJl+2/WrYrdrITEKtnYJshgyaQo3gWcJIZhcHXfYsexajVuOysGot5h+3tpdGtvhnu78uYvIPxXDPV1wH+4+1L54m+/8Fm99m4ZCB3bj733BO+Y1J7Z8TGfH53z+bNL1I+Q/hh/doz5TDkYYz4z5jNjPjPmM2M+M+YzYz4z5jNjPvPzkM+MGdIYY4wxxhhjjDHGGGOMMca16OMC8Z4exzw6Hq57Pjg/5/OLSx6fXtAuVrTtkqkoL+w94K986xtMqkAQod20Bh4781L3vmJQSCKO4Mx+wHlviTqOru8gO+Kg61LoYs+ma4k5cnSwb2rVUg4/VDVRYd12zOoN3rutwkeAWJTT7loGKrLVHJoCVg3UaaoKzUW1PCh+rtuqDx+6prLbvvQTCidgq0aVAlg4l021VEpTm82C0vaR5WrD5cUlGeV00XK26WhTRrsNPisSKupgZfyjZlLs6DZLgvM48SCmOI+dEnIpkU2my7kAjw4h42I2Bah35JxI2oIKDmcqqcHOwXmzjEjRFHc+mKo0Z6RwLlXjqRtBvF2/z+BcUXKHANqhuVgoICSUWH7GCX3MdDGRkgF53lWE4MzCw0EfxQCg0uY5ZxOGl7ZPOVofZiODTMwl23FjCrHIAEtoAQYHLGPSKM71ZFV6TaZ4TGlLFKBKEhuLfUw0ZKbNFO8ruuzZJMVPG6rpjMn+Ie7gBtX+IWFvF7+7i5tUNFVjIHfTkCTTiGPHe25OJux2K6Z5Q5U7tF0zv71LdeuId0+fMl9e2vmAgVwUxVohDobRZyCooprY2ztgd/+Q6c4eKXvrS/UMasNcwFEt88CHgGQD0WPfYTi2FjBG8ZJxvsKFGqhZPjnFd5Gj6ZT+8pLH/9nfoTo5ZK+PLGb7HFYNcn7G0z/4x5yJY/fllwhNbSRBYddEpNjHlPLzQztrBvE2rZLav7eF7CmKvmzXERra1INmfAFGu0eP2CwWNtcnU3K9g7iA4PBZCThatcoG4sD7yuw2nMd5h6PGTGjEwPmcEEkk7VmmTA6e1eUlabNgt3L8pb/4W+jiktyuyWnJ00efI66CXpB6l9AuDKjWhJMacb4o0I0QqCfTbd9SlOHXlxnJGS3QmGo2Gw81gLFLG4SGTCT1mfOzU7QTHDDZ2UVwLM4viDmhzuOAqFfjfiBGNSVT8WNKTIDcZ1aXc+4f73P/xvF2XemXZmuBc1RVjaMipY6sCSHRV7tEBy5G5NlTar8kzA44PNhHj2+wWs5JmyWpb/FhAmJVH6qqQuuaugpWgcHQVjQ5XAUSIrQXPPx7/4jZ/g5Hb3yZ2S+/xgf/t7/B0c4+N++9yEV8wMV8zk41ZXJ0ZGvztooF5WcKEW0LulXE0C2hXJjJ7dywpeIK9XQulL3M40JFzMnWMkrFB+dIwCoq/bwleKvEUAUl5E1RxBsp5GOgcp7bR7t86bljnnz4J2xi4vm9HX79/k32Xv9Ffu+i453Fhg/mKx4tD+iWG56te55uerSt2JPMnsChEw7p8f2c3K6I6zWxW5bKGKA4kjoGaxFNPeIFX5nND6KkLhKqyq5DHCn2V/tZ1isFb9nL+r7H+7AlXEVBnZHBGYHscCrkJFxuEn3qTCburI+TRiO/8mDRU4Evx8qOaqehqQPBm41C1/cG4GeMqOiSMe0qqDpi0mIvY7t8GCyRyjX4ouDPmsi5I6YeCkkWvMM7I35wgveOSbFQ8iKoJpK4AmhnfOpZtDXn8zUuZx5fLFm3kd3ZlJ2ZZ7lac75oaXsl+EBTedq2t/uRZOuwc1a9RLUQ4MWaZKi60jQ1e/tHTHeO+c4P3uFwNmGzmXN2+oR3v/9DjvZnTHd2OTw85MEnj0C1VCNxZDXyMQOiSl1X1JWji3m7APSpI6Xe5oizPWS4e/HFrmmoXmP3MVahpjNmd3tPJL4Q0aW6xhUhIdf+fPE+6SqG137W69c/d+3fYvcsbd+SmppqMuPx0zN+9PEnfPjZ5+QvUB5jjPHTMeYz1xpjzGfGfGbMZ8Z8ZsxnxnxmzGfGfGbMZ/jnPZ8ZH3oaY4wxxhhjjDHGGGOMMca4Fg7PMgkXMfNg3fHRKvJkA4tc01YzfIj4GOn7lgfPzvjRpw949c4t9icN3hUQSkzdAlKwwnwNftHtv0ARlS3Ab68MZZ3t52kzNSWXQtclU6JlA3G7vieU0sspZ5ArMwe5/h2ulDZWU98O6lNNefu+q3O7AtZwguYr6Glr736NILhuD3E9AZbt/wycMHDEEXOm63o2m46ubXBVoI9WdvvOySEnJwfELGy6RIyJySRY4l8HHNlUSmpt2/Z9sd7IW0D8C8m2KluSxEkByuw1J2bhYJ8zdSbq6bMjpkzMPdPJhCpUppdVpWoCzkRpRgKJbGFdRa0Et8atIisr5GSKz6yQyLR9MvV7FoKfmEWECM6ZipTt+ClHzaaqjkX9Zgo3swPRgvgNf4v3BgyqImVM2bWZKrepKjs3geyE4L21Zy6APJksBv51XU8AegKdq9F6l93jWzSzCdV0StjZRXZ28ZMpvmnwdWDqhYnzNN5TecHTs5Mz0y5TLc65PHvCZjMnrxdsLs84OTni5k7F8vYhqw+X1KGyU8lKStFAyWzWGlnNYkQxW4PhOinE1La093b0G0k0jNUsubSvEVi+EGSmdMXmq6tQV4FvqJua1fvvs/7xB7TvfEZ9cEK3XBDnK5i3HN45QeeXdG3H6pPP8c9/xuy5e4SmHsoLlL4aeAHFX5tHW4sIrAqCqdwEvAGwoEgaFHkGYjmwagqiplrPCVIii+BFEMmIJFO2iruGNxksDqXcuZotgrhgqnAR0L6cjlVtyFFRqVA/MRLF1yQXbHwoRfWoiDh81aA5goTtbBjaXb+wXlh/CUaCFNqkrHtGiACm7ncOyXYsTzLCTwRw5AQSe1SKVYkKXodvLspn8TZ3sl6NFTIouEISZHFkEVBHShnVvnA2YhYarpTpTxFxtY0zJ2ivJCc4TWjuodvg6imSgJjJqTNVqmJAnnel5W1oZBkI2WHelT5OineOndt32HnhPvH8jOWjp5zUb7NzfISLSrdYkrIyvX+Xyf07VMcHaDSKWct4E7ka12UJtG835rD0iwxTB+e8Dcpc+kk8W0BTTeHeJ7OGyap4zUagaqHXspIQAoqKoiSq4HHO5mzsEwdHh8z29ulS5ju//4eoRE72pixun/DivftMqhn3pWa22/Dq0W0WXc9i03Ox6ljOV+S+5yL2nMaOarVk1k9ooqPWmiAb2uUZ/WZJ6jbgAloIOCHjvOArs3wQwUg82ZAoyuSYuF7OYrDTcc5R18HGRCFhrqtWM1rWkFKNQEsVjGHPFVcIFSE4vaIAXSjrstktnOzvMKsdlbe9vC/zPWezaIkx4cXjJCAImqKNRRHyQBgM5LyUe44t+Wl/BMU5oa4dTgo8L5iVRjYzqlwqdKQYt/YtqNp4JrGOkT9+71N+4+vPeOnuLSZNzXy54Hw+p+sjwXnq4Gjbsm+pFrslLYTRlfqYa5Zb3gfarufJs1Peefc9Xn/hPt4V6yJNLFZLVps1fcoG6ud8rRrLQPQWcvGanRKFpKqct7klkah5uy65YlcxAP4ykEAi+FAzmQRcXBHV+tvmrL/2fWX/ubaKbW/crpMB8hM/D/dm+oW/tvdgWyph+3CG3e8tlyv+/j/9Nj/48GMeX8yJMj70NMafHWM+M+YzYz4z5jNjPjPmM2M+M+YzYz4z5jM/T/nM+NDTGGOMMcYYY4wxxhhjjDHGtWhz4FnMfNZl3llHPu0ynXrUNfjKSilXoSLGyHzT8sOPP+FkZ4fdZkJd16QhmbyWE+r2/1fkATqA81d6NKcGk/mi1hWgChV1sBLVfb9Ck4FJMSldF6mmzYC9XR32ipEo31GAD0rSXkDRnDO+gGRXmeoA8g2f1J8gOH52YvpFsoBrCbCB9K7kz1mVmDJ9n+j7TFO5ospT7hwf8ML9O7Rd5PxyxWKxYXcWODrc5+T4kP29GavlqtgSQJ8zy9WSTdvSd91W7Zcp5baRUvI/IWKqKe8GEMERfCCmtD13J46oyqZt2Wxajg/32N3ZM8VYNiUxzgB35xxeKOpVi1QUu6oGzGQ164KcM31OqMfK3mfIKgRnJIEUwGhQEtrPDnFCjJH1ZsNicbntHu8cVRUQV5TEwxhyjlTAuwEWlkI6+EIK5JwNIA6mtjf8QtFoQFISA8TarocMj1aRVibIzec5eO0tJk1NVQVcU+MqsxJxgBdlTyMzVSapJXQtIS2Zbja49Zr52YLPHj1ktZyzWVyyevqUt95+ndo5bh7t8/jxGSEEUinP3bWAKMmlLf7inSvXpGhvbZNKew5gUYFiCyhaRm4B8IY5IiI4H0go5AKmi0ddAAmo84TakxZz5p89YfnxE+6/+SIyqek+fUb/ySk3vvwcrfZsLuZ0ZwsmcVPgab0GyA8z4Ip8Q4e5IjjvUWfrgTqDrl0p6Y6CWM14VIZy/h7FMYj4RI0sGEAp0+IDuO06sF2LZGiXK6KM8l0GuJliOoupPDWDC40BfTmxaXv6PqNJcbitZYgIEGokRRB37ap/ekm5+qGUrr++dsgVwYN4JAQDunMq8+waCAc4rNpC0kxS8M5vCVZFyrm47fEHex6hrEWFHFQgO2cVC3IsVhE1wVVGFOQOjREXEupAjKosczwhmsiaSeKsP2IkZsXbyoc6hzhnoHy5ds0DoF/IPBED15Oi3jO5eczOy89x/t0LFk+eIssNu8dHxCfnLC4uiSj7X36FyQv3qHZ3yNfWMBtgV5UR5CeWZaEQbNd+M6w3KrqdQzooi8WOM1Tc8E6pnE24AVfHy3YsDOtOEFPdOifknNg/PCTUE56czfnj7/6QqlIOZoFHn0x5ev8h1Y0b+P1jbuzdZHajYdVUXOxUPNubstzbZbHuuFi3PF2ueNYpMwlMfWJHEhPmtHFOahNs1jgfyDIA8YJX2+uyc1TFPqhLiS71bLoOjcOAHehxscoTTohNgwRH3/dmL+JK/+dUCNyyrw+LrRbLk0JaO/GoU5wYyefUkV3ZR1CCU/anNTk3ZT7nQm5lUsrEGG2f9gbui7O9ggJSR8306YrqHxTewywUV9YIKYSPWKUE1eEYQoyJXPY0FaXvIjkpSYstj2aSRjax58fPLnn89Bl3j/eZTSqWywXzxYrYR3ztCP5qhRkUx9sKHQMhuWUvdZjxbDYt5+dnzA8PEb3LpK7wMuN4f4f1Zk2Kka7vjCRwzqp5FPuiYS4N1yTDf2J9UYeKFBUnxaJmGP1ydZ62npYz8jWhmVBNa/LlQEJk41v0iwD/cA3XeQGbB9duwLbvvX5TJsOmZb/Xq7fptdNTVdu3VXl0dsHv/fGf8OhySRTHZDZljDH+rBjzmTGfGfOZMZ8Z85kxnxnzmTGfGfMZxnzm5yifGR96GmOMMcYYY4wxxhhjjDHGuBbfuVQ+bBNPFZb1PtOdht35OX33hPnppzz97CN2qh3qUFM3E3747kc8d3yD/d1dnrt1xOV8TtyWYXdUYuAbYmCxhGDl37MpYavGIUmIOdOntP2c8wFHUXd5B17Irvivq6AJVm2knkyIKdKlSBSIolcaw0FJOgDZhShArr0u5TUdkt2iHKLAnNmDpgLS8YU81w5RVKkyECAZISOS8ThTBKvl1wkD2kMI+ODZxEiD0ATP7qSmb6ac7O3Sx8zEV6yrhrqOvHzvBm++/hqvvfIi7737PqvlGrJweOOITz77jLOLOfPlGkTwYiBAAjrxxRrCwK3GC5O6LgppIaVEjPkLijIRx2a9YbVc8fJLL3Hjxk2cc3RdS4yRad0gQIoFNCrES58i0UHMkZQjKfVmaYCVw++jWTmEysBVnMOJo67rQtRc2XSIGAiLCG0PT56d8eN3Lji/OGdnZ8rJ8SHPP3eXvZ2JgS4CCQMZhSsSA3IBCg2EMHcFI4Q09fSpxxVFbhcTIsKqXdN2LX3n2Mwj6/MV86pm9/l77L5yHxcTIUV2BU4EdnLHJEea1FOnFXmxolssuXh2yqdPHrO4OOfi4oJPnzzjk/mSpA5NQNvx+cWCl196juPjI954+Xn6vqdtW9brlsViRWxqskaERAilz7KpNNde2XSRrotoTjjnSYUckDLAlWo7ZEUFfGkLEbSLpGRkyjCGNQskkD6SV5HDl55nff9j1u99ys7BDrtvvMbDVcfpjz9gPx0hCbI0pFnNjTdfZXKwi+JJ3aAGNOJPFGICdaawJ2WSBkI9Q31FxqE9BZR1UISq1ncJp9GO5sI1cLfChQoXBWIHXUvCo34Ayk05nbNCjPiJlaIXsRMSqQoxZUpd3BRCIawyaIyIFxweTQLdCnJfWKoavEd9MLA0Gnlj9hsOU9YOVgcZhylKk6tQcUW96HFbaWPC4KkttIlM9sF35NSTY4dkh2ZrE++1qJbDVt2eh7YTIZCJIkio7I9zpWR/qVDhAjgjNDKK1ysaRxQkK8578BWaKsgJJdp6TLD+EQPCnfOkegrekSSjEq10Qi6XlaAKRkCpVGQ89H3hbaQAnglfjF98hrhZ05GIexNyiDz+0TvktudytWE5X3Jw74Tnfue30MkOm3WkI1+RYM7WA1cqbuRkALH1TVnnixp7APpT1quFvdiYZM02Hh3EvoeUmHrlxsxzMPVf2AhCKIRp2VckOHNDEMWJ0gQ43JuxmC/48JP3uFzOmcwmrPrIg7MF3373c2aTwO50xsHeIc/dvcvh7RN2jo65eXyT41u3Sc0OS3U86TLvn694dLlmvmw5W6zIDz7izv4edw89N5tjsipJPYg3i4VyrpV3TOuK4GATe9o+sonRbEfK2FLFqgwoxKysCgkwqT1elBx72mx7+QDyOpFtNQRNpo4e9tCMVTLIGkGhKqpoA80VL1A3NSIeVYdD2JlVZBFSytSbDV4C3lX4UFPXDX3bkqMB+TELbUym8C7z3aw87NuDT6Tkyr4AVQj4KljfagHOfbHSMEaZSno02esRT86JRu181hPPxXLBer3iYFqzXq7oOiNrA54gQh0CWRMxWZWBLka7t1EIvirjgm2lg65dUVUb6srx67/2Dd565UU8ic3yknuNZ75c8E9/9GM+efKUdtNRVVWhGcp55+HcHX2/IYWmkMplHRJPLgSmiK2tAluSayA8BzX55GAPQsVF7pkvl0yxPh7mlOTtLsOWwR7mw8CIfuEhkWsk8VAf4wtE3VDBQ65ICLC1UxM3jg45XSbeffc93n98xnQ2Y382ZW/aMMYYf1aM+cyYz4z5zJjPjPnMmM+M+cyYz4z5zJjP/DzlM+NDT2OMMcYYY4wxxhhjjDHGGNfiH18soJniQuAwJ85/+B3mDz5gTxK/+uILvPVbv8p3f/QuH3/+iGfnc6RquFiuOJ/Pee7WIQ5H8FZSP2rC9HqmQHQhFHVnSTALYGMJfqbXRHs5R0VxwbO3t8d6syT3CUUMLKg8TdUQRGi7DX1O4EyJE/veEthcFHGGE5NLcuudKYUcpZyxeJxPVCFsE1jVwTrBW1abDWA1vVv6r2y/gWowrEqufqNW2hnAO6EKnhAcXd+x6XtWbcez+TN29mc0TYN6TzNt2HSZB4/PaeM7PDq74LNHj1muNqSUee7yJqvFgraP9FnNosF7vIfgKAAOVD5QVZ6AEqw6u5Wjz57JpNqm+zlm6mbCpqkIwdN1G1arBU1Tm5VFVDIGpuNN2RqctWbI2YTZoqSc6PuOdduhKNEnU9SpUgcDrlNOoBl1ptgzSwhHnxJdt2G5ajk9O6eqa1Th5MYRbd8ymTRA4uLiKe26IlQGOqVi69A0NXVlavq2z1TerERSH0EghGCAbYbVqqPrl6ZUL9hhjL0BiznTd5GZOJpJwyt7u7w1C8TlgtzOcW0H80s256dcXpxzdvqEs2fnnC+WXKzWPFuvWK7N+kKxcTeZTA0kVyU3ns/O50xP5+zvHfBLb7zIcr5kvdqwWrdcLlZs+kSooKodu9OGs4s5682GTdexmTVMmgYfXEF9Mk59IYiSAdAMKmNFcoTUFWuODH2Hy2YnklErtR4qkEwmsO4zJzducuPVl8gffcoP//4/5N5BDcFz8NpLPPvOA6KvmX31y9z/5teY3HyBHMVsEXIyoNzYCRBTEzsZrEl0i9XazMoEzZAiEBHJSNWU+Za3M0tzvKZideCKSlCGtcRBsTjwknHOG+nnDDDMpU2MRJQtSGykit9iW1oA9px7AxPJkDJOAngDgAfl9VBw3kC0Yv0ixdxBr8qmO014dWanUOxpyBHRjBeI+O36YjibgfQCSLJ1NA2Egpr9QTLhuOnQnScTQGy8S6gMsB5sNsTb59SqJiA264MooplU5q2tglKIFId3wdrXWBA0W5c6Bz5UiAa6aPYSg6obV0PurnA/hymkvcc7TywKenHOCAs1ss5XBq5+8r3vsXaRO/+tb7F3csJ7/8l/xu7uHjtvnzBNPaff+x4f/N//A9LOIZzc5Pnf+W36xYJUyvrbqCo2GIUUvsL0DVUVBpC7rNpb5XkZS2noWdC+ZVYF7h3v85UXb3N0ckLwtpd5EapgdgeqNsZcY9U6Up9IfWJ3b8pFznz67JyPP39KszfBhQrvrvbDBFykyMWzZ3zy6CF1qJg0DTuzGSfHR9y8dcL+8RFHJzf45ZMbxOf3aaubrKTm8x8INy8895vIKzd36FNGsy+XZ6N9O9dEcS6j6gqw7Ema6LuelJKB4yK0CherjgePz3hyfsHhwQHH+zvsTWpqGYD+AewvbVZ2uxijrSvZbJr6FA3ATzaPBLMTkjKBBoWvE4f3AQkB7wtwfehw3nN2cclytabtO1587h6NeCP61caqZiXGxHK5gLLeIkqf1gUAN+InxkjMCdPuG0E0mEgNF+OdEQM5Z7IEGw5JSUnRk5755TlPHj+iSh2pbYmxJ8ZkDzuo2fcI4MUIQxFnpGc2u5PgnXEqpc1izEwnU+7eusn9+7eZTGu062wdSR2Nh/3JhOPdPT4+25T7iVzuYsTsYwBRxVXe7IJyJiW7t1lu1qy7nl4VEY8rJCaaEYFm0iA4Us6kGFEXWPctzy6flXWtkOvu6qGJ7bJcmm07v66RAz8V11Xhev2NcnWMWJgL85JiOpvxcdvzydMLfvjJAw4PD7l/csDrL77IN3/pF/+MLxtjjDGfGfOZMZ8Z85kxnxnzmTGfGfOZMZ8Z85mfr3xmfOhpjDHGGGOMMcYYY4wxxhjjWnQIdd+RFxfMzx4xvXzCV1+8ywu3b/HSiy/hvPLkcI/NZkUCDu/fJ9Se+XLF5XzJZrkmoURVehIBj3NXpYm9H4CRosSKyUquFzijS5n1umW16dgUtSrZMkiXPc6LAQxDzWVvJdEjiUxmWwoZDLTJpsZ0JTcVKMkqJDVVsPOCz7JV2YIpiIJ3dJRa2T9ZV/xaDII7VSXIFaZmmXSxKpBCXKiWMtoRyZ4YoUuRTc5crjo+e/iIECojVjL0MfHs7ILPHj7m3Q8/Zrlp2fSRlJUHjx9b+5VKzaGq8E4LfpPpc7GicGKgixrV4bzgQ6FvpLSWQk5KVTd0fWSz6aiCZ7azQ1M3VHUgxYJKDk3vrNw5pS+d0y1A0adI1xrwlDVb7+RslhKYWlozuHIMcUJV1bR9pG07VusNF5dz6tqIgFDVrNYdy/WGZ6dWRryqAuKdYQo54Z2nroIBeOLpkprlgxiA4r2jrjw+BMQFlss1m7Yl5gQFJHFilgS+WAXktCEvz5m/8wNapywvnrC8OGV5uWA1v2Qxn7NaLriYX7JeRdoUaVNirRl1DhcCznmCM9V6SgUsEwcuGDl0ccFnj2rm8xV9H+n7yKaNtH3E91D1jr5LXMxXbLqOtu9YLDYoDh8qqiqwaiN4jxRQO2fd4jGlcyEZMSOaik2IXo1HiZAjJnt1+FDTXs7NbiTA7pffKJBUxs0a/J07aO6Z3dnj6M4e6yfPCCcnphjG2lulqO/KfFMSqgbkuuBNpVwUileEgAFgsl0R2M5ntJAM2JgezB8M2HMkx1bdqOIQH3CSi9XEAGIKgyJYTVJoYr1s6PegyEYzLvcGiKFGqOTSXgrEviwL+RrIWMCvArabVUqxx9CMaIRkgCbF7gG0iHELvC2UtdIZuUmpuFCUjZohpUzlgql3CxMqzmMF9q/Wo1wIEDcgcGKEig7EUWlduw69wu4GmS9w/f86HD1H69dk7ZpSxjU2bkRdqUSh9n3eiBFQJCckp61tzdBmZg9h6ziq+FBz/OYbzI6PcVXD7P7zHD53h8oLabFg/ehzLk7PqaopO9Nmq3K1vrExYlUQdHv2V9dxZY2xXcuyXIGWIgYOZ92Oh5wjzjuaAtrPmsbsCRCcE5oqEIJsx0FV19uqHk6F/YMZ889PaTcdm7ZnNqlsL8hmY6HeWR87hxBQsX2wX29Yth0XixVPnp2yszNj72CXvRs3mB4eUu0e0Ozu80rVcf/GHrenwq2DCV1WRArcmY0ss3mlVrUi9lShKhVLHCnbPitATplN7FnGTDi/5OnTp+xUjr1pw05TExzs7jbbfW/bizlvCRrRQIxGsDkxG57rfV2FwNYMJdvvczZrBue8rZnibe9H6FRZL5csUk9Mkb1pw27TUDuz9HFSiNeUaPfqLcGQyaz7NVUV7B4jJbq+J+Zo31csk0QHyycb907kypJiGBY4vDhCcOykjvn8goexBWA2nXCRIn1MpELCJlViAeqdDAY9NkLcsEZdaz8jUW1Pjl1PHiqPhEDuOzsHJ6WFh3MqHMm13w3rvZGBuiUTuPaZLXm7rcpQ9grnkKqi7zpSv8anjklTIW1Hxh7U+ILd1p9FCPwZsbVu0Z91gGsHFrMDe+ejR/zR+w9598FDTg53eeHODW6f7JdzH2OMPz3GfAbGfGbMZ8Z8ZsxnxnxmzGfGfGbMZ2zkjPnMz0M+Mz70NMYYY4wxxhhjjDHGGGOMcT1SJC/XpItnrB++z4s39vmNr73Jyy++RGhm/ODH32OvCdzc32MTlddefY3Nsyd0KbFcbchdT8yZiNKR6YlXwJcYSRD8AMBmch+3ZYkTQp+UmEzlFPueuq6hlKtOfYZKSGTDtnymy62paXMiKgYsGirPgGldT6ClAFalEDzOuaLQG3CxK/d2L4ITSHK9ga6n6RZGSFz7Wa6XSr56j6FwGDilCYeVKU85E3M2QCpmurghRgOTM74AkZmLSyWLJ6oputbrNU7cFuQfkn9ToBpYn7emDIUEKcpvH0pZegb+w0qAI46YMjElnHOEEKiqiqaqUISu79BsZEwIni9AHc5gXbMsSEWpbu2Bw5ThIgZg5lzAwUKgeKGuJnR9pOt72rZj07Z4L9R1zWxnhpNA227o+44ce3wIDPowzdlKfTsDlyRDr9tGASAEoQ6eqgrUTUPX9rR9Z+SFOFLMVHVNFSpC5WkmlQHq6zmPf/x9PlivWVw+4+LijLPzOZerNauuo+16Nn1EJCDB7E9cqAhVRQiB4BxOE6nvBycUVMH7QNtHTi/nfPRZZr5cFyDa1Px9jKZAdYKXFcv1hpgSbd9zdrkkZcG7iuArNCWcG4BuNRXtFmS3fxsonkvJ+1yAdwq4mguoncAFQl2zeviQ1XpJvzPh3ttv0l5+Tt50yN6M6dE91g8/JviEX5yx/HzB/u4OMtsxwHM7W0rJ/wK8Z7UR6apg6nwyOSfQtCUABjj/CtxydiRh+4rbTm8pRJ831bGY8tiUfAGRVJSDV+CTXgPSZPuLwrQZCo/QIznhCpBsthSZnMtR+h6nYkQHWkgHRXJGUlGb6/DmUpK/HEszEPy2Z3R7ZtfBfC1Kb/tZxWEacoEMzgWEDFIAeS+lu8t16rDGwaBgRfwWDB0sbLav5at1ANyWbBnayW1nuiIkchID9Yf55ypTjqtdpy0lDvCoCE6zzX/NRma5K+Inq62DkgxInewcMLt707pk03P4+uvsv3gTv1kTnz5j/6XnOT+9pL55wuz2DVLXGRiabYwNA2Ugbq9W4IEF0UKSFXW0lPFZUFc71sCp2JiyNS3Txsy6683CBlu/mtqIuuALWZV7gihevKl8Xc1m07Net7RtxyQ4VDK57IlBjewUEXwIOFcRYyJFIx3n8yWnlwuCg0ntOdjb4eBgn939PQ6Ojrh3vMv+8Q4TV9N3PX02iwqRQpBTAOYy9VOEOhTyqIDlk0mD9972jPWSXqMZlORI7cCrEvtIu2oJtWOwjhja2Uhf2xeaqiZ2LWimDsEsiIollKoybSbbRVBwNAXEV1VUHMHXiJj9SYqJi01L7Hs27YYu9uTcIxrw4qiDEIb1JQjTasakDohzJM0sW0fdVKbSTpmut2oQqTfls3fb2i1llQGP24LsKSccELw3tfq04fL0KcvVgnZ+wWz/yCqHLB1d7Ell7GfNpJxIKeKU7fG/cP+w3Zpke1uQk9L3PRojSRXfNOT1yuyOhvbmakzLME/1qgoD1943WF7Y/deVoFm2xykEiROrvoDQtRtStybEnnpakTrZzqUs+gXHhi/GMMd++rfDlX/hxasF/erXpZLGQFrkrPz4owd8970HfPbknF954zmev3ebk8N9zi/P/7QTGWMMizGfGfOZMZ8Z85kxnxnzmTGfGfOZMZ8Z85mfo3xmfOhpjDHGGGOMMcYYY4wxxhjjWuRHH/P080/w3ZK7BxP+1d/9Hb725bc5v7jkP/ybf5P3PnqPN15+lRvTKc/iBSdHJ7TThib31LMJ+3sHRFWiZmLBCl1RpwIGDAzK5JS2IE4XI6fzJRIm3LpzxIkqT09PudysSDnTdR3n589QSUx3G+pJha/h4vEpXerJAk0zYxk7gg+EUBPwBV8sJai5SlhFlOAdoapxzpGKahOHARY5IznjnZV43oJq145xPUqevgUNt3gfQ5l0A5xEhDoEpk3DdFIjTmjmK+oY+eqrL/MXfvNbdG3Hw0ePePDgM1KAk6ND7t66wa3jQ9q2t4rwSek006YeTZnY9Xz28CGhDkynE6aTCV3bE1MBZlUNVM/Zyj5nA8hSjIha6eoqBJbLFUkT4j07sxlt15JzxgHeBVNlF0AoFxXooC6PDpIKbZ9Yb1rWqxXP3bnLtKnRHIsyz1SMuYBzmr+oarwSKBpQ0+dEzKkozBxeTPXmvDfSY9v+BfjMFJCvJ0s0a4M2cXq+NPJKTQCcSUyammY6RcQVYAhyIZkqgTo79vaOWPUdP/7kU/7RH/8RtQ9UPiDO431lYG2omAZAFBVFHFTBAxn6ll4zOSX6LhoWIjYarWR3pIs9q76nTQnNV2Cs86UNUqaLiZwN/FZxJLXy5DnbNUtSxKuVPhcH3ogCa1tBXMD5RE4RxKxRUs4GX4tV+pbcgzqQgPPK8uyU6uSAu8//Ci989Wv86G/+DfRAmJzcYO/Wi3z47/yYz/723+fB3/rPmd+8wVuvvcJsf58QamLXUSD8ggElwBTL2QVccLiqIsdITv3VvHJDKXcD+W18DNUFyjwTJbsKDTVRApo6Js6XtrHPpmTXLziC99v5r2pVCbwUpe52CAk5SwEvSzWELdAu9DFv6cMMaIxWVr0gb6mMYTeMZWyObEFwV4Gz8xMcKhXqDDB05fy2a7AIQiAHu6acTAOuImZbESpy8Ej2+KJ2tzWnnGFRVosPSKgR59GUrY+dGJB/xT+UOedK+fpBOe4N5HaelKw9jGAVyK6okW3ehapCQoW4UK5tICAMlRYwgkUzOEWqiuA85ExOPUkS4pLZTFBRHxzS+4xL0OzMOPrmc1yefsz6fInkyP3f+nVeufc8yXn6PrG5vLTLL4uHrQVGxJoSvzRPIcSAMq6MKNgqh/MV+Oq8mFI0eKSa8uj0ku+//zH/8LvvsH98w+Z6SuQ8kKkVVVNTVRWb5Rr6Hs0Z5z0vvfQSZ+ueR0/PWDw7JW6m+BDwIVDVDXUleOkKP+RwztM0NVVd43Ogr7RYJiitKg+eXvDJo1O7RlEOJ/D2yy9wsDMj50wEJvUU7wZFcqapK7MXUJuVVTBLAi1EatM0uGDWH+1mhQKbPjJfJp6er1huHiEoy9WyFE8wlk6zjbe+j2WcJE6ODo38z5naO+7cvImK2UP1ObEzmdK3HagymUw5PjygqYbqEZ4QalwhLBbzJR8/espHDx9yOp+bHdT3f0yFUjnP/u4+s52dQjjAtKmZNjWpWFB0KVNVFYrNw1gqcnRtS06Rpg5MJ1MkWxsPZPP1jb5yjjoodRY6EdQH2ranX1xwsVyzXi6JMZZxNZBjaWspsbWY8r4YoVCIhKuvKVxB2R9MJe+cZzrdYXV5YbYMMlR8uaIWXdkn87U9VJxZa7gyn4MPBK9AXx5QsO91TvBVYDKd4nwgJSOS+8WczXpB2y9Is0k5xy29yKAg/wku4E+PLRkwfOKKnBh+2hK1ZfXBCVrVPHr4iHfe+5BPH5zhpKIJU1559Q12Zg3f+973/1nPYIyf0xjzmTGfGfOZMZ8Z85kxnxnzmTGfGfOZMZ+xU/v5yGfGh57GGGOMMcYYY4wxxhhjjDGuxeaT9zmc1swObrCzs8+/++/9x7xw9/d57u5tvv5LX+WtX/pFXr53n9Nn53z05L/gx+9/yM1bR+zu7TKZVbx4574BdDmjzpReci2pRYSU0xaITznTp8xy3dLpKZd9Yrp/AE5Y9h2P5hfsTCbcPDniW994m53ZBHWQUVLu8ZXQRwOyq9DwnR+9x+NnT+k6K9UswzcXMMSiAFfem4KMAhrl8p6Co0HCOTEFpDp0qyu6HtdS5ZKoD78r4p6C4dmx/QDkabYy1FLKqDvH3nTKwc4OXVOx2ewRu2OSJu7dOuGVF+7z6ssvcnGxYL3a0HWRo6N9uq61dkyZT28dEVUIVU3TTIwE0GJBkBNNU5NipO8ibdeTcqTvO5wTqmDgd9d3BueKYzad4H1RGiNUwaN5SO6tjwXFidlNeO8RX7PatJyeX7Baznn9xReZTmrabkOXe4MAchkf10CPlDLOyRcIg5zM0gJM/Tapq4GJIYvZgjgKIOoE7/yWCHIiZIEsNaeXS3783kf4KlA3Nc5BTq31bVFSuwJ6JI2IZoIKjkDV1FwslnRJefDwnMYH6qoiF7W3MTbRADMMsM8RNpuWLlr58pxNrRlc2JYqh0Tft+zODnn5ufv8yle+xMV8TR8TMSb6doOXTMoYqROtz7oYWW9aDnd2mFRKbhd0ywZyhdNqO7o1paKjLcB2iricTDXvQXF0bSoFBMSIDzI+RaTtaOMzDl+4g5/uIZMpn8/nHL79i4TZDtXePoJw73f/Jc4/+4zl5Rmvv3yP2W6N75dIXDNxnpSzWV8UtaoLBlT6KiBqRIzThKaO3LWlYkIBudSRYizd7Qh1MLBcsfniA67ewcdMUgdqdgiigmTFSYWbHuIdVB58irS5h6I+9ZpoYwRxeO/w1YwkvgBWGe2tooMv5emzOsgJRyKQMJG/2873up6AlDL8riGIlcXXVOF9hZ/sIm6AoHQLxiOCc87mVRmDqoqm3kA+5218iyeLI4sizuN8BRQF7wD8Dai/d4SqQcvncRXmDjCgkh4kF/scGws4qwKhImQf8LkcK0GKGTEHADKQcYj3WyW7ZMAHs36wwWWkULHxkSxWud0FpJ7id3atjWOLqgOiVSDwgejsO6tk816dsFxGXFQkdsR+xXyzoVtF1BVbHZtO27XertHWLIezShrDr4ddwLmCWdoaYDYS1/cJv2V+1/MzJgFeuHODKBW3b9/CyZUqPGWl2/Rcrlrm6463X3yZ/Ukw/kiUw8NDpJpyudjw5PSc1WpBGzPLTcfZcsXT03M2m5akIN4Tmglge5N3gtAVCyQbB82kQRC6rqdtW15+5SUODneovdCliHc1D5+eselaENibTQiyskofTsjitnYwZiDiSWqEo1Ws6EtDObIEJtOm7DOpqJAhRyMfnTjIgpOAeiVLZj7vtsTMgsxnP/yEKjjq4JnWFadhvbXryDrHffx4qB1QiDebU1rI1XWfUHHsTvZwzvHpp0/JuawNPLwiiK/tw2YFla9U29uZJ6Rk9x1KLoD+NeJ/sAEZxlBRFJviXyFF3rxzyJfv3eD5k8NCTFs1CucFD2hKoLZ2hFCRBRJWPUG8L4wsW1Igi6JOEG/kgA+mFBecka06nHu5ryh9MFzz1aXLFSAvlH2mVEjJ+doDEgMULyChVBLJaOqRlIjthk3bskw9rU6oimbc5Xz1Ob02V4b7nmuE6xfui7j+xV+8D7v2YvlzzeJBHatNSybSTD1HsyM+X8Lf+C//iDs3Dnnx9o2f/o4xxrgWYz7zXzefuRZjPjPmM2M+M+YzYz4z5jNjPjPmM2M+88X4b0A+Mz70NMYYY4wxxhhjjDHGGGOMcS1Czty7eYvJbIf5quW9jz7n9uEeJ4f7/NLbb/PDzy54uuz59HzBBXD+8CHz1Zzu5IAbz98t5aYjMSWyEwP6ikJQMQAwFQUSAn0f6frIpusNQERYzBdsYs+z80vOLufcuXnCl7/8Or/+zV+m8bBZrdhsNsSu4/DmMTn1KBk/mZKislkt+HwxJysM2rChbLIBcY7BQiDGSHC+eLsP9gSmGqrrii7FbXXiKy3P9SggwpDAD8CC5fsGRmHHE8lbFWrlhJ1Jg29qdlcbqsWGB4+f8t0fvYPzwmq9oeszset4+OiM2GWWbWS+WLIqJMGtm8ekvh8ukLPLBW2fcKGibhooJIyWtg/emcVEMqsJcdD3veGKwdSZfbQk3TnPctPivbVgVqiDt3L3Bdj0zsqNGzZRSlP7wGrdcn5xSVMHLpcL1q2j7TbgXVEhGvCdwcqEY4SAJgOpCoZayncnNCvBCY5JwRfE+iuVv8v3e+fxzuGdqcJS8mz6jsvFkrbv2J1WNI2j8kKOFQhGbDjr15SiKaQRXAYVh9SBetpwfLBP4+24Wr7fQBsjSgw0kTIiIARP3QScNxA6BLNtiMlU3uKE27dvcOPokHrS8PnTczZdoo/2euo7KqdQSpOnvme1aen6yLrrWbWZPkZiWpPiHEkNPoFqIOPwCpK7LWiUY6Tv1gVHFlLM9H0sJfSV3HdEB6GrCKFDvSNMZsUGQXHOE45v4JwvIFFi5/WX8PdusrNa0ASl61dov0Ix25fh2KIGbPuqNhBajcSRKHSbDevVAu03NCHgqxrJDVkjuSvnh6J9IPa9WQtUNXVV451D6tpms/fE1JO0QxFCXSPlulebjk27LCCnN2uT1LPpevCeKkUmU0caQPyc6TcbXDkf5z2kYh+AgYspRoILZS4ISYIB3ygUMgJNCEZ+oYkcjTBRTaZqxcq0qzhy7E0VXoB9J2ZHowW4H6wkBJCcyZs1fd9ZuXkyoQqoqxiQR3UDXSYFILy+epkdgnOU84fUJ1IsSDtFlY9cVT/IyZTPLiB1wDvBZVvb82DjkQdPCbFrzBmSWdkonfkQaCaIt7YIEVwsivxMloSSCDnjRFHnzC4kRXyyChsueCS40s4ZinLey3BldtkZxW9V3wOHYmSvFBJDVFEt4PtQRUAMnM3FnkfU2m/aVNw62ocw4d6tG4QwrOlCjInVcsOTs0tO5yu+8dbr3N6fUTceH4TJdEJSz7qNLJYt8/kZq7Znsd5wNl/y2aOnPDxdMF+3rLueLkGKPV2fyZrw3lPVwYjqrEgTqEpFj4rEL77+Ei/cOmbaVMSc6JLw4cefMl+uyN5x58YREls8Sgieom3FeUdVeXK2fSCmTIqJqJGkRq2oeJJmYuxBTY0cnN8S6k4c5vUjZWZYxQwFcla6mHj0+CkHe3sc7+9z58aJWQppIeILmQOFHFMlxZ6crWqKoEQRuj6RYsYh1FWwahmaQR21c1d2EqpbcBwgkem73qoT5EzX9XRdf7V/Oas8kMtA8c6XhwEKaYSzeV9wcE2Z5453ODqYUk88F2cXtG1LSrmMI1s/hs8b+VysbQYMX4aZfHXfMBAGw59yu0KOqaiiS9UC1a1txdV0vtrjv3iHogTvrzukWF8BpnE2u4XYGSGaYjTbltiTUiIiJKAaVhKFrW/MT90KyRf/+ZMcgQz3Cj/9os1H2G7mg35crqyBxAm+8oivuFi2eHfJxP0MImKMMa7FmM/8181nyrHHfGbMZ8Z8ZsxnxnyGMZ8Z85kxnxnzmS++/N+MfGZ86GmMMcYYY4wxxhhjjDHGGONazCZTTg6PqScTFusnLLtE00y4cXjEvVu3+YMPL3j/80d8/PAhp0l5en7K5fkZabnkpaNDVpsN3XpN10eyd6a42SaxJQXMeQuc931P10e6ZABAEDibzzlbLnl6ccHFcsX+wT5feu0VfvlXvkHarFieX7BZLIl9x63790ANfPe7O7z/wx/x/R/9kL7ryKq4reJm+HbZ5rOqSuwTUlkiT1HmOidU3jNppizXl1wvoXz9szAQBF847LZ0sytl0Z0TnB9AB/vbB89sOsXXgdl0QqgC7zx8TPbQNAZMVmFC3Gx4+OScDz59yLsPHrLuOtZtR99HTo6PIKWitvV0sTeSwHtCVaM5kVLeguhQVFwoHghVIKaIFuDYSmUbhOSL2tg5YcA9qhCQlLZK6LoyJTJalOqaUBHWbcdiseTk5IjzxQLRTN93NJOpkREixaog44PbKtv6OKiITdWVY6LtIjllnJrCDy9bwkfFQCktl+a9J3hvwDye2Afm65bL5YrT80uOYsu6baiDILmQIUX5rZrp+s7GAENJfKFppqQ+YQX6rex/yhlxQ8n5ouLWTE6uqGnN8mNnNmEyaaibikk9QbxnsVzTti3OO06Oj5hUFW0X+dEHn5CxEugGzEZqb1YGToTYdSxXG7qY2HSR83nLfNNyuVpwucz0ucHRoxhJIDiIaxAhA5sYuVhcmo2GD/QJUpeGd0JORUUcqFyFrxwuJchKFSPVZAr1lBwj2rVAZnZ8wM7xLnV3wOrRQxaXT+iTAXJOPF4cRa+MOE+oG2vbrHhvQO9qvWaxXBDo2Qk1IdRIXUMzQfqIpmSAtnf0bYv4QDXdoZ7uGoFRFNdZHLFfEFNv5KDsE/uezWbN5fKSx4tzahFmVWB3UpNjTxsTuEAzmXKQM+qCgcox0a1XVM2UejIhkCGaVYyi5JyMRKgbq/zgAypmuaA5Qe7LvLDxIQIajTDNKaKxt/c5t1Xlp7ZFi4WDryaEpkGC365bqrmMSyD19ItzNu2GmHq8F6Y7e4ZwOasaoINqOydybqFY3SBme5FTB8EZ0I0jdR2x61BVfNMQZntbgkJSRGKHVA7xFc5XOO2vrYkOycmA5axQStRr6iFnA0qzQmqR2CMxod7sdkQTpB7NSkbITvFZUF9ATOcprg04V+HrGhccopmcQWNEc9qCmCrgtACNmhA1MkAYKii4rXsG2AOrQ3n7srLb7zQiagp97wLeByZNzW4SdpuKqhK8t/5LKRMU2rYlxp5bR3vcPd5jb2fCbFpRN4Hl2kD/rsusljVt17PpOpablqc3D/joyZxnl0su5ksu1h0XixXLzYZ1G8mJ0gbFWqSGpBCC43B3wtdeuc9zt28ya2qyZjZdZkridL6gBV55/i7aLnGaqatgtjrOEapAM22sEkPfE6PtF70m2tjTZyMt1+26kMyepqqZ+KrgxANJMBAENuQcgoqQstJ2kQ9qx+H+AbdPbvD6iy8YKaiDRUIwEq6MmRh7Yh9LFQTbi6MTzi/nrFctHrh1fGw2QZoRHLOq3iqhc1bqqrJqA2KK5L7vUc2klFiv1rRdpPKOulSpiGXfUaCqrOKAjQQby9eND1Qd00lFE5fk1QVtu6bve3JSJNic06KUtm1K4SewbNmOu6t7CoVCoBrY78qDCmipzuBtrm4Z9O3cu15NxCphDLSLoniRLYkH2SoXFC8YUcjJ2seJmLUJCuXBjuxka1kxfJfosDte3VPo9Yv5WQTBnxrXmYZCPOQvsg+D7ci2AoUXcsrMFys+7Zb/rF80xs9pjPnMmM+M+cyYz4z5zJjPjPnMmM+M+cyYz1yd+D//+cz40NMYY4wxxhhjjDHGGGOMMca1eP7FF1kvLmnXlxzuB776y79Erhre/fQR9R98m//o93/IB08vWWzWBITgHauLBc9wfHa+5OnlguXFOW3fQ9MQNFtpdOdQJ7TLJc45nPd4X1Q6zhRaFYJTWKJIVqI6kms4OrnBrZNjWFxw/vgU5xyTusZNauZPz1ERQuXZ1wxtJHeJvk/0fTQQQjAQgpKDugKMAqoGBiex1zQnqqpmZzLhYO+Ax6fnJM0o7me2l5URly0HMSjxvIMqmLLIUxS8QawstHdI1UA9o8s9MRkG+fnpkqfzD6y8OULlpzhMHZeyAYzAVk1ZzsBICBFyH6lCIIQCfmgu+fpWjoUmA9R8ASF6LUq2rUCrABhiCiizeDASwvsKSbolSJwItfem4MqZtu/JoqSc6FPCOz9U9gYVUzXKQK4MLxTFIkYcJE1FWS7EGEk4w2z6AgTWDucdAdkCH4bxWXu4AtwJAiq0vRiw3kZCJQRvfRMGKWUBWQaVvBOPc8FIimyKXhFHSsr5ck0VKpq6pgp1wTUM2OnWLeeLNT4Es61wM5rc0HUdOUY2qxZFuFyu2LQd4Di/WJsNSQGP87X2cAghGMAYgkP7nuWqpY2JLmYW68QPHlxAWvHJQ8esqnjh9pEBdKXkdk4F9EuZi03Pw/NznAuEqiHj0a5jVtXsNhN2m5raGznjRPDimNSOpqloplOqo/uwo4g4nM/kCGeffsx6ecFyccGz00sW/cpUlSkR25792S6V9wRx4MCFYBL7lPFOmW8ijy/nPJ0vuH/niBM3QVSJKNXujKpLyKCmDRDblqaZsn90g72DW3SbS3LsEXU4ndIvz4j9ymxEFiuePn7E49NTPn32lD8+e8JOXXNjZ8ZzB/s0HhLlOqvAc7du4n1NVkyB3W2YzfaYzXaR3V1S35l1TAG8N8sFMptRzXbxs3168QZY9y30azxK7iOSFS8OrTyrriW2LXmzwYGB3c6IJe0iCY9UDfVsjxA8WZRBEa05E7VUFOiWdKefsV63pKxUkymqmWq6hwtKTEYUqvakvmW9XECMhUwcxnss6mxTjPZdy2a1IqfErNlh/7lXqOuAnzbIsiMuNjA9QiY13gnrxSWkhDhPNTug32xYr+Z07YbgA97XNt+9p9ceIeHaBbq4oJvP2Xv+GC1rVOpaq7TfdiRVNqmnritcNcH5GkkZvEebKaZohn5l1il930LfYVYcRkbV3pN8Jsee3HWkpIWgrHBO6WJENSEozoEjmPK17FPOQybiMdKs3jnkySrxJx8/4d1PH3FyeAg5Xq2D3hGzktQqUXz4H/9/uLm7y439HW4e7XN4tMvF5Zz1pqPtIrOqZjZpmE4admZTXrl3k1dfuEtWoU/Qq+fx5YKn5xc8ePyEf/CdHzOfr0ChqhtWqxUXi1PuHu7xjbde4f7tQ+bzC54968kxkVRZtxvmqyWfPzun8VD7jBel8kJTNWaB4gS3cgWDtTXDbD5M4ZvansvFnCdnp8x2Zuzu7jLd2QEnBGfkpQNiTsTUowpeahqpqOsK7z0qjraPnJ2d8eDzT6l8z14dSv0JI4ZCqAm+rDtA5Tyu8njnqULFZR85Tz0xrhEvBNfiNBFyIosYnavZCLG+x7sal2xPxAm7wVFVgeBr5HjHzisbAWlzS4uFg+JCoKrCtm8nVc100hQiWAlNQ5hOmT/+jKcPNjwKQl3XuBzJWUipgN0yEAGKV7FKFQNxVvZZV9gBHRTDUqrGkMxdpQ7EqibWNVVV4YMr2/gXUfjBksIjhGJvE9219+UeshEl2flSeUGMecqFmPcedY6UIrk3ElMqwUm2ewEADUBvfSdX1znIveXqhH76RunPCmf3B8bN2L49sH4eSH2mbxN93+G7S4iBdU7M+/V/ve8Z4+cuxnxmzGfGfGbMZ8Z8ZsxnxnxmzGfGfGbMZ36e8pnxoacxxhhjjDHGGGOMMcYYY4xrsXswoVLBa0ZcxcnN27z7zjv80Y8/4P/1934fufUSUk/ZnzX4DG53So+Q+sS3v/Md7u3NON7dpQoN58slu7NJARMsEbfk1Eo+d222BFtyUXCqJdmaIUdiu+b24SHP3brDzaMTumULWHnjpErUDAXEFTypjeQo5OTQJPRdR6jF/OVFAAMiBAy0dIKItzLjDoKvEHFkha6PnF9cEqMpEnFiAOcgsC4xKKMHokC2YJUBo0VkRZE60WV4Nl/zwedPmK9azuYL2gyTyQ5//d/4XY4O9uhyYtGuWVyekvrMdDJlb2+Pw8N9UywlU3kt1i2rdlPKZjucePpoIG1KVppeHFi56Iwv4K8UbZM4sdLqOZNiD0k5Wy5YtR1RM6+98EKxS3CI96gq7WpNF/vt92Qt9hDe0beDatgRqsr6uTdiwzlHLmXFtSjZB/FmypByAUpQcjZ7iMmk4enZGe2mw6uwv79HpJTuzhlJRmI47wje0nvVK/JBNeN8wHsjpVJM5aUrNfO2H0t7oKYoU82Qy/UgVKGi//Jr/PCD93n45BntsmM226XvOppQ8dUvvcn9528Q+9bU9uLp2oiWEtfeQR87bh8emQK0KDM1J3JKxNhjPaZFIRjp+0jKyawCcmIyralEiKpMdyLvPLrk8zNlVsHO1HP7+IKdCTQVNMHTd44UlRgzm5hYtB3BV3jfmoqwa9mfTjne3ePe8SE+9QX8MYDreNZwjMc3whRTsCY8MSuSI8SWxcUZDz7/nAdPLrjMkVTAtNR23DjIVM5ZGfrayJVgM5i6cjxb9Ty82PD5+YrONXQzTyWK5o7QRugjjffMmpq96YxuExF1JHE4EqoG8olz5G7JenFO321QFXqJbOIS9ZF6VrPT7xGcJ4eGtRSTmAihqpg0O0ymM9QHNIOvAuqEEAJoIrZr2thRqSMIuJTI3Yqu8Fe1OHZmB6QQSKIklNo52rwmp56cYbK3h2t26ZqODZcEMlUwwkudIzaCV8GFQDPbwYUKFQUcITTE5En9kk3f03cbQhWocWahokJqO7zrcQRCZYSFaDK1Y+pwGpEEJCXHSGxXV4rQUj6/ciDeIRLxaYPPNYGEhgrxHpoJhAo0m61LUXKLd7jcEwRwitCbGr7MK1VvpfxjxjvHZHcH8Y6kmD1NLPYYBZzW1NEuN4QmERoliKfveog9vlS7aPtoqtTNEtGOy9WG1aZl01p7+0nFZr1mPp/z9Nk5ddNwsLfL0d4Ou9MKl8s6DTi1dSSEgAueTjx9UmoHEyfk8JTvv/MR33v/AT/+/IyT86I0L2uNONszUiGbY9czkafUwdNUHl95s1PAVOKz6awQFmYvE4IjMNgHOJwP5iXkPCrC7mRC7pUuZbIIF8tLNus1p3T8yXuO/9P/8z9hvVmbzYw4snNcLJZs2p4+Jj76/AloRMRsXabTmSlpS9l9zab2R81SxzmhjR19MkKyU7a2NlXwzCpHcN5sKpwnCaRi3+BwTEJlJEKpwnC2WHN5eYmgvP/oGUd7u3hn6lpVwfsKN+DC/z/2/uxJtuy88sR+ezqDjzHeKUcgARAzWSSKNHaVsWUtlUzW1v0gyaxNZnrRg/43qR6kN6nNVEUZa2KRrGIRJAAigZzvfG9MPp5hj3rYx+NGJkBU6UWmbpyVFnkjwj3cj59h7/2tdda3hBhc2wYh8pxjfU/T93TWYq3jF188pyxLtNaElCCkW76a4XXS0OVDKYU2EqOyIzx6jykKtM7RQYk8xiuRXd5aKg6BUVIktNJMqio70lMEKTmua4zbEZqOup6i5BUQB+EpnxbpjlM5DSJ6DGFoTpDXDMPKgjfW6DwsKQbn/1e7r6TDc+8uQBgSHvLvlZBD5xBJEgIbUh7zTULpiI0RCPmPBIMr/fBSia7v87iQAgxSvBQ5biM/b3j/uzrAVzUBceduif9i3NkBcCsm10XBrCowas9Ns6UxCi0FWiYmxf+XbzHitw5jPTPWM2M9M9YzYz0z1jNjPTPWM2M9M9Yzv031zHjT04gRI0aMGDFixIgRI0bcQde3TGcVR9Mpx/NjPnzyit2+Y9d5nIB6t6ecCpRWyGBvWzd717Pftfz844/43je+wfFiOThINXpwCKUkhiI8E7EhBOQQOwCZ+NcpYYxGCoHtWt66d8bpUW6t7X0/uIZzQSmHolUKsoPYx0xW3JLEuTgHeWvgEXF4NGUyVsmhdXlMg8s5O2Kt87TtHefNr+oDtzjEGeQaPn+fiXoQWmfCLOZaXgGTwrCcTTmeT/EpUsREWU/45ltn1GVF4z3rrmCiPL53TKczjo+PuX92irXDPo+Jqi7pbU9vHb11pCTprcMHn0WCYb/n+AbBtCowUmcBQ8iBmM/OaiUF07Lik2fPWG33hJj4Jz/6Ed5ZnA/46EFA33ZYZ7HO4UMgpjDERkiCH2hBkeMihIDgwxviXmZSMA37PpP4igT4SCZh0sG5meMnvnj2FOscy9mc87NTem+H2IqIiolCG7QxGJPL+xDj7bFkiJtQMpOxMSSIZBEiRXwc3HBKUhQlxpihZX9AiESh87YpqajKijZ4jAFB5PXlKrf2j7nF+v3zU/74H/2Qvmvo246UJN4HYoh4H7DB07p+IJDADYSpGE6uEBMh5G0K0eP9m68Uc3eBfWexMRAFVEXB9uaKrevZ2MAkSPaxY1YJppVgWpV0vSf67HqPCFzQiCjQQWDKgvnZMUVZEYuCKy8pKJhUFXVdo5TA1AVRQ58ks5jQgwAUhuvNeouzlq537GxgkwQupryfg0TbiCYiYqD0gaOB/CuMpigUofXYJGiC4GLXM9M1lYzI5JgYBSliAwjrSE1P5zx96kjrNfXFC0oziFFKsN3csNnvCNEjpMaliE+OKCFpjUchREGfNGsbaWSkRCGRJKEJzqMO5FvIBJ33DlIkRodLgZAUcvg8NgW6toHeIvcdJ2cCo1WORehanJKk4EGkHNGQcqv6lGIm1ZXKY5kQJAlCZrITkSMSsllQk0SOPZEqHx9EifSa6Hqi88P1Bb5vISWi7zBlhTFFdvkKkIXBdj19295et2JwhsaUGJIG8vgnJVWR0ASE7fG+x/cd1XyRBQQFxIDWkoAgCjV0JkhI8uuG4Ekmk6yCLPgF79FpIECFHByg6ZbjzKTkQPZGl0VLrZGxyPNDzLEOSuRxwSbQAjyBm82aq8aSUCSh2bUtsXW0Xcdu33O57RF7x6a1bPcNJ9OCRV2hhMgCahjE6kEsWVvHuvV4n4nmpEr2Xc9sUvPufclyPs0i5TCnKKWHaywfwoNLVco89giVPcCHeYmUado0kL4BQRxCXJSUWTgJebIJSdB0HQyxMMF7Hi5nnL/7iFlVUpuCzgWCUCSthteDop6gy5hjNJQeaO8sZLTuTUQTKYvOKebZLe+BQCASErigaKzLTl0FXiVcO3RvEIMIBLl7yDCu62HOI2Xhv/c5VoIETX/Dc7O5IwrkOImU8nwlhSAbhcXw++ziDwxiWBIUg4CXj9eBjOeNOJ8SMeVjl6NoskgtEMRDhwCVtz8NIskbgWIQCYb7AiQCo7NTOgzE99szw4NZwbJU7HtLZy0hhHyjQwikMKwnIsM5kEXX2xXEYRHxJR59EJyGOKZ8bokhEobbfSt+zd/mY5D/Pt2+EsO8GnOM0xApQYy3j+a4CzHcJCFISeZ1Swy33VLSl/47LKJ+zSLoq/gvEgqGddqvfcGESJHSKI5nNUeThsvO0/UdVTF0eJC/vlvNiBEHjPXMWM+M9cxYz4z1zFjPjPXMWM+M9cxYz/w21TPjTU8jRowYMWLEiBEjRowYcQfr9YZlVVIUNUfLEy7/49/R9xahDaUpEbbPLaOVIIYO1/f4kEmAtrd89MXnPLh3zmI+Z1bX6Gyg41AjKyEzOUMmhnwMg5UJZMwRBLmVtMT2PafLGceLKZO6wG7b/N4HRxr5T5UAmS11xOQHQgZSzORrSjFHJkh5WyMnmRApIJDEmEmKOLhgY8ot1X04RD2IX6l3b91KwKF1dBpIgJiyWBEiFNKQyDEXEigkLOqKB8cLHp4cYQrNzjqSLjAiEPoW7yKhd1nQiJEYPMFZCIFgLc46EnB8fkyMJU3bst03hCiQBELUxIHwSzGT0WWhOV7k9vxSKoRUWO8zeWcUdV1xfnxCY1sKrYkRvvHu27T7hs52WGtRWmD7Hucc1mbnXCYa0uByzm65HMWQxYcQ8r6IMaB0fiwlBjdwwBQGobKzsHeOTMtIJJLgAl27xcfAw3vnPLh/j67vBuI8oVKkNIbCGHRhMvkWDgRHQiaBVJnAJIGShhhy+3sf83aREkorJpMJRVHinSWFgJJQVWVuSW40dVVxudvz5MULbtYbuqZnu+9yu38lqOuStx88oG9b2rYhpUwQeeforWXTdeyty+dkiDjnKAuDPDjZksSG3PLaeUcILn+OEBBJUBcFl9c3NM6CgNPjBR81Oxrr6HwkeonbR3ov6Lyij9B0YdBmJEorYpSQMpm9WBxz79EjjDYkH7m5WTErCibzU6anJxRGURtNaNdsuzXlds+RmaCH6JEUA972WOfoQ6ANiW0Q2CizuxiBtBERc5v2afTUpaEuNMoYVCFxCfoIXRD4zrNxjqgjZfJIkUgqC1mNc3QxYYNHOk8fAsZIzk9OmCiF1IHN7oZN0xJJKJNwoScGjwe8VDQuUQRBiIk+WIT0zE0FKjELka7tKUx2+fsQcc4SfMgt84dYl9ingVz1JCTWD4JI3KCkYj6pgUTf7nFCDAKozORx12J9IHiHDz1IjRsEs5gHP4gCJXJ8jS4qVGFAKkIMCCnzuJgKUJrddk/XdjjvQGSCWrQNSmvqukJM52hT5agdkWj6lu12zb5pcTFSKD24OBNuIHidDwgBs0keh4QQRGfpbUedZsgUEMkhgoXkB1I+ix0iegiW6Du8c8gcOIJMiYDOYm3iVpxMMVPjYhCNiQFEBCLJd0RrSUojTJnHsTQ8n+xklikgRSSmyNOLKzZesjw6ZbE8pvG5m4ITiWjAzATeBxyws5HkW7TMLvcUAjEkbMhjeAiBi82OF5uWTetobARZEIAHp0senGtmk0mmxgciWSuTCeKYSCHmcU5IhBiidESOGoop4WOkbVt6n4XeA/EaUnZNa6XoeouPgs5HuqZnvWso6gkI0DLxnXce8r2vv8ekLGnanuvtfnC0Z8Ldp5iFWyFyrINzRAazaUpEnwWZWwrYD07ZlJ3iIVhQkpQENkhuVhuquqAoNEYJ0peE3nQruMeUIzGSlBDzOJt8oNCGuqxJCGzvaTs3zN0CIfPzAiGfHkINAnvIcTwiz+95IM8iUDQKfILkb8+ZYVZ+IxwcRJkohhsFONw1wG3nCyKJLKQwiPxyEG7l0B1CDOJJvgkgEYnYmSSdLgiLKY31dDaL8kqrNyJBZtizmCLF0IVl+LpduXwVeV/KYRZMgkHQf/N36dahnLdZfPmv89dA7seUIARS0sN2HPbNl2SC3OFA5DYuhwihSLq98WH4KLei3rCr7yyG7vwbDwulryyYsvJz56EvP374SRz+nxdwFMpwOptwMm0p7Jau79FSo5TCh/GmpxG/GWM9M9YzYz0z1jNjPTPWM2M9M9YzYz0z1jO/TfXMeNPTiBEjRowYMWLEiBEjRtzBsyfP2WwbPnt2SWk+4bOXzxBFjS5LEIpSJmi39K6nbXYIYTBFTTmboOoZK7viumm43/ccH89xfo8Q2QkoUXjrEFKhlERLSQxicIumgcAUFGWJKQw+eN6794Dl4ghtKnzaodG3BX4QIrdjLwyVkSQE3luc9/gYiCk7cbOF+uBYHiISgChijqJI2R3tfciuKMhO4ckUG/eZlI8BKeSbQvcrOBTvaXBCSqXQmvzeg6ghU6BUgqNScT4pOK8kEz3j6abli1XLP//Tf8eirkhIfMzKibU9cYhyODs9zmSX96SUeO+thxiZXYY+RpIQtF2XxQ4pKasK73Mcg5KSo/kst8mGg6WPtmsRQGEKTs/OePLsMdvdlhAj5V8v0FJQGs2kKiiUJFhH3zvarh/iFBI+eKzr0UVBYQpIieCykNEPrrF4oBnymwOC6GMmZXR2DzZdD0iMLihNzcXVNS9XN4QY2e471tsdSURiCkTnwblbwSjB4LQXSKkwpkCrcvDtZadaWdVZGBmiMrSStwKPHJxjksHZLbKjTusin7tC8PGTp1xuG46OT/la0vzkp39PIND2Hb/44nP+n//ub7Ng5jxRgNQyO9dddg8nZH7vgdwpVHZ4CXL8gw8e5yzeOYK3CAFGKipTcLyY8/ryahBSBE3TstvsSc5jAJ0USihChLZPNF2Dj6CVRkuIncN7j5KS40XJ97/9fZYnS3rrWW/2vLhcs5ifsnz4Dg/ffkRhCqKNPP/0Q55//jHx8jH/6//FnzBfLJBSYrue1WrNet+wc4HrxvJ8n4ndoixQAjbrJp+LKXJcC5ABmzw2QREMTy7XPL3acrHtODldsrYdUuQ4C4iowuAjWBdxKdJFEDHQhMCkaZjVNQoInWLXdtzsHT5EhPL03RZdGDoUWwuvbjpC3yJFQukEJcxMwfmkpbUWGWpqkdvzJyHookVGUEqhCkOTEperFa2zBJHQumBSVpRKUwpB/+QzjiYTCj2Q3iL/bRIit9W3EWtddr4LT59CdsOnSIgeJCyrCbUuqaTh/NxxcvYAXRQ432bhLEawFtu2vLxcsdrt6L1DFwopNhA9SsC0Ljg9OaWup0gh6Nodry9ecrNr2PSWnUuU5WQgRBMxeEqtCX6Ij+A1yTrefXifxbTGy0C/uaEIFqkU/fYG13nU7Ag9W0JV4Js97WZN2+zwBKTrqCqPKScIUVIVFUYJpIvsVtfMT9JtFAYx4m1HTLkrQLtb0bd7fN+TfGK6OEIrSYwB17Xsu54ejUuJm82Of/2ffsHxW+/zRx+8zQ9+9/fYrFb0raW3Dusc0mi0UkRvaXcbPvzJ3/JqvUFJ0ErhA8QuR5k4H9jsA8/XjuvGsekjUga+dn/J6aLmaFoxny4pjSaGgHNuEBo1xOziFUKgywqtzW1MjfUBG/JXjDGT6Rx0E0VvLYmEkoLOeky94Hrb8MsvnvE3P9shrGc+KXnneMb//r/5I+4vF2gp6Z0jEhGqQMjsFlYqx89AnhNDCHTO5zmCHF+iBmuyEKC1RqAGt7Ok61t8TPgA1kZevHjFw3snzGc1RgsOMQHZiXygdQ8EcMidOzL7jJIKrbNzN6SI8z47tQcBXAoQEqIQICVGG2Iix+OETO6XpmDfOdb7lpcXV/zed7+NAmIMhJRjNpxzRJ9FpPzZBgevyGPuYQ5Og2s6+CwOpZSFncOsdDgmkfw3OakqCy6IRBJgVGR/+YL1q5esd3u0KZFpEIB9vq7f0OlZJBXkLixCytvYisNThMyzVMztCVBDPFWUMoueWqNN7gAy7OTb7bzd8OGbN11hUhYsYiTIRHAxxyEJRRzEoMQgGqXsymeYh3KHhLxd4tc4oX+tOfpLv0hfffQfxl3BQKThhbLYRYwoIieTirPphFlj2e4svXSE4HObmREjfgPGemasZ8Z6ZqxnxnpmrGfGemasZ8Z6ZqxnfpvqmfGmpxEjRowYMWLEiBEjRoy4g//z//B/5KcffcqnT5/ysy8+JyjPVBgKNEpKbN8RnM1tn8uKs699C1VN6Z3n6vVrwjZiVYlF45Og7R2IIZJA5JbMPrlceCtJTDkJPiVIMeIHsj47SwXPt3s+e3mFrqZsV9c4oRH5L0hKMKumrD99TOx2vH0+Z1LPKXT5xizFwRCVC2Ap3xCzB2Lj4P7J32c3tFaSsjBoJZBkQgMlv+zw+RLE4a8xRcFkMqGqI733IDIJHgVDfH12ZgUfqLVGhcBuveEvPnrK/+l/+O85ndaEpuGjjz+jLEFKjVISXIOWIGQmpz757GOKwf14aB+th/bRJOiafXbZxkxcvHie6NuOkIadIyU2RqyP2IFAmExnSGMQWrP9u1/Q7raEridZy6yAs5MpSkJvPftdw2RSoZVCyIRHURYVRmVSzrnssDu4u9xtvAEIZG5lD/jo6FxH13s8EhcS1gX2TU8fQQpFbQom5guKQlIZSV0oknekoQW4VgeCTKG1pixKks/kixzafDf2iijy8dNKDe+f8rkRAv0gUuRtCtiuIaZ8pkQkLRKLoreB3XpPkJqYJF2Aq23P333+hKQ0SWpEUeGEIsoCVE0xkUgRsps8JYwyTKoCkQanto3E6IkxZLemd4gU6Zxl5S0vVy02GIQqQAiu94G6qCmUQkRP37c4J2iH1uMpJXyIaJkjV3zwWOuoq4p6qnh47wFlqdnLHoXi/h/8PovpjJPlgvlkhi5nCFVx8fqCDs316xeY1DLRE6JU7LsdN5sbVvuGvQs4IYliiBlJAh+zICeFxGjNXiReNIG175g0uYX+R693XDeePmWCMwhAKUxlODo5obWBpm25cT29ELgAIiRKIkcusO06fIokKfjk9RXPb/aElCgLjU4dU3LXgac3PdsmUsgKIQaHtU3gE9E2dG2HFEccFQYtFUlIXAoUxqAkRB/59MUrNm2HJyGNIvg9Z0cLTuqa07KkltBFh/cBJSRGZoe4FIpCGoxJaAEOiROabdfQeEvnPK31rHc9J7XjqCo5KQtS8PT7FbPplPl0ynQyJ6TA1nes2x2fbi54cb1j1wW0MMzqEk3AiEhdCPbWczqfMatLjJZIYwjK0BPZOEvbbm9b3osUeev8DKMLcI52v6bd75HArC4oo2G/2qCVQ2tFtCvwgoleUk4KMJrV+oabq0varmV+skDJCKFHOMl0VqOMRCeFViWze6fISU1UMnfGICBloncOb1tCt6UUUIiIwVHgkCgQgSQz6ZpEouscm82e19set+m42XU0nUNJw8nRDB891tvs9vQemzyprPjuD/4Rf/WXf86rFy/ZbHeEJPFoQkrYENk0PXsbcDESYsLIyDPhWW8LKqMp9UvqIouhcYg50Fq/iTUSEVOUKKWRQubx8TA+K8VsPs/7XgqUziy5MZOBOPek4FltblhvGry3TKYTOheZ1RXvv/uIQkauVtd5XhOK5Nv8bxSECCIFCqOJCHqfHemRYe4RApMSKYUstgvQxiDF0BHEhdzZI0E/7N/5ZMpy+pDT5YQUbHbXh5DjEYaYhTy3J3wM+OABhdEFVT3F25a+awneI6TEoW7ZeCElyEihC7TQyDDsy9LciZtI7NYb2s0NodsxNZFKC4gJnyBGQdSaFAMET10VKKmRUmVHdUo45/DOIzjEUDG4shNS5jlDSZlfA+7EQ70RCZSW1JMJxpQ8+1TxhW3YbfeQ2kzOS1Bao2IgJfGms8khomhYW2TX/F1e/U2XF63ydiiRsnBCFvillFmogC+tW94sP8RgTM6iffABLRUffO09+qbh4mpF1+5IxXzobCMRQ1ealFKOZwkexBDlRLzt7iGG15ZCIWIaokwSpEF8+WrbmFsJ4jdB/MrfRZFQd85ToXKXmbbZ0bQ7XEykoQNB9AmRxk5PI34zxnpmrGfGemasZ8Z6ZqxnxnpmrGfGemasZ36b6pnxpqcRI0aMGDFixIgRI0aMuINH5/eIUTCbzjBlyefPv0DERHQOpSG6jhQiwpSYxSnTB2+jyhLR96jg6botz6/X1LpgVpYUQiFFuiVFckPiwaksMvkah4I8AiiD1BFtDGVZ8sWLl/yHv/07Xrx8kUnbwU0qhSARmdcznj/+gm674ptv30OZCilEdvpEQB3eTUC6E02RqY03tWrKxHUaHFAQUSIMjqHByTsIC78qEaThFSVicB0JmZ1/IorczhoGUj63HvcxEsXQSlxqQoTOWXprmZzMOJkveXf5bVqbYwGALCwMJEfwga73mLLKbb5jJMVAVZaZTEjgfMQGd9u22zlP02SyJqaARrBPkuebltfXGwozwZgZpipACfYusm46ms2Wbr1FupYP3jni4dmCR8dLmiKiTIFWCi0lLoAxGqMNWitC0iid3aEpgR+cWtmxnui6nhg9IYCTgh2Gzy5uuG56mpCoiilKlwRg3Xc8e7VCxcDRpODde3M+ePccKSW563VESY3WBqUNRhcEF0hDO2+tFYVUJJmJKaMNXd8RUyaKYgAbJPvesu86rnc7bjY7XJJ4JEEoRDFFmpKUwIVIVdfEMEQIOMfm+gqUBpnb2Ael8ANxXkiJEtnhGwUYY/BlMRBJ+RQKMQxxAwkxfB2c/iEmAiKfXwlIkpkpkMKTXMRHj0gKGQcSCklE4GK+DiISGwXCJZresd5tqV2Fc47kHYUW6Ghx+z1rGwhixXR+Stf32CjYBcXV3uL1Hhsij5+/5ovrhot9z3XjaaLEx3wtuzg48mJuce8UdM5Ta0nvE3sb6LqWVRPonSApiXWBxmpWRFL0RNPTdI7VvuVq3+AH17dIEZMinV9zs/fUZQFS8otXW652HQlBWRhqlShcz64LWWDpAR1z13siRYKgBG0kuzVfblnUJVpKQgTrPVVdIZXCp8SLqz0uRYSSKAPeRTrfsC4d67LgtDJU2mCUQgmBAmTKAsmkrBFSsNk3tN7ipaBJsO8jnctfuzbS+Z5VG7gyPYt1w7JuWU4mHC/nSHWNDYlt2/L48pIPX91wtXU0XcTZjmndUUgoFEyMYNUJlmvLpDSYouBqt+Nm37HvPV2UILKwl7sGQNE4ZAQRAtFJVl7wetcjTIdJCps03oKKiSAmBC1wLsFqR+N3PLtY8fJizbZpmDWBxayi1IbCdEx3lsV8SaEVRoCMEtl0RBwhRGzTQPL0ztP2nn0vMEYTgyS6iNs3VKZAp4QUBkdi7zxX+47n6y2XO8vMOQgOFS0iRQiZENZaIrXGSUkKDpRgcbwkSM2mC1ysG6QucMmRhCQKgZeamC2xKJk7XWxtpCOifUTgMToik8xzihAI6YaZIM9ruvAomZBSolXM7faVQmpB7V2eD9VAyMqIt5boHNH1hBDYtI5N23Oz79GmpMZjhMTawMdPr4buDgKpNJX2pOgHdlXhrUcOblsX40AKKxD5d8IHvLeDQJ+7QggRCSHS24DQud2+tY7Nesey6jBFwWI+QaSADIE+9ISUCfVSFkipybEW2V2PkGhtmO4nOfrHueyElsO5N3QhUFLifHbcK6UwMtO0SqshvgA2+z1PXl1yudqw7xwffvGEo0pRqoRIEe/T0AEjEpOnNGWODJAqC7zDjQchhDyukobPnudFNXRqkVIiZVby8/MiUiUKXZCEREhB2zQQPPvVJcJ1aAnWWXzIcUdIiZQJeWjIkq3veQ7kcI+BuBU/cmRFvonCaJ3jY4ZtTMMfCEDe+Z5D1AWDk1hIhEhD5Ef+u8yz53WAj+S5Y4h8kIMDHpHy+iYJYoi5M8xwruQ5Jm/zQYAQkD+HyI5peedGjMOm5BsoEil92T79626rODz3sAjLq8MAKebjKQQuwnVjudlbrAsomaMqwiDCjBjxmzDWM2M9M9YzYz0z1jNjPTPWM2M9M9YzYz3z21TPjDc9jRgxYsSIESNGjBgxYsQdlFrztbfe4uT4mMVyQd+1XK/XOJedmsk7EBJlCor5CcXyDF1pouspg2NzfcnTmzXJeU7nc95eLpAycWj1eyheoxCklMnj3BL94MTRIANKG8qy4vGzp0Tb8uRozqRUoLK7TEpBjIFJMeHJ4y/Yb9ZsLs753vd/ACSUktmRlIbydqhScyvmg7s5F9cMJh8QmUQc3MsyhTfF9q8vc7+EXMxngiHhgew4S4JMTgtJH6EP2Y0cSLgIbQRLjpC4ulrxaFbw7sMjvvP1r+MH52wYWojbkNtYx5gILgwt8yPWeZxz1GWJEpm86lzAhRwHIaTEOUfbZpEgxUAlFE/2lu75JZ9seurZCdQzolEgY263rRQWwc4H+k3DyUbxztmcr987RukjgjRIoTAonA8DuZMJHiEVyigiAh8ixEyoZ9duYNd0BN8hUiZvXm0CX7xe0faOXhcs5guqoiKlQNNsWHc9drun32tOJ5J3zr/JfFIhEfS9AyRKGaTSCKEJwRN9ZjKUUtgYclTH4KRu+5IQs3OQmHBNz812w+Xa0e49L61lGyU9Cpc8xilMAVrmYzyp60H0yARLv90gpMpfSoFWOZYkRHwEkRJORKIEZTStMYiYCSMlZW4RfzeeQghijJnkQhJlJn1EAi0kSYGPkRByq3chcpyFJCFkbrUfBoFIKgVS42Ji23R8/uwZ82qGIqFSgDJSp3P2u4a1S2ybLSdnD1hfXdK6yFVv+OnzFZPrlt5aPnt+wctdx7oPbG2gi4LGZidpSv5W7GBwFcbgmJQFpQkoZVmvtuxdJAqBTILd3kJI7BRcKHixh67zbNueVduTpB7Ek4hKgRc3Laf1nrIwCKl4fLVjbz1CSEoTqLRAqEw6r3c9vVV47TLblgLRC1KRJcAQPDc7y7SySCHxPmBdFgmQOc6h7SzKKLTO7fa9T1yJPYWEqZaczioqXaCVRInssFRJUGrDfDJFac3V+prG9kQhEVVF01usD/gYcc4DmTw2QjCJiWWxZ15VLOYremfpvWBnPa+3W75Yb+icoO8TTRMwRlEYSaEEtZa82gUqJTBKIY1h1/e0vcenhClK6lIjRKYbfUjsfEMKCZkilRQUG0f37IYX655FqUjeg/AIKdBKE5PAbre0fs3NpuHq5obX1ys2TYe+6Lh3NKMyikJJSiU5PzuhqiqMNpAiRjdDPE/AOYvWEussne1p9w5TCIqiQ5uIkBtmZUWpNVoKbIjctC3PbrZ89GrFxc7y9QjCdbjdDbGPRCRJCtCSQlWE5Ii2I7kOWSq6kNj0gZvGU08MNmSCVGqDKgqkD4N7VYCSdEnSepHdxwhEnxAioYTO5GsKRPK1KqRCudxIQ0pQMpCEJClBkqDo8mvL3B1ECgjtltC1hK7DaEXbezrn2PcWJTWFkSgEm23Lzz5/TRwIWqUlD45rSmExUqKloWlyN4w0DBZCa6QxIDIBHXpHb7scD5EkKUQiHhs8uy4gdIExihAC+23LpdxxsWspK4OWgpNKIaRHENAiMdFThCpIUhLJcjpkkXy3q5DS3E65UgqEyIKAHMSCtmuJQ/eUQhq6riOpHGVhQ+DZ5TWvr9ds9z1eaOIvP+N8ZjgqJVMJxBx/ISREmZBSY2R2pQP4EPMWDSS7FtA7h/MeGCJgYt5mbTQxCLSMFBrqWjOvF2x7x77vUd6ibYtwe0Lf5C4h3uNiRCKHsTvT3SKmW/e3kDKvA25XCnfWExHUIKoIAXEgyW/ngjS81vB6aRBE4I1rOwz74WA2FoOTet+0NL3FhzwHCOLgzhZ5bCZ3DTm4t5XWSKMRPt3GdB0awQggIrJggsjCxZcWQHfXSOnXfnv7vHR44HDTxe3OGc6fSJIMIoHjuumxAUqVhmcI5HjT04j/DMZ6ZqxnxnpmrGfGemasZ8Z6ZqxnxnpmrGd+m+qZ8aanESNGjBgxYsSIESNGjLiDbbNHSM2krvnD3/09Fssl/+Jf/Ss+e/IFfdNRKokuSkxVY6qK3lqKacW8qqAs6duem08+pru8Qf3sQ8wPvo0RCUWiLAwTY0ghO0CFyMSlTem2fXxKe/bO0nQOU5TcfP5LyvUls/vHfPc77wMenQQigE0B22z4xklBPztis3rN488/pmt3FEbnIjcEogRJdjblAjyTg1IIlBJDBr24LVmFSG9MO4PzCBlzOfsbtIJbY9DwnBASaRAi1PBYjNC7wLa13OwsT9drPls3PGl6ytkxf/v3n3D94jlP7i9ofvA7/JM//H2WsylK5Bb7URt8BO8DuB5FHBzm+fHkfHZ4KU0UIrtTpcxxEsNGGq0piwK1POb/9i/+DXplEXqDk5rL9RqRAlrC2fGS2fKIclIzO1qwX53Sx4Zdn8Bb/us/+j2mZ/eRssL34FyHdw4fAt57YmIgp+Xw4VN2QA2tnoWUpOApq5rJ0Ql/9uMP+byNlOuG2dk9ZFUQ+h4tI3X5kHffOefzj56wu9ny5Kpnt7X84299g3cfnlOUFbvNlhAhpEwupDeHYoiNOESQgPcxE7IDSZeCx1lL6BqapuXVdcP/6xcrfr5tedV27NsdabWF6IghkYJlVihAkVLESU/f9QgUEoVMZKep77G2p28tu32Pj56YIuhMgh1czAoyqZXS7YYrYzAyuwejlJmcObhuEVyJRBTxtn22FLk9dyaXLFplkQEhmEwmGG2w1nF5veJf/tm/p0yCZaFZVpLjwvHP/uRP6DvHi1cXfPrZLxFljarm7L3mX3+y5V988m9ARqSMhADSlCAUSeQtSsmSiL/S5vvQeUBLgRq6GjgXYPhMSSheXIOMgRQDIeaW9DECUpG0GV5nOH9SguCRyefjKySoYnDgHxS/CD63N5dKI6QeOKxMwEmhkFoPUTH5fCUMpNxA9sV0k52GJIqiyAIXiUgiDo5LUkQmD2SHv0jilpyMMUBKw7HVuXX98PdCZZI4k3xkR+jg8k8xooFCKCDSxR7rHXgBSSGUgSK7uCWCFBM9HsSwdSkg8AgfSSHhYkIqnVveK4mUOfREyUwUhjA4dwfHZiESmmcQAgqY1hUoiQuRFCOFEgiZnbNdb2m6nnIyQ5qCiKDtWiqlMkmeIslbtFZ5LBCCFCNKgBh6ZCDfCIsM43A4sOB5JKVUmkKrfC2QcAh21rHpLDdbx2JyxO7Fa/7m8jlX16+pptMcCZA0halJlULKhEiBXXB8+PgpX1zvuG4iCxlxPrtNpYqUZY5CIEWUFEyqKVIaOp8d/ZQV3h/a+8d8vsbBrSry9godbkU74nC+DA5ZQd6ONLCiWkiUD8S+w3cts9JgbYsN7lbkLYwipsD1dsfVtmHbWPq+R0THP/uD7/DDD+5zOi1RMXJ1s6PvexIRpWUWvuXQWSNGgow0MeEcpCTZ2Y4m9Ox6x8ut5WLd0zQNPgSQGm0MWl9lB3gKfO1U8v137/PWyZzjSYEuShC5w4dUB5o1whD1pKVCaYNQmSgX5G2JyRNjoioFPuaYD0Lg9dUFr7Y7Xq93fP7iiqerHbKcUpQ1VVnzfLfnXm24Pyv45nnFe2dTZFSIYCjKCUkxrC8CRmtcyCS90opCG0iB9XbHrnVEIPjAfrenbVq8jez6julMc3Y85YdnX+fhvYf86X/6MX/+tz9F7Fv++P1zTqeG0kjqskQrk934yQzEeuSOIoC8dYEr1ODYvsOJD+uGISor+BxxkwYnt5RZMBE5BiH/gfgSIS+kRITsck8xvRmDJLx4+RKExoUsAIThABx81UjB4mhBDJHdVlBETdE2iBQJ0WeRI6tlSAQxHqZzcWdw//L2/Bfhjin6jThAHgM9t7/0PrBuWm72LVulkRFMNUFLBSH+ulceMeIWYz0z1jNjPTPWM2M9M9YzYz0z1jNjPTPWM79N9cx409OIESNGjBgxYsSIESNG3EExnWKdZ991rLd7plXFu28/Yt/u+PAXv2A+n1OVEpESXbMlXV8ijGKymLOYzDh++IBkHf2r1zy7uuJf/ae/RimBlpJKGe6fHPPw9Izj5YLlZMq2aXAJQpKklOh9QGiDqWqENLS25eGjt/gn//gH/B/+N3/C5uYqE/lIIpEQFbqs8BGev37JX/7kl4SY4xYgF99KZXIpk6dvAh4Ohe2tUwhgcCTFmIgpZSdX/jX8xsj1NMQuHIg+cUsC3XqKUibmlCnQ1Qw5OebDj6/4dNdxHTVvP3qXb50f4eyejy5XfPinf81PX215+/yUe8sF50dH3H/rHpO6pigrMGUmX4QkJYEIYaCbyY44kZ2i3gd88GgzOJaFZh8Ef/Zv/pr/+7/8Cy5XLSeTBbKUnJ48pNQKETyX11dgEkYryqMZMQb6XeDjqx3tX3/IjfP84Hvf5ezkhGlV49EYU6MrzURmAvbgChNKkZLMKglZhFEq74vOOT57teL/8Rf/ka1LLJYnnMyWiKmm0kcYGTCp52QqOZ6VvHq54vFnL/nn//Iv+fTlBd//1vv83ne/xfmiRspEYQqWsyWymOXoi5hjIaQ8kBmCJAcHa8iPx5TwAmK7wzQtvmzxn+xoe4f1ienROeXyHJUi0Tva/RYtM8npncNutpTLirIoMyEaI33bIAUUWrNYzvjOyZJZUWGkomuzw9j6kGMyUkJGQW7BLfBCsG739L3DBw/icP6mW14lC1uKFDMxlUTKX/lsJLpwe/7t9y1JCJSSVEWB0obj0jCXcFQofuedt3lrecznuxdsVmum0zNe7XaUMpKUINaK1d6RkkRhMtHuQBIGZztk5jcTgQydDhBiuMwUNkZEAEUCNHLojJBSgDukKULm61Rnul6kOHw+cUuQCWFIqKH9eUJDdsqJlPuwK4PQdRb2JMTksS4TrkppdEpE6wYNUKKVyl0SDvtWiiwsDq8fxBvHJ5FBrFH586IgGZSWt57FKFKOIkmJkBIqZXFEDU5GHzzELJQhBG44/vnsVHgyuR8RBFGCKZE6u8izWJE7P+T27gnDoeX84ctkC6iCYtiHADEEgs8ihYwyCyKJLOqRSELQKIk4HD8g2Z6QDq7LlINGcq5PJiTllKYHbD8wnpLOAfHQmt4QbCThMxHPG8Enw3MI2hFCZIdrekMAKgQCm8VbmcVdI2WOu4kJXU4ppxU+OrbbDdI7lirk6zN6ZAqsbnZoKVFS0zYdLy6ueb5uWLeenY9ZsCFffzE2SAWk/FknXiC1zl5UkTiZVlxtVzibhaEcOXC41AahQOb5JCVyh/t0EBGyw1WQBkEvApL50X2Ojo85O/k6J8slu2bParPm6uYGrQXHyylVYTAyXz1CGLrOst1uaAJ88P77fPudc+ZGcLPe504UKbu3ERKpZB4ThuiltmkIPiCSIBFooufzV1f82Y8/5PnL10xnC4rpnGIxx0znTOopWiqS6zHNa95/71v86Dvf4Ic//Da2WdHsO7wL+bocFPaYIsEHUsziOySCjyTytZ5iJEaP0ooYHM5Zdtsdr2+uePbJBZ++WtFS8/CbP6RcHCGLEt87CgJd9FyLwKsu8L/9gx9xdnoPY0q6zYp+iKMQMncFUEPMgkAMbnyPdz0hOIxSBOtp93va/Z5uu6OxHcWkZLGc8c1H76JFzdFiQTKGp7tr/lGIeBdQIeCDoIuWEBVECWFYCxzWBDEfBynyGig74Q/nGrd3FsQYCMFRGI3RmuACvbW0XU8hs7gYYuJLK5jD+uXwfRJ4H/Hh0GVGUVYKHxI+HeaCPAULKRDaMDta8uitt/F9zwWw2+2oixrtHK7vSPLNZ7gVAtJXzc6Ha/kfEAruLoO++ruDKH64ASMJkAqEyiOhSBxNKu4vZkhdcDaf5A4z1rHd7n79+40YMWCsZ8Z6ZqxnxnpmrGfGemasZ8Z6Zqxnxnrmt6meGW96GjFixIgRI0aMGDFixIg7uFmt6XqLtZ7gA7IwVEXJ2fEJD87PQSh8AttbUrsj7Va0swnSZNfdfDolnJzSuIBtWy6bFUomtBAYqdhbx7aznO8bHp6fEYOn99kFaVQxRAcEnMvkqFSSo6Mj7j+4z+m9BwNPrxCDkzD6hKkqhFYsTk74+eNLpPoikyS35p1021ZfIofaXNyKBnee+OZ7cXAEDQX9b8CXCuYDCZ2ySymReaHb1sqQncvGYKZL7r/3AZvrNXaTHemOgo1reN1GYoK/eXzFs7XjwVHDo5OG+7s9R4sZy9mEaVVTlHV+PZHJT6UghIj3Dus66nqKD4G26+iHKA/rEqttz5//zc959voG6xJzYQi+o1UBPZkwq2runx6zs3tCcggSD+4tWRtJ6BpeuZ6/fnzNXn3Gw9Mbzpe5iK+rCXVVM6mmlEWVyRmhECoipMqk6XB8+74jCsHNruXj5694drkhJk3hQMZr2MG0LpmWGlNKZmWJOBUYbVBS8+Qzzy9fr9mGz7luLB88OGFiDLPJhNMTy/IkZfKX7MbUxiCFJMZA27XZieYC1gX2fU8fPOvVhpvNjufXW55cX7K+uaH3oLVheu8eRmbCde6PmdYFIQS6pkFeXnI6W2C0IobA6uaa5voGJaAsSxaLgncenfHo7B5HkznEiB/EuLbv6JxFCUOKAh8Sm97y+OUL9m1Pb3PUR7vfZyGK7O8V8uDCG/SrO8TqgXw64NZpPFwPdSE5qhUzKZgXhrKc8stPnvDs4hVX6zWymLBpPBMVMDVM6oKi8ySy6EaKA9k5EE53LgIpJELnFuOHNuPIwcENWdAS3BE9Do5SwYFOzGY8yUCHDwLB4Vobvk/y9m8l3Lr/D0IJKQC5bXlZ5GiCECLOBwLp1pnM4f0PguCd612IOz8PJJaQvBkTkshjiFBAIgmIDF0U1CBnCoEmO/GFkKAUKRqCG5yqISDMG8Lv8J5JZBJeH7ZKvtkykSn9gdjPo5AYOGiRBrEi84aDyCne7FMBUmX35GH7KMDHLFj1IQydBA7EKqj4ZjekzKAjh72ghgcOXN/hvEvysH/ykYyH4327y4ejKeTtcT28krx9NO+DfGINx0jmuYTkSESKUiF1xOJIwVLpgllRURYaqSVaFaitRyGRQhOEAQQhkWOJxDAf5Dcbzh952zGjcw4VYxabtcI5T3Ce4CzRHxzQB74z3Z4WaRCYBCrrZyK7qUk5AkmIHEuDUFi3p7GaLk6grphNJsjZHD0/wmjBydGMSWEolQDviT5wfbNms9twvWsp6prl0RGLQiKL+jZeCfI8dHcKS0A8DggSWkgkESciaMP8Zx9TKUVdT6hnc8rFAjmbU5mKUhlqfUyZ5jhRcnGz58XzCx4+OKYq56QYCSHHHB00oBjisB/yOJBCFgluxfgUUUogkyd6x7yukL/8gs46Wuuo5kdMq4p6OkWVNb5OzEqDEYkiOnq74qefvOaDUPDg/inLe8fUIZGizIK9lEidCec3ruVICBNSiphhf86mE3w/x3UNoe9yrITWNM6By7FQlTFc73Y8Xe8oxYzjqqDtekIMMFxXpMNxP4wf4nZ4EYhbDelLK4phXaCUpCwKpMxRJgcBMcZAGG5aGAa+21EgDZ0bIHfZOLy/EDn2KAtFHCS4W64/j30SpTRVWWBT7qDR237oBnFHhLgzBkqZr5nb7T/MMXfPr690xviqpDAMzr/mOXfVhLzfpJKczKa8dSKZVxMmpWLdtljX4wmMGPGbMNYzYz0z1jNjPTPWM3c2aaxnxnpmrGfGemasZ/5nX8+MNz2NGDFixIgRI0aMGDFixB3c3Kzoeovzg1tTabRUnB0dk959j+2+4fV6R9f3sN+R6jXNdobQBm0UU1OSFkuUD6yaHe3lDp0COiX6GNj1OzZtz9V2R+Mcx7MpIQRIgroku5y9pXcdPji00iyXRxyf3ENNjzCTLjtshQKpUCS0VujCsLz3gKOjn6FUQfDxwNdnN9RA2ByEgARD7v2vsTsP7kWlFAJ3Kxh8VSx4UwwfWoPn4puUOdQDZxtFJkazc3FwrgqBVwUP3n6PbrKCiwvstmPtEjdOsI6KyhR8ftNz0++4bhOr1vPk6oaTxYSz5Zzz42OmkwlaSbQUzKY1WmmcD3R9z3a/53h5go+JXdtyud4QhWCzt7x4vebHf/8p29YhpaC3DTI41v2eOJuhjo85OTsF5bEeSI6T5YJSS3b7gl3T8dnG0n76nGeXNzw6mTOdlEzqCdNqyny6ZDad5ZbsUiGGdvApgbWepm25Wa/Z95bXqy2/fPaa1baDJJC0bFmBikyqgsWkJh4tODmdMqkqiqJkPp3iYuTi4pLN8ysuVhteXdzjeDrheDbj3tmeh23PdDJFK02KkbKsBpLPsdqsSAl6l2h6x822Ydd2vLja8PJ6w+cXV1zvtmxutviQhQnx4B66MBgl0XrO0XKBsz373Q4fAufHZ4iUaJs9l5cX7JqWqiwpa01d10zriuOjJfdPzpgWJSTBZr9j2zRsuwZjKkKEzgb0Zs/lfg/GontHu2vo9s1A8gjS0L4fAmIgHMVwTuZO5HeJ7oGUjznGIUZFrSXHU8NECCqp6V3ik88+YdNs6YKjwNDaiPERTWRaGkqpSELkmIkgsmtO5KtJILJoIARKMLgdBUEMbtyBsBdDpEUmrgeX/O2WZmIqC2vpoAVwlzx+Q0cPDmAhEAMRJgfS/0A+JpGjH5QQVEojjcL5QBsjXQgIoYZrMr+HHK7Tu9f2rYgAt4x7Ggh5Dp97IN8hkIa4CcQgBgqR28CLhGRw9mqJQuNVwFpP5zxfamwuuCX2cqxI3oY0kP4HkjCT2XlMkYftTQI1jDUMIoIgdwWQQgz/SuQdASN3jhCkGPA+ILoezyBoiNxrQafDvocg3+wTMTgbD8fpdvvuCDppUA9uKUDx5t+DSzQOpPHdcfkg4oiYmU2h5K0gWkqV5V3hKLTAmIgQiSBBJE2hCqqyQNeaSTXBqJwTI6IiFgol1XBsJHogkRkI/EMHBTmIxDnaJg5Erqbt8pxgVCZizeCsP5C2PnhCPEjRAqNLtM7vEFPEB+i8B6kxRUVAsLM7truALhX18pjZfImZTFgUJVoJptOaaaGpNSRr6fd7iIH9fk+QniQUuiiRhcIkNZCdWcAKzpFiHJoK5H0tlUIpmaMoosOmQFVdQxTURcmkKKnLIscG1TUGxcQUnE7nTCfH7LdXfPL0Of1+TfnHf8DxYkFRGET0wzkhD1cHkAgxvHHYDpExiYMDPqGSh2BQusAjsDERk2BSlpQEKiLGKNS05Hg+p9ASXE934fj3P/mMVdPzO7bje999j6IsISpSEIObOEcA5TlaZlFHaFISRAHKOIxUmMJQ1gWp2dO0Lbuu58XmgtQ6mv2eqdKkCM82DYuqpigUIYABvMif6437/CCGvumscisUiDudWO6Q+lqpHDszjJNK53gNb20WfUhD5M2bIYmDIHFYe4jDDyCFIkT3ZhwTh/fizTakRBzim7x3tF2Xu8pIgbx14UsOMTq3GuDhm19RPH4Vv/nhWxVzOCfSEJmSBRUpJctJzX1vWEznpORpujbHBqXxpqcRvxljPcNYz4z1zFjPjPXMMBSM9cxYz4z1zFjPjPXMb0M9M970NGLEiBEjRowYMWLEiBF3MC1qCl3iQqB3jqZpKJTm/skp79+/x2q94W8/+owXl5e0qxtkYWjKKUFqhFbcnx6xqCaIU8E+OWyMFP0eEyyCgNQl7W7H+vUlnz15yj/5Rz/k3vERdVUSk6SoDa5zCJlIIiITnJ+c8/CdDxD3v8lysiDsGmzTsd1tOX9wn77ZEolwfMTJycktUS7FQQBICCTGmF8h+2P02YE0VLu3riKl0FplApI3xNavQxoK3NzqOwxO7PyrSEJEMZCAkhQT3lk22xVPfvIz7PSM+ckpf/A73+L1asfnF5d0szlqMsFvG4yQUE7x9ZxNUfNsdQ0XDQWXnFVPOJ0bqkJSGsmiLilMSQKCj/Rdjy5qQpJ0LnLddOxi5Gq74+XlNVfXG6pJiTSSZAQVFba1PHn6nJ/9/Bc8ePiA7/zgO5yf3sMUUBFYTgx9iOxdZH2zZnt1zfb1lmfrnof3Z0zKFsIVoQ8QwaiSojAUlSIRsC5hfcL6yLrreXm94mbTsF41FBFstHgiSUKBYLdbIyIs6iW/+8Pvcf+dIxbHEx6eLDg5PeGzL57y6vUVV1c3/Pz1juMFTPee+mbL5MljpvUUo00mVYZW8iFEmrYnAI2N7PvAZm9pu4iNkU3T8uzlq3zcfSK4ntef/pz1xRdMZkuqepqJKAaqOiUUkS8uXtM3LU3TcLNa4UMgGoV1ntXW8+c//pS/+rvPKbRhNp1iioLeOXrrcAGUMfiYcCHhnMeH3M49hkDXNRgtqcqKoqxIUtMGm6MsvMfvWyCT8whwIR649IGelUil8D7iekeN4t3TU/x+z/pmzU+eX9HgqKY1k2rGatNyfzahLgWkhlJIupTFlkrEgfBMBB+GyI3IojKZ8HWRvossl0uUKokhsG72xABCKKQcKEwBOf6C4foYXNEHV2GK+VweLj6V0h2qmeECyx0PnAAfIgowSMq6Qk+rTICHxO76mmldcTSpeHC64PnVltW2ISSfHfNSwq1AMMQ+DLh76d+6TYmDAAODdxuIty3ujdEUOsdJhL6l8x6pdSbnrcUoOFnMKEyNcwWfv97ifR6LikIPb39wwafbUWz4JtO/gwP6EAAiUv4ITh6el7cnpEShNVplgt17R7dzWbBQEl0oJIGT2YLZfIZShk+ePmNvHUFIdFkRiMg0EIVvsg/uCBe84fvu6Cp86XgdHsjOZyUVUkLwDtd12bEes4NfKUNZlhRlMcR5RKKPhOEcCbiBvE+o4DmfTnhQaVJZ8sUnn/PKBGZtxbSuKc5MFiBCxPvELgY654ghooc4jMHAysG5LLw7hH/gQ8hzSkzEkB2kD8+XnMwrTmYFx3XFvaMj6rJCasnrq0vatqMoKubzBUfzOb119N7TWs/FeseL6zXbztO6xM1mi2kidrXl2WrH40+fUk9q6rKkrsp8tnmHloK60Cgk+33HarvlcrXhu++eYpuO/d4SgsGiMKbADAJ/USWSc7fnde96dtbR9p627en3Ox6/fM7PP3/CRxdboi5QqUe5HarXnNVnVKpgIg1HIkLTsLMNm37Ds6vHbNo1777zgAf3z3l4/z7GTNDaYFS+rhLhNt5DCHnbLSHFHBex3e/Z7jv2+z2bzZ7HNx1br0myRIcIm2swUFfw8P47TFXE7ld0+w2tXfFsveHqb1b8/OPP+PTxC/7w977N6aym1AUuGpBZoD6Q4gBqENGcdTRdg7M91nbst2suXr3m5dWKlzc7nq5bNuuXzJEszIT/3X/1J/zi2VNedBFROj548IAPHu953DbsY0dQFcnnC1EASkhEzCKeBJSUt+uSxBsHtZQ5BSHGSIgCZBZ96smU1X6bb9o4EP28CX1h6E9wkNryPh5+lokwCG5ZOL3TmUVk4WS33vL08RNs33F1dZVjacqSQkIpfBZLD6JCBEm6fUcSX/76KgYBlzv7/c6DXxljc5+H28dy7gtK5E4vvXN0fZtjhlyOstEjpT/iP4OxnhnrmbGeGeuZsZ4Z65mxnhnrmbGeGeuZ36Z6ZqyQRowYMWLEiBEjRowYMeIOZtMJLkRc8CgnkTK77YiBaHumZcEHbz9iUhp++fkn2M0GrUsEibUSVLJiNpuxnGmE9Dx9/Yq4c7i2QclEMLmwVaYiJcGHXzwF4K3zU2aVxrUNru+I3lEXkrrW/P1HH1H9acnlzRrf7onB5xbJ3mJ+/iHBO1JKFPVP+bM//3NW6xtmk5LM/wy+TZmLaykU4k4CRHb9JHJ4ffySkykmCIjsqkq/SUgsQQMAAQAASURBVCgY7EEpEUV2YYcEPpIL+5Rfw3vPpCqZTOZM5+csFif89RcveLxakaTmZLnguNScHM2QVUV0iTY4fAg0MZKsg3KOl55d33O9bpi0PbVR1EZR6Q6jFFJml2zf95AafJK0IXHZ9Zyfn2EWJzyqJ2hdIesJQSWCCDyoJ1QEvOvZ7Xc8efKM//iXf85stuDRw7f44GvvMJuX1BqOgPfOjljfP2O93XOz3bHqE1Fpkk80raVtPLoAbQJ6L0AmXBLYkOhDxCdFLKZM54qqMJwsjxFFgdQKrQTHhaS3LbvdnouLLX/5Nz/m5Pkx9x6e89777/DuozO+/4Pf4b1dy8ePX/LZ09e8TgnVR2okS21Q2x7oIQSk1CiZ3Z4JiYvQB4mXBrGccn5W0DYtdd8xO14SouTFi2esri5J0RFXa/Z7R6PWoMCGPhM/QqCAFMLQEp43UQciAB7rAjYZOhfAWladR8mCOLT5jiICubV4CJHkA/NJjUiBFAN6OmW+fAsfwYWA9Y6QDGVRUEhJ2N1wc3FBCBGpNKUpiMETEoRsNwWR4xmsl2z2Pffv36PwjptpzfrjZ7z/4BE32y03qw0nx2d8694pPjRcbFZoAiK4fD1FgfUdpS44Wiw4mi+5/+gRxXIB3uL2a14/e8Lz11ckoSjLmnvHxzRdS+/CEMcgb93cgjSQM/J2/wniEHEhEOmNNDAEIBBSwkjJpCoojSKmiJ4uKCZLqukxZrbAa4WRMEmBcPOKy+dPaZqGrut4+945J/MJ+6Zhs93RdYEodd4mpYar+uD5Fryh6iF7heMbV+JAxkspcpeCssanQIygVcH0aIFZzplMZ1SFoVTQXF+wu7nG9w2Lac3vf/CAq9WWm13LTdMTtUGTSf0kIMnBV5kO401+/wMpP+gtg0AZcDFQSEFVSCalYmcTLikEirIqOX24oK4nmKJAKk273eI2N+y2ayaF4dvvv8W2aVnvGm42G3rEcP0oNDmkY9AFkINgciv23OUDD+dejEOag0AbjRAJ23d0zoMwnD94l+XRgtlsQl0YXr58yavXl6zWa8qqyEKfgBSzPOMTOHI+RqEVMSSMENRlwVvnS0qVcNZy0+e4IRkdPkQaF/mkSez7SESipMzHTkGKIc8t3lJWNbqYYIqaUimadot3lhAsR7Mc59Jbz7ZVFAouth1F4xBC0PWRkDTJQ2o6GuvYtx3OR3xMtC4ipUErSK7Hek8XJT5mItuIBK7DRUfo98TgsF2HFJLSFPnajhC8R8tI2zf8+Oe/oG93nC6nWO+RUoEQJJnFGGsdzgX64GitZdsO7t9dx/X1nsvdnuu25zpqVlGwutpSbVpOGk8qFNb1RGuRrcMHRzKSqtScziqeXG5YtT2fPnvF8eILHp6eU1cTtNbDPBpw3pNiQimNDQHrA73ztJ3l4nrFq5s1V+st16sdX9w07FOBqCWv9w2L0OMV9H3Di6ePwQdMHi2w3uFSYFZVdHvH9mcf8fjFBe+dn/Hw5IiT48Wt8JMSuODxIQxiXsQ5x3qzZ9t2bNqOq+2Oi9WWxkZskCRZYtVZjkAxFUflCeX9gptuz3rv6IoCMVlQxEgfW6JIudlKIndDiRFUIsk8cskUkcPYJoeoFCHz+dzawGq7p1zWaBGRyRNcT4xhuOJAxqHTyuHaE4NckCIxBdQgBMqhg0Uxqdi0NjvEA0SZb4AwWg+dWxKr3RbbdXTWMZ3OqIyh7HYEvyfGdCs+JHKESiCi7rZ++RV3dP7hzVj16xZPB4HkrjysgZDnTBlBKbImted6veOq76mAbdPSOfvVNx0x4lcw1jNjPTPWM2M9M9YzYz0z1jNjPTPWM2M989tUz4w3PY0YMWLEiBEjRowYMWLEHTT7LS4EXMxCgXcOQiL6gHcWFz1awqQqmE0mXHU9sdkRlMaWNf3shLKRyGBx1y/x60tis0H0lqRgMZkyP12QYuLlq5esdluu1mumpaEWia7zdM7heosWsJhNeX19xV/9zY/54ounuL4jdynPrbh98MihxXxMic+fP6cPjsl0ks01Ut0WzYih1TeDu2h4jUP77xgjh/z6g7sZGJxBX/XyvIEYfD0H519MiRAT2USXiZogEokAUrLziVdtYDpXpKomhJaut3CzIsWELgt0XSGNAWNQB5oyBJTWqFITNXQyYWOkiZIyKEzMhJ2UCSUFkQKFxoVI4zxbkTjRCqUEMSooCoJSedtEQirJxEhkLZlNFUpFXrx4Rdf2PHv6BNd33H9wzHIxYTapKGYls8UEUShEqUgxMKkmBJ+ISRGERZoCIRVR5f3bWk/nPa1zRAfzqmQ2qdESlC5wCLRWzErNaS1JVPRHMxbLBVHCrtnz9MlzLq+u2d68w8MH95GmZDJbsDwN2MG1qZVA13oQfBKEiBRZQIkIXEg0TY+LCR8jwTpi20ICqQ2Tespqu0dWFZPlkmI+Q3btLakfiEiXne6ZFxpa8CuBUppiiJ5QEoSUhOQRyPwzIESCFAaSNbcQh3BLIiEjhQj5TFWCqEu2Efa9p7MuE0zGIIRBGU11dMrEJ/qmIbqe5O3Q8lshBwFLpCyFpQTrrudq13AyMRTzGeV8inV+iILxICRN3+Kjw0aJNAVKAN6jlOL47Jx7b73NbL5kMpmxWB7hdIHvO1Q55Z1qiqqfsr5Zs9/v8clRGYWWEisTNhz8vIl0cNoOkRH5ojo8PpDzB0FByHwthsi0Lii1xCiBKKccvf0BqZrTJUMTwXmPSgFHZFYfcfZIYvdr9utrNusbTGGY1YZSz2mtx/mEC5nIjbcCALfO45Ti7UBwaI0uRXYaCi2ZVgWl0SglWHWW6dEZ1XSBmc5hMkEJld2M0bE81ZSmom+2NM0WKQTzqqDUmrK0bJ0n+jSQ4tmFfhAlDiPYm/HnQNYDUiKRlFqxmBZMS42RsH29op4fMT864fjsFFvk+IKQIPiAWdYURQX9DtHv8d4yKTWlnjEpFau2pw+JEPI2hRjf8H8pIoi5Vb0culHElKMeRG4rL5WkNJrCGJSWrHdblssjZosjjs4eMr93xnw6pS6zE7g+v8/s2Qsunr3g1cVzrLUolc+fO0MtQsJ8PkXoTD5jO4ySlIWm7z1tb9ldrzAi4knsA7y4cZlIB6TKsQ8pRQpTUM5mOa6jrFBFjTITtDKo/ZS22dA3W5zr2XVgfWDfOprGU5gdSmbhKw7zh5Q5aiOR6J2/PadikvQ+0vtA6z3ldEq9WGRC3Xui7UkpX/tCCIJPKEqkVJRFSWVyp4ey0kwmhnvnR+xt4OnFDTe7bY78kFnoCjHiY6TrXSbmQ6ALns5aeutoW89qa9n2gjaWUJXMjhVFSugYiSGyXm1A58+mixIpc2eIUiuiDDxbb6gaxWRTcLztaLpAXZU5IiNmQc/5QAz5BgEXA60NdM7T9I71ruV617Jte3ZtwpsJlc4xCzJGitTjYyS2LcIUKKWJQoGQWYQWeV97BJ1PPL26oWktr282PLp3TFUWed/GhIsB61wWbELE+cB227LtLJvecd12bLtIjAohde40UlS0UhG1oZMlcTFhdiyojWRaGe4RaV54unWfxwpxUPaGiJNDfA9D55VDks9h9SCz4OZDorOWGEuESigBRufoFuDWYR2/Qrjf/ji0lLiNUEmJqjRYwAfoOw9KUWhDoRQpeXrfY/uIc5YYPMlbTGEwWiGNwYfDZ8odKrLwkbIwehiDvrQ4yquhX93A4dmHP/nSyHXnN0KSpL9tsSBEQguBFgdBJSGy/pUFmREjfgPGemasZ8Z6Zqxnxnrm/z/rmTcD0P/v6xkbEn6sZ8Z6Zqxnxnrmf6b1zHjT04gRI0aMGDFixIgRI0bcwWZzgw2BMJBTIYTblu/eebrgSWQn2Xwx57rrSV1HEDsoN9ijHU2zI+03bJ9/hrt6BdYjBmfOpJC8ff8UISSbmyvW656bzZppIVlq2Leexmfnp0iJ+XzKrmm4vLzmJ3/3M6x1aJ3z4XVR0NkeYwqUUvTOIo3m9OyI+WyKVBEhZSargEy6SNKt0+fLefBZGIiDm3kgMG8L2f+cC0fcZtFDJvViAnloxSwiQkSi0KxsxO06ZpMeygkmCmxs2DYtfdNkh6VRmEnFZLbAmBItNUkkQvJgFKqQkEq6PmABi0QnQUoeEUFJ0GVJgcaGnl0MhFKByXEBwQkwBTZEcpN1j3M9GEmhJdO6ZLF4i7oyvHhxwfNnr/lst6XvHnB6vOT0eIZ1E3RdIhRMpiXBBowxKAlxIohSE4UkCkFA0HtHawONtTR9R+o8x5N7zOdzqlnNvuvpOpuPjAA1xB8s5jVHJ0vKScUvf/kZz1++5sXz53S7PdfXOxbHJ5jJjKqqKaXKx4+EKiRaDBJOTNmEJQQxRFrn2LaWECPOO9o27//pYkk5XyCrGr/dUk0m1FXFvKywq2uibYjBEUlYV+BdIPqISAKhYo4RMQWT6ZyyKGmahr7vCN4hlRyEgyxqpZBIIQ3OZfKxEwkhUxZ6oiMiiFKRipJNSOx8wkXJ3NTowhBEokcynR4xEwZ5c0W7uibZhqQ0iNz6WyaFIBKFJIlMYn/y8jXd6ZK6MFCVrDZbOtcjlMBHz+vVCqkVXVIIXaBIxOjRSN599z3e/d730ZMZUWmIkrZz9EESC8nZ/IiinvDq6WOeP35M3+6YFrP8+YVA+UhIkRgTYRAx4q1LLouAKUES2W8rZBZilBD530RujT+ILeV0welb79Grimazp9/vSN7l8SslirLk3r1HxHaOkoLHTz9hPp9RVyXTesIsJNrOZ+K0t/iQr99468oeRAORQA4CQRIoKTFKoaTgeF5Tagkx0DnNyYO3qM/uQzXDJYnrLdFZvO04Op4xnUzZra951jRs9i2n8zn1tKKqCsyuoe88zkdczG7Eg6gCd0ajwSWpBEih0FJhlEFpOJlXTEpNcB7fW6YPJtx/9DYPv/FNPlqtaPZ7QtcjcSxnFfV8jvYN7uYVu6uLYd+UzKYVZrNj11la6+ldGOz2t4NdFqEObOWgWCgp0FKhVT5O07qkqgpiilyvPEfHp3z9W9/hg+//Lo3J8RYyQNP1nJ+cM5+dcDQ9YrffsNqsgEM7/fzekghCsljOMVWJdXv6Zod2DlVPQSb6GLjZ7tEqEaSkTZKLbU8IIV9jWiKSwPlEWZacnpwyOTnGSkmShiQKPJqynIA2ECPdbkUX81wikax0l0UjoRBSIZXh9u40AeGug5R8nEJMhBQJwOzoiNPzU7SU+L6nW2/ou5YQAolEDBLqGqUUxhgKmZ35iYSUc+7fO6OxkWdXa4TwTKdTtMoCafCBzva0zmNDxCWwMeKTICSBi4bemNx6PwlqkZjOZyyNIbYdV69fs902TI+PqSdTqqKiNBMmpkSliLMbLtdrVAuVsmwbx6631FWJ0Ro5iPchkL88WSRw2bHeuUgfEq0XWFkhplOmUhNlJs+1VrBbsV/fYK1jNpkxmS2QGMRwvgsZSX2PjB6pE9t+y2Z/xfPrFa83G06PjzAqM8s+JTrr6F0WKn1MdK3NsUAett7gtUEJjdYGqgKtK4KU7KRgJzXzyYLl0Zzzec0idgS2XGwv0ds3wQwMQlFK3I65DDEQdwWCNwNelh39EG+Tz3VBWRikkkOiQnZH371ZIQ2LjsMaBhL5PohEioGirJlqg3eJZtchhq4pcugs47o9aEPwnhQstomURmdBQmli7G5FgijT0JAhDe97+AjizlbdXSt95Tl3IiESYtgPb9ZV+bIWd34gdwNQahAYNaVKGJuFk1uRYsSIfwBjPTPWM2M9M9YzYz0z1jNjPTPWM2M9M9Yz/+X1zFc+1/8E65nxpqcRI0aMGDFixIgRI0aMuIPedlifW9KHwRocvMc5T9f37J3FhYAHptMpR7OOXdMT25Ziu2L/xS+5ur7CblbE7ZpyOgGls7szetrdFpl8dnipRKU1u/2eVyIwkRGSorG5nTkqoIzk6HiBPj1GCUHf9qSUC0wFQ7v8iFKKyWLGtm2ICqSIGF1k99ut60a8odgSuSV0iFk4iIMjOiaSfEPG3a19/7Ml6Z06OLvtBoLIJ4SIFKJAVEd0akpjJc+e3zCtSspCs1ge4RfL7NL1DucszXbLdvsSmTI5ZrQiDI5upTWyqPO+UAqMpp5NEVLivcfbnuAagjB0+5Zmv2Px6AFaSeqyZj6dc3xyzrNnz7KoEz2djeylQiaNUQVCBr7+tbd4972HNE3Ls6evublY8+zJYz76uCGS0EWJKQuKqgQE0+mMsqwxpsDayG7f0HuLjZ7Ndk/fWlzI5FiBYDmZYaoJotbMZjVl5WjbPRc3V5Rxwr3jGqPA9h3vPTrmvUfn2D6wWe34sz//D/zVX/41be8oJzXT4xOOTs6YTKeUxnDjPEVRoFUWanb7Pdv9nqbv2fcB2zaE4PDB45xjguat9zXH9ZQ6Bb7+4C2UlNi+5/XFK642V0y1YFIVTCczUoC+tVjrCSFQzmAym1BVE4yZEENuZb3fNQQfqEqDKAuUETmqJHmcCzgb8C4AjiQyIa6UZu+hDRCkZqZr3v/6B8yXR0yncxb1ks36kqfPn/D66orXTeLs7D1OlufE3TU3Tz9is9sgvEeh0cqAMBQ6Ez47F/nTv/2YWamYlprpZIJOlsWs4mg6w3V7Ni4xnxxTVVP2H7/COUtICVnXfPC9H9JOZ1xax2azpxYGEwI3qy2Xlyt+2vX84Xfe41s/POeb3/gGP/5P/4Hnr17gfUArQ11VTIxGCEUkE5Y++uwcJMe2AEQijgCAigIRQcYEStKvN+zaPbve8vXTb9I5QQqWSWj4/tfOOV4sEVLTdJ6/+9uf8sWLG04XU771gz/g+OSETz/9iIvXN4gUOTk+YlZVLKdlvtZz2sJAcEZSyl0TsgeY/HPI7l+lcv/3PuzZ7Fq6TYMQJ6jJgjg/4qYPcLXiZF4zW86oimO6zTVtJ5DzI777B3/M9ZMnvHj2mK69ZDIpmc8mLOuCmKBz4EICEcnkX6bIM1n3ZvzTSmYiWWUSuW8bVjeO1cbS7jpk8qgS2qriF89uiN2eqYJ3TpdMyxIVPYWoeOveOS8++QVPnjxmu3nBcj7n+HjJYjIFkXDe5qicYY5I5P3kQu4mceg2oWQWxPIcYokp0HQ7dtuW9WbPW8qwuHePr//g+/yP/+EveP3qimbTYpJgLiX3ZjPefu8DyqnhL//Dv2d9s2K33zOf1hghcclDFCxnE86OFohVx6ptubq8RuoClxIO2HnHat8RdIFTFbukBlI8zyE+JawLCKGYzZe8860f8ni7obGOzgaeX60prWeuJ5ycPOA6BDbrLUJAURRYcXCBD/NAjFkwELnVPwMhmrsqxHxWD+7ySMJ3LVpE6kKDKqmYs4merg047zBKUk8mIMBay83NGiTUdc1yccRmvePZF09wwSFLw+m9t1hM51RFQaUM2kyglsgUEcFjUgKVrz2BogCk1LljRIpIu2GBo1kHXl942i5xbGbMF+dMpjPanaVvI0oodH3MYlbTrtasbm54/OwpQkfu3T/n+OSE46MjtFAIo0laEGSk7y1eKZIUlFVBKQ0TJYlSkoQCZUgqu4Vd39OLxHazYdfssGmLKWbUE4NSBttbZIBCzzBSEGJPH1tWzZbtdsNffvhL3n/7XR7cv89yucxjDQrrIz4KpDKo+RyVYJIEE2OQhcnGZriNMHnj5IVKe5S7or3yuGbN4yefc32zwieJEgYRswseAUINbuKUHfMqxds1whvRL6GkpDCaqijeeIWlpKrr7DAfXNVfjVVIKUdYSbIQEYcuE/n8ShRVydQYkrWsrh3KwuXzp8gUITh614MgX6tCsnMethuc0dwrJHKqSeRxOYWvLnYEw2JpuN/pH7iR4vZeqEHeOKgc6bBP050nHn6XD4CUoLWk1IJaC6Za0xlDa/2vf68RI+5grGfGemasZ8Z6ZqxnxnpmrGfGemasZ8Z65r+8nvkH1kX/E6pnxpueRowYMWLEiBEjRowYMeIOOtsP5E8ghoA4uHky2z44AwWDYZFZVRFDoPMOt78hbG9wbYPr9zR2R+McKIM0hrIu2DQd/+nHP8vOx0h235DbRTvvEVIQos/RBwK0ACkSUiSUEtRVCWl4fxERDISUVhSVYqJ1dhEKiVIiO3lCyrWpzJEEUg1OaDIReXAwCXno1T8U+Iiv1L13i9iv4iAq5AI3pTfFr7cJ52DXKqrFDFNMUXpop60SlkiMgqQUSUq0MZT1lOPlCY6QyaUYSc7jrcM5n1tab/bZfagkXiu860kp4UPARk9Poo6Rt07P+P3v/AHf/8PfZWoKKqWptUbXNa9fv+bzzz7jw1/8nIvVNaleIIzJDlYjkSJSajDzEvPBIxanS9rWYa3H9p4CBSG3k17ttqwurokpCxmZhHrDBZQSZsdLkAak4utfe5ff//4PeHB+zmxaM51OcDGy3e149foVn//i5/R9QBaC6bTG2wYlDEfTGV9/+9t89/vf5Rcff8LjJ0/5/MlT2j7Sb264vLrMkQkit3qXErSSA3GTRZVFWVAtjjFVgVAST+St80d8/3e+zTsPH3G8nLOopigBfd/x4tUL/q///Jqf/PRDVqsNpyenlHWZz0EpKErNvJyjNYTYsV9t2O062q5Dm5RjKGKg61q6PseQKCNRUlJPVSZpimkmoYUiipJ1E5jVFef3zvhn//Sf8nsffMCkLFBKkEpBDJ6XLy745Ivn/Olf/R3Xuy3TumJy/ogHyxnT6+e0NzfYzRbb9whpIEVESiSnuEqSdR8olOPMCR6cLgimxCpNKjVBKV7uLOuXK56/viAKhagKQjVlHzzvLo/4/nzOop6wmE0RMtDs91xcXvNv/+qn/PTjLzhZLnjv/hk/+q//Vzx9+jm79Zpmt2N7fU2z3xFTzFEtaFLyxJiJcCENCDVsb+5wEKUmyezuF8aQxAyzOGeBpheaeV3yO197i++895BHpwtMUaKlRKfIiz/4Fv/yX/8FHz9+zk8+esx3vvE1vjVZslmtuLm5ptms2Ox3kDykLAoYrVFS5Rb/eavy/2O8bbMfUxpEg0QQBuQMMT8mlBOe7G44mZd88PBt/uRH3+H0uKaeVJhyQgiJl89f8fTxU37x4YccPXjI9N49mnbP9etXbNc3eNcTQyCmhNEqu+YFeUyWCkJ2KIYEPgbaPo8VKUYQiSA0QRako3OW82PWIdE8fYbq4Pffvse33/4u79075sHJguVkgW17ms2GixdPEc2Wejpns91xfXXN05dXkAJSQmFUdqymvC1amzwkhkj0gcAbcSXEhPP+1uULgoShnJ/z9GLF5t//R57sIhd9ZGEU375/xh9/7+vUWhNCJu+9f5uToyUfffIJj794zPXNFb3zZN0k8fOf/4JfvnfGuydzTt7/Jr1+zLYs8NHRCY2RxxQhsu4D13vL5b7BBQhBEJMgxIBSku3mhs8+7UhHJ2wnpzQh4r3jd7/+Ft86P2VZFJQCgt3xi5/9jMdPnvDs5UsSBT4lUrTg8r5XykDKxK7S+RwKMeKcv+3SkVLuvbHuGlYXr27dplJlWTvFSEwBicFfrOj7jr7Zc//khPfefYfzB/e49+Aei9mEzz/9lGfPn/Ps5Su2TaQyFUVhKCvDZDJBFzk2RhcFvbXYkOMQvPdYZ3PsSEz44InWE6yl73u2TYMPkaePP2Ozueb8wQOWJ2coo4kusm87IpHF7BH3jt7BvN/wyRd/z/NX13z+9DVlWbJcLJnUNVVVUtcVWhuSzOOx8x3W73He433Ah4APYIPHWkfbNLTbHTHkc6jZ77FNw9HxKfPFkqPFETHBtu/obY+Int/94Nv83nwOIvL05ROePX3M548f40NkOp9TzeZZBSSipEaZ6rbDACnhgT4ErPe5c0CMiBhJPhKsZTYZSHiXCEFiXUsMWfyUCZJUSBIiRWLymWQngEgIleN5xMEZPLiDUxquW0ArhZL571NMSCHfdNOIOR7oLuIQzRBjunVQx5RjOPq249HJAuyU6yvN/rpFaUsaLNZa67yQG65ZrQ0BgYgREQJKGlI4uJCzgHuIuSAeekbk/wsh3iyR/iEIcadrgLjtqnC7rErktVPKa6+UGNZ+UBiR564QiDHwK7ETI0Z8BWM9w1jPjPXMWM+M9cxYz4z1zFjPjPXMWM/8FtUz401PI0aMGDFixIgRI0aMGHEHPnh8CKQQSSEglAQhSUMReODQU8yFspQSrQQ6JKy3xD5gRGK2XPLB++9Q6wlqUiOLAqEVn33yOV2fSQktBxI+ZkeycwFl1BClkCBEkJIkD4Xw4CgNg4s5JZRStxnzUYAuMhF6aKl813eDEEghb4tzQS6MJQfDkRgaFmQSN7va/mEc2p8fyJ1DfETiIDwkQggoVaJNhZxUdMlgScgQkFqgRK7WxcGKpQ4bJ0EpjNTEw2sVEcqAiBEZIspatBTogytSykyyDiRna3uW0wnf+PrX+aMffo+HD86QIVIKQa0UaMXRgzNOtOCk0Py7v/1bfAp0IVALQ6VNbr0uyK3KlcQF6Dy4qJBFhdYFhZQYCQ/eeoALjhA9IUaUzHEMSYBLCRvBeklEIk3JH//hj/jGo7dYTmqMFJSFJqTEaV1wfz7lSAqev/icttvgY2A6LVBIfPRs92uq6Yy3HpwyrTUnx1PaLrBvHU3bs2k6whAFISUYKXJUg1ZorSkLQ11PCFLgU6T3kX/0nd/ld959j3tHC0oJpS4yKTHR3J+/B//9f8vJbMGPf/Iznjx/Qe1nmEKjTXaidk2X28yr7LyczWuquiAOrfO9j9llC2htKCdlbkdPjl1BSkIUuACtEwQp+ODdd/jd736LP/7Bd7hXlhiRyS2rParQnL59n0fzGcI7/s3PPqJPkqQMenHOWW0QywVxu+L66oZ1G4neIaJHCYlPms552t4T3AZrI6ZQudV2CBAEvbO01hKUpphPkdWE2ek5jx494jvvPuKkrqiVpCgMyAizkg+O5xwXJf/jX/w1633Hq+sV+sEZi/vvMD+5R+w7dteXuYOCzUS4FrxxH8eEjYIkMrkqhCRJgZcaLxRBZQEjyQLvI94n5idLvv+td/nee49473RJpTOppmXCCMHy7XvwX/2I85NP+Isf/4xnry+YTvJnMZM528kM27WDg9cTo4cYhutcDiTvnTboMSGlIgmZxUWpMKpC6hJRlqxcz7SueOt4yf/yu9/kh/eO0EbknBalEUJzv36bd49mnNeG//df/4QuRWQ94+H7U9z1TXaC2o7gLYrIgRuMMHSvYCDZxK2oKQeBUhqN1DpHE5gJyhQ0tiMKw1v1hP/uR7/HBw+OOZ2XFBKUKmFeE45ntGdzChwfff6UJAzJTCjmC2zX4mxPCI7sEc9jYHa1xyEhYhj/kCRtAIkpJXoQQFEabWqW0xmNDawD/PzzL/j97/2Abz8845v3Fnzr0RGegPUQoqDUmpO64GS+YDFb8NmTx+y3W/b7PV3bcrXa82//5pc8OlmyrEu2mx1a74nJ5eOYDK0QrHvHzb5ntW3zOHlwcBclKeWOFLu24+mLl0zfXfBgueDh8iE/+vpbPFzOKbRCJDDJ8e7Jkl9+8jF/9+GHfPL8JQiTz9/oCcHluWRw1/uQ/fSJLFQfxGiZLeXEgbCPw6SUDuK0EMQoCAma3lGVFY8ePeRP/vGPePfRQ46Ol8yWM+qy4OsPH/Lk6VP+/pe/4MXFRY4EEB4fPU3nkVYilUJqTW/dQMbmedYHl7sAxEQMiRglURcgDYUuSJsdtu3YxEBKHlNUaFOjtKLSJe/df5uj5TGzScW0Erz33n0+f/wFL1+/5uLygqZpcNbS7DVKKZTWCKlISHxI9D6LgzFGwiAS+BjxMRF9pJrOSDHgrMVtN3RNy5orvLP5HCxr0JKT+THffvctfvTNDziaz5FKcL3+gC+++JTHT5/w4tUrXl9f0+3zTQcpJbyPRGlQWqOUREaPC4GQcuJJdB7nw62hlwi9A5EkEUPSBWVVQXDI5Ak+EJO8vT7gjmv+8CXFlxcmgjcPittAidunCCmHbgMyn1DpjdlYDjdxHNYbQkhSGiRNIVFCcracE4PL8+eNpVASqQCZSEkOa6m8DUJIptMpU5EwsbsVbfO2RsQgbt3+avhg4ktBFV+9mSJ96ac8RhzidfjSc964osUgQoIxkqrQVEZTIim1xkjJITJixIh/CGM9M9YzYz0z1jNjPTPWM2M9M9YzYz0z1jO/TfXMeNPTiBEjRowYMWLEiBEjRtyBDwHvAykGCBE51Gvh4NqCgWCIt04cJQRKgPABvKecVjx6eJ9/+kc/YlHPKeZTKAo6H/i/vLzChx3eOWL8cvHtfQCZHT3xlioRhJSyQygJEOnWBRSjoJTFLYmuhUCXJck7UvCkMLh1xJuCWg4/I8gE8BADcWuNSkPJK+QgAgxV7D+oF6Rf+T6Rtz/GiPOeopwxXxyjp6e8uNzRh0QQh8I5CwQeEAOxngS3ziaV8rYkCRQGACUkhRCkNLTkljJHHsRI8JEkoEiRdrfmnfff5Tvf/R1+9zu/Q3BbsBZDohSe3vUsJxPO33nI2ydHPL98zeOrF/gU8SJHEoiUiYG8ndD3iX0b6FykrGpQGlVUHC2mvP/WEqUFkUDvHVrkdusxRvroab3g8npPRDJfHvFHv/dDlkqhYyC6Hply4/9FVVAeHfFwPuffdjuevGjZNzuOlnNSSlhn2e53TNod8/mcRw9OuHe2wIX/D3t/9mRbkqX3Yb/l7ns6Q0w37pRZWZmVNfdQaHQ3ulpooEGQACGQhEmUZDJRopkeZDK960X/lIygiaQEkSIhiGAbABLdje5q1Fw557035jjTntx96cH9nIisHgA+yERj7c/sDnHinLP39nGv79vfWkLXebbdwN2uZZfHrzVQGCico3AOZw1lJgfvdl1KLa2G3/z2L/Hy+IiZhaHbILGHGHHOcnR+yjf/3r/Doq6ZVwV////+mkhyyIoXxjiyWe2wpaWsShbHc05OlwfxR8XQDSPjGFAVyqphtmxQUXyI7HYDwUeiVzQGur7DWMs333uHv/Zrv8y3v/SM7uoS/AAxoOOIsSXnyyPeOVlyVAo3t9d8ct+xCgbKOSfHDafPTqnHDa8/f81PPrmi73YwDjgMW28ZfGDoA/1mx/1dh9eUHh9VClWMhaIuWD59yuiWFPMjnr18yTfff59vvf2UGQEZOnzoiRjmTcXibMk3vvSSze6eP/jBB3zw6pqrzZLT0xOOTh0zC/HFC05urmjbHWPfUzIiJqWA90FZd55RLVgHtmCISqdCj2EQy6iKl4K+7RjbHc/fesqvf/srfO3pKdXY07c9UUOaiQInxyf8tV//FZ4cL+k29/yn/+SfY+svsZgvOTs6YbZc4tuOcewZw0AUz9h1xBAyqWXofDisg0TBlBXWlQRbQlFibIm4Ai0cw80rzk5P+aW3X/K3fvnrzLVjNwz03jP6HmsD5+fHvH9+wrvnp/yzP/4R95sOUxW8fPE2LJ+wabe0/Q4/tOjYHQgsr5H1tmUYI2NIRL2K5IwDBRiHqyu8FYIxBGOx1QJ/d0PjHN96+23+7m9+hyeNYGLPerOhGwfKuqI5WrL88lNsHGi7kU3vcSdPOJO32G237LYbNusVMvRYiRhSWQMTwmGdDApehWhKcAVF2SD1jFg4KArK2Zzm6IQ317dsr27YbFb8+vtv8dtfe5evnR9TsuVu2BGwGFNyVM14ebzkqGmYz+eUzYzrmyturm+4vbnh9uaS/+5ffkBTV8zrBmsEIxGRgEVpXEN0ljYEduNI33uK0mKtwxUFRTNLwlzbsus6Xl1e86vvRr711lN++xvv8ZtfeQtnBK+Kj5HGwDdePuPt50+YzRuut/+YEPdibqQfO3wuqSQx7an7zBuFtWlBSlsZEiH6iMXk2gOkEhsxJKEOT+8VcY4Xb73FX/vub/K//Dt/m/OjBWXpECuYqLivfpXLy6/wpWdn/KN//nv0Y5/m9hgy8T8S/YAfYRw9hXU4k8RMMRAxaBRCUJQKqhnBGEo/wqiM2zXddkfXtcwWpzRnTzg+OuL56Sn/k+/8ErPlgnpes5jXmPAtPvjgZ/zsg5/xL/74X/DpmzdJ+OsHvPcpG4ItEGMJKgw+pP0NiCESohBFQBxF1XD65JxxGGh3W4ZxxLcdu+2GfugZotKcPeXtl8/45nvv8O/+znf55osnlGUJIgQfuXr/y/z0ow/54U9/wu/9d/+MddciYlGBbhzo4oh1jsJZrAbC6DEmCfRBhEFBjMXk8WKMUNgKa0uMLXCVEIcO37eM3QqRvY/44f7mC3R5Sm+QHybI00bSPN7fr+whpAcWjE0igeb7i71MYK39U47kA+kvQlOWPDmaM44dzaykLArqymKdIiZCMFnUSEeLKhwfLzghUreRGFqQ9OiD6N4Z/fjBCw73SY+zwfyZt0uqP//C4Tse/4jK4WdjJJfJcDRlQY2lLgsKa//8W7IJEzKmeOa/bzzzGFM8M8UzUzwzxTNTPDPFM1M8M8UzUzzzxduj/+HHM9NDTxMmTJgwYcKECRMmTJjwCMMwPjgUFWQMRFJK8hADMadRRiMx+OQ8FcGJwSl01tHMF/zKN7/B//n/8L9nXs/pDbQhcLfd8Z//g/+C+9sb+nZHU1gMYE1y8DhjiSGlzDbO8Oz5Geu2Zde3DCFgyhyg2uxCDkowiqrHiuPs+AS1cLce6PsRa0uI2Y2GYJxBJbuqYxIbTHbGDt7j/fgokNVEEGr8VwSjjy1OPGgNmsjOfvQsDBwfNXzzq1/lzfGK7eDpvNL3kfvtjl0Y6WWgqipijAf3WFVVqPokkuRU0g5ysA6UBcbZA4GPCKWRlKU5GGwU/vLXv8q33nrBgsjd7Yp5YSmMYiQAkXC/pWlmfOl0wb/7O7/OP/vBD7hc3dP5ke3gKUmu4qIwnJ3O+KqteH2749OLe97cb2h3O5qq4PmTYxZzw3I5wzhLpKAdBggjPnhaP3K1bfn81RUvn77g177+db6yWLC5vUJ9z6ywGCJRI7Ef0KHly09f8N1f/iWeHi34wU9/wtAKYhVxlvlRAyjbzT2C4JxDFcqyxBQlphTstmXRVDRVQVW4JHBFCDGwG3s+fPOaz17dUJcz/uqv/TpfO39Cv17RDl0iUshjf1TurntmRvi3fvOX+NpbJ7z/7jN+74++z8efvmZ9v8Ep7HYDFQXGGnzfsb6LzOoaV5SEaFnvBhSLMZYYhNXlinYY6IaRfoyUOKKPDP3A9e0Nv/Xdv8Jf+uqX+eaLJ2wvP02iiwOrQu1LQgS/vkec8EsvFvzv/tZ3+ZNPrvnhqzs+uN6hIfL02dt89cUpR79T8h//Z/8Pri4vGNodJQWvru5Rr8khZy2oUJUl88IheF6eP+X5i2c8ffGc+uwpH9zuaGZHfPnlS37zvXcI96/wOuIMlAgxOmIb6Iaes+MZ/9u/8ev8xnsv+P0ffsQ/+eCSTy+uKCvH6bLhnedP+fbbX8ZKROIIjDRNgxjHqMLntxs2HrZRWHvl8u6eYbNj241s+5G7XUsYR8J2Rz3u+O1f+RbvHTcsQ0e3uqO0JcQxEWoC93c3LOPI158v+T/+z/9NTo9m/NEHn3O9W7EWy9nTZ8xR/DCw6TrKozmNtTgMRpKr965rab2ni5HWK51aBjVEtUQp2I47+n5Hf3tLvFnz3d/56/z1b/4Sp03B3cUFDosTIVhAB9rbS6q65p2Xp/xf/sO/x3/0X/8ev//Tj/njH/6Es+OnPH/5NueLGUJku1kxrytKZyHCarvhvuvYhkAvhm6ENkRGBDWG1sPQe/p+ZDds2LQbZqbga28953/zN36DZzYyrDfshhZQHKBjyxA62vGeX/uV9zGFsDie8Y/+4E+IzSmnb32Zt5qaQntC31E5Q1UYytJRWIsai1fhfjtwvWoZsATjMGVBdBWDMdlhv6QN0PsPGPqRb7/3gr/7a2/zbObA39EPA8XgMToALXF3z1vnT6jffcppY9Fhx/D+ewx+oOs2vPn8Q/7oez/g8vKGT19fMA4j3kfEmrRm+ohxUM8r5scNL16c8uzJEXVT46oGt3jGxRZe3+3oblb0q1v+xq+8z9/+9W/zG1/5Ejeff8bGj0QhZS8QOJ3N+bWvvctbz8+4ur3mBx98SjsKppwRBXZ9ix89MSYyVwE1ZAE4EnxIrvaYxHUTwyEjiMaQXNUB1MPt+oa//Gu/yv/0b/4u/+H/4n+Grq/xuxWhh7IoEIV5VXLy4pyvvPW7RLflwzef4jWyWJxgMMQxMgyeth1RDGIrIsIYPVvfEdUxjJH1umNoB9QZghh6bbBe2BYV7XbLZrfl+9//Cd/6SyXf+dZX+Q/+7t/ml589YTe2tOPIOEZqqfjSb/4Gv/kr3+Y3fvWX+M//P/+IkZiymqC06zax4tYSjaENsOs9Xe/puwFF8NEkh7YatHS4KjCvZ5T1nPvbK/pN2ns+++kHfLVq+Bt/+W/x7/313+a9Z0dsrz6hXw94r+AdJ0XB7/72X+Gv/tXf4jf+8q/y//qv/xHROExRsRsjt+uW+/WOthupyypnREh7Udf1+KCH7AcilqqscAgWUA3pfsQWiGtSiZYw4HVkwDDolmEc8H5MmWZ+jmAn3yscsrGQhAHkwTlsDtkXskgQD4ZkgJQdBiWEvUMaRh+IQ+TZ+SmVCIwjDANnRyV1VWCtYEQpVBBn0gMB1nFxs+J40XBuDS9qg96tCfuHH0SICLJ3fQtZ3dify2N387+Ga1kfvz9/XkD2jaSCilJaS+McjbOYkB8GyfeMEyb8RZjimf++8czPYYpnpnhmimemeGaKZ6Z4Zopnpnhmimf+fPwPMJ6ZHnqaMGHChAkTJkyYMGHChEdQhTEkV+8+9XmMkRADIQYGPyLGYq1QqKHdtAei31hhDJZ29NxvNry5esO8Oeb19S03qxXXmxWb9Qo/9igBtY7gIzNnqEqHs8kROYwBJ4oy4hnAaA6UC3wYGEPMhLBjdBFioKkKnp4cU85n+BjZ9R0PNdINihA0EjTmLMLpt8ba5FLK5M0+4n1IVZwIefPo2/4s7EtDiJDcsFHQ6BAG/DjSb3aEbctZZTlvHEYMPgg3bcN6HNlGD84mYl1TuurCe3ZxJIhBrSVmcsCQAny7L5khqWSHkZTGf/SRzkdO5ktOmoLgWz696GlXW1rxOAnJvSVCIYofWny/5p2ZY/v8nJ+q8pM3V8SqoapKnIkoI33wlKVwNC85O57jo1CeHXF2tODt509YHJeM3hO6kRAifvT0fccwBoZBud15hJpFfcST5oTV1Q3jsMMyElVQH4kaEjFiDZuLj3lrbll++SXHheX3/sX3MbWjsgWzskRMun6Nmhg4gW6I9KNnGAaezBcs6pLCGdREfFC8D+w6z/W2ZdVaxByzaE44Xz5ju1vRtWtCPzAOhoohn49gXcnq4hVO4OV8xt/73d/h5YuX/Pijj3lzec12t+PV3R1DGHHWcH66xFhDCJ5+HOm6gWEXwQkYz64bGH2gdAUnzZLFk1kmfwwhRp49e8L7771HUdTc3G0Z7+5oHDhRLIqJSuFSGQ5xhpGRt2eO4aik7Cqe1gU3PlC7ml1nePbkmL/xO99lt9vSdz3tbuTi8iqVpajqRDpFnxyKxmCKgqPlEdVsjq1q1sHx8fAh9XzG8bJm3K0Yuo5C0hyyjMQ4YIAowjruqJYL3n96zLH7Coui4Ed3O+6GkS4G1t3Ii+MTjuuCyih3uw2oQaNFVRhxrP3Iph/Z9QOx65mLYV6lcgt6tMBJQPslzvc8n89Z366T4NG3iO3R4BGNGFHquqBbdZRlyaKs+Nu/+j7njeOD6zWfbEZ8WbFoGlCl6Tt6jVTWUbuCWdkwP15QrO642u7Y7Dq60LPte3yIqd+M4cwYXFlSHJ9ycrTgq09OaCRy8eYC7TuGpE6iBAoDzjpC8LR+4O13jvk7v/XLvPvslN//4adc9YY4DKxXESwMGEIQZqbgrJkxOzmm7npW/ciq84TWs9u1DENPP/RoUGxQGqcsqjlNiDyb13zjxTkvliWb+wuiD4ToieoJkspNBAy9EZyBrz475qT6Bgs83/t8zQ4IQyAWJXY+w6NEI5SzhuWyRq2lD8ra7kD7RHQjqE0lWUyM+LFnddXTjoodep4var779a9w5Cwydqkkx+ghpjIehlSu4O6qp5nN+ebLY+Rb7/FHH77GN3Pc0xO+8/7bfPdXvkW7vafbbhh2La8/v2C1a+l8oGkWqAiz5YzjJ8d86d23OJofEQGPMH/yJX7/kzv8qxvu31zzrF3x7ZfPODWwurrC64CVgImKeEVNYLvaUbqCp4Xlf/1v/Rv8N3/4PX72+SWfXq1Y9yO1q/C2ZIyKj2kPjTlNv+KJpP1VAKxJJQh8SNkRwojg0xrtUsmjX/361/n2O++w8D1X16+pyiJlelAwRMZ+Q/Cp1MZ3v/VrOK98fn3B6uaeoipS2QAxlE3FuvVsdx1DSJkdTAExekavRM17Sd5rIsIwaygB7wokKu36jl995y1+91tf49svz9ncvEEjFAqpAAhEv6M0hm985Svc3N7wJz/+AZe314izzBYLojiiWIIYxm7E+R7nDLF2+Cxwi4LR1H6CxViDbSy1CMGUEGC4u+d3fuVrfOe9FzyfWW4/+Sm978F70oZp6DYeP2yo5nO+8/Wv89GHP+Pzi9ds23tOZ0uKRYmMA9oPtLsOW6TyEMZCPStyhpa894rLJRKEaCQR9xFEA9ZawuIEH5ToPbHfEWkZvOADoImEdmIQsmK0/+58rUTN4yQ93BA0z518LzKS9/v9/dr+pm1/H2IkldrQwDgGbm5v2JyfUrgZL5+8xJkb5vUMaxwigkUpCkdZN7iyZt2T3NHNjG+enVBs3hB9LruRbm4OukCqIZIyfaQ37Etb8fCkBIdLfHT/JA//5mvNOXcAv/9wehZFoCpLFjNLmB9hgmfdj5Rdd7jnmjDhz8MUz0zxzBTPTPHMFM9M8cwUz0zxzBTPTPHML1I8Mz30NGHChAkTJkyYMGHChAmPEIInhpBSUuea6jGm8hAxBEgcLmZPVpOITTWWwjoKawhBefXmiv/sv/ivsKbm4uae282G1W7DarNNabELl1LtG6FwFudSQJw8ScoYIqvNDs8IIoiV5KzKfHCMSjT6cDLWUs9mzOZznLNJ4JAD0/8QUGoixxNZI+xTMwOHdN5GHM64lDJaeVQjXg/vFZGDiLL/vyCQS8ajiVrQCAQwEWZlha0ENLVlpyPLKpUpWKghWKFz2SmFYBBcFIJNafGjCNZZrAjOyEG4iEp2sisqDicBg2AJ7LYdr/WO2A+sb1fMZcRJREhCy1HtOJqVHC9qnhwd0W62rO5W3F7dUS0UM1OqQjAmkQfeJ2JrXjrefnLM6fGSk+WC0+M5o3aMg8ePA+OYCC8/pHTkqFBiwRSICvddy4/bNXHYYtVTW5BxxBApilRW4KRpWB6fYI0y9D3r+3vc2OB9hQbFleCsxRpDYV1yrHlPUQTKoqRpGlzuPB+g6wJ9mxx4cRQqKWjxRB9Z7zo+u7pns7plbHdUBuYm2RONEeqyxCxmzGc1UaHfbtC+4/zoiHkzox89J5sN23ZH8J66tERV+qHHDCkNelVLTituKQpH4QrmTcOsbljOaoYhlUTwqlzfrUCVi9t7JEb622tmRnESsESMwlFVsJyVHC0amrqkbzs2t9esL69w5YyTssLoiPYd2/s1p8sTzpYnqMKuHzh7co5Yl53bSoxDKgcTIyqJlPMR2l3PZugZug5fFAx9z+eXNwy7NYUqpRGK0CECtTMsygK7qGhiDWEg9DvY3fG8KlkUJbsIGLBxRKLBWsu8mQFKiApBWVYFQYW5MYxOiEWa0xbyn8gwdmw2I+1uZLNa8zGRRiIydomEjSOFKE1heHqyYDFrUCMEEe7vr2HYcuKgOFmwpsTUDozheF4QI2lMFQWzqqac1QQ8hbUUpmRjdvi6AI2J8Bdl7kpsBN+PhH5HHFqubm/Y3UfE90mwIGJN5KgqWDQ1s7oCJ0h04DuqMPCkMlRlwyCGaCxaOkYrlK5gXtWcL48pZpZZ17HY9cxWHY0dOC4M/VgSoseglKqUAnVh+PR+RVNYGomstjvafouElOECHcEEamepXUFRN8QxYI1Qoywk8LxStgq9pD9VXYIYrDUsmprFbIZaQxEinQcfLaPPJW2s4kiZNXwIqUyBgdpFhhg4NcLdfcva9/TthugHLFA6S1VYKmcRNVjSutaYSDFu8aMlao1Kzctnz6mK5xRGUe+5eHPJ/bZl14+4siFEi61KyqZmdrxMDk+NFEZYVA1PFwMvlh3bXctRBZUr6LqR665DtSNqRGLEaFp3SudQVYxYTuuSd58+QRTqquDibkM7RjqvtD7SjkmgjCEQg2eMEQLEoGgImFwmorYFrjYUNlA3grEGjYr7zHG8WGJEuL+/Y7PdEsaCKrvR55VFXSpCNMTI2WzO+eyI7f2G3banKJIIrkZQI5Sloxs9EjR1v0/7pFGhsAZbFImjzRlE5qWjtnPmdcliVnF/63j3xXNenhzjxp7Yt+nNmU63RlMpDOeYzZd86ytfZre+RfzI/XaH954RJRBRHDYaLBYrmsQRbCpDRSrzxP5eJCpGoalq6jPLoq4xBs6Ploj3rG5vuL+4pPMjNvdtU5X0fY8fe6IfeXG05MXJMdv7G8Z2g40DjbOcLSpKI2w7TxcUr4qqYI2lLEtUU9kTVHJZKg4PF2j2C4uYtE/HgLGOumywR6c0VYERR8jPIBhjvkBwS34oIcY8RmJMWWkyrW5NKgUhJr3y2JCssr8/2TPzcviMtZZdN/LJq4u0Hwc4OzphXjVYW2CMBTyFK6ibhqKe8aUusG57jFia2RwjNpUtQTH5eA/Y3xg9ug/a32NxeDm5nR9/TB79J9/r6J/6fbpHE7HUTc1MwM8X2OCpNy2FK/70zeuECT+HKZ6Z4pkpnpnimSmemeKZKZ6Z4pkpnpnimV+keGZ66GnChAkTJkyYMGHChAkTHuFQ61wjxIjY/BpgFGyWBlTBIhRiiBIRY4iuoMqOpldvLvm//if/gHGA1a5jO/R0Q89svsBagzUFOgxUZUHpDNYKgQjGEEXQGNnsWlxjwQrGpNTAxglWzIH/FyNoFDAW60qKskjBaozZLCsHHcCYB9fz3o+juvdCJ6JfYypvYZ0FMUQVIg+BcM7dfBAIvth2guZAP3iPuORmjl7RAGWRUjEHP9APLTqOVNZSWiFiGFG8dSkcF4NEpVJHtDalzpZU7sBZizMWo0oIIbmQY2AMgWgsgwglnqHtuLi85dYYtpstt9c3zCQmkUAjOgaeHtecH814frYg+Mhnr97w+vUlN1d3zHshdgN1VVBVBeJLhuAJY6ACzk8XPHt6yrxpKJ3hzf0dY79jGEb8GAgjBJ8EAoswNxaDYegGPrq6xO+2xN0GGz2lKGboKU1g2RQ8PVlSPjvH1RX3mx2vLt6wWt1T+EDXjWzWhrKxNLOaui5Z1A5nC6yxFC5SuoC1BWPX4v3IECPr3UjbpnMTDDNj2Wqk71o+v7yiHQfWd5cMuzUVgYW1WA0UFpZ1gXtxTmTJ6D0fffgxF5+9YXZyxrOTM3AlTzWw2m7Z7bbsttskEriO1g5o7FCJCIaiKDg+XnJ2fMzRbMasqqhLS9+2iLUMQTECu+2Gjz5/zeX1DcP9PTUBpx6nASPK+azm+dkRz89PaOYLrm7v+PzV57z67DXzJ0+ZnZyAKVDfcxs7zp6c0NQNhSto5rA4OmaMyhiU0QfGMCD9QBw8flS27Y627Wi75GT1qzU9wl1T85PPHaHdYYLHRU8ROgonHNUFT+YNTXGCH2ds1isuL99wf/mK+ZNnzMsZ3pbsFKRv8XgGLbGuQEnOeBMDJ4WhoUALi9WSQpL70GjExIjRkdvVwOs28toPvHrzhnaVRCEZBnwYUB1onHBal9gQKEzKHtD1PT/96CNWqx1lMePJ8ZLbYNjZiBSGqqwpjSUA1lmq0hK157QUaq04tRVdZXASKYxSOyjUM3cV3kdu77d8dLXm5u6GceywGtB+SAKBRCoHzxY1z0+PEF1QVQX9/Yrriwvub64oQ8/z+QKPIVqHNg3BWZy11GXJUeMoG0cpkQZl7iNPCsHP9sR1ImorDVSiNFZYjDs240jcbfno4hrdrbAxtaXTQFl4llXJUdNQW4f3gWHo2dzfMW7vOLHQGEMnhk2EWWkwrsBYizNKbQALTgRfCq5Jax+AtUqlCkGImRwfA9R3KUOBbLZ88voO7Xd0u3vUd5RGmNcFy1nN0+MlTVMSx5FhbGlXd4TdPaMHbyv67Zzll59xtDzm+HiOs4azZy/ZdgO73hOiIYRUqmKMym703O+2AFQOwnbHKYGXJtCZgHOGvg/c3G8w/Q4rA6KKJVIaaBYlzWxGiBHvI/2m5bgseefJCYtZyfGs4nYzsOk96z6w2nl8SCUg/DjQBShE8H7ESyLmZ1XFrKhYVjWLBpYnJbYw9N4z9ikzyHq749OLS7rVlspADcyMoTidUy5TeYdu6CncghrHzJTUainUEUQJma2d1QUxJNGlx6Ma0l5nwBUGtUUirKNShYAYg3UOBHw84aopeHp2RlOU7O7uGNstmjvbkr4jbXwOUxW8++Kc2zdP8dstYTdwMwz0avBqMRopbUlpHFghhnT/EBQkRgIgVpCgiCjGgisqZqcnECOL0mLFcnN9w0d+4P76gl3fUlnDvCx4cjyn7zvEWPzoefrsKcd1KnmzAggjpYPjecm8Ken7kZt1x26IDCHdB9R1RQiR0Ue8DxibCPHkHNckSIoQreBFcFEpnKWqLGVzzsIKpUvfgaT7i71IoGj+vxJjwHuf2jKmvkplIizWWIwxD8S7ks3E8kDI68N3GWNwRcHglU9evUn3POJ4cX7OoqopXIk4R9CR0hXUdU3VzHjfVXz/Zx8SY8STy0QgSM7WEjUmEeDRgxP7eyhEskCgj2h/zdrFn+Nifvz64TbrQVUQY6maGfPCEuYLCu9p7te4YqLzJ/yrMcUzUzwzxTNTPDPFM1M8M8UzUzwzxTNTPPOLFM9MUdKECRMmTJgwYcKECRMmPMKz01MGHxhHzzD0AIRcDmK0Pr9LCDEiY2BWWcYx4gOItYhNFQqGceDDm3uigrUF1lmWi0UKkKPHaqQqLfOZo6qEwgnWGkwAK4oxltPjI6oFdEPPOI5EHalrR1HUiLV47wlEhtYTfM/q/g7vB4Z+AARrDGJscqCRgnPjDN7vVQIhZBIkOcGT6EB2ZUWSCxuR7PlS/rQ0sG+SVEu+G1raux12DSdnR5R1ybrt+fDVG45/8gHf/uY3WM6WLJZLlosd3a6j63varqff7TDZsZTKVBjKOCZBJKZTrqXChuQGBiEGn8p1qKLGsh06Nl2P37Zc32z4Z/crMBYfYbvd4DRQkIPhEDlpDE9PGl4+XfLjz17x0Wefs+tGlmUScW52G8SSnLxlwxAGBKW00NBz09+zchYxwscXr2j7HmscdTVDo2UcUjtb6ygwhG3PZ7vP+eD6MpVL2LQwekwMFH6kkpHjWcmXnp7gvxGwl3dc3t/zL3/0U6xz9G3P3d2G9WaHcbBY1sznNUfLOU1paaoK7z3Xd3eILRNpOY7cbnaMtgIpsBhKLFVTUwHr3ZZ/+vu/z+zoJJUq8QNlGHE+YqKnsnA6K2nblvm8Yhh6PvjgU/oAQQ19N+LKGWdPj6nqkk0c0G2kqGpc0zAMIx+PV1xfXySnWVUSHMyWM6owYkZlCJqdlxGnwnE959VHr3h1cU0QcKrUMWDCgImeAjhpLM+fHPH0/pSLtuX68oLru1uCeHTY0l4PeLEEsVAVfP7mQ9pdhwbly1/+MrPlnF3bsd12ye09DMQQwScxsOtbRGEONEG5b3d0Y89Huy2b6xt82yLjgIwDTgdcAceN4/myIYT3OGs7bm/uefXpK/q+pb34DFNUuKKhaBaot6xXkTf9wCefXmIdSfCZNzw9e8ZSHU4MpTEYgRA6xnFgGDpGRqoItXbosOWPfvRDZvNjjAqx79HoEd+xKITzpmR3d8tq85yqKhj8wM3NOpVjGDpuLz9Bi4KZaxBXIEWBGuGTzz9j1/dYV7DZrHn65Jynp0949/wZumxwmvrLeI+NEEPHlpGx6Lhb33D7kxZXNTT1jLDZgh9wBGoH57Xw5RdPePn0jJftOVdX13z66adc396zaXvsZsPpySnNfEFhDLas2bVb7q9XfHjxhsXRHCNCVRQ8PTnl+OwYCYLEiAVG9bTdwDgM2N3AUbfi+nbDx9fXeI3Y4HE+UMRIRWRRwcms5snRgn70LPs119fXXF9fc7u+ZTcoAw5xNc9OTmlsYAye7bbjs6s3dOdnNHUBRNZX15ydPOFksWRe1xCTM3ocRsahxzNysdnC7RtWF7d8X0u2uxHf7eh3KyT0FBI4XlScH8345sunfCm+oGtbbq5v+PCDT1jvekYRgjF0W8eH/S2vPpnhqoYoJWUzA2sJaeBgNCI584WqcozFacQNA93VaxbGsbi8ovrsFRe7kR++eMqidOhug+82lDZlgzhqCp6fLZDzM4wIfdfy0w8/4W6zxdiS+WzJL739Ft0Y2Y2BbT9ws93RDZ4xeMYY8CFyfLTEWUFCwGjgeDFnUdYsioqFFUyZ1qVP3lzyJxg+v7ohiuHi6prNzWucH6gksiwt7751xNfffZdZM2PsPd//8Gf89LNPWXdJdAz9QFHXiYg3hrKoWB4Z/IJEwgPj6PE+nRu2IMaIFcOiqCjFULgkrr26uuHKR+5vV7x6fYG/t2zXV3g/YlCWlePFkxNc4TCUxG5Lu7rDb+6pdeRLZ0vm254OS6fCeoh4POezOUVRETDcbjZ5LQpJGCuEyhpKI9RiKa2hKUu2u5Z/evk5P/jpJ2zXG07qgtXNDcPQs5xVHDcVT2YV0Y/M5nOenD9hfnrOZ5+8YnW7Jnpo5g3tkARFI4bjRcPxyRFDgCFA71OpohglOcWDon7M2WIiGgLRghiDEQsRZtWMWVEyc46SAAQ2bUfnRxRJJYYO4gCp7IemElxk9/fhIYj8QML+D2g67sE9DEaEKMK+TETQQH5ugqY0uAA+JpHFFcLyaEZZ1WALQghUVY0rCoqi5L0n53zw+hW39yt+tFvx1xcLdNgSfSSSneD5fkjy0xePs84c8AVr9M9h/74/9aDFz32PGMQ6mvmCIyqK5Qlm6Gmu73BuovMn/KsxxTNTPDPFM1M8M8UzUzwzxTNTPDPFM1M884sUz0xR0oQJEyZMmDBhwoQJEyY8wucXV4SYUh/74A9u4ahJKBBJAVxUxWtk9D69XyOegCU534wq9WxGjJpcvEZAIzEMFNZQ2oK6KDDGENUwhuQyCjhEItZaynLGYlFi2h297UEiR0cLQowYEeanC4bQUcTI+dExv/vrv8k//aPv4X1ExSCWZLHKUJI7OpU2ANU9+c8hnpUchIeQCJOgua47KYQNf17DqdL2HWdnp7z3lS/z/Pk5ry9e8friFUMYaXvPP/iH/xU/+tkHvPX8KS+envP283MKV2JLS2UKTFFjcp35qMmFBZEYPdF7xrZlczMQfCBGcK6kqUuK0uGKAuNKLJ7KBuaVYVkXvLm6YfDprEUCqOKMobQWo0LwI2Po2fmOtmtx1vD0yTnvvHgHPxpW/Zp+7BmHkXbTo2FEbHKHX7x5Td/tsNZQ1RU3mxXNbE7dlFSFpdt5yiKV1ihdiZGCLgTubm/5+OM3NPMjSuuSwSsEyghGlK0f2IU7Ip9wt1nRjyNqDMdHJ6zWW6wRlosZs6ZgsZwhoqzuVnyyvk0iQQjcrlaIK/nal95hXs/wY+Cu7bEuudRmdUnVVPTBc78deH3xmvruHueKZPAaB2wIGIHCCqtuYJBXRB0RlHlV8c1vfB0xjqDK4AO7bsOm3XJ7d8sHn37Ecr7k9GiZnPzjjid1yWa7Y7O54/7NJxy5SPn8OVW5ZIxpAAZNIltQWN3fs263BI0smhl9DEh21xYG/GgYfOD6bsuPPviMxhlePHvKN15+GRFD60PKMiDgjedus2X0W3a7gbubGdF3aAw474lBsTktvDiDKy2LOmUxcNZSOAuF8OHFDZ+9fs3QbnE+IsEnElYARu42cLvaMASlcIbSOmZVxa9+5ztsu5Z+CHRDYNv3bIOnj4HNruXHP/0xs7rgyekx7ukZ96PH4hCTsgI0TcW8SpkPiqrAFgXD6Fm1AR0u+fSzzzl/+pyqLDGqoBGjAUbQoUeHljerdcrggPLtd9/h/OyYoIG7zYZNOzD00Lcd7eqOgZGxW7O5u+fy+oa6qnl2tEDDlvX2FUTBqcWKwYnleLFkWRkWCkU7YH/wGa9fXSO24NmTJwzdBtGAaGSL0jmlHTyfX93TfPgZPihPT454771zLMKmGwhGCToytLcsdI50HWF3z/ruDWacs5gvUW24vbsl9B2lTeeTDJOGwgpNU1PO57yUgg/XP+Xy6o67PnJ+NMeOHhsjlbXUhTIrdyxv11zd3VGaHsRQlxXvvftVtl1k2w2MPmAZMf2a2I/02w33F59yc/kRfT8wjh6i8Nu//puoK4iqGBV63zKGnqCeuqh4fnzEy/NzbtrIzz5+ResD6EgYeoipPMztruN207Lb7Pjhp6/odjvCMPD2+TO++uIt2nFg2+3oxgFrI6Hd0K03BDWMVYkagzjD0XxO4XLSeU1re8DgEArANg6xhuenMzbtMT/93k/4/k9+wryucBoZul1yl5eW49pxe3fH66t7VCN937Larjk+PqEoKzBKu1uDOEpATWTt17y5fsO26xiCYq2j4oyzxYIniwUvzs4QZ9KkH3ssCsGgfkSHQPQjr9+8ZrdruV0s2G1uMb5PzvhCuGxXvL7rmJc1JsDnFxcM4hEjOAEfYb3aJIEiRqxYhpAydzTzOarQth39MDD6EVvWGGNxCFEMR2VFM5tTDiNxc8f11RX//I+/x9XlG54d1fTtGvFKIbAohRdPT5gvUmmmxfKIm4srPnv1KevNGrGOGkvwI904stvtuN5tOWnmNFUN1rIbenw/4sRwdHzCs6ZiXjnKLKoM2w1+CHSbDbvtDR/fbbnfrjmZNzAqcRwoNx2FUawfEI2cnZ1wvm656kb+5Z98H1CKsiCaDq+kUlRxZLva4WNM5SpSOhV6H9AIBkPlCqxVStK+UJcW9QYrYEUopMAZpXQjdaHM64qb+x0b3+LHh7IJiVfXw6MHMaYHM/q+x4cAhcOIpAchvE9lumIg6oO4cICRVKdBBDFgrECIGGN4/0svefZkyd16y2cXt3jfs223DFGxxb7owoALER8iEeUr773H/ccf8+pHP+Da9ZzGiBiLYlL2GvLNkBxqUXxBD5C9s1kfrvFfDwLY9CiGpvkq+cZLRLBFQWMMTV1TFWV6oGPChL8AUzwzxTNTPDPFM1M8M8UzUzwzxTNTPDPFM79I8cz00NOECRMmTJgwYcKECRMmPMKHr96gOcVv1PgQ++U0v+ijIBEhaHLlRoVAxEXFh0RMBFJZhlT6PbkbjaRSEj5EWvUYb1Kdif1hMIQQcc5irizroaQfeqIGFrMa1QI/DqBQlxaJhicnx7z/1tt87b0v88/++I9TvHwIIDUHs2T30UN24lTZ4eF9B6NOdv48xL8P6Ykf41ASQoQYI13b8tWv/Abf/e2/wle/+hW+9yd/xOuLl7iiAIV/8Yff54Of/ojV/Q3bdouPHoOhLguauqIqC5zJ5xKTi0ldRYyW4AU/DIyDpmA+KLYQCmspjcWZ5IqqXQEqeK84m0SAvm0JYaQqUpkJdRYwOHEYDbQDcB94c3lN1RRgSk6OWubVEWVVJXe4ClooRQHiwDlDiAPjLtD7MZFOGqkKR1U6CmuhEiSXgJCorLZrru9vubu9YXdzB31EZw3WCBJGglrEwBCEMYzE8RVXNzeJJF8uwDiMMcznM4qyoCkMR8dzRj+wWt+x2e3wGolRaUdPJZa6qjg5WlIVlrrriWqT3V2U1fqe65t7rm5vubu7Zl7sqKoGay3eDxgUY5LDfvQWT2Cz3RCD53y54Pz8JU3TYJ3FWEkpzDE4WzCv55TWsagq6rIgdEueHJesNxs2uy1tt6V0hugHxqGjaBp23cBmt2W17bi83XB59Zp+6DAilMFjrU0ClwEVRYzBbyO325b1Zs2ssLRe8ViWizmurqiLIvUVPeNYEpYLmkpZLpYUJgkIzkgq8hJTqRcxBqxjDJrTwkd2Q89ms+H+9pbbqxsG37F0iZBP88CAjoxG8YMBbtnt7plVNU9PTzk6PaUoClxRUzWC2bVsfUe/3bDbteyGlqaxSSCLgc1uw6yeUxaOoi6xhUVF8DGRWbtVy81qxadvLnl1ecXt7Q2FMcxnDXVZpvIvMVkM1UTUWy7XO/pxpB8GjDEMRBazJomRUrLWntaPbMeWbthhRGjqisW8ZjFfUJYOjZF219JUM5xzaQ6JMMbA3bZj23V8dr3i4uKK67s11jlKqzgJifSKShdiaqcQuF5vicEz+sjX3n2b509OOZ3PmS+XqFVCDPRtdyAVnbOcnJ2yLCqccWgI9N0OXxgq1+AKizUOEYtoIIZU+uDNzTU3d7fc3d5i7neU4QyrilUoxGJdpHLCfWHZ7Ara3T1NWXJ+csLJ2VOaWUNVN4QYiWFk2/ZoHClEeXp2ws36hqEPWIEnT86YVSUuC8POOqxUYA0SUymWYdgy9C1dt+Hm9gZTJFHJZJG2E6XvDV3XMfYDMY6M7Y5S4PmzF5ycnnCM0g49213LMAS6fmSQgC2KNE7iQBzANhUpH0Je+IsCVcFoItHLqkaBqhyxxtJ1O16/fsVs1lAXBWPfM7OGrhDaQri7F5arDaqpvMOsLjkva6q6yoJhh8bIMAa2bcebywtWq3s67/ExCexxHAhHR9QakdMlOkQMkgU5IRqwzuHKAkNkfXtD6AdkGBmGHRIGHJHOprIS6/VAKRYTYd4UPH92Ql2WRK/ctS3tMNL1A7thoO8HlIgrLN3QEaMwBo/3nmHsMV2bhH2EbQjE+SJRtypYa9HoeXVxwdC33Bw1EAKVWCoxNIVyv9tRVo66qpg1M0yIFLbk5OiE3dBzvV5z3w2s+oG7tmXT7gi7HaVzqDX0MaA+UojB+Y6ym6GLmllVUllD5SyFGGY+ra3bm3ucVWIYKaVE/Eg3BFBPHFImj06E9TDy6uKSdrPi7PiIuqyI3qNqyDc8hN5zv1mzGlq64HFFwRj2IoGwbGY0taO2FlM46vmCqrRYEawIpbN0fQthRK3S1AuaoeHYlBRBUI2PSiAkp/P+QQWNkSE7whWHyU7nGCIhpH3tcOv1+D4kf4tm4t4ag0q6eZnVNUXhMNZijOVoccSsanBlgykqBHDOYa3F2tSuL56ec+Q9w/0t8dVPkvAgeW8AVOLhnvBwM7Uv38Cjf+XxK/+a2NfuelAHUvkwSdlgjCp1WVFX1ZTtacK/ElM8wxTPTPHMFM9M8cwUz0zxzBTPTPHMFM/8AsUzU4Q0YcKECRMmTJgwYcKECY/w+e3dIeZTyG6b5LYTAQ3x4FQxYlLtd5RUQiEx71EFlURIS057LJLqyYvaVF9dYfSp6EIkZOd1PNRTt9bQB49ZOUIMFIXF2Iald4xjCph3OyWMgfJsxvHihKas8d4jBorSJZczEcFATqscI+RcykASE/RQ030fhEsi0/fpmvdCQ7rIh8/m7ySncu7bjq+9/z6/9eu/yS//8repnGWz3XJyeoQrLKUt+I9/9ENuriNFU9GOA6EbOT055tn5GeenRzSlw4oiGimcxdiKEByjGKrSE7wmB6GJLOZzmqY+kLxRBDEFPgiiIxo9Gkb80DL0O2xVYFwBagGL2og1QjdG+s7z5vUNpjIMoyKUfOnZ22ihKb10hLIoMM5gnGAKSyTQDj1d1zF4T1OVlM7hjEE1Yp1Bo+L9SN92fHZ5zeubK1b3a8bNjt4LJgacE4x6FAfWIl5oe+Xu5o7rm3uiKkdHO0KMPDt/wvGyZj6fUztlOZ/R9QLE5NoMOW01hrIoqMqSpmkonKWsG9puYNcNrHY7Pru4SunN79es79dI2aPNgHWOoD65+Y3BGGEcLZuu5+r2lqHvuKxvmc8WnD85ZblcMF/MMFlMqYqGp0+eYULgeLZIDssouHrBruvYdi27dgdEuq7Fh8DCWe5WK15f3vDm6oZXlzfc3N8jMVIaSwdUTZPa1CQ3XRDDZoBhGLm4vMBqZNWl9PNfevGc58+fcrQ0FJn8Ka1lMVvArODk+IS+3SSKSixVUSYxRwWNwhAUH0barmfbtaw2az7+7BVv3lxwd3fPEHrcfIkzNq8BBokRL8o4CJtu5NWbT6nKgmdnK5p5w1vnZ8xmC8pqRjUz+FYg7ujanmiVclbhSofXQNeNuLqhLC1lUyEa2fU9fT+yaTs+f33FZ5eXXNzd8ubmjs02EchxmMNijnUWF4VIZCTS9YbNrmO12XK/XtOOPdebDV969oy3nj6nMJYIjATa0LNtW5bVjKZpeFYVVGWFiKHrBmKMFKcNuOQW7EfP/faWu9U9F7d3fPDZGz7+7DN23UBRFTgXOJ7XODEQYRwCnSjtMBCiZ73e0O46Ou+52+546/ycF8/OaaoKm52tfggMIYC1nJydMTMl3XZHP3T00TOvS5q6QmxKoa5R6Lok7Ly5vuD7H3/GqzdvWN1vsdGxKKCwe2e3Qa3ijFIYuNlYXl9eMS8dL560LE+e8PbTM+ZNQ1PV+FCw2nZEVVzhePnsKaZQ6qpCEN55+8vMZzVWhKiRKArWEaIwBM+2a3l9ccXr60tubq9YrW8wNtI0NVVRoAqDKoNRutaw6z2b7Qbfb5kVhq+ut7yNMmsaymZOWfRsty3GdLhipJ7X7NqWvocQoLCGwthMdArGOoia9jJVsBXDOLIbItu2p21bxovXzOdz5os50Qe8NfSibE0EInVdocGjfuTt5895NoIpkng3EvDjyHbXc7ta89mbN4x5J4pA1w9sVht83zMrHS/bJ+CVwhXYuiYI9CHSa8CjoJ7tas3YdrioQER0xBLxCH0rvJEV0Qfwgb/0jfc4WRxzPJsxdCN9iFhp8UHZdB2361Ui2p2l7XoUSaV5YqQbegw9hbFojPhxRDUgxuJsSbRJyLu5v6FtN6w2M0pXsrAltbUUNvLqdgBNolhpLV9+/pyvvfcOs6aivb7kYr3ietuyGQa2fRLtBt0CShAFazEKDmHcrujrhu3xgqPFjJNmxlG9wBQFRQl1WTF2b9htBSvKrJhhYyBqKh/lxwgow/2am/Wa7v6Od996QV3XLBdzdrttLsMAGgI6eFb3ay7W96z7lrIq012EjwjQL5YczSt8WSJ1jVY1dV3jRFLGkbqk7XYMPpX+OA6R2eKI2WnDaByfXd+nBxa+eCORqHSNjMNAyONSxCBiCBqJMZUxMT/nBpZHf+fbMIy1iASiBlSVtusZhhFBOD0+o7QVxqayN0kzSxlqjAiFEaqTY86NwQ4d9tVPMEq+/xOSjPdz2WQOpP4DHuQMffjp8JZ835Sf1NDDB7Lc8UgoEGNwLj3QMJDu0cqypKoqnJ0o/Ql/MaZ4ZopnpnhmimemeGaKZ6Z4Zopnpnhmimd+keKZKUKaMGHChAkTJkyYMGHChEf46l/6zhfMLHtHkCjs0/OaTJYHn4JQNbI3sVA4l0j5TLDGGBiGIaU1jor6kAUGwRjBRyWKBWuSIzV4fPCgEWsTqaYoriioTo/Q5phmbhERoig//v5rLm5/xh/+y0/4j/7Tf0QXVzx964zTJ0/5/PMLogchJoerNSAp9bMArrA4a/EhoFFRn5ytQQwDwojijMcTCQoxB717N7Xm1MxJXBCMKxCJbFbXXL/+lMZY3nnvKywXC8TA3/yt7/J0ccJ613Fzt+Lv/9/+E6LCrJlxvFzy4ukJX377GUeLGbOmZrlcMqsM3nvGwSO2oqoMIkOqXV/X2EwaxBjxwP39jlXbc7fd8dmrV9xcXdJ1HSF4Ql9QugJbuOS6c442RsYxkfi7tmVYe15d3vNHP/iQo/mcJydHHB8vOTk55njWsGhKqqqg1JLSVpwdn9FVLbvdFmstt7dbRr9i9JGuj6xWG7Ztx2bXc7vZEkPAAIUxDOOIDx1l5ShLR1EoEjx+SGVG1vcrdv1A7z2f31zz2etLnhwfcXy05OzkhBfnJ5yuViCRMQAqdJ1Pqb2DYgJ88uqCzy9u2e5a1tuWu7t77tZbbtZb7lYbQkwlMqyxrLoB70eqqqQoikPpjyDCoMqu69l2HX3fc3NzywefvWK5WHByfMzL5y94fj5n1lQsZg1PT86QEOiHyNBvGXyk624AIUYIarm4uuX6fs39dse692zXG9q2pR8GAkqZSVcfA7ere2bjQFlYnDNYYIjQ9gPtMDD2I8MwcHH3M/7whz/jaDHn7RdPefr0lCdPjjk/O2a327HZ7Ihe+ebXvkbXtsSY5sbx8THb3ZauHdi2Hbd3W65vb1ltdqw2W67vV/T9iAhYJ/iLHl+vaaqKqiqxpUtp/2PKenC/XXO3WjEMI3/yk8/5b7/3Y54+Oebp2ROen5/z5OyY2aym7Tp23ciibihcSe8j42oLEXZXV9jbe8Q41pstr99ccbdac7facHu/oh/GlPK+cNjCcr9dset33K9XLGczFlWFswZVZbPtuLlfs+t62mHgw3/6Pf7xH/yAJ0dL3n7+lLeenbE8mlEUFgQ2245X2xtm8xkvXr7gxx9/gh+GlMmgKFnMj1A1tP3A9WrNq8tLLu9X2aU7UBYlxhhkMOx2a56dnrCoaworhBgYvacPStePrDZbVjcrfvjJ57jSMZ/P+Po7b/Hul17y5OSI5axGgIurKzabDd575k1DP/YMY8/gRy6u71gsjnC2oGt7rm/XXNyuuF6tub67YTsMiCS3q9Wey4vIbDajqWqqssAERSyMGrm93vHhxTX9rsXGn/Hf/OGP+cqLZ7x4csbZyREnx0uOT45AUgr9YXXLN997D6+JZN51He044KPQ9yP3qxWXt3fc3G24uV/x5vqGi9t7uqFnDB4Fbq8H2rKirmpmsxmltXSq9Kqsdz23mzX3m3t27Zbvffg5v/y19/jSs6e8fHLG85MTlsslYoRghNv1irKpOV4saco5dVFisxjsQ2Db7thtt2x3Hatty5ubOz5+c8Gr6xte39yw7jpYK7vthnY743gxoxPos/woAn69Y7NtWa022B99yvPvf8jTJ8e8PD/l7RfnhDCy3W65Xd1jKkdj3SFDh7VJuDs6WuLmM242W5wIfrth97rn+n7N1XrD3WbL7f2aV1f3dL3H2o6227GcNVgihlwJQCEYw+g9Xddy+c/XfHx9z4uzE54s56izeGMRm4h/VHBFRVFYCiM0VQlAP4yEYaCZNxgghAAijOJ4db+m7z23qy2bzRprLSEkQZ5xxR0korywRJQYlHEYaLdr7nae2zFQz2puNyterzd040iIUJcFztqUhUUjmvfXEEJyCotw63vaFdx0I8vKM453dN3Aetfy+dU1UT1D17KJgdHtUqkjm/bFEBRF2Nxv8L7H+YFff3LG6ZMTjpZLirLk5uaOzW7DeteyG3o6IhQFpQjLRY0QCT7gfaT3nr4DUSWqMl5c0B6f0JQldelYFpbR1VxvPXd39/zh9z/g3/t3/g7f+ua3WR6f8Pf/n/9lymwSD3dYmJTAAdGUFUBjODiorTXEKAQ1KGndD8mOnEQEYw4luwhATBkGghO6duRPfvIzvvGVdwChqQrCqLRDB6ZHrKVsGhBJZZuy03jYbGii5+T0iOboGNmuUA1g0gMUku+f0j2ePfD7j0WA9M9eCImPXt//bv/m7Eo/PJXCo/8IxlXM5zVNsKyHId0zDCPq48PXT5jw52CKZ6Z4ZopnpnhmimemeGaKZ6Z4ZopnpnjmFymemR56mjBhwoQJEyZMmDBhwoRHaM5f4rNbxYigMZBqKKRg1ghIBKJiQ2Dv8YmQAlVnUwkAazDWIGJx0RNiIEZPHOMh9bCxhqjk/1usswcfjSCJyN5/j02lBWLU5OoBQr9h1/bsbldcA8e14yvvn/H8/JxmUXN3t2XV71ANWOM4Ol6kMhTdwDD65MbW+FDWAb7g9tHkiT68HiEHsz9fhz4FvyFG+j4R8ojSDz3r9Zq+bXHO8JV33+X07An/5J/+t/zJH/8xi9LhyhpF2O12fPDhis9fvaIqCqqqZD5fJoehNYgIRVkQBk8MkaiRoiyJMeSgXenGkbt1S9uNdMNA3+2IJLLBGUsYPf0YkHbvOpKD4ypqpCwcZVGk0h6qDH3L6zctl5cXOOeoypKqKCmcwxUWkdRb+88P40jX9/gx4EMi6n3IxI8RSpPGxiF7tEb6oWUMlrZ3lG5AoxJiJHiPDwG3HxdSQ4hc3t5ydXPDh/IxZVFS1SWFs1grjH4kqGS3r/ApV4T4ASEk1/Qw+nS9gEgi6kpnk2C1F77GkTYEetMj2Vu/d2+NfsSJYMsSioIYAt57Lq+uuLq84odVQVk6yrJgViXHumTXvVdNpSpyWu/Be9o+ueBiTkVuSe66op6lihXGHPS6GJVut6EXSXNQDDEmcshmkWPWzJITNSrBRz765DUff/Ya46CqCqqyzpkB4E9+8CE2lxBBBGNy6n0/Mo4j4+hz3+1TjRuaqsQYcr+DH3p2wdP3/cEFrzEJVr0fqAtHUxSIJuHgzeU9l5d3/OjHHzCrS5pZjWSSyYfAm4v7xB1FJfqAxjQ+x+DputRWe8ddXdTMq+ZwLmpIq5BGfNuy6nt2hUtOQk3u8RAjZWWomhnLMEdDpB8CP/3kUz787FOaOolDhSvwPklEzjl++LNXbNsd7ElMjUSvBJ/G9xgiY161Klsym1U4Z5CcbSGqcne3Yuu2WJPE0RAiPqRMDQbh9OwIn9/bD57v/+RDfvrRJzRlwaJpKApLNwyEGDEiqcQIyhiVbvTYeI0gxKiMw5hJ2EBURayhLktMdmCKKn3fEYOnb3dURZF+JxBDYNf2zKNh3ixQYDd4/uSDj/jhR5/gnKVuGp6cnaQ+J9J3O/7gBx9ijCEEz2a7ZVbNGH2kH0Y2mw2b3Y5+GBnGQB9BbOobZ0qsye00jrTe4/uOsixS+QZVfFC6wSNqaKo53TjyB3/8Y77nfkpZFCwWc549OWM5m1GVBV27Y75YMJ/PmNUzJKYSI957+mHgdr3iZnOfBLZ+YLNpWXc9QUGNobAOY0ju5s06ZW+wqUSQZPvpph3pBk8/REII3Hz0GT/9/DXzpuLp2TG127s+FVdVBB2So1SEYRwRGdnset5c3FLZgihC1w+s1ltW6y3bbkzlWACb2woi267DB09hDNaAtRBFCCqMPpXEuLxf8cn1LVVRsJg1nJ+dUFYFBiV4j2Doc6mRwSbnrJi0ngwRuvvkoh4Hz67t8f6OcQx4H+gGjx89XgLRp/uCytm0B6lixkRq9yEweE/XR/7x975P89MPqOuaZjbDOcFZoSwsTZPKlqCCqjnMF40CWFQN2x5Wu44YWiTesbrf0PY9ow9JEBaIfc8wDHTWUtd1dsKTXO1IEqT8CNHze9//ET/49BVH8znzuqEui7TOILTeEwWcs4iFIve7wWCNoSxK6qoihMCqG1h3I6+vblk0NXVZcb3e8Opmw2azhRj55a9/mXfe/yrL4yP6rj+UeNBH9xL7/TPE9LCCSMrYIjmzgOrjDxxMw4+59LSfy8MDAwgYl7I9bFYrXFEkwUHTnoqk8hGqyjiOSZiIgaasKIqSIu8xIWouQ7EvY2FzJhl9uF/Sx//5okM6nV8WAn7ujunwyv5eSh9fUG6bGDECdV3xZL7A9iP3/UhzXVOYP+NYEyY8whTPpH+meGaKZ6Z4ZopnpnhmimemeGaKZ6Z45hcjnpkeepowYcKECRMmTJgwYcKER1itt8R9GYRclsBISgdsMFiR5OSBnBg4YoxJDl2xIInQFpOc1KoBY3IKbgzBhPzdkuqyS/qOlMA/pf/VmENO7/EqSEg/h+zGNuISedRviGPADyMxRko8y8WSWTPDOYumovCZ7E8nbTJJh0gmI+Lhdw/BaopXo4Jm0jkxfvzZcXBi3v5UW6pqql+Px4pl1tRcXF5yc3XB5evPWTQVrigTsRcC45gIPj8G2nZks+mxhT2cs7E2kQg5mFYxydmar9CHQNd7QkxEsWjE2uSgMol5yH2yv0AwOcC3koib1NMQNbnbQoxojIzDSPCBziSiQ3KALkiulCH44AkhJFIhE6QmE/bGCM6a1FiSxwaSCZDUTmMcs2iRXjNiMiGe+iuIEIjEEIgx0vY9vfd5/BlENPW5gJGU3jyEcCA0YiZYjRGsMVhnsmAhB2da4tDTuH0gP1IXF0Yy0ZrHlBFiDImMDYEweDofGbqR1naQSZj9N6iyH1R5PCexySEYQzonYzDGPBqP6f1RyAT/4dtwubskt7EYA5rGdYjK4CMhenwfk0BURAQBFba6y656eRirMbsT9+ODfL0mZS2wRtKawJ6MyiJRDPhh317plFNbcRBgvBF6n8haDZ6uTaKSMTadtxj6Tg+kWWonQTN5FkJM48EkQaMsbHIep956aOOoIGkMxRDQmNrKomkumCQ6Yg0xCD7AGJJY2PdpDhrjIeY1TEZ2uy5d614UI2V4yIMFB7jcRsbkNVIehk/UmITXGAgq6XNRcZrZPmMwVtP6puB9JPiIHzzbMdB3Pgl65MwUxrBre1SSiBmiHsobRE2knub3FlZwzqaxtZ+vqgwxIBpRPzKGkPogjwOJSuMsmFQSZ/TCQMDHSBgjY1CCD2BS6/vo2e7GtMZk0tGZ+yRWxYgfPTGmOQupPIO1ac8wIpg8bzUvsQRPGPaCUBJS9m2MWILCEAKjjwyhp/XKthupioLCWaIfKYqCsixwzh7IxhACIQS6YaD1SXAJMZUUMjEJbdak9fZg1oyRru3y+pJHvsRcZkBwziVxxHt8UFa7nsHfUhoOc7qsS2LeixBDiJ4kaKW2FsAD3gfGweN9IIR0fCsGZx54VtWI9x6sIUSSo10gaiL5DYIxjjFGfO/pfUs3RsoiCalpnXe4tsNagzEKMRzWtKDKOPqDwDt6jx9D3lPSvpBKAqT51bYdsXC5H9N+shcJxlyaZwxKv22x3UDVDlSlo3RpDletQ2Mgat7FVB/WoHyf0Htl9MmdrCHS9UPKZqKaHkbIjaOqeJS+6wkmr9Oa5lzwEY0QMLy+WXOzaqmcY143nB4tKJwFIru+xZOEClA6FSCJbaqg0eA9DONAP4xoVHb3K06WR5wcH6NFw0ef/BBjDC+fP+e3f/u7LBcLQFK/PSzhj+4j5LD+juOY98+8R4TwZxLsh3sMyO0VDw92iMhhvD85O+X09IhhHFhvO9BI4UowhpCPuxckQLDWUhQOp2m9jTE9kJCndl5p9bBW/HmQn7u2n5MFHq5DUomUh32Nw9xDyPceA2N0xCZgSZkFXJEeMpkw4S/CFM8wxTNM8cwUz0zxzBTPTPHMFM9M8cwUz/zixDPTQ08TJkyYMGHChAkTJkyY8Ajb+7tH7tWIsVDYROSJsRgS4WxNcnEKkaIQrLOIc5mg2pOjEe8DtihSMI8lmhQsq0aMUYxRwjhkUjhgoiOGRHSFEPAk0nlPfKomkjOEQL9bEzNZp1FTmvRFEgh8SE5YI4ZIdqf6kb20gZjk+tY9of3FEPbg0BJB96LJzwe5Io8I1T2p8+Cyffy+VGMeLt+85s3nn3F3fcHZ2ROssfnaYCwqfBRChOAj3a5l0HAIzFU1kwCpD5J5Uw8iDmgiKa2lsBZnikywZ1Enx9Sav0se0Q0iD9cn+2uzqSSCKrmEQSQSCXEk+v1lJ6Ld5HYypsBlMkpIBIRhL9WQ3Fj742TCL+4JwkyIiCSyQgRMjNkJJqi1RGf2zEgi+JTcfqmsgSFxuZItwIVzWElptQ379svXaEATQ4FocqhGSfy0z2TVQwM9Esg0E8ViEDEgRWrVkJxk6bwiPvpcQiSdl9U9KbonlDO5n04Y0YceEXlIop06TYjGHUQHMRYrIJqZ6n0na+5BccRSCHuSXRW/t/bn7w4hHMaAovmcXDo/Yw4lYNL5ZMeeJkEPEWLObJDI4Idxk0qvOEQTqWME1BjmZZl4dU1u10T0RQiKmESmo5rHyl74MYjZk5ByGEc2u8Y1t+9+hibVy+Y+3I+1eHDyy2EuBNQIWjiiFAQkiQVRD8RZEgaTKFVYl5s2ZRRwtkjjClI/7DuN/dqXnIdpklhGVULuO6OKiMFZyeKdohJQMagaojVoWSSCPSpjSCSpyRM9ZFExuTVJDnzJJ5IUssP82a9JVtL4k6x1DC5lcoiqRD9CtGgmGAuX2n7/BU1R4GubCMOoRA++G9JnU2dwvV2l3sh9T+gQ0rpXFEUuyZDGApCFzv26ltSu/diIMaIhEapGcl8bcxDocCWhcinbQIQxKNtdyypsIMbk2A6RqCkjRxIvOKwjzjmcdVhrqayjaKqH71YYCYx59kkEPwwE8nokAAFjHZU1SGETGR2L1Fcx0HYjrXpESELIboeqyauAQex+w8kCYAj4LLYXtqApqySI5FHts+9eMwEfNImYMYuOBkXEUojBWkfZuMO89CGy2XQgAWOS49daC2qSgJvX5hjz0iApw4Tu3bVGslCefmfzPYBKWuPGvkd9yEKUYLJIFTLR7YyhaGZJbAie7XZL3zmskUOWgH3/ZlU1rQNpUSJqFqVifj1ErEslJPbktjnMubwvDEMq5SOKiiLZZW1JItOu7bkfWzQGCmc5WS6pqwLnsoBj8hpthM6MWXRMoqU1I6rQjyPDkAj9zd2KwYMpG7717fcp/vkfcHy05Ftfe59/+2/+G1R4ok+ZGfb9yGHVeiDoYwz0Q3+Yl6rJyR4Pa/zDGnPYFmJE8/1R1IiYImeciQQ/8uLZU16en3Bze8vd/RrN2UYwSTwLe5Egi2Bp3TAPAnfcCzYPDu5D5/yZIsGDiPAgZ/z8v38ODvtX3uMkCSB939GO0BYFVc68IXlsTpjwF2GKZxKmeGaKZ6Z4ZopnpnhmimemeGaKZ6Z45hcjnpkeepowYcKECRMmTJgwYcKER/hr33wXyA5im9yszqTU+VVZYcSiGhFRrDHEGKhKl0gCB23bIfKQ4n0MI4rFB6XvR86Ojw/up6CKs5YQkxXa2pxqOGhKLY8SD0QSh3oMzhasNhv+6R/+AX27w4nFOMeoI23bc3F1TR96+r7H2Qpiclhutx2KIWZK3VmHWEPMzq+QXWZ7oipEsmf7gdgGeFwK4uDgyn/2qZL1ID48EEFdu+Ps+Ji3nj3l5fkTQohUJiQiksggmdhUgdImEUCqw/H356CP4vAD6amARlK2aTm4Jh0/F5pL/v0XRAwO7uNEsifqNSKZuNu7FhNJqYerBXRPNSVyfU/GGdFEiYk+Om4+2IF6TuR2VPBeUZNIqD23uhc25NHnI9mpawyKJ2jIRlOLIZG2oprclgcaBoyER0KJHMbAnpjYt6Nm11+IEbAP/Xyg+B7acE+qkY9p7YPSFDB4itRuIvtP7iUqRMA58N7jY0SsxUku/6Bp/KfrTW18aO7DeAQnZKLviw4xyUJIJGRnG8R8XfuU9CIWSKTP/ljIwzhTlD1Nue9Cs7/uqAcCXAXUAjaRyolIT591Yg5tduhDgSiG0Uc0Jhe4MSYPHvtFEu3Qefsri6lvAZGYfqGCRsnCAYextZ8jUbN4JWAfkaJW0uoSEaIYIoI3ee4hh3m9d5oeRAgeiEmj6U/qB/CS1iuV9MmDm1KhFjmIcxo1pfIXPfRKtrinPjFp3oVoklNaH9ruQeCzoPJAXD8i14IGFI/VJNYVWBZ1jT2Ia54giZSP5OwNiX8loAQTEBNwWKxkH2zk4bwqEC1S6Q+FEZBFkQTkA/evB8EvZXTwB2LYGQ6ucs3rXRCTiU4OhPpeVBCNiOTVKE+xaOQwQmOIhLomHPaL5Orcr1tp7D70IECRx+ZeItu3LSjJt+zyGFLU2cO4Ak3CkHlYIWUv9FhBxTIUliBpdMVcQsRgk9s+C29JINq7rbNAnudNWn9DOqJCD3iyIGeUnN8gjT+nh3VoP+97H1OZGQviBFOVSRDlkfCZry1GJRymr2BFqUqLFZeuy5gDWfvgcE3CtmIIJolN4vfnESmsULkkQhCTABtLQ6DAZ/ElRpPGt09DQQjsZdH9YfbXNDOSr9M+rG/83D7M3lUt2XSeBIJgFYdBooEooMKibIhVRSDi1dO2W7bblE1BnDuIW7IfGvlc0tz1aa3P65YzlqP5gvVqg1Hl//Qf/Pv8+7/7W6jmhwXW9wwhUNWztL5LygogGHINm8N1KDCMI34cCd4TAlmYi4dsI4epvh+5eXyxFxWIYA1iUxaJGAJN3XC0DBwf7Vit1hSuxJYlUYTeDymTgTWUzqW5PnS4tmVxfcVL9DBG0/Fy5gV9uGcgP7hxwMNJ/nkv8Kd/K3kO7i8tvd9Kuhcb/MB2s6MbPXd3d6zXm7xHT5jw52OKZ6Z4ZopnpnhmimemeGaKZ5jimSmemeKZX6B4ZnroacKECRMmTJgwYcKECRMe4X/1d/7NQwpiY00i0hUEORjvvIbk/AwB70dKV2THFOzaFlu4lOZdUomA1xdX3G92ROAvf+dXIKeEJwfb8ojMlUekrTEGVxTsU5hLBGMtRVlweXtLHFtev3rFdrslGDg7O2Y+n1M1An1ybj047AwaLT67iBCwVgjZha17hvuA5MGMmEyqSi4XkIP1n3MoHeinzDYLJOc1+3IUMI6exazhaLFgOZuxWa8oSG5Utcl1u+377AYUSrMnuRJTGjUezj0dQx8pAALqDoyu7q8ROZBhUUNyMpKCenP4nvyvgFE5fOILokQWapRHx8gpzZFEJGgWcb7wffnsYhYZZE8AaCaPTS5f4BJZbTMvn1zghlxXJJfu0OzMB2fAiiXm8gdjJg+tanKBkngLkX3JB5M/L/vL/6I4sCemHskXD8x2JmYPg/SBPD8YSDWPYtm3QXIl70niCPgsW+xJKFsUaOyIMeJEKKxJcyO7EtN5PHbmcyCF5XAO+xZO7sZD+5IFLrFZMJIDYckjh7BiUPNANKJZjJJ4IID2JM6BhLP2QJJJJmV171LPfX3g9/P5Omw+fh4fJjk3LenaQ6IqD2RROp+Q+SLZX1hqW81OfFK5ArVg9UHAUVWCxENb6WPySSX3lTuQbkk0SJ/fS3H78WHEPDifH431gwtfhP0KVqh/ECgkCxS5PYyktSSESB8D1lkKk8WsCBF7aEurSbxwdi9W5DG5bwMR3KPSJGmtiWSFEBXDECJjJktFAyb65MQ3ac4VuQSAiCBFgddUniSoErM4sBcLBRh9xEcIaSWiEJPLQcCoEYxQCpTZqa2Z1E4uc9h2MYs5QmlNzkCQ3ydgCA8lNERwj8aOEZvLzyRZI+b9KC0jireKJ+7lN4y4gyiApnXsMHo0lV+J2TULitVUaiPJRuDyADhwn0Ieu/uhWGGJGCIuC5LOpnUqqDKIEoyj90I3RgrrqIrUvzEGHFAIWLPP1CB5Hj/ImnsxKGZRLJLE1KgCEg+ZAYymfcygufyEoHVJO4wMIdJrMsxbybtABIMlkhy3AQhJQUjzAM3ihTlsh8m1/LDODCE8mlNpLlmRg6N29CNun0nCKkRNIqWkca7ppSyAPiK91Rz2LckbiIjg5GE9jGKy6JLXAU0L8YOAIblszr7788LwSCQRlTySBI+jtuYgViF5ezvsqyavu7kUi7gvEMnOGkQ9NY4ni5JGPL/ynW9jsbSbLZ9/8hGz+RJrDSGQ18wv5CQ5CDYakggafC6plOdnDDGXWQp8EXmH3m8ImHTfRsomYKzl6vYOCQPbdsfN3ZrT+pzt0FMZwRVVLmeS3PLGGvq+Bw3gx9TOeZzJF4766NzhYV98/PphU4X9yvr4z8NDCg/r/cPCn0tehYjatLckUcJQOIczBdY4jJko/Ql/MaZ4Zo8pnpnimf1fUzwzxTNM8cwUz0zxzBTPTPHM43OH/1HFM1OENGHChAkTJkyYMGHChAmPsGjqRJgLGGNzqYFEVkXvUU1p470G/BAIYyRk0saIUDczrHOIMYQYabueXT/Q+ZFmPmM5X6De5xIQEetccsNmdcAKKZAHrLFUZXkguVVT2QljhH5oeX625HQ5T2UThpEYlOvre45CSTQe5wzex+SUysH+nhrdO4kO5OHPkf4Hsu+BxTh8GnhwRAsHEYBM2u1dQiLyEL+TiO6iKCiLAucKgg+oKw4kriC43ObWJDJzr11oprqiPJxOTtKdDyeH46dzSQTT/puNCMbYTJQkR6RlT9o/oiwyUS6PL1uyQJCPvScX0UzCHPi4B4Hgob3SD3tXrTxqT5uFFyWTW7InPnn0nentBiHsT0qTWyq5SxNRvSfx9qJIKh+gD32bRQojewdqTGTEvlclE8+Z1ddMBh/EEdFHV7S/pr03Mwsu5uGKRQwOk4n1lMJ/nwL/UDJBhMql1OhGkggX2Rc8eBiHHNogp5eXR7+Uh7G4d6HvXXyy/3/+PveIzdHHAtNehJDMkEkis4w1BzI2qD6MeQzO2fT5GIkxubC9ykEoOFB/8iBomMOx09qi7sDf5bII+/PLRFF2b0v+ov25JHEnfenekGfyGrR3RBrNpPp+7u1Hbh5jNvf5vlfTVH8QCJR4EH7MnrTcE/aSiPZDOQ/dj0N7IMYUy6NCLqCJNA+SSHZj9kJDJqvFIoREUJqURj/uyTVVnMkEZu6rfcYKmwUDPUyN1E9DVLqg+BiIIUAM2eWa3K8WwUlK/16WBVEkuaJjEk1FU7mQVJIiZmEuCSKFCCbmNUrSeQZVCgulFSqXhU/N4p4ohQg+k33WZALcyGFN27ddauJ4KCOSSg+ZwxhNv84CIkkgtJhM7qUBsRcG92PnQDiThrfN/bAv2WF0n20g73N7dUD2cy+9FvN7RASTna+JgIfSmYPI1hLwuSSOjYZCDGXuP7XgNLX93uFvZH+WeyJe8vqd5p3J17kXHI1Je+B+rayMwWQXuRUwtqAxySG98zHtpyKJBDepDQIQsxgT9y5gwGh8KI2xnxuS96GMMg/zNGfyWpalMpU0Fp3uyz2YnH/gYZ6p7D//8KX7khMHYSKvB0mESyetuZ32IpERkpZp0vzKUziJnjwSN2X/WhKBktifztOqkEojPOxtaR1Iq9i+lEgSc9LcOJSxyGu2RmhKy8msZlbXuexPGj5eYxagHtbBqMqDjvEgDEWFIaQSJpr7XcQQUv6CL6xV+S7m4KRP61JA856zf996t6UuLOMYUTGMccylNVIbO5vusQrncNbg+wHEYo3DmZRX5eG4e5f0viPzcQ5L937TzqT+w2j+AvTxD/L4lUeb/v6dqng/0gelMxUxerqhY/T+kdAwYcKfjSmeSZjimSmemeKZKZ6Z4pkpnpnimSmemeKZX4x4ZnroacKECRMmTJgwYcKECRMeYb1eHwL2RMh4rDVojIxdz75UwaiBVbtlt20pXUXhCgprqesKY1K66H4cuXj9hs9vrxhi4NwI9/cbwjji/QgxYguLdS6lhM8iQQwprHZimJVFok4U1KQ0x8TAan3PrDScHi24vrmj7QbGMfLRR695Pi6ZHRXUVcGuHwkxCQ9qQKwcfDqJWM7EjPx8KJvFisxc7B2TfzrkfUx/PHpFEylvAZNYTYJGrHUU2Uk+jIGyTORuItSE0hak9OCKkeQePZAqwhf6BjWZ2OJAhssjNkKDT5zvnmyzue59jAQNmeB6IChCvtbkAlPkUYpnFQ5EUSLgDaKCyoNj8AtNc9ACDjQ8FpMYlfyb5L6MmXRNKflN3JPbJrs098RScg/GTICHEDGYnFY9lYHYkzmG/JrZk2OJYjHGIEYO/aNy8Olm8jS1g8bU48ZIdqjpgZQByW0qB8JWyI63PcdHIsf2ooPG1J7JsicHLtyqYp1DscQY0q/JbuZETebRqSAmk4ByIK5SuvksHx36bj+Uk8iEZO1Cs/M6Dezk0j4M3f11pHMTA4UzFGVB1kkYvc9aSrpua10qmRKEEHIJgpyde0+cPxYqEgX6wByJ2OS41AgaMW4vF6QTSK7/w0j/AnGpuid+40HUkKwmJSI1u0jNw/VGfRDTJLudrZXDNWu2ae6PGHnIKLC/Bs3EmMaYMhlkEcUolMZk4jqdbyoUkKlGUXyw6XOqqDV4fZBMxMQkOiAYzY5km8h31XRypTM4k0U2SQJqYQ2lFWpnQQwxZ33QEBkV2hDovWEYhRiSSCWZpC+coTQpBXzTlEnUJbvbvRLGQC/70gJpLTImOWaTaDzicrkgI4Z+8BgDhRPq0lKIA0lrVSAyKwt8UEYf6cNwcPQrEKzB6l4QSdkEyMKENUkQ2bvyNRPGSex7cGarmsMilETXlNdCiClrx0EkSIMk7MeDPIyR1LRKiKkYg0jKfKBI3kP2K8F+TJvkihYoncXlIamijFYpBGpN12bs/lAGm8UnyddrDFkk2o/H/dmnNdeZ5KjPC0QqJ2DS+VmEWgTnkricytIYalPS20BpAsPoCTxawzWw92GDYV/yIbWDOXxPulBDQBhDSKKzCLNiP9bSXEtrzIOLPhVqSeS+FcmG3UdlKPI/mpojra157mZzb17H0lxF4wPDfiCt5SComfzevQs+rQmHTTHPwf0unrA/90O5JN1L7vsTSwvfXpC1ef3p/YAaQ2kslRNMTGWtytJxPK+Zz+bs1htA6Po+zctM4hsRRB/WbESRuBej03nuxpExBkQVl9favcwgfFGsJ9+9SEzZDyCAcQdRApRNu2XezDHGUZQNYxiyLGFT1gdnmDc1lStwxrCNEF2JC+Bs8SA+5s59WOG+mE1G2ffVQT3iAY+c0LkP2Xcnj/Yv3b/yIIQIivc9Xe/ZaEUVOnbdjmHoD/vNhAl/HqZ45gFTPDPFM1M8wxTPMMUzUzwzxTNTPDPFM/9jj2emh54mTJgwYcKECRMmTJgw4RE++OgD3lzfcH17z+X1LSF6vE9CwbyeMZ8tuFmvWbc72jGJBn07EHzAGKWuK0Y/4n3Ah0jbd/gYEIHGlfzjf/h74CxiLM4UFMGjOhA1EBSquknkSFR8iDSlw6hiUIwztN2Wp0dHHM9qnA303RZTWMp5Q1T4+PNrdrrlaZjz8sUZcYwMRFDL0dGCtm8J4RG5SmbgH5eDOJCBD5Ht3mf1pzSCn8OeAE6fMtj9jzFCFKqqZDafM5svaIdANVOs7r3VmRAlpSw3xiGZ/X5Id70/XWWMSnh0vn70YAzW2kN5jj1xbo3JKcHB2YC65KIr0gEICm2MaEzEtN0zZJiDCzVqShdvRCiMwQAhxEzm6+E8k06RSYN8vg/tYw5EmDjBYlNKb5Qokhx+uSms42BG1Qiac8Sn8ZGdazZdX10Uqb8ykZVclQfWnn1a+kMbhnRtD6e2T/ednXTq0s9oFgrIJE12mpsHAt4YoSgcxYHMzO/bO1Ylt0kmWSWfj8kkt6J4Ten81ZgkjGii2hIRlJh/c2i//fk+CF4IOLF5/D0ibtj77pIzei9seI05xf7jvrFZABIKa5k35cFhOg4GsTaXgfEM3jMOIV1ffGD3rCTXp+wZwHzdVoTC2AeuLzxMFGOE0j7QMwpolMN1GXnscH3goPaux9S/D+5RVLC2PAhKGiJoKocRUaJAYaEqLM4msiyE5CBNztgIWIw+jGkAawtUFR/G5OaVdL2lsSzKCpXkZPUxEGIg7AnrPK7DGCBGxERKEULMDvakoNFUdRYCIrt+pB/TeHaSnNz2IIKRhaeYyWVLKpkQkBiJ1lKRims0IviyovORGDxGYFY5CmsP7upiT9SKIQAjkWEYUcJBMLJKIpCN4JxgqwI0IBqwQFUZRpJIMYypXJCR9H4sFAiFFWpnqKhh0L0yw+iEXTsm13VR0DQVfb9DQ8jrchIM0nDZiwsPjk2nKf29ZOEgqOZxkYTM5LzfD/LsNg7pB8nrCbkfrBjKrMoelkDA51MJUUE9Yhx7l70IFGa/ZguDUQSPLaCwuSxGFhWSnKm5xAKHteIwv/NphhizYJdc34Ux2amfrjpo3DPdDEBUm0QcBfEeMcm127hEJGu2ryaxK6BZvt6fgxzmUd5f9m0syQkfYiTGiEE4my/RqHgf6IYxCdl7aU2UxaIg5kwAKLicjULz+DgcB0Hy/rNfZxTN5VHSZ5NYYNJYzx/Uw5zMUqqCaBKNH2jmmBzdYtNcUU1jeI+8TurhBw6CuphHQmV+bS8S2LIgFEJtoJKULaCNUJcli/mcup4RxoBxya2OggaPyeVXANQKhyo+ByEi3e9s+p5+HAijR3wqy1XWJUVVYEwqaaRWDqS9qGJiSN8vIV2EAesszlnW/Y7bDz5kOZvz9OSYeV1yVDcp44xJ2UPmpaMuXBZaajoxGD+kttaImJwdZ7+e7//Io8bcl27aizSPHgY4bOK5Pf/UAxkas/LxRSGJPEKdMWmdtgXGplI6Yh/PlgkT/mxM8QxTPMMUz0zxzBTPTPHMFM9M8cwUz0zxzC9OPDM99DRhwoQJEyZMmDBhwoQJj/D//of/Ja2PjCGRo957tpstTV0zf+dtfvTjP+LN1Q2Dj9SzGX4IOCmx1mGrgugcjSuRAgbvOVrOseLQqPRdz0eff8rtesWu6/BDZFFWLJczqqokqHC/WtF1A957okaMg+PZnFlVYk1kvbrkO9/6Bue//Ev87m//DlfrwH37I1btLaZ2qY68tYh1GOcOzqIYlbbtEtmRiWwkkcRBIyGGLwSnB4MPPETF5DTHe6Zzz1byxc+lzyTyKJVdyERvUMpZRTNraOYNigf0QA49pFvOJJcIqZZFZm7yO4WUij0Rww/OPnNIYa1YUWpXpFTzmoigMfSoJmKjcobC2QfCOqYU4Xs6dk+qPaSh3pPUe/dtdnpJIi9TOyoaH9g4Y9P3R40En5111hxSZZsD7ZDblr37MRHy+7IJQk73L0lcOBC3xqL7lP1GUtp7DieenNfpZMk8+wMRLPuSCXI4+v4cDuQ2BjXxoU8f9XciuB5SsBcCLpv44kFMiPurAhGipgwDUbMYUzyUQhENtN7jo+bSCzaRXpkUF9Vc/iKXhCBzhJkoN1nMkUyfRpI7d3/yZj9ec5mLxrjUu1n4SRzwgxgiPjK0AWMN1hqKoiBGZQzK4JXRJyd/yPpaVIuzMZcdMaAhE2yShQ2Dk+R0tYY0RzWklOpGcdZ8QaOLqgcnvqjJ5GCaE/nHXDoj05MxkW17PsqYnIJeDt0JarIIoIxAOwQM/tCH1ppclkOSe9XsuUTFx+x1FjDWQhaA9p99LNokgTFdg4+BYUzn4pyAsakyA6kdIBHPMXiIFusKSlfSdgNGA0aExhUUNjnLD/xaPoaPgdXQJjHF7F33SmELjFiUSBjGTPFFUOi9T+UInMUaQ9TIMAxpTkjKUNCNPgtZULm07njv0ahYtRwt5vRdx9j3qEaqssQh+P0cESXiCSHNiTEmolGS6oOSRJugkb7XdE42uYN9CEg2eu4J9P2ash8b+/VSD2SvkvzMUOzJ373KhBzmPeR+ztk7okZEYxLw8lGcSSUWbHa/gzKOibgPMbmqxVgezio54/eiqA2CUYfNwsh+JXiQ7fL68mgf2Z8bokQxKeOAD4zjSGEtZVGmNR8lhIDRvPbKPlPCXiBNHG2MkSiKGihLyyNWGjCHLWUvvmUZM+2XWXyOeX1QY1jUZRJLNeC3m7x3JmexmoPPmyD7FTTtD5gkxJgsDiOSMipkB7zu037shU01qEnvUTiUudi3kUrOkqD7dSL9u/9+UU0fOgjUee0nN0xe3h+qGCWRKGUCIZfm2A+bLKoexAooq5qgEacBpzGVadFIWRbM5zOapknHzXbs1Mdmrz4kkSbGvBY/CJ9RIz6OhwwZ++FQ5P3yMfZyk2TF9CDM573QGYuUyjiriEUqMzNqz3q74p3zr7CcldRliSkcrkjZFVImFqU0AXGCC0JRWax5uOsQ5DAf92Lz4fZH9zkD/iLIn8HrC0nOfPT5/duyIFSWJfOyIS6OqbRhO3ia+x3G2H/lESf8YmOKZxKmeCZ/7RTPTPHMFM9M8cwUz0zxzBTPTPHM/4/imS/cR/3/MZ6ZHnqaMGHChAkTJkyYMGHChEcYhg4fBGMdy+Wcs9MlEpWqKFgeLdj2t8yWc1xRcXx8gt/1lLbCFiVaFDhrEiUSIr33LE5OE7niA+Mw8E15n/v1irvVisurG1abTfqssWiIdMOIEVg0NcvFjNms5unJCctZgzER5F3ef/dLvP/Vr/Deu+/xpbd+yh//9CNCdv1FkxxZQ++5u9vS95moCkrXD4ng2yMTigc3K3tSMzEC+9f+LBxcmns1QR99IQ+81gPnoKTU34lwLcsC1Xgo+2AgOyhNDriVR8UQsoDw4CyDTGhk1ygCprD/X/b+5NeWJUvzw35rmbnv5pxz23dfE31kW5kZVckiUZ2qSsWmSEIEJYiCIFIDQgIIAQI01kj/hEBAE0oDDTTSRKCIGlASKRXAYlWxqcyMSGZGZEb3IuL177bnnnP2djezpcEyc/d97n0vIrMyK5MVvi7uveds9+1uzTLzvb5vf2tVlZt4GnWtIDLmwuyaLjuoTKq+UqwSIjapoaWOgzEDEA50z+MzpVdfICiKUKRM4JxUUFMBDYKXyJhRgmkmZJHCvWI5jQSRCgo5GObD0fiTli7dX1sAqDIDKRPgMI0xTKnWF/ODLU6cmiWYOYDhoL/SPMLqfAtewkQp6KLEhOlCbSgCEkipgm7mKm0TEFVUlWgCY6pzPoNWUskIwbEmDa5yj5iDyxVtCrpIZ45M77XaWO9aaZ57AjxZHYul/xYcFC0oxRQpfr+0QLCccPM5EMRTitf2lSKUSQ0oEyCpGAFBgiu5lexlMSzT0qIbYGITCUJZEAINTGxjsiCVpoGytt6qLzS0HwcNtUAuTmq5Cro4QF0vEcTBT60lGkRAs9byMfV1nYl6VQehHdQuSMsuUD0kiKDmqlIHTXs0FUIlZULds7ycQKHkTDDoQyCosIlO6rmwv6m/C6kIyYRcPHNEsVk3PK8TBwAj5qSRuD9YRYkdn23kAKRcGHKimFWVvIP7IShqSlFXPJfm122/qApeV1BbLVWCA9VUwrCiupZSLdVhlaA0uqqeD2YwjnX8A4L6NWb2dUHE6qSM9xIw1NIAtQ0mFGsgrM8NzCVVzKCYl52RBtgufDSKOtFSSwm5wtrQaT3JtF912u4jdIj7mTrJYDmjVhbkamAJqTaiq/3v61OJwfsbpZZSqQebGluRWqLDQWmpV1PxEiWFRiwpqPdzzIWxVF10I2Hrumsm6vtHU4JXz6ljoNw52zKMiSFlimWklrJoT6y2Py8361lF7r7j13eia96E/Wffj2Rea5g/H+pktzI74NkQ2vWbf6HzM7xJrJejTSXz6lZCYS5lIc0LplI0TsK2y2ndlwNODsbq/32M7Hc7+k1fq3bMpMtEIN5Sw8vUqjr7JZNT/Zv9OdqyIMz+fzpczXOkEVAGxTKFAmpoH+j7QFfqPoSXwokBui6w2W3pulDJECdrpYuEHIlRJz9fLLoTX1l+QJo+C7XTbPmOU3+/9dbp8xTYaRkqa8+ZTCmu0o4hEmOYiYrVVvsMW+OZNZ5Z45nWrDWeWeOZNZ5Z45k1nlnjmTWeaevvTyOemR/UP0M8E//04pn1S0+rrbbaaqutttpqq6222moLu3PnnMtjIcSORw/v8S/8pV/l4cU5gvH0xQsOIXPv7kPu3LnL3YsLxstr+tAhGjiKkoYj6XhgGAauh5E7D99iyCM5J6QUfvnrv4DlxIsXl3z33R/wuz/4IS+uB64PAzfXN7x4/oL753vefuMhv/pLX+PhxQVv3LvP+X6HiXHv0T36PnDv4oz79x/w6NEjNpuekpIH/qqUDIebkY+Pz9ASAQeb8pjppaqBxRoyCjYDTy2lODAF5jNxcBIeV7sd/M5Aa5USL2JsB01CCHSxgwrMhwr8mKqDvY20KE35V+N0AUoDmqHX4Kq+BsJ0oQK2/jdopRnM0GCuRoWaMVomdVwxB4BVgoMgFQyZlLdm5OLAq6ddlwqg26QOVQ2YGFlkKqNhFaYScZCwAa6GUSwTG1AnQm5gCp62O4gD7a08QdCqELNSQTRPpz+Bx+ZAaQOIKkVQx70gFZRRcXBTBLScAi9SgfY2qw2EMGqfmtoOm+fTigNxra/NSWRWKvsYqitLHeElRq1pwR2glQpIB3H1t3iz/eeqiFat6fiDn2epTIBKEJnALgdf209MgJcteidTwvcKRNWztXbepGXiL6RSSJaYlftawauyIKUC2y7Sx0AIQkqQ0jQBJGukR5sn9TIRJkTDU5rX1PBOEvikFIPcFMTTIm0kQIP0xNWO08Gq9LRSx8EwdeC0XTtUdHciLyYFvvub1rWp018Y06xyj1XdOwGQlh1QLf571IAUQxViF5AyUhRXvWpHZ0cnBQSyBKYyH6UwpuRERVBiEDYKu04WxF2BopAFK5BNCKGqQtsc2gw4e0mCBRBdCT7fX3z/CCGSciaVzM3hQAyh7pruw01JXQgUtJZ8AELEy67M+5iXUHEVuZMPAYJnxyBnLCdGss9DBVJD9GT+aoakkU3oqipUyIyeucIRS8yaArzlATglCRoBloqQCqC+f7m/1LmvPog4YUQFWTHfFyY1qAmYenYLVdSKkz+lEgu1LE7X1gywFSVJqbJ5hZyIlEoyCBqawtv3ZiefFqpvM6IEQoz0UdHSSpV4iYMgs0p+yqoh874VVOvWVP1b/dkylMKxFK6HxDYGv3aoEG7b62q/1LyCkQhka1lDfO95++03eP7iJS9eXjGkoarK/U+w+f115TkJU/dTwfdLqg+WmmHDpta7OZnbCIsZcW4r3syfbW1MGynRmirTc2q64rynn5AEbU23/YlJad72+ekZDJTiJV1UPMNI1IBg9F3HfudlFm5uPANJdac6pkIIYX5uLrrbSC1KIafEOCTPJFIKRs2k0S449Wa5o9e210FL2deLken6wMW+oytKn5QxJc/CYE5SbjYdQRWzQs6GhojEjhgSoSmPrT3zKvFxqxW30P7pyNTF14H5C9JjZtOXF5Lp9XEcOWTh0N3QdbW/LevJaqt9jq3xzBrPrPHMGs+s8cwaz6zxzBrPrPHMGs/8uYtn7E8vnlm/9LTaaqutttpqq6222mqrrbaw8/t3eP/dn/Dy2Q3Pj894++tvcp0ODDcD73/4Mfff+ipXh5GPP32fp48/Il+/ZNf15HHk6dMnXOy3vPXoDUQjP/r4U/7Jt3/Iv/Abv8Kj+3d4/Okn/Cf/yd/jL/3GN/jyl77Io4eP+F/+5X+JJ88v+fF77/Nf/Tf/hG//9hO+8ug+/+Jf/DX+g//1v893vvs9bl5cMR5HUs784Q/e5+nzp+w2PWNSPnz6jGNKDiJnkD4QQodZ4HA9EEOhi0oIMNVor4FtsULJoQKJFbAuM2jQSIIZ9m9B6a3gtCGt9We/Qlmc2ZArAVW0C/Tbjq0GtjXNdykZ1ZoKvRIJEmewRRqgrq5OzQ2oCDNoX4pNQJ1UQD3qDBZ3RlVeyxTbu2hUUIVAYCoKIUKswNWkK5tieKPUGF6kKhrVS2sU8RIKpVRAQQPLlPlNSSZSEDEMZTQ4ZDgcbriz3XtqdcsUKa78NRwQrAC1UVV/Ci2Je865Fl9wa4UYWqMrZUCoYE8wIS1AZ2BKBT6r3bOD/Q3wsnJyD2mgJK7WChIqkO93a4BfNqMcM1IghuAqUYGokcNhYEgJC5H7d+9QUiKn0VWqDbys84wty2cIIUZXmppR8P47AVR9pik4aQRCJWsqoTABT+IAuoNC7fXiNEKppSXE/SDg/esEqKpxB6ULWhKWiiup61g3KwIdRh+ETgMHgxfXV9zZ9Nw7P4c0Vs+qxFZVLjtY56BeROY1aeblNaovi0x0DEJVxWoklcKYMlZq26sfK0YMgnadq/C9y5MSL5urk1sGAEMq8KhoTWHflPfVQR20Up2Iha4C8F2IBI3cmPD8mHjy/IqvP9zTW8bMOGSZrjGt1aAVBHay7jAktKWTB1JVqRvCpot0XcRyhmLTWhxyplghBnG/k1qyoCo0pyoZdY5vhpHrYSCVzK7vnbyppAnSvMpB3pTGSrBIJROowKkD5r3VdRAixA3f/+QTNpsNF7sNF7uOZ8OBZA4ZS1GOOYE4EN+Hjo24KlzFCaZscZr7UonN5qfu4Q2RBWt7kTnAKjhxJbgqftPeJfha7MM0HoIwpqGSDS0bBaj6wgqiUFopg7Zv1H0YQ0qBGLi2wBEYMM63WzY5ESrhl+vG65yJFwVCXGmPZb+mOnEVNaDSM1YCJ1nyJVvqvtOA5urDZtV3mIHdbR9AlDELnRiBgAZtHMlstvi/kl1BKlFTioPWqfBLX/4CL29u+PDjT/m9b3+PTbfx/UWEfbdxwjLlCQw/ZuqaruNGG7c5U8ac2ULqHNeMBxPQPz+D2g4c6vrzx68BmUzicBiJsSPEbiLGZ/y57ikVpZcFASBqdUwrFVGzDjTS0ayQS2LMVUFcSc00jHQaON/u6bueq5tj3Rb8XqX+lbaCbH4utSZJKUguUIzxODAMA0MaGUl1rnTCzU8x+WnHXBC3BVEh9hGxgYcPLugskF4Wnj275O5mhwgkG0lW2J/tvSyROYWbkmAjhMH3cn+u1Da38ToZOE5t5nT+KczHbnqeFqUUGIaBMXnZjPVLT6v9NFvjmTWeWeOZNZ5Z45k1nlnjmTWeWeOZNZ75eYpn1i89rbbaaqutttpqq6222mqrLexHH33MW4/e5J3QcRgyv/07P2AcE4ebAy9evGC/f59nj58gJfOFR3f5d/7u3+TOtuPq5Qt+/7vfZbff8+u//g12+3O+++5P+OFPfsyX7p3zjV/5Jd75V/8O/4f/4/+J3/r2H/Dhixt+41f/Ap/+k2+xP9vy9r17/Pv/7r/LO2884vrlc9775FP+w//o/8K3vv99bCx0Gjjb73n01tu8ePGCm+uX/Nff/F2evLjmydMX7PfnrtCz7ICDQojBFX7B1aZmVZnalJOYo5HFQW1XIlXQtSyD+CV6Ai6pqmrqFjcXV/UpFWwyg5xOyAXDQYBtv+HO2QVnmy27EJFQQe/Qka6vHbQVYbfpKeOIleLtNAcq+1oyIlb1F7W9E6De5J5BFsC3eLsNV1ObIY6yV4UeKDP4NfVtyYsIDpA1NErEgVWcoECZVN0TOVKBzFwR9TSOUIHcGBQTI2VjHAuWMjlnB4dLwsQYS3GARVwVbMXBGxPxfjQKQ2QCUGxBEEgDfGDSAmsDnTXUqRGaNm/Sk9Zc4VNacRGszArBEHSaZwcUYyVnhKUqNcSIFCOQ2UVXvjfApwsBixmzwigNtDWsElStXEcpxpjzyTRIBe+kpS2vZIGIuMpamgLUrdSc5iruQxOwPZ2woMBUUIkVK7QJkM913qVkRJRdFyZA3HIi5VLLi3iZEwffHXpVMyKFiBJE6TWQQ8ZMuDoMaEl1XHxG8wTENuBUEAkE0eqThVzB4oLPsVWfDkHIBqE4QTP1tmFaNk1pBRj9B8f+Z8X4pLquoFcp9U5VrdmIOzNHbMWcULKarSCo0zOkDAGUQG/GPkA0I1afDNSyFJWsjAhWy8Q4qDirVKWquUtxIgzx9ZjGTFOKW84VjDUm7NyMbBmhoBZ8nEOoIK1wvLkhl4QqbHWDGmj1sYmoCZGoEAKMyZWUmBHFiQFUqjpYK/so07p1RbERRIkh0JcE2RizUXImUSZCppTMQEJy3WJEgTABxGZ+j0YISUtxYbWMQIaUc1uqnCDTdRXF5gD+phMF7baLLH7FIpSi875SCYeWpt8V9O5nITh5d3MYGI9HbsaBRw8fEfG5Q31+Sm2TiBAkTGVqBC+X4GUafL/N4urkUstZqDjp3TJNSOtjnaspI0edf4mClMImKJvdjrsb5VAyyQrJDKt7bisRAu6KWsHgYl7WAitYyfzuN79F7HrGVDxrikY0BFIpvLi5QVW5e7YnqnI4HlGFjEylY6CRzyyUwo2K89JFuiAGprVoc2aCVuLFs2w4aXW+2/CN3/hNSin84Ifv8smnT5DoxO2kLrb2hPC1N5OL9W7q5HHE99AYAXPCNJtgFthtlI0KXc1mEYOy2244vzgjBJnWbXsGzJ8JpuoUda36zmSWa7mDhOT6s5VarsYm4H+am2lkfHS0roBiRtDAbrdlLANlHPnql9/mzXsXDJdHXhwvidpRysiYFDskLq+uufzRwffJELl7fg/rd2yPR+4+e85XpEzKdxqZOt96/qBw8honNlVaai2fFibTc/bk/MWlUGWz2XLW9aTdhq0ELo+jk/JLFnq11V5jazyzxjNrPLPGM2s8s8YzazzDGs+s8cwaz/yJxTPzmvrzGs+sX3pabbXVVltttdVWW2211VZb2GCKSWAcCh999JRPn75gzAmzTFT4+le+xkYhHY9suo5f/sVfIeQDz59vuD7e8JOPPuW7P/wxd+495M23v8RXvvhlzISUja9/7ev87b/6V3h8OdBvt3RqPLt8wicfH9ju9/xKiHzj1/4CH374Ph99/CF/8L3v8f6HH9LHjouzM87vnPOlL3+R934Cz54+5ff/8DuEboOiRI0VdPAUyi14bUCg8wEFROcgtAKpWZr60SrO4mnWgSkwl8W/E45c3zPlrjYP2RUlIkSMQAWHwJE9Mzbdhjvn5+y3W2KoQkURJAil70AcJApmNaW6gyNiVpVy3g6tqLiBq7pKIz+8SUXmxjqQtABdpEI11lRlrv5zHKUpUK2WTrB5KKQl/rYKsizBdb9mU7KJUEtDuALajAXQBWMF2bL5FTZd59etRM+EJFGJjNyALCcJsFLVowvArMFNDXSrcyvmbZbGu0oTq7c5XcywLnihJVrYSId6H11en/lahivstZWXEJnmUxfjbsXJL+mFXpxQcaxVneSqY2Y4UDSZ+TyJMpcrCALFlWRRdU55P7X+NumxAM3F39tAO63gj9W1Yga5GLkSFdN1pjHA0947bO3+i0ykiVQ/DVZJEhF6Ad10iBlWMlLLkDQFolT/bj3IU50TB+mjCFoqUVD9vjSfM6kgrBEqMCutHElt36RvryCpqqvVEUGMqnKvBNMCaJe6NtUaqNnGdMJmQZo62qaU84KrWPedoPuuKlq9PVHN9cY2zwHWNP8OFLb5am2eFfJOVDmIqBOI2lTE7bzcmECbwWopZVLUjqOX0+k1VGKiMBZb0kiukrZaoqORqi2TRGiLRkhWvPyGgFpGy5Fd3xFEySlzlY1cBBeCGkPJJClEq6QEglkjIyFL8zeqQnMuI9EA5LY3VVqmluuowyXQqMIG1E7Lvs5PKyHh5IxOe4/RxsCmdWjarifznFTgO5uPi6jRRWFPQIqn9q/TiVklwWh799yYGTiX+rgwsrgq2omk9ibft931CtMTSvx9c+/9up4lwYmY0EqPTE2Xqa+Ly7+KB1dw/tnlga5LTgBFh1WDiJf1MZ/XzJwNI4jSyl1gLWfF3Odpv65bfitdMq333MigqZvuw0ufqGPThciDN+7y7MljLp8/I5kraD2HQ30GiNYvC1CTpei0X7QhLuL7T1CIQRiLl7c5jImHfaRXIWCICV0IbLcbdrtt3QHn+TBd7BN41oWSy/RZgVoWpVTVNVaQSmiUWl5mIjesKboX4zDREKU+E5S4iZQxYYNBUZQdfb9hd9HDpkd3Z+hmg8bAeDjy8eVTro8DRZTz64z2Wy5SIl9dTnu5t7/uLzRydN5TblvjrqeDInOja/tl8cP0OQpm76ik1zgkbhLc6A0mxs1h5OY4chyHV2+82moLW+OZNZ5Z45k1nlnjmTWeWeOZNZ6Ze7fGM2s8808bz5w6lCx++PMSz6xfelpttdVWW2211VZbbbXVVluYxS2X1wOXT1/yh3/4Ls+ub+h3G/b7DW/cO+cbv/7LHK5uePniBS+fP+fRO1/h8vGHbIbEF7/0FX7/3Q/5nT/8Fg8evs3/4n/+m3z167/Es08+5YNPn7PZnvHv/Jv/Br//g5/w9PklZ13mSgbe/8kPeXl95Orykr/5t/6HCInjcOC7P/geZ5ue8/MzHty/x1e/9kV+49d/hTIMvP+jn/Dpp0948PAhm7hx9ZUZKrO62cxqXfiFYtVmsCEoRFWyegr1JfAwBcHMfJ1Q089T6rWtgh5V3WWC4KnfOw306unRZQHWK8Juu+Xe3buc7TeoFKI0JZzR7Taexry4Cg0xTCvoXNscVKsu0CqY5gBeEVeVTYiE2AmQZQ2YMEPM07qbzUBoDC34B0wa5DuNieNcrnQ1s/r+eYxEZlCxgXK2gE0a2OknK6Wqng1PV993HVZyBYn9z4Sf4UpE78QMLDXQvo1NgyJEhDzDEAietn5CfKVM4JxNd6iokTTgYwYH6+BNxEIrtSAVrAQHaJrfecpvrWCJEaJSkpfasAb2mNHFyCZ0mAjHYQTE05hXQE5UKvDnPtGAolIKIqX6gxAleCkAUYK6+tShunk8yjS5TGD7VDoEB6oaMJ5zqUplB/jGlMjjPJ7gJTgmkEgDneq09tTEFaO1/a6MrfcVT7W/7TrvVx7ZhNknUjZPgV5HuBhYwtX1ooSgxGhIdsV1Lg5aO7nlfpaLq/+DuG/FEKZ5MqyC3E7UWCmEoK4ANJ/bTqQqyJviurpNxeSkkjyAEwxKLd3iynepJFYjUjJGp0IfhYt+wzDWAh0CnRSyyHQ9qTexCjirWfWDCog3zzSpXltVpydoXSVw6jmurq4ETFVyt4nPVX3fdRFVJZfMmKyq0x00FytVQVzZigpgUvfAbGEigywXxqqa9xIJif12S87mWTaKIRrI5iVPhlq2IVfY1NHlqhqd/i0T8B1Ep7IulaGq63MGIk2Djx8NqGUChkt7HjCn6cfM51UgWwNxl96+AG7riYKXlSmAmk7rPpURFPabDul7Shqx1Ag0RYLW6+BkjVIlw3VfK0LB1f25GKOWaa15KZJCaQSJgFl2L1BFKwDe+iQG41gzC2AghT74rpzrmjdHgh0sLxM7Mv03jY97O0cThqGganTRFete8gAIkQIMxX1/QW2CGEVyBeJngL+VKCr1NhNJUAF9qaThtNdaK25TxboGYr5nPXv6jLcePuBss+Fs0/P8MKJWpvnyzBC17M1EDik5F3LxtuHNoYh/Ptj0iiX36+NgdHcCURo5AX0X2e027PY7ihSQehERf3YzE+MpZ3IuWPH+NP/MFMaUwHIlK0rdGysRV9pzo7RVUseogex1nagSOkWKUDI8+/SGsyhs+gv6e/coSdDdHbTvCTFg4ZpLecqzceSYE2G8RLsjD0tmO1zXy1t96te1X3OMODFZpnGYVkzd9+ZnDSd2my+geedSJd0e1WZcXt3w5GB8ekzsJPD4xRXPr665Pt68eqHVVlvYGs+s8cwaz6zxzBrPrPHMGs8svX2NZ9zWeGaNZ/5p4xmZWj+99ucknlm/9LTaaqutttpqq6222mqrrbawx59+wssXL7m5uiHZgV/7jV/gb/z1v869u/f44IMP+U///j/k4cWOR/fu8KUvf4F//Fv/hJBHeimc7Tv+7r/6r3F5yGz2d3n7y1/h+cuBJ5fXSPiE3/rm7/CTD94nbM642G+4ev6Er3zhHb72la/y7Pklv/Xb3+Tv/T//H5zduUu/2/Gb3/gGWCHGQN/3XFxc8J/9p/9vvvWt3+Pjjz/mN3/5F/nqV7/Cuz9+n0+fPCP0FSQJEYmRUCaI18GOqlKiguAuW64qZJ21hqpKCIEFVjKFtFKEnKGUREoHShkcWMqFw+HIZn/G/vyC7dkZosLZrid2PRIiRSLb/Z779+7y9puPON9vuLq6JKsSu55ePSAXFdAARehKIBZz8CEAEj3dujrEoDF4wwyklAqeVQBpAjGVlrpepPazppeeAG4RYhcmcsRqCuxWDkBwMNSowKoZXddNv7dSGioV3KvlNEK9dxHhMI6MKSFADLGC6n4/qYC/Eib1o9mc5rqYg8fWwAhxoNZLMdTU+zL3qzCXAXDlfDgtj0Abtta/CsZPxMcMWAhM4xTq/byt1NICFVBWqem7DaUCxbX/m76jK4VxTOScKSWz2fSIBgxhSAW6vpYvqY6JEy9gBKuAkTW1raeenyDM0oDW2Q8wLynBhMk0z8BLl1SVKzg3Yoan+K+9HpODs9ZIBG1kWG1djCf4T1tDUgGwNspSia0uVtU3Qk4Jo9BvIptuh5pxOB48/XenxNARVSkijEA6DJTUSosoo4CF4OC3GAQviVCaolaEvt+4Qtna2peJVDJK9WOfv2n9m/tNDA2I803A08Y7qNqA5ebjKoIqEwkz8XRaS3Zo00A6AG2lQKfTPJdSKvlU5yCV5uJQgivmRZGl36m6MtYMSiXhmkrZHcehxMV21wi9yakbxi9CCNHJDCu8PF5DDE5OTL4v0xoBsFAmP2xlSFo5D7/uXMYlaM8o4l2RioNK1Viq0oUeLe7DQzEShYvt1rNAAJaHCrzKVDKCSpOqePYJDWHqWk4J0UDCGJkB5wXXV4H6gmV/PcaOWqWFXLKXUKhjXnKhqEwkiRBRDRNB4uMZ8Oo6uWYZ8D1FgyJB0C44uO/oMLHrqxq27sMhVIC8kLM/B4I4yxwQUoXVFd/HQ/UFX+ZdBWTr+q7+6g6wUFPXtTvmNPMpSx8WIdQ1HmwatROypFCTILRMAu5+HHMCUe7vdhSMYomUcnU8qXPlJUHSkmATQSyjKJhW0roql1u7Q1ubTGu07dmqEChsuo6SC7//e9/mR9//AV3XIdLRhTJlEplgdWvZO+Y1Lzjh2kjpYoUxC1gkZ1dXb1V56/7efayYP1+Lsd/tuXfnHvfu3qMLHX2/Idb5DCoMxwFV2G23eHUJzzRTKFXhHylZGcdCypmURsY0MKYBkeyv5ULKpS6vRg/ULwpQiQkx0pC4fnlkHAuHl/DffPsH/MPwE+6+9RbvfP1rfPntL6HjhsvBKOVA6ZQv/eJv8E6BIWWOx5GxFO6OB+7fPEef/hgv6VQ42aSqP/3xbPE5TD7vNNdif3p5xXceH/gDe84mJa6OIy+PB2S7+2Pef7WfF1vjmTWeWeOZNZ5Z45k1nlnjmTWeWeOZNZ75k49nfkb7M4hn1i89rbbaaqutttpqq6222mqrLexwhP3ZXXa7cw4312hUfvSTH/Puuz/mxz98jw/e+wm/+rW3eeN8w8O7e370/e9geeRsv+FLX36H8/MzDpcv+Oi9x3znB9/jvU8/4O1Hd3j70T0eP3mPf/CP/iEvD4UhKTkL+63w5sO73Lk4450vf5n/9ne+xfV7H0KInN29R99F0nDkeLjhxbMXvLy+Ae3Y3XmDu48eMIiQVCkayMnoEuiYkS5UdepMAizBYAcJzIEhacGvVBC9pZd3E1xhWMqIRCVuO7TfETdvoyGSSmIYR8qDl3wwHvmHP3iXbz9+yre//R3OLy7ouh4NSsqFToR8uOb66VM+iecMm5qoWgxeDlBB6qZpjYiDS8VVdyYDrvKSCVhfQiBC+weC2ASCSi0tUDG8Cow08NTf3IDiCVhsCrV6iqpMCj4QQhhpSmA/V2bgooE4k7oXhpQY05zWPIRQwdk6/hW8FWOap1zBRiueStvPm0mCVo5CROa0+LV9M9xdCQiZQfKmzGtglGhTmJZZwW0zIKPiql+RBXBaFmmrBcwW0ux2T1UHG6kqxMV4heOxtgGS5apctQnwM5kV2G10GzBzAmxTiZRK3lhtUpRJz1Zfk3lAsPp+Y+7l3HwfC7vlD2XqQxsvWv9xAmoqD1GJndbeoF6ywkuYCCVnDFdfxxApJgzj6NepJN0MCDtA1sZHWPhxXbtGVRGLoqqkUlBJravTOmmlG9o6m/yDWXHcSprI0gesAXKVWPEJbZ7r4HK7Ga6SnodHpjlqpIMhlUCrOQ6k9ck8XfzUKm+ESJsV99WgM5mGzWQemJdKQRa+ZFO6/bZBtEwRs58G32OKkUqa0dJG9ljrZXt5zgzgpJkDib72KxBb9xsRnRSsk//LjDOazWRdwdfeszx4yQ+YMkRM5KeqMw11XLrg92e6nqt2i7fcAV0aweiDEJu6vQ5MN+QJKC+AxnquNYV4G39DZERkpLFnQZVArvdwJeu0Juqeobr0FB8/L/lQlfd1x7fa5mmPU8GKotqxeJmJRRJ/PkzPAlnew9dOaFPYwHWViSzR6s9Ta8UJHOpcyXRPnfoTSiWCa5miIGD+pPLCBMUoqq5lN9ASJh9UIEZZrD0lzlg9tH2Hub2lAeOVwAvqJS102hnT1O/Ndts8FkTY9JsF0dH61P74gVIyMXr5F1WhlEwqnnEBiyDZM1CI0OOkXuMYxjQQYsQ6pUTl6nDk5vpI7DpyyfzgB++y6zY8ePAW5/e35FwoaSDngVwSGgJBIqUYN9c3fPTRh7z84iNSuket1MLNYeBmcPB+2pTajMn8DBARcipcXx45DonrlyNFAofLa4I84bLbs3/7yxyvnzOWDCIEdpTxmmFIHI9HMOUmZ+R4w+OXLxiHNHmtlUzWulZ5jd0mDVpTJ8+WVw9+FtFgBtnJ1IvzC95gz4uwYVNG36Msk/L4+veutlq1NZ5Z45k1nlnjmTWeWeOZ2SPWeGaNZ9Z4Zo1n/oTjmfZw+axr/RnEM+uXnlZbbbXVVltttdVWW2211Rb24I23udjvUIHheMNgxpAEy3Bx9z73717wpUd3efjGA2K3ZbO/YByOFA3cDCBXA+No5FQ43Bx55+23+eJbD3nj7hkS4M233ubsUBiyUIoSg3F2sWN7tmOz2/Plr36NmyGTipAlYBRC6AihJ0rHg4eBzf6M0HWM6cinz15wGBNSlXFqrliyPKdWlznM9Wz/E0lQZkCzlEnpaDggXybQy8PinBPdZs/Fw4ecP3iD7f03SATGnBlz4t54zRON/P4nTwlPr/joxYC9fObXNKOUhJSMjCN2OPBye49kPZaOMNyQb0YkJwe6pAKJtX0N4beGbEhTlS2BuwmbcrCppClulymffYvNbTEOzUoFQxcAer0uE/g7J/ie0jo3EHmGjWl4nIOITIB/biUgzAiaXUkt4mCdUKmZGRC0CTDyfxoAOqG/THCJH2cmMdr/J9DENECLgZqH9JQYscXh6SKLMbFT2MNVffN40YC7Np7tvdZA+8QE0lfwfQLmFzeV6Xyp96z9Wkxeg/pt8Yra6TnzICxGZkrBPbftdMRsAu/a+DpZcvu6s1KzAVnWlLpmDuw2oL6C2mAVYM6T+n26jpyO7eRQDVA+GQOZet5U62UJWFk7d+r+CTQlt19oftVcZHkp2vqYFeqNjioL728z7m4gM9lQx91BWp39Smz6uZQ2O8s2n4Jpqjr766L9s+82INam+fbjdjK/E/kgwszplFOwGbtFEsyOLzCp792H/cWTzO4is4p6WqFzO/w9C2BYIQ6FYI0isdm36r41L9tK9C76ZK1N9dqNcmkEzUSwLt4Q6nhrBcklzMfKxApVXF7L9DPgZUS09rHMLVuOsZNTy2PNJ+p422L+2woXJ61lQUYxkTveB1UqMTqfPwPIBtLKgtTB8MGZ9nYnPznZ62wJBNvivvV3NZ3WoEmp8+HH1XzdF2l7EmhVZ/v5AhOwLagUNHuvqQC+1flt5TeKzISeYkRVgvje4X0v0z5ryJTxwFj0tc63tEdp8xjx9jpBoD6eeKmYXPy5FEwIpXhbRT3bRV3/1kVyjHz05Cnf/M4f8uNPnnG4uiF2kVwy3/r9b3P37IKr0Xjjo8dcXl3Tx44+RoLWPlqh73t2+y137lyw2XSEoJgVUsoch8Q45krmNN/3kfVRrH6iSimQhkw6FlLyeQuikArp+oiUgkjG1J/1pWRXYY+JnEeQUMtRjeQ0zOR/LbUzPYwXm+Lt7fM2HXCyEKaTPoscmFda+7+UhOWEmKA2OlFEYRM/4xqrrVZtjWfWeGaNZ+a3r/HMGs+s8cwaz6zxzBrPrPEM/9zHM+uXnlZbbbXVVltttdVWW2211Rb2y7/8a9w9PyOqMgxHPnz8hFw8ff/XvrLnV772Nr0UQlVcvfOVNzhc35DTSC5weZlQei72Pfud8M4Xvsqdiz19DOThwF//G2+Si6vVxlwoJVOKB8OH4cBf+Wt/DY0bDkPm/Q8f8/L6JVFgGyN39lv2Z3sQ5dnLS37rW9/kw08+paSChkBTGVIMcsGCVBAaJhhbZZHV2MEBs0JJiZIboGZkK176oaoxS/a0zF2IXDx8xDtf+yX273yJy8FIpVAoaMg8ef6c9z994en9tePF8yuG40BKI2KFkke0ZKLBfnMXswjXl1g+MNwMyDD4RKhSRBHLDm6IEGN0EEgaYDIDxlDBKKq6DeN6GGsq5wYxLYHxV8FCs8yUIrteeYadlyRBhSmaum0CZmfwRUQcXLPF3b12w6TSFMsgecId6m2YkIKqQHMwWxfg4KvKrFbuYraqAqwAncFEAsGM190GghtoOrXF5vvNAM3yLvNPUmyBg9RzJ2CdCSRfHmuAsuotALGevxj9Cqy2283k1QwoygRKG4Y1Bd8EmJ5QCBO4eDIg1u7mACSVtGhlHBzocwDypLwA80DOQHXtqUA2J1HaORNBZQZlBHGVdBtts1yvJRjqSkiZr18EWkmAqQXTcfft0o41f1vOm83rpe0Frf/TmC/Gzce2Qf9S1futtW38ZOkQzEVH5sMN0HNAvpFEFdBdTkFdSY73+yhMvlgaUF6BdWmgcW2RCJi4crrWTJn9bRqBxczJAjxvRM4ChjdO/Lq9f17/bf3ZNFYiuvAPO0EOTWZf1snXy9Rvvzaz/yAOxE9D0DIk1F39lp831XfLsGALRqABxaV5h+DPjRNXnm5OIxNP98rZr9oPpfZRTBblB2q3ZR76afSsjbXU6+Wp7Q2LndpbM/FP87tMECGcrONZHe2m0lrffNbqvuLjqiJ1FdmM/apQdCYJaoMn/w21XEOje5b3m/aI5hsIc12S2jONDsg3MtCMpnRXEaySCK09pZW0qLtBCK6KbspoJ1h0mvfFUsbEPw5odYGATOVcmq+1MfMMAeIDDpg5HK1mUBKQCbHjbN/TFO+bfkNR4YcffMwPPn5aM7RkVJ18+eTpE+5d3OV7733E3fM7SOy5c37B/Ytrbg43XB0OjGPh4mzH/fv3+PKXv8i9u3fou84VwEPmcBwYU6HYtCNMztEIXM8+4L0quVCy1SEVNt2GIJE0ZnIauXu+QcXLzpgIuSRi8DYXhI0pWxO2nT/PSvFnkqHzc+cWyF9HcuEwfwybll19BlZSfDzeMFzdMGpPLKmWVDFk/dLTaj/F1nhmjWfqK2s8s8YzazzDGs+s8UxbEcxztRwK1nhmHok1nlnjmT+mTcvuzy6eWb/0tNpqq6222mqrrbbaaquttrD/1b/9rxBCICXj8uWBZzc3dH3P8eaGj95/nwf7PW8+vM9+tyGo0HexBvlAdvVrF5QYlBg9LfuQPJU76jXrS8rkUsjFSOagxziOXF1fcu/hQzRuGEbjnQdvYsG42O+42PacbwJ5HBnSwCePH3P5yU94/MGOT5885zAk4vk5SYSE1GDPKtLpFjtls+lr2vOCSKwAmf8OM0ZNAcuFcRhJw8B4PHJzvOGYC4Sey6sj4d0fcxxzVVQpWWFMRi6ZkjNiRlcSXWmp0ZXESM5+/Po4cnGxZ7eJhO4uH336CdHRICwEioBYrCBIU265ZK+leg86A9sNFPcuCDvtMXHFrR9ooGcDWRcAj6ND8zk0XK+hUfPALAGCJTyEzSC1GJjOIKIDelb/X4CvC/jNFuAH4Aq0BuhUQMmo4M2EYC3gtCUKPN14Aa4FXrnX62AGuXWhE6Lk5NgMVAKIpQrM3jqH15AL1lBjv6bWJVQamrwYiNvvlgrYmcgMQy9A7+nugVtjUokUqYAPC/nnku5o01BB9xkTrb7ZQPVb41snZ/pxUpdinOI5ctJeiA586nw+MwTo/mI2VyhAaPTR3OCG2s/A9MlcTcDgfIeTeTJBq8eXes+5W0tQsfrDrQltwNZpogJtrV8QG/UEbT/L3JMGbi7Hv87xyTRWULSNDsXBPlteH6lrp625Rb9PRkHm5tjynAWqPt92MaaCUepxmUiCue9hHqt2GTFMrPbHfb7d0Ii++9QBNG3jhZfdkHkGrAgEnXzdyilQbYuO2Pxb3UPqYJRKdjZgVedVNs/FDIyX29de7JNL0FamCiu3Rlpae+ZWTkSTwcL5T67ZfGdJok5bX2m+eUo6nuyJyxbb/P9JiYXFs8GH5PR9SxOB3IhfY+EN9SNAVamH0lpVyOpjrQZqAZO8GJ62v8yeYm0u6/86De9iZNo+M62PSopN+0SdV5zUDBpQVUIlk00q0Fxb0UoOufY61bERhB61TC7+Wtjs+IXzN9j1gU0Qzs/3hBDJ2cgZYgjIxtsWQuCdr/4y5ZA4Hg+8OCTu3j/nV37lL/CVr36Nj59+wt//R/+QTz55Ts5ndNHLZux2O3a7Pbt+RzDheBg5Dl56KQSppMnC3yt5ILWUxTAYOVF3eCNF4cV4xdPHN3zj8jH/s3/53+KN/Y7ji+dcj0fG7KWIcjGOY+YQI/Fww8WnH6PvfYchFS/LogrkKbNJe5ZMf5nH/U/GfG+7uLjgYbzgGHfEceA4HBltJGn56ZdY7efa1niGNZ5hjWeWtsYzi3FZ45k1nqkH1nhmjWfWeGaNZ/55imfWLz2tttpqq6222mqrrbbaaqst7G50MHrEKH3g5qZg44Hx5iXXV5ekuxcEUbaxI0ZBgoM0mFBUXTUF5Aoa9/0G1UTOiVQKqgEJrgYTcQVPFgMNqEbIcByPXB1HLg83xBDIx4GbINxsO3qB66uXkI78j/7mX6GLhf/vP/otnvz4I+7s7yC5YCpYVIJkrGRQR4elAClNoEsxCLFDdKRgXN9cI3R0pdABm/6M7s6WfYh0IRCDkkSI+3O6s3PC2R3KzaGCQ0ohsN0U1AqKl5fI7W8u5OOBnXRIvwGEQ3jJ23d39JZJVwc+TslVYY58ESssYuJQ15hBlyo4s6paYhGbN2UyoMUVmAAO6fmJC+XfK8D8Ahqawn45BYwmoO22LUBVW/4uM4h0co9JjdsAQKkqz+lGMyAGJ8DSCTzV+jPDhvM1JoRNmLEjOwFzT7pQ/PhMJnACQLZyGKIVSDMHr6y+y+T0wnL6T+3HbSJhSTQsyI4m572Nbi+ViK27s/T2VAVcgd0T2NCoaswldDyDnrJArG+XnJjv+3ofaMpOqe1vQP80BKcMBE3uapX8Wvrxcu5nNWcbkkX7T8iB+f2wuB+vzku72gw+zmvpRHG9aNHUt0U7l7LXpf8tkvjfasFt5ztVk59c+zVnL8fCAfoAJ+1dztny3adHbNYl+/VOfLJM7zlt6avte2WE2twu1us0lyav9oc2p5UIrOfoAgg+GR9tvlrmve6V+Wokz2mfl8p9reU4bPGe5dpbeo7I4hKv3fw4HcvPOcHvZ6cue2vZ337f0jetbnnL0kBtjzsdCXy8l2u47lehdvw26XH606u9EiCgy5cXZxmhjmcr0WEEWomK6bEzkRI27RHLtk+79ckmPPWAJY/qBOJ8DLNpDxYq8SdVWS+nq9ooUzYP71hT5He0p5hRnFCRACKUEPj45RX39hvubjuev7yG0KGiqAqxZKSOeSnG5ZNnxOAEkKpw+eIlORU0RjZdzxfffJs8FEoaeO/99zhePScdD3zl7Td588F9ggqfXF5yebxhKKPr5y1URTmgvg6MglkhZ4EjWHZSxgzSMNAF5e7dHV98cJevfuFt3j7fUS53DDkxmpchalL0tOnh+oC+v+VGArlkDEOK1rnUW885q+r8hYOfuM8tZ5nU67ccXQDTKaOFUiAWOklsKexFOL/o6Lo7aFRMTz11tdVu2xrPrPHMfKX6/xrPLK735zWemW+4xjOLC63xzEmvl0fWeGaNZ9Z4ZnGvNZ75uY9n1i89rbbaaqutttpqq6222mqrLezH73+ASmAYE09fXvH4xUssdBzGxPPjyObyOePxQKeCWfIyDBVSy1RgoJYBAOi7QC6FlArjmBCtMJoZJRdyBWNyyaThwH63I5lwSIXnV0e6vkNLZiPGvV3Pm/fuoAp39lt+8Re+wj/61jcRVXJLCV4DUBMINTgvVd1pBaxYrRbhgXFKBUOJXc/de3fZ7O+wPd+zPd+zu3OX2Pds+p5N17GJPdmMrAGLHd3ujMNwg1lBRNhszhgPN3RBCEG4ur7h+jAwFiNlIx1u6CioKIYwnm/ZyEC6fMn18+c+LkuV6S3gzihOCjTFWB3H+Xzvv5e8kBO0x+oxgBNJ2081exW0+pxzp39nTOukeRNOsAQIZHHCK/dqis9XAQWhqjEbyXALL5Jb9zlpy+uQuNt9aK+/ZgDmcV/2Q149R2RS/r3unHbPV3CVk2l9DVC7PCKnR9pPDR697SKv3rEenUDV14A3c6dO8N9bWNHrrjpfox23Rbtt0Z+lHyxvfzLGfu6Ei94+99bwnvb59AYTfGy3O/F6h5/73Mb1dQ2Y/lkAzT/b9SdOYblG7HWDcpuIuL1dnCC3850XQPJ8B1mM2fL4a/z0VbaCpsa1yWtae+x1V/AzXtv/ulrllqPAUjR86uuvXGbpmLew5dda29te2aVA5owAn3kvlj5ktw/58c8YxpPbwuma+9yhnwm35b7yqlff2m/quC4BeVTmEhtUv542CzndT3kNuSOnP4st7iFMG/L0zubfCx+TkzFo559e3+SWX95qyFSew+b+Tt1mJkka7N/ObcN3Qkw3a3tCPTaXFCqYVLDc4HgcKKGgIgTxUlNq/kULUeHmaAT18wXIBV6+fEGIEVTYd5E37l0wphEBDsPAjz78kOcvLznbbTGEw+GG68Ohtl6WzWLOvGCtMzWlgCBkhnRk22958523+MVf/DrvPHhAGQ4cDwY5QXaq0Es1QSyFvuuwTab0PTei0/NS6v5x4vn1tq8M32IOfmarn1mmPam5KYnIQLTM/TsPuXN+ToiBVPIf8Qar/bzZGs+s8cyprfHMHzeeaQT8P7t45vScNZ653ec1nlnjmdPz13jmll+v8czUf79Anec1nvm5iGfWLz2tttpqq6222mqrrbbaaqst7L/4rd8lAONw5Nnlc14OmbB/gG52SB84Pn7Mdx4/5frFJVcvLwmhdzW0QBYHy3MpHkyXgghkE3KGcUiIZDZdoFNBrKBBXLgsoCXTxQgaMQkkFN30xJLZqPBw17P9ha/y9ltv8OjhOY/efsSLl9eMY/Ka81VBbBXI1BAg+++lGEWEXCBnI+VCLoXjcaQYbDZb3v7CF7j71tuc37tgf+eM/fldQt/Tdz19jPShgyIcx8RYMtvthlIGSh5Q4M17j3j65DH9pid2gQ8/eczjFy8Zi/l9dz3Bsof1IqB3ePHBj3j+9BnPPvkE0VaOYQZb/Hszr4LPjpXoK2DvVGKhXmbCP5eg260fgROc7Bak+ar9LMG/ff5pJ8CRzYDiK3jwQh3dgLXT6372XZb4xaxqlc9o22cAt6+FGl8FDZfQqtlCQXtbBb0kFyZCqAE8eH9P3iKf3bRl8z4LqHnNoVfxztreJrmcOvLq2bchyc+UmH9GU21Swc//+k/2eVjs6e+fccuf2pLPGCdeMz1/bPucC8wK7Nc34jVQ9eK3ZcfLrTNs4TOfNwqfgei99n6va+HnnL1UvNvpevhZ7mRmUwaFV+77U5r8ur2j/bJ86XR8lrPwmn1RKjD8eQ5hr5nL27/e3ic+Azn96W532sZpx6xT+iqEP+drYAn+L89Y7lPLxr7G5V677Oz0Z99D6q+vv+XJ/rFUh1t9zwkJtLjuz+qXp+N72kArpzP+yq0W/fccG/N6aVthSSP77Zaz3Y59FG6urgDz8lZmiBVCUFfdF8g5UazU6/kXKHLOIIKGwHa75Z1H90klk3IBEZ68eMGHn37C8XDk5SHxC198G1EIKpUmWLJmy+eId0olYGZkMtfjkS/cf8iv//Kv8Lf+xt9Ahpe89+N3eRydtAhDzVTTKdIr21Sw/Q4bBnhxSUCI0vI9FMyWWTbkdNxe8zGlvb4koOZZWO54J2wRSCMhhCCZTkY2ofDGvZ43HpwRQuDq+prVVvs8W+OZNZ5Z45nbr//x4hk/9Y8Qz7SWrvHMZzf25zaeWdoaz7yuXWs8c3KnP9F45qc2+r9n8czr+rHGM39W8cwt+zOMZ9YvPa222mqrrbbaaqutttpqqy3sP/w//0cQN3T7c87vP+Sdr/0SD896LvYXnJ3veXb9guc58OTlkZ/88H0++NGPGK6vETO6bUfXR0IQoioxKBoVyUYANlF5cLHj7lsPeHTvgod3zjjfb9mc7en6nk4FUibGSOw7trs9V+mGAPSinHdb3nrrHl/+6hfYnJ3z29/8Xf5//+V/w7MX11ycn1HImJqrrMdEkUgIEczV0CUoY4JxLKScUQ0Mh8JQMkPKFIEXn37Ki08/olgmjUYeE6UUSikOuhiUlBDg/p077KMwHm5I48D+7IKb4w05F5IZN2OmSECrUjlaJpWCdB3a9Wz7nmePP+XmcGDIEEMAc5C4RsgnuGYLqVXE009X5berwetZoR5XQVFyoJakyLdA39cH6K9CTT8VV/2ns9fwnbdPaOo9ec1xOT31lRNe3/5/WiT4p9vnEiSNRDA7BbXqnP8Jju7r7/8Zd3llLD/nva+cf/vgZ11YvP+fJZu7DZT/6Y7En7I18uuPLBF8nX3+Nf64t/gTadrrrvvTbnoLQZZbPvLPYIn+idiSRPgsAuDP3D5nvb167utf/pne/Yo6fLHLfC7D9Kc73a8jev7oM+VOeTwc+eJb7/BrX/8q7zy4x7Nnj0khkrN/KSII7Pd7/9KCGTmP5JzdN0QpxbCcURVCUEScNGhfqigZ8phIOXNzGPnuu+/x6OEdjsOBQ3mC01LlhBSa++f/h+Cq4ZSMPp5Twp53P3nB4b/+bZ4/+YgPv/ffMdxcYYDmDpXM+dmGBw8uuL+94EePP0WHgXes8L9DeCf2dGTGWnYCK5UItwXB/TPOoN36H14ly23+ogcmPHjwBulR4P69c956eJ/9doOVTLH0R57F1X6+bI1n1njm9u9rPPNHtz9WPAOs8czp7f+cfkL82exPNJ75fFvjmT8b+3mJZ37m+5xc589vPPNHtzWe+dOLZ6aO8Gcdz6xfelpttdVWW2211VZbbbXVVlvY3/prfxm78w6bB2/z4J2vILsLVDKURB4Hip7x8O2v8ejNL/FLv/JrfPz+D3nx6ScMly8ohxcEyTy4u+eN+3f56he+wNtvvkEfO7rYsd303Ltzztm2Y7fpOd/v2HQRjQERD6qbcmgcR65vrrh68RGbvqfvd3T9GRZ2vDwaP/zkI/7j//y/4PnVEVUnA3LOdKgD7VlIQ0F6m2LPnArgZSiKCaJGL4FxHHl5ec0H7z/lzv4OQRxoD92GQCQKEIyiGYuguiWgJIObrITNBd1WOCiE7Rkdnv75buxQDUgISFDMEqgS+i1hsyEgHMbfYyxPSampfGzGc2SJlt1SbVV+YAJ8b4FANsXvnsZ5Po/T673m19tC3lPVnZ2eiyxAvVtKu6mFt+3Ve59iBqcNsOVrS7nV64CJn0Jwl+Kq0tvjdRuc/tz23r7+7Wu9AoJanTe/08kYTdN62p9ZbPbTABi5Rf7U17DPfafa8lw/UcSqOvq0DbfuNjmILe77uSrSNr+y7Pes4J8UmlVVuxyfV664JJSmrtt07muS1i/aYbd+ndv+ut9/mr0uY4G95netctHb43N637nXP/32n0vv/Mz2JwJqL64h06azbJOhLLTci/IEMza4ANpv//CKE38+5fcnBdTPW/BraMs/EdB5eZf2889w3T/CveX2NRf+Kbf+/2mkHcsrfQ6BePpz9e/PJYHn13/KNP+zsc/YcKT+o6oMw4gh9JsN+/05R1OKVZKASN9vCMG/HOBfMHAltIlSWOx7Yij+eSebUTBUFZKRUybe3NA/ecrNMHI4HBmOCVQ82wuGmbIsuiIiiCjHMZHHDMXYx8g4Hvju97/Dt77923zlC2/yd/7KX+HupiePI9dj4vnzp0g6cCbGL3z56/S7HcerK+4fjoTnz6DUYVEfoLbbmtnpOl0SQp+VMeN187p4jrTMLqhiIQDG7/ze9/knn77kXQlcbHxcwTAp/PX/yf/+Z53Z1X4ObY1n1nhmjWd+SntvX3+NZ9Z4pl5/jWfWeOaPfpf28xrPvHqzf8a2xjM/1/HM+qWn1VZbbbXVVltttdVWW221hf3aN/4Saf+QcP6A/b2HHIkcjzcMxxvSCF2MbEKkC4LeuSDuIg/eeMT48gXp5RNsuOSsF+6fb7l/seGrbz3g/t37nJ9fcH5+zna7oQtKDIEuRo6HG1IaPZgW5er6hsuXV7y8uuLlyxdYOrA/i2wCSDKGMfPy2ae8+8En/M4f/pAsATXxNNSyABqzMRZD1OEpMypS5SmVDSBDSsY4ZsYhYSnR9xv6zYbQ9XS7HRo6FBCDIpncCTEEogYsFQQlhohqIJVE7HpUAypKCJGgAiFgQclW0BgIsUdiRxkTdFtEAq0QRIutbVJVNgBFYAL7zZVUnwEYnQA0ZotM7VbBuVNQ9HW2PPS6agbT7wuE36xd//SMk4v8LDjYLWBr0Z0FkMsEUswEwvK9nw+4nsK5Px1YnK8qP5vIsAHA9V+p751IFzk99xWc/2dq3eeBjHKrj6975wwVSgWvlqTB6xp0+r4FuPuZt2rjYGCLsWukBExo/20F/C167LRpJ7eopMzrJuY2YXOSVeTzbQZFT1ixRUN+BoJE5DNvtXzPvEaXxIfMfn67/bdvc7vNn9GWk/t/xnVuv/7KHU9A/fnoKS1WwVADpO1bn3H/n9Iu5bOt+csrAHZbYq9b5lbbcqtjrwXEebX/J+RO9a+JTPgjE0yL9fG6lW42PduW7Xr9qL+2tSen/awUSnvOzDc8pRzkMzxNbu3zbVex5Yufdc9Xni2Ltkzr47av2Gvfs+zHybHXZqM4fYO9ZqykPpxFhGSFjGEqiAQEcdJVlSDRaTFRUEVFsck3QFFUpSqlfWxUc322W/1SgUFIhJyR2JGH41S+ah6oRrDe7q2QUqbkUnH7zOHmkkMaKSVzb7/hr/7mN3jn3l1KHrg5Zp4+e8Lh+RPKy+e8/egRevc+4+HI/vlz+t/6Lcp4IFOmve/kOfFae808v44IvP2O2w5Qxy0l43jIvMyF4epAyolcCmnN9LTaT7E1nlnjmWm82vXWeGaNZ177vjWe8Uuu8czt663xzOfbGs+85r1rPLPGMyfd+Wcfz6xfelpttdVWW2211VZbbbXVVlvY1371L3IkkBGKHdDsddyTZURg2ytqRjYYRdg/fJOLB2/AODBev2B48Qn56glDvuHTF8/54vU1D+69wX53zr17DymYq4YQhpz56NPnvHz5giElpNvw3scf8+EnH/Ps+QsOxwN3L+5w54GwOVdKVxht5Ec/+YDvv/tjvvvBx2jXw5ApORM6D8IlQ6EwUgPwCmlYthq8C1bBgGFIDMdESZlt7Ln74A22d+7S7c/oz88IfY9WADNbJleCI2oDP7w0g4hQUkZDRLT+XowgBRMlq1KA2AWQQDE4XF2RxNuigoMJ1ko7FBwIqPCtVQigtjvXlMynoEwF6eU22FshYzVE5yDfypxWuoEtE3RVwclXAZWFovHkBg6UKrdAtMU1T2CCGTdhwqKWaNBJq5Zwtp87kSgTaC+TqmoCmpfkRm3XRLIs27K8nrS2nUJi2PKar4NkXwevtiM+J0sM5DZ4dXLdxX9irwfg7ZWfbhEG0kbi1uE2XXaKdzdfa+dOuKS9/g63L9x8Sl574gQ5+m91npuXOjCuJ3Ov0jTh1ri92v7ZU2/j9Y18mU9dIO/LoeFVwPr2ea8IfD/HjNfMIbcAzfmE07bdupLZci3KdJ3p/NfK1dsa5uR/ec1vP4vd9uSTOy788dW5lsl32nl+zpL6+Zz7SvOlxd4h4orrk9bJyW9TG+0W1H57qJaMwq2m/Oyjc9LgE+9vC+b1u97r7vAz3LX1vxIbcpsxsdtk4OcD8a9vzef91l57dS9+/Q0Wz4OfoT2ffc/PIJsXWT7a3n/qn68nDebn5Kt7v//4Omdp/7e90Z+HGSNhJDNXNBcQq8+WYGTz0kuhckgF84wcVurzPIAqQsBEEA1oMcTK1CanDPzcglJqmSirbZj/TE2c1kwphVJ/HsuB8Zi5c+cu77z1Fr/6pXf4F3/jV/jy22+iUrAjXF9f8fSTD3j8/o8J9Hzx0ReRbOgnH9N/61sUK962EDxzxsn4LT9rLMbQbvvk7Ym6NdLt0SNCacRYMQjCmw/v89VwhpUA6cjNMHBzPPLy+vr1F1xttWprPLPGM0z3WeOZ6Zw1nvmMzzFrPLPGM4t3rvHMGs/Udq/xDGs8sxjD/z7EM+uXnlZbbbXVVltttdVWW2211Rb23g/eJYgRxOiicHd/zp1+z9B3XOmGl0MhWyZRGDEsd3QhUjYdx37H5sFbbNNAGI8MN9d881niJ/kF956M3N0/pQvKxX5PF5TD8Zr3P/qQy+uBQy4UDbz/+AlXQyFxTnf+gMP+DZ7JnpA2GB2PHz/m29/5Ce+9+y7HY6YXwcwVQ0ECZuJBuwiiQi7RQWGbgSprucmDkM0YU2YYstex10DZ7rA7d5DzO0RVhynNiCihqTvV/5aSFymeA9r3FHHwIOWMSABRTJQYBKsSaFfVZURGJBjaBUAZh7GCCdB3kVJTMYsuQCdxEFXRClDO4Jxj3J7WPyBoBTcKBVMjxg5wAqMUmyAJRyCMUsEJeBVsK5SpHVMqaEfsHWQ3nYD427C+l2EwNAQMBzJmENf/ae9rOMQEEy1B80qCOIDuc2r1PQVDZVZStvTYgPd3ATS1/PQ1sTal9cmYQEmtIFQbI5MKWhsU/NoyoTR4/+vZxa+IICiCO+XclxkkdhXdBKjVuZ/JG2bApU5TA7pP4JpGDFnzBaMsx3WB8ImAFBCdAW4XeSon5SdMT+beL+TlVpgvN5nqfDFjBvn9Xc1TfUQIrVENSa4jsLy2CIhOc6NtDOpgnABkOs1SXe9NtVjvbT62fl2m/cDQ6b3NKU7A0JN5ujXmYZ5vsAWAK6jN81emV9uZrT1zf0yY1mAjC0RKbVWgkXC36Y3lWOh0l0YutDGdaIwK3k4Ld/Yn9Y3Jm2CEupZYXrPtfaWOYV0T7RRr16tjPPm6r4DaSVmMr03rS1v3W9tVFyvATt7nLT31rwYWT0N4OtozqLw8UvtesLqv2bSntP4uR9useXUdgFtk6MI5F+1ejN/JQmw/39prX2eh3ef1OGsjIX0e65XLabp+s1LXVh29iZBZguFzO6byHSdtZbrPZwG+UnHu24dlORTTi3IKJr/q2ItTK01hr566eDKevu02oXZCtMlyG3vleksiWZqHimDqewYTaI+XLqgAvuLZTzQ4oZNzJuVU956CGGgxNHZo8JuVUrDs5ST8CQxaIBDQ2GHjgFl7XtdxkGW/cy1HYZgVNl1PJnMcjzx9eslv/qW/xL/1r/9d/u1/41/jH/+D/5w//PGPefL8OffPLwjZfaDEDRdvf4nLpy9I1y+xYSBcPSfYyFZ9780i/kUG9b6JzJ8bXvHrpY8sD8lrXlv+vjyeDULH3/4f/FX++v1H5IdvkA4HEON4PPD02TNWW+3zbI1n1nhmjWfWeMbvt8YzazyzuOYaz7DGM7LGM2s8889tPLN+6Wm11VZbbbXVVltttdVWW21hRxvZ9Vu0i4SoPHv2guubj8km6GbP7t4DhhgBZTRI2VDxkHocBzKBPvTEuKG7uEMIxsdkPjpk7OqSfezo5AYwcskcy44U9mTFlUaP7tFroFMFhe2mY9fvSLnw3ocf8bu//U2ef/wB5XjDWdeRUqpgqFspLqhpcEjKrowGJgWy13QXsmWGGMgZcoFkkCzTKRRVRAOhKpqLZYeSG5gm7WJztCtVde1gNogFb1MFiVQCKlAqseHAujgik40ihRCUoB0hRoJWJoJ6wYAfD4EYA0HUSYRKiDjwXhVYxQGvIN6GpowOIYA5aO5Ig4NJVqG8DKRcSCkTRFHVCYErlitW4gCZID7YdQy8qMWMYju4y3R9bFZam/nwTQBqBQUXowmiM6hXFYKyBEgKmKMVSJCq+p5hUmsATLHKC7Tk5BVEKzYBLhqEkvN0rphjczOs6ef5vMGsXPN59HEPMzgqjW7RWuag1AzhMwpSioPZbYyUGTSbQfZ5+hsYMwHCMkOYhlYxvc9LMSNL9qaY1Dnwfqq6D/ncF4oVL18i0e9ohVwS5ADm8H72BOiAIqa4Qm+eCxWpoBEToIXq9LuRKyis/rf5lesGvV81tTqIg2aW69pTB8jqunbuwOoEO2kzgaP45Bnq16tzqVbqMW+wis4+WteBiE3gt093A1MVzLMZTAD/NCnMpJWU6Zg6C+LnaMUIrUwT6oRUnT0VipoTN/X6ZqX2Q3y/yHWs6vrWukSW/iEVHLfi69BkZiEaKSIimCpYdkBcbAF0OoFaiiFS0Mn/gTo3M87tY9mAehP35YYPtuPUGbZi856xnMe6jQoOYpssC5PUyavq0HltGjGGmaCz4mOML/pivr6nNVv91vfgus9U0rLU7mjQ6X5tGkv1LUPrVLVVOYPGkxuITeMT6hov5v1OudBKCVDXbf2B6mVIe0pI9ceJvXFQuFQi1m9fySlpwywTKa6VTCqlVGIWQphWBqUIQpgya1S6s/aq7Y1QWumgSjK3PVwwojRQnKlfE4DfAHhtYHYds8JyVmmrtQ3DSbYKqxk7rI7oNF4+H610UruiVXW4UZfUhP5X31jskm32TKTuLdXbJkKh+MZf9+VcCiYFVzM7wa3Vz0vBn5d1nBUIUv20fibKuT4DQkDV98kyFu+HmX++yLM7iLYJ8NEpGDmN5JyRUqZn5PRsMJtGVervlOxjaNCFDWjkyeUlf/ijH/M8GX//P/57HC5fstHI/nzLJnZgRskJs8z5xR0uRHjjcOBvlJGLoASEIt7fxaZw+vO8uXGi159U6dMLTLV/uHVoWkV1nxWhmEzKcFUlqCLRON9sWW21z7M1nlnjmTWeWeOZNZ5Z45k1nlnjmTWeWeOZn6d4Zv3S02qrrbbaaqutttpqq6222sK68wvCZoN2EVVIl9ccUuJ4GMgvX3JhI9t7bxD7PWpKKoVQQZROIsUgFaGokAQO2RhyYcyZNI6cdxAnRSlo1yMhenRsRtdFQoxVqZc533SkYeTFs2f88Lt/yLNPP6YcDnR4QJ4WBIFV8GoCrqwBXgv8wgrgIEcWI+dCbmAtFdihIhEqFehsgFMtp7AAyRvo1NL9NzWaH5shJZsaWEP6CoaVYuSUySmxPT+n32wJISDaQDmdETWF2EVijMQK8k7KaRGsAUMlQwXHg2gF4RzQ1kXALuJgb6kQi4gy5JE+RLquJ42JcUw1VndiQ6UC+loVx3lWAMdKoDR0MVl2vGKaH5vATEEcMG9Y6YIkmJSNIoRaaqO+0tBWn9MCpsHBsarWUpvBrmKFNAH/VsHgBoQ5OM40zUIpfu48/e0mPv8qTKppnzsvEdJ8xkwqEG6oNmXp3PYQdSGoNHIplFycLMhV9VZ90SmGRhDVYaWppg01A22pwZkAXurYFTPKAricAEEVJGhdY/U1M1QUJTgJUjIpK6WRBCaurJcFsF3nQCtpFBphZg5ollIQCRPWQwW9fQqUEH3efNycENDq8w7QFUpOFSBScgbqWlYRJBiUSn5UlfdM0DRAvKpAq6i7tMFUcZKk9slwYDeEGeBWabCbYBbIRciVgGxg7RLzUqlzXw/ItC9URLwpVetW0nBB6jpYElhi5oRcQ9O1IeBOEFgphAUpYlbbWzHRkms7a99kAs39fhIELFf/rGu/qTsLlFzva3OehFbiRuZm0wDfQuvbDPAvS8mY+b7a9sUJ+5fZh5YlI6yOJW0vRrBKFDV1cheDr3kAsicEqA7Qsj60GWo/Kd4HFaNkdTCdCj5G9Xbg5Goj7nIRchvEqeutrYCIEwxiaN2HYp0cMyOlwjjkKRtH2xKmTB0VZJ9JApnee0oSlJlYkubbdcRqiZ+WCaIUq/ub+1uIThRIfRCqKNkK2QwrmVyfk05YKkv1rc8HM0lgRifClMGgPRvac7eOXduzrJIEitRSAjJj9s1vqNtKU/KXMpUdmMowzO+oy2JBulTScp7x+UOB0PZ+Jn+SOq5FqESKzPvUMo+BQS6ZIWf3lVymuXACae5zI2q8berPbWRa8ypOzoqA8/Z+/0b2ifi7mh9b3VdzzsRagqrTiOWWYaP1fR7DNh/TM1SEzWbHk+fP+da3/4CXhyP7/YabBNdD4uVww4vhxu+bCzlnEOHs5YG7gpMT4M9mK9Pe2NaxzMM8j9lyFiZSbJ69ZTtffedif6H6gxjvf/QRH3/8nBe7D8ASXfRxOFzf8PV/7XYbVltttjWeWeOZNZ5Z45k1nlnjmTWeWeOZNZ5Z45mfp3hm/dLTaqutttpqq6222mqrrbbawjb3HyBBsVDBmvMbZMwMw8izJ59yOD7ni13HeezYhS03BIq4ei/0G44pMeTMMBaSFY7j4IpnXNWUxNj0ShciitCFjhgCUQNRhUim00KQjFK402/44NMnfPDD7/Ht3/kn7DYdG4UQXRWNnAamMyLtILGD2xXQrlCcx/9KNiMnIzd15SLqlQr+TGhHBatFHTBTQKraT6UpuJpKqp6vVgEzR2/9T6gqQtekpVRIY8Jy5u7de5zfuw/ibTMErWrXRhJ0XUcMEQ1KKiO5qrIwgewAr5UyEQZBhFABiKkkQwVYVJSq93bAQpV0uOL84pw3Hj3i+bNLnj17Qc4FDRHFCIBqQGMgl0JKaQJZowYfM/W/x3SsBIyDpsUc3G7kSlwQA6WCx1bBGictHMzVBVhu5qC2iAOtEkIFqRWhoA1DMRgsIzlP6mipKvFJtVaSl8xAUHFwigpm+vUMy3l6PYoQKrBjpgylkIurd00Es4xYRsWIagSdVYCqSt/3NC0uGKVkUkrknLFUVf3Zs2BbVYO2jotCEEO1oGIO2qhM4JRlm1PAG2RzgkkqKyNiGNmXiwraBYIaQah/AyWVSpoVxmSkRF07OrXBgVUHj4NaVeqrkwTi4GzJFaBswKBVEkNKbYvQ9RENs4oz50TQMAHRAuScKEXIRcnJVYoi4mSCzoC7A5VW398QaHNVP82fArkqb0UUiYEgGVewZ7Z9dF8TcT9XpSCUIqQiHJKRsitLSxFaZoPmlw3kWwJpiuEy20JoAK85gJ/qjuAkgQO7ulwPxUkCkUpgREXqtSiFEMUBwuqDIQRK9rHPo5HNsxwUGklQ96EKaKpkYiXWipVJzWsFcvL5KiX7ehNzMqhtRUoleBwsbqTQDGqD5Qok4uRpNleLitTF3sgJnHgltH10tlKzEFAcZi5VxR8EuhgJ6kClSSXPvGGUksjZgWap77NK/KhzRORcy7qYZ8WIXSUbK4Mh4sdKEcacp7nyvUXm31XqeyEEIUShi2EC69OYORwTJTnDJJWUmAijCWxtQPgpSSDi66ZYns731xfktNR3VyVxzo2AqPuoGttNpItCrKRMUchWvBTSWBjHgjcxVjKlEVA+XRPIbkZvk3a1rr3pdq7kLY3MdOdrhHDzBa3OZNV/zSpwXi/aVOswP95lOmzzSE1AeZj22TLNi06+1DJXtIwNWp/j7mOV1KhfErBKcjbfLVa4Ot5wTImcR8w820qystjJ8eesOlGvGtCZcazPvdmvJXhnDSEVJ+fRUgkgJ2zNK8CQc2bfdYTNhtT3rpCO7TnGTDS8xkSU7X7HJ58+4ccffsI/+u3f5V/5O3+HX/2VX0PTkesXzxmGgePxSBpGxjGRajNSHhnLiGnwDQFBbUGeTgu1zcyrNu+P8hlnsHCitrombsrnSAvf/sPv8tsfX/LdQ4Zg9F2PopRU+B//bz/rwquttsYzzdZ4Zo1n1nhmjWfWeGaNZ9Z4Zo1n1njm5yOeWb/0tNpqq6222mqrrbbaaquttrDvf+8PGYYjm23Pm2+/xb2HF3R3t5wf73Hx8k2+93vf49nvfpO7+w2/9LWvsLv3Bi8GIxHo+y0hHYmlVAIgcr7ZstGOPgS2MeBpxms4WApXV1cM44GUB4oVXrx4SjrcoBTO93vCm+/w8fd/xOMf/YSzAPvzPfk4koaq2lmqguCVeNWsAXrQMrRjTQsMaXRQrWQHq2bsxoGGIMEBBPMUyx7M2nSjoOqp5anwr1kFMZWSE62JDsR7CuqUjWFMHK4OvHjxks12x6MvvMPXfumXGMbEkBJjLoTQoVNa80rExFhBV4CAWK5AmqJd7WIFPnJJiJ9FqIBTCA1YcVBaxTBRD/xV2G33EAMvhkLZ7OnvBgdxNNKFQF/VXQU4Hg8Ec1VljIEYAqoBagkNGQeSOehsxdiol7gQl0rWchcVXKrXAQfcqWCuaVWL0UoOzIqsaKUCs+Lkhfl8UIwxDWxU2KmH/amp20qhlEymsAleqoFSsOxjFUNAcMWcqANWljOkTB+UKralZNjUjADNlwKZOP1NxKCuvqugZB9jBadKBcALZhswIWcYx0IpSjEhZWEsVcen6qpLyU6EiNEFoeu7CtAalhKlEgXVMz0rgCoaFM/4nYihglmS6bpADE4SUIThODImY8ygWbBjBkItKVKV/uLAt6ohlonBQdHNtj9R6BWD4WaoruuExzENoIUYhYt9j1muWQEyuWwIUaZ035ggphRTUgkch7xQiypmDoyLNLUrBG3Qm5MfvnS9PMCYW0pxqdpHo4/QRWPTwdm+RzVCBXFzGgAlWyAX5WhwOBZSgpykZgiQJS0w/es+7OND/bsN6hkkijFmBxhbOnrn+dTB8upPTOUvCkELm22oyltDKJScUfWNoOTEpt842ZIK45hQ7TgmGLORiuHlQsyVlTkToxMNTg5kdtsNioO2w02G0lfVvxM7UZwsEDG88ogDry649kwJOWdyAz1NJ3/0MZ2VpA7FNzC+qUq1ZiPwjAJNYVvMx6GtM/DjsWGTdeKDVuWpCqk4MSgWUAKpJEotf6ECXYiTj6Zs3NyMaAwEdR8yErHvnUDIxnHMrluWqndtKudGGFcSJ0QI0VApqHSVlFSOx5Hx6OvT13pBxX1XVb3UUMkVNK+EcDXnW3Uq32DF6vNm4Xfq1zQDK0pfS660TpaS6Dql74Rtr4RgxL5DgoPrNzcDhyEzpurfRWtZJScEzbwhVfcPJZ+QYiJWyxhQ2zcTfT6eM3mpONGtWksllewkaSVnpRJALQtAzpmqk2cqKyQNZHcQPVvN7KA6kUJTuRlrvmTT/h9CqCplLwEkOmdqKfV50jJsiAqZwvXxyOXVS37y4UfkPKAYUcNUjolGuBWrmSec8EzjOBEg2YxOvDSE2TxejcCYPneIUleYP7tKdiW7tFwNc0YCpfKGOJEUTbHsRFFKidgr/+a/+rd58uKS77/7Hmfa8R/8e/8eX35wwXj5hOvDkeOQyCmTsu8rR1HscEA/+Zj4f/u/Mn76EssZ7TovZyELH532/M+kAfyDhnzO8ebIsvi5XdKMy5sbPnnxnB9d3nAzXHmmgcZmrLba59gaz6zxzBrPrPHMGs+s8cwaz6zxzBrPrPHMz1M8s37pabXVVltttdVWW2211VZbbWHnF3seP77h+eUlN+PI8OYjznY7Yuy5uLvl4dfh2ccf8DIPvHcc6D/+mDQmRJS82aBBGG6uSbnQdRtSUW6OI5RCp5Als9ttPaVvKRwPB15cveTmcMM4DAQVNpsN292OjQbO7j3k/P4VuyfPSfk9jsPgNegbUGKToGqhtCqUqt7ycgUO2llukJ6n8M9IVWeWqhosk8ost7TowabjKl6ewC/o5zXgX6oiUFRdnVUys5ZLSWak0SiMZMSD8uPIF7/wBc53G+7dv0MSTz0uInRRCeopxlupCu29TIan+zYEJUpTrnrKeK3qOBUolibVtjjPgIQKgporAlUVRSdgfmOuLUtiSBQ25/10rIudK2yzUXKuithAUCcIuk3vJRhKIadECBHLmYiXW+hDrEr1Bh6eqqdcdWUVEBS62JMmrRtVcViHv74tNHDRrM6NK47JsSrQ/B4RqmKQChY5MOU4RGYcRx+Llva+VCVnyUgpaHZVOK18AA3snFXvWGITOnbB2EfDSiKJj3UqVYVcldyu1BZSLoypcBwyfawEQRFKNjoJEEIlqwTKiGKT8lqil09QgFyQ1MBlIYRIxpDgqkQNhSiJTVC6IIhlutjAqIJZwLqCJcGSQgmUTcJEa6mICpxV1WiMUsFQV4Jv+kjQMBE+ORuEVEmOgGkHaUQkEbWw2UW0ZKyWwyCECjY6wJlGIWdXVlsRur74qFcZpk3gclX5A0J28E48Jb+r1qu6tIBok18qUYVtD30s9DGz2XSYRVKGYUho6CilKbuFmJVejFCcbAiqdF3n6sWUPEsD4mCqiGcsKAmpquh9HwkV/E65EDQ6WVCcoCRGFwzX8hGWXSIvZiiZ2EEXlBCFGBuJUZBaziPUsihmhTSOhBAZU2BIcBiNbLECk5UdZEQrKB4VNrGq283YdMnJqlZOQ4QghuAklVDILn32Lgcny0oulRgAI5CLkXMDd7Ui/XUHruUuRCHGiNms0hdqdgdcEW3mwGtb+EYmVgW8VR/vY5hAZo2RVDMitIwX45jqnilsup4o2ZXLydj03g8nvGAsA0V9TzUTwjExNjJUA10t4eAPHycTN5sOjSBqeGkTB6zNhBgDxzA4oFwcxG3klu8Bo5eecZn3RJA0YFuDEtvvEwkzZ9cgBGIFmW1qGxNAnlNC1QnXpErog5eKqWOz3Xd0vZdGGlPm+qYwttIezi35XFRVbKntkjpfC/oAMYgSCJWoUxXGPJJrPYwYuppNIXgpJfW5yTnX0jgZCUoX/FixArnUuayq5dBN5RgkTm5YzZ8BM9EcoNRSBmaQMxmwutcTmfoiYtNzJNY9z6TQIWy3Gy7O9ogom9hN94t9z5By3UX99iVn8nT94OMPRDwjyKFmdBGp5Hapn198tdUMB1Z9p2M4HjgMB14ertEYoGYpaJ9B/FlY90UDq+RKzpkyHPlrf/kboIHvfO9drp7cEPIBzREpA1Iy+z5A76ReLoXUdbDr0HzkOrbPMDZ9ccIXdRvv1nKq/9ri9Z/BrJJ/dUCFukUYSAYs8C/9xV/nnW90/K2ur0r5OePFaqt9nq3xzBrPrPHMGs+s8cwaz6zxzBrPrPHMGs/8PMUz65eeVltttdVWW2211VZbbbXVFrY/O+MwDNjVNYfjwKefPiNdFHZnZ/T7M84f3qdEYTweuTGDlLnY9ey6jk3foZ3QWeJwOGJ55MnjF5TRc92rggUgn2PbDV3XEfoIx0AJgRwi3dkZ/cVdtufn9OcXPD8mXtwcuDoMZPN05yoVkNQ5EfJSVDMDLK60ayyCvSaAtQq4UxV4fi3/Y3gK+qZR8hTcWgEdP+avV+VWDXYnkKfeKRmkQi2NkB10yRkFHjx4yGYTiZsNaRyJIVBrEyAN7AAHaKJiaO3TnLJ6Am8K2FQCQFAcXJ6SMYtBLVFgpanaWgp+V5IJVRFXCRNXfPn1YtdRSqYkBwhjjGy6zstAaICo5DT6mFTQN1bFWheDl3+oarViRloA9aI+ru3eAKGLFRT0idGgCwDMxzpo8HIX5iqxnDOIErRzwLbOuYpgWur9jVJCJSqMUpxoCBpqqvKWCjxBCUgprngsTGnEEapCsmlcHfyNndD3ytlWSeOBhKflH0shqpcyWAKIx+NIkYw20K8C4yEKIbp60ccGJHeuHKUCqSoEDTQkz8ZSSTMnCYI4gCoKqpleEhuFPgh9VVebGAVjyMKgPsYh+kK1jRd+ACHgKc1dvQpdVGIoiGSU7GBz7DAT9/NUiFL9VyNFI11JKCOdJvpNIJTs7TaqStOBKGukVVaqMJdghmr0Y1BJAp3WvmIOyIuTKBoCObmCU1RdNT+tXydKzrZKFzJRR1dAWudzG8U3qgkHdvBNESQqSEAwz1JQ159QiUutpEjJWFa0kkPaBVRdARmy0cUNmm0qvyGx87T7tZRFSRkp3idXwxckemaDrvM5FWpphODKTq0lHXIewYSQlJAUAiTrKBV9E3MEro60j1lVzCsQYqolcsJEEkUBpaBkqErjKh8lRG2Z7MGcjEsZUhGySQXqA1KcyMxWKmhcgeYYsEpExKoot+K+V8xLxDh55GvZyU9vu0ghBiHGNllGv9mQaqmaXDIhdoxDmoDXTdfTScEqQSd1n4hB6DroLDJW4NVMKYyQC6pKjJEtWvcic2hYCl3n5U00upp5fiYpKWVUhZTMy5sk9f23qrktUdW6AVEHlUst51OKETQ6TFtqOQMNNFW6GEh08LSR5SyUwGYGqr4/i5AAlUAnDuxLKUhQYlRiMLro83IsTm7Sni20MgAyqbQVL4NQ6fLpsarIXDpHwIJW0hzfl2JApSn9FdOAJAe2ybXEUwg+nhNh5oQiVtBu49ksquI2VNTcqPwXVp8TTtq1zwZihjUyQhVrWRgmOoraUyrRXte0GTFG+q7nzQcP6WLkeHPg2fPnxM227gOZYhmllUex2V9LriUi/Nnizzd/PpcZH58ea/4M9P5oCBxLYUiJ41T+aulftFn3zwILzL4YpOPIfrvljUdvsNvt+J1//E2efvQB8WZLOlxRciCbZ4WRoIgGxmNEx4Hu5mpG4oXpOXxi0/1qRo6FIy7La31uaQhpm8cJ5eC3FuWN+w/Y7C54dHZeyy2574i+cqXVVjuxNZ5Z45k1nlnjmTWeWeOZNZ5Z45k1nlnjmXazn4d4Zv3S02qrrbbaaqutttpqq6222sL2ZxfQ9/SXL/n048c8/vQ5w8E4Pxp3Qsf+zp7N3bsMQ+Ly6Qs248A7D+7x8GzHtlNMCk/Oznhx+ZKXl1f85PLHqMYKbEC32WAhov2O/b272K4nX14TDgOpGGcPHnB2cZftdk8nke/9wbd5970P+PjxYy//QCvBIOSmpKXGpRUgdbQAcslIlEXU6ee3NwhUQKXMKlkqyCoOTo1WZhUmXj7A044rpYxYDY5FpKr9mJiKpnQeijEkBwPVKriRE30U7ty9Ry6JY8oEhG3fIVawCsZncYJAVJ1IqeBVDN7HBigU754TBuKK7ajdSaCOguN0DkSraAUdWmJvENMKuuIAWKjq6apmG8ahRu+BvuvZdn0t8SAcSyLlQi4GGqAkQox0IdL3EWoqbpz+oIwDM7KkqAQsF7SChK68kwY/TDMtdX6bUFYUAg6upZL9UAg1/XwjSOZSDlDVg6ESRFVZGyvoizh4NSQB9TTyVgpUBWorY1HGEa2kjSpcHRMhKt0mcHbeMxyzE0QIoRgx+ntVlRj8+FgEKYm4CYxjdn82pet6tOumVOWigpbi4AiGldGV7aFDQyVTupbM3MmIIoZ4dQ5CKGwYiBR6gTt9pItOGhURLg/GDZUkKA5gSQO8DCccSiEgRFH6CJvOVbuQyXkkdL2DusUnKEQnMEwDaEAlERnpJdFHiI2YMy+Z0ZSe2YRgSlGZUu8HEWLoMMTJQnHix3FhB4zbX5FSiYTgpFkIRBUkQ1ChC4FOCrtNJMaCoBzGwdeRKISOKT17RfGMUktrREIXyeNIbudoqHVYpOXv9zT/CKJWgVCjaNtvgNChChLNlZvqwJeJr2lkdAC39s3IIAVT/FzpUApdUPabflKsixjYhuNxdNlzEFdp2mYGHqW2yYrfu6QJJFSBIA7WWgmYuVI9BCVMJMHoexQFtPpkUGItjZNL4eqYEVOUQBElSHSypRgpJ6d6pBKs4mBoFPN7VNV0crwaKwvUXep+Xcui9Er1YyfrRGC321CKMaSRMWe6rqPvelJyxX7f9XTihLMkB8lLrqVNOmUjG4ZcakYD6E0hZSdLYmATAn3fSruYk4niWTa6LrDZRC8/IU4sp+y+M46ZMRnDqAyDK61DdDBcxEnB2PWk8ejZRnJBihG0dyWwOCEhXYeV7L5UQLtNfSYC1GdH8WdaoUCJaOj8eZYSWKyq3IKV0dXA6qVwtl1H1ylXY2bITmoUUS8BUPfNnBuQTs3c0eakKqaL1QwTvmdLDEhOvsA1ICH6viC1/IIqEs3Lm4Ratkd9X++CQuwo44hJ8udD7Pz5UEkQrcyMAVazCTTVea7P5kYOS2ekcXTSQxSLTry2MjKdOJHQPllEjV4qSISogTfu3eeYCy+ePyenxNtf/BL9futzkf35789jq/t0cVK992eoZz+oz7NbXyYAJ9R8P/TnkkhgTIUhZcZ6fSpZPanzJ6uZJMRBf1S5uR749PELvvCFL/Crv/wL/OQ73+Xd7/4Bn3RAHjnfnPPs6gYLSrffsNnsuclGHI7sXzzlYUpE9U8EReu96zO11M9PjUiw6Z/XEAHNzGaio33QqM/cqXPT9TyDQKeBbegoXUc6DqhlouhU1mW11T7L/vmNZ/z/NZ5Z45k1nlnjmTWeWeOZNZ5Z45k1nlnjmaWtEdJqq6222mqrrbbaaqutttrCjqnQh8j9O3c53+z5pH/Ck5sjz19c8v5w4K2r+zy4d5e72w2P3rzHxbZjFwIWlTEox3Gkf+st7r3xiP7myC88eMjZ7oKu6xlLQaKy1Y4YImXT8zQduPso8lB7urihO9+Q08jzTx/zrX/8X/PNf/gPYDwSA+y3nav/1BVFual0WYDBRT3OrGrVUlzR5gAHlShoKZRxsKWh7FSVqR8gU8gVjAzimqkQaDnLMVxNpUjjBRiTVaVW4MYy41gYjyNpTFgf6JOh44iMB4odOSZDReg10AtIOjqYgaCxQ0gVTDHSYaCl1xdVLFcQUUBUyQJdqOB/BRypSmknNgJFK7xjM0DnSi5P5Z7zMAFMcdN7mnnAcuY4jKRSQFwFKwrHNEAt/zAMuYKP5spHEbq+R4OSc67Aq89Drsq/JiO0YqQyopWgUQ2QjUyBoIQYKQ1oMicKLI2MaSCLkMzTihd8LKhz7JhFLZmgDrcWK678BicVrBBU2MZuUraN44DmmpbeMrnkSTXtal6jpJHQBWL0chhBlY1mNooD0fsdh+MRO9axCZFNcKCxWOF4OJKGhCXoVCkUYoyodvTbnafzLq5CDyHS7XbkOraFSG9KDJEgSgFGTe674n3vVBy/DkYfM/uwpRdjG5Q7mx4kgTrZltS4HM1BNfNyGWKu3nZ1vp+r5iTdroee5OUtQuRYAqm0paTEzdaLM5hioiCFPgqbENiqsZFMjIFcPAX9OAxoCKhEwMunVESKgBBiJIbgPpN93fUxOJXhm8GiXEchWZ7VkebXiAGiCD2FTSj0UogS0BBJSRhyxszLuIxjrqVVlK5mDSg4sFeGNJEIooqESCBMQGlLjW91HeUKgPWhQwyOpXBzOEJNeS8qVeWplczy9dpQN6vAWbYCyRgss91EH+xsDpz2TeEphNDRn++5HkbsmDgmV+Un8xT6pkayXJWpATH3PVOt5W2E3EeMgJiXVMm4ShvzbAuKEdTnKOURoSfGSBcCmcKIn2sEslVFLlWlWjaVzPF9NKWExpqJohJHoq7EnmhbmzM2mBVyclW4iZAtQTFiNLooRIlsdh3JCmP28hjdWU/JMObCcUhY2KFR6Xuw4YgYdKJ0IRCjlzBIxRizEXVEbw4VsIxs+kAXla4LxBgZU2JICQlCDD7XMYRKrgaCKULHeEwMh8SQRrI4AJ8G6GLn5Sssk8uIanRyNTpIWsxqqYQ6ByquPrdCUYhNlY2XgokSJgI5gavv3ZXowgaRyFj8+eZzOVJSImVFY8fZfkPXFQ5j4eqYGAwiTnyFEMiapn3V99k5g4dQCPV56vtsrgrkWOfeqkLf2zPlNtG6FsxLg5SSwArBoOs7OlXQQBkGUk5ICASkqt8Tqr0TeCH4c6KWj2gQehAh1AwCm1jLM5nV/Z+JpFbwchmWnBgUJXabxk85UUzh8vKST5+94P3Hz/jqV77Ag3t3Od/vKIVpvVslcaJGSjauDwdC100lpZwHqGUkbB7PwkgRo2ihFBgG/xxhhQl8b882wZXXs9UzVAhdYHt2xv/9P/n/8Hvf+xH/4m/+Gl/7+pt8/P572MundOMV79w956PnB54dBy7TQKTj2U2iGwcejtf8y8cD2xBQ9c8gWGn1QepnCf+MUT+ktNEGcRX7KYmxbKa0b3UgkxdY3T99L5RaruhHP/kx7+f3ebw7h3wDZEIQ+k3ki3/79ZdfbTX45zmeYY1n1nhmjWfWeGaNZ9Z4Zo1n1nhmjWfWeOYVW7/0tNpqq6222mqrrbbaaquttrDN7px0PIJl+i7y9jvvsHl5yfPra56/vOH5kwN5FPa7jotdZK89ORqHURgskqu6p5iQRbn/5ju0lNLismLGImRTNMEm9B6Ih8DZZsvV02d87zu/z4+//33e//6P2IVADHsvFVAKKgFKxlImj6MDcXjaaZ1SP096ZYCamnmp3AEPxh1UmxRK5mo1qWBwKVXdaZ7eOasgxUEpw0sPCKBSACWVQMLLP5RiJIydFfZaKNF4aSO9iqfe1g2ddOwQD4rJBMtoDgsEQBDdudrZYMyzmtCJC1cZiyoEdaVmsUoKCCFqDcB9TlIu5Aa6iRMN1HTYpRRX5hYnXVQhbjYVrPTU6QXDNKDiQGFUKClRcsa6jqFzwqNZ32+QUHWdJTsIJP77lKq8KcVEIJsDPHhphi7G6bi3wxpu7CUTJBO0YMXIqfY7RleAF6vETR0z1YphzIpXK65WByd2dn1fCZHCmDZOAhm0VOGK1bT4zF42ibqMPvRso7CJxq430MKhTwzbTM7Gdrsldq5gHNPInkzKFUspkIpNBJAXYDBSMbK5clhCrKn0gTaO7Y8qVja1Pe4TVkFcpbANmTudEq0Qgbjdkmx0EM9gv++4Z57GP1sjWMJC41bck8wIGJtg9FWZbuIZBMqsTSYVSNnXuwQvn9BJoVerJSnMFZwVuL4axpqW331103lmeK/UUonB7ESNxqqsrESPGNiYvcSKurrbgWupwGF0r7daPkGVXS9OqKkD1dt+Ry7GmDPHlEmbPAFfZlL7ZJSKkSG4kjgEYueq02SJUjMD+O6zJajS9R37ACFnSs4MybxMQt0XiziAb9JgMuh1h2Sj5ExOA4EdIj6XMcBu0yHqitbNJjhOV7KXzgiRrtuwzcbZmNn1A0OKDuSKQFOOt39ywUpyck6gUMihzX8tX5ITofp/LyA2n28YVtXTGgUNynYvDKkwZCMhlfyZydmWMr8UzzyhoZYaqfPU1pS1ca57YjEnLCxZVY0XjIEIbKOy6QPbPjoxaYVUSWDfd9y3hjFxHJ3AQIR+s3PVv4qXbKGwZYPhz7HDmLje3CAIMUT62BEqIRCi+l5fspOyARBXrIcGqifQOBCl0HeGdJkhFUr2vSvfsag+AAEAAElEQVS0JVYVvKoBEQetgyqjDZSS63wpuWSyQ7Y4CRynMjFBZLpeKeLq5qZGrc8lq+A0ljAb2VZwXUWmEjl98P13t9txGDPjmCk140Gnoe7rkGr5Hc8c4o+TjupXRXztVjLH6jPYn50JK+akcFU1T/MrBsEJuqCwiwHtImw2DGnL9eHG90xR9vsdg2XGXMh5AAJd8Hn1fdWI9RlEySD+exAhGowl+2eFkjEyyZTYK32IIIVxSJ6ZRJp6XRGNdKJYKgw58977H3N5ecW9O3d44803sOEARy89tOnPKBIAq+UoSlWZ1+cYFSxvzyqTiag28+emn1XHt+77bVs2bH5tYYIQBS42yk/ee5/HL17wu9//AX/xF9/kN7/0kC998W3e2giPuswXv5C4ycZVgsunlzwbRjRlLg4D3ZOnXorDfE6aErpOa/0s4Vvl/CGrVF+t+2Q95xWbxsHqlzfqyya+E9TMLR++/2N+/5OnvHvM9NuObJ5xxoD/6f/mNdddbbVqazyzxjNrPLPGM2s8s8YzazyzxjNrPLPGMz9P8cz6pafVVltttdVWW2211VZbbbWFHa5viBqIoUOBroe7amhUcjZuxszL6xuG8chwFPa6xbZKCLEqn/uawt7/dp2DrQUHKppWpnjtArqq3BUr3Lx8yQ++/W1+9Aff4ZMPPiDdXLGLVUlkVEAXSk6UcaCkkaYidgDaUyFX6B+owL/IpGScI9EGyLXX6/ntbwUvdXrRFUwNiG/EgmA4VGkkExI2KY2H4cAvPLzHG2c7ggq/9aN3CRbYxEAvPWqFjQiOfBciDuCWCiaCEEIF1xrogQNoKuJKy5p6XlQZS+J48BILQZW+D7hezsGX45CqSs3/Fmqa7Brcpz55uQvxNN8uA/doXPEU0/4eB1kCRslxmoNj8vlpJMZmu61qP/O5Uwc/GlA/gUN1PigwjoODR6r0fTeTDhU0kYo0KcJ+s6ELQsmZm+ujg6sb97+UneyY+idCKZlcwUaRpkZ1EMPBNXHgUoWsXh5CilWSQIhiRFVCVa6GGEglkXMm50QXt/TRyZOorqbuNKOdob2y6fsqBC9EC+jGSxFgXvYg1dIU4L7uJEElnTAHk0sFq62uyaraHofBXbj6Q9RAyrkC8ZmBzMuDITkjpUB3Q7FcSQJDwoYhKQUv3SASGn/kvp8zXRcJ4sAsKYMECjYRT/0mohIoCDeHg4P4VgFeDMmJTGGgYMH93AkjKCm7CrQYORfMlEBwRWwBJZDS6KC8OtA9jqOXEtCAioE4MBcolJLoQ6QLQuxCnXcvlxEV+hDAPLNCsULs3NecXMmuojQo4u1RjXTqbckFEHNAXCFIIfSBlIUkkJORc2a/27LdbNhsOqJlDi8vGS2xCcKQgJrGvoiiFHJODppT2IQtQYUixiE78KviZXBiqMCbzcCjVcBZxBXFpq7s7nA1ekmFELqavh9QSCmTcmIcjpScHOhXJUYliDoZWlxBLdnLG6BgQVwFXmr5kUo8MNGuAbIQzOjF6DX6mre635qfV1yPDfh+ZuaT3QrAtB054Cp4wYHvBJUZqtcS4yxEzjY92z5S8siQsu8TIkSNxM730VzAkjH6dkMT4DcVazEj57H6k6v6Feg1oCHQ1ewJllOtFOJ7r9be+5bizwiCA54yZjQbwdy/NsH7JHWc29jXzWgidh139Wdn0AYpC6UopdTxqeB1y8wQxAFvEEpx3/TyOO0ZagzHgU3v5FnQjZd6EaFUFXkphRC8RMc2dvRBOQYv86KVTJhQX5EKUjeQOzlJkUstneTPgiJGtqrmNqPkgJmhKH0X0boPFjNKK/lR/WXXR2Ilp7MZ19uOnByI1i5wTANjKqTsqusQnbTzkhGFoJFSP3mIukK6fSkgW/FSTXX9RAl1j/c9zZoiuD6kSvVbL+WhxGyklHn58oacC7ELfPHNB/TR1elXx0o21ro30+eGBcg/PwAbcVDJssVnkbYa2meZZtPnmuXv7Xzxp7+VzIsXz7k8Hoghcb7doHqX3WbPmxvjTEbOYs/9uOVwccFVTsiY6S8P9P/dd31/bp+z/FsKE3U8P77nV2zxb/PpWxzGK+9u7zwZhfqB7XwXeeNiw3Gb0L7zfTYbKaXPu+hqq63xDPMessYzazyzxjOs8cwaz6zxzBrPrPHMGs/8cx/PrF96Wm211VZbbbXVVltttdVWW9gnH37Am2++xW63JwIHSZyd7+k3PRo73nvyguPxyM2QeHmV2bDH7p2z3yiIsekCsduABsbkaioJOoG1h5w9XbIIitKRiSoMw8B7733Cf/UP/kuOz5+iJXGxP3cgqEAphWyeirmMR/JwoORUgRQHIlQbSTDbHGAvgusq8CkYWoN2z1AtnsK6VPVpBfvFWuBu5LwIxGUGbsDVoUdyVTQVDi9f8ut/8Zf5S7/wVc73W3744x+QBc76nn3XMeYjap6iWtSBsE6VPA4O+gJBOrQSLlrVoUEd9NlGB/UacHMcjrw0T+WvwFkXJ2ImF9gAse/pY3DgZ/DyEqpK0IBZRwiBUJVuY0qeql2FLka6GBjHEXAVOtkIm46gDlDdDIliBVUhxkC/6UlpJJdCLuJkQXZVuaqXimilJ3yu4FjBY8zoo07KbAfiC6Gp3w3e2J2x7SLjOPL0ODAMR3ZEoii5lS6IYSoPMY5GyqmCZu6DMUS/pgrj8chIJmGYGvs+UMZMya733XaRTRfpuujjuOk4HA8ch4FhHHGFYIU8LHA8jq4OFu9rMIUKbokpEQe4gwSUwDCm6n+5KsQLUlydreLgqCRHqVMqbHY9aomcBm5eXJJSQaMDmdtNz/F44yrK7NdLw0Cuc+rNcoRUgC5uiN2W0PWErkO7SBc6rBRKzqRh5GK/czUxhWEY2fSdK7WLEWLkjigSHLg+Xr4g15IMGlzFnMaRMo5YHmva/Eq4FWuQKDlnUsqErqfrtlXRn+n7nrGqp0vsQODmeABRur6njz1CQQtejuDmQLfZIGI+1+bEgYhhpuSUSePAmEbGlNjttgT1VPTWyo4gWC6kYaSLPVEDhoPfKY8EiUhRLBl92KI5oTkx5sx4c2S/77mzCey2kePNkec3LzgejsSu5+ZmpN/tCf3GlbA5UYaBknzeVXBytBQsHT2dv+KlI4BDGhFLCJmoMwGq4mtvjJ3vZ0WwLJTDSLfZEEKklNHV48cD6XDg6vIlaRwRFbrYcXF2RhcjaUyMyeXpiu9RKGjnu2FOmVLXZBcjIUJUIYTAODqQqiHQ9z2pgsaUUn3bSzyEtiEnJ4FSTnU/lAkk7jeR7W6HOGLr4HMD9sWQAHd3e+7sd2y6wOPHT7i5uqZQ0KDEvme72WEIY86Uw0BOkLyyCDlVMgQvrVOGgxOfVdXvDwwvUxOBnI8cbq6BQohK12/IVlX+UJWtYBogRM8eUYoTAaqEMiIl08eO3bbncMyetaFho6WQUqaUUrNZlIkgUhEiwpAczAeh62G72dIFL2cwjslJCzFECibQdZ7PIeVCOlxz1t3hfL9lv90xDEeOx4EhD5TsZFokED3hBn2nbILvVdvtjmCllscJ7HY7V39nJ7mG6r9lTCjCpu/pgpJKIeXMIY3k7OULtD57dpsNXYiTMtuCl3pKJTMmzz4SNUxkeOacccheQqMkhsG/wGClViSQrpJQ/vWERgpL8CwFpfgeixVUA5fXB47DSM5G3/VIKbWUiyCxkq11fnK2qgYXf+7FDrHAMI48e/aCdHPFX/kLX+fRvXuUbPzW73+fgqIKEnxuQZyJr4B/K4vSyiKo+TNb/EE7qaRFTkmB20B9/cSzeKY6MXOx7xly4WYcePeDJ5R4zseXiafvJC6+doc7UdhtO/Z37/LojTcpChwT9vglV5stxgvMBCXUz1q1zfV+n2/m6vjPbO+yMzUHiVQGzApSCr/4lXd49NV3uOw7hpzJYyGNmTQMP+Xeq/282xrPrPHMGs+s8cwaz6zxzBrPrPHMGs+s8czPUzyzfulptdVWW2211VZbbbXVVlttYd/9b/8RfP0X2Xzpy3zpK1/j5XZPiD2o8vZbEN5/l2ePnzPcHFETzs/usT+/y363I3QOuIKD+kUKZ2cd225LQEmHgUEFOvXUwsV4QMRy4t0PP+If/Gf/L559/DF3dzt2u70H+UGhKoXT4ZoyGGUcESv0XSCN2YHtGFFVEiMgBGoq6qa1mX9kVt3gpILM6rxSqnKrAlhDSp46WlxNVYqrq6jlCSruRVNYGyPJHBAv2XjnzpYvPTiji8r1T37I86Nysdtz//yMbhs4FqlKcuEqFYbjkZxGSs7E4CotxFVjVEVuF5QuBnZRUSmEqmgUYBMDqCsM7eaaVEsepOKACP9/9v7s15IsS/PDfmsPZme49/p1jzkycs7KqqzMqi6y2F2U2E2CEAWSECAQgkDoQRAoCvqP9CZALxIECJAEvQmCCEgUiQabPVRXZVZXVVbOkTGHu9/xHDPbw9LD2mbneFRkUXrttBXwcL/3nGPDHs/6PvvWNx6oTsheyNNALtUAj2YPEVw4AwAgpwTVlITOC0OZTPEqQvARwcAr39qjNnsFJ8J20yNSTU1WhDxltJWKroD0HSkZaFRVTZ0KaCmklEhVzxRlRr4EH4w0UeXleEculeM4cHN7Q8mFi82eLkREoJSplTk/lSvPpVCqleR2TpoKzsDMotVUj1rJU+ZhKdlucFO/3eCixwWHeGcEknN2fCeMx8EA+FKpuZCyAa/Om1JZtCk+tQFNraw6CCUbMKitXHuphWkaDE9yztomBMQZaFlUyQ+mWE7TxN3LG27vbvAhGmjeRYbHh0aACalWirhGGFWm42AgNAagRe8Jwcge56y8uI+mjK+1ksdkpfKlqYGdJ4SI81byPnSBm25jBFmplJQoqtSaqTUb2dDGYlUlxkjfdWgjgOpcbaC1D87TdT0ewbWy8aWRSeIcfdfb2EY5irDf70Gh5kSZBrRkBh9MNd1K2zvvcN76Y2yEVykGRj6IlWGfVZ8pl6aStbHo8Gw3O7OHQbm9vSOEYMQksN1s8GKq45wzL25v0NvPOez37DY9H37yCY+TjQ+0MKbM5dVT+n6L85FxHKnVANEuBI6P90TvrSJCLgzjgBcjt6yfAkKFWhimCRdCAwdPymIRh4pQqvB4HJd1woswTgMpN1V/LhyHo5GSITBsd4TOCL6UJobjgDhpZJ+pTWO3YRgGckqE4Hnj9WsuL/Zs+w3BecZpwomRl4+5ME4D3rum0BUe7u8agWT3UtQxpsSYEkXMLqUWAztjFK5221YhQ5jU1lYvQoyBp8+e4LY9h7uBl8PAy5sbUjGCyjsHm46gimvE9eH2lvth5DglI/eqzbFZjQpKzul0fT40GxpbM2LvTE2uFRGl63pKLQtcWlOmj53ZZWCganUONbmxESXTxOgcdYx2xqY+VYzIrdPEMI4cj0emXOhCR/CB4AI5Z8ZxWsDr3W5Huo+NDFX6fkNsc1hrpmiF7KlaGceB+5sb+jwQpj1+c8EwjdzdP9oxtRD7SEnupLJXBfG2/kw9tUzknK2yxXZP7DqrImByY3AOnRKpVuroqF132humRB4HQgj4EOn6HreMDbMN8OqoomSnDGTGlK06hColF7OXaUruw+FAHRNdDGz6DVdXl9QK45gMUMaqSPT9htB3iMDd/T0pTbZ+h4A+POBVCeKIUSilklImZSMzKrqsWwBTGhuR1dTmxexQSq18+MnnvHv1H/P93/8urt/xL//ib5hqxvu5CkzgbHttxIe07xYVj2skhpGz5yLhuSLLqYpLI1cbITDTB955a6taqVrweWIrjs0mcOx2/NXHR378fOC/ff9T7vwf8m+99zpPDhX3+JzL3Y6Lq0v2ErnotuBnaxJt9+uQprpWrfPzF5xNnlmyb/84e0jjlRt/Jc5pD7f8bPZclavrJ/TbHVf7PU4Ur0DVRqiuscZvjjWfWfOZNZ9Z85k1n1nzmTWfWfOZNZ9Z85nfpnxmfehpjTXWWGONNdZYY4011ljjLH7/nTf4nXfe4tnVBXJ/y09+8iEqka7bcLm/4ioGthcXyG7PJkbeeut1utjhWuIus+IoeMKm4zAOPN7eIBWudxe8sdtwGA6MDwOMA99+9z0ehsyLnHHTyL7vCd4UiK3WOul4xE0Tb+423D8+MEwJrYrfbZk0U1JCp4lUEkUz+/1uUWzVqi1XNTBc5MyCYA49GUMs9gGYhYJihEGmorXgnSBqoHOpVqp7zoOrmhKp4qjqUNcxojzefEa9u+H9v/krbnPHZd9zv+npdhHFymLXWkmpkNIEanYOfQhWkl9a8uw9iC4KuW2MeLVS4X5W5Qa3gOIlz+XWTdrtajWV4xkorsiiLBccIXgjQYSmkjbwVBCCd6bIKyfAXpAGkhsgWbU2gBIeH5zZSmBl0kupiwpMFeTRFLO1KdFCCCDWjjkZgOm84Bq2UMrp2A7heHwg18KYEsfjEYdjLJXqPE4gkxaSwGHl8xUDzYuY1UZt0IpzDonBFPJqPFbSYucOpqqrZGrKSLb3l1xMTeu8gZ9lwlVTdaPKpgFfzgkiTeumQLXy7S5EzN1CrcR+DEY4VaVk6GS2+zCgUkTwoSkErVXJRUhO2Ty75vWrCwPsQ8AHz5SfLmOllEppyrpKUyPPJejVlPZm5GAq0Foq1TTiNi90riygS19454gxmm2Ht1LzM8nh3NZK4mN6N9HaTmXWJiIGGM9VBXQB4dp8auiYaLMiEQOpRUx5G2JT1bczhODbOIpI6XEoGSP+vPdEb+Pa/jj66Kh1Q1FTbJolCMtYHnMmnxEbmmsjqKz6Qi97wPrGfu9N0V4zWTzd9TUxeFzJ5GNh33X0IaJUGwsCMXQ4F3EuUoOnVgO9QutD543EKQ40bHFYRQFxDqlK7HpwME2JeeDaWpJMRWktR1Gl82an4MTsTHInlNysQJwnVwNE57Wm1gpdADbI1SWFBmLXBqS5QCqmzt10nusnF2z6jhgMZit1h7Y5Pw4T23lugdna7C7s3JjqVZwnd4GpRIacGZNdnymKC5oytOoQvbd9IYgjeohl4pOP3ielxDTZ+hl8m0uqjAfh+PBgJKmzz2yjQKnolKgqBMLsMEG1Uhy2lpcM3si7WtXWqcE3QFvAwfB45GzIorkixcBaL6b0nHJu73H4NnsVs1+qda5SQCMFPalVNNBScLlSy0j1heqNFKylgppVzfB4z4jxqSIw9pumzjabg1ILODMuMlJx5Pn0Kfch0MWOXJTHxyNTMbugrovLnHVqimdpqm6cJzXSDwWHw6xjbK33IoQYKbVQq42v6EPbA9SU6bVa23ibO13wdCEQgs3BBYQWR1Gb97m0Cg/V9izXqhRMyR4giF7ovOfh5nO6bgNtfx5TwgXP4U4pVUklm6JaZ8BdmKZka5eqzadcyNWsK7Tt8fO5BUepbS1UI+VyKajYfvp495z3f/Fz3nvnLZ69+TbVKUkXjp9QKzRrjdr2HbuXLwvbd82aqi52WKd5yrLXMBODaq/Jwq/bwxIFq3wi3rOLjkng+Vj5v/zpL5Gw5Y/eveLbTzc8f/mCT6bEpihPbo88K5l9EFwVqis48fhs/URrL7xrpAFNmv637+P/1xDma8aIgJJ48fwF0y7Rby7YXF5hPiuOrpHca6zxm2LNZ9Z8Zs1n1nxmzWfWfGbNZ9Z8Zs1n1nzmtymfWR96WmONNdZYY4011lhjjTXWOIs3Lve8+/SKp08uGVMmDEc+e/kZuQiXuwsu37impASquK5Dn1wyDgNOoA+xWQsY9FeGgZvPPuXh4REvwua1N9ikLXk4ImliA1x3EVJi64QeOHoDjMQJKpjatYs8udjw1dev+eFf/TUFJaEUYCqFbb9ht9mw3W94ODyagq9U0IzzgXPPeMBIgy+59xkDFTCwp86Yrr3b6IVZcYYp97wsREKqkBAD1ICCY0qF43EgTCPfePstRrdh6wO76PGdKY0szzcApZSME0f0nq6RAszEhUgD2iwT70PEY0rHGQxegFCxEtkIps6VVnq9tuO5ltg3xbAsJIED1xRq3hOa1cMCLs7AXZ2tGexc4hzqhFmdJWDjQIwRUG0g+dy40M5tIIfZSBi5oZjysZRCmK1EMKUX8+U3gMDUmmYhEJwnihEbAhQpeNfIKwRRUzIjjuqE6AKogfpOBIldI5IMnqkpn9rdW4n3GZhzrVS/k1l968g6LWoxra0NhXZPFZwzILIaKO5DbKr806Cr7XVTx2WE2QrE2sw15bIToVLM7qHWBVi3vrb3lNavjgbCN8CfGUhybhbZGThOaSX7rSx70TOSQFolgDZWczZbkBgCIUS8txL12o4d2ryTRlI5bRUFaO1JI7XauJ0tVpapqjSV/TwFDOwWYVGyz9djTSdNmVkRtbL+xSiwNn7lVB1BxEgdWBSEDtp77M9Uq5FoMwFYSsOAz9Tbbex7F9r1GjBatODEgEDaNRWVZWxZ8YiZpDGQVcQ+z9xnTW1vY6k2gB+Wm6iV0JndS2qK+nme1FpATDepaqtFnQk2jLSqJRvQjOK8kXPayLtalJqblYdr71crr4/amFZcAy2VGBzbTSR4a+e5C0sxlXyaEqfy/EaC5ZwaiWQKZ9fUnFkrYzYbinmdKVqIMq9zDmlrlMeupe8iqbZqCjkTm2q/Vm1gel1sYZx3hNiRSmaaJsZpohasD1oDVK2kWtDW/947qLJcj7TqFNLWyVxmgsX6R6uaxUubi0ollbSQZrMCX1XNjqIqIrpAqSpWgWNuL1Nlq60FzlFKNlC7bVoG2LeBquAaUUPry1LLiSxu94c2yxHnKRXGcSQbu2dt1cBn0abQtRFLBVJT4KPWvsppfnkx66CKnaeW2qoN2CXmWtoaLktVidhIvOAF7wS1DgFxC4luFS3KQvrTyP5SjWAPjaDwYmuSOI8qhBRwrQpCShlU6ENnFQda+2z7zkB7VSqFMWdKI/zn35e571XI1S9VCFCzKVKMzIj1gsfHex7ubtntL2y/qad1U1sfzHRr1doI2PYLavvHXN2g7Qlzf6AL2SanEcMSCx7fjqGYDUmrkoAq0QOho7rIBzcH7o8J7yOvXV5xc3ePukBKmUPKXDciQNRYh9Ma7myctXUUEQgOTdneO+9prTqNvHJdr17y8uP8ntM2gSLc3N9x+zgiLnD5OFIxC5arqyfsWGON3xxrPrPmM2s+s+Yzaz6z5jNrPrPmM2s+s+Yzv035zPrQ0xprrLHGGmusscYaa6yxxllcdh2vXe1549kVtVS+9dk1z9//iBefvuBzha+89y6HYSTXgg+BQKamkegdr19d0W/3hBDJuXB3e8OvfvELchrpNx2bPHKIEY+yjR0X10/b7zPbrmMXO25IiLdy+2gmHwfefuspv/uVN/iD73ydDz/4FaLCUKB0AZ0cz157jW+89xW+93vf5lcffcxPf/ZLPv7kU1Ia2W59yzYNkDbgx4CsBlGfhQE8lrBKswGA2gC0aOh0U8iZukrwVEw5PagwiKcKVCq5VIbjyFQ2XFxd85/8R/8h3XaLQxq4YKCFlU13FEOD8N6ZTYE0y4EG/peSUTffg1qpcgnM+lLfgP92Kw0QdK2EvzPwRGallQFCM4Eyg6PzuawEtCyf9U35bspXU4wtgOD8Of+q6tw5t4BNqnVRep639wx+K02ZtoD0zoD0pujUWpuKuH2ugfTWPixKuxmAofWtzLwEJ5DdlN8GUtOUzIZnBCvXLoKI4rWaolCEioD4hvBrE4Q5HM2uQwSVciJcZgX+gono6Voa6OzcWZvPALAYHDj/ngWs00YNydJfdQaUBFPntv40cN5UjDOQiBoQaf+2z+OWBj1xN2ekQZ37ZLl+10BrU6wZiG/3GkIg12Qfdw7vO1ADWqnFQM5mZWF95JbzzmSBYZynSgMne4jWFnPjqYH/QiONVFE3g1X2YRUQPbWj1noC6WhVD+a5omr2Mcw/auv3E2CvanN+bg/fyqQv4322LhH7vPeenA1ArFpNCe/cMq9KKZwPEPEzmUYDQuXsXq2awdxJOrdh676lz8Ut7Tnf63x9orwyD4RT+4qAD34hkLQqzMr5tgaAWwgtlQpqBIe1V0VrPgHVcmoSrTZ2Vdxp/s5M0AkZXYiemYaZ72nuD1OlNssOPxO1Vq3CNQIpN3LYNVBSm5K51oIP1n7z3Dq1TCNFGvgs2hTEra9bC+HE1paKsS4L4fTKHGEBsE8oqN3jXI2g1opUPe8FctGl+oM2omRpI7EqCkZA2XrnvFvmx3w9s1K11kqquV2DINoU5lrbnTTbo4WQO4H5y5xwM2jd1ouzCiBWycI+o1rb3/Px5uohfjlGbfY70m6wtr3rPJZ+bXtNXUiPRhRUGhGqy/pQ9dS3aJsfQMl5ITBBSNVaP6dMTkY+xRhsnClGLs8VOVCyFnKaGilg5zKygGVupJnEndunWJuUWkhlpIuB4+GB25uXVtkjN7C+KtUp0iyYZkLJyDraimaEqg2bVs1jPj/gVKlnFS3m8TdbOGmb7ConQljnZReFKeO20G92xN0V42efs6XwJAbeuHrC87s7tn1PPQ64w4jzfllH5gopVRziI67rKQoMGVzAbTxoQtPZvG4PH8xjjbn6BryqonZtj9H2IIQT21ZD5PbxwM8PL/j8xS37bk/SysXFJV/92td5hzXW+M2x5jNrPrPmM2s+s+Yzaz6z5jNrPrPmM2s+89uUz6wPPa2xxhprrLHGGmusscYaa7wSjuA9my4Qg+c/+If/Nl9/713+5ic/589/+EMuXOL+4TnjlNhfXqEPd5jQpkOz8JOf/oLPX7xkHEe64Pnu17/O5cWWTR/oouNyZ2XD95stz548RaKwv+y4vt5wsfO4m4wjWmKZBS+VZ8+u+erXvsa3vvtd/rP//D9HfER8oDhlHCZef/KUt998ne9+95t88NkN/+U//qf8k3/+p/zpn/8px8dDK6fvTSHawNYTTLOgPTikAR4GDASFueB8xYCKKTcFr2uAQU7kWsmqJNeuu1RyKhzLxPHhyO7pd/ju93+P3/n7/5C/lRkvyOwZcCJ84X1y9r569jv9wut84Xec/U6/5PXz98yvydmf85b6svhNn//isc7P+8V/f1l82T3UL7lmAy9fff383P4Lx9QvXLKe/ZnfPwN8pm1/9ZzuC5/jC6/nL1z3+d/nfXf+u7/rZ/jbbfXFNji7/ma5cHrfl9Xmlt/w2nye05h0uC+8/sX+Pr+/mS774jnO2/j8tbP7UwUpf+t4v/nc8/EcX3q8L86nV+7vy47/xbb/74ovju3zOXw6t3/lHOfA8flr7f06I8/n9/SFYy5NOI/VL7vP+Xp+03Wfv+f8Gs7Uta8c/+86zvl1lrPffZEMPO8/Ofv5y8bEfO76hdf//+mf81O388oX++f8fMqs4LT4srXm/F6++Pf5PcGra8j5sb7seF+y/n/p709ExLxz6dkxpbXXF+H33zwWzu/h/L1fHHvn13L2GT2/3y/GF9eWeR0+Hyfnd/OF+9ez487lSeT8d3r2V6tDIu06VU+fmUH8pdvnedbOoUCdGRaxc9QKJZ+uZz5vMWU0nAisEyfmTqSuOCDx4sVL3v/wY4aHB3A9zvtGtn1Ja5kfiJF1NJKeRhxXFkX9MoPki/0qp0s9MaynFtb2oIHYd59chZwTebrn4sLjQ8ft/cRP3/+M43gkMyK1EoIj+AAEm5XqrULEsy2u36Da8Wf/j7/keDxy8cY17/z+13nzD9+DMpi6fWY25vGg52Pob7eFfMm/SInd1VP2e3jR9Xzw4cfc3t5R5FN++Nlz/t3/9EubdI01Wqz5zJrPvPp99DfviL/p81881vl5v/jvL4s1n/nydvvi+c6vRVjzmfPX1nzmy6/7/D3n17DmM6drXPOZvz1n13xmzWf+9c9n1oee1lhjjTXWWGONNdZYY401zuJv3v+I1998G/E9rz17gvOV155dI9/5Bps+8vOPPmF3OKKHgVoqIW642G7ZbLZsNnvG4QMQ2F/s+cpbb/Ld73yb+/tbhuFAKYnf+ca32PYbuhjpuo7HlPjgk0/5m199wMu7R1MIp4QWU1O+/dbrPHn6DL+74KiRd9/7Kn2MRO/wzsppS1U6pzw+/4znH7/Aec9bX/kqfxACP/rTP2U4Hsg5E0IDK1quWmk2ALS0tKnHSlVyqThnZai1iV/tg56AKbEWCLSpnJCKyx5n0h6OFF4qDEWRaUKOB6jJSmWLUnGLKk/PL6yFwSd1ya3PMWAr9V5fyactJz8BO3XBxww0qKpneI+BJ+LmMv9NZaenz8/tcTrBqyCU1trUk+3ncg70sqgBF4XWK0DQGQijJ3XXotRu76nn55yVwq/8+6Sk/GITltJKnzMDK6dzV62nfsfKfc8KteVAYoq2ub3t+k4KPVOiytknyql/Crg23gyfqou9wfkp7HJOij9pJ5zxlXMo5fRpWT43I2DzdfJFReyittalvUDaeD5rrzYuTopJGqh2BkDJCdBTaGXeWyuq6fpET+db7A0AFwStsoBhzPYI7RplVkw2sK2e49Vy1o/tYkQUVcEUus0K4gzAbCLuBrYZ8DaXVJ/b5ZUxUfXs51mRzen6ZoU1LOX3Z6W3nbouffdqB9vvSj0fmrqM71l5PF9fnVWQy/W1qgKzWrX1+2whASeB+zwHXJuTJzXi6VznV2Aq7dY/Iqd1gll9eU4QntrvlTL0gil1l/PJct4FblZdTi/t9VfaXmgq89OMtLHVxvZcgcF6E9+uTU8fPrs1a8NTZQFpC+ds39BuuJ6OiDPLlBlUVietfZvCmgbUSmuntmbOp/fOLVejymLlMdsgLD4bbUDNVgTMc0rbGt1+FDmrGuDs/mo9UzZ738YFzKTSXF1gBoq1kU6zxckMNM+/s9d1AbYXZe0rY761z/ke2U65rH1zX4u0985jrh2vqZ2/7LXlhuexdD4gXnnP0jAn0F/OXjsnlGxhOpt62jir+ZhnxPFMhqku7YgqxHh6+7zkTROaJhs37mzxrID3EDskBFuTYkfMiv/8JWlK0HWos7e6ea9zrTJHG9PzglOrQquqkktZbqMuDzdwWifnqzhrk1zKvEja/J6/t4hV+Cjeoa7dc0kMufLf/PTX3N498PHbz3jnWjh+/pJ6eKB7ccdb02BWG2pjvOrE5e4Jx1z52Sef81///CM2vuP1x0y+P/Lam5f413dm2TKMrZ3P1uZlx7X99VQBQr4wFua1x/Fwd8/NVHi4vOQHf/gDtCjHlHk5TKyxxt8Vaz6z5jPL2dd8Zs1n1nxmzWday6/5zJrP0E655jPt2Gs+869VPrM+9LTGGmusscYaa6yxxhprrHEWP/7VB8R+y2cv7njn7Td58tpTYrDE8vW33uKzhwPXY6KLB3IpbLueGDt8iPjg2V/sKFKIXeDJ9SXiYJhG7h4fqSXz6fOXbPsNIjCMAy/ubvn5rz7kJ7/4NZ99foPvejye6GGz6fjK22/w9NlTuu2epI5dCETv6JwQnVCdkKaMlkweRobjkVQV6Xsunr5Gv9tTSiZP02KtoK8A1qcEdgbpiiquzon6qVSzE8UbK9BA0QaktTL7qvqKcFlj4IPHA//q1x/htaCPd+jxkVoSRQtVhVpOSqta6is4OGCl19tlnoBjafhEA6vn1zkD5YAic9l8AyfKDJ61O66lLmXmT2qvGTw/AaUzGiHzudvPtZ6V9l7e/GqrLu9ZwJETGDUjh1bu2sqcL4CH2jWcYz/n1zF/bu43+7s2twb72ew6zj4//1uVWvIZ0NIIlKVU+QlkrKWY8K6hqVUNuFlA43ZhBuLWpY3MjkHOCICKa+CMKpRaEHXLtdVaml3A2T020EhVcc5bWfLWHw6haF3GsZubah5Lc187u6LSLDxmaNS5M1DmrHHmsvPz75f7aSCkc2ZX0vc9KaXWvyDiF+WgdY/ifWhkQSXXjHdxaX/B4fyZolCh5NLIF5tfdq/aCAFd+lMwnO5E8zQl6tweKsxqydnOYSE4TljpUkJe1UgWN1uEnIPprT0XsLWN6TYIGvarrZS9AbDeO3LO7Rz2+3HKVhZfhBgCzgslZ2briBACqkZWpZTxIbT+rFCr2TU0nLmqkXMzED0rLkspC4DI2dw7EW9NfekcqZW6FyB608D7Bvyq6MleQ5VaWsl8bN3Uojbe2wqEc9bG82xqIu+ZgKXd1wJKYyX/3Rk4XeoMiNrKE7xnHqKV2sZSWwNnwHvuy2Z5066OqpV+05uNR1XSlFp7yjK+ZssLxfqOsz7EOc4q9i9hfXkC5ef2mEH1hawUs95xzixAcq7NEsXmRUVOhK2wWE3Q+neu4rGMPzeTYKe+Xs4sznBrOZujyyZiB/TeL8eq1drWewHRxgOe+traB2aSyrX2PScE1LU5Nfe11sV2SM4aTdtE884vYmc9I0Hmc8x71AyaK+f7zMlyyCxeOBE9M8FyYnKZbZKW+Ysuti7MxzwnaESMIGwkwQzgnzq/9UuaICVUy6vXroJ6j4sdruuIIeK3O+5vbrh5OJz2ZKzt7dJnYv50vfNep69YbShFi63d8/68tI/9e55fi7VNIzFmchTRVz5bxb4zIWLVGSTwi5sHcoUJofqn9C7gksA4UdOEawRoaYSM1EItwlCVz0TYihLGiTdfKHocgd1CcM7j6mwafSH0bKw6FnZ4IeEcLvSUceLmfuT24cjVxSUX/Y5+9xsPusYawJrPrPnMms+s+cyaz5yPlTWfWfMZWPOZNZ9Z85l/3fOZ9aGnNdZYY4011lhjjTXWWGONs/jRz37Jrz78lKdXV7z37tt86zvf4rWn1zy7fsLrrz3j8vISVBh2O8ZxZLPp0FqYphHfB15/+3XkhYAasPXrTz/k+fMX3N8/MEyJ5y/u6buOlBMff/Ihv/rgIz76+CUv7w6MtfLu22+yu9xxuYs8fXrJt7/2FV5/7Q22+0uKwuHxgeKE3gm9C0wNqupCwFWzcxhS4WFKHIvS7/fUnBgVhuFoIE8D0WcQFzXwoTYwq1QjA1KyBH0G5CpCwCEqTYlqykJT2VYDlFUpUlFR4nbDX3/2kpu7O/7JD/8CfXxAP/uEMj5S8miADYJr+XSapkYSKE18ifqGV4Al0CoL2Gc4uy4AkynQ7HpKrVSx5NyJwztpSmYxRac4xmnCe38iDhRUMyJq13RGCICBiN57A9IQSinknJqyW4niF4JCBZzz1FoX0EOrEkJgVkDXBgzSgM8ZzEIVrWrXPV+AWj+7GcCZ26AB2gbGZQMbGwAagiOGiIgpxkxRCrVqA6RPIJ9z0He+Aa2tLcUxTRNaK533KJWMoYexi6ZWKxUVIXiPzGCzc3TdZgHRa2OOdrudgeGlMg5Tu18jRnLObDYbROwag3OoVsYxUUql6zpyOZEywQdSzZRGE/gZeNR5/FTE+QXYzqVQihFTAIg0cGru94o4Ry2ZkhNQ8eJfAfC8c8To2W463njjdV6+fMk4TpRcCL5jqhVtJfCjg8urK6rCME3c3Nyw2+3QamC2c54Q4mksVUgNSJ+Bc1Oq6wK2l2R96Fp/4QScKQC9CLXm5d5Kzg1kPimgT6SA3U8IBs6WUvDicd4Z2OnseGB9lVJajkEb26oGws9/uq4ntPbpu47HwyPeO0LwxBh5PBwMrPaey4s9IUbG4WDnDoEudjjnKLVwOB6JfW9tUSuUSowBFetjI3Gs/9wZQJ5Stj5ubVhyoTTSZyaoHELfRY5jIuWMomy6iNRKDNHmZxtfplCvjOPAfrddwNdpysQoFCqlFnJRou+Z6wRYxQxvP7clZMrJ5pqDEDqOxyPBR2II1Ko8HB6aI4NQaibGSBcC3jvGNLDd7amtL4bDZMTATIDSSLxGxiHw7NlTxDlKLjzcP9BvNuRSSTlb9Y1ic7eWgnNQcibGQN93iAsch3Eh/UAJwROCxwdvJM4yd5SUJ5z3pzVNhM1mQ/AR5zzDmNCccKIEJ6RSFpshESHGDi1CKVadIYaAd6aGTimjzqFt/HrvmKa0fFacZ2rk8jxEN7HDNYIzp0SM0eZTrWbT1PVst/aeVAq5zmRktTUsWFUNxchlswQ4rStVBIdb5oCoEua5I4JzYSFMVIQgjipQxX72zi/z1IhHR5QTyVBLsT233dBszjCTB977xXFECnjxC6Bfa22ElpFds6J4UbnrrAaf10GsmsNMvKuRm/MeWUpp9z6TrJWiGasq4PE+UFFiCHRdz5MnT9hc7hlL5f5xxLnQqh5USjGSPHi37N3Gg857uC4g+Uwup5xtXOj8SMBMEZxtzXL2g9i+dbZaQa2oOGsPJ6hzOBcIBDREPh8OHO6O3Kljs7vmd77yJtd+x+6Y0VzQms+IQyE9DFSJ9Psd3bvPmI5HUq74zvZAIyp4JWYe4At0/fkLjS23fyyVLJzj4skbRB14/slL/sm/+Eu++t47vPfmG3zjjbdZY42/K9Z8Zs1n1nxmzWfWfGbNZ9Z8Zs1n1nxmzWd+m/KZ9aGnNdZYY4011lhjjTXWWGONs+ivn3IYBm4//Zwf//ID/qt/8Wc8ubjg+vKSN54+ZX+5wzuZ8Tkeh4nNZoMLARWFKgzDQE6ZT379KY/HR+4fDjw+Hri9e+D5zQsOhwPjNJGS4srA97/9Db75znu8vHvkyW7Df/9P/g2+8s5bfPbZR7zx1jNivyF4A4ylVKo6Mp7oAolKrRlfDaBVYKqVQyo8jokxGwhiikmoKrPWCqAByroAEBUoaoroztvvZjC5qDKVTFbBVcGHwFTNMiLVStZMch6tllhvcHx+hF/dPnI4PiIvn/Pk179mMz3Skeg7x+Vuy+Xljsv9jsuLK4bjSC7ZQAWt1EzD6sVAyDCrQO1+gosLEOeQpuor5JJBDTQ1cDcQfGBKiaKgOPAd3p/UoUUrXdwu4GYIkdnGQFXZbrZW+rxWcs4GpLfS27VW+hCWsuUVXUC/GUw38LxDkAZeFnwD/WegfFb2iQia6wKLzOppcd76qBY2mx50VjGbwrs2kEVQXru+WIiHnDOHwxEfDFgVdeQGYANs+sj15RbvjLBIuXA8mno6OMe+C4iWBnYZKCnOk0uhqqkNc6lM44RWpe86jsNgI01M7bjpN8TQGUiZZzLCoyKMKbHpuoWw6IJjVnqXCuM4Wrs2VWgIkWEcWslwpe9768cykzGeRXCpgiIcx4FcKlUhF12UlAA5JUrVRqx4YhRToaoacAjEGBFMGX399Jo333zHrqedIzX1Z/DCxcZA7lwqU848HI9GtDVQ3bnwSt8PjQyZ1dtdZyrqWiqlVEKMDeQzYDdPE13fE/tIiAHNNpZmoLKU3OxJWIglf1bGXVwDGxW0Fpw4A8FtsOGdgZS1ViOKVEmpAd3e4UMk5wbI10oMHaKmGI7B83h4QKl47+i6SErJ5qv39H1vJFNNNCk/wzjR91tCjDjnGMuspIY+BLRaO5RaKaqmNuWkrrSxX1vZf2UcJ2ahuvMO31TCc/sDC6EAkPLU1hH7r+86YjSioNSMD26x8fGqdL0ja2VMifu7ga7bG+kkRjSeVP5WhUC0mGrcBfrNlvu7h4Xs8N7z8DiYotM5qhZqzXQxELxjLBM+eEqu5Klw7AZC7IzYwVHLBF4QZ/caQ2C/P5EaV9cDLgRSykxjwvtAqUZyllygnc85MSLAR/ox2fwzKbaRHm0cuWEizOuIw8aFKnPBfiPrmoeQ8ygFFyJddGy6QC5G1s7AcNf31GKElF1TJnhvJE8uxM7W75m4PMpcgcAUylIKizK7FvZ+w26zodTK3fGRUhJabd6UPJK04H1GgcdhZJhsPReUzhvRNeVT1YOuzft53S8CVR21QM2FLpjSWkTRrGy3O3LJRkDkbMToTBa3sZVLMVIdIcbQ1mwQZ6SpkxN5qsaNMyPhsetsX6mF4/HIbrc3YF9gmia8c43sN2D+PEouOO8aaZqZ0oTz0SygaiMMfWjqcmHMGXXeCFcn5FrJVUlTJs+VHJynqpETX3nvq/TPrum3e7abHU83e6gZvFWCcOLbt48TzF9LWcD1Vpug7buZUptFzBmYPn+X0YXDf9Xbpz1z0OZ6QUu296jg+w3Z255TETbe0z25IJXKRw+J/9O/+Ak/eHyHP37rCf/o3d9l8/rPqR/9ElLCqaMLkePdwJEj0Tv+o6+/Rnpxx6WDt5/ukKsIZChnl6RtncWqI0AjRk6sgN1MG9ZmgSU4W5yR/orrt9/lD752zeMnP+GjT3/BZx/8mk/HzL/7P/lfscYavynWfGbNZ9Z8Zs1n1nxmzWfWfGbNZ9Z8Zs1nfpvymfWhpzXWWGONNdZYY4011lhjjbPwqrgQCDvHpu8BA8Ff3Nzy8u4O8Z7QymJ77/Dulwa8iqBS0WJ5oLaE+ziNBqA08C2jhG6D+Ij3me+89Rr/wz/5Pr/7ra8j3QXXV0/Y7/YM08Ttzef0YUMIAe9P5ccNjmmK05ZAZyrZsQCTuRRyhfE48fjwQB4OOBGCgDCDk+fK37MEW1lsIUotaGnl/b1QVJACUKEUK0nflFZSnQGTteKqAUAFR4iRLTvcMPH0tdfYTj1bRi4v90RvqmURx36/4fLywkAKH6hNWbiU6NdK8NLA4wLlBNwDUCtd3zVAMdNFv5RKF3GEEHh8fCBlA4pDiJRsurO5zLi4WbVl4Oo0GQDmnGe/31OSgSMpJRDY9L0RBw2Yd+JMOcoMXjYgswJix5mVXaYsM7BzVgEuJcUBqrX/TCjErltA/1IKIfiTEhRT08YY8c7hvbDtgoGnGGAS44O9FgIxRFRgSgaObjcbNn1sNJGpyR8PI9JUz9suImoArdKEdc5Ral6sFx6PI6k3ILmLkYsnl5RsSntFubjY2/gqShoz3oV2HNi7nuj9Uuq+C6YuLAVSLrTmMxLFm+I7RE9u6mvvvZEPrpi6MgZCnCEPMYWiE3Kx60lNAe69N1Vna2sn4J00MkpOqr0G5s5AT8mZ7WbT+kIZh4Hee7wIITi2fcft3Z3Zqahj128NuBcFb9c0q98K0HVdK8s+q5YNSCyuUHxt643gnIHoJWcrU9/mXqFCq1ggDajHh6bA9m16zF4tNIWiqVtru8d5rngR+hCbSrvSd32bC5ONRczS4WS/ACpiKkI1gO/y8sLsGpy1x/39XVN8289SM1SruhC7Do9fyEYfI2lKVFEj8USobc0rtTDmTBfiicBUpaoRKidrFCH4gHceHxxac7tfA/2HIRGjXxSoKXdLBQNUzSKirfMhdDgPIQghCJsYiV1kSplaBe9LU5IKiF2Lb4QOWhEHXeiadYVDpBKCMI3a1P6evt820N2RS6IUR3Ae7wRSYTqaXUoMHbpp1RG0TZcQ8DEs1huCME4Vma108KAO7yJd7/EuUFUaQWxK6pKtP6BVaOjd0hY+SCOtbE/TKm2MOiN9us4qRGhtfR4Yp7So/1WFGB3bbcd+v7F+U0VzoSSrEvBwHMgYcN+FaMScs7nZbzv8mYr/6uqC0OZnLRDDtFjpaK1c7fdsNxvbu4IwpWQq8FoXpX6IzvrbOSTY3AjOsdtG9tt+IXgEoaRMrcX2SO9IwDRmylSoGfrYETtpRAFcXlwxTolpTAzjaKRdI7BUYbvdMqVpIdm6Llqlg8byy6ycZiZFpVlr2PFjNPK61EJKmd3+gtjU4LkRgzkXUk4Mo51nJshUK97b+1K2P95HpCmYK7DpN0tlgCknVBwVIefKzd0Dtw8PpmwXW1fHwdb82Pfsn75OvLy0CgPOk5py3G5PyE5x0iwnnO3t1tQ2b3MFrxiRn4XQ3j/PaW3swLxFKidltTaSb35FZLaKMrJT84TUAs5RxYiCjorHISGYel4iP/7kJfXhnu1lxx+LrU1iNUGogpHrQ+ZuSHQH4ckwcnkR2Gw8bm+Ez2LrMFMWM3OhzdBCG0Ew22u066QqKhUpFVKArWNEeEyZu/GA77e89t5Xubjb8/X3P2CNNf6uWPOZNZ9Z85k1n1nzmTWfWfOZNZ9Z85k1n/ltymfWh57WWGONNdZYY4011lhjjTXOwquiTfUpvpXtbyqmPBWK6lnZZ2floGXJANFqqkIaaJVLWcqsBye4GPGtlHJJmW+99zbf//ZX+cF3v0XcXfPk+hk39/d8/NlzYmcltb3zDXQqJwAapVDMg76REKX5vZdSSbkuyrKSTaEVo29yIlM9KTSSwJJp0+nJAr6lmtFWSlnM98FeERqw3VRXLWM3JWK18stzkizgMVBAfaDfb9nHwlYd2+2WXRebWEjJtVgSL4oLnr7bsOu7RRGqtbTy+QYGaS3sNlsjaBS0Zrq+M8CgFLY7A6RowHvwns2mM9BEwYdAHg0k9w0UFHGmEisFFIZxorY+3242TD4ZmO8cRYuB0aHZDmhtY8MtyrUZs9BqQkHmMuKKlUtvJEGpDTRvxMgJBDSCQFVbWXNTQGupOG9gsZVghxg8XdcRnMc58KKmZMaA1O12Y0SRt7Lvzgu5mAK36yIheLSVVu+Cjbta7d67aGXyZ+sLu0ZI2UrmOydMKS/Kry5GA4lSJadCKtmsU7RSUiFPTZkrFRElRG/EQDU1tPfObCsaaWEkQBudM/jsDNyZleuz0lmagtI7v/QFDtDelJel4jKkXAneyCPECA90BrWakrgp8I2c8FSMrAOIIbS5Z4p232xHghPEKc4LTm2uWfF+mMk4a1cxLKkaceA8DUgWA+7aGhNaKfSFmPSe0Nqqqho4O5dBl2ZfQbNL8I2IamTiXA5+VpnaElAb8SNnr9GIz0ZOIBRvQLhg1QZ8+zwOCkoVs1xBha43AkictWPXdVQ1BbY4IGf6rmd3ecXrb71LHY68fPGCh8cHHo+DqSGdzetZ4ZhrIbe2MHV5u2fncNUARgP6IfoO70MjzGxtDME3Qk/I2cBp3ywlQnCLelWobFpJfQNobe4G7whe2pwPqAqlQAiprfFtbVLX5rG0frA2mPeMGO042TucYmO1XYepsz3BsVjVeE22NjqH94G+t32nNOBXfCDEaGTrDJPOSzNGfAo2Z5w4mE1mvAGuOCOGqEYKOO8QKdRGcngvRB/QNvpjF/FiYyA0e5wavZ3MGetX2+biva0dPgqxj/S7jU3FUqjFo6GSUmWGVLXtRs7ZXHJO8MHWPVUb710M9Jtoa3VRVA1Un/eI0AgTFVOySrMC0QbQWlUAG/U+mr1BKYUYHNtNz36/MTLLe7rYISqkNFGK0RhDzQwPByaEItD3Pft9pOus/zbbLXHsGIPZn9i124MDVY2QTTmRcybl0ogLm2fzbmyWBrJcu/M2dm0+WeWDUsyKZLvbE0LAiWtzxSphTGnC+6PZOrWqCzjoos0BVSFXxbd9yDlPxZTdThxVlcPxwJgmxqlQciU4z363pYrN+SllxGW8j3SbLWGzwfnQ1hZTUjtn9+6xBw/UgWvfOeY1aVFJ11M1DPsq0MiZNheXrxszqX+2pp6OsnytMQLBOVu1S8aVhFOrXFKrUl3F49u65NDguB0KNwflM63UXHBNxaxSqVLJWplyZRwqkkeeSGHje/rLHqJHqi5zCT1d3/I8xny1MwGt9Wzwq91zreCMmEtT4TBO3BbofObNp095NwS+/eIla6zxd8Waz6z5zJrPrPnMms+s+cyaz6z5zJrPrPnMb1M+sz70tMYaa6yxxhprrLHGGmuscRauKT/B9KsiBiYTAh1zcf4ZVrfQGUi0D7VfGi7pm3rIMuKCqZINjC1p5Jvvvc033vsK7739FkU2PHl6xcPhkVKVuNnhfMTLDNsbAKbStNFaQE9+70VrU0abcjdNI6LgxVGdgTiCKTXbJdp9nvJvKzEupvSd0tTAJVM1STX1mTg7RDkDHhueZEByAy6RipOCaEVyYSoFFz2d69gUpRZlt9kSGoh5+/CSx8M9Io6+23J9/QbbZ0/Z9B1d7KlaGnDkGpif6c5Un6UYiCqAxMB2uyHnsqhpvfdcuP0swiLnTPVWyjtGv4B4uVYrB16UEKSpFzGllRhgKA6okEpCqcTom329NYJ3prZ1DeRBqt0nBmzVXKjOyAyz2qgNlGtEjT+pXr1roFe1sebgBEq2sv4h2L1HP5eRVryblWTWH30fbUw6RxetxLpqaCCNgfUVsxVxImy6SEqZWiu5GDFSG2DiEGqppDRZv3hvxzCIqwGkBtqVkknTiAvNsqTY9VSpDQSqiEJwAcXsM6iVlBJjMiDMN9WxalORt7L+hksKKZtCW8EUd6rUCj5YGXLFFIi1mpq8aCbXNmlncNyLCdWqVTiYAfV5NZinMYD3BjSa6rDgg9m1OLGy/FUL/abDZSW3P3PZd1Ulp0yIwcDUNr6CGPHhG8BG8CgeFUg5NVWtwcDeO7QpIUtRvHiCNzIxiNraIDCbuZiCfrbgcK0v6wmkO7vXWopZW7TzAeSSDZisaopI5nloY7SKEUXiPN4HYueppTZCwbPd9BQ9Kac1J568/gbvfes7fP/v//coj4/88ic/5pc//zl//Tc/xoVGpjrXqgOYVUBVNVJHacpbUz87hGlK5GyAaL9pBGFbN53zhNZnIXSMQ0La8UP0xOAM10MJTrloa0cptYHjtSmBHeIb6RginTpimJDgG0gPWfVEpDhwbgaoDaTf9D3TMKH4VvGi2Sy08eWCs3Xf29oxHgeKM5X7TPrUWpBSKBVCjMQQTgQBNNLKjqlNmTujqGYRMPe5EQWhAdKzxY2peYthlShOZwsG6LtAF4LZE2HkVt/3OO/ACccxMU1mb0I1SxBtG6TzILVQybavROF4TI2gsX00l0zoIiJ+sdRRtT/SNqvgAj54aoBSPCUnSqGB15UxJ1t/1bGJER+DEcECaUr4ADghV3g83kOpeIQoztS4Qej7yPXlE55ev8Y4jhyOB24ebtHDPRoEPIzJ2nLTBbbbCKLkOlfbaFZEzip0gFBUiV3AB0cuARknqlZiF+k7I7XGySw7fAj0nSm8ZwLP+j7TXHzaWowpaqlNAW72Q1btwYgJG2PgA2x2G7p+g/cd4K3fMEKu1ELXb0ilMo4jY5p4/uI5Dw9HhiEhznPx5AmJymEauX98YBoym+2OXhxVhDpN4D3OBwoyX2EbmLo85OCWEWVzA53nupo9SK7UnK0KCtqIk9N3r7NvYPYd6/xbzUy+QiMRzSrETQMxJzKeIpVqEwTBxobTif1mS+c9RQvp8dgeXKhUY9yYSmYqylQ9cky4vdDte/rXriAIHIuxHKrL9cwr0el/jSCY2ZCFMFAoBXEVkQSlMj0ceThmXpDY9gPf37/Nd/sNv3v5MWus8XfFms+s+cyaz6z5zJrPrPnMms+s+cyaz6z5zG9TPrM+9LTGGmusscYaa6yxxhprrPGFkL/193midwLl6/K6mMX62ftOCawsKh53liw7ABWOE2jYQNxyPBTCYaIUU0b2/YYu+KZUOwMrcTQoeCnZLtXhFXIpTDkbyBc8s1LVPmel50UNUAAD5w1cNYCmiqJqSvBSITSwW0sBcRSx69Zqx6o6p/nNJqApokVrO3VTN5ZKThNd53m2v+KNKDwcj9zd3rDd9FxfXfI7f/RHvLh5wceffsqnn33G/a/veXh5xdXFBU8uL7i+vmJ/sWfb9/R9T9eFZqNgoFSa0gIy16rc3j4wjqMpe7uOruuW8vgxBLrQUUJTXomaWm0cqNXAwVp1UXvXakTIPB5UawPcpdmCuAWUUFUjaVKyMuqq5FQYh4nQdajO5bpzax/rw1nhC1h5cGQBssU5uqacpLV7KQknSoyOne9Jh4G744B3jifX1/zxP/z3ePn553z26ad88MH77Pd7U906xUnFzfecM6UWQggG7CmklNvPhVoVaUrU03UaUG5tZeBzTsnAdhG0FCtF3gDw/a6j99YvpamGxykhUglOiN4UYK4RATlnhmEgtxLq2kq3z+2bS2YcRgOLm3LfgCYbz5nc8H8hOmnAXSuB3/oxtBL+NhcUalNEh4DDlLT2fhvbTgRpSmeqknMiF1OQxmBq0YYj4X2HarG5VDPOGThognfFR0eQYFYXpeLbmlFbSX7nZwDZVNRe5nLw7T5LPQGvbew5tClwG1HWlLo5ZyOXmvJfRCg5G3A8t5EPbc4b0dPFQBetfWbFsLZrnwF7IzNsLcnNssQ7sw4QOuaGzimR0miqzfa7gKleu75jd/0Erp7y/bff4Y1vfpvqHH/xoz+n3/Q4MeW+E0yR3HC0Ws3CxWEC3xA83a7NtWqExThO5JJPc9axjK1xGBvZ4qF2xK5rBJcBuynnhSRAKzlPpqz2mcPhyG63p7Z5rDWj2ciBWislZzZ9pAs9MThyHpuljxGw05jBaDa7rtnKQ2YLikjwLP3vY2ggvo27CtRiwGoMBuvVUk7kXFP0z3ZBLhjJWEo1gkBt31iU26pn60rB49s4soafbQh8cGzClpTzssfZvmSqbfGOQiWVAeeUUiGXynEshAB9bpYI1QBoKgQiMXbsKtRoqtjhOFBLaYr1sCiBtZEvtRSOh4EQAqGLlJIAIcZoZLBU8pSsAkOubPzO7D28jddSC2m0ffI4JPKU0JoRAs4rm02wuT2NDGPi9//eH7N/5z1ubu/44T/+r3C//in/4N/8Ey6vrnl5e+Snf/XX1PEBL5Vu03HzeDT1doxsuo7xOBgx5z34ZjMlZlEwxpGqhf1+S9e3agjHgdDU98EHIzar3b/3AjkgYg8JHIcRMMLK1mebkSJmd3T9ZGukXTRSJQTP5eUFIUYQYRgnxAkPD4/c3d3z4sVL7u4fuX945P7wyOPjA6UWttsdl0+e8Pbb7/AwTHz8+We8fPkSLZWriwu6zZZ+rkqS7bvDbN/j1dZQEVOt58xSxSIEj2DVSEo1WwlRs4nIJS3C4cYWvfLN6hSv/s6UyaAqbZ4ZOdiJMB0f8fIc2eyg35lTSna2Xkmk5ALBHpC4nQ48TiPXWgnSvr9lSMkxlspI4YnAk6dP2L/5FF57AmOGnFmeRLAvR2f/bhSJmp2WaLXvDdV+pgjUDE7B23eT93/6S351cJT33uN/9p/+J3zPw+5Hf879j35E/yWtscYa57HmM2s+s+Yzaz6z5jNrPrPmM2s+s+Yzaz7z25LPrA89rbHGGmusscYaa6yxxhprnIVn0elYJjurx5hJguVVXEv+xM36w1MY6HJ2HBrI2I5UxD5zOI7kQvOgb+cRh7iA952BNbMCUZumpgGhFbdYBcyJdG1WBlPODNO05KoCLdGeyQyD9VV1uXbFQB2a6tRK5NcGYll5/SKt0jFw4jxa8l5PQI6BrjQlZDEFcC2m3KQSEC62W5zYa48PD9zf3bHfbnnnzTfZbbfc3z8wDRO3D3fcPdzyyeef8Oz6CRcXey52ey73e7YN+I8hmoqsGEiXcsaJERWqipbKNM6gsoGDu+3OANNSSHkCtCkoPXSQczWFH6Z2DaFjmhKqjq6zktd93zU1tkJKOGfESykVJ1ZCXsSA28PhaKBdUy1OORuiLDNwUGzMCAbyzeX+q/W36wxQM5W09ZEPoFqYhkfefftNRB3BB3b7C77yO3/Ifv9zKJkPP/gVWibUOSqulWAvpJQbEGqkzzSZotD7SJqaMt47QuwWMZc0IAqxkum+gfe7zQbXSthXVWIIjNNErYVuExvxYW0SYyDl0e4DQD1aKwUjBHIupupH0Kb01VqtRL4XxHtKEmoxFEnPCAADyipFIGWomqhq5fNLMfVgztlINKytnRNT8wHBwaaLODFAciZ0Srby7jEGQgxoqWhru1oLPvim+lUmEjknSp0tGJoiWE/zr2IqejcjtE0Zpyj42YpCEIXOB1zwy3tzznb8UsglE6UZTqgpIVmkePa3nJ1DG4DsFmxNqdUU8LNCutRKbkDyTFx53xSepS6Av4hVXgghMFvFiJtV5CdbCSEuBIGIsPGeYRh4/umnfPqLX/Dmu1/D9R37J9d8/Rtf54d//mc4J6bC7SPihKpCygYQe+fpYjSip+qyTtv5tI0VW0urgtZsFQSiJ/jA1ZNKShmtRrLklI288Y4YO0ox8FbVQMvQ7Dm0NpV5tooGtREmudnu1DYvg3fUUFBv88dsg6ycQs6FYTBCExFqtnlvZORsCWKWLkJT4ddm+1MbWaNmoYCq2QX5M/WpzlYZM3xalzaycSfLWGwrF9XNNjSGVdZiZJVglUHMakHNfqakhaoWJ/jONdsGm9eVHWl6bHY4guRCMcMQI7QIdF3E4QhEhiETvaMKRuR0kZxMXWwTul1lG7vqMBItBLyPKENrG0FcIHaRGDzTkJimA9M4UPJk5f4FI46DtX3XRUqpCI7tpuPy8oLLywuG4cjj48D7v/qA93/9Ed947atcXr/Bd37v+3Re6bd7tlfXvPXdH/C17/4uv/rLH/LZB+/z8uZzs8lollB4qDGYJYETEBuntVlXSKsokEtBR13mYs62pmSZUKlW+aHaehDChlwrVW37CDHS953ZCzm/qMdVhCqeEE2JPavdS61MxwPjNHJ7e8dxGLi9u+fu7p7b2zurMFArKsL19RMuLi/pNxt8CDw83vLBJ58zTBNdELYXl3RhgwsdshCNoN42ClVte4SN0VqE2HXL95hpyoh3rauV0h5QqMWqhbxKC5wsf35jvGJzRdtPraJB5z2uZur4iNSKaqFIpYQKG8F30WxlppFUK6WWswPbcYYEQ1JSVkKtXERhc90Trjq0d2jO7QGJs8WXM85A4bRJabPOsu9cUitkkKInkmAcKDVxsbvizW9+je+9+ybbf/7fkn/0Q8qvPvrN7bDGGqz5zJrPrPnMms+s+cyaz6z5zJrPrPnMms+8epx/3fOZ9aGnNdZYY4011lhjjTXWWGONs1iUhzNY28DQU7J6KkasDcydE9IZnJtfB8PRtREGTgSnpmi0UtGeccrkCopbEvxZXep8syiYk2JpNMVCFsz55gwA2clLNVBhmFIDFk4583K5stAE5zd/IiHmX2mlVgOwoFBETRgKOJV2yrkB6ukkzMQFTVltJaq9c/QxsOs9x1xNfdvAtof7By50jxfH5XZHcI5jPFpZ6mnk8XigUnkcjtxtHrnYbtlvdmw3G7bbLbvdzkAr7xGBGAwwL6U0ha8Bm7WBTeM4LgBeKQXxdm2hqVJzNhSmFBsD3odFYRrUSIIYQ+ufugAYBggqIqZEo4Fydm0GNqiCq9L6wZpsJoOc4VdNld3UxLkspIPzDleFWjJd7/FOkZrY7/a89trrbLcXhNiz2+3g6Ws8vvaSi92ew/GerusQMduFnFIDNg0YrqUaQFONCLNrEpCwjK8Ze9ZZLa5N5YW2kuf2Pu8czosBXqWVhG+EjZExhoOjrWR9VYwiYDmmyKz/N2WsorimqhYVQnCozBYprb/a3LPrN8CNVgqdRlgZ8XVGZsFJVdiU3yLWrxVFa6YWO45Zs7gFsJynuhFuVtq7FgNwcy7UmRJQpYl0l/fbZZmtgpYzELRNbG2AvzW92nhZSCcaSG12G533ZhsiUFsfvMJazuTA/Ds3g9Y0Ps/6UGmVEoqCmAXF6RBnn8fsZxxmYdGFRgIJRh7YgmA2Mg4j3pr+WwS6ECiqpHFkfHxEnUOcNzBV3EI2eufpu4gLnpTrYhsQnGu9LAvZufjRiFJLNsLASSNe7N/eOYL3bDYdIkLOBhDnkto4sEoHM1iPO69ooYCtYfNC6kToukAeprbOGOgLZ2MCI25tXjlKKqQpG9h5Nu5UGy8tNnZohgulWXGAETDRB5LOynizspkJbSP4bN9Yto02X2cSrTYCUtTsX6qCNHsZEUHUiJCZPLN1s6Ba8Wqkhoi0AgECxVNqsf0AW3PndnTi8MU+67yzagMFtHq8eKLvyEkpbtaJOzSe9jSzpjBSQJ02ix1bi70Py3pZRdveSbOOCVBNTT+PD1EayRfxwRTkgjOAFkzR74SHw4H9/oLN7pr9tcOFHnIhbj2vvfsut88/4v7uHnWRt77xO1w9fZ2HF59xf/uC8dMPiV1/+u4w77Gtb4RKzkbm23gxojihJqithVzLYsshbQzOewQqOG+yY/FWWaDbdHT9hi52hBDxblYaK0nnKhtKroVxGJimzDAeOR6P3NzecDgMPB4OHI5HpikZ6dBFYtdxefmE7W4PAlNK3NzccDw+4mJg12/Yb3Z4Iiqe2gj32mw7zJKCZZ6KQKEQ2/pUqzLljNPZWMQqgZQ6r32nxeYL31SWWL6Xtb1lTJPNdbG9dl6/FksoVaRmJI/ICNl7Cn6xnHAO6pgbmZKNuJ8rkqhjzJUhK5qVbYV9H4iXEbcL9j2v1rZ2zx326hpsy2IjEWayoJEE2hTdZFvHVBJ6HOi88PRyx7vvvMXF8Ej+6d+Qf/YzuB++pEXWWOMUaz6z5jNrPrPmM2s+s+Yzaz6z5jNrPrPmM79N+cz60NMaa6yxxhprrLHGGmusscZZWFLZYH6ZgdGm9BNFZgCOE2DfID9TGp6h8YrBYlUcSCtdLk3lKla+esoGolZ1BnrMR5cGYixgg72yJMt6+jOXrLfrNB/5MU0M42gkAadS+UDziz8DqNsxRWYYTCiNTJBqAKI6QSWjzi3w6swkLP7zxRR+M9A5q4O0KrWYJUL0gcv9lmf7DR99/gLvwHURwUpSD8NgpbS7yNOLC55dXjCmxGEYeP78Bcdh4HAYUG5w4tluNlxdXvDs+pq3Xn+dvouEBkZ13baVdc+kZLYHYCX3a6kcjgcr0+3mUuE024hICMGAQt9RqoFxpnCdLTjaPTd1qHOBvu8WMkLVFNJOGgkh0PWRGMNCxoQaDFStlaK1AV8GRLumoiuqpjYrheA8fT+X/VaQyn63IThFk5Uc/9o3vs3rb75DxcHhjv3+gtfefIe33nqHH/3oY9yVs7LpIuSUF0BbceDqAtBrU2mqCiJGHoQQFpBYm3K2NGW+c6BOqBVEHNt+15SAFcRUpKmYQn0GILtwArxrNZWxn60MzgBeU2eLDbc2H4IXYnBIcKBCVSh1MnVkU5aKy8scdd7b+5Pdbc5u6c/5/UULOSdSmYhSiCGSUmIcxwb+BqpYtW6T1Bq05cTmRK0ZLUYSCK7ZSFj7lgq1pAWoRkzxLeLwIVi5+2VeWztVNZVhacp4rXEpEz+vCzorLD1EbyByUWicw0Lg1TqTZG2dY17PrE0X8lDNUsbIRgNeZ5VtbrYfts40dacKVaxqQog2h0otaDGltfWZEaCzgn4mzKLzxC4SYkRjINfC8fDIp59+auOhrS8+eEKM5DwuhF5w0cZRtT70yGlOopSa23U7nCpV5jXcyKkQHTkbGSDqFsLLNfuD4B2ijQhuJEFVI7G6GJltNVwQQtczprw0YIzdolS2tSAzTQlTuQsUyJO9X7zZBNSZYBXwXtEEpdg6PU0jw2SWEr3v2GwiTEaYIMJut7EKBMXIyU0XFiJvJrKWed3WYq1GMGk1IstXs6swAkSa5YPi1CHZ2tM7scoKuVnDGMVAqgJeUacEoKSK01YVIkSCZmp1xM7U7FPNiHM4H+hiR+6KVTnAiKKZ+pnJpuCd2XYwk4y+VYiwOWxkQSNhW7UD7z1d37PbK9M0EUKkix2bbUfRpvqWtrbMW5kox+HIBx8959/84z/hm9/5Hm9//bu4rPSakXRk8+wpcbPhg7/4V4QPP+Gdt77K5Te/jd/0hL4j5UyInVUBUGu3lMyuQkRBjBgobT6adYkRAqpq1ik54UIjg50gPhBjRwgB5wMiNk67LuDChu1+b/tW7On7Dc45hmGgDBNlygzjQCmZlCbu7++4eXnP4+GRw/HA4fDYqqnYOtVvdrz+5jO2200b5z3jmLi7ezC7iNuX+M6zv9iy31/Q0VOTUIAsME4Zbf1R2v64VHZp88HngIqjlMqQE5H5e5djagSuam1Affnb5MDMprX1Stp3jayFx+PAVCsxeDZdYBMjIBQcpR3XOyFoQccj2Xsm36Nqtj7B2XytOVPKRKmpVT5xFPUcx8xQKlKUq+K43m/w1x1sHZR8qkCgVsXgRJG0PYMTEWxWEFa1QFtFGikYSaCVWkAfH7neBPzr13zjnTdJf/1X5D/7l9Sf/gyvK6S/xt8daz6z5jNrPrPmM2s+s+Yzaz6z5jNrPrPmM79N+cyaIa2xxhprrLHGGmusscYaa5yFgWa6JHamzpSFF5AGYs7/k5MnggF5KG5hCixmvaj9z0CoLnp2m47b+ztuHx45TondZgsOK4stGCiDngH8pV3GokWmaGHWlAlqpetLIdVC0WoA/ysKo/n/jXgwVsCSbeeoboY17Z2llR+ngkoF587u2NBI145vAGQ9vaqnhJmWhOdScE6s9PZ+C6Mw5abQVSWlTJ4S43FAqGy3Gy62G55cXPD08oqb23seDweOxyOP48jnN7e8uLnhw48+4v2LPc+eXnN5ccHl/oKri0tiNPVcjJGLiwtQU2iXbGq9nDO5ZKaaUYUxJVQEbWBV7CJBDSxXVWIwcCNnU9jO7S4C290WVcxeIiUrh46VVndiikZTV4PorNbyDUQ2GwvfwPEYQ7NMKORGEnRdh2/Aec7JSq+XypQyaRz5y7/8MU9fe5e4e8LTd7/K/ScfM44D4zDxta99g5/+7CeAqddiH6lT6+k2tlQDs6XIkAdi7BdlWVVtIPGsQl06uQH6nlytvL5SORwfKLUYMOuEaUwggqi1R5oyKPTR4b0jNbDMOW/uGMUAwhm0XaagN8CpzKj2TAgo9DW2yzLVLM7U08G7BiAGs9YoyjCaUlUxwL40ZVwpmTSMuFLo4mT3p2qKdAGtmTQWNrstIqY+1Krgw0LSibPr7kK3zLUpZZK4RTFq1hRWGt6J4F1TdqtVTYiuYUWG5uNnK4GUqMVAsC5GvHemYtSCuKYcF4emRZPNrEYPrSQ8CMN4RHwD972p/NM0kbMBmCFEVI0UqAqCOyOUeMWS5GEYKOPAbrcFsXL7sZEZzs02BryifL+7e+Ddr32Dt7/xLd76vd/nZ//in/HrX/yMTz76kI8+/IDh8ICTimqilBFFGVMh5UJKlVqUEbOiiDHgPUTvca2vq2ZqpgkPi6nANZMn4ahKqoVxzJQCfbc7EW80RXsyu4jarFFAyGlCteD6jt3lxiwzSiGngjhHDGEhQmzXMMK5FnD4md619vPexvTsySEQg1mN+CCknIzs9J7YB27vK048MXpCEEKRE5HsodSEoITg6Tfe5mvSVt0BU09jhKNqxQdPrULNgkdMfd5Uxi440qE2MrQQ6Vu1BmnEH6icgZ3GdBqhljIlV6aUwLmm0rYxcXeneHHsN9FA0XaMzabH6WxBASErXdc3gqUY4N/FZe2apoxgytspJ3IuxGgEbBc7NE9oLQTvuby45PFwoOs7YjRLgovdBd7ZscbhyH63YUiJIU8MxyPVCZ98+ikXT17jq9/6XWLs8dsNx+HAxz/5MX/2z/8lbz57g77f8qf/7J/xF/+7/y2xU7ro2GwiD4/3pyonFVJKpuivhVITXdebrUetIA71rtlTKOIamdxFfAiE4BEfEO9tfRRHDNHILRwhdEYWOEEbyTmME3d3d9zd3XNze8/heM+URlKaOB5Hpma1ISJst1uzWxF7SOHi6pqLqz2lZI7HkU8//ZDb20dStv1xv7/k4mrPZrshxg7Nio8dBcdYhSFVNBcjNl3Fed9IdkVFCSIchvHsGwbkoggFJVOwvaUWSKWR1rNNDctUWfaeWiuHlMF7uu2WP/mDH/Dstac8f3nDz3/5Kz785S/pNtu2HnlqLmx3nVWSEGF8vCOIx0eH7yMDUNoDHqLQa4dnoJI51syhZKas7BAuO8/1GxfI5RY6b95DbcFc5oa0b3/z9yBav5895LHcm23DaFE0ZbRMVLnhsn+LeLnlkonx//X/hh//hHRzx2Pc8zprrPGbY81n1nxmzWfWfGbNZ9Z8Zs1n1nxmzWfWfOa3KZ9ZH3paY4011lhjjTXWWGONNdY4C99KJ9PAecNw6kIYqNVhPxEIYmXzZ3LAOWckwYLBz0muqdictzLktVboPNMwcRgmppy5ih4r5m7QM2Kl1sFAGcBeUVkSTlkyZwWZgQio6pqKuYLUBaA6+cfPx5v/fyrH7ZRWqdgUZA4rq6zqKKmp2pwzZWcDjF1LdPVMYmllxWeFp6mMVDtTNTnwXtj3PfvNBlXl5d09Q5ow3bCVaB9HodRKCGYd8eRqz6aPjLsN+3HiOIyM40AaB47HI5/mxMubG/qu48nFJRe7vVlFbLc4707K5aJ4kVY6Wyi5kFQZ80QIA7HriCHgcDjxeOdx4kxxSgNJVcweoCkuDdSCEykjTW2oePEEMSV0LlZOXXxhVklTQcQ3dXlTb8+lpauRDt4Hgo82RrSQp8xUK1MaGY8P/MEPfsBb3/gGF8+eUY9HxsdHfvLXf0lOI+997av8O//w3+NvfvyX3Nw8Z2RkyhOiBrrPYIY2kEbwZh3RxrSpcYVSbEx471ERvJj1hinJ23gUU9MPw8Q0VUpWvKvEvUdwFCqjFFP/zmSAOLyzc8zEWAgG6pna1wDqGKOBPVVJUyaVQtaEl0DXRVMjN4DGR48PDVxzbeyLUqiUmqllBuYMpBdxaIhIp3RdpIseDzjmUvOyADohOFzwZmlQKhWHF4dKQcWU3Kf5JvTRI1Lb2LeS+10XrHS+96QpkQWzndBCt/GQnJEqC5zmEDzS1PYpp6ZMb1YkqRB8s0FxDvF2vWZFUUwZ3hT+OdiaoVRqTngXQCtOlCpArfhofVuoBOfwwQC/MRe02CpldgjR2sObqtY539SebV3SQtd3TY1bKSVzf3gA5wjdFpGeWjLPP/2El59/yq4P/PG/8Ufc3T/wcH/PZx9/xsXlhcGIDZhPpeCx+VdrwUcBIl586y9tyn4bm95b2f9aCyknBLMjkFf6qRE600hJqZEEFZFMDLGROoKPAR89JdkcfHgYmVJbYeVEKKsqtQhChw/1tNKKg3GwtWEhCQuukUhoZRM3bfwLKU3sN1uQk4paRAjeI87ZOq2NPhZbm/suUDsjjUsu5JQb6eaQbGRe8BGJnc0V54jB0cVA6CMpZUqpeG9Asmo2EsEJGnUB+GfCYbPt8SGg3nEcRoYpkRtxULNSKgxT5u7hwMYZSD8ThlOz0rA9s82dtk+Voov1g6nXrfpGLrWNpVl96pAqaC5L9YpSGjldC+N4ZErNpkCUruuotTKm0soEtKon4nj33bcZxzv+1Q//KT/567/ij//tf8Q3f/d7bPoNTy+v+Uf//n9Af3mBiDDc3jM83vDRr3/O490tLjqGbCSbF9s/qhRybWMJWfZPsyywseni6b5FHF3fE6JVwahiFiv2/aTZh7QSBz54cpoopVJyZRwm7h8P3D88cP/4yP39A7lMbU0F5wOXmy0heFPad6GRlrZ3hei4e3jg8TDw8HDk5ctb2+diJMaO/W5H33UEiYg68La/T6kwJCPTq9hTBaJmp1Mnm4OBgNWKMdJOxVFUEfIr30tKWyeWKhyzwl+xKiy1Ls8ipOBwz94lXl3z2htv8h//+3/CD77+Lp/d3PGvfvFr3v/lryFYVY1cKschk9QzqnDMmc+ff8L4/Dnu5ef4aSBcPKFzPbERZoKReVoLuSTyBD47eu/ZXnjkwtZozQq+Iq16gszfrdSqgJw/nCELaSDLmG/MG1IrVWx+uVRIn7xkeHbJ8fYl0y9+jP+rv0RvRmruGL7wMMoaa3wx1nxmzWfWfGbNZ9Z8Zs1n1nxmzWfWfGbNZ36b8pn1oac11lhjjTXWWGONNdZYY42zcGd511z2HF7BfhYA4/TWWfWCqTSZVTwGuAUvBjYjFAyoUO+QGCg5k6ZEyhnvPTmf1IeGJ55KqC9aIj2dz6CtU4Jd59Lx+soF8qX55Jlier4Nu08DcIqhEYsa3MBsIyPmjxppMbeNWqnt9qK2z2srO27lkRvQNgNkaqW7xTkO/WjKZLV7qFpJZ2XypYH6m74jBs9uv+M4jBwOBw6PHsFUyTknSkrUlBmPA5vNht1ux1QSCnjvCD4QnLc+aQCJ2URYCepcKzVGvDOCoLqAF7+APTMY7fxcvNwUlQqmepv7xwmiBqD2oWvnLyAOzemsrw0MUmfHMyWuqR5RKK40Nd2sRDYlZy4NKBPh4uqKzXaL9556nAhdpO8CWiamaeJr3/4dnr/4nMPjI8PwiCHnjlnR6703kFesX/qub+ouA7OsrLeBbqqCisN5FkuNqnVRMZdqwE9tIHWMHZu+BxzZV1O3OlMvBudxIoibS75be5jS1UryS1NOhxgJ3oMqx76njhM5G9kSQwDV5Zy+81ZOXUyNrM3WwwiBdo3Y3KTZMoQQcCJs+g1dEBzKbIDi3FwVQY00ioFcK+RCwXSwWsVsLZodwAx+OREjEBBT3uushDUFZOPNqFlATe0rzkC0eS5oNaWtqpDbGJvXo1mF55ypnb0XxLu2JlS8c3TB7GZKLaQa2rw2Da+RPUquDqlmy9F3EcRUxN55emd2IOJMjUrjPGLw9H1HDB3zZHVeEGegbq0Z1Wjg/jRxPB54PNzz8HDH8f6O/PjIxdPXePb6G6ThyOP9Ld/5zne4Pw589unn/Oxv/oqcKtVVa4tqim3nPGbDUXGEBrBa1YjgA0ntGp3zpjCtSimutUcgeE9Vs8+YVbl29Xb9vjqMq3XNvgCcF2LfWan+MqvqjdiVVtbfOzGAV1yz3XCI6Glt9aaS9t5U6QC55GWZrrWYnU0MjdisxNg1kkvItSykHc7W2RACDiMOnDO7BAJ0QZmmhNBsNRSYJkqqbZxYdQXRSoytH/uOvhuotZrSut+gmtu66SjZiMLabGMQbD44Z2sKRoRpZVlbbdxCakpmCW5Zb3M2QoI271WN4DFSwPoj52afkHKb37bu5XJac2f7AVsemqq/msocOcG0IpA31t45J5pbk62ntbS1tZLHiTQYIYsWHIr3QlBHzgkfItfPnvLtH/w9Spn4+IPE7eMt2iwpaGu5OLMnUlrf9J0RBOJa9QCHj87mjDcSIHYd3odGKFYac2eq/6Kt3yHXzDSOjIP9ebg/8Ph44HAcOI4Dx2kyRXjwxBDo+57tbtf2X7suQRmnxJQK45R4OI48PB54fDwyjol+syF2HZvNlq7vrZ9bf4IutjW52MMJ1c2Elc3F2v4nRcgyV5yxddRcULRZXxlBbATBbAsx95ryComtIM7B7oL41nv4iyfI02uunr3GV995m+vrp8jmgrffepcqylQyxylz8zjx4jhxnwoyZfYxUG5u0eHYxk5gs/NEVWqZGDVRnX3tKZOSk6NT2AZht23WTqUYua9zVYSzL1Ttqs9/fvV7XPum2Oa2NIKT9n2z3g/ccsOj73jdV+LzF6RJqTWQZhZljTV+Q6z5zJrPrPnMms+s+cyaz6z5zJrPrPnMms/8NuUz60NPa6yxxhprrLHGGmusscYaZ2Fgov17VrwatDOD59qAkJb8ibQS29qSvDlJ1KZYg03f0QdPELg/DAbMiiP2HbVk0jRSUrby/2nCgHQDJf1MEtCAD5p2WhVfMeXVrKZWtVLGrUS9q61U96w6WogDnRF/dL5mBZWm7m6CnVkFa4BAxc7WCIrK8rnzpFjrrARSXlEEqUIxAsE7R4yRLnZM6YCgRC9cNNA/54RWU9MJZmmRKZRyNEDae7q+4+LiguPhyHG7YdjviCGYSngYGA4D0zBycxwWK4DdzZ5us2F3sefy4oIQIjIraV27j9LAqWzAWnCVIgUnBUGWcvlaDeTT2ABu0ZOSi3n8nIElDUgX7/FEXKzU4dhANAN9apWFCPFNAemB6gsBx3EaqdnAuhh7gi9N1dgT9r2Bv4dH8uGAw/HkjWf8/uYPePn5c375q/f5zutv8eY77/Fwe8/Pf37D02dPWbgnhe1mu9glFFU2m20jdqx8fewiZb5/VbJmvDPlNGKCNSM5bM5UrVQK4h0XVxdc7C+b5UdB8OSUrdy993TOk18BPZoKU2cwUun6fgHeHHCxv0DkyDhOOOdayfjl48y+JbNyO+WEd0ZIdZ1yPI52HjXVsg+BGCOu69httgSnSK3M6rYYI9LUoSF4JASmnNGUCSJIaQC2r2ZB0cB7MLAUNbpBwdTy3sr/d12Hc5DFU6spo0MUOjpKNTVwypmctQGnpgp13tmcFKBkNn1vZc+9qaed97Ym1AwIXYigZiWSoREiVhbdOUcpmVIrqRSC82z7DrNhmCgFNn2Pc0JfOoZxIE0JgBAj+6snxKZazDFQaqFWIz9TSjjnGMfE4fHAzYsXFB349MNfc7m74KvvfoV3f+d7XF3s+dVf/yX/+P/zX/K1b3yT7etv8uLlS4LA3/z0x+3ebe1yzPYqRhhFHwkhEoM/qeAxxahZNfRWZUIrMccG3kZKhcNxNGVuIzBDI29KrtRCA9K1WUN4NpsdPgheIRYl9gWdqs3t4OmiZ7PZImrrtBOzPKGtlT4ERNv67q3iQsppGeuuGqnlQzRlf8oEGulKRRSbC9IA9FLYbjaLXYD3PcF3RqYBzo80Pwe7gIMjO1PvdrEjTYlaCl20Od7Fnu12B9BsaSJVC11n1QfSOJmlTs2mFi2ZXOy6yIU0Tg0IFlCloLjgcU19nFKyigxtRymlkKbcyEEjfXJu647zlKxMZaAUU3m7EKham+1OwflAIlGKkXEhGGFZq/XZlCab95gV0N2U6I4HU/M7R+x72+9UGcaRl7f3XF9e8vZbz3jnna/zzW99i92mp+SBw/GWH/75n5Jy5frpa3z/B3/E9/6d/0GrBCB8+qN/zn67pet6ggs40+83GxiPDzZm50oLwc8EqVUycM5IJzACoJZqa3Tbt2u1KgzqrJ2Ohwce7h54fHjk+HDg4f7RFPu5UFTx3vHk8orNtqfvO7q+Y7vbWgWVVoUjp0IpyjAmHsfEYZwYjgPTODW7mQ3bzZa+3+C9axU7QKpDtFDVCANBSClBNMIKZ5Ydc1UCbUp5Jw4aYTp/e3BgBEltDxWoYruHbU6yEAX2jcR7j4sd3dM36L7yLUYJvCwTP//oU37ntQu8j1zutrz2+ptkrQw5cz8mursDw8tbhmOiGytPnGd4/wPSmGCcCIc7Qt8TSmUY7rktj2QPNXvS0ZOS55LCZXBcbCI1KeQExSMaELVqNDI/cTF/53rle5Kgy/0s3xbanqU4K4cB3lGGwif3H3H34iVvPf+E/phJNZC1UPLIGmv8XbHmM2s+s+Yzaz6z5jNrPrPmM2s+s+Yzaz7z25TPrA89rbHGGmusscYaa6yxxhprnMWigFyQc0DM9sEjyGJfrqhYmWEfTqmVyCzCUmZV8baL7PqI1MIwmPrJOY94z/HhyPF4ZKiV8PbbyC9+jpaMlgQ1QalWVr2Vw59zTzFU3y6xJdRVoORiKr+qy3XoDNqjaDVrB2mAkUNM7diIieYqgfkeKGCl31nUOlbmWUQR7xE1u4uqp6TX1NKz2rgYelwaJFCV4+MjN8+VMRVCjIAyJVOqXV3uGYaRaZpIWZsashCQVo6+oqUy5UIXe2ot9DGy7Xs2mw5pSsGaKnc3dzwejwzjwHEcubm7g8cH/O0Nsd/wxuuv08VIdN7AGryJm8RUV9KIl9oK8os4UskNKFeYEiG1saKVvu9pXQQYkFFybuWxgSrUpvRWNbVVLoVa1VS1WhelnAHMlakqKWcO08gwTUQ1cFickUUXlxf0XSB44Rc//znBRb7xncS3/uAP+fwXP+XDX/2Cw8MjcbODbsez19/h4a1bPvnkU15/9jZFq91Pzux3+0UhXrQRVQ0Un0Gu0mwfqiqMRxt3akCqFwPDU84Mw0RVI4Oc91SUrK0ceiNPZlC+C4FQFefnouWyAGmlgVkpJXIpNuZFCK4pNnH40GHsTlnKhM/EmA/Wt10X8Nk1e47A7kLJOTOOiVrMEmIcRyPXBESVTRcIjkUZnVJuhJNn2+1AhCmbrYWPHb4TZpilC3GpBmBAfUElUhuRl5IRTaVkSrZrHZsVSow27lIarTR6W4ZyzrYWeY/ESkpTI9w6dlcXXGw3+GYBkXMl+s6GXS1IIyVA6LRvqnZnbRMjF/sLhvHAmBJjzng8u74HlDiN5KpEZ3JMEYUacZhy0eawlX4vtTCmEe88iAcJKDZvry6fcHV5zdOnb/C9732Lzz75iBeff8L//f/2f+V/+r/8X7N/8oT3fu97/IOqDFNh2/W8881v8x8+e8bD//F/z8effMJxGNhtNmhV9rs9XTR7Ge9dU+6aCtqJIERSLg1QNhDbO0cXN0zN7qBUEOcJXYe2tdZ5T7fpDDzNRu504UQQATgXjMgRx14DMQHNziE0xWnw3gg/J1CV2qxoRBx91xvpUc2eJPqIUq39SkZLQUqmtrVxOI5mCSAG/N5PD6RSUJSrqyt88GgjlCKAi1aVwRgVwiY2IhlCzAhWBSHnTC6ZOAPYMeCCI8TQqjDYnOl8JDaSIPhAzYVcMikHGMe2N53I4a7bQK6kceTh+EiMzSIEU3YzWdsmlxmPiXFIVnFiBoLrqYJGTnadc8WPqD1FTVE9jQnnA96xAMnBd001b5U6qhYj29t+aPckeKeIK4Q+cjsceDg+cJyO/PF3/wF//0/+EW+9+1WIG3g84Lqe+4fP+emPf8Kf/tP/hrjZ8va7X+W119/myTe/x2tvvcvb732Dn/zyp+z3O7b9hugjgqOWgjQySJyji7Gt+7Ye+vmhA9VGkBRKySiKC64dw+bWlBNVhHGaOByPvHz5kpza/lptfF9c7oixx8cAwbPfbwjR4UOrfgFMxdb9w3Dk4XFkTJUxVY5jYpomWyc2G7yPbPodMXamGK9QtUBVvNiTAl3wII4K1OlIydX2DXF2DaXZHhVBHRTbYBfltFFfBacOcZ48kwSNLNFSGwNt38822w1CQF1kcB03Y2KSwkYqA0LBMY0TL17ckV7eMKEcpsL9kHl+mHj/9p67KTGUQl8T+92WwGtsFe6mI3dHs5i6f7hh2hRq7piycpeVlwy84QMXm0B/0TMoeApSM5JsLMqrT06cvljOX5FsY8WetGgPcjjs4ZPqqVNqrxWyFLaf3yI4rsYjpcJ9htuiPCyb3RprfHms+cyaz6z5zJrPrPnMms+s+cyaz6z5zJrP/DblM+tDT2usscYaa6yxxhprrLHGGmfhnYFszABpUxeaikvMwl1N7iIN0DjZMdhnBQjes9kamJVT5i6Z8s13m1b2uJLTSL/d8qMf/5TiA91+x3e+8y12w8h2nNiMic3OgDqtJ6Dfu6YAc54aIZVMiAaQeVGCWLKXG85vCbeiogRppapVTV9aT/YNdgvLh0wRWhWR2pwDrLz/rOryGNA9e9SLVhOjLqSElRkXFKcGhItCFwKbTU+uA2VWDAtMKVGDR7vAbC2RsoHoRZVOZrWs2T48PBxaaX8D1HNOBgZ7B95zeX3J7nLPNCWGcSQ1oCnlwpQzL5+/ZLvdsN/uuNjuqKVw/3BHqgVxjt12Y+NBQNUsEebS5bUUUFPSi7zaNmBAu6o21bAdI4QI6qjVyptnNVC81krNhVKS2S54UzHWnEklM06J42Bj5cJ7goOSMg+3d3gRI0m2O47HgZc3t1x+/jnfGEd2F1c8ffY6T5485fqtd3BOeHg8cDiMbLYXBiTVShaP4HAhNGIEXC1LZQBT6ctyL1Kr/RGHlkIVxbf5Upp6tVZlOE4oig+Vox/puw7BlHiHw2T3iilMg7NqAWYFMluinMal956pFCiACMVVaqmM48g0JZwHv6j+FS00ZaunBkcpiVIyzhmg9ThM3D8+UIviXGS36RkGUwTmaSJNE1eXO7rgiU5waiQRavYUY0pGfhS7DiUjoXl3ABpsbrCMhzPgSDEgrjYArFRyuxdEKdURvfD4MJJyoVQ1Usp5QoiEzlGqcDgebZ7knq5zTHkiasA7ZyC5zoBoRJyaPUQDqzabbVvX1CxUakIFVDBgtSqlmOp4yomKGNmggBqYLWJgeNd1BCdL3+VSTLnoAwFw3gDr3/vBD3jj7a+g/Y7Lyw3+R/+S/tNPEYlGNmYjBr7xre9QiymERR3+6k2un73B5y9vkCmz210QQzQleDDbDGgKZGcl9s0eIxBypmq1tpj7RispFXKuNl5xzW6gULUwjAcu8x5tyloq7LZGPiBQiuIkELxr1QxMVV2LrdPB+WUJpe0FuTZbmzYIxDm86LI+W7/Y3DN7k0YsAXe39wzHwUidEKCRlVNKlFqAwOXFXH5fF8ua6qxuhspcYp92T5VxmhCMWJmV/j64xT7FObcQdFUV38jm0sDtKrrcT4wRmh3MlBOpVGoRxilzPE4cHo7sL7ZE55vSORuxJGbDYcpcI3MARIScE1XVxnHfoWqq6DEnIzCdkIsRFVILrgtII8hqLaf9eLlKW4MrpraOXY/zQsqZz1/ecffwyJgyXddx/3DP7YuXXOyfcvlsA75Di9KHjq997Vs8+R/9j6ni2V5c8vY77yECj8cDD8cD4Oi6nhh7nJjq2wffxqgx0CKukRpt7W+q4dqU8QaONwC9zHPK1OIpKcfxyP3jPcNwpOTE1eUVu35H9JGSMtosUJxzSPSE6KhaSFNiKAOoWTSUasryMRWGqZBybWr9YK3mzDZpVu/bAwUG+HvniD4QRQmxh7FyrEY4qTNrH0ValRbb37T1mzSVuortmYggKmitiFS7h9Y2NMJAdf7OokuFAEUptVJKpjpP9SzziGqdnTQzoUxFSVWpBaI4OoFCwXml20T27HjmO57mS95/eCBNA9f5yJPgmabCYSyMWYkkdtstse9IPuBf3+IvHdKZIppawTWyW179djh/W5x/Ma9bC8EmIF0AiagXCI7t15/xx6FjvE08ua8MxTEmW6f8iuiv8d8Raz6z5jNrPrPmM2s+s+Yzaz6z5jNrPrPmM79N+cyaIq2xxhprrLHGGmusscYaa5yFgbwzCWA+9Uor2S+LvniRv56U0CzJngC+qd9yGhlGU3VWEXqxcr9OIHiHjxve/+Q5D9Nf0MdA3G6YDoOVgS+FVJIl9dqsFAQEU1hVLUypULTgQ0cInj4GOmcl3tFzVbTdWxP2zSIxlBP5sCS00lqgIV0zwI9UBJpIWhcV6lKqeVFH22dnENJxUpvSgPS5XL5wAqBdzgTn0BAAYZwSYxrJIgQNBizVpelJOeNCXNTQBmCdVN+hC3RiIGbf9+Zjr1aOfBwnhnEkNqC6lormbAq0XChqdhDen1Rr4BZFW62tbZpqOHhPLRkRmuJ1VkE2sEDA+YCqUArkUikKzMB4zhyOB+sjb4SEqqmMS63UCnGzIWWzpfDeE3ykFCMcVK28/8PDA59+8ikf/ep9Lq8u2Wx3OOfYbHd8+sEHfPLRh9zc3RJCRyltfFTacbIB4UAtxZRwYgrpedxbWXwDsmYAUTFgU5kouVKyAbCHw4CItBLzBW3gcy6ZnDNOPCVXMmYLIc6U1VWtjP4MGs7jtcy2K0BxQp4KwzAwTQkfhOCaXUm71lwKNTiqemqRZrUipi47jIxTAoSgjmnKDTCmAcFzP0Np4K3ziqinaGVKiaDaSKOCaCOwqn3ON3JxRoutbQVFbAxOCS/B1MTURSFv4LARgTMBYcpzT8VAzTFncAFx3kBgtTa3sQGCkT2n+SjLLKUpDmfTDq1q68g0MeWJYZoYxgkvgVEELYXDcGBIGS8OL7Ym5jwB0DVbFy22DqkqPgS7z2IgvHMe54Un19e89e57hOs30HTgra98nf3lNS50Te0fwFlRhvff/4DXU+HiaUL6HUUF5zu6vtBvtvShI4bQ1J42hxxusVhYgEWDFZG2fs6KSye5kX9GRE5TsvVNbD0cjslWxiZLDzHZPoADNfC30sjXeZy08vreNcOSWqB6ghOze5gl7kDJ+UQ2iyzrVyl5UQgXbVUKSm7ErKNWyCUbaVOMcJymTM5lAfxrrQae43BSbbyWRG42AXlKDOOEE0cMES9Cjd6A+GLXU2tZbF+mNFGrUGqmFG+WJ/P1NhILsSoPQ5o4DhOlCmPKTOOEqLN1wRe0qXOd820+sFi5nFHVBhCXcgJURWauta0Bssxz27NO5DW1VRFg4eham0Kuts6nHJEqDKlw+3DgOCYQoYuR+7t7fvbTn3B/f+D1t77C19/7GtJ14AJVldfeeJvtk6f0+0s220seb17y6ccf8vz557aPOW8UeZv3eIdUA7arWpUV6+ti66w4I6hqOduNGylTC6XSCK2KVqGkilNHHzp2m57rqyv2WyPOpjFxHCYba6JImNftapUgphHa9wfbdyqlqP2pproXZ6uoiMO5gIgHndffggTrs+A9vRO6rqOUQpC2L7qZ+Jr3l0pltpkywlVbdQwwgl2rtJ6cSdfWZ9V6WLWtYaqnfdZVa7NaUXGvEHM2JAQtrWJMI1pVIYgQRSjiCF6oIdB3wj70+F0wsrV0fEV6nriJISUepsxUhEsX6JyRdC8PR167vMb1Al6NFV7IM134gGW0yvnFzctze8fSHM6qGgQHXSVedLwzVR7zI8cXB46yYSoFpbBpKvc11vhNseYzrPnMms+s+cyaz6z5zJrPrPnMms+s+cxvUT6zPvS0xhprrLHGGmusscYaa6xxFiKCQWjnGael7VWV3BI9A8sV38ogz4CUhwUU986Ra1M9ZsA78jAQvFlEXF1dMqrj009f8pMPPuGHP/oRU8p87etfo9ts+PzlDWkG+EzWRvRC56Mp2Zxwc3ePC54nVxdUfYNt7OiCJ4hrgEoro+ysBPZscYAqOqP8y63Oyl5jPho8bqRAMTjTOYc25WqVYionwZRyamD1rA6Ws4zdSIWTCkyrARcEWZrZOYdXD0EQCVQV7u9vKVoIJbDdbKgygxey2CbMTE0p2tSwlqzjrKy56zpTAftZOmXgaJpLmqfENI5oymz6LeICh3HgeBxMDYmY6m9KTGkGqq28+1xSP4ZAFwworsXeq7qwKAaciBEEtQpVhWS16BfA9sXNC3JJeO/ZbLbQXomx42K/J4hnGiZcB5dPnrB/fccwHBmGkcMh4Jzn7uae4+FXTFPm7/1bf8zFpgeE5598yp//2Z/x0Ye/Jk0T19dPeTwOoJVaMuMwkvJkZfwxC4GujyykjxiYU3JdAPQpJ6QJv8ecyOVIVaFkZRwytzcPhNix2wn7vVlG5DZGEFPJ1WrKyKkUXAimktSK64IBsKpGLkADyeoyfodx5HgYSVPCeSH6RjY5sysppVKKwxdP8MLxcCQ3MP3uOKEuIGJz9HhzR7fZ0m16wn5DAGIIuNYWVSE4MWsINWVzrYUpJSOrHIgXcpoaGcFC9GgtTONoBIyYhUxOmdDFZs1igLJZKGgj84QuRLyPqHNcXF5w/3jk5vael7e3XF0/ZX9xYaRhNdIlZ9e0l+BxVIHZRsaph0oro59AHQ6H1kqpiXrIPB4PHMeJ4zSx7XfoNJHTxN3DA8/vbuljRx97tt2WXCZQZdNFPEKNgawV5z277c5U5sNArQXfVO/HYeQwjlxIJN0dePsrX8d9u8NttnB3D5tLDrd3/PRnv+C/+H/+F3z/+7/Pe++9x2a/57PPX+J8YH9xSb/Z4s2MwhTUrrFYTpa1Zyay5n44V0bXWoldBVdREvePjxweD/SbyKbv6Ppo9gPVCBgBhuFA9mbxsImRRzHor5RKGhM50crYV1Cz+HAYEay1I03W5iIO54XxMLQ1TxYlas6JnJva2cuMMxJCYLe7WAiBx+OBrtvSddHW8QaA+gDOC6qFaTxSvcMJJArHYeDx8chwHPAIaSw470khmc2RU9BALYmUA8M0Uhspl/IEUgjBmwp6tjgpZsmQcm3WEJkhF47HidRA7arKbrNjyiMjic4Lm4sLvNi6X6vSb4Kt0w3kTynhvWv2L0poxL1ZKEUDmOdKFN4IZ+cE3/aEmh3jMKBaCVZGhISiamrqIY9GbopjTJmbhwGcEGPA0fHy5Us++PV/TfAdb77xFf7n/4v/jM32Xe6T8pOf/oTLqwu+/eZ7dM/eIlfl/T/9Z/zVj/6cjz9+nz4YkZMms7eYRrNsaSJZqsI0BtKUyDmjtRJjoJam4J/XiNrsH6bEVIx0VYS+2xBD4PWnr9F1gRg9XRetX9ThxDOmylQnasnQvs1YNY7MOGUQj3e1Ae5GEs/7timXBS2gKngXTKleyqJcjj4QnKPzgc47tv2GXAvdqPNXJVTs+0UtBYfYz2qWFZW2hzbiK0hYHmaoxaoBqNJsrYp9e5j3SVVymnBOjVSsZn3VnmJopVqk2VopLiv4RsLVStGCaCGqgHZ03lNcR3AjXXTsLnfsueSrF8IfpsCzF7/gozRwk5SxBr7S75GqvLx/4HaYeG37HnT2/UOLPRQwF5exL15y/u1yIb2WaCSBNKsknKnQFQWphM2G/vjAw8vE5/dm6zTWAr5yGTesscbfFWs+s+Yzaz6z5jNrPrPmM2s+s+Yzaz6z5jO/TfnM+tDTGmusscYaa6yxxhprrLHGWbw8TKdETkGZmprYQI1z9ZYJWqyEs3eeXR94stsY8KrK7TET45aLfs+V84QYEZ3YbDZ47zhOEx9//BnihIvLC8Zx5H/zf/g/c/30ms12S6lQ5jMqlkgqBN/hvAcHjw837Lcbrq+e8M5XvsJxrEzdjn0XmUrHPWLgiha0luY/PyerSsEqJxvw4pFSkTwh2ZkvPVbmX6CVq7ay67NCTUppoKTZT9CUUGYNYcA9qrhSCFQ8FYdDJDTF0wnQWwRvQgMjhK997escxyMPDw+8uHnBa8+eEb3HizPQ2rEAt04MdGoODpSsDDkRQrAS8a3Mtg+eru940nWMU+bx4ZE8Jh4mA8ZdiPQCu23XVIuFlFMDcQStpno7pkwpiSyJLIJ2s9pPT5YRjWBItbDZbpnGzPE4cH//QH/5BJXQVGjK937vu2y6jvuHB371wYdWcnyz4f/L3n89W5KlV57Ybyt3P+Kq0CIjIiNSZ5auQgEN0UADBaAxPezuoc0Mn9r4QNL4wucx/h1jRiMfyAcahRnNOEMah40WaKCqAZQCSqYWkRlax9X3CPet+PBtP/dmAeimjXHM2F2+yjKzrvLjYu/t/q3l61vjUc10PGKiao6il9bUO3tMRw0xBXGcHR5BDPi2pU0LHtz1fOlLb/Hg+VMe3n/IO2+/Q9staZqGuq7w3otzUigcMgnXVIVwE1Fn2Wl6J7ucb00sjmUh6hPWamnDTsZ3gXbZ0XWRxTLTBUXMEWjReo/RZCTXLCUSiRRbQkwsS9SJ0bqIYZk8pxCRQYgdJcKKNUJaLecLjuYzMZ+mTLfsiGHOdG3MeDomZ0MKCes0LllM43BVhXNQJ4V1Ed2M8V2kXXTE2UyiLawma4NGoVLva5MxGUiYrCCKgOCL87NtO1w9QgVF5z3LZUvnM5OmwWrQJKxWoDWxiGOjeoS2lqREKNGVxXRCnumcMTSMRmWOKMWs8xwtWjof0VgRPFIQ4tZodEr4tqOyGuekjXs/94xWjEYNPgR8jMcu7BNioa0cs/mcxWLJfLnkmX+O8tJqXynFuXPnuHr9RS5cuMjFC5fQtePOrU+5f/cOd27dYmQtvjgatTZMplu0QdyyOQdIHX/6J/+WUz99n6vXb/Dg/j2mkynnL1zg9bfeZG1rnWd3P+PWp7f4/g++z6xd8JOf/Yi3f/5jFCLEVo2Io4vljBQiKucSiyNyZmWFxAfFsu3wXqJbtCnCYGFDU07szWaENpGTxlYjFinRtQGfFFvGUVUOH0osQYr4riMbRVKa7Du8l2gIHxP7h3NC0MRcRIUcGTWVrEMqc6i1RFsgsp8xhuVShCStFcZa0FoEghjE6S07TEyJo2VHF+aQNSkrZl0LB3NyaQl/5swp6UZAhgDKGYmLoFxio2kXC46ODtg/OCTHqsRRKJzRjOuKlDuWVlMZg7MVy2VH23UE70Vc1hrrjKyjISLOd1kXQwo045GINFmcyTlrfIJlSFQmiJglSiPOOUxKxJjIWlFPpiUqQkTfUcpU1ahEXUhUTNsu6eMEfEwsWjknre+IrUeP13Guoh7VpARXrt+gcg3dcsm77/6cyWRCXdeMtAYc2h53GfBdB0qTI+icCAHmRy2L+S53P7vDcn7IxavX6Lzn4w/exy9nbH7nz3BVQ9sGHj+8T9NYmsrROMfe9kFxvopoXbtahEtEWJEYmVjc2om6rlYvJIibuo8JQea/zqQsEldaLHHjRly/GDovLvtWSdxI6z3zxdFKICPK56YMMYlAqcq4SjkTkkTnWGUwSqJgnNY4ZSCLw/toOSeniFYwrmtGdc24aqiMo42BvFjShUxW5eWBKANPkeRlg6RRsTwvyFSVWJ4yxlMIxw72EOid28ddLjwZj2QBmRJNpcvf5NKBwKJK1FKKHbmsOwpQCXKIhOhJWUQLC5AjE+XobIXJGeUs9XiNs9nzxsGMLx0dMTsKHHWKRcooHZg0U34w22fpIqfWRuiNEfhWHNiyd8UBXR5mfkEjKBbpE98r38y6CJ29zJvJKqKcYvTCeZplRfhgxs7BPt5F6rFjdGHEgAH/Lgz1zFDPDPXMUM8M9cxQzwz1zFDPDPXMUM/8MtUzw0tPAwYMGDBgwIABAwYMGHACftWCuhBLn/t/x98HVg7ZnCHkRPYB1fZtqxWQ0CGAkjbLVaoYVwanilUWy2Q0YdF1RO/FJWsrDmctRwtPKvuTUipFd9luKSyzghQ7dvePePR0l49v38dVNZOt01TTDbyxjEcNWWdip1jMZkKYrcSOnow4IX1kiW8gZxIJlfpjVmhj0UqvyJycChEuLDfWaHEzlX0lC2Hft2BXKTGqa0ajhqZpmMREVH3La3EGhSDt8WNMHBwc8Na1a5w9dxZtNP/Nf/vfsFgsSVWWNuZIa+eMCAVJa7ISUjWT8T5ijBAzy3YJSc6ZUuKi812HtZUQCznTxYAKga7rmC9mqDRhNB6jtcFaGI/GxckEZEVtHTEGIKONpq4Mundm5kTwgZwhxoQJHqMtZ89tMp5MaaZrHO0fsrt/wHy+wHvPl996gyuvvMlyueSjd37GO+9/gmvECac1pABt5+miR5vM7GCPrKCpHHpD3IbL1mO0ZjIZc+7ai5yezSHBO++8Q1VVVFWFMYYQPDmL20wrhbG6OI8jSoE1qsR3iGCQUFR1XdyLhpyiEM4+QoCUIwcHR8wOj/BdRLuJtIkn0bYdXTdHWYVzFUpB8J5KWyHLYgKlGNX1KmYihIAxZtWePxdCS2khU7q2Y76Y49sIWbG5vsHrb3yR/f1dnm8/Z75YopSmylYuWSeRFylKTMRs3rLcOxTBTVlCivi2I7YLUk40SrE+aqiNuKqzFjHNaIXVIt7ElPDeC/EXIybK3NLaFjfwSouTTgBEcmkHH3LEh7Caf1rDYjGT848iuECKCe8Di9azO5tRj6fiBtVyrcKiFVI6JaZNjaqkbXtKEI0lpiyktJbr630oETPHHQrElVda0GeJISBn3njtdTY31mmqmto5rly9yvTMKZrxhLqqUaOG9UsXaTY2uXvrFk8ePeP0ubOMRk05HoPEJ4j7cd4Fdg+fcP/pUz767CZkiZKY3Bzx3vtvMx6POdw/5Gg242i+YDRuIHqSD7TtEowhq4TvMiF4tNJUzmKUkMZ17fAp4ItA13UeH2IhQ4u4l1MRJCNtSJhscdZSNw2L5YyYEsvlgocHuzTj6rjzApnaWbI1ZCOdBFBu1SnAdx2LNq9ECKUSldVgVBFKE1qb4vRPpFQc8zmTkgyS6BMxhRILoPBdWMU67BzO8cnQNGOsrVgsl0yqeuW6Xy4XOK2gsihnSmcAWbeTkmiX+XzG2tqUc+cvcrDbceuzT6mcYbQ2RYOIE8qQSxSA914iK8hUlYjSzjmstSQTxGlrNNpoJtWEjc11ll1kZ/eIcLSgjZlZGzhqPcxFJJqOakhr7LpDRsZgjEU7V9bLTC5xGholQrQWl7DWGWudxFOU+9bh4RFZw7nzl7j8wlXm+3sEvyTnwLLtuPLidS68cB0z3aDzicODPWIIMi6VEad2V9z7xaGdkhxz3dSgLHUzoalH7Dzf5sGDhzJfyYwry/JoRnQR7SpUjMwPlrRa0Y1GKCT6ByUEfo653BdymRt6Ff2glHzdR0zlnPE+kYsoEGMiZM9oMpV5l2Xt3NvfB62wrmJS1xJbpFWJAZHnhJTl2rO6J4k7PGf53JxL5IgSMSz4QNstuXD+EkpbOp/YPTogRI+zFuccdV2Jq724jH2MRO9ZhETbRZTRK5NyzgmjCqnfv2gQJbZElSerlNLqnnzsIpZFTJzYvVqSyn7L/V1c0mBImBSIyaB6IU4JUS/PKhnTG6eTOK8V8kKB7FcRGo3FVdL5QRlLFyOHiyMOvGcWpVuO05mHKfDdBG2AlxeRX/v0EdNKXtgIiChk9ImIqxPHpE78e4XVz+WYfApEH0ApTO0wjeFgO7L3aIGKNZHAWqPRE8PzOnKFAQP+bgz1zFDPDPXMUM8M9cxQzwz1zFDPDPXMUM/8MtUzw0tPAwYMGDBgwIABAwYMGHACCUoNl1cF3Ofc0H2ZV35n5YHJmTZEaDOmtDnOJAwiOigNOgZSrolZ4YyFrLDWoXwoH6fRxhKiEFEZaYGfUl8gSykphJ4Qt0ar4sL1eB9omoo2Jur5AtOMcCuXTr+f5TDULxSs+fjYem9O6gWElclHIiL0scpAn/heZIRj13UGsrRETyhxmmYw5rhw1lqjpAN+cQ4qMqqQy15a97cdm+sbXLh0kRdeeIHd3V1izIxGikopVEqlMTzoXIQT0WfkHOVCzMVEDJmQonyKUoTO04yEoIgp0YXAaGSwzmI6g/cB5yWeIStWrbF1b3EajYjBgwJrDHVjCxmZSSkSq0RO4g7VXUfKmY21dS5eucKVl19l98ED3nv/ffa1oq4brl25wrVrV4kZGqs4PFjwfP+Ape/wOWFNvRoP2ogDvfOeFAKVNTRVRdt5xqMRZ86cYbxxikUQkijGKGSfFoLHeyHMyKo44w0EICcUiaQ1xorTmww5RonTUH1r7VAiDmTWhBjxnThRc7nOKSdU1ugs5M1yviS4IGSI7+i0OARzEle00boIBDKWa2fRRkj1lDNt50n9iMtI+/m2pbI112/c4OVXXuGjjz7gwcMHIl5oTVaZmCWSJRZRw4fIctnRRRiNDKaq6GIgZSHuMolFCCLmWUuyxYWvMkFB0KU1uZJrG1NCx0iIMo76uIqUknQ2SBI7kldxJKr83arvAahE17VybcvxRS/t2+fLjhgCzhpCzCxzC0lR1RUxiNjgvceZMs9TP9/1qqtDv4bk0rmgd2JSvpdCWJFxCrh+7Rrnr1xjMhlTacW5M2egqVFG2pUzklbk0+kaW5uniG1kNB5T1RU5idOabkkmY7XGVRVHJWJlb3+P0ajBakW7rCEH5vMJu8+3WS6WKGupTUP0YbVfOUeJIiETg6dyrkTuyPi0WoTBXESAnJOsuUrcujIvTSFoFePKYrLF6gpbVcTZAbo4rFNKLBYLlBKRQCnIqSJnB9lgdCZli05ChMYYifH4nGpVxBeOycycRTgUYSZKl4lynXRSIhBE+X4/PuR6yDastRhr0dbgQ6Bam2JNhSJhVOkokPp1tyzZwhsLYRwjk/GYS5cvoy5NefLgPjl6dLk+6WRbirLPqtzHrHNCojqHdZZsLSEEVJB4i8o5idygOOONJhdXuvcRpTOxCxilmLuWPXVIqCuauqZGE3SQzhwFWilSfyxlvcnlnhtTiaLxHVXTsLV1lte++ms8u/0J208esL39mI3NTU6dPsOZCxdpTp3ntS9/jdsfvs/O06ccHh2AsbR+Seu93GuUIadESJFUoi2qumFj8xRXLl0kp8CtTz9DK8XlK5c5tbmJMRXG1bjRmNNbGzy6f4/Dg33aZUvTiJgqN1Nd4kpEkO+FgD7+QM6xWomFOZV1I/XCRUJbTeVE4O26jpgyPgRizqguYnLGVQ5t9UoQE1JeHNFkEWH7O3VKceXcThmWviP4gEFx+fxFXnzpZWbzJds7Ozx69gRXO4k7cm4V7dK/LKG1EsNyPhbJZMLk1aNAeaVhdX37+KN+sOZUHjqgvHyQi2jSz6njvz35LKYQJ7tJAZ0sKpnV51HOgXR1SeXJQrbVd1ExWhWxQO7pxhiM1mAsHZo9H9gJgZ1kUcDYKO4kz8flxYmzXSLsLUgbI3RlUEbGrcq5ONdlTTo+3H4c58+nRJQjy0qRQiC2Xpzh1pET7D4+ZO/xgiQGfiZjy6Ix3E2Rr/7iZgYMOIGhnhnqmaGeGeqZoZ4Z6pmhnhnqmaGeGeqZX6Z6ZnjpacCAAQMGDBgwYMCAAQNOQP3N6q3nyFcO4nzid3s+PIEQPW0SEg0p/BtXCMaQWR7NWC4brJpRWcdkPJYIg7JdYxRdzKsCV5FFTCiNkROl8Fa5kE4KYywUh1wuLaAXsyNmh4dUdcVoMpHiNCVxmqa+aFUojbRKLtuWY+qFAEVOQtj3zlSTkxBjpdO0NtJCuv+5jnI28onCvo+ToBBwOYuzse1aus7jxhZnDUqJaKJUJMWMVoa6arj16WdcvHCeN998nf/kH/4R/8f/0/+Zw9khSRuMtmgVhRtTGZUUthAAQpIV4hCK+BDp2k6IS6Wpm5qqrggh0vmWpfdcHI9x1rI2HbO/t8dysURrLS3bC2GelLienLVYLe5A5yyjSQ2k0iY9ojCAEDq6dbRty2g04uKlF/jaN38d/+Qujx/ew2nFK6+8xoULF6hyhx1PeOPrX2O5f8gf/9mf8+TJM5SG6cUrQjphGNeG6do6T55ts1gued7tsL4+pV22bG1ucePGDZRpePT4Cffu3WM2n9M0DTFEYgz4EGia0Yqs9DHgoi7EjJAqzagR117K+K4TpyLiNO98S+e7IiJkQgxo45iM11Baod2IJ7sztDY4V7E+XQclbt8QA8vlAq0MOcl4q5wthLdfteDPqbQFV6Ctxs9auiCusdFoLO7gmFhfm/A73/o9FJ4PP/6Aw6OZtJPPibAMRbSwxBjoOk8IATDUoylNM8JWDUddizaWyXjEqK5YHu6L+zMlVASNEcGJRFRRiCZri0CXxGmOOO9ijKgU0SR8TuQoIoG2DqU1OStptV+c3kZbUuoIIcjcUYoUw8rJrIzm0qkLTNY22Dk44PnuDpWtOLWxRU6Jo8NDfDsj9E0dcpaW+4X0slqjlcYYEf6Uylgj15KVWziQU5LrkRWXL17ihde/xGhtAt0RcT4jLJbikK0b0mLJk5uf0e7u8fobb7F8qWNvd4duuSSnQNXU7M8W5BxxrmayfgpdO2bzBe1iic6Z2inOnj3Fm2++SbV2ik/f+4DHDx+yd7hPiEuC9yilGTcjMsUpCVhjqZ2jqSoqazG6iFIxklLEWo2xWuaKMSLyJVlTVGEutatJXSYE6EKmWy5xoxGjUcN4fcru3o5ESoQASuZ0zhlFhWuckKMUHr+XA/qxqtRK9OpFipSSiK6FMYwpFE1BIlZyTrJfZTvGWpwVct42E0w9IinDsvMkEtPphPW1KXXlWM7FUW+Mkeifsj4pI2u8MRZXWUZNw7kzZ/naN36H2x9/wLMnDyB6rB0TM3LfUkICO1uOUYHt96X8V2st62gWwjrGzOH+EfNlS7tcUNeORSfXSmVYG6/RaoXKidm8hc7TNRWTUWAaFXWQmAe5t6nVmtPfRrQW8juEgPedRCEBzlasr5/mi9/4bR5OpnwUA7fvfMZXv/6rTNc3USh06Pj6t74FwXO4t8f9e/dwjSOSUcbimjHGQsyeHDIpBQ72Djl97gKXL1/hP/vP/inWKH7wve8SfMfXv/E1zl66hLIV2BpVjTjafsp3//RPeP/tn3Hr1meMR+OVwJpzko4hKYszPkEmIibwjCmO85TKOpIVIGt0LOvDxvo6k+kaWWv2Dg+ZViVaKkaO5guszjQq45S4zLUuynsRoXq9RfhqVTqBJGLO+JjZPzzEKMWFM2f5h3/wh5x74TqffPoJi/feZbmYs7l5gVFd44zcz7TWZW0x1FqjqUhLj42ZGKXDi4h35eWAfqIoSreLoggUEUD2Ta9EtVRiQMpDjkSMoGRdlCcrEaMAEyM6eDSm3BuPRQmjwAE6S8SOJpfoKBFitVY4VeKPipCoTUa5moWpeZoc9zrPk6yptGXTKG4Gz6OU2QSaAGu5ohmN0dOKXFvqUO6fxcWtyrxeKXdF+Fp9Xf7bP1Pq5HB1QBmDmYxh5Nh59oDt+3vUR4bNDc146tipDD866vgnv/iwOmDACfxt9UyPoZ4Z6pmhnhnqmaGeGeqZoZ4Z6pmhnhnqmf/Y6pnhpacBAwYMGDBgwIABAwYM+Pfg75YNehRifeVCFuI1+MiFU6cY1yN8F3j4eBtPYJETkTnpYBdLYr1uaFyFqyo6L+643qgWc0blKORSETBqazFGS1t3FDlrEnmVe+9sKfVSZHF0KESZFsJQaV3aL8v2tVZoozEZkioUVmmbDGD6z9VayIaYTpwYjdOGPu4h51jOhtT3WiHbzRlV9o2UqVzFdDzBZ0UXOnRCCDVjsdZibcAazdp0Qtsu+ezTz1Ba863/4n/Cb356i3feeZd7Dx/izp9Hj2qsk7/rXYyKQpI5UwQNhbKa6cQUIk3IhPligTaGEMUVF0Jk2S6o7ITNtTU2p1MOj45YLoUQ7wl1pRTKaKpCnCkt7j3vW6yrShyAous6jDFYY2lqTQyRO7fvUBvLq5cvsnn5Em994Yvs7+zRNA3jyZTceWI6QsfI6a0NDJkcPXU9Yn1ri+3DIxbLlloZzp2/iDWOg6Mj9g/3efToCRfOn+Pytau8/rWvsffgE37yw+/z6c2bVM7RLZYolakqx8bp0zzb3qF3x8cYsNMJ1ugVUbOK/VBCXLddSw7i4OwdwcYYXFWxtr7J0nt815EzOOfwPmCNQxuLUQbnLNYaULA2ntCFRAoBRWZUV9SjRsix6Mkp4awDxOUacsIYRWo9PgTqyhBDx5uvv8ZbX/wKp67f4P/2v/uvefLoAZPxCFeNCEmuV4qZECKjZspkrAshqRnVY5SpWIZEGyMjbRm5mlPr66RJQ2hbVJa5rXIWQQ7Ru6qqBq3IBIhCYIo5NpJTRGcl8SIr9kfR+Y6ewooxEWNG6QxGyFFjHOQkkROmQteOtY2aZjphWk9Z+oBS0OWADlAbaee/sT5ldriH90tIHkVcOaBThpihcgpXVRiXcVWWSIMiBsm0dNQ5U7uKpW358z//Dr83abh89RquaUhdSzWakoHFwSF/8Z3vMB6NOH/1Kl/9wz8iZ8vNv/4+Dz/7hCcPH6CtIedADB4fDVM7YXO8zsSNaJslO9vbvHL9Jd748pf42u/9HjDhrVff5ON3fsa//Fd/zOlLF9hY2yB4z4N79wgx0IxGsrblTF07KmtxJa7DWI1yZQ0whsPFbOUobuqxxNEUAlwpeL69h18mFIZ6NIGciL6F2rK1cYr16YSj2Yz5YkHrO3F6olZCbPABkHb9SkFVVSvROMVOyHqtVvygcQajbFmWE0RpQW+MIWcIEVmjy3yqahiPJzTNiK7zHLYdi9aLYxowVmG0OMJPbWyJcJwiOUdspTFWkUq8hDJw7uxZlosjPvjgbb7wxW/wP/4v/nP+6nvf4wff/UuyOqJpKqypxYFd5r1CocoANkV8SGWN90Vo9D6Q2ry6n6yPR5BgMWtxZGoFa85warSBsSKopsUC5yw5wXy2oG07lD4mn6u6kniMKHFDxjpQEiUQQsDVCoVmb3ePn/34x/zRP7rDuXPnSW99mZAT07UtJuubOOdoj/Zo1BqbpzZZ29qgix02Z7a2TlGPJmRds3vvETFGmtqxNVnjcG+X6FuMs5y6cgXmM9rFkt2d5zy4f59Oa3wnEQ0XX3qd6cUbvPDSy+zuPOXO7VtopYR41hmyXCejNSlJVEvdNMVNLy5vaw3Bi9CtjcFWFaaqMcYymUxZn05QzjJvW9quZexG1K6mrg11M5ZYFCtRRDFFUg7FXS3rpsRJnRAK+pcYUsL7lv3dXf7hH/wBf/D7v8+XvvQV/qv/6n/Nk6fPiDlz+cIF1iZTEbs0uMrinC2xQEpirqxlGeSZJQVxwpdFrYg7HabcA0Rnl44hvXAg7yyU/3/CCJ1TIofQL6Dk1Q+K0zoliAHVeVQ2KGNRMaFTROWIzRGfMzomEW1zRAMuZ3SW5wKrFDoXYc9onFWoyRrtxjmeb17h9t37LKqMNYkjNNsZXjSJ1xvL72xNmK5PUGsVTCtoakzKktvUd54gHR9P7iXC1WF8/oucsUr+BGOgqmEyxpzdYrkdeJ47Ns85PnSa91rFdw8GSn/A/xAY6pmhnhnqmaGeGeqZoZ4Z6pmhnhnqmaGe+Q+znhkqpAEDBgwYMGDAgAEDBgz4O7ByQP/Cf3/xF1RfgBeCOpVYBOMs89mc0Ao5WI8qEgqrhFTRSOt9ayypCABaa3TfLrp3Yqv+oxSGTGM0deWIwP58QYqZPh++hyKLyw1x0vbt60VWUMUUmUt7d0VSvXsvr8QDYlq5tsmZrPSqqFfF/UcRDQyapPKxw7o44frit2+DXteVuA9HI2beE31xDilNDBkfPD50pBQwBibTEcvlnDu3PmP71mf86q//OspY9vcPODg4QKt1qpRwSdr6q5RRKhWCy5Rdl3by1lQoY+iWS+ZHMzrfsba5eYLcS6UddcS3S8aTCWuTMbVztMuOLga64FfnSJyO4t5KZPAAhVgv500pLYRNCGyur3P6xRd54dJFIW6U48abX2B+eEh7sMdidkhdVZgIYTbj3Asv8Pvf+gfc/OwzPvr0U1KG+WLJYr5gZGsMMKmbldvq8PCIK1de4OqL1zDjMWZvh7Nnz3B4cMjjR49YzOe88cbrXLx4kWYy4l/8y3+FrURkUbpvhw1GgdLisvPeE4O47iOIU01pnDUYlbGVo6oqmtGIUBxvPZFabKMoDK5qmDQingDkqqGLmRA6UoxYI2OmMo6cDdF72S9lgISJkfGoEUItRFKMnDt9ite+9EVe/uIXufPOOzx/8oQUA5NRQ0a6BuRcHP4WnBNxTRvpk2+jCF+QicWVqQqpNKoaknOE4tQOQWJEtNIYbSTGpTf4kQgxg9ZCcimojMYombxZKVHMYoQiUKS2WzkXgbKv4lS2SrE2XcdYR1QQcmTv+XPsaEzOiawQ971vMS3EHMucqkqXhABaIgDo4xFSOlYGEbGvKqKNsYYQAiln6qqiripms0N++P3vcf7uHa5dv8HVF1+mXcx59vgRH77/Pjc/+YRXX3lFnI8psX3/Fvs7O7TLDmst2snckwiELOMoiuBjrOPKtRf54td+heuvvYqxDaBJMeGM5fLFy/yDP/pD6o2z7O3sUn3vO3z4wbvYyZi6cuQYhRhVfScGcMaWDg0y7vrImVzc7EppUsyk5Ms+iRNYI8S81boYFiUaIwWP05rJaMSoqYtomjBa1mhrxSlvMlTOsfT9Gp1RpndkaxSZkAJmdcOQeaaNoRiR0ShsIeFVuUZ1VeNcjdaWlFqMkr+zzqKdRmmIIdCljK0NVW3lPpHFJW40aCw5KYx2oCLBarrY8pff/7d87Vd/m+tvvMX+zh4/+elfc+7cWREznZPYm3IXUahCcEcheJUmqij3ES0iTApZ1uycSUBVNzhXYY1H0YEGoyONU4waR7QKg0Krfq0s3UFSRqkyVkImRxGfu9gWR7swyDvbu0yma1w6dYoLVy7j2yPs6AxnL1+jnkzxRwdy7/IeZwz+aMb5ay/yjdGIrTOn+flf/xBrNcpaAqbM70DjNJPJmGsvXGLj1GnObq2D74gx8fqXvsSjh/e5desWH376GW98+as061tsP3zI+z/5Cbc/fpfHD+9RV45VDEFRiFRZFCR+oFzrMhNjcfBixTGsUsK4iqpuqOqaumpQFAI+5dLxQyJBYuzouo5z507jnNC7vosyqOifIeSe1K9UWRWneRJheH9/n6++9SZf/fo3OXflBv/mT/41d+7fBRTT6TqjZkRVXPJKK5qmBpWxymCVIWmJGkplbvf237y69yuysmVfEikiayDSucBQ4pt68QCFLmtXDkHWyNTHZBRHdP+SQy73o3KfoQgPVmWMhlpnfHle0UrJHAKCAqPLMwx9ZIzcy3UCbzWz6YRw9hxX1s+i8wKfE4sMSTs2TeQlnTltPMrIc1dGy4Ekhcp2dR7IeuX+VuW5oYc6Xv5ZHUB/3soxq6x4ZOE9p7irNbvG8rwN3I2wW1aVAQP+++DfV8/I+jXUMzDUM0M9w1DPDPXMUM8M9cxQzwz1zFDP8B9GPTO89DRgwIABAwYMGDBgwIABJ5FX//qbosAK/U/yiX/L98X7IiKBQhFCwKiINpqqsaSsVhEJmgyxw1pxJ2tjWCyEJAkpC9mmIZ/4PHFdaZzRVMYwWyyEoF45cdSKlADQlJbkvTAAUBzQQkqeqFTz8cH0ekPRPcRNjRAfWgnBo5Uq7eVZvfDV58tnCZT43GaFwCruZFPOUf9BOZNiIkZx82WkVba1hq7rODo84O7Nj3nrm9/k5Vde5uHdu7z34Ycs2mUhJyoq60hByKvCvpW24n2MhsJ3HYv5gvlsji1EYyznJ+U+BiPTBc9oPMZVDq2Lszx4tNfE3nGbVl4tcYdHCCqKgzCJIy0WN99ysWAyarh64zqXLl7EjsYsZnMqV2M3NMFZUgzEJCSwJtNMx1y6eIGj2Yw79++jVCJETxc8IYpD1FlDU1eEHDl9aourV69y8cIFSJHKOS5ffoF20fL48WOapuGFF69z+YXLHB3sSUyFc8XhZtColQNOKcT9HJOcv9Jav4+EUEqI0qqqhBB0FdZHsGnlQu2FlJQzWhsqV2N68kxldMx0WpNiQKuIUVrEqazIRhyDwnclEpmmqmiqmpQSR7MZL914iReuXmEyGfPh979PCh2miB0xg1GanBRZaawxxXVvMFaTlCIv4+qYT85sDRilqFxNMIZOazItKSbpJKB1afcuMSoWS+7lNyXEV13ZlRCXQM7bit3SaBNxCEustZb4Bi3t1q1SjMZjtLG0vmO57PBdi66qY/JNQUqR4Dt89FSTCZWrZU3JiaQgek+KgZziapL2XQxSSkJYFuJZoST6ouzjsm15cP8ePgRObZ1CNxP2Hz/mwf37fPbZTdpuydHREbvPn/P41m0e3vqM50+esJjPoKxRJ+G7QOs9IQmJef3yZc5fucLa5hbzvQPm8wVPHj1gf2+Xpql58do1zNpprHU0dS3rV2n2Li3hj9eNnBVKG3EGHy9y0pGhLHE55dW8VUpTuYqQZEviYu0jfCRax/tOhCatsdoStTjJte7XMIvKkZizrN3hhFKsksyXMlcg06fwrNZKLfMjZ6QzhXP0HR2kQ4QDxEHvgxextxC1qH7M9uJrWWHLGict9/sgHIkCoYgHMUZufvIhN974MmunTvPyF7/Mu++8XbpqiDNX1nlVxrpa3Sty366j/KO0xhgNKWGNE5GgX0u0LvsKRityjqisMSpT1Q5F776GEBMpyfToCWIRdHJxjcdjAUUlDg4OOH3mLBdfuMLrX/kKyihC16GNZWvrNAsj5z4V4SsrTd1MOHX2PPH6glsffUQIS6IsQ8SU6LqOUFkqa/jCW2+yceosl69cIYdAJnPh6lVwju2nTzjYfoapalzdMNvZYffRPQywsbFJShBiKFNU7sWqXOdeYO9/ppUQ5apf9xSQMtZVNKMJ1roiMHuUdVCEgmIvJqfEcrmk8wGtLbp06EDl4xcLch9BUSKkyKv7W+s7SIlvfvObXL12FR88f/2jvyKlII7rukIbXRqj9CKyFne8fJPjCZbLPTCuvlYlN8qWJ4Gex1dIDpVCy4sHub+P9nNXxluMkZji57Z/8uFEqdwbquW/oqRglcIosEq61WgtQozVBqsyUWliP1+KWFAGOTplOgu5rrCb61xZ36CadcxDYjdnaq1IWnNOQ8MvTOp8fAfJq2eyfOK4+jXi+Dg/h3Jdy4JFjgmVFYfW8NBq3tfSQWEnZ/YzxIHRH/Dvw4l65u/G317P5NVaP9QzQz0z1DNDPTPUMz2GemaoZ4Z6ZqhnhnqG/7+uZ4YSacCAAQMGDBgwYMCAAQP++0CdqPMUwqIX4kqK1gwpY2xFU1WYStPlRFYKHRUqiyNM5SXrjWPUOJx1HB7uM1/OWPrExsY6Vhv6ij/nhNEVKStiUkyainHlyMmTUk9YqVWx2efPn/wH+jq0lOVByJhEcVZrIRn6kl4ZJQLByjGr0MqIQxRFUqHUxaoU6j2Zo8SxrUu0RSHslVIkEj57fAzHBXEhL3JpXa2UkNIZMNZAyvzsZz/h+hff4sXr17C/+9t8cvNjFvOFtFdHU1khfa3RGCPO7N7tbIpDeX9nj+VySU6Js2fOMKoqckzlaMVJnlLCd562bRk1Na6yGGfQwWFDtSL+27ajXBiUUsQoW0lJ4gHEkSnbOTo8oq4sF6+9yJUXr5ND5N5HH6GUYry+xunz52kP91m0C1TWjEdjYteyd3jA4WwGWWFUJqtIJBKTIoYk7cONobaa1199idfefI2LF8+TD/Zo6obXXn0VoxU//umPuXb9Ki9+4QuMJmM+/ug9Qoy4JM5Vo7WQrcVV531H13mstbjKYYyhLgR9ypGUM00zxrkKbSyoQq5ru3KPaqOJRHySCAmtnTgSFaQcMGQckLRGq4TTmlRiJlDiukQJiQeByhmauilxG5Zf+83fZmPjFIdPn/LRh++wNmnoQqALkaykZXkfi+BcjXMVVTmWmBNzFhitcMpQvIQyvo0mxERVS3v8qnLo4qjXSqIHnLNCKGNISJQKIWG1xhlLVVdQxkkKUch44ySeISWsq6iqY0K2burCMQsx3YxGdK240mMI6NpJm/WUIWRcVaERd2PbtlROCE5tDUaJsBWtiAQpRtHMtCaHQIh+5bAWPTODgRwzMWZCyjRNw/7uPmnZUhkLruHB/QfcvX2L/aN9Lp2/wPPtZ+zv7XHv08/Y3dun8y3OadbWxuisVtyZMRrfdhzOF7TBo43mhSsvMNpYZ9ktefLpTW7fvsvDO3c43N8DnfHLJSHvMN99yu72Dk0zJqFZBBE5rI9URhVyH1Ca2K+BWhMjrIJrksL7CCi0sYyqhsoljtQc33nIEbQhI2sh0dN1LShpMW96Yt6Is94Yg7FljS0Ep1G2OOWFnFeIEKARd2a/DokWkdEYWXfLOHe1FdJda6yxcv1iom09XddR1Q1aCfEao0S1WGNwSqONEue+yhgjfx+TRA2kqKiUgqQwWCyKx48f8tHP/5pXv/RN3vh7v8lPv/uXbO89ovMtKU9E4DVanLxaERNoUxykWhy8RifIUYh8rajrRghlrfC+pZcosJraWbrFkjZ7nDasTcY45+Ta5YwJgZRUIc4VnQ8yPstwTzGIaxiJozg4PMQ5x7lLV3j1K79B2rvHzqOnpBCpRw2b58/Rzpf4tqVbLplunWF5tORo74D9vSOqyhKyJscIOZIzzDtP1S1RBH7vW99i/fxlXD0iRQ9KMT1zlovNiDCbMRrd4vyFS0wnE47u3ubKi9c4e+ESy7bl7R/9kPfffxtZwky56R47k1GKEAN9pxJtLGgRiMQtDuNmirWWECJ7u7tYoxhPJ2jAR7lXjyuHVYodH9ndnbE2hbp2SCSTnP1UhLJUxkLMGR8TMcPhfEbnPWe2tviH//if4rsl77//Dj9/5x3Onj6NseLKjykRUlpd2xhl+7GoHSZnrNZoBaSI71qyKmu/NlQ5o3MGHcEYrK6lm4pS8mygDTHJ/FJazkFOEGKmi5EuelKOyFGXPhYZspKOEyal8myTUSmiUsApjdFZRBPl0SrijKLWltpA1tDliCcRNShrUCGTsoJUIi2sxqyNubK1gV1uMw+ZkVEsciAr2FQaMEUoORZ/f+H9kePnwyLYHX/vF6Mhehc7KIowUsTd6GoOq4pbesFsGcEZrNWMzNDpacD/jzDUM0M9M9QzQz0z1DNDPcNQzwz1zFDPDPXMf/j1zPDS04ABAwYMGDBgwIABAwb8DfT+pWP8opFFfe6LY1cTiMOrJ9rbCPHQi9NUJ7RV0Cm8Txx5z//qn/2nnBtZlgd7/PRnP+c3vvAyTw6XPN2f8XB7jxCPN48SMnLuAwnN2nrF6dOniDt7LA9npJRKC/Lj/VOKkknf77U6sb/iU+pdVAopkGMIYITAD8V5iMpYK52spEBHHMXOEHMg5iiRFlqLEytFyZbP4ozNhawgx1JPF0GlL/I1ZAM62+IyTHRdZDRyGK2J0XP3/h1++Kd/wmtf/SbXv/xN/uBbn/Cdv/geXReIVaL1kRzlHBgbca4ihNibBjk4OGR+NGPU1GyeOkXlKqwCaxTWVXQ+EnMiKUtQmt2DA5TaoGkanHOElKisJRUyLxXHnri4Eil6YkylVb8nRI8phbyrHQ+fPObjd36OUYYLN17j1u1bPHr8iIsvvMBvX7qAD4HgQ3E2KuypDfbenfP0+S6HB3MunT2Dlv7VQsa7ioPDAxKJrc01fvf3f4+tqzeYtx133/kZ1hguv3SDM5cu8od/8Pt86Rtfx2jF7c8+4+1336GqC5GeRLxSxSGuEEJ5MpngnC0OfSGJVMlACDkVh1tp5x4zwXuUcuJmrQwhR0xWhNSxnM/ZV4bJdERdi4uvsU6I0iyRBWNtaENHF2WcjZoRKWd8DHTdsjgBWyaTit/4jd/izEtf4LO3f8LHP/khMS4YjcZ0kRLNAN6H4gg1jEYjJtOpuON9YPv5M9rgmU40la1ojMNZKwStsaCyXIvCAY1dRaWMUG9GSFPvw8o9DpZx40RE0DLxbFWhtEbpgDGWCOQciyNXIiBscRsaJW5tbcXBHbMIAFYbJs2Yw/mMmDwpelSkEOGB5DOLhce5FqsVlXXS1r+xWOPI2pBsaeWfIzqLiJa1EFwhJZIvpJ2CpBQhAz6yPp5y7tQ5Lp47j/KH7O/vMJvPaLTBt56YIsvlku2dHZpqhNLiPG67jombAIX4s9IlofMtB4eHeN+xsbHO3v073L9zmz/9k3+NxtCMG1xVYa3lv/t//j842NtnPpux9J7z5y9xtGyZ+w6fNU3IjKyjsoaswadE6Im2rMhZnLdaWUiKnBWuqalcRaUsB4c7LJYLUkpUtSXkTG9OVUQwEidibYW2lmXbYo2jqpy43lUgx7SKv0kpiVioKUKYXhkhjbFoW74u3RRyzhhlMMZhbY0uHQactVTGslgs6No5XdeijIhSIUV0jgDELtCFRFSKphmt7k+ptJE3xpCSxP/kDFpZVM4obblw7hzv/uxHuKrh0rkL/Jf/s/8l/5f/w3/N7HCP3b19zpw9T93I2pmKCCL6Z4YQqYzMmWwgO3BG9r1dLjg62ofY4YwIq7mF2mhMsybrrDUoZaiskzGZIrZyIqwUx7e1mlYHgpxSiXApYqEPkTPnzrC985x7Nz/ixvW3Of/a6zz40U/ZffoYOx7xmy/+Y8JsIUJtjhhnmDRr7B5s88nH73P/4T2wvbtdy9qtLVFpvF/y8Sef8Na5F3DNiKPnTzg8PGSraxmNRrz+pS/y6pe/RO4CKgRefPMN8rhGuXWOdvd56WCft3/2Y7SjEN8ZVaJHQLojGCP/XymDNhZtrYhQ2lDbGq00Bwf7HB0dsVgsOHv2FE3lyJ1n2Xp88OhKhKXJeELbJlReEDrPaGwkriP3wpasdznJmAspM+869mdHrK2t8T/9Z/+MyamLfPvb/5I//863Ga1NqFwlC5zSVNYBQri7Mg5TFEI9xojpnzWy9IaIqQiSiDueDCl0YExxBNc4CYFYRdQopAtAf+9pvcRctF1LLAKBdBvIkpiQ+3cyJM7B5ONICHmWSJASOQdizOisRcwgYwBrMvIugpJrk7RINFrTpUBqwaSA6jwhLKm1YmxFXWhzprOZsVGrThblgYdjx/OJbgV/y7PkakdXD5a9nFmEhhQoTTNAaxplmBjDeKxZn46p+vuxYsCA/y8w1DNDPTPUM0M9M9QzQz0z1DNDPTPUM0M988tRzwwvPQ0YMGDAgAEDBgwYMGDASawqL7Uq7Y5rsWM3iwKMMivyHjJZRykNV5ZAtSLZtVIoY6QleYwkMpNRw+vXr2G7OYcKXnv9C/y9b/4Ki5i5ef8x/9c//jaf3HlAXVe4vmV7CFhtSSkyWyzY3NxgbZJI2TCbzQlenIdan4xbkL2OMZa2/33ZeiwQ9A5GA5iY0CGhijutd/3k1BFzpJi6pMgWO3RxhypU1uSSW9+TZDkFcmjROaCzIodEaIXQV9pI2/HizLQIwZ5TFALWySfFGKnrmlu37zDdOsPZs2f5lb//97l19y4PHzyiXc5oaodPEKLCBF0IfFYdq5fLJcaIu3Y0GpW2/hrldfGSZUKKZJ84WszRMUJWrK8lNtbWcMYSCL0WJNdESfRDzhkiq7bq1mqMqamqCq0VkzyGnHj04AFbp85w6coVXnv9darK4WrH88cP2Vxbx1V92294ePsuB3v7hBip6xHGVWSKezi2VO7YiWWsY+OFKziref7wGe+/9x6XXrjM2ZdeYv3MRV752hrGwrs/+hEffvAes8NDJuNpMXZnYvBoPSpRHWCywlq3ig9QStz82pQoEISEjCXCw3sPSERBjIi7sp9AGVJOLP0S582KRPU+rCaTtQatDE45MBqjClmeAgmoKsf+fMGoqZhunObql36VnXu3uf3JB9x/eI/pdA0fPDGI0zsVssq5irpqqOtaSM8S0TEej6lioK4qYuFojDaQMzEEsko0o0bGUB+foBVKW7TRWOuKQzWjYr8uyJqRElTOYo1EpqAUaIPJkJXGKYkUsZVdtervQpTokRKzojJYYwgx0LVLfNfRuBFamfIZCevEXauWGd+2hOL6tioBkZRLi3+tinNfREGjhaSUtv0yv5bLJd5HmbZKrZbBTCZJZgEXLlygOzri/rJlMVusXNx15Ygp4LSQwKNRgzK9C1ChjGZjNGIRWpROtK1jVFdMphNOzRecO3uR/f09qqo417Xh3p07WKXZ2NjkrZeu8+nNO3RdSwwB4xTaarQ1KKOJOZByLAShKvNBSE6tpYuDs7KvKUUO5wsODg7wRZDr18ZU2un38RxVJW56pcyKxM6UBUUJralzHxdRHNGKlZM6g5CnMReRoIjIWtzQWhm0NityXC5Fpm2XtMslOWeJhTCqkPX9ql0I8+JaXbZLqqqWbgRarrOIXQaTFTGCQkhaozLT6Rr7Bwc8unuHd37813zlt/6QL3/1m3z60bs8efKIzS1PjDLvY0qfi4rRK8V6dXVJKbJYzAjBo4ymrkbomS9NL1JRgCXSwmiNtRajjWxLW1l5VRZ3KwqyIkaFihKjoRUSg6IVGM2aNhzsH3Lv3l0++vADzr32JldvvMza2pS9w30Onj6jcTXV+iaZTDc/5OHjh9z+9FOePLrP3v4M4xxNUzNqRmVeIF0mnOHDD97l6iuvs1ZXIpR7T06Jdj5nZ/spIUWa0Trj6QbTtdPc/vAdPv30DtvPn+EPd6maGso9WN4dKAKIFid/CYSij+6onGNFEGeYL+a0bQsKNjbWqetK1scQ5Bqr4s5HInnaEEhZ1pQQIZSYkphkLTPGEFUWUSsGjg4PuHTuPG+88SavfePXuf3ez/jsg/d4+uwZa+trJF9OdekCYJXClnmUUyou7kLKJ9BNjXYBtGK+WGBcRUwZG6N4gXMUZ7vRGNNRGysxDUrWpphNeW6SEbXsvHS4iNIZYvViA+rEU5nMlawLJd+/iFAGp9WZxmQqNG1MhE46SHgfiUjsjcWgYv+34hwPRJSx1MYxIUm8kEoolam1dIOxSoQvq/udNqAMWRlU2dbxbhah4PNvlbASEf6GhnD8vKbKSxcyMhRO2dLBJMmYHV56GvDvw4l65m9iqGeGemaoZ4Z6ZqhnhnpmqGfK1R3qmaGeGeqZ/0jqmeGlpwEDBgwYMGDAgAEDBgw4Aa3+tpedjks3ybTvW1drxPOXgUTKvWtYkXvXKHAylCFFTwRQitoZRtZgqLBbW6yfucSX33wdnxJN07Axaui6DmsNVXVM2KKkxf1ssWCytkYzGqO0JYXIke+EoFcUJ+vfUklmqbl7h/PqGJUm+Y64nJODhwwx53IcQlTFHFbdj3PKhWSUbaWEtFPOCUqr85gh5IAPHXE+I4dAjhnhLxXGGnEAqVzObS67KMcYfBARIiWcc+zs7vLowX0uXbrES1/5Mi+/8hKh67h//yHBd8fkU86EEIT4PXEOqspRVRXOOjlmrVfkX85ZnNEx0/oWfCQjRM54NMauiE+5mtZIa/SkhRSIKUBOpHIuFUrcttagtGJWVeQYib5FJc/Zc2do2zld17GcHWFPncIYaQM+ny/49IOPONjbhwzNaIQ2llSOK3iPdQbnLF3weB84OprT5iP2t5+xv79PMx7x7Mkzkq6wruZob4ft59scHhxSVRV1Je7HGCMxxXI+VHFdaYy1xBiFRCljViM/08h17l3gvvM4p1dkjbRzP2Y/MpnOy34GF4uzPJFVLuSmKSSkwaoMCMmWKWRhcfGvb57i3OWrrJ2+wMc/+WuePn7IfDnn9OlN/FEUYlghwpxWhUgWcS6mUJypGWuOiV9ViJqe0M85E9PJ40ZITCX71DvXteoDV+SXTmgiItBpOU+G4ixVCo2482Rc2SIIiVvaIfsiU6C0dI+9aJZWBG3OQtwLCZnQCkIIQnSXmIeUAzELZaYlg2A1x2Vs6rJ+CYmZosy1rEBbmTMxyWcvly1ozdnzF6DzmASPnz5h2S6JMQBa4j2MOHtdER96fVIpRVVbxqMaZcBaEQjGG5ustx3nz13g4HBfiE9t5Hx0gQtXrnDh4kXOnTvHO+98QPBexExtViJob9jNuSfxgXJuKMeotIifIOdp0S7IMfZcP4pCiGeKICLXxjknLlE0obj3Keu5OJ+F0NYojJFxQxEJVNmPXi9NJ4hAhSriQB+NklAlQiYSiV7crwqF0ohohRHBU+vV/EoZiJG2bcV9rcvR5PIZSoEWEr8XjJXOaGsYNSMO93f59OMPePObv82Lr77JYrFgf/+A5WJJilkE7ZyxTos7WevjmJcS2yNu20D0npRTcTa71RqcE8fXhX4pLnND6bJGiACHOr52xhhZQ1IusRGgCzHtlKLzHYvFnK5dQgxsbG2hSSSt6OZzxpsNVdOQlGL73mM+/fB97t+9Q7tc0HaBkbEoJLolK01MQtoaa9jZec7usydsbmxiq0rurygO9/f55IP3WXQLrl57lXNuxMQ27Dx6zMfv/oRnT58ymTTYpirHosr9MK7WDqUMsgrIGDLG4FxVojsy3ns63wHgrGXU1OXcyNjS/YsJUERQg+limQeZEJOsy0Xg6aNDcs6EGFnM5xituXH9Ol/58lfZ2DrN9//kn/Pk8QOC96xN11gGib2xRqO1zDejTRFw5DypnEU01gaMCD0xBNrFHBMT0XisVqsx0j8jZGalewNYDUZlUioiAZmYYekDIWdi2WYurmc+N4ZOfkv2x+Qkc90YKgXjyjGJijZ1ElFUnom0KgLiytctn66LWG1cjU6J6FtxequM0UKgG6UgKZwGrXJZPXT5R63Ew5U4cGIfP4fVg9eJ3yvj/3Mo9yPKnJZnlCIY/g9hjR7wHxVO1jMnMdQzQz0z1DNDPTPUM0M9M9QzQz0z1DNDPfMfYz0zvPQ0YMCAAQMGDBgwYMCAASfgjCZx7Gw5SbIrwFgpjIWgU+TeWYOCrMlKk7UuBbES97TRpJRolx0pKbI2KJXJOfL8yRPOndrg3IWLXH3pDdYmltnsiEpnJpUmRSmS+7ITJaR2yomjxQKzt8+Fs+dZW1vDdx3LxVxIv5zFf1X2vyfRVlgRkYWcKeRSd7hPNztYubulPpXtpZSwxmCNxmhFTlHaypfzkNqA90FakBfHdOwJuBBYHC3wR3NySNKeHIsp5zumSEx5tZ99u+POeyhkblVZuu6Ie3fuYIzjxle+wTe++U1Uzuzt7bKYzxk1U2EflLjItTu+Xk1dM2oaqrou5LD6XBkfUxJiikSIQrrGxRxnLWuTKeNRBSmjUsYoccnKdizZOpTOLNsszuAVKyhuSWsMzlguXDjPmTOnyaUd9oXzF2i7lvliXsgUje8828+f81ff/wFrp87gqob19SkYQ+cDy66j7RzOWSaTEXmW2d/d573vfZ9m1LBcLpmur/P0yTPaH/6Qtc1NNk6fYmoN47U1Xrh+g7qu2N3bL0KRRBHA8bhBm2PCuMwDYyyqXO8UIylGQuel7ToZbXpiXMZ7yklomDJeo4+0XSfOSGMLiSokYc4ZZZQ41cp4RYYQOSYOD2Y0oyk3XnuT17/4VVLwvPP22xzsbtPUNbaqsVXAJUPOEZ0yqhLSX0SUQ5Q2WFPmbo607VKcycquSF1d4guiB+89zhpxgxt1wuTWE8L93JFrLedOIhBySiTMytkWu1jENVUiI2Q/hJzOK5JSJcT5RqbrWrquJQWPM9LPIGcRO1JyK2HDakWIUUjmZMkq4aNfMdNRsRJi+j7jwh+XtSFljLZoLR0b+nnRBc9sPmN3d4cLwJmLlzi9dYobN17i4w/f56OPP2J3d4cQO7SGpnZUzknHA9uLqv2/Ms4aJmunefH6DTbPnsWMp0x95MKFC7z3/s+ZjEeknJjPZly6cIHf+J3fZePUKT58/x22d7apmjFVU6ONdASIKYl4Wa5dT5qJICPCSC/mZAU+eLrOE4JnMhkTfCzLoMzFiHRgUErGgDGmxBdoQjIlAuVYHAwqAgGtFJXRMpaVHKdWSoj80vI+xChjQylEvKAQfiI8hNzKfSRliKkIEYoUErP5EZO1KWiFNloibsppTcBiIR0fFDVaVWUCqbJGSaxIzkL4agUqwanNLZ49e86dW5/w4L2/5tpXf5OgLN18zkcfvU9dVStl3FqLc7aQ99JNIgchnUOMpCBrooI+C0kc6krGsi5CLIiQHEJc/TwFEV+csUUwAa0N1kBOELyX61tc670wqRRM16ZcufICeX5I9B2uqjh79lyJHyqCmXY8uP+Ad3/yEw4P9jhz9jxWayajEdPJhNFohLUVIR7hY5BOGSrz8MF9RtN1Xn7jDSZbp1ns7/Hk8WN+8P0fsL//lN/9Vs3m2UtoW+PbBYvDPZbzPSbTc9jGoVKWZ4Py3KBWAoFZ3YeV0lhjqVxF23pCaDmazdBKU9eVxMQYRYydEOlFQMlZzmt/T6y9iFExZ7pURMgkwl8qXR18jCyWS7a3t3nplVf5lV/5db75a79Bd/icH739U3b2dhmPJzjr6Iy8mOCMWa0TvbBIziQVUUliFmztiEDXtrRHB3RHB5i6IyjQORdhy4iAkROLmNDG0VhDYxU6R7JIz4Cii4l554lKQYnK6c+XPBv0T2IrvQJywhKpVKZ2jqoaMTKZMPbQZLxOeJNptaZtMz6rIkIkud5anMeVs6yPJtCMaWeHPJkdcnk5Z8NkLJD6FhokXC4u7VUXhM+/EKJWL4/0+HcR+p9TED//u1mOMxVxwEd5PgFWXSAGDPi7MNQzQz0z1DMM9cxQzwz1zFDPDPXMUM8M9cwvUT0zvPQ0YMCAAQMGDBgwYMCAASdgnMMUd67qXSmqb90sZFBfEMaswKkTNZ6WLHZ17HAcjcd0yzm+m9Et5lS2IRbXozGWl199BaeEfE/dnCO3xqxN1M2Y3/nVr/D27fvMl57Oe5yTEi7GQIoKZRzPtncgZ05tbnDu4jlaEkdHR/iuJYeAcm7liotir1mVoCI65GLgysTO431Xti9tmLUqBq+cSSFydnOTjdGUybhBEalcQ4yZtvM89XN8OMCqjDEKlQJKa6wCrROHeGiPmM332T10bO8fQiyiglbUdQ054b0npVja3UdSae+fkmY8njJfLLn5ycd8/P2/5NqXv8qv/c46165e4wc/+AH37j0gRXFpCgmbSdELIRcidaqJMdJ5L65VbQgh0HnPfNkyGjVMRxXT8YjZssO3Hm0M8+WcqupbfJsTRJ1akWBVFII0qlAIrYjRiuA97WLOC5cu8sVf/3tMJ1NuvvMuf/pv/pTf+M3f5Oorr3L2hWt8/MMfcvHSJYyzjMYj/v7f/02uXb/BweGc7//wJxwdzVh2njYklrEYM7NEElhr+bd/9h1eff1VXn3rTX79D/+Qj3/8U/7s23/G+x9+wI0bN/gv/xf/c2w1YefxY979i3/D7vauOMoUZGXIZVwFldG447gMJQRJLO49cl65cLVW1JVDW0NdO4JPpJQLqZ6gOEp9DHQhoBaaFDPJJ8aTCoxMlJgiKeqVSzuRWCxnhLYj+MDG+ha/+pu/zfnrr5PdhB/963/Bk4eP2FifcPr0FtrUjCcarVuM6chAl+Q6xxCo3IicMz5GdIpUxjCdjKhcQ99xHBLiNFY453DOARJ3gQKtLSCCR4jFSVna27c+krL+HImV0rF4sBI+OCa3fOcJKUnsCdD5CDFjlUZbcVRaoxk3DQlVOgV0dG1LU1coI23aXeUIyyJ6GKgqDdYUgUavyHOZV5mUsoidSpyWVhvG4wnLbklIpZX8ssM0msP9A77/3e+yfuY0Z198iXrrFPXmKd66dJ0WTffuz3j6+BHnzpzGdy0xeDprqWyziqNQJaLAd4HR2HD69FnUeAwpQmhBJZZHM7ZD4NTp07z6xpv83n/6T6gnU+7fvcNPfv4zNjc3RYzryfeYSUbOv9MO6yoZk8VB37tuY0x0ybPwy1WL/rW1NdpFS/QJckZlSDGA1bjasLGxxsHCk8ta5FyFAbQV97FE+2isrXAJYqBsR0QCpY8d271WKOe5xPQg623/vxg8y6534mf0L4il07Up07U1lm3H0XwpsQtKUVU1plbSkSOrEs0SyU4XQarXZ47dlzIEEzobalezUHP+5M/+mP/88nVeuHqVM5v/FKUVn378EfPFHJRiMpmsiMqUEqqMoV7UUHIbIRQnvc6pEPXi+rZG0/YEP+K47lqPUiI0GKNxvZiU+3uvXp0lOYfiQI0x8uzZNtdvvMKXf/U3ufH13+KH/+L/znvvvs/Zixf5vT/6Iybnz/HJX/8Ym+HFl19m6/R5fu8f/hPGo4YLl87zv//f/m/o2jlGJ+qmxtQVrQ+EmBhNpmxv7/P9H3yX57t7XHv5dczWKUam5oUbHb/193+bv/zud5hMpzS1AzzOGcaTMaPFWMSrGLDI9QYR6XJWpIg4dK1ducwBuq5b/UOWrg2mCPEoJDbGKDIJH2QtcpWlrhxdSHSdxMnEIvCmsi6JKAXb+7u0nadqRvzuH/w+//gf/Y84/+IrtFnzg2//K249uoszjrXJGhbNpBkVI7bEc6SU6HwgKEgqM18uSF2HSonxZIpralRoOWU137i4ievXFrKIVdpw4BPbrefOosNZw7RumNQ1NidCTNjSQWQRIg+f78gw0NLV4Phh5XNeaBEPMmjvqTCMVYbouf/0Galtefp8hzZ7ZjEz6zIHbeT53iF7uwe0viWoyGRtncXBIaZu8Knmw89ucmtnj+fPn+GfPubF0ZIbY0MTFWmRZF6X9UXUBbWa+6qfZUUIPFYxPr/vn8fxmBdFoL9/qCJ0gsag0ZCyvLyhzN+xrQEDPo+hnhnqmaGeGeqZoZ4Z6pmhnhnqmaGeGeqZX6Z6ZnjpacCAAQMGDBgwYMCAAQNOoh4ds+hKwh4obsY+w54s5TP0JrQiGgDkhDMWazRWabr5gsViiW87IYnkL3ovJSkmjhaHaJU5tXmKM+cv8/jpc548fcZib5uN6RSfZnQhrtrEn0RVOQ6Pjuh8y+mc2Nrcoqoq5vM5i/m85MPL30l2vRSeveO5d+BpI25uVciprKVFMynK95FCuK4ck3HF2rQm58R81hFLu/66tuA1G7Vjs6lpDFhdHHpk9jYCZ7fGjBuHMgptkPbVKRGLEJBTHyOQ0caU+AEpuquqQuHpupb5/Ii7d+5y+ZVXmU4mXHnlFcZbm7z9Vz/mzu07PH7yhNFojNZGIgCSEBGustLOvBCzNipCLERtTqQUiFETvRfHqCnOdpIIJz3pp8WpaooDMxe3tCtEYk6JlDXWiggRMjSjMc/uP+TuYsEH77yLq2tG65u0XeD+z37OT378Y76SEpeuXmXrheuMzlykyp7tnT32d3ehqQgp4VNi6QMpiaOTjERWjMdlVIEbj3jhymXOnz9P17UcHh5x/+ZNUojsPHnC3Tt3CgkpJIVOQqiaDEaV9u9KF2dWGa0pidsv5ZVA0E8Vo8TRHYM4QY2uVkRh7/SzVYVVlpgTs/kMbTOusihnhQTp3dkx0MWObDSnts5waus0Zy9d5OyLNzBGsf/sIR/d/BhrHXU9wrkaoy1JJ4wJEvWQweeE0RZlpNV3ygmlxLUaUsBgUJXCGHFDUsSwEAI+Buyq5XfCGiutwI8nzzGhU76fQkAbQ9Yn299LdwStZIyv5lw5nymJKKKNk68V8vdZxlhUilhiUWwtsRYhJWJMSJtyGXO5qogpEkKk67w4lFMUB+UqQuB4n6yxaG3FwZuOj0UVYdDWNbqqWXYdh/MZ3/nTP+PVN59y4dIlTp05QwyRvZ3nLOZzrDES1WDAOI2z9sQ6pTBaVr2uCywWLctFW/izhDGGyfo6Fy9d4vzFC1y+epUbb32RZus8925+zCfvvc/u9g6ba+uEWOIaUKg+TqHffjoWdrXWpAg+FMe9FpK2J/EUMB41WGOIIaIQt25dWax1WGvR2QtJqfTK3SwCAXK9inBsjcW6KO7qIh/LeCoCc7/qarUiPfvt9PE+IXSUzvnF9ZoJQQQdcQtHXOWIORc3ZHEJl/XIuKpsS8Q7HzTGB4w5jgGReZXLmia/65xjNB7x/PlTbn3wDrz+BU5fuMTXf+O3OH3+PHdv3eL+nTvs7e2xsbWBdRaVFDF4Yjw+tymmVYxBiB6nVBGZxeVsnMVWTojjEuPRBl+mjRDJOSOdPMqJiCofNx7o9cYyhjNgqoqD/R3e/uGf8xd//uesr28wXZuSjebHf/5tPv75z6WbxXTEmRuvshUiVmUcHadOb7G749Eqo4gYBV0IzBYds6OWUxtbvPzml7n20mtoo7j19o85f+E8axsbvPHlr9KMGy698CKTtQk5tRzO57QhEopQonNPJMvcD+WeJpFDCaVTEVAktsX7tBK3rO1jPcT5n1JAGUWtZF4ZralchbUOYy1VZbE2EVKJY0KRiavz7EMkAa+/8RavvvEmX/yVX+PimTPUJrO/v82z59vHclUSxauPq+mn8NK35XoneU4AXFVRWctoMsFYi/ItZtKwtu4YmYzVPZEu83OnTYzmiuchAxqTQaWEygmj5OWKFBM5BfrJoD43eo+fe/oIn/4pbEwmp0CeHfCDH3yPu+9WdMuW/YMZIWeS1oQEPmYWyyXtvJXuEirj6hFOW7arike1ZefZM553gdh1rIcWPXVYMhZZa1NWrBb/E0rc8dMgx853enEur+bs347j3zmxGMs2c6ZyhlHtmDQ1o7oik1brxIAB/04M9cxQzwz1zFDPDPXMUM8M9cxQzwz1zFDP/BLVM8NLTwMGDBgwYMCAAQMGDBhwEk1DT/wlJU2K9Ql2KSlNLiKBpnxfKyHSjaKyBp0zKiboOtr5At91pJhwffGoxOWUYyD4QLtc0HVLbt+5y3TzPEdHR8xnM9r5jMZatDYloqK0IJatkHPCGEvwHfNFQO3ucebUGWpXwViRUHjfkWOClErR2ZezfVGqCnGayZri8hFXTuqJLyWtjbNSWKdxTuOsJiaJa0hiMEQZQ2UMm3XNpbUp6yOLO+Hw2p13bK2NaZoKYx11XWO1liiIHMXZl1bsazH0HQs0ekUOJFIMHBzuk3yL1SMm4ynTa1PaeUtGcTSbcXh4ROUqeveRMaUtdQxEhLxOyRTHX0ZiICI+BELwSAt1vSKuckaIlOI0P2E4lCGDxmhp9y0ts4Uo0dqgtGWx9Hz60SccHB5w/8EDrl65yu7eATv7h9y+9Rn3Hz3h1NkHUDVcbNZQWvPk6TMeP37CbDFnVNlCBCa6EsGQM6v9qOqqEJSA1lhnaZoaZx3L5ZKP3nuP1LYc7e+xs7sr5DGFbFAnHLxyMEUk6smtXFqMl9/PvVAiBFjoIjGJI9kW519CzpHSirqqyMrIeYwZ37Ysu05a3GtDtiV6JJdIjpSYbp3m3OWrXLx0mXPnzqInU7r5gvbogN29PVzlcJXDGCukLf351qQkjjJ7krDPGVIkJogpYG0tRKwuxJM+QapmIc1yMb9JM/Rjykrl0iEhHxOYvYiXM8QcUVljEVFCK0VSGXqysx80qyVEAakQh2VelnEbU8L7Dm1FCPBZhAKVRfywWpGtJXkhgn0XSKNC+iFt2Y216EKWi+u2F2V6YSYRg8Sy5J6MNhZV5sytW7eIPrLz+AnnL5wnRs/zx49olwucc8SYsEaupTG9c6+0kVd9FIW4QPf2dsldRzYG5yo2T53itTff5MILL3DuhRc4/+INDg8PuXXzJnc++4wUAtaW9ShRWuv3519JZMiKXMuFMKc4pTPaqlV8j6aPSVDFRSqnIZf10WiN1UauZaZsuziWUcdO4+KE1H1nhH6caDBWaNaUEqmwnRJJY8DINuRayHEYHclGrnXOWeKEcgJEQOo66VaRtQajRCw4viWtPiumiI4iWErnhnKdUaTUf42QnUkiGay1+LZj+8kjzl2+yrmrL3L+8gvYusY1I0hw//4tYgxoo2QNTYkcJUpDKdlW1y3xIZByFI63EONKiTDSt67vSf6Q0rEIQCLHTC7nRm4/SualluubUpT1SUFVN8zmC+7duc2Txw95+PiRdMyYzfnkow/56Q+/x86Tx2xtbXH79lleOnUB52p817K9+1TmhO67GCS0EkFp0QYWi8Cl0xtcvHiZ6doajx/e49P336Gd32C6tkH0nvPnL7F++iyuGRPmRzzf3aULHrQq606/fuZjclsd33dzuV6UcWpMuX/295Vys8nI3E9Zzp/RBqN0GXNGoiSqmsoFfJBYmdwnWSnpZNGFwOVLV3jri1/hC1/+KtdefIncLdApkkNHCAGrJfZEm/IyAKp0IFD40kWkj58wylBZS+0szjq0ORZBKg3jxjA2CavKvVCrcg+NLGJmpCNtWYNiCEDGWhF1YwjSTUEbVB+PkxMloGi1pmhd5qGSn+uuJauOGDyfPd3lXvJ472m7QEqqxMfIWp1SJBeBS8aZYVQ3HBqDUon9/X3m2mKBqc5oXaNJ5WWFE5dSIcLyia+PH1o+HwRRLvzn//s3fqBWokBW5RmjX2e0CNnOimO+v2fnrH5xYwMGfB5DPTPUM0M9M9QzQz0z1DNDPTPUM0M9M9Qzv0T1zPDS04ABAwYMGDBgwIABAwacgJquEXNPlArBl4XuJJJJWqGzlHRGKZxWKAPaGdyoZmt9jcXBAUc7u2w/2abdPyRrERD6KlMpBankxi9bQgw8397me3/9LrHLmFpROSHrVRDSLmUhH1QhzrNCCuiccE1NjInHT5/RLTo2t7aox2NUXTObzfBdRwxBHMKhkBT0DE0hBgorllVeEcO9I7DnxVIGYxWoREieEDJd6MULEQ00irWq4uLalNOnxjgnpGFCsTabszkdM6oaKtewsWZROpNzIEZP2wY6H2jblrYIK9qANhqjdTmGiFIZaxXiRU+ktiO2La5yvPrlrzFa20ADf/wv/gWT8VpxgQpZNtPzFalXVzWj2q3q9Kyk3bbX4pYWcr+0fc7iIE0aesVAyNRjF3GOCaWlfXbfAjwnUBisrblz7yE7O89BwdrGOiHAD777fQ6ODtne32Xr1Bk++ORTHj3b5uKdu1hnuHf7Lnt7+3TBMzbSEjqFKCKB0sQiGiSlyEpaiVtjyCnyfPsZ86MjfNsSUub73/0uBnBGU9eOHKO4dTPIiRbiVYSUKMeeMjkmQgxCHxXSUZGEYY0QQ2S5XKJUxNUO7Wxx0OmVyDNyDow4OGMMhNCybNsyJzTOOKKRCA1FwhrHa29+kQs3XmZ96xQcHcKyFXI5RpQCV1e4ymKMWokYQtxqsgKjHFrLaO9JUt91+BBoQ6RpNE0VcBassShtMNYUB6LB2F4gKARxyqCLYzMDWZOKGzlTYhzKHG99KAJJFuK8iGxRSUxEVkJe2TKcep4p5UgXExaNTsWpnQLet7hKE1KkTZE2eiBjyj9ZaaIypJzoOs9y2QGpRJ5oXHUcjxKjkO0UMjDlRAiBtu0IwUu+gc7oqiIpTdXUhP0D3n37bT7gHdaaBmXVygVdVRU5Rmnp7twqHqV4XVHKUFWOqnF0wXPv7l3C3j568xT1eI1Ll67wwpXL6I0tVDUiRvjkJ9/h7R/9Fc+ePGZrYyIioUbOmzZkNCmJ8JIL4Q0yBryP5AwhdLJuGkVtKzkXCDG+WM45ms1IIbK+PpUFoOgMVmtUTqSoyni0QujmhMrihi5nr6wFMv6cszhnsdYSQhAnspK11BgL1pRbQCyGShEuXJWxURzaqjgtQ1NLRID3tG0nRLuRdvxtF+WcugqjoI2BGBI525UrM8VEABn/ORO9fKa1GpImEovwDI12+OWC0M4hLAk+cvraDdZOn+XS+Uv8y//Xf0tISxFrSj5QTlHuQ8h5XnYLcspY52hqh1K9cAGJREwBlTOhCAC2uGFzyiSV8Uacwcog5G+/7htFyH38jBCmG1ub3Lt/j6OjGSF0XLl0mfl8wbs//Rl//u0/ZXfvCVcunWNmEz/5q79kd3+HtbVTtMuWJw8esv18B1SmriyKjFPQ+oheRpYdnFrfYHd7m8dPn/D44W2ePXvEZzc/QGfLYtbxzV/7dSYXblCZhsP7n3Lr1m0676mqci9ReiVKxZRQK4d6ienQWuZglNikum7IORFDIKRQyGshxvtoERHasnRLCBGNpnI1WlX4kacLCR/TSrBfhpbOd7Qp8K1v/SGvffmbnDl3kbj9iBA67GSMrmqm4zGNc1RNRTOusQGyp9xbYLFYEGOirmtGdcOkamgqC0rEqna5ZG++RC1nNG3HmUrTaC3rl9Joq9FGMUmZqdWMtaWLIhKRAwrFWt2I8O0jyoKyDkIkp4Aq8lwvZvYxKf08ysHT7W2TUyRFz2IxL50GVOnQoMszg8wt2Sd3TOqTaLs5KUZiSjTNCOscKgaMF9Fb5yLeFKGLUP485V7doajs5UGi/9eJNwj6twxOfPf4oZPjv8/905mClCBJVFLIiZhFCFJF4ED/jS0NGPA5DPXMUM8M9cxQzwz1zFDPDPXMUM8M9cxQz/wy1TPDS08DBgwYMGDAgAEDBgwYcBLrmxh6n4qGHOVrdWxpmYwaKmsxKqFVZnNzjbXJmGlTce+zWzy7c4edJ8/w8wUjW4njmOKKKiRCSrB7tOTWg0dsjcS9qHNgOnacvXSarM4zmYz4/s0HqL09UteCXSsZ6CsbDqHrqO2Y6dqU0xfO8fDRQ/Ye30ej2Zxu4JqKylmS1SyXLUuTsIW4FedkcVCWAjUVZ+TnWg0rVm6sqAw+gvGR2EXObK1jlCWEyNHjJ9TOsba+xtaZ05w6u0ZVCzlJhvHSE0xFCIHFYoGtGpw1KFWTcsJaj1kuMUaEhdlsBsVdmFMkeI+1iqoSt3PbLknLBappsM5AVYMyjEcTzp09x9pE3HIxiUOvqhzz5QKjhcytXEVttLTMTomcMs46mqZBG4MP4hhNIdKpRBcjlXErJ2UuBEHKGWIiA0ZbjE6YrLBW3JkhRnTOuNqytr5GiiKsPHz0kPF0ytp0wnQyZnf/gGd7B9y/84Cf/NVPicCotjRNw3g6pVssRDBC0YVQogA0rcp0bUeKUdyL1oDSHBwecnR0yHK5xDUN48mISlushpwjne/k8pbW9kppcWCSSNlINEgWojrG3hEu1K84OJMQ2MHjo2cyqanrCuesOD6NKe7HYjFV0irf6go9Bl/cjm27JMcO7y3Rd1hjuHTlKle/+FWapiZ7T+g6XFWXdvpgSStuJmsglvmlFBTnnFNlJhf3qvcd8eiI2LaAEHSJjE+BmCIpBqLvCMGhjcVoBzmScyQpmRvkjEqIUBYhRCFLjXErHiilCLq4L40ma0WM4lbtRRltHRQKLMZA6jy1s8L7CLNP2y6YzeccHR2hkS4EvvOE1pNGiZSyuPrLXDW9izRG5stFEYy08E9JnI0pJ0L0KFNiDSht53Mqc19ITa2Rz0oJHyLL5YLXXnuNi5cus3X2LH/5nX9D9EtiCpBFxMv9NrBCkMaE94EQAqO65uzp0+wdHPDo0X3++T//7/h7v/07XLx2HXfhMuQOf3TIzt3bvP/223z7T/4EpWC6Nmbr9CYpJZber+ZyjEHGpVFobXHakkosTY6ZlIUQNFpEkuA9zhgwEqmxt7NH6CQ6BK3xMeGLk7quLa42tF3Ex4RGzptOoKwCK19nlU84P4UUJotIaK0Q9sZYEYO9R6WIMZramSJaxZ43JMRI5cTpWtc1ADHLuZ/P5zjn8Dn1/kliCDLGKwfREHUs94WM955sDTr30RMabcpcUZlE7qcjGqiriqqyJT4iQ/Cwt0c9WuP0K1/ky9+4zV9+79uENrCu1xm5SroqlJid3lXeOza10WgjRHIIAY3CaUOKkRQjXRsxul6tDQoRY3xIEESMoYyfVO5F0r1CPsfHQFPVmA1DKu7h7e3nOFexdfoMV1+4BKkjJs/R7JDv/vm30cqWrgmK6biR+UrpcqIUPgSc1WDh0dP7fPaTv8KnyNlzpzHG8PO3f872sz26LnH7zh1uvP02o+mUvd3n7DzfZrJWS4eAILFCPiGiIdIVoCfv+/t2rwwqBTGG8nSQjn+nOJHFya5JORJSAJWpKhGj+uih8WhMCAroWHaeZScioDOOyWSNzbV1KqfBJszWFqZbCskfD9je3sYaTV1V1FWFVpk2BHyIhJhx2rC5viEkecoczA44mpUHGqUYjys2N9bQtaZaZKZ+Qd1HQJXxWDcVnelo/BKtPSYlKmdoXIVCYTXUxrBWW3Rl2G0PJMYhKxG/f+ERzXu/EtRSnsmaILtDU1tyZVcuc5UzfaePfh3s3cv9s40yWtZKFMY5fEY6WKDAaLIuHRlUwtA7s/vj+zvwuZ0un7+KkviFn538vwp5OaQfHAqeHy64/eyADx8dcn4jYFVCaYaXngb8+zHUM0M9M9QzQz0z1DNDPTPUM0M9M9QzQz3zS1TPDC89DRgwYMCAAQMGDBgwYMAJuNG0EBfieCMHyJJ/7pylthZjDForjFaMKkvV1HRtx5179/j43Q+Y7x+R2og1FUkX4oVcCs9cvtRo7fjpex+xNdGsjSquXn+J6y+9hE8th0eH1G7E6c11mqfP2J+HY+JeCbHSF8ZdtySRUJXlzPlzdG2HbzuWy5bF0bLEKChxGoOQlqo4b3IhfHuhQEpj4NjboyjO0wxKWVRxGvvsUWR0jugUISaqxtLUNaNRIYzrWorpDCNlWSRNCJ7l0RGohbSh1nIgOUu7+BA8IXiUziuiQdycCbLBWillnz59wuPHjzDNlOnpc7QHO3z885/z8P59njy4z9kzZ9gzByzbVpy+hbRKWmG1JtsKiR840TY9SytnrQ1VpQg+EEOkC5FF26KNKjESiVwEld4Jalat8A0kVdr1y7mPOWGMoWlGBB8IMbK5tcHXf/WbbG1t0i1m/MVffJfD2YLZfMkhmTZEIS4XC3wIjNamhXjXdD4SY8RZS1M5Oh9ZxgRKo7Q4wpYLiSKJMWBzom2X0uLfOUaTGhSEWIipE659cX0lco4cu7oS0kw/rn435yTXKnppg28koiSmWEZQIVO0uFN99JCtOHWdIwdFjNLyPpCIVhGTuKN3dnb4+Mc/5vTZs6xvbjBZXwc35mj/kO3n2yzncyZrU2KSVu4GVaIUsrT417q07xcS1zrHeDJiNG5YzBfsHezLZ4cA1pS9FcJ+sZzjQ2Zt0mCNEItqNRdEGNKqEHcx4kMEY4QYsxZrpbW4KS3nZZ+Km63MhZQypFhIK5ltEiegQCWUzrTdkvlsxuxoxrhpCrkl5FGUg0RriVuJKZJLpwClIIVAzHI9jRNSWyW1InV9Fveg0SIiOGeok8MHRQxBYjZSZtm2zLsFF85f4Ctf/zqXXryBm25w5/YnPLp3i9AuISd0IcVTSnRdS+NG9NEeIQY63xFTQGtoqopbn35KVVVcuHePjTPn8X7J9uNHPHvymPt3bmOtxjqDtZoQOmIvABQhU8hnUBQCNhVBrzhoxQNd1rEUIYNWFlPEUedsEX817VKiSUZNU7oDZKpKy3IYxAFK7h3kEefMys0oHSSE/DfOoktcQoxC6OsiQoSuwyCu+hCAFEuHBoVSGWM1prR7V2WcJJ9IKeCcYTxqmIeAmi8hi8ATYyDFY0I+JyHUu64jJVOcxeJez5JZIk5lXda8rDDKMp1M2X7+nN2nT+iuvIjbPIcKS3aeP+H+/Xt8euszofK1pgueSd2QVRJSO0ZSCKSVWKZlLBgDyqCUQSPzD2NL5wBxgYt4IS7pjAglIZT7rbHFZCzdA2rrCMW9qpDznZVdiWynN7e4/tJLfOVXfgWXIjc/ep/Dw32iTjx59ISDgyNSTNSVw7mKGBLBe6JxaCWRRG3oOFossKe3aEY1ygdAM2rWuXrlBteuOs6cPcfG5gb37t3nyc0HzBcLpusjUgy0KRRhSkj0VOa1yXnFDffmWa3VShDo54kIeUUUCWn1eyobUpC1KpdzE4JnNjtisfSQ5H7VVBJvk3NNzBIdlHziO3/2Hc5/dJPzly7x4vXrXLh4kf3dbW5/dpP7Dx5ijIh6OUQRU7Sorjlluaf1x1PWFuMsWsn3rVFoa7DOUEfL1DUSYdUT6CrjrKEOULlIZTQmZqxSOCOdZ1ROGCX35Bg9xAgpH7+oQXluOoFekFKAVayeT1DHBL5MUXW8L8LAH2+pvy5FINfalPUly0sbq88un1+4/j6W6sQF5G+S/8foZY68um/2Wz1J8vf7lcvttfwsiRvaAx6FL3+velf2gAH/Dgz1zFDPDPUMQz0z1DNDPTPUM0M9M9QzQz3Tf/4vQT0zvPQ0YMCAAQMGDBgwYMCAASfgqgpdHFuk4ojJYIw4axtrpCW5UtgSUzA/OGK2t8OjT2+y/egpRhmsKnnlKpfW8VIEZiWFqUHjXMUnd+4zconzp7c4e/E66+sb7O49h5TZWt/k/NnTNHfuFRfzimOUnUJIwBgjXduijmasbW3QjBqMtUIwd14K7lJYaiVuUKlT5fu9E/pYhPjcf1YaR38MClXILQXFxUYhoYw2OKtxzhTHoFkV6ZWydF0mxFwcwwHvy7a0yB7ed0LkpyB/p6RoJ+cVeaaVEJuz2ZyHDx+iR+tsqYpntz/h/Z/9lO3t5ywWC8ajCcFHjDEsu06OUYm4Y0wvNgjp2jsOc6m9FUJ45aSFfAS6EHA+HJMmhbTURmO1QVtx32WK6KASCnEYo8CWn8txBmIMbGyscfnKJYxWPHr4kEXb8Xxnj1u377HcOxTRIsZyxfLKldV5ISyt1VTOYXRLirGQHRLrcHxNxepVNw2b0zWayqG1CDLiumNF/K+o8CIc5UI+xhgxOpe2+/JPSpGUJKLDaCWt5pVandP+k4WolxgVY9Tq/KmMxE3kRNLSOj2W4z08POLT995l99xZTp8/z8UXb1BNFU+fbfP48VOCsOTklWtb08em5CyuZEmjkLFltKJyVq69VrR+yXweKbsAlG4BORFjYL5oxbFXOypnyVofzzkyStlCKCVxR+cMxmIVaGMkUuDERJKOBlpIQCXnU6ZPWglVRZ0p++Dpupaua0UwY7Rao8SIL8S1kJIGrSQmpf/AFLO0U9eKnC0pC/HVz/E+FKaXBJXWaKNRSZgwIQ7TSox8+eWXufryS5y9dIWkHVtbG+w8q0ihLfskJH1UEWUyMceyfSHRve/wXtz7xmgOD4+4/dmn7OzssLF1mpQSO8+fcbC/x9HhPk3TFJFQnJA5ybWmPwZRLOXcyvDmmKg78TvlF1S5viKWRoywfeRcnKC+iAtFlDRaoghSlnSMk8tgzAmjTRFp1Yq4NcagjSlkd8RYI5+HiEJKZ3TKEsNARpNXc0MpIfWl/X+5OjmuxokxBpMyShlx3+dYYlUUSksnBHTpIFEihEyWIBOtReCgkKqrtRTpdjFqGg7293n+5AnPnzzm9PQMO0+ecOfmx3z68Qfsbj+Vzy/rrirCUr9GxCCEstKqdNDQZazr1fnPxZGqtKy7Eu+hViS0QhzOIYgwqXReEb5GK3Iyq3GmlMwVEdQMpA6jFGvTKVdfvMZkNCKlxMHBPtnAcuaZH7WE5HG2QmuLz0tSEXIVIuR1ITJfdljncFVFQuGM49q1V8jXa0aTNS5cuIAbNYT0XY4OD3n8+DEbW9Myh2M/JFd3z5T76yzrQernugy/8jJCWol3coyyBgj06vylKJE2Smu5R/qO2WyJ0RaUQ6PFgW4zJE3OkRgin312i6dPn/Hg7l0O93bZ23+Z7WfPuH/nNoeHc6qxlWub5drmrKBEIGil5dmhzBdjRXgyWhcRNKOyONat0TS2ojZ29eygNFhjqFzCGblOYuqV66qRNVcrhVbSpUEW8fKcUd7V6NHPt5NYcepFFP08+c5q3ucMuaxv/bsaso6UsapKzEkZE0aVJb+Mt9Vaw4m/71ed/Iuf+gtYrS2KX/jL1Y/7r1dacPkiKxGYc5+KUf42/cJ5GDDgFzHUMwz1zFDPDPXMUM8M9cxQzwz1zFDPDPXML1E9M7z0NGDAgAEDBgwYMGDAgAEnUGmNsRpNgpCIGZxzpTCGHFqMsVhrcUrR7h1w9+ZNnty/x7P7dzl/+lwhIjQxxxVReLI0VDnitKYZ1dx+9Iz54ojTm7ucu3CNxWxO9p5JVXP+hUtcv/Yio/c+FlJUGyChVSEQlJCtWknr7P3nOyxmcybr61SjEdPNdXIboAtkHwhtJw7ClErhnVcF7jFJeUzs9jusON75GDwpORQK54SwEvKsd4+uFAUhO1IGU9qlK9Am47RGO0PrQ2kfTyF7o0QDFNLBGC0tsItbSBldzmMRWozh408+5tnuLpP193n7Rz/i6OiQqqqZTqbEHBmPxxjjsMslPgaMtaVNvqGqGqx1+BSOSYRfuFpaa4y1xKzoYkIvW5wtDuhciL+sS0yBJmvhOBIIgUVakRG1q0gmk2Mmpxn3797m048/oB5VvPSFt/jW7/0DcI5Pbgp5eu/BQ8ajEa6qcM4VYk1chG0X6LynaSpwBqOlRTxQCCm9cqfb4ta9fP06r964gdWKTz/+iGfPnmKK07938aly+TKJUNpspxjxrScZh6usOKATxJxJMaBywmlH5RxogzYOrYszL8vYMEbLcVgHWdMuWqLvHZUZhSYmIQpTiuSu5ebND0g3P2Q0mfLq61/g7OUr3Ll1iwd37qBtI6MtCQGbKVELJW5hRceUqIOoFW3bk20STxCjCEgJRS6RGMYIQRmiZ7FcopTCGlvmRe/MVVDcpb2TLqUoAlEhqpwVN2PmOC6gUOaQMzEErDYrgjAVISaRyTnQtoHlYkGKAWdFdNBlvuec8SGSs0IrI85XlaHLxJyE2PYJHz0ZEaeSS8TSjlwXkcwYU65vIvhMiP18lBPYFVJ/MhrzW7/1W6xduoRymny0h1WZybiBFCAkQkjk1FLhqOp6Nfd78jPEwHKxZNEuiSEwnU7Z2z/g8ZNndF3H+voGxsh529rcJCMO65gyIYggpIqYk4oT1BpTXOha4h+0OJZTzEVoLOKHFdJSK4Uik1Igxo4QorScRxFiPCGoCWRsgIqxEJEKZYT0N0VU62NPnLEYbchoYoa266go94HYk7/9OqsL4yfX1FbH4wYl4oAIXkVoSRIrQwajtIy3KF0JVE7krHB1JX+vNSmEIizK8R2LW7JGW2tWa7xSGmc1R893uXPnDtlVvFmN+bM//n+XNeIxN25cZWtzgu1d26UNfU6ZGBLRi2N3xV+W7YoAJ6LfYjYj50xdV4xG64U4L9dEr06OnH5drmf/M1YaCNZoulDa+iPjxamGw719Ht2/z/3bt3j1m9/k1S99GWLGp8TN92+SYib6iFKGmOQ6aJVxTsj0FGXtWSw6ULaIbNBUE771B/8Iu3URXIVKLbgp62ubbG1scfPjTwmtZzSpRFRKEUpDiQwrK7Q1BpQS02/so2xUEfZOiPQ5Qbn/aa2xVhch1qxIfLR0+MB3LJdLwKBUEFezMaisSSESosx5pQzPnj3j/oMHvP/BhzRr64QukHNibWOCsxJbYrRFaUOMHSDfc1qIc22NRDdZV0h8ifYgZ3xMZB/IGSpXiVO53KetszhjcFbWO50TRcJGIS8tUAQjrRVEA+girGc0iVQcyqu7c68K5JN+6dKBQx+LST3Zb40p60Yiru7v/fbkRQalihgTPFZpHFBpVuNUKUVG9/rFscDwtxH1veDeC7L5+KmiH8zynVResjg+BspLHOqEyCmiSkabjNUZU8bUSfFkwIC/DUM9M9QzQz0z1DNDPTPUM0M9M9QzQz0z1DO/TPXM8NLTgAEDBgwYMGDAgAEDBpyARqINtMo4m1mbTjDGknJi2XlsPcZqRfYdi+fPefbppxw9esio6/jiy9eYLfv8+Ag6lwJPl8Iwk3XGorBIq/C1yZQzwbIxaghHu3TtHCrL/uGCn3z3e/zb7/+Anf1D6tEYiovuuEwVR49OGYPC2oYc4Oj5LpEdtDXU1pXG6JlAJuqSF9/zEUUoOFnr9vrA52pQJQSTIaFJaAVJaRSGnEvDYy0to330dG0LaURlKkwh73wOrNo2n5AVUmmFremPT6MV5JgIPgixqsBqLW3tS9qAcYYHDx/wyac36dqO0WTC5vqGkKJkjuZzchTSEGB9Mi1kuwYtzvTRaIxPcyEJydRVTVXVBO+h0BO2tDZv25a2EGIjYzFGC8lbnGtd50GH4vQWQQOtsZWjMTA/mvP8+Q51XfP6m6/zjV/7Bpvr64xHE/L+EmMbnj15wu6TbSrtGNUjjHVY62jqBmfd/4e9P3uyJUuz+7DfHt3PEBE37pA358yqrLGrq6u70WiIbQDYACiQ1ECazGg0I81kMr1Jetc/ItOrTA+S6YUySSZSBCAAIhsNgETPVdU1dWVVzsPNvFNEnMHd9/Dp4dvnRNysrOqmTDIB3f6VRcatOJMf9723+7eWr7Vw3iPGNjVnxi07TPBYq0r8Rw8f8emDj/jadMk3fuOv8fz9F0nDQLdec/rKSzx57z3e/tEPeeutn5JywofD99AhVaVgqg6QcZpuqJdVkTeliitGwX4UtBRnNNbDezAOFyJ9v8LboARDTgiVvo8EF5BqKE05mkuhVsG38VgbSWBN5fatNVMqbPc7/vH/8x+xGzKrk1P9WSxJRcF5I0UJmSqUfIgKOKjhDuAbjHVs8RNKCjnvcN4fMNQjOeWtgsEHkLOKWt8fQCoRYUqJUlTZ6r2jYMi1MAwDtSTcakH0AeusqstvAIH1JmgkCrbmMrHfTdSSyWUCFEx0xoI7qJhpClrPbr9nGAamYKFmvHf4sKS0yIJSRqgKUE/jiLXSLOh1Xyz7Q1wDGtcwTQzTqPOwKS8vnl5w+/ycb33r1zj9wpcw+y2PP3iPn37vT3nrxz9imvZ6/Ap4s2S1WtNFj/NKzpQWdyFATlnVwWh8wX6cEAxdv2C5WtN5p6CxVaDMWU8XFSiOMTBOidxiRlT96DgoiI2zhOAxplKr1ZiRpGOORlKo5X+lVpjGkVqyrgNiGaeJYcqkkqlSsVbBXFD1p7VKNClYqMf/en2UG24HhVwS05SoRUhTwVppdv22kQAKoDsLzhuNQ/BWweOmagYlIqxz9N4zjToeDm4OpWo0QJUIxpBLpjf9cbzb4Bu4ripiaYC6be4F1kKuqkItVefDar3m04cP+fFbb/MP/8E/4MnFhr7vOL91C6SSx4nQR7oYSe041FLI40ROqanC7ZHANcZhjMe02ABrDCln9vuBECyr5UIJDynUVDHtPOS8p4qS3iLotkplSkldSg6uJMExjhPT1Z5vffUb/Npv/Vs8/9KLnK4XjI+fEl1g2O14+PFHnKyXnKwWbCQxDFu6RUfXexYxYB2kXCgYShEutyNVDF2vMUbTsOef/9N/jF0uWZ6ccP/+fV75xq/wkx//GT/6/o/Yb3ZcPr3E+lOWq55F12sET1XyxrXzwGHecVAG2wPwTYuBUFK81oP7BUdyx5prVb86U9RGVHcUseymoudzdJ/VWrHO43GUOiAIJ7duccsaUq48fnqF84F+0dP3S2odoRrEKAGXc9bxZ6wSD2KQ0gB2ZwgevHHNBaRSbSBa8EWASYmM43UDx/O7xgspWWWdxp8YzazRc09Vcl00N+d4w4FpY+pwifLZa5OqFhhYe5ifbV0ViN7jQnjm86dxQERdXLpuCT7oWlgSyxjolktsznT74eheIMZQ5RDhYY43D3xuHQH+n7mKuvENPqduPlWOdxooYYTodWkVVZM/c9vJXHN9fs39zDVn90zN/czcz8z9THve3M/M/czcz8z9zNzP/P+jn/lszf3M//dqvulprrnmmmuuueaaa6655prrRllb1cLYGFbWc7pYKAAognGBnCt22tDlgXOf2KcNJ3dOee7uHb71y1/n//B/+0fsRShicALeeKL3GAOpZgS1xbcGgjE8t+45Xy45W/Wsl4bduKFbLOlDz2K5wgWrkFFVwNCZ2prJZpV8UKm1rliVnE4hNIGa1eZcaEoac22rru9y/d+jOlqeJQrk8P5GgSpjVb1jUeDeYpDSQLAKNVVSyuQG0El77ySq5qxVVbegACvVUHNlGEYOYJYABbX5NyhoUmu5sV2GqVaqdYR+QeyWLBYLnHNH0F6besE5i48dsYsK6BndF2JAvKU6RzGOLEI1Sj6oIq2Sc6aUqoCtU2DEtAgFiwJtCiIL3jcAxFgcRi3xi1xv76TKU4zB+wDG8eiTR1z5S87Pzjm9e87y5JQXX36ZX97tefOd97DeYbyHEDA2Yo3DouD1WJQo0qiDjrhYcLG55N233+L7f/CHfPFrX2V1ckJdLCi18L1/8S/54K23edQU0b4RTQdxlkht4J5t1u4FQ8W4g8xPjrCNoak0bbMRDx24cIwVwAoFwYkqwfNYSFFVcdZYQgh0fUdF7f6LADVjLBoXIZUqllwNuarlfYgW7wPOqpJUqoGqY846RYdqO1YVcHJQmNGUglmPiQghBkzVMVBE2tzUCJPgPX2MIIZKJddCrUYB34PqU1SNjTG44AkukKbUyKLC1k74k6Dgp7IfmINSuBQqheospRZSmZjSqOMvZ3JOeKfK8iagbeCoKh/xlpqb8lgltQSvoLmpFhyE6CmoTX9KBWOT7iOj+2SYLAe7dzFClkyRqj85s38ysVqtePGVV3njl74BpfDk00/46N23eeftH7PdXGFdUxqLkGTkciME7+g7x/mt/lodKqra3+/3pFzwLuCdJ1GaGFaV6Kr8bm4P1mI5qIU5/uh3LrpGNNAfU7HOoCsROK/j18iB6KlE71TQ22IR1O5e/dUV3C8UATFO14o4kApQK8Fbcmk0jTSFca3XSmdnyFJIpZByYcpJgU2jWUJCxRjBGXBGNAbAq8JVjKGIkqtyICBEdI5Zg/eqWI0xIqVijcKDBQFnCX2kj8um/mxrt7NtTSqIEZx3SFGSS8F3qwr4quOytFiXWlVNux8ywUdiiFjnjoRPLgVXskbsiD2eGaASQ4cPEd93SlbLphF+Geccy+VSlfeK9FOLEs3O6nGo5XosNB25KtsP/xOjhF2FUvQwamSPI9VETiObi6dcPX7I7Xv3Obt9h7hccP78c7z6xS/w0YfvsdlegCkUKeRimIrBlUw1GukzlcrlbmCfMsY6nHcgmT/8vd+FsOCVL36ZL335q4wXF5yulvzSN77O8y88xzvv/IRh3DJsB0zXNTW0rlFTLeAtzgjOGFyL66kH8rKdfq1tlLlVpbYcyWfBdUukzaE0TdRSEa9j1xiI/jBvLFkEW8HWazeKnJKq2EVjBU5O9MYHH7yS3FVPhgbbXB18i7hpsRQH0L+RNLkKiaSfHRzOFKyr+tp+SbDSVPeNDAC6XojdhI0RyaMSgoebDWqbp+0aw1hRGfzxbHO4RtFrB4w5XsuA3gSgpJiqnEspNy7oDLT9Wds4vnN22mKQKpdjIg2ZWisO4cV7t1isV+y3W4bNFdPkqdHpWAM9Txlpd1nI9YUEBwbxcMV0uMTSfXG8E+MZJfX1bVzH72h0FdNLPLl+PQYRC2LUBeNAnsw11y+ouZ/hZ7i6uZ+Z+5m5n5n7mbmfmfuZuZ+Z+5l/HfoZ5n7m/yf9zHzT01xzzTXXXHPNNddcc801143yTlVIwVqicZQi7EuiiCpS0nYD+8eEMtCbwomvPP/CS3zljTf4G7/xa/xn/+U/5clmy5DVajqKClysNQqEoEpgCxhXMNWw6DqWi0ilshsGun7JarHgheef5+6d28S3P4BSUB2yafD8QbGDqo9ugGnWNC3NAWiQa9vkQzyF/lubfm031bqfRhRIAyDgRn+LqvUOyidj1BbdYJui+fqN1Zpcga4DjaFqMCHnwpgVsPDBKxAhUEpWdZ3c1EQ1RZgBmh2/oYG7RcA4Qgx45+hihzXXxITun4p1lhBVpXogHAxWd4C1iDUUINeqqlWj4JOtByUrmKZYcy02oNSDxXs99v3GOawoIGAqqhpt300EUsoKwBvDlBLjMJKHEfGZqevI+YRuuWB9dsbZ6amSDT7gYoQWSWHQ41xq1TgN0XiNEAKh69juNjx6+Ck/+t73iH3PernSuACET959l/fffpurzRVxpUrKUuQaeLGNODLmaLdvDmNNROMhDO2YmjYGdR8a7zDOqa249wgKOBsBKVCyKLhoCt7pMfXB49s+yrVgasU5BYglV0qGKVVSrjjvWQRPDL6N74OiX23brT+Mv6a8F6O4WQNmNLahNMDWNFXeYfxXVcYbBdZiCPQxk7IeY1WP2gbi6Wdr1EXRudiOqTFGo0BqZZwSU854sUAjLnKz8S+FUgtWXAOXMykljGhMREkJExoIblT5q5ESDuM8xjlySY2gUoDMWNNIQp3/CmxbMqpOnsakhKMFYwSTJrzzSshwHQFRpZJSYhwmXrz/IvdffJFb9++Thh15HAGhXy01UkDafKEyTgPVC4LHucDBcaGKtCiDoKRlEQpVnQOMkmu6Rul3xWj0gb8RIXNjZWlz7lmg7QZveMDZGjhojliiAnX1SNIcwGcEcmmRIUXHeJFrOgxQm3+xTWHcVt/DmGr77aAyrlKA2ra90aum4swNhSscj9mBpDKHMW0UDL950+lBkn3gSuzhSzV1Zt931+CkgKWND1Fl9IFoOaxVh/gSqUqYSL0mmDVSwxOiEpm2fXYppbkKaNyEM/6Zfeubatu3KBgRHUsieqy7rsNXT5aiERZtUbTW4owlVVHknwN4fjg+Vsk5UYJI55fOa9cIyWHcs9tt6LqIEcjjSE6JuFiyOjtjsVgoISMaPyBSyRVcUTcDMWCso0pmN46kFt/hncUHz7DXCKC+71mtT9heXLBer/jCl7/EV/pvMv3jHe+8/VP2+y3BuuNaIIISzF7tVGZSQwABAABJREFU/MUIRkwbi9fnZSvPHGYlt2s7XlXXt5KVsD4A/qI8hCrrDTTIHVsrtrp2XJXYllKv56qDftHpetIiEIxREgY99Slx3wilIvVala1TiCkdyB7B2Q7n65FM3abKSDm6wWBU9f50zFylwliF2s4e4bBGcD3JjzyhkWsMvV0HHKJ3uIHLO2Mb0dQ4g5uXIYdxXwtSWswQhtOTE7yz7KeJB1cbbDH0MbBeLKBW7t25w7ResxWhTNtDogeq+zcU084zB9JQrukyDLovbyxJ1+vWM9/mZx6QRjToGDmsZ9dXbtcrXRtLzDXXL665n5E2Ca/XmLmfmfuZuZ+Z+5m5n5n7mbmfmfuZuZ9p55m/hP3MfNPTXHPNNddcc80111xzzTXXjepCxOPwTWn0/pMLrrYbXM3c9o7x0cfsd0+YJOH6wN1bJ/z1X/8W3/zlX+aN11/j9q1z3n3vEy4vN3TrHtsvGK2C01kgC9BAo+gMH+UtGGFfLcsceHI1cH4K57dOeOHVL/Ctr3+d7/zwLd6bPqFpoTB4oAEeoOpoAw5zVJU1lLyBTYZn6IHjY/pTGtglRl99k0i40acrAeF8AyyNZs5zDU6KUTIkxsBi0dMvF/gu4NBeN3rPZtwyTROb/chUC10XVW1tDGJVHVVbV26dA5P1O1uDI1JKattucc5gm0v/Qd3rWtQDTsGWqTYg6qActKi62DqkAa8ihpwLuSkkay03BEwHBWBVgF9RB1JKTFII3h+Bp4BagJes1tmpKEBbciFPmWlKxBABw5MnT7l8csHd5+6yWnZED8O0ZbW+RxLhwUefQnV0/Qq/6BBrmFJp8QRCqoXNbiDlQoyO4APReybv2W63/Ol3v8vjR4956ZVXuff8fe7fv8f67Ixu0bMddhrTMGVECsY4fFDF8WFMGGjRGShBkDMWJXEOVublQMZYJVWcD4QQ8U4116mBsQ2LJOfUIgkKUlUVGYJGrUz7RLUHXawCJlPK7Pcj+3ECY1n0Hc46rKiKzbSxUmolNkDIWItzHIHGI5EgompvbIsPCExZwVxbKyknVUWHSN93TKXgpra/S6WUgqXFf2AoVAWX2zakXBo4pCDWlDPb3UDwGm1Ss5CLKCGQE0UqYgxpSkxjYhwyINSSqSXjLApme4dzAesc1jcg1kf26Yoxq/tAsArw2UZGHQBUBfIhlcwwTATxuBYHUMqBJNCxa61tqkwh50SeRl59+SVefPkV6DqmDz/kZHXC6Vd/ide+9Ab7//z/wqcPPmQYEgbY7Xbcvr2iWywI0TYgupKKHkN/cspisURkYLfdE/pOwem2vw6fXUphmpqbgfc4Y9r81rgYsQoSH8boETZrqm5VS9e2XugzvFPAvpRKSYlpGpuSUmd2ESUGplwZx8R2N7CbBiUZWqSBPcT5NHC7VqFSqQKlCgcxprWWGMORGK2NXXXeHgkCxUSfhfistUeVt66zCuCmKTFOuamddfXX9cu3GAqdj866435oNBZGoNZMKUVp4AYcHxTKSiU3uqQRo9FHYjQo0dHUrVZjRWotIL4B3Ep+WtfWVnMdn3IATA/EssG02BWLEYeU3MhFVc56p6QCuSA1t8XcXcfqGB0XOavbBe29vff0XeBi85TN5VNun59z76WXCQLDdkfF0p+d8vDhY/b7gVKFYLxGA1QhG0vxDai3SpTvxoma1XbfucDJ6W1+82//fZ67/yK3bt8lLBZcvfcOp6cnLM/uEG6/yAt/+h3ef+stpt3AcrFUELzFcRzWHRFpERFNqd7W8WNcTTuPO+exxl0fR6kMwwAWhmEgpaT7yhhdx6JgsrpIQDuGFsZpT5oyseuIMarDhxS898fYBGPU6cQ2RbRU1aX74NsTcnudxqIYa6i5ME4TFXUnyMXjxFGmxLjbMew2TeWuH5CopFq52I98uhl4sNlhTSSIo8cxSWKy6oZizQ1MnENAiILjRYTSiC2R2pISDC4EVn2HSGWqpamiTSNz9XrClELNBclCjAuWJydUgWkqPHpyyevnp3zxped47ZWX+a9/53f4m7/9t7l36xbm8WPsP/mH1FKops1+ZyA/e3V0fQsGhwF/vBkBeebRtmI9+5dnqQRds+RAbDb3BkAV0QeC5DAJ5prrF9Tcz/zsuZbrt5j7mbmfmfuZuZ+Z+5m5n5n7mbmfmfsZ/nL1M/NNT3PNNddcc80111xzzTXXXDcqVE8qla0ktpLZ75/y2qrjq+d3+K1XX2JlvtEiFjQ24hu//A0WiwVjSrz55pu88cp9VssFYhzPPXeHkz5ydXnFOCasD0y1sFqvOD1Zc/f8jJ/+5Ce8+dO3+O6P3qPkxC+9+kW2jy94/eWX+NKXAhefPmb7+Ambp0+wLmBtYblY0/cLFtGjoQnSlE1GnYqPSrib38wcVZPXKA4Y6zAlk+qz+8Hc+C03/2qtguWiiqNqFAiWWjEVeutZdx1nqwWniwV9t2o271CdJWwTXS8kY5h2Ox4+eYpFCM6xXK1w3uK8OypBtUVW9VYtGTnYVh+T4FW1l1OhpMz5rRO6qDbm2+0Ob52q5VIGA13XVGHWgvOEEHDOUWtlGCbSlMhJIxDqwW5fgBZjwY3tyVkwpuKdqrOmacQ1wCvlwjTl69eDAjvWUauw2215680fc3brFLteMUnB7Cf6Wrl1fotf/fVf5e0PP+bji0uGKYF37KeRVCtFVHW9H0eMdVjnqWVH5z3JRxIj293I2fqUX/7mr3D/pRfIeeKF11/ni1//Go8fPOCTjz7ij//kO+yGkVoLRYSAvx47FHywDaQzeOtwYjFGrbGNGKaSmjLbs1z19H2n4KeRto89JWemUig1M04DUBEf1BYdtQp3TQZaq+IvpVRKTqRcsd6xtAswVlXXzuOcwzdFpQEF/HLS4yNKCpR0DdpXUVVhpeK9I3hP10WGXDDWU4sC+CUnkIwzQgw6xscpk1JhwJKcYJ1yUKaB9lIEqqqdFcBtCulSNf6j6FjOSfdVaZb7KSVy1uiFnJU0qVIVkCqFWi3OqfLVu4DrIv16zTJVFl3Pdhx5st+zXEROOk8IGgFjaoVadG4bsA48hlyEYdhjrcUHdRLYDQPeWrx1+KBgcS2VaRh4+YXnef2NL3Hv9l3q06e46KipYMOCxd3neeMrX+Pi4hGPHz9i3Cdef/2r/Npf/+vUkvnun/xhIwgKY0rshj3jOFGzfu+Ly0vSk0q/6IkxEGNQ3K2RBiKVcRyptRK8xzfAv6JRIoe4C8Sq4lSEnLI+Q1Q1qgA4NDk2OEupiVwmRCrOK4m1z5ntOFKMZSqF/TgxjCNjKhgsztbmENBKFAi3XsF6zTPJlFpwzhOsa2SHkj5WhEKipIKNXgHiKqSUiDHivaeUomtNFYxAcI4QAoghlwpWt9+I1QMK7DY7Vj6wjD3e+RYfUilVXQycc1Bq26XXkTzl4PbQiNiK6FzygeAqwWeCJrzQBceiU8LDHPkcQxcCZNHokFqpaFxSLVUjK6y6ZwhKLqaSmdIEBrxXx45aQWqLBjJNnewszqhTRkqFXCvFVqxvDiDWYMXinVHXBdMOiGR+8MMfsN2PdIsTTk/PsCnjSsH5jt/87b9LKokfff+7vPPOT+kXEef0vLEbRna7QV1HnCdVw34YubNc8corr/Jrv/V3Of/Sr2CnAVMS1MJLL7/AOOrc9dsn3HnuPnfv3GXa7xl2I67rkFx0DDaCQEwj0gXGNDYlvEYc6d62x7/pOFOCKsaAsYb9MLAbRrCe0PUYJ1TRMSa2kaLNCcA5SwieaSpcPL1kuVq2mwAa2FwVcLbuoIoGyUUjRrzTbWmq+4P7Qi0ZCtRSiK69l9GBst3ukGHADCMmqcuCGJ3OFdiNhe2Q2Q2q6jbeYL2qzqcyYaTl8hwIKw6+GxqZsgye4B3BOR3XVdcB24jE7TiwHwamlNv8MM2BRF0pDvNL3VAcP3n3Pa6uNjy9uOJ8Gflf/6/+53zz618GY/mD736Px7uRr33pHn/zN3+Ni+//CTz9iKlmxIZ22fQ5N1HcrM/D7s3Nxz77evnZ5x6e5zzWgKVgSlLiuJEFc83159Xcz/yimvsZmPuZuZ+Z+5m5n5n7mbmfmfuZuZ/5nPo3uJ+Zb3qaa6655pprrrnmmmuuuea6UZucEGtINTMNO14Mjt/+0qt84/4dXl72mFoQaxEsxUCMkcViQSqZR598TL56wtdfeZFbt++wWHREC+7V+wooWcdUVUkYgudkveLVu7/KS/fu8Pa7H/Duu++xWCogmkplyoWT0zWvvf4KyTnOz29TZeLyas84JNJUiX1odtKCWIsR4WBPf7RNb7+MVZWbAmcNTLMGU01rTJus5/Aac6N9bSBRmRK1t+AbcCaq0LbN2nyfC5fDxKPtQLrc4p2CtSIKrD7d7thNmTErqLZcLqFWbAPebyrFDiprVTsq8Gmt56Aeis4iFZIYimS88xjjwWiMgTkozuB6X6AvP4DhB6WxKhzr0fY8GFXBHhWMItRSVFndlIhe5Ljb5OBPfezwD0CHafvdEEwgpYxzjvXJii997aucnpxSi3BxuWlchGV5csb5K6/x0msv8t63n3Kx2dEtFyxi0RgKY3A+sJ8yqUiz0zZ45wnB0/c9nJ5y++5d+vUK6wN12HP16BHOGO4+/wJ3XnuDh08vefPNn7DfbFgslkQf8T7gnCr7gnfXNttewRmabXitFTHgQiD2PbFfAFxHSzglQ2qupFwoosp462wjsOSoILOmqSul0gSXlKo2/YLFOqfW9If97pwC2wfVbLNNp0hTzqlqFXQbcinkrCQRQbdBDBSUYBhTUYvzcv35cFBtGmo1qphHwWpHU9six0PuGihqmmrfVH3v2qR+uRziAmqLFVDALaXEOE2UXBHaY41Xsk5V0d53+K7Hene0kh9rZTNNDLmwXnQNuBJFcxsZaEqLDrCGEFxTZRdKBdMbbFPMGsBkBWxr1e/whde/yOr8NnaxoKaJx48esrm8YnXrDi/cvkuIC9IkiDjOb9/ib/39f49VH3jw4ftM04A7PQcRpM2nq82Gy92W3TA2cLkwjKOqHQ30NupsEWlOBbmpn/U4HEB0QVocjejEMzp/NY7msLapOpp6iFXQfaPqaaEaVTPvp8R2n9iNEwWDmKbCLOpmoGpNo3PbghVDEUi1EMW3eIcD+F5URWxUkZ7SiHcO5yzUSEqTjoe2f01T4taqxFAMUaM+jkuUgrQxGkzwGGNVgV2FlIXdMLHZD3r+WY+EIEclZimZUtT1AHStq7VQSlPzN6LAtMl9Hc1g8N7hvcNiCE7V3FbAedfGsbojHE4IOtfQc45zSmqF0JTcQsqZaZrY7XcYa+i6gHeHfd0Inpw5gOSuKXdFJnKLTnGH+CEOlLhta3ol58qii7zy6mu8+vrr3Lpzzu5qi5TCsN8xbvfc+8JrnJ3fZrFcsd8PLFc9MQSMMUxTZpqOUlfGXLi83PHC2QlnJ2ecnt6ibq+wwTFOA48//gCpmZPz2/RxgTWV177xLbrg+ekPv89/+/u/z34YiY18phGq9qjUrY00b6uMoSnQNaajlEqVQk5Zb0YohdBFppRJRQkZHyLOa3yOqtwNpTkRqGo2Yq0C6qkUtvuB2AV8CFjrGpmqpE5t+1eMaa4KhiJFl3pRsrfU63HknSMEg3GqzPbWU8RhnKXvI68vb2Np6mTjwGhs06PLLe8/uuSqPOIyZaqko8DY1kb7WyUVDufNA+FXRJXq1lY8SjCo0j+z241s9gOplGeg9sN5qx7OWcYczz3bzRZP5Ssv3uN/+h//B/ytv/O3ISe+/53vsMuZb3/v+9g0st495Usx6E0LqWBE2s0J7eg9cxfG4SLr+OBxQ8zxueb678+yBp+pRtQbJTWWMXKr67jTd5zEHmNVHf5ZzfVcc3225n7m2X7mWHM/M/czcz8z9zNzPzP3M3M/M/czcz/zl7KfmW96mmuuueaaa6655pprrrnmulGDsVgK0zgwPHrE+Z0VX7lzxpefOyfmxFgNxgUwjtIAJWm21bUU1p3jtedvc+fOHfb7Pc5U7tw5Z7FYUgVyTVxdXVFKZuWF2/ef52Sx4s6tc7w13L9/n1t3brNYL5lq4dWXX+Rv/Mav88UvfYlb6zWpDrz97ge8/8EDPn7wmFr9EWw1gDT7brV3flbubIyCPmAQq0ikseYIxt0kBg7//GxbW3JpNu76LIuocscARtjlxOPtwEcXWy6cxZlBM93bZ9X2+Qd76QMJQK0NDGwgbwP6nLUKHNRm3d8AotrUUc5Uqqlg1CrfYEEOgMf1dxdEox/a16wNHK0izQ5eyLWSc6GUTLUOhd8VeDxsTxXB1QrW3VCymSNRoEJoHQ+H2ATTSBSHYxxHui5yfvucV974MlEqF0+e8NGHHyMGht2Ok/M9/d3nqd6TqjDlgisKewtyJAnGdFAdt+Pc1Hd913G6PuH5V16mWywUjCyFyydPWCwWrG6ds7j/IienZwo+Ft233odnSALnFRBph0yFcKWBSyJgLT5GQuzwPiCHMJJGvBRR0CtlBftoQJQCvrWBvQ188r4pgiu1KjBfqh4pY2wDNRVQc7aphu01+IZIA3F0LhyA2wMIW9uAUEGfRayloirlMRdSVvWcAtjXwLNzDlcraSocIXXrsPKsnbs1jtqOzSGqRKo00qERFSXp92j7SBoplXKiVrBGjvsDDNaqKjqEDhe7tv8ULE+1spsmxpKp7fvqMTrAWAab0BHcoiGssRRptvq1UuohLkbXBlX+C94HXnzxZbrlCuM95MTjR58wbHfYrgMDXexZrU5BLC+89Apv/NI3efDOm+z3W2pJ7TvWo1p2GAa2uz1jShpjYBTgBPAhU4PnmOkiIIeoDmPIuBYz0AzipSnAG6NzWI8O8/EmKWiUyiGXzJQSU9JjIKUwjkmV0FMmVxrY3cYSFmtaTE1bDQ8kwiGCpA07xMj1mmUKxngOKnlnLeK9Kvfbdnvv1a7e6D4C8E4V9KadUw5rpPOObFQVfphXWYR9yuynif0wst/uKf1hf0EtSWNz2nh3TTmrx7yQi+4bZy3OmDaOa3u+EmAOdR5ABKkFEUstUFKiohECB7LVWIP1ShC4w3cTXVtzvt7vxtJ+QvO1OKwF6lBw+P6HCApT5UgG3DwZHeZcbeeN7mzNK198g5df+wLL1YqP33uPkiYQg/ePyMFxdXnFNE3tvGEaIQ0pHwiVBkhXYRiTRvoUVdz7Ukh14unjT3nzh9/nzr3nWN++g3GWYbfh5OwO/rUvsLu6Iv/e7zPlrLEth3NtFZrFB9Xc1NVKi2Y4nD8O55hKTomSCzVnsEadFEqhVoN1HuN0zkpuY7MRfKp+1igJ09xFUsq44Altv5Z2kwCCRl+EG3cDtPXlQJ5z+Glkm/ee4AXj2onhoMS3ls5Hzk+XOJnatUaLjRIIBoYxsQyBbUpYo9cNztjr64NGuB0wdkEjnXIRRDSmqVbaeVUJt2lMjGPS64ojmdRIMASpuh63HaLzolReeu42v/nLX+E/+Pv/Nl945SXeffsdPv30Uy43l+xL5aOzNQ/v3+bLTeVvTFt3DuPw2cuLwyL6LEHw7IN8/p0XhmMGxmfIhcPifNL33D895fXBcbpcUyRTpRzJm7nm+nk19zP63M/OPJj7mbmfmfuZuZ+Z+5m5n5n7mbmfYe5n+Ez9Jehn5pue5pprrrnmmmuuueaaa665bpQsVsjmCdPDhzz+7o9wv/oVQk5YyezSwIDFNhBJsLhcGFIFH7n/0kt865tf5/l7zyG18sFb79MvHPfunLLoPTkVYrV8evGEzWZDPTvj+fM7fP2LX+Dll14hdpFv/dqv8tydWwTvuLy85G/+5m/yt//238WFQJCKmJE//tPv8S9+74/4P/5n/w8ux4ng1SJf20s5gjeHpvmg4FE1Hgo20nLWD6AMNPt8rgGZz91BcgTCpVZcMDjTAE4LF2Pi/YsNyQbCfqTzkWgcGuxQeeHeXc5OViz7nv1+wAen6kNjmKaJYT80FV+ilkQI8dhLhxCwxjdbfQVxBFVgOWtwTu2aa1HEz2KoCq8hcCRPqqKQgAK7pZEDqVSGcWKaJmIDnw1W4yZKotbSFI5qRb6IPTH2DcSG0np204AfH/yRkKi1UqSQ8sRZd8rLL73M81/4Ck/e+RGPHn3E977/xzgfWS1OsD4yiuX9x5eMxRAXS4xvUQ3WYJ3BeccwJXbDyDJ6QCh5IqeJ1WrNl7/8Fb7yq7+CyYU6TVhruLq6ZLVeEWOglpHtbkuVelQcuxAIIeK8BSN4f1CXN5CrquqySiGVjPORvl/S90vAqUrU6jHJpR4JgmnKDPuR0Hd4VxXELpW+t0cwdxEixYmqhIsC2KoULNSa2Q8D69US2xnwXpXmIeAakHwYI87qe+ba4jLkZ4ezMQbrHJXMWAr7NDGkTKlCzpUpJVIpdCHiAjiEPA7UDIJvoFFRQqEpTWOwIAcrdYcPMI0jVQq0uIpxGo8AaGmESM75GMdhrcNZ1V6DxdtADB1d1+NiJJVEyhO1FKZS2aeJfZ5ItZBypesCxmlcR8qCdRq3UdF97oOnVMM0FaY0YW2kNIDbtnFuMaxWa55/6WVi6Jqat/LJxx9wtl4TPRgKZ+tTfunr36TrF7zxtV/Crs/54KOP+eijDxWULomaM7UoqViKxpiItTgfEWuZ0kSRSq4a5SJt7dLIF8FmBU5zsTgXjuuUlIohN6C9xcFkSwjXyvGD8leMoWIZ9js2V1fknOm7iBRhP0zs9tPRYaDIQVEPfegVjLVWYwlEf6ocomAy5cieKZlUi5Al03c90YemVAbnHNY5jc8pBRNjU8PqGuy8qv2PYDHPkh21FAWYqyq7kwj7UpQoGEcunlwQlwu8V+LMSKOz2uAv9hqArVXHN1iiD81doCI1U4v+eGuJ3mGNUHNzXyhC9RaKw4mjDz3eWrL3uCCErifEjuCjEl9FibdDJIiSWzBNCWvB2063pWRE9DxiRbAcogHQ8WvAUJvjwDWgXmoh50SWwvrkjNe+9k1eeOEFhsef8sG7P6XkqdHmnj/6w9/n4aOHbDaX9F2PFCG1dWYck+7fWhoY7ig4Hj254IMPP+T2e+/xpX/ry1y8+wPe/sF3+Jf/7L/i3/sP/2Poesaa+fCtP+PuvefZbweuhpFhTHqsUJLEIeSUVGV/dGSoer41RknvA4HTnBKMbdFHteKMJdfMlCemKek5z5i2BtkWZXQA1GlzbSJlHZv9csl2u1USoVQISloeyNRaacp03Z5alGCQUsilICL44A7DHOs9eGlkY2ba7MllomtE71WwmDrp/EXPVVYKV9stm3HLkCaCCGvrOQ2Rq2lij7oVtKsVddS4QfLnYkipUmum1PHoDoI1ROdxRokpsXp9Ug9RIaZFRzm9kaIg7C83nK1W/J3/3m/wv/xP/0Ne+/IrsL0kPb1gN2Q++fh93vjq13nu7h1efuE17He/e02gWdHoikYGHxnW40XT8QrsGZ7gmac9U+bG7/rsiw47vBSePzvjl15eUu4anO/Yp5GxTKSSft4bzzUXMPcz+kTmfmbuZ+Z+Zu5n5n5m7mfmfmbuZ+Z+5q9IPzPf9DTXXHPNNddcc80111xzzXWjnq+JYbuh7rZEk3h48ZBNShB77qxWPL3aHpVvGFgGjy2FMk6YWvn3/91/n5P1mu3mihACi1XHveee5/TkFiEs8NayWp6y22y5f+8+r3zlqyQRPnjwADGGYTOwi3v6RYftegW4px0lKSjvo+f1F1/h8qt7Tk/+GQ8/+RTnHaHZNhua0MYcxEyfbWZbtZ72YAmOsT/7nM88X4AWS48DclVVLU4JE6rhLPa8cPsuX3j5JW49d4dF7OliJMagiQJZwYWcM9Z5bNsGa6CPDqpjSpWUFSioKSuAkjUOooudAiRAyVkBLilqu6/uyYhRgIb2/qqaVSWlMWCcBeNB9X9Yq3bWwzCwvbpiXPaceI94h6rX1CZ9HCq73RXjlCgFYui5fXbGoosEZ8lSsDZiRMH1Kho5AKoe82JYLlZMU+HNN3/Cl378p5y/9CK//tLf41d+67cwtYDvePun7/FP/uH/izd//Dbd6RobPUUK+1LJArVZr6ecmNLEMHp2+z1PN9sGkG/50Q9/zPvvf0yInhdefIG//lt/g9OzW7z/3vtc/un3ePz4gu9+50+x1nFycoYLHSo0rDgxBG8JwXOUmIsC+FMqlKKxHMEHBbSopJLV2l9U1SneY0xFZGQqE0/3EXpHFyLeOCggNTeCywKFXAvGSLPhtwTjMSaRJDMMEzkVVqtCXUK39EoBSUUEHF4t661FXCFPGd/ARhEYhpEQPcYZJUGAlCdSFlLWga3K9gPYr2MLBOsgBMvl1Y6cAyJNIRg8go7lYRwxxmOtAym4GOiiV9CuFqy1hBhJU2K/35NSYrFYELwH6XDW0MVISolhP4DxWONVzSeVMkwUYxkzVGsIzjGmyn7MDFMimsjoBC9tKtfSAK0ComREKbqPU81M24I1kUWn38OicSgHtbZOyBXVwLC9ZHN5wemqw9mKkcy9L36ZO1/+GsZFMIGf/uE/580ffIcnn3xE7y1THsk1I1S8F+IysqBgp6TEVLA4GzQyoCp55pvbQCkVawxJKpOppJoxztP5jmA1hsYe1qQKQiaUisE3MF0XwFySkjRieProKWkYMAjeGVKFMQtTFsaUKVSGlNhNCTEeMam5J8hBANreV+i8p9R8XDeNMYhzGG9Ure8NnqBzQdR63xigqZ8BjFiCVScCaywi5YgRBts4L6lIESRXfB+QXEl5AhL7yXC5FWytLOMCpoFxqlQqzup3lFKQUrDG0PfdMYIBr8PiAExjKvuUGJISpRaIIRCcKkKnNEIFKVAdGOMboaYuEl3X4b1DpDLliVQ1BiKlqYHxheWyI3iL95ZSMgrZWrBKrtQyYbF443Am6DmsVKRkxBmsVdLFiqGmhDUOZ5TQ+eTBx/z0T/4Am3+FF770Ff77/+n/DKkZCFSJ/ME/+r/y7j99l4ePHtJ3gZQjtghDyjy5GtiMqvz2VlXk2RhSrXzy4GP++T/5L3nrnbd47523CMHz9/5H/2N+6W/+O1x88GN++sNv87u/80/YDRO7qTCMmf20Z71YaCRJ1liE4iwyZbxXtwwH6jAhRc8P5hAZoEROSRnv1HUi+sh2vyGlylTqMU5CFccVazNicosrUaLaWMHYqr+N4L2nZGFCj5Vr7g8ZBdqR5mxC01RbPZcb2nlUVOVvMUhKbMek0SRFYyv208ACwVnDEzNRUz06WISgavpHlwNPLwfGlHEInbMsfGDL1OIeDGIP1IVp2wLttgaMsQQbaQkbN+D0AwtsjkSYPtjU9C1iomQlZe/cu8d/9O/+Pb54/5xvf+c7/Bf/+f+d/+H/4H/CVIRu4fnVr73Ga2+8zsv37+GC4eHFY+5WPd81MTlGlABxKpdutyDUo8D5mQusz/7pxmY3GvDGg0oWSFPRmwoYS8YxSWUUx6rricET7ZIQ/pxrtrn+ytfcz/ycmvuZuZ+Z+5m5n5n7mbmfmfuZuZ+Z+5m/lP3MfNPTXHPNNddcc80111xzzTXXjUofv4cZBxbR8fwLzzGME+9+9Cnnp2teuntOrtdNrKVg00CZJra7HRdPnvD6yy8BCqheXl2wWD6H9x4XPdUasjEMObHPI5MkSk2qpHSO4AMUwVbwWKx3xOiv1Z1isV1PvdoxTZkxp6ZsVpWUNfWoNIWjWLSpyeTaIt1c96vmxnPlM3+7rvaoQZVOpoHersM6BWFzUUC1845177m1jNzuPSE6BZw9BG/Yl8qQJjb7PVMqkCsYVXEuuwAYnPWIMwqyV1WLjeOEVCEXwXmncRIYnLGIc40sEIL1eOcAFNCuB7t+3WbdJ6qYRBQ0q02dWauw3Q9sh5GT5QpvHVVqU+iqpf8hKqBg2U0TYb9DpLJedKptEjBYrDPUnFWZKhptMI4JGzsKjseXe/7Zv/hXvPLGF7l75w7nJ2u6aMimMEwTtuvwMSroDYhY9imRS8VgiN5RgM1uj62FzW7HmDU6oYrAfuDpxRVVKlPKfPnrX+f2q1/m3fc+5K2fvMV7H3zc1OIO08DZnCuYDGgkgGKgzbY9HyzY9cc6VXbWWkk5gxkxzrZYEChtZ4ipZBG2447F1OOcxXr9Tqq8048USTfUpwWRgreqmrfGkQuMubAfJ6xxdC5gTFA1KLaB+yBSkKrfKzV1XymqDVaZs6cay27KbIY9KXtygZSFsQipKvmVsgBFAXdrWCxW7IbMNGamtCOEQDCmgdQGY50qa2tR4gIFWjGVKjoWD1EkxlhijMTYHWMxpFbGKakNfBVs8FRnqcZQUDVwdZ5i9G8WSFmV57VCroYxC1mMAp1TafEOBmO9bgdF55QIYyq4IVOqoeRKjHpch5SYtlt+9Gc/4lfuvUxwjoeffMLl5SUxOIzrsHbJvfsvYUJkv7/i4YMHfPtf/Uu2T5/gjFq8p5xVidms5CuCt55iUUWfGEIb2zTQ0lh1MxBjGKcJ1+JbRsmM057eq9NCFwMFjzMWbyzBBYx1qmCulSEVxlTaWCjkqbLdK0HgrGWfCkkqQy2MpTKlirGGUnWujFNGSlFQt40/ZxR0BQgePE7Hai3UBmyKCEUMuRQ1pWhxBtYILnhqI9CMgeAdwbmjkr9UBWoPfG4uVQlOayk0gLYBiSJCysJgCzuX2E4jXhIYVW/6YMnVUHIiTwnJhWUVYgzY4CjUtn62td0oSqxKXTnCm0XAVIEKLjic14iMVIRxHJt1v6GPETGowl0yRWwDkVURvx8TPlqC84QuEgka+9M+p1qHNeoyMOVCnoYWxUE7LupEcjhxOWOIzlGsnoVzTXz3T/+ET5884vWPP+L+/RcI3oHxjBkePXlyHQPSfkqp5CSMCYajw4ayQUPO2NCDES6fPuaD3/1nvPKFN3j9K1/ji9/8a3z00+/xk+/9Ee+/8xNSGrm4umDb5pILkYqeKxCNiTHWYIoSGp23jchq0Q+oAtyixGjf9YxppJZClkJwGqdSqpArZCnqCIASmtLIq3qIgxBVAzsDYsFbUQJQVPx9cAzBWsTouTY4VfsbQIyeV+QIzx8uDFSRPo4DuaZGrlamNJBFWAXHOgbu3VozjY3EceogUSdHzpar0RDdniITNjp8FyhtDIlOl8MCeSQCDm4JICqYbxPk+hqlOSAg7Q0ONz5oxIlIoRTX3BSEk5MTXnrxPmfrjvHyIVkCP333Iz55+pg33/op07jHYNhst7zz/nvc2zyF3us1Sa7HzzYHxuCZK6dDmWf+LnK4BkPn2uEmjmeu1Q6E9vU1Cu2c5kOgW3iWNtB3EeM7nDN0wTHXXL+o5n5m7mfmfmbuZ+Z+Zu5n5n5m7mfmfuZwYTD3M38V+pn5pqe55pprrrnmmmuuueaaa64bJdtLDIbOe9zZLdLlY97+6BOstTy93LBYLPGu0zYwj4QnT8A4pAq22TMLHJv26CNd1xM6BYcNFhs8xlmqqUcwPOfCfj9grMHFiI+RLEUBWBqOA5icGdPEmCZyVVWotGbVGkORA9J03Yx+Xv2sWFqeee7nvkwUoDkACmp9jyrbmk26t4bOWxbBsgqG4A3OCc5WovOMUpmmgcvNhmFKSNJm2jpLXS8V3BHR/WkdmUIWUeVtqWAsXlTN2fkIGIwYLLWpt6wSB0AtmZSzQnjOYaw/AhIGteU3gDRw2hjYDiOXuz2rxcA6hONxLLlQStEYCmlqq1rZjyPOGEJwOH+I5LgGFqs0UqHZosfQYQTSlHnzp++wHRJ379zh7q3bLJaBSSqfPH7KdsqExUIJEANIJaXcCA8lCbCWKRd2w8huP5CNVwt3EXCGcRxIw8CjR4948PEDvvDCq4xT5uLpFU+ePOHs9u0jgVRKRSgYKxQLpVgqvkUtmEZUcATZjFFioYogpYDJBBuux4boGBOEIpUxJXLJav8vGr9RTMNMaiWnERcc1jWwpOpnWKPhCM458pQwKePMxD5OWAedCRhrqRhEjJI5uZJrZZgSKWscgQ8RsY4ihilX9kVjAGrV6IpclSiaSmUslTEpiGmdwTmNUvAhshsy+/2AC56T9UpBOmngNodxIZQpHedlKYUp5waaWXwIOKNqw0OkQMqFaRybUlXHq1hLaeBSbVkjtRqqriIKDhY5goOpKBhfRJAC0tYCJRGdOjoYASkMKYMZGoniWBhDrYYxZfbDyA//7M9YP/cKXQg8+OlbbC63WGNJSdheTlxd7XAusLm65IN33+Kdt35K13miV9VmPs4VjVsZpqTbJwZQFa2xTgFLVPGZK7p9wJQL1goVYayZ7X5gsoU+FKoI2QhRHJ04ggvkrErTXArDVBimBFWVweOQGFLCO0e1hpIKGT3WU9XjbaDNc51n1AymRXtYC8gR5FNrf4/kRCkFqeZ4Dqi6mNPF0CaArh/GGlUjNwLJHJhaI0jVyJra1vlaK9PBOQIlCcyN46xxK8KUK0PKbMYBl8BYcM6wMJFiLCkVpkmJAnygWkt0TreHSgFsFSVT2jnBGdPU/NK+W8FSCW0uYiDlQslZHTKcug1UhIrGmqRaKLWo8rdW9lPCJ4eLjg6IISIlIY3ALW3f5lIZhont1R5nPTEGur6t8Qcg1tAAXyWj9DtXHnzyEVebDZdPn/LyK68RfaSIYT8m3nn3HcZxxNqmKKY2VXglVyHXG+QxSqJhLVhIaeTTjx/y2htfpusW7HYDf/btP+Dtn/yQiyePVA37DMNuyLXFV4hRYkl0Hpgq5NJiQNp5BaufJ9JIIqtrWC0Va9BzTinkIuSqpJRzjWgQ9LlNgF8rlEYiH7kfwDaipdZKSgXv2n4wVs/nbfsrep5VwvzgcgGHuAoRYRpHRDLjVBmnwpTHFk/h6XzgbLVgcLreWGtBMtUapmxY7yvRe3YlHcnP0lwMaltH5ZnLkBu3LRi5uYvbdt28NrmOgOH4uO7jmnWt7WOg7ztiDCxXCxb2FhcXA9/90U94/5OP+PHb7zKmwm6YePDoMfXJU9YpYRaxCcjrs5t1ffF1vZ1Hku3IeDy7sZ/lE25+hQO3wIEIMSBCFzzrheV27On7gAsW59s1wFxz/YKa+5n2+OfunLmfmfuZuZ+Z+5m5n5n7mbmfmfuZuZ/52X4G9BaszzQu/4b0M/NNT3PNNddcc80111xzzTXXXDeqi4FaVfEYjOCW5/zpmx/wvTffYbXwvPryy5ysz3ACw9UTht2G27fv8Pqrr/Jbv/FrdP0KZyx9t+a5289z7/w5zs7usDg9JVfw1nL/uedZLXoWfUc8O2fz5IonTy758Ztv8nf+1m/hb9/C9h3TBx/w6eUFYkyzV9b2cbMdmdKEd07BuJwpTpVkKskzR4DyZpmDqsgANPvkP2d/HEDvAxCiVtSaCZFKwld/bIitUatrTyXaysJDDEbV1NbQdR0XV3t22z2PHj9mO054G478RCkVbw3OgDeW1WIJ3iLWUK2hZlFr+Gpw4nDeY0Rw4jjo7EpTpCHCtN8x5YL3gdh1xG5BoYJAsELfB6w7qLIEFwKX+z0Pnj6lWMNrqyWmZCiVmjM1JaacSeWgkDJMU2LblGYnqyVFwDWQwDkDJSM1k9PElCZk2BNCh489aaq8/ebb/OTP3gJjCTGwT0lBajH4xVqV2VKATM4Fg8E7JWJi8BirxETJhYIw1KyA9sLTrXsMlWG/5wff+z4nz90jT4muW3BycoL3nlpU2ZxLIXYdrl4rRH0OeOeOoL80JSiiFuPWenJR9Zlxnh6wxxGjCvYqhikJ41QQi6qf08Rms1X18pRIw8i423F+fs6i7wnBY8QgRgHE3IDEWipJlPTxw0A1lYwokO40ymAqqizf7fdcXl5irKqQTxcrKpZhLAxp4HLMGmdShSknclUl4pgTu/3AdpxYitqPO2eIncGFQDGWzTjx+P0PeOmFF9Ve3RpMmXCxB2NUYTzsudpsVG3qLDlPLEwkBN2nIpVhGJhSYkwTF5sraql45+m6jmIdxTrAQhbSmLDRkVKmFrBWiQZDBck4C4g6B1ArwTqssUfwzdpADI5SHeMk7PcDwzjRhcDU92Q8OStwKmL5oz/5Lu+88yHBe0pKLIMhZ+GTT57w+PK7uNgBlnHYc/nkMfdun3GnO8V6p5vciJExZ4aU2U2X1Oqw1tPFQJoKtinsnVUF+ZgTUgsYoUhBkqrlp1pJqZJlJOVCNQZfJjofSN5Th8K+A+sVnhtTZtgN1FQoKTMMg84jOIJ1YipjrgylsksZxGCqqAK9KvjpQVXoIZClMOQJpNDFnhAjJCW7Uqo4H6lV1+JcCl3XNSC3klNGQEFeqThbGHNW4aOtunaJbYRiZUqJYUz4KHhj1VlhSkxJVfCCZ8oK9FtbeLzZ6jpoheidEpQehqmynyo1CW4q4AqYovNKElkgCaQ04bsOiwKPaSykqTKlkWkaWfaeEA1WlMCtjchyTsnaIgUxFTGqbt/vt0zTqKQgovEBOyEhVGs5DxHrHM4Wai6UPJCqZRgTm82WR4+eALBcrrh1fs46BlUKl0IqWc9joi4MLhgWfccwJK6ePubjD9/ne9/5Y3KuDHslszBwdrJiuYh0wWNraSr6rNte1Q1CADEO64OuOwjiLfdevM9uc8n3//D3+KPf/a/5+MO3CTEQgscFx3JxirWFMWV206hK9t5odIkFS8WIkpFTykpwWNt+vBIWVYnaaRqZpuGonN/XyjBqDE/KmZILPgRgItfMkCbEOASrpEwqSK0gqnE3qAq/lERKiavNlvV6TQxOryekkLLGgkwpc7XdkkshBE/sAiEEssnkpDFO0zRgKOyHzDBkStG4pmQdRpSgD1avLawxVFRVH0IhBIt3lpJhN0xc+j0q1m7qaFFiReeoUq6GgxPNzdsWDv/WuawOEHp9o6R3bWS2QaoSMovlgjvnZ0TvePz0KV968R6/9NU3GMZv87/53/2fePujj8i24LoVHz3d8MnDK/qrDb++6DHWolko5YjhSyM2lIy5uX1HpP8z2/zZC6vPu/I6EGE3bvSowrqz3DeR6pYslgtwjfy1c7zdXL+45n7m82ruZ+Z+Zu5n5n5m7mfmfmbuZ+Z+Zu5nfn4/8xesf037mfmmp7nmmmuuueaaa6655pprrhv14x/+WWtKLYJXpZMUcklMaeD773zMsl/S+8DSGX71l7/GD975kO+8+Q7/7Xd+yJ3zM/KU6GPkpRde4MPNuzz4l3/MZhywoWN/ecUbr73Ei8/d5dba8Q//t/97nu5H3v/4Ab/73/wBo7O8dP8eixB4+ulT/uAHf8Z2GCm1Eryj5ky3WFKxXO4Tixix1lJFowBu9plYVf9iFNCuDdy+2dB+trU9EAk3H79uZ5uddpWjCnBMBWNss0EXbLB4A94I3mg/G5zF+0jvI3lMpGmi5kofepyIKvKcoe89l08vqDlj0TiFzbjHWotznpoUWC0+U7tCSiOpqSGlCOv1GqyhjoVp2JOGPf1yRb9Y0i+X+k2Kqg7HaSTGBdZYvFVb+WXoyGni0eNHXF0+Ydl57p6eEp1FnGqq81DIueCcYIxlyhlyJRjPFEZKSc2CfmS1XrFaRKypGCreQh421HGgxBHne5a9xkhMubLd7TSOAMUQxukprutVSesX7PeP1KYeiw0dQ5m4zAMSA/16Red7akmqZBTIxRDjipIz3//e9/n297+nynLnWZ2cUaswjXtyyRqP4QPBg8MS8Ey7THFqHe+A3dWOqWSsc0RBAf5adPtLxftAZywWyDkj1VAK5FzZDIlPHl2yWhe89+yGHaUKu6st037AVxBj6LuOPnZ0sWO32WDasbfeY4uQ00RJScmPEfZdpOsjy34BRcfnlBOffvop05hYLBfE4KEWShKGXWJMmW0WVud3KVmYZMIb6LuO4JTiqaWoIjALJWXGYctUmmLbRTbDFe99/Cnr1Yr1cqlxI/s91ihANuwHtptLJaSCZ71cMErGmB4fFhggl5Ht9orLyys2+0Tsetwi4n0HeIZ9Alsx3tPFTkHdUiklg6mcrJbcPjvjztktOutVXVyUTKpGMF4Bs1yygoZSVJGaRxZhwW4YGEvCYInRsb3aM02JVJRsef+jR3hrWC8WnK9XdE+3ZMlc7Tc8fnqJAboucna6ZhSNJqlpYuktu6IEmio8LVPK7KdBrc2Xp0z7iVrU2cEZBUzTNJHSRMoT/SKowlCMqqkrx2gPAc6WC/Z54GkaeXL5lGXvuXf7Nqu+hykrOTBN7KeR7XZDt+gx1VFRsN5ax+VQ2AyZKSfIBWscIfZ0J6ekjcZplJxAKt4I0oi+nbXU6pgyTJPw9GJD1yspqMpbePLkCQbwzrFeLbi82lCqARMQExnGxH7SCAcQTBZCCFhr2e5HnlxcYJzHhsCUMy+8cJ9+0bFqlvTDsENiABMZcqLzjmAtwRWG6akSQiIa0ZAyUy7sp5FV6uhjYDcOGkVSBcmVYXrKInasFysQx8XV0xZLkKhmReg0miOIqpL7GPFBYziGNIEPzcGi0uWJEC0+WKrocQ+LFZvdlqurJ2wuVpytFgSnqnhrLBeXV2y3A/v9wHq9Zrfdsd8NlPKYeO8u0zSy2W65uLrEOc9ysaILkdhZrNWYDWc8y7hit9uw3w0M00QuhfV6RQheo2+wlFzYTZnLIXGx3at7giio7YzFu8B+mkjDxH6zQ4h8//s/QHJh0QXW6x6LxucMKZOyEHxABK62e8ZpggoShRodyxg1FmM38unDJzhnuHXrjMVigU8FCxpPs9vx6OGnLBa9ko/ONgcBy+V+4nLI7CcF60EdIMZxwjhL8B3OeyUahoPq3ID1zVijUGpGskZV7XcTuUyUWhAsU06MKbHZ75CUWfYLVosl/WpByhNXV1cM48Dpek3X9+okIWC9pdbKQOIy7Xl44cj7sa3bDjEFay2Xu4HNdouUxDRlrvYT3hiqsVTU8YNqWPhAdIahCKlWVNv9bMlnAPYDOXB4TG5cA4mA5MwLz93lN379m+A8q9ghKXN5ecX/+b/4B3z3J28z1srZnVtgHQ8eXyBj4nQcibfuIOYQ7QGF5qpirq+tfpYf+IvdevHZMs2BROXhol/Aey4uH/Hh44F3kuH87IxcszpO/H/2MXP9Faq5n/lF5N3cz8z9zNzPzP3M3M/M/czcz8z9zNzP/GXrZ+abnuaaa6655pprrrnmmmuuuW7UdrvTfxiL4BBjVecqlVILKRWG/RXBWpbB8vYHH/PJw8dcbXf86P2Pid6TUyJ4z53zc1bLnqeXl+ynCeMCaT/y0vN3uXPrjJN+xbd/+EPEaXNfTcfv/t6fEIPFO4evnkeXV4xZm0JnHaZWrLvAOY/3jhjj0RraVHODJDCHKHlVtXJto8zx36Z5ED9bfy5R0MgCOMbOq5VzLQQfiN4RvcU7MNY21RNIKSxi4PbpKViHcxGHUKkUKmPKhH5ByQVqZV+0JXfWE0OHcx2l2WSLNUylUgUcgRAdi7gi2Eg2Cecqy1sdoesx3jNhFeBF7dQrhiKWfrmg63u8cyCF4CNGMuMw8ujRY0wVvLXUnEmTqoeXq0Df93jrGMYRAZwLpFGtr3X/WKYx4/EKqndLfOzUwlw1jeSiSuHaVHpKwFScsWoBHXuysYhRlbBtx8Y7VYWPBR7tR3apELGYWugNLILFhUC3XhLEqqX72HE17QB9vfcBayBG1xSZRq3vvW1W6JaclRCxVhWTfb9g6Q3We0Ls2E2JKlYjHYxjNyYQR/QO7zzOOTCqtN6OmfK4cJYLi75XdaVA8J64WrPul2qh31RtKWeqtTrmG8m0WFlSKaqkcw7jdFyVVBiZkKyRHrVWutDRr05YLhYsFgti31OwiIsUl7HDyDRNUC0Yg/WBlNUa3lhLXPYsVmu8bUEPkslV6BeV1TqxWPZs93sKht2UsAjBgnNWf3xgdXLaRpse792YGcueXcqE4EgVfOw5OXP0a6HrFywWS5bLJSF2TUnb1LkuqPOA9zjv6KLjarfn48cXGIHbixVd73HeYLuIt1ZV/yLYUhimTMBjbCDEBd1J5mq7I6VElUyqFRcjwXgkV6QWnAt4a/AxYkJHberHvltx68wDot/VBqaxsMlC9pYSHHaxohRDrRYfOu6tb3G13wPQh47+vCdNiWlKjNNIFsF4T3AWW7wqT71aypeqc31MWa3xj3EWQhYI/QKxlu1YyXXCFU1zyNVhXcdq7egXPRVDKpU8jOz3mf1QmHLBUAnWUmrlYj/w1kef4ihE5+mjw40ZKYJzga6tq1U0riYEBcunknDS7PWNsN/vsNYQvMc19wXnHT5Eur6jZHN0JMhN+e2rAo+5gutXqrI3hkEKF/sRP2SurvaUXLDG3gBHNQ6lYBS8ruCxOG/xNpC9RgAY5ynVMKZCrmDFqtOFN9RJGBNYEt4JYi2+67FugQmObKy+p3F0wRP7BT5EjHeUKWqsSakYBOsXuNBjfUSspxRhGJOadiDsx4yRgeAMzhqN80hgXWB9ElivT4h9zzgkPd+mQs6CcYHl8pRaK7mAUChAKiPOOQ72+RhPt1hiY49LCesdU4UyFcYsmJrZpsKQBRM7jB0QmaC5WpRc2U+CxzDhNWom9IRO3S+WS49pa1sVYTcMqg4uelzEeJLmwpCTrt2mQsERF0swlakIZbdvhKeuOykXfIg4HylYSrWIscQQlDnOQpkyOWVKSQy7kXE/gbPQeWL0nJ6eUdc0lwNBqmE/DEwlM+bEmPaUq0QtqmrOpYIPqgoX6GJH8YFqHbuc2F8kqmiMBKIRI2IyzjrOVgu6UEk1cb6IrDuPA10njMMYixgF+g0ahSMI1WjESRKdR1ij6nSBs/UZ631hVzI1FXDuZ1xeDtce9oYy+BBTdHjsEAtRRa/dln3HC8/dYXVyxt0YMaXy+MkF7336iBI9DoOzDlssYgQwWOtAKgfVPM1pAlOO10I/TxB9ICie+Vt74LMkx+Gxg+oac4N5sIbtNPFoc8V7VxOb3Y4sGqs03/Q0159Xcz8z9zNzPzP3M3M/M/czcz8z9zNzPzP3M3+V+pn5pqe55pprrrnmmmuuueaaa64blYs2gEJVi2sOhsSijZwYVehJRorhvY8fsNnt2e4HrvajKpBKwRp475OH9DEwpkmbceOoufLJkycs+47ORd7/9BNi7Fh0Pcuw4MOPP2QqE8YYTroTnDVkQLVf4BEkFazLrJdLYnDH7PjPCnJar3v97wMhcPxlfm6T+8z73HjN4R8iB8NmUZAYQFS93UVPFzzOWcwRMNDmuI+R89M1se/w1rOIHTYGJil8/8c/4XI3UHJVMNwWnr9zm/VqRdcvmuW1tIgEVUhuNluG3Z7tMIKZcC5jjMX5jpPbt3AxHNWQVCFYBef208gnT57gg+Hi6or9MCho3vU4I5SQNT6ggBMU8MRhTAVrMc5hrMPGQKmiauYK3nmMsxhrSNZxlQxMmUrGO+hDxFq1iR9y0deKqsCqtWqJbS3WO6wVpjSpGhaoOTXbd42CEOMYiqEAtlZ22y0+ZxYebq17Tm4J69ATrJIGgQ6kqAJLFAi0PmAEasqM08SU9P2HFCjlAMZAFxzeWoL1YBxjLmyHgVRVoVXEYtiz6j2LGLA+ahSCVTBzympnLsYypaIgtoDFEpzHhw4aGVNrIVOp1iuAhCr+i3FkKrkWhjETqsVj8MYQQ4FS2udZxAVs7Kk+krCkcWIqQsoKxl0NAzJMWDwpFaxzDGNiux9xBqoHnzLeWOxR/qYEQt8FTk9P1Uo/Z8ZcMCJkK9h8rdI7qKRp5E/OBVLBTZngfVPbWWzs8SJY7xFryCLklBBjKKIEXMkTxRhyyVhrWPSRzX7gw1y42ux4bn3CetXRLyPLZc8yRnzLjxGBMVdyFkqFikWswzhPLZlpKkgqBBOxwRMsWEoj1QSsZRT0eVKRajFOx7E1qlwep0o2lcEaRl8IBLZTYciFzTARu6XGGtTKfkjEECmiwHYWKLXinMZFhBCPAHkVQxEhiWGqTRmes9rNW93XISgBsJ2E/ZSwItSs8SDGqB29qwYxCqZXCaRSETTapgsOKboNT642/OCt91jEwGrRs+57bo0ZD6p+N0KSCZOhVh3XF3tVYBu5PuYlJ7x3BO/ZpdqUooIrwlAqKSWdb1NiKkUBYq/2+7ZZvYvRbdqlyvTogpoK28st05TbeqogtRIATu3hrUWspVqHtQYxhmp0/0muZGVzMVZwxhGMxRqHWE8qUMeMc5URnRPOeHIqyD4xFVhEo44b1eAbVrovRmNYUmFKlZS3XGwG9lNBcAwpk3fqfuEdeNMiNIzRNcULw5jBGEL0ZGOpzpNNYciJy+3QTm5WyaqUSMqw4kpFKHjnVK0KGNFYFePBWSXgcwFy1fGbM/tSSIKSsO2cpiuNUIowFaPrjfGMGSUYjWc0DlPANHDbGEuuStQY6wndAm8y1RkmYEqVKU+6BpRKMUpG5WnCOUtnPdYqOOsidMslgmWcEmMuJKn0xuqYKUKpFcTgrSf6jhh6xFisCYBDjG9RFkpAS61kqfR9R4hBVdWHCwYRchZ2ubAbh0YACMY5plzI40TJGW8PgQyGYcqQCieLjkXXcf+sI9fAeRe51UW8NdAU87aNYWs8sat0XSR4HadK0rebDNp66QycrVf0FwOuxTrcvECRdjUmIj9zI8MzBMHPXMEIwVtOWiTEGUCpfPr4ik8uN5jo8cbh0Zssjq4yzupJ/RAhc/P653CxJc9+zvH/f/b355Z59gk3LrSkfScEuvWa1W3PqsssvCfXSW8u+ItcvM31V7rmfuZna+5n5n5m7mfmfmbuZ+Z+Zu5n5n5m7mf+8vYz801Pc80111xzzTXXXHPNNddcN8p6z7FRO4hThJZz7hRQ8KE1cIUPPv4EFyLOBW6f9PoCg9qwZ82HX3QrrLGAggpTGrm42lHKluXZuSqoKuzHkVu37lCMtqCuWhyFXtE4ANxx61RVVkrRhrxFQai65kZjXQ8NtXlGrqO0x8/WL1JFW2uPltpIEw0ZwdgKqMJw0XkF15ZLutiDDdgbKtnVsif2gVvNpvzlV1/j7vMvUmzgD779Q/7g298nlcpyteLurVv89r/927zy8kusT9ZMRYGZIpUqQr8+4U++8z3+8A//mD/50Q9Y+gDWcufePV557XVeefkNQnB6PBCcgRgCF1eXbD78gN/5r36HZbCMqXC1nwgxsjy9xcnpGav1mtWixwUP1lHFsN9sefDuW6ThCc4arHcEH9S23QdW57dZnN7C90p8iAt8+tEDHj/4mEcfvMvSGxaLji5Guq6jGo8PAe8jrovYEKHzVOCqZK4++ojtbs+UVAkVQlBluDN47+njkuVCIzCudjt++viCTz54j2l3xcLD8/fu8vK9e9w9O+P85IQQVFmPCAOZapVgGqeJi6dP2e135FoUrAuRxXJNjEHJHlPpY8Abh4iwH0cuNleq7qzCVAGEVRf1ed4z5UIIgVo79mMllcrTy4HLzUiwFlOFGDuiD1xsBlVsW4f3Hh+E0Pdqez0Vyu6KYcyM48SYRoZpwDpzVIqvF0scul9CCMSuJw1bhC21VsZxy9V2UKC8CEUmjHUE3+GdjtGLzY7NZoOzYDqHLQYpCrQ57wnB0kdPFwNxscSGAGLIJVFz5kqEcRw1smQcMSIYa3DesexX9F3fpmCilFFBbqvzMKWB3FT2GIsNkcVqqVEYGFwDhIeUMLVwdrLmk4eP+fjThwy7gbVzLBaBk9MVd+7c4v6tMzof8N5hnSMlBefHKTGMicvhSt0YpCJUVsuO08WaGDR+JBrIJSmhNiYeXlwxjVOLYxDEVBZdRxcDixAJwVGN0ciJXWH/6IqPrraMU+Lhdsuqf0gt0hwajKq8rcN7Rxc1+iFEiNbRxZ6r7Z7NdsM4DqSUGHIitYgOawx3zs/onSM6R/CRbAz7lBjTpOD7fkByAdH5EqNj0fV0ocP7Dh87Vl3HAkHKxOXlwNPtnk8ePuKn77wFPnC6XHK+XvPSvducdIEYfdufliKW7ZjZ7Ecurq7Y7jeUXJEKwQXu3j7XeBHvqKXgQ1AHiFqYxol9SgzDxDRlSi14hNVyyXq1YrnssM42u3nLkIWHnz7i6ZOnbK82FIQudlQKBeG8i6rQ9krMWmMQa9mlzJiSKnfLQTEqUAvr5YIuBKITrCkYFygU0pQYxomBqms7SpxHZ1l1kfWiZ7Vc0nUTxloKMKTMdkrshpHtbmTaDFzu9+zGRMqWR5d7ihR88Cz6nqE3evLQj8A51+KMwFgoD56oUjgV8lRZhIFFF/UcYg2pVtKUjt+pGl3TFChWArKPHTEGuhhIxVBKpeRKyhoHk2shSyVVmJKSTs4q4VixJAIFISE83Q9cXW3IKWlsTB8waPSHt47gHednZ3SLE1ZLiztEkYwT282WzdUFJSUQwRnLmEe6LnDv9h2++rWvs+gCtei1Ajg+/uQRH376kMdXT3l0eUVwQm0uCSKWLvbcvXWCN7DdbplyZhgnrnZ7Pvj4ER8/udLzfK3UnPDB8bUvv8Hrr77MarGgFiF4j7eOWuE7P3qT7/34TT7+9DFlGlmsl1wNI9txwGE4Xy+wWF3ramE/7KgnS879GV+5+wrWGnpjWIghyERcBKzXc75zC6xVEjiJ42x1ycdjQhByqRiUSPDWsvSO2ydrvH3Urk4MBne4kjlesTjrjkzA56mMOVwjtYesA2sq5ESQwsl6yWaz4e0PH/DJ00tsF+m8wxoBU1sAhSqiDzcj6AWPYBtpKRxU1zdg/cO2fM4NGz+7laYRDTeut0wjQYxeXEkVzFT42rd+jRdOnudbq3P8bouUSaN/Pv8yba65jjX3M3M/M/czcz8z9zNzPzP3M3M/M/czcz/zV6mfmW96mmuuueaaa6655pprrrnm+mypzPeo+H1WbyNwaM8M9IvljRfWG68H7x20JtfceE6Mat2spAFIs7WnWf47OWhmqrrV24q1BofFG9eaZW0xbVPAQYuEwDyTCX/4/8DxMz77VcVcEyKfpzq6+VxjBWvBWYuh4Ex7T6MbbY2otbIJOLfGBY0d0Px4y2LhWUpGauZqrPjeE5eBagOpFB5tdgypcFJh3fd0yyXL0xOWJytcKqqWBIxz3LlzG0LgwcUV3/npO5z0kSTCy1UI91/km6sT1qdLojfYpnLvlifsHzzg6Xsf8N98+7v4Cl2ILJcrXn71Nc6ef43nX3mZ+y++wGoZFZyxnuQcb7/zDj/+wz/iwbvvkscB23vunNziZH3C+uwWz925T1qeYVcLiA7jIh8+vOCDzZ63/+wnmDTgY8diteLW2S0W6zXr1Snr0zPOVrfwXWQygae7PR8+eMS7/+r3YRqbYtvxyovPc377Not+iXcRZwrOFLCBrus5XS/Zr9ZcjhObqyt+fPUeTy+vuHt+yv3bZ6wWCzoX1XK879lMjk8eX/Dpw4e8++5bDNMOg6ELkfNbt7l7/3mNJggeY4U8KSi6H0b2+x1PPn3ANI6UUqjOcu/OOWenpyyXC2KMnCyWLBZLYojgAo8uNmyurhiGPbWNMxEFwHKeWIbInfPb3Do7Y7VcYSehSCWXwpgSTy42bLd7hv2eab+hUDAh0PU9d85vs+wXROfxLoHZs5sy+ymxH0e2V48ZLi+pFcDRdZ57d+6wWhb6fsGq76ipsJsU8LwaB3YXTxnHgWlSZ4Ou6zg9PeH87IxbJytWy4Wq/4Bc4MHFlsurK7ZXl6TdFbVWrHOEruOFe/e5cwoheHAtjqTAdjtytd3x9MkTpt0lKSdyrbjQcf/eHc7WK06XC05XK7wxBANLHxhSou8jpfSYWklTZtqPZGMwzhGtRipYo2uLsZ7Hl1uebrY8vrzkcnNJLepAEJznhefukk8dqyUsOsMidpRa2I6Vh5d7Hl88ZdhumaZELhkDPHf7FrdPT5AThzPqCpCrYbOvPL4aGJMwDImPLy5U0e1cW2MKOcMiBk6WS+7fOePk9ARbAslArpnHmx2PLi+52m3Z7QbSNCGS8d6yWixYn54iBrIx9IdVuQpDqjzdjlxttqRxpOSsytAQuX2y4my14GRRODlbsooRax1T6tgNGT84fFO3TrUypMpmP7HfDYSaqbUjhIj1hs245dOLLQ8vdzy+2JCGLbVkMNB1PbbrWRehj4FFcIxjYp8y+0kt3R9dXDAMA1NKSBU657h9esr5VCh1jbFo5ANQqiq+R2OYoqOmkf24x02GPjhO1wuC9TgfMN6SS2YcEpf7kSfbgYcXTyi7iVIL1QiLLvDKvedZdA4fMtZUui6QS2U/Fh5c7LncXJKmkZomshhWXc+dszX3b52xGoRUrxRAFaHieHS55+Jqw8XVBdO0V5W39zjneXAxIFU0FickTlZLalVypBTB2UCVQi4azzFOwxFvNWJYLRacnaxxzlGkMtWiBFBRx4GCMIwjKRdqcybp+47z0xNefO45oo/kmpnyxDBWNtuBKpBKYZhGDEXVyc5hnYdqcTY2QqijXiau9pmL7ZbtODGMA7UUai5Iyty5fYdf/dU7vHz3HutVj9vtKFcbNsMFDy8f8/GnF+ScqFWB3ymNnJ+esDp7judf+QK3Vj25ZlJSQu7B5cDl8BEfPbni08tLojU4Ebw1nCwXWGdZnZ6xXi442Q9UW7i8vGT64AE/efcjfucHP8YbobMGmyeeu/scv/bNb/ArX3mDO3fucrUbKTVhpGLF8uGjR4w/cXy0HTDjyHPOsB8mtmMmBM9pmhiLMBUQY9lstpz3gVXwfO35uzTeiSJCtbld7Kji3jXnDZ8q3goRjadRZkDw3iJS8cYSnCPnonElgjqqfPay7PDvn0MOgLoT0LTcQsU0MtmIZdl33Lp7m6f7kXcePGXaTqxtwBkQY+h7x3a7Y9jukP1AufM8GH+kK1xTT1OhVotUc7weU6LgF6iVD5zAYdOf+ffhJo6KOVxHUpCpcvLqa6xf/Tovnr7A9d0Zv1ByPddc1zX3Mz93t8z9zNzPzP3M3M/M/czcz8z9zNzPzP3MX65+Zr7paa655pprrrnmmmuuueaa65kyn///Ptv7mes//kxbeFDL/Byw3Rxe98ybX1MRpj3DqDCu2Vwb/W3M8aMFVVbeJDAEo1bVoD7+15ukv+WGUvovWEeixIC1cmyKD9bnBoNFVdNHC3yjSmrvfNsMoYpp+8ZCszMvVci5Ira0CAiHd6Lv5TwilVoKOWcFo42loqjEOAzkUjDWEGNQUBTBB98UpxWkoEkQFTGGgCo7jYGu6/BiCN5r/IKzOO+wVlXcxhis81SjESBjTmAs3gdMLdgYiDESu45F37Pse/quw4RItUoZOecVMOs6nBFc1xFjJMTIouvp+wWh7zDBY4KjVoNYg/EKsFArzqiSLThPtJbOW0JQhW5wDrylGksXgiq2jZI4NngWfcdyoT+LGImhw4eIiUFJpxjwMeKDxxVV4Yag+3LRdyz7jhACxlaSc5R6OG6qFnbNml+cYxEjq75nvVzpfokeSQoG2mYPfiCwjuPcGLCo9fxB1RwiXR9xPlBFyLVQRJpdfqbkRMkeUy3OeToX6INGqgTX1KHWgsuItQos+kCNkVIF0P0XYyCGQPDuuL8iUIxhLJnUddQ2l2wpxC6y6HtWiwWLvqeLTa2JYUqF6B0xeFL01OQxRbDO6rGLDt81u39nsc4zjomU1bree0/xQe3TRXA+sIwdq75ntVrSdREH1CpghTB5LOiP1fmE05iQZdexXvTELmg0hoBg2afCkDNxCHgXEVMwGIJXdXHXdcSuI3QB5x1OHD7rMfG+w/kJVytidO4H7wnB0/cRF9SdwdZKDDovilS8c4QYMdm2tQrAYZpLQRcDfdexWq0IvsNgyVk0vqSLhJIISSNCpArW6jH31usYC7oNgiFXweei0QvWI05jOozo8Q5RCTLrHNEHovdYYzXGxTqM0SgRa1Ql6a0hesciela9zlkXIsZpLMmyL6ynyrDP7FKi6GJIDIFF17HoO/ou0HceZxxxTPjBMqWJ4B3F+yNJpmr+yKLTY25tAx8bUX01TOynpnpuq7c1Bu880XtiUJcF4y3eWaqtTBXiVHDWYbwHMRgjhBDou6jHzVucFbx3GAcFRwwTwTnEOQqBWsCFgA+REDuW/YJqdLtL0UibnXeMwTHEiFA17sXaFtth9W/O6doSIrUYbHVYq2pyZ3QeiUBtziOqOhWMM7o2eI+nQm4RMU0RPdaMdw5BdP00tDEb9LsbVV977zGTxXldnC0afSON7BARPWeYpnIVvVHAW6PrRYikqjELNReqyVRjsS2Kw7QoGlX8BwXI2zFSskfPZb76Rt6pUrvWSMmFlDLTMBAPa4b3OGtxzuJE4zOssdf7vdQ2p9q2GtTVIAQ9Z1g93tYaalFF/m63ZbebsFaw5rALVQF/XJuNafPscHPB4QYAVQMH7/FOb3K4vNqqKl2PFMYrGRSCOjLUpiDHOXBOz23WYp3RdRp1nqkI+5z56OFD9ildx0TonQ3tlggl+jHPkgSmzYnjBZXRK5IKjOMEeWC323G12fLJp0+Yhom33/2Ad9//gGFzSezUySMaRymWO3eeY/G8566znJkByoZac7u+0u9qjV4nGGOgVgXuDzdatOsjI6LXOYdJrDuz7a8bddhs7NEtQP9QEStsPvqI3WTZrh8RAG/0uhBneeHL3/oLX8fN9Vex5n7mc77O3M/M/czcz8z9zNzPzP3M3M/M/cx/h37G6vl/7mcOF2D/Wvcz801Pc80111xzzTXXXHPNNddcN8rc+M/PV98cYP5f9CZ/ft18+2N/eyAIDgC8aQq5YwN/TUCYFjFx4BgEbZ7lQCQcmtT2OTdb0+N3u7Gtws/Z9Bucg3e2CXhqIwdQYKRt52FbD0yJsdekAdW0BvlgC2+pgirGpGIxeGfwogCFsZYqQqmZWkojCURJAgNTmqhSsdYq2Bs8DkP0Hu8URBKpSFGb8NoAFhpR0sVIsAoQO+9Ql2nBUFXq1ez8RYRcMjlnXAO6HPVIEvQx0vcdi64jeg/WUkwli9pcB6+ApjMVf3h+jA1IjHRdxAavKvKCkhXOEroIVBxCDAoGBmsI1hC9pQ8a1YAxVKdAlm3D4bBPFn3Hqu9Y9bHZ9kdsCIj3RDF0XSB2ga6L1DxhjaULkb6L+rpFp2pehOQcUnWElFoIMUIt1KoA0CJGThY968WCEAPGQJKKKzfGr1UAShVgB8LAKrjqg37P6OljxHu10E/FMmZV6YXgycXjssfVSvCB3nsWMbLsumZBrsAdzlEESsmkGJEjSWCIwdO3OIMueLw1GOd1XxroJk+OEaQq6VJK2yc96+WCZd/TxXCMOTGS6IKnC54UAjkEqq04a5U8iI2UiBHvFcSmQgqZrn2vGpRQqwa8Ddf2+4ueznuMVErRKIbgHM5Y7JFQtFirY3/ZBU76iItBAUxjyRV2KbOfIjFEoo/Uqgrn4BxdCHSdRpWEoOCqEjeOEJW4mbzH1YxYUZV2I0W6GPBBHRtsMfSdoZsKU5qUKGxg/NFBQZTIOrx20QVWS1X7SxX2MrVjrYBn8o5SHLUIzinxGJ2nC5HYeY18ESVQUil4p4pcbMa6ipWq46oB1D4o4eZbjE61oqpY2xbctl+d0bm2iJ5lF3HB6/4MHjHC0FeGsdKFieR8e6kQvGPRBZYLnUc+WnoXCd5hDWx2O4J35BskgQ+ergss+siqizqvG6CIMfRxT2gkbGnLqbMW7xzRe7qgQKfxFkG/05j0e3vvkSBQDdXo3xZ9oO90/XAOrDXYisYNBE/wDqontxOO974B7jp/g3dt2zO5VPro6RvpU9ucOThsOGMaYdrIOe8pFlytLaZBI2h0/wuCp1ZpkUtKtHlnicFhVJuKUBGrSuOSK8VZwFGsArRH4sSrGt9ZQ22Au/ceikYKOec04kQOriYVY0QdQMz1e3XeE30gFaFQKTZTnUVswQenETINrHfOHUH+w481SjQWQMTrGggaGdXObTknckoEb4/rvbcOZzUOxrXzfxWh5EzJ+QhOH87nIXj62GGpxHaTgbOWUgrDOBB2kWFIeG/wTgkyqRpDYI1pRIceC42w4niuthakVJ07TqOxNrs9peqINNbho1Ui1HqcU2LEIkeSXtq1wE2y+PAZWSqXux1T1pgTvRFCPnNNcgNw/zl/N2279fwNq+WCvouIVLa7PTUXnl5uGKeJs9MV65MVXdcTQ8Aax/n5be6enfDKsmf58dvI1YZcanNlEbIxiDH4w5bVqj/IDWKjXm/mzQu99ljbUo7XbzRyoPENGB3/Jhgevvc2H737gA9dz9J5ogXrDOLnm57m+sU19zOft6H6a+5n5n5m7mfmfmbuZ+Z+Zu5n5n7mL9bPlLmf+Teon5lvepprrrnmmmuuueaaa6655rpRn0cM/Lx4hP8udfM9nv0MefZxaQ10a+5V/XhNEBzAd/3XgVI4wO76VzkQBrQ29NiJP/vdpP3n8Nw/r4JzLPoOb4Q6ZSgW46yCQNZiD9t+fEXlSE1I1T66NGW1gPdR7beNbdtaFHxvW1Pa6xBpII5ckySHbT4wKYf9egCxgsd7izWC5RCdYVtbrkruQwyG/uhn1loQKs6bozLMNrLDu6D7+4BHSNX4C6eq5M4HfCNInDkAmq6RHQqWqabPEKyjc44+KMjpgqVb9JQMfkqqyG0gCUaV4n3wBGsJxtAHy6oPiDVqnV0VOFaVbDvwCNEZem/pnWURvaoCnaFaBYm8MwqQm4bhtv0XvWe96Fl0aotOrXgDNWo8w2Z/RGSQdkyi9yx8YBUc3lsqFW80kmAzTMdxrmoynsFIjFFloXOW6K+ByiK6P5X4UfXm0XFbDFbAG8siePrQAOm2z0speHsAvNpxq7WpFR2rXkma2MBLY8EkKFLwRuFIw4FkU5AuessyOJadV/DOWYxx4IXolHA6uBUYkeP89d4SO8+yD3TOk1JGoqeUyDQlDh4GwiHWRVhGzzp6lsHpvihgjCAGljHSec/e6egWoypI7wzL6Fl5B9bivaPrIkOuXG7Q2AbjcNYhJR8OISE4JUxi0PFoDDkruOqDx4dGDt5YZ5zTMRSco48BpOKdYJywGRKbBmjWBsAe5nVFqFXBv2ANffSs+0jsFg00TvimVtf5pvuxSjvmGPousIyBGD0+6vY6Y6i1ELzX8dRea5AWV6GETR8jwTlCI1aM6JhzDSBtX/ToSrDsI4vo2tYLIajyc5wq25D0Gxk5riE6F6wSc4uOQqXzjmDBSG0A+3EF4/AiHyyL3rOIerwP2y/Awjud340Ybuk7eGtUTR0DLjgde9aTTWXwhegUoM6HVV4EZ3SfL2ObU17nZS4K+nvLESBviywI5JTY7XbUCovlguB17XfO45w6SxwJ4s+hmw0GZ3SOH95TjMF4ryBybfNUF/MbhHI9EtS6vlaNHsBSGuB6UDYf9r81um+cc9RyOHcYgg+krHFExVQsGlN02DfUSgi2qX8tRYT1csHF1RZnB0Tq8VwtQDVNYUzFSIFa6WKnxEnX0ceIs5ZaGpnXjvvhPKTrrcOQMeha3MfAIgYlBtt+PC7p7XVKnhcc0kgIc1R4O2sbcC1YYym1knLW7y2CsRYRUXcL046bvQbt7XE7Dx+oc8lYMO09XSPYci5shh0Ydbbo8YgYnM2Y9tl5SoyTxpFkqeSSccYfv4sRwTiH9RbrA0W2ev47MN5y/HW9Sb/gmkzamiMId26t+Gtf+xJf/cJrPH//HB96Otdz795dvvTl15Glkv7DMLG52uBc4PT8lLvrNXe7Dv9pILe9nzBkhF07tyYKd6XiS8Zki5SqO49yfUXW1PWHS7fra7V2RK1eW9BcYwCNGTGCmIzvPT/+/e/y+299wh99fMGt0xOs0eugauHf+U/+Fz93P8w119zP/Pya+5m5n5n7mbmfOWzp3M/M/czcz8z9zNzP/OXpZ+abnuaaa6655prr/83en/zakmXpndhvrd2Y2WnufY17RmQwGxJiESxyVNCgBhqVBEiAAEGzkiBoon9AYw010lAaSFPNJQgalRpQqioViixWVVZmkskIZhMRGY17eLj789fc925zzjGzvZcGa9s550VEBkGQRSQzbUXc57c5x47Ztt2t77NvfWusscYaa6zxrxK/Gg/5l4ozcIqrj1Waj7uA2gITNAAkCEupbMxLZZ9P5MIfnE/rfHp2+X0zjWgf/vHn/8pLbECVVz0WJCoSXKGs5lBNFAMrdDGy3+15+eIl3X6HRlfVWq2EKoxjoc4jpRjjaWaeK3MtqBr7zcDNpqfcP1FOxzN4zNW5VauXUtFcg0OeZAcVUnBVZWgAeEJQE4o4wCjmP6uBVS8fn2KkC5EuKl0QOgWtM8UcBNvkji41LZSZl+xXI6dAlwI5KUmFTl39WxVKiGfQS6QB1ECKyqYB1EOK5BSIKZCDMhWIKFGcdCkNp5Nq9CGy63qGviNFJYohQYnn8vrBFeXiwLaY0YfALkVuc6TrIoSIxkTMA3ZS3ukj1kBOx+0NEaNLkf2Q6ZMr8ywoRSO1GOM8o419sjNpUkkBuiQMKZCzUgpYELIox2Hg3fv7s5IXGhB1xpyNswpchW0O9ENHKcZpmqlV+JCPhGM4W6I44A9BoQ+wDQ52a0xeMj0IpyhumbGAbQ20UYG+i2y6SBeUlALWSsOPzQbAwcyLjk2tEilkrQxBG7iHg+Mx0MVAVDmzbtdA7jZldjHSq5IEcnBbD8rMMTjA7a3oEUXI4v1piELXBUpVSoVprpwOJ6JAwEmI2apbSUglUdlESH0ixIgEJzv6GOk0EiX4Z5kTcmpKVmFQ9XPsMmpCLwEx4eFwpJSJhZZsXJwrc1WIYvRJERNK9RbLQQnLPW7YmXJVtt1KU41HtjmTETZBvH/uBkyE0yEzauKIMrZ+o2YIhS4Yu+yq5ZwzghGrMU+JLiXAFe4mXnlBpJKDMWRl37m6MKk4CRKVPgVXpWOUBjYHhaiQBSLFLQm6xG634TjNPIQjwQqykAQ4oRmobKKwi8o2BqoIajMFo6iRo9veKHqe32NwAqqLQhcqfYro2SKhnvvWQnM6hiqkIGy7RB+hS0pIETQwB5hm4/5wan1UsOqdMijscmLbiC6iz1mnqTpJKYIQ8N7lc3+flP0mc7vtuXs4cJpdwZtaZYZTKcx2Gc6/GGI+h1FmclRmCa3vOeg+FZ/LF2Lk6p10MdJ3sY2XilKZKa6YzpnRCuM4NhDey/ALboPQZVchj+NItRljRqQS1dWtM8LRfNxFVXLyuTknr/YRzJgncwLAnKwNdlHJGkZUZTcM7IbB516MFNTHgEAQo2BUWwhyO6uPgyjzNFFKQUW42W45PjwRlutQHzVGW+eq2x2F4CTSPE6YuGI9tGoJZ2JBGgiPnC2VlooqRjlXCanF7V3cvmEZ20IQOJkxltLmOiWqUpiZi1u07Pdb8pB9TUaIwa09rBbmaXQLkC5QZmOeTpxOJydtApeVwMStiVCYCswFqfVMnP4SQ/AviFKK99m+53/yP/of8B/+D//7fPuT54QIb98/MvQ7aq3898Z/DwuC1crpdOJ4OFAMPvv5l7x59Q0PX33JicLbeSaWwhwjGNy3vjwVJ5qCzUj1udw0smzEfM3/mAg8X4gsploAjax0xgr/xkADzIVPbm7427/dET/9HXY3N23rU69WizXW+MsT/0bymavfr/nMms+s+cyaz6z5zJrPrPnMms+s+cyazyyxPvS0xhprrLHGGmusscYaa6zxrxK/Alt3kPYvzmp/FSC/+MyLahMEyeXgAuKyVaxBBtXc4kAtNACBBq7oR8c/K80u2OVZnXWtKv6Lzut8jWaUYkxjoW/l2IkF1YKKUaU24Hb5FL/+MrvS2JVYQqmVWitzqUzTTCmFUmYgsN9uuN3teDyOHKa5Jc6tTPXyddXkrgZdSI4FQPTXe6l8CDjYIQs1YnI5vwZ0+yU6yLLpe/Z9z7bL1DLTdOmYqINc7b2CEXDAP0cHT3IM5BiQqFSFOSihKXPbTXYwRgQVB5L6FOlicnCnViLq6udWLvys9hMvv9/nxNB1pD47kJ0zphEpi5Le1ddmFWnH6mJkyIkcA5ozmjpCzPSVi5oaaeIsb8MYAl10hV5QBy3mWjlVI46BEFx9et1FHKjSs1WFRaOUChW6ZqPhVhBNLaaXu+m4R3XgM0b6nOhTbOXdhRzmVrJfERQxB7rAlYldimz73m0AxNXiUdrda4CqijSrlFZa3Ywo0CVX/M94efYYtKkN9aywrdXvnZNQQorK0PWI+N+eDqcGq7qiWhEaJouKMKTEvssMOXsp9QqHeXKCQB2UowGMxbwEfhddDb/Jia53K4tprggzXRCS0hSR7b6J37ehy+yHAU0ZCepEoroiuEuJqOoAk/OQqBh9Smz7jl3fMTSS4BRm5lIYUm4q8SuQkwVUjQxdpk8JFZwk0EpOJy9lj1ch0OsS6A0NC82yZDsM7LIr1EWVqBumAh/iI0mE0MiKZcrqYmDIgSFFNsltCLQRIaepkENgmSiWYvJR1e9zUoYk5KY2D8GB8Bh8rlkASWtjNcfgyug+EkIi5sQmR4Kq35eUwOwsbFyU+ru+Z9937LrsSn4rTLPbF3TJ+0AQV1piRgKGoGy7xK5PdDkDelbl9zk1ZbTPYY2eQ0XoUmjKcq9iUEWZVXg8TeTg4Ot8NU6Det/adNlV3l12e5cwYxVySjSjn9aIlRwDN9uB33h5g8oDx3kiRB8Hh9PINE6UeToD4Nfq4SUuamUfw1EiNVSqCZVyJmdY3tlKfARRkrqSvS6vaaemS/WJs6q32WU0VXRKrrC3GphnbYSMK55LaSpzcXsaxAjRrSfcagM0JEopbpuTI2EqLI0p57kcaEr/nCJzudybFCMpBIrMFPG+v9QzEcStiEJE5gIUROxibRS0Ldhynl99nmzq5BAwEUqZW38NqC593zuytbFq5kT90q7LUj/Pc7Njaq9bNgqtjWtdVsem4m72N4uNCVRf48zbMjYCRlq7pChEVabYbEtyRwgH71ZmXqpB/IOkwJC9GsdjrZymEYnGufTGee3+5ZBlMsMfJECEEAP7zY4skdh6dFRhmkbH4FGvHBAr2xQom54qgWfPbjn87m/z9OoV9tUXPFgl1IpoQKuAVGjXeLXVWUqonPutiFyqeFyPBmmdt60vqFe3KDgxslhy1JAgJKZp4vj0xMNjIfZDG0O+H1hjjf+24y9lPgPnNXfNZ9Z8Zs1n1nxmzWfWfGbNZ9Z8Zs1n1nxmifWhpzXWWGONNdZYY4011lhjjav412H98IsEgVwn3nyEy/vr29cCLCyAgB/LCQI7A/pyNlnwxP8alL/yiz8Doh9/xlJefDmvBaaVy4edz+VXXdc8zZADGgOihgZzNbct1+XgQSkztVQq4iQBRrVWdloDosVBnpZomxkxBnKKqDpYGoIDSks5/wX7ELj6ZwGHaIm/kIIyxEAWaco0f1XFS9KfS13L+coRjC4Htl1m02X6mDjVggqYOj6hC0jaJL0LQNfl2MB+V+9pDJgKY/BzuS5xvgDUUXGgs8v02RWsiDA3cLiLAbnqNKIQUyR3ib5L5D6TUiJ1iaoRGkmwXJK1a00q9DEwZAc4U5cJKaMh8VgWm4UGocgFuHJw2gHgGBz4mK1yKLUBWAvsQut3Dhh2KTB0iU2fMXNSCYMuRlKIruy05T1+C5rgD2nEyblN82KBIDzlSIrprBa9jqDCpnOSQFWp1ZgxTiGSQyGqqzdFFrDL+0tSV/RuukzfZy8xX2bGaeIxTA30WQAqB+ZSCA1sjuw3vZdbL8Y0TsTgJIKKt0zlQkhsU2TXd2y6rpEEBid4SpEYlv59GQtBha6147bv6PrOVemhEIBDjK6uPZ9fRYnkGNlvOnZDh4XkgFMQtBhD5yRBCE4sLppvEWHTd+yHjpuhp8/Zr3U8MZXZiaJGukkjZQBSEO8n7brUhauIVoZ0JKqiou31Z72m95o2LrsY2A092z43Kw91VfQ0u/1JCIhosyfw+9bFyM2Q2fdOuvS5I+YAohzGmRSkjYPl/ik5BIbY+nQO5D6RYrMxUDmD9gs07spjJ/62fWLosyujU3ZblQCbrqPP6YoE9KtMquz7jv3Qs+u7Nh4r41QAYdt3Z2B7mZijuOXDTZfYDz1d12EmXo0Co+/cpkNFm23LAvgLQ5fYbXpy9ntbUOYAw2mkW95zNdsHcUX5fujouo5u6JjnmUOcEJQ+PZ7nW5+2XOm+3/R88vyWqIGHp4Nb5KSAqvF0mnydavPqeYSatYoD3s+cnBFMIuLMNqe5UAxKrc3uYmlOa+MOcgh0KVJVGOtErQ5W+9qgVySyV3YIGrxaQY4EBEqgBmWMikpkojLPFVvIQxYSMDiwn4KTgSJOlPWZ/pBJx4mj2bk9zxVMMKIIXUqoFqbZyYs+Z3IIjHpZ15exrgIxelWGqShWvTJDin4OMYarNe/SprWtSyEEqipTddZCZbGn+Xg3cF4TzuPQ2q3xtXqxa5EG3F/2BD45N1rWCddG3BsOxpfiZB/NpkSlEpb5TPw9i1VLVCWFdL5fLMNT7LwIpBjJKRNOI9aIF8TOYvnr/nVNoF+HNaLKKy/kRuR4FYcgymkawfxeB/X/qjbbJgLPXtxi83PG3ZYf5cRkTkc7uQqYXu5JdULARJw4UD1XIDgTUI2wuXpC4+pvi0nO1T5QFFO3CSFE5rlyOBx5f38k9Buv5hCUnFdIf41fH2s+s+Yzaz6z5jNrPrPmM2s+s0xbaz6z5jNrPvPXIZ9ZM6Q11lhjjTXWWGONNdZYY43/1sPOwI7/KFd/WYAVUAmIqSfFNLBKcVXuR0SDA18qwll+SUUaoGJEanu9WMFEWvlqCHjCXfFy5xcgqAEH/GqCAARVw+YTdVKqQREvMa+qlDKjIsQoWJ0YTwfyvEfzwKL6AdgMA9RCmSaqCF2XyTFRgfvHRx4OB+ZSGlis9DmQgiLmyusooZEOfrJq2hSphYrQxcC+z/zGrucmKlm9LLiYYBWCVQLVgb2mYhLc2uH5NnKzSWxSIBpojFSp1Oht3KWIOuPgALAGNkPi2a7j5W7DNiW64MCPpsyDKn10mwhtGIE1Rdu+j3xy27O96eiGnn4zIJqIRZjnmbucCCrMDUhRgdwHhiGy3ST6oaPLPTFliig6FXp1IAN1QEwFhujWCpu+I/SDq6pThpQ4YOz6niH1qCQnehRyVF5uOz7ZdaR+QEMgAEcrHAUe50KK/QVotooSuOk7Xu4GPtlv2A4D41QY80w8RQ6zETW4CkwEpLaO1kB/c4BtOyi7Qei6yKZLmHmZexPh7cOJO01uSULFGiDV5cDLbcfL/QbU1ffTaUJjpiKc5tnBmwZkOThZue2Vl/ue7XaLRFfx9tHtDd4/HplFMKmIzYRaXHXcd9zcbHhxM3Cz7YkxUyrYPHJ3PPH+KSHi7VVx0qALyott5vm+p+86QlCszISkTHPhfT4snQMxJZiTSNttz7PbHS+f3dJ1GUYvw37MifFpIofsQJK6RUKi47br+c3ne3Y3HVUyqk7OTLXwOBbeH46ErqknqxN1QYWXz/b8xrMtt9stXRrQHHh8/EClcPfYETWi4irqqADKJiu3feDZJrPb7xGplFoZToX390e+XuxQZKEIvCKAUhgppACbrDzfddzsewcHVTArzHPizabjrsteHUELSEUlsAmJv3H7jO1mIOdE6npi16PpgcM0k8MC2jqBOdXAEBPP+swnm57dZqDfbAhZCUmJITF8kekkkBCCFUZztfQmB15sE33fk7pMSpm+65gK7Ld+rBgjagLVyYk+Bj7Z97y42bAZelfGmjFPhU03cn8Y+fMrIsPMiCrcDolv3W64vb2lHwbUDCuFp2nkZuvVGnIMHPBpP4rSx8Tz/Zbnt1tyyohGKspcJsY68v4xEYM6kVsdau7U2/w3nu3YbLbkLlGnmdNU+TCMvHr7RGh2OQGguBL/2abnOy+f851PXnI6HMAKpsaH08ifffaKqRp3j8ezEl6stnVFmfB5b+gS215h0gYgG3fTCcNVwKUaegrUs1dMQTD2Xcdu02MUeKwMMVKqMVfj0ABXUWFR7aem/L7ddFiZSRZIZCIbxmniniOnydfFSEXNSOZk0c0mMwzduRJDMWG3OXA4jhwPBx7Nq2KYuCUEYk4m5cRu6JhrJZhRx5H9dkNOETn63LPQc9pA8yG71QvSMaowHk6IOvncp0BUHGCXZe0uzGVGGilhUSnTAuCDZp875ioNLIeIeeWAFBAJINYqlJQzSaANLK+UM8AeRBErTZneFOCCz6XAXCvzPDPkzkljDVSrNIcQFzxPhXGqTONMnSpWCnMtRAJRI1GMqTSSQn1TsiiDF7Ji2ZlcHm/4hd1VIwUuPy8PXEDXRfbPn3H78iUxeOUE6gETJXYd++fP3OqjgffjOHMaT8zjyHQ6IgJZA1qdGKq6PJjRNiDL5g1fd/0mtNeIz5PSWJpl22cLKWNAaQ8eLFyCOlkmy/4uJCR2FAk8nE6Ub15TbMasfuyassYa/8ZizWfWfGbNZ9Z8Zs1n1nxmzWfWfGbNZ9Z85i9nPrM+9LTGGmusscYaa6yxxhprrPGvNf5imP36T2eV01kl2hL9Ky7AlUVeKvisAmr/irMKFKC2/zn4sCD/htTKjKu/rKlwAl6C/JJyS1Njfnxev3TeLvvj05cvGFSpU+FYy/k9i7qsyw6idZ0rHUNMntSWmbkY43hqJMHINI1YKU2RKDw8PfF4eKJaJXcdKUhTM3nCH0Qu5ywgGK5lWsgRY7vJfPJsz3c+ec5Nl12yDU7MiBDU6KOyiZEOpdaJFJRtSnznds+n246bLjBI9aQ/BiZVKEasQtJIkEA1ocuZ233Py9sNL2827DeZftPUx7njdDzRB1cmxxA44RhClwO3m45PtgOb3ZY8DOQ+E+MAs3EYT6QFNMCBL7XKzW7gdjecVZCbbYeGzGzt2rODStpYIBVhv+l5cbvj+e2eGjpSK5+uKfJsH7nd92yHhLZOsABst/uBl89uCNmB6IhxtIqFSLXAu/cjKQROAogRRHi+63mx3/D8ZkOXeuZqlGoM48SEg/3xCgBaNM61DYQ+O6j3cj/w4mbLtu8BV9sOm8Kb+yPv3mfex8DU+kQXlV2Xeb4dGLpAjNHBwl3PdhYsCk/TiaSuzquth/ch8O1ne17c7MjdQMEYUubU7C++vHtwcqqNx4qXEt/2kRe7gU+e7bnZ3gDCWAql7Hl7OvHu3kFZMygNvOpS4uWzHc9utgx9RwiBeTrRdQ40HufKj37+ivAU0LkgVIYYeNaA5hf7DdJAplKVLicOI2zfvic/BJ8hzMdHl6IrcncDErKzjFXIpq6Y7juGlAjA1NSqKSi3vXIzdNxuN2w2G2aMFDbMVnn3eCIlbYpObZCYcjt0fOvZju98ckslglRKqUSEfR/ZZCVFVwUL+hEpSZnJUbnZ9nz7+Q3b/c1ZFW4UCsqzD0fe3T+5VYM1ixM1hj7yybMtw2YgJK8qoDFRSuZm2/Pi5obtN+85lCPTXJnNVfC3m45Pn++5ubklxohREIWUOl7c7tm+/UD6sACgMylFbrdbvv38lmJG7npy15G7zHGc2Q2dEwVDz+s7o1hBVem6zMtne57tBq9eEAKGUDuvRHBzl8nB5zVwa5++S7y83fHtT58zbG8QVYIZ1EpXEjcfnhhy9HkBwLzqwa7L/OaLW253AzEkEKdMkYxZ4f5wcFJHQNr47lPgk2dbXtxuSLnz40kgJ7fHuNl2pBzQEbT43LPJys0m82K/cXD3+S1lHjmenripxv3DifuHA19boWKtGoSy6HMd6BZyEF5sB06HihhEMUjCBztBFaa5qW/NS+VXraQQeLHf8my/YbaZEIzpODFNM4ep8BRGggpFFBNDpBIFNjnxyc0N03hgTolxjAxBeXh4pNbEafb7r2IEgSQ+J+Wm+I8pgQh9n9kOHceh59AfeN912OlELV6loIvKftux32aSzl7ZIfREmXl/J6QEMQphFgfExRrx68rrvs05Ud2643R49CoT2aswlNlrLAQxgiwqeVdOW/VqApjRdx1RhSRKxS0RxHDrgBSJ0SFg0aZ21kBKmZubLZuhOxNQXkhCzpVOtBHtS4UPJ9wr8zTx9PjE6eEJJLgCnsnn4FZJgUaGnI4zD48nDuORQrnsaYxWJcBAjafjE4fTiVpdIR6gmf6IK+/P8mE/x19luxVCs8pA+P6Pfsz/7f955Pl+x812w2/+1m/y7U+/zePDI5//9Id89c0rtpuNWymJ8OLFS/7Gb3+HpIkJ318FDDX/qss6KW77gxg2F6RUqAJBPgLvZRkHC+PRTl7s+ucWGkDKWTVuZsg48a1Pv8Xf237K9u8oNleeDg8cxxOn0/grNmtrrPFvKNZ8Zs1n1nxmzWfWfGbNZ9Z8Zs1n1nxmzWf+kuUz60NPa6yxxhprrLHGGmusscYaV3FOOq+UNv4H/8caoH/9Grl6r0Pv169Z3ivn4zjw2JJwuyD0ciYDrP3fKO14y+den1U1L8lssiT1yjQVqk0I5qrlmFoy3RQ5rTy7IdRaUb1c87lE81/UOEviKpxBA7VKUkWTl04/HU8cj0fG04k4nZit2VZYQUwopUKdqWXmXKTcHEi0uVCbvYWquIWAKkGWsvo0YwlvxIAr1LzctFKt0ikM0RXB4SoBNyCKkEIgq5Ib+SC40rMLyqZLDFEY1OjV0BAp6jYAVYVNDCRxxVgRoBY6FYak7DaBmz6Tu0TIAQ3CPkZ2MdA3dLTSQJ4o3AyJbY7s+sXaIWIBumr0Cl0IrTS6lzePAW6Gjps+s+0SEr3UeIyZ2cXJ7IbO7ShwRWUIkaF3ReG275gltZLhgaDKNkS2XWLIgRjAxKhWEan0WdltOjRlRIRokAVOc+UhBYbodh1eztqB40320vnbLrvlAdJKvBu7HNh0gRyd+CnVr081oBVGIKuw6zuebQf2fWLokgO2xagm3G4yuz4wJOWEK8iiQJ+U211PP8RzWe8goLNxfwxsO1eoPwFz6xNDl7jZdOx6L7NvOIipKTANmZs+0Qd4FPHrWM4vRZ71if3Q0SelNHHcZkjs+sSmc0sQOZNYEANsusimc9uQEAIThaBwHBPbLtJ1roQXHBiOAjdD4mZIbDrFqlAlUE0J1ej7QJ/1rALGvNJBF93eYrfZYDTAqgqG21HsusSmqcDB54wUArdDZttn+i6QAqhViMo2R26GyM0m8+F95IQwV7f+uNn0PN8NPNv2TLOP4WpGF5QhCV3yaxcxgiiBep77gngVgz5FhhwZsgLa5lBlNBhybOpQf72YA6tdF9huM13n4ywEtwWYu8i+2URskjIfYQaUQlLYDh03u4Hd4GCqg+kgIbDrA30SUlgAOleM913i+X7HOM/E3BNzR0oRqZd72iX1IgttrglB6LMy5NjsVpRSoapRo7DJkc0y5ihUqt+3PrEbMl2fGmlsiBm5RvY5MiT1e6OGVJ+3hgjPWt8Tja3HBSfwxu7cTx/ECeMgThLcbgb2Q+dqVgA1ovl6dLPNdFkJAcpUUSDHwCYndl1EcRsS00gOPXGcucmBXfJxNs+zkxVt7XPQ2QjqAPygEHKAagQKglK7QC0zx9PFooQ277vtiDIkZa5QNx2jwBgEDUJ3WOxCfCaK4pUTlEpWiDEw4wphKTNlVE5F6CLkAGXCrS30okAO4utFiIGjuvVJl5RNn90lxrylRVyJnKOQkxKd+UGj0EWli8qQE12KTOPM3EgTbetWbORAlUpUQbtI1/pGkLo8IoBwsRJKzSJpAcqDOvGbtFmatC9Mzp+zrJHSNg5OUigpRPp2fjkKQWqrQnKxiPAFtJ7neZXqVRIAK5WxFMxmt58KxjTXy6IrQlLheJp5PB2ZamV5MKFWw8Tcakl8DFer1FIQs3Yti62OYXbeTF36yK8IberqaZz4gz/6Ht/9Z98jp8h20/M7f+t3+c0Xn/Lw+MQXX37FZ1/+nO0wuDJclN/9W3+L3/z2t7jdb3gWhN9KuREI1ki2i13GZe+2EB52fXof7Zt8QWgEwfJrwyftRuj4QFnIFj9UaKr1oet4sdvQ5Z5xOjFNI6dxfehpjV8f/3rymateu+Yzaz6z5jNrPrPmM2s+s+Yzaz6z5jOs+Uz79V/CfGZ96GmNNdZYY4011lhjjTXWWONfGFeJ6a951YUysI9+FuEMiF+80eWc5FpTKH6kPvrowA3QYyll30BBEQihlU8OqASmWjFr5aJDQGNGxFXSpbQSwqJIA4Q/Vlxfp7C/+upKKVSVs5pMMFfbRiXHyDieOB2PnBpJwFxoeAaGUmrB6oyVShmrkwKNeBDDE3J1kLWLbgURtL1bAGtllcXLvcemylUNrnJWo1PoFELz4DCThlc4YJEUoroFhDVAKEVh6CNdhE4dqJegzFQH69XV1EkchBdcKTXEwLaLbLvANgdSCq5UE2OfItsY6PSieI8LSdAnNjmwSZEuRUIOVCpDMIYAQ2jloNtn5SDcdIl9nx08V3USJUZXjpmx6zNdUFcbNnAh50ifM0MXmYiAoKrEoFRRNjkwZAeGFw2wYnQpMHSREKMTMrVSRdnl2AD/xU5kAZuNPom3RZ8QiX60KgiFbVa2faCLSmjWDNpKXlf1z07BVc63m55dl+lycmsHCjUK+97buI8Ofqk1gie5MrHrYit37m1gWth2yq6PDCkQGugqCjk5KbTJkZRaGe9SEVU2Fv3+ROVDU7ZVcyJplwO3jagJQdBqWBCGLrDrI9vs16jaSAI1UhQHlJOrT0WVQGjkgbd/nxqxgStlk8Cui+dzL1WwANWMUGsDTXH7kTY+Q/Ay8ts+scmZYq4kFBNMpBE4fl3hPDepK5SHxLaPTb1eCVaRoAw5cNNH9n0kB79nYtVB985B7W0XmULFTKlm5KBn0D2HBlsLhDYX2gKONpKxTifqmIipc5VzCJxmV+NukgOtAWmEIPQ5sN04uSP4OYUg1By9zbrIEJUncaBdqeQgbIfEbtOz6SPeO10ybAJDFvokrsLGadmgTmRsNz1pnNDUEVImxABl9vHbiC+VhgP6lOzkRwrk6JYCsxlWK5aceBmS3//FFiVHoU+BIUfvx22uFzNqrWxb/+mCjzXB57AuwK6PbHIECRQCiivSt52D+k4cet9yJW9g22e3WxG3OyD4PKwY+0Z8JIVZDBWji4FNDuy6SK0+DyOBLmVEYL+QBEl4PFojpgUWQFkqsVWl2OXIFAUrFatGMqOWwDwrT8HPoV6tSSm6NVAXhVCALhBr8Hk8Ce8PgaDN1qetl0F8fk8RkNDWioCSKXPiWEa6o1u/mLiSO6jbHqTg60RWIQYnlLso9DnQ96kB7JxJ6Ki+fuSkpBippVKr97kuBPoYySEQwhV52DDhGHwcFIGqbiXUJe9TSSEFqGUhJC7EwtLfNASE2kgAyCEQgzDNnPcIy5cD8Us/9f2GCE6aB7/upQqJz+p2rmLhGxW/K0F8bdUG7hczSvF7pvgcZe2hCkSoKpymmbHMrRLM8sCEz3VGI4SkkaRXDy14dRi5HA9rDzIs5yXnBzOW0GafNc2Fz774kuPDI4iRusSff/U1zzc7ToeJd+8/8PXb13RdPt//n795z3a35eXtjt95tudbpTDEQChuUaLW2qYRBtd7Q/vo50sbiFz2WNb655lk0DYHKZw7RdXLcUSodaZWb/fNMDAMPbUWSplYY41/+VjzmTWfWfOZNZ9Z85k1n1nzmTWfWfOZNZ/5q5nPrA89rbHGGmusscYaa6yxxhprXMUZpP8FrHxJ/UTCVf52SVBFLmnr8jttqJGngUv54Mt7gob2sysGUwiILJ7p7RgqxNiAcxxYKaUgQJ8zN9stIg6WWTViDHRdpFJ5dfeO+1EaoF2oU+Uw0kD2a6DQr3fxkl8+/1LWuIH0KkzjkSquFhIKCq7UCok+BphnpnHkdBxJxyMSgoOBIsyzMZaRWgplnnn3/sSL3/xtB89DIMfIMPSMtboqMbraOqpQWylo1aZNEi/fnZpqLTbLhiyVQY1NdJUb2kgCA1Eht5LaIl5a3iiIVHKC/S6x7V3VmQOgDs7kAL0qtzkSpYIVsJkuBl7e7Hi533LTRTYJYjQ0NAVVSOyTOqgtEFA6MfZJeLHr2HexXaOQc3BVmAjHPvCsj0QxxCohCEOOPB8yt0Oi7xNVI0EdEDIRAombLjPEQGoKv9hAry4Jmy4wacJMEZQYIsVg2yn7ITAkxysdeHRAfshO/mDAbEy1cDskShl4s+9c6WqGmBDV2Gbh2SbxfNdjFhjHiWoQUY6D8mxo4KgIs10IMbPKbLMrnDcdL/cbNrse0cQ0nghWCcm46QL7LGyiEKgE8XPd5sDtrqNLrRy+SQMaC8/6yGHbc9tHXlNRvNx2CIW+E3ZDpMsdaGAcT8Tq1QNeDImbTnkXXQ1olfP5fXIzkJOr+GJwpWJEeDYEbvrANgVX0kklBWOTlefbjts+ozFSRSBG5tmYOmXfK9toJArR3Nili8LNJrMfnEyaTYGIWWGcJ/Yd7JKxSUZSCDiAvOmUm02kj8E/p8Fpcy3cbDLPN5nbIRAoC95GCsInN5l9r6TkKKESySpITYzbyLNNYEjCQ4BZ3V5hSOIK6GBueWA+h1RTfuP5hpuvIkMQEg5Qu0raUcqUElYnnh7u+PnnP2G33fHJb3yLm9tbdrsdp9OJ2z7wbBPZ98q9VKJVOmDXBZ7vB1RdMS4EQkgEMeYu8nwIbKLxEOAkMFMZsnAzZJ5tM32OjWwNGIrVmd3gREEX3EFGsTP42ychSEZSQqMTbbGP7KboYydrsxJwgDsFYb/t2G0SQSOYg7dYJUbjdnCiphMH5WojNYdGsg1dxkSACrVSxonbPnLTSKgoUERIAn1wBX3OEdNIJRBCRG1kk4R9F5wIEyjigHYffT7Y9BE0gkSwCNU4xYmbTtlGuA8wC0zANim3m8SLfcdhbEXyrWImpCS82GZX8SflLnj1BTOvahAEZgopwn6IfOd2yyjCNE2cTgfKVAgSsBJ4SkrAqIJXBamVoQ/shsi2V8YRtEKoCllBOp7GiS9fKycxovncl9XV1NsuQhFKMGoWtkMkhcI4n7h/NKTOqFW3ZgjSVOM9fRcJ0S1Mtl3k2abD5pHTeESlEnDFOAiJQBfUFcbDhjIWpuORLMI2OUmcg6vVtRGiZwuKoGerDBPBKAztvLdDZjck5nlGqhHwyh5i9bzuphSZjgfEZgKFXZ/oU2SaZmqFKNpIdCfbY1BySm4fZZXpdCI0Eq1LXvEgxYjOo9uviFcI0LYTCM2iyQkCI6WIIoxSmEptVVBgsUHwZxIECQENEdGISkBMrqrEXOrJBGntNM9QDQ2BWriQB8aFPfoVKuTzn1pFltwPdP2AmTFb4YtXb/js8QtiiHT9wLNPvgW1nKu9/Oyrr3nz9i1RhN/cDfx7/+7v8ElKdCo8lUIUpcyzE3XXe0Wx9gDI9WMivraJb7jO5Mbye8PX9zPjg0BQbPZHA9RZJI6nD7z/MPO1PGEVus6JyqDhlxtgjTWuYs1nrh/GOl81az6z5jNrPrPmM2s+s+Yzaz6z5jNrPvNXM59ZH3paY4011lhjjTXWWGONNda4ii6lBu43wKvWptSVM4AvNFJAlVorVr0MOgh9P5xB/lJc9aYmTRndkmdZSjEHis2UWvz9Zg6+ywLcGyllck6euCNM40yXM9vNht/45JkDRqVyejrx+quv+Xv/zt/m7/+9v0PMmf/rf/QP+PmPXjFsEn2n2FSYG0h34UDsLDj6OK5S3fZtLTOqOHgiAebiJezNYJ5hrsSQXUlshpWKWKHiCtkZZS4jZS7M48zxcKTMM9SKSqDPPfePB95/uKfvEl1wgkD1ckpeKtnRzYAD4UGVEJRalE109ewuB7oUcO2QA+OlWgOWYRMjuakilxL6z4fMJkWGLpGHwSHlMjuZIDPbWOkjJK2cpDhJ0w/c9j275ABZTPjrqyFB2G0ymz639loUpYFn246bfUa6QEqRPmYIBa3CNPd8ut/QR3hQV7252rRjm7xEfg0RjU2FjatO90NHHx1ExGaiwmbo2G0Gtn3mRHIVJF4+vOAl6IcuktTIIvQxss2ZmyGzzQkTV7qJCFoh1oANkU+fD2w2ibsPwtzUsDfbjqELdEmQEIkBap3JMWA182KT6VSoU2E8TaQ0MFM4lZGn8cgw9Dy/2fHJ7Q7NiYrSh0xNwjiPvLjJ3O4ymz4gUgmiJFG64BYRQxeJoXNgthRi8NL40wS73NEFOKmDMn2X2G8GdkNPFzIhCnNSDk1S+GKbuekXFbYDWtsucbPtuNn2FATRBOLtPwTjcbFv6AMBXLEYhL4PvLxp5fdDdCsREcpcqZZ5cex4vosMwRilUhsptO0jm977o0nGaqXUiRQKn+wSLzauRm24PkkdtL/pXPk6mZ5LqWeEqRa3Ldlmuhhxs5lAVOUmCrsuEbtM1UQwodZCEKPMmU93iV0SPmjlxEySRBdd2b3fDjyNAAWzQq0znzzf8Z1PnvPu/RM/+/lbjscDbDMhRQzh4fHAuM8ownbo6PuBaZx5engkaGUT4eU28rDP3A6Rr60SDZIomxC47XpMhFIbcVvdYsB2me98umO/Sbx7H1FT1CpDH9ltEvshkxv4JiQwoRTl2U3P7a5n22cnCQyiekn/PikagORAZwwRMZgEnp9Gnm93RAMpxedsFXabjs2mOyuELQSgoKG6JUXnwHIEpurq1E3O7PqelAJzI99EFQmJFzdbnu037IaOBX6NQei6SD8kcteBJgoRMyPUmU0fuBk69sOGpMokrvbuk4/7Td9hkpCYsEmgFiLGJzcbnveZhxAYaeRmigxdZLuJ1ABKxswoRYnzxIvbG17c3DkojxOKZk5QRRVOYqQEN7uOv/mdT7k7HjhNJ+ZRsMl4GCsaAg/HkRTuserkyVxdNX677fn0dkuZMw/HI2MamzRYef3hiS4GDqKERgj3KbLrOp5tN67yV2OaJh4eHpmj8OJ2x2Gq9K/veTyeWmUOJ3mebTcMmw5RcYB+k8A2qBpjmeh6pZygzF6VI0sgh0yOiZwDiI83mQOf3vT81osdx3Hk6UhTw15UyZSZAOQYm6q4+NrSR7bbjr7rkfujk5GqJFWiKCkGYgqUYuQcsC4w9IE+BzZd4ng6Mc0+b9daqWUCm9uew5iqYRVySnRdcjW2qpPLYanS4sSXK7Hl/NBAFCFpIGlsFTiUFBXRylwngiZoa6uJEQIgxSs1nFXOvmZFEWYauVAraLioh3WhYWh9HlfMm5z3YQtncM0dLA9ngBO5Wv14Kgnd7ZHNplnLaBP4uxLZMHJSPvmNbzFNM8dp4vXdHWUffd9T/AEFPX/2ZV9n4nupi41JO1tbHraoiGnz0PDzacuKH8GEaoIWfMzTOAeDeZx4enzi9ekBlUBKiZiCVy1ZY41fE2s+8yviXzKfCWs+s+Yzaz6z5jNrPrPmM2s+s+Yzaz7Dvy35zJohrbHGGmusscYaa6yxxhprXMX793eeBLYks5QZ1VYGXaXl+C1JVcHqpRixiDKeRkIIZ9VMNbcNUBx0iiEyzw6ch9SxGbrmV++lkWutVyQEjOOIVaOE6mX0y4x0GQQ+PB6o0wmpBqXQDYm+z9RaeToceHg6MNWRl8MNz/Yb7qYTNk4s9gvtrFsyf2kDM7siEa5/7/+ouEJKquHF1hd/+Mqu67gZegdfu4QoZ5A1mJBmo8bCnBJjUS/pLtKufULmEaUQQnK7ilocvBF1teAVmeF8hxHU29bUy+H3KZBTKxNPKzdNy8vVyz5HVboYYAoMIbBPiV3XkYOXbxdVL/0c/L4jrrjTZjEBSlYvrT7kxNB3xOiqRBE3jBhSYJcSQ/By5IaTKilGtn3Hpt9QUocGB5aiChmhC8qQIikmB0AFQlD6HMhNvVZDgBAI6kWpk0mzz3DlmZkTAX30r9DUruDXFoISq5FTIAd1Ykdc1TkkL9neRaGIUgyUgFRgmslBuR16hhQJWlGZySGy6zJ9iqQgVFz9WiuIVAfl+0yflRibWg47lzePglsm9Jm+yxRpIIwEt51QuNkM3Gw6tl0kArN5JYChT+w3ParR218TKPREhrk2uwUhBy/xLqLexjmwSUoKgqSOWKvfa5s5bDq2XU+OrQ9LJQXvZ0GFEBKqrpI1DELmpu+46SLbrKj6mEhiDEHpu46UFIISUMyEmAqbzomF2y7RRQfsp2IkVbqQyDERQqDYAtwFApk5n7jZ9mz6RFRxiwapJBFUIilEjEAFB/KAHCb65PYlKYqPM3EQNveRLgY0BGYNrnysYBbZdJndkEnRrQbEIImRUyTnTM6RUQSqgCliyliEIbmFwSYoCWOIigahGDwGXAE6JJ7d7ug3G5CIaGU8Hek6VzDv+sSuj/QhMstMr07q5RQpzRpGQvI5tsJgmdvdxqsEJOExQG1gfB8jQ+6IGpmD4bUqfBxscqJvZCyqiIkTUDHQ9ZlSFIkdGjKKomZ0qXqfza0KA4KJVxNISd1aQhSTyNxA6BTcrqPrEjG6PUACcnAgvusiGtx+RMw/R62y6d1yZpPEx4O4YjUFocupkS/hDDhqzORSGIbEZvBKAFEqWQIpJrquI+dMRf22xYBUBzx3247tkOlS8HYLQgpeuSPFRJ79msDQKIQIw+AkwpAjocwgQpXQgHxBDZIGNl2mi0bUSglCHAZCKsRUmUvlw9NAl5R5NNSEiDBEnxe2fUedHMQeu0St/p79JjF0ylMEGSsiPvduu8h+SASDapVRjJojsu0oGJs+0uXEk7rFjwquqk5KTgEwKIakwBiVU2o2Gn1ifIAqtghez/ciqSBBKEEoSdj2yotdZp+Vd20tFDOCGRGawrUB30GZLRKjj7l937HNoa1vXuUiUJDQgG1RpvlEEEB87elyJGef7ydxQD9iSDVqMSpGaQ82LM8HpBjJqfV9aVU9uKh4F8Kgtr2OtDUSsabUTczm+4FYvTJFqUap5udpTprXUrhYTCz7DjlvLmpD+s8WFGaXn5ev9r4q1vYVyz24kBi+H6E9jMF5r6MYEWF56kBMEGpjF3y+plVxiSGQzHw9OdMQdv685UELs4rJUvvmQmqcd4WL4nlhBNqX4NdT2y+uyQ5obattj7nsj8rMeDpRa2EugZhWSH+NXx9rPvOvns/s13xmzWfWfGbNZ9Z8Zs1n1nxmzWfWfIZ/W/KZNUNaY4011lhjjTXWWGONNda4iptN10gARTUwX5EEqp6sLYSBip5VPCrSXqOEEJvfvTbAvbpyMSh96jiNE0+nkfePR46jAwyyJO8t0RVZEvPKqIUQIjlFuuCAx3E8cffwwHw6kgW6GNnvNxACh9NEqcbts2e8PM3c7Lf0KTlIbGMDATxztgZuLZn0YgnxsVD6TIOcVU1eDrn91TzNDcEBnSEnhgUEOyu9hVAMNGNWKbVymiHFgHMkhtWJISpjjqQUsDJjVp3UUMGsyYoW24p2Hipe5twEuqTkpMRAU3Y5aOD3yS0tVB3M6dqLOlWG4MrEpNqgNnM1mMgZkEm6gA6CSCCJ0UUH93JOyBls9xfG6CrOPqhbO8iiIov0OdKlyBQVAohWLw8uStcUmVG1abodnM7JrSNSFIoqFhwwXICH1Ep1h4XUUAfDc/DfiShR3HJEg5KkkFSaIk68vLcaOQh9iuSkTK01BIFqUAspwDYluuDvESpRhCF5KfIcAmOFEEJTVVe6ObLpXGmcAmdlYBBX/GVVhrgQIcGVew0UEnN1/K7P7LrENgWyCpNBDsLQRXZDppi28vYBtJKJ9GmmT0upf7/XokIn0Aeli7iCOyWSVVQKUpWnITHk5FYn4jYZQd0iIGog5vY5Z+VbYtv5+W2SEMSI4vYFgwg5u5pNNFBNsepESS2RXZfYJVfKBoFijSRIkRwjMQSsLFY1iqn3n6FL9Dl6mXepxFZiXlUJUYmEVnGBc+l5L1uvhABCIYjQRaHrMyl5v/A+L2g1xJQ+BYaULlUbzCvxdznR5UhKQkapNTQrBcjj3PqW2ylsolufaPD79pSEXQ7sNx3PbraE3FEaBlfrTC1udTJ0kV2ObEKkBGFQI0eIDdQ2hBojieoKUPP5Z5OUTYQhGlalAfGBPkXQhGnxShfmin/v74HQ5iNX9LpFTZcTYwmIJrSVYA8WSNEJySG38aU+9mN04i0FdQBRI2YVrYYF8eoBzW5Ar0iCnIITSSKNjHEwOVRXym+yVwBY7nMUV8PnlCAmqinS+pVqIueZvo/0vaDB+0AWb4cUE6kRLcXAcOC3Igx9ouuaTY2AqjlBFpSgiRiCEwvioHdVo8/Rx25UYrNqmcWY2yKhCEkiQ8r0WcgnnGjQSI4jUQvjkHi27eiicpiKA/dAp4E+JbqcqDITkpJKpMwz0zi5BUIOpODWSlGcaO2T992AMs0zVgJ9TgTJHOeZIfuaqiJeZUPcXigGJ3rMjKo+/wTxOXjIToTcK21dl0ZUu91JVAehJbiVUZeV/ZDZNesfbetusHYPQ3SSoDpgHtRVz0PObHNmSG7j4F+QpKKNJDKgFq++AL5fycnvgQafX6P6PQ8uzqU0Gwi/J75uxxBIMRJT8P2A0ZwNfB/gRL8v/LP5/FS47FVSiix2VFTvt3OpSKlucVEr0JTWy0MDcrF1ut5niFypxvnFhxUEk8tDGYZbPviL7bxTsSuZtPDx98GgXh31jOEvamVoDyUYKbptkt+c60+Q8xyBNYC/7RnPrNH1Bqrtf8wMGhH30fldX6c62WoIVZolxPmhFShzaXxDXW7SGmv8hbHmM2s+s+Yzaz6z5jNrPrPmM2s+s+Yzaz7z1ymfWR96WmONNdZYY4011lhjjTXWuIr/5f/0fwxNkRI0tKTVAf8F7FZ1QEWDK2BDsy3IC/AZ3J9cgxI0YKEpbYPybLPlOE389PMv+I/+3/8fvvv9P6fb7MldTzHXyVAbWmZGpVCrKzFvtht2L/ec5om39/d8/vUr1GDfZZ7td3QvnvFgymNRXj57wf/iP/yf8d0f/hl/+qff52ef/YzDNDVQ1/PLJTW1BioviehVjs35FwASvaRxNcQKfQ5NleWAbuwiAcONBmaszKhk/7AGEAQJ1AqYA0myKIPMSNH47U9fsHl4ZDKDaQaqoxmhJc62qLasgTtGotBRgOrAanL1bQye8FerzOaAtGBEgU6FXU7YARKVLNXVkRGCFCgTKWYK9ayC76IQwqIUU3opbLIw9EqXlSrFbQBEQaBT2AZhIw62RVEii4WBkhgRdXIhpkDEFZa9QieGlIqewSSjy+IkQWjiruiKV8wIGJlCkOptopCpdGp0UUgpEEWbFrSRQwKdCFmErIEk+PvViDHSd5kgkak60BMwop2QAoMK0epZKV5xdd2QIkOKyBxAHXyMEmGK3hbB6NUBGKGpfQkMMRBtIisMWcmlcJKljwoUB4t3AXZq7KJQgrHNwk0f2HeRYoEZpQi46nWm72DXC7seejUmqagoA5U+GF2oaJg5NcA14UDJU6febmokKdQIaoWswrZPpD4zl4o1e41SCpsc2fWBmz4wREODsQ+VnTqJ13cRIVCLUKTZqlhiHhK7pHRiJComhT7CpksM2ZWyMYIVwxtVsZybylKIEugCdFpJ0dBOiNmrCpgJakJAGVKgS5DUgSZpFRtyCmxvNvRZncjCIDl4PldjFHOgsY1XFSd0Nl1m6CJZCxYqJbRpooFsYjMqM12CXUz00efHyWDshGdD4vmm4/luYDLDRKkmjDMcTl6iP0e4HSL7HJAIu2j00UhJSDUQglCCq0ZrKdTqQGovhV0yjtnQavQB+gg5CaUpkkGgVuw0kgRyVHIWkBnDFbh9VjZdZDwKIhVhcqWvCF1R+ijsevU5X1rFBVWGlOlCoJqARkIbm2JQk5OZUUGpJIEhuZVASAErrXqBiFtglJltl9h3iX0X6MUBwkGMXoWYEqQOq2C1NuBTyFEZktFnXz+SzvQCm1hIUQhRW/9RSnXFu6kTCzEZXaxsg4FVthH6qKSQCHGReHr/l2BNae1E0hACqUscTXiYfY5KBDqJ9KHj2X5L1cDTZJyqkMZKqIVtEm6GwBDggcqM2/dkMZ8fU8DM1xwpQg1CFmM3pEZQQJFCH4WsPgdGdaVuLRVDSDl5RZJpZJPV2w/IKnTa5ukQ0JgcjK3GOI5escSMHGN7jxGkNouGStKZJIWIUEiECDEVNCa6vmO73bAZDgjv3cYGSA2gz1EYxxkxv3d9iGxiYtsshryqhZ0JvdjuCbWSY3BM2nwN3XSJFNpDC23N6pPbSLhVgd+72CwHpmkEM1JQck5ut+CzDIJQ1f/r65oxG7w/HOm0cNxG3xO09zhRFggJYoV5LhyOJ7Qp5/fWs7s7kHAbiBC8+kt7SsDJ2OhVO1QdTFcRis8qS49rPzkYb803ZNm7fLSf+cXNjC26Y7mA/pfnI87sgohXQAm1LBsfFvBfxOcMFuJcxe+F2fLEhau9FxaHq+MDWGGxEFoeuFhCtLG5xSkZUwVVNARCCKTg51NrdTJ2fehpjX9BrPnMms+s+cyaz6z5zJrPrPnMms+s+cyaz/x1ymfWh57WWGONNdZYY4011lhjjTWu4n/9v/qfu8JNr1Qu5wS7SZJoZa4bQHpJRpta+OytsKiH27HwRJucOB4P/Af//t/nf/O/+9/zR3/+FV+8ecvNboPJRbWMGVUqViGJq2FSiFSBoBOzGRUoU+Hx/oFvvv9DvveDn7DLiRc3O/723/xd7j4c+P5Pf8IX33wNWbnptoRFZbNcdCMk/sIQv75qlVIKAkQJRGZyEKIYpRamaWSmMM4Tx+OJHHpsOmJqrqLTxHGasDozzTNPjyPTNDPXAsGVTuN0opQJgpdQ33QDz/d7YjcwFcMI3kYiDDc33O5v2fQDUYU5CNNsmGaG7Z4XL/eutDShopQqDJstEeHd8xu3LVDhZJXHaWRmYrMb6HY3aHdDTh2F0tRJys1uTxczWZUcDNQIOZP7ge1uQ9rcEvIGjRkNkZASu/ePdEOHaiQSqXNhmmbGWtlsE+SMpp6Qt5RSOI6FqkKpBepE1OqAjimnSSia6fNAlzdU9RtjtTKXQpGKaCElY9MpT4cnvrk/8OZp4gYv3x5zJmjETJinEdTVuioBtUituEJfQGIiIoRgdE15OYUG3KcTEgMiEZPKKJFZKgSISemjcjyeoBakFlQiD8eZ41iwUkm6DCdXn8egPBxH7h6PvH880XeRUiYXY+OQzDhXZq+TT58itTcSQhkLp9FInZJCJGkAM8a5MpYDT8eRw9MRESNnJQaFWng6FobeAediBw51ZppOPJ2OfP3hibvHB+Z5pFMhxMzxOPLuw3tevfmGzX6mloqGiIZALYW745EPhxPHw4l9iOy2Oza5o1R4fHoi5YRqpZqraOcy83Q68v7+gfvjCTNXnStCMeNhqjzNM71UajWmqTBOhdM08v7uLT/7+hvefXjEUDZ9xqxwGI+8f3rg+fycaR7BnNScq/F0PPB4OPB4OIJFYsgIwvE0cRyNZ9uemLLjiCEibbxPpjycTpQ6k4Kx7SLF4OHxyOE4E9PAcToyTxO1FgdWTyPTOGLTRDK3HYmhAdgFAgImzFUZizKXgka3EakmHMeRaRp59+EDd/cPWADJAYnKNFcKwmbo6TVQUUSMSsJUmbjjMI5EhF3MSKgMMboSHbdXSMEB8lqNx1Pl7ZsP3L99x/ThA706STTazMM0MYlyc7O5AI4pkEKPPDzC/YEPjxPzbCRxUs7KEU2Jzc2OoMppqsyz+fhSiIOTcNqIGhGhD8K269hvt0BHT4FakVqhJN4f4PE083SY6NVV5S/7xLNN5ma/IaQNZk6iOlEgnE7C4XQiW2KniSmN7GJliIXbXc/zm40ro6vbHlErdYJhGMCUYDAosNiW7nfcvrglHA7Y7GpRqcZYRt6NI6enI9PpxGYYEA2UuZKssg2RKRpRZ2Y7ISmz2ye6asxmTA+FMXWcONAfZlTcZEipgLHtAt96vufbnzxjPnUc54mnpyO1FMiZ/QiRiLODSk7CJim7LnG7H6AauyEyzTPH8cjhaSbHSI7Bq0AAvQaGGIkxsOs7dsOABmXuMsfjASknkhRgJkgkSiC192xyYNf37IaB3CfKVBGLnCRz7BKnLhCDt+NkRhddwdwlt+rZdAMhjIRpoowj1kdSVqrC41RZ5Mq+3QjEkEgiJApCwSjkVBl6IWdX8ydRRnMbm4VgSTHSpYRNpamVoe8TZRjYbrZsumHZ0vhDEAo2lkYMXrZDdRqpNWAS0JCp5qB+FiXG6OtiUqQTNiljZWLujJgy+7sjUd4TECeyo3Ia206kqYuXShzX4PpCSwFQze03JDBhzO0vKtrICvUqEiKUef7ljczy7fK1/LXJpFV8HFGb8hp/yEHx+en8MMVSoUXk6njyC3spucwb6ufuu7ZF3t5KuCi+nyxt3KvbOWFegWK7HdjnDpUEVK+8Ez56lGONNX4p1nzmV8Saz6z5zJrPrPnMms+s+cyaz6z5zJrPtG3TX718Zn3oaY011lhjjTXWWGONNdZY4yrqPDcCYJHMeGl/ufrduezvlfTFU8ml1K9cck8Bqe1bE1DDxpFA5W98+1v8nb/5u/zgi3e8untsVgJ+2KXUMqKYuKo2ITAXQgMokkZXFALTXJnqiTQfmaPw+HTPV+/fMD7Bw3hiwsvDS8E9EgTO/vF2KUd8rTDi6nfWwKfcStSnoJxqIWkixcBUK9M0NbsFbWryJdl3INgV1Xa2kZ/LTFQlpYwlpc4jx6dHzCD1mXfHJ/7gn32XL1+9ZndzQwiuRq0taQ+bHX/+45/y+t0dRQRJidf3D/zZjz9ju9/xybe/xqon9mZKMaHrej58+MDnn3/O01QomjhU4av3T/zjf/rHfOurO7rhBkk7QohUZhaE5Gc/f8ubuwfmChoS98eZ7/7wM97cP3Fzc0Pq9ljokRARDRjGz1+95Uc//YyZSuwSh7ny+Td3/OPv/pCffvMO0YxE/5pK4TDOfHg88NXrO8ZSiakDhbePR/7RP/ljXj67Yeh7Uu4oZiwlsUs1vn53z89f33EqkLqBoxX++U++5MNh5J//+AssRvq8adcFx/HI/dOJr9584P1xxFJkpvLm/sDvf+8HfPn+CPjlD0mZiUyl8nQaeXX3gQ+PT0QVtjkSrPAHf/oTvnr7gZvdDtHM08MDVgu1GmOF73/+Fa8+PDGrEpO0cu8VU0GGgW/eP/F7f/zn/Oybdwxd8vuG91OzyvFY+ebte169e2QmQhTuDhM/+Nlr/r//5R+RuoiE4GPG4OE48nh44v3DAz975e1SNIEIr+5H/uEf/ZDtpiemSBXF5pGpFk7TzNvHkS9evePxOJFCJOfA/XHmn//4K949PNH1W1iqJqiXQn8aJ96++8A3b+8wC6CRwww/f3fPf/pf/VM2/dAsA4QQI7UWTuOJh8cnfvzlWw4zSMyECG8fjvwXf/jHPL/dkKJQi1FKZSqV0zhx//jAV9+8493DCaGSg/efn331gX/0e3/Gn37/FbNZ4ysVqnAYR+4en/jq7R1WJnZ9ICo8PB35T/+LP+Ll7TNiSszeqxBgGiceH5/44c++4v3jkWJuczLWwp/+5EseTiM/+vIbHg8nxmnGqqFmPB0nPn/1mtfv7pkQ+pQYxCsdHA2GYcvbhxN/8pMveRonJ6qCk6/FjMNpZJomng4HXr+751SEGjJPs/Ljn7/hH/zD32e32RCDE1vVSwRwPI188+YtX7z5wHicKFUJecPXd0/8/h//iJ9+/ZaYuqZ+VGo1Docnvnj1mp98fcfr+wMhuML98Wnk+z/9iv/Hf/779Jv9mSxEAyl0PD498ertW37y869QNfo+k6Lw7uHAf/4H3+XZfksIwuPTkXHyIvRWjeM48dOv3nA4zaSUURVef3jiez/4qVev0I5ZHTC0UpjHmTd3H/jxz77my9d3hJzZhUQV4dXdA//o979HSL23Q3VCSUJknCfePzzw5pt3PIuG7DJdgPuHkd/7Z3/GZrvFUEqF4/GAleLkWSl88+6B0wwh9cQQefP+kT/+888YTTiMB0J1VT4Gp+nEZ1986X3k/oGcMqCMxaspDDGQ+sw0z3z+1Wt+77s/PIO+FZiPB+bZ+8yb+0fKVN2KIwlaC09PIz/86Re8fXdHmSdO88R4Gp0kqMZnb++5v39s1ggRDcZ4mnj79o4f/finbuFhxjzPHE9HHh7v+XA88vbdPadxJAQlpUiITqZ9+fU37B4eERXGeWaeR+7vP/Dw9Mj7hydOh6NX9lC3YJimwru7e15984bcd5TZQfjT6cDbd3e8f/+e+4dHTqeRrF7dIijUufD+/T05RcYyM00j9TQyHu95+/6eu/snDsfJq1I0e4d5Ng6nialUOhNKKVSbKdWo5mOnlgJWUXFSbppnJjOqCGhwIN/aniYKVR45jSdOh0NTW0di8IocgldPWGyQUhBe7Pfs+ogivH94ZKpe3UOCkud6nhdV3D6qTjCVynGcOc4TVQ0JXm1krvPZVkSQs8Lbl/grAL7NRwrMpRBjYjtsMODNhzsn/6IuW66P/uvft4c62mcsoWfQ3z76/fmzl2j7FidKhEtFlyvx9fL+xVODZQ95OWaVy7kJPp9cdl/LiHCiwao1gh1iCvQhYjUyl7lVNlkfelrj18eaz6z5zJrPrPnMms+s+cyaz6z5zJrPrPkM5zWIv/L5zPrQ0xprrLHGGmusscYaa6yxxlU8Pj3xUXIn4VxeWxpYvChozoh+Iw9qIwkWcJyWZFOXxFIwAbOZGJWbTc+3P/mUIXeILSWaXb1nS7IogFQCkFWJ4qqlqIEgARMvkGwGtVS2GshRqVb4/NVXnB4gDxvy0DkJUQ2keqlhnLg4J7hmHye1ZwVQ+4VBzs1uQRzkjY4zUHGAKohbYGgrN60qC8JALcZF8WTUWi5ggEa6FJ34aD/fHY7813/0XV7+9Atubm7ou55pmlz9Jw4afv6zL/j6m9cUBAuR949HfvjZzzicTjx//pJigtliJSGEEDkeD7x7f8exGBYyk1XePZ74b773Q24/f03MA2iHSKDY1MRNwvsPJ969/0A10BB5OBW++8PP+MmXr+n7gZg6CgkTT/5rnXh4PPHmwz2FQu4iYzW+fHvP8U9+zA9+9g2C+uuDMNXKaXKQ+nAamaoRoyuhPjxN/P6f/Iht35FTIoTQVMN2BtweTxPvH4+cihFSZiojf/7zt3z1+j19H9Go5NijIVKsMpcTUzGOo3F/HNHk5evfPY78k+9/xp988aY5cRhDgEkycwP/Ho4HHp6OrtDLgSiV7/75F/zoyzf0XUcMiePTE1Yq1YwiwrvDidNYIURSEGSevXuroCnx9uHI4c+/4Aeff02XIiIBaepIBz+FqRhTMWaUGuD9aebwzR0Phz8lRLyigShU5TSOTMVV+IdTwaqX2a4mvHua+YM/+5yYvPw4QCkjpUIxOMwwloJVIWogCjyNlR9/9Y6fffMWVbdpQBZwy+/FPBXmuSD4+R9K5XR/4L/+Zz9o9jI+rENwEqlUY5oLD8eZqQIhoSJ8OIz8kz/5ETkpIUCtjkaVakylchgnV8+boBIImpgrfP3mifcfPqMPX1G0UgXM1FXI5u89zgWpM5vs4/t0KvxX//TP2PQbNAaqGFZntwcwB+XunkYOJ1cZhqDM1fjRl6/5+t17/vSnX3AcK9NcMTMCUGrh8TQyzeU8f+Q2v83ViKnj/eORu8cjr+4+ICEhC7EoUEplLrP/d54RMqaJYzF+9s09x9/7LkPfEUPwc2yzcamFw+HEm/ePCOKEakh89eHA3fc/o+u+JKeMWUU1YMA4Ttw9HfhwmDnMDjRvVDmcZn7y5VuOxyeGzRbV0AjiQNTMaTzwdHzk1bt3BA10OSMK7x4n/tEf/gmbPqEKT08Hxhla7XvmuXD3dGgkQUJD4PX9kX/2g8/47NU3qHaY4lYVpTBPMx8eHnn/eOTpOBG7jpgSp2L8/M0H/rP/5nvEkCjVKKURPI1APk0jd2/es49CzpGgyt39yD/+wz8lpAQq1OrnaLW47UDOvH73QJ2NPmUCia/ePXD4/k/47Ks3zPVEkuhrnMFpmnj99o439488HU4Mmw5wC4EAbmFAZJoKX7x6xx/U4ktmg1pLmcFgbkByLV55Q2NALfD+4cQ///5PGfqEWWEqlVoKUitWK68+PPL0cECqEWNA1TgeR169esv35M+JyS0Laq2cxpGnpydOdeL908g0TsQAKbo1wWme+cGPPmPoMqhwKgWzyuHwxPF44Ol45HQ4IuZWE9L6yedffMU0zaQhU+ZKrZVxGnl4vOPp4Z637x8YTyN9VHKzKXp6euLHn33O3cM9cy3M8wynkePhnq/evObVmzuOx8nJVFVUlKkYX756jWpmt3lkOh0pVrA6czgeeHd3zziOQEHVLVbGuXD34YGvXr+hhgDTjIqfuwX45vVr3r17x9PjI1GEFJSo4vZJjRxYCsNE833LkHwsPxxHagCJXu0h4bYbi4VSUMGmwmmeeH84cX88OVkRAhKUaT5hxPN2yqqvF+YbEN+HnPcM/pO1fUpKia7ruLv/wFyb2luuAPrrEBy8l2XXZuc9ThBtOy6fv5a/L0Rp2/r4e66IBFs2Xu0Ftrzw8oHLRurqfNpDJm3PeK2hbnTM+b3mrB8ihgYhhkAtgWLlly5vjTV+Vaz5zJrPrPnMms+s+cyaz6z5zJrPrPnMms+0rc9fi3xmfehpjTXWWGONNdZYY4011ljjKqp5EWrwBFIFTK6JAViIARE5p5EiQmilg6UB3/5STzUNpYpDnqh6OfS5kEMghkBQJav72RerFPPXBprnuQhdCux3O2aDQ3Hf9UBT2yikFPmdT17y6e0eDcoPXr3ip1++I4TkamYqkxUC1lSp4eOLX0of/2IG2hJhCdB1gRQg1MomZYIJZXIgtouBrMEJhCVj1ksy7KCBUmeY50KZJz48PNJ/eKLfbfnOd36Hv/u3R3786g0///AASfhPfv971FpQL/becn2hGByfTvQxkbuO1HdYCBznyo9/9jXf/+FPgcA8lzOQLqJM84yokFLm9tkLYnCAYCwz3/vhK8bpM0rx9scChZFaK6UaXR7Y7/fE7CD9YZr53g9/3iwtwKwwm1INzCrRJmLq6YaOYTcwJMHmwLvHic/fvWeaPkerAyOlzlhrKw2BnCLP9s/Od2gqxk++uvOS++bAOa2vWuuaMUaGrielRNRACZm3TyOv3j9R6gmrM/PsatBKJcZKDJEYO/p+T58jhnKcK3/6xR1Pp9eoQqAS6uhq5IUsS4Hb3ZYhBCIOkP/41YFxvqdWI6iDydbUk6qF29stKWa6HLBqzGVGxMcLCE9j5e3DA9Ps5cEDiki7VkAkkHIipUiXAlApxXgYK6/ePjGVQwNqAkpCtBDUrSa63BNjOiv8scK7+yfmWqlWCWJNtSZgioZM7CJZITdgaTZlHCtlmpnr6P1qOR6QolcJyCkiUhEJGEKp8M03H6izl26v1sixEBFRRAJ915FjIrYqDKfJ+Nk376llRjAH7FofFlU0JEKCqEJagHUN3E8zbx4OMD5QtJznHm3zlgRFU6QLQoxgBMyUn3x5xzi/oVilUn0OK9UJyRjJw4YhB7oQEBGqdrz58MCXr98zzieqJmZimzsLKkLqEjEGsgpv7p/obwb6GJFQOY4nDrMxVeNhPDDOj2eALjZeMQQlqJJidHydQDXjcCh8/e4ryjxRq5dWL4BSiQJdzqTt1ttJjFRmPhxHHt58YJwnH1OyAH8+eWrOhJyIMdJrIKLMs/DmYeRnX30O0pSR5oyoSiSqEaOw2Wa6bouYMhe4P8383h/9yMFvXKVs4OSLOBi47TuGnOhSIqTMm8ORL97+nHF8AslUKwRxMljw0vy5S3RdIpjxeDoxToXjNPOHP/kKqvezWg1ROYOgUYUX24H4YouFAFV4fXfgD374JWMtbW3zOUFVSSHQR4jDQJ8yGhNVjC9f3/H02VecDiOmbmchi/LVjBR7QoqEmJjmEZWEADkoSbz/HsaZ9/dH3n39Hqy2ebVCTAQpxCBu59LtMA3e74FXb+756c++otQZCVAl0GloBT68UkZKA11MJC98wOPTibv3D/zJDz/3eUiaqUxTtgdxQLlqoosQdKaWwuP9yH/yn/1jiioVYW5l+91iA7drCYmsAdNINeP+8Yn/8vf+EDBqTL524OsKMrcxHlECt11EMeZp4vOff8mX/69/4GX929KrRShlZKa6atzc3sGvQZjmwn/8//uH9F1PCqnNvALmROrpdOLu8ARm5BwwDRwm459890/4sx9/RsyJbUrENveMMnP4cM+HhwMPhyM324GANbIgEoPfl3Y1RBGk7SGQCCFxMqFOlVpnoDDW0tYoSLlHrPL4dOD1hwde3T1RJKIxoSFyPBaqBX+YoJHB1ta3C6x+gc8xQ1SZauFpPHL74hmbYeDpcGCeZzRGzBpX/GuUw+0xDlQUDerEQzUoThKf0XvhrNRumyG3isDng1prW6c4H0Pc9+FCKrS9YzUQieeHTXxbVdtc5App0WVcmSv9m32EUUECIQpaG7nQHvRYY42/KNZ8Zs1n1nxmzWfWfGbNZ9Z8Zs1n1nxmzWf+OuUz60NPa6yxxhprrLHGGmusscYaV2ELRdBUNGbNg/5sb+DhOmj/ThcFsTg4UP1AgLREzpNnKE356J7xBEGCQnAAHnGgxpEkpVr1HDOIAwlqFClNPXvyE1HQBhJGK3xyu+W3P3lBFOHNN6/53CaG1LHpOup44KQXVY0ntw0+vFL8/GK4KNPou8x22xOlYqcRqMSY3ZagVlQC292ezXZLNwyEYbgIzMW1ckVGgkIMgX7Y8iff/2P+7//Jf8z3v3rFts/swsBJIyZOY9zevmzqyInxdOBmOzhoosLxcEBMUHVV1owhKbvKcrOjINRGphgNoKvtZwPK1Cw43K5i2D5joLDo0t2qvimP2z8uhq0tSQ9sd8+o1nqDFApKNUOsEplB9EwgJRMKTubsuh2VQkCQKlhtwJ7zBAQgUpfeRAxK2u9bn2iWGtLgE/EOJ2IEW8CUGROjy5GUE8iAUqnW4BZRojRlMopoIDVCzLLQxQ03O1fyKhWxQiW2EWLUIE4OmDEaFJT9MJzbGqlncMTvfCWZwDw3wEMooizFsIVKjIEhbegQ1IxYG3Av0lSsFcQWPaW/RwIxZtKuZyvDAv2ARUxGH6e26M0qQR0oDGLEtGHBhoTKbOogVLvPFvz8tDrRBIEQIjFEMobJlXLOjGi6cGKuVmQCc4BrGIYGeVrrWG3wtjMOUona+matpCjc3tw4mWAQlKu2dXCrUC/gokAN5qrG3KHWYLY2J1mtmBXvO8tnW5u7VNnePGOoxT9MhGABXdravBpD0MoCS40GXd8Rc6SzAZPIebAbiGqDL/2q78eJLx6OdCmgApPNpC6ScH3sIH6OYoaKEMUIqg38LNDGnAZBJZO7566gbABeFfHy9xihAWqO3IHUyrbryf2AmaDFQH2M+1hyVewC7VILRXzeTX3HTfcbBGn3zdoYbcCmivd1q4JSiGrUWOmf37R+4f3XzOcVA6wB3KF9lsjMpgtsuhvMdliNmDnRIggzwef5dm21GicTTAMxKy9T9pY+T+HeptoIAFPl1VMBOyJWUROeP9u3UvY+dy782DL3FPG2P0wnnwP6Ddu8Y7sXghpn6LJWrBpBQuPXzIm3MjlxEwIVYZpPBDVu94kog5MEZr52aCA2aFUwypnUgiBCDpFdd4uoIMFB3CCLghWMeK7UQaukELpIlzu22+bms4C6fkMQcfK+ogzRnLyrfm92NzcY1VfsqswVgjhRo2LkEEADBRjnQg0JSdnV0MtcYc0qJrgaPUpwtXG7sIUgOU0zZayt8oEQGhG7WFBFVTQsa7wgOfD+8cDb908NTPc1wOe49pk5kJKTuWoOSr/78MTXb94z15lol7arodKHSNcN5NzRN4X91M5P2wMPofWHChSbEGkE4GZDv+kIMbjthsA4t+olCDl1dDnzdDzRvb/n86Nw/80d43HiBESNlNkrpqg6JV5aNY0F5G+7qzPxFULwag339yBCvxmQoBwOB4r5HGC2kA2/nixY5u5l1CxqbgG07b9o84x/voLV6zdf9nohQAhYmbhiFZYpsT1/Ea5+aA9kiN9FEaAUX4MQt+3Q4JVdqlGl0qXA3EiN9ZGnNf5FseYzvxxrPrPmM2s+s+Yzaz6z5jNrPrPmM2s+81c3n1kfelpjjTXWWGONNdZYY4011riKLuczuOn4sbavBqY0EG0BVw0H7GRR/8pS7teBV0IArWeQq0zG6emeUir0G3I/uEoJ2uedjSNQk7NaU5pittSWRBcH9CrqwBqQTOmil1WfzZjMwbDlmOYoGzSdUUtRuXziohf6OM46u5Ysa1RCCoyzlyoO4ornsRhvHx548+GevOmIp4kcAiFoK2cdqGVuAEnBgM5OyNM9j69f8wrlO89fkmPg2y/2HGqh1MrxBPeT8eEwEUIkDEofE5IT5YyMCbFZW5gswH4jXTAHOJqqytPzpj5aknURNLhVwLlFFBZFpIOR/lpXorXvmnpepQFutI9DUGK7dyANYFmA5SQOZwoLAXS+jKYUBqjURgIs91BFz/diKacOCxBy/RsHjUQdfFvAYuUCvGgD/Q2oVpmcFfPfmbEYnDgGopwV8uAg9EK20C56Of/lpwaoLp8xnyVndh5jdm5HIwRlGVkCBHV1ILKUA9cLiceil2tHl6U3t8+XQtNComINsK5gi+WKNMCwifdR4nKNVhGpFwhf1U8ZaffGuG5twUF0bb8xs/OccYG4OPdVP6flniwhDvo3MkvavVjG42zLPVl6hjUFvpMapg0QpzWFWeu/fpzSwPALa6fnY9GIJ239TEXPIPOlQ/q9Luf7Whv6qlhxgCvIQgb611LWXQSqRp5mOJaCqlM8mJ3Hqix9uM2jk7m1gV+PjwHDz9MVhk7gmCz9Q1qPb6D/FbQ4tTGrrYtqaxcVvE1a95YGIGNOjBnaxo+2vtDmElmA5nalJn4dcrkOFWlkryCt3WubbRA9qzzNjFILGhSvlxEWVLt1HbdV8PHvQHKpDUCVZaZqo2q5QC5zur+nNqLXFZxBhVCdHANxW5MzaNn61EJoYJh5NYsFpF168YVkMKCc+7yJUsXn21IL42TewLrctwsIvhS/1za2zGC2Si2VYjC23qEiaMVnTPX+LOKzbJDl3rU50Zbx7m20EKptxml/X66tMs3+zmow08a9yflqg7TpD2+zsfj7qsFUqxPVV/OWLgNgmbOX8Y4r19vwbD1Kz33SuYHlLP0N2savq2xb/xXF1Hz9EKVWPc/FVYRQBSnSrsEtZxAlxoSatqP7eQQMicHtlawiBUZxK5ypzL5TsDYniKFWEAKKV7e4PzxSpJJzJqaEBLnuScxlIhUndfoU6GI8z9qCPyww1WWct+m3HeA8+y0VBVpHX2Z5EeHp6cn7uSgxZabj0/KCy32/nmfPJOnlNbUuH2jnnxd1dhtYLGSpE4t+IkvbSG2/04CXmyjtyYqlFew8lmX5nPZ7F4S3NisF5slJCF3WGm12P07ugXk1l2qtz6+xxl8caz6z5jNrPrPmM2s+s+Yzaz6z5jNrPrPmM3+d8pn1oac11lhjjTXWWGONNdZYY42rOJMACz7WEuoz4HJO8gTMy63XpgK1BjZSXWVVDGYTqhZqA9oGzcynE2ozp66VdddAOBMRnnQqcgYprR3bRJjKUjL5CrBxtMbVktV4GifmWjiW0kBxo1ql1kZonKEZucaGrgCVBXT+GHjF3MbBYnTwXcGsoup2FlMx7h4eeXt/T7/tyKfKkDMpBWIMBI3tPIqXcbfCLsGLIfFy6Lh7f2CcTuy6Lfth4H4cKWXig1WeTnAYJ/pRGaIiKbRk+VJ2OTSA38TBfqE20PJjMNbzcmml5NvlL8h8AwovGO4Z8m7K96ujNRBcGvBf7ayLxz5qOwcqKhc1rTaQ7YLZXp2j0PqYngEGaTfgDAIvbzwD3cpHB1yu4erKFx0dLP1azv3HYb4GTTWwRKUpb6UBgldKM6l27oMLAHcBsuzcbGb1DKY6WLX8/eOzMxxoX6whXCnmCunmr9IAwMsVLO3sLV3P/djkTP2cr3hpltLGSqn+F4VG8rjSe7nxZs7bmMgFXD2jV1d9op2/iivqHJO1BsK3ecSchKnYGUSP4sDy0l7+OXIGk0Cg+h2jAXgLJuT3/0Lcgavm1OR8/6otAJcfo9bKQm5ekxN+CtbsBwQ1B6XNKs2D4dJ/TC4Inl5ASxFxovDcnn7RCxBbcQBtWvqMXs0vrZ+r2bkPVRyoU3OiwudGB68XQmgBFJeusLzXGrB23e+dXPDvGvR67kGXua790IBF77d2mT+MM+h8NQFcf/i5Ly5fC0fjb9FGMVzGzAIWu6WIt9NCHjT0EDgXij9/YjW8soZdncdVG1zO+QLrOyAviISF81q4H1Tko/VkUbR7c3i/rMXa9bntxAXoXdq0NpA7UkVcADoXpuqWHzGEMzEm1RpJ0LgDuwZOvc9WK5RizAZVGkUjQhQhBxA1t6pp84m1cSkiWL0CZtt/VC4EHuZtbdaU0rWNMTEKRrGluoQPdb9XTk7V6mPFxAnMapUk4TyuVL3qgpmv2xcSp5F69QJSW2tBbbL8RZXrQPWlfy/AuSzrhyghLlNzQOplHfTPEbQsQ9/nRVElhoAQr+bT1j5ntXZBTJhVmKy6ylgWkmyZOwAJBLyywtPpiAShmBGt+gMEVzYF8zwxqzdkUDnbPizDKKiiUi7r4Pmd1+vu8rmX36p6y07TzDhOTrK1BwCuw9qDAef1qdov/X25G8v39fyvLU3lH77M+8se6Txe299FWSrosBCeZ6L8soafP7Ot8wuRCxWahQzL/gBpD1g0ck28usfS99ZY49fFms/8whp/+RPYms98dLQ1n7n8vFxz2zee93hrPoMvo2s+s+Yzy7yw7JGXveqaz/ylzGeWO7zmM2s+g/DXIZ9ZH3paY4011lhjjTXWWGONNda4im/evmIp4a8IdZ5betwsHMSVRqVU5lLQFJnL7CCeAgTu7x95/+GB16/f8ebNex5OR8Z5AoP/4N//7/Lb337Orovcff0FD48PiAg5Z85qNpFWld2T0NmMuRqHcSafJgdtgpcIp5XjLgIj8MXbO96fRsyMh+NECB21wjiOKK5iXoBEz1EXaGuJJUG1K/BsASYDD4cTfZ2p0kiJeUZiIx4ETqcT4zgyTwWNUCVQNIAqFgWzQJmNuRYANtst/87f/G12ty/49Os7ptORZJU0zzzrIikP5HhinIwOI1RXhY+TWxm4stLOFfZFXKWdVMkIpRYcldRWPn65Zi/xbS1pP+fti7rwCvhe1JNLLPfo0mL++X7fmorr/FqPqlDsGuq7/PVa4LSAoZzLnctHx7mUrm735Zq4kMtrz+d3Bf59BJ3a+R8QLwF/OQdxEI+Pj7EQYddg8zVRUBqAC618OJzVW8GRujMwtqhml/aMEgGlykVRa8t1NiDzfH2LAn5pA9q9rMvROYNbC4ETWx32cZ45TTNjhaiQVMi4CjsudiwEsIhRPzoXGmAdGsC7kExLWy+l3glCKU3p3dpKy6Lm9HMVHJQzaV1XvUy4XrVZ0QYgqZLa9dmZILyArEsfWPAvEweD54YuKpXY0KxLtzjr8jGBEhYQWc4Ne54DrsA5LviXg9cibs8SAlYLgrVy6n4+1dwewNslngFlsAZyLbNrm3eu2tUBVwf/Gja5sBrYfLG2qHqeoc9zpkI7D2NW728LpObg/Mdz22WUtGoUiz/EFTha7UIAnN/c/q0YU/F52ueWSgzqxFED+Rea4HrcL0OrFgd564JqlwUXlbMtxgIqKiwsl59LA5edtb28z8QufYV2zxoZKiEQuNzbC/Xp1i3Ypc8jQlEo1c7VBLyby2U9oamXHTumVkW0YsWPEVpVEQdtIWj0udZceVya/QIGQd06AQo2F8bi4P1Cjm9T4LbvSU2te0Ftm95XFRoh5aTsFbHbyFirNAufBuarVxixUhpRou14rt6ttTJZ5TTPHOZyPo6Ysc0gwSsrRFECMNdLf3PbDGvg/2UFMLm8JgKhLuuQE6o+n7UbtJDIZhd1teD2RovivnXGgqvKL2vipZ3E6lXFFzkTvo3CbnNAbFYWAamVEK72DKIEqQRVQgiEmEEjxYw6TVCEzTAQ24ME8zy3KhQwG0ylNLLlgte78hdCUFJMhBCQUp1MOrNsbW66lA1xAjFnjqejX6cKQYP35vb65YGEaysv7HrH0yy3luPjKvb6Cw9JLAN1mQuW87meI00ur2sNf543pdlOYVzIdi4kfRuEXk0HJ42XCcIJu6XaBu2BAqOWX6RE1ljj41jzmTWfaQda85k1n1nzmTWfWfOZNZ9Z85n22Ws+w1/pfGZ96GmNNdZYY4011lhjjTXWWOMq/rf/h//jWQGrBmWaLqJZPO+eaz1bGlRRpnmm1MJsxvHpyYECDeQQSRr57d/6Drf7LUwnHt98xfA73+L945H/0//5/8If/vDnPE2F3WZoYPUCDPiHRkBDotbKl9+85qvXb1hUdaiRUsAhXmEqlR/87EtP+kXQlNgMgwMfpaBRz39ztPA6of317WJAscrT8cSDKaZCCJkocgZeO4W/9Vvf4e/+d36H3/6t71DjBtWm7GlKvsUOYvFwL/NENxwIqefLuwe+eZiYrEIU5tmIAqHOdGI83/U8u9mR1EvBl0IjAZoClYLGhKorT4MoRQJzMea5UkphqettVrFSL8qllsCrnZGVpqgSV6vDx8B2S+KXn8/qrQW5W8D5Mwj3MRB/gQpdmHchZX4VDHmJXwT6HSRyYMyxJLn87QqFdNX95ajXd3/hC665kKVJ4BrMbwCFLMfnAkTWC3gsApGmv18AXqutiV3VNeMAmS4K4lYSXBvYYg2slVbaXyU0wsbBLAdmHRhGmtJcznDoGRSS1mZBvex9pTKVsuDUBBFyVPospHb/KsKMOMBZFlBHmvBNLkpSWZrXEdVpLg3MaVD4olashokihHM7VzNEIq679hbucvKS32aUMpFjOKuEAUIMqDRov+FnNJKs1KUfOfjZMOR2boUo2s7df6cSHRyvjbBroJeKK6MXFaC1sXKxamjaZfOhtBAb2gBuVSXHiAafk6pVxnlinFs/EldOzmV20AunBhyw9g5aY8Da+ddaOc4TGoRkShQhRqVghIVU0cBiiyHtd1HdJkBFyKJ+T5u9TLkg4O3WLfYBXK5ZLmNvgdn99C5kzNJeouKkRZvbRMQtcGQhUhr9cZ5qlvlKz8exdsHLHCCtioBXB7h83kLMOcBoVHESRs7HXvp1q4ghDoLq1fXQ2vxCHyzHXkiJ4JYDbQ6p0BS7CyHbAOd2JFUhSHQA2yqoE2nMUGr1uS/4NVsb5yb1PN61AhJQFSwKpQowEwj0HQwFxjIzVZhrQdUoNqM1EBo5KSxjU9HYNOjtfFVahYVlOCxA+VJlYbEIEggSnIi5qgpQrCA4qWg58lCNaZpQoAtOkIXgc0xUX29MaiOM25hpfTOonC2Jqnif9XmaK+ubZUQZWMXkovgVgBDOewVbNifLzV3A5bP/hJ3nXGjAukjre5d5TLj0Vyf3vK85EeS2EdYAajOfv6ZimLQHAMT1+2ZwGAuxCNqqJ1Qx5lJ5GicmcysYV/b6/ahWUImNbLz0u3bGsFS9uAbgz+PSycTayJNljJ5nP7OP+v0vwuoivj85k/O/8EKfx+bzvFctnMfwMhZtuY5asXlGa0Wupe0sq+hC7MrHl7J4gSwr47KvsIUIbLYqc2GIAQ1KCJGYEmus8etizWd+daz5zJrPrPnMms+s+cyaz6z5zJrPrPnMX818Zn3oaY011lhjjTXWWGONNdZY4ypE9aqMtxClKZZb3lnlAq8siGiplWIO1N3Hd3z6/Dm/8fIlv/Od7zDkzG/9je9ws9tSTid+8+ULdrs9X7974Kev7vji9Qc2m56+z+0EOANYIk0hKALq4EmpTlUsCmBXkEkD8cEkeGl4dcViRM4prom71y9qsGoVtUWttwBUv6JNGmkxzzOlFEQCGoKX1k/pXCJbbWabA9susekSRaPLRRfwthhVHUzAHFCcrJJSouszfYrnNq4aqNPEWS2OAxgpBrKqgyfVOM2Fag4E5RxbeWm/R8Xk2ooeqjV1ZQOI9FJy2THKRVNpZ8B/Ad2soeLnsunn0vhLV9ArkP1KbW4XMENsQXYvMIbZ8oly/u8CPi9ERDvMBWBcPsUM08vxtF37AiDK5Sz88qWp7RYiyq4IowWcv1KASQNMF/DRgYvLdS2WEsv7r4FIOZ+3tT68qI7b2VUnchZAzLH+cr5GB9EcvPIy70qtxfvTVZucwe2lPZbPFzkDpw0OQzCSKuSEaiWq0gUhByGpkzjXFI1oIzoMlmoJC3GyDBU9txaILTSQnPsgtWJSQcIZVl2sHUJolI9VqlWmuZzLfocQCaEBjOqq0HAmQa7onUZS+Jx1UXPKGfZ2paOYnXFD71f1TKxEberQBSRm6R6LutbBVxHOBKpfQLwSKgqmF+Ccdo1mhloDWBtc6dfXzu1qLNTlc0VdRV8rkzkwjBka41kBr8HJHwd67UwQtduDBiHqci6LDYhcFK2XDv9L+KMZLHYFl6v7uG/Y0qfMoDpAnGNo1wVpUXUvH9kA6/P72pzqfQUHCs9tIaDLHHRpn7Pa8+p8FnWlk4yXOby2/htEL4RSO/MLCHs9YOVM8Kkuxf8XALuN3aWN27xU2zWJLU1Z21ysLOujirdLF/1Ma7u0ep4ZnGSwq4YVsXObCcImCkNMFIuM5hVJRKxpqYUGYVNqpUprT7k+3tJm1myVmoJ8wdG5AMna1tWFIqhtrlpsfESUbZ+ZVRAzcojEdq61Wuuv3t9quy8Il7njbCXTSAPsouRGGqnQ+pn6P1aX9YA2i11WGFvux3Usa1frR3Ymji/zucpVn1jmlWUdMGHhl/11Pr9cV/yorTrMWIxk0qyYoFRfV4tVpznMq7FM88zTceI4TkylUhoJc7HMWObKZR66modp57oQaPz6uLrc9vOFNOZ8C+zq9VedhY/fs5D3l13IuYGX1v8VZ9AInFp93Cz7B+p5/JxJhrpYLgGLevqjczFqKZS5UApNYb8oq/WXP3qNNa5izWd+RZu0tXfNZ9Z8Zs1n/JPXfGbNZ9Z8Zs1n1nxmzWd+Of7tzWfWh57WWGONNdZYY4011lhjjTWu4u//u3/3DKo4YBBYSicv2bUneQEJ4ey7bgalGPcf7vjOp5/wW9/+Fn/7b/4ufQw8f/Gcvuso44RWYxal8IpTVR4OI6lL9Hxsv8ACXjfAWpEGyhlmrew6rey+LAon+f+z9+e/tmxJfh/2iVgrc+99hju8+6aap+5id1d3sye2mk2ySYmiJFCTJYGGbMiCZNh/hQH9ZvhXGzAMA/5FtmjDEGDDgAUJtmhIpCjOVLPlHthTVVe9eq9evfEOZ9g7M9cK/xCxMvPce9+rbkGGxOqMh3PfOXvnzmGtWJEZ3+/+RpBzdqBGha7vSLjqryl3kyZXUHIXxCX+4iVJryfLrmoG81LQOTOOldvJk9zJoFMcdBXIcd6md0see5LsgIgGIJBUyCnRR/l8E8E0AeOsOhKAWh10C1VbkQCGaqUK7HXnCmw8mXZxks2ARwOTZ+R4JkgaQJZYUM8F6G/KtQbu2Py7m4rOJZp994Kgd3rULwK2u+N7B4hs4MYaHVwdqZ12cxBrwE7sX8NnG8h+t2WFK9tru64Fg6SRJAutsFxH+10Ddm7X365DGiA1g2ABkDQ0auVSM3hnQhYJ4FGdyJFotcACZpd2xQHq1btnPIPKC0kgy7WFEt8P2UA5I6uQJLlyVoVOxdX3uoCXYl6i3tT9YSn53UBoH5PUgN3GJLkONsKEr8na5qORIY44+jahyMOEMhZO04TgyuFD57FFcectWBAPvgsH85ZzaeDyHKeay7bjh0J19imrTvbF+FVpCudGVhkzDyYO5C6gokBdqUcthOazjwew2gBmaarzhkPaQsbOvuzA6ux9IqHwlnnuGoWnGBrqXQys+PqfAXJzhWTD3CROrl2jA/NBNtnsHW1gMFwx3y64xdZq86pbVr858ZZyJmtrL1NJOGGnIq42rebl/81WoL3Mc9fmlrjOGSnFJ/wOuDjPecyJqrcaoa0bMCskcxI5qdwBRn1aFjB6TTA0MHap0rEQOw0s1YgVWmuQsDa3wQGhmrg62NzHd11ip04UVhGswlCnxR/EK3Y0IHwGsSMu9eprzRBGjJtBaI0UbF5rLdZ7jJMWRGIjDR9CApheWM+FGBVvidJpgqjAgHmLixbJkygXfXKQO+KJiCFWvcUBhclkXg/VnLDSuJb5Fm+xDsR9sagt7Vxs5V+NbJw9Zb6kNaQ9ryGJ9bpsLotK2hdZHNPBf6+ssOymRuWF2nyxxQVhbl3TxrZU4zQW+mJzQwr/okJQGXHvzeJteI6nkdM0LQTKfA9p51cR0/m5gPDLu7fDu/fPu+2Rnn92sYUgiPleb3Kn5RXtOWd1Y0RmMs0riwhS76z+xWL92PqEXzib1fmv4sudq5vjQHvFn3FKcf8yvHWMb1TZbLNPsy2feXEtbvnMls9s+Yxs+cw8/LLlM/PC2vKZLZ/571E+s96u+diWz2z5zB/Sti89bbbZZpttttlmm2222Wabrezf+1/8e0tzdgHQJaFzhNDRJwQ0MWexZo7e5QS3N0w3NxyvnlKnwnE4cX1zhZjw6v1L+sOBR48e8cU3X+Uf/Nf/mOGYGLpMd9jPSas2NNvKXB5fRL3xQ3UYT5POSmDMmKKfewNJuizkqXrJaPVy8lkzY52wWgN4abb6bZU8L2pTT+n7nOl3PV3XcTUcefu779Dv9pztD1yeXzjQXyt1GKndBCpUbcAfjjZUAQqTVQcrMbIYyuSAi7rympQ4DoXTWCmRD9cyYZoCJI4eBE0RrGAUV21Nxlh8+1lFnrvIy32udA3ErQDoGeyKthVNVSU5zechq89JO37Fy0A3QCV+bwB8vQsT3LG5jUMA9XMrhwBylsP5XDciQhqIVG3+NNZUyHdNJDFJgFEipJTugE0zOMkCBLkSK0qqs4Ayd/crCwFjDoYWLfGeoqokDcBRIIsiyYH60zgxThOjGQ/PD2QxVyibUapRYz4EKM8BOk2ZCeZkGTDL0zXKxMdYJQIoF0GScugUCUJCYmwMnEgAOmlEj1GiLLeis9oaGiy3Nr++u2Cd03mGMlY/P41S/QquxhcHea9vj0zVz7dapssHsipKpWiC5D40T0EVQLG5dUOdZzOlxDSfn0GUWfcy7NVV36Ec9qrtFTUHQZMKlboCyAiCpF2VRDl9B+RLjGONOChBIMwAXPL2AEnNgckgSZI60OrrRBlrZSrGWCpQZ1LnrO/Zdx17VSd0IvYR4HBRb/FQ8X1Vq5TqelcFco1WKWZkxGXa+Hptvr4G/YVosCOt4oQrft3fHDJntRYagK/Jx6UFvLW/WIISEeAu2LnyoZlc07h+5goDYEFB+b2hkZ6igmhHhbktzzAVSinscqLXjq7vfYxtOZ6Qouz/imSSBYSUuP6UEkqa1cONiHRyIc/AvN8qExXlydWJZzdHikC3S5z1iX0QDdV7C8DkcUijdcQM+vutil2f3V+rK0PV3EcSyi73PpYxNE6lWbQE8DGutalHBauTt2FYgc0zRit4KxIgoXSSvI2QeXwp1RYCOO6FZwpobi+F7/l6qdXJJK8WEqNdiFYK7lhZFJVYExG3pBaKVUqxeUxpc6BLhQ+J65CQKVs1rxgR266B50ZuEeQW8eWBnJTUgHxgop2vBTkfdSTm5RuxP/zNqVyPJTengdQnupxQ8bVxGqa4P0UsEhhL4TgMjKU4GTjfsmSOkiKQcyJnRccgVF+wFwmTF99erbJ5ma2e6dqv7V4nCx3e7mN1fa9p24iSknqlhnhn1veL+JdGUoISlSbmNg8tRiz3ZKv1zpVYO9kYf3/O9MVQSmEcJ4Yq3NOOaoWpTIzj9PIx2GyzsC2f2fKZLZ/Z8pktn9nymS2f2fKZLZ/Z8pk/TvnM9qWnzTbbbLPNNttss80222yztR3e+OT3XshL2wuFgN+AHWQwHRhOEyquRtbsyHEVQVNif3bgK59/k5/7+pvszg9o6nn8ZHKQMEDhKq4OneHjGQeVGXRPoQDFvNVDlgqkwJmKKzJDcdqnzDBNYEZyrRslAOyXFVmeAeEGUACUhJLRlCkGN6cjkwip73i033Nxtqfrd6AdkpID+OiMzBhxTpagVhAnCcQSJzJ/8P0PQZT7l5e8dnnGW+++x81QOFUFzUyjIbWgUinV6Hc5wCtXMY2TzSBAl4CUZ4YiLUJOH8M2dDPQYjPX45fuJEQD43wS7oJ7jgPYAoronbfn6xZchWsN2DZXzNFKb+OKc8cHQiWoIKaLWDuIhwaBLDyAOBIDs7c0IKYBLSoBsGqOa2uqs1Adh/rSVcq+y3UJcz9ewqwGgB/7xRWPDpeIt5wggHlZgJFqcbxqCIWkaR5OVSGb0RtkXGloGgrM5uvml9h+t/h7VgMTPF1MTzUHVecpwKsGtLFrn23tM3QGxvz8nXpwhW1CqNVf0di2xvhJANFqUNQBwwWIlVk9PBUc6Jwdw8c7E8LFfY+IcBxGjuPI7TAiqpx1mfOcguSINRjVGabZT/zvGgCjGGhWhy7N7mBtfk6JLC4FtyDNMkIyjwoqhJJZVuulkWXi69mMUiYIyFwaSaCKZkFsIXGM6OIRjlwxikEJhV81gzohomTxKglQIbtC84xuLru/EFESAHeoU9vIirJrSzSFb1SgGDlrEHaxfrrmO3Gucc1iINXmtW+aqNZUwK5yn4FxZkgVk0bICtQ4v+pURUpCR3LflWhPEXEjReuIkPe6Cr2RSCytRbwSQrTlmAmLpUVQyolO4ZTcs/qUvUUFDaTWmQwb6wKQUguqxHp1xavzNg6KighlKgE6+zgFV+nnUYnWRIkkibo/cSJxGitMMJwK+x6vRiB+zqbZ26KEg2lKiPmx14CuJkVEZ4LVgBQETIvfTRWexeMc0lalv5/VldctVkgSprpQNqo+nxZzWEVAEskgqVGCsKkRV9ydqt8nsCCTfMZMxAF+dUW1IF5FILWqBgVTn+PWdsKIuTHx+3ct1FBXO1HqC0yikoIIJEkR8yzaY/jazKoOQDcgPuJnZpmzEuSfziB3I0IkfLgFTWUsxaOeChL+XaZKn5WLg/LV1y65vH9B7rKfH0qJZwUVYd/1JPVWPjenI5fnPX/3d7/LOE5MdQR2/lxUhTHWzFArXoPFz1FNoyLMqtIIzO2V4vFnxbfpErtWpMH6CUdYPd+szTyO1VZTRor7azwh+eeiRkisZWMhXOa9B9FHm7uIM/GUgUhC1VXoxH3BGnMSlW9ae6GUEkmgjCO3N8e430KXE5tt9qm25TOzbfnMls9s+cyWz2z5zJbPbPnMls9s+cwPfz6zfelps80222yzzTbbbLPNNttsZb/xX/0tyjQyDCO3xyPjNM3JZG2JXKCU1SpdTrz+2mucX5yjqtzenJDpSKZySMkBZInS4CjDcMvjZ495/3tvo+XIj331c5ATN6fK1bMnDOOIaJ1LsYvonJw2KZ9FImu4EkwC8AfmstOAK8qSkpKrbUqpTKWQNdSZDU+fs+cXiYK1iSZMjKkWShF2KfOVz34WkYQITNfPQoHnalBNCTQv6bNBFYdFjBoK6A5RV2QVk1CGVmopZFXuXZwhx5Fy9HkQAiURRXVRxDZ1bgPggSi77tdUgwhYl3+uGFZtnt82hgte14iB+GcZ2nlO2o9SaYhPA140rcZTAqgIYBlhbo9gJlgA8UiA6XHucxlxHCE1WcCNWf0c7xvMn9UAD8V8bha/WJS1xjI+ZinGN96MfbvqPsB4FTCllY+HBseYl0y3Bs3FZ2QZU2tE0VrBjSvhHAh0gkDbB5OQ6rwrzKoDgzZjqX5O7ZrjPAPymtfGTDAknVunNIIlhmM1jzJ/vgHQDUxTlwaGgl0xK/O8tqoFGgRDbf0agohqJ9FaNfjYOVCfNX7MSH2mF2EXSt32XkqJDPO4i7gfOA1AUDINrl8dp5Wl1wCS48MiGmRAEJLS1orPZxIh5ZXysxqmyxglkWhvwAxOinopePeZxlk18JS5yoCx8Ghtvtal8h3I9TdEY5EEyZnajMf4lLpo05dy7w76Ct7+wWOlIUlCHeskwBL3Ys0jQazFvAeAj4kTdRAKcgd0MeZtZ99phFaco1SLNhUsJIC4gjtF5Qt/T9CYWw1CspFRPr7RTiLWAY2HaIMYKvWUvP1Dl1yxnEToVN13a6x/kTtxranz29yreGuQout45WB9jVYmqi0WeIl64ryTgKrx4GxHyR1Pb0dub0dfS46Q+9rBAV6xdicAK3X246yx/izaDFRmgnz29li3flk17q8SY7jEBsToVJzsiNdMHWRvxxB09imnWxaSIoZ3ntfZ32EmlRbiONZoKIn97Vhz2mKSeCsT9TWjhEI8FrUgaE4MU2GaCkOZSJrv3NvmSh1t33Ecifkj7u0ef2QhtMz9SLRF7RaXWjyXmfQQWFoYNR8yX8+ljOROuLfv+dpn3+D83nlUKlBEM6Q0r+WkCTGjTCPXtzd89OyGQ5exUqLihaLiI14MrBRv8bQG8FvQe+7xRNa/GC+8f9dig9W9b2l5cnenM/EsQaOsb+PeY4r1o0GLVzHoy7muPmjYXOVANcWaU2ansyCobfm6hsS6UZGogiOUaKeh6pVuNtvs02zLZz7ZtnxmGSF57mfLZ7Z8Zstnwidky2e2fGbLZ/ztWHNbPrPlM/8E5DPbl54222yzzTbbbLPNNttss81W9jf+2n+MlYlSJsZxYBqnlSLKQkEa4EYtHPY9X/rSl3jw4AGaEh9/+BFixvl+z2feeAMwutyRNZNF0Kx88OGHvPX2O0zDNZ//zCsMBT58ckTkiYP+TRndAMoAimYwMEA9q0YpldSSaEIhHOhnrUbVGipUYRwnSq1k7VCRWSH1SbZuCTGrgxXMJqwYvSY+89prlFK5vb3l/Q8/oJZQY4pEIuwQ2gJItN8DmEoZSRUTb7XQ5x4RQtFnvHL/Eu1OjHbDk6fVS9hrCmA6ys7TIIAAUlbArLba6QrTZPM1NYC4AeBIUyCGmVFtUaDPYzGDA+JAl8jL8AsHD5KjlGtQfj62yDzPSAO9lw1mcE4CRA2gujawkQArn5srzM8xSVMs+7k6JmmzCttCkb0mV0rwHLTXZveIvcg8rDTFcxuD1IgVlvF1MHA5vxrn0AAVEfN2B+oAbh6XVhroAsaBUeIcbD4HCYBvGQuRIFxiTKrIDARpqE/n1hVNpV7rMp4rsK+BajMYN8+Oqx+Zx28156Jom+wAZP3sfcPAhR3EFCVJ8usWQbWQJbNTZUwpFObQpURO6srG+AmMmqI2t4eocTIiiqhSS5kVlSCMVF+T4uCUVQeRVYUkFucd7SFUyNlVvLVGm5mZLHJQu8QcWTiriDiAhreG6NJM4WBmjFaD2GxA7OJLxBpqIKzGghDVaFuh6IoUItapspSUb2SMkxyKRNsTb1fhbUDy3DpnUbjaHDk8zjUuRVfzuni1xfX7MdvY+5yElrnFPvH3XUHvbXtamX+lbeO+FRpXH/v2A0tLDXPSWKwRBS0mNN9v9whA1FW11ebzyskVr/OyqR7H222jERgiCwk21bWcPuax+hh1moIkcJW4xDmJeEzuc8ekyjgJN6cJRCMeMc+TLKd/53eN+4YDxfi1m6GkwHgtqiw0cnjltyz+6fFzUUy3uReL9iUqtA4ZIjKTorVWTtaIAic+JHxsjtXS9mzUmOvwwjvzuAqdNFcn4t0cOFqcj7nC/PqtGMUmxqmguz42d1K7rYMWqzWlJVKGQ7ZWBE21LUFqCTVItHZFdQbGfT1GXJAl9s5tR2prH1LJCvs+8/qDe5xdnoFo3PM7pM8z0VDNKFNhGoRSJvrkzTuWuNrGyONpa0ux3DTXzyh343MjQ1sMaZ+x+f/LJxYqwOZ7wnP0AC2OOEmgs9/fvbcHMWjL3WkOZLY49PwsEn/HkSM+NxJCsGrLLmhzZKzPuBGfOScnW0uhNqJus80+xbZ8ZrEtn9nymS2f2fKZLZ/Z8pktn9nymS2faXv64c1nti89bbbZZpttttlmm2222Wabrex/+b/+3/PGK5d86TOv8lM/+iUe3b9gIjGZMJrSWSWlDtUO3WX2Zx3vvPM23/r273MaTzz96DHUSt/1PLz/gGpGnzq6nOmSMowDz66uOB5PjNXI9YBNQPESwBZAbkMYWjIsAXA4OObJca2VMk1IgpTW6XBTJHoZ76oO3J/GQt/vFlUOlT9MmtlS1pyE/T6TFaRMZCqpnJAKeSZPakujHaSsrhRrCTeygCkSQDApg2QohTcfPaTrEme7nnp7xaNHr5BzZhgn3qOSkpDnvg51Vg82sKCslbeCg8A4+NT3nV+3o6p+SjmAyVCvlwYihO6wPgfwt8RfZyzYZkDZgQJ/1TEaCbLBVV8lwL0Fc46TtiA7hBV44aBXasBpgOAB8S/AdtTuXhM68XFSU+jJAnVUK5g1wJ4ZcF0TBqoyg3A1zmd9LdauYUb7oi0Jy3EEKLXMA5ea+jJUebUU94VQfGUgdV72vQiY5Cjz79crDfgUgQBwahlnIL+pF03b2Kmr8s1WxFElq6v1NCnDOMYsuxpxJi8CGGsK0vnfWcjmSsy5akF1r8+4MtUCBpuoXvLeAlgWp2schG5qWydLeoFdVugyiDCVKFffgGRROr0Lhhag1EqphVoKKeXwE2UYoi1MzM+ULcjOylQmKk7ydUnZ5Q7vVlNmnKu18qgGk1ZKiWoGYoh6C4ZSs5erD5DOSTuh7xK7LgeQDVZg6nIAsU4aDEFYNgXkHOMaSUCm1III7CJ2tioGDcwsmhzot+b3HoPSXDFAZvDQIgYIME2FYtGWoPmHarQ7WSlFA3cs1dsBBLtDjlhbq7pvNs+Xu4CiRJyy+M/pgagMYXaHEFiqM/j5qzGDuQ0UlxkMV6jRkiCYkRTMUa3VfcJml3Wl9Co+TBjeqUfmY5jVeX2qJPp5TK0FB0oRaq10UVYgpW4+bikTlUKVQo/SjRWthiVhf9hxlh1wH8VbEdk0QSlYLWRNZM3ztaLessCrWXi7g5RSgKqVKnEXFHlOZh+xuQ1ksAC1VooEoSFBJEZlg0bGNNJK8NYQExVvT+KK3wxgsqim1ZWurYVPU9VnR+iXcS2F+a4o3upEYh5KWzdCEP1gotyeJo6ngdM0MVU4pOSEr/naS+JtJPxn8fUqwlRCOSs2+3uLOUgop/F47SEpz6C5v+4xIScnfqfq89HiXanFY6UK0zTx5PHHHjdQJ5lTpsZNx4BpmhjGgVort7cnPv74CTfXNxRR+q5bngtiuWrEOom5NljaE9GIheUeNz9TrED/l6qdgxyc48dMiBFfzGjPKG0flbn/TnwW8GcW1WWdr45lIkgpd17zz0TENltfru+fCq3VTtxzrfpabMSVxQNhzh1I8ntDqTBObLbZp9mWz7xoWz6z5TNbPrPlM1s+s+UzWz6z5TP/3eczbYExv7HlM//t2Palp80222yzzTbbbLPNNttss5XpxQPGvOO67ng67fiR17/M17/2Vd74wud5+OUvgj5yIFQAJmT6mP/i//P/5nd/5x9zHCYOZ/cc9DW4uR0oU+GZXXvSKSDiAGU6HNjnzlsaJDicJnLGFWtz2fKAPq2VaFaKlTkZ9t7ooRQWheqKO1pSbYsiTzD6LpFTA2NaIfmllUSzO4n4+vVinJHZi9JJ4XosHKUwWeVkI7tdz/nFOYeLM/rDnil3mDQdVAPjUkP1XJ1oDgJIVgcnBLQaWguSlDKOWJlQMS93nhJdtNkoNZS+VoOMUFKXGjQ5X1cDQVJatRPQ56/VqAEyNk2TQ1Ht4rk7ToFPNWWTAzJCq6sv8Zrv1aHBjHgJcJEoKd9aFvjRsqYgd1bEgTWARhrGGtiIrOSlLL+kRVc1WSWxVt1ZzIcDZQuIGmMki1qT+LuuAKTarsmMKkqt5tc70xrLj5+KzG0EEg7+qCqoUptfBkGTkiJlmgF/EQesqBWziqZEoa5Ih0zx8gA4xusAr08uMzHgGJ6GEloCiPL56FQxdaDXLBTH4uBxjTr30tTUKtSpkAR6aaW8HZhGYSqGWCVJQjW5L5lgppiYl+vXFMcqGAWKkVKiS5ku+/i48rNSa4n2Ba7o3nXdTA4sdQaiLYwptai31cCBzERGJc3nb9YqO3g7l+vbI1mMLiX6vqdLQgPZVdQrHMT6SqpBeMQ26krzKcbDVuOUVeiyeruCUmktXPqcZhCsWKUUJ2schHdgLYVCvhEd4pCrq1O1rdmYy6n42ELEvEUNi4GVaa7MYOYVJIhy64iDghZjZ7aoZV0RuQCNFn44leKgevvShTUMbwEXLdwx0GaEGrEcSgiNrZECsZbaTyl1Jqe83UaBGor+lEhESyFpgCN0sZ9Sp3k/kKMCRtwzUijvc2rcKNgULRN8vARBUqZdWguSS2T0bTUrZsJxOJHEG3SAMZVxIVswyIkixmSuirVaQdz3a6kUq0F8uA8gQqXOkbdMy72y6xNSJo/x4C2Gap2xW1Wd12oDVVPyuGySXMVcYbCKlZiqQiju3dfGCmMjrFSp2Y/hB/SYZbW14fA12mnn4TcIAjFDq0S0bwO3Ii5E5nYhS4xbAeQebShm3N4eqUCXO/pe0UZuJo8t1Bpkjn9xYG7NAnQ5I8XrSLQ4GOHc57Tx6+081Mm3EFKjInQ50aeJnJTTFASXWVQ+gCoJUkfqe7SRf+rxps8dwzT4NYnS7zvuXVySc2IshZuSuf/ORzy5vqGUsoDuDSjHCXiN+167z91t3SB3L+KTLMa7tYxqHnp3kxd3MN/NZCHf23Gqtfi7PFvMHyoVevXWJhEIVJW5Z0r4RCl19quXnbNoYia9rMUARaq5/1umtnZEm232KbblM1s+s+UzWz6z5TNbPgNbPsNyOVs+s+Uzfh/47zyfec4xP8m2fOaPbNuXnjbbbLPNNttss80222yzzVaWu55TFd59fMWz3/oW33rnAz7/67/LZz7zGl/86pf4whe+xhuvvcqjh/d5/dUH0Pfscgp1V09NQgpQOKlSdGRWw60AfdUA1JIyBEhu0mA/Dei+oTaeLy7pbEtjHRh5PtGV9p8sSbCugDz/+PPp8l17IXk2V1aehsLUOaCPmZcWN0BkBvGlIVCqCGmmCKApTm0BYVrZZXF43MGTUMNqK0nvZaJlbh0Q4L06UD0D+oFyLbDL3evwfH4Zl7l09gzMLwD8rLRqaBTMwH4zZUXoQKusHdtKIIayzFb0uW/n0JBpi/ERZAEdAvQTW4B3BzFXxG9aQ/I2A7ILXFeDsxByynGUGoBLAI5xbSVUaEv7jiANiJYDeJnwpd2CIcmP4QNnqMl8ro5MyXxdiaUEucTc5Zw5nk4cTycM4dHZGWqu9LUAwQwB0wC3YnyC4FDNDriHYnbxb6OURmD4WCfRmRgC8/L02YmF2krOq0aXCZmVywT5IyqU5EOe22v4ODoIWmmq8hQocBf+3XzNFXK2AE2haHUlr87Ek4piXcaL4DtonGNuWvl7Cz5KLUDyADwb4VOyI+vtGhSlteIwc6BxLMZpHLkdR5Imznc9XUokYV5XTuKAJp9Pl0k24DOAbvUWFIklrpkYWJmV9L7+QuloldQU5NaqPVRy0rkFwh3QUKKtgi7AnSSd2xMUM1bcqLt0Wz840bVUZ/A5LKHkNFtK/2sDbQUqEd9WMcTbLrACYAnyxbdxLLCVz2+/x3zaor5sVdzndS1NpdritgRJ2KoURKyXu+M4Q/xJF5LSIOWMROWH1mqlFc5wTjM5aTiTYwtg2Yi2dq6C+0KL3ahQ8wJSqwqpxhiLK/GfjCPv3ww8O42IJPqUSNk1vLm66ptaHdw3m8kta2Rlu9lJEJMpCMk4ryxpHi/VRNXGwCxzISnGDKGoe1iL3e5bSmvLYvF/MW+15MB6KJtjDGv4qq8Lm8dmfe+RICIni3YBIrOquDmoRSya2+hI8nuNBXlSoe87WjMOieWWVb2igyqTRWyTWPvtSmOOu3ZmLTZEfDZbtoHFf1du72QdTlg6MeHkY/P3rIlSCgnoVDjf79jvd5B6qmY/R+vi9MTXeqsgYW0tre6hqiAl4rBHvObLbfwjiLG2Rti3ijGV56ytledfb7uyBeCX1fwsH18RBPOOWsxfTkcb68ISK2Z67WUHN5sJm/lE5uMv9/L5fm51Jgp1qsum9oOe4DbbbMtn5n1s+cyWz2z5zJbPbPnMls9s+cyWz2z5DH8c8pntS0+bbbbZZpttttlmm2222WYrS5KYSuXj05G33n/Mr5+OXOwzDy/O+Pwbr/CTP/Yj/MiXv8SXv/g5fuxHv8LZw/sMpyNJla7rKVMliYVCMFMS3hc+sngJRShmqFV2nVJwIOROkrqkwfHKWtczw9pzSePYZAbREEFtAb88x9X5s6tdLR9/DkSYzyVy2VqN4zgx1UxNGiC0IOgd1SviIKbrrgMkFFYERdupIGqhjvILUGkQNAGgywwgzCBzA1OjPLcn9NxN6tsxGsDGjMnTEBGpzBe8gA7MYFRTC7c3/FeN7c3LeGuawUybmM9DBKpNd4FmawB+jL+4GtMk2i5UB50b+CUwkykS0ycsIL1GqfI2+bXaHW/BFCuGouQoW26Iq+IrM0lgMfFrkKPGiFQhgJEGnOl8/CrLDM8tElbgTWO2BHFg0Jay1ypC13Uch4FxKkxmpNRBmRAxagCQJjqDOSk1JXyMqaYAoQtWvDS7BBJX6xTj25TloQKcAWFfc+5buDowhYp/Xh6LP4l4C40k0WbDMX4vNQ9BZOiini1xnerAd7ECupAegdE60EojmmwGG4VEqT66WVZtPcKnq4BUaytiJqsIIFOTRtl8t8wCmrtv7rgaJsbTwPUwABJVE3T2UVWZZeqiTjRaEBTU4uCVQhel+tXSDBxXKqYxXzjxgjWCqpKSOvAa/RxyU/81cLCNxRq7EwfqietdADeQdqDYRtTJFVgBsw2oVUFNUTVv9YAD17LaXtGlVUUjJ8Ijgh+NVhTmSl0Nv2lK/NTA5lYhQWiEUSMjBFfUCoLkaElDu67kvqsLMGkzAGlzmxYk2kdI81sjpYxIWUgrsYWYMEBSANq+rlUcfK62EIVt7Nz3LUrU+/1r1/UxHk7sSlR0kCCFb483PDkeuZ2MrD2d5pkLTirRPqUBqXVVLt8JkDItIK3QVMXtbCzU1BGzRRBJQejU+H+QObG2lrUc911d4pRFPA9+zWNemWbQvJEATQHtqu5G2HpMsKZCb35ZynLMVkUhyB6kVbxw/+7EVbBjsSC9YLfbzcSlUJDqLSBSVLVoU9PaxSz3sMUfWux1n6ntdrM8Q6wQZvfG5YEgxfyrqFd6SIoUm6sEzMrlmbxQSAnR7CRO3LvEoE4TVrzSwzAMDMNAaRUTWsxq12LmBFD74kNtK251siuAfh4IaWvGXnwGeO4j69cgSKmGz88E/Qu7WH1w9ewUMWP+aCO45hvIQigs9+WIC+sHMAkyZKEX7hxPVdGU0LR+TviEh7XNNlvZls+8OCZbPtPGFbZ8ZstntnyGLZ/Z8hm2fGbLZ7Z85ocrn9m+9LTZZpttttlmm2222WabbbYyGwo5d3Rdxz735IcPkKRc39zwn//D3+Kv/c1/yPmu59VXHvCjP/JVfvmX/iSv3t/T95lzgXE4upIxCV0udDmAL5FVfikzOKSxbQ6ABRKwgEENTsKIZDbRKAIJkEDFS17PjSKkqe8M7+O+APfSgCBsTlhpx3j5iPi/4iRBsVDKqnmZ+2r0kkgJTgjFwMuE5zinAIEaGBCl3+e+9pLIOdPnTNclP2S0n0egUqM8fihwzcGUYg0HWfYtwjzWLX+2Jldeg17xOUkSCsEVPqCR+JuXLnfgzJaPz+QGM5jSAC66u4dK7QWjSRLvAE+ooGmlFI/LT6rsUoZSGWnKTVbghc1zmFZvtJklDqfaA3UmVdo2ygrgjCkW85YNThAsoEy1aLsRQIeGKt2MKMveQH/1c5kBEQkQJWTCNvlZqyApO8AMXOx6Dp23h+g6oThU7iC++r5tDQCFknyKkudaHQirCVfxiSAGXU6zSrIp5nUmXxwK93YLaR7X2q4nRivN6tEZSmzOQ24lxmullEp17fICUskyvgJMNcBnTaG6DgcOUMlpgUZ2BcEmvv6Tu8p8njKPtS1z20itWmfV5eyyDYiy8ACDQ+7oup6Lw56LaeT2dKJLhobCW0SISv1+/Z146xPDicGU0F7JOdF3HeX2GOPg5I2EqluIJhPi42tWEVMHls3bblQRulZhwJgXYyNMqhVXgcPcEgOgNhKohQ3z+Uvq+59JkZDELzSrK83VhBzxtlRbVNwBGM/VAtKi5vUqAynIGG8hoKF4H6srPDWlmZTyCTVSWsgglVi1tlRxqOJq8SxKF8RVcx4JMtBB6ti+DLFSzFttxHqrEUpkRr19zfh692YFkjJQAiz3FjlVvCFDxeOP4eC3j2k4Ydxz2ly1s+9SwqhIFawIF7njvOsC6Hast0bgm0phnLw9hEhagGTNVBOmiiv1c0YRcoJiQikyq5K77ITk3OYDwWoh9OxQgwSMH4+12tBwSrsgizUDVHGk1oF6AakU8fg3DCMWxMxUvC2KJp9fQbAapIMKpn7PmdpE4PFJqrcjEaBQ0KgiQJp8GwUhoUHoqOaIW5VpLNRqjGWc15LNhHNThc/uQvsqQCMuPPYtMakRQa0CS1tT/lmNag0tbiqJTNJKVWOiIMmrABxPI+9+8BEXxwHteyR3pJTRLi1jU4xaRmqp3J4Gbq5vGE5OFCTN0eLCqAUff+lI6ejrvrDcO+PhSVmeDdzlLSJMECYRr9tanSughKm2+4nf14tVqKu4DVQKtRZqKdTaB4JfqFZoX3hA2tKK+1zss56OiE20NkVWy/wkZ/HcEFEpVpvEzbhVGCEqqAiiGVJGdXSiIBu3txPjOAJGnzdIf7NPty2f+YRx2fKZeWy3fGbLZ7Z8Zstntnxmy2e2fGbLZ36Y8pktQ9pss80222yzzTbbbLPNNlvZz/745/nOex/z7HZEpWefC9/4+ud4eP+S01j5O7/6W1zszzmdCv/Vb36H3/7Wd/hX/tKf4cd/9IscDnuePrkmq7DLytlOHSyYM9oapbWJJNMJgn2CfTcGYOXInKkDkA4nBaBvzCXfF7g5dierV2ZA0ZizWZH5b3nx459iq8+ZkUUWNZQKVYxqE9NUKNVI3Q7JHdaQu7Rcq+NvoThsCh8KYxk5jaPDHSkFHuCJdMWJBwxyckAyJ1eTdQFT1Vop1UG2lFOUaBbKVJYy0SJxbO8/L6EyW5MEDTxpLQKCHpiBcNGV2jTOsazAmWVIl210Vg77fymAbwfZnATx0U2OdoorlkUTVhyoLBCl6HVW5AErFaWDipqzAxUNmTNFkrc8OJUCFPctlKmNS63z6ao0VWzgMsAU4GmVIBECnBpDIege2wiBIF0kkLkZ5YExMJxdVna9kwDDaaJPHanfkbJQipG6jtR3DtWHerMEEK9JQhFqTvBUvz7H+/y8kwhZHCgepiNNzZnES8prA8DNgbOcMjl8tSnwK8ZUCxZq4AZOd6pBAAmqUKo5kNM5uD2ZUUphqsXHI/ZbWRS8NpMFATaHNfJFg3AptSJWFpKj1pkokWi/YFFOv4pgtTKVwtLixMGm5p2KUpo3i5I1k3ACUZOy7zoc2pdZWbwQe5VaKqlvJIzx5Oqa06mAFvoeLiQzRmkA00yflLlKfxBpDqr7OTt4D5YMy2kB3hpsbq7Y9dfrPHfaKAJlVo+ifv1O3nlLGi/dP0FdxqzGGLaVarUEmdbiQSiOq8xETTVr3S9orSqQHGPjhKe3zyhzdYcqgqY0q3kjSjVI0MvtR0yqEdi99Lv7VULptF27IernXEwCyDdSSnOwV/N410hfszLPu5kyDCXWdKwdKeT5thAkIMy+YdZIRBxwTw1sdbJWFSRlXLFd5/VF9XX4+u4et9rD0ys+fHrF9XDkrN+hCMdqXJ8GJPUkTSTNjEOhaMUCya6SMVO0+jUVgzL3conqEdGCok4VDWIoa6bL6rUbGkAfHiWNKAcmi7gki5JaSDHWXkWgWqIUVyzXanPrnYpQmeL+FarnNu5VqEE0tACqGursajMRnXKH1cJUCqVMqHiLqOhF42SI1Lk6RDVxcj5iaCOK/DbqczDf4+MmlII8THfWlP9erRER5n4QfzufNaGa5zhXisHUyEhhpFDEMBVEOyzvIr4sxIyUGP+Il60FVq5Gv8t0ux6pUEQ4mWFJgzCEkeT3Xqut0RBY9bYIxny/XZvZuhmEvGyDOZbNW7V7qCrPvTH7mX9U55W1vC/zoXzdtODu/iPtT4z4dgVzgNPsX9SwQqmFlBq53HY7P4hg2lT1eHuTqky1MNZGWm+22afbls98km35zJbPbPnMls9s+cyWz2z5zJbPbPnMD2M+s33pabPNNttss80222yzzTbbbGXnZztSa82gmdx3ngDXCa2Vi/NLzg9n5H7g/PLAxT7RdT0iCUPpd3uyTQ4ljCPd7jxyfwfacsqsE8GcdS5F78qpBchvJYLnpNQaDEQAS3UuaT/nsDMk0D4mc37aEloLgO6PZu0DDmyVuoAXjrXYkjsHuJFSdvV0ALMOsofquFaKueJLVMldh+aOUhyoS2rU1BSODqBY9fLpCQvCwUEzYv8NKDHx8amUlSpKHIR36ZqDOrJSqwdAPCP9M5goK9xhKdc8l463dW4fAG3jCMzV4xBq8mUqkFD51RngkJk4mXDFuVRXbpUAETvzcv0iDkjMEHw7dgBAziaBWFMuu5rcqtDaR/gQ1Vkp5yBk+9ue2y+ohdKtvWur1hNNfd/K+8f5qRka0GgWV6p2SeiSkZIyDjCVylQruRhJ81Kq3bzViIOnrqit0wLiN99u8E0Dy6oIJcqh16mVsIdqxVu1pETOrlx1pf8EugB6DqZWplqQprBs/iHVwTcRSvgOtrQOmaoTGrXW8IVQhrK0M0EEoVDV99FIi1xnlA60UmbAv/npAoTVUD/XBoA3Tib8BJMA9ZrXVif0ZmcvVPUqByardSCxnkpFbVEVWviln5sDhlM1Pnp2w1gqfd9xeO0VSgErBlN1QgWPRxp+aUEQePn8Rr+FcjrW28xlWlyzuA86CL8A72vcrta2TyCU1vM5r2JjU1iatbL+vpNSwO6siwac+wdrqdFKxAHgWqeZsPHBN8pUqS12pUW1WwPAbZUxBEhSlxYfcVBXIFuQQUJu9yABibYaTbnsPW0CzA+fm0lHc2Kxms2jW10qPQ+DWWW0VpDex0DMgXTVitVFgT63jSjLeIwGKQgqzK/b21FUP38Vj+0EmCzBFc+qX2EqE7UWiqoDv61yhHiLASc66xwavU2QBMniaxARSvLfs0ooetWB8abubosmAHSTIJ8bweQX6eTnwoy4/2GktgY1aolUJ3NaaY92/2kxqK1JYl1q0ihroHPMbBUeoq9KG2nWavMIOa5y5+561phDkaiGITKTIG1+7+wk1tR8R4vtm0JXlhtWYN2hHG5x1zx+SLRRaT5vtVCnEejmufX1U4LwqB5TSjsfw6heuUCEsRQ+fPKUw67DijGNhdPxxFCmuXJKa2XR/GC+nd+xFjReJAheQhnMzwQSZF7zpWZeECOhEVPa/VFFvPXPckY8fzpOnoExYaUgMXaNBZAgUlpYWu6ly3PG+p6WzBBJiFSQSpc7htPAVCZOL7u4zTZb2ZbPfJJt+cyWz2z5zJbPbPnMls9s+cyWz2z5zN3f4nj/hOcz25eeNttss80222yzzTbbbLPNVjZWTwNVFJKy2x24PY7UceT69oSXjzf6XeKNNx7w4PzAYb9zEKwYXZeRqUAplKlwuNgxlgmzSsqKagqgyhPE3Cl1Mi9pHoByFA5enVUDGFkRBS119e3WJfxlxgVWALct/5N525cn1i+zBnA6CIWD+X6Zs8pvXQpfVNBQErfXnTzQOUl3pZ2Qc0e/35Nyx1RdBZlyE1Wn+GnZuo/PDOkF+eB5eIPg49pkAeDn8WtZv7VfV8BIgEBtU51BpRfnRGBVCjoG3eJYgQnUuhxuxS7E6TnhIbYcTGAG+UsDIZW5572FrFYAMXuh/UfDnmaQ2Bp4F4pHBBMNsqJitbXvMExDYY77pg+lzSXsBQe7GqmQJQW44eOiIq6ODNBDgZyUFC0LkM5LwuOqY5IgOTn4WI06FXb7blGq1wXiM0BpALgD5KpKnEL4U1OwGlZDhdrcvJirEKfi4Kcqmpc2E7WUGMY0+7G0cWEB4OeBaW5mDbSqATzbDNQ3UsDaXMtKhU+oLUMJqgHJmhmmlVo1rr9Z+Eoo/j1MtNYVrphHhZrq7Cuuvmflk6trMlz5PY9w22ZpUyFBCoQbhA/YrLbMXeY4DFwfB3ZDh775KozeSqTWBfBX8e3HajPF1OKPxKJU5gg3q7klYp3NPrYCOFdzs15a1ogYa8DbCuBrx2hrrq1fR45nAq/FuLG08fbxd6LSj1tqoVqdW3u0NhkzoRbjPQPdK1C4xto1tfBrJ7EsQPtSbfaneSzM/c8rFHgLmtYOobVrSVFm3gF1Wci0iC8uMpeZ+6wW7RXM254I5mSZLlGuVWJoLXza+JTmExZxoQZQDZhUpjoxliCARelzogt1dQEOfeY4TDSVekqtZZLfN1JO0e4lqkGkoEDNK000QkBEqEGm5FUrmKZGRoJUWc1N1OOfiZTm9969wdBaZ1+bWzOYeQWQ2WejZVMD5eeeE+57Go4/kwQSQH+L3UK06zBX4TdidAbtV04d26cVoe3zWCMchU/FPubKCLLc5/0yZb71tCN5MwgnCaQ5RvOZ2fOXsXMOM4hNcJJgPCHW4w1WIqJEv4a2pi3iX4sfOcXcTZWr49G/OFGNYZp4dntD0RxTJfOxW9RoXwCQdnWrGPeDbN0Wog2EIHfU0UYjoGx5vZ2/yJ2xWT6x/CuaaeQZM42/+JmPo8zz0M7LsGhb02LScr9TUZJ2pFTpO+Oaa6ZSVl8w2Gyzl9uWz7zctnxmy2e2fGbLZ7Z8Zstntnxmy2e2fGb9iR+efGb70tNmm2222WabbbbZZpttttnKfuv3v0fudpzv90itvHJ+zrsfPuOjp1d88PETHl7uueorl/cOfPHLn2HfJSY58eT6Y3a58xYEww2dVO6dH+j6zJMPn1DqyBuvvcI0lTvJqiqkRPScD8WgREIZSaCwAuAJwDJMCIDAxMHOICCQ55PmJd03e0mu+7KP3DmKH6cCUzFGMYbJGKTQ54RqIuU078TMKNMEWbAAu+qqL31TqO52Oy9zrpmu65lqddCrGlqNSkXEliPCR8IAAQAASURBVFYPql6qPsZmn3cgDTQxL/tvlcpEnltHOFZXzJhiPJsidU7QtZULt1k1pzLTCzPg0q5PRMg5z+Xpa7T6EAuCZDWYZq7+NRzsUVuNdTLHrbSB/8ygVsVI5m0Maq0kUfqU3VcCv5AawKm282rARugoq2HWQCiNkvw2K+pKKa6+FqjFGBtR0E5PlSSJJN6Cw8QVeVkTpbpyDrystm/jwGenwi4nuqxRmtz4+PqWt58+4+kwcnZ+zhdfecC9PrObW4Asyuw6FawaY6lMBj09M+TbCKmkc6uIWS1JqPqqkWU3k1LH0wl20OVMnzNd9utZVwhQlSjNLozTiPMiDRBblUyX8IYZaHWSocykgcz78/l3oLHrWvsHY5pKgKNtn0u7gmpGzjoDoe34ruhewOEk6uMe27kys87tUYq4XydnjpzYq/6TBDQtnzGDlLys/9p3W9ypZogVkhidwv37jzgOlWc3Rw67noeHPR+Viclgfzhwtu+g1gAGhWTeKsOBc3sOIIvWBhbnm9LCqeG+08Zo/lypDNOEYaScKVOolVXockepxQnHINtS8nL0JUjIfbTjSJrImjiN4wo4VipOHBhNtezzWDFKxGMv51+wBF2fyaV4W5ok9LmDXUdrg+Ol7WNt1kKn0WakkRPhF01drPO1thYQDuw7GC/z3JVSGOrAvuvpuo6UEtM0eKyrTlwhzHHK8CocpRLzXqMtSoD0+EUnoh0FxjSxiqOVWouvIVVyKGwd+DUKhevJ6K+uyCb0KPcu73N5UJTK2VTgTH3sqjHVIJZidVttrlAdZI61VileWUF93aYGFKtCbiC6A6utPYTE2LX1cod2a2vV5tXqhEspFHzcikU7HoPJpiAAFSvZqwrQiMF5ySNp8VWCkCPmuY1/Eq/Q0Na80ET73hwo5cX3PZx7FZJAteP8nTSoQSAhNebOoipGg62XZ4hGSCHOB0kA106c1vnLBV3uyH0ljRPcLMQiVsN/su/HCtPxFpt2uERdZx9SFTRFm5UMYpWEcdl37DTRIVRRLi/vk0UgGfmwoz/seO/qyLFM/m2EOF8Tb0nUJtEiJrRrW+jcH0wWtFhJhVJHzNJyTwEnf8xmf2rHK0GkqOrSjiEepsTalwiaH7b7VDw7tFMrk3/xIJTsQvuCR6xt1RXZSJBOStdlzrsEdXSF9jRxnCY22+zTbMtnXmZbPrPlM1s+s+UzWz6z5TNbPrPlM1s+88Oaz2xfetpss80222yzzTbbbLPNNlvZ7VBgusFKoQ5HznbG5eU9zu8/4rU3HvBP/dTX+dlvfI3XHj2gmvL+e4+5f37gbN+TE7z97vcpZSQl2O86/vbf+VV2nfDw/jm7LlGngmhTJAkp2bxtnzuk3qBaSYSKtZYX8l4VvQNmiy0KyUp9aZ4cUONLXnd7GWnwMrPqELKJK59mkMIq4+lEmUYHajSBOTDhQFtTRTpi5tt4ojxOxvE4MA4TmjoCisBMGEtlMGNU4QScDEoo8jJgdZoR91or2BQgqZE00VUHLswqY4EpzqOBbUtJ8FAU4vuf6qIObWCyioQa2sdehrocO8CCWaU7b9uAUH+/FeEGJwdcZgio67+p0fKgFoqABIDqHRcqKgNNoCXVgehWaj6QCZ/TuOYSpJQgrjwvC0mlSQPk9s9ZZW4/UXHFcsDyPlfmJJbjcilwjQbkFZRWVUDIqQF1AYTaxCTK4xGe3FaeDLccujOe6QmscBwHDOgD6DRTxrEBc807W9l1Jy9Mm/9DDu1rQFosmm2HkGr1diwik4MuO53VpbZqq9DUpVarg3i0ORWkVid0XCrMNDWk0UFoMyf2rNZQ68sM9lojbdpqExz0jz+rEURSzI0mUptLg1JKAIsN7PV/G5C1gFyNRPAy7v56WratTWFbZ09s7VlyTh6bpM31EkhKreQUqlTgdrrl3asjY6nsE0zvfMj16YiJsDtMHPqEBenRVPlLuwpXo9co998U2SmlWY3bcDPDYjxDJStRln1yZaAhqCbGYYh9OQE51UKxErvxdiQtBJpZKFeXfdZSKDaF+jXhTWfqUu7/zrrxSg0lgG4QNAvTNIWPwa4vJFmRN7YCAm1RWjoJEtUlYlZrKaGGDMJGHUYsxrxeVdp6EKYK3TiSU/VWRtRoExEKfXUyq5HLmtOKnPDtFvxZsFpRDaJCfO4JokQEEpUOb9mTxFt/ZBXGahxH4+ntwJNT4WYybib47Xc/5Pu7RBKi1Y9wftiTNFGB01SYopWGr4U6j8bSXsHHLKmSNUfIrsDIchdb6YufWw8eEZZY5s10guSsEZElCAV0HusyFQR14LgRy2meKr9PT4am0BqbBlnffLfM5Po8xprma20ekCTU+VERQqRdj382tSURcd1vncFaGlTqPL9iK1IoPucNRJxcbopfB7YtWnVojLkiUd1Fk7fN8bY+HhfUiut9zcdz1yc6Vb93sbr30YgKJwpr8fZY4zBQphEF9l3m8rBjOB1JyWN/f3HB4+O7cHTCzaTDLJ45ZmYnrivUy61t0B/F5nuwCAv1+PIt22SrBBFcbSEQq7c9ai0+zCaok6+X+csejZRq518x8coKFjGi3a/9PuE3hFomtE5ME1jt6HY7Ls4yN+fnlDIxXl39ka55sz9+tuUzn25bPrPlM1s+s+UzWz6z5TNbPrPlM1s+88OVz2xfetpss80222yzzTbbbLPNNlvZVAETzJQqHdfHkdxfc3bY8eDeGT/3E3+Czz285KLrEEk8+sIX6XN29aEaN0fIfabrEkkrF+e/z75zEmA6nkgYKsnB3VDHkRKHruew66hmUcq6AXV1SWEDZ2q2LmMs+EeoDSDhTuJswlxevG1v828vt6VtAzPIYnjim9RbW6RQ1FVzYH4aRso4ubJVlDJDUfFvnJcZrl4sE6dh4vbmBh+KNIObqgnRhKRMlcSz2xN8/ISkCRFXd8pcsrmBMhakhAMf3axQC7VbwLBtLFZDMgMyNT5PJOwSg6WyIj1C5d1G2GKg2pg5ALmQBn7hXsp9Hltdq/VkVltZAGU1FO9+rjaP3zKBzSFeQgCJzADrDG5qdjVkzKWTTcvprQmNyqLqa+iWg1TxWWtkRABxYvPpSRAuS9nrUBUn5XiaGKeCjJW33vuQTgyVilCYKlQUE6WidwgNrAH/DrQk1Rk0EwuCheVaUYnOHnPzAazWNlFojnEL4KaN4IyLB4nVhiCJhG/ZPNelLiXZRRNNAedrMdSBAUG1VhH+AQduG6EjuNOVhiaJ+27TUbd5aUrrBUBvisrmc36di1KwtbmIdhO1kShQlbhuCR5sOSeQWVnZDrfs3693nAq3kwOG6XbgfXEiAwF9dktuxFXzRVEHwRzRdDAs5keCCZGmBF+5svtjncvdNxC4KfKJWNlaeoDHhPlYszssamvMXGUZ4Jw6K0SdNYoOqRoORLaxk0Y5BDDbfNEiDnkrDj+vpGlR1be40EioO9aiqs1rsJqrIZXW5sVJ2WpLbEhBOJi4byVCRNriDg2UZLUW/G9NS5sLZh9qryzg6azKD+KLuK8k0VC9EpUgFBUlU+moUCae3Vaux8rVZLz10RPeC1C7oiQpHHI3r6+x1NaFJ2Lwyves4eA2x5bcpMMRE9f48Owh7dzvRNhYHaogNsfH1j5n9lULtXNbF3MZf/+n6uJX4BUlZv+Magnt/NYKXtr8hH/G3XRuH+Jzsdw/2n3HWruY2VtqxNdlzbcvDJisVM/IfH9r144QRFL4XDxvaFTmmMaBh+OO23FiGibfShVJimKoVWwsEd+gz/4MoCHzF1ladbQ4BtXfU4GU4ssBRrWCWYGZsDQHqWd/tJmcuWMS48PqixGfYI1AbWO6fv2FnX7SPto/QRD4M1q8ON/P/R+rxZ8bbNY7x4OZYebVb2bvqE4otgVrVqBMiNX5Hooq03hkOI1MVejznov9jnHYzc9Mm232SbblM4tt+cyWz8wH2/KZLZ/Z8hm2fGbLZ7Z8Zstnfljzme1LT5ttttlmm2222WabbbbZZiur5iC4iUJOPDsWsjzjPBtf/MKb/ImvfJnbD97j6ulTDv2ON77wNTB1ZSPG4fwh55cX7HYdWge+8LkvojKQdULK4K0TUgpAzkGWnDsOux1nu0ypE2odrYXCArSucAlrYIixqkscyXNLoC2A8lWS2+yl+XAo7tbEgzTFkWftrbC0BoCfWp94qUEkeJniOo7UaaSmLtiJ1WECnPSE2hhPJ06nE7e3N97yQJWqDewSRBJIAlFujgO3gwMU7RobSbAQGg38d9Vg8hdppbZrA7aitrTpc0l+fC72tpy6NBBf7pAB66G1Gd0IOFPqjL41BVxrWVDNMKlAUzWz2i4wCZW5RHcDRm01fzNg/YI9R4CYLYDF6nx1dTzu/L7e80IQzPs0B3qlkRQNlMTm1xbqwj+ZkreG6MRVgGLGux894dAJZ33i/k4ZToWnp8r1VKkIUwOCG1gHaHJ1tlSh1KX8uOPMrag8SCuXXwNcRaI1hs+JaQDvy2jNYKM08CfUyUmFLOKtSoqTYRKT5go5n1tZmo2gSchd9r1VKNNEWZE9ksQVpwT5VJd1YtIUe/Pmc7uQZa4qNRTHjbRooKOEohUrzIBvlLt3RzAs2mQ0kNLdeiFAxFZgVqx5V1uHvtsMydnBa4wD3tJGLCo2tOATntBIiQW4j/XdvCRA9Dbf8zUZ3oJE107YrlNWx7gL/Mkq7Jg5IXYH2A2wrq0LXfu8tZr5suwAmfdp4C0t5sszmCmdhuxaC8kBdNf57QWQX9bNKgTEZitSJJDyFo0qc5X8KJMf/mjV1a4q8+KX+abQZmJ97MXn2xqx8DWTFrf88qpFCQcRRDonLmKua6yth53wmb3yMBnlCENRbqpyvDoh1berqmidSAsd0VbsTEw8Pw5LFPF/9W4PjcWvifultWs2WJFJ83g6AovR2pw0wrPd88rsF97iZkXmCU4SzHskyLfV2a5JC5UYq3Z+ThpW7pIE7QDWAP4lgPpsrwP/em5Wn1scbnVuIuHbLcq1+2obecNoLX+gK7fcP3hVECmFWgw0QfJ2Hn7frCDqFTKy+hcFko+pBgnSTsyfJ8IXVZGUnaQS/5JAsVb5xaB6KxQL1sqe9wSRIA3W89kIljtPSC/YJyqnn3sWWhMJ/naLQXOIjb9tvifFAZxwqmXeyKrHWRG7c3rNx/2Jyu/xHlOiqgbVvSJIgnEYON5M3AyV3YMd+77jfL/jatd94vVuthls+cyWz2z5zN09y5yvzPvc8pktn9nymS2f2fIZP7stn9nymR+SfGb70tNmm2222WabbbbZZpttttnKcmo9yAVS4qMn19w8vub1Bw/5i7/yK7z26hv89b/3j3jnW9/k3l74maQcdg8wOo5T4TZntAhSlHu641f+3J/l2fXHnG6uKNfXjMMVpzoxTBOn8YSIcHZ2jwdT5uFOub19Qq2ge6VLUcR5Rh6swaE0jWZTSJln3VEmekmIay2IGsgC/i/wwLKfta0T5UVh5v/UAMDUKooxRenjOlVEOwc260gtA6YZ1VCUNqDamFVfVitaC9SJWgaGcUAwL0WuLJm5VbBCzplbE1cY4TBBrxnmMspK1TQDYhBFv6M0eith7Ul6Q8cayN1AzRihAB7Wir1ZeykLgLiGFKx6WfDl1TjLFYgTDRPi+Gne910YzF/VFbAQ8NgMVLVr0bb/9QTexVZetJcBJi+AIy//eHNFW8l2ZQU3tePnlaeKCF2XSSmjBHESc/vZ1+/xtVfv8aMPL/mD95/yW+894a2n10yAlsJcF6AaZznx4J6y38GzZxOPn0UJ9dRA++UckwqixjBM3N6euLm+IYsrnEXANM0bSwPWTOJzMBkMVUj7Pf2+pxfj6dUV4zRSpsJ5SuTOVYMVsHHCysRUjcmM3EF3+Sq1CqfbgZunT9CcA6910KgGAFhVEVIQfOZFEVSxlGdXa4BRazNhVulbWxkWsHsGQTGgvzOBz8+6PP+icGceG2DZ9myr/zCirQSYCr0msnnp+LbWG64pcheQZvZcP4Hnya9FbRjr9e4qW3lWW7f+R4tw0i4EdRBdY61E64bafD1IpQXqs9kPGrh+1/8NE4szSDhcX0AKRj8D8w2YvhMhxJBo6zCVAC21jaoD22uS7kVb3tXVq4o5eBvj1ojdhYholSP8txSxMZohLH4TEyaAJHWeBPFS+7UpPUOpitDFmVeDMbi51y7O+dOfvc/Xz+E/+84TfuPJifdvJw77PZ2fgoPjll1hCvP6dg5nNWLPxajZpZfhmGPqy0Lc8rk8j+hcmQBolK+3FWhxraG1S6ubOpPkq53ON4Ll9Ra95fmTKW0ttftsufP286FYGmldV8r/BV2+84Hnge87BMu8AA0JUN9EKZagjkjMZxWYSHSm3O8TP//5M/65n/sK3/volt/+7mO+9+F7oNlJAIAadQMSaBa6lNAuQ5chZYQeUqPTvSICmqh1IFyelJxgkBJkaOrQaB3FaNSaqCa+jspIrb42kmq0CvH1bTXWUBAWJfa3VkNrkKEvmAdK94v5OSo+I0KR1XKWZZKVhEhh4SclSLqCTCfIOcY65toq3jRESTGVpoKkIAFqhVK9DciKRJiDsyRuTyMfPb3mnXKN7u/R9z1n9+7zWte/eF2bbbayLZ/Z8pktn9nymS2f2fKZLZ/Z8pktn9nymT9O+cz2pafNNttss80222yzzTbbbLOVeR4XYIgqjx9/xC/8iS/zCz/38/zZP/cXMDo+95UvMw5HPnrn2wyngQcPzuh258hpoHYd/f6MToVhPKJlolbF6LDuwG9/623eevf7fPTsGcM40nfCa5fn9KIc+o5/6id/jGKJYag8/vgJtyVgnDVAcAc81hnwAG9ToKqoKl3fIYgLjl5QGj1nn/JWA48A1Fyl1YDAYRy8xUAp1GnEaqWWSpkmTCe8cHkA3rqoOL28OnQ5k6eMiFCm4i0A8MQfXHFea6XWSk7KQRK1lZMXJafOj2kBv88Y/YxOIlqjTPcCBNDAhCiBb6yBmZU/BBDwUqwd7rx+V7AXAFw73AqQ47nPrf9eQUC8/KjL9hb7fR5G/cPYJ/EI8gnbfPKnX/y7AXo6z4NvY7WG2tkQU6xCnzvOz8548PA+F7eV7qNr9y8xVGwGnY9TYb9PfOW1e7z5yoHvfP8p/+jJY0wCdFqPvYGZcLwdef1ezxe++JCf/MpnuDw/kLsdqevZ5Z6uy2hK3nZEvKD+fr9nv99RUse//x/+P/jmd7/Ph8+ecCXwYA9/+pd+ij/7p36GVx+9Tk49Xe5JmhmujlxPJ4pNjMORb33z9/gP/9rfZpgKX3zjIf/iX/kLpD6DFWoZGY5Hqhmn08DN8YQp3NzcME2VsRrHoXA7eOuMcaoMU2E0oRSYiqs5pzL6eCuU4uBZg71LJQDKAL5ilmwmlBaPe3GeVy00Vq8sn3VQWVdAm9ZFe4kE6Dzv2yF1B2rbq3UufW8wVyxAXvTBF8/P10aJxgGNTFgA1CixH6BvodKLzgCix5gXV8CdegCBHjeCdjnTOKcyst937Poe1Hj65AYkeVuIgL5nMsOMTpU07y90sQsDOSvtX0SZYwRXr9+JO/Nl6J3jgavBnVByIHShexZldZuXRjS2fZt524gsShmNcaWUV4G+AbZFmILAPesTrxyUr7x5zu+fjLenx9RnV2jqScXmGFiBKU6kkTyCoJ8QlJ6f/3koxNf5C0P2SbYC0WeeaD3kL9tR+EwDlV/Y4gcdez7OctNeKo687HAxh/H/F7Z9niz5FGs0stoEEgRjynTIDEpXSdxOA/tkfOm1M/6H/8Kv8Od/5ov8o9/9Awb7HX77W2+xqyN56lBTpO4wFdQMLJO0J0lGSJh51Ze2xl05X5BkoXoGirFLPWf9GTkVJGKaRRkIs4nWfsRqqI1t9QWH1TOQrY6zVEa5W93lU8fHjJTSMuZmyxcu8FYT6znxY9blePF/XamY4+YTFU3a5IMR7W/MsOLXJCkU73ObonYe8XwTX/r43s2RX/v+x/ytD6747McTF2cH9l3PLm+Vnjb7dNvymZe/t+UzLx+yLZ958e8tn9nymS2f2fKZLZ9Z3t/ymS2f+Schn9m+9LTZZpttttlmm2222WabbbYyFcNMKKUyDEfO9pmf+elv8DM//dPs92c8uTpyuLjk8v4Dnr7/PWyqDi7khEyJWioqXrLazKhVMBSTxFATv/E73+E3fv+bfPjkGXl34LBP3N9nLvrMRd7R9zvG0RgDAGv2AjYg8z8zYO9/yPyj4gRCpfi54Inr81hIUwHOu1gpi5aDN4WvudK4VKZaybO6yHehugBrrmj2BFpDSuQq6ThGXRSEfq6BHEWiXsyYTKgBgClGFi9/3vA1F1AHOGqhkBUneebWEDX60cc5yMuuEV74+wfZC0D/DOwE+PQJ24us/3ru3TUg9JJzXNR7a6DQ7gAd63OJDZ5T4L2EgJjBlxfPQ1YE1QLDvvza2u/PHR6rRhHXQjaSyEtfC1mVLmf6PsW6qVSrcysM9y9BVMhUsk3kKGfe9KQrLZ6rYYFhOHG+2/PVzz3kL//Kn2R36NH+gHR7ct6Rcodo8p/UgfbkLpNzxnKmnN/jb/6Xf5e/+/f/IU+urvi3/s3/AX/yp77B1778Zc7OMno7kPo9uj+jnJRTPWJUynDkK2/c5//+1/5LUha+8vk3+Wf/5X8OGa6gDNg0Ml0/w2rl9njL1fU1p/GWq2c33BxPXB9Hrm4mHj+75nYonKbK0+sjE5nTULg9jSiJ28EosfZVPM44Dudwb53BJxyQet5mdPjTUEdZ/bYgqg1UbiI+xebuCWudvy+5UOwWh+Ebd2HPuyALQG0zaPZymmAGnGVpj7CA/Q4eOu5oswq57aZGMf4Wb+bjxkU5cP0cMLs+SZxoOOiebrcDNcb6DFHXQDalbSslXwVyGy+DuWnJc6D1p2t810tzRTiKBMG1tEUwvAz/Oh6JNSIiYrG5IvsFdW0AmSJCwkgayvK6mgURqIU6joynE7fDwPnZPbqkXJ7teXR5zuXZQN8lajGSQY4xLUR7EvMy+K3liceMlxA3thqV9S1pVsAuf/8ge3nM//TPP/+ZP+o9YrUn7qylT9jPy15/4bU/1Cm0+1zc88TJnV2nnOeeZAYmVMmkY+X8oLz2yiVf+Pyb3Hv4iPsPnnD/3j36nKBOzMr9aGchAPEc0MBvb2NQ5r8h/C6U9e1JQWJbqCjqhFX45jpeYFCq01uuwr9L4s/bwQzcv+x++fw2L7PldZnjkp/LKv6IX9CdajHtPOJuZPNYxLvGc8dshGb1bj2s1qjg5CR3t+/7A7vDffJZ5tkkHG8GOp3oU2KzzT7Ntnxmy2f+sLblMy9eW/t9y2e2fGbLZ7Z8Zstn5j2x5TNbPvPf93xm+9LTZpttttlmm2222WabbbbZylRcUFimwvHmmi+8+Sp/6uf+JN/48R9nGiu3xxP9/sDl/fucnV9gU6HUQsK8NPwwRpLo+0l4qXckgxofPbvlu99/zPc/fEzen5E7OCTjwWHHl197DT1XxrFwHEZKJMcL2LOU+3ZbQK217tasJasBzFsASLLW0d4FX9b7frEPfCSu5qXba62UIg5CZkFEEamorMGpliQ7OCSrBLr9uAKqBPDtoL6IBschTMXI5sk3oohVL2fuWTaCkWSuuB34XZ0R+hol5y1A0xfAnhW50gC3l4EI69f+cCDRXaD/B2793P7Xf38SqPFJ733y9ityBrz8+nM4qK0+v4YqXuYTn3Q+DiAF2DNDub43m+HbhWwSIImSVUmqqDi55PuSeX8WvnsaJ25vYBwm31ZkpQlt1xLrb/LKA4/uH/j6V99EOoX+DOnPUN0jOSEaZcyTEwjHceJ4Ghir8Rf/hX+esVTefee7fP/7wr/xr/+rvPr65zmNQtIr7p8XdL/HDucU22N28isdR+6Pj0lipJx54/VH/PjP/iTlo7epp1tsHLGrJ5QycXu84fr6wLOrx1yfZ55eHXny7IanXUHqwK5TbkdjGkeqdCSEOk2IwFgUijFZI8B0BfI2cOtF8kdwoHqe5OcIpjuTfwfclOVvaTMJQiVJQmdqYGHIGlguohRxNXT15R5gnHuJtrYstvjqcvzn/AwHH5tSu87XZ6vrEFpbBmzdQqK1IVhIggij8zkvh16Nx3MnUMy8PUfKiFYKruJfGqPEEcW3rRLNX2INmrZAJh4Dg22R1aHXZOKyjto4LZUX5hYQtLXqKthlDgypsZ6srag4mbg/sD6KeNuInISchGmaR92PUSuHPqNZOMuQs5C7xKFLnO0yl2d7dn2PasKq0Zux00rFNeOt3Yau+R95sSrFD7I/CmD/MvL002Lr+hjPf/YPGw8/aT+fep4v+dyd93/APu5e37Jum3/npFwespOsBlU6sIH7FzsevXLJw1deQfaX9If7nJ3dJ3d9gP+hrhYQiSYe5mRZtfD9aNu0hIiAzgP4FiGqo1RKmSjThObeW0upPzvklVIZlooudwB+WfyelxBdz4/V8wT6y7ZbP2M1InB5LvIvH4jUeNZZf9Hi+X0uzzZOjAhW56W+bG++jmhER2Nbi80xuu3rfH/Gw3uJ17ngVCuljgxWsKmw2WafZls+88Oaz9yN9Vs+s+UzWz7Dls9s+cyWz/yAY2z5zJbP/HHJZ7YvPW222WabbbbZZpttttlmm61NXEJXxhOnq8f8j/7nf4U/86d/kc987rM8+fgpt7dH9mdnPHrjdbj+HNPNLcebG6w/QMrsdz05eWJpVPpuxzgVdpq5/+DA/+x/+u/yE7/66/yj3/gt/sE//DX+4J3vcHF2QLTnahQ+fvs9SvWkUVIK4PQ50H6dyDYSwRwQbwJIM2McJqCploWl+PdzOCC88NfdAwbAayCqkSgrM9Qmikqagbq7YHDFpkqZx9bPyMxbSJQycTqduL25YRwnJCUw8+rRxZjMHOwXJeGHKJFwd8nY98pprEyjzcm2BJCWQi9ptT6H1Qd4LQvJ0l5vY7cG6D7N7oA4M1D3adv/wF3+oa02ZXkDCduB76D/K4BkzV2U5Y81kfI8sFIDsOj6/uXAWPscLKAsgmqe9y3Y7MOmDf4Q6lToVOg0wKRaUZw0UKvxaffrLldOFd57OnFzLHz87BpUSNKaocRaiDNQjLNDx2ma+Na7H/B/+3/9dS9jv7ug359xtuvok9Lt9nT9Huk6Lg/n/NrvvsU/+M1v8q233+N/8m//j/nWW28zpQOX9x/ynbfe52/8zV/lv/qHv8ob9w/8O3/lX+XyvOd2uOHJ6ZrjzURG0Fr53ve/j0R7gGfPnvLdf/D3+f57b3Nzc81wPDEOJ54+e8I4DozTxNOrG8bJuLk98ezqluMkPL66ZSjGWJWnN0fQHVMxjsPIWM2Vxo10C+SsWluVzOLeCt6eJeZr9oUZuFrm0uCuYtm8JoHIAuKLBVgsbcyNrvkRRmlgd/Ml87NwVXRlKt5GoMlinbRQL7++8tHnlZDP+1wVAlz39by0VxA/WqwPTQuJZGs2YD7n9UufsHhnbM//E02cxhFurkErmjINsJRgMe7EglLntVgxSjVvRQNQPT6qBri/snVVAmEhDqotsaTWegcAbdUpTIxKJYsiZXXPMG8iZEEQtNjefu+7ji4Ju76j63vGMmKjOWBrwnD1mH/qV36Rn/r61/jyFz/HzWnkr/31v83l8IxpOIIkboeJ01AQgzeyca7GyYzHFU6lIJYoJt62BCj55YHxv7kS+Qfbp6mQfxAY/9+EKPi049853ksIjf/Gx5iJM19pKWXOzw/0Gl9ssB4rJx7dv+DVR6+we/Aq0t2HfB/p7pF3F/SHPSKFWguSElJw8ktgKMaxEk2fIBcH11USqPoxVTHztgml6xkwbseR0zBwedYjUuhSx2Hfc35+hsjHXhWlFpIpVv2AqoJomtdVNYNpmuNEawPx8uogL45527a9pvFso4JXtKkWazLU3NVIKqSUUIlnhHl/5udpEe9ay6pgIFt7MVZE3XxOqvEsYpQyoUECYwVK4TwJb5z1fL075wRIKnQZDrut0tNmP8C2fOYlY/LDkM+sr2/LZ7Z8Zstntnxmy2e2fOblr235zJbP/HHMZ7YvPW222WabbbbZZpttttlmm61NlMdPPmLfJf7ML/4M/8a/+M/y4HzHzdNnFFNqKewPO3b6gP3pM1y/+z77TtntMno4ZzcZkhJWC0WFrsvsOTAMI7c3Nzy63POX/twv8os//yf5y3/pn+Fv/N2/zVvf+hZXH33M6eqKJJC6BKKMdXJ1kyRUJMq8L+Y4X0s4ZQXStmvxpDiJA0K12p3PBjaE1ToDTS9LrGccEmGslYmKSUI1Y5OrQROQ+iinnxKaMjWpg1ntPFWpUpd66E0VhCfrpU5xLAmk0jWuUymM44iq0uXEWFw5ebHvePXhPR5f33J7PPpZtL71LMpaE6VancmAF+CfhpnK8+WilxH292WNCbw4SD/AfhDoM6uzGnhon0RC+Dx1XXfnfO8oyqqFIsvHWEOJ2UpZMytn431ZStO3Y6SUSDlhZhyPJ6ZxJDXlu4iDsHGu6lQANJCUBT9xqD9arQRWWQVvXhClwpMKojynPNN5zzuZGEbl+8+Ej1SoxcFQxVue4DRUzLmQELQ/8PTa+LVvfsT/95vvYcXI2oV/FhAHezW534jB2x9e8c77zxhOt2gtfHR14nsfXfH6a6/yH/zV/4C33n6Hb3/3u3zjK5/n3/43/3Xe/fApf+/v/33+d//nv8q9i0tS6hEyIsLNWElZ+fXf/y7/q//tv89puqGWCQuAeBinuYS/mK/PUl0cN1limIxSK8UmCMJBk7LPGRlHpmHw4ZsnrpDEUIJks8ysuDN8rGc/cjVzSkrKiWGYqFZQEVLXzZ7v8cEYhyH8Qmaw0Zus1ACvA3he0Y/t9+AI6EXpuwR9IufsJeDNAfMxgMQWj9btDJo/rn3crM60UK2+blUkKKXYTv1aa5mwUsObFm5kXgssPAtCtCGRhfS0Zc21daQiVDOGYQCpqKbwRQkAUeb9mkEnRla/BjXB4vqczFGslZkP4D53QZoANpU4tjoQKsJ4OrnCnBctRZl4Jwt8TKoaVG+xknCiYu5b0c4zFm3OHUpxpWoWuuyEcDWhmnB9Mn76x7/Bn/nzv8yP/MxPUq3wzvsf8/T3f5Orm4852cTNNHIcj2gd+FNf+wyv6MjT24G3nh1572bkw6FyUyrFYKx1JqNUlmYi/13apwHNn/b6p9qamX8Z8b867n/rtrrXdt2Owx5yMiiJ8dTz4OKMh/cu6fcHQJimwnEc3b+LkVQd+EbI3YFSJ57cTPz6736b3fc/QLqMpsz5bh9+mnwNt2eh6sTAP/7eR3zng6eMFfrdGYVMpSIp03c5sPICGJqUnDKk1lqrzu0hWmSoyMsXwXNj+0nj+jxR488AQQaaOTEizFVfrMa9KXoV1brUh5ifPZwhjTjv9zSv7BHbRHwR8UehakQ7jEbv0jhvMKPrhLOzxKPaAZldLuw742L3/z8CbbMfEtvymReGZMtntnxmy2e2fGbLZ7Z8Zstn+NTXP9W2fGbLZ/57ns9sX3rabLPNNttss80222yzzTZb2VQryQpvPHjIX/jFn+fRK4+gZqZSwBJmFdWeURJPToV3Pn7GGw+P3L8s7M4yz4YbcqqkQJ5VoEsJS4WhFso0ISQu9j1f+/IXyZ3yrTde43tvvcUHb32P33v3bUrJSOq8nDYNZfckv1qrWvQCSv0S3NpmUAnwPPbOJ+JTqw++XP0anxMHdIZiDEE4mCoEweA6KFf3qQq5kQTiAJAn0cUVQtXRMxGhyz1d1zmGYpVqQLSF8DYT5uCeCr2CVAOFXZe5f9YzjANiFZ1LSa+pEwdMbU7OF3DRJAUoUf28UqLWBWRcqxK9LYfDoME83B3zeYwaGE8cfbFZHdz+XQ29CHdwoxV8OWNLjcypgTzuDgdSl3GBWGF/doZkB4ZrnPsaCG0A/x2yYwU+ijqIIaHQ3OUMxduivPe97zGNI6JOHCDq4ybL2RoGxUtnpwZ6WJA1koJPqFSBokqXlE7wtSJBMsRYkBQphE8ZQmJCGEplqoJWdUBcDAmgeqajAh9WS5QqXB2N28FLc2dxIL1qoWAIrrqrZpymgXGs3Lt/yZ//+T/Ln/uzv8h33vouv/O73+Thw1f5pT/9Szx5/AHvvfMd3njlHhePHvHBk6d878PHvP/4hutRER0R6dj3fZBTcH0c+Pb711xc7tj15/RdhjpxOCzAcKe5XT0zOVahUqlSOZ1GxiKU6orfJIokbzVQaqWWuppr4zQY73/wlOPpBFZ5/dXX6boeEyhWKRRsnLDi6rvu3gVFlKkUpnGkV8XMqZepGlPfMY2tnYMwlcnpGUk+h6reDqIRbhAqeAl+otJ1mX7Xczic0eeMlSAIrHJb/TgVVxympCDJZ9+M1j3BAphzlW6Qi6WAGVmTj0uQozl7JYjhdOLm8cczMZAlMbb2CBETvcpAGz0j5TSTXWZQqpH7ntRlUGU6nUgagHutkCHnjpxznKugSRFNgDI9+xgtIyrC/Qf30f2Zh5YaYCKVaRqYyogCFxcXlKkwDAPHcsu9e5ek5ITd1dU1FxeXjGViKoX9+cF9O2dSStRp4tnVU3a7HYf9nvF44sgRG0dkmshJKOb0jgVQqUuom6menIQ+Z0QSjd1zslTJObPvEmdZscnIotHWxVXbQ62UYmSML7x6zitp4unVMcgpw2RChsow1bgvOdU3kxozSN/WhM3E9hwj53h5NxbfrRzi+67t95jwNQnwAiFg7s9tf42saWay7Nf9Y02uO7jcqnOs4/9ztMC8/fo1WZEk6y3+sNSB3Rm31Y07SC/Nid1+z9lZos9gBcZh4PxwYN/vo5qIt2yodaSMJ8axsOszWRLVlLhFUqvxrBbG44AWI3WATLi62OORCVgtTKVyM4w8vrrlOMYzgPozQTWhFGMYKzUVJ40xkgiiXgGiFq+oMGH+fLG+h7XxiWvX1X3uzog/Rwh8YosQ0fn54e64LzT68nwRqmmCDaQ6yWHzNyHajmmEaiwi5vtmEJ6NPHBmgXheEkSFLgsHzSRTDhkOHZzv7vrlZps9b1s+s+UzbRy2fGbLZ7Z8Zstntnxmy2fWtuUzfqwtn/nhy2e2Lz1tttlmm2222WabbbbZZput7PZ0dAD/c2/yK7/w86TcMw4OxrnCp1JRTkX5/vXIr7/7IVcXj3hzd59XDg/5+DRwljN7hV2AWDkpljzxPJ0GTlNFcsfl/Vf46Z/4MR4edrx9/x7f7nd87+kHPDlNDGWkNyUHemwKIFiBF1LXl6h+5gR4/btE0jqjDv63tYRVFoD8RfOkfDRjqJWhVNTwks/i4LX3iU8OCKv/oAHQS0IANVdANslgFaHrCn3uSaIOhOMAo+fSThKkUPntAhg2oMvC5SFzdSMolcqq7YAJIoaaLeXtRfyc8eMWUbqUSGqIFI7FMEmAKx91BSA5SdC0ogu4dKcMexAkM/Iornhs0zVDDwEyNQUWWBMYz7BCU2ZKAxvMKBJjEu369udnHC4uMITb61suHr1CPjhRYEmxADDMHFjOklYkgR9JghxIKSFJUXWgses6MjDcXKMffUT+4AMHVTWhqQNtYNbaV6qPeTFSI16qOaQiCaHEpTspkFXpkpBVQmHdtLUVEwcNE02t5mXACw4Oi4njTOEPaivARJxcAJgkgSTodw4oh79PuCqzYTvVCjcVLi987f/bf+Vf55f+4j/D7/7Wr/Nrf//vMA7GX/pn/xIdA7eP3wWBe68+or71XSZNPHjlDQaEYhmkQ7odmq6QUP6eZM8r99/g3uU5Z/sexiO7nZKSE2qddvSiM0Qn6qA5CqaVjz56yuOnNwxjQTAeXlyyv9xTBYZxpEyF1qZFRLi+Gbm5/ibj6RbqyGffeI395T1MhaFOTBROT68Yrq4Ynl3x8MF95HDO8XTiyccfc5mUUmESZRJBUub26oZpLFTg5njjYCqQxeiSoPO6njGwIJOEqRYOWTnbddw737NLmVKMsRqDVXSsnEJlqFlIKlTJGIpVIylockB7qtXLtZsD9GUaEIROEzkARBVh12cEuFVlePLRHOOSKpMF0CdO3lmtAYILUN23UG99YU7W5N2Obn9wAgsji1//NHoZ+N1uR9/3qPia0i6TuoxK5sntM6SMZBHOLi/p7j2kViiTx85klePpmuF0Q1Z45cF9TqeB66trxtOJy8sLck6UaeLm+prLe/c4DSeO44l7D+6z63bs9ztyyjx78pjT6YaL8zPu33vAs48fMxUnqLVWupwQMQpO+KQgCpwHcB9UdaA8q9KqVLTRSUkxK9TxBLfXlNuJcRgRhEO/QzQzmZfr70R4/d6OV7qOQzLG4QQ2MVaYbOLZZJyktRNY7j9tNYv667UGwKoL+fn8/akp61MQzO0+o0Fkw9IyoOLtOURlJthm1LkaKn6fqhaq4DAz8/tli+nq1VLa/RHxOZVWiYKFfHm5vQhkv/gdgOcIkOffbrPz/IHme89CtZJctZy0IyWhavFqJrkja0cKrkzUUKlYGT0O4XHKe7BE256UyF1Pv9+R+53/vtsxz54ZU23kekHUyKkjqTqJ7aOGVRhH41YLXSpA8TNuJF2ZKMUoxZgAsUpWnzsNIvL5QV6qDLz82Wjd/mhNmtuqWsASyBrgf2dKFiJmJggMrEYsqat5WwgusbKwneEzfirL3+47/gwk5hUOui5x6DpygbNO2XfCvt/a22326bblM1s+s+UzWz6z5TNbPrPlM1s+s+UzWz7zxymf2b70tNlmm2222WabbbbZZptttrLvfvv3+Zf/wq/wF//cL/MLP/MzfP/6KTntAWWaRo6lUsbKs0n5UM74T379Wzx895YvfeUZv/CLO87POywJYkquldNx4Ox8j+5c/TsNAzkUbtdPHmNJGU4nXnn0Ct/4V/4yb/7oV/gv/s7f5x//3rd4/PHHvPrwYcs9KVEmvSkCsTqjyp8ERDi0s4DRsIAJCyC94COfZo75JaYqDFMhY2jqqSZIhaSZ3W7Pbrdn3++g69CUqLPKLEALa2XfCxNGn3r6tGfXH8CeYQqShNEmB+cRRJQkcNZlBhuxaaJLcLHvOeszWYxpGpDcOSBizOXqW0sNWSX2Iq4mffToNR4+uOBw1vOrv/k7qDqop/OALGSL/1NnuEBWA+9AQ0JaCfd50CLhb6045h25AnQGF5oFgDF37rD6wuS2+eoOZ7z+hS+hOfPhex+Q9wcevfkGu7MzJgpTmRiHgWmcKOPE3BqkVsbx6GB7SmhSTF0tuVMhi9CVwrf/4A84PnvGeHuLTJVek6vSxxKqV1YgiPmJlVAGSiVrqC8t4L9SsVr8M2nCrJJTR9/vSSr0Sbxsvk1QQKQnqSslp+KAjzhD4GClOUCdcOywcWANtJlq5eLykv7eK9jhgsdPnzENI1YK3TTNALYhpC7xxtmB+/fO+Orn3+S1z3+V1F3y03/ql/nqn/hR/uP/6/+Jf/jX/598/ce+wY/+xE/BwcGwz37uS/zSL/4S73x0za99+zt8/OSa4VTo93vKcUcdRrIplw9f597nvkzXJUqZOFzc55V7l3RJ0eog80W/d3KjFIyKCaScEU2chu/yrbd/j9M4crg85wuf/xKP7t93Jeo4cTyNVDM0ZTRnnj254jvffJcbeUqpE+f3H7J/9CpFFcYjPVAn5erJDR9+9JSuO+PNV96k6w5cP7nmeHMLuSMf9lzcu8crr77B29/+DqebG7ok3D/seXp1xTQMpFI5ZEgh6Cuzr0fkEWHXKVYLt9dXnG6uAoxKFBEGM66KMeFl01WdKKmWqdZAujqPicPFyVXi0QIn4ySFYqQgZHNSEPOqFnjLBkQoxdeuinnLhLbOZjWlME0TikbLjEStUZ4+lNH0HTaOjNPENBbMYBiEYpXclLSjIjkh+LV34iDcOJwYn125wrtUCpWdKlIrnSam6cg0ToDQ7/c8TEqXFasTtYxcnB94+OAet8cj6UagTjx4+BqH/R6q8eSj97l//x73793n4vyS8ebI1e0NICRRDikzWHF1tBG1AYwpwnMnigQRUsvkJfGtTWclJaPP3tLDcmKoA2Uc6HPiwb0HXD58Bc1voymxS8p5L5zvE1Izj24zQkexxFiFD24L142sbAS2LNUcBJkB3xZnWf+OE0UzKByfa+1tmsK6tchw5WuonWNfjQNY9l3J6vfocZr889GupJi3yVkCNLN/iDhpoJ0snZlEIjoa2Fr1vLouWQHXIgs4vrrTvEgL/GCT536vZhyHgbe+/y47TeSUkJx4/NF7oInPf3aC1GGq7PcH7l9est8f0NR7O4OGxw8jfac8vDzjJ370Kzy4d0nXd6Tckfs9qJM63r7BaC1OTmPhjXc/ZvjV3+CDx48ZxxOy77BaGK2CGLbrqaJMJgyjIVkYi4P3VZRajeF4JIn74NnhMF+nsZADa5KglHLHX5q1FhNtzc9jvMb9JfbZSCxdHa2RVXP1mSAH5h+DOoGmIG/hzgFo1VpihuZdzw8qUI1dTlzkPa9cXEA1Oil0Wel23R/ZJzb742VbPvPJtuUzsOUzWz6z5TNbPrPlM1s+02zLZ7Z85ocln9m+9LTZZpttttlmm2222WabbbayX/6Zb/BP/5lf5Kd/6sepAod+z1SEqVamWhht5Hi8QrodP/6TP8mPfO1H+eZ33uGb336Lr37jJ3j9c28i05FpOjHViXEEs34BmE4nV2kZCIWLi/scL854dl15//HH/MLP/iyvPXyNb37r2/z6r/8W//Vv/SY315WUMvuz80hSZc5pl3YOL0f5a1NyzYkw3AEcQh32cjX0y3YoDnaYMIwTKbuKDE08GY78zttv8+HNDYfz99Fuh0rCVLyEtBpS12dq3B4Hnl4d+eDJDe89fUbNKYDSShdyvRBbogqHXU8CSpnIwKHvuNz3PDjrOVkK4EcDAC6YVcZinCYf9k4cjBldDoswkdUTcSlgWjCtTk0EoN5w/JS1DToQCt0Z0HIAyAV4Ng/xC6O6fsGemwvafl3J3FppIDKTFiqu7DXgdHXDB2+9DaLcXF0xlYln338XSRol8p0IqaVSanHFpgFUqk1MU1lUnEE+aQP/p5Gnz57Rh5KNph7EwIqP1ep6XF1aos0HpGTsFU7mZb8fnic+s3dldsFV6XUceXSmdOLAahbj4XnPZx9ecl7gg6cDKpAFssEwrcpwi5HVAc0s3Hm9AThlHNjlxIOH93nw+a/y4eMnjKcjdRgYx9vwe1fSJlH6XUcx4/sffcz/5v/wf+Tf+df+Jb7+Ez/Bwzde5Zd++S/yH/5f/ip/8K3v8q3f/yb/9J//89AlXn3lkp/9pT/F06dPKbsD7374McfjLZ+5OOf3rj8AFe7ff8hP/fxP8/3TLU+PR6bhxMVhz9WzI8kErUYSI8nJley1kS6u4lVVroeOqbtH2gv7B/e4to7rj66dAKsOTpda0FTQPFGGiaqKpkSpmZuhcHs9MCblVApSgXxBd/91Dif47gcf8nj8FrvdjpR2vPv4ffLuwP3dOQ/uPWDIHbY7cLq65vFHH9B1mSJCPuw5KOzHa3YBuJfgzmxG2pQJo4ohyUF3jThQ8dYdN629DEatrqzXAOe8Bc40O5urVqdQYuNVE6iIOX0gtUKIYSswlUIvkMJXRdSJpVRJKnQpI9Q5zji47MdvjpUwbBwpp1tnQ0qhThPTODJNDgTWoTCNONguXs2iAqUY92xil4ROjQ8//gj2JxeulsJpPDH0Hbu+p+syXc7c3N5QqhNdMo0cmdjte84POy4OB26unjBOI2qF6Tjyvbe+4wB1+PLZ4cDxeOTZ02uGm1vqNJEFdjlxkBSkgFGEqHDh+tnaWqyo0PeZs8OOPntVCwvUNKdE7jIpCVhlGkdKGX12ck9R9XZBVthn48F55rw3pCiXByFXYRiVj09KTplpKnTmMU4CYF5JVe9U+RAciC+1YhYtXlKi1IoIJE3R2sNjUsqZUgqaQhEd4L2qYjiAnHOm1BrAv5G7TC3R4igpmFGDREqhTtcgNWoo7LP6vaFWI60+7/cIBasYFnHWVkA2d4Dq+VpDFduuZb5tyPK/Pxxt0NYg2FQ5PrvlvY8HhlJcnU5Cxiu+8NnPsTv0TDZgcoiKGdHKpBQqDoRXsyDChTpN3Dz+iMtU0XFHTZlTvkG77CRBqUwxviLKNBbGmytsGlB87SGCxJcmJqvU8YTmnosHey66A29+5jPcvzwnq2DVuL0duDkd+fjJYz788AOePXtCn9LyZYg7wH9b76snjhXhLuLK6oUkkIWomkl65rhAvOfq+PjxYHGHyJf2DEJdufHMYDMzA+bPGf48Z/Fuq4RCkOLQKRzEuEhg2deLE4Z/yGe2zf7Y2pbP/ADb8pktn9nymS2f2fKZLZ/Z8pktn9nymR+qfGb70tNmm2222WabbbbZZpttttnK/rV/4Z/jJ3/8x3jllQecppFabFY5aUrUIgxWyGqcn53xta99hXfefZ/TzTXXz67ockYnw+qE2Ug1XFmWlK7vZoy/JaV1HDns91QzHj95DMV49OAB8sUaQJby3gcf8PTqGTfHWxAl5W4uaw2EImyVFMdrDWBor8FzSTKyzoVnQU4DMe582GL76K1gAYSVBmjiyrontwPaHzmS0a6SJFHVgW1RL/jfwD8z4zhOXJeJGwqD1TnX9nLQQUjEeZtBLZOrblMiJaVPiV1OnPeJs7RzMAdP0nNOTBWujw5iFbyEu0miFkhUEg4m315VxFYgAQXQAOdD21ZqtKcPQEGeIwFsPZptblYD+MK4x6ytlH+1tX+QpUS1zPuJQwQxcXtz5eoyEco0YaUy3D5zLKNaAHvLnEuo7gxvbbL4gl93ivYd1SrTNEKpXno/2kgQLTq8NcYKSxGnSFr1cREHvffAZA7YPDgkvvCwB9QVmRjXN8Y+60yygHG+y7x6sSNNxkdPjyjeGkDruny/K6KzyFySPwUP1uZDElSFnkIuA5yesbNbeh2hL1jnwFJOSpe87H2fhGLeviFNj/nO7/869y8z52eJVz/3JX78G9+gDEf2WXn28ftISuxfeYPLe4/46Z/7OX71m29z8+wZaYDX753xTlYmqeRs3F4/5YP3P+b6eGQqIx/nTCaRQjXuQLeFoG4BlEQFSUItxvVYSJNQnt5wmt6jVHHleQPS2/ZZkXHgNA5zK5Xj7S3kPTVnKq4e1i6zv7wgqZK65D6TM91+x71XH6G5Y3d+hnSZyQq7swNlvITxSCmjq877jjMq+w+uOBNIIpRYszWWogocDUZ/lU6zz2P4TxbhaTGKNRIAtMUZDMQi7vi1trL/Ih6nciOvVNA4h6biVNxP9tE6ZMLL+5fwVxXY73eoKsMwuIpaxMmzmaTwz1iZmI74vlvZdwRNrSx781FBxKhtFq3SCxxU6ETQUmcQ2CpQJ5RMl5Q+Z6ZpZBoHEG+Zsjv0nB96+q4jpxzA+UQSpSRhrMUJoraGMW5vrymTK7bv3TtHdMKuR9I40aNOBqjHbHFONta0gRr9zgmLJIJEK4YWt5I6eeXgN94OoUb5exGmUhknr4Cw7xPnu8wuF0qfOOwyXUncPxXOsldqAJ3XNSwtfdpiNvCKCCwq9iTrDbw9gMfHyro2RVvjjWxo1TFahYWkTnQozA5p1dvazFF7RbCL2XzvbXFQwxcjbFPLLIvGQd/lfGBFxDbw/rnKF/P2gTXbilhfhey7fPNz+7DVRhLX7UvJ2GlHNWUohZvTyGuXF7zy8D4PH5wznG7h4hBEmftHaRh4qH+dpDamMnG8veH6uqOfCtp11JSRYakQUmullEKtxmmYuLm5ZpxGH5XkzwZVfOAFKMWJ/U4T3a7n1Qf3+fqXP8/5rkeBJ89ueHx1wzvvv4+Y8PTJE0xfTpd8UjsIaM8581/hWe6HIkuLLL+Ztv9DrbaayfVNGX9eidFfCFJZ5mpVyWb5fMwzy3OGWNSDiW3LOHGajGfjEyx3pGTsuoze8YDNNnvRtnxmy2e2fGbLZ7Z8Zstntnxmy2e2fGbLZ/445TPbl54222yzzTbbbLPNNttss81W9pf/4l/gcHZOv+s5jRNTMRBFcJVhra7KorjS6Wtf/TK/8Zv/mA8fP+PZk6eomSv0agHzMsSlFtQyXdehKouiNoCpvu+pCB8/ecLt1Q27lHjt4UNySuzPzvjWt7/Nd99+m+98921ux4laJsySK8GSq5Q8CW0Iu85g1UtT5JYhr0GK1e8vU0kvYHdsaj4uxaIkezUmxH9EqSlDSqhmmlIZbWowV+NSKkmVTpUeICl18iRZ5vx5uQIvzz16awURVBM5ZfZd5rxP5F1PmcYZLD3sMkNVxIyb28EBSRWqKVmUoZ7Ydx2dCnUaZyJEIsEXcXDQ1dmVFX6PNJJmBULYDNwIM6ayzM4ylvF3AxFFFE0ycxMOoASBUBfgMY7inxJhON1ye7xykDklx7gGB/8F96/5pMRLmteYu1pWIFhIv3K/o9TqKttS6DRTrDLVydtGaCBW4RArjCV8aAF1sxp7EY5BEtw/JN58cMBMmYphVviwTPSpkSO+j7M+8/C8h6GQKCRRsrpaXgi1o7pSNYuQcWAjiczbODCtkITeJvJwhT17j30dSQq5E7Imsnqbgl2X6VOmVy+DTwKRys3T7/Hk/Ve4ff0hD774J/jZn/tZjs8eU4YjN1dP/dr7c/TsIW9+7rPkWpDhyM5GPv/KfX4vJ05S2HUwXD3m9sMPuT2dfIwx6thUj4ImpVr1FgG1EXKGKVhyJedOOhLCzfUNjwUK6iXSRSh18nYH6q09sg3IeETF6FU4Xl9hJMg9qgk9ZEyU3CX6+5fkrNw8e+bA6T7z8PVXsfCJsXjMyZ1yOD8g0z1ur55yfnnJfr9jXwb2H8KlOglXiCoB4bJJoatwUysV6MVIoU42gVGhG4UpwDiVWH9BP7qf6kwYluI+ps0fYj0EzEdSocqyLqmJg0wkgUEgVaHSFLdK7npXbpYCU4nYLAu3Zx5nrVZKOfm6jeOJiLcHmNcFKN6GwsFoqKJ0ydip0KvQFW/b4X5vJIEuJ3J21XiZRqiF1GX6PnG267m8ODgwb2C1IGRK9ZYYY61epSJ1aMocj0dub24QMXb9jldffYDZkdPxBupETwapjGKk6mTkhDDGbcAUul0mZ48p1DqDmBh0IrHeBCqU0c+3jcdUCuPk9759nzl0iV6NsVN2u8y+Ji5PhbPO54+mim7xMuKJRByvtviBiAOpumq7Y43EwSitgoPFu2bknJnKFD7lyvGKA7ZJJFTwOnuaWfFY5/zBrGZugHNKSqnFvVLU424g+SLunw0kJ96zOB/DQr3tjlVbRYAVkbsoquNeKZUWppeYTUOeWVu7TzQyF3xcdQay4dAfkFqYZGC6OXHv8hGPHt7nweWZkwRx8621MlWbiUgIgsMamVoZxoHjcKSKkMDvK9pI/ORtrIJ0Ph4HTsPgzwyNdF4B8iaufk4YmoTzTnn18owf+ezrPLw4I4vy0ZMr3nv8jCRwe33Lt74lcyuOOy1DVuPxvBq6jaXPdZAAK6J+3vbOvqLFVMyNzfuJfRu+H2v3wgq1YqKIrrapMYmiXinGDJPGTvn1xwPWfBKn08DjZxNvj0/R/YHL8x3nhx2fwI1sttlsWz6z5TNbPrPlM1s+s+UzWz6z5TNbPrPlM+2vPw75zPalp80222yzzTbbbLPNNttss5W9+eghRTsKymSARYqshuVM7nZoGRnqxIdPPuALX/wsP/nT3+D3vv02b737fa6ur7lHRVHEFGqiTmBqdDmDJKqNAeD03F6fMBz8Obu4ZBgL+0OPJOPq6ilf/sLn+NIXPs/17S1/8NZ3+a3f/X2+/d3v8sGHH3J7PPHg/j1yiiS7JY0rwMFVPisoYUYZ2qZ/hExTGt4fIBplKcttxr7v+cyrr/G5z36GB49eozs7p+92/iEAmxalbhy31InjOPHR02sev3/Dt955mwmwrvMeABpKSQFJiWMxbk8DN8NEPj8jdz27rmPfJXa5ofggydingTEfGDplpzITII7/VYbhGV/+0p/ks595FQP+69/+Drnr0ZyaCAzBVaQp9YAn7ODAHmtAB+Zy5uDK38alGDAjpj4xrujE1etJXTUPcHs6uRr/E6ZgVuWZ+08VC2AyQMuZVAjQK8bbMHLfU4MAMBlX6npXVObcUccRKRN9SrPS0sTLxmMVjWttvMcsBmsEUoBSrpiF27GCVi73wiuHzDTBMLrSctj5ehiLMEVLg10nqGRUjT55y4ckQK1kVbqc6JLSUdkh7IE+jtmIgjbGmjvOpXDfbni1c0XZ2aHn7GzH2e7A5cU5Z/s9Z4cDZ2eXXBwu6XcHct+T9tlVo5K4ffwu4/EZu13HxasPUFFuj7cMw8QH77zF09/5bT746GP+0//0P8HqxI//yBf553/55/ntv/P3GIbMZ197ja//5I/w5qHn6vqaaRw5jYXjODKViVIKU5kYJ2MqlalUSjHKVJisMIyFahWZ3L1rFQYf7JgE/2UCqrhaehTjfDyxDxLu+oP3uP74Y49MpuQeNOco+57JqgiVapXb0zW71CG1crx+yvjhe+575n6rKpyd7Tmdjpxurri+ueKnOuVhMrIYoxVmooxQPqPoaIwGHUan3poFgUGFXpQh2jeYNE+y58JVi3GC6uLzrpRtFRea2wuihlahN+Nh2oFWbqzCdMTSHkwppXJ9fe2Api+wuNYAAoNgW6tto2HNDBRKlH33TiiBFM/rwaNBEqFX2AXB5RCuYpogZYoZp2GkTBWscHG243DYs9vvfN+1oFRyirYlnXjVDYOxws3tidvjievra07DyNnZnnsXBx7cO+OVe3uefVQQraSsXGRhtMpoMIpwYzACya8E8HY7Vr36RGIhPMHoU6LPHUlcTT/c3kAZvT1L14Exg/KN+MgKu9xxvu8RGbg3DJzvYZcg14rgxxIRpmmaQV8RPy8Rb1dT6/PqUj+3BvpLA84b7mqu4NWkoEE+qHic9MA8g/wi6u0e4twRCRKembCqAiRvO+GKYyceinn7B0QRjRYPeDuKaRxpEV2AMiun4/x1idOtlcFdwDqUw42M/UObr56Z4MGwLBxtZKJgNnA83nA6HrFxQKtXw1DJWJVoadFIv1j7SbAyYTiZdnG+42y/R/sdpI4+9ShCzjnIFENVGFNGyVzeg8PZE471imkakVClC410Krx6fqDrD9y/f85PvfmAz5wp+95QgXuvXpLryM3Tng/OMhf7npvTCYNQ2XOHuP+B49NUz43ejwAiLF9ocDKhNpfw5ylbukCYc5aNsQqCYL7xe3+chWuYjzV/MaNWTAwkxbOEYVSsFlIS3nv8jF//zof8rXc/4pVHr/Lo/jn7JMhw4k//u38Ed9jsj51t+cyn2JbPbPnMls9s+cyWz2z5zJbPbPnMls/80OUz25eeNttss80222yzzTbbbLPNVnYcJ4qASYIo850CGOsVdj2cTlCqQansc+Wnf+RLHLrM3/7N3+Pd99/j/NF9drsd3amgQJkmppTodzt2Xcc0DNFGQUhd50rJavR5x3S6QVTYn+159Nojvv/u+65kTJkvfvazfOaN13n/ww945913+a3f/l3efvcDaib6zHvGKpZCFR2A+foCTXBdICGanZsbALxUFU0o02gAjNVQFHl2XK2SrHIuyqvnBx6e7bnoM6qCSsVaX3cm/y1UZiqCTCfSaUSPJxgn368KkhK1GKdxZJhGilW6pHzxtQeMx4HHT2+w8cR4fEanE4/u7dl1CZtcFZ7UFa+DZI5jpcvKWAo7ESYRBgxUSLWg00BpwBLVy8QHEFlqdVDHjMNhT9clpmliGE4zwKABJjicxgwIGU4W0FR+q/GciRMcGBpOI6auom/gqAKmAaE0AHTes5BqDTzSS2o/D40YsoD4BtM40cpUZ9FZOZ1QdpqZpgmtJcDSNcxpzHSCSiiy5M5xBLy0t3nLjItkvNJ1nMpISXC+3/HqK4+wWhmnEWxkd6lcjR0mmakaViYudol0fkY/KXt9n30Sdlk4ZuU0CJ0KhwxdVc6qcZBQ2qoFoBhzh/CxTVx2whv3D/z4l9+g62C/37M7HNidnXM4HHyddjtyf0afdyTtkdRDzuyS780Q6lARqVhn0CVeeeUNrO/5G//53+A/+o/+Y/7ur/0mb737Dj/zk1/nF376x/jyL/wcZ1q43Atf/9Ln+Jf+yr/F8OF3qccbbBzdh0qhlEotE+PpltPkpME0DZyOJ8bjkdM4cDsM3Nzecntzy2kYOY0j1wEKn6aJcZqYpspp8DhSqnB7OnL8+BYdK70I+7PMXjqGWhmnIzYWtGQHwUQZA+2qGFUqEwbVVakVB9slgolhJCscTaEa59PEg/uJV/RElsoYpI3NvvP/Y+/Pfm3ZrjQ/7DfGnDNiNbs53W3Jy8suk9kwM5WlaqQqySqUIJdlGzL8YsOADPjF/4IfDPjB9l9gwH+ADUOABQGyYaksuyBZTpfS1WXjSjJJJrt7ydvf0+5mNREx5xx+GDPW3pfMSuvVmfFdHp6z114rVsRsY3xffGMIqXhGgiMBjUKnSmrEZx+EGMqJuBUCakIR/+7SqGsXIyEGIcWIleIlLGaBQGZ3dMUTRgioUbRw1lcCihSlHjISCgTn8vbj8Y6oFDmNf23rpzYi2DnFNu51FgrcyV7NMyoEjDgTysyCaGWtcBa9LATmRLFJwZiQ4GVTolRiF7g4u/DyIArVJpL2RFUn4VVIKbHZbhlzYXcYePrZU8bDiIrQh8DD1x6w2fR0QejEoBS0KmuFTaw86eCQlcGMQQ0rLhIY7sy8uromxEsuVivSKvlqo+7QFav0KkSpvrZb5TgWymRYrlAyB8scJm+Ds05Ydy6CawiEKOg4sO6jE79xIqtQgjYGFqrEU0kIacKAhlmmUSS0FbJl5ZCgd6WPZC7hMddwaqV82hpqGFMuzXHs1LQFQ8Va5o2MSECpaHtAYLDQRrEQBKZcUPWSB9Lmh2jn1K4ZtRHoiDuIQ3TBbc5YcX8N99IQdm+d/uIqXk+1IOR0fS11QkNo+0O9Y6xP7TB/k88hDcp2u0FrJe8PqBV+4+tf5lvvvsnDh5dYSGSNmPk9z1w2pZRCsUCtreyMGTEI65R4uN1yebGlihdXil1CY0KaoFfHCTFIMdGjRNnTm3kmFFU6DYw2Uk2oNaIh8OR8yxuvvc5bb77BNgjT/sDjiwveePNNUgj0IXLWJR6tez779FP+8M9+RDFjs14xl4q5LyzeEf2/vEPOreOlIJS5JESd9QN8bAT8QYXSyvXcieMnpdaPc/+JjJMWYF/owl/8pLTVx1o2hVPfGZAiH714xXff/4B/8pMPeffNF3z1zcc8Otuw6QILFvxFWOKZJZ5Z4hmWeGaJZ5Z4ZolnlnhmiWeWeOavUDyzPPS0YMGCBQsWLFiwYMGCBffgtICHfNZSNc+ZwQWjD4GkkM1aOn/j4fkZbz5+wKOzNcfbG3h0TowJBiM04sUdXUYMiqqTGrURJ06CVYIpQykM4wDS8eDBAz779LmTEqWSMJTKg+2a1Zff5rVHD/jHf/AdPnv6nP3xSN97iDcHms5x/SLp39IZY/ftbu1zTlz8uUIBs0bQiBBz96AGdQcVRheF7bpjlSKpkVwemLcU3ipO+jQ3caOlwAqluBAwkzyUFkKbUPGgPSJsgyGdEteR2wqIuasIY5xyc7U5mVNtooiTroaRBFYqjAgHM0wis8VJpEIj2mf3pf9P/ZqrkXOm6xKhSwRVhmFsTiZBZa5If08U0NlR2QivL9Du3iq1tSml3Lmo2ztVlHrHRvh5mQs8mFEaQUojNSqzU6+56Jqb0M8JJ5e4a/dSKioBFe+TqUytvAeNrLtzaN9l15/H/fyjnEQkw8e4VGOFcdYp2ylywNgdj3x6deNiQi1gmd3kKcC7rieKgERPLT5OXGV3s59FoU/wfHCCVgSCGtGgw+gEejW6xjGG5jhX4KDuwI1R6fuOIE7YaexIXUcIkRASISZibO7gAKrunlQVJ4NFkaSk5CSWRnUX56rnzXff4dd/57f4wz/7Cd/46jv8K7/zO/zuX/sbhGp0dSSpsY3G+eUl1D02rrE8YbW00g+VWgv5eCTXTKmZUibGYWA47DmOA4fhyG5/y35/4DgMHIeBm9sDu2PiMIwcx5FpamRtgWKCSHYRTIy1CDmKX7e1FO8lA+HEKebq467ihPcsMJoJZicJ8TR6EHOntGttbEPlIkISGF1JaNSsp5BPYuzNMwGU6hZvldDaeM4kUKkIWpVaoYhR8DIzClgrYZJUsTqvoT4HShuHgpekiBUnjzEygbNQ6HCSr5g6uXxvXvlSMjuxnYRup9aEkVOxkS+SsW2t8HXO26/AycVaMAYzeoGz4IIWogy1NGLXicWgkT4l1quOGBVF2zgTYnMnp6itbERkHDO7w5Gb/ZFSjM1641kDYiAmpQtKDEKISg1+7hGfKys1CIJWF0CKwdTaIGN0MbJZrei7SGiZMHRuATOiKqoVkQIU8pQpuSC1Ek+ipZPoXRA0KRQlhECKfl0Vz4ZQiyFWkFKR6nuvondlcDAXd6qXufHSFHrqOzHzz91bt9rwnDvH19PT2gdSSxN9hErw0k7SxkP1jAFBdfa/Q7G2ZrkojoFpaeKotKQXpQ0HF4XmJdeHh9ytn6acUmm0c7C2ps/vpYnop9e+8H5OYkfbrU+XKfeu+PSK+bo8SyUqQtcFgvSksOIbX/0S3/6Vr/GlNx4TQ2on7eKzqDpZ3v6rSHu4Qdv8VbqY0JQI6lkuQnSBtZpPNgnqe4k3LYoLXaGVlZA2d3zOVepUiKpcnG1448kjzrdrVqsVIQZfTxSCGJsUebDdsOk7v79qotDJVS4y313wxdVrFrXv7vR8v7Rfaj3vlXr3O/F7ptl9bzYft56OM6958/4O8z3AF/uyec05+dbl7vykrSnSGu4sBd4+X/Ebbz7knbcf8/V3vsSTxw85vzxjwYK/CEs8s8QzSzzDEs8s8cwSzyzxzBLPLPHMEs/8FYpnloeeFixYsGDBggULFixYsOAeTPREnnua3nvBZjW64GRiqI3WMmOz7nl0cc5bDy/I+z1iRlAnohRP9V1nZ5QKGtwpZtUDca+L7oRQrZXD4QAYF48f0vUr9vsd4zSR80jOA6u+483HD/md3/5Nrm8HDsc/5fp2R0wQNJ7IC2nMhDTiAe4T1A3SeN57AfJcNuGX2mYmL1pQLyhBA7VkzIwuKas+kaITz1DvsiJDcx55xvVqFatzGvVKrhO5umPNzAUaFfVU2Y0UCSZ0Vkha0aTUooSoMLmDeRwmJqtgilplauKFp9N3Qnmt1pzPMKdf9sBdMAneFY2TkTo7PJ1EH4fJibiUSDFRciXn2Q31RTeo0NKrn5pRTtcGfs0nsaT97Y4rORE/RjiJLOBtYlZPfVlrBb1zY1ut6H2ZSyKzKHSf2HQez5jMSFGoImQrDGWiSR4+JnUmWazRcnISZMRmT/1pcFClUIt3eA9sOtjkQM6F/eHIxy9eoBLaGRSmqbLdRNbdxskJCezHzH7Y8XJyF/Q2Cn2EGNyNVsX/Viqd3IkEK62oQNRARAjALhhBXAw5TgY1MzDRMVHDRM6Qi9AXsKIQKxoyGjORCiSEhMRIiBEJgqiBTYzHAzXCO1/9Mn9v+/f44+/9gMtVz9/6m/8av/nb/yqH58/p6kiHEacDNu2pU/Y/taWbn1PIVx9/KuLrjwZSjJQQSSGToxJDcOe/RaxmxhTIJTpRXnwMlupzS02Q4O3Si3Cmwq1AjcHLe5hRLZKLi19UI9is91gTCQI212bwCXBX7gDFyFQEkUKyzCYUzhMkEUa7VyZFnBCMAqtaOVR3lhaplODrba7CWDLZKqX6eJRiZIqLBNZI4VpRaeVcqotkZrj7VXz8C0YNM1noyf7HAmeqrAXG0q6jVHcfizhxe29+mbg4JPeIXndEq8/vOpOCNALY7oQymYnBWXAxxlrpRDlXL3+gYox1cmG4GlYCSSJdjHQxuONbFCGgzZFstQIRkUAthaurW252Bw7DSFTl7GxLFyNBhWk6UvOEiTt6p2qUbHTm5Sh6rU34EaSCqZArFHxNsH7F+WbDuuvQNq90XjfwrBMiBlIxK0zj6OUqBFZtjIkEVNQzMEQFCWicXACJidshc3t0geFMCxsx7w/zdbLObSwgId4R5+qk7UzyzwKNaKNo6z1CvXWerzl34qqbib2/is3jyss3ENQzPEijemthpS41UYtnhdC5NWj7hvpazuxstdP5VmuealXMpK3598+/7YUn0l/vBI+2y5Y5E8l8Xczi792+Lff+/efB91QXpbarNWmjXJ51fPsbb/HXfvObdF3yclW1NpFA0Pt7S3swoFTuhA7U36PqQkHoUE0Udce4tXWYmcSvhT4pXQwEVai1CeNzsQ2j5AlVYbtZ8fjRJRcX56QYCTExTCMt3wBdCmz6zj/Z2hSzVt5G56EBJqcWOpHwzLlH7g1qmFn8ds93/17p/h2T3AlFcyc0MWEWKU8vtXFJExVOh2hrhdxTB8Ta2nGnWPrHivHapuNbbzygv1jz+ttv87WvvsvjN97g/LXX/qX9vWABLPEMLPHMEs8s8cwSzyzxzBLPLPHMEs8s8cxfpXhmeehpwYIFCxYsWLBgwYIFC+6hi8kdQGZYbqRUI8qqgEZxMt6MnEemCbp+w+XFJV9/+22eX79y8k+EqUKNLewyKCU30ixgUYghcH2755gLhMjFgwtePX/Jbn9gHAdCF7m8OGO/u+Fw2LNad4zj6CntVyseXZzzt//6X6MUARV++rOfcH750B2eNGfXLHiAO4+5JxC0f9y5XuUkEHxBKJiZcu7xL85VNLLCfxCNzGUiqlWmcQBxN6moUoqTD55WW8nV0+FPJTNOI+M43pHiUlF1EkLARYMQqSZMpXCcBmLsOe8CmpVOKpXcYmx3ZXtJAycLlUoXhJU6AdOJoRRMKlmspaN2YrBYwaju7juJLZUscLO7pkuJ1XrN2fmam5sbcs5Okmm4IwSgOa7vDS4rp/TmJWfqibSfG9eJo2aiJzOX0jh1oxMWs6AAULITzK3Mx8kBqFCltA99kTwygOpEq6q/ciyZKd8JCNrO32au7PTJe8ITTbRog6iYMRSIFjBNrGJhzUgV4fXzLQ+2HbkIuQiqkUSmM0NyJk+TCy6ixNiRaiGIsYrKJgZ6Jmo1huypubtaWXXKNsBaYS0QrBKBIO6e2/fCcTzy9MUrwofPyOPR0/xHZdX1bPoVq1XPqu9Zr9b0fUff93RdT9etOL+4JKbkQowJldpKlQjTaDx//pQvf/3rfOmrX+N/8N/5+1xcPuCtd3+VtH7MD/7pf0WyQlcK+cULdj/9HofjQM4TeRo5DF7uoZRMqYWhjozTxDRN5HHieDwyHgfyNDGOE4f9kWEYGXNmmDKHqXA8TpSpUEtlrMVLSVhhKoWXN7c8LoWHQblQ5cX+wLFGqipavSxInkm6O/3Iyy/Mc7o5t+cMEbNjeHZOZwWtmVoHUmdsVtCJIFM5rQnqvCuKkSYncYcBBoydFLLAEePlbWEQqKpeqiFnpM4CnIt34D/WPHBs65YyZxC4G5caA5O6Az8XyLvKw9cSF6lQdELrDvKmrZPi/B7cE8AMzdJKEkgb+/WOzGxj/uSctoJadUFQfOVtpnrEYIULJOdB2SblTCeuhx1YJFgkFIFwYJKR/RgBQUOPBPXsCjGjOIluFfbXe66vj3QpcrZZ8eDBlml/za5WitemQNXLZkRVRl6we/WKjU2cdZFtuFtuFCGKNgK4kM3QCH0S1l2g10h3IjoFNFB1zprgxTr2hxuQTN9HzjdnnMWeTu7KaUiIqCqxRGJIHOMlf/D+j/nOR7ccdsbf+tKWJyuljwFpxHQuE6JCSJGpeImaEANdSkzj4GumBIzA7W7w641KiAGa4BBQorkwXUo5lYxIKSHJ+7t4koa250HOlR88O/Lj64mb40RXR/7Wu5e8fbFlFYTjVKk08Zp5KAilCeKlOM+eq4uTuRohKKPBMVduh0wIvhda9cwoEoRpyn6O5tkbTqKIGbsiDLmSS20UefX9CqNQmLW8Jvt8Ya33zVOxJkx2Al96fMlmA2fbyPYs8eDyYZsHxSeCBkQjIQTWycuB5OL7n0pgqhOmdtr7TQMWe2pcoShhnhfBpY+UvEDKWa2E2POjp694PgyUYfAsDebim0oBMmdnKx4/fshbb73Jm68/YSqFXGsTS4y3v/wlpqnSnT3n5uamuaLvHuwgKCotAw1NTP/CFnj/ZuYL9D/+4IeLe3PNhyYBzDJTE8jbdj1/solN7cP+iZP44PKPnO7F2h7e3uclsGif83nlIpIPsIdnK740ncG04tGbT7i4vKTfnKHdhgUL/iIs8cwSzyzxzBLPLPHMEs8s8cwSzyzxzBLP/FWKZ5aHnhYsWLBgwYIFCxYsWLDgHoZpIsY5ofydcWaO95yYcsdlUBiG42zW4c0nD3h1/YIyjuRxQsBrz6s2zs0aYS6oKV1K7I8HPn76nLEab+e3EFVi16EqjNPEarPm7OKcipPur7/+Oo8eXHK23bC/vaGUwq/86q/SXzxgrIWPPv2E7UrY9KuZy+Lk7DFOaZNn0sedSXf4l5WCuGsAT/OtIuTSUmCbu3jylMnTSC6ZUIuXKwiCaHMF4y4xa+Ty7AbTEEj9ipASxoETJSlgVql1dj3Cqk9o9OsIIqRy4GFv9G+cs+4esT8eqVVQiWzPesYCP/z0ipe3zyBXd+wBSZ2cH6aB4/HofuLpSJW1p5FXaQa6O4JU1a9gPxb24y3nZ1u6fg3qJG6Os9N6bvf5b3c2OgnuAkwtlVwKqkIILcV7I4RrdXdWjIkUnJCotRKCu/bn4ypNdCjGUIySKzZ7GEWAqTnUaW7vJkJQyTXzYLslhUi1ym44IhLd+YeRrRGGOju1beY6QAUVd6GdCJbGnY7ZGGIhY2wlsKoVDZGvv/k6v/2lC6bjgWkcMIUXe+F26sn0ZIn0jLx22dF3HZ/sCp98+JJOI6sUiWH0Y5fCFNyF36mykcJGKomWahwjipdOeRyUl1Ph+sUtP71938eoZXIpDKWiIbVyBN4moZGUIhENHdtVR2z8Tazm19wmQwiJm1cviVJZdYnzh6+TVh2lGONw5MXTj3ntcI0k5ec/+TP+N//L/xVFXOTKZtwOA2Wa3NmMUTRCLVgpUD09/qkAgc2uXXdyFjMqgcm83ICZl0iI+Nq0MngyjXypKzxKcNYJN/uO68MNo0GmODFX7SQ2qfi4cdqqUsXupbB3N6zhbuRjMY4GUxVyLUy1ENOGvs+spNCyxbd5DlB5EAOvryK5wHE0jlYpAtXcnfuVfkUWI2MUq8R1RydKxJ3H9V7Kglnw9EwAkIKTtvP1CIaqt0+lEraZt7fGRYR1FP7OgxVH6ZgqlOriFs1NKY2Ym+eK4fNLaCKC4a5imdc1V9BK9XmiIqRGlJq6xJeL8m438SBk1gq/fd7x+rGSrZJtYG/GANTjSN4XKopq19bISjRc0LACNZNq4Z2+QyXDccf4yY6MZ1rwtdLPowiMGKME4lTYruAyKZehAJWI+XiokUGElRYOVrka9sS+Z7Xd0Eul2IQp7hiuQkqJIB1KxKqwOxzRtGK1TWwePGSgMOUMtZJE6VAIiiUldoF0rDy+CHyjrHm9JL52qZyvhKRKEM8CkHNAghJiYr8/+BhPkb7rORwKMWpzUCs3asRgxBhIXQLxvSOI79MaAuNYqdX7LUVFQpM9q0CWWRNjyEoweHLWcag9ivEbTzqebBJJA4dsUMe7bbG5nSvBy2pU/3cuhWzqTmJRxlwYMgy587U+5yaa+7ybilBqoOJieGlZC8xgUuWYC8NUGHNhqi7UeRkPY7jvMDY57UGGP9hQBX9oQIxe4bwXtuvA2dmKhw8uXVARJaTAg8tz9HxLDsphGLndXWOvX3qZnIAL3zF5+wmMxyNd3qLdTKGrz6dW9kRFWqkZoxQv+zSLj7kUSmn7iIBJpFsn3nvvQygwjZl/69/8O8SUmEpmyhOrLvLRzz7meJx4cb2j6/qW3eDuViVnf/hAtRBCKznThPW7DDF2cjaHtudZK4dlsyDG/JBBy3Mg2rIm+G+DfGGTx6oh8+2V3JUAObnX5/2T+cbMz6sljPH31eIPmbT1WaQyTsZ+FHZTZD0Kw1joxomQJxYs+IuwxDNLPLPEM0s8s8QzSzyzxDNLPLPEM0s88183nvEHntq4+P/TeGZ56GnBggULFixYsGDBggUL7uHlq1c8efyElCK53KXed3j0LUBQIRGoMTFmJ2u3mxUPLy8IotRcSKIUc7eR4imudU5B3iLIXCs3+z1Xuz374chbDx6y7Tr6vmOz2dB1q+a6hdvrKy7Pz+i7zgWIWrnZH5iqsd6e8a3f+A2urq+hVvI0kpKHfGV20QrU5tZ1sv6+IPBFN/QvOaxagGuzm6g2Z09ordKC8NrcS867BZCAW6j9s14GogXEs6HIxE1Boo3sMHcLYafzMBNUha7riFUoJZOrYOIERx+VdRR3vFWICttUOYbAJnppgWJzMntQ9e+vBWJMrFY9m1455olSPKU0Ur5APliAIjNhXrkpO7brdRsPyjCNhDmFdmsHbSUgSi2UWhsZ620Zo7vGAcaciSGw2naYGVN2x6zOadvb9576ijsHXQjQdd5GY66tuoA4qTh/or3m6cvd7Xm5TtQ8MUwjUkeSeBpvwbDg5Mn98hOhCT1+2HJKgX73HULMmWhQR2OSB1jsQQMFmIgQ16hERCoxG1KDk5rBnX4xBLooaJ2w4QgdkIxpPLIfjAwMQdhUJXeCxeLjRINnNFAXc6pVtBh5yOzHkWsmQkhMtTCWzH7K99J+m7svdSbZPBV6DOIuayBU6Ns4iurM20UfOd/2EJTnH3/YxrDzQHkcWKeI1onbl6/4+ec7RgJDMQ65cjCfizbPNglgLgwo7mBMMtP2NCLNU8oXQDSQMebCBJ0qsVaiuBs2j5V1Dw9XysNN4CcHw6axCSQFk0QMrciHGfhRvZQNPqZUAo0/Q21e+/z3VCFnd39WKtsuctHDSiCKz99TcnQz+hTo9wbV2I+Vg87lCgLVghP7U0arez0lrJgNuS7M3q1HBogohVkwEMI9F2OuhpqLiqFWQhnZhI5tigxV0VopZu5eNaPVjTiJl25Z9ZWiGtRSEKtYc46G4K5Rq8JsatTSxEDxkimT4SIIxpQrlipJoVehTJU8VSZxoWSsmWOFauUk2tg4AEYQXzOKBKKar3VJ6IKcRJspV4ZxwMzHSUo9hrtvixmDFVL1tS8FoZPCmnpylU/tvDpVQjaGw0jfrzg/P2cTXKCdxolhKE6CbyKrlEjdClLfsj04ud2teo7jNUOeyBVC7Oi3l23vEOxwJNfA6w+3dOs1WXsuQiZEFx6DGUmaEKOKBuVitaEUH59BKtuQ0CBtzxLOuh4R31tj1DtSFvMsDwI1ptPr2gQhw0UC6by8RTXIVem6yDsGGS/18ChVOvV+XicFSyfXsrW9aRYZcqkgwcuaWNvHRJiqkqsxVd9npxpPIkCp/r2liTxVhNpEglKNrF7SZCzCMAWOBXIVcjWOpbLPvrcVE7K1a2rnVvDX5qcBUlQeXqx5eLni/HzNeYqEOpFrZTdN3N5c8Woc+bMfv8dPP/yUqQoTQp7FBoPnNwfKCi76FanrnIhv60jFMPVxqKInx7nZbPyVJoz4nlhbyS24I+77rkNFyePIcBzous6naC2ULPzs/fc5HCaO2VitVm1vbO7n+f6q7cE5V8+uIjI/F8FpUftFzIK6CHM1EKQVjzBDrCJVoFS/l5nF+HtZGfy+xk4PFzCvL/Pq9Od+t79++krfTE/lIQwDFULnrv9aSyspVFiw4C/CEs8s8cwSzyzxzBLPLPHMEs8s8cwSzyzxzH/deIa/BPHM8tDTggULFixYsGDBggULFtzDp5895dHDx3QpcRxHuEdOYXduGhEhRk/dfbM7YrWyWnc8fvSIrtWSD6IUm5yQN6PUeiJqQU4pzIdceHVzy/NXL3mw2rLtei85sFpxcfmAnCdqyVALm82a0AJm08ir2x3Xg1Ek8qvf+nU++tn7PP/8GeMw0KXELGpAI+Rp7uRTANzcP+0NRiPk7msExhcoujno9yzMdwH+F9Iyi6AhttTSJ4+nkwInrru5Mc3TaDuXYadj20yQt/MT9XTgqRpjFCQHLCSETBBBWwkBUSNppWfCgpKCENt5qpkTv+pkUc4VQdmuVzw8X/PyZiDXJnCQT6SvIE5A6ExXGnmc0NXKHXmrnvF2520lgmoTNlrjpRBZX26a89nHwXa7JdfKYRi4vb3hfLPh4cUFKQZKLlzfXrPbHakGqe85HA/UJsaAEWIHVumicr7uuDjfMk6luUgFanbnbUuHrSLuAFUDKTyJHfubG/YqrFJiRUctFRND+ggGOWd3pavShYjVSi1+zDHnOSmAzwcJ1GJsgrENwq2sGPrEJMrTfeZnV7ml4O9QJm6GiSEbqBHVyd6pCrEIlitrjLUaK53Ld0w0ShZMmztbICrSbZ0oUxCtSB6IIqRcUK2UyQnTqcJQhYyXEJjdpLkKefKU+FarN18TTGaSepUCXVSSCtN+5NHXv8zbX32XN954wg/++I+4vrrh7OKSR4+fEBQe7D9nuL3hMGRiSNweJ64PI1fHiSF0TvqjjZj3sabqgtM6KElmCcNQXASZU5VLsCbS+JTLpRJqIYVAJ8KQvW3WXeR80zGVgf00cciFyQyT4G7y2TrfJvUsHWoRTO8EQGnO5GzeT8WUXCqlOJm1CkofAr1CnnWlJoiJGSkplcwhV64m49j5vGuzkmwFqe52LlapOVOlrVVzdYnTIuSO5FybS1yqO9ib6OOirdEn9ewGpfqqFrwNr48jryhkZl5RQCpWahNKXSRzwdNLCUQraMvOoAhis8AkTjpXpeJzJwjubBXI5iVMho0LTyEIt2Ph1QglQFXY18pYrZUaUWpRqhWimgtVqv4nBlJUQvBSMbW4yGAWCKE0YdZLKBRTSi2MGY6lkdEiiBpBjR5zATcEjEhEiQYhVOphYhUTl5sN50noMGIphOLrSYeT5qGVgCnTRMlOWKYusjtmT/MvAUsrBl2jYgw2scuJF4fIentOdybE2CN5bEUNCrEWeq2N4AdRIaa1Z93IhVIyKXTzMGjrbWh7jzUy+Y5x9f6c1/O2v3ivYfg4VtFWigAg8lrqiaGtAaIMx5GpZTHwIZju1g5XZu72z1pRE6qFO7FC3Ide8PEwTZlCoJpRsjEWd8OXKpTShBgTd+3XSjaYTMlVGTLsJmEqxliMfS6o+M+TwTjz0G3lUAMrc2NAjIEHFxueXJ5xvlnRmzAcbnm5O/D8+pqnn7/gwfkFP/jpR3z/px9hsedoMFRjqka0wOfXt1Air591pL4nRs+WIgYmFdGAhtAEck7tztzWGk7zqpg7qq01YCmZyyePuXxwwWa9Io+jO7fNXda1Vl48f8HxOGGx89Ie89MGDTpn7DAj54kQ7CRY/GLml/v3RpivmfNSc9r376kc1oQNL4UV7h3HmujcpFHjTig4WaRnGcDafUX7FrvrsVM2ivk20QxRCFHpgt/P1ZZB43T8BQv+JVjimSWeWeKZJZ5Z4pklnlnimSWeWeKZJZ75qxTPLA89LViwYMGCBQsWLFiwYME9/Mn3/4yvf/2rPOofIPvZxeqEUJlT7hdP5xtCoFuvyEU4Ho/sD0cuzs/ZxEQnENU4TAeiueuxFCcLXSCoDMOBvutZ9T3nZ2ds1h1vvvka5MzucGR8Wqix4/Y4UMw4Oz9jGCdWMRCCMk6Vq9sDr/YjmnqevP6Yf/e/+ff5o3/2B/z4Rz/iMI6eHvskAlR0Jvx/IVi+Hy3bL2gEyMw8SLM30QhNbaLHTL6AxoTEDgkJE0VjZK5J4N+rd44yKoSIaERDJEigltLi/dDI5/b9cvqBak6QgROBK42Y9Wz7SJd7zNzFu95GVumMs2sjhZcELWzUiCocQuDRxQVPn76kjCOPHp3zK998lzFnVPUksASdSTohT4WQnJjousg0HBGMnAv748CHT6/55LPnpK7nzTfepE+JZ89fsuoiX/vyG/z7/8P/Pv/V7/+/ef7iBev1hv/G3/k7/NGf/Ak/ef99fv7RJ7z92hO+9MYbvPvOl/jVb36DDz/+mP/Lf/57vLw58uWvfJUf/PCHvHh1xXGcMISgRqyFR5ueX//mV/j3/v7f4523nnC27qEWjsPI9c0N++OBYZxIqqQUkTwxXT1Hn72gl4Ah7HJGsrAfJo61MDYn4OxI7FJHVEhRUHE33zi5SIAKGiObGEimWDGup4n/7L3nfB4S+wLvf3zDP/z4OaoRQajDHg5XfPutJ/zam0/YKJj1PH11pAvGw+0Ff/9f+12erBN9VN5598BXP3zKUIWoiTdXPW+uAjUGaloRH77JpD3TcUc9XNPtn/HNNy+R1Rk7C7z30VNe3uwYrFKCsNqsCRrdPVoNleDu2JaCf6wjUzVyyeTq8/16qLwcjRfHyu3VnvqNb/Pr/+6/zb/9t/8GP/y9/xu//4/+n3zjm7/C3/hb/zoShD/6B/8njtfXfLXf8Le/+mv8yZ/9iJ9/8jkfPX3FrgqHE/FZqBRMAQlUiezTmqwdFaUC0QrDq2fYeHTHH05CeWkad1FvNh0xgkZjiPBSE09rx7hPvPfyBZ/mTLc+5/VHr7M7Hvj06hVTrWha0Z1duGioAQ2R/fUN5XaH1EJqy2AtI2bFp6FuPNODZaqM/PzqGmpgFZXR1IlaPLNBVEEs8pNBeZ/A5+db6hZ0nNBpIo4DWeFLb71BnxKv9rf89PPPUVMwYarGWCdCEzVP62+MIF42J+eRvutRjYwFBmB9eUbXrVE54/vS8XAYeb7b8/ObHXZ+RtclVJVxygyDr5V917NZb8jD6MSmeBaMh2dbHj58QEiRD54/4/mLV2SEIpFBIkVWFPW1TaeJcxnoQyWIYblS10LpIzkoY38kqztbzSoB4clZoOsTooH9fqRPHesu0HdKpGKxY09kR+SVBYaqhDyyqiNf7oVfe/cdyjhw9eol7334AZMGpuLlQijZhWUTjkWZ1iuqgkokaOJ26riRDaP0xKo8WT3j7Hhgc/OKi1Xg2w/XfGXdMxZ3vr6+VeqnP+bln06Enz/iJ9/7U/KwJ4Uzgm91PHz4kCtb8YLA//6//A6Ptz21CDe7yr/4KGLxgk4LF1r4lUeXXIYDm5DZdMLDswB1xPM3CAWhdv09ubhtVHhZAWvvw1yEhpYBBHd+xxCaOG1f3PdEqOqD22xqcykAwbOJ1AlKJq3X2NpTbkgZgXQSRzmdTfv+YicRdRYtFBezSq2MxSBFirmwN4ZKJZKLkbOR1U7ZLaovSf56gQkYAnQiTBkGcVLXTDmKocUduaYzr62nrCOhEdSlBkxX3A7CcZq4Oo78wY+/y48++JD3PvqUDz95zng4AJG02vD221/h+uqaNETiZs3ji3Myxj5nboeJoRgdgagBCYEQA4SWFaEJsC7qCSEmd1JHfy8aPBtFLcwu9lonzh+c8caX3uLLX32X2CWmnEl9YrVZMQ0j//q/8bcxlJvDkf/i//MnWK3c1XLh1O+0MlS1FKrVe13f3tfu63wMzUOiUmMEMTRBJCPZqFUYq3IL5NWalQga2rrtUiSnxzCaKH/6OvvCUxbIvYc0Tr+3u3IUIl72yQ9nhBgJqWJVyMUFJGvjdMGCvwhLPLPEM0s8s8QzSzyzxDNLPLPEM0s8s8Qzf5XimeWhpwULFixYsGDBggULFiy4h5/+/EOuX73kjUcPPOwTT8FruEsqhkQoE6E6uWiSSWpYEMZsYMUdjyFASOgQ0Iq7agR3cYp6oFgyq5R4uNnQi/D6k3Muth0vXhzZ7QfCYOzSLfvrHTYOPDxbUfJI7NYEiTx9fkOKHY8u1xACV8+fs1LYnm148PAB1x9/QujSyfUTAFEnhU9lHeY/JxfPn98upyC6pdIWqe4mxMkPzElOidHddup/avtu/0w7eCP70UBQoSewnSBGaW44RVN0doXmkpsT34sQQ6RLERlHBKGUyvFwZH8M5FZePghcHw5UGbm+2qMGSY3zTtkjpKxsQmR3rNwcrnj/sxfEVWK7WbPdrNAYOFv1zYnoQkEeJ0yg75SLsw0P3n5EDMJxmHhxtePmOPD0uVKKcdhP1JS53R/ougsuHlxyc3PNs5fXfPDxc3J5ytnDN3n/o6c8fXHD4TDyxttfoQDf/dHP+L1//IdIVF5d3SAS2N9cEzXQxYCVTK2w7dx9dphG/uBP/4zd/shvf+trfO3Lb/GVt95inAovb264PR4YxhGVSgoBxiOHZ59z/eEHvHZ2wabrKLlwKIVxLExjYRonTKpbyJuD93jcse4jXRe9FIVGSkv7L0E59ECOjFl4Pg58dHPgRgKT9IhtuBr21OlAzZnjVCm3B959XElRieuOWCZevXhOTZVf+eZv08fE/nZHnib+2jfe4rfefcLLl7fsdgOrdce6X/PRQfh4ijzrzsndA475mlIqjw/PeCv0PDi74FG3wUrg8faKuOpYbdZOqIeOKRfGXMh15PXLc7arFSl27I4jNQ+oGiko237FD57u+EcfveAff3LF+rUVf/L8iPw//gnXP3uf//avPCF++xskCRx+8D2u8sDZm094+xvf4PHla5hEOpv4lbdfZ7cf2B32xOCCixqnEimDKNdV+ePPj/xsCBwsIhp4XAf+td/9FV7rjY0WRquEENyxnAvbWHlyee7zAmOYMvth4DgUjkPhf/TON6kpcHFxyZPHr/Gd9z/h/c9ecj1WDtrx8RGmEN2JKsbX3h55szMugrGNRhcVanXSEqFmCM3PmiVydTzwfhfoUkBjZBpHci4I7sbsYuTwphCnwIWtQYXD7pbHqfA33lrxu19+yJPLh6y7HquV737wMw67kTw64RqjsNn0xCCUaaJPPanrqLVyfXvLMIxoUEKMpG7Ndz+74jvPj3x+hFV3we8dnvMbDyJf+9qK/9lvb0kpE6ISQiCmDucZnTQcJuP66paz7YrNuidEpSA8ePKE0K35+cef8+HHn5FDZG/Kj18e+NGLzJh6LATidOBvP1be2SiXnbgb/XaPloka4N/7+iUmLi7mWhHtwcZWHsAgBGo1YkxEDYzjkdx3/Oi28v2rzEe3lUmF89WKx73wW29t+e13XuPhpidY5ScfvMnzV9dUBA0JjUonQswTsUxsV0rXCat+RZGe7/3wJd+/EY4SSZ3yqM986/GGd7eRB6vI1/7N38Y0MhOhpQzU5x/zk49/xvXtwO/98x/z9d/4dS4vL9heXrLbTZyvEnSZj2vP//lPb3g4/tBF3POH/Gg4R8saxgHdH/j0s+e8vlLOemGzCjw8U+zkWxfEpuYh9awIZoC2kkzBy3vMpP0s7FhxQUBEUW3ELS3PQHPAWrueu/IRgBRUMtb6wo93bCS0C3NSva98X5PT50GoQsu2UE/csBmt9IFfTzUhW3OVm5FLxYpgFYopU/WSJr43K2Oe/BgGYzXGqi4a5MouF/bF7z283IR/77xrWiOkYxepZnz8/BX/6T/6DoaXJyrA7WHkOEyMY6FYh6SAaEQ6H5e/9eXX2QQlIFg58GtvP6QTYdN3PL+6YQqRbmOkVaXvE6HOY8XvczR49gA1d+6rtnaTACSEOeMAdOsVP/7wEz59tedP3/uIX/vqO7z2+AEpRkIQzrcbjrny9MUrfvLzj/jZp5+iXaSj9YO50OvlH7z/Y5yd4b6W1NP7zM+rCUXudC/UrFgtZJs4WOLp2WvIesPLVcf+bMvrqw3p6hXdp+9R8xFqas7vAvh1NuszsyMdm++0XAC4819/8f6K6rKDGGhpne5PZCCiTHliKt53S6anBf+/sMQzf367LPHMEs8s8cwSzyzxzBLPLPHMEs8s8cxfznhmeehpwYIFCxYsWLBgwYIFC+7hw08+4cWLFxzfeoMYeieda23xXPCU3po95XNz/6gIISgphLt0vpgHdsw14Jv7BU4BomdYNy7WazZd5PHZGWUceHV9zfVuZHvRsb++5Xh9Q6gjj7Y9q/WGiwePUY18+GLHlDPZMrlUbm5viBRevHzJYTiiwZ0zsxPaTL7gDrojN9q75rj2l4SCVgf+C27qe6UkRFode7k71vyvmVyRez+33xtCCJEQQWM4Ha8CVo0q1lxHd8eJGkhEupjoqhFCRHKlVuM4HJnKXX8ELVQrDMPoRIkqsZEVtXmajlNlKpnJMiEXdkOhuznQp8hm1RFUUPVrrKVSaiGGwNl6xW9+613OtytyS9s95EqucBxGyvMXdMnY7Y/EKHz48Wf8w9/7fb7/w/d49eqGWkH/+DsM44Hj/ogV4/Z2T62F5y9e8N777xH7hJm6W3L4hNv9EaqRQkKCEEVRNUp14unnHz/leDzy3s8/4c3XXuM4TFzvdxynkVILJY+cbzcosLu+5sXHH/Ng9YJ1TFCNm+PAl998nTcfPeDJG68xlszxeGQYJ6ZpYvXoMbUW9rUyjYXjeGCYKmMujNNIlYlx8OkSO0XrGVZHJqtQR2KplDxRp5FpMNSElDrWmw1n5+eELlKscnM48NNPP2MYCtNwxEqhf/GCYxWurw8cDiPrlfD6KvB8DHxe13x+VIaucHtzRb5+xu7qGa+nAfvkBTs6Xt4emIYDfdexWvWkZARNlGJMpTLVgTcfXnC2WtOFxO1uwCzTRaHvIn1MvP/qyKdXA8OQKV3PcZz4+aef8YfHV7w+vsH17QvykCmjMTDR98Ll2Q0vznbcVOHDzz5jfxgYp0zOE6suebp/Aa2KYRyqcZWN631lqhusEUrVCscps6OSyYxmhJBmBpLjmMkIURWrlcNUGKaJaSzksTJ1QkyJjJKL8fHTZzy/3rHLwhAzg/XklhIhUzgycT2NFC0cgtGlQBJPsz6aMOZCEC/pUKUQhhEmSOplF3LJ5JzBIAW32V/ljtu6YtBERRiKclDj9jDy6dPn3O4G1qsN275nnwuHqVAmJ8NCSlS/1EZ+KqUa1UBDInVeQqE2N7toW2MrTEXYl8izI2zDxDoOyJA9U4QIMXWIBkotTLlwcxi52R85u12xWSVEhSFXVi9u0ZB4+uIVV9e3FJQjyquDUdh4KREKapVnL3dwU3muxrEqKR/YhswqwfPJKKaY17xBOGJSmkMSJASmPLm7EyHniSlGPh2U62Og5ARkisJtNb7//hXDzQvefvKQhxcXvJyEV6M7PiVMxC6yQljVyrpWpuOIZGDKDHbk1eHAyyExUOmCsUqVT2721HFkG6BaZiL4PCmFIIWvPDxjdXHBelXYbj+h61aks3PS4yd0rw4M08BhODIQmDTw8PIcJfNyv+c29zDW5uye2KRC1IqYugN1mhNxaNu3QiNeTyZSZlkgYKxjE6Pb1mPgZW0QRBtpfG/nqrX6+BC5EwLaHunvy21/9F3KavEyAW0uWnHRwctvuBveHyjgVPLB+9ZvA6rNZZCaSNBKK7hb2phKodZ2n0ATEKpR2vXmUqnVSeypGlV8XM9VUiJeemQWRTJeRqXi7aQCIbhdeiyVj5+/8rli7sDOxctjqCp9TASMKkrQAKWw7jr6oFjxvbKPgYh4+ZVW2mguB1VrcWcvAlSCRu7z4YL8UmmGmUunldja7Qemck2u8PaTh1xcnFEBzUZQuNoPfPz0KT/75FP2U2kk/xfvTVp3nnpxvgeSVmLKBYV2T9bEntO9jwG5UnLhuFpj3/wW/etvcHZ5ycX5OQ8Oe7r3fsT46Xv3+vUX7nzs3t3VvfHF6Vp9rtf5vuoLzu4mDLSj1XanJqrE5KVQSs5M48iCBX8RlniGLy4N7XdLPLPEM0s8s8QzSzyzxDNLPLPEM0s885cznlkeelqwYMGCBQsWLFiwYMGCe3j6/DnPXrzgdrfn4uGWMubZtohqoLZAPKg7ryo40RQUSdEJiEYaaGPHPYA21JpDS5z0NoNaM+ebnqgrHp5v+OzFK56/fMnzm4HX+nNCKeT9npVWYgicX1yyuXjAlI39NJ1cgcMw8OrVK6bpyIuXL7m9vSWmeAqOgVNZhpm8mDGHo18I2vni702awNCuzcWPORgXRPWLB5s/K9IIFjsRAfMbtP2s6vXtT+m6G6kiLZC/L0bEGElidCnSGaSQwAoqgVKO5LEQgqKeKBustrT5EEMgqCLVMCqZwlhqI2yEcahc3+6wWlAzYgqndppddLlmxCp9DKzXa15/cokAt7sDxyE7yZMnjocDMRiigd1ux09/9gF//N3vcBwymJBC5Ob73+Py4pw+KIrw+WefYRhX11dc39zAQVmvz6gmHA6vqFXoU2ousYiaIRWiRGIfud7tePr8JSo/Z7vdcjiO7I4HppJBoE4jrz1+TEgdLw8Dr16+pMdIIgSUV9e3/N31BQ/eveDNX/s6++PEs6dPGa+vqYc9T77yNW5udlzf7Li+ueH5/oab/cDucOT65oab4cjtfiCq8fXXLzh/uOV2OpInwyxzFgNZCkfL7KbCOkRi7CB2aOqoQdE+MR6OfP+DT/jw85ecRyGJ8NF+4JODchjBSuVhn/mds4miHTfhgqc75SbecL2/Zdq/IB6e8/Hwgo/2xk/3lc+yl0zoNZCCUm1ECVhLl57JPDpbs4qJJIHdYUTE6LtA10XE4Go09mnDcbWFtYJVXtwc+d7VM6anHzPVzGGYGKbMKhnvpMp53xP7Ne9Z4oOnLxiGCatGCIFV37lIoBBMMTGGXLidCjfhnLwyJHRYUPYc+eHH1/R1QGphquLlEMzJw1AmUlSkzZ3bsfCoE85FWZvyo2lCU6IPgV7hJ8+vuR0KWSK1W2NnjynaBDmr5Dzw7PCKUEdiMFKMrJo7djJjXwqoEIAVwm+dB6IWVJzEVINYnfhWIEvlOG3Y2YYbGckSqFVIQ+aj8ZZP3n+FhETfb3h4fsGremQ4FGyqROHkilYVFKMLXgrCRCjmK8o0DpTic/DZpNzsYJoC07QjBLjaHfjZbuSjzwoZKGXCzAgaCCmRp4lhnLgZRo7F53gK3s9jrqCBasYwDgjanKVK7s/gwZfJWjEK1Yw/e/4pPx5d4DpYx6+dZ969FEov/MnTZ7wsLkAmMS/XkAIxhEZ4GiWPJ3euiDKZcSVrbsIW6c6JNlIwXuWRf/rZz/lhN/HlN9/gzdffYCrK7e2BXCYqFYmRbTXeTJW3u0ySA8WMvQg3Rbm9Ug7TGUOFSQov+8J3Py38TI2uZobjkZsJboaR22Hk8VnH//i/9Xd58923iasVX//4lil2HAjsuzUDwvXuwG6/p6bI2fmKb3/jy9zubnn2/ueM44CVPRutXKyMb729Zm2VIIqGyKpr6fUVRIVMc4jOYjsw5UIuEyVPdMmzfcx7TTUXbZ28F4qZr/vMAsLdfmXmezNtj0FopQPmTcyPNe9RItpI+raHNZHgJLrPjmrkTvSp7gieBQ4oKDbfVngJB++pu/1RnUcuVr9ALguV2ASOqF4QIEhlFGGq3kxTrV5Cg+aUBjBBmut6PwwuYrT9WSWQYiSFSBcDMcBYmrjhqtzpQQd3D9No60pKSt9HNEUk6Gnfnx+KILSd0wy7VxpCW3aYmcSfbx5iiJgdGceR3X7PMI1ojMSuQ9t91PXtNc9fvuLZq2uKhCam3T3E8EUBot67IRF/cKOVxjCrTSSqtDQsfqxqlFyoY2bcnrP+9re5+NrXWT94xMPtJeGj9zlcPePGarumezdKbYzNfX96eR583OvPdg6IIrjz2eSeqIGAzOPJx1q/WmHAlCfGcWDBgr8ISzyzxDNLPLPEM0s8s8QzSzyzxDNLPLPEM3+V4pnloacFCxYsWLBgwYIFCxYsuIcvvf6E290tL1695PFrb1FyRRsZXkQ4lAkRI4ZAVGXMBWsBqsZAzebkrRkaBFMn8cQKmDJldw6FEBinCauFbR+5ONvwzpffZj8Vnr98xY8/+IybEvjKWw+5XK94/fKCr37tV9B1zw9++BO+/8Mf80f/4jt89NHH1FxIIXJ+cc71/taJ4eokLOaOrV/QBb6A++ms//zfc/r97PQu1TADqe6uUtQJ/OB/YogUVWbe4yQkiFLbyQi1xe2eMjpGJymdSPGoWvSufIY7twK9GCVGUq2kIPSxY/XgjPPt2oP2dsxVH+lX51j3nE9fHQjHI6vQMSqsKnS5cKyFkl286VPPJiWUhOpdW9TmgnfCpm8EQOWP//h7PLk8Y7vZsN5seNT3rJ9cMl1uKWbEALE5nrIIDy/eQBGC+J/jODCNBcEIMfDpBz+jlkJKka+//TZuMPPU5aKXPHtxzdXtjmOBfrVidzB3oqIUg1Ir3WpFlxLr9ZrzswteXl9zc3vL7njL17/yFdZdx/4wsL96zmZzgQpEFfoY2FTlMA5c726wKKS+I6SEhoiGjvXFJbVbUfs1OfXcVCHqnqiBXoTx5pyh3rDthF9/90sc6oZn05GhDBQKb662WEwEKk9vjoSu4+fPniP1yE/f/4BPPv6U3/zqG3z5ya/y4uqKcT/ytUfnbFY9H//4E7732S0DkU3q2IbEv/LkjK5f8VTWfHJzYD9WhuORDZV/9c3H/N1HkX/82S0fTzuucmGz6slArEaxjlJ9nJkIhMjVqyNWdz7eU+ejfX/EaibXTEpnXJyvOVt3Pp+6jqGMvL8b+M4P3oMaOCiMEd49i3zj8ZqtTdyOt/zexwPvPT0iomz7hIhQSjnNsCz1pK+pRt5484JtH9Cq1Fq5wfjRez/nsLuhFCCuoRZq+y/MtJ0pxYRDGfjvvr3mdx5seWu95X/3k4/4vAaowlmFtAqIOIGc+sLl2WMsZ5+jGni6n7h5cUOeBiS6IzqO7voF2KWOY630ZeQdGfif/t2v8rXLwioZI048QgCrqBVi2vCf/7zyT57v+PH1iG0veVQzT0LmSzLyn/78Bc92I8NUUYMSaccQqlSKZWrOnjI+RU+FLm3dVS9nojIXBYDVxQM2j14nri4odaQTGA97Pr15yU8+f8qOnhDDiTzOpRLU1+XU+zpUy76VEVB0FgXMIAYiitWMirCOa/oyum2b6mPJ4Hic2B0GXuaRv/Uo8ruPtlz2kf/7j57yJ8dKjLAOGR2uuXjwgLPtGX0MjMc961VHDEpQJcUeqSAD2ATkEWR0kpPK+WuPWXWVTw4j7//wp5SipJQoCFOt7IaRi2HHv/JAePe1wFfOYX+oHIsy5MQqr0h5giokCscCf/z8BWutnCdhReHV/sjz/cDNmPn29h2+8mu/ybd+5zcIjy757Nkt/8E/+C/47B/9Uz779FNuXu354NWRQ1HoBBl3/MaXf5VXu0t++jRzeHVgE+HJxZrf+dIl/5N/+w1W7H2PtUSQ5PNSnSw3q5w2DRp5Xgr748DVbo90PUojvNVFgXkjkUbihjDvLU66atvrZuL7i1k/7na+2fnqRLQ7javcffYL7zZzR7bd7aSlVmq5I3rnMZSz7zueVWJiKl5eqrS/PduGkUthKoFSoZTq2QbauRnCkOHVUNiNXmJnyIWpBiYzxgq3k3LIxliMqQoqEemasCF359kFpQvKKgp9n9hPLoyVqXA4HLEUfJ1qZTWC+MMRFxdnPHh4gaTeyzu0vdvs7r6ilOz3DKUyThNjnqjmjm3PceB7XIjexlMtHCcX6j789HPeeOM1XusfcHa25nzd8/mL54RgpE7pUmB/nO8XTt3O/LyBiItsxvyaZziZZX8/Vxc85lwvKkZmpMiB9eOHvPvt3yQ+esIHr66xUEjbDVO/gSzE6uPxJGBV486m/y+BNeGi3QfY3J/W+vZ0KT7uY0ykFAmhI6aOXH3M3O0fCxb8+VjimT/v95x+v8QzSzyzxDNLPLPEM0s8s8QzSzyzxDN/ueKZ5aGnBQsWLFiwYMGCBQsWLLiHb//GN3nrjddYdT2H3S0SO2j+nYpRS3HiqwWUUWh17wtWClE92I6qiBld31OLB8WUQozucAnBHT0xKGfnW87Ozpgq/OgnP2N3s2edEq9drPn1r73Dk8sHJI188PHn/Ef/yX/CR59+wtXNDcM0oQRWXedplA97XlxdAUaM0YmJk0BwR5zcsf53Vp7Z6TQ7hH4RZkatBqJYC6wrs1PKSfM8TewPe9bHA50miJEQA8U8IBYB0ZZ6WTi5Uj0wP51I+702h7SLLLNjaBgHYGQYDp6OWwylQi0kMazlDVf1NPslO7OWgqEUohZWFtiKsioF6RTpAkGh00QQJwlE3MmVc0ubjTeNEFpaekWBTS2Ew57xcGQy0KD0LfCv2YlHxUjVXVRRQHEhqZsmploojUBaY8SkiBQ4XBNUiFb9nFLinTcec3h4zu544PrmlrEJKRqhj5FpKpgVghmbAg/XZ5yvYC+RenbBVx+fc7i64lgOPHyyQVLHlLO79tVYv/OQNOz54Ds/4D/+0XtM1Xi1O3AzDFxPI/r7f9jM5kYuFZOAiTaHf2U0ZcoH1lEpw57SrZxc6nrEMiF4+Y9sFQmC1cJ7H33Cz35+pNbCo6h8+Y01X40bomY20eiYSAU2wMMYuUXpgtAnYVMm4hSI0qHdmpwVQkdnla2NhLojhULfR9IUiNqRgKRtXpjTQiZQBIgRaU56k9ic/xXB25XQoykwiZMptThJ3PdrePSYUtvrGEknunWHdoFa3J93cREREbogJxcmjVAsNaPB07wbQkxCiBlUsCIYkfX2khAipRQ0JKSWNn2b049ZzBLScOT1jfH6WeXR+cDFds2UvQxD0grt86pKiMEn2uwOtEKSiVUUsgSIwU2OMSKmgHIRKikXuipsQmC7ClyuCptUOVZQba7PRgL2YWRNRUsi5w7oKDWTOnjjQc/rjy7YhwHJsE4dJplWLaFlZZhTzzuhKWLE6A5Lq7A/TAQ1QiuTElZbSkxkKRSc7LxISjrf8GK4gBKIUYk6p7W3RigKEoKLJdY38k8oOVOsuhgnnslALHrZmRQRKkECVZxmkwChj3RqbE3JpbC7Hkhx4izC5cqQFOliRDpYpZ5OA4kAIbHu1u6cj4nRKsN+7zSmBjQImKIqdBq47JRIIXYr0qpyGDJBhWCVUKBKzzrBdpM57yrboNBVAsJkymYMyOhrXNGKolTtGRiJJfPauiO2TUODcr6KTMMN0/Vzgk2UPPKnP/oJn7+44v/1R99l3Z3xogpldUYXAl0IXN3sebEfuSrQP3iIitFtlbOVMdw855j3vq9IBxIxFFrftEXHxQKbGVhlKkYtUI5z3/le4uKJb29Gc5dTTtudZ92YKeEmSsudM9od6X4M36fstB+ZFU4uXAOrlXxP7AMQ1buxa4ZVb9tqRrZW2qEJAjkXSin+/mrUYk7+WnNUV0HJFPM1qJbse6a4SF8mXx+oBayc9sxZVNBsxFJ8ehuIRF8n2sWHGNp9i5BU6KOyXfcUmSg1t0nsc96sUmol54rG4GtozeTjEa0CofMmVkVUfT40l7nM9zw6MhfdcNXE76eCKEmVlLzsyNV+4JgPyM8/InSRR5fnnG1WbNYr3vv5h3z0+TM+ffqSaRp/SeCx+T+DoHpajAwXjWITiip+L0Yr9TGT9hVFU4daoZMOdhPXx6f89Gfvcfu1L/N1AtGgqxBOgpC18QHaxCO7d1pf8IAbc2f4b2rrT7lbzecxT8mIKDEFun5zeoCiVpimiQUL/iIs8cwSzyzxzBLPLPHMEs8s8cwSzyzxDEs881conlkeelqwYMGCBQsWLFiwYMGCe/jggw/41jtvM732GnPQXxuv7mTunMOZVvbB3VhBFZNycrOpMxSEEMHuatiDE9i1eh34mCK5FF7d3vD05RWvrnc8fvSI19/s+NpX3uLJ5Zak8PzFc37v9/8p//if/yEaha7vSKkjT9VJTqvsD3tyyUR1kuvOnfSLTi77hau2P+c1uXvN/pzfzQGw4YRKradyDTFEQgiY6in4tuZOkl84jsfFlVobWXL/XTPJc+/snLCfq8KrcwyqhJhIGk7HFxVWqx40ktLeSaGWdlkREkqUgoaAqpcKSLjIM5ehUBVKpIkioMFD/WpCrkLUQCelucMFrUJozJKJMBZDxVPmB4Qk0ClEgWBGSZ7mfRYJAj6OwJxcUfEyAWbUPNGNBy7Wa1h3DOuOZ7d7DnlCpLJOhqm21PjucNzWAUlwmVasVivOpLDplCo9iJJNOIzKkCdyyaxDc5yWicPtSK7CNGamsTBMlWk63nMUQohyl9kaJ+qi4ES8wV6chIkBzJQgShR3YrvpuzpBi3IYj0jsSGKeIt9AmjPWaCVXFALmQhMu7AgFaoZipJjI6mRgkEqIENR9rcHsVH7EU8fbF+Qw84mJmvexmbjTr/3WWlr2Npxd9MN/1kZOo0I0WqaATAw+knOBcfJyLiruKpyFsvn6RAIqQlWoNFJOAIqPf/OU9jH4GBfV5gSe3y+Y0NoVUo50Cl0UYiokAkkiRQyNhomg5mNTWwOIaiNKvRRLnMU6cVJxXtPACFLJEogqSAANnglCNDiBPqdot1YaR2MTCEP72UXGYt6XsaX+NxUInrLdhUE5iYY+/3zsTSWTYiIGpQqNgHQ+0LtMqQWqWisP4ELhKipRA1ab2Emj5fRu3ZGW2eIkiAJVWvkbmcvUcHLZuhg7ry+C1YzV4nsF3m7HCtdjgVzJVghUhIqaIkRqgZxdkKpVGKdKqRPIxHHKTOOBUVaY9ohGqBURAzHGaWTKk5PGBrn6+LwjdcFEfS4qiAkpuMDXtTXrbl0WP2+p1Fq9/E0N9BrpQyEGAw1Oak8FHScu+o43Li/YHUaO2ZjqCKseVUOsYlWYijGZUENHWm+gVjQZfQBKpuRWZiC0PUAUKYqJZ9dwgaCJdSaIgtUmQYnXTrA2NrD5M3ciudwbu7WNfWsby/x7aYrhqTTDfZy2QAUr3GnachLp7vbZeWzc/V3baKj3XufU7vJL+1x7ef5GgrhYVlVdTJhF+3m84uLmLx/ATt/gznFfIARfx6JAVV+TUwx0KdF3HXEyRIq7ftvaMhPtBX+cYHYaWzUs+zoswdcLK5UqrQyWCLUJy8M4nkpMzNlHVGRe8VARSqkcp8z1YYRnLyh5Yt33dCmRusTV9Q03hwM3h8EzzdxvLObyUX5uGvR0/4bBNI688fgRIsJxmHh1fU3q0p1wgTeMoKgpseACoT/hQAyJOo7UMvlY1LkT5/F014tid8fjnvv+9PL94TWLGDaXgGlvUP+Hjx2/OhXPEiPy5z/QsWDBjCWembHEM0s8s8Qz82+XeGaJZ5Z4ZolnlnhmiWf+Msczy0NPCxYsWLBgwYIFCxYsWHAPP/nxT/ndb3yF41tvuDu2sQjFnDpwMhRmgltECBqQYCdntN4LOUMIUAOYUWppAaALCx7oBXbHA4fDkWcvrskG77zzDo8fPeSN1x6y7QNPn73kz374I/6zf/if896HH/Kld97iwaMHbNdbXr28olhlypndcX86fqM6/STaXyJyuh6/AndTzhGpB/1z8P+LwgAgM+31C6hOeqh6GvLUJVKMFHVHlJ0i3vl0/NhOwjqRNU0TU853EbTdMVfG3fcK4o7hKGgOlGJUVSR0pK77Qnrl1XqNSUeMN5ipE5UttbuKOyhRRcVIUok1k6wR5WbEqE5ctiaM6qRqNSgmdCkQipNz2ZQOwR18NBIWKE62dhpZR6ULkBQ6UQxlMvX05SYn4mZ2bZkqRvA02uNIvr1ms15xcbZh9fCc7fOnvLrdUUphFYDg4oXhxFEcD1ymQL9acXn5gNtXLzlfJcKmR0Q5jpV9CBwGYTdktGZSCgR1B2+piqSO0FcYM5PGEznq80Cxli4dgQnBamQblJUEXrUxFgDVhIoRFZK6kIYVztZrNmlNGVa82Qcu1ytSDFRzYami1JmkEncrOmEV3SEqhVon6lToUmRSAQqESkoB1eoO4uIMqqlQRQjVvkjoCPBLsoGdhmKtldCEBZHmrgw60zeYZbDgzuHqjFoSd8DnRnqFrjnvT2vIPcJItH2Rk+VOmc1jL3OXsvwklzG7I8FJ6pm5FKwJAMHTtmtFqyA2ixx2IsIFuSPFmQU9/1ub+CBVKLNegmFkQgVt8peJgTqxWk2oFu7WnyaAmfQQDFFQ8QwFJpVsxpSB6qR0qUIuFXBnNObCgZgRnPllrAWleFtbK00j5q1TDbFMzcWJZ3HOuJZMwEgYYpDL3doYdE4PfydazqunO83vrf/WXLbVndoFT9sfZxHSwEqhlkItXgqACkNVbgpghbGtL1Kqv78ak1ZkypTqJGc5jk7S58wwTJhUZJWQtYIET+svPu4OxwEbR5+bomRxottFAuM4GTl6W7oLXLzshQjJDCkuoHl/G8KESMEsU2qmlkiUQCAgVKoEX7sraKk8uTjjb/7Wb/Dw8ed8fr3js5fXSFKKGNSJnI1sSpEOYkfHiilnQiisQvF10pIT5VVO7KqICxouzjTBeCbXLbTXjaYWtrWpfmGvkXnnuKdrB9q4Mlq5DxfI7r9R7vPtMq953BG9s3DeXPs+zu0kYpl6Jox6WlzktGY6SW9tLjrZa3InfbtDfJ43bc/ziQNRqZMLSS5cQpDSVosvrCi+l6hAdVFFXHtpl2jt4QZ/PQYhhkCXOhcJjtNJYjhx320+VGkiAc1ZbO7+xopfqzbncRMzJCjFKsPkYzXnJhKIO6jFPNOB4CUiqhljLuyHiVwKL1+8amKL+Jqrca5H0UR9Tuv0qctmIl0VK7U51I1pHHnt4QNCjFzd7nj64gUpJWTO5CCnLieaoNXINUPsWZ+fcbY5w47PmPLkJWqk9dE8bE9qSnvc4b4wMN9gMb/l7oRNTgOtfdYPLCoti4eXEonWSme0+8cFC/4iLPHMEs98MZ7RkyC9xDNLPLPEM0s8s8QzSzyzxDNLPPOXMZ5ZHnpasGDBggULFixYsGDBgnv4d/76X+dxp4w3L9jd3tCdp1OgF3AyqDRSVBpprBoaL+iBaGnERGxplEOMjaAXaimohpMz8nicePHqmsMwENdrvv2777JerREzXr26op6t+P1/8s/4/X/6B7z/8Ye89dabqAb2+wNvPXpMqoVnr6642d0yTpkUW0pms5kzvEe2w4ktaQGqe4XlnuP1TgT5RQh4+mdrRkIACYhGglVyyQzDyDRlQu9ffCJtTuSKn4gB1EyumdvdLS+urtkPY3ubeXrrKk7sltqcgMJ23XMRIiXCqsI6eXr83X4i3x4JQanVCbLtfgBxMgCDXpUeP2xSTys/ZncwmjrhUjCiKCkIazUs+mu5Ql+hDxFVc9JOIYZABUYVtiKIrL01m/BwnDzgD6psOpimTCmFYyNlp0IrAQBoRYoTnaVCCRVCIMXI2UoZ9xMffvY5/asVbz55yFtvPuK1/IDD/sjVq5fsbw9kA9NATB2HYeDNR2+yOdtQSuEwjsTtlpQ6MGEdYbXZUGrhcNywz0MTOTxVeaBw0QmXq8Db2nE7wr4YGYgxAsI4HKFmNquelQbK1NOrk1qH6x3jUahFkFQ55sBqu+asO+PJ1PPs84948vCMf/Xd1/l3fvNrjPsDq23HRGH/+TVDdVewiiICewpDBikg6qUMJDjhdTuN2FTRkomS0QgX6xW9jpR84DBlpNtilsACCqd5Os8OkXrngDUIZEzc1WgVCHfkV6mViEIWJAt1glHdNeg0q9FbpcfXiKkR84qTW7OQ5UT6PEELnmWgYLUACSRQNUI9kk28f2ttJGJLJW4GMrvMnXSWDDFASkIfAloylUoxIZSAmFFLxZQ2t6qXfZBAtUKxQMYdymo+aaYAiBEqfp3mYpTUihR3wWKezt5d4IJI9depaChocmf7WhMajlQRpkmhGFpnJ2Zs660LjKU5KKkzGQl//2/+Oq+urvjs1Q0/f3lwwYhGXtYINmC6hhhREpoPSB1RxrZm46RrIxJPC6SBUb4glNrcT6KnFPhiPv+19WWp+VRGQgoUi5hNKJWOQghKSkLSQAhrrPROFqtTw1WEjJfHyTkjkxFEiCKc9xFizxRXZIySp5MbeF7Hg7rrHhVqNsaimCnVKgOTO1SBXiB2hUohVCVZJJm00guBFLSVQzg0ISRBECoFk+IiVYik2BPMCNORb37jHf4Xf/d/zuc/+5A//Ue/z//6P/gP+TwHxjFTy55DiNzkDfsKWa7bdlBZaeVhAql6V1aoOUFncXmmzU+7lc6CloIoVVy0mWX5OxGNu/1vHqv3t7VG6t+l7K+t7+9//u4nnfd38/ldZlfyrOwKp3l8ypqgbX4GmZVGH8Pmol7TuGjpEE59OYvEd47eJozce/hAvMtaaYjmlm2iYbZ6KqURqnkWBatEDJVKtUoQd0X3ITIghBhInbBKQm+QxIWFMg+x6uteRryE0dxP9x6WYHbqmpfN8jIXRpCOUrwkyzRODMNAKe5oFiCGljVBPWNIJ0KnSoqRy/MNSYUpV8ap0nUrDsPgD1zc66tZ5JuJeW3XP+V5lW/ZFVSc9K9yJ/zMf2Qee9LE7EqmIkmIq0hc90zFLzME8/2ghjvl5TS0vnhmX7iTsnvq0717s9PYFHVVs907Sc2kpEQLKMo0jqikliHm/rcsWPDLWOKZJZ755XiGJZ5Z4pklnlnimSWeWeKZJZ5Z4pm/tPHM8tDTggULFixYsGDBggULFtzDmw+3bPuA1MxudwvdGX2XUPVwuGhwIg8nEVJI5JzdBUQj2a1yyk1eK05oeAp0ay6iOa2vmXF2ds724pJ+s6aKMhwPGMLm4pI/+KM/5J/90Z/wk/c/4LXXXyd1iVIy+5tbPvzgA0KI7A9HpqkSNAH3HZAAcsfMQyM67jH1Mz95z+k1Q9r53X/NyZKZzxAXSJigOnEc1MsX5DKBeMip6qnI6+naOZ0LNaNmBAkIwd9DpVRa2YX5NWslAdwV5Cn9PaV6qRPHYWB3u/NzCEoIym6ayFU47veEJgzEKESUZEpQI7VyAUmVFP16IpDEWGugRMhmaClsotB1ihAwC0ziwkUnlbVkihlFEpXgZHs+kkJoTurKlNu4CQH3WyurNJMXytW049XLW8wCm+0DLtcKeUKloir052u2VZhK5ZNnn3F1Ezg7e0jsV2xee5vtaxkthZIL4zAybtfkWri5uSWXzFtvvI7WmcTwcSAIoontpmc/HE79XAsMw4jZBOJETtRKnCbGUlE1UoqU0GM1EoKxEmPCCALFJnJOTFnIRYlJ2Wdjuj00l7OyOXvEyzHz0xc3fHAsXJ49JK86xpIp60fsy0c8y4Fdikzdmk2aCEFYx8DmvOPzFLgZR94/wCBClYKFQGHNR0T+eBf5RAJyvuExR1KEYIJWJ7fLTHIJWHUidybnqEZoDrUQFE2r5uT30hyhU08JnkcsT6DQSSFXoVQhKfQBkhSCGasQvHyBCAFDRdE7QyfzipJroVQQih+/CV6UCUqBUtBaiCE2klPcfTiTZNbmFROdKtvYc9mvkPQ5ZcyUIhRRohX09DnD6kid4ilbgZURKCDmY7UaWn0dUFMKhbGOmBVKLfSrczYb2MRCHIsLo821qAKpv0DiFVMdGUYjHkHzQFlX+rMzVps1cTcQSiGKgc7p4pUkxspGdqOx7Tt+66uv8e//G9/iH/7z73N1dc0qgJHdlV3dna0q1JKxaWSmE7MGRiIFgTxhBaoKVYMLUW05rFZ9yZZGVFejTPkkjEB1glyjr40VbJp8rVQh1EIQL4dD4/zOgYfAhVY2YSJoPIkARqRMhSG30j61sl33rPs1fZegTIxErCo5F0zcZU+bvymtiKG20guFTGEYJ7JVilVKmbw8Ttdzcd5zeVa4HkZMIqX2rF9FppsDU+hJcYOG6MJl8dI3RM9qoKGgktmuOrbnF6TVhqkMfPjsJdPzP+Gjjz7nO58+Zzh7zDpv6bWHLmKXgX/8s084ZuPlfuTQJTjcQm902jU3fRNmLIDcEbhV3MnuNUcAgpd/UXVyvXh7aSsb0TaWe0TtnCXkjptt7zgpB79MtfqeJ+2PWW2Lwh27627o02p5cuXOYgbtoQB3CddTKn8amV5Ldcc97uj3zBjNma4gdXY6t4wDIpR7xPBMypsYxcSPIT7ewslpDFGNoEDVU2mWk9CAnLKoBBViUGJUUgxEVYIIo7WyJhJ8PlYopfi8wShWfZ6LYqpoVEy8JIw11zdtz04YKUbmUjxBfT+3WphLvkT1Pzo/VFBccIliaASxkV4rRcFoWUXmjjjdm7igIeLiZCsigwms1hs++vTz5jQ2Vv2qiYRyapM5O4QLcXrqa8sZK5WTPGLmk7uJynL/HqrdZ82u+bux0b7lCw9uuN53us06OenbCCiVmoVCpeu8lFOpxjhNvzRyFyy4jyWeWeKZJZ5Z4pklnlnimSWeWeKZJZ5Z4pm/SvHM8tDTggULFixYsGDBggULFtxDlwSpmTwODIcDm8sC5mUEzPCAslR3cTWyThWkep33E1vgVps7I4w4WV7KPUePQIyJrg8QnFQ6jk7omAk3ux1/9C++y6dPn1MMtv2qkf9OXNzsdmiIjLm2YFbRljr7l2D+fyea495pnn5o4fR9UeDu800WmS1mjZzMJVPqXCbDz8vdnTO5499t99pGWiAvOBkSREkhkkJ0MkfEU3zbXdpp51CdEKilknOhiL9X1d3Dm/WaLiWCukgQKGQT+jQSVZx4cR7FXWMiENy5mtTcDSY0Ar9CiMSgnoU7Jjr1cgbuFg1EBZPkDtRQqXVizOpuMgQLXlrBedtKF1p5EPz6S7t2xIWITbficttRsnHYZ8Q6UgjNxab06xXHqSDjSBVlpZE6DRxrZdTAarWi00iImVArm5TcJV4rnSYeXJyTj0fKlJ18m3Ngt+ZdzQqQCBoTKQRKCZgVEOiTks3LZ1Qr9KHDNGAVas0gRrXq7l8zYoykFEkxkWJPlcyhjJRaEXpW6y2DjHx4hP/ih59ysVoRY8DMuL7e8TSvuD0oscAr3bK96FiJ0kWl9Maf7g7cTIHnWdGUICqJHinKhzZRB3iuHdP5loddYZXwcgzi4t1xODCTiLVkSqlIEDQG+piQChnzTABB3OmpCWIi9SsXUdwmR1ytqXnAy8MIXbdi6DYUq4wykUImhuAigRlBAzHcOR2LGNUCWisFnAgq5cRBAWhMxNKDBroUfW40IlvFr6Q28ktCYa+Bp1NCDgFdbVjHQBWlj0pU8RIM1komVNAo7toWQVIk9CukZBSjD41IM7xd1J2ssbrj+bOxY32EXiuHsaAxeNu0sSB74YN94CoHTF0MiQbHany6P3KshsZER/AxICDVnZZeOMV9qjEob1yuudwkUkqE2LFeC6VMTMXLtCjhRPwJXtbF6Di08iqyElYyEIK0deJ+Sntr5WusiZMQg4ImXCJyEjE14SyEBKlzkrYJNSJKjBErkWoFFaVqoKRI6UCjoUOl5dVojsxGtqoQkpK6HkKkoFjokLhCCmgRtOvdjFmMWgVNa8SKlz3JGRuP2LxyqhDx/eXWIp+MAfbG9RgxTRwscF3Fy+Joc/MSCDF5hoBiHIu3gYVE6JTDZPzBD37KTz/4iHzY8cGzl+yPhec3Oz55dU3ePKSvW4xACcoQhQ9vDhQTRnxca56QCkpkLv9wtwvN/7ZWDgIvOXLa25qwJy1VfnPQC61sTBNB78hjJ1x/6Vvulzya3c1tr5NZZT/tt9b611w4sztBzk5bZttfpZ7WFT9cI6DF2/lk05bq5S+4EyTu3idNmDgd3Nfr+wKFtG+8f664o17m9mt7ncn8WMO8//n3qMjpnkJnQvyevOIlqxpx3sa3nprp7vxEFQnSRAEn+UUbyd7mYTKhS+p7qt7twbW1XTU7Pc8g7ZtqrWTz9S2IEKI/jDDlyjBVTuUXTrcsp07ER0b7V3ubBmXMtT2wYE2IvPdZuf9pv7ZSCnmaKLmQUnJ3eyk+Tlp/ziWkfgltLN27Ffri/Vm7D2LuU+Puvqm1e62FnI2hBjT0SPQ1Puf6i9+2YMEXsMQzLPHMEs8s8cwSzyzxzBLPLPHMEs8s8cxfoXhmeehpwYIFCxYsWLBgwYIFC+7BJJNzZRwOHPYHHtXqjqJGWM/Bcq2tzAGVoJ6y3JobJsqcnrmlb2/BYwhOkNwnL1arnpgSBuyOAyVn0mrNMGV+9uGH/NGf/CnHcaRfbYiiGJUQArXCMI2UMaMhoepuJAFmj5815+MMuQtT71/x/Ms7baC5oU8kwMnZ01J2O/PQSgwMUDO9erDrAkFzktk94aBxVnPqdX+vYcUD7KhCDNEd5sGJVsFdWKVYE2j8mKUWhimTg6dijjGxXq0532zpYnKCgoqQKRJ5eZv9eAJzFnUFQksPHcRIYkSZaZQK4oRx0ODijgghgZaJYB5Mx6gMREwVi0ZnwYnXClWEGjo0yKlfuhjouuhmymqU7Onvcy3sc2G7WfOtr1zCOPLT9z7l+XWmi5EUAr0I69iR6xGLgW615nzVs5uOHMcj+wqSH2MpIOrp5bfbDcfDESuVPib6rifW0gjp6kRgdUGn1krXRXJxh6cEIYSOXKCUibFkgkKfAiIwjiOdOptRRRkNMi52iBkiRkqJlW5YW0eKiWoDY5kotbIKSuw7BhKfjBM/+t7HrGpFGxG87jqirbFDgWOFuGZz8QhJnhJ+X/b88asDA5ESe1LXU2OAkKB0fFAGPh4rGiN6nrg8h20XSCkSYkRFuH515eMZKLlw2B8JXWS17jnfbsCUIWeGkqkGuttTqmGi9OstuRhCbe5X47jHSyOgxHXHM92itfJKj8R4JMTQSq/gQpa6AAVOmOXaRApxQnbOCGCtrEzs1u5cLsWJbxFMFYmBELRNVaNW6E14Fgo/OhqfZGB9zlYSGgJ9UFLnAtI0ZYZpokr0uRMjRSqhX6MSIHvpg1XnZXHEXFCoUUgmOO1ufP9WeZp97TlMigSl4oKZj/WR718Jz7ITzUaGkNgV+MnLPddDgdiRghA0UiV7Lvrqa1gNHRYLkiIpKp9f7bnNgqU163XHOE2Y10KBGDFrYpAooe8gGrsQyRjhfMumP9J1gRi8R2rO1FKo1cl6MxjzRK1GiB2dcEorTwh0qk0gVqZqjIY7Q2e3Z9d5iYhGrN5I5FnomaJSY0FlauSgYiqIBDQGQgjElIgxnbIpSNeR+g1SvBRHv95QykgejYpRU4dahpIxlCoDBHfHRhF6S5QY+HRS/sVV5b2byqFGqgijwSeDIKkjhYQGQSTSrTbUMCE5c5srscKkCV11vNiN/IP/6g+Rkjnudzy7PXK7L0xBqaues9dep9MtVuFYM4NVro9HzzrRdy4k1oJUaaVCrP3vjig9idLSfM0nocB/dVeOqC3qbSKd9pX7pO09Av4kVOv9HXEWhmbR3P9hcifQ0Y7Xijphs3hhs/N2flulNNL9bqudnbA+Pqx66ZYq4g5m0dO+dBIKEEQrUl0c0GrtQYOAeHqL03m6EduJdBXPTDHrH/N9iJ1EDF9/ZqFAVe5Ec50FgCbgixJDE+ybkOjH1FM7z22rQUADaDhdz8nhO2dqUaXrIl3yPU2bFoIKFb9vKKWeyHkRf/CizBkHorDqAxoiu0PmOI7tTGcX+V1GGP/ThALxhy5q08QlKOLpL04Evd2//2ljoLbrK7mQc6bkTNd1WK2+TrR2m8fQSYaSU6+f1uTTSGj3VdbWUjkNuvlhiFmMamNBlGowZb/XCmmFRCFU2j3oggX/cizxDEs8s8QzSzyzxDNLPLPEM0s8s8QzSzzzVyieWR56WrBgwYIFCxYsWLBgwYJ7eHn1im4b0dBxePacr3ztV6h5wqxC7FrtdU5GKqsVDcHLFIjXnw8xEkNA8BTLOWeg3nMduQOt6yJ96hmnieM4kqeR7XbLYcr87MMP+D/+R/8RL65vOD8/Y7NeU0vxSL0F3LHrCYCYNnLDPOhu0eddEOoBt1UnNH7JPC3yhYB2DmRPAe29t84BvAnc3N5yc3PDZtXz6HxzSuM8nwu1kms9kSUxxHb+cztUxvHIbrfj6vqKqWReXt9CgO12Rd/3XF1dk4u3X4gewlaDXI0ihpm7G7uuo4+RIErJmTw5qS2puf3EU8RHgahCikpSI5dKEOgaQeIuSAWtrDeJMlWe7XZ8fHPgnTff4EvrNSspUCeeXJ7z+U3h59c3vH99y+9+9R22aSBacYdpTE4qVSfOVSKhzmNHsBg9zbwJhnJ9PfC1xyu+/qXH/Jt/7TX+t/+Hf8Zu6jhMKzZxzecff8jFo57VNoEFPv70hkePz3nr4RldLLx8vufmBo61kmOhP99yGAeG44SaMIxH3nrtMduzM8r+wDR6eYXLsy1fefstzlcdz58/4+mLl3z8/JqxOkmXTTgOmbF4rwUR+hQRKqpOlI6lMppRNJJEUE2N4HLSN/WJ/WGkmosMfZ84VHd2BhKX63MohalMjFaoIvR9R8YotRJKYStGHo6M5cjxeEPsHxJXa1LqMGAqGUwpVbgeMttuzYP1hk1MTDd7rvagCbp15MHDS7p4xjRmcq30qWO6vaGacQxKiCtC6phqYcqZPGTqqketuqNeE91aENuiVpmOe3Y5UPIBYeTG4P/64dHLoGhH3HhZE5cIfV6NNYM5sS6amCwisSeu1nTrDdqllgbe2zWkFZRCzZlpHO+YQAGCE/wikETo45ofjiPfud0xDDvO0iWpV2IUkigQnHBfKREYS2G1OiOkiClo6CjjSB4npuGIAZoUC1CC0NGzDQmRxCSB//D9j7GSfdpbILeSN9WEgq89/XpD6jserBSxQkyPmXLle1evmI57SlA0RL+WJK1kQ8aojKsL1puMUfjnH7zke5/9MbsSOFaloGRJlGCYBkK/BvE1WWMgrlYch8CLPNKFwOb1R3C8JSjEEOhSR1AlhQAIwzTQrVaM48gwTgzDSOpXlFqbgBbpU0eeMjlnrGRiiq0rhGhg1RjNJZQwTXx3Dz+djnRByHZGvypUqU58B6ELEZXATNOOuZ6c76KJ45RxkjmgXUKKC0QlTwxAleQu4ijo9oyzs7ULWMDtCNcl8M+vB/7J0yM5g3bBBSmtpPWGzeWapJVglZhWaN+Tx5EyHnl+c0PNk5OrQbn9/Bk/+un7CL7ubs8u6S6f0IcICnk/MF2skKhoMbjaw5SxJJTeiAh5GphGKFMkytrHcr2311hrzcb4nuhQ8/2kzu8NSojJ52TbvwwX63yruk/gtwNL8/c2QeJE1Ap3TLHNx2qCgzZXsACN0D6VVbo7YS9DoJX7Arv/7D+WYlAKJoVYq4tDakjOiFYXnUoll4pUwaJncTCx1kblpHSLGEGVqJWsdnIPF2ax+04MuH+WijWhvLb9UEnBHct9jGy6FX0sRJ0YSm5rq687fj2+l6p6BgCNAQkuEPh3tAwBgPgNiX8G4fLigssHl6x2e/S4B4yYQiujU3ytD9GFUrOTjFOrl9Q426zJ1dgfM8W8TMV8XXNPu8uc07kodvr+UgyaiFHndjrpR97XtRHz1oSrlHqKKnkaub2+Yt1Enjv/+exuPnnG+YtwErLk7uc7YWwWFaSVl3D3dbHK7jig3Ujsowsx8ucefsGCE5Z4ZolnlnhmiWeWeGaJZ5Z4ZolnlnhmiWf+KsUzy0NPCxYsWLBgwYIFCxYsWHAP/WpDisI0Tjz75FPyMDJpKw2wboR/9fTk2gI1MXdPu/O5OZRwviFEpVY9uVikRYSCtrTGo7v6SmXTrzi7uOC97/4p3/3u9/jwk084O9+SUsCay65iVD86KnbPTdUcyFKbCCBwStx8584Rqy0eNSdI9F8ead45epozWRQ1dUebwHq9JmhwR5UGsNoqNnzRmVatngiXoLOD011kCEx5Yr/fcXs4MCfSrm5ORjSeasuLeDpnT/ceKLmSVFwYMCHE5Kmmo/9ZpUg1oYsdqtG5VAkkbe6sDmQ0IkZSo9dAHwISPJ3+uRb6sy2jRX56W/nB02u+8tVHnPeJ4xT4409uWPUbBuk4WOK7H77gb77ziAfrQLKJKfRQaisfUp3AtHoiJxFjmgJnCI9D5E8/eM4f/IsfcZgu+df/rW/y3/u7X+M//i/f5/OXt6QnZ/y9v/c13nhwzsUmsO4L//RffMoP3j/w6lXkS48f8eZrR94gMNXIoSRChKzJv6cYL1/e0sWeYbslEPjk2WdEhQeHI+tVzzu/9k0eXpzx2uuvoT//iD/83nvueDZjzMbuOGJWUIEUXRgwMgVhKJUiLnrEKKQ+gSnTOHCsGYk9MhVkKJSS2YUdEiIpV0KuZMueXh/1JssVCYUYAykGgham40RmAoUHD58Q0iV5GMmHkbzp6JITm3ka6EpBjgWNmZQS5689YbcfGYcjw37H53Ukxg6vAGBYCFiIjNPIeBy4PYzENAtGQiK4+JRHqhmb8zM0qpPo40gfOx6dP2B/VPbHwv6Q2RmYKgSlUyd9BKgY2cqdg5MKtZBWF0jsyBKp5f/L3p/G2pZk+X3Yb62Ivc85d3rzy8yXY02ZNVd1Vw/VE4dmU2xagkxbow1oAGUDomQYMCAYEPzBgAH7g0fYgDxBhC1QNCmZoizZpCiS4tQU2VN1d1V3zVU558t883v33eGcvSNi+cOK2Oe8zKwSLckW3bXXw333nmFPESsi9vr/93+tTI+rDAOwTgkp+HhbRMaSaVSbmbFOGUpVXIdAYUMShe6AoHuYFDIZS5mUM+O4IfQ9EiKigSEnNKyJxdObDyenPp5ih4hyfnaCbBJooMSOopDGc0TWZCIxHqIxT8RFSJmcnVDpQoQYqqIwQQ6ErqMkV+XHvT36Vcfp2WPGzZp8vqEsIrHpHkVg2NCTObfCo3OjDMeuNFdXbSpK6Ho0BESM9bjxtstOnAxn55SUGWJHfwB7+0es1+ecnm94dHJOFyIHe/v0XU9KgmajX+yhnXE2PCCnQqgp7wuexWJYrxmHEcM4vHCEBgd0x/NzUkqIKl3fM+bE+WicJgMpRB0gVHLIFJI5CE9y8hBBYkQqAAuQhxFEsWCUIaGxo6SBYT1QKPSrPSR0gNB1QipD5WGFPYFcNpSoWLciFCXQOwmsdZ7frLEQKTGyScawWU8lXsLCFflCRiWz7APh6jUfvzGyECX0wbNlYJyv16wHz/gRRCoJtcFkxIZCDge0OidmWhW3O+uQp8F4H5PNBMoLxdcagSiBrB2tvFAIvlHRLVCrVWFr2LRv/5ZMRDhTxg/1UkY4iFtoa6x/R6xCwm3tF39QgDoWRUErqO/K4W2pADMvl6AqXoKkrubFcgV9HRAWExQnAlRyXQ8N00KMThoWq9UickFLIZhfJ/UhgXoFfkkmfh3YROK38jHUrCRdCPTR1/I+RqKqZ+3ImWLZx27OtfxGbTuoquGMagayZwUo2ywyUrw0kxWmDBx5HBmGgfV6w8HecmcelO3DF36z4mt+fchBgPOTtY8NhBgDQy47n/sdkqrfd4UYvM2toOalIWTROSGbMuvB58KW4cB9rNTHF+o1mBFj4ODwkKeeMfYP9tCz+2TzchLOJtR7nmIQmi//AKKglY944hu7vu8/Js1fnYQoVkh5ZDMMjHlJwQhxfuppth9uczzDB7aZ45k5npnjmTmemeOZOZ6Z45k5npnjmd+/8cz80NNss80222yzzTbbbLPNNtuOHe0f0OvIo5MNr9+8yYPjx1y8dIiGwNlmwzh6UOl13HUK71SVRddBTRNsVjzYV6nKJJlwiAaeBw2cn52Ts6uQQ9/zvdde5xvf+g6vvf4mQQNdaCnjd1VYbk3I1TQ6Ld0x1rRJTyqGPsyaWmxS6XyY3KYdtimsDcSERdezjD05jwTxMggOpFBLaLQa8w6IbHe3DZFVPZgPMVIwFosFGoRl54D/4cEe62HNMKyrWlsdSFEhmFSQ0NVgZ+sNMVQ1dw3eRxM2KYMwlelAJvyMhCuwKJBFKKaoVYJiNMagbLTDugX3jh/z3snAUBYMJfCde2dc2BeSBAhL3js+4d3TAzI9S4GBhGT3hWLF0+xTUIQQ/JxyyoBiCu8+Lly+YAy50LHhozf2+eInLvPwbOCZ63t89Nl9ju+ecLoxjp7q+cwXn+Z48x5vvrPhu7dO2L+giBTMPK29mvLgbGS9ySCBIQfWd4/ZOznnytEee3t7BAp912FVwdbFwP5qxfUrl7l4eJfTnDgdE8fDKRY79lYHrBY9y8UCs8IwZm/fzYY7JxvW5wMpBsYCiygomZQK64FJKa2qpFIIlpHcgDf/pzVNu+VMHkcfTyqEIGgXiaIQICyWUJwYo2QvpZAdzFLMyZ5i5DEzjonlntItO5DMOBYKBlZqqnT3x6b2U9UpDbnUcezAWoXerGA5+biqikHrhP3lCpFMtsQmnVFwfaJUQk6lJVs3pqItUss9xJ6wWCChowjkkik5oRYcKMoOForEqWSAVbWgi/sMqap+UyHhAGXQQNSOLmTMRixnCsW/J4AVSjbyOJLrtlYK42bjCsUYa/uHCsJVwA+jSJnUe6qBqK56Nxw7c5dSQhchKGnI9fu1lIVlnycD9P0eybw8ypDOyGn044pgomgeXUlskCVgGrzvamsiStCIVsDPylB9w0hSKONIyq6TPF+fE/f3iV2PoIQ01rZ0FT4qFHN+zwxvaxOfd8TTsOeUyDlTSvJtxwGxAGakcfCSB0HpNMLYkfNILXxAqWnorZIEnoo/UBFBqrNUJXJEUFTK5EtpGOgQV8xm97eSM6GBpTEQUqx+4ernKDX5fSsd4KwvKKhlH0tYzUQwTpkxJERkEb1ERhnBEmpC7JdoiITgxW5EoVRgXEXIgxPfRbyvRSuJPY6kMhBK8UwRQcmWK5H85HojDX8Vtp/hqf1p47aVH6j08lYuurNWikylhLaLoWy/1baZ1sDt8QRfL55YFd+fWmR3zZxICCfAzRqcLtNXpfVTYxne93p6Ww0xAVUfeUWwUCC149X9WvMme/I8aU3iKmqZXk8Uyc53WkkIRUNdY8XVxGZeXKm0exhzwqaVhhLZtuakFzbzcUHxcSFeXmHMBReHF0pun9cHFurJlEoa1Lcp4mVnksHJ+YDGwlDcf30OlelBiUYGqSp91wFhWke2XeRz+ORnUzf6vUq7lkllL0LOhc35mpwSuxc97af2wXTSk3M92Rftl+38bgTX5D/OEvjfpdCpEgSGMRFTYrHsWK36KTHGbLP9IJvjmTmemeOZOZ6Z45k5npnjmTmemeOZOZ75UYpn5oeeZpttttlmm2222WabbbbZduzS0SE6PObk/CHfeu0Nbt67z6Wrl1gsltx/8Jj1OLK3clWkhgCWHeBXZRUCkrMHkiVXJZSTBKUCkdIQCPNAdhhGV+1qYEyJX/n13+Brv/dN3rt1h/3lHruQujWQHhyMr595SmMPz8VkAjFagNus7WMHAdmCbDCBHW2b3drt0/fbyRToQ2SxiGzWBmmoCrcKWNaAWVQJBlgF49F6DRU41UDX9yxWS1QDe6slIQjLLqAChwd7nJwJx2kgF090LSoEFSJVuRoCFiPn6w0y1DZRIRdjY8KmAs1dje0NY7TCphgbU6jlGgShR2rJBkXHTG+Z4wQ5dpyNie89OONoA4QFbzwa2B9guVzSL1Y8XI9878EZdzeZVVDGtEFNHVClkLEKtey0d0mYCUOKvHpvzac/tmK1XCBn51w7CvzCF5/GFK5e6Xn82PjuzdsM6w1aLvPZP/YFbt0+5b37a/7O9+5xaXORYgMBYxUje/sr7j46Z0iFvdUeY+l4fPc+ex2s9p7i088+i+TEIir7B3uegryCfNcuXuKlG0/zYBy4e3rK3bNTVvsHPP3UNS5duMBysaKUxOnpCSdnpzx8dMLrDx7z6HTDEANDKqyWEBWsFNZDJiKELqCmZAo5m/uGSG0Zq+AYaDbyMFLwNPS6jCwWXU07rpgEV29awtQVdzaOaPGU6p0qI8aYRs43yjKNhBgR7Ym9UrITST5cBCiu+A4KEmlaR6vKRrVMDIoV9d4cBxSwNGIlUbKwWC2RsE/GSENGq3q5YrNb9V0FgbQNKlVY7tEtVw6e50JJGRvBtPq8FfdJcTKj6zpSylMKfa2gcmUUKRSCGUGg00DoA2kUMgmzkRArGWJGSdnV+ylhGDl7CYwFVksGRPrFYqvwr8xE0yIqiShGJ66iRiCHer2ini6+ESwVDXSgrpXJ8dI2KzOCKCUl8nju16aCmqCWXS0oSowVADSH3QuA9mjXo6EnhEAAcimUYiQKVjKYUHLm/OyUZb9gsViwXCyxnNls1q5sFgghYgYpJ4pB3/eU4nNhKXj/ZCc8FMhk8rjGipMEuSQnstQBdO17hpRQ1NP6qys42xwepSOGDqM4oYhBVPfXEDEiIWzLD4zj2ssflFyVud6HEhxgdgV3rFijg7lBfV6jQKh0gIPZUuckJ0ZKKoxppO8FDR2ooJ0S+o6cBnIasQwaOycOVCgSQBymL+btV8ZEGTMJCL2rvKVkypjJeSBmz+8RopIsObhrAriaVa0BqUaxuuY1MNrUiTXx+d9B4ja2WiGErZmoL1oNVZ1+2Xa9axhyXR/b+jRlDmnsV2OX2d1HVXGbzxduDux7UQ+txzCEPGH72/PeLfFAfV33oo0UMVCr7WR1CTafL9rIsrZ9ayuhlY1oDypQSRvPreLEF9bOyTOciAZ/X/2+pgAZ72cfBk7oFPP50/Fy8+vT7f0NxSh1zYYtSZCqIp5iFMsVlrfJE3Pbtxm5XnvxwzIMIxIyporV8lNtHt1VbasqXehQ6VhnP07BKLmAjeTKAKo1aqJ1cyUeJoLK23fYDDy6/4gLl65MpKQD/FuywaoPtAwY7zdvuvIB/2yfbRX0ldgpBjnX61DWm0S/lzk8XHHhcJ88lg/Z02yzbW2OZ+Z4Zo5n5nhmjmfmeGaOZ+Z4psUz7WHfOZ7x2WWOZ35/xjPzQ0+zzTbbbLPNNttss80222w7dvlwxa337vLm7dv82te/zRe+830+/vInuLx/iD485fT0DKQnhI79XqEMmDlo3QVF+8iAubKxFEqp6coFSjaCCCl72YYQlL5b0HULHhwf83d+7e/zZ/7dv0AIC/aXexz0EQnaMHlaNKo7fwPsSmRUQlVgyqR2btbUpzsbTnv6sMB193sN7MwV5FNRyJlxGMnjhpAzGJTs6f41j/WidQq8fVfaUAUohZITUgpRhD4oasXLTVQ1VZBMqOopA4ax0KmDXmQHEQ4OL3B4/WlCEcbzNQAhKDEIo3YM4S1u3XmArjNQGLJwvDHurzMngzIWq8plyDYgpabQVhjtHi2s71f7fOPRiD5+TN+vWVw44tEwcP9sjZ5v6FYLvvvgjHLvzAGlXJCqVi+VEAEvj1FKvYYAJ+vE3ftrDsdjLu99ghtHS9hEbH3Gc9cdCEubwu/+3j0uXb+KiXDrLPOZs4c8f8m4dFn47tkZqwdHjGNm0RnPXIwcjcZbJxvSWLjWL3l0/yFHHbxw4xn+xB/6A3zhhRc5P33MMGywYGwen5FyIYTAhb19/sjPfJk1mbdu3yafnnLwzLN89OVXuHTlGsM603WFe3dv8fDhPY4eHvO1d95hBEZTggYuLAJ7XaCPSup6wNWhKspKF1AqEFsSXRnJpQKhUpCoDpimkZIyZYx0oSOyQIqyHs8ZLUFURBc1vbqn0Vetvjps2BSwzcjq8ZrlckHsO6RfVIAqMebEkBPDkBDtEA1EEcZSmIo3mJFSoYuedr6UzOb8fCudpbAe1pynBX2/5NLFJSkbpyePICeio50ONFfScBpXoUPigrC8VFOA1zT3CpKgkCl4+ZBG3uVSCLEn5Q2Q6zlUqEyEEGshhQpsmxTyxshj8tTuGIRQwV0jdEbX9UTRCjQm+j0lq2cS6PsFi6wM63NK2mCW0AyqkSCBIK4BzyVXiLZCdSHWEgO9g2edg16lFMpw7sSmKiF0jMmI/YoYe/q+5+HdO6S08dT8IiChzmdCKIZpm5UEDQFdHSLdAguBAuzteSmSlLOX8+h7QlOtinByekYxY7lYsIiRvdVFNCoopOyK85wLUgpqATMYU6aYEwdCVetrICIM4xrbCKDEzkF/sYKUTIhG6jOpjOSSHRwn7JC8ArlgZO/toIhETDuQrmacr2BuJZrHcY1EZbm/IqfOSY3iSvNc1DMDSKFIcbV3UAKCFC9FUiqprBJAAiX2xOC+3/UOEGvwjBUhClgh50JKhbwZEPF1ABWEQJ4WEge+w3ZBAqCLC8YxsRk3aFegJCjq5I1uyxa1hcYKDg43BWoFYB1or9R4/SyITO8V3gf+N8K7/SeyfZCpZtCwul60s7DQMoC8nySvgHJwdXwrYaA7xL1WMsEmpXdoG9Szc2JH1c9NKWiIThC5/pcQQUqhmJAl12EsTwLStbEMKKpVZVybPAhWnHRFylRZQ4qj6MVcaSyVRNyU9iiCYiglBEol+KIomyF5hgJwYt7UMxQUYz0MrIeRWPy+IxXPuKDt4QiDnNxXshkbAudEskRC6KuLVILKjGztXBpQLyTz1rE6f5ZcoBQ0eCkoFae9ihUQIWokWkCTsUlrNuNAruRbGnMlAWzblqVt66SQ4ZkxLPv55GR0y55LFy96FhHzOThTvG8bq1BLhvxQ2/1cttlrdjq1PmABtYYG50PheG08OFeuPrXk6qUjbjx1ncDyhx9rth95m+OZD7M5noE5npnjmTmemeOZOZ75UY1npgxJczwzxzO/T+OZ+aGn2WabbbbZZpttttlmm222HevVOF8PHJ8NnIyFb3z3VW7fu8flowM6Kez1PZTMOGzYdK7g9XroqQb/0HdKKVQVDrh2p4JosgNQmNH3PaJKKYn12RkRWCx6lstFVTNtgf1dRfGUeYIKMslO/FmxkVKKq9d2L7Bt04ANtiRBSwH+A61KwzwVtKfdtwJWlWsh4OCRuZpNWgRc5a6u/MtY9lTRmCuVSkqUcaCkVNtFyGYVwIqIuFqrpY8uVsilAgoa6RZLDg6P2O+XbM42YAVVISqUrufuvYce3Jed85VAxioYAoqneqeAVbQoiithUy6MuRC6SN97P3vafwgqaFUYgrHoQu0PIee0zeqcIUokxgjivpAqUfD0wYJf/MiKX/joZX7pxy7w3NUORhDpIa05HUbeu5v5zlunLFZnLHthfxHg4mVOw8C6nNHRcbhS1gKLGDhY7rEMns4758RmfcLT+4F/7Gd/gs+89DxLDfzb/+H/g5eefZYb165y9fCIuOw5PjvnwaNj3rn7Ki+99ALXj464vr/Pz3/uM4wXr7C8eAnVjpJHjjenPDw54fHZOWMp7EdF9juO+p79HpLqBCZq9YWWijtrdnBXA2KClQrS1XFhJWMxIeNASSM5JY6Pj+n7ni523r8I1Y2QKEgjYTACikqklMJoifM0YinQaaDXSN9HtLiyM4tQhjVacvVVL4mwO1YBv4gQkNARF+oqt/ozjhvOzgdEIqvVimtXrhKksD49ZdisMQqqgdDKmRAoMSJdjy6WqMpEkoh5Gv46lJ3+UJlAMhBi7DAg50zO2ecQfL5pyuWmms6AJQeQfewHYmhwkF9jjJEArvo1I9j22lSUuFyCFQwjFy//ENSV0bnOSWIZLDtIGrzEgWqkuE4Z1EsbhKZU9ZNBQyDlBKZEVfb3jxAzTk4es1mvSSkRYvASBgiYok2ZqIqGjn6xdFJCHHiOix5TQ1LCgJSd3DFxQjdEpeTMOAx0VSFuY1WIBiWblwMpdU7U4MB3MQPGOn/KNJd23bKSMoJGB32ppERYLugxykYwUhXfFgfBDXJNto8KKpGsHaFbod0SCR02blwJXecqCUqMsQLZhTJWZW2dzEsxJDbVs89RMQKSoRSCbQkkEe97z9wgECKqHVpBUyuZtHHgWXEinK7DyKg4mF4KaMOvlUkY29aK5r+OLxspJ8RgLMI4GmLqvuWLUMX1re6j+Pxfh6HBpCDdZbet/S+VUZBpwpm8fJc0l9pvptvd5B1F6w/MDoLvqKncS/HxQB0Dru5ua7Nfe6lrmnMGWslFqfcGDpLnttZbK2/SaA8BKXXt3J6LFSNnJxZUqIpm/64rt/27qoqaOAGpoNbUxFaTighShPWQsHLO+dnIneNzHp4PnA0jXYykbIj6tQStfoiX2rl//xFDEkw6CrFmKlEvKyFCzp4PJFthnTI3H5zxndfe4fj0jCxKiB1SSgXErRJv9d5BSpue/A5KnDQIrZOKK+tRpZTsZbWAqIoilJQ5PTtzdXPdJrR7qHrDFDTUjAhb52gZCLbOYmgUur4jxFjX++nRicmjpD2YUdXr7880M+3yfbdYrbeK+iU/8UkXeevmLb5/85Rbj+DK5ip/+yvfpIvfwrLwr/zsL3/QP2ebrdocz8zxzBzPzPHMHM/M8cwcz/x+i2e2a9scz8zxzBzPfNDmh55mm2222WabbbbZZpttttl2LIgxjIlNMor2vHXzNnfvPWT99FOsonIalGEcWRdX6K6Wh55OvWQUo1OtEW0L+plSOEPDyx01NTNQ8TIHIly5fInDg31MAr71NtgHKqjQgly2iuMpwLXdr37QGqDyBPDRwIidr72PLHiCN7BSVV9VA2lVCYZ42ndVJHjgrdFBO9Gm6qyabile174qwxaLFcvlhq6LFWCq4BxVMeUntSUzds+97l9DRDSiIXvKejEIilYQILR04RUIivjxJxUSjc8QB7bbcSpgoOIAA7JNvW251HTSDVDyraZ+qam0DQdZIq54pSr5ioGlkUsXlvz0y9f4g18+5JnDREmZ9+6d8/jhOc885yUQomZuXI2EhRCiEAj87u/e5re++5Dv3N7Q9T2dFQbzlPpd7KEMgBM64zhwcGGPj954iheuX+W9997j/uPHPCcQuh7MU3GfbEbunZ7z7vEJ5dZ7RDMu7+3x7PXrPFgsGRFyyoQukpMQFwu65Yqz84E+ROKecrHv6KSwqQpT76cGojlolnIixlq+wCpIM/mlIRYJGhHVSiaMlJI9vX8aCUEw7SYSreHHbYwgnhLcioO9m5SRlCmaqtrSCMHT5kdztXYphUlG2MaJlem8cnEA3SpI1savI7eupsvZwbx+sWR//9AJEIQhDZPP+rkGNC7QfoF2C3/fB8c08lGdwEZrZBvbHw1xSlcOFTzdOuI2vbhDUJX/0KpGDltAcne8q4N04CRnIy5iFym5c4KuEgjbHPoVc25gKVJV5j4mZUrHrxDqmEVcjdjahJrqXgwRZbnaJxdAlLOzE3JJTgjgpS6kZCT2SNcTFktvC3WEuuCAsGhAQlW/aqlt2xTEVucxc5VjKdu51DPVt1nWAeRitbxEBTTbHFBsmtPNWd1p39Q5TGKk761u66TONJNVUqwEAQJoIC72CItVLQVRSwk0GLz6gFVVu9XyP16hQLbgsng5AkUQLah6dokJYJ/mOqkktZHMSdyAz9eN+nSyOUwLgQOuLcOFTERgm//8/cl1m3cizbcKZIMhG+sGmE/jrY455AlwdSLHt1NE/dtB65Y5Y7udTScgtW0E2R5DtpkEpu/Wa/B3tojuk1yh+2djLURKJd9ki/ayBZC9/FOp5aC8NFAj8WVaK7yfVASrfbFrUz+J0RTbTZXtPeH7aP9/cJ18cl+lGEVrKYf6gEJKrtjXGKf+8Vmj+XNtH/xanS9V+q4nxo5kETNFgyIafZ0UmdhhMUHUS7MM40CqpUy0tb9sC3nY+zpadnuj+blvUvtlWyql9bPWa7Udv9j2t/fdtHQ3v25jujH7Ox93Xc/+4YGXxWF7HyEwjasnynHsmO2Mt8mPZHvP1dx4uo9ofxk+/52f8fDRI+7ez7xz+xK3QiZqYRF2MgrMNtuH2BzPzPHMHM/M8cw0TuZ4Zo5nmOOZ3x/xzM4x5nhmjmfmeOYDNj/0NNtss80222yzzTbbbLPNtmNqhc2YGbKg3Yp33rvNe7fvcvLic1y5sMfD03NOx4G88SD/6pWLmCVKzmgxuoVOQaPgyjdPIb8N7FvQ30CHcRxRFV54/jmuXLrEo8fn5JSIXZhixxYQi1QAqwWasgVTGrjdzBWYbtY2th0A/EPsw9XR271sA+mtZtsqSEoIVTmqSPCSAEUUUQeiMAcFTLwcRouo+6Ww3Mt0fQ3AS1NfU0tqZIplT2cuUvcnVRGmFYSUqpZ2MM+B+TilffZ28gtXhE48PbpLax0MKaaI2gRwlZLJlsEKUYUgTo5MfYorcNuOC+aqbzwF/UQWWIN18wRiqzlolzZrFtrz/PVLPPeJp1me3uLhe4/43tunvPXuA37h+nNcv7Tg0pHwxZcDSYXRlLNN4O/9ze/yt19f88ZDYbFaIml0dAchdh15s3bwFSOlTNd1rJYL+i6yGTZcuHSJCxcvsdrbp6RCKoX1mDhPhRwj79y9x8V+wSpGrly8yFkyzoeRQYxusUDGwP7hBUyVe/ePCRJYLiIHi0i0xJgKZlrxOIe+rZbCQIRinj4d1YoNNp/wttNQkBAgdkifsZTIaSTn5ACp1DavYHWggW8OuAVVivrxNimhOZOHkZQLuWT2lstKZrniLQ/jFnwTXOHmecodKM7ZSQKYfKCRVw6KQbZCSpnYR/b3jpAK/Nr5GZa3yn8JkdAvK0nQkVMDGm0HWK1Dr2xBS6ntU8ycHMPLloBVZK8C1zBlH4AycRkqXn6hi3ECx933d4C4mp6/lOLK65IRXRD73tsBYzg/oxQnz6SeT+s/DX4MDV5eo5UIsKDTxCWiT6gAJ5WvQSpG1y9Zic8nQxrYrE+8rEY9tyyF2EXCcklcHmDqinirBIZnPPDjFKvKYTXMMmNKpJgI6qBtLpmcA1qVx1YaSSA1s4GRUiLXn1KyK/etKdknnNvnw/qZtP7SQL9YYJahJM7HYQvl1nbPqgiKake/OkAXS7J5+/tYqUVpankMr5bQSg/IDhmnW1C8kjONHNJKzu6Clqo6AcXFCjk7UCihEQVt/tKJvC1mlUiqx98hqUsbC5UsaOpsEc8gEarKeTRjUwrnYyVvbEsCWClOCFXfmsogNCB5h33w/YY2SOp16bRaefmFBuf6GjmR5G3trORUU1QbpfJfTaXb2my7fvsBHNy39l5dE0vOdR7Sne8yEepSAPV7DbNKEqgTv0xj0ZwMEz8Hf0fRqpA2a9RLzT5B+46Pg9JmDJtW7e25m8/FRZQi6mVPajmdru9ZLlacFzhPTopZI82tZgao59R1HUdHh+wfHDJaZDAhdgGV7kmiou5jkRNHY2G5WLAZnfR1zsizBIhs1/vtgww1m8MOdTDN79W/xjovT1bvYUIlQ9MTREFhUjCzHbdAJZRLJQk8W0rzp9hFlqwIXfQzaSRBJRQm/5Ud9P8HWLsneDLzWKOV6nU2ctcaz1LYbNa8e+ceJoVFFC6uuh9+oNl+5G2OZ+Z4Zo5n5nhmjmfmeGaOZ+Z4Zo5n5njmRymemR96mm222WabbbbZZpttttlm27GcEuebkSEX4qLj5u1bfPt7r/LKS8/zyisf5bWb73F6do4RWS1XaBYkGSVlNgJBXCHdlHEatYKKhZL8BwQ1Vyh1sePsfI2IcP3qdW488wyn52/y+PSUZb9HU/nsQvstttyNRXeVUs0aIPB+a5BJmf764VHttAfBCYBYA9qW8RwBEx6vRx6enpP1MfF8pO8XxMWiAu5lCqwddCucDSPrMfN4PXDn+JTTTSKGzgG2LGCZslAv21CB273lHvshESrYFkOk6yKh6whxQS/qba9C3y2JUVmu9ogh0FJ1Bw0suo4oiS38UEP0rViTlGHM/neQgpUEpaZZr+BPmdrIiYKtcsuBBFUHJKSCNTSwyYxewRY9X7/5iP/xv/13+fY3rvDP/PFPE8oeb775FvcT5LRP3+/TX++gH3nnvQ1dv+Lzn7zGb/7O67x9e8PtzR4vPHsVe3yPkgYokb3lgtE2E6CyWq24ef8xf+Mrv8fpp0f+4I//JF/85Gc5Oz1hGDasLQOBZ65c4emr1/l8WPDGzZssgnC2yRysB3qDUJQhbbj/8AFh2dEtFnRjYTPAnQdnHPaBA10QtEfFS52IuKq4OmXNai9Y9hTwrqZ3FTStXEIIaLEKrGcHL4qRxlTB+ky2RCpeIqRXL5EQkErSeUmQLJDMGEompkwuMKTMmDJW1EGtICz39imsSTm5r9bx0/zVgdGW8qBQSqpj3EHptp0EQUalnBYW/ZL9/YssVxdYrs8Yx00FmM3LtIRAAcYx+Xu7wDK8D5ykglGF3EgEDbVkAZNP+tcdUJbs4JsraAuTolOElmIfrIKyIFNGhgr+q78a0kifR4IosetZiMIwkMehTgD1uBrQ6OVZJPSIRAQhWK6gsYJ4CRizvJ1f6uV5SnufL5MZse856DpWeyvu372D1QwSGiLSRcJqH+0WSOgoaYMlL3cgBiUlVytW7NiTUQjFPHX8JiU8Tb0Ti/1iSegCBpwNiaERIFZIlSjJKZPTSElj9cttf5XspSREKyBPmIjOYcwc7C3Y7yL9YsEmJ9JmU2HZSjqWQL/aZ3FwkcXBRcY8eImcvAGqmrsSBF3oHBh3FrWOK1elqgqMIyU3aNjHR1O3OsifMdq6ZKRhYCqEYMVJIANTqSVWMimNVYXv+S20lfup3mkq3talkC27SryuXe0niLIIkfPhjE3OnOXAWbYK21YOeweA94mzzcdbELWxdGJeTsdp3+32bcR42v5QnasB1lVpKzaR1KKCTEuAH7eRJFsftakNp23w40nNMiBmEIyisrOi4KyA1fIlRStZULDix5VOGItB9rmkEXhSsyRgEIqQ1ZBSydbW8NIqe9SHEmqZJM8OYJUY9DWomD+QsFwuKQIJeHi6AVEO9ve5dHTApcNDlqsV3BXW48D6fE2QZX2+oK3DXmYqqtArHO0t0MUexEUlI6P7jQYnt3JCLJNKJsQFd+6f8sbNm9x7cJ+cNts2rr9LyrUcDx9qYxrY75cc7e2jGrl5+xYoLBYLspVKqFktm9KRBs8Qsu2QdkdVKeZKblojnYhYCL52G4S9PR6cnvHVb32Lqzdu8DGg73vWdV7Z7nhLPk0+PPnAh1zM++/NpteNlClwesoXvvgFnvnJi/x03OOrX/k1fusb3+O9W6e8zeLDG2i22arN8cwHbY5n5nhmjmfmeGaOZ+Z4Zo5n2G7DHM/M8Qw7Pf3///HM/NDTbLPNNttss80222yzzTbbjo05c7pJnA5pUgy+cfMmb75zExBKLgxDQoOwWCxIOVWVTmTMrgbttKY5roCo4ziurnNTQnRF1HJvj8enp2DGcrXiuWee5e2bt3l0fLwDNFSUeQKnt8GkmXmd+QpghBCrUHdHAVaJgJY4vgEx2z19kEh40rb72aYTr8CjuboOg0dnA+/dfcRmhOUqs1gmFmOCGoh7+vRMyoVhLJxuBo7Pzrl3cs6dR6c8Ojn1khKmSC07IQaBeoyUOT0/xzSz2SQ2xftrfb6m2CMeDvcZho1ftyohREIQ7t65wzgMLEKooC/kuu1oxliBRHOUaVLkZcuU3TISjlFOwGBLVO3/mmrb2ykgVTXXwBVQQiVmHMAxK3TdgkTHvbHn77/2kD927y6femaPP/QTTzNqz/WjzOmjR9y8e8bXX33E2bmy159w8ugRf+JP/BRvy2v8+vfOeHS6pusXJHlEKRuCwHL/gChgaSTlBX2/4ivffpV79x4wrs/4uc99jiJCDorFwKEuwVwhuTHh+rXr5JJQMUag10CP0AUhhMg4ZoYhcXZ2DtphqAOqyRsqBAfgUZCoWPKxYkgF4hNGoGoRUVE0uIJSRDBRTAELdQxk/8xcMbg+O+XxcMqYRq7GBVQBbBD1UhBmhFQQMmPasFElaCSGDkJPKoU0OBgVuo6+XyJpYBgHLLvfFdsqHc2qWrhkyvsIu9anyTKpJGIOFXzyPpfQOagpDjAWM4ZhdBWkGaU05X/dV8W0Wop4B7OqcjAnxDoI4gp81Qmwbts2VbQUg5qJQCXUtlWGNJJSQhBirGq/CgTuqlrNjJwy4zhSNDjor+LKeLxtwOcdXfRojIQYsVLLPRSDnJBJxe7nJkEryejlSqSSFK76NSx72QQRIcYV1649R8nJQX2MooGsQsaJ3TImL8lT3KOCyFS+QaY2sfqDg/4WUHOC52zYsJAlqkoyY73eELSm6KeQxpGSvVRLKYmSXVkt6vO8t/PWI1TUAXormCWGFOlCR1xELl4NrM/OKmANWCEsloR+hXQLNuPAMJxjNlbCp44ZfBnQECqsvp3jRRQNkaBCSYlxHH2uauenwcmz4nN1Efe5VkZBtfqGCSUbqkYxLxMgpSBRa8kC/26ppVH84E53mPi+UspoFysJ4m1eKikURIkEzAY2qXCyyVPpge1aJNOc6/OE1Ouo5PZOiRaRQNBQFcZ+Lk6i1T2Kv6fmfVO0kmqCjwsrT4hZzbwNarP5NpWckja42KqOEfcRrCl3bbs/q+SxKLGuFdpIrJKdvBNBSnHCFDCLUJxwUnM/HnPG7xwKihBDIElbdxQsTz6CtjWa6afsEAs5jRwdXGAUYT2O3Llzj6sXj+hiYBEVtRFLgqURaRkWpF5HLafiBKnfZ3QCUQyVjNMOSiFPDSoCGvz+KBbl4h5cWK1YxK6K2ZXAVgUs1AcRdjIbTMz9TuaXVJx0eO76dU5OjjkbBsacEFVSMYZSICVSSj5Gpg7eBfANJiLGtq68YzEI42aNLXpWqxUXji7Ao3vknHzulpYZRaZ5d2r/atNYfeL1+6yNJWPKtGDmc+fFq9dZXn2BKxcv8/GLxtOHHb/+e9/nb3319Q/uZ7bZdmyOZz7M5nhmjmfmeGaOZ+Z4Zo5n5nhmjmfmeOb3azwzP/Q022yzzTbbbLPNNttss822YyOZ8zGzGSsAHgIPj4+59+A+w/mavu9ZdAOikRiEVNIEMBswpoREJWgFkXeB+ifUMQYUYggEdVAzBOXihQss+r4GkgItJTHbFMYTaTAhFR+E+beqyp33sEkt3YLyJ05n9+XOto1MENuC30gF92qI78qiQDKhEJDQE/oFIcYdMgLMCpoyEgrSRbTrKKFjU5Rw55ghFxSr5IqDFAHBNZbCekykMnBycsbGvNyEGeRhYFgPjOPo56yKhUwWcYCv1BTmQgUbtu02/dgOcWJW1XyCqwir2nTqx52+bKCUtPTorkzblvzwrxtNxVbfUqGYMKbC6fmG5aojRGWxVK5dXmCxAzKPjtfcfPuY61cv8fDRBhtHjo9P+fzTR7xwbcHr755z585A6HtEA8VgvRk4vHTIsuuIql4+IEQen55w99EJtx48wlTQqJRsPDxbc/vxMXvLjhADA8Z5glUfWURXmxeq4g5BopebCDXFu6qiCjGqZwMwwSxRimJFwOKWNHninzM0lt3VRcoOiVUBOIFSvNxH20NBWS5XKIVxVIZhoO9WyKTYDFV962U/khXGPAAOWJkVUklTXxQEYt17dRNLmZKzA82V/Cm04hNOCFkRB/pa31vFtAKeZj04yK9BoPiOTRz0l6BILUfiGejdOVTqODOprd0U+E2dWQFedeVnS2lfiisrd+EoKkir6vpRqQTKmF1hLiqobZEx5zYdlLXs11RyIaeCRgfFVZXQeWkIavuoRiR2EHQ6Vy+lYiiFUAdYIwVUtjgddVwUATEv59LOSEUxNUIX0RBRcwV5rnNrsUzOxcuwFN9h2FHRCk7MjLkCy3VAtvPIVhBTNmPCdCSECFYJkgK5zhWWM6SClIxQy5hsh/92TqgOZMoTvZDGEcwJmeVyr/rntr+dEAteTqRkclPe1z1s5xFfJ1SZwE9pQGVrT4FSieqpXFAFXKWWf7B6no2IcrVwu55KytWR0WB7kaour6BqXUWmz7YZIxRpJFfdP3V+pGYwEFmTi7FJDcCu/8xV+7uqUQfXG9E9YfM7Hs50Ln6+4iRzvSYDtNQrav1i7bul+tQO0CtSCZDmL09mKDBsIrh80ahzjkGuDLRUYL1Q3a6Vq5gmiR3i3AwzVwOXXEurWC3FkHyfpRJeVhrlv734iQSbxrC0hAiVqNidEZQuqpcFScL5MAJGFKXX4CTmdJWuhDZncJ9s8zoHjSmTUiKEjJAQ7dz3i3mjo1NGBglKiJ6xop1zLkYMQjClyPb8GyE0Yfv1yGKeoWJMmZP1msOjA555+hq37t/n9qNHrJYrWvmtMbfyJLzPdvt2x5nwe5xprcac3EwD3WrFxQsXOTo8Qh7dI9eyS9v13LadUNox5Il+2mm8JwhF3reL7QXXz7WSPxK4dPEyn/3YS5ydrfn6qzfff2GzzfaEzfFMfTnHM3M8M8czczwzxzPM8cwcz8zxzBzP/CjEM/NDT7PNNttss80222yzzTbbbDs2WiUJBkNNiLHn5OyM+w8ecPLoEft7exydGxlQLaQyAoGKYTAMIyKRQnAwPXvkJ+KEgweCVpWWBRWhC5EuRFSEw4MDJwmqgrEpbhtwPcWOJoArNl2Z7MrJCbASeTLItm3QarKDKFSbsPOduLWlw94NXANKw9qnFOOAiBH6jr5b0C9WLFZ7rA726EQqgKyeItoKOWdSKah681w4G1jsPeK1d+5w9vgEUeiCOrBvDpYGczAsZWOzGXlwsibFHjS6oi8X1DKx5rEPGghBMD/jdkGIeOAv6in5twUdHKjaXnNVsYp4eu2i0+dTun5kKvPgBIADRlN67veprJBGzvh5IEZJho0jcTzlM88/y8HRHrLo6SxBNM7PM8fHA7dvn/LHf+qzvP32HR4+OGZcZ4iFywfChZUxDAMLWxK0w4CHp2c8/8x1DvZWnJ6dkUsDCSNZlPMxIV0gEikbuH3/Id/67ltcv36Vw6NDtFMkw97liyy7DkkDazOGbKSimEZSMvpFoIudK1iDEbtA7IKD+jZQklJywGo/tTIpSIMfK8RnBYog4mpNESWqEqKrpDelgseWEAobg8sH+xxe3Ic88Htv3GSdDAsOpGkMtZ29/EfII2NJBI11rIxYbiOkpuQ3o4gDiwrYOGIl74C1oWLAgmoAy04OChAUUmksCuAlMDxtvDhJkG2rhDY/RyleniDnqiSuY1RVJyDdgf8ncFOyFULNTNAUzFYBezNztXMVFUoxFB9/qgEJiiU/F4ohpRCD0rza2TGFkmnq1JwLXZCJvNSuI4QApWApIxKw4OpYKYaakUvyuU8VNXHgsNTr91ljmm9Km0eAlPOUDcEEUh4rGB5AXFEttRyA1L+bWxVhArtFDBXzbcy2anHdjvFSjCzGkDNlGIkButgRQ3BVfKm+mQ3JxRXQgIWWMcH3oyp4gzf1aJtI3QfzONZ1wFgsD0C8lIfhxzvfDKScyDlVhXHr8+qfxeq8phMhl6dKEO1cih83KFSg35gmaz++BTR0SM4+PqxmEVCr5KZgEqsbePtZLd/SyIBGCre1jPo9FSiVhGpksmcNUUxKVcYrfVwQ9IRisElbSLrUeaCRWa2PTMxLJ7DNRrElJJgU2Q0Kb+C9iY+FEgTN7i8FP8829YhWtTJeKsRsS2RSx4cG3b6Wtu7ZVJLCoH6nEoOpELSSxJODNzW3X+Mu2bclAAo5C553IftnSaq6vhKArZzFDl1ZKeo6h1VyZppafX5yP4agAZVS57xCqnNbECGqEkUJogjqSQ2sEjemBIF2z2FWSKmwGRLDkIiaUJTQdZUg9hMSxQmweg9TRNxPzctWjDmz0m66X9mdE6aLmtZb/z+qcjau2ZyN9Mue5559mvM88Nbdu6yWq4ngK9p8lYlM8f920Xi2JMEuWUQldiiQM10IHB4csr9akZtfovX2rpYCwUkGmZTcT/zachMTtWY7h5eJgvLh1ZTuypg2nJ+dccwJ+zny0eefZ32+5ivf+C6zzfbDbI5ndt6b45k5npnjmTmemeOZOZ6Z45k5npnjmd/38cz80NNss80222yzzTbbbLPNNtuOrTfG4/PE+eCqwdWi5+z8jHdv3+a7r73Giy++QBqNMReiKmNygERE6foF52eniAo94mnRMVSDgyYSXRWoDnCkVDCDrutZFAegXfWmDjr9Z1oL/B1QTXmrtpIp6N799n8+a+CLatiqmhpgXgFKrLAgc9AH9jolioOWWeMEcIRYqnrR0ywD5Jw8Tb5WNXkpFezzQD8VI5mTMlHgypULLOWQK0f7PNiMLLpA10UWIdKHABKQEAgxONCHcPfefWKMDMNA6XoIHoSrKiJluk5PX16tEgQxBLSYK8ByIhevOeDbbomUJ5iUikFky+9TJzIdwQzO1oU+jnzmucAv/PzT/Iu/8BxHe5Hx3EhlySoYUWC1WrB3+ZC//mtvcn58zLULkZ/+/A307C65CCM963TCYX5MH5VhM/Lqm2/xY5/9DNefeZ4sPW/fetd9tuuxEHl0foJh7C33OV+PPDo+4e9/6+u8sPkIL73wAp944QWuh8hRhN4SthRO1yOPh8LJKCQN3L13j4PVAiuFcbMh5cJ6MM7WiU02SnRRVxQHtb1N/We3VIZZBgmYJUr2EgoxRrIZUstRKOrAt0XGlLn94IQvPX2Vf/Yf+VleuHGNf/V/8X/mG+/eR62w6pSjw0MWix46RULHOGRi7eNcEnmTkOSqTRUlhEIeB1eOVqVx81UNAVXoVGs5heJKWVG2kJI8UTqkVABQi49pcJKLBgjCREy08eoApatkHZ6qUJUxlVJAZAKFp5T8U5kZcSIAI4RAypniLCKxKpdNA6kYVFW80fShRtRGFBhBsqf9z5kxjawWKy9DUMtsiPjfUSH2ypiL96NZFfIJsWYUcMgRCjVrQUXxPa2/g9yuiq3gK5BxwK69HscRCVZVqz6XZXM4VVRcOV0coBOMVPLUf87hhKqmdj9U2QXWC5KSA36NFAixgvoFkvdd2W3z5ie1vUrZ+nYDHc1zuru/h+j7KMb5+RpEp+sws2l8aMtiUNtuAhKjVnLFyJXAnFB7nMyYFNJoq9AwTUlPmApBQj24A7glROcRcsHSmtDvEUNw0LAYqSRSrv0lgdBH1JgyB7jSu5a/0EoWVDW2e3GFeEUIUUEDBRhyJntKhOojoY6mnZM2cMpi+66XT4Gu65C9fSynyVcMwXJGzRW/4WBJj5eFKSS0FIIpoGRRiigFpRQYU/ZSIZUclEIl6/zavPRS5WGUCg4LGmr5AgXTjFpCBZZ9pIueAcFK8dJDdT85Z9I4YsCQYRwzQTYk83UrW2AMhZgCVjqKwUghPz5llMRAAhyUf2Kt33IHUwPuPiyQSwP+oQuRUoyUCyll6MJE6ntJHT9v93etRC9g5mshgsaIhIhp9AcBYufkaB0QIXjJH/O6WE4QlHoedRyDkBEikLP7c5vzPuxOKAYvSfLqG2/x7DNP0y/2ONzbp+RCv1D2Fx1d37PenE/EyZMmlUjazt9P/rShovSLBfcfPuQ3vvltXjk/4yMC/aLntK354g8mfPiZ/gCzLfnhh98dpDvn0AiInBg3G043a1arjuXeIUeHF//Bjzfbj6TN8cyHHgWY45k5npnjmTmemeOZOZ6Z45k5npnjmd+P8cz80NNss80222yzzTbbbLPNNtuOjaNxej5yNoxIUPoQOT9fc/PWbb72rW/zyU99En14wub8hM245sZzzzNuRoZxYBgT/XLP1XhUcL0UTHUC+BogCBVwquSAqoeqoYJJAE0k9P6yDtS9+06dKLCyJQjY2WY3bJUnYKe6b9nZFTyh/N1ut/O6qkKjwJjH6VhCYRngqcsXOLp4hCz2KCF4OYhSwLYp9dtxXLBsxFAIWgmSHWDLzNO45wkwSJBH+k6QhbAxdVCwqh1NauCfPLW2LgXROIEVuySMOOLHVt1thEnKvG3vMSVXT+ayxV6spbQPVbW2E/DvdNwWo6n7q4poA6wUzs4H9g6VV567yj/3x1/m0lMj5d59hrMN6wT5sbC8esj+FeXawzXf+v49Xv7oJZ67sWD/aANngTsPNtx5vMHUyOkcsVAJiDVvvfMWN64/w7KPvPXWazy8veby0SG6v2IsS373++/y/FPXWO0d8RM/9uMs9g5YLVccHhxw+cIFVipoGTkfNty/c8p53EO6jmUfyBj9siNZYbPZcHZ+TiG42q24alM1VsWkOVhd+0DF1cBNUc5EO9mUhj1lI8aO5MgtWKHre8djyshq84Dr+89x4ULkxZeu8z/9U/8cv/KVb3Lr7h3u3L/Pa+/e5ux8g/YLJEYQdZC/yoULhhZX3hbLWC4EdSDYiiElE+q5mgpa1aFU1aWIUFoJgjqGi2WKKQUj4eetOTsGFNXHdnAl5jCMOyNLKuDmPtJKI7Sx+sSYrUB+tqqLtDp4GwGDnzNVWR0IqCgxxArIOVjn19Rtx7zWLAxYhfRbaQwnHoac6IpnHlB1QHgaKSKEriNI72Mx1/GnYASkgcnT0GjlDazu39uh4CptUZ3KDlhN9yAhOHEjDi6WCqzvgoiiUsuBKIypqhfNycdW1qGSLmYZCVsCz0ohlQHGkY0I3XLh4KYZOY2UcXSwTnUieRQq4bt9T6CSQoY0pbSIK2MlTEC+AYRteQOtKfOLGWQnzfxLxQmTmlWiGKSc0ACYEzN+na7Eb1k3im3XlS4Ggp8RCkScwKpoL1kCRaITPpIZHj8iaSEu9+j6PYqNCEKubedEWUBkgv69P9iWSkGkjvk2vitZYJDMkBAoYmwyjFkmZXtTXW9nYHXyULTOHUIpmaiRPG54dP8+48Pz6Vqs+Hl0wf0up8T9bFi/oNbQQIoR6gSdTckSsJIQS0QbOOyUXrcZSaTuW0XoukipPoj5KBmH0TMe+BuMY0GtkA3OTVnLAq1EejGj5OwEnhUnYKxwtt6QhpGujKj3uJNSBrlmMShmpFIYsiIWvcQKQqpkkUor1VQ93VoLOumWi28fK92i5p+1sVSs1DnPx2TrOw0BoJagqSJvBZXAcrUiLpZov8BC7wRBI0ym+41Kmu2uv62Pa4aABtRbq5rR1NAfSNfi902hltF68+23WXQ9lo1LR0fcvXuPsL/P4d4eFw4PuP3w4XQvpLpd35uaXmCbkoG6HkwZTJiyUiz3Vly7do2u72EzTvNmI/kwm2bzyXd37ttk5//2nQ/n8Gx6R+q1Ws5YyYD3X9EOQkfol8w22w+zOZ6Z45k5npnjmTmemeOZOZ6Z45k5npnjmf9vxDO79g9TPDM/9DTbbLPNNttss80222yzzbZjw2bkfBjZ5IyoEiqwf3J6zqtv32Q9ZDS4cvl8vYbiymRBON9sMOtYdg5KTsFfBcbeD/g7QF1cOadeA35Kcf3+E9uJlbf7lSkQ/TAa4QPWQJjtSflZSf3wQ2LYDxAUOy+fCJKBGJS+C3QxQgyUEIgxYEVrkFtqnv26q2KUXMhpJI0DJecJLgZX+pkVUsnkXOhjU2o5EBmFLaghioZuag+hKp+bgrEC+fLED1NY39KLT6B1BRFKLUNQduVVUz/U92lAEjv7/aAyXTAnCupRFtHV7Lcfrvnq9+/z+cUeFzQQFoqkkVffzTy3OqJbLbjx/AE5K889teTyxQ7ZE955Y+DNO2vun2b2lj1mZ2CubOv7nnfeeYeLB4fsrZa8/LGXWJ+fc/XCRS4cHJHCHr/6je/yzv37XL96iWtXLvHis8/SiRBUIWdOs0GAtQl3TgdK3xMOFoQYycNIzoXRCus0shkTQUNN+46rUCffkgr8bX3VBYU7vm6tz2VSyBZrQI0glmHcEINwcdXz4z/9BX76i6/w9LXLrFYLPve5T/Hw/gNefuYSQ868cf+Ev/4bv8X9szXrYYNJLUlQ/bWVDLBanqDJHc1sIglUo0sg6zWYtXPbHQjbAdGAPAfdrIpWC5igZUvIuZ/odC6+jauJm9MUYyftOFMJg+atiExiOgcnG1ElU+p1EZ+nVAMmgZa6nwre7ZKBUkFqB2u319ZIirEUL+FSQEMtLTJpt2WnL20LjknVv9tWUTy1n8gEBFqbh6wSBTtEp78vhFo+pcGJubZZsQZ4OrC3W4HF3v8zcTw2+eA0rVqZSj9kDNQoznKQh3FSXFMB2W22A5ne8+tqftvaofpw9Rm/DPePidlps1Dxdspl265OYOJEW833P42L1p4ToOkp8LX5gbl/h1BBV/W0/lKqUlUq/SSuCF50kauHh3z6M5/g+zff4/E6MaTkWQykAv3ClN4f6lzXrrmNc3PPmGa6Oidi22wAqFKkMGRjKBCnfilIVUG3/e8uTFtaUbCU2GwGBs6I6v6dciFbIe7toRrIyfjqN17j5qawMSWGHi2A5qn8RRrhIBpX9iIvXtmjP+yh9ywgVgdtydmzlSwXaAyuIDf31c35ejovleJlckJkM2a+f+cxX333zMdhVRWblaq89rGQc+agVy6sIs8eLWFIrIfs2QaAoWSfD4oxDKOrvVGidL42SX1QwKRNpj5uxdexqf2kzb2Nnt0qphFBghKCZxTZlh2RiRwt5oRbKU5ahRCcuFXPSILo9ECE7MzhVleDUjKbzYac/Npb1pBGsjdSaxq8tLHxwbsbrWNvs15zcnpKCIFFiNO++q7jYLXy/VV28ol5rTaLrwVttd6uUe3obZvFcsHFy5c5ODiAzSk5Z6aBvXNL9UOtff7+W63d+4pCJRy2ZjlR0khJI7GStqhS/jMPONuPus3xzPs2meOZOZ6Z4xnmeGaOZ+Z4Zo5n5nhmjmf+y4hnPvT9fwjimfmhp9lmm2222WabbbbZZpttth0bNgPrcWQsBZGAGsQQ2QyJV99+j3uPjum7wHK14PR8TRpG+i4SQ2AYM+M4Eg/36bpQQfwa/MITAKhVlWypecQ91bpUUM6m4PRJPNKeiC89TtYK9m9B6g+zD7wrH3x3m5b+ySjWdsCELTBVgZr2WjwFve+1QjxaAWf1dOku/tyCsiVnchoZhw3DZk1KCU/XXsGhmj4958xYEvth4eeQCzkllEBQqYonqerJXS3WDig4Bd5bgE+D1O9uVU0TJGEVVNz5t7ttAxg+tK3FFWpT6zZscWp6wQQOlh3rYeB3X3vAv3H7Pv9yfoWf+vSKSwf79PmU337jlLQceO65PW68eIHnrl1AhnNyVNZhxVdevcV339vw8My4cHGPzfmaYhA10O+tePvmTS4dHfHCjRt86Ytf4PjxIy7sHSBE7j1a89Wvf41r7+7z7PXLvPLSC3z6pReJIWA58+j0lJNSiAcrBoPbm0zIGy7s7dGJkIfEMAyMFCfVhkzsOqSMDmiZkErtCd0hCcy7yDPIb0HxprRt7dd8rRRXCksuDOmUZVAuXbzGv/gn/hif+8RzLHuljAVbHbLXwcvPPsdzzz7HZnmB7779DsevvcmDkzMWq8OJJGu61jbCzIySUwUE3Wm0GIWq5rewM+4a5NycpP5qqkdcmakT2GmV2KrHbiCvNDrMKjj9hINgIiRr84CXamjAdjGqmlgnUAlKw+kdOC/m/i1eXsJw9bPiJNtYJg1rVVPWUhTYRJy0sZMdoSTlQtBCaOVUZKeMQy1zgRUk56r0tW3b5EwpeasqDnEHLPOL34L3hVD9wMeNK5SpRJ1RSZR6XMvZyyOol1Qopk+SBWbug6X1FSBSS3YUTF2WayVTcqFYJlkmmQPtYlXtXFkZUZlAyukSKtFakG3JjzrntK71TQSy9y1Fapp9wJRUS84UChZa24LJjt9MJS6kTVA7c5bVJgpOVpQMxchapZ+iiJirTaWxtT53b9YbLnaRZ69c4l/6Z/8J/m//wV/i9159izfvPuJwtVeZHD9fQi3ZIO5T5ILsXGmpjipi1Q+2JFIbgahQEIYMQ9oWe5gIr52pVWqq/eaPbV21XCjDGUJBu94/G30N6VVZ9HuoBL72ze/xd9+8y/0BVssjokEKiSyGiZJON7x0tOSzNy5z/XMvIX1VpmtL8W/kzUARyCTCclnVqsXXos25l1cRUAqaYNUHztYj33v7Xf6dv/s9CD0xdh9QLrtSeuSLL1zjc89f5eNPX2E9DKzPNpyuBwxjEC+ZMabC2emaC3t77C8WdCGQy8bLuVSSqBEANvUudezjWQN0237sAPQalBAjIUa6riPGSNAw3Q84eVcALx+BeLkrjR1I8JIiE8np810jhTB/QCCnxPnZGeM4YsXLS1HnSMXX8RC2JWn83F3XvWttfRDxjAxn63OWfUf0VAUUEUKILPp+IjN9eEhj67bTTptQZNsv03otWzfs+56ji0ccXDjC7r5HTvnJpWDHuz/M2vjcPf/db+4SyNs3vV1KGsnDmsQ5XfQjJDOGqQzQbLN9uM3xzBzPzPHMHM/M8cwcz8zxzBzPzPHMHM/Aj048Mz/0NNtss80222yzzTbbbLPNtmOioJ0gwaBkFFj2K3JRvv/Wu3z169/iC5/6GBcvXiDGlQNnMhJUuHjpEu++e5MogBUuHB1Qik1piNvvBqq1GNPBuwoMZlcBlwmIb/89Gd8+cc7SYHHbviFPBsQfEs/6V3f+tXPbDcK34Pq2fXYRb8PVw44DR5CAhoiGQAJK9rIaEipIVaip9UFDwBT2ChyuE30M0/FFQoOwKFYBSBUOLxxxKMY6RIbNQFBhHAfOztecnq1Jaaj5ql29JRq4d+8eOWX2+gUhqKd+H4fpGqfrrnq+qa0msED8/HeBK54kCz5IGEjt89qW5cnPFVd3XTw85PFm4O/dPOat/9Ov87/+736Rn/2p5+k++SK/8m/9x/zVb9/mcy9d4E/+8Ze5fuhpqO/eTfzmr97hf/PvvcrjeJnF3or9CIPuUWyD5RGh0B1c4HtvvM3du/f52Edf5Oq1K9x++IgHDx7x5ps3efkjL7LfKQ/vnvDvf+2v8ZVXPsbHPvIS1y9fZl+XZOsJaqSSIRpZE0PaUEpmOD1jTImH6zMen5zx6GTNsutJKWMGYzZX46pg1e+3SkmbQNUPElVVjRiEnHNNcV8I5mU5TtZrHjx4SDo5pb9yjcf37/Ldb36dP/3n/0PuPzzlJz/3cb70uZe5duMGR33HXh/rGGoK51YyxVB18NmkypbF+8TB9+znjoPWiniJhl3CqfhnuSQsu+rVzFOrxwZymWE54+UiypTifQK5q6sIQikQgoNlKkqupSQMY8iujmyjUVGQPI1dlQB4SvemnC3ZkKKoQgz9kyQEDdByaDbkBKIOvOZMg21zKQwpsww9Y84gA8USfbeY5piSEzmVCWtTg5RHTCsinzPkVNuuAqMpoSF4ivthdKBQdDsbaSDIdqJp+24AWSpWS7EUpKbeV+9dxpLoRSqRUsFHIIkiajXbhVBSYczOWAniICoQzCjDppKaQug7xpaRAehj3Crr27g3vDyFuQ7UcfA2t/hleIaFgmjVDddyE4YxbrZgr5Mf43ZMQM0gkRBg0fd0fecq4FzJHnEybjflfQM9S87E6PBfKW12UxpdBrA+X6P7S64c7fFjX/4yv/5rv8F3vv8at+/e4cLHPgFp9K4IDuxOkzgQfRLEUmIcE43PsQnr3xJAooISkBgwgVSEIRsLbTxC3Ve9BqERHxVIrUSL1XItR3v79KtIqMTFmJzsOzxYsVrto2GPl158kd88EThJyPKAEEZcEy2UEkj5nCscXHb4AAEAAElEQVTPXOOFjz7Fyx9/jmvh3H1H/YAqcB7F2zFAJwVTq2SV0e156RBVASnkLFw53KPvI09dPCL0B+TYQxe93FH1i1wzg0SMlz/2cb78qef5/NMH3HzdWCI8OluTyRCMQmCT4EGMpJxJWiAIY7IKyO+u8PIE0dJIg8aQdbFDRBlyJTBlO1cBXDg84uBkoO9Pfa1Mo5ea2HkAoRT3vTR6uSaVgMbe18lik6LaDGLfUUomqbBaLjg42Kfv+2mt9ZIfXnJJp5JWdR7eGQNPmkz/l5yI2rNcLECUVMsRYe5rVkvt7GaXcGfaKWlT2cC2VzPZZj0JypASDx88xDRw1doDETLdatHa78nl7P9zq+uimd8zSAiQE+nsjPWZMapxdu82r7/xFrdu3/oveLDZfr/bHM/M8cwcz8zxzBzPzPHMHM/M8cwcz8zxzI9SPDM/9DTbbLPNNttss80222yzzbZjIh4oxao6ywoaAEucHa/53hvv8NEXnuHCwR4hGCG62oyaQt5C4DQlZBjYLxB3gC5XP7vCMbvkjVQKEpQuKAEjWCKnkWEYGVKhj9H3vxN/bsswKJthU+vBewrnMoHsW5KgKQDHlNCgO1EtU0L3Dw9uP0QpLVXJtwNIaAiIFIY0sh4GNuNIDB1FhdIFD3YFHFyqSitz9Z9Kx6LA3t6S5SKCiAN+pSqWNSIaQSPkjFggRKHrepY5UURJRUjJKOs1xTIiXqIjyja9vJk5SCABQyb1aKggUKrAWQPtwBwUbgpSUVcsYkhxAKSP0RV+VTWK7oAZUuhCnGAO0arsq3t3raKgZA465calA06OF/yZX73L33nrnOXFI757N3F6Cu+cnPO9e6/z3FORcdhw93jgO7cS9/UCR3sL+gDn64ExD5WUUCgDqNItl2QJvPXObd559w5dCFgpLLrAT3/2k3z6oy/QB+E7r73Kd27e5uGjU4ZRuHrpMkfLFT1KzsbJyRlHFy/Rdz2qynk+Z9ysYcyQCkNOlKbCFVc/jqmQsnpK+k4plhwkpaBayx1UQgfEgT4z70PzciAiDgJ32ViEnoc28sa9e/zpv/gf8OnPfpZ7t29x59YtPveJ5/gDv/hHOVotGM4e81u//hW+/f1XOVkX9lYXyEFYF1ALBIloZCLT1ASJDphR+0X6ro7VCq+ZkcVIlhlzYqmBZHkLyrdU/TmTRge5JTCVKhlSIgZxca1BSplSFbahqtG9xIErpTXgKnULZHMls1UgC4FsqTqRohXakeqnUR36JxeMQtbaltX/sFLnBxDUfVuUMq59jBUjxJ5OA0Uy2WHvWhbCyJaxWAhEL0GQQFLBYqBUMsTIaPF9SXbihKb2TRmECvK3Egk+ZioKDIQ2vZAtUyxjWXHNeagAO1PmhGiKlFoaBk+RX7L7kRagiyQxRito2RJ8bSoMoWWyUCyLl0yoSugQHIC3CqqmnPz7pYCBilK0q8B4xqwQ61wvACkTQqDhw6Jay4xIFRsrg9o2tb8CxQkLBcQKycCyj5UybpAuehsKiBlFZSIFolbVeZWnmtUyGU3JbAY61Ck/UoqyvneH/etHvPTcdWDNz37p017mRTtef3jM0XKBhh4kUqxUUtjPvxQvaVCsIGIEZ0BruQUfQVqXo2xOBAYJZDFOijEOa6wvIIZZBg2IZJpaf1qsKnibU4HgvmIFhqGS+mZYJatSKqQxoeUcsZFliCw7oeu9xFMowQlJVazvASONG87Pjll3hS7qFlQWSOPoJJEoMbqC3ooTRzklrBSf4wVKzgxjxzi6/y8CpKiELnhZk2pq/mBAHwJKoWw2rB8Jp2fnrMeBMSVGM0ie+D9nSNkBbys+jrxtnR7zBwvavcGWBAzUMVkKmzSwLzZlHciloKKsFguODg65fHSBIJFs+L0J4v5Ym8KzOng5kCyFJMnne8PnmwagNwIpxElBToEu9mzWa9bjhvNxYP1o4OJyRQh+73L88BFn44gZBKdxdtbU7W2HSFszlJQzQylEgWUfSCVx69EDTjdrhpSn7DFtHp9+V1Bfpjne536kVDIzQFQ248j92/f45te/x8c/JVwLQowBLO/SDE9wNB/6RMaO2ZZB224DlXhuE5MgOdGFjsVyjy4cwPqE8+Njjh/e49HpyQ8/yGw/8jbHM+9vjzme8XaY45k5npnjmTmemeOZOZ6Z45k5nvn9Gc/MDz3NNttss80222yzzTbbbLPtWC7JU6lTlT04wIsVUkrcvH2Xs/M1JW9TiFsFFKJ43fghDZxvhM0wEPs4KZdD2KZXbpF8qWnbpYI9hwf7rJYLQozkbDVq86hzF8dvcegWENjB+c226NeuVaWnwBMZt6fY9gPbbF9bff0+fsDfq6SEYWTzn1DBs636qYKvqlUV7oF7ECFGo4thqxx3eqAm7Bdc1eppx3PKZNUKfJlnRJcKuBeji4qGQFQnTop6QN8UylD3hU2p1c0vvp6kEwUOWG7Bg90027vR/YT5VFDb+6Ombvec9jSaqEEettOapbZjjIGwMH737RO+d/eM5fKU0zGQu8jjHPj6e4lXH2Y256ecrkcerY29o4toiIjkqghPqERElUysRIufbSqGpIx0QlDousjtW+/yyrPXuPzMdX7sC58lrl7njffucHp2hnYdiz4SizLmwmZIrNcbcs6oipdKEAcfW4rzUkFICQ5Mppwp2UEPAVfhVbBKRCZgHSrAV4FrE2rqcSrQ6X+rBie7hjV37z9gXJ+xv7fimRvPsNg74PRszXh6huSR5z/+Cte/+SYP3n3Aw7OBrutqUnEHklUdHBfaWNzmB3ByovrIDn82lQ8oeesTVcWpE4gMVjKaMyqCaaCluZcCWsnHbfEL96ci1S9EyHjq9dDUrm0uqqCvjzWtCm2Zypa0ISn1Lyul8YQOXtdPrJgrGKejS2VCgZIoY5rGtGgAyROAa8WByJKzZ8s3HwSmYNTPrQCploeofr47t+h2vrB6PTIRkbU0i9l07m0MbtWLrlTfQqJ1XPkk6gSTNWWyTOOx0EB10EmdL9Mc0tScRcCS+Hdam5ofz9PuN3DRjyy1fSdYVlw5bPUda5OEdz2lAspCm1fS1BaFMimB/fTq91qJjlKwlKZyBMBURmhbfsIqOTVNjm2Sq7yYa05zJVm0GB9//gZf/PQn+PynX4YycuOZp7nx9HtcOnydb9974GUrQnDIuUyeVKfRgokgwRXoRaxV3nDgWtp6ZJOiXOoY2OTiivtpNZNKEDK12RP9j1QAt6mmjVLaWDUHo/FxWsxV7y2zQRCtJRv0ib7XoJgVSknklPzBAGXrY6JTRoRWuqX5lNm2pNM0FotndMj1klxVTP1ppLtM2TFUnSzNKZGGkTFnct2HE9p+usWMXBX3jVibyrbURm37bo1nbQ6zrRuMyYH9kj2zgqoSQ3RSW5SUazkTrCq+tQ3N6q8yEU4hhvqQgM8Pko1WHERqm/g64OVgzIxhHJ1YMSONidT3ID7ucpuzdm5OJp9pg27nQxFhTIlcCojSdx0CDOPI49Z22xujJ0mC9yP5RiU8/DOh3iqURJDI3mrFqu+RfD5lrtnOvNtWn963J++pflCprjYemk1lNQQfa6qEvqdb7tN1QsinLFcrJM6Q/mw/3H504hnZnTJ8nz9kvM3xzBzPzPHMHM/M8cwcz8zxzBzPzPHM7894Zo6QZpttttlmm2222WabbbbZdmysqhypuacNV9SKueLz5q1bHD8+ZRwTVLVxjAs0KF2ELgY2Q2a9yazP1+x3B4CgKlPAXXKeoOJSChr8WDkXrl27yqVLF9hfLcmlvC/wbC+2r4KGCnhu0xcDVeFb/8YD1KY8nfa3AyjY++Ll3YB2+sgR0CeB/ymAdxBEtG6rStBAlhbku0JU1BWBOgFcoCF7GzdkzHb2bTv0RMkM48goSskOMpg4SKaqBIPQdXRdRwydwzCdslj0DmyXiSJxULtU0KedSDuOtr+kqt6LKzO9ISewlQr4WN2HK9PLFtDDnHTYAU0asClmRISEkCyTKVy/qLxzb+D4zkAeT3nx+evsH/YYyuk5vHN7QxmMTuBgGQhRKQbJCrkMSMkEdSl/kRWSzh00i9D1Pb0GuhgwXI34G1/5TZ46WnLxwopXPvNplot9jk9/k3tv3+QsjxztLwidkkomW+HxyWOOLlwgBEWDEkIkqKfxb6nCVb38gOEp7M3RY2/rVtajEioN3fIuNizlKYW/i2QLrThHEciVSFuKcu3iRYSB609f4dK1S7z59j3+7L//lzkI8PJLz/Pf+JN/kt9++z1unv4G37tzh6t7VyrxIA4ESaiKQgMKkxKtEn3A1jca0E4FaXOuoH5V7YmgUWEcHZjMhpaMFQf4VR0kT6Wg5kRBhUMr8Gxk8gQGmqOr2/T+KgRhhyRQRDo/VoOizWcrKiEptkNumVU1q06AotbxXCow3dXSKQUjj2cUy5R+5ZkHUMQywaT6rqcod6IIJNTMAnmczrERBEZT4wpQHKyUnTlnGuvScFsaENxAbzV1deZkBaw4mZuNUoREqqQiYJlAQDWCiavOK3iMeP+7MlrqeGZLVrTzCFaJo3qixTMpaBFyZRWm71vBGHFFY/UfkQo8l+Y5NAg/lVyFvZUUS6nOCmUqE+Rqzm1pGs/4X7M8pOw/uQKqKlixKStG0VIV4pVsld3Gc8A6iJJTooyZpUb+yM/9FH/k53+Sn/yxL3D+6JjYL+n7JUECpQiEztX+JgSpczVWr9HQoCiKaiGNeTu2YSKx3g+m5mJscmGo6+GTK8771qUJCW9EgbWZAbWMmbcBtb1bxgLnIsvkbL7XwISc1/FbzEszUMwF78UqgWutm9jSlZUw3CEJJ65z600NZn7yoq2uMUycF+1hAwfSy0S0u/8rzVWKOejd9qGVTPN5qo19JmKg/WrjS0UJITCOA4VISskzM2jN2CIw5OSlaEoBafN5zRhSMxn4MupzU9dFQgxOrJWaQcHSdGNQ1EkBJ1cLuTQioI5tQM3LSakKe3tLTtL51OcmOzcEP8BSyqTs9yVddKJDRKb+2hJaO8zDzoicyKnWgDV9hYj/qCUuHhzy0Zee59rVS3DrjJRSa9nqV1vKsh2qlbba/f2hVomQJymELTtmGqDv6Q72OLQF+4vChQcP6ff3f2i7zDbbj0480ya7OZ6Z45k5npnjmTmemeOZOZ6Z45k5nvn/eTzzofZfTTwzP/Q022yzzTbbbLPNNttss822Yykb2RyQBFfu5uwBc+gXfP/NN3jjrZs8c/kKVy9eZEwJWBBiYCmBa5cuQc5s1uc8Pj5m1UX2g9BpRwxCDIEhZ3J2lVBJa7L0ZBHSkHnx2ef42AsvcPPdW3zvzXfYXy62gMzOeTb4oe+6ClJsVT9N+VlqMD4BmUhV3m2DZZn+/YOYA+JN6NbUSA3TiTGyWC3p+t5VrEDJTrK0ugjWVGTSAurCOIycn68ZhkrQ0DCGqjSrQHzCSQGNkcCCoYyuyKqg0JBG+lEJGpGoSIhIULQBoKUqWydyRHaUZVW1V4G9QgENqDQAZKtClNrGEtSV2hUujhooKInMOI5efiNuwT6hpbjewmDrccTyhiPd8D/7b/0Er759j1/79n3+g9+85+q1ksCEkDLX4mP+sZ95lk8/t+LS8pw//Zdf4/uPDjmTJXv7e8h4jFlGRem1h5iJIRJUt2CZRIbNwK3bt/nYlQtcvvYUB4eXuHf7HmWz5uHtW7z96qs8HkeWpfDyxz7G0cE+N65e5r1bt1AzYtezWO4joWM9nHG2PifnRBozuSSG4p6lKmjwNP2ZXMmBxiR5CvQtTixPkA1WwTNXeEZM4c7jR3zkymV+8mMv8K/+07/M5eeOuP3ue3zr66/xZ//i3+JXvvF1furTL3Hj+SsAXD08oO+UIQ8oytIcQDWp/VsajOpkjsY4AaDjOJJLnjw/l+KlNHLGhpEiinSuJi4YqKIxVEWmlz9wZXJy4NwEDbFen0OOYlVVbsqwTqzXa1SVvutZ9H1VmxoSg5Npk7pfgIhK9v3Q0v43HMxfBxWieOmEnBOleBp3Q8hprMpnQWMg9oGy8XGWTbl96xbdYkUCTsdEkp4rV66xt+zoxShjIo/Jr0UVC73js8WHekkNTlVE69hp6tgPActEGjlS5xlt8F5TEEPJQpaqblYYR2NzPnBy/Bhh9GsOgcVqjyuXLtBZgTyyIXv7ZQiVGBlKIVQlqKpSUMZUiYTKaTS1di3q4OBjgChKEvHSJxjFEhnv/1BLQLjveJ9vyQ+/0BgiqqHOzRXMtqaar8p43ZKKgxWK4j5mTlRF86ZSs0rAVMDYdtpa1MtJsP1c8DGlcUFZJ2wY+eTHn+F/8C//C7zw1FUe37vD//5/+W+QpOP2yZrz4xP6YmQLDkvbB1ehBkBP6nPz8eLv+xyb6zyLuc+FoFgSzsbCWTKfGdUg2zT2pTCpYn1O2NIMYpUScikyLYtJqe1TcnnCz0rzO2lEXMu8QAXpW1kLo2TD4tbvnBv3fRZRJlWtubp4Ki2w8+TKRA/I9FW/rt3rYQt/ZyBZXeNqWxUgWyFTEHOS2wpTqQ1Tb5NSnHDJeVeRzvTQQBPaNuA+hIgSUN22kWFkjByF1cEeXd+5er2WjpF2VXU9TikzDCPjMJLGNPV713X1YQGt5XQUXTgtEzSwHxY8c+M53n10Rv/oMRcOLrCikjgqXLl0lcfrd3kkNXFGY2iesArMt7VCYb3Z8OjhI8bNyJWLl9AQGFOmlLGedsswUe+kdlNdfmD3lUBESZuCasf+xQu8cHSFg8MV61tvk7OXmdiplFEdbTu/vZ8g+IHK6Kl//Jy0PmAgVkCFVDKbccP6/ATLmb3Yo4sDoP8BFzDbbG5zPPPDbI5n5nhmjmfmeGaOZ+Z4ZjuHzvHMHM/M8UxztP8c8cx03P/q45n5oafZZpttttlmm2222WabbbYdS8nIOAAEDgrn4kB3iB13793nrXdv8/EXH/PCcy9wfPcWm86VVoKy6DsuHh6yjoGyXpPTSM6910wHRByozjlTipHTSOw6IDDmzMF+z1NXL3P98iW+8d3XtkBQNVXdgh87v9t7IQT6vido4Hx9vhUD7UTELWh9Ikb+B2AJthCNg+ShlnsQaYA7ru6ygoqnMe7CVrltaAUDnWUoxQH5Box2O+mNXTnrSjVzkaWX0wjRAYmUkVAhMAmuLtfAkDKmCdMRKQWyMKbsClURV3waYH5OGgRpWPBUIsMBAmw3BT+1lIWfu6gfO5fiSi+xCkQwpe9virXWbq7dqk1tDspYLgyD8KAE7j98yJd/+jkuPXuBV++c8pVbZ+yPhywlsRoe8af+6Av8zE8/xTM39gjLwLWLF/kzf/Ntfv31E966B5dWkUABG+msoCHSL3q6rqOl5l6v1wybc1ZB+Mf/0T/OK5/4BHv7K4ZhzfHjR1y7eIGPP3eD9+4/4Ku/9uvY+Tmf/uQrfOnTn+GvvP0ub77+FrK4g6lwuh5JBUQDi+UCQxkHT20fQiTECENLqS5IiDSRouFK8t206ob5WBOpxIagpqgFTAOWjrl+6YhPfOwlnvnUK8TVivuPb3Pr3jEvXLvO/+V/9c/w1NNPcXhwwN3Xv8Pf+7WvcvfuKRf2LhEaqFi8TEIhu09WACnEbdYCV927X+YGOLpT+snnjKkRJVaA18g1pX0juMTMU9Grqy5DBWknAMrq3LIZGc/O4fyU569eJoZAyZnNeuDxySkJIC44vHgJDb3TUWZY2RAaadBA2VqfwSgVxAruyWZeSkVqVgMRV1tXRWQIrnweN+eMZ6eU9Tm//JM/zuc/+wlWqwUPjh/zm998g6+/fpPThyeUw30W+wdYDlUxDErgrBhjHTNd6BEKaoaQ2YFNt/MYFVitbRU00NTiUyYJEazkmp/flbmWjft3HnCwUF66eoGf/INf4Mr+Ibdv3eHm7Tt87933WJ8+QjQ4YVES3XJFSplcuYeCIFZHrITadtuZTqsqUmrJmKDBwU+MXEeyiGK5cPL4jCEb+4cHrPb2vHsrMNuUr9BoXldviiilZEpx0mDMZZp5Og20LZBtWR1RBw7HYUMuiQaUplwgeBmcrbrT2w8NUArJtspWJ8WE0HUoEKPy9uvfwR7fRXLhZ3/xj/L48TF37z/k2rt3uHv6u9wfNwwl04dALBlr47MdB6aSBlaqWrpWXYgxktO4XbdE0BCgBBKB89F8nAFpLNRkAHU2FWhkXSOWq487Gl4wCb5BJd+mzBSVXG5ERlunmr55wvatEc1QxdETcdOA9ba/ae20LWkxZcFo/zfF+nQ8e5Iool1OO6fpDUxkyiZSqCri+pViMrVBKZ4tovIuMNGdjSjYtsF27G3vF9rDAlJJrXEYOD05gZR4cHzCgwcPGIeREIKTI3Wea2STihJD8M9T8owKtZ1j7IAMpSAaiaEq0S0zDGtOT0/YbDZOsOdc105DipCGYSoHIrUN5H0Au+18Lqir93Nhs9lgwPmwQVBSdr9pSmlvRM/m0IibUqySrG3YGJngCu4sdHHJZoQ7b77HV9+4yRe/8CmuitB1Hef1HgfZZkuZnj/4EAJil7T6UMKgcU/tEQIDrJDHhObCQQhoypyfrHl8fMp6PXxwH7PNtmNzPPODbY5n5nhmjmfmeGaOZ+Z4Zo5n5nhmjmd+/8Uz80NPs80222yzzTbbbLPNNttsO5ZKwezJoNpTPwsqgfV65L3bd7l17z6lpmt31VQmBlfedDFgsWMjGw+Ci4MKUy15dkGGLXBiNU310cGKS0cHDjTXgNi/UkGFdmpW/5RtWvmOClKLPLl/Phi3vj+WbRiAPPGevW+bljJ9F3TxvTtg1BFiJEyqZJkCadevfXC/IYQJzKapgtg9D5uALytWgflcz6PpnRSTwJgTaRhJ5viYBk977bhYTTPfsoNX9RNSwaQKtjj45QrMBhCrBserquLPCQIvk2BsiQMxQ8VBh9LAsmCIhEmN1wAjxwW9nzZD4d27Z/z40YIXbmQ+8VTkazdPkUG5cKB85pklP/Olazx/tWNztuFb3z/jlSsrfuEzF5Fg3Pvt+ww50EdXppplTCJT2vt6ecNmoA+Rj338o3zuUy9zeLACyw4Uq/LsM09zdHSBj202/M3TEx7ev8+dW7c4+tIXeeraNb7+2jvcPn4H7QLJjDEncsqTbzogU7xNqSpF25JEJlvaRDQ44GSFsSQHnKXqOEWQXV8U2OtXnG4GXn33Xf7Gr/4WL954ke+/fZfX7zzku3dv8wvrNSfHpzy6f8K3vvl7fPvtdzkfMvv9HpRMrq6kjhJTgvnf4oAvElw1XQGxpoL3JpTpPBCbyCOwqRyIt7FNJNDWd/37pQJAgrdHSpkocOlgxSuvPM9HX3yBLgbGYeD48Snv3b7D/Uen3Ht8zqPHj7FFh8bgYHBxZR5sFZDTpFBJrTwxMg6oigFagU0JGApVjS5mPD5+TJ82vHD1Iv/oH/15Pv6xF1gue05Pz3jh2ee4+Ku/xXfffo93H59S8gKVOsbN1cJLyUjKrIeBdYYuKl1UYgxbQJbaRjsAKuClBKb5zftDNNS/nYwbhxErRjDj2YuHvPLCU3zq48/x5Z/8DBcWezy4d59bt+/x3Tfe4avffo1b9x5ystnAIhBECIiX4hDBdKsSbwDfNNHalgiVAOSyFR/XmakYpGEgWOGZS0dYyaxNGcaB2Pd4uQg8cUS2nWvfmdOm+VTBcgVhjSCCF9uoqfcR1JzYwIRsmVIyrSTFdgmp+6L57TYtPlZA1WHknBAplJKxAhcvXGRvtaDvA4zK/qWn+Op3vkeP8fLzz/BoLPyVr7/G+TjS75LUH4KEyvuaEmuZNOq8YE6WqiolBEoJjM4R+RpWGhDv+zcrkxq7XZOX3KnEUwPCrbhq+Ik1r841ZjtzypZEeWJtrIBxyTapq+2J9XpLCExlYuprK4bpDky8cw6yM4lt9cXtt9X+skpvbEdw2f1tEy1SCS6fU30+2a6/bS1p206k5s4DAe8v89Tm25IzOSXSmJC4/WyXANndzrnSwjiOrKygGhENxBjQGLbHw0uPNIrcyIxpIOXkD0kUo6gR6qJY6jy508ATMfSD8rcIUsvf+MBdD4MTeDvX2+4pitm2F2Tbbsi2LVqXiUDUQC7G8fqMm7fv8PL6I4Bn/Xj/gxbtzkVsZ7888YXprQ8opZ8gErevffwUghkLFfq+4/z8lPMhsR7GD22P2WZrNsczczwzxzNzPDPHM3M8M8czczwz7WeOZ57Ybo5n/nPEM7vf/Yc0npkfepptttlmm2222WabbbbZZtuxVKVzHrwnqEC9gzVKTsbNW3d46933OB8HlsuFp5C3mro+JRQPelXUFdDm5SS0KhcrLkkDFISKJgUlD4mD1YrLF4/o+s4BQGFKO7wNLG37q0a0DYI2MyxnSi1hQAPkhC2oMr2/uztjN6X1+23LCewG1ToBETEEloslfb9Eux5pGEs9P0+evAVbmjU1d+xcadpUXZPKbweTyjmTklT1dQOlFaSgsSOl4irQMhC0EBfLmhq87WNLFEzXsgvqIE2W54BavTYNYavgrYRDGkcH2nACKai3RSk6AZu5ZFSVGISSvSBHa8yyA+yMaeDde2s2Y+LCnvC5Zzu++r2ChRM+cX2fP/HlZ/jU56/w+K0HfP2rt/j3/tob/Ov/whf5I1+6zqULPb/37Xt8e53REIiBmtbff0KxSoRATpmLly7zh3/uy7x042nOTh4xDGu65ZKC8OyNZzg4OODC5cucnZ7yO1/7Gm+/8xbjOPKJj7/MV771Ot/97muMluhWS2IX6bqO/eWKUsFAVQdjci7kIrWtpfYt1Z+3Pun94TBYoKnYKogiTsKYwNHBETfvP+Tm3dt85evf5h/9hT/EvceP+M7b7/I3vvV1Lv6lFTcuXqFk+Bu/9TvczIW+O2DV9YzlMVmUgBKKkothYdev1YHjMqHBgJdgkCkDQP1I/NqiWc1Z7uNGKrjc/Ca4oyONIAgFrQpbQmBzvmFvteAjT13hX/pv/hFe/shL9DEwDBsePj7ljbff4Xuvv8PXv/M6v/I73+RxjshiwWK5R4cgxaY09yq7EJqrnlMaKz8gdCFuR58KRSNtVhERSk48Pj7muaMVX/7sx/kn/uu/hPQ13XiBn/jCZ3jm8gF/6zd+h//Xf/pbjGcnLPcuEGKo+yhcioGSA4+zcfdkjS16kJ7Q94CTe7vj58m5pZEDUjMeaG1JJwvyuCEPAwHjwiLy05/5GL/40z/GZz/9MZ57+VkoCVJmPB94eOcx/85f+Cv81V/7CvcePaDrlwQgoiSU0tD7BkabOTHc2rA4nKk1q4NJJqc8nWfB1aDj+RmrReBnPvtJehJffeM9vn/nGELvZy8NiBRsO1HjCmUqyF9ndvNaGk5O+DnlUshWCASkyIQY+7ySEI1ecsWUPE3dUpcVv8amlgcvNyEqpDz6flKijMbFCxe5/NQ1rlw4ZDgZ+Pq7t/mP/ubf5wsff4F/6pd/kadf+jh/+7tvc3J8gvSLOhVbBX1xIL+W1QgWUElEHKS1Ylj2LAOoTJkz/NwjZplkMs2zmPkYLD7OCqV5wc4SVjyDQv3n27ADiJfap94mre292wUxdVaCJ8HwYg5aN8JAixMrU1ml+lMq+daWzFIKwcLEgtm0vtlUBqlNHtLmEZN6Xe8rZVE3a1NLMcHEj1esuYCXm2nZHrY/NgH4WxC8ZvfYGW4TP7JD5FBLuQRguVyxWGyI8ZxydrYlWPDzBqHkQhpHzs/PuXB0idgFNC7QrsM0TuRJo/FbJoShPlDR1mRDyFZQFNHaIrUPqLNA7b3tfcDufUgjoVTq9sJ6HBB11fY0z1hVg7d7nLp5U037PYSTaG366RRicFJsyJnzcfSsOc1Vy/vok0ZsVSdoGQgmRX1zjh2fY+eS2j5a5hi/N3RSI2D0Khws97hzfMwm+fnMNtsPszmemeOZOZ6Z45k5npnjmTmemeOZOZ6Z45n/0uKZ3fjlH9J4Zn7oabbZZpttttlmm2222WabbccKDk6IZIJaLSEg5AJBEgeHB9y894BvvPom33ntTT730efoowej2ZRFv2AcRlfFVqDTitep1z6iISIyAK76yskVSUEifQwcH5+wf3DIjRs3ePb6VW49ekTfd3SxgnyVNHi/Ca78K6UwJg8ebeezrQoInvyrvaog+Q8iCJAJAJ3IBAxjxCxjZkTt6PqeECOmSq6gl6dUL0hwcMGB/gTAOA6sx5HjY08RTQ2Lcz1Or9GVoBLJZaCYp7kPeFr4Ugqx69jbW3K0t8dgfu1iDkz0i55xhLfeeNvbuQuIQFIjT2CDAzRJCkE8CXmN75H22ThigKqrvlUjwzCSs6vC+q6jCx2lAVgmNY02VYkpuGC4q4AEiJ1zlhKnwxrJj/mJj36CC5tjLiyUf/qnXuCf+tlP8SiN9IcLnr5xmUevP+Lf+svf5juv3Wdv0bPfnbH/9BEvxCv80o9/hN/6a69z0O8Tu652j2ElI9KxXCy5/c5NPv7Ss/zUFz/LL/+hn2f96B7L5ZIzhG9//x3+/J/78/z4Zz/LF77wOZ5+7hl+5hd+induv8v9ew/5/ps3+fmf/SneunuHTRn41d/+GiVGzjcDIsJ6lekXC8iZUSosp06MSQPaJoJMQAIpFXJ2okUQgsbJ/6xkJHSYAmJIHjEKJyZscke3LvzdX/lP+Pa7d3jj4TGXrl5kuQzsX+hRjVy8csDZWSEXBUYM9X4zQ7TmfE9gNZV9SQNqoaYLF7IB2bYkQQX/Gvlh44iwIoqDX7nUchCNOKMCjbrNUlBSwQJYECKBMY8cHl3hU598mV/4Y38YeXALxgRyyNPPPsUnv/Rp/pGxsHn4mL/zq7/Jv/kX/xLffPsO9x4fc+XSFSyPiBUvQaKKBj+umZdZ6UKPhIkbdFhXAqKRUkslSAhkVe6/d5M/+MWX+aWf+Bz/7X/sl9D1KY/v3GUYE4JwsOj4w7/4B/jkFz7HFz7zMv/z/92fYZ2VvOixReD4/iP++T/yc3z5sy/z8Y88y9/9W3+PX/ntb/Lqzbvcu3PG4bXLNcV9QQlARjRgBEoWcj5DTNEYiRLJ48j67DFps0FK4sWnrvLZT36CVz76PD/+mU/w4z/+KWII5GHg9I13GDV5ivp+yfUXnuG/9z/8U1z5c3+B/+iv/x3+9m9/kwury3RByRY4K4Wi4mAgBURR7eq8URDLqCgFV0+H4GrsXCK5BIaUePjOG/zEKx/hl372J/jv/yt/EsZT/q9/4S/z7/21v8/X3n3M5aNl7XsoVfm8hXF1mnIddE5VWetA6JhHcikTKO5krwIZI0EZHZhH0BCJYgzjhpyd1F52C6ySkMVyJWgDKj5vmwRyKqwWSywk/u9/5T9h/8KCX/ryj/PitSv86//av8bFGzd4/pOf5uWf/3l+69d/k76PxNghEqc50ypAToEQa5kRi0T1chHFjFIym5RY9IEQFEJH3oxs2ULhbMhkAqWSAnWgTROwY+qN/PBMIyKump9gWpN6bRVwzxly9lI/ss12EaZ1TCq5C1KpiFIReplId4MyEnQJ5mtrSok+V8KzePuW4tkUMPM5Hy/1UyqqL6Joy0CwXVAbdz6VzXCCuWx5x3pprTSFbCXPIE525dYP1bfax22+Apz8rDszKxA6byvNpOKAfRcCe6sl+3tLDvb3uPv4rJabqWVGSkFKBfMrkyUhsAiBPgSfeyohYpXY9dcy+aKZwZhZn21IKSMqdKKY+AwtBr05cO9kbHvsQZ4gNdr6TFuny/ZYTyzc7QvTQwBWv1EJv/bohRlmGdTcf4r7WcHH4aKLXLlwyAs3rrF3sAfDWfVBgVxqv0y66OneaBokskNw/CAT2X5lyydiokRVur6D/T20c1+yZAyb/IP3N9tszPHMHM/M8cwcz8zxzBzPzPHMHM/M8cwcz/yXFM/8Z9k/JPHM/NDTbLPNNttss80222yzzTbbjmUTRKwCKi6fLQZBjD7A4f6Ck9Nz3rp5m+9873U+8+INpItMKjsgBCVELzMg6mmbPc21EjRWNY7HjmNKdDkTogfqmzSyWK24evUqLz33DDfv3sGCEroOaYqeBlhiTdvo6mwRD/qTp9tuZRuaOqwpcRo2/v4Q8/2h7Fa5sxPAtm9KIwm23wuqW/V0BYMFnjjvnJIDYNW6GFhvNgybNevNZgqoHbDJQAU0zEt1aBAWXSSoMOZM6AIhKkGVEpSueLsjAQ29t1sMkxhKgyDZKDmjCEGUoKBmBBWEWg7EhKCuKIXs6cdVWXQrV1ypkEN2RXQI9LH3ntBA0EIXOkyM2Ec0KlPL13TmQxo5O3/M00dLLl095Jm9JS/fWLAXR6IaB0eZk/MNt24/5v5rxm989Zjje3e4erTklV96hU++fIODvnDz+2u+8fojvnX7Ls9c2GcZQEpiRAgSvESJJU4fP+byhQN+/ic/z5c+90lsXLNcLrj76IRvfO81/sL/86/y9OVLfOzjH+eFF55nHNbcu3+Hx49PGTaFEHs0FJ596hIv3bjGr/6O+3MMgoZA1/eOdqmn/i4FctkB3cDLZeCqt1yV+2buH2IGui1hYk1JXZ20y8aoI5thRCXwmRef4b/zX/syf/3vf43f/f5N/sl//Jf50o+9xP7+BUpRfvpLX+J/9H/8c9x5/JiiAmEJqVAYKWRSKoTgeE6xgmUjlDABt7mCTw0MauPYlZ4ZKRl1iTOlQEojxSV6lRSQSQVsKgTUAdCmyC2FEJST01PefOtN1u+8Q995+ZFxHGFdKCcnBBGiKD/9B36Obm+Pv/r3fou/+Ld/k/PzUxaxlVCoEFhpWQV8fMXQVeAxkyx5+0tVpZsrf9OYWJ+tefbKEf/8P/HLfOmTH2d5sM/Zo7NKyBkmxtmYWD28x5UOfu4nP8vnP/UKX3vnNg83aywbx7fu8dXf/SY3rlzkj/6xP8CVp57h85//Jr/+21/n3/1Pfo0H52do7AgaHDCNwvn5hvVmZH2eQApWCmIOVF3ZW/Cxq5d45upFPvL8U/zMFz7Djeee4eKlI/aXHfn8jHUplGyYRiBiBcZN4fjuHY6evcGPf+ZjHN+9w9/76jcYyVjIGJkwCJZ9Tg8CWCJn9XEdaqr3XJyAyepzRuwZzkbOz04Yjh/yT/7iz/KP/OGf4Se+8Cl0cwyrBS8++xSffPFZfu27v4FdWGGyzRqhMJWUyCWj6ARwGzYpR0spVVHq87oaGOqlacQQy1hKqEklMhwQjXHru6ZMgLeKg9RU5S8GEhcEEpQMCkPf82f/4/+U09H4Z//YH+L/8L/9n7C8eo0rly9xcvcef/4v/R1ONpnQdRCyj1fwDCDqWQNCo4/VybgEiFhdlwoZc620RkIQ9/HiQLFpIOVCIpNL9vIA2UleX8fCtB5ZK/ugTONRpWUfqARecaBZ0ZqtQHZSi0BjMLWOGZEqDPbFytc7sYr1llrOqfaIOIDsE7qTnsW8tEZtlAmsN2CbCKMqd3cA6wnTBiills7xOcRoCtxtaaRGMTQgWopWsiM7MVgBaSFszxuqttyPGQKcna7Z5ML5OBKC+45nuIh00TNrhEqO5mQM44gIxHr8dj9RSmbcDGzOzjz7RmfEpVAqMaOiSJDpeq3O56IRkZobwwqmfo9FKYRUEXJhtxWnNnA/aHcP/kcR98V2k6LTfYeT5NNdzNT/271Z+9+AnDB1Es1V6TDkTN8vuLRc8sz1q97BjXSicRNOdonW/jF2zrwd/P1vbM3YzRZR79mm7ao6WhRij3YC2bAx40z2bLP9YJvjma3N8cwcz8zxzBzPzPHMHM/M8cwcz8zxzH+BeOaH2D9M8cz80NNss80222yzzTbbbLPNNtuOeQBaQfCKLLdAfRGV3EdOTtY8Oj7m7Zvvcr4ZiDGiwdMYF3HFUIgdGtRBj+JqLxHZgvciqCMODnyYg5E5Z7quY29vj+vXriJNFdUCZ/tgYCg7qppWl91oQecO39a2rcdtMP8PCjV3Uyn/cBOQmiq7OKBuWrb7kHoORlVQSQW0vF1CcKD9fXt84nc7Dy+tEOhaG2pTg+4eq4IEFeCcYBmhgrgOJChbIkV3+2M6uHi6exW0CEggxoBqAIyui0TzlPEhVNDPHFCOXfRr0zBdhYO5XiJiTBtOTh7zuRcu8dnnD/nCCx3XLwbyMHKWDDXj1ZsPeXBceHhaeHh8yqWV8eLzlzi8tMfjkzP+6hsPeP29c169vebtR5n9RXBAuEDS6OUCci06kROf+cwneeWjL3Lj2hVKSqRc+Nb3XuN3fu9b3L53nz/0cz/BU89cZ7lcsl6PvP7a/5u9/w625crS+8Df3jvNcdc/7x8evEcBKFQBKO/aN9uRQTXdMDjD1gSp0FCh+WOGowmOQsPQTMRIFEUNqaZItuia7Q3bVpevQlUBhYL3eHje3vuuPyYz995r/tg785wHoKo1MTERYnV+VRfvmnNOZm6b6/vyW+sCo+GYJM3o9jo4W9Lv5CzMDTAmwXkh0YHETk1wGoayCXXq8JhpgEBUKqUCeRVdhc3YVUzLKjBtf/G+cUR65/EKxDnQil4n5bZTx7Fec+TAIW7Zu0TXexZ6XXTW5+q5i5ROsFGYCcS4b0Z8Pd8CPxTIWXXzaCNeQkP0hm9rVk+aeVXPkzqlvVL1ddUCXex8dLzEIKIYbRiNRly4fIVLl65x9JbDKDxuXIS2dEEsUUnCoK+59+47WN0e8+qZSzz/1nnSQQ9lTJhXEt2R4hFxcYzGa5ud980cCe5S70qkmPDw/bdxx223sG//Xty4xDk31QKJzu+qIOvkLM/NM7+0gLp+g57ucmTvCifnltBSceXyZd558x3ufvAeuvpuSq957dw1Pv/8S+S9HiYNBGhVOvqdjOV+j1yn7OzuoIAsMcx3ck4d3sepowc5dGAvhw/v544jB+nN9cJ89J5yXOKcNCVI6tGH92GMkCBonHiKsqBwFV4c1nnEp4FI9KCMRArV1nQ93ujgjvYeI4AyFNbiyjFzxnH7ncf53Cee4MF7buXAyjzlaIe0m7Iw12ff0jxmphxB+NY3ZKLUQ70e44pp/0RoraN4Fvp/VqSdirLTsRqWtbBG1UUOQgmAuIfVi288B20M2nsk+tSzTsba1g7Pv36GQysr/NBj95LOdVldXePMOxd57Z0rWJLQd8pHUruhV6fjP36+0hrqdUeFkirR89xcX/N6VHTu1mR8nB+ipnsedR+Fy/BxvNdjW4lEIbku1VALdBKJd98wts35TpebcA7im/I9kDQiOEzF/3qtCPtc/PyZewSJx55dO27er+sdl3ozaF5TCwLxw5rzq8tBqXd9Xn19iMQSEarZ+99NqNftBpCYhGFRUFiHdY5OlpGY4FrXRjf/1vcp3ofyI16ruhoJofvDmumcDY5851HG451t5qTo6XooyuO9paosZVVRORtc+/W1M73HaTqr6fvvh2k/odRMSZ7p50xnS03iz+7H096afj8l6iXeZ3jnKCZjyqIIr9DxeLONfNP5fJ8znnFKT0tzzQzQmR/Da8IYrrehsqooqwo787BFixbvhzaeuflzmX3f90Qbz7TxTBvPtPFMG8+08Uwbz8yuHW0808Yz7znj/xXHM+1DTy1atGjRokWLFi1atGgxA98QMIEIrp1MRmm6aQJi0WIZD3e5ePkKm7tjkjQlS1MEcCKRJE4xJqWqqpjOOwS7tdtLq0COQCBDvQ+lCMQ7FAmdPGXvvj0kJoZtgQWffk8gumdREyB1kPxuJ7SqqRb53sLA+2PmuFITFFPiSkVi3nmHrSq8tSiVBIIrmSG5FCRZ0gTgzjm8rUizlDzvBKFAarpABWIXiRFzrAWvFEYbkph72kQCzHmHUbohS7QSlHd4FwggIaRl99GZmurgjCOSPQpBo6kTUKMDwau1QRtDQgJRVIjMH1kSBIBanGgc3/E6tegpmRPbyYnDSol1BTu7Q/bPd3n4jgP88GNLJJtnuHS9oPLQ6aQ8+8YqS0t7STRov8Ndxw9y8vY9XN8a8+//+FU+//J1Lm0qxr5D0l9kIXdU3lOJwimFrhxlpTAizGcZH/vQBzl55Aj9bodiOGRtc8RTzzzPK2++zdLKIh96/FFWBgOsd+zsFrz4/OuMRwWHDi2zuNSnKsYk2tDJuxiTMaksJk0wClIdsgp4FfptKt4EEkur4N73QREIc6EmTWtKx3uUnlL1PpZmgDCvRIU5qaQC8aT9AR98+AFuPb7Fs8+/wGQNjt+tyBZX+OrT32FjMqZSmizJUd5BJIJDn9ViHc15zhJ6s+KWgiBqqOl4l0Zeq+e1CsRodI3W7rnAkk4JUaIggQoiwXB3xLmdbV4+c5G9t95CNxHE74IJooWIhPIy16+ycvgE99x5G0+ev8RzL70BvV5w8nkXdT9pCCWtDMExGX4XXNG6ua5EKbxocNAVx+c+eB/LKys4ZSjGk6YfdJiBeCVB4BNFMXJUicElmj0LC3zyoYc4un+Jb37rKTZvrPKF3/s8J249Qn/PXm65HZ546Br//qlvk2QpaZriRRgOx5w4eZhThw9w6uABzrx9mixNmB/0OXxghQfuupXjh/YzvzgP/S6yO6ScjChHNupJKQqDrgWbWG5BK9BJgrWG81fWOX3hGpOqpPIW5xzOCniDql3qWoEO5X9C2xlQCanWJF7Q3lP6hJ3hiL5MOLlvgb/+k5/lo5/5GLkrcONtJuMhiZ2j18lZmh/QzwLp7ZyKIq+PLvq4DnpCWRCmBO5N67U2ccmbkttTtnf6hkAKx71FAvmpvIQ0+lohoqM7e0qU6iiQOg2VgFOKQTfHOuGtsxf45fUNlnsJKtWcPnOJF185w7WtCXppHm08+DIcI85rFcW2WPmAeGLBLRzPK4nOVx/LAhlj0DqsBV5pRBlE7PQSQ0KS8NleQDli84X31GIAgUDFayTaUZWEdSN8OfAOH8sViacRJ8MeOJ3D3ofSTFXlkIYqDbsQqJvWByFci/c1CR7IdJQ0/Vxz3c1+25Dh6ibdxntwShoxFVSTMUKguU5UEAGd96goLPlY9qUWToSp6BneIw2pXwsIJkkodidUNoiAc/0eaZoEUSCu21oFoUApjfMSvnTYez1TstrHckx1q4TyVlVYNVQQaMJti0eUx4llUkzYHQ0pigLrgps7DFfVlM5p1uDp6sv3hFbRKR/J/ChChyX4ZnEtfBPaKE77qXgV12sVy2zUR9bG4Lxnd7jL9WvXWdq7v7mPa1A3SD2RVd33Tdc15zOLmwQkCWO5ER2gEc6d93HtsnilGBVjhuWEyrfl7Vp8f7TxzPuhjWfaeKaNZ9p4po1n2nimjWfaeKaNZ35Q45n2oacWLVq0aNGiRYsWLVq0eDe0Du4uHYL/1EAnNSwv9Fnb2CbLMirnOHvhEmfOXyBNT7KyvEiWpdhJEYgDren0e4x2dgJh4UJAF4LvEIwmOgTH1lpEFeRJRmI0eEeiFUcPHGQw6FOUFZW1ZGnaBJA1EVkjcEfvH0zXv20Iv9k/qikp+71QuyNrol/NvGf2kM5ZXFngigLlFRgTSNPo7jNGh3TQSkdSAKwCfCQXXCTFYuru4CacCjVaK/IsJTEasSW+cnjrceIDiYnGRhJNi5BhItEaShNogaKyOJ1CkrJbbrMxqhhHEiTRgQRVM/RE07YQXZnvjf6Do0vhJJA6wQ2oqd11SiB6c3EIVjwVmvnFvXz+26+zff0si+UBnnzyOC9+fRU/MTx0516O7dvgrmM53U7OjeEcz71ylaXFAfO54pHb5rjj5IBnziqeu1Dx1OkhXuekPiSap3JUzrK9NWbxwF4+9fEnefKxDzDavMFwe5fB/AJ//Ltf5umXX8d6z2d/5EkOHTiI8o7r167zrW8/x+f/+It8/BMf5aGH7mPPylLoLw+TwrK7u4tPMjpZgklS0jTDqJRSqppdQRFIysCfCbjgkjPRNRcyBkhDptf8Z922qmlfjclSJAHlLd1Uc/+pI2RLR3j+xZf54he+xC/9m1/l13/pH3Lp2irf/N0/4r/4f/33LN92H3N795NnObYckRiFE4WNxNXssYFQIqTpt3fPoZrBDGyod56qtJgkiEhGFGIDMYaSoDHWjtFIHmmTxuN5nKvIEoN0OlQF/Ooff5V777mLY/uXybtdisrOTMCY+Xu8ycG+4fG7TvErS4uMTRDiTEy5LpFdTeJxamJTa42qnY2EjAA6S9hc32TvoMuH7r2bT338wzApKLc3KbEoSlKdkmYdsm4f+nOQZJw7d4UvfuFbfPXFtxi6ir0Liyzmmp/6qR/jZ37iSc68+SZ/8gdf4X/6R/8zH/vsp1FKs7u5Tr+Xo7MEbxSIZXdrnQ/d/TF+6ONP8sAHHkYuvYFKDGQZ9HuosqQajRjvbuG21kN5kHoxUmEgBje0B/EosSilSHo98v2HefbLX+HLX/sGb5+7xKcfeYQ8z7FKGJYl125s8sbVy6SDRTr9Ad08J6UMeeWtQpeQGvBamHjL+vY2nfE2P/Ujn+DHPvMRPvDk4xSXzzIsJnjn0TqHUjPfnWffnj3MzfUbN6lCkYRlbGatDJkBvJpyi95OSXJ0II29F4J/OZCfSnyYR4C3Dq3DuHLOBtLeOpzzeONJ8iBQOu/CWqZUIypLXEsNScgcISVJmmO8o7IV3/jO6/zRs6+wW1Z0+hkH9+3BqgnKabQ3gIvu4uBM9i6WdaAm8IXK2nicuAZ4wePwTkiMxxiF9zCpHDtjsHPSkNyoIJTUfa5E8DpsCmEMT4lg7z2YUOJEANEaZy3WOqx1JMYFKUBqMv1mp229bwZRoW7rQN4HSd2hxONccE0bbxCnQhkSmX7F5giOaWryPh4rChuIj+JHOLaXQFG7uh2FeByhiuff7Ln1diM3r5EWwXpFk6dBglgt0zoUYX8S3RzfaIPJNFmasDg3AHGUZcGkGFOmmiSpcFUQVrTRQbSaWaObJBaEdnDWQmUBHcR0JWjlaQpZaPDiqGzJaDSiKMrmYQqp+1f8VODX+j2E+s24WTjQJtzZOGebLAN1lpZm/Y1LNy7eXqjwsIZH6psplKqLa6npvxLGQZ6mLM7NMdfJUYUL41CHcTIV777PKf8vQD0u6qtT4sF7rK0oypJiPCGvFFvb22zt7jBx1f9vB2zxZwNtPMO7XkIbz7TxTBvP0MYzbTzTxjNtPNPGM2088wMZz7QPPbVo0aJFixYtWrRo0aLFDLzz4Ut8cHmKxyhNJ0sY9Lvc2NwmzTPKwnF9fYPVG+vccvwYRieBlHG+IRoDQaIoq4qiqgKJpZOmRrsQUnNb53BSopKSbqdDVU5QeBaXFlhaWmZ1bQ1bVWTJNIQTCCQnNER/TQzW5Sbqv98Uv74rkL1JIvi+gXn9/ihSNMckkgcSiIbJhG63IjVZeLnWEJ3g+NpF5gKZCnhv8c5NXVaRhEUEnRiSJCExNrSn0iRaYxSIeKqqwEfnkPiKoppQlUGk0UpRVBaVlEyKInAVWkVSUUAphuMx28MJEwESTeI9SoJQEGkF0iRFGQ0mEAquqhrSoXaTKRVSoHuR6HpTgazzLhKYkeSJrjkf28xkOVubO2xNLN7B1nXFxkjoGsXyUo46n7JVJKxPLGevbVBS4f2I+U6H+25Zxg3muPtOzQNvb+HtGb57dsJCPyHNAF+F42iFSRJ63Yy0l7KYrDAejrmyus53X32TYSXMDXrYyYgkTUlVSrfbpZNnfPQjH+YjH3mUBx+4g7leji2F194+y3dffoVJVbA4P0eaJTgl7EwqLBaxBcYI1lsweXREa4hto1Vw3ImKqfxNcI96PN7NjFQV2cLoag8EpCbPMvbMdbj72CFSXfDW6Td55oWXWVjey+LiAp004b67b+fv/73/M2evrvLahTXOr22TZilahaGliGnPZ4Z7MlOORCmF8zMTJQpjgTFSkRANXLWqXfs6iEDBae9RWqKbOmYR0AqjgkNWA4lO0Rrybgebpjzzxhm+9OWneOKR+7jzjlsodjfRPqaXF403CeIcmRbme4Y0N2xWFjx0zIxupcI5NcSoD+JeopOGEK1djcqXHN+zj89+8D50miBVRUZCmhvI5tGSsDuccPbsFd6++Dxnr67y9oUrPPvGWQpJ6aQdNreG/OE3n+KHHn+IPcf3c/jkSX7kJzr803/xK/wP/+MvsTuxjAtHb36J2t7qNSRZl9FwwnB7E+U3qaTCVzaQ5ZMiEKteEG9uEkQlknao4ByvHcRZJ0XPLTGshJe+9Tz/1X/3z5g4z5GDB/lzn/oIp04dRZxlMplwY3uT3/7CUzz9xgUube5i9SJpGrJfaK1QFbhEMakcRTGhY0f8J3/pp3jiiQ9yyy3HmKxdpSoKpKrT2Tvo9dgtr7C6vsXm7pi5pTzMeZFwLcFOT13CQDQoCWRoqJ4QnMT1gPMSyO2G7o3OT00oY+Ejgei1CuntfSg5IQoaJ24kQMULWtUlGFQcJ5pEBUd9pTK2Nq5xz4lDfPqD9/MXfvLHOf/3/3vevHyNQmusrUiNQolGnMHhSZIEhW/KWehI+AadSpFmGd678IVgEhPPE8SF9dwTdOFJUeG9Ah1KMmhjmqwIohRG6/C5xOtyHonGVC91W0Ri2NV7S73o0sxZtAJlABvFAkEpaVL7C0F0EB9c1J5aAPDB5RuanLp8U0M+zxjY0dKUgJJ6CWt2kyh8vwcys5cSSpY0fUcsixMneb1Hx3mslJ45hmKaZ6Lequvfx4UMDUqH+xoRTBQWwzYd9mmjQ/YRo01Yr+s1A4UxtYt9KhjU4qnyYKaN3pTC8SZkENFAagq0MYjSuHiOpi4HUvfv93jY4b3NFl+n63mksWXZ3Ad5J9Mmqx80qM/VGIxWJEnGpKqiuOCB8GBDaFSFdRY07FlZ4b5+j/nFJbh4DudczDQx2yfhP9MSD+/u5Znv5N2/j+VspP4+ztO4fjjvqcoSnWQUZcmoKJjY9qGnFt8fbTzzp6CNZ9p4po1n2nimjWfaeKaNZ0KbtvFMG8/UTf0feDzTPvTUokWLFi1atGjRokWLFjOonV1NnFeT7SJkxgSXkNZ4sQzHI1Zv3GA8HuOcAx0cOnW98sguNul868+rv5w4QlAayA1rLcZonFYkxjA3yNi7Zw+bW1uMx+P3Pd+aAmiEgRnc9NNM8K1QIX32++FPEQp8TTw2758KEhAIqcBsSDimi2m7NbEUQCQqoyvWOYutwpdvarpHglUUSZLMELoydZvV54NgtEbrWGYikj9a6UAEJAaTJCijZ+kL8J5et8u86pB4oRKPiaRs7dDTRLe394H4NcEtL9EVp0Ri2YhwzV6kIW1o0pFPiW/layeuRrSmckKWGxYXuuxbWeD8uSGbw5JkxZAugrdw8eoQj0eJ45aTiwz6oI3DSMpr57Y5sW+Ouw7kfO6uBV44c4VScpRoUh3IxCzPEBTXrl/n3PlzzHUH7O4MefmNt1jf3iHvdILzevU677xzjuXFOZwIBw8f4lOf+QSnbj3GYK7H5tYm58+v8cqbp7lw9RqdbpckMXjxTMoKW4RSFIaSNNfBGWnCWKud401qdBUIIxPnC+JRXgcyLpI5dUr4WuLyAkVZ0stzDq0sc/zAAaQYM9fJuOXoYW45eoxektKbG2BOHufoHffwtae+yaXVbarxmCxLG7GhoWDUdCypmfTegkyngRCJQj0zPYTGxhaorcZ56n3zpiBwKIXS0ZEpEojSWmBDBechmutbO7x9+gy3nzjEXffcNuMKb0YPSBjreZYhGqwLbuC6rEx9DWF+1W7QWZIwknYiFOOC5X6HEwdWuPuWoyilsR6c9XhnWV/bYW19h0vXbvDmuUu8ev4ql9bXWd0esro7otvbS6ITxsWEt0frPPXdF3mi/0H2H9zHgWMn2Lt3L9985QyXb+zQX1hGpynKu3BeWpHkXc5fXeP0uYs8vHMbJktxhY3p5C0og0RKtRYDGkFTiM72sO4laYekm3NtY5szF6/zla8+zTsXV8myhG6Wce7cO9xx2yEOHNxP3u0wnIyolIHkOzzz6jtc2hnRWUhDCQxRYKBwnsmkpGs0D999K08+/gjHjhygkyiKrSHiQ/kJpTXpYEAx3uXM+Qu8evoMlQvZGOrx7qmzPMRhARAzRtTX5LUOpQ9i/zSvq8nCupxHLS9H0ap25aooZNUlVqbvjvMuClz12KvFTINQiCZRiuP7V3js3tvYM5cjUuLFk+gOymusBEGkrqIxM4uaz60JTlTtwo5jEFAqlO7w9dqvYtYKdCgL4CU6buP8n+FZZ93MTVmFmb9P31M7nP30XOr3MIU0a1IkZmsBConCVH2M+L1uWvBmcUCmLR1mWf2+mXk3M/0iRT8jBU1nppepSN4cO553aHbBR+dwPYeDk7j+XexnpeI6Gs9MonA0c9x6XOhI3IuOpHpc5+pyHSr2UF02pz6XINgGB3fo35krmTkeKJQ20dUOymiMScKaRVPI5CaSfVo242bU9zcy068Q7jdMGrJTaBTiPSZJgSg8E4RplEdixpk8SUiTBGMSChd7Tk2pefGxPIh4bHST53nGYpqRZlkUN95HCJB6h3nv+U//Pvsz9QBuftRSfwLT+arDfFJKkWU5Hiido6jah55afH+08Uwbz7TxTBvPtPFMG8+08Uwbz7TxTBvP/FmKZ9qHnlq0aNGiRYsWLVq0aNFiBq4OzmtSzxicq/DWYUTQSQoqECiFLblw9Srrm1vs37uXnu6itaZyLpLc4TProL8mwYM7tA7upy+yVRVLRGiyVNPJuxw5dIALFy+yEdOFTwmi8Lk1OVRDzxCFNRpSYoYMef8o9ubXTTF9sY8BtG/IKBqWRCmDqYmseG3eCxppiAxfkywi4IWyqijLkqoq8S664eK1eS8YYwJpEdvLeYdI0qSMDimrDXm3hxGFs1XIxq80khjSLKG32icxBiWCieS58p4D+/bSTebYqhyb43FwHEbXKx4yFJvr15lMRlhbkShIshzjBW8r8B5lVOMO9BIIltB6DuUIgkBNinhLEokEvGdUWG5Zyjl1ZJnbThzg137jTbZGY5YPp7DkwSvOnLtBp6u5944FPvCBw5hii8nIsbat+de/+wY/97Fj3HNkgb/w6EH+8RfPsenBuoyVLMcqR6/Xw3nHS6+8zr7FAQcPHWF3OObr33qa0lUszPfpJIZz58/zhS99jVtvPcmBA/s5dOwYd9x3P6PxJutbG1y6eIWvfeN5vvvaG1zb2GJ+eRlvLUVZUVrHbumwzpFpT9YP5VJ8HEt1hgBEcHVKe60xWgfRieAsp3YTCk0aeB3ty957RsMhB/Ytc+rIEQ4fPEixvcM9J46xf36ZLNVQFszN9VleWaHsLvHc8y9gRJCqDGQjqvl88T6IejOina7Px4exa5QOEoCAiIrEWSABaxerxJ+1RAd4Xb7Ez1yXqECJiQ9qmShE+SAqqOCUL5xnfWODnd3dKbdYO/S1R4lCKYNSKUqnkViN80XUTQJByDwQ5zKBvPTeI7F8hBNhZ3eX+08d5s4ThzhxbD9lYdnYGTHZDV8vvvwW3339LV6/cIlXz1/h/LDAJwmdXoelxXkyozACEw/bheeXv/w0+w4eopcPyBYWuf3W2+Cbr7LjRiQmQ/sS4308H0Pa6fPiO+fodwwff+Q+jh7fj7U7eBvJ90jc1degfSTflA7eT2XDmmMS8t4cY6P57gvf5Rvfeo4vfP077N93kN3tdc6fOcO/Ofcq84OED3/8IxzfcwuLCwN+5EeP4r3BlY63vvIM8wt7AgmvNU7BcFShSsuhfcv81R//LHfddycy2qXcWEfEBfJUg8kSsqVFLr31Bk9/5zm+8eyL6CSNbta42iqDq0eLmnpYa5EgiEwapaOI1uSYn+atqEt6hKVVpmVL4jqvdSjTgIT+DQMnkoxKNz8rpSAS8rVZuCodK3N97jp5hIfvuoWr595iY2ONsijopXNoyRhXI4SQcSLX+iZiPl5MvbNMKWOlmowBdUkgrSSW7Am/M1pjxQQnuAjg8aLQysS5phDnY1aJuAeJhHICdQsJkZmOJP+MCC3iY+aM2CZRfYyn25D78YOjQBD+9YTP8bUgKLUzeronzlLC4eN9M/ckrjkqFgPSsbdnUcs+3oeSExLnSH0O9QQIDnDBO4/oWLJCgijp415b7zOxZ2aEDT/dc+vvFZF8DoK1FwnlJ1TIpKFVyFgh+Gbdg5CFxIvCITjn4ho07QtfCzLxvsQYg+ggjyivMUnSrG/NOdeqVb1O1Q8ZvC/dPiuxhIcMsk5GkhjqbAqJCWusw4FAkiTUgm2uheX5Plma4tFcWd+K7RbOIYgEDuccpbf4qB0rCfcM1tkm00kQF9zMOhUfnpgVsJrTrkuDTMdK0xDNL9TM+xSidHi4wYS9x2hN3u2iTBJKhhTtQ08tvj/aeKaNZ9p4po1n2nimjWfaeKaNZ9p4po1n4M9OPNM+9NSiRYsWLVq0aNGiRYsWM3BAYT22cmgRUClCKEOwkJngwgUSrSHPeP3seW47fYZep8vxo4dYWJxndzymcBYRQ0JMdRxJPZMqdKIb0iNNUpRyWOepqjGFFTqdjG6ekWcptx49yFtvLnBjbR0noGs3Z51rWU9J/1nX1izR/330gEgmqMad9G55AGYEB2XQJkEZFaLmSFI4X4f84bXWWryu0CYPggigan60+dR4PBHwDvEOrQy6JhkQrCiKsqKyltoz7X3oI6+gjK5qnGB0QkcbKqMbwYJEY7Lgjk50cKVpAhmtveLeO2/nqpnj8sTjdickC/OQp3jvsWWFHw/prS2Qj3aQ0S7bV9eY27tEt9vFaMXZ029hAJ1odJaysPcQ5XAHOxpiyxGd7oCkuwAmxQl4JlAWYB2m8lR2h2PLPY7s7UDXgdvmnkNLHNuzgBl5PvboQT4wzDGDjKWjB1l7c5WOqSgcbI2F4UiQakyaJGQLKacOz/Pi5ZJiHAjwwlkmZQHeMhp5/smv/SEWT1EUDLc2WZ4b0Mly0iwjyTo893tfxCQ5aZbS7WWYxDDc2mFra4sr11cxg3nmB326eYeyKLFliXOBhKsUiIHKCkXpsd5BkoBJUE5hY1p4FYlJE/teRVLOo7Azo8/U6cZ9KCdixbG7vcnx++7gA3fdzrgagy3pJ4YiT7hy9Txf/8pXefyjT3Lrnbfzm//mF/lHv/MVJt4zWBrgKfHhqBjAicNahzY6EK4SSS8JjjjiEG8mUF3SwgkSsxxoCfSfVwrxIT04OqTA15HorOkwJR4tSZg2EkhuTYa1QlU69s4P+MTHn+Seu28HZxFbE7keo4VubwCLh7hy5iLffukc69tj0m4XY3Sw02nVkIzifJh3WqOF0MZOQnkQo9FobFFyy/49HD1ykGpujt/9td/j97/4LJeurVFUJRevrzKsSkgS0v6AfYPFkGnAGFJtcHaMV5CmCft6e/n22Sv8/X/2q9x1ZD/33HqUrz/3JmNnWFlepqsrCl8gxoQZqBSdnuLKtR2+9vJbzP/yH/L3/i+/QHfO4bQwHhcoTCgZEiQCDKGsihfBY1DO0p2fI817OEn5f/7Df86v/fFX2Nje4YeffIz/+v/wv2W4fYO1G2tc3djiwrkrfP0P/oQ39izx6AcfZ+/td9IbdBks5AjCpNSYDFIjOKPYXlvjxx5+gB//2Af52E9+iuryZVxJKE9hPKaTkc3NYb3ize++yt/9h/+CV6+ssVU6VpbnsWURMgCY4Nr0OPDRXazCtdmZOgKNo5cgjCkJbnBBBcXMEcvLVBgERKMIKe2dbySI6AWNxLD3jZiKgFjB4UL2DedxKmTx2LixyqcfvJM7bz/F0rETDAZz/PyPfpqvPvsKz71+jh27QDcTupkhTxRr4wlCitE1xQ3eOWpHtJMwdgOhHjJFeBczVohCqxwvDsShlWfkUwovWKkQsYHoNwYwJCgE1wjqjWvZB/pdRMDUskSg4oVQhoc6M4Xo6LYVVBxHoZHioiVVFAh8yFDiChKfYqJ46GvWH0B8KF3B1C0cRIRQSkg84DU4BY2gEBe9yBrXooko1bxXkGbtUVEI8hIc5BgdRXMfXqsNLra9q0tXSHjAIXwRRQ6imK8RFcZe2ANjpgdtwBiUeGxVURQTJuUEMWFNc2LxWBJtMNCIp2iCiKDBe0tVFugkw6gsXolDY9B1u1gX9/nQ8MYoEq1IUFg8xvlYKSZIudK0d70fyLtMxdHbrkJfZ50MpTRVVcVqF9MHDRDQaRJEWycYPIvdHKU1u5OKcVEgaRbKbYTVnMRU6MSSOaGjNXZYcGN1nXPbW8hcn8NFGeaf0nhtmzWeeL1hHM7cS9XC9MzdT50pYfaKqLVBUVE8UZBljIsJm9vbbOlN8ixnaIXEZOzrztGixfdDG8+8z2vaeKaNZ9p4po1n2nimjWfaeKaNZ9p45gc2nmkfemrRokWLFi1atGjRokWLGWgTCM3Ke9AJzjm6WtHNUxbn+iDrKILjJ826rK2vc/3GOtc3NllYXiLpdXFKQ2LAerw4vLVYq3HOkaSBXDHaNO42FR2VCBhjyLM8pK8Xz4ED+9i/by+Xr66yPRzS72W8K7psoJTCOYcxpvk56ggNgR/eE2n46FYODrL4ovdTCWagIvnkVZ1QOhAGuib9lQrXZszUBa1UbZVDK0Lw6yHQGAq0RhuDMQmNmy86gcqypCwrnHWYPIlOWYmlFggOOmXiuc+kxEYBpiETUCZes0frBJ2kXF1d45WNi2xKStEZsNDtYG2FZAmSJaxfuEGuE7LeHOgEqjXGO7uoLKG3tEy+dx9+e5dEGbpZj0xrJlWJq6qgYqiEtNvHdPuoPMPLmHJ9AzcagyvRDrpZh06eY1L42OP7STspyqRcPj/k269v8Oi9y3SM4tlnzvF7nz/Npx4+xMkjcxxa9vztnzjEsTsWMXnG6hXHjRsWbzVGJ1gdCLHRZMwkUmfD0YROJ2ffvv3c/+SHyY3m6vVrXF+9waVra1zb3EayAf1Bn8PZAttrmxw+cJCjRw5x9x0n+cIzL7IzhMJa0jwQeCiNmEDWKFEYFakW5/G2wjmNFxP7JIpZYaAEYkgrxKvG7RmcZZEQjCSpiMajSdKU9a0NLl69BPouOgcPsX3uPNVok6J0PPTAfRzav4diPOKls1fZLSxJnpGkOZVEx2GdhNxE155MU8jrSPopUYFk03EsKQUanPjw/nrOqekUlObn6CF0HpWYZr4pL3ixYY1RgDJ4bZjs7lLtjvjxJx7mA48+xIE98/idHfqdDNXNAqHshI31HV549ot8+8XX+OrTz2M6XUyaojVoPHUZkshfoqJ71Utws9YEv2iN9wrthUGnTzfrUo1LfuO3f5/nzm4y8tAfdMgHXRI9wGuNU6opB9A4RY0GVJiHlbA06HFxe5NLr6zzlddeJxFIkpw800wqYTgs6HW7pJlBdIKIML+4B2stX3v2Jf7gN/+QD33wIfYf2EtvQSC6NJ21lMMxtrTUrmIRx2BuAZ2knL90jd/8/S/zO1/5NtuSky12OX3+Ije2tth76BhLJ05xfLjOA4/BtfNnuXrxMr/2W7/Pdf953jh7jnNXrrM43yM3DqWgrBybW1s8fvct/Ohnn+CjH3oIv7VNYSU4oo0mG/RJ+yucefssL77wEr/8u3/AS1e3IO2y1M8DGV47lwHnXCRMVXS5urje+rgmhnas3cZBxiK+XzXzJZDScrMoEB2vyqiY9j6hrCzWeRLl0TEDQDM0o9CSaoWTUKoo844P33srp/bvodwZcW31Bp97+AF2N8c8++I7XFw7y9/+mc/RyXPO31jn9POvsjg3h06zKDi4RqD2EMvn0IwXjKbxTCvQRiPWRpE7ONGtC85gYokBj0cph4+kv9TzMO5mtfg8W5rBe4+XqbPY+6Cf1XvKzEyd+beey6Gdg9vXTMXz2Gw+lvcJ52Ci2zj2C1GICVsp3jmcd1FMYMaZPHNUmTqXG7d0XE88gejWWof2FEFHAlmp4GJ2LjiSfVNKI341n6WDs1mYlm5qxlPtm/aAxWhFnmi6WULHJCEjhFJYFcQkH0td6SgCVZVDGyExhqzbJUlTdHxfYgyYmWwTSCyzApX3FGWJtw7lPMoL2ntMvUyqUGQkSgvNuc6S7fKufjMmAQlCWWUtWZ7h4kKuEkMa7zkwGlEZaOHGuEAEisqTd3pIYsKu4IXUKE4eP8IcjsF4zEpuGFZjyrFhpyiYG/SxSYJKElCaJPaJKBOegmjaVjWCUHyq4723VjcpH9KUmlJIdGID2nD23BVe3rzEK8Wb7FscsLG9jULxyP33vPsTW7S4CW088/3bp41n2nimjWfqyTCdgm0808YzbTzTxjNtPNPGM/8hxzPtQ08tWrRo0aJFixYtWrRoMYNQdiCQDYHAFIwWennK0uJcIGJE0CgSo9nd3WFzZ4ed0RiHYjgpmmBfRUJHvGvKKChqt1xwZAY3Zn30Orhu+Bz2LC2ysrzIYNBjdX39vSIBRPIokijv53CWdxEi8Xc30yUy8yeJn/uu4zSs6JTeaP5XE/TxfU0JgNmTVDOfoQEJbZGkKWmWh/eINGnUAzkzJXFBNcRnfU0qWMMJ3aWbCwoOXB3PLibibpxl4EVzY3OLolBUCipVUI0nDCdjTK9DvjiAosD0cjQK6wLhVhUjJuMUM+nS6XapCocRhVYJxXiEq0kQUSiTorNuEAm6OW4cSC+PQmlDmqbsFp6NrYqtTcfevT1M6hmNhetrFb/3nYv0F3KO7+nix57rm2MmNpAqcz3PbYfnGTrD6aslL7425MbYI2gSA0p5jAZnfSCZlKaoLN1Bn/379vGJjzxO3su5duUqly5d5tU3T/PqW2e4srmL+IpD+/fxoXvvZH5+nrm5PguDLpNKeOP8ZTaHQzCBoAkCUSDWQzdPy4E453Di8RIcizWJVhOVJryTWSIU0YiapiwP5GNM5Z3nrG/v8MbZC7x+7grZ5i4Md7DApPLce+wYiwvzbIxGXN3YxWlDahKUNmivgjtVCbU1UiJpGdJ7R2FJhbPxtbgVhinBoxtIN1VPl5q0kpm5G98gDd0lze9FauIw9H9RWQyeff2MTz1yLwdX5umkBld4vCRsbmyztTPixo0dzl+4yndef5PXz1/i9OoqJp+Lzs2ZOaVoyLnG0amCkKNNghiDqDDHjAipCRkfaqdpJZ5SFKkoeiYIaU4pEI93FqlLMkTGUuJa4L0n0ZpR5ZhUJWXlWOl26RoB73G2Yu/iYnR+hjVRaU2e5zgUN3Z3+KOnvssEwy0nj7G0OE8/S6nKEuUdHQ3dbhZIeiBVmiTrcPrcZZ558XU+/83n2BgVJL0FEqNZ297iS08/y0eeyLjl5FEG+/YCjlQrrE946fWLfP5bz7IxnlCKJ08TEi1Y57CVJRf4xCP3cs8dx1hZHlBsbeIdmDQlyQxJkvHGm+d56lvP8a1nn+e7Zy/hO3N0koQsMXhnw1rWrKdh/NaEYeOWjcu1UoTSMc0KWo+ZaTmIZl3jvRAkzr9Aoqt47JoMVnFNVjRDGqM1zjq8E/YvznHnnbeSpimvvvoWb7/zDp/40MMc3LPEUi9nvr/MYw/cycbOmNPX1oIbV6ZfM6d3kwBd7wXUp1b/U2fSUCAS0t47kUh2x8/yIbW+KN9cRZiSU0G7Fknq/WBWCG9mX/xPc+2q0ePf1YY1OV3P9+ncro8d9h5mrn1GcqgPFudSEAZ0I0re/MJ4MrNi/czn1TRzIzp4adZXlJpp9/C7ug0aUZXZNpBGoECmjVCPA++FPMvIO1063T7KpBTWUTiP9TPtTtiyTV0SB4VD4TA4ZUIpJiFkk/H15wcBI4hgQllZJmVF5Xxwb9f3LNTnLvEBAd084DC9E5p+O1uCRKFIlMZGIVa84KxrBrom9EctAlUodkob3OReoXWCKE24L/CkRjE3yFk0wiCDPDFkvS7J4jzLnQ4LS0t0b6xSxntD7WdnpJ6515reVb3fnH1/hL1JZi4XEYa7I66vTTizrdnY2opdaFicbzM9tfj+aOOZNp5p45k2nmnjmTaeaeOZNp5p45k2nvmzFM+0Dz21aNGiRYsWLVq0aNGixQwSrZpgE6Nw4kk0DLoZ+/esoLVpAlWtFaPxhM3tHXbGY3SaszseozUYbchMEoi6mgTw0TOjNcaE0hJlVYHSCBqtg+PKeYfzgcDbt7LIvpUlFuYHVFVJ469RCtXktQ6OpcAB1IH3lLSZJU9mUYffs1y+iLxHHJh9ffg3ki4y61uKzjgfAnitFX7mPKYkMA1ZhlEkJOTSodOx0RktMYV3+LqprIUEsUC8j8SubgJpie4871wQBKIzTEXyRjyIdwgJXkGlhI3tbXpLh7CSMqmEcjxh6+pV8rkeeSJ0nSV1BltOKHd3MDjKssRvBWK0P1gk6fYQF/psd30TbBXyoKMxaQeV55B3IO9Q7GxS2pCiXGtDr9/hynbJmxdGvP1mwT23GLRxOCWMJvCrXz/HfD/nk/cd4IHD8xw/vMjSQkq3IyTGs1V2efXciO+e2+EPXrzBWqXIU6FjPEYJaWIi8aYQk+CUkCQpe/Ys8+hD9zF/ZD9qNGZzbZ1XX3+LL37lKb7wracpveOOUyf4z//az3Pp+mVG5ZhDBw+xMljhF3/9d3n6ldeC8zeWGxBCeQdfk+VaN+UJvPfNGAsOwtiX3iOzZKafGZ8SHXIiSCj+gVJCt9djdWuX77xxhn3feB5f7HLHLUc4sLLM1qhibmERk6YMxwWbOxNMmqOT4C4OjnxH7Z73LlBxWil0dOHrWVINgkgIkYBzsZhEPaADMad8IDuV1jeRoTXxrrUmmvlxeMRXOO9B5UyqCXs7CfcfWuGHHr+fbuLwZUXpYW1jl9ffPs3rb5/jldfP8OqFK5zbWKfSmrzXZ04p8ME/iFFx3kXRIJ6LiqKBNgk6TfHaRALKYSSMEa0gSVIefuBeLpevc3lzGOa018GlF8uoGB9LDUi4GI9HiaEm+Ly3ZKkmzXuI6pChGZcVylq6yvPgbSd4+9JV1nZ2KFxFknfDOWYJRb/P73znZU5fvcFthw9y96njHDmwn+HmJr1Mc+dtRzlx6hi2KkCEvNOhdPDlbz3PH3z1GZ5+6xKHjh1FJym2qhhWjn/2679HnirmcmHfyaMkwx1W9h3EJwscfvMCL7/1OySDAYOFOVJxGAXDcYU44cTyCj/+6Sc4dGgJb4fYSYlSKWm3g84Mo52C3/2N3+cPvvVdXr5wkWTPPIcGAxQa72x0gqqbhNg4rKdrqQ5rdiMsaYX3Ch/T4WttGpJ7VjQNPGqdUWMqIoivRa06E8SURDfN/Ju+XmuFdxViHXefPMrt997LpYuX+ZMvfJVX3nyHxx57hJWVRe4+upc7bj/JBx66i6eef4MLV9dJ0yysy+IRPyMQS72faELRnkAqU6/98aRCuv/ozVVhn7ACNpLZCmL5oIZiDw0RCVQRgosawv5qLWmWNXuNbw6nmtc3c6MmomNLNKJCFChC6YR6/gqCD0RzI0bQ7HNT3r8mduv9rl5DmrOn3h91PQDq0gq+Pn48XhRFvQjOh/IOXjV+8HiOzLDP02ucik9BIPRRHGkI+FnKWlQUzsFkHbLuHEl3QKk05WjC7qSgtBatTSOz1+Ux0AaPUHrFbuGZc+Ctx0gVMlCYsFLW5VuCyO6Y2IrtyYSJ9Vgfrged4FUowyMipAqUSRrx4KZJQ1jPas1DxfbrJAnOaZyqmBQTlAn7j1KhxJDWPt5jKSpfzyUdS5NQKzwokSDyYSm8x7gKrWB+YZ7u/v3Mi2Ku16PYXGfbObB1aZHpLK8llPpX9Vh4v/JcN13Zu9XAeoQ6h688thImFrYLF8ppGEXWFMlq0eL90cYzbTzTxjNtPAO08Uwbz7TxTBvPtPFMG8/8mYln2oeeWrRo0aJFixYtWrRo0WIGgzSnbxI6SlMIlJWls9BlaWHA3pUlrITQPxAWgey9vrbO1avXwZYY5UiSFKU1zlqyNMdRohRYG4iT1BhcmlLoCbYIKca1CaRRWVaURYHG0xv06c71ObR/Dwf27sEkSUMaNb4hdTPJr78HwX8zVPz/NFyd9eDNUAk3QQjiR2I0RgneghKPiq5RAGsrrLVo55A6DXkkVmoOVSSSO0DIZ68jsUT9ivpFJGlCkiQYk+B9SXBCa0RU7AcoignDUcHV4S6Vq0CC6zbNMnSacP3yFYrxhH6ag9YYBR0FC/0eF0ZDJmmfdLBI58ABlsUx2trg8suvkY4KrJRoPCmetJviRWNLy+7Vdcp+SXeuByKUxRg7mYS2SVNM2qGzsBC+zxL0XI9FvY9ROaEURTUu6OYJ5dxenlr1vPhvT/OffzLnsc/ehVrQbI0uIPOH+ZffXuPaCB74+f38Z3/n05jtS2yvD3n+Lfhbv/g8V3YqxqKgk7I0nwe3oygKZ8iNUOmQttwkCXuWF7l25SK/+mvv8KUv/An33XkrD997Dw/eczcffeLDfPIjT/Djz7/A57/6DX7xX/4yn/vgo4zdhHNXrvA//Kvf4qc/+0MsLiww6HaYFBN0YtEh4XdTcsQYjUlCiQ6TZCifEApTgJLoVlcKEYfzFhH1HiKoHgeBXJGGX9RpjjUp18qSf/Arv8/u+hqHVgYc3rPIod48z778Kt3BHGNvuLw9odPpkJjg/FUqpFYPtJ0O7lzlwRiU0hiBLM2CgOA9ZVk049RLKLegUdQ+zVnhLbheZwjNWn3zLnClKhxDxRIKeCiKgu3tNT740D387A9/kt7xYzCxnH7tbb781W/z3/6zX6bsLlB4obQV80vzDPYdiinDPb7OwCAK78O5mHq+xfNDq0COKY11ispZUKFkR8fAXDeh2zHkXcN/+r/7K2wX/5yvPPsK71xbp9ubCyKkRJHATa/ZG8FaR2JA64REBze8qd28oqkKz/rVy9x5ZA+/8NOfoze/zD/+7T9iY7hLZ9BBq+BOBNCdlO7yId66us1rZ67xq1/6JuILDvW7fOTBe/jgQ/eQmhSpLCQGvbDEv/pnv86/+6OneO3SGnuOn0LrCYkfkmpFd+9eLl27zj/617/BF778VT73iY/ykcc/xGAgrF5b5bk33mLl2EFQikRBNSlxpqLcHXNkeZn/9D/6GY7efgK7u8Xu5hYpKf2Fea7cuMGLr77BP/rH/5Y3z12gt3eZk7ccZG17l+0dS6fbIc0MUMXSBBKXuNp9XhO5ArjoUg9iEt7HLBkSyogYE0rm+JkxFd/a9HIkwo0YQMc11eMJKfgD2R1GqxNBozFakyYJ1jtKa+kkiv/Nz/0kSwt7+ZOvP8tvffVbLC3uweYZP/SZJ/jMhx/A7D3Bn/zRb/DVb36Ldy5eYvHgAZR31G7icBphBfASjq1jiZea57XOodGkWpMlGufimiGhXIgVFTIoxIWirvDjxBO2hjjXapHA2/hzEOK899zk1o77YO0YnhL44b+BX59138YvZZryNPXfJM5tJxCyBLjpGuBr0npWNHBxpQlrndJRvHn3Eif1ShfP1QvOBcHU+5hFIGaUqMW5cE00lL8XwjiKK5MXcNF5jgIlKugQ9WbZ9JVCYeh0+qxv7bIzmpBeTWJJEcVOYZlMKhKTkCUpaRKuxXmLTg3WCzul543zV1nfGZOYIIYmJiHt9kiTBBPXVpxQuYphUXBxa4fN4YRKFDrNcMTyQfVDBgLeu5l+i20UBYq6f2tj+XB7m6Vbb6XT7TEajXnm2WfpD/qhHBWCU9FZrnxzryF1P3obxmwVmstoRbLYYW1jxLa1DMYVO+klLv7u75F2uwwrC1pjL19EX71AzxWoTi8KAH7av7Pn/S7RIA6792DWrR/ulerdRKKIHdZXjMYC1nqKsnrvB7VoMYP/cOKZgP9/xDPfC20808YzbTzTxjNtPNPGM20808YzbTzzgxfPtA89tWjRokWLFi1atGjRosUMFrpdMpOgRGGdMFxdI9l7FLSwunqFja2tQLiYEE71egN2tndZvXqN3fU19h/ci04TvCiqKjgJtTaoSGQoAmlkdHBCa12nya/LHjiMyUiTFBFhe3ODuX6fgwcP0O31sc43AW3jgI6cSE3i1WUhVPOHmx16U8KpTpk9Tb8/++f3QvASSGijFEqDhDg7EC7O46zFVhW6sqgkuKo80qSIVo7GZeZj2v+qclTWNUdWEpyFgSTQ4TyldmBOr8R7iyjBi8daTzka48VGNzTYYkjeGyDWBkdaTZhai7XC0SPH2d6qGBYwLCs6aNI9e+h1Mkya4fU2DLcoxjsMJzt0TUZvaS/JYA7V71HZCre7ixsNcWVBpoMTWYyCNEWShN3xLmmimZufp9gdUwwLvBPSTh9rU1hYwIplLGOOrSzTVcKFzSHfOL9FZ2UP49GYZ6/A3/+t1/kvfu4kK0fmWU9Tvv3Oed7cFdK8R54aUmNIbRUcrWiqypJpjYnnVFUlia24+9ZT7N+zzJGDB1gadDl+5DDLi/MgDq00d5w6yerGFksrn+f/8c//Zw7uO8B4XPDlp77Fq6fPszMco7Qi7+boxESRgFgSQ6OdxOPZhhuRepBKTV/HdPcSCTAErUwg2hXRORmEIxUVgloYU0ZBpinzlHvuv4dPf+BOHr/nVo4fPMSzL7/Gl777Gi+cuUw2t4TyVXC/oUiyjEokEFA+EI+6mT8eLwrr7LSEiDE4cQ1RaATwFpxv2ByRqTjmJY5fFd3fKv4c3aNaaerL1XHu5YliuZ9zeHEORgXeOnqdnMMH93Fg7zJvrO9S6ZTu3BzdbgfxNhDHKApgOBzhvUMbRa/Xi0JGIKY0gWCVkPccdJ0yPsy5lYV5Du1fYbmfwXAT0+tx29HjnL2wxjuXV1FGwATCUESmafJVILXNdEXA+UBcqyQ4r92kYOf6Kp/8wO189JF7+PCjD/Bf/79/lWsbQ1TeRaUZeE1t7FNG0Uk8atDF9zoUONauXuDULae4/777WTl6lPHuNmnWxVrH+dfe4ne++gxrw5L+3ByZqqhQCBotgnEVS0sLbGzf4OnTFzm3+vt85/UrmETYHo145dxV+v0BUlV4a5nonLXVG9xxeD8feeh2nvjI/bC1jRQORY7ONVs7m7z56uucfeM0999zir/w53+E5eUFtFa8dfYyv/qFZ7gxmjCcQLeTBkc60zUZpmU6ALyzeCVhffQesbahmes+E0L7exdkuGZdjg7aJjFG/Rcd55R3DXHtxVNZS2qSqE8J1lqKenz4it3161w7c5rrV65ydXvIhevrfPNLT6Eevo+Dh/bx7a9/hX/377/OW5fW6C8s1at0nKNhJChF3G8I8yuKIh4fSP8ostXnanSCEqGqhO3hkLJyOONRPmQbQPkwpnQgYP1NLlCFKBPo10iI3ywS+GkJIRdKEty0Ac4ILjXqEhB+RswJb/Mhq0J9XJmKZUGwD8S2jgJdU5rB30xyTz/hJhnvXX8XvPORKI+lkHRou1o4EPHveocwPVAQK2dFhUA4q/d5bcg64aWikyYMBn0G/T6dvENvMMeltU0ur95gY3gjDjlBvMfjQmYHL2AMeb/HYGGBPDEYBYnSmCzDzIgEqTZY7+hWJbvKMFgbMyosVWnRAjqKS148lbOh3yRkrQjbQ5Simgmgongm6CRhc2uLPDq5TZYiqs7dUrdJHHlBXZoOABXGikFHoVdjTI5WHZTyKD2hWr3M6CuXSbxj6CsKUaiJp68daUdwqcGg0AJR4QrHuQnvuqN695+bX4X+8bEPBUEbQ5blJEaobEniwMUnRfT7fE6LFrNo45nvhzaeaeOZNp5p45k2nmnjmTaeaeOZNp75QYtn2oeeWrRo0aJFixYtWrRo0WIGnSwHoLSWQoS9S3PccfIIxw/uY1JVjCcTvGi0MqAgyzNGkwlrGxtcX1/n+NGDwT3jwRuNlCFID+UaalYspMw3tUigdSCwcY1rxnlhPC5ACYvzcxzat5eFQY+t3REqDW6iEDzrqAPI1M2lbg6o6/96H44/jS3lPQHr+5eCCISDmnI8zfuUmhEXtEanKdokoVQAEonYmuSNAkZ8i0JFcoCQCr0mYOov8ThxU6JJBGMMSZIEt2YSCSqpU6WHUhGBeFDB/SoeLTPu2niu3gnKJHT7GV3t2C4cvhijDSR5B72wAFmOH3UYb6fsrlvsuESZlM7CIt1D+yitZefceexkhK+CiyzY+HRIV641ShtUmoagX2t0r4/pdMk7XcQ6zOIAsSWVKzkz7rBzesyZjTEv7qR0Di3hdids+IKvr0340ms7HC9z1rY9L68JutMhTRSpCY5DccHtJoBzDusknI8IxWTC/KDHYx98mHvuup09K8sU6zcQZ7m6usrw+ZJOv8f2sODMxat4nfDMi6/w8L2Gxbk59u9Z4ZW33mIwmKPb6WIigSkNIRXGnRcXqmEwdRDfPJIi4UPtMg4wsfSC8lNiNRBvgfZ2BAFNooFeEkOvl3PqyAEevfcODhw9yemLVxmVnqvrO5xYWApk/5Qrimn6p6USvHg0EkqHqEjWKonn1mRqj2cbmbuapFME8S2SklMOMwp0tQARx2ed0j/OApROMCgSFVJ7g6KcTOjkCbecOMyPfvpJFl55i0s3ttgclRSTiiQ1KBVaNUs02aAH3uG9Y1JMsALGpGRpTpImkUwO6fajNx3nHbYqOXpgkf3799Dv96jGE9JBl5NHD3Li0H66r7yOE4+Ja5xChTWqnpkNQa2mwo9WVE6wZYUdjrjj4CIffewD3HP7CdbWt3n+7bOMlCbJ8uBktT644pXCiEKJxySBrBOd0u90uOXIIW45eois02W8tUGWJEwmJW+8eZa3Ll7D5V3ybo7B4UTjJSbNFyFPE8baMCyEi+vbmLfO4aRi7Cp2KkjzFOU9znu8Vtiq4tShfTx85y3s2bfA+NoqYsN8QkFZTOhmGUcOHeDYHbdzz50nme9k4OHwoWNcXd3i6Tfe4ezqBpVPUeLDOKhJ4SgizYoHxHFuixLlY4aMxMQCBCHjQNRfw7iMLLYQfyaS0d41xGhDMPoguIWDOLwOE0d5hXjB6VASAq/57qtvc35zl9fPnSXvZBxeXODlV95kOCpY3L+HZ156iVcvrDIqPVnWBe8CgT+zVczyokEUEYJSIA1NWxO+LmjGcSh5Jk6oXHAFGy84CSWZwlifumHDB6jghpaa7J2WQ6jdtD5+Xztiw7nVmTkU9ZYlsXGbMhHNmiWNqxsRvHLUDvNwLGkqFt10vfVGWAvcUmujs/taQwdP14dmLfE48biZbTmILdJcY82XN8eXmfNtFiam5zpdwJrzod4PCeWT8m6XhUGfpYV5elmH3vw82+OCZCMBFF6BFR/LKQUxRhNKAPWylEEno5NnJMZglEYnKcoEkVer4MT34kmqjGUL/d4G6e4ozIlYGoQZYcZ5jzaaPE/Jk5SqLJtr07VQGftaJyk7OmMiGmclZGmI7u5GWLjplkamjUEt2kxvapwHkbiHikKKgmQyJLUleczkoVxCmieYTo7cNAlmjzAzHt6Fad/OjIWZfVTVIkccqIV1DCcTdodjROfhnsiDkpbSb/H98YMVz0znUxvP0MYzbTzTxjNtPNPGM20808YzbTwTP7GNZ2bRRkgtWrRo0aJFixYtWrRoMYO808VLSMHutPDBh+/lhz/yQY7smefcxUuUtgLJUIkCNHlq2BoOub61wdlr13gyeQipSyRkCcUwOKuSGJg2ZRCURicJJknQxoRUyw6sNTgnjCcltqpYmJ9j79ISJw6OObC0wNrGNtookqQWCWjEAY8gMQ34+6FOp0wkFW6SDN7nPVPiIbxXK4XRwe0sQnAwqzrQVXhjMJ0eJs8xiUaJC1cdyV4VyQmJZI8SUF7jvWC9YL3FRSnFIGjxVK7Ei2t0jyQxZHmGSROSSY4WMEqRJZoqS5BJhVaKVGuMzjBK1RoM4NHKRMHGsL4zxAxW6OEYuBFuew1vQp/k/R75yiKJW6HcnKeTJVw9fRrrSlSq6a8sM5elVOvrFJvreGshSUmTBCeKclIhIgwWF9DdHs47TK9Dnu4jSRK6vR6ZU1hVURYTSjS/fnZE9811VkvhpXKFzslDqHHFZFJwdjLknzy7zh3vrOO98Ppmxv6VeexwG3FVIGljuneNYJ0wcRVpkiPeMxqNWDl2kE9+6qM88cRjmDTh8gsv8e1nv8ubr73BuWurmO48l6+vcnVtg82R5drqJolW3H7yMA/fdxv/5T/6xUDsosB7vJYoSAV2x4kPJLQPKaxdYHNApCEJVSTRAwlTk4mQGIllDQAfBK00Eps14WW9CwSX9yg0o+1NOkpYmRtA1qcsBOtAlAYqjAlp8gWwzqJUOC8kpAq3zqG0RpkgIIgLbkoBLCGdv1aBmFJ4RGwgyQgEdxAAfF1johEllFJgTBAPIsnntI/CHnhRQTjyiklRsTWeQJ5TrK7SzRLuuuMEd91+C/d++et8+dvP8cVvv8DZzZKFpUW0FrwvWe73uPXgYTKtGY1HvPDGm2wMJ6i0C3M5Kk3wyseSEAajBNEGVzmqYsTdJ+/g8OH99AYDxjs7pN2K2285xLlLh1nsd9i0FTqW9UARXNI+zGclobRA48yNQ2IyrijHI5LJDj/75z7CD336ExSV5dd/5Td4/fp1lg/sp5un4B2VdyjCXDSAdx6nIsHmNPvm57jt6H6OH1wBGzIgSKrZmkx45uXT3BgVLHQ7pBmIlSgu6fA6BO0deZaSmDnyvMt2VTGxFVYEk3fw3pHo4ICvVMUgS3jotpM8du/tII6ycijRaB2cyVjHHbffwv2DOTr79sNoE1VMAMPSidvJqpKqrLi6tsHIeTpYFAalEhSKylXUpQFMFKyEmE1iUpJojzIZymiEBMQ05K/WwRusxaPcDLEogQCvvA2fFRdJjcL6KMEpQCmc89GZrxDvEXHkaYJxCb/11efZ0iPyPOPYwRV++vEn+PJT3+GLz73G6qhgsxyyvHKAXt4l0QbnLNrouA/MSs4ShWDwWqJrmdAONccvQiVgCU5fI46KlMq7IBIIWAxaXHB+isI7PyV7NTjn0coFEVHrRp9rkujXxHoU/bxMKVsjGi0gaioyBCE7FnpRHhEd9tTIxHuqKH6G83Ay43quRQPvokgaNjgltYA2Fb+n/Rb7UM0I4gR3sBMfCHkVsykIQVBTJvSvEIQ/Hcsc+BkRohZK6jaIx6+fJwild3RYYAkOXueEPM9ZnBuwb2GeXGuyjqGbahKt0TqhigItzpGYJPSz96QCi6lmITd0ujlJlmGSFNFpsy4owj2DiJCmnn3KsDDocn0jPBThvCepFRsJc9h6j040vTSll+RsVQ6HRNEtCIDeOSrnkTRnZ2FvyKRSbZBBGCR1GY1aTJtxS8+WwULUVDDBU1UVznmU81SVI1GGuX6XLhk9J1SEjDeJUhjRjUgaxn4sPSR+Kv68H2YVtRmoMHHCXFFBiAFhZzRiY2eX7Z0xSmmctzhxuJuyBbRo8V608cwUbTzTxjNtPNPGM20808YzbTzTxjNtPPODH8+0Dz21aNGiRYsWLVq0aNGixQzyxRWOHtpPf2GR+++7h7/6Uz/KyiBhfX2Ns1dvhBTNeLQXtJZIEjp2dnd5/Z0z7BYFudZoo+n1ehQbmzhnqZxq0kQDIdW9Di7fvNPBGINzwfFirUVrzcLSMnme4W1Jr5Nw35238dLbZxGngSSmF49WUWpCZvqTmgmHa9S8LY05aOrihEB4vNsdXRNBAnjnAumvogsxOp9EhNWtHV575yxLCwvkeY54G0QFnYAyBKpLcNEQpVA4EbZGY1a3tlnf3gRAG90c26AxGLQkWCrOXbrG+lqCOMukLJg7fgs9nWIEUmNwSR1k6+g4DY6uYKMyVE7QJqPXTXnl9FtcKt5k5MAJGJU27kSTJFiEbp6RKkUqjm4/Z7i5SvHaLtsXL5CmGePNDVw5IcsTvHF0ujmpB104qvWrJK7AGU3pKjq9Drk2oBTVdkhprUTI4nV+4couxdiSpinzCxnVtU2G4yETW+C85WU34I0Lq+S+ot/NUeNJKL+A4KUC5dGJiv2ucZUjFU+qExbml7mysc3/9E//Bc985at87NEHOXLsKMeOH6dSCdeGBf/0X/0qkuV0+gMGiyskWYf5uR5333aCH/+hT/P5r36NV9+5xObmNotz/eBUlui+FcEKJEgUZQLJperyCtR8pZqOzzjMmn8JY0/HNrLWgS8BwaQ53mRhLPoSvztk6DOGhXBtfZfn/uRf8OUvPsPebofPfeguvvX2GRYX9waizQtSlcEl7xS4kApfR1K1LsWCTIk6H0mpek4pgpOaWAKiIWBjWRblFVqrKCLQjLkgegilFhIvpFhyKhJgohNePHuFf/35r/P4xz/Kwp5lip0ttq9fZjC3xGd+5FM8+uGH+alX3+T/9N/8Eq9f22KMJut12K8U/8lf/DHuve0ESim+9u3n+cLTz/HCm2d55Z1LbG4pFvfsweQ5XmmSSEUmSuh2Uj75wQdYXOiH/rMORmMGWcbiXJ+FQY9rV2+QZZ2QSN17lJJodNVoEnA2cnEJJDlrQ0u1vsZdh/byV374x/jLf+OnSVXCiy+8zoVLq5hOgkiFL0NZAK1AxOGdRSxBZNOBgC3Kiv2Lcxw6sIe9y3PIZIdOksDuiK3Vdd66fJ1Ovx8c1k4QNNrbmI0h9JYXQTuHOBtc16mmY/JAjxqNFQ9klK5gfXOdn3jkXh595AGOnzjB5NoGYqKggwUnzHVzkm4OyrHxzttgLVkSxFo92uH2e2/lQxevc217zO8//zLpfBrGiQiGlESF8eOtokoTdJIyXF+DYsxDd9zOYH6ed65c4eLqGp25pVgWpZFwg7jVZLwI7lFlotDbbAG1QzYQwCKCQ8J6bR0YwWiN0tBBkyiDShK2Bj0uvvU895/Yzyfuu53/+G/9Ag88/E1+6Tf/iH/xm3/C/gNzJBRBGDIdiGu3YmafqAnhSGarWki0031JCI5opYJXOhEgMZQilF5jRZFFQt/7IBqFvpxeo1jBOyExRMI79pP30/21SeERjjr1JU9T6AexkhnhOzipS+dxzuGcitN7plxT7BDn3PSyVRAUml8p1YiG0/2zJvBnCep6X42CfRRIVRJEubqshFKBrBdRuOjkR5vpZ1D3xVQcmHLgtahAs15Ns0XUzulQHqksC4oilPrp9nJSBakOItD6xg26RtPPO+zZe4AL128wmYwpvWZxbsBCf4DJOqg0I+t1Qacza3oYq945jPfMmZRur4NODZV4ytAo8SEHFYRUbbDlhEk1wesKjwt7nPdQTfjEk49jEK6trvHFN87RPX4rqTIkVy9iz71ON+giqHi/Mb0rUje1G3Cz0KmFsioZjUfkIuTekaQGpy0WHfpPFE4HuUEEVG3xfw9mj/unoB6qQXGIQz0uAJOKQwcP8uDcMdK7u+wdzNMxBmOApH3oqcX3xw9WPPPemdbGM20808YzbTzTxjNtPNPGM20808YzM39q45n2oacWLVq0aNGiRYsWLVq0mMWkqjh45CC9cUGpHP/2D/6Izz72AKmCza1tisqjM4MyCXVwmGU54uHC+cvc2Nxmod8lzzK086TdLsPdbWxZ0bW2IUuCeVLjnIv8tUFrQ5qWoUSEgspW3LhxnaXFBQaDPkeOHCI1wWGMl1jbIJAidcptJ9PAcda1BsTU/cyUZIh/f78YdwYq1lBwLjiZvMRU49EtXZ+P1pEgMoYk65CmmkwngdTQJqQwj24vkSgSeEc66KG6Of3r69wYFkgkQurjhpNQiBhK59neHTHeHVJKDN4BW1ls5XAxXXolDq0ELbG+vdZ4H4gI0RpPaPtqNMFXHiUKY5JAxmlBlKC8YqINkxjsiyiM1mBLys11PBrvLShBpQmJDuSw94G0L7fWYLyDJhCERaKi2y4SmYD3Orh0cajCk4qglWGyucpoOGKla+mmmtQkvHndUWmFzxR5OgY8KktB6SAQ4CPXIaRGM7bhOIkxDPKcq9cu4ccjcq345Icepptn3H7/vcwfPcZm4egvLCAmIe12Qxp17xiPRozHE5Jelw8+eD+Xb+ywvn0likmBigHAz4pLNW1FcCd6kMREt2Fg07SeCkGBnPd45xF0cI9iYkr7QB95ZREyyqIgQ/j0g3fzc5/6MB/8wIMsrSyx3O/zV3/mhyHLObe2wRe++Rypzsg7PZIkDfyLD0ST80DtkvYSXGZiSbS5KauAUlPyrRbTFAodicxogw5jOpYrqTMIuFmhTQUxqCY+FeCdpTuYY31s+eoLb/Ff/bf/Iz//45/kwN5Fukt72N7eJSmv0kkT7rzrFP/Xv/WX+Qf/8jd58fx1ro0LLpRjXn/7LfYsdTh560keffAOTt12gktX13jtjdP86h//Cadv7FJWjt7CEl4cVVHSSxKO71/i9hPH6NoKbBl6UKkwN9Bok2CMiQTpTJ/WhKhYPAmJzhDnqXY2USPLTz7+MB959D4+/bEPklKxeeUqF8+e5fS1a/TzLloE76rgthbwNrpNxaO1RsRTVZbRaEx+YIluNydNDZWdYEgQK7iiYlIVJFmGVkkgX72PrGAgzcOolKaPgphac+xxDovBikZUwiAxfOyhOzm8bwlRUNqauAxsr3hHtrRMMSp55+1z/JN/+e/4qc99krvuvpW9iwsUO9ukiWJlqcehlQGqKtGmG5rNEd3NQTTzyiCmy87mOl3xHD2wwk9/5iN8/umXsDacvVKCFxvWWUBj0DqJfSFBYY2iQTM247o+Wz7BS3D7KlF474IIJ0KaJqHUB8FBPSpH3H/brfzIhx/kJz75OK+++gJPP/0sC1r43//Ex/nwB+/lt77yNOeub7I5quim4JVvyhl5L6jZ6WwjQVpvOAIS96p6S1JIWGclkMilh8oT5yIYo6KTl+YaatJfNaS5oJTD6CQIJD5kZqjfU8/cuuxMLVIEoUDinhJeW5PyIhL2kOZ4cQLX4hNBMAtJD8K48p5QHgoV1zGLcxYvyQxPPMve34y4lYb3u7g/xD0yLJb1GqLQSYKbbd5odI76ZRAy4rkGfdLPnMO79lOtwroV90cV91ylg9SGdzhbMjcY0E8NuU4oJpNwXlrjgM2dXXqDAZkD44LrHVOG+wKl8F6CsBFFmI1Rwc7ukKKoENE4NHZWxokX55xQllUc59T5KDBaMxmP6ecpc/0eS4vLrG+N0QL5cELXJDfPf5GmZNF0KZsh9nXT+GHviaIT1CJ3EH+NgFONp7z5rPeXB2oRQW56zXQoxN/Xx63HY5RJQlkrQZxBF46777iPI0sn+fDiUbrWkxpQmYL8f6EI0eLPLNp45r1o45k2nmnjmTaeaeOZNp5p45k2nmnjmR/ceKZ96KlFixYtWrRo0aJFixYtZuCcxaQJ1bji4toWvih4/MF7mOskrG9tM5pUZFjAoLSQKNAmwXnh+vUbXF1bo985RC9JEOdQicEB4lwkgRRICCK1VnjvGye0UhrrbEjdDVTWU1mHMQlJkjI36JMm5qbAVGSGx4PAfUSyUrg5UJ2lKdRsoPz/BZp3zPAnteuqk6X0u116vS69fpe8k5GpWiTQOOXQahqGBoLIkdocbzSdPCMQSVOCJ1ADDsGhNXQ7OR1SjPdMohvSR6JQBFR0jSml0EkgVUKK9XCsujyAk+i4k7rNfGB7FCgvIA4tGmc9nvhao0MqdwScDYRIJIkVCoMCH9Kt+5qkKycIhFTuNpLmAkidulwHV7GvMN6QKI3zJePScahb8tjxOQ4td0nTnKfe2ubMRslO6RlNNN3+HGmWo5Si8hZVVeAqIPS/V6oh2ZU4MgXHDh3k1pMnWFlZJklTdkcTrq/e4PTZs2R5B5UkqMRgbUGiod/N6XdzcJYjB/cz6Peoy4qEsVf3UxCA6lESCPW6n6UZi/V4rP9eE3R1avtgv42EkVaxvwTB4cXibEW3k/Hk/XfwkcceJs0yrl5fZWtY8uH77yPr9Vi8vs4nHriLN1c3sdbh0ZGEdsFxqqmzhE/PT6KneWZK1Ocd+Du5yXWoZgpchCT4Pop19aSYeS9gxCNeI9pglaIsLDpJsZE4+72vfItDKws8+uDd3H7qBOgxdjzB+Iys3+Ph++/k4w/diRVh/Y2LrO+WnD5/mdtOHOaWU8cZZIb5/iJ753scWJlnUu7yW197kUubY8rxmE43x1YVaZazb3Ge5cU5tC+xzgWySmsqV1BWJVWzHs162gnjSAXK1ZJQTEqMd/TE89Ddt/Lpxz/Ag/feyv6VAXjh8pXrvHPxMpc2t+kkncZdPbv0zIqmdYkNAbrdILQao3FiMZI0mSQ6eRJLUyRo1M3ux9qNDlPyT0IGB9E0IqkSRVlWiLMcWZnn/jtuYWnQwVVFcEDOuOKTNMF0e1y5sMbzr57mq8+8yKc++jhOGXSa4UWDhjxV9FKN8g7BBPEUHz6rduuKUE4mVLvb3H3yIB+8+xQHludZXVtjNJ5gkiSsG7NDUUXiMs6T+i91envvJTrCa/d6U58kEppxpnkXx7iJbQaV95STXe6/6x4evONWDuzZwy/+5u/zwqtvc/Lgfp588F5uO3mEP3rqOZwIlXd0dSxVgQ/k6+wIkUAGB4GQmTViJoOH1CVVwliqvFA4sME2HYh2MWFdn75rOlBmCWARtPeopnRMyN4R9gNpXlOfpDBzsvVok/o7aQTsZq4rmrVOmnERJQgRvFc0vHwca0EgCMfXs8T8++LmzVu8EKpQTNfK0J+6GdPNHhLHVFinGm80U1FDbjpKfY3NuqeIIoHGqFBKaDruQ3EN7y29bpdumqC9MByOcD6IejpRFGXFuCjxOiVRGq8UShu00WgVy2MQSoQ4CVkn6rHtCbS4nblHUbVAI3EsEUrPhHPSdPIeOztDJrswLkrSLA8PL1iHqarQmrML75+Gut+iSKNqURGahxSmhSTefb8k7/ujap7GeP+XNefXrFMzex71HI9/F8WgP09nzz6W9h8hm0zQRlAp0NW0aPH90MYz3x9tPNPGM20808YzbTzTxjNtPNPGM208894f/0OOZ9qHnlq0aNGiRYsWLVq0aNFiBiKWndGEi6tbnFsbcsueRdK8h07g2o1NxuMCIQEBbRQqDU7CsqxYXb3B2fMXOHHkIN1eh2JcIErhCAGyda4JgIHGVVZMCmzlSNKE8XiMdTGQVopuf45ev494T56l5FlKaS3BmWqYiTQbaqAJlCMaZ5i8f1D77oD6PTF2ZEGmqfqnhE8oReDRwFynw96lRRYXF8j7PfJuh8RHV7RWOEp0LGMhKrzPOU9WOayHPDUxSI7nLaCwOCq8VBjt2bu8wFKe4suK7bIkNUlDNuk0JUFjlCI1mjRLwBh0kgbSxlmQ4Li1MY28STIMDvGC0wplVCQzQ6rxUOdeRcJLSKNTy2mP9R6lTPBTOTCiEYLz24tDZyFtsyF8XqICOVeXUNCR06nEY50irTSJ0oxsxaQs+dgjC/yNz57izmNLYAzffPkav/K18zxzZpd3tgy9fXvo9LNQlqSosDs7iA1koNIKbxQOT+UcUloO71nkz//45/johx7lyIG9bI8Lvvud5/jyU0/zr3/zd0j7S5gkxXtPMR4y38s4fugAR/bvg+Eui3Nz9LpdkjR9F4kVxouOg0d8JGJ1Ta3ITaQdBFEnEPfB0QjSuNfr1OtaKzC1KGaxrkBcyaDT51MfuIdDR4/x/Hef44XnnmdzY5dPLC3QX1jg5PwCf/ev/yx/95/8Ghc3diiKCtPrBIFAacSArjy4SOxHsa4phRLJ1dotGRy3gveuIXBrxy1KISoQ1boml9SULFVxZqbisaLxXuNUwqQoyK0ny3Po5Tz92lvwb/89G5sjDuw7yFy3y7isKIYTivGElaOH+alPfRilhDfeOccb1ye8eeYa9966hh+NGa/fIDGKzmCO224/zqkTR9keC1/8zqu8evE63f4hbFVhJGOx16XTzSmHBdZ7RKeQJEyqguF4xHA4DMuCqklDNWVNlQPlsD5jd3vEfKI5sX+Zv/Mf/SS3P3g7g36C215Dz+/h9XOXefHMBa7uDDm8Zx7RDqVDBgXrHdoE8bAhtAWMKLJc6PcHpFkahFQXyOlOJ6c332f/8gJ2cg5Jk3iOTPnehs2diqf1WKsJbYlry2i4S6o8D9x+jPvuuJVuYrDDXZQQSh9IcEV2uj1Kn/Dc62f44rdf5PLmmLw/R5pmQeTTWVjPxWHERqdqkC+0gDEgWiNOsFXFcGOHTjXkiYfu4Uc/+RHOnXmHt956myLJ6C4t4nxcgeP5K6XxzqOcQ/lArcpMt3gXSFgVhQQRH8jfcFZhzfY2agwecR5LyG5ROkc13uGR245yx9EDVJXjH/7Tf4vt9vmLB/dz5x0nuX7tOjd2dhmVRSx/Eme19zhCSQWNxongnZ+Zw0EsVaIQRcykECy8XlycX1A4z8R6Kg8qCVkenAQHs46Cuo/7lCa4bevFRkRCqQFTi3Yxg0f8Uso369NUyJiKmzUCRxwFPzUdI7goATbCde0+DxkwwIc9HaKQKLGsUxyDus4ecVPxjOlRVf2ZcT9sBGaioBOEA8HjROH87H5OfG9ceOvrq1ddmf13Oj9qUYFI3GutMcaQ6Hr/DTkSlAqN0Ol0yI2hKkq2trexSUYn0SRpEoQj61DW4kwC2oY5Lib0iTKYJI3j05N3OnS6PZIkCa5pmbkWJY3LG4IzGR3ldxG0grnBAhubQ3Y3N9na3kGO3BLWEO0AFyXDhnFvhBT1rsZXjbhL86CDxLmm9DTTQDM26gUmqstB6KjX+2lplHpYNb3dqFvM/Hzz72dkL6b1uuJxk4TKOspJSTWaIMUYdAWJIFax8J4x1aLFFG08876NQhvPtPFMG8+08Uwbz7TxzH/w8QzTKKBGG8+08Uwbz7QPPbVo0aJFixYtWrRo0aLFTeh3c3YmFReurPHGWxf5G7/wM+wxFVdX13j7whU+/Mg95FkPrQ3OVewMdxhNHMNRAaXjrXdO89C9t3N47wqZ0oy1QowGArmulEYI5Qe0UqRpymRSUJYVHTpok9JJNUmakve6OFGU1uGqkoWFBbqdHtVwhPOKlFkiL5Ifge1o3Ks+xpzvKQ0x40Z6t3bwHjKjDuDj+ataJBAHqk41DoNOyt6lJfoL80iWIFpQxqBUgsaQRjLFiQ/VLFAoT0jr7RzKB5ebJxB/AqQ6IcVTigVxpEbT63bQeY4a76B8gUkTsrk+vf0r2LIMpR2UwXQzsixhe1Rg0hSUJ1EeJRZnFSKhhILRoUREIQI+vDcxGovF+govIU0+CKkxGKUwPjj3GqIAYeIrfBQJFDoQhICJxJOriYbYqCH5syMR6IphnBo2hhW58jx0qMPf+/lHmOtZdrc3uXBugyceOs4jdyzy6pltfuXLl/nVdzYYpUt0+h368ykFjsKW2NKRKugag7IuuNdGIz7xxCe5//67OXrkAKPhkD/+6rf4h7/4S3zn5dfJ5pdZUorNzS1GwyEyHvG3/+Zf5jMfe4I7bjmOm4y5sbXJ7mhEVVWYQbchXpSiSW2tpvxd4z4ORKaLY0vFKiYzwkH9F6XQJpKAzlFVQYQxGJQvqYDCCmMbBLrVC+f5d7/9ef7wi1/nL/3IJ7i+usGF51/hypVr3HHyJPv2LrNaVGztjMgA7WsOJpTlCOcS54qvbZxTgqeeIeI9Ttz0Wnyt8pkoAvpm3mht0Gh2hmNW12+QZSnzgwFp0mE8sezsbmGLMZ945G727dnDxRubvH7xCsdvu43nzl5G/vjrSDXkP/uPf5aJAe1D+ZetC1fZf/IUH37ccmVtg//7P/0tXnjlDU4dWuHx+25jeaFPNRoxWd9A1rdZOXqcX/jZH+Pw/v38g1/5XTZ3thmNhxTdBO8q8BrldSDglAYRjBXsqGBzfZsi7zBQCmM0xnmsCKINlYPx2LF+5TQfuudOPvvko/y1n/tRjpzYz2T9OsWWpzuYZ3RlnW89/RIvvn6Wxbllguk1iIxJkoaU9iIorUiTBO8E68EoT0dybOmwlUWcJ1Mpm+JJUsf+A4v8zCc+ym9/9XnWt7dIuzmLcz1imoE4BqVxptYChLM2ZDhQYa6XVvBlwb7lPn/+00/S27Ofanub0k7IEJwYjDGkWQp5j3/w3/0iv/OVZzhzdY3HnvgQt586zEKqULs7GDHgPMYo0jxBJ12UdEhVRaLBKijSjO3hDuX2Dgt2yH/5d/46H3rioyws7eUbX3+KAkWlNZlSoMx0HqkgvykdyhCEnP9x/VZxb4kkvY5Uo/OeUHGjdst6jDEYQikTnFDZEmVCtv1u0ufVc+e55dZjfODYIX70c5/kt55+jt956lleePsc166vse41g0GXlYUuvrRhnUNQ3jUZHgTVCDG+JqcjWet9lJTFoxWYJMxz7zwWsD5kq0AnKB9KYTjvSOqtRmjWUO89CUGcCE5ihRYdRAnr8U7wcV8RWyLioqhSL1jT2a1VGB8SM4lYBOdCyRgdfxfKGgSxQWuFOPAulKPw3mKMjm5mcC6U5AlZNmIf3bTuv99eW7usw7G9t+F4PiglKpZQCmWGfBQwAsHuXHRFNwJsLJPxblGiJq9V6HOJDy1Y5xDnMEqRJQkaIUmS8ACCGIxO2NrcZmI0ygt5p4u1FiUeoyHLUzrdDlmvS5J3yLKUUNInCA9aa9I0jU3vIROWFhfodjoofBBU6rJPAgkxQ0mt7BAeFFCxLa1YjDF4o6mUYlI6vA3aJU7QSlDKg4rjEUii0Oz9bINMZaNawpEoqKdCaHvnm/sQgvwfWlXNvEu96+Oarpbm879H10+7Rurxp6gVKqWi+96DSgxee4ajLd546QVG4y28VCSp4lN3Pvz9P7zFn2m08cz7oI1n2nimjWfaeKaNZ9p45gchnpmZ3W0808YzbTwzRfvQU4sWLVq0aNGiRYsWLVrM4MyFi6xvbuGBPfuX6c+lvHP5Mm+fv8za+g4/97OfYml5H0VR8vbpd7h09SqjScl4UjGa6zMcj9jeHTGalPSSjI5OSUxK6QXrYrmBSNxASDXOpAQRsiwjzfJYxx7wnrIo2S6C2wqTMLcwx7AoKKoKLwnmJiYgEEoz0XV06oRgNrh53i9i/VOi2ObjGsWhCWpD6QOPVtFdZRRGEYh1pYNw4R0inkQHwkQJofyCSCiTMZlQDHcpJkUoYSAK6wWjPJNSUVjBegGjsdZTWYtyDh9sYoBqSGpUnVJe8M5inYqvEzIT+iIRTaqEhEAoIuCVkKqa5BZ0dGKpxqnkQCsqHM5rlI/XojxaKYwmuK3FgwRHX6pSDIG4EAGPofa1SaDWAvWgwCewXVWU5TZ3HOzy1z9+jP6xnFeev8GLL13l2Zeu8n+79TjeDTm6Ivz1Hz2C/cI1vnTuBuvDjH17l2LqcY9gAUWKxilAe3SacvnqNdY3tpg4obOyl26nw8GDBzi6sU3hoZNqFvctsbJ4nPtuO8Vf+NHPcfLIAXSWsjYc863vvsT6+iYmuv1UTNPdDNc4VLwI1oZzMNqQaKiioFQ7iUGRaE0oA+HxNZ/ia8e1DinFAeUlCEc6J+tqdquSX/ztzzMqhLNXV1k6eoSlAwf5xX/zm7xy5hKX13c4evQYm8NtrFgG3RQfnaHE/iUYMJvRr5MkEEVaxb95tAtp2JUmkKvW4WeYoCAbhVbwCpwKYoh4z+Jczu2H72S4u8Pq2g2ubW7TH/S57/ge7j91iL/2F36a3/7ydzi7tsFoPGG+16Uz6LM9Lnj1zXcYbuxgCCyurQWWcsxyL+fOE8c4uG+ZT374ER699y7me30mVRDX0KFndtauMre0l1tPHubR20/y69/4LmIynNLsjgp8MY7udYP3GjsumZ/vc/zYAe6/4wRffOF15vrzkHTwaUIx3GZ7OMZVFamCv/ipx/jZH/kM9919O/v3LjBcu4b2FpN3sUmX3/riF3jl7FU2R5Zuf57gWqzJSRtSwdfMKh6tk2YuiYGzl69w5foa28cOsLJnBbWzix2NSXXCHXffzt/82R/lS88+z1sXLrN25Tpp3iXvdEiTKMZG5y0CKYHstN7jvGCAYlxwdGWJR24/yqP33YHd3cGWRRjHOjrd+z1G1vHc177Dr/3J17i0MaQ7GHBy3xJLi3Po1FCVNqy5ArYSykLw2mMSwSgNXlN5z/UL15lPFXce3cdf/rGP8tFPfZQ9Kytsbe5wZWMbMSlKJ4EkVDoSjuH8lRG0RCJTKVwkD010PYsx0aUc12YRtOiwRkexeHZddOLROri+jYIsz7m+PWa7tOT9Hh+44xY+/9KbrG2NGE1WWeym3H/yEBNbsrGzTapTEj1LcIdSO6FsThBEERUuQym8Ay92uifpOG+UJlEKcFQkWKnwzuJcoHedQCkuZBCZ2bkUgYxvhEkIQkB0FYfVI6zt1oUvplU0btrUQhP76OKOwzGKiKIkONohfE+9jofyQPVXEB+npZ6c1GJU7b+Ne1SzdtSYfl8fW2lC9pAZit/7ICgHEnkq7EvYSMM510S7E+rSOl5mJenZryDC18fwqHqoRWI/oU434BHKyoLTscxB/DQJglOeZXQ7OVmnQ5J3MYkOAmC85/DeU5Ul2gThQARcVeJtyBIj4uPnhr0hdJU09wmNY1mi5OUdVeWw3qG0bu52tICRafmNuo3QOoooM+0tQnMp1M7yILRJrEGi4vk0mUzCsGjE79nerB/CUNE9H8S8qSN9tgTS98K0PFEtSSi8Ap0ohJLNjau8+NZpzj7/HFkS7jcE4VPf8xNbtGjjmfdFG8/QxjNtPNPGM20808YzbTzTxjNtPPODGs+0Dz21aNGiRYsWLVq0aNGixQxeO3ORG+tDbFXSyVPOXF3l0uoNLl5do7IhnbdzFdZZqsoiotBakySaJFWsrq2zemOD7d0hc3t7pN6TaEOFprIuBL21i4bg2lGKJhjN8gxb2UC6OIurSirnsM7jUQwGffSNddzENUTSlGpQ7/q3DnYFkciAzzAtNQ8F7y8TNEFtDF5DmQTfkB7Oe4pyjHNCkqVT8UN8COq9xuMbF2pwz4GID4SO93hbYauSsphQlCXjokS0QRkDyjMpJ5SVxUkghbyAsw5chbeBKFDahH8lXnp9mdFFGDnhhihDKbQGo2LK6Ui2mPhGPaVSAjlMLemo+JHSNEuiwOgpR1O3lYY6E3X8tJqoCCcoUnuqg0DhEJydcGLF8PAtfT503xIJJeeuDDl9ZcJ2ocForl0boXAcO7jIx071eP7iGte3LZN+j9wHcSOcbUiPLoDSmiTLuHZ9lZdffZNBf8Cp205x5OB+Pvnkhzhx7Cgb2zskWcby/IADe/dw1+23csvRw3jxXLy2xstvn+XV0+cYT0o6WYagpg55gjiilGo0KpGQajyQRQqlXPg+CgyB11KBkKsJTAnutMBpxrTc3oPyeBXKcySJoRLLM6+9yeauQ0zCwvyAc9dvMCodu5OCa+ubXNguOLB3njw1ZEZRWsGhI7kTKLfGLRnd0YFhl6Z/tYqTJJJqs/NL60j+ST1mFF5pKlcituKWg3v5+OOPMtza4uzpM5y+vsHhAyvcdeooD99zK7ccPsD6zpCt3TFaR5e9BFFrUlq81yEVfhRRUApfjOkZxaG9yywuLbK4tMDc/Bydfo/JeEwJgTjVhrIs6GaGxfk+h5cXKcYTuotdHLCxs8vO7i69QQ9tNJSCrRxpnnL08H4+/uEHOX35GhaPLQvEGDKj2TPXZ66bc3TPIj/xmSd57ME72buyRCUWWxZ0+n1Kr7l+7gpffPZFru+MIckwaYJ4Fyem4B1xTISSG9Z5DB4tPjgbjeL65iZXbqyzvjNkz5FD6O1tXOkhVfS6fT7x4YdIDBxYmOOti1fYnVSUItiypLQVWaqieKkCWa8Myqgg/gG2KDh85BB3njzGnn0r7O6O8DaMUa/A6DD+doYTnnnhNc6vbTFxsLCQsHdhQN7pgnisVA1BbC0UpcP6EgxU1mGLglExYW8n476Th3jsvlN8/ImHOXhwH+WoYPXqNd6+eB2T5agkaYSsMB+kERSVr9cy1Yi/9ZqmFVFYlsiYzgjF8XN8Le4SszWYJJD1SlAGyspROY8ymkE3R1tPMRqhveWDH3iElaU5zly7zuXrq2RzObXcXE+LRpilPv94LkohOoga9Trr63UYHc5dGSqC67UmuJG41ntmSjFATT47L0gUITQhe4FE8ToqBM11u5qAn9nr6sIgQqMMhPd7iaRv2G/r9/hIBIfSQ+Ym8rjJ8qHiOiBhLRClIrk9Rb2nTkvp1K0YxJWQNWKm/0Q13T67j3iRqe7RPAAw+7nv1kTiMWKWj+bhgUZ4mLrAldZh7YuMeN0PauZ662tJjSFJE5IkCWVHiNcws14G13e8HC9Ukwm2sniJzuLYBmFlZmZ8THurvqBU61BihLrvw3lp8eHBA6bHfe/3wMxIarbj5o4mXJyq27B+TT0GUCiZFX5m2rhRJeJYqu9D5OYrqY8zKxyomffX9ydhb9IoAztbG6yWu1y+vMnu7hZZahDxTMqSFi2+H9p4Zoo2nmnjmTaegTaeaeOZNp5p45k2nmnjmR/0eKZ96KlFixYtWrRo0aJFixYtZvDtV8+yWykqSZAk54++9TLeWpy16DTna996lsHcPCKKze0dKhuIBmtLdoc7bG9tc+bcBY4fPsyJo4fwE0tqEgoqirKMhB/UVuUQXKvg+K1K8jxDvMNVVSAhXMVkUlJZwZmU+fkBRmtcVTUlH+rgMoad4ULqtMLQkDazpEEIdWOd+4Yk/T6IwaxWgTzVSlFVlq2dHVKT0EsMzjmcq/DOoVRI5S9im4Da+ZpciSKB8zhXUVUFRVlQVAVbO7skWY5JM5QWtna28AJpmoBKw6V5D5XFO0GbDJNkKJU0VrDazBxcyVMxwEd3ulcSnNw6Ce5nHYho7V0QQqJlVosiIbjyvIpCgQ8kYk0wGK1JtArEs9RkQxAhAl0fiCYfHb9KB2IcQElwOTrxWHH0pOBz9+3nMx/Yy22netgr65y/NGTsUh669yjdecOb3x5hRxOWs4yP3bbEb3x3i3fWJuxsjkg7aRQJwjGcDwQPWpMnGVdX1/j9P/kSly5d5sc+9TEefPA+7rnjVoqy5Nr1VVSWsby0SK/fRyUpGxcvcvbyFV588x1+7Q+/yJtnL9Pvdul3u8E5qgwg+EhXaS0kmuCO14rCOZwEVx8qEE9SM0gupP1WkRGtBQ1qMUtF1yclnkDwex9SkCOe6xs7YAaMJhM2d8f80e4z/B9/4S+xd98eOs+/wJdfuciyWyAzikSFQeGVRikXxCAffhf4yLp8SnQ7xtlkIoEUyD4iZxZJ2kgAhjISBEejMlSVhbLkgeNH+Ss/9xOYquTCW2/z+sWL3Hp0L0dO3MLSwcM8/82n+c7Lr3NpbYtOb4B1imK4TdpbYs+eFdLuHLKzgXVBiETAjYfkSti7vMjC0hLXt7ZY3d3FpylzImyVYypATBDNUJAaxSDLEOfo5BnWey6t3eDS6g1OLs6RJSmmmmBdmC8njh/g5/d8hstXrvPNV05zYzgiS3L2LHQ5efggd99yjI88dA+PPf4IMtqhGA0ZTiZknRTdX2Ttyg2+9IVv8Plnn6e/fIDe/DxKA1YhzgU3tAalw7onPmQ9EF+S6SC4mkRzbbjL+atrXF7f4vZehwSH9eCrCi/bPHjf7Zw6uI8LFy/zjedf4rlX3+GdK9e4tr7BxuY2etABPJgEURpBY5KQSUK5Cl+OOXFgL3efOoEadCjXN4P7OJKQnU6GL0vWrq3ytedexfTm0ZMxCs/KXA+dZjhbYmtCVCc4J1SVpahGVCqs55PhLna0xQ899jg//bknefKx++jv6QOe65eu8cqLb/L062dIFxYbF3NNbnvxwf0qNjheY0mCUP5BoYUowHr8TOYBkiSSqmGdDfMqkMpKwKQJOknDNBSHEOaEFkG8Zbg7xG0PScoRe/fk/M0/91lef/ssazc2KMYlyaJBnGvIXa1DiaPpJjQV+2qRsvY2ezxOdFwDQ2khqzyFWCoJe1KoglAT2kEsEO8bYSk4uz0oE9aUuq1qQjZmXMD7kGUjig41OdvwwnH+N4SvCOLCZznxGB+E2focnPfReWtm+qjeQ4OQaLSPZLeOWRSmNQje64yO4kUk8MP1SbM/yMyrpdEyVCMQeGbI5vhfH/fq+oGA6bYex4bSYT2hLhkxJeSVmlnbopBer8WoUPIilEei6XeTGLQJn+1FoWMpEhXfA2GddIT9SLxnMhpSlCU+rvv4KGIpQcy772PC9Ugs99LJOpTWomPJFBOFVOVdIxJITeM3wshNLV5/KFFmC/c2Ehu0/ooC2vQ0VKMBKJHYRrFjmiau7z/k5s77Xohzvb73CqNfN/djCgWJ5trF81zYEjZ2LHODAUVVMJoUbA53/5QDtPizjjae+R5o45k2nmnjmTaeaeOZNp5p45k2nmnjmR/IeKZ96KlFixYtWrRo0aJFixYtZrBqU3AeEYtYy0ubngxPP9Us9Tu8cuYazl1CKciyFBWJUgClFRs7I55/5TUW5+d44K47SVNNmiZoDeNxgXMeo6ND1E9FAhFHVZWBaBeHF4ePpJD4EHHmacrC4hJ5ljVB6CzJMRUL6pTc8dfUsazc5NQJUA0p8L0hDfmjlI5BudDv5KR6GWstGkVlK8rS0vE+hN/eYxJTs+XN8YLjJwTmSiV0Ol0WFuZZGMwx1+0gJiUzhkR59i3OUVRVSEktnjzN6XZyxBhKt4sXT1lVeG/xGv4/7P1psG1Jdt+H/VZm7n2GO72xpldTV/XchZ7R3SAIEAQbYINqEANBkZDlMMUIWwoxHHY4LJmyw7YYFr44FAzxgyVbIinRMNCcMQMNgEQPQAM9d3V1dQ1d8/Dq1Zvvu9MZdmYuf1iZ+5z7qqoFEkSPe7269d6995y9c2euzDzr/8//WoloKqwsdK2jzUIXEziHeI+ToqQOwdqA4nLGizLCJM6GExSgODhTVgKLLhVVllB7OmclFjBG13CNqLBMRpSgmeVyyTwm2qah8UJwCppYlutKl/h//JUf4i/82VOc3Upcf+kKv/nxi7z4woJbTo350HtP0109jy6WjMKYrc0TXD/Y5dTGiLNbLdfTlFnchxzRDJqETjucGkEieCZbp3j4mRf48hNP82sf+wPe8cBbufvO2zl96gTb29uoKgdHcw6PZhzsH/LiSy/y1HPP8/Lla+weLDhz5lacGNCngPPgCuikZEaNpwmOjdbjvKWIjzmRMuBNNVhVh4rSqSLZVPR4XxAzKBJDMslUchIQIiPpuLp3wOZ0wv/+b/ws77rndv4/v/ir/PrHP8PmrQ/w53/gAX78h97KX33hPfz8b3yBj37uK8wWHUtvYx/E2uswjiIWpSM5rfkmPXbUN6cArikncra08zjImojJyoA0bUAtfzejqefdb3kTE1mytdNy8u338473vglxnt2re3zpY3/A/+o//y954TBBGDEaz+jmh7zp3K186Pvfy1//sR8ipAWLbo7kTOsaOpmQUqRtHKdOb7F9yy38i098gT968HE++4VH+Ln/7f+S7TtuoVt2zPeOmLgWj2f3MPLE5UPGG1tMG6VbHvL01SM+9sUnOHX//dw+aplcv8rMbTKfRYIkNlzmP/9PfpYnzl9h/3AOwC2nTnDnudvY2JggDnYvXiF3HV4Sm6PA5Nzr+eynH+R3P/Ep/uG/+GXGO2eYjAJeEilaNglDqcWIstLdzglBQJOl8jfkMLC5cYJHn32Jc48+xQ/9wPuZbk6ZHx0RY4fGzP6li0wmY976ttfxlve8mbi7xwsXLvH8hUs88sSzfPS3foevvXSJGxm4Z4uxJmRRShKMPTuntrjz3C2cu+U0LBYE8X15Ac1zmq2zPPTQ1/j4Zx7k4Rde5MyZ27h6HdQJ2XuUbIBoSqhz0HWcu/UEb7nvVk5rYvfJ5zh36xne8rY38xM//D5+7IMfYGPcIjnT7R7RTOCTn3mIX/jVj3HpKHPrdi7KUktBv1rUjfHMmowkyAY9++BQlJQiZPPrquinli4AA8LVMi8E7wgl1X/OGfEe8Q1IwyxmulJaJy8OOb0V+Is/8IP8R//+X+IDb30b//0//20ee+4ipzZPgYJ3ZS1dI9iq/Fg1o7HuOULwAR8s9X8yWXyPoWYEN25ZamSeMws1IrfpwepSdCV4e5aqsC3EKyg4u57xKEZWZAoBm1MhK3QNru/5jTWQvADmqnaNbGNd99+cspVlcEZW1i9VUMnElKwfkmU/6cHjQibakN609x77thAFQMolM4rmFcivGU3leVCKLHzVj1rV8fW2RlrkHjinJ4tWHwzs80AQx2Q8srmdUzkMUPYNVz4bFALBeQcarYRRAeJ9aGjaltCOGI0a8K48iREJXdeRciLlTM7Czs424/F1lBuFA7C1P+eEp2Q5Wf88UvZWEUfTNsy7pe3DJiM3cs1VUoJCEdQ9er2z82rstZRtkOIBWpXu9UBAvYqzPRSKMlyO9aWmDNnRfxKrzNirWV7zwJ6ZoScKer11XxskQxIWR3P2b8y5eO2QF2eHeC+MRiNObmy+xo0GG8xsiGdezYZ4BoZ4ZohnhnhmiGeGeGaIZ4Z4Zohn+I6MZ4ZDT4MNNthggw022GCDDTbYYGu2MZ1yeDQjdRbFTUYjvFoq86NFR9s2ZPUGLouU1MelEII4xhubXN874MULF7l87Sr33HEHbdPifSBlNZJATDabUsaHQGgafLckJwMhnQjeewsgl2oKJAHnHOPRiKZpTI2mauolTDmpwppSy0AWtKZOZk2FBTWV9c329cgCw3yqigfaxjNuNzg8mqExGl7jPc55nPi+hIKIgDcQJhQAK+eMBEvlnVCapmXUNpw+cYIuCy4EPJHpVsvB0Yy8n8jJwGWKMhtRnCugY1E9d6UjLM04Vkojl9TZMZNbI3O8s9IAqtkUViKWarrUr899zmtdcSQFJEBLuQcMbMu1Q+pQlLemBBEDe5YZEoGYS/kQARXFqaXUFhF+78vnee7ic5zdVrbGylM3Ejs7gXtva7n9VMOzz1xgOVsw3gmELaHbnZE1gg+4ZkTSQxLZUu9nhxYySgo4H6My2tgmaeZQ4dNfeYwvPPIEIXjapiGpWimSmFBVljlaKvYw4sTJKa7Ig82jcu9bTqANjjYEpOvQlEg54bxHUlWoFb8sKmrB/LnWj5CiZtSicFRNJQ28Q8WbmjZl8nKJAhtk3vzAm/kPf3rBA/ffhR9PaOdHNG3g5GjCW245xe/Oj8gxI+MxringVs5ErWrtqlUUckqgGZypaI38yD3gl7T8vnzlZKCSD6ae9E6KOjOSndBOx0jbME8LjvauEWho2jG66Di5vcHf/Kt/iauzjk4FcZ5pE3j3W97AG+6+nXtvP83h3j6ZUPxPyRoJTUOnHfuHh+xeu8Z4Y5urswUf/cyDjEaef++Hv5/77znH2dNncZMpT37tab7w4CN86bGnOLGzQyMJ9YIfj/idP/wi7377G9h68+vYOHOGfHWGzxBzpIszaEfcf+/dqAtAZpQzXhPd4T5LIKbMtFHayQTZ2OIzv/95/qdf/i2++PiTdGHKZDRhqRkXlwRRXC6p+gv4GLMpSBGbizFZyRdweBG2t07w4pUbfPrBR/mtj36cH/mLP8JIbuBnBywXCzQk5t0CSRGZzWk1cfutpzh1y2le/7a38dbX3cUv/NJv8IcPP8rVKy9z7s4tI61SIonnzIkddrY2mYwaWHYFzHWIKM579GjBk8+8yJefeJ5lO8a1Le14TGg9R8uIJu1LSySU+f4BZ0+d4Pvf9y7+9rLjxrVD7nvdXdx3/z3cfd89jDUSD2eo87SnbuFf//bH+MTnHuSx8+c5fWoD8VLy6LsyL0AKwG/K/LTCFQvwXMHbWpql6JMR74pqv6aXt3nnnLffFZLAEXCuYbqxyYUr13jyqed46bnX85d/+id49/u+l51Tpzhx+gz/3S99lEcuvMhBjmxub9t+5KQnCTSrlZZQIxBzzvSlYkTwvpYXcLYmOEeMsahhnRG+CItsQL846cHTnMqc1Lr+muW6HqdEqgCxYtdLyaZpKX2QNBddtu3Tvsz6FXl+80ZXsiQkpcsJKeQN4pCieM6Vzyp4br2OOkdKRaWtdaWTfns4RtKvbbWmCC+ZLCo5UtTI/T36sV/bj2+iHtaLT6zv8LbXrd1abB+S8u/FYsHh4SEj79jc3C6ElSMlxXtTsCtKjoUcL22V0KLOCiillOg6yMmXckjSP4s4T3BGbDRtg3Oy2k9xlBwi/Z5yvG/ABW/7pBMWyyUxWykoI5HL56/aI4W4AUytjcM5sRIoYuu0kQIgtX6Rq9C/knKmAxYpkySvzSGoZFIdPytvVEpIZEXyqpNX/b1qV/kgQRXA27OWDDflc9x6OQpE8KI4iQgdd911jlvOnubUiROcPnmCwQb7ejbEM0M8M8QzQzwzxDNDPDPEM0M8M8QzQzzz3RTPDIeeBhtssMEGG2ywwQYbbLDB1mzshZkIWSwUHDm1uucKMStNI/iqhi6AvCB9jfpm1DKbz7m+e4Nr13e599wdeO9xPlggnRNapJc5ZxrnCMFqyHfLjlTSbFcQtSrPamA6GY9p2xbv/SqwpPz12vi+vWSNIPi3sZ4kEHBiT+G8AapFT9Ur5vpGrTWxJww0m+IKITtXABED9kdNg6QKjDkaHwjOUxVsuYIisipw4b3Hh0Aj4HICDMBqGwihJYxaxAWWMRKTh0ZNnW6dgUEr0gMmglIwZHrooAJU5e/V75SelYFjQIwWlV9WJRXQKuei6NNyn6yoCp3Cs5eucKIN7IxGbJ6Zct89W5x0kbtOt4xbYTFTNkaO7U1BmsiiU1M0qhJGHo0NEUsX7sjHCB8tQFkIDQ6IMbK/f0RKpvQV58gpsVwu0Wzk1XhjyqhtaUKg8d6UmcfQG+39ykgXA+pqmnTtu2UNoNLVvHEC6i01vDpnoKZanxrAqWRdKReXMXJiY8odO1tMNLE1bnnHm17H2Y2WK9dv4FLH8qhDl5G7bz3N99x/N09cvMrVoyUpK55CQpQR196dVwBRT2bU8a+KuR4JLKNeFIQ4h5cAagngHZby/PzFy3RdogmCZGUxP8K7htlszsHhIW9/0/20J3YAIafMRjPivnO3sDUZ0ThlP0bUN4iz5PKSE26yxdF+x/nL17l+7TpNCCxz4srRIb/7uS/jm5bvuXydN73+Htx0wmc+9xBffORJru3vM93ehDQjuMCkDTz10kU++8WHGTWed77jLTQbis7npJiIMeGCMm1bfNsaMbKY0y2WxJyJAqO2pW08sy7x4rMv8Zv/+vf53CNf4+Xre4ynG2VNyD26Kf36UdeS2q8GVuJM9SpqkKEPgcOjjqcvXOJ3fv+z3PWGt3DP6U02xhsowjJF891kKfqdU0Lb0LYjtkYb7Hzve/jas8+zf3TIg+cvELzQZVcIwEwXIzEX4N1JSeGecU5o24aDvUPOv3yVF6/sEsYTI4LaBrxwde8AXXY4B95bmZluuSQ0gVtuOc0Pf//7ONw75NazJzl95hRuY0q+cR28J7nAlWt7fPyzD/L48y8xS4mTk4bk1gBV70uZh3V/7GFmwEDoCjDiXK+6dOUaSi7OrUZAaCHiZB1UtsV51LYcHu3xxHPn+aMvPsyP/vAP8LY33cfu4YJHn3iWX/vkp9mdzQntCNcUGLEHgI8rULUgvOL8an3ol38pBLKBsrGfWwbmZkrplUoQkAswT0941L2rguaq9ui1/E5ddyuxW0sDHZvitVHFIYVVuZfa5pyN/HFkJPterJqLz1qJljJCdfMvD2rlGsr+1Dv9Gri8ZnVY+zIg2faiugjVPX71bum31dp3/T50/BH6Z+3LRtW+WSO0K12Sc7b55OyAgne+kEl1Hbc5ktaukzTTJS1lh9TWPrWxslwTNYNG0/uyk2yHK0q5mpy1kM+snmu9f0r7nPOEYL4XYzQiqvqzuFLypZJmWh3R1M/ksvea/9WhN6Vztn2r9EXOiflizlJBUiR5h9UFWn3O0pVDrz6baXGaNcZI1saEtTGR+hmiOoAWJfdNjJMdYMj4xrO1tcldkx3e/MY3c/bsGXa2N9maTl7hT4MNtm5DPPPaNsQzDPHMEM8wxDNDPDPEM0M8M8QzQzzznRbPDIeeBhtssMEGG2ywwQYbbLDB1mysCVeDO4GGDnBF1Rd61QoCWlTJPe6givee5bJjb/+Ay1euknIuSjIPYgpApS0lIEDE0TQNTWhYLpbEriv4gMN7T/CBKJmkBj5ubG4ynU5p27YHCShASE02XEPaVah6HGA5buuB6TFEv//16p8FPHcGcOcUyWhJOV3UeUUtV9ti4EEPoRuWVQPr0u5UAYqUIMeSNr6AILHI5QDEo2LqZYcpVFPOjJuGyXSLjfGI2XIJGAjhpGM82WTr6i5N27C/XNKNDIBzQQpVoz3Qn9cefV11aOBQhefo+8sAlwIUyAqoowJdWYkp9ePkELtQUsSD18QiKsuoHMZMHkceuP8+vu+tp3nzvVsgDRwdQV6iRDanU+5uI5snAsiMg0Vgd545iolJKyAjOgmgy0ISeESrsssVgXLGA40Ht7WBStV4g9PMbHbIMnZkHFub28WDTPFrgFZJ9a2mzjR8RPvntcdbldQwwM7QX80YeFmBLycgpkTOKkWdZqnYJdt8suT4QlbhxuER77nvbt73+ns40Tji7nXObk448bpznA8doomD/TmHB0vuOncbP/OhH+JX/+DzfOLBx0gp4iStxrQSZv2EWZEXfbmCdWSH0nYxILZ/rRjRlWPCozTOEZcdf/i5B/nQn/8+dm45wYnpNlfnV2nahqs39nj4a09z7raTvP8D72FrMobZEURHPLzBYj7jYDknlbT9UsizoBnZmHDlyjW+/NSLXLp8jZOnTrK1OSYx4msXLnDhlz/KfXfexjvf8kaaccMffflxruwdIaFh1AYWM0dwwmgcuLJ/xD//V7/P4WLOfffew8lbT7G4tCB1SpaAqGcxmyPzBWhEVEka0KJc3treJCZ47vnn+Rcf/Tj/3T//NZhuMNnYZGO6iRLLWlkViGslA3ogVsvsExBPlQu6bGQO3nNx74Bf+tgfcfLkaX7qw3+BN7/+HkajluW1a4iuwNRlyshsjhzNEdlj+5438IPf9142Wod+4jNcRlDXkENAl0suX7rK1Ws32JstYDJGdw9QwLtAuzHh6Rde5PmLV7ly45Dp5ibRZaQJZFWee/kyy4MDplsbNM2IOJ+RUBbdEt8E3vSmN4B3pMUB3fyQ/auHNLSMtraIqjz4B5/m137/s+wuI5s7WzjnyM6ha4RpBX2lsGlOpADPhejKZW45wEsBlytJYMpdKCnzK5GAEdMqgq+4tmYa73DtiIefPc/FqzfY2djkjjtO8/DjT/Lbn/wMH//sg5y7525G0ynqPVpKFZQVzcBtzUTFQGRxBtrXNbLuLJVYQGh8g6Rke0jKqDrA1LiqyUrOiOvJOup9shEkwSta5mnuwXoD2etavU4kcGwX0tXULiucFkC+umdSRco+RMoFRM84BQ2VRSzEZqbP/JG1pwfsK4PUNfPrmIJlTslVIUwZ5wp2S+nttXZSybb6rFr23syKoS17dk+ErNY01UK5q2V5Cc4Tgn1VosDKXoDzdS4r9TNPTJnZfMGyizStkVLiTAWfy1gkNVWvNTbhci1fUvy0lAepByNWhCzHDjWYm1spjphiKZVh2T9wDnW+EAVrQ6tWbqY+A4CThNTqDbn0QSFEECXFxGJpWWq6nInTrZJdRCHGNeKbVb+aE1JOAMC6f1VOZsUGragDpfg8RuZVUiglu48TtFswGk+5/cRpbrn9Pt71zncxGo9KW5df16cGG2yIZ1573R3imSGeGeKZIZ4Z4pkhnhnimSGeGeKZ77x4Zjj0NNhggw022GCDDTbYYIMNtmYeLKVvrqUWSrxd5DDZFZAQDFgoEaPpujJNaFgcHnDx0iW+8MUv8X3f+27EeZom4NdSRauK1YWPkSY0jMdj5os5MUaaJtA0gelkioin6yKLzoDikydOsLOzw2gy5uDggI3J2AJji7B7gP1YpHwcEbnJ1qPe+no5/usqBdIC/PYv7ZGKgkOZukfEyiskSnmIShxkLXJYAwMFxTuHL8BCT2SsMR+CRyRg4asSvCc0DULEeW/B/HKBCw2jxls6coCc8WTalC1NsxqQ730gASkaWBZCwMdkZRTqc4v0yucK0jqElOza3jva4AheiApdVGLMBIHReISq0nUdy7hkNGppQ6ANDk2mdBo3ju1JSyOJgygczRekxT5/73/zPu4/t8XetX1+/Zcf4uTJwPfcs8mJnQYdCfe/6xQcdpATOpuji4bDa3N2r0SWo8CpJtCqI2oAIpIF5wTnbGycYAA8VmJk7+CA3YM589kcme/zkz/+Y/zIB/88vvH843/5K3zy9/6Q6Ft8O2Y6aTlxYhvvi7pUtZRBsOvlnIiusVkggvMN3glNEFrni1JOSikUA9xizvhgKb41FoBMhOAbxEPK0cA6IOA5Olpw1y1n+PMfeC8f/JE/x+Of/iMO9vbw3nHfG97AxatXOH3mJKfObfDc0y/x+FNPs7t3wGg0Yk7GO4p22deO6DMPuNCQuiVQVc/mC84JIh5iccsqkQRSTIiLPVjZIYTJBtJm/vWXHubUf/sP+PEf/XN88IM/wNk7zsISHvrY5/h7//S3OTzc5yO33sEDD7yJ0XQTrt/gaJlYZiG6FnJmbHgx4j3bd97BxRde5pOf/Bz/46/8K8ZbW4hXki5RhLtuO8tBt+TRKzf4/O/+ITk7Nrc22Bi3bI4Cy/kROVoJAyRy5tbbeeHaFX7pY5/lhedf5P/0n/wvuOO+e9g5fQrmC5gnlimRNRmR2U5xk01oGrJLPPPwo/zCr/4eH/vCI/zho09z+pazbG1MCE0gEnECTVGMWomaArSV/zuEJIUsqgC4FmJIDAgfjUb4tmUx3eG//We/zpe++ig/+N6389d+4kPcft+9yHJBms2ZHx6S42rhyynD9Yu8/rZT7Lz/PWxsneHv/ervcLjoSOLZGo25dDDnMw8+ws7GmLe+521MGo8u51ZmZ/tWvvL0Z3n6/GWu7R1wcnuLJUvCaERaZh782vP87h9+jg98/we4++5zhPPPFTJUcF1kduk6KkKUSCYz9YHxHXdx8cUX+dIXvsT/5b/+77nhJow3tozwyJYO3/DaBN6ZSpIVULpSXVaeJZNTIqmWEjAG0qpaanoD3usuVfvXftcWUlpEQTpyFtqNbRzCTDP/wz/7JS5euMhdd97Nm9/8Zv7D06d4+OmXOJot6RYJ35a57BzZ+ePbydp2Y2unK9uSkdzkzMhZtgtblwyozUW5mqIUoqHSkTVh/2pTUyrBZMhv6wIpW4mWGHMB+TNZE6mAtqZVXoHIK9Vq7n+WgZgTXYaQIdlShVcPauWXUiqljIq3GUleyRcrFYH3fRtzIVAqHfY/b44up9L+Sh5EO2SAo8e30f7fsr7fF/+on0rAMg7kvEZc9GSI9UtoPJtbm5w4eRKNVm4HJ4i3uZliQso8tnusCClEODyc0XWJEI4YTyb4tqUpX6O2tWwHtSzRco5zYfWZAlDSap3IbgW0r/mUOIcLnliJ95xtL3IBQoOmWJ5tRRwilgkkp0yKkZRi2YeKf9b9Pqe+Oc4Jq7uvEz+5eIp5pCv/V2eMtsZIXCyJ8yO85LVPUGuqdsXItdIXiOCCMwLd6megOUCMRu6NG9xyzl33fw+3n3sLctebyd2SRZH7ZzztH8OjBvvutSGeuSme6V/DEM8M8cwQzwzxzBDPDPEMQzwzxDN/onhm7TPGEM9868Qzw6GnwQYbbLBvAfs7f+fv8N73vpf5fM5f/+t/na7rvtlNGmywwQYbbLDvWlt2iZxMFWVpq30PJxjs7W8K9XXtK4N6mqZFnGN37zoHh/tMN7YZtYFREwpgjSlbciLGiPOO0DR43xgMoI6cMvP5zFIfa0LJJDUSogkB5xyLxZLxeGxqujV0QKWmG14PayFLBQhqsL8OJdRnkbW/bzK1Gu+ipt6SojKtatMYl8QukpIBsuJMIdWDscEA5h6kyMmUUYA4T8ZE0AYyC6RkirRMAfATy8UR3QJ8VnISnBYA3DtTQ+N69ZYTU3iZMl0KkFYYDYXDmFgW0sY7EG+g0GqALdj3VfHtPUmNJBg3DnFKVEE0kVKmCcLIFSg0QfYwCsIoCK23kgdkpXVCW9Xhy45tr9xxbpv77tzg4vnrPP38IU9embKz3Oe+159i0oy4fnXOwaVdbtkYM21Ausg95xo+/PYdNp/c41Mvn2c2PWsAqXNkcaYzFGu/d6sRzoXEOLuzybve+hZOnzrF9uaU0ztb3H/n7Zw+tcPWX/9p7rrlVvx4ynwZefxrT/L0M88xmoxpRiPzOTVfdqJFDa2oJoMlMzTiCM7jCStyqLZCMikrpFxIuWxgoJTSH6poNh/zYv57YucUjz1/kV/7/c9w7o5TaI48/fx5dvcPuO8N93Pi9GlCG7h46So//89/nd/4zGOk6Sbtzg5OYwHAHBVsywlTNlaXd00vYJNsBJeVHTHywntD7a2ah0e9MzDHKU5BUirElzA+fZrf+8rjXJstefKFi7z9XW/mmWef5xOf+wrX5nOOsvD3fvGX+cDb38L73v5m3nLnbYw3prQpErsFpMzyaEbTNoxGE16+eJ2//y9/mz/48qNc2Z+zub1tzpqta7N4mjBmYzqinShZPU1weClkRkqmXBexFOe5Y7q9yTwnvvDMRf7rv//Pef+7H+DuW09zdmvCbWfOsn3iBE3TEuOCw4NDLp+/zIXrN/ja+fN8/Pc/y0PPvMSV/Rk7p08znYwIzsAzChFk6lxTS0rx/WpOTIGpZV3RrivgoJFM2H8EEVzT4E/ewmMv3+Dy73+BJy5e5UPf/15ef+52bj11ghPbm+hoC9EEWsi+6WmeefYlHnroET76R19kURS7mpXZfMb2qdM8c+UGn/zSo3zPH3yR97z7e2g9xOWSK8+d53f+4PM8d+UaOmpAMyEpWSAHj0y2+Ke/92lm4vmBFHnd3XfSHB6QugU5dkBk5B3taAKjMa4d89hDj/M7f/BHfPJzX+K6OCuZ4YQYI+odDis5kLGU9KmoVUUsY4E5qylfNVkJESlZF7KmPtNGLmSC5kxWK0Xjslut+QIpZTpJVNF09g3LmAlxwc4I/uqHfhBRx+ntLW47s0OYjPjqUy/zyS8+zMe+8GXazQ2892WdscwfzhujLqpoiohzPYmeMkWhbUvAMmVSSeUvzojMpNBliOpIOWGrlynEU5l/lQwvHL7NueIrVppBUTEyV3M2cDiXvVvE3LKwv0WHSy1ToGL7jpUWgFXCfjESY41MsL5lDWi39c9l7csSlKuSBLIkA8K5iVDpd9pchsbKTKiokZlaylA4RxYp2HkBoNUyeYi41R6qZT+s7QS06KktLYUaUVyIo5VeW0g5M18u6eZzkjvkYD5nmRIuhNIHdkFX+SzNxJxYLrvCt5qqv8LjThWXEiw7Usx92ajlfMHLV65y4/DQ/AI7MJGh/xyx3n9lG7Zt2wldZ+NKTkYujjchNMj8EOkWuGx1QdQZ8B5zGUfncboiltY/3/Sff8qhgS4bUew02u9knWCRchCj7PPakZaJONlkeeIWdOskHtsHEJuPksxhBUiCfc7zHuc8STJZcm0AmRZJEeIclgeE7EiutYwEmnGkks2E8rlvsMFe24Z4ZohnhnhmiGeGeObfPJ65+vSjLA92Eee5653fR65ZxIZ4ZohnhniGIZ5Zi2cOhnjmWzGeGQ49DTbYYIN9k+zOO+/k/e9/PwA//uM/zrve9S4WiwV/5a/8Fbqu4/z583z605/+JrdysMEGG2ywwb77bBnTSgFkEeIK3Cxgd7VXwugGbjZNIATPsltw48Yuo9EU710P5PTXUSMKfLCA0Ynvg/acDchVVgBLipHgHKOiOMpqalIvtSTBKo34sVZVEHSt1RVIN1u9RwuG/tqmPc5eFY31skpRYJVU5RXYyUWR552s3aqk7s559aUrIKZwD9an0IMGWsDOSn0cAzuylZSwt1kqcV1TFB43R5czy5hIKKEooqjAj1YNuH0JShM8XrWojLW/rlDAeOdwmDLPO6FtPF6w0gxa2p8z6kwhlXNmsVwSWmFnMmYjwLW9BZf3Opa0TEcj/GTEUXY8c37Bhev7vP/NDdMdDzGyMVny/rdOSSPlpYMZz1+f4b2a2rAoEil949b6MSWlix3f/5538cCb38jO1hZ7Bwdsb25yYmPCma0tTr3z7Sw62D86Yv/wkFtObKHLBdcODlh0HU0zummMZK2bDYQSPd7faOrBEHEeNPW+IUU133ukGvDk6phIZmNzysvXrvHgo3OeeeZNvPW+1+PGE5bXdomLORund9jb3ePFFy9wdXe/98eYEr5pSCn3Y2l+bodz6vR2voJ4pu533mHp923+uQLW9eBh6QARa7doxmUlO8doMuHa5X0eeupF9g7mPHvpMs+dP89zl66SHfi25bNffZIb+0dcvrrLS2+4izfccyendjbYnrS4tmH/xgE3ZguOru3x5Wcu8IkvPcIzL19F/AjvPTkqNY244VaephGCCBlX2pN7RaqVD6ilbTKhCaQIN+aRzz32LEfLzG0nNzmz0XLvXXdy2113MRq3dMs5N24c8sLL13j+0hUef+E8D33tGW7MO9QFptMxoYydLZlSgL/Sj32ZgzKLC0nqXVWQJkip7/uU6dczQWgcuMmYg6MjXrx2wP7Dj5Nj5K333M29d9zK3XfcyubpbSatpy3p7HevzPjMVx7jc196mC8/+TScuo0gwdTAKTGeWmaJp16+wu/94ReYnDjJZNwwPzzi6cee5ivPPs+NZYcbNeQcDbJ2tqa5UcPXXrrMHz34KIhH/YjbJg1BBO8C2NLDMmYOF0dcunGJj33y0/zBF7/Cw8+9hIyneB9AM6msC1KAbMp6qap9yRI0r9axOh9ymTN1fXKuEGum0C1YsBEGdfEr788p0YntR97ZeHTLBWOvnNne5APv+R7GfsRydkA3O+Cu229hMVMefuJpUupszVu7dp++31DzAr/bGr1K7y89j51s9TdCsBC4SZWoRsvmQj6q1kQEufgP/f6ZyzVduX/dN0uzyh6UKzZefLNshDdLide2JRXpwX+KyjbntfIblDZl6b+vZSgq2QD9MrdWPuCV+/IxK0OpKusts+d162WJzC+0B5VXu9QrL2cA/Pr1reROtdo4JaVEFzu6LsJ8zmK5JCYrlVCfUfuxpXz2SHQx2pXElbIKzgiMlIkkUlJSNBWziLBcdswXS5Yx9n6pa1+1sf33ZSxE7NBGLKS+q20JzapcQ17TPZdHy6wy2ZgH1EMNa+PUj5fgfbA9nHV1c22VrBpVszp0idSOyCduRe97AG65E1JHPW2gOaHJnFlz+bRUMgp451EHEgQr1+TANagmWBzB/lW6yxfIzdgOGGhC+hol/eY72GCvaUM8M8QzQzwzxDNDPPPHi2e6rsPFBfPFDQ6vXGCxfwNxjr2XX0REaCdTNk/dMsQzQzwzxDNfz4Z4ZohnvgXimeHQ02CDDTbYN8i894zH4/77H/7hH+Yf/aN/dOw1o9GIj3zkIwD86q/+Kv/Bf/AfADCfz0kpMdhggw022GCD/enbIloKequtXqCHIp2UV4SNx01xaM6Mxi2TUYsj8/KFC2ztnGIy3bTYLhdVkjMlb0yJBnoVHLkA8BiY40NDCA3OJ5ZHc4Jv2JxO2d7YIHhHjJau3ftXa5tppKp66ziSsEqwXQEFqejWqzyn4c3S41QVaNEKPgLOFxVVthhZDE0Alwvw4nrkQ7DgP6ZE1xnYmHKmZDo2YMAVRbJzRRFnYJF3juCwVMpFiUzOLGdzUorgXAnAlSiBFDuyJqoiusD6JGAWO5LCSAJO1NRtBg0XPEBBrF1tO8JrMlVYMoB7GSGqgDO1ek4rNbVvR0hK5JiITulywqR6nhAjMXXsLxaAJ0ZIR0sOOqXzjhMnhPe9/jQntsdcuDLnS4/u88SLe7z53EnuPBlIKZLdkne+4yzbt29wY6/h7/7GecbbnnbscFrV8gXcqOOoSkqRbrHkr//MT/Cme+5k9/pVfuVXf523vunP0XgPOXP7Lbfwjre+hc9/8XNIK/zFv/KXOLuzwW/83h/wtWdfJPiA0PSAS+5T+1eA15GzkVgpFbVqLgpAMSW7OmefcTUTLB+2AW5agCAn+GTg58ItaSctV6/c4PzBVc6//DI/+EN/kdcfdUxGgdnedU7cts2FCy/x1JPP8va3vZk77nsDn//a8zxy/hLjU2dRlxCNOBI5K+JdKR1i/hu8t7EvhJb33oYrJ/NDpCgx19cFk9QLShB7Xs2ZpvVsnzrLjb19PvXQE/z2p7+IjBu2Nqec2N5kwzdc3T3gE19+gt9/8HHu3h7xUz/8fXzgHW/k3W+5n/HmFtfmHV977iW+9NhT/NqnPs+FvTlNO+Xk9gmWaY7iECmKOzXgqic8SCULQ1Ge1zkrptCXICSNuCBMNqbMFh2f+urTdEcHxMMb3HHbae65/42MNzbo0pLLV29w4fINdveP2JvPOHn6NJsntgykTaVESSGmXE+iFES3Aqe+AJ3JUqh7741IFGeK3grepVSU6B7vjGRDlO3tDaLC7nzGP/3EZ7l181HuOLHDG+68jfvvvYM7zpzg5PYGm5sjHnrkcT76qS/w8DMvMEtwbvtWmhBonSMT6SQjo5arszn/+Hc/ztXDA7bGUw6P5nzuoa/yzO41RptbTMYNsVvQ+BZPNpB1rOweeT7+4OM8+vRLXLp4nQ9937u49fQOWxsTfGg4mC95+do1nj3/Mh/7w8/wW5/4NPsq6GTK1tY23Wxp65x4wxNN5mvrYiqAtJQxTalfM3sSkxX474sqFaqiGqhlGvIasS2WHSKlRBKPwxHE4VIizg/ZOn2C1919J69/8+vxi46vPPQwX3roUcJkkwuXr7B/NMeFEcEHI3yLP0khCCoY70qWi57TUKUKUlUV8b6UzyjKfudIWrJi1L2m7Fs5rwG2/f5V9rSsZGf7pBRlduEp+j0kaVGL915Z97p1kxWhUp6jguKK7WUpZyPAnaBFad6TCayIApW8dtmyHn4dQNdVklVzv+71ZKvQEyZGq9j3Vgqi7Impp+lt7erLPqwIgnXS4djjrvVESpalRcnEriMuIzFGIyB7wl/77G2p7IFd14HY5xnvPcF5e4Zk636uZbSyfbaIOfUq6aymHO8/mlQgvWdHis9qQgoJH1OyBxDXK4QdlYfJUMs6qX05J73vVUIIODb+legWO6FpBNX6eK19bhJV1CUD98UhR5Hulrvg/rfT/sCPICdvh8XC1M2aS5YAUzXnrkNSR44R1LJZSNvSTjdwwdTPzivqBVkukOvXmH3mk8hkq3y2SoWM1vJ4/+5JgsG+s2yIZ+x3r3w2hnhmiGeGeOa7PJ65vnfA3tEhJ0+fZro1YXblAhcf+dzxtSJnXvyyidG3bz3HZOcUiMN5jyJDPDPEM0M8U2yIZxjimW+heGY49DTYYIMN9g2yn/qpn+Lnf/7n+++9f2U6yHX78Ic/zJUrVwD46Z/+aX7rt37rT7V9gw022GCDDTaYmTTe6qlnA3PB6HuoQMhKwXbcatDeQY6IRpTEgw8/zMbJs9x2eyDGxDJGUioAqA/MFwtQU2U675ktZkz8mKZpEGnImmmCpw0BQRk3ge2NDbY3NnAVbNVMSqtI1sDMoqShACM3EwTCCgTR9d+/2rNp/5tQyi7Un6ZSr96JEDtTotVrxBiLasmXNkRUrX69JlObpZhYLpcs5rNy+3pIwtCDSFVM25/RuGW6MaFxcLRc4ENguVhwuH/A4sa+4QeVwCCxsXWSa1euEGMkNC0iVoLLG7+ASBmLxpXU5JaCW8gF0LeU0jkb+RDEVFqmvBa6HImq9l5xKzVeeQTnPF4E7xzLjAEGIkQcnXrcZMpRjjx2aZ8ubrApV9gJezTtknvfcj+yXLJ7cZ8nLu3xrrfdyokTDQSQ0YTxRgvThtGmcPbUJguWtNri1VV+y1KGF9KjnkGxzDvw//vFf8IP/cCfZXtrE23HSFpy2+23kLLwC7/6Uf4P/+f/ksOjI977jrfx/e95B//Jf/Sz7C86dg/nXLhwkY3GIWrqRihK7EwZ10iMpdyHOptLxcdyUXpqP1YGGOUY6R0WhwJLb0BfSoHdly/ywJvewA++6238tQ//JJ/717/B697yZl7/oR/hS5/6IgdHT3Hb6Vt4w0+8memJTTR4/sE//U2u/urHefrqNXa2puaJ66CPWEp6MCW0pc/PfV+JEytnkbtCYGjfbisXYQC9AJGRpZsvCmAvifHGGD9q2VzuANnu3zlyzJzc3CYhLLPyzOEh//3vfIZf/swj3HHmJNtbEw5nR1y8tsuLl66Rw4SNk2dxzrPIsRSlMdV2LmCZVtC2AG9VVV4ntzgH3htJoJ5C6eFI+JFnPD1Nt9zkYK/huWu7vDj7Gq4d4ZoG9SMYbRKmW5yRCKkjp4imXOSHrqRJz0hOheRxRn4iZM240s6aBaFLNt6WSr5mJuhZSFQhZSVRFqi8BBFGk5bRxp3ELvP0wZJHv/A46Y++wLjxjIJn5IX9/X0ktDTjHbY3p+S4oOsWIJ7ReAKaaMYtsW3Ynzf8D7/+MVxS2tAw3TnBiTO3GsGSkq37wfWq2dRltk7sEBcdlw7n/Lf/7Nf4lY/9PreePsGJnS2m0wnX9vY5f/EKF69c4+r+ASdOn2XStnhx6GJh60gpiRDVigWk6l913dYygaEvdVGdN+eEw4BTKAfJcp/830jKxqNCXzpdVVFnRLaXhMcUpohjPJkwU8cTL+/ykX/5r/iRd72Nq1cPeeSZi/zKl/4xT56/SpTAxqlbadKMEEJpByR0fdhKew2uzYWgsjXHVMZS5x1rpIIInSqLmAhq87/feQsIbfczFW9V1atCLOUJ7ECdzb2cbU/M0dpo4Pmr0PyFlTb+2K6dEqi39SxrgqaUs8kGvKuzzCWqlsbfQH1nJDtCLv6vWXtl9vH997hJORhoIL+9l/49q+wn1PlDJQHWCICePKqAe9339RhJkeqbehLFyCnnHU1oyvyaMmobfAXhvYfim4a/u/JcYoRztyTlMUEzOXVG6dTMBm4FO4uav4am6ddOMP8pn1p6P4UVuRVTxHnPZDphftQZedL/XuxzEIrTjNb9GcHpivxZd9B6XT02KDa2WQW8R7xHYj1IUQ4NlL6ULIjY+M9yIt15jnDv/YxuuZd0NGO5mKEpYXlSMqHxOHVIEpYHh8zns5LBRQjjTXxoQDyqEFIE3wIT3Obt5JO346abSNMg3qEx9hka1L3Cmwcb7JgN8cwQzwzxzBDPDPHMq8czne4ye+JzzJ6U/vPS17O9i+f56u/8C0C4/3t/kM2ztw/xzBDPDPHMmv2pxDMM8cwQz/yb23DoabDBBhvsT9Gm0ym/8Au/QAiBc+fOHcv09D9nzrn+9X/n7/wd/tP/9D9luVzysz/7syyXyz+tJg822GCDDTbYd721ocHRWSr1AsVZrF5QQ3gVokD6/3tRPErjPRubWzz1wgXufPEC48kmJ7a3+tIHitVCj3lGzJngHG3bsndjzwAR55iMR+RuQeM9o6bBeUfMyVJBu6ImPNa+Y81Z/fsmhdTNRSMs1F5LkSxfRwN+TDGkRdFtKtiDw0P2Dg+ZbGwxGY0LcKO4TFFwiqUxxwBWFSU0gclkwmaXGI/GwH5PCGgBSJJmAygchRCJSFZyyYQpPYiYCgBtyiyIyMYWNWl2xgCOTElBnxOtDyRMmJiLyltrX6iQCyCRRJl1Sxonpa+EpFIIBQMj5jFavXs1YNupI6BEBO8Si5hxQFZB6UgFdDrqYHd/ye9+5QUeeOAs97z1FOnGdcLOlC9/8TqfeWyXZy5e5W9++B52TnqOEF6+2vLUV3bZOqs8vxv5va9eIGxACB5RIwEoZACqxBgBR0zWn+14xJmTJ7j79rO87v77eOA972K8OOLpZ57jmRdf4tGnnuLf+7G/wD3nbueBt7yRe1//Bp597iUuX91lNl/gm6akcjdyJSctZTWclT4pB/xFPCIexCGuqp4xkMSboriW3wAQ7aEiIhl1BXRfZMbiOLu1w1hG/KN/+Ts889RXece1A87e8jwf+ZVP8MZ7bucH3/8O3nP6DJIyTz/9DFcuXSKnJSMnBv5TwC21pPQrlA0Wi0VPUImWlOuioNkoC12Bcc6VLAIFkY8pE8XmrXOAJsgZp5mGTPCZpJFsqws4CES8wMQpfqNBJXC9U268vEt4+QreRTJCu7WNk2BqZ7U+kZwQdZY+H6EIy/vpKZWxKXO9B/RLGYFa7sSp4kQREiF4VDoCiXbUEMZj/HhKGI1Q7+lSRkk4l8q4Y0rRpOTsim9b23r0tACgKcdVgnWhV0aSjcxzvpTCWVtbrY2CeA8pIzkjoniXcRrBZUKrNL6FvGPiYozbm+40kDpEwGkmeEcXIzEncgfeO1QNBPVNw+bJE4gKjWuYTLYIGtEULcW8a7HKG2VNSoLLieDAT1t8e5preK5fuoF/+RqN9ySFLiVyM2Hn9BQXnJHPKE6F5LTPIhAUupyL8rW6lfRrLKqredKD7h5fiOUuRhSLH7W6rJqi1mEK87rnCAb6eqF8CYhHJiMOovLI+Us8/4u/xNZoxMgH7rj7Hn7+j/4l460zTFqP145c1lOhlDjKiZXK1oDjCmjXMhXVnHOEEHoCK2clO6FT6Arg73EUMbOB99nWeCnzUWtfmIS1JxLqHrgiv6s6WEqC/xVRsE4Z1Out5ndpXCGFtC8HUZTJlbTuM4VYG5JqUZ5XlXRJBlGJuzXr75etq0pBkL7dJtIVUrK9pQLC4q2ETVbtW3/Tlfs5VvmAVQ6U4k9oIbltjGIy1TdqGSHGozGj1hTwVkqmEp9AJQgK8VLLP+WUyTFZuRzne8jf9fuQUSheAo0PuNJ35peWMUXqn6q6X/OZ+pVTtrWZ0v7SRk2lpIwmVD21TI4No9ihzH5NXBEEVYluz3azZt58oOetqZ+TPIlMdAnn7NlZdqTFEd1ibhldnEPU2f0S5BhJiw4IbG6fMMJMAdeQVEndojiCImIZYDRnXp4dsrk5ZcMFNtsxy2VHLOV9Bhvsf86GeGaIZ4Z4ZohnhnhmFc+44Hnxi58CIC3n/Ye+mz9JvZZp6feXHn+I8MzjII5z73i/zZshnhnimSGe+Xcfz5R/DfHMEM/8m9hw6GmwwQYb7N+R3XXXXbz3ve899rPpdMqHP/zh/uT4v6197/d+LwDL5ZKf/umfZrFYcOHCBT796U//ia472GCDDTbYYIO90trQ4BFirmiBvAIQe6UyugTKObM5mbIx8TRN4Gg254WXL/P8+QucPX2W20/fRzefGeCtBvSomrrYY2BVUmUZI9ItadoAqjQ+kBoDgI+ikQTiXQ/13xTW3vQvodZrR4+/wn57PCB/LTPs9KbX9WDeKuh2BTTulW9SU2LXe6+BM2rHIJxz+GDlFGoa7vWnWCnApFy7/DDXYxRrPzP0AskWbLtynVyUXSmXL7H3Ni4Y+JeU5AvAVm5s/65/xAgarZlr5BigIKp0SZFsfZEVJGeygicjGZaZ/mBIBaASEBMcdY7fe/git96zzdmdCTu3bHF5t+Orzx1xaU95/d1nuPPeKeMNz+WrkQefn/OxL15l+1Tm+iLz+IV9xuNQQL8yYk76B8oFHMp1nHxgsrFJTJnlsqOdbrI98hw8+RQvX7zEtes3ePc73s5b3vg6zt1+G7v7h3z68w/ywvkLzJdLU7c5AwnNDXIho6oiTgrAYoB7BmuPioHUlGIlFbsSNXLDvrFnyFYGQMpBmrZp2D+a88QLF3j55cssDq+x2ykb0+f4wpPPcmU+RyZjDruOnc0pjzzxFE+/eJlOHZPWGbSjrHxMM/3sUSWlDL3vOiTXmiZFQVrB8droNSDXxlT7adaTi/VlIoUAMVBc1ZWZYODZODiSeJbZSpRoXDIKQtM2tKNxARSNYOmnoaz6W2XVHimTpuokq1L6+JcRYrn83oawAsuK9wbmeh+sbENjgJd1SQHBXAVLFe3S2spSU/OXNuQVQVEVk9bOQldW0qX4iFDT468APAMVC+CsxtwJEBw03uOkXYG5KRPEExeJrKY0lQJUokY8Oud78tR7YTJpkexwriE0DcTOiB5VK9mgUjIlJHseV9aiEGiallmXWC4XpPkCB4TQ4oPHN4HGO2JaoppK+QNPV4BrIVtq/5IpoI5n9Sv7iQ1a/QMGvtszudX6W323KIXJzoD2ukoKljFDBOcpJU6MCMcJiczhsuP8lUv8/kOPce7sWeZZmOXMJBj5JZrKuFS/KethbWGPTK/g6VdByK0daL/eZoRoLmjge3388mw5l/sVN6m/r4rmFUO2Bvr2PSc9WV570nyM1cVYzaVKoms/3w1Er8B8TySoXbOSHUgBzYvfVrKituU1rQ53v9NUALv8XG6+Vt+Rx/5eTW89dr8e+paVL6zWCylgvx1eCN4INLc2X3LOSC27VOZf36/lxpqzkfa+liYx79acrCRDbdUa3/BKonH1eWa99ZY1xsrxdF3Xf2ZRKvhPcZyM2Ora+5WTlQ/2fVP7te/gVa+ven91UKJ+DHQix7rc1kog1xJYCZFE7CJgpShCCOhyQZov6WYzfGhox1PEe2K2PkpiJS80d0SCqbwBSR27szkuwlgafDNCwgztOuvrGF/hEYMNtm5DPPPqNsQzQzwzxDPf+fFMWsw5vHaZZUrEZca3I5wT5lcvrAbr39KOdq+WZjv2L54HcYR2xHjn1BDPDPHMNzCeYYhnhnhmiGdexYZDT4MNNthgf0KbTqcAfPCDH+Qf/sN/+Kd6r7Zt+chHPgLAb/7mb/IzP/MzzGazP9V7DjbYYIMNNth3m41HI4I4OlVTfIlbBbJfJ87POdEtltx67i62Jh5NC559/kWefWmX259+jlvP3sK7v+etLBeL/jBABVJTzkYUNA04R5cieWER6DR42mYE3jMajbgxPzSAqgmmOGKNtKigdtYCyB5vuBTgpg/2X4sceI3fydo/VqC/AXqqmel0wvb2FuPxGHFCwOPCKq13VUVrAR66bommaKrSFOli1wO4WgANV0CtemPnPd47fFUIiqAVCMi571cvpnL0TkAzKScymWWK5JRI3g50tM5US8vUoeJK0F8Bh9KnVcWEp8sV2DCwxMsKiopV1SsF2CkyR1PMKRFTYKsTXDbgJMaMU2HSjvmlL17i1p0W3n6Kd75hhy88dJnPP36DnY0N/uO/8g627kroYeSF3V1+9YuX+MVPvsxocsRo3DIaCZsbBUwGcq9ul9KXBkobEQOI0uF55KkXeObFl9Ec+ckf+yCj8YTJeEruIrfffgfTzW129w75/Be/wi/+i1/h2QuXmC86Nre2TJlZQPQqZcyaSVkAZ4RFEXElSYgvoKI4nFM7ZLMON1XxWmGFBNBolxcPjW/5yjPP8elHv8YyZm7f3uDhC49yuFiwvbXJwy++yDMvX+BXPvYHnNk5zcXdI5L3SDNiOvGk5bwnnFTE7l8HrHd9A869cwY4F2W0CalXIO0KxNRCPGR7JkCzkAAkkF22lPLOISqm6NVYgOYxCW9+lyMhRIIXxkHIozEiRsQYCGuqYCO0SgkIWZdD1w6rIKYBZlI5wtJq0apftX7PUJSnjkYDEG18CvCWc0K7JY33NALqAjm7OvVxwYBzTZ3RHVIhPi1kWe7ByUpauEoW9YOegFwIJxuLlFYEhyPhxJMQVE0JnhVC6RlByzoBuJJ/P3ckoqWaF2jwBtqVMnuioawvGSeKd+VZs5BI4BIkQwIFIajHpQ50aXM7TIi1BIpmRk5pxgFtJmiGphmhZNsX4hLViJR+FgIdmVT8v9GM6aJXxJopoLVf27SQ1hXbrXpNe5cB/La8W7/mbP3g1CHewF5xzsBWkVKmJ6A4y9AQFwTv2NwYEcNt/NKnPscdp89w+y1nuf3uO5GupNvPtp75nG2sCkFVSdja7h6IZVUKwpTdmS5nxIfVPMq5ZKCw0hgV4e33MiDlVNS1xb/K66SyBsW/cvFpatsq0SSuf03ZAO37vCI6RFzxI/PdVNgAyfQEs7XNrVXmqPfIK+JiNd1s7VgnFMpkFJHVZwC03/ey1j31ODFgfUGfDQWxfURznVVr/1t1P2DvcaVPelLXll/rl1JiI+UIzts+WvzH5mKyUkflWqJ+1WcVTM+2B4hmnEDSVIgVyyDQj8UykaKV2yq0TFkbyrTVfOy5UWiaQPABUBaLxar8UOkDUVvXnNr+lmRFkK76ekUKvDrd0lOqpX/lOAGHEXPWt5bxok1YyQkCKgH1jrYJHNy4QcpKO54yGm0TlwfEw0Pm+wdsnb0FCRMInpyW5JQJAVQTablgEQKeTJMioZuzf9Cx2TmyNEbYjkZGAMaOOB9woMG+vg3xzGv/bohnhnhmiGe+8+KZnIGUcQ72r+/x0tceffV14d+RqWZe/LKJ0TfO3Madb38/uDDEM0M88w2MZ8p7hnhmiGdq/zLEM8Ohp8EGG2ywP4GdOHGC559/nhDCnzib07+pfehDH+L8+fPceeedHB0dfUPvPdhggw022GDfydY0DhED/rx6Rr6ADz1I8GrAuoFWyy4x3Zqys+HQTlkewMmNKZcuX+SJZ57i8vV3MRaH5gjqGY0CTWgsVTDKdDqlnYyYzxcsY0KOZmyd2GY8ahmJsLMxZhkzJ7e22dncJoSWmDOtWFr+HrkQJWMp7Ht8Yg1uON7ytXMK8KoEgfavrQG9ktZ/WqSVIhAk47SDJFCA1lcqyc1CaBEfiDo3Qkahpu+2/PaJrBHNCVImO8jLhC4ikE2d6wNJIS+jKRc1kjWTEcJ4jCaFBD6LpWdOICoE79kKnus6p8uRjozXQkj0Kcetc9YBCwMWy8MWUKaSGq50qK6VNLCXGmvg1NTaKpDKiCTAOxiHzH7e4v/9exf4x5+5xO1nNvnacxc5s32SN9494fe+dsjGw3s8dvGAr5zf4w+fvMGpu+4kiOCBIIKkCC4WoGNEzkoSS/luAJsjNFLA5o5/8Asf4WippJhpJDFbRn7sx3+c+77nXUwnLf/F/+3nWGaHOkeMCyAxmW6ys7VloGCOaCk5oQWwtKfOoB2NNxV0JqNZEI1FjelIYuDkyjdKWu3S2SJieFqmL+ORNONHLZujluAdeRkZb20z2hZCyEBgkYVZBxdfvs7GxiajNhC8kLpIBANnAecCEkoq8ZJe23lPdgZ6xmyp9A2OcghVuWogN1TcsShDczKNaUHgYq4oaYWdHAbBKKIFysxxBbT2gKXifZ2QiqaERoysQPupqYXBkkzJAmB+jkCWNbhLhOyFnHLJWuABKaLZArClohz2DskeJw2khZEZmlDxdJ2VtDM5YCUbC1GnQuNbNMaVergQZbn8w4mYUL+sGQBNiZ9SFlLqSKvFqqTRL+nqs4HtTpqSX95eFjGfbqCUVrE89UaErCBIj7P1RAQJvpQwaXEG4wNCcoJKJKfMcn5AMwpIM7JyFdoZkK2WGSE7ylw2YNKAZENmU1m6skQczrJkOYHk0ZiIGXKZL3Vfsf4whbJdJiKqeASvdR4oqpFMV549Q04F3IaA70F1u6LrcWmFHpQn2XoV2hYXGvCO1C1L3xtwu9G2LCXw7O4+z1y/wdbWBF/A7lT8MqZEltV6RilF0XFcl6tayvaIAbjee2KKzOLC5rgIaCIDHcLSO1JKBth7KYpcrbnDyMkyTCBqew2gOViZD9WiUKaU4yklILy936mU0kSrdcrGIPcH9LqcSc7Z/pa1jMxq/xIRNFcfrKrp3CvOxYN01gBbB+3Q3zpovX6tsulZWRbAeUcSm8pJSjki5xEcWRQ7Hmh7mGTb4VMhMVSOX7/wY+RyvXpIYMUm2rrnAV9Ix0VMdKkzYrNm1SjeKgit87ZOl08AOSpxeURsHBKEQINLHeI9zofy7DbnVY2Ai2qKXu88QUFUSQhJIBYVes06p6L4xiMi5JjpuoWNW+mLKAIx0WbYcC3taGzgu2TUeSpnlXX1GaiOZ1XzI4W8t5R0aN9HnqDeGGrAlTVdJZXyOx4l4holjBra0Raz2VWuXXsJ5+HMxm04t0E3m7Hc22Oxt8vmmW2WMrWlLSvXn32U+WyXjZOnOfeGt3Ph0h439q8xbT3nTpxgO4xpnJVNQiPSdbShQTYCjEcMNtjXsyGeGeKZIZ4Z4pnvpngmzxd87VO/Tc1s8420wysv88Qnf5M3/tCPodIM8cwQzwzxzBDPDPHMNymeGQ49DTbYYIP9W9jP/dzP8ba3vY22bdnc3HzNwPdP05xz7Ozs8E/+yT/h537u54ZSd4MNNthggw3278iWywXOQdN4nPOE4IpirqiZ4djev14GoWlHXLt+nZAatkbCudtuZW9xleAdXUoczuZsbZ8ghIAIzI9mHB3NaIMnOMEjjJqWxbIjR1PpqQopZbJm4mLOxmTEmZPb3HL6BNPJiKP5nOw83hqDKfl6GOAYNKE9jNujnQbw/DFxwZwpoL+VAUgx9dcTEWK3ZHF0RDcaE0YOkQZqCauijKpm6d+F2JlSKnYG0Jmi05X076vWijhSSVmdUkZyJMZo4AgW8C+6ji5HS8kNzFMih5ZFZ2A2YomWtTy7x4ATLUq4gruWmxaQdu2Yxiu7aaVSY+299Vvpv+zdnptJhqIUF2GB0C0OWRJYHHn2LynanGKvg4eevsQjTz2P7+bsu006aZlOtq0kRU6oCC4EOgIuZzxKIJIKEOzFvoQEBXQUETY3tmjGEGMixwX//Nd/m50TJ/jA+76XH/rQT/Lhh5/mX33iU7zw8kU2T+zQBPC+odImlTirz1OVbamAV40XQnZ4tT53a55YnMDIC1FUPZqTZQaCHkB0ngIamzKwMdwKl7MpzCkAeskc5L0zIHjsCQFE7JnVCTl5cA4nlm1InO+JrJwNyPRiOHTO2ZgCc3or41HIMEQMaFb6kgXeF0Ks+E4RPBb/ErKY+lNVeqW90Sqx+JH04JQWENSAOFl1mZT7oZCLSrSW4NAKeq4TgvTtkZKm3Up4eJIzgLNUsMALaF4pFg28LCBnKYOSsxYS7riiPINlKigK0awZaXyZvwUl9N7U4Nizibi1djrWrVciIuXtAlKIleK7dU6BAcMejHwpoK3XXA5aSQHZDKRGrBxDjOZrSgZRYlJw3tT+WkBKKSB1jCu1priSgr6UssHmYEq5B+eFbECqVD92hfc04DhJNoIGA4E1JxKuQNZVvV4Im7K4GYlqsGYWG4uUkvVHMoLLOi/3ZQsEirJYUKkwe/FvzYgmRME3npRW6mbJmTY4mtD2+4NTyvimNaLGlM7WH2XMXFUKV39YrXW5vDaEYOSMlMwWGTQZkNtl8+Nc5r2ozZ9KwIoIORUVdvG/FKvfr/kQVayr/R7Rl3+pWPlKsmxPU4iClB3qV0SwYenWfqWUAtJ1Ap6Vr7AqCdHvBwW8V1umVpRDGWK3YlR6dXQqhEfqSXNWpE+5qT3TSv1d55vWR0NLCUkK8V3Hsc7dMqfLd660IefqiWWfXlMEI0JWtXXSC23bMm5bxqOWMB4R2jHOW3kn74Opt6nlEpQgysZ0QtuGnuDwtQPKo9aMMVrWAidWLmW5WJJSQn1ZHUpGCen2IR6BdmQRXNnjVGzc+mwA4oyEraVnKomUKmUvZR3M5Bgtc8ua1D3XrAqlbRFFJZe1PrGcz3n08SfZnk5pgnBj9xDJR4hzNDubbG2P2LjtTl46f4HZfIFrHNPxmHz1iKUKh1cvk+cOyQ3OjXDjDbY2GkYh49KSeDRjvndgSxAQUFoGG+y1bYhnXtuGeOYVPXKsO4d4Zohnvp3imUuPf4Xl/g3bv9M3r/Rrjh0vPvhZzr7hLUx2Tg/xzBDPDPHMEM8M8cw3IZ4ZDj0NNthgg/0bWNM0fOhDH+Iv/+W/zAMPPPDNbg7OOT784Q//qZfVG2ywwQYbbLDvJlssljgnNMH1AbxyHDC+2VQNOPdNYG9/n4lrmbgpZ07v0IZdRCyl8sHRjLi5ZQBGziwWC2JnClK7UKbxoYB/FssvY8IvOwO0cmIymbC9MWZnc8LGZMLh0WwFyGBqol7dvKa86tv5Gs/wWs+1+sb+qoBLBXFVV9fLamUdckrlXgV8XyMI6veVaNGa/jnb81HSjFsYX4BicWvtXrtfNvIE3+DbljCZkFNEqjrQg7QtNAEtyr3aLz0B0avz1oFH1u61YgCO9Zze/LpX9psUUKuCfRWcF2rf2XUVSwv+utMTrs0iRx3cmGVOTscs4oxMYssL2Tuu7S9YomxNPaOQi3IcuqWibdv7Ktj9nKgRBY4CSpV2q2PUjggqJFVibHj8mef5zOe+wGQ05p3v+362trdoRw3OC03bGuher1HAogqS59olFZyqz0nVqGopj5GNrCl9UUF3UVnzqZVi2pXr5bV0+K48m9bXahkdzTjvCN4RmoC1KpPVAKK86pnaGdUJEO/tbykzXbONn/aw2wq0raNe2lsB6HWCw1HBerEGH+Pn+h6xX6gi4mvXrXxwnR+4SWQhqtzsd/2r6xw7Nh4c++pfihYMUqllXY7dp9bzqH6cyyGotTkMtg5orlpDtSwEsOpjdQXsX3vGCrTWfq0snVTyo35b/SKXMXAlJXwFd/PqXgVo7Uk/oGaMELH3iXigI5cSMXUu+mAqZs2JHDsjVuqqoNn+5aRfa+vY3NxvYmyOKYddAcKp3ljbYxkFnEKsYOW6n9X+0dVzHXOKurZWt1xT997sDja+uX+vOrH9JCXzwuDKXKJvgxdBnCsJKkwPLVoQ87VL9+UNeHVbn9OqSkoZ53wpEbFyB6WA+pX0LX1Qyz9k+gRj1tbSjVlWILy1qYDSSiH/KoCuZWSOz5t+ivQ/kP49dfm3/an6FWvrnvaAcT9XtYDMWemnQI/o0/t8LQdx81zPa/vkOhFS57Ow2k/6+/Xr2U0P07vMcZ85tq2vtcetLRD1UnWvkn7JNF91dd0uhKl3rs/AUcuNOO9RkZJRxi7tndCGgC/rbaXWtPcj6dfh9b6ilJbI5RBBJU6mkhnTITonp7mVE8HyIQgOvMeJFD8pe1E5cNnv7rV/ip86l/FeaYMp/3sf0LoO1qwGNSsA5BzJs0O65ZJw4gTz5YJLV68SprewvbVDwyYxztjvMiliZWfEMT19hnTtIqTE7Npl/PQOJpvbjKZjpB0xaYXWJZxGckzErkNzIi4XLPb3ed03H5Ia7FvYhnjm+HOtvrG/hnim75ybXvfKfhvimSGe+ZaMZ1Q5uPQS+5deYnmw9yrX+MbbwZWXOXnXvbAzxDNDPDPEM0M8c7yvhnjmGxPPDIeeBhtssMH+GDYajXDOcerUKX7pl37JNrXBBhtssMEGG+w70ubzBV6ENni6qJBzARlKUL8e5K9H2wLee/YPZ0xcYrMN+DACTNG27CK7+4ccbB6xOW1xeJbLJaoJcUVZHCNN8CtQRYSj2YKkGeeE0DSM2oZpG9gaN5zY2uTilWsGlnu/goFegXxUoMOUXc75HtzoMUtWAP4rrIDC0gfL9k7vPTkXAiXnPvCnAKd2vdqgCnastacAWwYEOlNnZusPV1LQeFfVnEVFGxwuBKTigjnRjCc0ozHj0Zh515EpqqmQ2NrY5qDLZOfpcrLaC+IK2GEwQa9WrgNJLuCcW3UO+ipI2B+fcKmAnxRwhaLSSjmCU7Za5afecScPPvUyT16a8dxBh7jAIifuvf0EP/v9b8CPZvzi7z7Gw8/scu3akjedmwCZ+TJzY3/ONOyAh4wjikcwtS+uqEIVUs7Flz2Q8WKlMUbjEdf2D/jYH32R51+8yGNPPM3nH/wyi9ixvb1l5SZypTRWWHYuasOcrU+dmlo0eE8qPkc2IgLNiChOFMEXgEpLym611PkipqBkNce0qEB7/5Q6bit/rKpgG8eMUEDTOlKSUckrADkJSup9wIWmzAuDc3Oq/EVJRa/JnkVXqeldBVIRSPnY3Ll5HjnnyqGgSoi4VSeqGIibTUErrrwu+wJCmZq6J5pW6B8GsLFKBV+ARCthUdarcmhJvPREi/TlE+jLk4QKRvdMTBnoOh5ZISV8ipYivioMAS0kjKnZfc0kj0GY5UCUqzFUmQtFlZlTSalPVTAqFQu1DqGi8cXf7JremQ/kZOUEXOkjy0xV1ymlix2tJkQCDg/qERfRVEHrAtg7wXkr4TdfRJyaitzhyDmCs75P0d6TnfVfSqlfP9aGofiL9ICyqW4NcMfVg2FFNUqmCKgNLafuOyDZigBYtzhTTuvK/3JOpLVn7rN1VIA32f2sOx25jIcpQIHkwYd+LTZS1sZdcrmvWPkLVTVkvvpHyXCBeFC7Zn9/sewilHmaUrJSD05pfWPDWspo1LVAEVu/K8guRgblrKYqzjZ3VItymExoPHXoa0WkCrLnXEH0lR3D0dcQfvM/Z6UDejB9jeBRbE0r6vtj7y3geNb18hLa92md6q++ZUh5bnpVMse+Knh+nFRZYwFYSabXHlJtvXYihcRdgf9GdpQ9v/i998H2TRdQ8SSErAlXwH3VkkVD6L/qmOaYrNyJLHFtWDVUhM5wdjxa/MkyTXgR1EHqJ80acN+PTyGswPodCJQ5lZSzQZhMYH+v49piny5FgrN5LhIIo8bWg67sGSKsnWuwVdL7vl9i7BhvBMajwOlpS9Mo9hkuYcVjvFFXmnA5I87TiSMvF7B/jXtuO0sKDc9f3uULjz/H7W94J2duvweXO2YXX+DZJ5/k3rPnOHV2QtfCibMbbMwOOLr8MgeXX2LrgfvZ2jlFaBvQBRNJBBIBU4iL88RuwbUrl3n6qw/zug/91VdzqMEGA4Z4ZohnhnhmiGe+M+MZyvOn3HH+i394/PPPt4CV8GOIZ4Z4Zohnhnim95shnvnGxTPDoafBBhtssD+G/fqv/zp/5s/8GTv5Oxx4GmywwQYbbLDvaDtaRnwF/rSmgS5AJjfrqopJ/ZkFsUkdnQY6tTTcqsIyZvYOZ8zmHTEmtPWM2obGN5AgxUgOjrZxpqpUUDyLGGm1ZTSacOLEjqURxpRJG9MJsaQqr4C65oR/NaC/V4+tQCT7jmPA0tczV9SIKSWiZkIIlgZdQZwzsLlp8K6UtsrZUjOXFMoV3F0BuxCcI/hA4wKb4wmbkyM6XSmHV2RCVSgZYOMQQmgMRAiB8dY2G7ds0OVUYX/wic3pBnuHc9Q79o4O2Rg1+BBQFwx8rkByUev2A9qDfflmvuWPbQYQFcKkEiwF0Ck8Sx/0z+IRf+E9t/FX/9ztfPZrF/l//suH+doViPs3OBFnPP+C5//+v3sf77hlySNPXOexS5Gf/t7b2NhoefHKnF//7CV++ctXYBTwwdOQUAksFWIq6sv+cIkQgpUksFIMibSMTNrAS5ev8txLL/Ov/uiznDx9iuloxMZkCsnSzKe+a6yPQyFvYqrAvoE/3vkC8ElJT28Av6vKVBUUV4irfBMBteq/Cra9sl8xlaoYeKQpGvCeHSl1BuhWVkYcmoUudaWN9jPWiConSk4mYVZNECMeAc2klAg5IWQjOIrkOKdsck3p4fq+b9bb3yvlPWgWUNen/DcOLa+92yN9znhLP57F9Y9b549Z7gE/XRuVqgC0uZ4hGbmRk4LHAEUnpQpFZa4MJAWBbIpU17cqF2Voxkm2s0tZyXFpoH5JGW/Nc5BqRgP63tBCEtU1wNTCtW9yH2NVUigXQkWLEjGX8gyuALGGbq8OXZlqcrXM5ZwLIaZIXpLmh9AmxI9o/QTvPa20SOzolh0iSowZl4x88EDqIlkjbROMYMHmjPls7dZCOpWDXisnXb3O5RUAvEJpMwkrEUIZX8F81gGk9fI02gOoTjGlaU4EL4RRoJNM1+V+/JVsqu9CGPkQrGSCCOoywQWjWcp8zECOcdW/1SelzKFSpkVqdoKyP4pziPcFfBZEPME5lnFp/rKuWO5BdzvkFmM0kmNtX12B+dKPpSqY20oPtncxIV6s9Itf89JKqkABloWkRaWMAzm+fysV3K/ZOlxRB1MIHSth44Lr511M2datfh7aQ6WS0QO1ciOVtahC8rrkvJrZEFe/X19DShmGpGRXFN7003Xt/YVWKHMq1xIg5be5XN/+WpH4DiPWvAsoni4boTRbRmbLaGWUADSBWEmVvr3lmilnUlZi8dvWATmVTVpw0jBqHU7sq3UT2naCw6Ep4ULox7Xq1ut6X0niEKz8lCas70XougQSedvtt3LvHed47HCfTx/O0MaTPKgD8UrQbJlacu639aQ3fYYrnwVyTjgfef29d3PXmU3uHjs2H3mcfLQkZcVLA+rpGWSEjDfSbX6Eu/ICZ5YL9rvEqau7vD4ecmL3JaKb081n7J9/ieXFl3DTwKQ9ySQJe19+knzlAnQHTBsl3LgAu5fJOGYCrRvjXAPOET1s3nIS0jbtuEG6+as71GCDFRvimde2IZ75N7MhnhnimW+leOaFr36e+d5u7cR/S6/+0zPriyGeGeKZIZ4Z4pkhnvlmxDPDoafBBhtssNewD37wg/ytv/W3AHjXu97FdDr9Jrfote1v/+2/zdve9jb+q//qv/pmN2WwwQYbbLDBvu2tU0dU1wfRXjLZgcsG+FZBWP1SKCmrTTeTnSNmOJwtePnyVa4fHDDealimzGy2YLnsSLkiB6wA8Ky4nGmaFu+DAUfiaIIFyilGoGUZYwGnhBgTXYx0OZFQ2iYQsCBb1kpSibBSY76GvQqtsPbLokzKFfQGRNfUYRXTzKSuM8DJZ9Q5XLZDE+uHK/rU2igxRebzOfP5nO3tLXaO5uzPFixixHu7T384QgyMqWmyc8oGoGQDAmK3IBYQ3Isnx8TSd6RoysXRaNQfxOiV4loBlhVQcYwV0BWut/7DV1WQH+vNcjXpGaSCBVvq61xUhADL5Lg+g9/5wqP8tR9/gNe9/iTvOLfJ7v6cc/ef4HVnGk6MO7j4Mm+61XHu5A4fSMIdk0gQYWc0onv36/iDpw+5vMgso9A2BnhXFaUqLBYdi8USgPF4zGg8IqcEqoyahrtuPcuNgyP2Do+4vrfH0dGc5cJIs+CE8aTFYWm/UwHkKup2rN9ETPUmBu4453C5pvKngDV2uKYH0Wuu99rDxhCZjxVw1VWlNAaMifrS2/WPjU3OCY3gcYgTcEoqM1rK61WL/2j9SmhKlpZfq/LW1J5oJqmp41JO5GzKWESJqaNLSuNqW2oX3OQfq9RHq9aK9YkBca4giTeB90rJiCRr3SMF8KyDQFHTUoTw1f9YpXgvU5CiztWizC/efGxNcz0bZyVaegpDMkm0kD42ZDaXkwFsEoxA0UxO2pfA60dGKMrWVekBLWNsSaOk/z7nbGO3olL6+WnlQEr7+j+VMjhWEAXEFM85R5aLGbiIjEq5kAKSO1f6ytBUui4SnDd1bs7ExcIOdXlBnBCcjdUxMLOCs6qFTK1cgK2DBm9WV9C+YqA4UK/2VGWeSkp9FiwKiSes/KcyQzklYop0uZAN1f9rmnoBlVKWKQMijwABAABJREFUJ9fDa0IuZIAWosy5Cmjba2yZNyLaqaIx9mi3YASKBF/mkYHTdmebmc5JT6rXZjlXS3jYePjg8WJ93nWRnApp4hUJDrJYgrFs7XH9OmygdHamYM454wvBW9cFRYk5m+q1lnboPWNFqK2vN5XItjFLtseUX9c1yMjEoigu/lwvpVpVvaWcRCE/bY1clRW5OXuClEwOtT1VXb0a6lWphLoR1fUnl+fLmu3fveq3+k4l5OuPVgu27aBKcI7ZbMHlq9dZLjucOLYiHC26QiK7nsAos8Terbn0v7LslrhuSQ4BwhgUkgheFI0deSmmoBeh8cJSMwnIKngFxPJT2JJ/MwOSTQmPGOnnfVGeJ7wTtsYjmurjagSsU/Nb0UzXLSCtiNq6y6zU564A/TZebetJcc7hXubajURcRFRd2bNqSSFzAIdDXYt3gTg/Yvni03D5RcabO9y5SGwvdgmf+BfEdgwJtmdLNmWJ7j/P/mSDZjQl7u0hh9eR5QyXFszSQ6SjfWSyQbjzXty5uxEfEDHVOuKJKeFHI87edguDDfb1bIhnXu2XQzwzxDNDPPPtGM/Mdq+y++IzoLA42LMSkt+iduWZx5nv3+DUvW8c4pkhnhniGYZ4ZohnvrHxzHDoabDBBhtszdq25Ud/9EcREX70R3+Un/zJn/xmN+mPZe973/u4cuXKN7sZgw022GCDDfYdYdmQlULW6yrQRgzUqVDjOmBTTEpQHbNyOFty8coN9o8W+Kmpk7qYmC2WxJTWgAp6oFSzEpwneI93jqyWIl9zNuV0VlIqbXGWwjilhIgjoyRNuFLffRUM2/9WgARQwJ1j6sivC3pbG7OagvU40EEhO9afxYBXwZX7F1TFiREiugraU0x0XUfXdXjnaELAuSVoxvumJ2VqR+eixhLNpJhKWnPru5RNEeiKekpZEQECNE3Tq636dN1rvfVqPaCv8rP6nKs+eI2+q0zSsc6q4HohO9QRk3A4V556aY+YIrftBN577wZpKbzlnlPccabh1hMJPTxka+qZjgKbXWKUF3hRyIn9wyVZXbmtFEIrU/Ojiwj333sXmpXZfM6lq9eYzWd0XUdwjsmo5f3vfAez2HH52nUee+ppZocLnA+ICEkTMSWCM+WfAV4r8EroOamSEn3t+QVDQ2sJDy1gXtZj82C9t3NegTo38zbV2Sph0N+i+F6pj1BeY4RAVUZWbKgHcHOiprGnKKcVBy4YEF2hRy1K20JY9HBjzlZSQE2hf1zRv/LzdT/QehAo1wdcwZem5tbj3qgG6/VEQc900RN4axyE9Y+s9Ys4kNwTYaWB1SlRaqpxV4BjyhzNq9dKfQgDT8VJAT+LmlMLGVi7LLtSKmD1I3IGV2H+vNZHqZSVqWOmq8NSBbhd50h6glZXDlVozL6ZqylZFLwiaE6oQowLU6mXP855pKrTcyaniDpfC2qYAl4AdeZXN42xXbv2F/0zUAHqXFXwugaGVs+3ljvqHmBKXr/uM8fGa/XsKVsa/lp+wBxlbVyL4lfRfm5KXftKIZTikCuSIBtciltl4tKUSIX8cK52roHS1YVl1bLjxGj5n1LKDogrf9s+6tyK1Mm6gstzHWddv46WsgblmmovVH/TKl3W9vr3zavMqheP/7++t+6NqkJGi0K7/FxkRRLcdEUt87TPVlYI7qr4faVJmetrnwXK2t37SN1g+7mx9gXHCIXVZeumzNrfr9JYtYxuy65jvljQNgHnAmGxJMbUkx51PagtBNtWUsrMuiUH8wXRBxocS23BOUJIOB+IKRNTMlIABclc2z9g3kVWGQH0FeTAyovLIUnM3+t6oOU52yaQCnlrPyuEjNpBiZy0V6ev96HIiiqw9bU8rQiL+ZKDGBnHSIpGJNR1T1mRQX0LFaRbootD0vVLjFXZVM/EJZYXXiQVQmEsnnbiOJhdI48m6OYOYdbB4gCZH+Fmh+TDi+QbV2Bzk9R6wl132bpRB5yyHmFE/2CDfT0b4plXtyGeeWV/rPpgiGeGeOZbKJ7JmYNrlxDg6NplDq9e4tvBZjeu40LDye/2eEaHeGaIZ4Z4BoZ45hsdzwyHngYbbLDBsMNOzjnOnDnDr/zKr/Sn2QcbbLDBBhtssO8+U1wBlS3ITzhyBbt7KyFiCdBXYbojiBBjZK9bsrefODjq2FIQ54goB7Mjll1nqcFzLthpImUh5cDYeUaNp2kci5gQaUgp0qXYA6fee0JjZQ0ySus9TRNMma0Z8EUduYYP9IHxGqC/9jxft096wCUhDlORUYgHD3TWC84FA5WdBeAGJZsar79j7pFR+zblQvQnFosZMXUGfqkSQotkxWuHU4FkQFKXEiktWXbLop4TSv5nE2AVlNAIF4cXoJSvqARJVkhAKuDPClPM1FHtlaorVKKAkDUV+LrflN9XoKj4RSUoDA3RtfvbdVNJdU9MpDRFd2fcdsbzl961zZ993QnecP8tbJ8YoU3H8souqXPcuDHn2WevctvpwPSk8sT5I/6/v/UML10/yXijZRScpTHXNZWkD/zsT/x7nD59kudfusDP/7Nf4uHHnqRbdmxMxpw9uc3f/Nl/n+nGmBcvvMSvfPR3eOrpF2nGY7LA9Ru7PP/ChV5x6ERw4gtpVLrOCbmztPqLLuM1ofgVsK0ldXwB89eVpRWQLbgfMSfzIxE7PONyD/hVyKyCo6KZpoyxcQRSSpLkAiY6xCkivpBDFGA0W1mBFAu5ZGn9XU0zryvQPveklFqWgQIeVnSzizOadstUfApdXFr71p3EWMTyjSt+W4Htcj1Da0GrkrR6U5mnIkV5ehNY5aVX2ktx8DpHnWO1hpUulaLSr6C6CwEJDZqiFbXJaYXaOimHnDLSl7IoSkxnnSBqh540Z1MAl3J31hRbD4y0EnQt1NJC0FTQrypIvbeU+qWZ5mOrU1vUWgHVH3oAUMqccyCpULq+wTcNbQG7czcjSrYDXuLwoSnrkqkjyQY6hqLs157cNOdMBdZWrcrs0nYtY1jTz5cxoJJha4i3ark/BmqGlIkpWpYHKWB6HcseuC594Gydl5QRlw0M1Zqinl6x69StyGHv8GXdkXL/7Mpa1kX7u6TEz6qEouPOOZuyVExx70IwtaxzZBGys3kbKjmdC1GpqT4oIHSxwzkhNAGnDo1GU0i5rpSxyDgjfG0nxmshavr+W2UKM/Kh0GeVoCz+Z76nxKLCrWVF6rJOuW5F/IVsba6S9bJOJ822llR/xZHKRKoEUF3DkNWaZONYyJsyydY1+ytHWK2fmVKqIAmkWgYnrfbtwivWLwGyaP+sFGKhKtZBe9IFahtWpI6olVFJkgltYDIZ4xQCiSAZL1oyQQRcrXxJQtSRc2bRwbXDQ8b7Y8bJ0SwhHCWQQAgNzge6FJnNZixiZJk65osjnn95lxtHM2gCkI4RBK4SEmVsvWvsOXOiS0srx6NlXjsP48AsRxZlbjfO1qV+LqT6tH2Pr/qTSqpn6xknpJQ5POxwztFGKzljGWVyKfaV1ygbsXkYO1yKNKKE8RRVj7qWsNXSLWb4+R6NJsZB8XRs+UBure1uukGejdCjMeId40kihQVdO2IR1NbX1EG3RGNnn8OWkbSMaPetm+VisG8NG+KZV+mTIZ4Z4pkhnvmWj2dyjKBK7JZceOhzX3dOfyvbEM+UMpAM8cwQzwzxzBDPfOPimeHQ02CDDTYY8NGPfpT3v//9AMOBp8EGG2ywwQYbDDShqiQRZhj/35cjEEv77grAWUFNqHCPkgp4JM0ImJNjJnaJpJZGPxcAKfhggGTBL6IKQYSNUcti2XK0OCQWMoFOmR/NcGDAt7NAvQ0NIx9oxLGggpLSwxFVCXwcnHiVR/46RIGTCsQoSMaJEMQboIQRHb4oUGMB4L1Jp+wC4kEckrVcy0CvDDShoW1amqYhxYhz3sB9MTA6OMELSFZy7pjN58waxacl8zgHbwCTJnuK3HUl84zgvOJyYjE7olssyF1EXIuokFWIYmCUqho44QwgWhOQ9zhXD6zU7DX66v0pa/9IlKwt4vAIESWVX1aAYklHM4rceYvj7KShOZyxcarl9XdNeXlxje7qi7x4yfPSAeRujze/4XZGm2OmJzZREtPNEe96YJv/686d/Bf/05M8vzdntgCZjBipITvzbsn+wQ3ibI+3v/NHeff7x0zblv/X//A/0k6n3HL2DG95w/2MGuHExHPrm+/l3W/5j1lE5eDoANXMdGODX//Xn+af/Npv8/BjTzIdtTRhZM+ppQ8dZCdkcSyjMpGM94LLnpwyPjTWb/VwjrdMAhW0EQpIRPlMrkXRiYG+Vo4kF4Vn8XJVmzypjB0FWAWbuIBoJriGrJFYVPROHJ6IZRmydPSuaSA0aAjlwE/ugV0njlEzIkZTiFsJkgzie5XdcjHD+wZxAVBqYbhKgVS1Pt4IE3EVeE4GvtWSc9nKBTikJy3U1TlaQDDVvqyM8x7nfEFK17Iz1bntXLknrKHN9T9ULUU/DgPERc1TxfxdXCjAqvWlJEWCoN73pJ+IgFppkcqKWQUYB76UAaiFc7Sk/r+JROnB4uoNYu/QtddpDzxrP9nWSc86VxuVfq3JhdjyLkApHdPNZ4R2TGhs/Ez1HiFHGhNCkjVaJgZNSBk2XAUXVxkeqmrWygdhgHwhxlSVpEpZoGyvECELRkQ5MSBz2Vl5BOcghL6vKzla32ulAXIBxBWilQb0zpPU/NJ8nlLOwcB3XCUmzacqsbHaGewNzjeF5EiFaChrv/PgA+qDTVzvEW8qZ42Z0LQAxJzJiwVNaCuVYs8bIeVEionWNfhS/iKpgjOyOxcwPYgnyors0PLcdV1OKaHi6fXmJelCrlmynDcSQAxEZ51gKiB67okUm0vOZYJXgrNtKzupbos6a1sCRMWGshINxeGct+N6UQ2YT0CffaOON5jivfxufZrm8tqYM5LqFLZn7stNafUBV65X1yaO+WEZXMoQryZHb9YHIkLMmY3tTe48dxv33n4rI1GmW1vIk89x9cYNkka83yjZMeo8zIgITdty5rbbuPf+NzLd2KQdjQhOyLmU4ankMEZ+JFUkR6Zfe4b5E89wef88NbMAUrPR2BhVxXfjzVdSjuS4pC8AJB5xDYzHVnIiR5u/Asnb4zpV+jopUueOrH3VT2+pVKsQUlIWS2ESPCIOp3Mj4upnBFYkku03GZ8zKSVmWWje+G7k9vuQ8ZSEklyg++ynWD71GMvnnmRj0pDdDDc5wp+cc3V3D5ZKQBg3nsXBAe4gws4m0kyRrMTYkeKCHBcEHD5be/KxMR1ssNewIZ45ZkM8M8QzQzzzrR/PvPSlTzG/cf015/G3g0k58DPEM0M8M8QzQzwzxDPf2HhmOPQ02GCDfVfb9vY2f//v/33e8Y53MJ1Ov9nN+RPZu9/9bj7ykY/wN/7G32CxWHyzmzPYYIMNNthg37ZmeIyFohmQTMlsQsWtLPivpD4GbColHhVLqe29ZzodM9s/MLCvXKNLiVgymzRNY8G6YZ+kGEmaccHThFCAccWVtNTzxZwwGlv6cnFozjTOl8MEYoohJ8fSxVflXlVK9UBa+YfW0wywhiiwCt6pBIllH3HOA9KrWntUXBwhNDRNQ9OYMsoOPFAC+hJ+utIGsX7NOMJoQtsuydnRhoY2JGKXjGhwBgKpV0hKCJ7RqCUQWKoRJqlbcrTc5XDX1NIGBTi88xyNWm5cv8Fy0YEU5RoGEtsga+kHA4B6NqA+VgH/qh7KaCBdI1/WTVdkQvlHgXXLHyuRUft7FoWxW/LAPRv8xHvexMm0oNEZe9ePCEE5ebLFNy1+6dlZQph0jMZK28Jdt49pcsfejQOuLTr2lme46/ZTXJq9zNGsI4qnFSV3S7r5nNn1qzzz7AvsXXmJu+68k3e99U38Z3/rf00zHjGdTjlxYgffeOYxcbiYc/XqLrv7B9x15x1MN6ZcuXKVJ772OHs3bpjPO09MmSYIVb8rKE4UJ6Y4Tp2haV48jXOgXZknJc16UREbSFeUmGQjmZwrAKaNj7gGkXqghwJw5gL0GcCpXWcEQgafFUqWA01KzkahGVAnZc6WchCAOiH5AvjnBDEeK2lhKvBoYKYmxAXLFosnEek6kKTFU0xD5/pyKBQQzPUgGKo4MdV4FkU19nNOxBSqqg5Vm9dVoVc9TpzDQ1++YDUViw+6fkEq3ztT6IodaqpXkqK0Jmdy16GFqHO+zF8UzcnKz0ghKJz0JA7O2eKl2OtdJe0SKUWcJALler60RzFQvqxPTmxh7VW8suq31YyqILGQqIRs+c3aQS5XxttaXrIcZKHxgSwel5WOSOqWEDu7rgaIEU0d5LTWDkFyoqrPVwBsBRet/7z3K8KggLkrmpaSoYBVaQJxuGB7jOZkJEFwvVLbeYeLBtJrWqWCl9L/qUwDKdfRItGXylar4ksJDMsq4KnljURXRIU9oiA+rPUzhNCQcyprn5BjKoyDWCYH5wg+IMETnCNrwosRD04q5ZCtfc6es2maovxO1t6iypY6xrpSIluxJOmxfcr+WHBZsmaiCi6DV3DqqcfqDEw3sB115FQfeDWX+69+hOjnSSVO6uLtjKXs98xC/5fyH+Z7RmQVf3GugLfSl3JY3fKm/eImXr4C/fb5oMyj6sOVDK37dtm7nTg6zTYuurpGvb6+xu2sYo6p/nNMLOcLZgeHZLE9eT6bE2MihFCeqXwWwQB/V4awEZAccTnisn1uyW4tl4PY2tNghyFcFjaCp3VS5kXChzKwwgqAL/ulDzYXc1ZiUiOr0vqoOVKqpaBsD6reUNeE9c81x+buK3pGMAIE83ex+YfW8Svq/5JtREp7sziUcjj0xK3oyXPoeIJqpD05pX3+NPlZR/f8JWbjDWTq8Vst5BmTxRy9scBFwUtL2y1xywW5HUOMdDlaVgKEnEHVCmsIevyxBhvsVWyIZ8pbh3jGHmuIZ4Z45ls8nomLOVef+CqLg73+eb5dbba3y/mvfJ47Hnhved4hnhnimSGeGeKZIZ75RsQzw6GnwQYb7LvS/syf+TPs7Oxw4sQJfuZnfqYPgL+d7bbbbuMnf/InCSEMh54GG2ywwQYb7E9g8/nCmIAaYGvGI3gn9ncpD9AHwdSQtmCBTkw8AwTnaJtVaQYRoYuJLiZSVsbB48RZ0FkAklgIhqZpDICJq7T4uRwUkALSOO9vwjxWmVJ6gLX/jpshiuMmr8AsXuU1roDcWFr8/sb2j5gzi+WS2XJJk0tbsuBcRjCwLbt68MIOPiyWiaNFx9EyMl92BsaLkR0xxR5IFecgwbLrmM07PJlYxiHFjsVsSVoeEXNExZRTwXk0TljOF6SUVyBtASQqGCh1QGsHrHVUBQhX5Qq0H8sKxlQSZd0fALw4Gu8RNXVlTS9PAZtyVkZBuPfUlB99260cXjlP6+d0SQltSxgFZknI3nFyx0NqubHf4VxirMJkM3D1cMGla3MeOX+Vg/kcS6HtUYUudYzbho3RSW47uUmMHd3RAXF+iIjywJvfwGjc0rYNITTs3tgnBc+yU67e2Ofa1WvcftuteOeZz5ccHByAKk0TTPGZlaCCE0vmo4UdEbADNlktBbxzplJMkVoMRHXVh1rB3VdwNEVBXwDR9T43f4jlxQoSSDGago0CF8rqZjknAz5FeuBvNcjG/mkBNCVbSQDtE8uX3yNF7VgUyc7mQwVvV/6xjkqu38qtfA0wabhSZM9rasjyvpwRScWfBSSvQc9S9blIVijlAI7dsQCB0iv5Vs+rNlQU+oHcRZIktBygqsCy9b+VtTPU1JVxrmSXUkszZC3zSZyp5LOl11dK6QPvSv+bs0g/DitQvv/S1ZqKyBroXteyMm8RasmWWjqhArI1NT/OCjg4EfCerA5iRDSjaWmlFFJGcir+SA9WOufA21xdoXLHgVjQUqIDVuVOVsiylME1gkAQ73DesgXU32fny75T0Wtdex4t86b8UXt67x2+CcSSyQPVfo0TX9XlZbylEk262quklJ0oIHD9WWhaev5TFfyKeDK1seCcx0tRj9YyDWVUnLOSDhlzbxHKmmQETs0uIQWET9mA/VTeU0s32Jyy/uwraaj9PmNZLZIqIRtBX6gSshpgrE7JSVfPUvpjrfpAP1vqV2bdy8p81NKefg8ohIFq2Y+l545WO65SldFGzujqZkI/t0QKHaLVryoRsWrz6q1rO9Dqf8Xf+qIGK0+p7ZG+aAz9jiam1s6lU1MXicslaEJdoFuWklVSFPXl4VZnCkq5DrQQBAmvallMhH5+uDXg3YmjcUYseI5/bnrFWJR7BG8Ueyr+QTmkUZ9hsezIR3O6ZaQqq+uWYMRN6RVZp+2Of3pbx4JWRN9q/bCRt57LSNm81vqfkunEOWQ8JY/HSDtGcsRPprhJS+dAZ3O6FAgu4BolHykBJcUOFpY5AE3QdUiMSFa6uCL/PIUk0OKl3/4Q1mB/yvadGc/Q/+w1bYhnhnhmiGfs22+TeGZx4zqxWxAXCw4unn+VCfvtZ2m5YP/yS2ufCxnimSGe+c6JZ2pLhnhmiGe+BeOZ4dDTYIMN9l1jNdgG+G/+m/+G7/3e7/0mt2iwwQYbbLDBBvtWtP29A0puYFQMHAo+0ATPqPGMRus6UFNZVoUXmi0VdVF8LpdL2naEdxag+uBZdpHZomPRRbb9FOecARolEI4x4pvAeDxi3DbMFh3jcYMPgeAdMSWc87SjlvFkugJ3DK5Eipoyo70+qAJpUgGXmw98HwMR6o/WfrIGSKCY2ky1ZIgpCi5V9o+OeOnSJQ5mM9rRmOAbXOMLCGL3SFJJAiMBjmaRvYM5V3f3uXqwD+2IRU50ZBbLSJtbcnJ4ach5xpWrN1gcHEBKNJOGW7JC6jg6PMLFBa6iUpLANwYaF6zM42m8JxWQ2BeypcuRlHUV99dHF+vX2m+pgkKvdmC+ACPifA/VtI1n0rZoTMxnkUnb4MTAspgigczEjdlpJtw+9XS3LTlcZPxkwvjsKfYvLXnq4j6jVnnbvRtcfdnz0FcPmM2Vc6cmvPudY5rJJtcOdvnNjz/Eg5cyGzu3MJ1soCmyf7DHXa+/n7e98X4+8M63cf3KRdomcH13lwcfeYRbbznLiemISdMQfGC2WLIxvp3xaMJoNGFzOrEU9Qqb001uv/U2zrx8jb2jBQcHh0xbgxScE4J3JaV76THFiDWxOaLiSFg5tJqyPmvu+7imc0dKivmslikAA2F80xSgrQL0gZRSIfME9Y7kLVU2YlO4iKNBIXUZTWl1uEbp5zki+BAM5Cnl4byUeV7Af+9cKbaSC6mX6XIiFWDfh1AAyEo8OXKF+9Y4iXXQW52ieAMS1aOarVKGWJ+qZjSCZIGYy5pU/FOlqKMtTbmm2lMFEBNnZe3qv+u9nbVPc9V4Gua1nM8JwSE590CpeXmGpCQneB+O953Sl/ZQjOAUVYIo43ZEjh05dnTdAsnQiMMFIwCdcyuQ1K2RMQbnH+szypMVaq1HFys3553D5XLISpVQni+nZAe2vCMtFrgWnDPy1QWP5ojGSEwLQgj4AkpHIKZECAaEe+eIMa3AdQpgibVfcyZ4h2WAMBVnzhEtvuQEU/uKOaZvR2UhLb93nuyaMhe0lGOwvpRK3qqVtUhl3EJwtE2Db1pUO2IXy9wxQN6JN7BcV+nre6LAGUHrnSuqaEjJHM95Iwlc05LV0txLKmNc7p9FyK4oq3Muj7ICXkM7olsuC/ifyyE3yy7QBLH7FsW5FyGRiWXNj4gduEulizAdaPVTRXEu2N5MrdqiIAUUz/R7oqlpbb3p591Nolmlzic9tsZnjPQhWzYLrX6JEZaZvCKJ62vVdMyIlReJJGJOPWHp6r3WvLpcsLS/EJDO9UA1Smlzbawee3st0ZBZ7U1K7azjxMTNptjBAycOXz7DxNjhY2eHACjPkSOhlu0pZTYqieU14TQRHLTeEWxCHmtq0myEgmghCLQc1FSoSnK1EhPJST/OqNIEZ35YiCRf+kgKUXV9b4/59V0OjmZ2cKIuDKvJiqHstsZ8PVw9F19OKdORWGiyzC71fcVZtC5OhUBQsPIkImSfiDLHqRCS4o4iKSaSh7zZ4kKDH9kBj5QgjyZ0my3aJugiPgqSlmWfalgshDCyjzMCpBwRTWjJvjHYYF/PvjPjGfrPjUM8M8QzQzzzbRzPlJ1McFx6/CEW+zdedR37tjfxJvwoNsQzQzzzHRHPHLMhnhnimW+teGY49DTYYIN919jf/Jt/k7/7d/8uwLd9KbvBBhtssMEGG+xPz/6zv/YDHBwe0HVLK+vkPbu7h9w4XHLtKHHpYEHC0tyL81TNDIBXR5BAdhZwzpYdh/M5k+0NfOtpmkDsEgeHh+wfjjl1YrOUdjKAUURYxCXTtqFtGkZNy+7eAZNJa6nnRVjMF/hmhG8b3Lhhrpkggg8NrXi6ZUcoBx3WsWxLA17LGEhRLxV84uuFzms4g0BR3kkBvwx4EhI5Z3aPZrx87QbLDNOp0jaJdtQANV22lnIaBu50XbLU5mClr0S4cu06WRzeB1Qh5AyacCiubTh561nO7Gzhi3I6THdowohmssPepZc42NvFCYxGIyYbExAMYEh201YcSwTNiRwT3jnaqgTMNfDWMqRiaaEVskoP1FlZDNcrAOtrlVoSoR4sSZCrWtC0YDFFUjLwbeQDF/dmPHJxl89eusoH3n+a5qUZzzw3559+/Bl+98s30O6A97xxkztuuZ+j5YxJcEy2Gs7cNoY2cMuZOT/+g2f54R94gP/jP3iRj3/1Ba7euMbpLc+NG/vceec5/uz3vY+f+pE/x2/89u8UsFK5/3X3cNutt+JyUe2JQ49mXL5yBSdw721n2HnTfVy+/DJPPfkYFy/v8sEf+VEOkrC7f8jlS5c5s7NVyjgYTOXw5OwQ72haz8ZkhMwTcTkjSkM7Gpn6NEVTL9eU9QKqGVkTfYEdjEmFUKjAcM1OFDDcXAH1DpoGpxmJHZqjKeSxcXDesTHeZD5boMlANXGCCwEtB4JyTpC61b18QHB47ywTfowslzNit0TJtKMRMXUsc6JLMGnHdDlSD+2ICD54KrgXtVJ5lMRIFaUUXHDIUvoydbYYuF6AJ6W8HOLKemHtTV0B+JwHl8gp9YQhIRDaxtTmpQ/tcFRR+knRaadMLGXt/GgKXkndkm6xwIcGwUrWaBYk2KEnzaWMhxQ1YMhWAkft766LeHEE74t6XIixQ5cLQk74tiWnbCRjec5jwmOOJ2zvU7DbKltK95W+QUupnVVGK3WQUioUjRoRMJ/BskN8QJqGqGltPUu21jdtAe8SOcbiO8HA8VTKzJRyDcH70l7LALBYLPE+0DQNo1HDYqGoWomErAJB8F5KiT/IXUKz9P7nKkGgiqaS7t2VMoQJUkyGqfo6Z4QQGkajCXGRSZIKUWUksSKIZlN/FxLOSk1464O4rDhnAfBdT2IsFTxWniJ7hwTpQV2vSqhERClJEvMSQgVOrUxRdp5MQrPSutAf0FPNiHao80aKJ6VLsLF1kkmzZBRuoN218gz0RIGI9CB7ykY8eqSUXLH2GcheMqClbASfYun6K3h+07bW+4ArpVi0rOKKre1rVoHiXKeoFEIoJVRy78DW31a2JGkq77VyLtwE7dY92Eo6uV4ZvV5+oXRAzxOsVPkrNrtoc3tl+bHcDHWzXz1wGfeMEAiNxzceCdbu8WTMqG2MGBXwIdiaksozZiuzkWNE05LWgcYl8zkgIxo3thuV/nOFtEkpE4NytJyziJ2VxkoZ37SFWM3kZSHCsj1sE9yKHFXFU+D+JtC0LTcOjjjc3WM+t/lHWVtX68Grjfhx0+JoldCNKbPMHfMckQ3BO/C5vrPqwXPpc7XPJ2pFajQFchSiUw414Q+WtIcZGW3g3ngPzbnbkGX5/DhqkTMnGG38/9n781/bkuy+D/ysFbH3Pufc6Q35Xr4ca2QVi0UVp+JgiZIoS2zKTYuioTa6GzYsCLBbdv/S9i/9BzTQghtwNxpqGLJbcAuG0XADMjxKskSNtkxSJIviUANrnnJ+mW+47w7nnL0jYvUPK/Y+577MLJbIqkxWcS/yVd577jl7x45YEXHW9xvftQ58nd5u4OXXKJ/9IhbwOVo2e2VqbMqOgwQstG96ltlm27c5nnl7m+OZOZ6Z45l3N5559OqLvPblz7iXfoeXsvtG5scU5nhmjmfmeGaOZ+Z45p2KZ+ZDT7PNNtsfGosxcnh4+G43Y7bZZpttttlm+wNu//of/yhnj+7Tby7JQ0+zOODh6TmvPlzz2Vcu+O9/7SvEpkGDp9DOuSpvK0CVS1WjBWW5WnK2Xk9gxwgyb7cDm/WWoU+ugMQDWzNjSIlSMipK1zVj6AqixBgYhnNC0xKCEpvIUDIJm1Lfe236msbcdoDE+FOxwl66mL3/vo3J1R/G8lUCU/r+UoxicHR4yPve+x5uXr/OYnHgBzKiVqWXJzXfldoSavUr+pQ5vbjg7v1T7p2tHQAMI0hagEwImRs3T/gjP/BRnrp1A0R4dL7h5OZThNiScyZ2geGridxvqkJtbLlnxRnVZ1bHKKVMnxIZV0g7SDOCkXtqvAmTGVNp7/XYHuZgFdV11RYMqZBz8nTiKmxLdpC6+JiqClmEr7x+wd/8n7/C0zef4cmDA0owLh68xlNPHvATH3mWD99pkE3iiZs3WB0BlunCls9+5YyDpQM4Dy/ucbkeMDU0BrIt0BA5PT3l9PSUNja87/3vY7VcElS5cXjIFz//eTDh6OiY9773fbz8xj3uvfE6QZSDg2MIwVWcErh3esqv/71f4Ld++1Pcu3+fw4NDTHbp6UsuZIKPqRpW87MHFUSMTd8zFJComISqztyNkZdYkPr/ng0oaCVmKiEHpYKpQhMiufHsQkVAYiBY6wBycpBYdZfFIBVcRdpUqGdUhYr7b+43Dv+o+4rZzk+Nwna9ZhgGB2ebjpS9FMao5EaCq7FxxaZAvc4IPilWYW9XjhuF7KCqZSw4mIv5FRRBgo6VDlxZqVKzNzmwGXSvPEs2TEJFHCOx67xGB0zqVdSqardev4LDoY3E1SHdwQrLCRkV5HXWBlUyXpbOlf8OqYXo5QAwI5fiYGAplCGRSsG7JxDaJagrdYeSKUOCGB0Zr2NO9lIGiAOVjovWZ7OyWweBqbBfBTtz9r9rVW+W4trxEFvA25b6HhhAAtJEStNAJfM0Bv+M+LoZRNHiYyai7ltN8gwWVT3bxFgV8g7mt11XlbgZSYrGxtWSTm+6klaKA+dDBTHV/56Kl6LADKmKaBsTaY0LkAoioS40iZL9mTRuoBRiaPxeUpWmUtcjM2KM5FEhLeq/hwo6m6DjPA3+rFrnvFUSy2FzVzGrKqFrSZstwzCwybmqp927BffLbrGYCLE8JEoanIgpmdg2NJLRUkAKB23g2ipyLWRCwX3HfOw9a4iQ67wCcQKgzk3fj3yrK8UV6+OcHstJTGCx7ba6cR2XcZ98rBSHO69M+1vOnrVAVEipMpnmPppz9rVq3BfK1X1jvJ/A1JYpQ8lj6uWxDMHIlRYrBNG61wqYk1rTvWpTqXOyWC2pMf5RJu1uPRwwblg2ETGCl8jx/cjLCOVR8T6Ob52LKlrXM4NKlHv5jQRFMTrPyiK+501zpu65OVd1/TSfxxWRSsCU3RcLRoKwZn+R8bvK7rWD5QqWS85jIOcE1tSMWn7dYo8dgdgjcvbH5ko7ph4TdFK/V4C+ErjO0xWMRFEhm1HWW+T8Ej3eItnAEk2T4ewBtr3EVi3cukXuM6n6adMtsPUG1mvk0UPk7n3k7Jyy8nGIi5bQRUJUP7Q67oUaCXHBbLN9I5vjmbezOZ6Z45k5nnnX4xn57j7sNNocz8zxDMzxzBzPzPHMOxnPzIeeZptttj8U9kf/6B/l+7//+9/tZsw222yzzTbbbN8B9t7bx5x3Pf1aSH2kPbjG+arhoGs4vaygkCiqoYJ1NYjcAztzKbRNw/Xr1zk9PXNo0KyCfOLKmz4x9IODVDW1NWaklMkpE6OTBBPYg5frzTl5+nFVVsuFpx+vQTglu4pzVAgyhdTeRqwqomy65luWNvgGZiOvsKdWyuYh97JruXntmBsnx7Tt0oPpqni28T5j28QBj5ILQy6YKF3bVUWxt3MHqRpBjePDBbdu3+TW7Scwg9BtWZ2coLGpIETi/PSUiwf3Sds1Q8pITeKvih/6GHvDHIjMpZARYniMKNlhKQ74jP0oNR32+MpERNhVrkXquGRPZm4mpJKr8s4/IWLEGLh/3vOLn3yDn/6+axx+7ICD447nnlohlw0feOaIp68HGs7JSVgu6nmRYvzWF0558onrLFrj8uycV167Ry6F2LYUaei6lnv3H/C1r7/ICy+9wvWTE0TVQbtSePHlV+gWKzS2IA4mjgr8QuH88gIRZXVwxBO3nuCXfutzvHb3dS8FsTzc+VT1A9vrLE+l7qBDIwaWSQmieCrsRpSBPCFdYoaGsOdoPv5Basp3KwTxnlMzohltRSELRiy5jqxMwN+YRR0zig2EEKuqNDhAGHxcTJx8CIgDxKKUCuCJSyTBjNBEVFzd6apFpQkBCZ5tyapqzf1NEdVa/a1MWQQURW0PHDQH60o0B51Knhg9GUFQZPK90ds0jMSJl40QAgEFdRV+aKJnQqgA88Q0VIBtBCw9I5PSdQvatsNywLrO50uVqWtFVEegM9Q1RxlxZ1fHSyV5AtGzR43vDwHV1rM9WQErhFAPTAkT4chY5q6uT6pVfWwyVtHbLUKBCkrXO48lGYA8DGhoPNOUGKnv2Za+AreGZCO0jYPi4j2XhroWq4PcpXjWBKn92TYdOWdyyWQzYggUGwHrQoyRlHxelVIIbQsacBWlM1fFZa9TiRqCP4H7TfEsCiqoSe3zMpFVEgJiNcMEoWbpSuTt2udGt8Q0VHqpAuR1rWnaFsm5kpheugUJTsIWL4+oIUBUJPqYpJKq4rx4SQSr5IwqpkJnGVVDFVKQXUkBhD5lUvK1LgJHraCaKHmoxGxmpYlomWiFNjQcWeEobwl5SypUxSlQ/DDfSLztL8gjAedVNayWgvD1tkxr9j5APy7stiO5BS99UH8ZyzpA1b6aUCoZ5FUnZCpns5ubUktWVMUx4kvGHrH1uEkluGRiotk900RmyDRta362+vK06ew4Bts9294LI5cxvn16j4kwltCY9uPxoIOVqaTGqGa3vWd18qHOe22cLB47eCwbMRJwdX224nutBKb7gM83P2Th4+rXHAnAOs6TGriWdJBdvxwsFpS2qWtSmYidSQdf+2j6lrNzhPrr2Ja6fk30jExlpNwHzD3C1H1FxjvsHe6MSnj0kLA4wNoGLT2LtmE4f0hOPXQLZLHCYsFyomQviZLXW3h0ht57gF5uKCFiiyWsVjQBNIAGmdor6qVnPNvKbLO9vc3xzDe2OZ6Z45k5nnl34pn12UO2l2f/QvP1O9XG7GhzPDPHM3M8M8czczzzzsQz86Gn2Wab7bve2rblr/7Vv8qP/MiPvNtNmW222WabbbbZvgPs/oNHbM7P6bcXpH5LIwekPpP7ROnXIOZ154s4CKqjaqmWW0BIKXFwcMDzzz7H2f1TGnUlZNe2lOyfG/rMdpu8EkSNiw0Y+oF+SKgGlssWDeLAVM40TSSnRMmJqMqT166x6jqsFPq+pzUHq1Ch7OEFHlDXINh2KYVdOVoDT9iptR6z/ZdyThRpCAImMinGggitFtoyoP2WYoq2jWdtqWBM1ICZkg1KDcjzkNhuey4vzl15ajIpqdoQEIkESTQycNA6eLfd9lg2hlzbK4Aq1+88w+bikpwSb5w+pFt3hK7BLNMEowTDdAREqjJWkwNAZYTXdsDS1HsVpN4HaGxUnVfgySoUKBP26yBLn/26I2g+whLe4YXDRcPZo8xvvbjhH/zGQz7wgSM+/PwB/9rtD/CP/vErvP7yG+jQ8iPfc8KnfvNV2pVycr3l5q2Of/jPH/C9H7rBs7c7jsKaT3/hC4SbT7E4OEJMOT4+5OWX7/Irv/ZbPPXETf7c/+onWSwOuciZu/ce8Majc545ukZcdAyX5zzz5C2euX2LUjJD2vLiiy9y7fgad24/yYc+/EH++We+zCc/9yW2Q2a13CXqMYQiniJb1UkqQyFn2hI4EGVooM89kUKQhhAahgrQgRHE05IX8b4e+gGSk3DFjG0pNbOR97EMPY0UFAfw4uXWU9aPAseglGEE9wop94SuRbUFdQWlWHKAsBgNxeFcK/57jJSUsZyxUui6Dlk0DJs1w+YSMrQakKahBIUiyNAj5iByow2i9XmKIqEe5MFTv1thr73KICCSIY9Z1ItrasUzEYyKfqriUAlQiRExIzSNg7QTQAcl5arm2/mpqoNxljIhREIQQuNguhQnVhZtSwju41ZLUUQKknuw4CCVgaSMqhA0IMXpNwFCFEIF1rBCwFPKt8HLbhTLXmZDm7rejBkTvDRCssyQCrGt2azMGHqbSvs5nliccBFBOigpEes6mwCRlrZtUIxBLjBLlXvxxPtdG5EmIhpQlE2d12pG10TEcgVxvfxBs+gYhkRKycvQhAAmZIQ8FKKCNtFJx95L9IwEaSkgFC8bULw/JBoSFDRSSiCXBJYrYGwTqG+mmCYvVVhcWapSaGMkWsL6xDAk2rZDJFJEKWRX6YtnpOhiQLLPJQfuC8vRvyiQDZWCZc/oNaQeG3pP/28G2d9rxUuwDCXxwRvH3Dk55ObxEZfDllXToeL7wxdffo2v331Iv90SFD7+0Wc4CYmcEqfrgU+/fM7NOHCohQM12qKURxvUiittQ+vkRAWOHaT2tdiKE21QSwqVQimC1nWiVNKx1BW8kDEyIrWkgYyAsG+4WUZys6rsx32uEjrZfG9zhXshlaqCHvdMwcmg6j+5suieLcQquaW7jXhvL604/QjbV/V8GF2g7tu61+7xtfqvvtF5jR2orrKDunckRSUzKpGi4mQPVD8xzwahpjD5ESyC+rwSJ0JG4lRUICgWFpQpe0CDhlgBbJ2+S4iKq90zaGyIMXoWA4Q2RKCSEgJN29CXAj1+L/EMNGbeF15qxzutYBwtFmzVVw6zAuqjb7brMxgpgJpuQCaafo8y8nXIqmNpwAljxMu2AEjx/imGSSZLIZj5OrzokNURzWsvES4feYaCNLDsBDu/74NyeEIo4mSemU+mVLCUsW3C1om4OCA9fUS5/STxuefR7QY7zD4/rdQDKhGppUNnm+0b2RzPzPHMHM/M8cwftHimlMzdL3yKzfnp72ld+06zqEI3xzNzPDPHM3M8M8cz71g8Mx96mm222b6r7cknn+Tzn//8XNZuttlmm2222Wb75k0aJHSIDhgJCzWYlgpMiZMAWgqqgRFmH8HkfcD5+OCQw8MDhn4DBsuuYzMkmqahaZuqHKoEg+KKGyCnRI6RbrFg0S3BYOh70jCAwWbTMxjcuXWb29evc352iVkhxmZPdfSmB/MDCWFMsb6DDwpW0/G/vRnUYN3hDE9NzQQElFIYhoH1dstikWnCCIpJBcNkSttezIs8qKqDykEJTSBEV+0lYyI0RpTDVYsTG1PFqsUVjCX4uAwDbdty7doJId+hW3SsDo7ZDgMHyxXnudC0QhJIVkh7JQhMHOApJTuOIFTSQK6CLWXXb+Ow1wYC5tfMZQJ7RwJpzK7zuPVmpEZprx/wvc/e4kALbNcwBEIZ+MzX7vFgc8THf+Apbh430EAw4fKh8v3ve4aDkLi1HPixH7zNH/2X3sdvfblwfrrl5AhYrRguez735a/xf/t//D9579PX+f7v+yjHx8d86APv59nnn+fe/QcEYNEt+NRnv8jBquPGtWOevXOb/+p/+LvcfOIOT91+kmdvXee//zt/m/vnA8vlcuw2Aq5sS2oUBkwSpkYIibZcEs7OuLU85s//iR/jyZsnbIfEMORJBZ2yA/ZDMVLJFFEuNhs+/+Wv8KlPfhq1QiOwvbjkchgI6upliiARYvBU5qFU3Z4KEpXYdmxzAj8jRAhGawvStrDtM9tNj2hkvd2y7bc0MRIYS6xpBRXL5HdRIqaG5QFNPZISl/e3aHTAxqwgyTxlvghDMb9GzV5UqkIw2Yi7OjDmZeoEy3lSzdaE7mRxkNJLDjARMj4XS8244HNDQiAyKg2FIXvJgEk9amM2hBE8y6wxBymLrxkjECtWsDJQbFtBSX+mqZReBQktG1EDXde5mjINNAqLRceyliUY07mDuJJZBYJxcfqATTEHZRUnWvYYujKqccXBumI2gXrjpBPGcgCyN1OBUup1g+OBQ2IoyZXIIgQDhktX+UpV3pdSCStYRycnxr4baikGEX+GFsjnnsWiZCevUhzJYoOcGS7vI+oqezNPf1+qXDdIIITk6mUJmLUEK04Gl+zEVX0Ww7DcIy61dVU1mbOHd+tYK9mM4fLMJZTiIKon0fLeushW1b8OFWcxPnzYcKNRjtR95+w883A7cH87cLZNDKWm7S95AltzKfQp8eD0Hn/25/4M/8qPfpQ/8cMf5fVXXuF4saQfBl578ID/7O98hc++8mVOT8+42Sk/9sdu8NxJy/m24cuvJ15Y3+Vo1bASZWmG5ohLZhUphcEGLIRJecwITk9jLxMpn7LVjGc+jrkY2bxECCqk5O8fryXiYD82XnnPh9QP9BnZ9yoRivj6Vkqh5FKbUg8VjmMyEhJWwfqUvQyC+u/ouKbsbxg7InnXdkg5Vz8c93GfuzIC5ez9bdwbp71opBt23jP9qZInE6lAQUzw6pSZTb/l0Xlk2K5ZSeRysyGXzPWTa1w/XnG53nKx3rpCPwQwL9vx6PyCi80JFlpaEoUtsumnLAOq6iUlarnLVAopZwfJa7/J1O76PDnTirDsOm5dO+G1e/fBvMwm4sptQ2hC4Pq169x74Wv1cOfe3jxdfeyqqmxGkDz22egbTMpwM4UQnDw0B+bHcjTTtUKPKSiRZbvi0Zc+w7DdMHzvj7B95nl0c4mmjGjHVoHv+f7qV7BJmbGkhEpgsII8qUAAiWy1Z1gsISfC+X26L32WZnkE1yJZFLEBrd8x8vDdXxZott+nzfHMW9ocz4ydNcczczzzzsYzaej52mc/RcnpG87R7xozY/PG1xlU53hmjmeY45k5npnjmXcmnpkPPc0222zftfYzP/Mz/Hv/3r/H8fHxu92U2WabbbbZZpvtO8nE9WKGB/YeXVs9K+Ck/b76FXZcPYCIp9v39OKwWLZYGRCMNLgSc7FoWS4XjBlZwLVTuaaZHuvFiwiLriEPXgKi1NICKWUywuFqxdFyyeX5Jf2QoOkYARSzGghPcfOYshlUhVL2IeurwfVbdsv+uytg4emkJxS/9oNMqaENQUPwgw4ypsoGEVeIMqZBF3OVWAVrdmnejWIZDUqMnSviyjge4wP6da34ewVPf746OCC2kYPDQ5arJbFtvFSGN3sPoKnkDvtjOb7m4GR5u/7ZI0kArAIBsDvoMaUEV9nJ7vaul80xpJMD+MjTK8K6540XLjk9z3z0wze5cXvJcqHI+pLFakHXZTLKvQvh/tmGKA3GivZgxQdvr/j81x9ymgvCCoDNdksMwnvf8x4+8MEPsNluePDCQx6dXfDUU08zrNcUVRbLJZv1BULm6PCAbnHIGw/PuX/2NUwCf/QnPs7HPvp9fOJTX+SNh2e0TfTU+WEs2pFRAkUMkYApiGVCGejIPHOy4r13brDdbtlsBy/FkQu5ONA31J+zBM6awN1FSygDUkuckLeUPCDFQXsxQZL/VwWiac0iYJQehtJ7WbVKxDVBWWqhl4zZgKYtaEaGLfRbrOQpswEiiOnkZ4KQ1EEvoSoDi1G2G8rga0KtNsKYGj6lXIXw4/V8vItVMqr6hYqQRZBiOyAPmGrHmWG51PIS44Gnce7t+Z45BBZVHLTOmTTNFZkA753Ksuzm4zjf9t28qib9ecsecElt01iOwci9MeSElIwEpQ3QCCRzIHdvCa0HtAR6ox8GhlIguDpTxmldCTqpyr8ez5Qw0Z+2IwnG/7Vxja7NL9PTOilQRmpToKny+VwB2LQHtgpCjMokogQvDSLivl7ne79NpKFmhQiB2MSJDCzmoKgD01TSYteeIkLTuIo3Fdjm4KpYbLcujV0NiBXGBBB+SM1JkLFdhmHbNWMHyDjEI2hdyQHqupcxmnbBSoRDhZKFTW/IULChUJJ5hi/zsS/7mLRkQhCUgpYeGTZYWmNFfW15eMa9+48oGZoYaRqBNDBsCsPWyMmzfpSaISMVIaj5eNsIqkPGSzSoevkUs3xlHd5tA7VEgQhYoVTWZ8xEYcUcoK8K+LFvxNSzgyBo3vciq6R57X9xlbHvA0zzZ1Trjs4dKqkxjp/P8719uO5XqrqbE9WXx31vdO3x+8R0+To5rZaRMQNTm8jtffp5jyrbOdFb2EhsiBglZ1JKDMnXjG1K9MNAzokQA1ECmM/BEEIl7PDvR6JoaGi6JYvVAW1sd6RL/b40EhMFEMnEpiHEqp6eWinTAYA8DCybhuOjFXdu3eSNhw+daDPPjpBzRtvIom3p2o4hOfEw9ppnxhMqT1S/f+wcx2z0H/OseeHqHu5lQKrS2hfpqX3FElogEBBrWJeefP0Z9IknaU9uu68tDqB4lgMLgrZLv3VONGVwhXkt51BKIcRYM98Z/bYnNw2WElIS4eAEE/Xvf0ZVYifPXjJs33Z8Z5sNmOOZt+uW/XfP8czUbXM8M8cz3854ZnN+ztmDB394DjyNdnnudRyZ45k5npnjmTmemeOZdyKemQ89zTbbbN+V9hM/8RP83M/9HH/+z//5d7sps80222yzzTbbd5pV4HnS4O2dBBDZgVIjuj8CQyP6YKXUrCjGdrMmqHC4WrJcLNiu11Oq+bZtR9iqggtX71WKAxZNDK6aHNEDkaoCUpZd56nLMXLJ4xkJRsj7KrDvSq4JWJveu//sbw8qGDsQf79vdocpRhJFax37Co7upYU2ZDxLwZh9ZpQ5e537mrS5kgwOgthEIugeKDOmxJ4e0lz9NyroJCgaoqeeDp5+2kHjevcR6NhDY8wqwLIHEO1IkBEgqn94qw7adeTVP0nFiCpyN461iJCT0YjxxJHy/NMLthdb7p5ueeNR4qf++G2uXW9JQ+b0dODr9ze8/5kFTRMpZ8YwZNrQsGgFbZXbRwtXpFsCiZQ0AIXr14750Y//ME899zxf/dKXePHlV7j7+n2eefoZVssFQZUisN5s6BadEzuh5f7DRwxD4ubNG1x/8hY/8P3fx5deuMvde6eu/t8Dzh2BFKhpxXMtbyZWiFJYNMrRsqURI2CkYiRxJWNST5E/GFhQhhBog2cdGBOxKzYdiKmJzVFTtDjpFfCSEmIwmDEMAw3mKjdR1IwgEIR6rar6tFxVp8VBrOqDu4Tq1V+KYKpeQm4Ee0stGZBrwnfdA/pSdmC4riehgqATSSAjAO0f2wcH/RMVzSyGVbRRTScSawLWRmCzOEBaRNCgTnqU6nt7k90m/x3XiN06JmMbBBw+rX6/R6KN9xvBM6OSOzmh5orcYEa0siNRK6dHndYqipqXcEgl4ypVneakUoF3ccIx5ezXZ7zOrpcqN+AA8tTgHdHnS4Rnt/D1zyZwk1IopXgK/0pOjqVMTMb+GgHP2jHqPZaHgZzNy3oQMbEJ1DUrjKUHfdxK/VsFg9XLXaRiSDJKErLsMlPYuPbtrybTwinur4yH3yqgmcv0+CMgbeZkcMXdp/W6ALFE2gKtGEMtTSIjcWw7X/ByOzsCRkWIGggAOZOGLSn19LnlYtNz/+ySB48uKWaEoFOmi34o9Kl4WQAJXibIoIih1UFGze5YAmDaa2QHmFsFzMvefKqbzxWAfFy2R7JWRH0dwKb+FdvN5bHbbCLwdmT7OCbjjLkC4teBqAkQpgwjpe5H+8SfjPvabsaNDrrvzle+B1id43szz8FyG59jB2Cb2LQ17T61+/T4R9l7jw9jnrLCqSopOWmQS5lKDlgxL6+5Nw4GnuFtIrYUNBBj8Cwm4m9Sn/T19onYRN+L98H7seEGljPNsuPo8IDlcukHAMquD7J5uZW2ab29uVDKfuYEYVSie/PHVbM+tDoDaMgeGehjNR60nEZgfyuv64oUBQkYSp83lMNrcOM28foTaM6IZF8XLVNUMRoEiBhB/IAH0+5WCTApQKZdHCMKKfVOUK0O3bdzxhd087KleSD386Gn2X4Xm+OZt7Q5npnjmTmeeWfjme16zcWjR1w8evi28/K71UIpNGZzPMMcz8zxzBzPzPHMOxPPzIeeZptttu86a9uW//g//o/54R/+4Xe7KbPNNttss80223egeaAsyKiCM3FF0qSUZgeK70LS6b95GDhYLVl0LfdevwtDz507d7h54wlOT085Wq4IGmhCoJSEFCVo9PMNxa7UNS+lEDWQRapQUioQ4Tfrug5V2QPcwQFN24EPFS0wKwwpEWqK5qutfvynx4GK3d/jWHu9gqkj8ASjEq5BY4QYPN363gU0qKfyp5IEMmCDYTmTU2IsmyVVwjxiKp61pq+h9dVk1xUnmxTVnrJ8YLvtCaEh5eIgSCk0besqqFpKIkhAcTCbAkbZqd/GZo/Afu0AB+IeZ1d2MIQQprIeRtqDlfbVb7v29+uBG0vjo3cWPP09S379l+/z5Zd77l0If7JTumXk4oHxO1/K/Ne/9HX+0s9+mA89teT68pzrBwueubXi9hMttD3H3coBfyCLsl2vWS07PvyhD/C//9f/AidPPcWjT3+Gr734Ml/56gv8q//Kz3Dr1k1Szjw8P+fB+Tm37zzJ4dExgxXuvvYagrFZnyOd8iM/+DF+6dc/zZe+9jI5OymlKpPf5Aw5wSCQMk4UiAOBfc5cDolNymySH5QZsgNMORfWfU+/TmhrDCn7AR4NNBiNQMRVzkGFoCA5E4CI1H/QaEMWBStcbtcU9c+iwmCQEDKe4r2YkK2qVUNENO4mS/2nFqpv7Y/3bu5YBb4MsKrCK9U/RUPFosbRdwJCrWYxkr3X6vUn4XxFe7Xewx1PPF29MPn/OLnMDA2uAA61vESQQtJxldqhgrvDS9Oxph14OD5Xvb9VYsYqyOp/tgk5HWkUM6MEP8iERlQiYsN0HRHQAqJ1fou6uja2aCkOmlOZEoyA0LUtbds4KLrdks0qiD8+91XT3WNMXeNwv4PBhUoQCXSqNBrpK/CWbXeNQM3MMALJk6K1+vpIJgQqueuApAYnekvxcg+oVFC1klejWhdDg7ch1mtvZNdiz8wxPsQ+ZbTjQJAw/bxbA3VaL8c3F6tqY9n1h1h9TvVDZYHCMIK8ChKEEIxiypjXIciuywOZrigtgWCKZQfsC8omGw/XiQfna3JJQEFUKbpg0EKiJ1sh7Y1PkEyUETBlUiJ7c0ZSoxIFVZE8ds2kbh1tAuDFFdKMJRqYSnNoXeGLVJC4VKKzjkE2J46IEWqJxnH+OVHg+/Q0gRn7mqrILjvS/7Hmje/dn2fTXB4HT1xRXcbOmFYPpmvulNW7fWp/Lk7ybxsf/i2nTL2mZ3EAzx4Rmpb1MJCTl8eMKgzZCU8qWSbjd4paAmqz3RIu12QLHK6Epl15CSggp0yIjfd/EIJGL70T1EmCkbShrpXifRhioO0WrPvMZjuQckZDMxH3GgJt24Lh7Su1lE8leiQGYmyJURn6dVUqQ0FouhZCxDR4+ZXtph7u8LmhtbNL7cupzIsJKgrm/p6CkIZEWtxErz1FuPMki80lGhuyGBvzjDiXF5dEDRyvDmkkUqSWLUmZput4+OANNptLcob3vvd7yHnNpr/gfLVg/fJXiZbRtEVKwkpmGHosD9gftmwZs/0L2xzP7Pph+nnv73M8wxzPzPGMj9+3K56p3vHgtdfoN5s3+dofBuu6jq7r5ngGmOOZOZ4Zn3mOZ+Z45tsZz8yHnmabbbbvKrtz5w6f/exnOTo6erebMttss80222yzfYeaUVyCK4UhJ4IIITSE2KKxASlX0ajxc2ZQ03YfHx2wWrTcf+Mu/fqC5599muWyY7PZcOP4GiHGCdAoJVeAZ0w37iC8VQVMiI6WW/G0zYKnQ5YYuHbthDvPPs0rDx/yaL2mYKhjIBXuLB44Qw3wHT2yx9q/04a9Xac4xFBq7XnVgOLq1lGRXCr40bQdoWmoKJrXracCMjg4v4PjXfEcVImxmdJ1X2mbSAUTFK3vlaq4GpVi4zNgrtaNsaFrO6IqTahEQM70w5asiwoQO4gX2CkHpxTi7AA5G9v+Dbpn9JzaSYwonUgghCpqdPHtpI40cyVw6Xve98wx/9af/iDhfTf53N/5Kp958YLcBuzJawwvn/Fbv/OQv/JffpFf/PI9bt54wM/+Sws+9v13+D99zzMoPZoT6dULPvE7r/LGww19n7k8f8j5+Rl3bt/k5OCQJ06OuXzhJX71V36Dr734Ej/xwz/AzeefoinGl778Vf6///V/y3/zt/8h/+f/4/+BH/yBj7E4afh3/q3/LYum5c7TT2EGL77wEo9OTynDQGxd7RViLbmgPVmNHKCokfNAyY2DrAp9v+Xs0TmpFFIuiARXNpbi5U8ELBhoQbTQBKNVIwpEcSW0J7JXrCreYlT/O/6vbYRNyeQhV1LHIcFUXKk2DENV2JWJ5Hor33eFtHtpTSK/G18byzwEMrWEWymkDK24v8Ug9GlAy5gCvc51hDwCTtRU9FSFp1S4d8L1xNPgY2Sxqnq8QuPBWLamXl1FicEJyDTk/VZ/A5/dAZFlIkd24OXk/3uIqMhVEnF3qMr8YJMUMIeCRZSoEZE650cMs2gleXag8NjaooZ0ysX2gjRkUoGptMJj7d9Xgu66UCZw3+pfrSqIx3EfiU5XdRpoBaBHv5CA57HydZ1KUYbJY8Kuj8zL+2ntixFeH4HoAhRV8qjuVMOCTgi2KSTTqcLN7jl1es7C3h9sjwzwBkzZF9y7va3ICB2Pql6bQOqgPm9FFNQQMhGjE3Oya6y8sxtkxhXXVEFbskRvt4CUgZUWbh1Ebp0ccXeTSGnANNKURFMSYomBQsLoi9EKFAloEyvwbZMviBmWCoXsmRomtTeU7M/S6K5ER8rJ+1cEgmGSJyLBKnA8lSkaAfy9GeDlI72kQ8ZcLV//2yecbC5WSfkd8Tv2jYS6rotAzv4s9b6lXsumfXlcS/b3L51WIv9M2fVF9QWpm9L+Pr7vgyXvCHsn8K/OlWkEKzlaEFJ28vzk+Ignbl5nWJ+jQVi2LUGEB6cP4GhBLn4IQKlZCCigkdXBim6xoG07mrb1siiWSalMdx3S4He3glpmvV6TUqqkTyWSimGWQSKxbbnYbHnh1df46quvcbntmdadsUPq962UMtuhJ5XkPmKFVIzFInJwfIKIsT4/p6QeEcgxcnxyjdW1ayyOjinDwCtf+RKbs0fYdkvbNBhCL7CmULoCsfZn9f0UBqIkujzQpgVBGooV0uaCu2cP6JrG1/RkdKKcvvYyoY00t2/zyc9/mevXr9N1HSLCwWrBxcMHXFxesh4Gnnr2lDSAZOF603EeWlIWcj8gm3NWITqRJPtlP2ab7a1tjmfeqlPmeGaOZ+Z4xof52x/PpJR45ctfnDKr/KG0Vrno53hmfM45npnjmTmemeOZb3c8Mx96mm222b5r7M/+2T/LX/7Lf5mTk5N3uymzzTbbbLPNNtt3sAla1XRjeYFCE5W2jcTYkGuZBqmqyREcJ2dSv+Wpp+6wXC4AY315wWY78Prr92iaBU/eucNy2dBG9dJNlW9Qq2D5qMZmFw3XUuogUKTUtOaGZFcK3rx2jYPFkvsS/Ho1mN7l867AUwXsR9LgCoAwgSZjKvw390q9MkNKNGLEfTVTvQYiVdlcU28HdZU0O0CGeh9MnFzAFaopD1jJSDFPNS7ihIIVuralCx2iDuA4mCeMGdTHtoMrsbb9wOVmS8oZwiMuNpf0JTNkyMVVsU5uZO+fmjqaCvRR77/fSbKHCb2l2e6HEeraV1p6ivE8sQ+iAVIiS89ZWvPVNy747Cfe4De+9Ijf+voZW4v8V7/wCndffJ1PfvEhn37Yk46f5Bc+e8aDlPkTj9Y8fVTYJuPhufGV1zKfvNcTTg65eSwsGqU7WiBN4Cuvvczf+G//O64dHfJPf/u3Obs4pzlecvMf/CIPH5zy+S9/hb/7T36ZF197wD/8X/4Z2+2GP/LRD3L7iVsIwunpGf/N3/xv+dt//x/x2uv3aLtmyhwQ1TMLNUFogcGUEJS2iSyaSJeAYty795C87SfQVkOk7xOpOBC3zYk0DBRTLvvE/dMzv7ZlzApZR5DPS0O4FLZ2pzoQm/MAQAiw0A7CngKZXXp3F7wZMQZPT19hL51gOb+wIl5CQl1tPaaDH+dDqLOliCABL+2mY2kUwMJIjU1475id3KpPyURA7AC/6X2y+3kE2cYXBTDZO0SUBVMH74JALLVMx+Ok2z7h8RYOLGKT8H8HYPKmz9jef2XsMgGhoJrAArHW12vUKGpo8bkQES7IeAmOq+U3nBRUcioOso5tML6JSTh2jB/ccqUlZDW07EoCFgDLsNc/E8mAA8s6EhDmKdulSCV8xrF1ckcKE8M4Apimu9IEuxJ/dd/AnKS14mA0RsmyI0dHZete7z4+WjY5mL9n/GmvmkMlOx4bLRuf0UtUNEFZRGGTDFElqBGLoZId8MawqYSGK60LAqpoBJFCsUzK5mnvFdQywZITJAKqrn4uNiq1lWjm+6t5NgCjqoHrSEhF8ccnyMWJC617bcE/X2pZxFx8T5hU0PXa3ts69eJEldRyAGKGUhgUCEII9RCeKXlUJdc2puLgupeL0SkjyFhCYVI7Fz+IWAwyZSKGpmGow2vj94aqXBbZA/b35t9Y8mgEyCeCXGoWhrHkhNk0d22PfMBs8gupZZXc1/1ZNPh6PaSe84szthfnXKTCxWbDNiVSFoZUfBcTRRmV+7abA5VyoCSG7bb6s8/jpmlqxgcn+w+WByy6JYIy9D0xau3TaRY6aWCw6V0RjcjUV/4OX2zNYEhbzzBjXlLIMxU4+ZCykwt+YCEABTXzb3gWSEVAPFOMipfpwWBICUrh0hJ51TpjJlBZ/mkHEOph1AYsgpFR4PLykvXlJetHF7z/ve+tfuFktUZD6j8VIeWB5WpB2zYcDYXS92RRVCGUSBCltIEthc2DU7rlguZgRdN19HnBbLN9I5vjmTmeod5/jmfmeOadjmfWF+ecPXjwh/vAE8zxjP/CHM/M8cwcz8zxzDsVz8yHnmabbbbvCvvxH/9x/tyf+3P8/M///LvdlNlmm2222Wab7TvcpCpwPZB2oECDEmIgxoYR6hkBhCI4qA2QC4vFAlVlGHo2mw2b7cDp6Rknxxcslh3LZUcTK7xYKqBUgSERV2iNYFMuhZzLpA4uAhJqeuJSKClz7fiYg+WKGCIlj+WjbAITJqLA2NWzHyVa1fZBqFHFKbL3hhHEFK017ytYJJ5222wElPZg1FGJXf+J33jEV6u5es8qaEIFf0aFYBHv66BKW8mGPELwNh7OkCvjMareRvJhKJlUVWapVEV0VZTtyJQdMTM990iCVDDlrfrqzb4D5ijNBCSo7AHFsmtjyUZsAk89d4uD2yu+tlWaT5/yWl6wPrrBNgd++csDd+8br6YF3XMdzx1c55RLfufCaL6eePagZ5sDDzeBF8464lN3eKbr0BgIGBAoORGC8plXXmBxv2WzCoTugJfPHvK3/8d/yBsPHvHK3df56guvkAv81u98novLc169+ypP3X6KnAsPTh/x6c9/gU9+/sts++xlSEJABaJK/QdNBfpUxEuDxEAbjCLK0CfWlxtGNbtKYL0ZyMXBmd4yQ78lZWHdJy4320kNO6U4pxIvVd3o5JpU7FiAjKJEUZoQyVImosfH1SYFpipOZqnufLQidIIDxVLT/8s4uNMo70Fa5rmWrFaLcXVsAbGJ3POpaI997q3g7qsHnyYAew/cvepso08aUhRTBwqDVCBsL/vAmz317X+94uNv/vDk329VMiaIK9qxgBS/dMRIUlAJBIRG/CAUdSx86pdpzRizP1jZ9cmVVuyNxZv6a49HGH+1Ecmv6577n9XSMuOyZFeIAhsHr3qsjaSm44r+t2me7/Ji7bpktyaOvjddq+yeyQCKIWE3oLt+vbJYXnna6TH337q7wpXh2nns2AwjSKGLgWWrnJkR1MtlhAmwdlDdiZFd/xteFiN4tR+wghUoKFZLIO4UvJ7VIChehsVqBhD2NN+226amNXj/CUdF+/iKTI/gBE4R3yds7/UKnBe50utYzexhIwFciYJSye0g3rZiviYJY9aCvWuPY2tVVW/7ZSLHy1Y1PPh7RpB7fOC9sap89wTe27j5T77npIiOzMCeV+z+Pb6vPuYDhq9Howc9NmVElGKFnFPNXGG1jJLv9bl4SRCpY1rGPdH8Na1+4+M6bQL+N9TJDHE1ftO2BA2YGTlnmqjTg9St08tIlYIVf4+wvz6PK7R/T0ppoORcySz3CVQopTD0Wy/zowEJweeZ7ciYnK2WVLCpM6SWCkrFGEqi0CH1+8JI7u3WXWEi/usYRhE2ObPdbrm8PN8RRcXnycHBirZtiDF6RhFRRKKXZ1Fx52vqYY3kxEaz6Chtx+W6cP/1u5zwBO3hIU27ZLbZvpHN8cwcz9QOqH01xzNzPMM7Es9s12vWZ2esz8++gZf94bCc8/Tdbo5n3vy0czzDHM/sedUcz8zxzLfC5kNPs80223eF/bW/9tf4oR/6oXe7GbPNNttss80223eBBfEg09Uyrms1BQlK07o6lxF7nBAmjxA1NqzXG0SMbb/l0aNzSob15ZZhGFgsOk5OjmibBsw8Nf2oJhYoxRVqWtXL/TCQh0TUQGwUUYhNRDSRcmHb91y/cYOjoyPatmXot4S2YWIFgF0AXEF72ztogAe640GDfVX0Dtya8NmqeN4hGlYvb2aUWru+5FKv7/cto/z7yoXqdUNAciYEpWkjMUZvgxXMinMI4oBhb4VSwqRGw7xqh1/IIdicMyEEFoslGEQ1lkeHtMslEltSUXIFMGLwUmBmiVxyJSR2PbYD1R4DW97W7Mqfp4/tgUJBnOjJyUGEJ67f4E/92Z/k4PqKl++/yie+9BJPfuSj/PCPHiMx8uLdezS33sN7Vi3fd9wS20DqYX225XN3H/Cps0u0iSyOl9z4wHX+7FM3MHWwzkwIlkBczX7+6Jz10PNHPvgTWDI++8uf5K//3/9zLLQsDw+5fvOE46OOr738Gp/78tf4B//0VzladuSS6YfMxXrg5MYNDhZLgipDTkRV2qBEFVqFPhtiBbFADIEg0ISAtC1HR0fcOFjQDwPbvmcYBqBMoF7A03pTApKr+xZXsmFCJBLFaBHa6l0BL3+iCm0MLLSQEMSEvoJ4E5EUqn6vlJrdoJZZGQEocRLM50eZALBJ8fhWYz+CW36LCvo50lUsUyTsX2HvM1WhiTipdMXndnOw7M3dnV/tEYDAWAOhYIRKfAXBgTb7vair5c3sxVs89r4V2xF3UZTDtsEGYTChWHbFuRS60BAlECgsGkV7G8WGAISajt/MGIax7YrUFAhXicu99u63bR/NhuopO0BegKDCIngq/EnRvHc9w0vvMIHevrb5umeTalhkp2i22tbaDZVDGMHp/Z7zXyKuqFcRxgIOb3axxxiAt/jtcZ95cw9dBZbByec2KoeLwLVlw1nZ0vSlll4RQhBkFI6LOZBJrZJkRitKFwKNyk5pSkAkIuplk0YyoFVoY/Q9Ap+PsZLezs/V8RnJvpEuqCWSpn1m/N/iE05GwjsXijg1ZzZmM9mRD7kqmnPOZHGi3BXVVKA71/3KxyKoUnKilOLgft2LRaWOcC0nsXePccxt3NMZPa7+XfZIdBtft+m5JjJs6oNKjoz4eb3Z7vr719gjCN5ieoy5Tsx2dMlEGslI+ihtbFgsFp7tIUHbnEElS7zMRiHU7wl9P6BWyFEJIRBDpAmBLgY/JBFDLa/hamqzgqjvCQCbzYZh6Cv5653nQLw4OYvUz8IwuIJ4JIt2xIqAuro65TT1+/jVJ6eBfmPEdoWGgBGx5PtNUC/xYynTX64pQ/JDFKL+nURbHw8b9jrSO2skDDNCFsVscKLY3DsUpWs60mKJHfZsc892u6EpLVrg9o3baNBpz4khcnZ2xnboySYch0hsfK7ZIKTcc3ywYnl4A1sav/6PPsGTD+9z+84d7jzz/JsHfLbZ9myOZ+rrczwzdsTOOeZ4Zo5nrg75tzSeuffqK/SbzTdysj80NgwJVT9GMcczczwzxzNzPDPHM9/+eGY+9DTbbLPNNttss80222yzzfaYZavpqUVJWTAVskRC03l6XtkD0GvwLxoIq8gXvvJlTg5WPHX7SX70T/3LfP2Fl8klYeLg/zJGwMiWPX08lXRQAK8F30RX/Qz9moDRNA0hBtKQEQmEJpIlc9GvOTw+5ujaCYuDJfcvL1i20YHVchUxcBxhB0OV/fTlewjoPjngL+z+kyshMoJjVq6qoUMIxOhgf4gNBQdZpqsLxBgnwCQPiRgjuRhRgrdJwYJUxaqnhN9uNpwPW27dWDigwAiyAsWBPurzaVCWqyWr1ZIQlaOTazx4eIHGln4YGLpIMkgZME/lHUSQoJTtfsr/2uS9AyZWQa6pH2X6n6sg32NonyvEpF7ZKCXTD1uu3Tnhvd/3Xp5979N8rCTUtCIgGSsJUyXR+OPZwEKccDEipi1FI1YyWjIhF0oeGARyRfRCyYzgU3gm8KjfsF0Ezi/XnDx5k6fe+yxmAQ0RUcMsc3x4yOHBoYMUkmkFlgfCrRuRoA3ZhGzF1ccqKIWIsmwjWzLrTSLnTOl72uOOLoJEWIixFGhUaGJgWzI0So6exn0oQkgBoWEbhfO04H6rdDRoKZzKlkCmEaVDyQKLGL2UmwirJnLYwmXKPEqZnEtVar6FL5sxZCPnLZeXa7abnq7rkLargF6dLVbIFRS8AsxOwPAE04EJauJlBPYAaufTyo5Q23OPUj1iwrUfR4nH98vu/hNoKO5TmM/FLK4VDAbBjL1s9m9hb4Mo/j7MtcfGErgRAykPrEMim4PMMUaCCFGg0cjpeiDImJ3A5yBAKYXyLSiFsU/4qfkcKLX3GzNWsaVPECU5GD76Ru2WjBNekwgac7Wneqp26us7VqK+VH/VCjCXOqgywuaVdGjrEPSVlH5zy38vT/y7j+m4dh0uGo67yFGEw2hcRNhmaHJVjI/NMs8YpihqEKwQaqYQRBiKl7QQCn3f8/D8EXcf3GfbJ5ZB6GJDExpKv4WSgYwE7xvHfp0g8Yoae0ryOl5lJIRlR/SUCsibSS054dsAdThUfB/NVlxhP5KD+NzIKnXMfYxJDvJKJb9zLp6SX3wOZ3O/xPznXFW5BXMyoRQvtaQKKhWMzpRpPbc3DY1ABf794ctIaqpSZMzR9uYhrpi67ybia0epz32VjGKPkKjvsVpFp2Y2KfWveRiwXCBlLh89QpoVqxg5WCx4/eFDHp71LNqOZbugjR3DZk1UKNnLYpQ8gGVvS8ps+q3v0/W7glVyRoOyvjQePTpl22+vEGzTunjl+8f46tXOy1ZQVRZdR9O29dClYXtEjhQgZXIYJlLEELJAMiOUgpaMDT0MXoZKJ3LG2xpKIEx3L+x/f8LsSsme/WdpmwY5OKAViBrQ6PO+HwZe/voL3LrzJKuDA2KMrHOPhEAjHQE/bPHo/iPE4KTpCJsNX/+NT9I99wGe+RP/Mh9+eJcv/Oqv8tVPfpLVsuNn/y8/+biXzDbbFZvjmTfvi3M8M8czczwz+sTOH76V8czv+avsd6HZePjs9/r5vf/+4Yhnvjmb45k5npnjmTmeeTubDz3NNtts39F2/fp1/upf/au8t9YWnW222WabbbbZZvv9moWAxo7QZCQWJHbEVog5EeJ2D/RxICiPZL0V8pA5OT7mqZvXuXPrJsuu5eLigkzhJCUWbUejiuDlCQSIjKquCkQgWHTwoO8HD0zNQf1UHFCJUV2xlBNNE1ksOrquY0xVPIXVewDpCMzvlJ47UGL3nregzSsyI3u/Tn+qqm6twJmZ0Q+JoU8UBk/DbDsgVVTJZZjUzZYLfb9ls9lweXHhoJEKYrpTvpkH96gDbpOuq5IbMiEMVTlmhZSzp1/WQEqZlKsiTZRaMcsPWYygyx7Cv8NZ9gABGf9TFZFvcbhg7LuReJkuNPYRQsk2PpA/QlTW2wviMPC+oxvcPr7FJveUXGiSYEHp1TAKWgpdUQxPX55FEC1VDShYiRXIyhV4y7WlrvZrtOF+v+bF7SNevMy8IiCNIikQpAKf2UkFFUWDp9AeATz3Je/sUW1azFBxYqhpOkJOxOgKS1WhCUqQBFaIClYyJSesZNomgspEOsgAFn1MihkLLRw2yioExArNmSHrTFChFcgUOjUaEaIYMW05WHRoGxhUGM62WGwcMBrHelQ6itL3A4vlghsnR8gJbLcD22FUQ46KV/e1HQUlE+C0PwfA1aYdSuc58pE0AsPudyNFJNhVXNn2fG7ko2z3++P+tXvB6nX9r8WnBA3GAkOl7AiMN9mb/ff3Y2O2CAUaEQ5VsOgK9oygGmiCp26PEli1C7pNqeTJbj2ash58k/a7vXfsZ91/m0AshaYUz4zFOE77n7HqL4/1e72Or3fF5/PjRA9cAUc9c5UfCdOaASMycBAiarCBqvLcERVXn/FNr+y5h9RGvuXK/dZ9Uv0tCiyCctQqBxEOotAXZVuMRb9lwwgsu2LYtc9GFqOJQqjqTj+kZpRcGNLAZtO7ql2MoJ41IYhUsH+3kVQ8niC+fzj5WcjFs1vknL0ckhWa2DKpi9kDvYVpnu58p65f4itgNp8HImPq/b0GUPvcrKbm398vR0LCrszLcQUsSC2L5H/QcQTEZ3ouRmHMEnL1maljLuNrstvPcs0KYsVB6FLXUiohMq5F08XGDcfG9o2+ULOtGJgalOqj5ocekKuZUEIIhBgRUc7Oz9hs1pQ8IBhN29SDChEMFssFwQqNKrUGZVVtZ6wUJ0pxlbqGUMtQGVa8dEIIStgrw7O/IJo50Y9VvyqGjvW2ps4zQlC6tqVru3pYoUyX8jHeqd8VqRWfBCuFlDKaE6GMF7Zpoo1lrmxsG1af0ccx15IQUucFImgIDMXYXF6yffCA4xs3WHQdEaOJTSWSnFAaSykVjD4N9fukXzsUI216Xn/pFYIoB089xUHT8uuf/DQPvvwSN7bGj/6R7yFerrn71S/z4te+9NaTfLbZqs3xzFvbHM/M8cwcz3x74pmcM/defZk07GUW+UNu38y38zme2Y9nvjmb45k5npnjmTmeeTubDz3NNtts39G2Wq34N//Nf/PdbsZb2muvvcanP/1pAH7oh36I69evv8stmm222WabbbbZvimLLSoLNBuhKWjTEhohJiXGxgP4MfWK7OChUlwZ9tyTt3jyiZucHB2wWV9yenaGNoFsxZU86inGS1Wb7VBlMPMsJyk5uDCk5O+1ghSwWi4ihOABZRqIMbLoFiwXi/oAHnSO0NWEIxhvVj2P4NI3CTKJjbCzg0alBuRBlSCuTss5O0ifyw6EGG9Z/LmdsPA25ZTJKZFTmtIkXwXlcUDjMZXrFVBufIaRUJARUHGQwfZe3ym79xWpFdTY76zp4o9TAhVckn1gamztSDjYlWeQfcABJzbEHBgsZSBiPBGXPLO4xkXeYNnoUqSoMOiASSGYEIoroQuFogXVUkF1JdPiJSAy6smqKRUICqK02rCMLWsbeNg0xCZMz6W4Oty1gwZinqpdR5Jg7NtR6euARzEnu4oIpgFjJBkcSI1VdW54Ovbt0JOGgVwKIcZJdQpOotSZhFDQkjiIymEbAKNRb0cj0KqQgUihFaERiCWxlAWocol45gGLVwD5Ead0ZXTmuIlcOz5k0Ta8ce8BmwfnFHPQZwIf2WFxu9JyNvmRjRcGGjGW1YdDb2QbiQWZPGpMeb9fkGXnanLFd97S1x+fA/Ujvp5AK8pS1UvK2Vtc4Ftgb86csAc2CiwUYnBwPuOgYBdgkweCwmEjrBpFGVPxhyv9uH/9f5FDUPt2hRcwqdSWg30BB8O0vmrjGlwJAmNvqanz/M1jMi0W00DsPvLYijEtDIKI338ZlZwKaoXp8NreJXfPYFf9bv99ey70Vr0k+z0xMh6MQLrQBKGLyioqqwibDMsAnQqNVkUwrjQNCEVcNd3EQBOjA/GlkM1IpWYjMCOIEsSJwaA7MHX3z5ukFQBXkb1HczC/sA8+F0x16vNxh/PRGz87rq17e45JJRTsTffe72Gpe8eO1Nvv111Hj5TSxEvv/aMC1FPbzMaEHYxbwji3jcf8Y++HsRTNCFzb+Ic6frt77q0/+23ZA8jHx64Pd9VnxluOzl7b3qfE5fqSvt+CFboYWHaRJjSoOq3WNA1akpd8wA9LOJY++mqdt2ZILRYylr+0cShU9gib8eH916iBYjKNvYawN8d85FUDTdMgIpScsfH7RiUD9sd4f6X1+49lrbwDxu8C4yGE3b86/maI7OZg/eq32z9DoJTCxcUFlw8fcnB8jMTg32lECCEg4mrro+Mj2q4DYLPdEIJnwBNzUshSJm16LPia2MbIowcP+MrZK3zRIt/znjtcu3WLUBIXZw+YbbZvaHM887Y2xzO7O8/xzBzPfKvimWKFi0en/EE0DXHaf/vNhlLyO3PjsX/neGaOZ+Z4Zo5n5njmHYln5kNPs80223esqXqZhD+IlnPm7/29v8df/It/EYBf+IVf4Kd/+qff5VbNNttss80222zflC0OkOSpgJuFoHFBbKDNymLRQiUJiu3nBMeVYZstz915klsnR1hOfP3rX+XewwccnBxDCBweHNLFgElxzEgr8B9G5ZaDLttt72B7GohNJFl21aq6ijWqkaWAQGhajg4POTo8rMG4q6tFZE9pVyGECfSgqpXYgSffjFXwYlS8DSkTUIooQXe3cWB80oqhGrymfUUqJoAgG2Xooe04WGaatgVR/KhEJU1qOK57gf1ICoz4xz7JEUMgSANENBixabzcAa6I1QqsaG2XWaLksus39YtOfbf7of7vSDRQkQ8mIHPXih0iI1WFVgQv0ZC9bADF27FcLjhYLmm0hbURLFHMVYGSlYaEiWES6MmUNIAVohghxgn3EYYKHOHgmO0aKFLQVLDhkqYzlocNBwcLNIMUIUogomTNlJKcLDCBXIkE8ecwMVx9X0glM+TCZkgUlPVQ2PTJFcdNIDYNokoMShbhYr2m31aVqBV0K1hxwKaglFxIxbCS6IdE2q45joGTrqVgLILSaWAZIqsmkszQ3Ht5CFXaKByoUIISjCk9+r7aNFcgMyUn4w5WC+7cusn140PK0PP6/UcUEySECfATZEc0WKmA8S6bwL51UljFQAiBZgN9qmuFKia2yxKwNw8Z+3fPj3aI6dvNyyvwL4anSA+iLGLkuGuJ/QW7u3yT8/ubsLfG7EcQ3VAxWhGWGEQjIX7QCWPRgAZhGY0bqwXNox6zjNDUx3qrnANvvtXb2ePg/Jh9Qiq4mnF1bwiBVpVYCa990ne8xZgNwMR9diR3BFd8jkQjdhV5FWRvPTAfdwQxqZkvMqExljGyTf2UjWD/GrY3/rslfEJ8r3IJ36A/rrRsZGUFT3UflaBebnDVRlbbzOVQaCVz0AY25uR0KU4YqoCaZxBbtB3dokOjkrKXf+mHHsNYNB2HywPa/pwghqr5vULNoIHvS14qxfcJASjFr6+KxkAMrRPvw8DleoPS0gSpWLkD8KWYL0djH1OJagpWyyHJSMqbE8Z5HOM6F72cUAW4i/d5CDoB8GYjAyMVSxeK1fIuKlDUf6/baC65lnYomI2bYr1fMSyM5PJIdIx+M+6be1zGFX8e14jRC+vPNj3Qmwhral9dJVfGbdzBbxXqwYTMdrvlwelDNimTy0AIcHJ4yOEqklJhSEYJOt1HpCrmNbjfVzW3E1tlItFLckU0CjkNE9Go6mU7EJl6ohSj61rMCj1GTtn3krHt9flDCDRNS7/dMqy32JDZ+woyfUewkv27g/n6C9B1He1iiTWBYe3zQVQhee9NpThq/yuj8l1qSRhX0o/jEUPASuH80Rmn9x9w7YlbYIUHr7/O+w4PuXZygobIweEh1+p3wfPzC87Ozjg5PvF7Fy8hIkG4des2GgOybEALq9WC4d4pn/zN3+QoGH/mp/44zz77DB+/fvj2k3+22WCOZ76RzfHMHM/M8cy3NJ4xxgxvfzBteXjIrWeeBeDVr32FzcXFu9ugOZ6Z45k5npnjmTme+bbEM38wTwvMNttss30T9pf/8l/mP/wP/8N3uxlvaX/hL/wF/v7f//vvdjNmm2222Wabbbbfg12cP6JtFGJDXK1I2eg3Pf12qOCAYsVDUavZhEe1TdN0nJ6dkTYbosKiiZwcL5Dgypdl17qKpgIGSE3aX8ba9MaQe0o2SgEhEEKcgm0rhRCUVr1UQEquWDtsO46WK9BAKq4UrVgxRabkzIzgO+wBUd+E8nAfyGhVacSVrACpDIgYTRPpFl6Tvlt0tIsFBSPZqAJV//+qpvJI3lNNI0IzZCIBSqGUPOEjVqrCdATqLFAkQCOsNNItF6CRlAsLDVw8esijhw+5PD/n2skBeQOXZ4/oh+1UuiI71EfwmB+sljbQsFPWTX11FRDWkfwYQaaRFAHS2MdCvU4FDK3UZ3bkWVVpWiWvex68fMq9o3PWzxn5cKD0xmCQNdPQj7QKWbxUWLvosH7g4uFDihiLa9eIsUGGRJZMUTAVpChSwgQWhaBgHZ/5jd/kNz7/eb7wxa/TxBZXIlbQJkQawcEKG1DD1dHiQImlAcMBtDY2bLYDr24fYGakXMgm9H1moR1iRmPZfbVrOLlxjaOjQ583pWClkIfkAI4GJAZS7kmpsF5v0FZ5uD7lpHXAfhGVVjNNSHQiNDlztGpYReUgRq4tFlAGLraZvCkoLbaXcRyoijgHJ4Mql5eXvP7GPS7Oz3l0fsmUMv6K5++gVlGtQP9uVtgeiRAFoiXEUtV3O7GiUsYGTADplVm3BwB/M/Nx74PeNgVNEEXpgJUVYm3X71FY/M3cdfd7xVotBFQDrRpRC0dBvW+SlyZZdguiKm0ptAUigQBOvvDNc5Xs3f8bPZ7s/SAY5IIGuLYIXFsIDweF4uNdtALXQACEvdIB+wC0GEEdSBzBYB1JI3EVrpVCGyJtcHAzpYEsQimCZiHEzK020RhcZuHrl4WmieScKdnnYqilWETGRWq3zkyg+Ni+WkZov1NGZeqIOEvdt0agtFFoG6XtIt3Qc7QKDEBvxhs9PISxUJGv3tNcEkLw+YMpKQupQCkOmCvKQgtRPEOCv7/uRVbIuRBVnbgxJ1GSuQrbldiFLirvef9z3Lx1m6PjG3z205/ilRdfoN9sUW3BEipVdV2Ti/h882wdmK/eWcBEEQujNHdE32s/jVp5I6rRqBFE2BaISnVIX7NHoslUKDbuG2DZ53LKhk5rgxPSiK8BGLuyNKNHCagJagbFphI8/jxKkczIXXlZiDFLSHX6ur84Yenr1P66laef9uZnfY8rwQNYIGdj229Zpx5rT/jQH/kYL9+9x4Ovv8TF6X1i7HztN8+EIRJoYwPZyYXL9Yb1eo1owMYyHDnVvTZAyU60lYKlgooT8Ip4mQt34Eq+4Pt8VCzvrV1mfo3au1KKE0nLBSqhZukwd9I6nj5mBimRmuAEt4zEfYDg6ejCssOaSFEvFdWYEcfvBiqeQaHeu1jZm4U1Q4xBzgUNkaOT67T1YEffu7pZNLBYrlD1shin55e0bUvbtjz/3PO0bcPdV1/l8uKCbIWjW3fQJkyLoeVMEOPwcMWzt67x2c9/jm2/5qMf/gA/+fEfZLbZvpHN8cybbY5ndjbHM3M8862MZ84f3Ofh63d/1zn4btjtZ59ncfgH86DwHM/M8cwcz8zxzBzPfGttPvQ022yzfcfaYrHg+Pj43W7GZL/0S7/Ef/Kf/CcA/Mqv/AqXl5fvcotmm2222Wabbbbfi+VibPoKqWvkwekDDhrlfN1z9959Uk07LDIJYz2YVyHGwHbrKe+VQrQBFWO5aDhcLVh2rQMZxQHmGD2onUgDPO2w6pjiWijFiCGAGf0wUGxAEII66BRMaEKgjRFCmAB5QafU0BPI//ipghEE+RcwFw57+7O5EqxtAosugmXW6w2bzRYJbcVK1D81chLZy0FQjJwTQ9/TD4ltP5D6wWvFV2RDASmGWKmgfqBtO5qmJeWBB/fvUgjEdomEiA1bHt57g/t3X+fi0Rnp/IiDkzVnpw9IQ18Bk3oYRAApU0kCB9UmGA5XRdoExgh4vS61SioUV2mpTc8mFbQZtddmMpEFIv4aAqGJdApvvHaff/r3f4nta2d88GefRO88heaMllSBIggVKXKRXaFpFwyXa85eehlpGxbXrqHLBTkkmmUgBAdY0mYgXawxFQxFY8Q28KXf/jK/8Su/wYuvvsEytg6tmWHs1H5iAXJVt4+MjpmnhNexRMKoKHX/UcWVgFKhHCs06mBk7FruPHWHm0/cIKdESl7WrJSMWFU7KpTcEzSy3Q4kS5x/5QsESwhKRGil0ElhEQqtBI4aZSFCZ5mmv0Rb4aBtOCgRzta7cXN3cjVb/aca6IfC6dklF+st59sBRvX+xGL5HBlxRbGr13M/8vFPBYJ4GbcQDCs6rRNO0wWgZkQY22V7s+/KDza1fKQpHn/b2CarY6NFiCjLoBw3Wg8TjbDg2OYKsv2LnC56S6sESd6RH1TALALLYIQyYXaYFh6mTOgjGiOh0QpWqysoKQR2Kdivdoc8RmTufv5miAKoZWvqNdSMWDILSbWo3ji3mTpbDYr4muxlExpG5WkpRsp1/lfYdezlKf2/yAghuqIYpa+lU1SERoQbXaAgLHrIlpCcaGNDs1zSNA39tq+gJBPFO/XACFaOQGL10fH3SZ09jncAI6LFyKlguaeNStdGFsuWg5J5tL1E8FIyC/VyDj6snr0rSJhA/xhrmReDlAopGTnv9jW1BBSfO6KIlFoGiCljh3MfI9FcOO8zfTYkKk/evsHtOze5ffsm105usojfRx42vPbK61ycb11lPc0QmfzPxJx0F60kju+tUmQqv4MYasHV07XvioBWFTcUcnGQfSI5JFAkUczIVvxaI8kxtsE804Ox+2Jg5t8nJj5+z2+Fet+9GWqGk617n9mNuRMaqPhiIzYRlDmX3bWNqa9HXmTKxlD3Ps+c4Vkb2rblueee4vad21y7eY3joxOe/dD3Uv75J3mw+TSvvPgyHLVI0EoMFR97T8FBKokhD6Q0oBqJ5t+FMCc3UnLldGX4cVVzRFRrUgFFJE9rYbZCiGHyeqkky+539sZd/VoxQlAsOYlvok5omdHESG4980YphZgFs4yZZ/8I4pSgTfO3+L/6nUwI3lfT3LqqQFdRUsqE0HDtxhOUqEgIxLal7To0BGKMlWyPtK2/ZhgpZ2IJnqGgiYRxsR/nR64HSET9O6HAYrXk9Xv3+MznCmrwMz/ys8w229vZHM98Y5vjmTmemeOZb108M+77f1CsW644un4dgHa53GWEe4dtiuPmeGaOZ+Z4Zo5n5njmHYln5kNPs80223ekffzjH+eDH/zgu90MUkr84i/+ImbGL/zCL/Bf/Bf/xbvdpNlmm2222Wab7fdpoVmRK+6rAYqeQ9OQNpmHFxtPTxwjIjtF5KiaUqQq2xSjoOYa3K5tWC0WdE3jCqOyQw00VIDDrkJBE55v4wEHIefsgXGMhFojfVR5hkkVBFSA6nGgYAKVbFfPfZ8jeJwusH2kYh9swAPqUYEURAgi5JTYbrb0fU9sezQI2jQ7GKQwgVdmRqklL/ohsel7hsFLGnh66D1woOJduQIzrnLMPHz9LiUrzeKQGFtyf8mje29wcXrK5uKSi4r4bdeX5FKqumrXv2PBiv3ntr2+FxxgpwIvlFKxRKOUgl3Bdmt7R0QZqgIY50hkR06IKlEC56cXfPHeQ26vjtmu10gTHVSrEJiNRE8FPEIllrap5+zll1nevoWGhtAuGdI5st4QkrmiGUFGbkYECQoZHtx9wGsv3OXBg1MOnn3aBXIlT57jMMgOTKcChUJxdaQ6QFSKg0z+HiOYqyOnVOUUgkCjQttEDg8PODo5JvUDwzBM/VNHGCNjOdC1S4Y+cXR4gEhBi983GnQCC4VVgIUKKzE6NVog5kwbGlYqLHOoQKpWYmjnd7v5pQy5kNdbMGPIZSIEZBrICareIw9288bGeWHuo1GVRRCiFqQ+mxgEcdDRpmtSBatXZ5xV5kD2yarRt0bkaM9nx+uNzxgUFkE4boQo9tjnf/92ZX2CSdk4gePVRzsFCTVluokr1C2jKNEyjUCQ/WfY3WGaO/ja5mvQHjnz2BN94wNcdZxsJOlwgDQXImVSPU7r4ET2ja7isKRWssx9fgRxa2/sr5/180HD7jmsrsFSkKocFRGiClF2ZHMpRtu1HB4c0MSGczknpUQphVz2dK5X3ZjHH390URWdfH4su1AwXxOSA/8xCm0XWZYOHpxhJSFWaLXxMarFeLSulbWyDUFdxQsw5OLzKDuB4vdM+MIXJgnxuG+Mbda9vagAZ9vEphhRWm7dvsETt65x/doBh8uGxVNP8tmDFapKSokY27p/uZo2TD5T1bN1bo6K4P1Bmip/WAW66yYuI9ew19Zxn4vjmmZOpUbUiX0bPVYmFxpbUgyy1aweb+OiUh3IXdD3lFI/u2twBddl7wDj1Jc7ctemjavur+z6YPdMsnuuUjCFtlWuXT/m+PoRRydHnBwfc+320xx/5SVC25Gy+7yYz4GJEhOf/6paSbGRzHdV/77/19UCUZ8bWkmCwlgGq46eCFjxMhG1jIdz7LsOrG/1e6qTBBpche7fDfbJMlANFBFQ8/cL5H4DmwA5Yn0PpRadCrpTV5tn75CJhNpfq3bf3wwvBaYhcHB0iJHYbreYKm3bgsFmu0U10DQdTduBGCklhmEgBr9fUPVMGtUP1ATxL1mVA3M/WXQLHj065cV+ICXjZ97atWabDZjjmX2b45k5npnjmW9fPNOv16S+5w+CdasVgrA4OOTw2vV3uznTF8w5npnjmTmemeOZK/49xzPftnhmPvQ022yzfUfaX//rf50f/MEffNfun7OrOR4+fMif+TN/hpTSu9aW2WabbbbZZpvtW2uHN5+d9noEWByxaJTN3Tfo7QX6fnCApCKwIzBguEo4CByuDujaSGTglUeXNG3HcrmgbQLDZnC1Fq4MDW03Ke4AKF4XvhQHdLQCCLkU+pQJjdLWmvBjECw1HXnJCQ1jCYAxkLUKmF5V17l9I4Btz/ZQqYyDOkEciYnqudHTMLDZCGnoSUPPMPSoaU2D7bfSSoS4MrWCGKWQ+p7NZsM2DZjqBMD5PyWZMGTjtO95cPaIo0UgpJ4HL73A+ekFoVmARDYXj9ienUExDroGrMdyqs9fuxcH7FUEnYpajPdyMEbqvxFRMnP1Wc49MUSco7AroISL5XbwsndbIsUGVCnqCsgJqy5CGcCGQkm79hk7skgMUvC04W1WFENV6TcXPPjqVzh45g6xOySEDjt/jUe//Tvo6w8IXUv88HuI73kGy2U3yma0bctqteQwZU/dXQEc8MM23g8OjGgQkIIryB24IAqIUgrVZyusnoVEqf4xPoHRBKUJYHlgvVmTU6KkhCDklCc3NAqURGAgDwmKt0/FUCvEkllp4DhGTmIkpoEmb1mEjmWMBCscdoFtFtohYzYAoYK0BSnGkJKrCKs/DH0i5UTJGYnRyb99l9+bHj7WI6AoE5k0EWkCbVCWwcHfQKrgWv2c2hWSDXaY3j7hcHVOjuDUY69ML5gTNgbJvKTcQQPXFkpD8XXFcFU9vxug/k3YCILX+bPsWsyMzXpbVYSZBmGprlJ1Vb4AgaX2rBpYNNCGQqsVHK2k2H6pmul2e337eD+Ub/Q89Y0qe6Smv0AR2GQjWlXti/urTn1vrqQebyxe4iGG4ARZESe09ptWncX9VWkqgZvN09SnUryEgggByATOt4nzbWYzFDKedn65WnHt+jWGIbG0wna7Ybvdkvs8dggAeSSgKuGwT+ZOAOlYJkBAsjc0F5sUopYzQqGJwsFqQcmZnAYoyjIqy1i4SN6ugNYyPgUhE0KgiQ4n9kPPtu/pc0s2V5Vazp6yH/U1pGb6GLN/xOh5vcwKORViE7i36bnMxlFs+ODzT/Lsk08QNdBfPiI0S4ZKLgoZUaGIePmdXGiC071Sx2Ek7WwE2MeNenQPoarJ/UUdCVmcOBD1NW7cg3LJTCWZEEIITuDYuFobWnX2o/PlUhgKDCVRdtn999YXL0E0vjpdyWzaL8fxNtvtCl5FSqeVwdez/Sv7nMJsuuruGhV0N8PVwUbbKsUSMSqLZcuiC5w+eIOHD99gs11z69YTnCyF9WbLZjvQtB1FspNMQTlcLThcLVg0LTFEmqYjtM30vCllRIMfGAhewiPEmkGjro3FRmU/eEaNgGlx3w7jNizTXDPGkkoNTdvsiL599qzOhaEUcvLPqUCIcPHoPnZ5hoSApAT9QBBB2hZdLLBi2OAZBJCO3YA4uaS1rJBJqRkS/HtY2zQkTxHCMAzkNGCLJS+9+CIaIs8+Hzi5cR0rhWHo2W63NCFQUianTBbHmTZ9TwxaCfndWtfFiCYnB84v15xevsxss30jm+OZt7A5npnjmTme+ZbHM6+/+jLDZvNNTcFvp2kI3HnP+37/8c631Iw5npnjmTmemeOZOZ555+KZ+dDTbLPNNtvvwX7+539+yvA0H3iabbbZZptttu8uy1Zo2gasMAxbjg4PybmnL8ZlGtj2ia6DqycVBCuFfhiIMfLc009z5/Ytrh0u+NVP/edcv7ZFrdA1ge26qkEN+u2WWJVFCKgEB1mLg5lUYGUomZQTQ8qYRv8bhlkiW6JbdBweHqBhB7BPJraPN+xelje/9rZWT2cYMOREyuJ15EUJscFKomTj+PiI6yfHHK5WNG1HaIOXaTDxf9gOvMLQqKxWS1QjuSjHR8ek196gTwMSAkEj987PSGYQlE995ev8tb/+N/iB9z3Lx97/Hg6aSLtoIQSGXOi3l+Q8VOjfSYARPBBxwKRUYCKqpzRnAm8q7GKuNnPISB0wALQR4rJFYwPF0FQYUrqiwjKyg/9GBWG2nCcIuUFD9LTvMiYyNxpt0VboYsuYdH9ST9dryuAKMG0CizvXkRgJW6P71Ev0b/xjXvmffxMeXNL/6u8gX/sC9/Mp/ZPX6f74T/JD/6//K2m9hT5NPuFApUBKWMleqkCqMjMqJRuX2y2PHp1T1hccHB+wOlyxWq08K0DxtOmqXqrESiVTkIlcmE7mWCGo0kQhBAdPgxVyVZsHDa6WL57G3dQVo6KeqShYIQYvcREjtFJYhsJRWzhYKsdNSyM+jk3T0rVwth6QXIFfaukHcbJDgxIQQnBlZuxaJIVpHEdewB6bGOPvVq/J3piP3oNAYCBkI2IQIFVsUkew7rH5NoJkb0VITD/LlQ9Ml7iSJUoCiUJUYxUS11RorAeLlMmzfv82ajN9/gir1RLMgWc5W0OnSBMJnVJSoljEDJIVugA3Vg0HXUTFOCpGEPPsAeFKYYa3sSsd8c02+MrHSn2pjZGjoCw1E9VIqdCUx/vJqpJZKaUwlIJqzRhAHSPb3abSeqgqbdthOFBY0oAodG1LSiCl+mUqaDa0Nkqicn5xzjBsKcUmIDqlRMqZx9xgNyL7vmK7luzRHBVUN0o2L0lohcWyo+taVKDv19y+eZ3Q9ITTLWcPNiwQFgKXugPSVWo5C1VElYyD4IMZ25Rp2oYnb9/kYx/5IK9/5gWGNDiqXdXRxYyca8kjpuoMFBO2JdKbExd3TiKbzQVfe+0hn/7iS/yJH/04qZS6hlelrjg5LvXQ37gd52IEZ9Zr6Y49QkUd3BXTSlILUiCR0eBqb1Ul50IRqZk0PG1/KsUBetWqtlbAs5wIUCrpPe5ugxl9Mfr6XhMvMUIlzSfQHyBQyyZByZlSyaUyjuIo2657aBnXEqurS31vuYKT1w7ZX8tk56siimgEXfLbn/kiD08f8fyzT/L+Z59l3XuWtiduXudLv/MFri2O6jo6Kp59rUwl8+DhQ05Pl+SDwqIDadupLAiVvEgl+2JoEEw5e3jO9mKDDQmsQdSfKpVMSZmnnrzDw4cPeXj/AZ7jxRs9ebdAbBq6xYJUspc42Z8HJYMI2Vy1TJq6jwKk9UXN7CJEUYLo1MfbYeDo2gE3bnW8N65o1meUPnslKIQCZMtOuNXTpL4XDqwvztg8OmXb92w2azbrNU8++SQPHz4kxsiwvc3pgwfEqpp+6s4dYoic3X/A5cUlvRVu3vbxRwMhRj9EkXsg0XVK1zbkcsTy6Brv+9D3Mdts38jmeOYtbI5n5nhmjme+5fHMN/u1/Ntlt597nm518O424i1s/Bp29UzTHM9MLZvjmTmemeOZOZ75NsQz86Gn2Wab7TvKbty4wX/0H/1HPP/88+/K/c/Pz/n3//1/n0984hM8ePDgXWnDbLPNNttss8327bW0vSRvwWvEZyS0nF2c8/D0EZvNMKnRdmCiI4HFCkMeOD465Pq1E566fZvnn7rDB9/3Qa5dO+LoYEUTQ1VTVdDCjJwSEvyahTHNvrfFcDDW8SjFJGA2vqdQSibnQtd1HB4esVyu6DcbvL77CBdV+EpkUkiLKOYSqem5d6qsPehzBEOrIsyJDFehjemwLzYbmqAsukjXRHJJ5JwIOSF5hKoCggM0AMWyt31wVWpJCcsJKFxcnHM5ZGLXcnDYUbID3KqBoA1HiwNaCeT1hoLRAapxAulKBTDEXFFsojC2OWdkeqcfuJjUZwJ5BOzEQTURuLi8ZHmw4PZTT/Bjf/yH2VjvSrm8U7M7V1RLRZQGM0EoHC4DX/zcC7z09dd45et3WR0sHRCqcGURqprP9o6mVLJCvKBH0ypSjLI557V/9gX6r7xC+uef5+ZnX+P8c7/No6ZBt4XV65d05wPttUPi7Tscf+j9kMFqbZOROlIgwJSW3tT8WawwDEYIyp3rx/zw934PrSqv3X+DB+dnnK+3NOLApUgFtUbEpqr5xLxkBsXT3scQITSEEEl9z/riHCvZ1doiFCsu4DdXrJbc02dj6HtSv6VrI0GdcFGMVmAhxioYh51x66CBAiUbqQwstPUMQtUPtPpw0OC+q0rlm4gxul9MStIdEbZTQFdIrCpsJ8TZRuBz8iRSKSzbyPVFYAGEhz1ekKKmnUcmwm5/5u3hvVf+8Bi+/dhr41U8XbmYUEQxG1xFLw1NVfLu4+lvgtZttzbsXtq9a1cCY2dTmRCEi4tLB2PNU62bgASlWwQYIpvBiaJGhK6LNAqNGF0rHKwaom7exFQ+rvTdtX1s606h/rub+6jpLl29AtGEVRBadfV0oSCEOk88SxWVpDCKlzkxo5FACIEYIkNaA75Wj0BusUI2/7zWbBViECVM5QGkFAKZky4yIKyGDJbBhDwk+uJZMMb9ZcqYcXXIHiNQ9l/b+8PYtmnN232+6Vpi26AxEJvAaiVsBuNgnVgGWBRXjgcDMyfagihRpBLbft1igAoiAVWjbZTDRccyBMjJ14bqr54Ro5ZqGaeEKCKBKIJl42zT85kX7vP+99/g2s07PFcWnG0zpxdbLvuEhmavjM/VtW2aU2WnAp78RoOvWVJ28xsw9RIAUpXSZr5OYK6I9/lfab56vVzKTmk8jYv/lMTX7iEX+mSk5KTERKTuZM84yeN+OpbssHqt6ZlGBbfsSlJcTRggVwZ25GyN3T/2/aI6rIxETyk8PD3jxvUjhpTRGJEhcevmDbYJvvq5L3B5cYGJl/a4uLxgnQYoiU2Eh13k9HINTYfFBdpnYqnfJ4rfR0VIuZBKwUrgok+cDwPnQ09rCurfZUIMfPjDH6ZrW/rthouz8ylbxbinj+uwqhI0klLycil1DdpRNd4GqZ8bSexUfS4I41+xcXytQE4sFw3HR5GTpkE2Z7s+F5l8i0o+ixohKn1KPLx3n0evvMryYOXlHvqeGCNN2xDUM9ZsLy5oDg9ZX1zw6iuvsFgsCIuO43iDbb+haRquX79ey3s5EY8JfT9w/+EjPvTc83z0Bz7IjVt3OLrxxJsXgdlm27M5npnjmTmemeMZf+3bE89Yztx79VVyLfP3TpuIcOPOU7SL5VSearTfLZ55t2yOZ2o/zPHMHM/M8cwcz3yb4pn50NNss832HWUHBwf8pb/0l96Ve7/22mv82q/9Gn/jb/wNSim/+wdmm2222WabbbbvSEv92rOPVDWtRj/4fHF+ScljIDoCMaPq2KNXV/4KXdNwcnzM+973fr7vQ9+LSObo4ADYgQvjwYFcck0vLFMZiBGoEIGmiZSUa8Dv4Ly/x5Pul5xp24aDgxXL5ZLtej2RFxNA8hioVptb33eVLHg782B7hGZcjVbM2Gy3sGgxVWIInlY8J0rJSPZr6wgI1TZZKZRcyMlBJMuZkpP/KzXFcgXr28ZVz4pwcnDMM0/e4dqqo2y2DDpmyVEnakpNnYyQzVVv3k4mFe8Exu8jPPX5Uk4VwPY2ixrr9SXdquHk+hE/8OMf47R/RJ8GKDCW4RhJggBgHYKrde/cPGbIwv37jzg/O6NtGkfdRuRCwpRE/OoIjaCaYsNAurzg8u5d7v36b9H/5hdoPvcSx6/e42L5iHLtEF2uaN77JI0ccvT0CeF738PxD3yU0mcsGVNlCxmBc1B1oqDsAcGbvueJa8d84Lmn+ZN//I+xXBzyG5/8TT79uc/z2ue+xOHqGDGnYURt8tEJiLTdXFARYoxYaBANnsp9fenETCmT4nQEwESVnFwB1vc9qe9pm0gIhZwLQaBTYaH7RAFYEYZkrLeJLrREdQXnPu0yzdOxd8XVbFZRpwkXH+eD7L1x+pONAs+r41QJhFIKiyAcd4EDURq203tGRV3lU/abtWvbBOTtO+bYs/sfkl2zxomMVfDRy3Y0Ak1spuuIPX6NKw1402829ZfsxraCvIhg6s+z2fgzqga/v/hUbKLSLRuExJANMUObCKVQCjShYdW1VcFarrbjGy5FeySOjW++2jf7fWf1nwPV1S/xEhCrqLTBUKlrzQQk2nSZiTAxXzusyl9FZd81pnabVLItZ4IU93WcWM0V/NdSiFY4XkS2klltS+2DQCmFhKf4pxSfF7VV0xO+hW+OPvRWNgGs038rWRgCGiMaI00TaYdEF4VFFFaN0mYHDNWMIlKV0bWkxUgsqaf1J6hnsqBgKnRBaVXpp74f4ezqPwamI1gdCKp0wam9R+uBX/r0C7THT3P95k1u3b7DC1/+Km+cPmK9TRy07a7D93vgMRcax30ElUdQ3NXY7qvT7lgB+pEoGHtpcjEZX/M2F4yxPMTufm6lzp4+G30q7v+M5Srquj7Nqt2oePtkXEb3fOoxr5bROdlbp/beP/XFSDL4zybUgwHjdfy/OWeGYSBlL3ESY6DkNU0InBwe8swzT3N69yWSZQgN7XIBuaXkgaAFiy2DBAaNpBBJEh10r21XCQQVkhV6CkUD4eiQgxs3uJ6Nrln4oQaMxWLB9370o9x98UUuLi7ZbDasjo5Gz7n6yKJoGEtn+Rx+PLeBL6le5giDMhHCY+6UvWwe1VeEQsAIuCZbbCy/Oe7bVJV9XQfw72qlZDZrV0N3y8U0zgIEVUJwsqQfehTYbDa89NJLHBwc8Nx7nufwYEW8jKhKzVhQSUaMYUisNwNrErefeo6PfN/HuHbjJtv05pKgs822b3M889Y2xzNzPDPHM49Pld9bPGOlcHH68O2m2rfVNAS6xZLDa9d5fBL8bvHMu29zPDPHM3M8M8czczzz7Ypn5kNPs80223eMiXi92XfDSin8rb/1t/i3/+1/+125/2yzzTbbbLPN9s5Zv11PAZpZoYsd2/WW7Wbw+u5aAWnZA98NRJUmBl65+zoffG7NslvywY98mD/2Yz/Gvfuvc7DqWF+uKaVMaacDguWEVZVlToVhGGgar+2+Wi2JKqQLB/4LBYqQiyvLggZKcZLg8OiAg4MVD954w4F42YcW7CpwMAEc4+97b60mb0LB3MagfOyfIfXE7MoiDdED9pIxK+SUXS3roioHZaXe0Ko6NWcGAUqm77ecHB/S5XqtnHji+gmb9YahH3j/M8/ygx/+EPHyPud3X4KDA8wgl8IwlJo2XQB1haJBnwtDyq7opSpV98YsSCAoaM6U7aWD2bhCOKjSb86wsqBbBo6uHbA567EeKIXYdK6iA4yCaEbpiNqwbBuee+5ZTp44pmlgOD+lbzqKZggQm0CzPHCgQWXXL1TRrSqi8PCllzn9yle491u/jX7267Rfv0d87T799h5P/PTP0PzLP054z9PErsHawPLJJ4gnJ+hqxfr+Iwc1ooNjDsrJlbT2KgIaIMCDi1N+4EPv50/+Sx/n3/l3/iJ0N3jmF/4OQZVf/GefYLU4coUhNRm6UcmUeu08gq1+ECaGlhwaQBiGAaNMBJwCJRXGNO3aBMqwJRn0255hSA5eaqaYsQyKNZGDoKwUlhQk98TQENqAEugaoYmBEEaA2zDLpJJRMfLg6vec/XAQBmJ+KMeyOcmjDkUnzNOEj3NcytiBeAp29oBGLyOz0MJJo5yEhtYKWhRF6nVGpWWpwKnu0pxLpfP2QGmhqtbrfJ3WGtlB+N7SQmEscwJRhSYKbduhsoVcEfArWPqellRgVG2OxOK4HGhV/iJSySDBxMvVZdvBnVZcWzyW3giWeeJ4xbLt6ftESYUEXJxvsawcHTQcLBZ+6MnzQbBTMzL99yoV6w48tnKE+B63HUXgn7O9MRIzVIwuFI67SKc9wYxg6gu6OvhXmHDDCrxWcNgKqSQsJQe5jVpjYgdhFoPL9QYpBa39AUZKmZShMS9z8sRhIEdYbRKWM2aRMTsFOOK5U9/Wpxm3G7vaK1XsOj342HeeBcww3VEm09Wy01exaWiLwWVPEGMRheNVR7sdCJaQUoiVUPQ1xNcrDZEYG2KAEAdC06EloQjRzNPsV1VskODeVHzOe4aCXMem0MbAtVXgbICXH6z5z/72r3DWL/j4x76X9733af7RP/6nvP7aaxw0DSdHx1jaeFYFfH6Z2ZVxNtgR7i7drutRQChVbWzTAGsIVTkdUIVUChqklguSXamFfZ+se+j+PZ1AcOwgFVj3Rp8cpN5BxnsDhdUDAjqRFCY1O0kt/TCWevCbyNSCx7dnYSSu9tpku3k/kgf1KIMT8SVBHmhb3wOxTFDj9OED3jjdkmj5V3/2Z/nv/qv/kldefwOLhR/9iR/i+Oga/eaStL3giRZWN49oVwfo8oC8OGTYa1MIgSzq5X6A0ETee+2Y4498hI+mQtcsSP2atm05XB3y7O0n+f/8p/9v7p2ekt5CaDbxuFqxIaklsOrBAiuwY3MfJxD3SN/6Wl2Rp3c0QdhebnjYbzmQjNISoqJWEMuEAIGABieIx3IgQZWmjdy4cZ12ufQDEDnT9wMpJy9FFIN/t4hOKpyenjIMA+9573tYLhauIB8Sm8sNsYl0hytCEB6ePuL0fENz43388Md/khs3bjAMPfdee5Vnvv9NXTTbbJN9d8YzcDV+meOZOZ6Z45l3I57BfH68W7Y6POLmU0/v5v+/QDyz/33gnbQ5npnjmTmeGf1sjmfmeObbF8/Mh55mm2227xj7d//df5e/8lf+yrty75/7uZ/jn/yTf/Ku3Hu22WabbbbZZntnbb3Z0naubk3JOL7ecvuJ65xvtsiXv04uuaqfrgJSCoQQeePRBRdD4eJyw4tf+h0uH93l+tEhJ8fHrDcDWCFKoAlKEwJDgti1qCqqmZwyqkJQIQTj4nxDPwwUy4gUB9YNyF5P/mK7YbFacXiw4NrhES+kTAkRaxSuhL/7EMdV25Ws+t3MsCAYTgqIGE8+cY2SC2k7cO/+I+S9TzmYVDJWBNHGgbaahlvHz6qDCEVAgpdf2A6ZZdsSzUmOflsIxWP+JgpGIacNkUJoGjQuwKCURKbQddHLbJliGgitsWhbmhBRApjugK4g9MBF35NFuHX9iH/j3/h5unbpYA3QiLAtPc1qweHNa9xMkaN4HQs+8k4Y7YgioxAUgiiNBg4eZH7qe76fjxzc5mc//hO0oWERvAzYed/z//sf/wEPX3udYdtT9gX3gJRC2ib0xg1u3DjhmR//GKvbz7D91c/w2t/6u3z+P/1r/On/3c+w/bGPkk5WyMUjju58P1YGhs055w/v1cw8tXE1ZTamlKIM2RhyJlbFFsX76uLikgd336B/+SXap4xXX3mJl199nW55NAHIE8GAK4y1EhwOQglmSk4OihcKISrXjo9ZLhbknMnZy4FIBcQMLxFC17Jsl+RS2PQ9D7702UkhrwKqA13TsGgDi66hiUJsnITI/TltVJat0DWBlIDSeukHK8QgJDqSDWwtk1SQEBlIbHKhiYGEOheAg4sJxVQIdWA8SX9ATCmWKu6kTshpZkhGnxK9QgnGkBwcFYVBwEu5OJAs4kVSRmCrqE2HoMYpK6aMWQiwPfVr/UGJmBQSiX4oxNJy2Cy4edgR7Zw+FTYZYgj70CETV4enqTdxhFUqOm7qc02qct2qCtbLyXhmpiABSkGK0zGlSE1NUMgCyy4Sg9E3sN0MEJRGFwgBKZHt0JNQkjaoBSSMKK/Vnt611/+vqY9uCJmA57XyA2NV/QgTFI4ywX+Gq1L7AlngaFU4WBoqmSEV+hKIjRJkByruV2EYswkkHHzOJdCXMCkyI1p9WCjmfTV+LohSEAaBdc5kg2W3YNUqdrlm3a/ZSEuQiBUvAVOsTIMsODmBVXWtyG73qT5lJqiNjAV1rPbhYl9zColCoiEgMdaSLl7SoWsXLBbCYgtynjhsWxZNQUMiKqwilCJsMoQY0dgioSOEwKJTmsUhtr1km4z1ZsO6JBJeekiyYntZPwSB4urUGJQYCk8ctWgQuhj5yr0L/vEv/hr/yz/7hJMWmnjPk09w1LVITvVZKkUQQvXIWk5pXPJknKuFoIkmBAgNuRSyZHQkXgxEUhU/CwUlZy/VkwSyCAHqHBF0j1sbSasMDAUvN6IQKGwJbEXYGphkJxcrWTNN8nr40MtPeIknid50xTN7+MHHWq5EqPvuOC92M6JYects1GM7tWZuyeOcMrBapkI8TYa/ORtP3nmSr7z6Ob741S9z+uiMn/pTf4qX79/nlQenXIbIT/2xH+e5O09wuGi4+8pLpAxkJ4CzN94PQYRAbFonX0SdnI6BZ7sFTdsSm4iY0m97ivjhiaOT6/y5/81f4O/9nb/LP/3H/xNlKGgbru6NKoSoxKhkBijZyz9NpO7oEebfVXRUQj9OKo5raiXnVbAM/dboi5CCEpqAtr6HtFnoS61xpb6IF4OcDCs+15P6gVOLbU1+Erl+8yZNE2kWLSdyTBHh+q0n+BM/9SdpQ+T84QPunZ2DRq7fvoGKYKVmatmcc3Bywkee/hDv+el/DSPw67/yKzy8f5dhWPOxP/2/ftOYzzbbaN+d8Qx7LX2zzfHMHM/M8cw7E89c3H/Io9df/Sbm2rferj3zHrrViv73GM+8k7U7PPcLzPHMHM/M8cwcz8zxzDsTz8yHnmabbbbvGFutVly7du0dvef5+Tn/wX/wH/CJT3yCi4uLd/Tes80222yzzTbbu2OHh0cMQyalTClGCJHDwxXHR4csl0tCqJChWQWkPWgfgcyDwxX3Tu/zzz/1W7zw0mfJWfjgB044ODiY0kcXKxUIUkJ0RVxKmWFIFWQ1Us5cXq5Zb/t6SMKJg2XXEFEnE4CUXfU7/psUUGZvA/zvKahGOdf4l9+FKBhzzIwgRimubh5yIqdM3/cUK17iImVCjFU1W0N0c1WaTSDFmFZ7VG35f8v0N1c9hxBom0BKPev1BY0kurYhja0qxRXmtqf+KwWryuygnuZagBCUEhSy0KfCdkgQlK5t+Mk/+hMc3LyFErBhQMVBbldhKTSBKRsPuyTnuw4ayQ8qnBx54j3HfPjZ97P+oQGlENslfd/zxmuv8jd/4R/U8hnZVW+iE/BgAs3hguMSuXjpFV78zU/xzJ/+KeRyg+ZMpEArrF99hQe//jL3/4f/ief+5E+z+qHvpX36JovrR2zun1UQeFRHMgnGTGoK9FErHgKr1YLX3rjHr/32p/iv/87f4+YzT/HLv/zP+PJXv8bh0SGiY0YioCr5XNkHueQJ0A8x0i0WngJb1QGiMUV4HWydekkQcTBHFayqiENo/D2282dVIQQhRnEcVgohFEJQ0kLpFpF2CHRidGmLpkhUISpEVXToCVborCCWkGwohS6AJ5StvlQcog4GWlzduuNbBpBSU4F7+7N5W1ptfE1QWAgs1cGqTmHlOmOK1iM99RCT6N4xn1LGqeIQoOVJnSuMZN4ID3q/BYxgDswdtLBooYtwUHpOJCMCywqgme3As+zJ+/1axdXhgep4VpWTkwwRdFRS1teCjMpQB8uSQIPREGhUubjcUixjpTh4VoxGlShCxLjo16SSIJsfmArbaR0dp1SpviJkpxarbyAFG1PrV4JKprk/TkVDzN+fkXqyzCAIQiDkiFpEJIFkf9ZiBKvPM81yf05RdVJr9ImcoFS6uGYaUKOmnnf/VPz3UIRYMk0pNBhBBJEGkQaVQLQtXRGiCFr7tUzrTO0D8QNwLtseWR674h8j2CkWq4cURApBGhAhCyRcHb6IgahgJVGsoDEimhz0tOT+6MirZ/KQXSkI1VDT8UdiE2maTGwatr1w1vc8uLxgKLmWA5BpbUao5ZR2/qw4CbdU5XrX0BwHlrGh711fG4Ny46DlZLGgVb9WMlB8TRFkmkO7XWpHMO2D6YLUEji7dZBxr9QdUa7qhwSLVeBfdEdYFSe0sam3p7Xf10aZGrNfMmK0K1vs3tq2r7Qe98PxTVLJITHc58Z5uf+cj91nut/uVlM7x78YDkbHtmG1WrFarcgls1gsODg4xBD+l1/+Z2wuPkLoFlCMr33la/zSr36CH/nYR/jeDzzHrdu3yBkkFy8VZDUDxHTwQKufusI7W8E2G4btlgFIQ/YSTEGwoLzx2ut89tOf4Y3X30CDp1Sx6vIYlVwWQoiE2NAPAznX+avCXk68q2ci5KoufX8QpK5xsrdH+fpRMwKooLW8FDZ6Uu3Bca6q0iw6yjrSLpZe4qRpCG3Dc88+5/cx4/zsjIPYQPAMIDRGLkYqhZx6tGa/w8BK4aw3nv/gRyhPvpfb73vf/5+9P4+1JcvOO7Hf2ntHxBnuvW/OObMyq7LmgSxSHMoimyI1tSx3S20L7QYkWIIhCi0JMAQYBoQ2ZAgtuCXIAgS04f6j3SDYhgxLbrMlDhLVUkviKJFFkVUki0NVZVXlnG9+7w5niIi99/Ifa0ecc18OVRQrH0tkfImX791zz4lhT3HW9+1vLeL9e/TtluOTY27e+Z0Rmyf8+4Pf3fFM+QY+xTNTPDPFM78j8Uyv6S03J7ybcCI8+dhj1PMa52x7yL9LPHP8Nt+Z3g3I8L1timemeGaKZ6Z4ZopnHko8M216mjBhwr8X+JZv+RaeffbZh3rOGzdu8Au/8Av8wA/8wEP/Ij9hwoQJEyZM+J2D94G+zyPxojmTk21GmM9nI9ksuisyNcDhqKvA7Xt3ODm5C3nFJz/xSXwVqJu6uJtlDABzNttvTpmUrBREyhmvVtu9bXu6PuJ8wIltGKi9J4iQJFNVHm2VPka6rqPrO0aSRPfTh+9f5Y5gGFyp42/eYaMUhSzTnBFvpJXtzhBzvCUdCWLnPIjgvCvkmivvP09kDCLFUBJAxJG01LQfHLM5UQfHrArkGNm2aw5qx6wOxIwJD2quLMsFPfJnlnlGi5/VFaJ3KL+gthEjJkvbHsTx1OOPcfTEUzjx5E1byDg1YiZGur43wriQCtaUshsHmo0FUnPW5gT1wRxXV7YTRTvc7JDNaoMvTracjbw0R66RKloIvcW8In/lBu2v/CbX//lP88i3fBJ3/xjO1swV+u2WvG3pXr7JnR/5SWa3z7hw77s4/OYPc/jx9+KDJ6Vs1zZsmNkjoky4Kf8Woa5rTs9OeeGV1/inP/2zPP3EY3z+hRe4e3xM0zTkHHfcWiGqFLvflLX40cwVVzc13vtC5gnIzhM4XI81YxlvAwtfBKVBXDCPbkazETaWMQCcU6ti4SEEmM1qxAcqJxz4zDNzCDNzRHsRxClJe3M3OxnFquggVm4wsxbSVYrgMQx/LWUwFG/eSZxziAQsexOcCVwIwswLlYMrXlhX4B0svFCpiQmWK8lI+H3GcCDshpdScd06ZDQt7t5eHPmSCeoI6miAqzNlERJoz5WQee9cWGVH7d0oaA1C0TYbKWfMWyIUuagsT5jbsmSawuFJ1N4opJSspAY+oAK9KscxceRhHoTKebbbDQh4EargaNse0eKid4rGngs+82htV1WLgi9ToJB1qQxUV4QCFSGXfhMdRE3rK1faSgY2sYwtVSFLxguciGPhBJeF3GcqFZbecbFKHFZKlbUYHpU4CkPFQ6tGrnsx0af3ELO5mDNQBV9IRFt3vffl8yZeRIVWwGeh0UgfMwHHharimXnPxQa87O4pD+ntS39ZCQUZxQNbwyz3gCu/H9Zjm2tDuReoyjqckhCjI8XMXCKSIzHvxE4Fkuoo5haW1Nby8sfmki+EexEKvC+b1QS8p5o1hCqQhxIwRRTXMnRhKC9RSHmFClh4Rz33LGpP3zco1o6LWUVQQBNZBLJdw7CmvCX9OxLwww95fEH2FOn9Z6OVynGj+3z8nZw77HkSvyz+Q3sruzF5TiQQ3uoqy0H3not6fp1U3Qkrw/l3j/DyXH7gcA9+L3kzhue59fe8qpnNF8zmlpWirgPz2Zwq1Lz82mtcOJhxdPES+Jq7t+7wud/4TY6WNRcWFU9evUTqIpIyLmecKilnciHPY0zkGEk5E5PSpkjf9/Qp2feWtseLCVEJ5bU79/j1X/lV7ty6ZeNqLO2wkzsEwTmPc54+WpaNoQSoDO2y30Fv2/Bv0TLD42hs6KG9ytlVQWUULYZNqOIdVdOgTU1SJXY9/XbLhVnDYr5Ec6LvWjarDc1BRFTpus5EabEsHaqpVCLdjddNDlx+4nGqJ57l6MIRN27dJMWezWbNzbu3v/Ybm/B7Er+745nz8/PB2GWKZ6Z4ZopneNfimReP1+S+e4v59e7hqKl4/GjBs49epkRN/87xzF0Hm4dwzQJcDTLOpSmemeKZKZ7ZnX+KZ6Z45t2KZ6ZNTxMmTPj3Aj/4gz/Ixz/+8Yd6zh/7sR/jz//5P/9QzzlhwoQJEyZM+J3H6ekp3tf4UCEo69WK6zevc+vuKfP5nGrPsQmAlNThIgRf0bZrXj09JuWeKmS+5+plmnlj78s6urk0K32KaLKMJikmNm1HSuZUwjlSl0HMXSpO0CR4Mk0ISKjJOO5sTBxYrVZst9uRqsiacefuTB9gDmR0q9lv98iS4mp6kCTJOZP6Dg3e3HLq6FOmj4kgwsHhARcuXGS+WKIuUNUzK1slhUQiAIUcJxvRo3a/9WxGVdXEmIiquOCNtEqKBEdT1QTB3Nd1Q2gadJste05JNW7plx2ow6mzPhQYtpq4khbalftL2EYUUcgpc3LvHvOmAefYtN2OuAYkF+JgdGfC4FjbtZ+Wf8vIUfTdGjrgNAOJg8PI9mzNrdt3WbU9GYfD44b894Voc8ERHLzx//4xrv9P/4qzr3yBg7/5X7BareH+CYcoZzfvc+lTv5+aQ04f/1FO/ukP0/2bT7P51k+if+E/5dIf+m62mxZNQ3p5u59c+iDGRKK4SsWIxmq+5Cx2/OQv/CLPPvYInQYWy0NO14UeLjemZdznmFDNJhKomMijGR8CVajoUiHxvCB1wEXACWnIalTgCmXog8eLI3iP9+ZE12QObgeEYlCvK6hnNSF4gnOEg4pNB4HI003mTz0/52A2M5djhtW6Y9MlEI/zFfN6Rte2xORJY+5/Jfga5x1JEzkLMdm9ia/IsWceKuZVVcg8c4mCcLKCa0u40mRmXvjmZeDpHDioA5drT5OzCRKqJAUdRQkTxbzzVCEYoZoSqaTOr7yjDiVd/ECJDkSmYKU9oueLZxuePWi55DZs2zUfuTznmQuBLJaWfbttqYK3TUcod9aR2WKBFyB2NFUY+1c12/F9ICbYdJGQOx6/dhnnHSfrLbfvntAcXCA6z3HbceN0TYfjyryhCpXNx6pCqkBdOU5WW3MNF6L/ohM+ddHzsZniHThZkjSTbKYSk5Z+Kc5UdSQ8CSPnRV0hT00IqJ0re6aUrJHgK1SDOb59R9MIr20c61bxbWSzPuPAK88uHReT8PRBY67obMSud+bK9MEzrxtOTk5BE7UXLh9WZCq2bc+2i2z7TGhmVKIEtWI5PgRbRwcKW2CdYNNHNptT7p+e0OD58GHF1eaIg3mwdPlFKFBxNqdyJiW1tVNsXeljMkKbiGiklkxdL+zus9L1CfEVgzPalXHqSvma1dmKg+0J7TqxaQ4IoWa1bY1wVcseUXnw3q4+FwI2lHlp5Rh0Jz56T9f1BB947Oo1vvnjn+Dz9z7L7bu3ybFDXEmbX0RR55wR9WDtXe5TVGlEaAI2yYtw0aXOxD1bpMjqrewAgqhSvYVMMD4HyeRsmUaS9rbGqD0vhiV7tyXQ7h2x9SmTqbwvWUzGRd+eJsP1axGtxEpupKxWtnJYKvcFgLcgq4fsbcO9SZbxjapWvsGxL0w4rDzEnlC9+2v3FH/gdfYvxS7M1u2Umc0XLJYHNPMFMUMo69FsNuPo4mVu3rnHq2/cJKtw+dqjnNy9z0tf+grz1HL3wiHHt++Q2xZiT86RPia6vqfvI13X0rcdMSu9KtsciX2i7XvarqOPkcYF0EzX97x88y73NwkJFXVdF9HvXIMxZBBRhD5Gy8rB3gaHQQD/LYgDw3cdK2NhpSsoYkcqY3N4TmjKJXtJNhVYdsJ4c+EC12/e5uYb17l9/Trf+33fy/379/HOc+HggNhH2u2WMAhpWamahtBAlZQYTVDzzuFU6asDZHERN1uSU6TvtrTbNZvNGWdnUybyCe+MKZ6Z4pkpnpnimXcjnvkvv/ACt88exrahHT7x6CX+7De/9+sSz7z6qnDvIVyzA/6DS3UpVzXFM1M8M8UzUzwzNtgUz7yL8cy06WnChAkTJkyYMGHChAkT9nDjxk0ef+IpDg8OCN6zWh1zcrZivd1Qh4rKe4Y05fuGnZiUru34pve8n9Wm5fjkhNvHt2maBhc84gXnKyQlcwJZ+XmgEBqiRJQsluEkq5QyEEYk+EIiDC4z7zx13ZBiZL1acXZ6SorRSPJ3cDcDO8vV+ANv44g25GSO7qOLRzxy7RqSkqUyhtEZmBU225au75mLlYmgnEZES2DvIBdCxpdU4VlwLo/OvpQSCRCCtRtF7IiR0My59viTLIPQrdecbo6ZJSVLInY9OSuppPIXp3jnSJpHEUecI6eESgS8ZZbxltrc48tmEmuTwXPHUPKeIUMPY3sN5qmBDIRS1gFByifIeY8c8mW3iwfvEPVGfgpEr+ASSqaqKubzOa/+yI/x2r/6p3DrLh/7X/xhmqfew937/4Luxi1mGfrXTshbYfnRj/L8f/V/5JX/7K9weHyH+LM/xee++BIf/fEPcHDhMlVdI+XCkxj5lZPSdxFkKPFhRFdUxTnHxUuXOFgccOd4RbftxoE+5gZTNUfa3vjKQErmIN9uNyhLI/udo2u3xNyTU3GDYynYLYW+jmQkvZJTpu1bmnlDiJY5AIG6clReqJyjCjbGnPNGqMaMc4HGK/OQqL3SixG2itLlhK9rYlT6mKmbihw86iyXvIoRlVVVMasqKu9ICdquY9v3pARVU1PXnlA7Ykx0XY/3Hu8DqesJITP3mYMgHMw9rVbMPHifWHc94melGW39GESwLEbI4sXIbxGCQEzZ7LK1g2zkcEqJ1Fs5lLbPnPWJe9vMzXXiiUVDUwcuH3l+817HS+tIj6cJwmrdFrdjwHvH/awssyM4E+8kQtcPDkOHDw6i0KfMtjOiOW4Ti5ngFxX9tuGk3bKJyrrPHPdGrqmaoHPh4mWO12ds2i19p8xnDeut0qaMdpFH6hnN5YpN39P2G3AXSWr33MWeddvjQ0VVeebNAZs20vbmzPd1Q13PWK3WpBipq4bFbEZOxSWZEoSK1Gc8ytFijndGgN/VTJOEKD2Vc1ysApdmM56sPaGy0dL2HTMfCjksNEG4cmGBk0wVlKOlkrNHc00fhdOzji4JoRZcUHLqSxdnNCuCx2mkxtM4R/I1mUhN5qJz+LohBxiyAmS1FSQLNj6rmrbthpUaEcuc4VzAB48QGWZiFuhRcuqKq1RAlb7bELwnBE+n2TbDhYa6nqPOk/IWRKibwOGiYZkyjSiSe8vcIILzglcTRvNuhdzJo1nxSVk6R+OgFsE7j6sayyeQ1cZvTnjEMhQ4IXvocyG9xYQOVMfKCrmsUWDLa/ImdCpWskXVMh0MTzlhEIuHZ2nJnCGldBNFNB0yNmS3Kz0D5lQdHdL285BRYqjEMYjFNoeziW8ylLoQcpaxAsl44cMB9p/FpRVtI4Bjl9tjh5yKoF763jJw7B1l//vI2B97ruzRoT2I2koWIQFt39E0NcvlkuVySW471tstfe5RZ0/CxXzOrCmbNXNidfc+PP4IF6sZn3jv+7i9PCS2W3LswUHC1nAr1zn0zd7GijFbiuC9bcZoZjOiZv7ZT/0cP/w//xTbPtpmiTdh6DdLixGL2DxmRLAni71z2ATxNYgFWsTtUAW8s+w3WRO+rgghEDQRO6HbZhPwgxAqRTWWJV3RmHCqkKxUV10FE+P7HgmKesgOuhRpqgMuXbpCt92y2azIORPqmq5NbGOk8Y6gSlJHM18idc16s+bXf+NXOLl3A+8y165c/uo3NuH3NKZ45s2Y4pkpnpnimd9+PJPP7zp8KFgl5eV1/rrEM+1vZRfBbwMicNUri1mY4pkpnvldFs88ONqneGaKZ75x4plp09OECRO+oXH58mX+1t/6Wzz55JMP9bx/+2//bX70R3/0oZ5zwoQJEyZMmPCNAXGOLnast2uCD5aCXC01ug8VXsw1Wah9UEbXluKonadVoXIVRwcXmTdzCzhToqoqSObiyQo4C/o1g6XNlvK7bHXdsXjYiRHquGDnU8xZ3UcLwnMmlpIQCgOLcd6VxaANvD1RObp8C6mwEw5k99mx5MKuNN7w75QSm3ZL026pVHCBcSMHOVtK9fG6jOaJsaftIn0fySjiQkn/XtpUZCTpQwjUiyWbzZq7d05ZbVquCgylKUIIxGhtqyokFC1ElJUtyCa2lPT85jsDxBUXpit9OVA3Jt4oYk48LW0g5x3RI/djjBKDY9ochTsRJpdP2EiBWe3hYM7hckFTV5AiWY0QEidsX36N9vSM+uoRyz/8bUg1J217NtuWrcDB3BN9pDpqOPjkR7n4Z/5jVj/zU2zvn9BcuYyXQlSyI9ysf3f/hkKAFR1HVam858qFIy4eHnLveE3qI66qx3FP4V6GttChS8XIOfFSHOtWAg1K6YpVOpciXcl42aXbV1U6X5FSZrvd4Lw53MUJTko6fmfzQVUQTXbRDoiJw9pS/r/Wen70y2uorbyaoMQ+ImIuyaxQh27sux2plgmuI3iH9yZgxWzuQS3iiXfD7zIxZcT1gHC83fIHH6loQg0S+LWTDS93Jq7NPMSccW4znktE0KS7vpCEk26P0LNU7YMR0Oa9OTqTKuIjms1tuo2JN1aJ5dzzzJUZR4cHvNpf52fvJc6SZ1krMQp+3eNcwjmhSxF/1ptAoxEUYrbyDypWHmMgIbPauhhW91nOG65cusA2Lbl99y6bbUdUYZ09l2vh8tKIzpiSuZKB4DwuK1ltvjUIUeBX7rW8ctqx1YTTExN8EGIy56QPmeA9tRf63hzqKhCqRPBaMkkkQsjUq3xOgErSQzaBsVnZ+W9sbUx+YJnR0HC8zryyztzPHa8ELa5YiDnhXLQyN5rxbmPOYgHnMv6uFcgQ59EsrNuePmUbr05Ak63lqqBi5klNbGMmZmXhYTmfsdr2vLTq+Lm7PWE2ZHEA1I3ksqLgtsRsAqQW8djKU5jY7FTJdCDm2o2qVj6FXXmPlBMy0Kdd4pnnHqOaHTCfzdkkc2dWvVL3iWVTM9skahcJziE+EIInYudyzo3Xlks5npwEj5VoGcpmOLGMB4oJxLL3TFKxNSIW968NNnvWgi9vG3Ob2XND7P4ditNMebwUkZaR9Acszf4gRpZnqO4entjVMq7VUtjkXFzabhAmCsE9ZA7R8tr+mjW8bu/3u3sc3r/PUtsiy2527T9FSwmkUgpkPH15rxaS3o33Kejo2ma8xnPQPRe37NrIHNkOnMOFgPO7PCoxGdnvKyv74cUhTkvWgIQjM28qLl+6yHs/+CGeeOIJct+hyURn3XtW2j+LcG5Kkv08ONtLe1SLA1rgK6/fxP2rnyF3/ficsSbQsS2cw65XhL7rbc7v9JA3iQJvVS7kwU0RY5kuipBlGhNVU9PUDpcivYKPCe8rKg/OJXJnz3LUMsdo19J4z+FigcQLaE6EyuODM6f9bEY9myPOs91uIZUyW+X5o1lYb1uyd+hsRlUFqqamS4lbr7/OrTs3iVvL0nDhYPnm/p4wYQ9TPDPFM1M8M8UzX894piJx/foNjrf92869dwUHl7jul/zU3f7rEs8cx7dfO76eyAqfOe1oWqZ4ZopnfpfFMw8+l6d4ZopnvnHimWnT04QJE76hcXBwwPd///c/9PP+yI/8CD/7sz/70M87YcKECRMmTPidh/OO2He0zpF8RdWEQukWUkgK4ToSOuwFr46u6+lLgLucH1BXDVrSUYeqMlJfzSMpWsh/HVJrm5t2JOkRI0hdCerHtNoKkumTElwoKektE8xISshOEDhH/pdrHt62b3Y8LwzsMLzW9z1d11OJK9ddCJqS3nvdRW7dPaZLSj1rqaoZoQnm6hJnZbwKKWxp2xN937Npe+6drtl0/Xis85F+kQmco42JfttztmktZbcq3gtVUzOf1/RdImVIQF0r8+UBzVlrKf5TLsSap6KUGhiZCEu1rqUvtQgz9lpxd4mRb4PRa99dPpSAKNSHtVlJLS9uIEUUVJEiVsyaQLWcc7CYM6tqJFvdey0ikQ+B+TPP0DxyhebbPkJKGTlaIo9dpTt9mvDYZTRkNCjh0asc/onvZSM94fptDp5+hhACqpbO2hcSaBAIBjFJSvvmwTkHVD5wcbng8tEBr4Xbo6tud6eAGjk/tItQxs4+Uae7ts19JLXdHpFlLvZcSoVkEqqYgzUrOZkl3Rc355Ae24tl4LZxiZHZztyTM5/JznM7en7uRoI6EhzYVpqhnofdu9Od29Daw/okeMEHG5spD11sBN1QymUnjxVSSZXTLvLxI8+TC2i88PJG+cI6khAqL2QHov3u/EhxzdrYjljKcWtr3eunPRlKHKq2GSpLMpdqcYhe32Se3yprdcybhvuqvLBR7kflMCloyehAKpkKFI1GpEvxbKt6stgaZ2UErE/FW9aAtm1ZtI7HZ2bxu7lRNusICG255lWsSJg4VQWHUBFE6LYtkPHAXJS7WfnN457P3etpBSrdEnxAnENVi+Mx4iQRAE2FbHTgvOKIxJSLqJbxkgqpbwtyKu3pitAnCc6isgzKc0vFuYp16rnRRV5qW5beSPdh7icGkj+Xe6lKKQ3rQBuDtt7GlMr1DoRzmVzZZpT35nrddAnNmfcuYFFXHLeJN9rMz92LzBvByTAahbzjflEXbQyUrAu5kMZDsQmXsfmDvSU7O7cDRAWVbK8nc41XSen8jNDMqOuazbbH+wrve0trHypmQai8L+tlEcecrd9uFPaMc09JURKejIqaOFsWGIEyztn7YwRvRkmFEHcDd642H1TzyLz78rwxaVksoYVYYgs3HlX31hxbz/JI3Y9U8zmCXoqIMrLRZdwOv9XhPvaI+rFPyvUOAus++W5C21tR9nLu2MNYevB9w7zfv0Yt15aLmnt+FXrz54fPqpy/X5XheS7js9t7X8oDRSoKje8gBMtEEbwnpWQZNdS+DQUfmM/mXHnkGunwAFKEbJk9GEUAyvzZf5aXUgo6/hpyJhwc0SJcvnQZV/pP97tvvDktIrp9p+h7Ewm0PJnG/nywdfZFJ3ng1+X4QwmslBJZBXVq2ebqgCTBxYgPHldVeLFniol1llFk23bE4xOCDxwsFzhs7RgTFKDUsxl10yAIm/Wa2lcMmXZUE2ig3bZIcGhOVHWN9xXtpuXVV17m/sk9XG7xYq7yCRPeCVM8M8UzUzwzxTNfz3hGcuTLr91707x6t+GWh5yGJV/YfH3imU3+amf8+kCBz28yvpviGZjimSmemeKZ3c1N8cy7Gc9Mm54mTJjwDQspX0geNnJx7UyYMGHChAkTfm9CVdEUyalHnUOqGfhAFkeOiagRdZg4PxKmpVxDcLx+4y4xGdl9OD9EQkObFN92VN4b4VXIaZf9wH7ZZgYRvAt45wjOSkL4YD9TSOicjSpREWLKzJqG2WxBVc9JpWyDkaH5zfc1EDH7KgEWvGo+//1nXywYUkhvty0npysO5zMqHyAbsVqHgGbljXtrPv2rX+TwYMF8sWQ5W3BwuCBUNc4HnJMd+YOi2YSO4/WW28dnXL99jyyWdtxITGub7Bxd8ERNvPyVV1gGYbFsUK3oY0+Yzblw4QKPPnKVbhvpUyJlxXu4dOkq+Jd4+dXXud51KAcEH2gk4NSVzDmZKOaicyW1uAypvd2ujSiijgzuNt0RLlrGgaKo27W/mp4DxWlKNvIyiLCs5+g8cDRbcOAbyIKoktqebVSu/qHv4co3fzN+saB+/3vYntzg4Ls/jnvmEvVXvoODb/8mpKlJZytaEQ6+99uZffxD0FoqbfXQ9wlNymxWI9lIGdVyPWL3OyoHCLiKKlRcmFU8fvUiX3ltgT9e0w/UlRgJJCqkclMimUC2n1XRZISmd55cxlFwHl/VpRHMEe+G9hMsNXxUc2I6oWlqjhEbOziauiG0jsoJdXBGYFUlHX6ZexI8yXt6D1tqoMLnjCePIhVuEN5c6bOSNj4mjhYNzeGS2azmbHXGtu1IJTYQZ+5Ml61TMwMvaMJdVG9lUVIidUInMzZEu39fUjXtEXsC4Atxt+MLCzG5RzAWglLGIwgewataSn6x+MVVna1RCkqibmaERvHB42ceUjYSqhBWLmW7gFEY3LnnVW3sO28CJWJiivM19WxGR01OLX5+SCOB1HX0SYkCHY4epWk8h7MDHEredNw4PrUU6d5x6OFLm47XOuWVzpNcoHFprPzlnaAEUm/uVsegNe1Yeh3nojOhoBSRGQUqHE5sXCfNCEKrtqFKUqJWo/hXmrmZEkf78s94HqHUjKEYj/HOM581JLWSOCkm61/xNuUVZBBCi9BbOcG7OWeug9yhmmhyQsTRhoZ7ODLBvLqlhMRwetN1Bifr4G3eI7xHHS4Mq1QZKI4sgwCWEDxRMkkSLkSqqsL5gIojD+tCNkLfq2dRC00dbC3WTFAlIATxVsqBIhBk2PZKEBMKUooc94lthqTD+OzNfS9FDXCVPfeGe1Gxu5chm1kcSwk4cWMJpqwlZb8IlXjc/pxSu6BCUVspDczlnwfBpwgnRrK7IgwPZHw5iFofD+2bijBZusbmobP3ZTExOquNElv9U3ltTyxww+F0LIekyI4s3xMKTNQqxx5EXKHcf9FQRuJdzhHe5x3AOm4AcOO6sFtjTEAC5z1VCPRty+r0hAvLOUEclYPGKYezmsP5grN2Q5siXjy9Rvo+0W478mrFar0ix4imXJ4P5Z7K95zdV4u97xvD74tT/TBblouuTbiSmUFJqIRxOmbb8YkLAXwgiSdu+5IxryjGe997BgHblZtX2WvsIl7r0OrlOZ4TpD7Re0WDgAbwlTVW6AheUOcRTWg0uc5XFZucuXX3Lne/9CXe/8EPcnB4gC/fHbabDb6qmB8c0CzmzEIgxcT65BR/sCSnaJsSnFAppG1LXwlJEvVihma4f/cev/Frv8rJ+h61CJKU/mFn2pjw7x2meKb8Zopn7N6neGaKZ36b8Yx3u7n0sGDP2Tl+tvi6xTPDnHi3ocAdArlnimemeGaKZ6Z4poy3KZ55t+OZadPThAkTvmHxl//yX+av//W//lDPeffuXT760Y9y586dh3reCRMmTJgwYcI3DnI2gUCSx9c1IfhCzMPBYs7RcsHpdmsu3+D3SBoj1DZti/MwC555XeF9jYgHMecbaiWphkjVVTUxRlJOpJyZN7Wl8c9KHzOhceYSykOqc8CXzeG9BamDW/pr27h9XiB48Me3+4yqucZDVYG4cg9GTOScQJWrl4/4lm/6EBcvHFE3cyvfEALeBcQFxAmaowX7akReTMrppuXo/gnHxxuu379LTop4j0NIeLpsLs6DCNq3HC4PuXq0pE0RxKExkVPEhYCvFU1DynCYNXPqpiFUAXW+lIaw9qQQviLgfSHiVJAsSJLCKBln6Aqh48o9I0JOeXSsiwid9sUFDercSLwPHkZjoDxJle1mxfrshKVr8N6jpRyFw5FzIueIf+IJ3PueRrOyPeuRrqd++inmz7+XR5oZ6+0Z/v4Zcv+U4KC9egSHSzjAiIfVBsFIvYFsknJboSgFSUBLBnNxVj7BiyMnYdP29NmksCAVHZAkIqpUWfGayFrKaGiDSgRVI++ykc9VCPi6guCNMMrJhCLvrHREYficKiqCFyPoVJW6bsxt2ffFBS2FmM+E4BBv7x3SnUtoaCo4rBLXZko3U7wrxKYT1BmhnLOSshFCOvRrqDlYNMxqT3DmCm2CJ0bKvLPNRuYqloHrs0Yt4+RgVnM49yw9SFK8ZMSZgOgV8iA8lUl3jjs7R+IZ+TjslRo2Qbnzn0JFx/IltWRcTsS+Y7XZkLqIxxNE8SiazblqRygXX+rm7VyYewIezgSkrNavVgCB3LesTu4SnECOJjQVbk4wF+V8vuDygQefiX3HdrOlb3t8M2fWNMwXFXkb8R6akBEHtfd2EB1KwTCOGdOVdkKWyHAPQ2v5c6vV8JtSRAAlIwK5TwQnLGc1Vw5nHK4yjTM3aONCIQ2N2HXjWlrmM8Zv+9LWSRQXhFRIaBkI+ULkCqUcg2K9mSNBrFyCVysdUVeOeRAW2lE5K6EgarrVXjebaDMQxnswwnjP7VnO72RvnEgRpNFxDtUCfdfS9z1Ji0O6V9y2K4KXEnMs5QhtgmgRs0GoKxOuVaHvM20fqRcz1qsz7rzxKj/7C5/m5RunOIRLyzmtJmIpSwNCShkvagR6mX8ijqYOVHVgc7aii3ZuEcfx8YrT9YY+xTLvlMo5gnME77h65TLeWwkd46jtcyK2aW6QDmQoSeEBaxHIJiDqfpsCIr48J6KVgynfAZwUAWAg7tEij1rJqJjNyZ/V7dy9as/mnMtZ3c7PPZxrmHWiGXGuKMs6aB+jQCAipFzKDJVF/a082OfGyYM/ZC1ZLZQ+R47vH7O+cEC6cMRicUCXBOWEPib6UmYqZxuz3jm6bO7hmLIJo4XsHzNhsJuZdpmFlR/WWnHjqjPkchka5HyZpQe/nKhtTPAe7wMijth1jFk59jHoT4O683aN8hbfe1JKJm67QKga8I6sqQjDRcxiN1ZiTAiOw8US/8gjZIVt1xGTCWGr0zWhChweXqBvt+SqMTE5dTh3wPp0zWa7IabEh5/9MM+95xnEJXztWQbh1174Ip99+XV+9Qtf5KlHa2LKBBVmdfOO/T5hwhTPvPVnpnhmimemeOa3Hs8c37vH+u7tr2Fefv0wqzx/9js/yD+723DC1y+eeeCb0buKRgQX9jeWTvHMFM9M8cwUz0zxzLsZz0ybniZMmPANi8ViwZUrVx7qOXPO3Lx5cxeAT5gwYcKECRN+70E8MSt9VupC3K5bI0+efORRHrl0ic0b19n0HVWwdLwDYZByYtbUiGSaqmKxmNPUFaDkVFIHO0/lLBQT58CJBdrZAuBQHNcp70LklLM58LLivLn7ckz0XWf/TokUzVGEaiGmBqpsuK/9H4fsMjqyS6ND9e2aZe89RgCIkYxiAbSoclA5Hj1acPHCAaFZ4HyF887SNyOFdBpcZ8XprUpVOVQT86aG4oAbzMVDWQwnULvA4XzOclYzqz3SC9GXUgEImowA3o//c7YU7CNtMZB/oyuqNENh0HctNrzPjUcTMVJIJJsjU4xYFR3SwNu/7aOOMQ32PqEcPFGVk7MVt+/ew1+8WgiHfVJSbFDFhG5zIZsy6ozAcJqR2jOrLvDG//QznH7mc8Q3bvLs/+X/QP3oU/g6QHtKu9oUXs8uYGgFAK+W8j6TSGopukPyiCS62HO/76lOVtzfbNj0LQ6hy5FENkJMwLuSmF5dKVzmduNILMtQLiXLBhexZTaSknrfiEvLXuTIKM4JSa3fQ1VRk3ApWNkH73DB4SuP8yV1d+GORRxNVdHU0NSZeR1YzhqChyAQvMOHipgSbR85ayNtstoezjvqpqJZzEg5s12vWa03ZRhoEVmkuCrtvE6kkLTmZhdV6iAsZoGD2uNlW2iu3bgauNvRwThyXzqSwAMZeM6DLLr7zEji78/LQuv70v4KqTifh/4QMlKEG3XlPkTL/BopvfEUJhgM5xQjLcX6TrMiux1Z5e8yzARUM5tNJEtEswl5VVORJKEa8b5hPmvwclbcwyB7RJ6RpeCdQ6Ssd/vxmQzE464RH1jtCkdY/l9+KZpw5biLRqi9CSgyuEz3mXgpst6e+9hOPKx+ZezKrj8HIc4Na6oOopyQNZNyMpLTCZVzODKktGuD/TvaI/1lXKM5jz1BYn+J2X+vcu6Wxted80Z4qj17MvY8ciGQ6YqzmNIPHuectR0O58O4Lo7r63BsETTvSqcM5Dxl3uswuPcuOKuw6jp8yhxUFe//2MdwwTotxciduyuOz9Z00cpiOAd1VVN5y5TQnh6z3WzJKeGczVNfhNthjNo8cEgRTXQYrGOjSOlzm99SxpgWgn6U1sQ90Ni7P6NIVO51d/xRghhvfJ/YHzY1Ds9DGVQfKZlE9jpWyvtsKJYBVp5pbyUW7D3yGU8iZU6IomTW6zW3bt4mdy03Xn+Den7I3XVLG9W+D6U0tqGU85iDPTGUkNK9bAJju7/pIoZ/K6M4uZtE4BTxYtkrZHimyt7F2zPMezf2c+r7vTWsXMEoNAi5ZJE5P3X2+1D3fmdjJeNGZ7v4IlZmGWb9uKYD4+YN7zyHywPml6+QxdF3ljXBOUczm1kZiZJdw77aDN8lhL7raTetZRwPQreOuJygCbjtGV/+4gv85svXuXl6xuVLl5ilyNHRER949n1v6u8JE85himfeuln23jPFM1M8M8UzX2M8k5OV6nvIqMszX/TrGM88JNjw0bIRcYpnpnhmimemeGaKZx5GPDNtepowYcI3JL7pm76J97znPQ/1nDdv3uSXfumXHuo5J0yYMGHChAnfeDjb9pY9xWVcn9G25/a9+8QkfPDggAsHB3iRQvwVog0lYyTQ4cGSnHrqyjNvauoQQJMF1ABiJR9cCYR3aa4VM4yWMHzIPS3mJBtKPTgsdX1Mmb7vQX1xKcXxHsY4fCSaHqTPzmNHcu2FywOxsv8x2f1Dy7/HFPEKjRcOmsCyqXB1hfgaF0xIUDAnsdsxRLk4k5XMvPYE73ZECexcc4AXRxMC86amqQLBQS9SUkeXtPXnbsraSnVXutiosIHQKo7m4WqG9+wdZudo3hE9xjVJIcF016LCSJwNn3J7m11cObb4QBRhvW25e/+YRbVg07XmNHduJEfAoSlZim2MBFdvr/X3T+hu3sbPDzj5jS9y5+d+ifYLX+a9/6e/APdOzdXVH+N8VTIByV6q/+LWM9q4ED3menQu4EiQe1Zdjz9bE2NvGYuIeBKipV3H9h7ctqP/emwVHwJ4D8VFmWMeS0lbO+8GqTghF3EsFVLYOyMBCd7IVif44AhVIIRd3iNz2wneO3wAH5xlD3JiqeMdBO8J3tOrouJwGaQ4BJ2jjFPoc2Lb9bR9NGEBGR2uZT/RSCDviDubx95BU3vmMxM1BtfqQGENXOFI5u3zaPtE8UhKMx5/NyZ3OtfQfDsS2I6Qi1g2EsbDm/c/PKRpKKvX8JbRwT/0re65fguhJiK2IWm4Mh0oUhP+Us5sti0xtzgHc+9pmop116NqRO5sVluZm0LwDcRsaYyxLZyAFuL5LZaucxg//uALyG4xQRGJ1AGCL8c/R7PvE44PnFCNlT9H8J4/IyZoDmRzSRfvHEkGUdQyW3nv8GRzQpcFe5/QH4/3Fve8v54/SH+e/0nP/73X/857K2mkEJMJhYogzubrSNxiIoF3Vn7BYULC8Nlc2rXIAbZO+4rKBevTcUwVoWC4xr0LTQrH257sIn1d88wHPszywhLIdJs1l++u2HS9OZQ145yjqiuq4PEkPv+L/5bNek1KEVeFB2YL43PUSvsIShqpYXU7knpsrWGNVD3Xs+OAHI8+HN/txlDZGLjLfbK39g/E8j6pr0W00N1ze1gLdg/wN3XsKBDtjrX/VhmPvRvVw2+G9i8zPdv3jrbtuXf3mJfu32d2cIEUGlZdJFT1+UsYhpKaeG0lO4pIMAoie4KGlLOOjbF3rzBMcBMGvMdXYVzHznVjObkKJjo7Zx8tAka5JWz+ut31OCnliRgFknEzgOx691zTZi0ijytZT3b9l/evvQg0OZu4XTUNebEw8RnG7ApNU9t8K4KniSz2fVHVhLDYx/JcVLoU8ZJxIuTNipuvv8Lr129xrMLpuqdpPBcvXuLDH/nIW17/hAkDpnhm95kpnpnimSme+XePZ2K7JcWHW1L1yjzwvkvLcWPE7ip/+/HMuQDs3UZZA6Z45q2aZopnpnhmimfeOp4p9z/FM/9OmDY9TZgw4RsSf+/v/T0+9rGPPdRz/vAP/zB/4S/8hYd6zgkTJkyYMGHCNx4+95XXefKxRzk6DNTdGZys+Le/8ht4X/PBj3wLlduRuMAu2NZMjJHHH3+M9ekxaKKpK7wTUhpSdgspJ7yvCCHgnKMb3M25OIK9FG7OCHihkDFZ8d5q2bfblq7r6KLimpqU0ngcMEJgTKNeMBAassfQnBMPvgr/p8Nb9sj1rIov1+mcEiQU0ikjvaVAr1xT+CG1XOreag+oKjFl0ESferrUFectRnIXUiBrRsTKSjShxuOLazoTU092FR7BFxI45czgcg6a8UGM84JSomDgwBy+9AGqpJwZEnDLSAYNxE/paqwMVxUCVagKESuFVFJavLWpCMVUP2aiHn6WukJ9IGY4vXeflzvl9Rs32bZbdNbg2haXTFAanLcOwYlHveBSz9kLL/L6P/hxdDkjx47Ze55AD2bM5jU3/9m/ZPPKDfxhw2N/+k9gNtjdOB34mkhFiFCnjqA9PgR8BXNRZi7h2i09wtXac+GoIeZMzkLOjl4dxwpRPWgEiYA5THO21OCIw/kKDQEVR9cl1mdrREqJBu/RMuZVleyUlNTuUzN9stIE3jnU+4HnowoVs6ahql2hwoy1cQp9iqTsiDmz2mxZqafyQiVW5kK8lTHpY2bTlxmh5qiPm0jXbY389A5f17hkZQGGLT95JKvGoiAjzW4Oxox3Sh1MrBiJ+WEODaTdm7hnHf9+M8F9HntGyJ2gpeZEzSnTtT3rtfm4nRSiSq30iWYdU/BT0uYbS71/gh1bqWoZAKRkmkplboQQqKqKLnhSL+eISkXJCfoYWbcbqiAsj46YzRq2fQ+qeOeYNQ3B+9FFfO4eh9vKmYzDOYf3fhSYvhrGIw6s6zlS30odOAfBCcGXUSQy9vP59n6ArBya7S2ueyD7RWw9ytHuoaoCVZixzRntjKaunFBVgVBllC1f/bZs8J0TCB4gnc9fSxmsI/k9kJMmjAXvASHGTN8n+pTps2UacFWFC+bqHDa4eefxKE6Fqq5xzqPYBjdx5rAWBZ9hEWoqrDSCJHvNjPW2+I5aRVle26jcWHWs+shBB1effj+Pv/cpEGV9/z5P9z2HFy8SQjBlWbHaj6L07YbXX/gi19+4Ttf1zEMApGR7yIzqXhGbrCU8lqtARs4/F2EyZ3ve7mfTEBfYjSPL3AA717SKkCinwo8ZB3LOls3ECS4EcCboj8p3EYgG4rg8oUl5WGtKZoPyOiJk3W0GGEeFWHaGdxpCO+nPSH1XPhz7xKWjyzz+yFWCZL7ywlc4e+UmMl/iZzMODpbUGkldIsc8FoUZWseLzU1NmZRz4eGHB+buwTkIDKUgp12vKp6SFcZXyGzG4eER3vmxcVR1LOtpj0Mr9eH2ytWMkkx59uaccaHCVzWhCvRnZ0hOReSVsTXGrZx7/SlORnHLiUNUyTGi2Uj7PiXU5yIum1iRNVsZD6Drew4vXqKuGxxw5/ZNnHeW0Qal73rb1BF71hsrcaI5gabyPdFEMO883tfodkW7OWHTbtlWB9y8fcJzH3kvz73veT7yyU++Q49PmDDFM2+HKZ6Z4pkpnhmmztcWz5zdvM52077zxPo64w8/d5m/9l3P8d9+YfN1j2ceJmxDxhTPvPkcUzwzxTN7/cwUz0zxzNcP06anCRMmTJgwYcKECRMmTNjD//AvP80jF4+YhUDqO5YX5nzlpdc4Wh7xb/7tL+JcxlcegiMBFRZyOh/w8wW/+iu/wqXDGY8/eo3n3/Mecp/s98V56UqAauWnjFRNKaMozSwgmPtLAfHV6BJVVXCOzXZLV5y0ztcE7+i6ltXZGev1Ghd8KQvB226cGIJ2faf3vPkjRiqkTPQZXwiAmKI5fCj+Sh/MyYiVfohEJJvwQVaQnpyNUHAEEMWJo6oqqnpubHpK+AweoUPpu441CY6WhQyx8gOhEaJ35BzZbNbcvHmdbduNpTQaHzg723Ln9h222y1NCFZuQyFq5uhgyeO5YjZveOapx1jMZzsDJVZaq6qCuRidI7YdXdtzerphvd2y3rZkBB88VV0zaxrqEKiDp/YeLyA+oZb1nS45qpMzDh185IPv5X/zn/0pTm7f46mnHmPdb9muTojbDbnPCI7korVNXTNfzOlVydvM9uZd3vjxnyLmyCf/7v+Za9/33RAOuf4DP8idv//32b78GvL4+3jkz/6vAY/kjIgWN7MQNXPan/FEHfgjzz/JB6/MmUkmimNWC+oDx3qAc47H59dY+kS7bdGciARePO74Hz73Gr9+pzXBxDu8ZsiCZNAs9DGx2awBqOZLDq9eZXHlciFEjAjJA+FXrHIqQnABTYnq+BbH9+4Q+0TfWRv2255229J2nrqZE8ijuAZCTpDFkZznrM+0Eqkc1GKikOZCejuHd4GkEVfSfTsRO8+QPlyhct5SrmtGSeaO0+J63Z8cA0EnUsZmce45Y079MH/23KYPkr1jJgLF+uprmZRKycxg5FZKSlZBXKAKNcTeytA4V86vu/eXdeitzjRQaONJ9n5jgmXm6PCIHBO5j3RtO2ZZcSLUTc2lwxl+5Yn9htXqDM2ZixcuUDlhs9ly1kJOIC6geER2BL1zjrAnCqSUirPw7Unxt8JQMk9lyMZgJUeiKkqNYvM3ExGq8hnZK83y5gY3QTAj4zHPL6BjtotSvsI7N5LtlXjUOTxpfE/WbIT1QBy//d28zfXsyhUMm+bsTmXPyc9unqFGhIpHXCCEiioLMYMPCUKPdh1a2t62z4mt96rmoC5j1UpKBDL9OEq8Eyvj4e3kWTLb1NNjJWdQyDmCh0ymz5mAkgWyF3Kw8bE6W4Moq/WWtN2QBIILWGPlcX6lfsPpek3XR1IyotV5IYuzfizuWLwDL2WpkZHzz6rEnO2ZkRXNttaoc2VMZjRHUiGgnfMExAhxbE21Uk6FcBYreGR0ujlhh+wCphTncyrWWPJATcRDS6kAzVhyFAESqm505eqe4PEmdUn3NwTIOZe1EzEBXs35OzjZU0x0mxZ1sJgviHS0OZG2G5YHS3zytFGKyGRjPnhPHTxoJsaepInB4U3K1uZuEBSKaFKIfNlb88GeGf16S3u65bXXbhJzBnFj9oxR4NBBFDGRgZSJXVvudxj7Sir35nyF1DN62dqctdlfvl/ZWixOEM1jM+asiASCE2onaI70XYTYkaNt2kwxkkTJJILzSNOw6jpef+016nZFn5UYI2cnpzz+2GPUzczKqYiz7wRiY7+LPW23LcPT0edI1p7aB4IPiFRULuPFikdse+gCPPOeZ3nmfe+DxeKdFowJE6Z45u0/MsUzUzwzxTO/hXjmdwbuXYtnHubGp1CV0qFTPPMOmOKZKZ6Z4pkpnvn6Ydr0NGHChG8oXL58mb/xN/4GTzzxxEM979/5O3+Hf/yP//FDPeeECRMmTJgw4RsTq23kpddv0QTP0XKGn89YLA8JTcP1mzdZtz2qxTVTPmOBsAXlTz3xOE4jTdOwWMzHrOtSovsdeWgkQMxKlzIxZ+oQjBwuqZaDk9GxixRHkzic8xgvYZ9bbzacnp3R9R3zam4bEGTHH9hei7005gOvMLyR8n6+mgNS2E+hbGTGzvUdc2LbttSzGd4F29XQD04psfT7QnGMZbImEHNtOhzeGbnlBtJELWB3zhzYOWeyWHkJcQ4vQqKUmtBMTgnJimQTWZL25GSuJhk2lYgvfFkyghkjdkW8kTiFfHECde3pY2S1blmtN7z0+g1evXmHk9MzthsTZFQEHypmsxmHizlNFairirquqINHJFO5QFPNRuLBB09V1fzv/rd/ivXxKUfzGUeHR2zu3ifFCOIIVY1zjqauWa/WvPjFF6jqGY8++SSHH3ieZ77/PyXTc/iJT+DdgvbXv8T9f/SPiC++SHXxIgd/8NtwTUA2CUmZWIXRjWbEGMyc8MxRwwcuNfhuwzpuOVg0ZK/c2KzwruKRWcVBgCg99BuSn9F2iYPKTIq5pM22VNbOyD7J5mpNCtGom2YxRyoTADTnkaLeiQTGntQhoDnTpZa7KZElW3Yh7wtJZudLirkzJY3kZWhqQgo4ryQc4I24d8OwHYg6GceuqIkaOEfO/eh2t5Ti5gNULU7Acc/SjlQaiMasCuJx3uODw4snZ0/ec87bJDsvMoyzbXhfcS6/JXk/zum32JBULsh7YdZUVL4zMjBlI1Z15/Qc3v62XPjemsBAqJapr6qknGy9c1KchCZqGQHtaZo5aFvKtHgcEHs4O1tTObhy0BD7uBOJhPOyy0hC27jKMSFud91vapq3WbJUCkGqGfDWn5rJMbNab+hjphQ4YMgkIe9wwOHUA58vlNJ8o1+UkahXHUhjW8OHjWwOR+WVuna4Tkvigrxr63Pqru79f+9ebcEr5KsNaV/WREoGAC1ytBTCWfBW4ih7ZlVp71GMdoSqoq6VWaNs1j24YT0EZOgPwedy12qOX+88oTKRNG09m5S4e3pKG6N91heyXov4XYSbTHGfqh3XiQkRDtDcozmVVPx2wzklW2uKSGByj0BWYrL1LObiWi7PWsV+HvjoLCacGPtsJL9oLs8a4/ntOT7cdhFVh/Eugi/kcukCu5eScWNoF6/muHYCOGcieop2zPKcHYR6GyO7Hh42CGhZV8YuHzWBIjQU0WL85JD5Yk8oOoc9J7+yK1kiIpAy7XZLIuO94/LREduU2cbEpm2p1MRYUWt1BGJOrLYtr9++y+07N5nXNQfzObP5DBD6FGnbnrPNevx+hCpOQZN912nqhllTM5s1HJ+c8ZVXXudf//ynSUmpQrD8E2IzcyhnhKplMynX0HXdXsmR3R2Wx4R9oynfGZxAxp4/zntCXdPMG/o+MZvPOTg84NatO5ystmz7SNt1xK4lhQSxJ/W9lWfKiewyWVIRts0dvdqsSH2LrNas1yvu3rrNY48/VjYtKOIcFy5eoF4sWG83HN8/5mC+JPiK2Qy025JStCw33kSrTj1thjZnOsmIr5nPF8ybGlL3YC9PmHAOUzwzxTMwxTNTPPPvHs8klF958XW23fmsLO82PvDYFZ575NK7Fs+8RYj1rmEo8zjFM1M8M8UzUzwzxTMPJ56ZNj1NmDDhGwpHR0f8pb/0lx76eX/oh36In/u5n3vo550wYcKECRMmfONBcZysVsyC58LRkirULBYLvMDp2TGnq62VZtgTCcz0awTss08/xfHxPap6RqgqnFNy0uKw3JE+RiZloma6lIg5sxQH4slEMxHLniu6kADee3wOJIUUEzlnNtst6/XaUk3DyBDseYoeIA10R7btZZ95U1vsua6MYx2cXHbEjNh9F/bD0hzbZgZLcmNu2VJ/Yayg4URQJ6XWvLWLAF7UKP9ybYmMuoB3EGQQJcplO/DOI3moZ09xHpkQo9j5g3f4Usd+1yZSiGWlz5lqLEsghZwEdSYknJydcvf+Cddv3eaXvvAiX3j1BqvVCp8iB4cLsgjeB+q6YVFX1FUgVJX1vQgOZd40XDw45DDAzEEzm7O4eIkPf+j9uJQhRrSPdKstyWXbKJN6DmcLVqs1r7z0Ej//Mz/LB57/IJcffZyj557h8T/1x5AqEw6OWH3pJe7/+D9j/dnPUl2+wvKbP8HlP/YHrPxESkhSc+uWtNWDMy6IsAzCYQDX96i2LFwNXmnZ4CWxABpRKjqybkCEpbf70GwOYof5J6MISXSkTQVBi4jgQyA0DbmIBAOPY2Ox0FriqIKHnKmqmTmUvRCCo/KOXoWsRvz1MeNnVSERE+SMhApxDlGHFlFtN14HsWqYe0UwSRmH2LjKu2tR5xicfjqMu6GEAoX0KQPayNoM6kqWIodDiNlEk5STCYSipVX2Nj2NRLyO83J/w9MwB40w331maLJz7xPFe6GuTHDbzfOhrN7uuOPK8ADhrudeHCeN/a8onilnYk7nPjoc2jmHrxrS9sxmmwiCRx1sti3JKXJYG/mnaoKR03FmjqOikIFWwiKPv5PSb0acvh2ZP7TZm9vJVEqh63tSztYvRSTYfZ5xfO6TsJSr1HIdexLrHp0voxAnhcSNOeNdIeTFERxUteBDWXt1d737ZOeuv3Uk1WEow+OoQrDngUSbgS4gzpNFabOAFnE051FkRhx1sK4cXMGKpdj3PhB8Zc5gZHw2DKZelx3ODU5eI8Z9EIK3zFw4T4+w7iMxK847cyRTGHjNdh97AjYiOG9rtyPj1KGU62a3bksec29gIp0zcriUoEkKqZym6EmoYo5mlXF0DVUpxpFSyj7k8vk0PM/Gt9maM2ZFsAfLOGXLclrevD/fdBS6Mua4dmLuWHPWDyT9/izSUUQZxhDouNFgGIwyinY6tEYZq8PoOb9+yP5EkJ1A4Qrx7lHIiawJEeHS4QHrmJFNy837d1FngrDgyUVW72LiZLPljTv3uPH6Ta5eOGQWPP5gQRJIMdP1Pav1Ci3lQkAJat8TtG4IPqACVdOwvXWX1197nV///BdIqnjvx/FuTvDBfG7ilIqVdWn7vixNg0hSBLBBmrC6DuW5UMp05kioAk3TcHThAqt1y5VHrvLUM0+y7RP3zm6w7Xq62pG6HtUEqR+/b43f95yW8hR2/nGTZrIMeClGxJt4J84mkpQSVDkr201Lu22ZHV6wTBC+jKesJnCosk7CJiltyqSQTQQbvrNpYsKEd8IUz+y9a4pnpniGKZ75rcYzivLizTtvPaneRTx16YjHLi7fvXjmwTe/q1Db1DbFM1M8wxTPTPHMFM88jHhm2vQ0YcKE3/P4WtOJTpgwYcKECRN+b8B7C1rn84aLF45YLpesz+6RU4+bB67fPSFmrEzAEKQ7iJrI/Zb3PPE4LxkPRTZ+FO0tuMtR0WCOF3UWsPc50yYlRwiNRxnI0ESTIintkSVqjiEVS+u86SMUN/K23ZpjCHufuQIHGqukYi7Qc39/9e9CI79QyKJdjXvb5EBKluafTKg83gecCzhx1FWDhNGaujuxZjQpXd8WQsSItOJBRRFiCfLVCXiIXi0w1gRqpJYkux7nhSp4XC5EjRgBs1zMmc8agvfmoEvmzvLek4FOIWSlT9ZCzllqZrLj1u3bfPHl13n5jZt8+dUb/NuvvMzddc/RYsGz165yuFwQi2ssZ7h1vLWSDUBCuH//BI9wsJhx7dIB16rEY5cvoeK4//kvc/XFF3niyassZzMq9Tx77RoalJOzY167/gbvffxZPve5z/Gvf+qn+ZH/3z/k//pf/nWiKu7oiGbeMD+c88YP/zPe+JF/wqs/+N/z6MUnufS//34u/bE/wqXv/BZObn+R0Ec8FUIAFKcZr4qTQJfh/nrNvdPIInWcREFTwzzUXG4ylSguRfoMfXRockgwV3LASJcgEByoOKJammskE3yg8jU51IgLpATatpZmvohsxvkYSYkYOaiayCnSxkyYzZjVIH3AB89GhDYmtm1P1kyzXJoAREZTIqH0bU+3aQuZHNFkwoVgQ3Akg4vrOcdI38dxfO9PiYGkU81jen8VI63B0r4b2WfEUEy5bNbJoImuV5JkalGcWJL4MS28uPFc43z6GuISESnkuJpzU+2+sg7zESoPjmRzwFk2hYFlPEdsv8X59l9xSHGHDvPfGklVWW+29LE3whOQnC0bgvdEoO035Gyp1/us5kSsarwkhMxsPsO509L3u4xP5SaJKREw8q0eSkOMDtS8u8i3ETix1h550WFdcSLMq4amdjhXSDYdymWwf+QHGuZ8WznZJyMfaMGSbt6yBRQRM1iKe/GB4CNNLaOQI6P4KUXQdKS0c9WPZCnWZ31MzA+WPPboY1y7fIm8us3x2RYfanyouH9yzHZjZXFczpZ8wmX6ZGsV6glOUDJt7OkRYoTYR2Ib6dqeLuYynnMxSdsa69URCIWDzZAjkIk5ggjVbMHFS1cIp3espIGam1qyzSOVbKRvyYTgBmYXBxoQ9aUNxTKHaKIUzCjEfN61xV7blIItRFVCtswMKWd7fqrJmLu+HRTK4XmSSTnRJ6GPlrnDlxIeDiGFYM5gbAwWWcXGyzDxipBPFrtvGZ5lIN4XsljJGnediZHBzgbTKD+OWRyGO9O936uR9FKecWnYeDA2yFByaje/d15p3QlPhUTPKPNZzeFyYbL/XeHSwQGhy2yTrbcheFR9Oar1xabtuHNyxqu373P/zgnLqkYUZnXFtot476mrioPFARICRVrCYZnhgvd2XCeEpkacI6XEtutgIPQ1mb5UykqU9DJ4b87oLvWsuy1j0RLdd7YnyD1OtIhjw8on5GT9e3iw4Nq1R/DHZzz3vvfx7Z/6fZwcb3nptVu0fUuXKnNCi2UXGdbZccY7R1IrDzFvZjz52JO0d64zq+ccLZZcu3SRqqk4lCN7hmjm5Vdf48rly8S2YzGbE3zNcrnAB0/TzQi+4fDIU3krR3K87TltE21SqIXTszXHpyvW2w7CROlPeGdM8cybMcUzUzwzxTO/lXjmd0gveZfjmYd5VzElRNwUzzDFM1M8M8UzUzzzcOKZKUKaMGHC72ncuXOHT3ziE9y6det3+lImTJgwYcKECd8gOD67S/AzkIZNG5HTMy4tlzxy4ZDn3/McP/P5H8dXFcH7UqPeNHuPUIVAipHlfEGYNVy8eIXVukcUFo2jmdd4L6QYyVkJoaLv1ohmKu+ommCOvT4Blj44931x2ApD7fa2belj5GAxZ9P29N2GrtvivLGEKp53LOuge5yXDu5keDPjtiMXBgi+lHMoREvZBJGSNYZ3jqoQAM57XBgIi73DqJFERmI4RIzAi9HS7A+u8RLSQ/bkZMLDYu6Y1xXBz4hUqLagtgFkIPqG87jC+loqc1+cliZOoOaG7WNHHx05RgJCdXCB1WrN66++zs/+4md45e4x99dbTrYtrq45UOFw3jBvGvq+I6uOZFTGUqMnVVLXUTvh6sULVCHQ94m4aLj46DXavuPFey/y4gt3eTavOVg0aN/yb3/9s3zsQx/m2pUrPP3kc/w//u//Df/yZz4Nmvm+//CP8O3f+e0cNoG8OoGs3P3iC7z+S59hq4n3/uX/nKf/3J9h8cxT9OsNL//IP+TKB56GyxehmhFaG4edFzoPqLnv1c2oZg1XK+WNk4rPfPkuKsJ3vu8RjmrH0iteYxFQ5tTVnHmTqUOF0zMEj4hHBZokZPFUhfBPZMQLvg6EpsIHZ66xVBzayJiKP2VLaV95h4rDVxX1bEEI9ruIFILThI4A5rKWCudrQhAQj5OephIuLub0viZ4qByWfUlkHF99wtLmq41lJ+C8G3+fs1J5b2NItZQuARmccM5RhQoQYsqkrDSzgJ95wjywPKi5fMHIrMNayFlK2QjGMi7x3Nx7ewyi3LgniDd/ZMie4HzA1xXOB0xB231wcHIbWfhboPzHzw+ZA4T1ySkpdjZvvKfvIxnFV57DowMO5CJ37t5CVbmwmLPdtHivzJqaK9eusTgORvaRRyfg3s3YmsJAsBpBmclF6OHNS9VbQeWc8KM5oar4ELh2ccnBvWOCduScgGb3MQYS9cHj7bfdUDpm6JtC5Kruv3lcG7Xr6LpsIp13VM0c8Rtz9eYMmhFxY18PotRArgaTwjApFvJsgZ/NWcwXXJxd4e7JS6zWVs7k+O5dumTqSHZGoOaUiTGRktI5R3aOZrHg6MKC4/UaNNP5SBa18gexR7OVMPDleTKUHPRl3qQcITq2256+PaZ2mcevXuRbP/Zhrq9+nXsnx8TY0StEHFmFnExQNSnAHM0K5JTJOTGUShgEnco51PtzG+IG1Xog1VVTyUwwCMyMPwsm6uUcyckO4qSUNSjPsVzEEMHKDp3LpKF5FOiz2lMpiJWuMFJaR71kIONNHpCxXIQXj/eVlYrZE3+y2oYBe4wK4jy4cG5cDRNj//E5lKbYH5ZvJVcBpfzUbtKYSzpbpgxss8G27UkHmaZ2NLO6rIOJnFNZF+2ZNohzWrKgtNstZyfHpNTbnTtv15ugwuGrmkXT4IfNkkBUY9qHzBT2YiJ4x2w+Yz6fszo7G9czwEo8UQQZBSeWMSH2PX23tXIaVjtiV5glQ04QSraU3cgw97s4x6yZcfniRVJSHrt6hfc/8x5+8eql8qyAOgRC8IhEe56laJsZvIlsXvJeKYoienlv2QlyLN8LLFvM4Ja/e/MGTfAsl0s+8qEP4rzZods20ueEekcV5lROkNwTiFRAUIfLjvVmTZ882c2hOXiLHp8wYYcpnnmbDxRM8cwUz0zxzDvHM372ta42Xyc4x+zRZ3DN/F2OZx4ecsokSVM8M8UzUzzDFM9M8czDiWemTU8TJkz4PY2cM9evXx+/hE2YMGHChAkTJjx37SqrPuNCRRJL7z5fHHJw8TKzCxcJIRQSwt5vfIYFsXVdE/ue4D2zZsZsviB3GecsePTBWwpm70GVlJW+NyKmCg4fHJossFTN5LRLDZ0Gd2YhMHwINHXN69dvsjo7o+t7c+HtsQXKGGdbhpj9i9Y9Pl3Pv3eHHcmuFGI9KerdoA+MHzJ6RCxdciFtFF8IuJ0rCS2hevlbnEOyN3cYe5s3nAycD4hDxBvphzmmXOxJls0dca6U59hzcpar0lzcgAzpuQciTvDOiGMnIE6oZ3Pu3z/h9v37vHjrNr/x4ivcOtsQEaSuEXEcLJYcLJfUTU3qe3OE5wzZyAME+tjTtxseu3aJx69eoesiN27doYs1MUNSIYujjcrZqqXfbtie3OOoXvDyV15ideeYK4cXeOzao3zy4x/j0sWL/NHv/S6WBwegmdi2xJSRWcUTf/C7kZiZLS7QPPM4tz77Ge79+ue58yuf5/SDz/PIp76Vw2efhoMj5L7sERo6klniA/N5w+q+8OL9jqTwkWccn3vtLpfmFY8eeJ6/FEibRHBWXqPypYybAxFL4x6kkCdOdo5QMdd73/XkNIhFOrBqez3lSNpBLmVF+mjZBCglUtT6LoSKumqoXCbFhPcVHo9iDuAqBOowUKpFFADAjRmSjGjaORBVLGu9L5kFVCFJKq46G+JePCknGy/ezuO8H8d1VVX4KuDqCjdrqIOnDjbJ6iCk7MyVP8hfqYh+Zb5qHsjN81SfvHlSlpkpI+k1wBU3p6o5i40UfOAYo9v7axEJdkSdZRooL2c18aeUeUnZUujrON8yrqqomxm5pD7POVLXnroOpJzoeso8d6VEwLA+lXIPe8RiztkEnpyNWB3b5u2ue2+TmL75TRmlqRyVF5zsUvBTiP4HXdAPNokW9nfYAGbn2L324LUoSkqJlBJZFOcrXF3jqw7vZTzuuG6X6xmO77B7L/5PfHD0OXOyWnPHQV1Hjs/OaGPGucBs1pC7RMyJpEN2MS1jwUq1+OBxPiAuIOJgGIsizOYzZjiq0AHbUtqCUSgYk5SNzw0hxoh3iSCZIFB5c34LVt4mYyTv0HbDZwdBbiifgNut6SlnNpstse+Yz5ZW5ifujWvKmAPOT4X9MkPDPNuNK3OsnxsqQ5WEvf7byURahtH+R3bXDymb8CDOyk7oQIJbJ9r58lA6QMYMJqJKUisTmXUo/QRD6YpRDXP7F7onXw2CSZkTbxq1IlaGangvQ5YEOSek5xTL+HI0VYXmTEyJlLKJ62KraXnIl/Ibdk7vAzljhHjOqHNWDqJcmit3Y+0/3IXudIvhOsUZ+e792M7DlwxX5tCwJgDkGIntlpwi45eZsS/LnMxlTSx/yLL3XcfKmCxmM2azhsWsYTkz8V/KWlb+McpRD07t0XleBuA4hsuLKWfLmNH3JrZ5x7Url1kuFjRVbeVBvDnCHZbVwtpV8dmO0VSOWVNbRpyUeOqJx3jiiae4dOEy2kVk/mCnT5iwwxTPvBlTPDPFM1M887XHM9K87RftdwkCPuD8uxvPvEMA8XWHlHNO8cwUz0zxzP6FTvEMTPHMuxXPTJueJkyY8A2Dxx57jE984hMP7Xy3bt3iM5/5zG/NFTBhwoQJEyZM+F2Pj7/vvdxYbWkz1LMZy8pz8fJFDi5fRuZz6rqii1a2ab9E1YDVek2YL5jN5oRQ0XYd3nuqqsJ5Zy5M5434z+ZWc64Qrt6RVYlDOutUCJ6SQt9S6cOQJr3rIzdv3+b0bE2MqRDAO7qgGMhg9xfDT7LPQxSMQfxbkG/CjrDDeSOWyHu/HZzIxUE2uNJKrC3lv6y5XKGORKCl1N+d1LgAa1unxbUazDEbXSA5RxYl9R0awvjJGK3uvBbxwLtM13XEvieltLtScYUPNCdcXdXM5wvWbccrr93i5v1jrt+9xyZl+mTuwiCO4AOLZkYTKiO7xOE8+CJGKFbeomu39N2WC0dPcOHwgNPTFX0f6aPSRytJkbLQ98r6dEVyGbYdYXbElz//RV53gacfe4IPf+gDPPnUU1y5fIlPfuLj4M2VLqX8hj9YcPnRR6jmB/jZEatXv8itn/s57v7GF1GZcePTv8zs0kXq5QHN1UeMb9IipIiM5A5ANZtx3LccdxnvhLqu+fz1Uw6Xcza64ENPLNE+It7hnJEh3gkOLW40O6YbiFMGMtFKJXSbLeJKaRNAczYSTwZ2x6PaEcWcpH3Xm9s8yI6zFWdlRnxAXCyk2m6si3gr5yHOCGWnOzem7MgqVEu68Z1oZlexR/KU8SEY0WRzNu2NVRmJx4G4zs4hoUKqurTNyKvt5hiMxPXopn3TTNz74DkyjZHA3icFR/LMarXYGpIGJ7fsDlQ+ObTZOeHwrVCuYTj+IECoKrNFQ06OLmdazaNAmbP1nThPPZsTgb7doih1UxEqT9f3xFxaQNw+v/cmolN156IcE+x/VbFibBnYW2coYqeJDop3inPnWmbkG4dznOs73b1zaBeRPeLxba5GsLT9WfO4wUuciZSW7eqB+93rk0Gg3XsF7xwxJc7Wa+rcs5hj5QZVaGrHhcMF8WxN7jIpmjAwjDURK2Xh90UuHe5NcU5oZjOaJIQQEJFiEBrW6WE9H5rU7jrlTCplEISyZg8EMYxZzkoHniP3TQwfBK1C6noHKZNiNGcpYDNqVI7Zr5OhWjKG5TJOUiIPJSFipveJhC/rU3FGa4ZkhLhlN8ikXIhaTXb4nEnO7k+w9VNFSJg4EJM9p70397iKltI0u9/1MZHF4Yw1H8vIDELD6KBN2cpmcJ70f3Ak6tsMNh01g/Pr2sigj2N69/AfSsU4Z5ldFrOGUNzUOeu4kXIYm0gpiVDEDO/Duf4VVwaYDiuqFnG2rPIKOPsuMayPLgR8FQi+CFbn5vf57AYiDlFBYyRuN+TY762TZZzr8DkxYWm4fQTZO7ZzjrqumM0aZnVDEyqqKux9Nyo3WjIyDM+2QdzaTcqhzE4RFcQ2hYTgbdNHjDZ6nXB0dMSsaXDOk2JCvCPUFU4DrmwYzQjJOUSgDpZpxpz4iQ8+/xxPP/kkF48uoG3/tmvOhAkwxTNTPDPFM1M8wzg+fqvxzPWznleO+zdPoHcJzntCM2dXBvzdi2ceKva+Q03xzBTP2KemeMbGyFsPtimemeKZ3y6mTU8TJkz4hsGf+3N/jr/5N//mQzvfD/3QD/EX/+JffGjnmzBhwoQJEyb8+4H/6I/+UW61idOuZ9Vu2Ny7w9NPPsliPufs9IxF3RD7ZCR4IXjEO2KfuHd8xquvvc77Pvxhji5cIKWIaqKZLZgtZoVkV6qqAmC73SK4sYSCc46274kp4QoR4mRXGAEwF01V0fWRL7/yOi+8+Br3T9conipUxSOaKfmRh10Wo+P4QYyvvAVZuO/yKf8AHRJgyygqiJSAu2nwlTmIs1oKcymCwhBAO+dHoQAvaJ9QjOw1okVBHeDw4gm5owlCPa/QMONscYXZQQM+ke7cBefIOdF2HZuTU0hWNiBrIlTQRuXk5ITtti1Chzlh1Sl9tyWgXLt8meeefY6f/+xn+enP/jK9wtVrj/Hd3/X7uX7rDrfv3uPWnXtUywM8kDYbbt8/5vDyJWbLGbXUpKrn3skJt+7cZdv1eOfok3L/dMXqbE2fEn3K9BnaHs5WkbP7K/TkHk9du8jH3v88vQr/5O//j9x94zofef59/Nf/7X/N0dER282Wm2/cxM/nXKwbmtrT1BUJ4fSFl/FV4NIHn+PuT/xrjj/zqyyfeoJv+9v/FT/xp/9zbvzCZ0h4LnzztwKCV6iKyzgmJXYtMc2IzQVePTnlaBZ47vKCTz17iX/5mcCtVgmd597sGrLOHFYNLkRSToiaQOAUEgKkkdQVUeqqIjlBY8f6+BgwYUDBsgVhbmQbLwJEnDMne2yNYOu6SO5aG8qqxJjouggVzAScZsiRJN5EFKx0XEoJdYmsQhJwA2FchvTw845IM7LSiF8sJTw2Xr13VMEjEqzNEsQU6aKlQU9JOV1t2GyX9OogNOSUabctCcUnTz+kdddCHOYyBwp5t5vhe/Ntn4caXh4Iu/F/hZ4SV4h0NRJOtJDi7Jy/A7mnD5znbZBL3w7EMgOxmZXHrj3CZnXK/ZS4nxKKkaSpz6zPNnAxUDdzcsqsV2cl81UgOOi6Hl8dMmY7KMvUg65iLWNl+H2Gc0bn8yTqW+CB2hGD8Jj6TNtb3znvEclkMfL2Hen+B9fPQvYb8a1v80mjQweC3RyTCWJv80cGoUBGfVfYF9sgDvddziOaoe/J3rPplVt9R8LTNA1HB0uuXFpytl7vWmi4MOs8RDxVPcOH2gjcZE3lxVEHT1NVBN8Xgtg+7p3HIzgtkqCT4mQNUIQXdYILFc1sYfMaTIgbN+VZn5hYnsfxakNLxrdVlSMEh3eB5XzGWS5ldx5QvcvhICupT8Sup686ECUkT9dntpsNZ+vIWaqJQRFXygmQrTxI39Kutpw0cORqjrKw2XQlc4OR9tEJqbjzZ86jQUgZuqS0KdGnZFk2nLPMJV1LxLGKmdNVx/Gqp2pm+FBZtYQY7VnnvAl7ObFte/pKcH1HTolU3McyuqJtfA2O5P3Nj2814ga4B34xiPPjipOhCRVHyyUXLywRjSzCguM2I25d1uc9Ypwh44UR8EbqO8R5XPBUwdNUgezcuLz4qrK1dLievfksCOHiBZqzNYvF/NwNqJYyEEO3D10vQu4j/WqFdu3wYvmolRgJIriqxteVrRtqWfZEGctLiHOEqmK+WDCfzWlCjfeVOdxtYKEpmaMdcza7YM+gpCY8u1FotfmQUsJXnno+42i5YKvJxABMRN62PdXMxtV2syXkhmuPXKOua/o+crLamkXa2UJde0fsO7p+SzUL/LHv/RTvfe4plssZudu8Re9PmLDD79p45m3ud4pnpnhmimcMX4945r/76Vf4h5958WtYab4+WB5d5NKjT3J73b778cxDxhTPTPHMFM8M43eKZ6Z45t2PZ6ZNTxMmTJgwYcKECRMmTJiwh3/x6V/k7jZBqLh8cUm/uodzjmuXr/LY5atcPjhks96yjQn8LnhXceAr7p6teH8ILA+XHCwX9L5l1gSq4HBOkODpY0+Kia6P+GCuaR8qUsrEvsOHnWjQxR40GfEvymJ5wPWbN/jil77Mj/3zn+Do6hOcrre0fU9SqPZtROy5ivYIrnOungeIr7cqp7XvpAxVZSWpsjleK19ZKmyBbewR8YSqIdRzJHj7gwXmxui40Y0lIlQihFCRkjmULamypWhXoPeOGnA93O5rXmiu8tTVq3z4sOGDm8/h84YMJKDrOnJfag6IlZOYz6xcQ84DWQUpRbqUCaJ896c+xfLCJc5i5kd+4qehWQCO9SvXCeJ55NFHaZo5zXzJyWrN2fEJ623HuutJJyc0yfoLVe6fbZgdHHFYN8xmM27cO+HWnRNQxTczeoEXb95mu2k5Plnz9GOP8tjhjMNFxelqw//zB36A91y5xvf9/v+EP/nH/0NWJ8fE9YqYIn1a4/McF2aExQG+UV7+a/8Nb/zzf4wczXnyz/4ZLn/vH+D251/g3hdf4Cf/yn9Bd3zGk9/xrVz78HOkfEbnhd4J0VlK/CoIte8R6ThOjuN14pnLC55/7IgzAsvDS7x895iXvnSDX/ryTZ6rVvwn3/ZeDg+WNIs5Md3DJ0fwRqhkNVeuGqtI13dkcfg6M6sCsW+L89P6w4vDZWMoBYeIEsRBUCpvnwna0qcOp4kUO2L0xFybMJOVmCLiBFcFXNn4k3LGB493UDmh9kJV+ZEntU2ADpwbndKAkZfG5JLVMg0MJNXW6rGB82X8Z7IUotMBvkLFownoB2u+US7q3Vi+LiOkcp0jb8o+4T2UXhlfeHAyvnnOYiR+ypm2i2w2nRHAxB2hpw/6Ld8a+9dStmmVYxQysDC5q+2azWZN33dUztPmTAg1dQg4HCcnK9p+Q44tPlTUlePsbEXlHRevXmDezlFRYo44H97Ezb9pHXIgmdEM+1tDIVRHx6jdQy4OVx3c4zq4qN+5gRTb+PXVRJYd8p6JV+ljR+paI6Gdty51Mv5BBscq59Zp54s3WBU0Qurpe+Vev6XtIrPZkvl8jqqy2a6J0UpPjGV0ins+q5WsyZrxriI4x6pr2W62rNYdKTu6PtF3kRQTs7o20QKjiGOyDAl109A0M+qzLcEF6FtOzk75/Je/wmqzHZ8XJpabIKfiSFnxGEmcUkZDEVBKppBePa6a4b1jHqOVTFIZhUUn7Ej5oET14Cp87WmWRxzUNYt5wyxDd9Tx7KJnWx+QQ414h8cXEjajMdK3HU9fnPHoMvDIzNO1sYj0aiIBO2d04z21MyI6ZuhSoo/R5lj5EzQTFc76hD9pOTjrCE2NqwI4R7vdkFO29Ssn5nXFpaNDlrNAp5msG7p2y6pt6fuOCxcuEkK1JzTlNwtWe8N23ES4PwKHDAOjWColkwlUVcVyseTi0QVyjCzqJYtVR7h/YuKPYKJKEQu9t1Id27bldLViu9myWW1Yna7ZnG3YrjdGome1jZ/ZhLGcMzknYkzEbGJu1/XghLPTFa++dp2qqRkyIYgTHOYUzpjzWjExKyD4DFrEtn0kVeazORevXKW6cMDJnTsmMClkLRk5soltdVNTdR2hslJGVeWRUnLTnPWJnCNCJqkS+0TfK8ED3kQcK2mS0JRZHh5y49Yt1qdnpHbLhz72EU5PjnHiuHrtCsF7vLOtHOIDTTPnxZdepu86Kl/x1HveRwQc2cZ7zuQYEVVmTeA9Tz3GfBbIOdLHvgibEya8NX7XxjN7mOKZKZ6Z4pl3J5555y/D7wL0IcYzDxFvasUpnpnimSmemeIZpnjm3Yxnpk1PEyZM+D2Jv/t3/y4/+qM/+jt9GRMmTJgwYcKEb0B87gsvcHj5EVSE1158gWvLirs373D70hX0fe9l1gScd2hf3GqqOAUvlj779dt32fY9dV1z4eiIrawIwY+bBVQs7XSfS6CcEqGqUSDGRAjmOPLO06dM10cqb9R5yomkQhUqjpZznnrkEodXDjmYGXFxenpKyiC++KLF6toX/ovByjyUdhhgl/b2zNiQNn4oI6CCpdcfWVdzHLdtT9f15Ay4QBKrX++UQgQPKfSNbsolfbdaPGwlG0SMEHQOzYk+2fuD97SifLkX6mrBhy9dpFnM6Dc94h0ypOPOljReRBD1BKOfEYRMxrlsLj91HM4WXDhccnd9xue/8hJ3b71B8JW1GcILL3yJ5XJJFiu90aVI7HtiH+n7kvLf7Vx97aZjvlhQNw0hVJydrcgpja6qUHmq4hhTFR599CLi4P69Y67feI1v+vCH+d5PfQcf/cD7eeKJxzk5O2WTzV0fvCA54mcL8qbn7DO/gv6Lf0r9lS+jTzzO5o171Fcf4ZFPfTt+OefOl17iie/+dq588uMsnngMXa3w2fpCClEuGnHecdZn3njpFkk9UtW8sc78vX/zRb5495TghWcuzrm8qDjo0uj4JisxKy5DyAytayVOktJnRbyUUgrF56+DH87MXzIyp8lcewLqhxILEU09oYLQBOZ14LTwsqqY+9cF8BXiK0u9HXuIEQpx12qwkhAZuuLEHElmGWhARrJ3KGfCeK07kW1I4a9qgtRIDGFp4dfblpTzeMwuZtZtZ4SPOjJuJOntdA7vKH+kpFgfHIi2SUpKqQIVW2Ns/oA1f0l+rgMjuHMvaoaQPaLJ5rYPaOpHEnzYWLXjn4urcCTbygwYUh8ACYdXKw3QxcgbN1/HmUWc2gVc7uzcAqHySBa8d4gGHErbdjaPq4pmXsOmhxyNqLWzFwLzLdaisnY4Gen+8TrfZsUaPgZ792n3nPFVRV3cmpq1OMdL26icc1+fO+rYFnutV0QleZCVHc85vM3GlpWDAAmeLDr2o/Uz4CxtfB42vpXsAyrDOsbYDqKKZqVN1k9ZE13XcRKNxGbPjW1/2zqdEfqupW835BpEE7Ydz8pj5Kx0MZrYhjNi3EOXS6kfJ0SFNiZUepwPaIpkcahzNPMZTVPTxRY0IkDKiT4mupgG+p2UlZyUqBCCQ1LidLXhf/zxn+DqI79B1ky3OuM7PvYBnn//81V7vukAAQAASURBVMxmM/quJ+dEnwXNQsyBpz/2LVx4+n0ALBZLmrqiqWsSwrN95n3bSAo1uIBzDo8rVv8iFKTEYeNZBmERHCml3bwfu2EQKARf2j8X0jnFuOtn58aiFX3MnLSRdRft+eRs42CMfXE/Z3NVo1xeNMy80G5bTk7PWG+3rLdbTs7WfOnFl9l2HTGmURTc3wqQytjaTd9dcaX8gPCluicUkEEZv4dozIi6UnDDeiknUFdWNckoDqeWRaKLiQhIFbh3dsYLX3mZO/fvEfuulOFIbDcmhlm5CxsDfR+LQJLZtB0pWRmn07MzRHsboYKt0cN3Fh3uyfos50TKkTSWpNLSNg7v7Z1d1xJPLQuIqyokO1wqDmfvzNnfNNSpZ7lccOHgkHlT4xD6LMQkxK4jiZH0SSEme55ksbmnlZVEspJdiToEm5NdR7vZ2DePMtZijHRda+KcrwghUNUVpycnnJ6c4EPFe5//EDlFEzRKnwYfUIV7Jxt++dde4PKFK8yvNoiftjxNeGdM8cybMcUzUzwzxTNfezzzsHB0+SqLg6PyXfrdj2ce5oauUqiqXM4Uz0zxzBTPTPEMY59N8cy7E89Mm54mTJjwexL/4B/8A37+53/+d/oyJkyYMGHChAnfgHjjxi0ef/o5RJWv/MZNqgsNp9vI/fvHLBc13ktxrRUiqnzOi6AhcPvePVabDaAcLpewjahYIJuxtNKWrl5JWelToi7p2lPKdvySHrzrevoYCd4ZQZmEtosIyoWDBd/00efpYubywYzDecXx6Qm3j1cIHheKFFBY0ZH+HLgtGdI6l/8VsstMxfsUxPmNCIXXB4zoHexKI+mTi4NJjIxyWjLXlHOMWWwK0WCuZbv3mPP561EjYBETTQTl9rrjLDv8fEE1a4jtCsThnB/J+kLh4Ai4Qq6VuyvpwCHgWM4WVJXn/s1jfv2FFzisAsvaUrSnrJydnpD1BoiR3UjZyFHarut6Yt/bccUI+KCKti2dCNvNxoQPFC9WliD1Cc2KDxX379/hYnWV1LV0my3f993fxfd86tt59MoVUteBihHyQHAeFyx1fHrjBvf+6U+Sf+2Xmc0XcPESfrHE1TWXPvphXBNQJzz27b+P5XufJRweoJsWnweysjRzVnA16+h44dYxfVrSEbi7zXzhjXucRuXx5ZynLs/5yOOH9MdwMKtZJ8w1pox/nCg6OIWzjW3nbFePc85IS0opEdnNGxuDhawr4olix+/7HqkdoQrUpYSKcffOBAgfkPLHiTOyLpniFFOiL6SwKmgqBFsh2dSdF8r2Xa4DWWzi2iAg2BzMmMi3PydS1iKODS5iIWZl2/UkoJZggshwcsDhjXB0QggUoWwg+oXsjExWMVLPKTickcopF3fswPyxEwDtQ9YpauKYFEFkuDsZ5vmbOoJzbSJl3qoIqkKKyQQrMrOmNteg7sg5ayvFBY/PHgkNGhzawma1AhFC8FRVQDQyLgTDSlMyGpzrk70f5fyP7yARDEKPlOsfzmR94LyU0jODaDkce3DC765rv5/PrWHDONZ9YYm3FxgoBG0phyDek4m25tmBRuFBjKkfF1r/YL+IlFICUsokACLFGd/TqpG5DGICw2Og0Mti5GdsW1IlpBQRzcVxvLsfJ0JwjsoJwYGznXc4H0iqbLqerk/EbESzA6q65trVqyyu32fTbsixKyKBmuid4tjfWsZyUsEHj4uJdtvxP//0pwl1Tdu15K7l2Uev8v4PV7hmxnrTsu0iUYWoQkrw6Ac+wqOqeOcJIeB9wHtfRD+xLAfOnttOHH6vHUyTNplG2BMu0ZFs3zmSh74fnon2Yk5pL3uIM4W+DBHNu1Is+6Mz50RKRnbnmBAxgbFLELuWlHo2my3Xb93l1Tdusmnb8izZlwjsuTsMwf3cB28ahvJWv7CMdClnckomaJfsFnk4Wt5fGncTMGclpkwWR9XUbLqObrPm+PgeYI7ilBJd2xHENkvGmGi7SIzmMk7ZxlBMkeCUlHqWs0CRyFBxthmhzEvRvbmnQzkROdcnIHhnZRk2qxW6bdGcS+kKa30fKsR5YlLO1hu6GGm7nvV6a5tNxYN6UrI1Lzsrz6Vl06eqQBHoxjIyqpBMPqxCoKkbI/uBpmmK8J2JKe/1oTnpUx9p2xa63rLn5FJGtPSZ946McHK25TOf+wLf/NGP8MjVK7hq2vQ04Z0xxTP7z+8dpnhmimemeOZriGfOHfTdxeLwovV/5rcfzxS8UzzzEG/NrmSKZ4ApnpnimSmemeKZhxPPTJueJkyYMGHChAkTJkyYMGEPh/MZf+i7v4vD5ZIqdnzx1z7DSdvTi/Dy66/R9ubsMuctjFSaQBUc92+fcPvmTY7vHzOfzTnVe0bm4IgqbNueFE0k6JLS9ZFFTjhNqFJS6lsw2m62iCjiakJdkSRy59Yd1id3mVfCn/xffh8/8S/+ORefehyq93HpyiX+X//fHyXN5oSDJcjg+NuRgeeEAnbkmb4luynn/ikixD7iq4B3gveBGDM5Z5wIzcxqyVfBkn17cYV0KucRxamlPx8IsJgtLXaXojmuVS1VtpjDNYgbHYFzFG7dRO9dxXXX8CEYDVxSPDuEynkTKkiEvQz2Ruw7xFWIeCQps6Yha2K7WRE3K/6jP/on+PZPfJSq8pyenRrZndLO1dX3pLwTUvo+mju2uGiTZmKMpGSpr4fzGqGQSWREKl5+7Q0+/ZnP8pM/+VNc/EPfw7d85EP8iT/yvXz8wx9ic3bC/fv3abctiKA5mYPcVdTPXobTG7Q/+6+5/X/7QRyJ5ts+xYU/+gd5/E//cbp7N+BgweXv/H08/od/P/FkxeZ0QzpbcxAafDaSMjtrK0cgckCvDdqvuXt2xrwR3vfIEd//vR/n06/cY9Mnrh41fOsHHiMce0QqXrxnzjdELU28vJlsZiShjcSKKY7krZZB6DAXqIhlOiKXPwhZPesusmkCDZBcIKmA83jvqZuKWVMXshf6vqdU5UCcx4nHu8GZXRyljBS5EcElW8GDl/6gSGZEciFO8Yi4QiTbxHcK3oXRGYr3lq6+iH0+hFGmGh2XGRvXA4HtSpkMHXW3PXfm2HJ2HwNRR8YVIUBVCd4TvMeJst1uoVzrfjkX3m6u73TCkWjc8ZrWRpv1KcvG8+yTj/Kn/uSf4N98+hf59S9+mS+99Bq+WkDC3IJeqKuGqppDjvRyxvb+XcQpTozWq0Iw4U9KavTSFvvCTLms3XXpebL8LcnQc/c0vHsQxpy1ZRK6qDaeivgzHO8dD3hOoZBxXbXr2JHrb4fhtqpQI74i5e2YYWEYYwo454gDwazKUKUkl9+Lr6jnC1SVFG3zmPcmBPUpoX0sxLbu87rnrj33ibjpaAW2XQdZCOKpRWmJXDhYcHjaMau2kBOIxzkhBMe8mYMKq9WGzWZL8jXEyNEscO3CIc89fonPv36H05MTuk1Es5TSLbaODnKM7t2T84G6ccwIvPD6Te6fnrE6W+E0stpuyN5xb9vx2Zeuc7LaEuoZznu8d1y9dIlZ3dgaH6NRzNnEwQBU4nA21XGYoElKkIcsJEVYK8ysuOJ+16GERlnD36J/RQQ3OlS1VIjSUSzywZlbWtw5kUs1DF0BWLmJDKgPeIFZU7PZtCReIKaemBJZM849QAyPenoZgZrHOTwM2d0zX3bzWoTBke9CsLJUQZgHSGS0lFCSvfXRRHiPiNomhz4RRJgtGisLpIlD7wneWYkVZ5s6Z83M+iYrfd+jDJntrNRGGJz32zUxdnzp5VdLua2a7AIVCVErCjFcRwiBuq4JPtANMpo4tIjN7XbNan2KAnVV2XNCbP43szkpw82b97j/M5+mXsxY3d9y68YxX375OuqsnJUmSFGgdogkRCLiEpr8ngvdje2YNNOeHXP54gWuXLpYyqDA5avX7DtJTiwPL1LXc2KMrFZnVJXnyqWLzJqabd/bdwpNuEEoUSWJEAXanPi1L3+ZG3fu8p6nnuBg2bxpPE6YsI8pnnkbTPHMFM9M8cxXj2fe8Qv21xeZhGr++sQzlO9W7xDPPMRb213TcN4pnpnimSmemeIZpnjm3Yxnpk1PEyZMmDBhwoQJEyZMmLCHqjvl5lc+T/PkU3zqYx9EVnf4/OvXmR0e8Pzz7+fTv/Arxc1Wwu3CVKWciX3Lhz7wQQTH7Vu3uXnrFoXXRMjEzZrctjRVjQue3gssG2YBhIQWGrPvTUjIOXPpwgFVXaPF+fbG669wfPsmaOR4veKXP/8Kjz/e08wWvPrqy1SNxwcLMR2F/JA9EmyA7tMI7wzVHdk0cCYDMWwkrAdVVpst9+7fJ1QVMwWqQA4VzvkxRfO+e8s5R1XXOFXqlAmVpT3O2VxHoiBeiDmz7Tsu14GDHInrDbfunxLtIOY6SuakzX2kjx19bOmqCGHGut1Y+Y2U0ezo2sS26/jgxz/B/NlnefHGbfJmw3/wrd/Ed37PH+DCwZy8Pd3d/97/dNiZgZwjg0Y6ppBe59QYsH6oPIQ5P/tzv8C9kxM++xuf40PPf4Dv+JZP8uxj17hz+wakjGY1AgzYnG3oFPLigKN7a77w3/1/OP2pnyceVrz3r/w1LvzH30P13NP0VGxOtoQ2k1cd8d4pWbHyat7T19BWlsYaVZJEWkmQtjx1MOPbv+NZXvuJr3BQZRYhc6mCz3zpJjfOtmhO/MxnvsCf+46neP+jRywaoapc2Xyzo5OzDQhEIEVLoZ0L0SmhIvdpFFW88+T9Fqo8kswTlzUTcWjVgA+o9kRVOlXaGNn2HbMW6rrCqWVC6mKPOCVmP5ZT0UKe56x4Kf54eWdCdyBrxbmRcHsz9kWRUlpBGRhIKxGiOqaFHxaJ4AZRBKw6QyKrSWB9gq6LlOZCdc/lr4p3QlOFHatYRhxSzq3gxRnhVntEEqgj52wcL4xk59vjAXGkCECaM2erY5598iq/76PP87/63u/kucee4sUv/iZf8MpZajlo5uaYTcrdO/cJoefo6ACniXa95uhoQYwdThLb9Rl9XGAl/jzZuZEA3F1HEZQoGRbEgcvs3vZblSyM4IRM10XW65Y+Wr+4vUO9U+uMYgsmjg1NOSTY/2pwxZ3b94nt/RP6dUtOQwkRUxtGcRHAmRAthV2Wsja2Xce1p66QY2SzOmN1f2VjWgcivicXV7icG+plnubEbDFncXjAfNmQ+8jZ6Yq+X7NJLSKORVUxDwEviqYOoWQmKNkvVAMpC9s+s9luqJww80rslFiEXe894jx9VEwbcDgfiNnK9WRccbaCz5FKM7MATz56hQsXLnBytib2HfP5grPTNXfXkRffuMfjTz3N0XLOvK5oQqDxJlo7EXxVl6MyEvxewKniyhPWuaEwSHkOsUfg6/CM0nGtGEQklFJ20tlVDy+r7pWSKc8AsXk9uLPNa5xN0JbyugzileKLfT8jVB6qEHj9xi3+0T/+J7z06isslwfMZzO6LpURt0PRJd48tfeeQbtV2o0jNg9zywtNHThczjmqA8zmXD9dU928x7DWibiyKVGI2qLa0wThA888zpKe9uQe25P7dH3LWVtKXWkmJisrkpKVCeqi0vU9McaxPEjqI4umpg6B+6sOcQHvFSGNfbO7E3Psp5xp262VyMAXR/sgglrxmsaXzZSqEGMZa5ZVILWR9fo+7Y3bqIPf+OXP8WPpR1geHSHzhkeuznk0ZLzvyGrPrKQOzfZ8Vie7hhdFnCBFbNluNvR9T9d3XLv2CKdnG3wIHBwccHThEj4EUlaqqmY+m/Ha2TH3j49RCYQQ6BOWGYFdyS2Ho6nnnKy33D0943Sz4WA5+6przoTf25jimTdjimd2/5vimSmeecd4Rr76fPp6wYbiw4tnYozv3s28zZVM8cwUz0zxzBTP7O5kimfezXhm2vQ0YcKEbwj81b/6V/njf/yP/05fxoQJEyZMmDBhAo9fOSKklvb0Hut7d1DNLGYz5rM5kpTT1ZpcUt2PCdLFoSgpJq5evUZV1WzbnvvHJ9TBUyWl8o6mrlgcLqlCQLByD56FeWBEQE0k0Gzh+2JW09Q1Wa30wHa94tlnniY/+Ri3bt/hn//Mz3P91h3eOOmogufLr79BmDUEHwaWqZBHb8WCvYXPa4iz3wb7Duo9qhwwcmu92dB1HTlFhEzOkZxK2nVxiLdP7vhV+5cTI5Sc82TNJR21ESWZRBYjC5dNxVLM/noWE8mZQ9V5T6jn5MNDct8TYo+PM7xzhPkMv6rBG0EQU0YchKbm0ccfZVMFEz2cQ2NPTSSoBfh2ibvrHVtM9u5ijyyWfZZGBypmSCnubCOMJGYeqqrCiSN4S0+ec/r/s/dnwbak53km9vxDZq5xT2cea65CYUYBBEVCHCSx1VRTlGTZakXLUjtCvlDICjscrRv7xhEdoWj7oiM67HDowhdWu8MdVkuiokVKgiRKbIICMREkUUAVajxVp06dOtOe95oy8x8+X/yZa6196hTIpoAqSsy3cLD3XnvttTL/cX3v+7/fR/AtjZGerzXUYUHtPFkUDm7dpYyB3mefZ+cXfo6tX/zTmCvnEDJ86ZqrSKR8DJFIKmHRHo7RKHRUyR0aNbUyKB3pWc/ZQeDCZoEozaxyvHX/iDzWPH9uwLAw5FJjpcbVFXUdk1tyNSoaU2FLeqUSHCJCiBElQl70sL2CEDxRkmt+md5bgRiDiYnQCxKYq7IpLxJI1FkaIyazaGOoKo9VczKbiBWTWWyhMbUC5VPabiWJVFYgKhJY9VUqG5cOJy3lslZME5AQk0jwcH83ZJy036Aa4jRQV47gPCrGlDo/xkTGhUSKKq0xpHNRQlzNP5XmqESFxOUbrji+5n2WLk0NtJnh18Zgmgua3rDPaDxAHXhiaESP9uJ/LzRkdPtDlJSm3Rr45PPP8cnnn2FzNObWe7c5mUzxITROyECQ5AIdjsb0dEUQoa4qqsUcWyS3Z2GTOzEGWWqs75tHDy1E6ynv21VH1sSeU5mhPkCkSY8m4k1bjYvgoxDiiiQ+taCtr1MPIXVJKw3ID2zW9btoFdbEWQaCD4QYUpcux16au0orlCRCV+v1PoTgHcG5VK7BmERcNgLDsmSAamsStGISaNFpXErKDBCVQqwh+oiyFp1n2FhgAixKSVk5UGQ2w2qDWSeclUKUQbRBvMM7T8hAqYw8z5P4a9JfxPb9mqZq1/e0ZuhmHibJwKLINWRasAZiSGPK++QK3hpvsjXeYGAhN4rcgDLSnDVs18+lTxjQK4G3mesiENa2xTbLQSsstDLNksKPa/2omz26bYhmV4iSGvq0XKTSocalSL+2hiwnePN3bemSpgyND5GyckznVUPQt52oUsmbVvBrH2/LPr1vOD5CEFUrh7SkgZPGTowYpCmpkTKIBB+IbcqJpu0QgzE5Ec1rb77D/p2bzI8PmE+O2T+eMC3rlEFEgc7sUqiNIRJ8xIeQhAORdMgzRqxOZYOmZUXQGttkPbHiV/O8uXxj056dMpb4tQUrvadaTjW19rdNb6rWlZ/Gd2bSxHcKnBLqcs7mZsHWyLLdAzme4UNAkUQtZFmLlOSiV+lzi1JEiadaWhqR3HvXCC0QgkdrRZZlbG5tkeUFedGj13conS1F9OXYEwGJyYGe9djdP+SV19/k0tkzXLpwjg4dfhC6eOaD26aLZ7p4potnPjie+dXv3WL36OSDJ9CPAmuT8Ecdz3yI57lgOXO6eKaLZ7p4potnunjmw4hnukNPHTp0+EOBv/bX/hof//jHP+rL6NChQ4cOHTp04Oz2BtGVTA73ONh7QO1dcv5GODk6Yb6oiCRXbyJ+lpE+kFw3ZeWYzRbMFiUMCqILKKsZ9gqGgz5Wp6A7VSsQau/xzQGJ9nGtFcM8xxrNonS4qka846lnnqAqa44Xjm+++ArR5uyezDAaDicTBuMxRunGY61P39x6BKsakuL3w/ytOSrff0gBkEQy+LDeEomwbumI5DJtU1arFUHREB2qETSkIZQEUNaiGgIsCBRW02sIkUUUotaEKOSZpTcYkBlDcB4ffJN2HEbjDfpljc3zVJbAB7LC0hv22dzeYrrwBB8wOqOqKsTN8VVgMZ+d5gxpKcY14m2tfZRwWiRgXSRoXHsGTOGJ1SIRIMagRYjBU9cujR+1oka1UcRY4cs5ZlEzu39M/tg1Ni6d59IXX8A+dhU3LQllBQJWg2pTBTWOWYUkcaIhHjSgRIEYorJgQJmAoubaVo9pne7tcF7z2GbG05fGnBnn+Lqiryuir6ldTETJI+63JXK10qmcRgwYhCwv6Be2KZURUttK4yomiQQ6kohBifRCOhykRFIqcEnkVWYzjLbU9YIMEBsgj+RFRtErsKWglEvlKsyKOEvXt5J7moH4PoFANeNLQkujrYlBK2YtiQuqea2mbWNsnI8IRkkj2DSO7FZfUillvG9IY6XX3kJptEquylOjriEJ20NPq3HZiBQt9xiTQy/LLL1ejtKNi7LlsmXtK5we3OtY1xSbkii93HL10gW2trbYO57w+ptv8eDoBOciPZMnkTSGdOhpOKaHZbE4oa6qJAwFUJkBFN5HWtN5szqs6Zhy6v3XqfolFdg+9H5GlFMPvI/4T8SgtRofBe8TSbk+5+RRr/OIhhGRR7afWnvaUkxq1vX2MNcym1fzHlqvC1SJWFx/nRVZ2Dwkkbossdam+dG8WYwR1RCay/G8xiNrrVBRUCoSgsfHQBAIUVJJxjwjl0j0AlXdZAmIWGOb0j5NaQqjm9InmlQewKXyAa37NUYishQNk/AbG0d1cnfHdbexrEh31cwtJKKauUTjGs6zjO3NDYZFTo7DKsGo0IyHVgZatXPbCS2J307hKMtdadXV0ooErK6FRg5Yzt2GXm7W+9OjZU1AQa3x1oLSreQly8HbzsX0Rql8wlI4UOBcoK4dzkeMzRrxYpVVRDX75qOG/3KPQq0G5Pts0+3Vtr9v+iUEjLRrkSaEsOof2nGv0SbDB3j59Ru89J1vs5gdU1clh5MZZR3wTalOlEIbm8oGNXtdbMVV2nGfhFYQTJ7TH6RSHxICRtL6t8xFI6vSmEIi3VuX+vparpqxv0wNcGquJsexsgpr0oGNHIUjJ3hHYYQih6KniIeeECIaTWwHx3IupnIZuqnX4kNAvCczBRYIDeEvEkCarAxViVJQFD36/T6o9BnF2DxlDfD+1JmO2Ig4RimKLONocsCrb9zg8cuX+Mkfe+EDl/AOHaCLZx6JLp4Bunimi2faf4+OZ7514x4SHB8a2o9sH1I8o/XvY634YUGxdrCpuZb2axfPdPFMF8908QxdPPPDXpG7Q08dOnTo0KFDhw4dOnTosIbMFrz77u1EuvhArQxHkwVuf8rseJKMli2pJGEZnFqTkY8yXvzeS2wMh0QfMD+V3GEhBCqfUiFnLhC1nKLvtbaYJk15CJHMWAqrGeSG2jsWs5RR5dzOBk9+7Fn++T/7Vf6nr36d27u7bJ3bpp4ZjLYUoy2IiQwyqOQobomIh3GKPFuFmo9yFiaeYY1gbb7EmAh9HwIhBPr9MePxBkVRYDTYLMOYpsSDCBKApka9CMTQBNFoXO1wtVuSHBEBrbBKE32gnJfgHNZmRImUIkRt8SGSG0N/tMFgpyDG0CTeTo7H7c0NQp7zzoP73JKUeaY/6jE6ewaVafZv7zOdzsnyPl7pxEcpCCkdz5KEa2nE2BxIUWpJc6wJJ4J6OGxvHNEiTfJtlRxozgWKvCA3ORrTuO0tidRNRJlS0IuBenbM0cmcqz/2E1x5/gv0trdxLPBljRn0saMhEODOA6oQCRLTwRklaAEbI8YngrCVLWyEXINomAfhwUnk8zt9nLXELMcMxvzEtQ22c6HQgbqq2Z0mSt8LGKNp0hKhGndjGheyfLyqa0Qn57e1FpNnqJDmg8R06kU3A0yUSfdtwaDIjWGz36dva3QV8GVJnplEjDYp9cktiCf4iHM5vf4O2TygVZ3IXxG0MilVvGlks2YcB5p2iq3oo7BZlnovCiF6koKSiLYV4dbKGizvPRih3+8xHA3I+wXKaiyQG41Wll6eE8Jp56YxAtYmp6MIJotkSDLdrVWhUJilCNGSim05gtheiwDaJBdzXVMvplTVIjnstEp9FZKbb91FvBJJHk01qbX73Rz2ONjb43dnM+7sHfBgdsL+/SPmJYzsmIX4lAlBYkMwGubzBeJqNkcDtFtwdHACEhgUFlS/IRzTeG8v4+HlSpQ0GqU068Lpy304v8P6T2qNOUzvEVJWBAvlosbVIR3GUqBUaETVNUL0fS2zaq3TY+ChpbQVZU69EkuhQGIktwW5FTLrgerUla/TzUhycKfrSr8pMst8ckye5xidxq340PCh6bmmydahiA1hrZv7jGitcVVNvahweUZwiQS1qiH/DYToqXxNVVdNdgNFZgyDIqPoF4kUjcmZarQhz0BCYO/oiDt3T7i/d0BZ1dg8Q1QSmkJI2R9CTIcCaUQDEQhkeBUJKhIlECNNSQuDELGZRllLURiCrwgmjQsjGhU8NOVfFIq2J1O1ybbIUpp5sc3GgcbIQ/2z1oXy8DL+8IhYVxPWdoj07rLk5QXSucXW3dweaDw1uNTaG0ZyY6kXJeViwXw2w+hEQsfGwbzURNau8VH7tqy9iZAElNYdjkqLr0ZTFD2KosBay6JcoGqPiGBNcitrZRLh31D1yiiiEhZVxetv7fPyG2+jtGK8MeLq9Sc5s7PDoq45ODri9ddvsFH06fd6ZLnBx5p2ogtN+RNFKrmhaETk5qCAUkRl1u6gEZB7PXr9PspogvfYZRmeUwvD6t4fPkQqcSnKiIKsFS1UcmQH55hPPYelEKNZ9mMUR1suqPXfx0Y0iSJUVUk5nXH54jZ5luFcKqVkVBLwrYL57CSt39pgsgznHBcvXcVYA8DkZAF5hjXp2IR3jhg9kDK6SJbz/Rtv89il88hsjtp6X7d36LBEF8908UwXz3TxzB8knqkfdQjhR4omFviQ4pk9Y37kd7S8tPbMShfPdPFMF8908UwXz3wo8Ux36KlDhw5/pLC3t8cLL7zA/fv3P+pL6dChQ4cOHTr8IcXJ5IiToyMybbh4/hzD3PLCpz5Gng2IHt74yq/T6/XIs4yG4mwcsamMwaDXAw0uOkJdMtrYoSK51sq6wnufgmKVUnlbFNYaCAEfK4zRFJmlMDoRepFEghcZ585f5B//0j/jH/2Tf8a3X3yJCxfOUfR7mJToHy1LHvN9JMc6TpNgayS4eriw1MNQaG1RqiFPm9INXkE0YLTgg0tp/MVgyZakpF7yZCtiKL1TSonuXEXtfUP0pPupXSB6T18r+oXBWhihqSOcBMH0euTGoESofZXIDO+IRKKKGDHM6wLnA1oMWjR1cChrGW5scDivOJxMqcqKTCnMMvRP1ytNuyzpG/EUvSFF1iczOZPJfXwMJFrbonANidm4oUVSimilCcpiNBCFGBzelWSmwBiF0pEQA2iDijUSHME74nCExBJFjc0tk+/e4GivZHx2B7M9prx5l4O33qY+mZDlOZf/zE8Tx2MwGrMUXEiEiIaoAK1QRmG0oh9qtI+4KnDiF5zvD9i4do4HteZ//Ppb3Nk94Y89d40rWz1mx44NHRhZhw6CFcHmliLP6GWpn50SKCxZpgmhRhuFshZrDN47xJskDIVVYYZVivQkokhoiBdtsFYojGBMpMgVi8oxmZdMezAwlqJnMLpxZ1bgj6eESoOBrc0xITepDIvWFDZDWU2MycG2KH0zNhP5HAgY05QGQKPyHsY040EJmTHYzKJMys5ktCLTjUMvwt7RlPPbQwa9HkrnjHo5F7YGhKzHsD/k6HhG9GUzP9O4p5Gy2hTlhbXpwFMQpMlr3s5V1RCSQiOwNYS5tP/FJBhEhOiEuqqJaITkUEd8cpqjGqdj/OAFou2bCEoZsl7GLAR+7evfTi7HrIfXimpRp3IK1qIqh+3leFE8ODkBmWNthjEDCBXlvGQ2mWGtYTQc4kJER8HERFaK+qB1Ry0JUYmrx2IqOEIqWdAQ6mujKv1RW+Yh4lE4kpBSiGLLWHKtiCpSKwhKY8Sk0nsqkb0fhNT2ek1SEARLkx5hSRIvLwUQLatF0EfmDuooRAkEvypJ0UpQuinVApEQ0hxG6VQCQvfwzuOVRmVZ6mcJqSyJCs1cSnuSoikLg+CajBGlAEGTiSYH5q5EZwarFWQ5SmVYW6ONRRmDNqpxUWvQltz2kODx3rMoS7xoaiKlr1DVjHdv3ODBwSEuODYKgwuCE0VAN/dQrchWSYRwoHEsSyrHkMzQQhRHDJLKBRiNsRC0ELRBq9RLFg1RN/tq2pVFVoJS2k/Snttov6vyH2vD7P1Dbz2r2qozH35qK6atj8E1rSgR4A+h3Z+XvxGf+k0ErfpUdWQ6r1gsFmhtlgLWSpBo181m/jf7avu7ldC0upKlzCQCMbnnRaAOEbE5xXBEZhReK5QFsYrMtGWO2veVlI2OSFBCv9ejP+iDRC6e2eFv/83/LZ//4gvEqmL37n2++rVv8Pf/yb9k/2TCvPQUeVMihLgSLJsPBM30QS8/H6y4/jaLisLgolDXbrluLkthrPWAsKbjfMCnGtV0WWjEglZmKkth5mGuhWbTbv5CAw1hj0ZhEAnUdY1Wmp2tHbxVuLqkKheIRIajMRs7PbRW+FZYoHVLR7RSSUx3aY4ru/pMmQ7HGmoR5t5RSs258Sb7xwd866WX+W9/+Z/w1//mf/G+++rQoUUXz3TxTBfPdPHMHySeeXH3Fgv/ey4x/87QxnDlyadSabIPMZ4J6wemfsQQaT8ndvFMF8908UwXz3TxzIcRz3SHnjp06PBHCiEEbt++fdoR0KFDhw4dOnTosIaqLMkzy5mtTZ5+/Dpf//7rPPbks+ycvYirBPUVtXQYqtZx0wSxMUZGgyGiI0EC8/kMa87ho0kuLqWJIaVKFsAawzDLlzXofQjJxYgQYnqOD2CtIUrk1rvv8eV//eu8fvM2VRBGwz66Sdus18hsSATLKsX4+++zdRnqFXXwSHfVOqLQCACrkDs2AX0blEeJqTa9D6ADas1MqRq3XpTGVR1TIBxjIslDCMvXjzFdYYyCzixFL8dmml5QuBApa0cctgdGWlZhxQCtuxWV0hhllqSwMRqbFVRRVo61xgHdcpK6KVXQPqgAayzVfMpxeUS1COyc28DmFqIi1gqNQdkmXTgK7QAVEomjNZC1gwUkXZdKvBlagdYGX9b4xQxflfTHYxbzE2o3pRhtY17b4+Tr38O5yMbWNtWdfTh4D19NOCwMo48/yfgTz2F7fULlG2pDNW5v1Tgj28dsKh1gFUWm6duM3aC4vzfhvWng7f0pNw8qzHsT3p1UqMWMz59TDGNIbmutUdqg0ejmxErUSXwwxmDzJA5E1KnP3qoRyBIRup6WPVGZbdYBUQqlNalEXECakiOxYY9tZjE6Q9tEoIkoXPREUSg8OkR8MLR+Wu8DxEAIEReE4AWl24IsQPMaqZ3aA0eJhG6zEUUiy/IeqCQABZAo1N7hSkesPSpGer2MUb9PiSZGR+XrxBE34yrEZvIsZZI0dmOkIfUBFZfri9Z6SUPGlsJuy6uQxEQliRgXbci1xarUxisOM72HYnUdjyRHl/3VXpkQQ3LEEyLRR2yeo5WAiQRfAz6NBZX6P9cF0UOsA2XpscbSHw1SqYrBkDhJ16ujIYhJfdxMvpbYWzqbY0zjIibCUsVE9rbzcskkrpG06VZT5gojESSVG5Go8BhML0fpOYhgRWOioJrSAqI0Slav3RLKy7aG5vcKTURHiC1h2fSnKNANCa4EgokElTJEaAVVU7YGklNZiV46myUqMK0y0tC+a/0vkhylIYRUJiA2h+RkvcdaSje5WJeigUolCIOCQJuBotkvTFMCwEP0EcJaOR9icpcrRRTw0eOCY1FVzF0kRxjqyAAha/YjmiHuQ/qbtFe0r6WJaSslNiJdQPDr3bnWq0oll67VjXi+5H1Vc0Cw/fF0dgqRNFdSGRxBI42IrlZZQ96nGMjynSNNCY32VwogrO2pTR+v/XVUKz1oNaBXK906VFuugFaQTOUTnA+UVZXKUSndfNZIQlHKsnG6fVbXthIPVgLBBwv/KjPsHx3z9u071NWCno4MNjeZO4+Lad9KUpUk8ay51ygRHzw2RIzVXL96lc9/5tM8+9QTbPZyjFWML52l96Uf5yu/+Q329nc5Ojrh3PlzjQu4EYNTI7THLVAS1lp/vcVkuQ5676nqOq01qiXxH7rPttnVeou3bdgIEm2rNxO97bMQIenYSXFqyzy1znqh9YiT1mCV5qOva5BUUsP79G+8sYUyqz7Z3t7GGIuxFolJFEou8GbPkybjSDPZo8Cg32c8qumToRGMzdg/nvBvfvPr/PW/+QEd26EDXTzzg9DFM10808UzHxzPfJiaicqy5YfbDyueeeRC8iPA2mjp4pkununimS6eoYtnPpx4pjv01KFDhw4dOnTo0KFDhw5rqBYV585ucv3qRT729OP8xm+/SL/I2drapKoTwSwtKb2WZrjNuJLcWooQI4uyTM6ymAI/qxSuJXhIwWHPWBDB+1QayqpUGsBJbAggRWYsrlrw9ru3+cZvv8ikrNF5gbUZyU2V2N+W7m/TQH8QMdCSTfAo2uKDoFYEv0gi0ZdERHpBQQihETu8R9DorL02QCdZor3GEANGN79X7etLKvEloJq00EprssxitKYXYRpCItkahn1Fz7X/tTx8QwTJinw2WiVSrilhkGc5RhtiDKfa6/3UiiLLMnYf3GXvwR5HRyc8n3+KrZ1trLEoA0YMjnrZ/lqnuvdxSQKtE0Yt+aeW6e6VQHA1bj6jPpmgLl+mnB9T1VOGZ86Sz2YsvvpNwrsP6A028SclhmOUcSw2etRHxygEY83S1ynq9B2130dlEqlvFL3cMOrnvHMQuLW3x+3jir1FwJmCd45LDsuSDal54XyvoZ1kSQK27saWqGnpFGuSaznSlg1p3N9LJ1/D/656LJGaEgmSSozQ/K1ET4xJbNFaY60hy8DYAm1NIvxCJBgQ3VyF88k9KQofFVF7ggR8SOnoBYtZjrmYVJqoWlslSqX7CiTBKUhEi6BCGqtWN25LUfgonCwq5vMaV9WoWJDllszCwnmquqJ2jrwpp5Ay4aumyRLp3RJCEoUYUxuqVo3TKwGvbTdB0VaCaB2FbS9E0WTaoJelAFQSBaR97koYXMkBa9+ti2YiSAjkeY9+XuBC4Hg+T0KQVgQteDw0jlwNZJmlby0L73Eu4krHRm4YDnr0egX9/hCmniWJuZ7GoSXv1palloTVLCn4JnPBB69dSRNJJLeOghKNkUSaL6LCG4OYRE7a2LgxVVxrFbPWOm0broTEdn1t6eGV03W1HrZP1SSiWloCVCd3fkrtL8s1sH21GAXRaiUAqVTGJEoSVlPJhFRiQUFTWmVFZIJaCnGnLgaSk1ypRP6aVPpBmaaci0plU6ra4b1HYkxu+uWYW/0LItTBs3A1J9OKvlHkucJYocgM1mjqqJtrXgkEMUbakgQi6XVSzrN0X0FWuTpWIzMpAC0pHCKo1GHLkbsklWWplCxFuyVdntjt0y3S3tzaaFKnHieRtk2bnnrdNfJ/ebnNvtPS1u3avvyDh4T4dq9ox7hSad/wPlCWFc459CPKsKzuSa1et1mLP3hWqFPiOUqhjGFaVdw/OMR7xzA3bCvDpKyoQkhiTrNK06yFStKYC8GnUwwIly9f5lOf+iTb29u42QytYdzLefbJx3jy2mXu3bvHdHKMbQj55bUjKVsHK0Hs9MxefcZoRnZzEMGnzwaq/fzw0J22DyxFmNPt8EEQ0uebVmpKY+b0Z4tWIFj6pVW6JldXaO+bcR7w3qF1U3aiGQPjjQ1CaOZAbJ3q7VVJIxCsPifUtWdne4vLUrBbaxb3D7E2Y17VvPj91z7wPjp0gC6e+WB08UwXz3TxzA+KZz68TEjNZzhpv3448Yx++EPDjxDtvE3fd/FMF8908czpv+vimS6e+eHHM92hpw4dOvyhwO/lwunQoUOHDh06dPiwsJhMePyzH+Ozn/oYn37uaXINB7t7+GiovKCNQevWEd0EeQq00hit2d3bIxvk1M4jSuNiRCQRRcQU1BqT6rorraljxDlHCAFrUkpwFzwxCkal9OWZzXAhcPPWLY5OJtj+iP5gSJvSXSSRgSnt9MPk7Qdj/RPYUviAJWl/Gq3HdEXwJJKmdRcLLkBZ1lRVjTIZBsi0TQ5U1XpK1Vr7aazRWBS9AEVeJGGkcaIqZOkar0MkOE+BQ4ea2tXUqkduCrTSECLO1Uj0hKZMhRIhW1TUVY0ETy839PMsORPrCotiYzikyPOUknl5T+rUOYzUJAp0j1dffYV7730fX91nfnSTz/zYz3P+yjVG54YEJ8z2DnDOY6yhf26Dal6C82iJKDyCISbTIVondzxRsZhVxKjQIaCqirC3j5tOmZ8c4OMUU0Tys2N8XqL8PfzJfTRDPBlm6xKXPvNxdp55AjGasqyWZOrKISdL4lVIfHgVw3J8bW9tcf+Nt/nnv3OL92aRp597ll/4+AXevveAxWLGxc1Ntsc5RQ5UdRqzzuHQWAWiBB+gLEtKyVK6eu+IOoMoOOeZxbB0f8bYOkgTa9WSMRBxITCZlLjK46SGssa7GquEQWEZDXrkJqCKASqzKAXaV5jeEO1AGSFEj0iRBAdJB4jqkJzRAuQ9iNETQmzcqlm6piBN2YSG7GvITWlll4aYSqnUk2jmRXhw4jhxnjosloeZJs5wNKvw9ex024sg0ohbyW6YRBMBabI8peGX3LKtg7vlIzVgIoi08hho63BSU7kSVy1SaRZf44IiWrskv9tSBa1rfkWoJp2kPYuFKAwQnKNyFc8+dpUL5y9wcDzl/vdfxehAkWdN2QJDUBYvnkggs5a8V3B4cMB8sUAHR5DIzvYOo+EIqzT2aEY04HTAG0UBSfBkdT1pXDQXplVjGEwE4XJ9OsXjr/2goK2Bkqa1oK0marg/LzlcLBAUeWZJWaZs45xNDuCgfFqr1GpZbJurJZGjTuMjGIika9LwUCGJ5Cg1YrBi0SpQa8FiyaMlCwaRGq9DMkM39yetSCHpO6VUKh0hgegThRlDwMVWgG3bTIHSzdKsEUnOUYPCaKGtkZD1C/JBj6zXwzrB1a7ZzyJlOcf7GhHB6OagXkPGR0l7oDJJiFy4mtligclynERqXxL8PBGgMR3ui0iT1SCsyNZm7gSBOiQH8lJwiRCjRsSmOaETOa2VWpbNIMRley9J5WauukYca7tNo5LoslxoHsE/rJPna/eLAmUMRplm3jfTW4ESWY4NkZj+rRHgp97hA/biGFtiP/3eqCSEVlXFbDajqir6w+HyPZqLZ8n2L5d3eR9R/vD9QRII1XJ/F4KPnDl7jp0zZxn2CubTCcd3D3hwMmW2KNMaGB0gTftDjCr1q6QSSvN5CdrQG4xYuEBZLdgaDsjzgqP9Pf7sz/8pnn72KV69cZOXvv8a93Z303pjs6UAtDxIsDZ5VvLASpQRInmWYYzG144YY6rY8CjiX7WSg157UBpNZV1EYykmSPP/SbxrP7ekeShN5r20SqT1SJH28fTxTgjOYU2G0QZrIkoi0nwGRClcUM1a3wobjUO8+bzSTmRRaW3Z2z/kE88+Q0/3sIdzfuUf/jJbWztY28O7H9DfHTrw73s8s3YIq4tnunimi2c+1HjGxx88336Y0KE9AvDhxTMP3nmH2Ydwb4qUJSllvunimS6e6eKZ9j2ai+/imS6e+ZHEM92hpw4dOnykuHbtGl/96le5fPnyR30pHTp06NChQ4cOAIwLw+ULG1w4N8ZkEIPl8uXHuHj1OocnJ8ymU4bDIVlml86YFP9HJAqbGxtsnd3m0qVLDIcDJrM5mkiuFCoz5NYSvUtuTBrCtvnPkIg5bW1K159l3LhxgwvbY4iBrMhBqZQSuElpfJp6+AAC5PeBH/gXa26rlhwiBDKlQSXnshKhrDyLqiaIYDKLMQatTXIhKwVotGlLOChEmYb0i40zvCFMpKUzhSAQlQabQYQNqzgwihNlmOschUZ5IZYVQSrEe0IMRIko0YS6YnJ8TFWWWJtKIIQYqXxgqzdg2PNYq3H4dJoE9XCjrncy585dZ2wrhkExzPZ498WvcP/2E5x5+ineffO3GMSaUFZM5zWbV57j2Wc/y6A/JLgFkEixlARe0ErTKwqcd9y+c4/M9jijKuZ37/DOiy/y2E98AUWkPJlxcOs+m89+nv6f/gXkk1+gUhF1fof86iXG16+y+annkPNnqetAnDnskkGC0zckKAJGleBGOJ8xqxSHx8f89HNPsOs2+catI968fY+z/YK7R3OsL8mHDhv7GDVAa4sxFq01xqbU1i3BaG3qdx/C8l2N0RRFQVFkiTBpSp2kcboSZJSAMQofI2UtHM4XVKoiC5FeUTDo97AmlVRx4hnkWUphHyOmFozTxKiogJN6ztSBNZrcKozVhKiQRnSalGVyZoaUVj/Z3TTSJMnXSqNNIrGSiy05AFENmdm6I5UiRGF+MmeyyCllk2AG3HvwFm++dcA0KvIix0RYqCb1v0mlSYwSlE6CmPcRY5tyITFxVhLTN8q0RNJqbleVp2zcdToK0/kcd2aDLCsYF1ss5ruU0xkLB7rK0IneQ2JoXOapnEfDL64cs9Ckz1cYSWKLD56Dw2Nc6ZgtKpT3lNMTXOOo9SEwKx3bNiPGyLwsuVsuWISAyjP6RZ96dsjdu7tsbkWuXr+GFDALwvGixDuL10lk1Y1Y1HDZKK2wQZPZVPbABaGuI9ro1B6iGoG0FXPWEDWCwhnBqJrKBXpRUYQ+ZQWzyjFxFYfRU/oeWUzuaa0Er8JSEFine9ufS++TaBoFH31TqbAherVOZtqGEEdAxYx58PRsIGQZ/X5OfTBn/2TB8awmqCSMGIQiL3Ah4pyn9g1Ba8wpkVYtzdBpHTl170qS+70VBSVgARc9XgIhL1L/S8ookIaZTeS7RIo8w+YWY5L7P7cZyliiV7iYSvQoURgMhSkYb+TkKMabPS5s5dQuMn/vFeZlST7KQdKsCgKB1DZBAiGmQgNIaBzTybhcR08VahaupKxrgq/JtMJYS5blRJ0hoT51zzGEhigXrFYolUotatWW7aARGpKgf2pFXIrjSUBrB59uxmQq0aRWT2n1hmZf0LSCYSQ0WRxaAnjZJS0J/rAzuhEdW9d4iEmkKsuK2XxOXVf0RsNGuFsb461LuyWwJX6QDrEGtbx4JU2iEhEKbdkZj7l87iyDXs6kqnjxzXe4fzDnZDqlpx0+plJNVmVMg4A9QWvNmX6fPM+5efMdfv0r/5aeVkg5RbmaejHjxo03GZ45z9Mf+zif+2N/nH/4j/4Rv/LPv4wLkZ7NluLO8l7W+2PZRquWFBG0SWWHohZidGiy939+WVufl/f+e6AZjUCz/jWrZpu1JX1WW+Y9aTKspFJDNsvYOXue2YFKZYqarDk+KlA2fayQNotfup52XVGm+cwR0yuLNs1ZBcXmeMTXX32V3zkpeTUatrZH2OaQhSl6v+c9dfijjX+/45mELp7p4pkunvkQ45kQmO/eRYL//U22f0eICLPF/MOPZ/yHdH/AzEVU6OKZLp7p4pkununimQ8rnukOPXXo0OEjhTGG69evf9SX0aFDhw4dOnTosMSljSHbhSVXnslswqwOPDiaEHsHTCZHKfX/+1w1yc0lIbJ1ZouNjU2GgyFG53gfySzJpEdyubUEg1k6u1KwqAWKzIC2eFGczEtef/sdCJcZFBmTyRRReuniacPq1rG0TgvDioBoSYiV8/k08ZUe+wFBtGKZRj6GSKQpYUB6fa1044wVahdw3uGdQ0Q1BxeSUKBIQXtyxjUlvhqyKPiWKFp5oVJQDi4KlQuUZU0+LDACPgqLKPS1RmlBa0OIES2NE06lLDm9PKMoMmxmiUHwIeIF0IaN4Yj9yRytk+OKZSuut0XbZoq812N75xwn1QPkULj8+JjZ4pCT/ZJb8ztYeUDtKzKlODfIObr1O+wNB+xceIzNrR1irJp+SS4qUGTG4J3jwd4eo/EWZ3IhD5GM5PgaFQXeGnxVIlcusfkLO9g6gFXo4QAZFahhn7CxAU7QoSlb0I7L5fha95ilsRZRBIlIdCjvMcUGRaYY9zWXouXo5JCdfs6lUZ9PXtGEMCXG5NzLrF2OMWnZSLUiePI8R2m9JL+0Mdg8TyR1iC0zvRIKGrLLZhYtQl7kaK3QTTYjowxKBO88dV2js8bxGiMhOAiO2gdUFIYm8sRWj7nukVlLkSWiTyINEdoIcyLEEJfChTU2NYwSfPAQDUoZtFIILrWi0snp3xBXret/PhtxbZgzFJCF51Kh+fS5HrW29Ho9ovM4n+j3VEZGyIxgjcLoNBcSYaYaMjDl0I8SiQ2BT0PqRYHYy4naJIFOKY6nluc2h2xbw7ws2Sosnzu/wYEDqxIZ3LDVKCXJ3RhX/bUs9dA6LkNAiRDRRDK2qBgEgRyuXBzjnWtINYUXOFp4tgrNttHEckFtDLY/QAeFLCpCFQiuJi8qvPfgazat5mI/R4oMq2RJ5mqSUBSa9aUwhsxo6hDwKhHNKJXK4CTGlOStbVyfWjcserN+aI0RWIgwMoq+MWjRZBhG2nC+UPQLjRWNbsZHUCuxMK0Kbfs0a7c1K9JWNKYlbRvltqH/lg7U6GFWB6xWjLVh7mpEIqPC8MTOmH5foyViEMajEUppyspR1jW0jtimr1EKibJ8D2kyZGml0DoR4UviVYEiYgAXA14iY1swtBatDWIyJBNMblI5muAJ5YIYfBLGYiNGh0gU1ZQxiuQ2g1zoZQW3d+9zuL/Hez3DnZ0x28WAjZ1zmOkxRkpiqCnLktm8ZloLs3mV2i4GCIFcg5OIk0SqKh8woSaTiigO4xzaWJzA4XTKtAqc39kkszaVmGlWN61V0wYrcaAVpNeY6FXWC1ntM0sxSJIQ07qglV4JBCuxXC3/Nr2MNPy7QikDEpevub6vyuqVlmtnK+i341Y362FVVcxnc6raIc09JfG8dYE3guX7lIH3fQp46HtZPibNmIgSCd7h6wWekn6WMy4s2/0eYWvMRk8RlcJHqOc1I6W4fOUi169d5rnLV3jhE88yGo84d/YMZ7fGTA8rZosps+kMlOF3v/s93njnNsPRBm/deAutDZlqssOs7VAPE/lLer+9JbU6ACESG7GzuROlPuDQxOr1m7wQ75cL1pa+9SeItC/Yjo7ljEOR5pxqxBmlLLboU4w20Zjlc1cZZwSNLD/vKaXR1iZxi4hWBmtyvA94FdB4iEJRZFTzksnxlLkp6PV6qKCTwP2+e+3Q4TS6eOYR6OKZLp7p4pkPjGdK5/nqvXc/eP78kGE1fGIjQ4z9UOOZd4lMPoT7U8B2oRGtunimi2e6eKaLZ7p45kOKZ7pDTx06dPgjg4ODA1555ZWP+jI6dOjQoUOHDn/Isd3L6amI1BUn4YS5hxu373B3MsWXM/JejrZmGYy24aOQHJeDwYDRcMigPyDLsqbOeXJ/RrVKTJyIz/YgQ/sziXw1GXXleLC3z4133mPUz9keDdjdP0Rrg9YqpQ5uLIHL8FWp9wfArIjA9wfQvz8o1pxBUYg6ucGiSq68RI5oQgQfIrXzVHVN3pB5ujnnoRvyBaFJsw9En1KFx7AWWK/eOYkEkUXtmC9KTH+IlogPkXmETaXAKLTVaLd+Pal9ekVOkedYa5MDO5IOUxjDcDjAWsOSD1wjBldtx1II0U35CkUikbfPDDm3e0DYO2F/7w4753IO5sdkRcHZrR3q/bsc338TW/TZPn8RKWvaEgOxySlutMF7z97hAVFZZJSRizDILcRAL9P0MkMQgTPbDJ45T6/fB2vBB6LUOOepFjWmqlKiaiXNsNI8CgrQkmiOEAMSPYWO3F0scL5klAlnzm9w+3DChfGAK1tDrp4xlEdTENCkdhBh6TRWuiGwYnrnLMvQSjV9G1FKY4whNuqFxLgUsFCKKEkg0iaJAcbYlPkHg5Hkwo4h4J3DO0swNhGXKkCoieIp6wodFWdyxY8/dh6f9cnzDGs1KkYIkugbSYdq0KoheoQYPJm1GKtBw7wuCZU05I1G64Ax6VhOSzwqITl0lWZeeZ7dqBlJIMwWPHduRD4YINqSWUtZe6YLT2hcl0nA0lgtGAXWZtS1T+XtmkmgRAgS8DGQZXkqjRIiPqT2sSZHZxYyy8HRjGtjOGMjx5MjLox6/NRozCwofO3wzoMSjFFkVhNCxLlWmFul/W9JcNUQcAJErVBE+pmlyHLyPKeqKnwUPOBFsz+rEQmcLzKMdyijyYoCXMRNBGISpOq6Zj6dUEjF0zsDrNboTBPEIyER/VZrvIRUxkMpCm0xylAHjw+hEXZa4j6trRIDWuvGNWlRJiQiEQhk2GiYe2GgFOeGqVzJ2BiuD/tkfegP8iQAowjeN2Jm2xap5M3SOdvMW7WcS5Bbm+aAEoIPiaTWaW2OMeK9YxECRgnXR4rJdI5Wkes7Q35me4vMRFSMGAWb4xGCpqw9Ze2WJXG0NiijE0cdZPn6zjmMVlitsBpMq1LoJGgZk5zMXgSPUETFRpbEr2gydKExxqKiIHWN95EYQpqjJPd9W7aAZq03WhNjZDGfc+/+A/b3d3lg4OBkyGeffoazly4znA2Js310XmB7A/Jg6RlhpNNYVpIyfGyNR1QqjaUQFS4q6rpmUY7xIbDZ76ONpQ6R6XzB7smcM9tbKGOILrn1jdYonRyzbTmX0472xACfKnv0EKHePpzKw7DcT1f7pzTzfqkCrT1fLfeJVmCSZm1p97R10eBRpZqUSm5sBY2oMkvZCNZE37RHyfI1lpT/Gv+v2ic3Qn5j21/S5SGkLC5Kg0djjSI3QqYDViKDoseFjT7luU12rGPU06ANAU1wETPoc/XaZZ68fpVPPfEE+WiQsqAohVVwYiJHzWedrNfn+zff5fU33mQ6Lzk+PgHSfaZMdtK4j82yNNCyX9S6YN+U2dCrAwoxPlQ7Yv2rWrVLu60v+7I5qKCaz11pSV6V9lDLr7L6vhGcNI3wpoSVl1qBNiiTk/dHKEmlXGJsr1EaEU+WJYiVajL+xbSnidJ4k2FtAdGhYwlOkRkFIRB9AK3I8xypIiFK+kzQocMPQBfPvB9dPNPFM10888HxzNG84qu/+wecXP8zsT0oeOzMJj99/QzZhxzPvGwVex/CPSoFnzjXT/3TxTNdPNPFM10808UzH0o80x166tChwx8Z/P2///f5W3/rb33Ul9GhQ4cOHTp0+EOOw+mMo+MTRocnkEO0Gb/xza8zK0sGec75i5dTSmCRZVr7FJynwLZcLBj0LnJma5PNjTG+LpfOOlEGtEZHjWpSzi9cldymSmEzgxchRGHvZMo3f+e73Lm3y2jYp9/LeenGOxT9PplJhF7riP5BWJIRIkviq4Vafj0tLrR/s15WQimV3N0qkQumcROHxhmrgExrpDnYUJYL8rxoyJLUNlEEFQLQXocG3ZAJWtHPMqJOpEuURARoZXE+cDKfs19YRlsbKO8IdcVRHHNGtW49ME0mHCE2ZABICEhogmqTSjGgNTbLyHtFeo4kEi3daAQVSL4jg6CTMGMMu/fe47Xv/SamfpcnzilYzHjiyognru8Qs4K33t7ntdduYY2w2RO+9PnH+Po7u+wfvsuZ+ln6RqNj4+CKgjGgtKaqa+7t7VGGwPNqi5EvycRTzyfU9ZSAIx+OsVGzmExxsxk2gNt/gB2OoSjQ2mJ1aocAhEaUaTMHtXSLkkRqGjS1eEqXnHeb2zv8ynf2OTw+5mxW8MKzT/EvX7/D8azkrXrBRWN5brsgNxkGmjTyQogQYioxEVBNSQ8at51HdHJu0s6TyOpgD627uRU1WJYEiT6VLMj6Q3qSYbVlsSjxYwvKYnWGK6dYm0gzpwzl/IQ86/P8+U2+8LHnGfUNKrcEEY7v72FJjubgAtPjCaPNDQaDPjazzE6Oid5j8xydZcwWFbPjGUTBWsNoo0evn+Odx5VuOV9iU07C+Uh0e8R6QnVyzM+/8DzDjQ1i7alnFdMKThapbIBuUtsPhz3qqmQxn7G5sc2iXOBqRwyR8XichK0mc8DGxgYSBe89znmyvEhZFrQhaMPksOLk5Dazg1vc3n2HZ69+mp967DkChpPjE3wUTKbJC0uvlyMhEJzDOY/3nl6v19xHymqwvbkBaIIItfeIEgZFDy0aX3lcDIgxRFFUDt7bPeL28ZSiZxj3C3r9HlXtKRcLFvMF5zcHafyFGXfefJknL13nf/fHnyYqi5/PWMzmIAGtIMsMNsvQ1hAFvPMolcS1EJIQ6XxYioGRSGYtuU1ikghkaZA2Il+fXqbR/T6Vczy49Q7ff/FVHj9zjs8+doHz2z2GZy5QDEZoo3HVBGssWiX3s/M1xtrlehibsifSkIiZMfR7PbRJ5GBVlRjTloUQZtMpXgmj7XNkWZ+7N97mu1/5VbbOnuUXP/sk/8VnPk6YzZL4gcKYlBkjSsrwIKQDY7EhnlPpg5BKr2jDdDolMzqJx0rwdU1mM4zNMHlBbzBIgonWRKWY7x1y9+CIUJeUYUB/vIlEoS7nVL4ilAusKKw2oA2V96gsI4hFG8t4MKSs5rzyxqv82r/9JidO+Kmf+HGy3DKdTrg7OeHTn/k0g15OrBaMssDnnk5ClM1yPAajNbm1DIuc8XAA1qQVShRamyXpbLRh68wm2B5+VjIsChY9DxJSxrAYyUwSLZMbOu0zrVMdWUoDK/K8IYpZE+2l2XN8jASJZNqc8reuvM7N3rh6wbX9NAn9UevUl0ty//3i/cMlm2LzXKvSmn10MmH/8Ahp1lGjDUobmh1sSfnLqVdu11nVlEFI/4Kr0j6IgMk4ns+onUMrOLu5yVPnt/jM01d54soFRr1UcurK2U0+fv0MVVlxMpsxrx15r8dP/rEf56mnngKtCSHQ05D3cmIMuKrm5OCIy089TfaJT6Ktoa5qfuEv/AVeuXmL3/yd7/Lf/L/+HmE+J1NQWE0vt2itGuY9jc+gWhGkEXfaz1eSsp6k7DSaGNPPqsnAEps9/HSxD7sS+yRlCIjqdHvF0MwtUWS2IGqLlkZsUiSRmyQAZQAEFEIAvAKDQjAEnYOJ2NyCCHXtCVNPNsgacc+gTEaeKcQ7wqKkGIy4Xx2xf3TEwdEJn3vqKXSRYwLAnFh7skIxHueczwdM5hVVcOADWaRDhx+IPyrxzPoq2MUzXTzTxTN/8Hjm7b1j/qvfYx7+sPDnPvMM/7e/+DMfSTzzGzfe4+b+yY/8Hq1W/Jc//SSjftHFM10808UzXTzTxTMfUjzTHXrq0KFDhw4dOnTo0KFDhzW8V0XuTgPjWnN+awMvivFwRK/XJ88yYvCngv4UhkdQYLKc6WLObDJjMZsRfEXyHmUYDFpZjNFoZVPwL+C9I88M1lhEw8R5jhYlb9/d49Wb76Gt4d17e9S+5v7xhNza5P5q3v3RXug1yBqhsPZU9dCTkstKPvD1pCFfaMgo3ZDryc3mMRE2N8ZcuXqene1Ner0+vd6AzGSgTFPGIhEgbQmAGAQxiWDwEYzSTbAvhJjKIdA+pmCOkJWLRGbVNVNT4HUjVLhIjiJkmhAToWisQWm7JNYmzrGV52hlybOCMiSSPAQhU4ZUWr5h4tCAYTgecnh4wFtvvcb3fuc3+NhFxfWLGVfPncOrHFTEl47p/glf/cYr1IvA9maODw52LsDb+7DwSOWQgUFCIsUlRIxtCAhVMOqP6fX7HB0ccnD7Fm+99BofcxEfa4IK2CynL5a86BHnC6Zv3eLNX/1XPPdn/iM2n3icEqEmYjANAdaUXGhuSTVWdENThkQnspwA81rz6qHmtfeOeerCmDy3fOX1G3z9tsYtZlwdCs9e2OaPbW6CskhZERriNuWf1yhCOsyj0/tX5QLxAZ1bTEO2tCnPDckhL43ClhIEKASdiEmJZFaxqD1TQyKNtMH2ehSDNBcJC0QKVDDJ5R1KRpsDJqXw5p1dvvkbL6H6o1QmJAQO9g/Je/1UuiTCYjJD54bh1ojx9ojBuM/05CilgreWfn/M/u19JkdTqkXNaHNMIODKElfXFEUPpRS1cyzKmsPJnJ97bpvPXd3h2vYZ/sHXXuKuE5QqKHQPhyXSuOSUphj00dZQliXz+YJecUztakLwiEhz6ClLTjolKLWPUol0Dk1fOjxC6ud4EhmYKY/3NR+7+BgvvXfEP7z5IguVUWQWbTOSnbgtByGNs10QiRiTSO8QEvk6GJ1gjSXGQF3XWJsxGgySIzY4al8RROGCUFaR3aMpyjmeurTFc6OrTCYT5kcnGF+zPdrALfbRwWNQ5HaAN2OOq5pZNWV6cEIoA0Uvw2YgVUVe5BhtiRHqukIrRdHro4yhFih9wJi0Cobg6OsM5QJEj/cOfCQQQENmSozN6bsa8YHjssLHQO0qZvWC3VpzMJli64jSCldN0ORkKoMYOZ4fsahLjGi0pNIaotbJZ0WMAjq5tF10jAd9BkUPoy2LxQzyAnar5LSf7XPm3DalWN5475Ab4RXERbxPa5kyGXWQ5GBFMDbHR6Fynrr2ybFJwJqUFSu4RACHZo2OMZHkImleJdLag9UEBbODCS88dZlrvYKeFlxZoaLgJlPK40MswnA8wp5UqH7NJz//ec4NN3kwrXlnUrIoBvz6977PSy++xGtvv8dP/MmfJd/a4vrVSzxx7RLPPXaJ3QcHTGYl03nJK3fvoEONVYrMOjKbY5TCaE2mFyh1nNZelca1eL/cpaIIDx7cY2t7h6vXH+eZ5z/O+UXJvK5wriK3Bmv12rq9trc9YitTkOaRiqceawVKL4ITSXuR1mhoBIJ2b1gJBemPT++YyQHbuG0bYd6s/nopgrZO6tXfqURux8jh0SHXH3+C/+TP/iI//qWf4B/80j/m6HhCiEK/PyBKOP2Gza2nq4rAWqkSoHftaRYxOe39yTHPPnOZK+e2uX7xPJ/92LOcP3uGmOW8u4js3t/nrfcesH8y5XAy5f7ufYwr+enPfYo/8YlP8/znXuDOjXf4xrd/mzdv3uJzL3yK6xe3GOYFhc3pDXq8cuMtdFaQ93qIeK6fu8DGaMy1Z57lP/0//m2O797i3RtvcOutG+zf3yWrhMw4rPFpXkla01R7g9L8az7vpHILumnQVl5WTekTtSagpP0uNIcbokAWUlYQL4KPaQZ7IM979Pt96pM5MQjKGqwxWO1SKaIIVpJY5JVO7yGQR0Noh0UGxhRM793DGk1/POSdF7+FP9xn69Ilrn3xx/Gzmtmtt9l/5yZ3336Lj//0z6I2toiHRxy8+hrq0hnyrcsoDH4G2isKoxjnip1MkZsBx1lFSZ3WuQ4dfgD+qMQzDz+pi2e6eKaLZ/5g8czeZP57LSs/NLx+OOe/e+XeRxLP3J3UH85NCjyYL5gF6eKZLp7p4pkununimQ8pnukOPXXo0KFDhw4dOnTo0KHDGoJoZnVg93jGSXWP6XyBKI3NTEoXT3J9LlNDw5JICCEync1YlCWu9oQQU3rnxrGlJGBNhslMeu5igVY0de+FRR0og+b+3hF37j+grErOnT3DfDZjsSgBGvdXK068nwVZdzW3v22NRR/0vPTND2iUNp9yjMlhpXXjsm7uvxEAZouK2/d2WVQ1w+GIYa8itxnKWNCGlHE+BfwigqsdQQW8D0xnCw6PT9Jrat1eJI2ZlhAjrvYU2mAkpUCfSZPSP6b05S4KLnoagzReIrX3+BCXKbCTnpPqUxweHDKbzfE+oI1tSHVNKxDQvrtO5Q4Qx/a4x9Y4Q2vD77x0m3PbA8Z9S24MFy9ewJcBo2uOJiXfee0eFOcZb5+nyDIkegSdyBsRtE7O4Ml0xs1b7/KpnU8y2Ngibs/JNjYpoyKSYVSOUZrpdMqZM5uYGPE3b1P+1veJX/xx5HGBTKOdQkStjGQrA3LzZa38AimtdmE1dV3z4pt3IEbObw7p9zJeuT/H1FMETx0Vb+5X/PbNfa6cScKZyTQaQTfuQt2Q/AqV9IkoWGNSNgCBqqzIM0P0gbBM493MCxrCWhnEJ3d9WdWI0SSFoSmpok3jmo8gEWUyMBlawIY5RkEdNYe14bVjwdcCeCQESlegosZom8ZrljGr5vTnsDUwPP74ZcrRJlF8Sjk+2GSysByEgmmYM1EjogRCNiDo5FREK6IWnI0cqoqptdSSET0chYyv3DpkXs/IVZbGtI7L7tDWIgp8SOPf6OOmJEai+4w5TuUNmhTpyV2+lgchCk4JkYBIIM4CT2xoRlfHbF/Y5v7NB3z9zh4HXtPv5clVGYXkm4+pHEbrOmxEm3ZdkBgx9hit0jyNMTAYDNnc9GilqauSsl7gfMD7SO0jx/OK7UzT2+gzdZFca/IsObAX0zl6NqefG4pBn/HWNrcr4ddv3ubWwRTnwKJTpgCVMhtopVHaAgpJyho2y1Fa433AhdismyAxYIxt1jpJz/eCJ6Wbt1oQVYDS9JRwlYonN0e8XUbefXfC7l1Hv5gk96lSOF+DWFRaXjBDRdbPUsKEpjRCy102yxRCyuCljcZmlnJ/Qj3bw1ceJCKZoQwKjeLJXuDPXR2yf+x4+b0DfvuNQ/IsiWPSEMuxFXAAZUwqteMjPoRmlsWkzymVrknikihu96YkEjSuW0kO8oBgXOTZJx/D5D1ya3Eu4lxF8BUqJmfnYj4lRM9gNOCxj32cy/0BGycL6t0TfmtR8+5cMc822Dl3CVAczCu2K4fSml6eMR4OyLKCwXADiZHp0SFVWTJbOHw9x1WLlDkheKJ3iDhEAkoiWqRxpaZ9cffePS5dvc54NEouWtPufmuidrNXoNYMy+sG2fW9bAlZum+lIdWXWTmaNVrWawk0bbt0Vsvqe8VqT0VANdezlBROCQLvu6j2lYkCztVsn9mhv7HBdXeNV159lZdefoXdvYPkBtdL+pxUiKrNPaJA6eSmj+meApF5DAzPn+fi5jZnM8sTfc2189tsbwypqppvvvwG+3XgwAV25xUHx3MWdTrMeXJ4xC/+5Kf45Kc/zeOPP8XRzff4h//0V3nx1dc4mc+48syTjIYZC71gYDOubFzlvdu3OJguCNpw7coVZnuHfPfNm7x46x7ZE8/y5Mc/wealS2w98RRvvvIG7nhKnE8I8xNm0wmq8pjGxSw5xFRrqKl+ZUAncd2HsOpTtWqPVstJ7vCIaSdGFEKAiEfZjN5gyPjMDtvnz4LRLKqKB+/eQaf6MvjgwSbntV5z0ac5lU4u6AjRaJQKqHKOOzhg77Ub6BDY2BwwvfUWYTLHlCXHucYdT5jvHjCbTtESqR7cYfbmG7ijE/oHR8xu3mAxm5APCnrUeAP93ohNesyKEdEvqCSmPfCRA7xDhxW6eOYR6OKZLp7p4pkPjGdO/AB4+wdMoB8e3jmY8OWXb34k8cxR+eEcGg4i/KOXHpBnOV0808UzXTzTxTNdPPPhxDPdoacOHTp8ZDh79izPPvvsR30ZHTp06NChQ4cOp6BR+AhHswWT3QmzRUm0Fm2aJMMSkYaQSWR2Q3OK4H2qZx5C67pSTcryhiOQiNEKY1LK8hACRhtEhNpFpmVNRc6DvX329vboFxk7OzuU5QLnaqzSKRBeElStUKEeSfK3pEkbI2veH1a2vMbSd6Qe8ULriDGVwdAGVKKGTeM0m8wrbt/do1w4NjYc44GjyHOMtWhrsVYvHbExRuqyoiZQO89kuuB4OkOUTrXiSYF6cmRDiHopElggOM80huTKjRGJqcRYHTzt0RIJkco5nPfEGBORLS2ZotjbP+BkOsV5h7Hr4bFqCB7Be4cxms3NTba3z1AUFUYLwQdeefU95LkL5Bc22NgYcv3aBap5xXx+wvH0gO+9do/nP/0Jts5eIjMGL65p8EROGa2JMTKdz3jv3l0+JZ9iuLWDFmHj8hWcMig9xJiI1Tkn0wnbWmG9J9x8D/39m8SjE2KMkGUoVyNKlq7NtmOXIpEiEeCNg9MoRW41MQbu7R1xZrzBzrBHkVnOFpZntgzzkFxgN/dnjOoam1mKfiqhYJRgRJpyJ41A0DrYRGO0IShNjEJdllRWEXwghNCIJKksCg0hp5QlWE2QSFXXmCzD5gotrXMagiRyqGhc86opjWJCSk/uVY/Y69O70qMuBsRG2NowqVSa0QZrMvI8R08OyXqWYmeDrSefJyiPiEcTGRZDpH+e7Nwxw8M5ue2lNlWp/2KITXsaUIYtDyPuEPWExaJi89JV7rxZ8e7BhFDO6RdmyRO2BGSMjcilU+p/rRWts8/7lBVKN/M9tqR+O0dFiBiiCkQcVenxbsDnzg7o2YIjL7x5uOBeBb2iTstDQxYjAU9I80BWS4c076VRqd1aAUFrtrc1G5KjUMznC6pqTl3V+BAIUZjVnsujgmulZ1o6LuYZ+XBAHRwne3PyxYJ+NiAvMkabI/b3Pf/2zfu8ePcIVYxSKZiQCHUgZU1QBq0V1ihiDKDWy4eo1ZrVuIEFabLKC0TVlBiJKGqCFMxdYNsq/pPzBV94fMi3ThZ8fW/Od0rHpppjJDbEqoEAvq7Ie5ZrH7/GlXM7BB/wLixJX9WQtTEKRmu0gTyzbIw3eXP/Jrdv3uXw/gFFrw86Mq0CBvjSxRF/8alrzILj9b0J/+NbC8ajHKsFTRoXWrX7TSKho9CQ10tONPWbYvk3S5euatewpr0kYgEXPFECm1kPZ3rorEhrsvMEVxKDR2tQVrNYTBDxjMZbnLn+OOf7ORzNuKMK3n79JruxwG6c47JJ63sdoQ4R7z3VYoG1hqHNGShDriK7SpicTJnEGb4sqauSulzgqxJfl3hXIsGBBHJFKqfR7J3+5AA33cKVc3xwS4GrFelFGlYYWZLxajWiH9rvZPmbVmhI85GlOACkPS7GJIiv/Y166HXWsdIN2ldfE+HXxISHy0i0fywCUSl8DAyGA8ZZDgg/9vkXmJycMJvNmFUVea/HUn6QRmRdvm4Sa6UZEyFGjHjObA15/PErPHfhPBd8xUY/w/maF199g6+99Ab35jWHXjiOoNHJHSyKQW750hc/z2c++XG2hyN+68v/in/85V/jzuEB480Re5MpZzd7OIkEYzFKM5sc8cab77B7Mqd2ATuf8dVvv8i3X3+bj/8JYfvsj7Fz6TJm+yxTM2S6f0h9tE91sMv0/l1EJlBW4B3BeMSsCnMoo1IGApFUFoW1/m7c1BFWe0MM2LSUElFUTcmqzOYU/REXrlznY5/+BIvoeOfO3ZTlIoAqF/j5BFGpxIriIZFgKYqn+YIEmE6Y3niTya3bKO+QQUacTDDZAKkdJzdep3xwj6D7qP6YzatXITomr32fejJjc7yFOzygnEzobY4YXNhkoSPRZBhr6fcLstmCzAtZbEuUdOjwwejimS6e6eKZLp75/cYz+wdHTN597wfPmR8i9qYLprd2P5J4ZuHDB13WDxVR4MtvHqB01sUzXTzTxTNdPNPFMx9SPNMdeurQocNHhr/xN/4Gf+fv/J2P+jI6dOjQoUOHDh1OoW9he9SjyDNu3p8iwYO1hChMywWaiLYWbQxGKWJoyhiIQuFRSrO5MWJra5Msz0B8Sn2tFFrrVMKqDDjn8T6Q93qcTKZM5wumVaSSmrt377KYnvDjn/80B5M587JiMp01bK+siP1TFjC1fGwZOi5dzwq15IxlKRqs/jo5atvXU40jckmONF+NMZiGABZSEB6jJzYvHhoy3weL94YgGcoU6CzDWIOxoFQik0WELCvIosPUgTpaTN4DNQPVuIZDcvJpMcSomJcO6wOFd1jnOHQRsT20VKggiFZIQwgkI1SkrmqcCwgamxVNCujkILv34D57e3vMFwuyLGsI54jggBpBsZhHesWIZ5/6JIujmrff+hfMjmY8d2VEPwbG/ZzBeIDdHGJ3H2B6KUV5XpzlxpuKM5eeYvv8ZWpXpkw2TS+AwppU3ozg2NkcoMVhehmj82e4/rFnsIMB2fgKKi+xg/NMvSeIx04m8MYNRvv3iPsH+PkCe+4MYT5bOiGRxu3a9HtsCDRp3IYaT2EygjIMxht86bNnGW+fYXawx3z/kE9sFvyln/40r90/4KV37vHV777FNDf4KPSUIs8smVYYVHKeKY2PLRemyPIcV3tqo1A+OVsX0xkxhETutMpZDEhsy77lZLlBlCL4SG8wIOsJ2qU+c8FRh4ADVFagokMCKd19MWD/eIIab/PJzzzPn/8//WWwBdE5oveNSKIwxqCVSX0QGicqDceoNYl6iUh05HkftAVlmrTj7VwjMUVKpXIYJoP+Bu/+0/8P9775ZW7euslf/9//H3gxfoWv/PZ3eOvt19kaj0Bl6yxj+rLqoob3W5uZLe+5fEb7XTMfY4ZCCMpzN3iKoSZK5Ph4j2Aj+XjMsKcZZeYUiZZexS/vPb2yOjXXl98r0MZw/vxZlDZNiQJFr8jxVUXwjhA8Re0o8iTY+Mqxtb2J9DNO4gKHw+YKn0MwkSgl4hVe9aj0mECBiy6tDUqDaMS2B7zaxcosrzQ5Y1muaRoQs0aaNeVDlDQ5K5TBU7BQkXEmbPYMLioWyrLQigo4Xni0gCK5owmBajZnazDmkz/9RX7mz/8s83LBfDYjb8ZPErnay1JoC0Uv58qFK/zy/+/LHB4c8c6bNylsgVIBnxXkvQH97R0WtaIKmmh79DZ79PoWq8AgrfG1GWSJLG+HTOvebcvkJH24GcPt3tDy0m1zISmbhHcE79nJ03rcCtsER/Q1EgMR8K4iLkpGZoTZucxRPmAwzjmqAlMMJ5OKyvTob5/h3LlNrp/f5srlx7l0bptzWyOmZY33nigKpQw2s1y7eBFzMZUiAYihIvqa6GvwjlhVhLoiuBKLYEnZD2IMTCYLFipnY2eLuirROkeptKa0N5yWk0a0Wc8Oolo5YW3uro331V4hKQNH2/LNocT2L9rvHs5Gsspyodth8Ci9vn3yKYFAlp0ly4wVIhC1YbFYEOcLCqv4xZ//jyiMIbc5/+LXfp3tord8D9XO6eY+YyP8Oeebvc/x02dHXLMl5+d32Tnx3DmY889feYXvv3GDN9+9zcnCp/1fG7Iiw2QQphPG/SF/6S//Vf78z/4piuqIV37nN/k//zf/D17aPabYGNLbHPDi917k2s4XyXKLGKEIwvNXH+fF773Ot77929y6c4dnLl7gjZs3ePW1l3npjZf4zX/9HOcee5Iz15+gf/Eym1cvkz/1BEZrdvb3OXrrHSa33mF2+xbzg7v0+hnW2JT9QIEyGglr/SHtctqKRRqTFZheQVzMYe5SKc48Q87vYIxFh4AWGBaWa9eusj8vubF3wqzYIgOCKKScEptMDFoiUZu03rd7l9YEAzq3SPDMHjzgjV/7Klc+9UmKYZ9Yz3n8Uy+w84UvEGPN4RsvMzGGy5/8cQaXrqG3N8nm+7xx4w1cL+PJH/tJzj75JG//9stINYOtTW7Pa767u8utMqDCWWqlUSYjy6QR5Dt0+GD8UYln1tHFM10808Uz/IHimf/qv/6/89/+f//7/3mLzL8DiqJgZ3sT+PDjmeM771LOfvT3KMDC9NDadPEMXTzzH048w6lfdvFMF8/8YYtnukNPHTp06NChQ4cOHTp06LCGzZ7FzSZEpTC2YJAZvIa8X7B5/jy51ZzM5kznc6azOdpkRBUZDQdcffwa1XxKnlmid1gSEWCURjcBZlnVeB+IAjbLmVWOw+mcsnIUvQEvvfg9tESuXrrE9StX+fo/+zJHRxMUBo1Da40oAf2DXTErb/YKwjopuP6L+Ajp4GGkSNxmbbCuqUNMxJPzZMDl8xt88YVPcO7sOQbDEdpY8lyBtqimjnzrXlMoJAi1OFCGRRW4dzDnd2++S+U8/V6PIjNEVxNjIvVnqqRHYEPDhlHMBWLeRytN5gImA+MtBEEJRJOzubnBvKqxRUYVHA7wMRJFmC8qqrIm+EBbPqP1E7apxqMSlDGYfMjGcJt5f5NeTzEYj/mF//jz5APD4WTOt2+8ycFhzdHuhM1RwROPneOLz4+Y7N7GkHPh8nVEjglRGtddIASNNZrzZ87zUz/+Y/TznP0Huxwu5hwdHPGx7TPoJz9HVZWoLMP2RvjJCXL7PXjrDlkMMJsj8xJlFIHGGQqYU4dn2juTU6R4RLPwibh7aicnqpLNTcOhyfn+vTn/w2+8yI89dZa/+KlL/JVPXORkMiHrZewuAnXt8ZIOqETRaJWcwjHV22Aw6BNCxEvAhIDVGi0BaYk9iSsS2CQnnxJQjesx1xZf13gV0dFhTXJdK1HECNPK04tgYiL3Yp7RyweoLCNX4OtFKgcRUluLSs/TjVhnc00MHoNGRUVZVql0hdKIJLKuNPOG1JS1A0mcalNEIUpjeiVusQAMZD0ODg6pTw5Qbk5uBTErCvLU3HuYVFTNHFn+nNoq1SNZOTnRjSgpyZOeR9BRcJUwmYJxCkNANz4+aeedat7EA5iGomwOY6yPmYbRjCIEFzmZLsjzrPmtp1zMl1motFagAgoorOHMeINR1uekPCFKpOjn6BNBRSF6h5+e4CcKGzyFhmiEQkVU47FP7d0eClMPtZis/rVOU2nbaamEYkxLIoOOOd6Ajo4NHclMThkNEoUejos5XNjYwioLaKJOBNy8HDDYHrKpFBxMUVWJKheEJnOD0BDRTScKUBvDwSyyrRWPXz6PPPc0w/4WmfXsTqb42pHHmkF/i16vpshm9GJJQT8JsEnCBFiuS2d3thn0c6aTCZPZFJsVOBFCFEJsPeKrUbMapskbbpWgJUMwoCJGJInfRLQSfDkjUyCZJYjgZwtkfI6sf55w/jHe3Z9QhYzpdMGx9+hFxY5UbGaa4WDEuSvXKIZ9jqoFJ3cnPH3lLJlr0vATcSqVStIiSYhRqbsUBqNzbJ4hOifmfYKrwVXoZt6ZGBmRoXwkU4pYeWy/T93sZo/at7R6P5l/evys/a4Z9ykDR1MKQjXlNWIigttGFUjlNJYCgyzHQIwRRVpfUlYBWb3d+nstL2PZW2vXnQjg6XRKHSLGaIZFgbiKjz/3DPNFybe+8z2q2mOtwerUvivfbloLjo4P6ecZ1y7s8GMvvAC+QirH3v19jo4W/Jvf+g63dh9wspgzPrPF8xcvs9HrUygoT445nE9ZVBtcuXSZv/1X/hdsDPt8/Ztf5Z/9yr/i5XsP2D5zhhiEg9v3+De3b6EOD/nZL/0k13/8i+SXLsF7ezzzwhc5GW7z1d/8Dd547U02Nob8xBc+w/0Hdzjcvcu7+wfcfull6PWw4wHD7TOMzpxlfPYCg+uXOffcE/RUZPL919h/9fvMjw8pqzmYPLmSJRKW5SDanC8r4UA1p0krwG2NoDfAbGxx6fHHCfOS+nCfxYO7/NbXvsp3v/8Kpj9EFT2YlTitqesFQQQRhzbtwYg0O9MRibYEhxDKGmNyBteu87n/zV9FFwUmt1hroY54bVD5mJ3PfYnB1ecxWUawiugWvPPgiAt/6s8y6Pc4c3aH2kce+49/DisOObrHraMFrxxMuVkGjIzYqj25ilgNYvMPGOMdOiR08cwHoYtnunimi2eWaNq0qha/x7z5YaOJiz6CeGZZTupHDAUMmpKSXTzTxTP/4cQz65fRxTNdPPOHL57pDj116NDhjwT+7t/9u/zyL//yR30ZHTp06NChQ4d/DxAlJmrFR2azCq3AqMCZrRE/9sILnNna5HgyZTKdcTKdkucFZVmilGJjYwOJgWG/R5ZZJIZEWGidUvCTDJaCJiLUtcd5R7/oUeQ9tLb4usJmKRB++bU3ODo+wXmfyCitGwfVKiRWa1/b0lgrNCRGSxA/8o5bMqNNya8emeq6RUuOxZgEgtliDjGijMWgyYwlt5bMWtAGtCyNRO21t1cbJZUFkBgIvoYYcHVN7TxGa4piSF27VH/eapwKGIn0EQYIZRDE5oj3hFCjc5MI4RhRMTmorNbJZY3gQsBbg8oyiv6AGE+IrTtUWg5HASb902C0parmHB0ecu/d7zIuKsYjS9CKwRAUkXpRs7+7YGNrzGKyoN/P2Bj3qU48dTmjriu0McSwYolEBAmBfr+PsZajkwkyFHrnrzPY2YFBnzIKJ4uKcrEgz2vGG2eRkwn1gwPi7gSDJZYVoVxQKNWUCEnp8ZU0bj6dGLkl9Ssp7XmMmsoJdV3jqgW+BJ0PGfUtlQyYes9X33yAMhrvHI+PLYNcY6zCkNK+11GIJhlVtcQlUSUofEwZBFRTNiSGmJ6HWhLsStrRl0Zn2/6pLImsXNTRo1QiRH2I+CCoGKnqAGLIMrAIztWoCKIsTjQ+OCQmh6XSCmsti0WZ5qvVFFmOjomwzPIcHxzExrkfExHVDoxT7splYyYSXZRG2RprNXme4W3OwjlCrBN9pwxR6Ua4YUkqt6Pt1DRc/2E56RQPs40KnbgxUiNmzZGhJP6AeI+KghaFbhzOp+YesPKBpsel6ZCVTBAx2pBlGRAZDHpYa3GuZnJ0jNUWvRSgFBEhxEBdVcxLS7lwBB8pTAYRdPNPRUF807YaRCWCtSWP2/sVtb7KtSvPqsFEtYfOWKZqb4labRJxqERhJENrT4iKTCk8GqMFcSW5RJ66cpW//PM/R6YtMUY8yTXpQ8T2Mq48c4ULwzO4IuAGLl1XKypK02btgRadxsDmcx/j2dEZJl+cUGQDimHB1373u7z00svMjh+Q2wsUhcVmlihpELaCVDtK0vuAMkKWpXITSiLaCCqk5z6KCm+Hi2oUFNU0YVSp3IAohdEKJBK9S4K2zbCkezY6535V8YBAvXCMgmB1QdE3jM/CMx97kul7bzPf3efd+7ucO3eWew/uE4IjzzTPXLtExBOatdgodSqVfjts01hrZr0xaalSzX3TiomCDQ4dfSrV4QPZWkYQacZ/uxG2otIPLmt0WihY3xuTkEo7rYiyLKqxHGEP76Tr++XSQa1OP+/hGfz+S2rGu0qC6cnxMUhks7gA0dPLLcNBnyIvODo8ot8rMEW2tuZqfIzM5lM2Bj2efepJLp4/z/TkEE1gNB7hRHjxpZe5s7tLCMKwGJApzdXz53n68mXOb2xQz0549+CQqA1XrlzhyhOPM713i9deeYXvvfYWo9GY8eYWIUJdVcwO9/j2775EIOPIwb265Na7d5lllqvPPcuXCsv/9Ctf5uzZs3z82Se5ePZn+KV/+qu8d3+f6eSIPPTIlMO7BcdHuyxu30F2znLu2hXGVy/x/Cc+wduTE+74mvl8snKQw7IEzKqFG7FAAkEiAYOMzyBZ1pSUEBYPHhBmc/wilYGKUZgfHmJnM7KiwNY1pdLUEqnEIVHQqinrJRrf1mQBREeCIQm1OsP0RlTDGucqMjEMiz6zasr+/h4RRdEbYL2nrheoUqGmhnfv7yKiyKdzdmczirzHeCsytIpeBFclwTcvA3Yy5fOFol9YDlC8VPsfNKI6dOjimS6eoYtnunjm9xvPyDID1I8eG9s7DMbj5lo+/Hjmw0RaL7p4potnunimi2e6eObDime6Q08dOnT4I4G/9/f+Ht/+9rc/6svo0KFDhw4dOvx7gCqCmIwoislkmgJSCfR7OY9fv8b1SxeZLRYsFiWLckGv6DGZTJiXJVUIGJNB9BRZ1hx4UEkgUAqJAmjQiQAt6xqrYHs8QpTm8KR5P6WYzEveeOvt5NiU1iXYZkKBJb3augPbR5uYWSlZpuZfdwyu/elDaCjQRig4RbI8VBZCJBKj4EPAuRotTUr+CN4FvAsEH8CC+IanVu1hj0RaSxS8dzgJxBCpyxLva2jScLdltHyIGBWIOuKJGBXpqciQyIEPxCJrygc4DJoYY0MsC5lktPXrEaidR0YF2aBPbzRsSGAasiod26Bx+7YV722eMdnf59Zbb7L73ne5/EzOeJTjo2CoElHvIm4Ryc4aNjcLtrb6jLcG3Ns7wOU1IYbEX/hEai45J4nkWY53gdt37mGvXWV4/jxnNsbYgy0mVcX+0R7VbMJw0OP89acJD45wDw6JR3OMWMK8JCwWKWW80o3j8P2kVCIOG6drhBAVlReC9wRXUVaC84qhHjB1ioMFvLFfsXFnggueu4PIZy5ucDYbJFeWBOoYECKWiJXkaG7vz/uIKTKMaNCKEEJy8i1LEiSiWmJTfkE19KgI0rCIEiMSAhI9iogLkdpHnIugA2Xp0BiM0igvxKpMTmhl8KIJ0afXkIgSRWYtZbVg7+iQee25fO4C0aexeubMVsqwH+OKD4+yFOQQs0zUkgQNtVRchECUiMkNeWZw2uBiXJG8mOX8WpZlWRL2q/Iuy0ckPd4+RdbSfq+nuF9mR5AkayklKC0oK0kYEdWMh+ZaVSLS0jz0sBRB1kvIpP9Lae4Dhc3Y3BhRB8+g3yPLMspKL1PZr0s7kPp5UZZMc01ZVoQ6oKUZFyEx1VppJKYSHaIaom/pgP4gcndFCKqHHk//W8ml6+tManONJpVVUEpTxeRujL7CYLh06SJ/6X/1F+gZQ6hrvLimNIRO67aKKJ0c81EgNj+n/o9ITNkvYjNWoo4UG2exTz+PURajLL2dHSTrsXf/AXu338BaTZZZTGbwkkhxaS45lasR2m4XFVGmWdObzANLX3Cru67R3M2gg6a320ZrswOgVcpqL5EYfBprKq3TGrA2471Jxa35FG+Pec45ylmJUwrbK3js2kXeuvsm+yeH7N3Z59Ldq9y79w4igZ3tLbTOiGqBjwEfHANlU3s11wCaKM3wlSQKpIxh6TmRJLC3AoC2FnRsyld4Ct2IiG2Wh+WK8sEj57QocHoMrebfSm1o5Zrld2vzdlXGgabt2h5osrA9fLhRVr2zepvW1b9SJNJ+pNFaUy4WuKpisTHC9TQigcxoRoMBu4eHS0EpVdZJGTxC8NSu4vEnrvHME08wGg351je/wfnz29TBM13UfO/1N5g4YTgY0s8LXHBsjkc8fvUqT166RKwWbO7uM9rc5Or1q/R2tnnrxa/z2iuvcuPdu2yNN8j6fcb9AUYZpsM+t1//PuXvfI/3jue8e3LIIgjnL13h0pUr/MxTT/DSt19ka3PElQsX+fk/+TPceOceRf8GD/YPCJJcvvViRnVyRFXtUd95gJ3N2UTYeu4ZxuMheZ43WWZU+rwhEESaUlQxrbGiUBKWBz2izmC8jSKgvIP5jOn+PrGcp7VPK6zNkNqhFjNiOcMEhw9CqTTzzMJQo4xerv0ps0lacEVB0JpMa1CGIIqjqqScT+kVvZTxr5zz4PiIGCL9bE6uhXmoUFpR6Jyyqjk8meK9wyphZ+cs2/MFZ4d9LmSCCnA2KgiRfjXn84MMMs2bQfGdyn3AiO/QIaGLZ7p4potnungG+P3FMz/wJMMPF+PtbXr9furPjyCe0erhK/ow0cUzXTzzH0g807xQF8908cwftnimO/TUoUOHDh06dOjQoUOHDms4ZgD9EVpr6nKOKnpU1Qm37tzhy//q17l4boc8MxS5ZWM0IDPpEMK8qri7d8jRtOKJ61c5e2aLfr+H9wGMTkF8VZHbAXV0VDESCVw/f47ReIO94ylf/a3v4HTG/f09dvcPubN/xLif46LDBQ9G45fHCxKr05oeheTigoYkltaBJsRVCpX0+0cwyD/YSbZ6fowRpQ1GKzKr2RyNkRixWuNE4ULEB4+PHqsMEjUYg1KtOzwF2YJgrE3BvU2iSZYrRuNNTO2wmcGFSF4USVCIHuc9JoNRBltKeGfuCBs50Sg0DqGPMhlamUSi6ES8aAVWa6ZlTbF5jeHZswy2NtDSkMgxgoQladryPJGMfj5gdvIWN17+NlcGE85dfZphZij3j5mrmsFmn+Fmnws7Gd/8xou88OnHOX95m/6VbY6/v0uuDFqDRLekMFGaaBTGGOrZgvliyr3bd/nY49cZnD3L8Nw5XG/I/f17nNx7lVBO6F28Tj4YMNk9pLp9j3hyTI7HHR9Tn0ywJjmQVUhlxrzSif+V2GTKT8JHjOBjoMIRlKawlmHRpxgO+LXvH3J3usfh3LN/4rl2eQMz3uClY8f/+xs3+c9fuMpf/OyQrVGfcU8jBAKOCKnUhwElktzGymAGPXTVuN+DpwyrNOlKJcEihtTuWhkCjtAIDV4UmOROjsEhoaaMsHCReenoK0et52SAIbKY13hXUaiQiHLnMUDUihChms4JswXT2YyDyZTvvP4qf/pnfobDyZTd/UMuzI743NPPYERR154QHErp9pxOw94uVQIS1amXZ3VKIjURJ5EYIxZLUWRoqwkS0UFIrsc0BlbTb+WgVGvEoywn6jrUGkEpxJAEMJGIjxBEobXQyx2msGAgBtW4NRVGdDM3DBH3iPc9LS7pIGz0+jx59Rq7BwfUs5IFCwJCv9dP7RAiIQomajJU49AOzKsJMXi8qyinJ+S5pUJwAirLUZkj6rB0GUc0prn300UR2qta/9r+dDrngzTt60TAhWUr1yxAIguvyERxNA/4KLgQcVGTmZzBuXOMNFCVSGhVvPTFO59Ez2bcKq0wJiN6T4w+iVrKJAd6lOSWNqCNQZvU3gyHZHlBhqH2AewAbBK0Iqk8jRbNaaRWsECRZWhtCAIhkq7xfeLvSihQbQauqNLctKtsWsZqFAGIoBS9QY+y8pSLBfV8QZYV3Lp7nzfrY+JEcf/pW/zm199ATE5vtI2I8J2vf426dmxsnePdO+/xvW98je3tTXa+8Hm0QAgRFwOVRDIRDIJuRQIJKBEiCq2Sw11JGsf4kPpVm5XAl2WIDrgQKRcLNrPkfE/lG1RDEa+kktiKvupUPoNTX01D0rd7ZiteGtUWAxKCpH967fer11jPNtFmFEmPt+LGUmxf65/1LG8P93USyD2ZzdnZOsvs6Jibr7yJ/dgVPIpez/L804+xszXg4PiYo5MpB4cThr0ela9QFp66dp6/+r/8c3ztW9/hG9/6NkpHfub5P85Xvvp1vvW732UW0j64mM/I8ww7GjIR4bBy7E0X6TNPZnnuqet84vlnAcc//9e/zte+8xLv7B1y4WqPxckxTz71JJ/99Ke5dmaTf/yPfonXXn2Tb3/jt/neGze4dPUiH3/+OXpK8dmnnuSp69d479Y7fOUb3+Li1Sv8lf/0L1E5x939XX7pX/4bvvvqTcTAeLNgOMiZ7x5R33id117/PncvbiHBsZjNMcaQKY0VhQ8QgoAVIIBYkAxkkdbsooDxGIBsdx+1mICf4wjYmMpmCJqoFfV8gUKw1qCsYn50QozCYV7gzySXPxKoY8QLOIEiCjYojFcYq6ldyeTBXd67cxfRkJmSk+kCreD85jZWacRH7hwfMHM1w7zg/NYGz3/hWX735e9x6/597h1P2F/c4ezJjHDhLGeuncOEyE/oinFRcnVDc6jht44rXq40x1XvUQOpQ4clunjmA9DFM10808Uzy7nQxjMf8OHkR4bUfB9NPHPbfHiSeLvKra5q/evqOV08w6nPy8u/6+KZP7zxzCPRxTNdPPPRxzPdoacOHTp06NChQ4cOHTp0WMNUNHUEfOD4ZIHz0LMDdNC8d+c9Xn7rjURsIhitUoYXrTBKYYHKg8TA1uYGKEWWZ0jj9kUrlFVoB4XRjDeGbJ87y2tv3eJ7r9/gu6+9gS0K9vf3OTmZMBoNIDiiJPedUsm1q1RKHy4ihBAxSjdlphKWLmTS36iG+I4Sl+SROmX1+n00jEoHLoIPiDFobVBKkec9YgiYhkTJMkuW2URaA8ZojNaoJs31w2xNTEY/tNZYa7HWYGJEG40PAZvZdC9RWNRlOmCBUBCZ+5qJ7lNpixWNL2tiDMkxJ0JwJVYZptM5Ve2w/T5bZ86iUOzfvcuo6JGZeco8I6cpU01y5rpFzZlzl/jCT/0cL33tV3j7tV0uX91h+8pjfO1X/jVZv8+5S2f47Jee59nHztC/uEkUOLhxh4OTnOefv8rmmTOU9Yx86apLjkYPRAlsbYz49PPPkucWX5XUiwUxBs6MxtybHVFOd6nPbOJ6kSqLlLqi5ojIjF6hGPQKxCi0qCYdumAFkrcwHSiJGLREChMZ5ppxv8fZ4YBxbhkZzZax3Dl2fOvWhIkXnrq0zU694JmLW1S18K3vvUMVC1yI6BjYLAouDIaQWXJrsCFQaYWzCptpil6WKHSlkkiUF8ndGNKhoKVh3yTvptEGrTRaJ2Oy8gFfB4L2SAhkSqPQxCiEKBSDnP7mmKxXYPKMnh4xn0AMkWqxwJCEkkQhJurueDpnVle4KASjeff+XeZVxbwuqaqcauHI8gKxGWhpSrCtTQFOTxVBQCuiUhzO5+zv7xPmc3KryYucoldgrSU+dISndVZ/YNmV5o2Wjsv3PU9S9idFcutGhZeARE1uMzZHY3p9TTAV3giSWQRBa5taoyVfUY84WNVeggJrmMwXvH7jLcRoFlWFCxERKKxFGhdikDSJgwg6y9jc2uZMP3ByeEIgEa+FzdBKE4JQVg6FTYIFHi1gWx2zbdf1wyG/1/q0riesP4Ze/q1CN+Q0FCYRwUE0oRE2mU6pteDrkhhYmt4bWbX5vsmy4COxnKAyA9YQ0dgQCY01WnRKVY+PKOUwWtMvp0hdEWNAKcV8saCuaojSENat4LQSJ5BEqkeBqvb4IAh6KWLSkNKJfX9Eu0g7dlJWjlNlC7wj1AtClcSmunKUZUVZO8x4m//8f/2fcZ8+tyaOX/0Xv0q1OE5lNjA8uLfL3bvv8skXPs+f+oU/g+4NuH3jJbyrOT45Zu/okExFQoAQSC7S2GQ8UCnTl9JhWUoDafpHAaZ9rBF5kValw9WOycmUczGma9F65fwWWWYJ0Y+g4teHSLtXnmoyrZo6KvJo3a8dD78fLX3thVsBgQ+Y60tZXymsNYxHfX7tG1/nzdt7aIE//twV3vjeS1y6fpWzWyM+85nn+fa3I9cuXiLPNbP5CS/ffI/J0YSt0Yhf+Lk/yT/48r/k5s13yY3mP/vFP83/8Cv/gvuHUzbOXOKPf/xjPP74da5cvsT58+fYPnOWrDcAEZzzHBwecXZQcObaNUx/yLvf/Cr/9Nd/g5t7e/TGPWJdcXJ0xNG9uyweu8blTzzHs888w+7uPvd399gwIEeHvPnbv8t733+N3/m3X+fdt28ynZxQliX/l//rf83Hnn6an/3ST/JTP/nH+H/+nf+S/+6XfpmvfO23+M73XmZf1Zwb97G9QDWv2dvbT475GFJ5J2OToz44xFeYtr6I8qQdz6C3NrF5D5nPuHvjBrkSNgcDtsYbTKcTrl+9jjaKWTnj9p33OHfpPMpYaufxIrzwyc+yYwyXFlPU7EHKHhDT4U4RvRR/lEpiQ3Apu8BoOOSzzz2PSMTVjrosGQwGFEWRhHvn2Njso/McqzRWBB1LPvPJZ/nkx58jOMG7MmUoUIFYT1mEkpPFBFNXFOMRX759wP6gwOZ9fnLQUfodfjC6eOYD0MUzXTzTxTPvj2d+X5Pnh42PJp5xITzyuT+aO1y7tC6e6eKZLp7p4pkunvmRxzNdhNShQ4cOHTp06NChQ4cOa+j3Cob9AcH5hgSMaK3Jcku/l3E0D0uCPcRE4IikdMwxRrJigNYWEQgxkmcZzjlijBhjEBXRWsiNYTjocTQvefXmbV564ya7h8cU/ZzauRQYG42rU7kEETmVjn1JJ8nSi7UmFKilk1NE0sGEmA4nWGsbxkQlsrZ9sYfIj0cdyFBNOnVpD2xIm4a54XSMxppE9r7Py9i+R2wIOGkc0gKQykuoVrCQFaEVBYyGxuiLF8GKMFKR2jlOUMyiInOBWE5wMeBjul/laxSK48mEyXzO+YsXMVlOuVhwvLdPz2ZYo9EpKgfdOhMTGagk4usaa3POX7rOs5/9E0zufIfb9+cs5D4HdUY1V1RZZGOnppdZTk5qjqeOB/dLti8+z+bOBXr9IcHXqLzNZdP2UbrXzGg2BjnWNERmjGQqlVGwymPEoZ1nsneIGo/In34C+bHPU02OGH3sOYaXLiBO0EoTSaUw2neRpdMvkRubowEXz2yitGK7V1AMcqIRxFdc3yp4dbdiNgssQmBeeW6+9wCL4hMXx3z28pCe8swXNbm1nNvcJFiNtQodAiUGraBfZKl8mfdopcEasl5B0ctS+YXYDAK1ynmkU70TMqubMVumcSSgYnJQa5JjUluDyQ1VjLi6Jhc4s7mBthlizKn07C0pGVFEnQQLbQ1iLRIim70BZwcbXD57lr3JCYva4WPkycsXUFrT5hxanyLrHskIeIEqRiofER/RITldWzZXSSPMqbU5+yjScI0Uf1SmgtNco6x9r1plEGMtvX4fY0uQdECpHdfJwZ5KbLTk92k0x7Ga60UlF/10MUdnqQRKM+1xPoAERJJgKiq5TH2M/3/2/ivItiw/78R+y2xzbNqbN/P6W961t0Cj0Q3THIgA6EQ3jBgOhggNRxPBUMyE5k2j0TyMXiSK0ogREzNDUg8SNRSDCloQhGUD6EYbVPsuX7euzWvSnzxu772cHtbeJ/PeqmqAFLpqAO6vO+tmHrf3Wnuttc//+9b3/2OdI88yJgJECGipEMEu+s75KFyFUPufQ1isqaEpTVGn+2/O8jTtu+i70JRMqPtCNL0hFn0jQjPCQs07BzIVO9L5SOwHIDhPIK7h3tdTqL5mizIgIpLdpiyY39uju7ZKujwkIPEaUBqUIviAKwqEDygBQfiohjYzX4Cz8Z4Qp0GktZtSLvXUWJDdRVkhxJTKWKRU9TWo10gRyyqEmnBviOxHNeC6mxYvUBKUCIjgKIuK/b0jiqLAI+msD3jmwx/hie4ST47mHN28Rd5NmM4L7u/s89rLr7B1/gLnL15mMFxh//CQQW/IdDJmcjzm4GjEoJtDCFjrCbmoiVyxcCs3/1tkG2hczDLO+Th2Y1nIIB0IiXUeM5vjrYsigRAEX7f9VHmFUF+rh0U9sehTOOWIbq5rOP3a+l53MrsenpvvNHVOjvKQmPDoPH/b2xYbG+OzSgjGheHN+3sYY3j6wgq+9JyTGcvDFR6/coV/8ktfRGrJYNBhZaXP1uYWzz/+BKv9Ad7DS6+8xdbmGS5fOs+DSYHodPn08x/i8ccf58LmBnmWkKYaJSSjw0PgGCcClXccj6c8deWDLA0HzMuCr33lRW49OKB0nk6nQ6IV3d6AWWm4fnub5MVvcP3OLSyWpdU+RTEjTTRKeqrKsL+7R5YIZL9DN0uwQXH79g6/8Zu/xZ1bN/mz/8s/xY9/+hOsLS2xtTLkl/7VP2ffzklUitYa5QMigAtx7YibE+L4IMRxATGDBgCdHlJnBOsQVckHH7sIaUJZlMyOp+igqKoKFzyzomBtdYOPf+pHODg+5nuvvIrXKR/8xKd5cnWJC9MR6S//I4IJMeOBkHh3ModPX0slFSJNsdMZWipSKUk6HbRS0fVP/P7W0SmyyTDhPMYapEpIVdxIUUkVv895h/GOKoCSklQIMhd4TKU81s0pk5RD8/soVi3+nUcbz0S08Uwbz7TxzO8fz7x/eO/jGe897xXCqfa18Uwbz7TxTBvPtPHMDz+eaTc9tWjRosV7gNu3b3P37l3OnTv3Qz2OlJInn3ySa9euMR6Pf6jHatGiRYsWLf64YqmfM8xzSiqUrGkGIUgSxXDQYTTO4gtFzPASanIjeIczFYPhkLzTQaskxrFE93LwPtZbx0diWiuSNOP69n1efvMGr12/w3g6J7UlBI9ONC4InLXRZRfqePgRYjIS94u/6n9PE4jxcSEkeuEke3uWmXdPU/3Iq2Qkcz2NLzQsNngIIVBC1iRV4KGTOEXiNWRVCE3phShkRIIsEnWijvmDhyACQsQjWhfoEBgKj7WWYy+YeugaRzUZUziLaQQRF91U0+mMyhjOnT+P857peIK3lmzpDErG9O6idm+fjv4lgcpaVJrQG6zw1Ad/lK/v77BzdINpsY/vnaUoMo5Kzd37huWuYjpyHE5gb9rjmWeeoz9cRSuNrcpHNrXEa+frUhSpEqSJilZCa9ChTg0uPYkICOPY395lpd+n88xTpH8S5O4+veefJV1bpRhPgWbzSDjp8FrECjVJ1unkrPS7BFORJwmkikqAqUqeOpPz2r5h5ktmZcW09DzYO2Q1V3z68jIvbKRkouKoMEgh6GYdrAapI/kMCucsSSJwvkJ6F8l/pVBJQq/bxzuHczY6BmsSHoip/F0gS6LoVFZEF5yPBLdzsQyJkAqhFCJRFM5gjSExjrWVFaRS8VgN0UItPgiJC4G5s9jgo+qkNYnSrHT6LHUHnD9zlm9fu8b27g5lVfHYuQ2EEkgv4iA8NY6DaGSCWNLCEnBAkAofRCRGazIed0IwNbPh3QjEh+biO0zHd31983IR0+TrRIOIzn5Rpz731MSyc+DsyTnwyKEeOsk4z621SCEQUtfXDJy3RNd5HMyh2QDmHEVZomUHLUUUvpSK/VCLVdYLrK/ll8BizIb6c8Lpk6MhzBtRNCxI9LjO1UJBrRKcuFAD0Q39qLwTSHVNMNdrTaO2ns4ocbpXmn6XSuFDoJzMGG3fJ+316KZZTUp7ghIECdJBkALpm0acNETW5LOzFu/cwjkrw4nIW8/WWjyAsqxwzuGcR0oVxYNaB14IKKEp+iFO2tMIXKdZ7fo9SgmUFMjgqYqCw4MDKmNRWYdE5axtnaO3us6FouL4Ux8lHQzZ3j3gO6+9ge7kXHnyKVbPbDKbluzcfcAg7+GLktl4ysHhEVqvRXGu8oSMUzrWiShAOGlH85gQMs6XOmG/UALnYzkh5zymLGvBUCIJMSNAkKcE3loc5FSbT2bK24d53SGhJnKDDwTFyQkDonGeN/eteu1+FM3Qe/SphTv6XdGsgvE4Bsm98YzRZML1vQPSwrBZeJZlxuUrl6kI7OwfoacFTw6XObtxjg89cYXVfo/vvH4NY+Dq40/y5DNP8M3XrnHm6hN86vOf50Mf/ADWVGzfucWD/T2ODg7Y2d5h2BuQdTN0nqCl5uzGGfIkYff+Pb70tW9xPLeoTkKnk5GKBN1ZwgjF3b0DZmXB6OiA5aUeS/2cN9+6iTGONBUkOiVNElZXz6DrsZnly3zvpdf4/kuv8u1vf4O0l/If/ge/yOc//QkurC/x0re+yuvb99BpYNBL6dSbA7yIa5GUdQaBEGIWFCFimVFCXCS6OQRBKCtSb/jMpz7NsXNce+smOzv7DNGMJ2MqayjKkouXrvL4U8+Q7ezw8s07qKzLyuYWF7c2eKIYU0pFk0FCCrH4LnZ6FAkiD6O05vB4TCfLyLKULEujsGXt4rUqiDrjRlzHrHNQRAFBAZUzBCnAO7yP61mqElJhkc7z0U6O7ubclQlfdn/4IkGLP15o45kfhDaeaeOZNp45Hc+8p3jncOb/r3jmXY/xDvGM1AlKJzhr/rBb9rZTqKoSXZd0a+OZNp5p45k2nmnjmR9+PNNuemrRokWL9wC/+Iu/yF/6S3+Jf/AP/sEP9ThpmvKtb32Lv/AX/gL/6B/9ox/qsVq0aNGiRYs/rtha6dElbljoZgliUmKdw3qHSgRSQWVt7QSO5EV0IHs8oHVClmVknYw0S6iKAiwIoqvGB0ev20OohINxxT/85/+Kl964zuHxlF5/QEb9uQGs8TjvAI+QJxTHYsOFAKWjkzFyZjXhWpNEDZkx6Pfpdrt0u10ODg6YTKaUJpJwwCli+WEsiI2a8A9Ed6Un1DZLgSPEvwk4Y6lMhbUW7T0yULspa1ealAglESJuEqFO641UkeBFxMDf+4U7M55aPLIPHusCWfCsCY+wlmMvmaHwCGbTKaUzBCkRShGAeTFHJYrNzS102uWVb3yNQSfl8pXLJDoSS2FBKzUE4UlvKBUJuLKYI1XG5qWPsXv3DAcPbvPEx55k/dxVZqMp26+9wWg2RWUdhlfO8OTmFdbOrjGfjCjns9qdG/vO1+Sm9zCbz5gLDdawNhhSjccc2yiYSDEnEwajoAqS7Zeu8cxTT3Du8auc+ZkfxwvHgxt32d3ZYfb6DS5cPU8/S5FCUVpbt6dxXUZS4mg05da9Pa7fu09Ha55ZusDxYMgkh4urgg+fS/Cu4hu3RnQHS/zE02u8sJGxpUqKwx3koEMQilk55+bdbZzWqFShEEDKeD6m6iicO8sgzwg2ZkGypiIYE4nR2mEbXF3WBHD1PDI2EptBBLI8I/UVWkQ3v0pSgpAYHwgaHDCdFxAq5mcqEAKlYkmR5noqopN0Op/zvddepjvokw8GpKmm2+ngXWA8nlEtO45Nxc29HY6PjvjZT34SqfTiWhHi8cJilIQFce0DIBN6/SXKLCf46HaXgPMukkR/AD7nIeEuvDMR+fAoffQJgQuOoiqoyhLhQhRZXE2yO4cIDrmYsY+e1olAFji5NkLEcgJSBIRSyESjSMFXeGux1hAIKKXBBaZHI8YDyWA4IBWB/ckhlDJmjEBSWqgsBKLoA/V6IJoNTwGJQIs69Xq9njVtXLhJacSbBVv+UL+IZt2o3ZMSUAISIehkCZmWaAEShxB1qQUhQUTSrrkeTT8pnSCcZ3pnj+Obd1h9+gnyrQ1ya5jt3Ge2/QB/PKXfHaDPbeDqfms6NZGSRCm8dRTzOaZy4D2JjOeh6vVaSVWvD/XxPYvftZQkSYIQAuccIXiUlrH0Qgi4Ryy+jUTSpK5vrncs7RAiGWmquEkv8vbMpsfcfP0Nhks7DHLNn/jRj/Pll9/keDZl5hw//Wd+FhFS9nf2efPlt+ilmp6XmCCZTufs7x+wvLpKomL5FhscXqrYvhDXwIaHf1iUah509UN1Jg6tFpJHI03HspHg66wjQcmFsPVw69/+6zv8SZONI2bsiOtPcz8ViJqcfvu8Ewvy2OODe7v4/gPFgcXB49xCgA1USHyny/Fszu+8dp2bN+7y0TuH/PgnPsgv/Id/hv/mf/+f8/d/8xt89Y1trjHk/GAFnw+puin6wib/1X/5X+MTzU5VcnCc8pmPPseRVvzzV97imy9f43e/8nVm927hR3tgS37iUz/Ck+c2ePrCFj/9mY9wZvMcRzeu8fpXv8IXv/MSZzY2UFqSaAFJhjy7Qac3YG15hR/74Ac4nwnW84RQzvnHv/Hb/LPf+B3m0wq1ofjohz7AT37sBYb9DK0Fed7hxpsv8MUXv82/fvFb/M3/2/+Db37zTf7aL/xl/tKf/zk+9PRT/Lm/9p/w+o3bHI7GDJaG2BAWYxgR11vjApXxWEBLjdAJ1KJ3sbtHrjQbm2f5mT/7Z/jtr36Nt25tczyb0B0uUxRTyqqiKgzXb9zit778ZdbObvKZz36WUWn5u3/37zGcjflkV/OfpJ40TQjBU3mPVgJjHMFB8CIKsbVg6Z2jtIYk1SjvCNbgvEcrHdfQAMbHTAaIKNxWDmSII9sGRwVIJCmCnIRNITm0CZU1HHh4rANvzB2vkvIrqsvf/AOMrhb/7qKNZ07QxjNtPNPGMz84nnnXnUg/BLx9lD6Cf4t45pEP+IHxzJmLV5iODtm5+dYPp4ENQuDe9bfYvHCJwXCpjWfaeKaNZ9p4po1n3oN4pt301KJFixYtWrRo0aJFixan0B8OsMZSzgrwEiESgnNYA0VhQGZ1wOfxNfnWBLBKKsbjMaaqkATSRBOsiuSd9ZRFBSkMVMq8sHz1m9/ni195kdlsjkoSsiwn6Q8Aj7cO6zzeu1Nm3R9ASDbkRPPPgnMRWOcoy5LgPbYyQKhJeTihkd4dov4cHzyVNYgQSSYXKxYQYhUDKmOYFwXGWlLic0LJ2gErHzqOEAKlNQGxcKCnaRr7lgA+EGTstyzRdDsZxbzClCWUJd2eJUs0HhkJqESDEgTrIASUkGitmc9mdIfLrG2u8corbzLa20evDBFSIJMEoeL1IdSkr/AE4fEiEqxCgZABW5V8/Sv/ioO9uywtn+GZj3yMq8+9QDWfsdRf59xjz3L9pe+zvf0684M9vMxYXl+v00G7KPYEjQ8hjp0QkDKm7u/3Uvp5B+3AzQoK67HBsrws6CSekAlcppjPp+we76G2A2E+4ng2Zbh1icHSKuMHR9x8402eeOEZBkvL+HlFOSuIhcQESkTn8rQMHM5gb67Z6IL2hjRYQsiYTzwfWc94ajnnk4+d5Tdf22MjtSxJjzRznE4QQqGQSK2xMsEgUV6hgwApqBxULmCtw87m2AAhzUnSJA4If0JEN8RJCLH0hpIKVTtWhYylCEprcMZgQmBeVsy0p7KSNO3RHwxJ9ISqsnS6Xby0eCWw3uJwgCJYj/CB1bVVkn6XKnjcdIqsHC5JePnufe7c2+GD42MKZzmzvMaFMxv0V9cQ8xLnHdY55lV1MtUQxCxHkTyUAcrCcHBwQGoqVod9Bv0+Qku8BCsiAyysX8zJOGXDoh/eeUq/s6PyZBWoszIQ8N7UEzF2s1YSrRN0UGid4iUEKxAOpPORTH4XhEf/CgEZqClmGcVJSXTuyjo7U+1a1EqjRcLO/Xv0Bz1UcGTdjPl8BM7Xpe00VbCARAkZyVV1Mi4ak2Oqk3o81NkhRN3m5t86z4Mk4KOydLIJLXhkiO+xMaUEWjmkjCRzpiFPJVkCaiE6nC7+4eprUJ9SolH9FaQ2yNmM2VvXGX9zhWzvkMOvvETx7e8Tbt3AHxwySQc8+d//78ievIoY9qkmc7r1hykCeZaSao0IFm8NMf9ViGKBkkilsMbEPiGWFXLGLsabbjJy1KKIUjX97zzBu4V0cnqM1L/GvvOxFIYXYnEfSHWCkgqddwijbeY7t3n9zRu8dP0Be9vbvLFzH6sEw5UlPveZT3H35h4pgUzB5kqPMrVsy5I7eyV7u3tcvHwFnSeEIChNRTfLQMZjRQH4RMw4cW7HtfHUMIgZR1yIpZd8FL4rY+lkOYmQVMaCSuvMFvUIrYn7+sYce6AWKGIJI4EQYaE3Ge+akY1QcSxHgUIs7lPO1tkcAosxvxirWpNkKSEEirKIIrcQSClQSnK61sRpsju+X4CI5XGUkjiR8dat29zeucverGRj7SrPf+Yqo9E+X3njDc7/y9/kR378U/y0z1nZusXN+7v86Ide4LXRlN/a3uetnWP+4pNrLKdDUtFhLBP+4YuvUQaPF5BkORc+9+OIeYmdjNm7e4d7wvKRjS2ef+EDPP3xHyWZ7/O1r/4u/+xf/SaHSrKSalTtCp6VU8ob1+gvrdKts9n1hkskKiC157OfeJ7X33yDGzv73Dvc47e/8S2cKXni/Fm2VvpUkyNKG1gednnuyceZG8+L33yRBw9u869/49f4m//1f8Xf+i//C/6nf/xP+Yf/4l9yWGbkUuJdFQWxFUWQEqlTkrxLx8xJ+gNC0sWrlDDdJ3FzEt2lrCr+5t/+H7l/9w7FdMLG6jLWGVxZ0OvkbG5tsHJ2g05X8oHnn+CnfvoLfPXLX+V7X/4tZodH3JtIqrN9vIwlvKQEqQRU9cIg6utbX0wpBMsry2jRZGgAhUARy48YZ9nf22O5NyDLMtCqvva1oBkcUsQyHQpPiudcR3DkCyye7tKQrJ8y2j3GZSnPPv7cO67fLVo0aOOZt6ONZ9p4po1n3jme+YNsafjDxvsaz/j3bpNXpjS5Ttp4po1n2nimjWfaeOY9iGfaTU8tWrRo0aJFixYtWrRocQqCQFkZCmNwCIz3BATWw7So6o0KoiZsxMKUR4iPed8USoiuOEU0ESOIQa5QjMcTpnNDnmo+9bEPc29nl8msQKoEj8RZhzUO4TzSh/qz1QnzXztp6oTZDReySI1+2mwWCFTG4KxjzjySQ/VmimZTxTvRfm/bbFETHT7UTujahSZqi2VodirImJpbSomSekHYnP68ALAoG8EJYSIFPjSHir/4YAnElMxKQFWTyjmBjqsoQ6BC1O7HeF4hBJwx4C1Zp4NKUorSsH3zJjI4tBSRdJMCcUq7iNxNQxLKms+uU7NLga3mDNQxurIcPOhx4bGnSPI+RVFycOcWB7e/S08eEaxnvL3HmyJw/sJFsizH26omqqIAgg8kWpFlKVJJqqqM7ntAWYuZjQn9fiTP8UjnEAiMd1S2IswK3MEh6eo5OmkXt7bOYXXI/OgAWZYomaGyPKb+r5lOJ3xdWqMmFmXT1kiyWguZ9vRTxcU051w/oScl0guclAipkErHay4j0SWFRKEi/09znQXWWIxziIb4dw5rfXQQusaXKwBfp2KndpHKmCbb+uikr8dTEBJjHdZFF7ySkk63Q2k8QhR4Z/HO4rxDhcWsiGMc6HW6rPSHjCZj5vM5KMV4XnE8mzMp5yR5xvFoTpomLPV7TGYzJgeHeAEyUfR0Ht2TxPHffL4MoIUk0/FYxjnmlaFyhqc+8BQ7ImAyxfHdPRKl45h7tzn2b4jo5o1laRqCFMCFptSBiwSzFbWa56AWqBYawTudgjj9a0OIRudntId7jIjEdvCuJrlEzHQgBZ1+hzSUzGczQlVCYdAqifPdWyprcESyVSmJCHFuIxti2NfHjtfOh3BySrWDNBK5IEMtFTQ8bGhctyfiZ1NYsJnqLkRXsAw+LlkiHrzpwYAHH8e21AqVapw3VLs7VHf3cN9+ncG33mR29wHbg5zZ9ftw9wFyNCE4cOcHkKh4rUOoSXFoxrpE0ut1yUqP1ILgPLJ2YyOI2QPiidQI9Vod10Vbj3NflymRCIIUiNqFHYJnIf6KxZFpfL4hEN2/QeClIkhBmiWIJCPJuxyNRvjZMUcHBW/evM23vv4Vti6eYWV9mfWlDhsry4zuH3JkSqqjI9JuRqoky52UUZ4yOjpm/+AIPwx0lUIgY+nCWhQUIizum7HkRQBcU8XjhEgPJ68jxLULKZhP53TyDolS5GmKdxYZFFKo2gEe6uXp5IrWeTdo6gzFKy5RJEDACQ8q3tMTIUmVQguB9I47N28wmczwPpDnnUW1xsoGpqXh4OiIM+trbKyvcv7sOjiDlHVpCylxxtZrWzz/JEmRsskE4vHe4J0heI9zhq3NDbYOjrBHE6xMEHnCbCy5czzji7/3Ch98/hmeOLNMB8+Km/HqS9/ja/fHXJuW6GHC3cN97u/uMyo9ncoyqgKdJCXJE/JMsT+p8EGQdfu88NSTfHSty48+8yRPP/EYia945Zvf5tXXr3PnYIJOO/EOEWIeAhEElCXF4SE71vF7X5XcWemTCodwhrIoKJxBKhDOczwd88qde+yNx/RTxejBbaxXFAampUVLSDLNg91dvvSV3+O/++//Dj/7U5/lUy88w/3t2/zq176LOHMW3emQKgFZTmEqyqrCW4/UOU4l8fuVq6Aq473IO2aTKce3bmGLGYJAlmVYK7GVIev02Njc5IlnnqbyjrW1Fc6ur5GnAiVCvS40ZSbiPBJBErypv7/UJWWEIIi4dshQC1GCej2O73POx/nnPUkS7wE++IVYFnyTgULF7HZSxU0SwTGUhg3lMXjGBl46KEmX1jjTXyELJ8J1ixbvhDaead7bxjNtPNPGM79fPPP7bRj8w8SjW6zej3gmePdDaNm7QxDaeKaNZ9p4po1n2njmPYhn2k1PLVq0aNGiRYsWLVq0aHEK3lpKISisxQLGOaSUOB+YlQbvav+crNN21wI9De9Zs1XeB7wNyBBrty/IWQRHozGzomJlacAXPvcZ3rhxi+2dPY6PZ0yLitlkjDWeYCqwviYcRNQIwuJAQEMFndiuTp4JC4LIWktVu6yV1jH4FTGV8cLh9fuQnYE6AG4IXVgIJsH7SIJIgdSRSJZSR9JmcaI1eXVKkQi1Czqm4I4E8iIlN/FYnppY9gG8p6qfS0UgNwVl8JRS4JQmMnuS4HwttFhW1zewQnN4OOLenW2WVEzJbo1BCeq+ZSHsxE6MpQm8IBLOUi3KfCypQFnssX97xoOLL7B2/jKjw31uvfwixf73OX82wVnD7l7BtXHJYDBgdX0DrVKEcDXhFfDOk2iFUrG8V2lLRKLjOZUl7uAQ1nKis9kjvCNLcqSKLk/hQZcVZncfNXCsLy+BTJjd3aYo7tLtrzJ89ll8ESA4Qk2ESRnQCjItEDKSdx5Axh4wPiBlYJAJLiyn9JMo0Hip0VqjtIpkZF2eRCHQUqAQdWpuiRJgraPygaAimeKMwehIMjfXuhEJGpGCIPB13xvjogAhVZ1RKM41HyIxLgMkSUqaVtjKYqsCb0pC6lA08y6OuUAg0wmby6t4Y5kXFUFpirJCBhjmOavDIYfHhyRak+qEuzs7HOzvQaLIe10eW+2g4ZSjWDaDGCUE3VShtaZ0nvGsYFoWPP2hZ5j2MuYYfuetbVQ3usobga5JMU89l94tlfw7ZntqXisCIcia0GKRctxah3M2ukqNjxkKmvc9pMy9HeLUbyGckPKEWH4AbwgBnKh9xD4S1d57kJB3c/qqz+GDXYrJDMqCgZKAj5uejCGIFKmiMzc4onO/Xg+8aESB8FC/xLlTz9V6vNTTqZ634VQDmlVx4R1v3owN8bXCe6Q/EQYbUjkEj6j7VCIR3mEO9hlfv8vs5euYr36X5VfvcPz6lOPUIrQiVZKw3EUOVhl86HnU8iAKpsbF9O+nV2ZLLHWSVSitIncsBUJGZ7CzscyfOP02EZvriQ5L62IGCHlKaT2R/FgQlM3KFh76qChgN4ZdrwRZnqDSHJ3mWLOLmR4zPZqwv7/H7uEen/vRZzhz9gzZYInl4ZA803hXMhsdoc+eRaeaXpbSy1Im4wm7ewdooegOhygpQcg6l0DdqPoaSy/qMcxC/ObR8d48J0AkkmI6o8o7JFmCCh5hJ0h0FDFFXIkEqi55EfstrgY+ik5C4ILAegU+ReLwKooQUcKJGTnijdywffsGh4eTWIoo72LMDOMlpRMcm8D17W0unT/HM49f5uyZdaRzVKXDOM/MOhKZxGskAkIJ8qDQKt6sq8pgTEGmIVUCZ8dc2DzL4+MpIj8CnzCZTplVlmJS8ZX7b/EnX36dp5+6wvqFddLjff7Ol7/G924dsIPmhY8+x97RiMMHB0znhq1LF1haHjIcDOh2Mpw0fGc0BSFY7nX45GNb/IknL/PYuU1Wuh12b13n2y9+h5vbu0y9JE0yQijrUkZRnNUhYGYTDiZjXty9R54mUUDEkWpNcPH6JUrgreH23gH3jkYEZzi8d4eyCuRZh07eQRHorywxHk+5eX+X//Z/+Ht87PmnuLK1yec++XF+6be/jukOSYZD0iyWZSjqTRw2CMh6OKHAGTAVwhikUHjnmM8m2FKRJholVZ1VQCJ0hc46dPtLrK9vcDSdoKSiKgsqUyIEaK3IdIKi+Z4Sr5dz/qGNIgGBQyKDjHPKWkISqXYhBcHHEqeB6KrvdbtIoeJmDudrU3zAC4kSGi3rDQ9CEkKgIwxntOBQCG5PSx6MSz549hyr/R7FaPdd1/AWLaCNZ94NP6x4ZvGdpY1n2njmj2I8815CnMQ271s880geoR8qgo/X7/eNZ+ozbuOZNp5p45k2nmnjmX9rtJueWrRo0aJFixYtWrRo0eIUymJORcA6hyem5U+ExguPsdFZGCA6f7XCuhBdLDWB44yhMhXW2sh/LsjUWBLKGcd0XlAYR6fTYWP5DJcuXcYEmEzmfPt7r/Dqq69z69Ytdnd3yIUjz1OUTqLjUYATGhCoUBMZUG8YEKf+bloUSXCpJFJHYjM07tz41+J/74aHCCYpazEiLMhu6yO5k+pY0kLrBITCOhcdRoTanRvq/4v6J56LCz4KGcbgou+aEKK7SYr4GlvZOqVyPG5CQJk58yCodI7o9qKrXARQ0ZU4nU/Y6A0ZjSbcuH2PynhINM4HyqIgTSLxLaWqhQkBPpYmEHhMCEiRoDtLJMNl8k6fNZ9CWpDPC37rX/x91rY2yXRJ5vb4937+Q9z+/jWOyzmrK57i4CXefDnl3JUP8PTzH8GWo9qxGklyqSTlvMCi6PeHXHr6ScSDHY62b7P72uusX1omT6NoYRLL1uoGnU5KJjNKmZHlOS/+f/4hqIQP/emf49JP/DRf//Lvcfd730bmOT/3yY/ENOBVgRWRKJV4NA4VHMFJvBUEJ9ECEg1CpahEk6SCD1zqkAIKjw8pQsgoACmPFFGo8SLE18hImzsZ6BBTYE/LioBEWYcxFq1NdC+76OoUp0h8SxyTWkaRYF5EJ3hjlVdSoJWKpUOCx5Yl3hiCdQRrKMdzUjzkDuEiIRNqYjUAOM+zTzzF+voZbu3e5+s3r7Hcydm6chWNYKgkm0tDPIGqKvid732LPE1J04TerMtGf4lB3oEgES66g5vE9QLIlCBPUuZWMJmUTGdz1p96knNmztnba4ssBO+W3ekHPfdOEzKmlK/nCjF3gBIS52FWWKbzEh9s3QEOrDu9KDRLw7uewwkx3zij4+ON4xQR0/ND3PCkpCQ4h7MOLwJr62so5zjyjqPxiMNyTKeTkuZdVAjoJI3kcQhYF5D4uD6Jk9OqE/PXhNmJKFlri3hRZ1J410adrDHUMkHznrIwBA9S1Lkr6vnRENVJJvGlYbK/y4OXv8fub3+N0as38TcfcHb7gIvDs3Q++DHEM1foXVxntjLEri+hNlc5++zjFFJCYQnzikQpkCGW6JCS+WzO4dER88IipKSbZWRpQpMpzC6W8BPKP/ZHJB09/oTgDwFZZ+9wTdaKh4fKwhUdu0GilEZUhlCWhAwSJcm7HbxXmMqg05T7N69z/+Ye/viA/+I//Y/40z/5EQ4nE169s0N/uEQvTdFS4rKEcx/+EPOjPY4qB24PrOPo8IhB3uHscIhUilrjjU5x4vVuBB9/SiBorp5o/iNFHGFSo6REZQnSldy9/hbBFmg54/LGye1MBMBPCEGCUAgp8d5hgokivVRI3eWoTHlwZLl575gnNtfpDfuQZBRBU1h4sLOLFoHLG8t0E0X/3FmOjqe89Nob/N43v4r3kqX1szz1kU/y+AsvMD464q1791l7q4uYT3nzzdu8eese3725zae+8AU6nQwlJSLELwXeBaqi5PjoCFvO+YmPPstjmyuMDw8YHYy5ur7OmaVVDvYPePH3XsQHhXeB/aMD/s9/7//JL/65n+fzP/ZpPvlTP823r93izvyrqP0Rz3UE/aTLgdmnB/z5F67yyU99jF63QyDw4PiIt547YrnT4ezyElcvXQRSDrZv8v2vfZN//E9/CZ8uUXSGDM7Ag6MDvGgyXMhYFiJLkcrijKUqCkaTKDqgFElWf9cJgW6AqiwISUGyvMJg/SyPP/ch9qZT5raK5aP296Go6A3OkjvPvRs3+Pu/9mU+/oFnOHPpMa4+9SSHl58krG2hOl3May9ReYnr9gidLB724BBXzPHFFFXnrYhzwyGswziDkaLO2JKQd/uUxvPmtVvcvH2P/toy87mlKjw7exOCytBJFI8EMmaXCGCcwHvqzBJR2HJexa95onbCn9q4Gjd2REFTBLEo/wlROLA23kekVHFzg5Qn2WVCzMYirEdkA7anE35pb4fzZcnj9/sc7u7yrbuHtGjxg9DGM2/HDzOeacq9tfFMG8/8UYxn3n3W/OGj2az4fsYz7yUWq1Ibz9T98cc3nmnuD20808YzbTzz/sUz7aanFi1atGjRokWLFi1atHgIAuE83lpsWUX3KAIRBFpIbJOFJIAxJr6ljgulkrjgcN7ivY2uNyQyBJQXCBKcEOSdDqWv2B1NGc3mnF1fZWlpwJmza5xd+gRPXbnI62/d4Hd/70Vu33ydaVUiqopUa5IkQ56qYSCCiwLBQh+Iv4hHnJtvL8fAKUfdD6Y6H9qE0JSeEiKmaa9LKggPzoMQ0ckaCNjgSWpLnxBhUTrCeYf3AYckBIck4FxNGtVkYEMISqkRQeBcLNMRvCeRgo7WhBlMSkvV1WRLSzz21NOU3hFCpKHQCaqTMiktaZqgEw1SUJQFR4dHPNPpsLqyQrfTwTmHUvWOCxEQIpDIBOcD97dvsvvNr7K//T2uXPEsry5xRqT0lizj4g5Lgy7nNy/ytS99n1/7tW/TyxN+7FNP8BM//gS/970D9u7fYG3zMqvDhIBdlNTw3mOspb+0zgc/9mkuPvYk93b2KMfHlMeHmGLCdFJSuoBczmPq+KrCIinTnKO9MReef4YkT5jZEd/4+/9v+ssbPPGjn2d88IAX/8E/4txTT7KydZak10cGCUERC4lQ97vFOkMICZ6ADSnBajCWajZlUjoIkjzNEBSIbkrpAsoZOonAColSAhk8wXv6SrCcJyxlKb4mVhI0ad6h2+/gbRQJIAptNH1Rj0QtJcGDSAwHpgIBidZRmBOQJ5pumiFVgtAZ1k8pipKpNSSdJKbYDjV5rKIYZcqS+/fv4aVAZSmdNEMZh53P0YMhSaJ59c51nrt4lZXlVZyAu3s7PHbxEpvDFVbyHt5WeGsW3s6GrPYh4Jr0/Z7oGveeRGlG0znzosAEi04VSqq4Oaieb6czPZ1Mzkco+UdJ+2YeC1GbymvSVYANYKzAOEmWdVBqjnShTrn/8DFYbF76gVP/HcTD0+2XUYzh1HwVilRnZGmHTqdD1csou5rKCVbX1sg7feZeM7k9oSpKvLMQJBaL8rWbVUikAOcD1jucD5HgazIpLATOU5niTumj1I7YuJjElO0+BKwPuBCwzlAWEu+j6JUoIFiCUAQR0EFQSoF1BktgZXOLs3/5zyOEori+ze3/5m8z2thg4z/6kyz9L36c4CsG3U2ClnhvKCcHqLHFyIDTMjqjfewvpRVZJ0XpLLbFgRQujiEf1wTrT9zMDcFY/xKXJykQSHwtsLnKsBBEFpfoRNoN9XVuSEvrbBQn5xnkkizN8UlKYQWusngEdj5F2ZLVXPPJDzzH8nCFceEJQTPZ2yUznuXhEssXLN86uE9WGERvifNXn+D1e7eZjY6YDfqUpsSEDpkLCOVRteM7timev6jF7pMthKEZfPE+GyRVkDgpyXRCpgS7u/eo5gd08zlnrm5EMtpUCFdi57tomSKVJmiN9C6OMymRuoOW6zDPKI4KDnf2sKsZTEFlkGQZh8Zx/8EBKY4Ly33Ob25QWc/e3i7f+e43+d6rr6KEpH//HgfjY372L/4Vtp54nCzRHM8qbr1xm1EF88E6fivhuoFqckxVzCmmUw6PjphOxlRFgSsMSfCc3Vil3+tRzgP/3d/5uwQhGfZ7bK2ukNsKJxROCsJyh2/cukv4J7/Ea29d5z/4i3+Kv/jv//v8zBc+x2R0gLUJg+Eautcl7eQMej3y8ghblVhrWZcpS2srVJMxsxtv8du/9yLfeesur9za5vbBMWV/hYsbZ5lwwHx0xLwyZGnMgCGEJAQfy60QNwzoLIdcLMadTnV0EzuLsxbtoZwdczybU+wdomYlop+j6nmeZF2UzrFKYgl0zBYXnn2OD376k3zkuaf4zE/8GH/zX3yFr3z/Dd549SWWJruQgExTEq04PjpGz2ZgzeJ7TLOCSnHiXg4BgvMEZ2JpocpQjCcYZ7l/7x7XX32DX/9Xv8agv8RkMmFJSzQWpTXBV3gXN2cGgPo7jxISLQT21DKqtK43bJys2VLKOvtLwHkXvzv5eswL0FrHx+rzjpkf4ncrn/f453tHfHH7gO+g+V//yCf5xmiHa5Nj9qv3ITtHiz9iaOOZt/dI8742nmnjmTaeWawT7/E+ICFOxUDvWzzz3sF6T2VtG8/8OxDPxBxLzcm38Uwbz7TxzPsRz7Sbnlq0aNGiRYsWLVq0aNHiFHIdUzd7G1P4PhTsKYVwb0+HvngdsWSV5MQBJoSMrjsfSVRbE+HOe8bTGcuDPBLlwaGEZ9BNuLC1jk4UQQiGy332d3eZHo+oplPKqkRJh1IqloYSD1P84tR/34nfCw+9WLzjy962weKht5zQpCGE6BKqHajzyjCezBj0e6gkRacJi2zlvk5dLqLDMyzEljrFdJLE9viwcB4hFCfpwcUiI4gUgkQKdPBUzmFQkCZ0ez1SHAFJEAqUwgvo5SmDbg7OIEWKtZbpdEJVVnQ6HbIsxTuHErIWV2I65m4n586dbbZvv8X9m69wYWjoDfvkHY13nmBLxocjZuMJ80nJ7t09Hru0yfraMltb5zk8PKacO/LMgxdN9voFlQGg05TuYIhaGlDOq/i5gCNQGcfMapzS9HurzIuC2XzO8nCJzQsXcatryCwhyRLSpWXuv/EaruqD8JjKkaYWKQWoWuhCLNLrCwEyeAge5wOFhZ0CTHCxLIe12LllNjf4IOh1AypxBCVxEIUvwAliGnXvESEKOLmSJAKk0iCjKBHqy9i4b0+7cGXdG5LoHkMIpHTRiS0VQip8LRQ553HOUpYGlXVJe5a0skg3QWgBShBkLOURidF6HIv42WVZMi5msVyCEMyqilCWzKuKeVHSNRVeK4w1SKCTpAzyDtO5W9CuTfmQZt4oIciThETqKL80YzRN6eQ53U73xNVciwtCxHIctSZVzye/mJMPzcdTc/WheSlOZrtQ0bVXVobpZF6Xh6gJ1+b1p9zOize+y9w/fazTjzUZq5oTC+Hk8Zh5QVAWFaORxRqDEIIk0ST9DjrRMUW646SMQQhIGUnjpl/kYl0KBCFB1cR4nSLd1Y7C2DZO3O+neiyc6tfonm7IwvoqnuisSER05taNcULijCfpdMl0gi0qptMJg811ejYgrECgkVlOZSpu/Nq/Zrm7xODqVTrnN1FLPahmC9e/l/G6N2MnyTRByFgyyDlE3DlWn7qo08OzWC/EaS2naWvduBBOryfNC091SGj6oyYu67Hr62vmfcAEUIMlMjShMJj79wlAlib0u5pZYdgfGyoyuoMz2HmJ1oq820HnKd/47ndYSTusdDoMUo13jvFoxEGesz/ss7m2hEjlQrgRzbys+73OSUEkdutxdTICCELE+yYSUZfPcaYguJJUeTIV8Bh8KBFhDpj4ua4ieBFL7gSLIEFpQXdpBT0OSOGQUqPTFKkVQQrK4HjrxlvsPrjPai9HSoFWmqPRIePxMd55zm9dQMq4nhTTMbfeeJPzl66QpSl39nY52D+k6gyYS4lLFDv37+OKkmI2Y3R4yOHRAWVZ4KxDekmuJKPpnInxpHmP2bzAFjPC9JiOLRG95eieFZAJRS+LWUDu7u7zT//lr/Hchz/G5nKHM/0BjgyhFYISM5tx4/4dZgf79Hp9lgYD1paXqbzj5bdu8a2XXuF7124zIuH+uGTkoL/Spetgahxj60izFEkRN2O6mBkmmtXjxgmJjCR4vToKEdBK4aVECIW3DuVj7gtn5+ztbsNxipcqZsqzFhcgSIEkkHvDzevX+GZXUxwf0OvlVA/uIPa20Yf3EBQUlUPNE4RMkPM5whkEce30Pq53TfaExWa6wMl6WC9cMrjopPYBVxiq2ZRqXkCqyVJNv84k432of+qNnrGGQyT6w+n1O1BVFSpN4pEeWTt98BhTLf4WtZvaWYOQEqkkgqT5BgLAYVGRXjjPxa2rpGvnOO4tcX825Y4w6G5GixY/CG0808YzbTzTxjN/4HjmPd34VM/u9zGeeac15YeFgGjjGdp4po1n2nimjWfem3im3fTUokWLP9ZwznH9+nWKoni/T6VFixYtWrRo8UcEWZJAWeKdf4idiQTPiTvoUQRi0KiUqh0zEhECUsnayRfJWet8dMZ6T1EUqOUuSkX/jrcVSktW+jmdfJPBYEhnOOTWrVs8uHeXnbvbHOzcJ9Q11YMkkqEN7fcDCcsFtc+pdxAi4/n7c38NIVmTuEBdQuFEIJkVJUfjMcNBnzTvkqRpdElBY8Km2fShpIglAUQkGZSKwb0Pp5yPi40RkYiuKwMgiOUHkhCdxSYkBCXRWkUBQkqQGus9Wgq6WcKwlxOcQRAFgaIomEwmqKSLVjpu2qgd56Fml/Ms43h0yN69m+zfe5VPP3GVJEtxImCcYXQ04ehoRlEatrePWO51+egLVxguLSFUxms3tgmcpZMPSJV+iMwMxM0jWZ6TdXO8d+zv7mNNTL0dpKK0gkp1EVlK2l2lOjaYoqDX79Mf9BBbmxR7CpVo+ktnCPZ7TA528d4SfMXmhU2SXgcSja8vfagpQilA1gUNfBDMrOTaQYH1Ngo6xkDlKAqPB3JXEbRFpppcKzSx5IMQp+i8EFACEhEJH5lohNCArEWyh8uOhJqYbR5dzKp62p2+HjGBUsyqZKxhNhOItEe+lOCFQk4cQhmCEkQrau3EJ4pQ3W4PtGR6dMDo+BglFChNYS22MnSzLrOiIByPcEpgnUP4WMZENC61xTQQ+OZsRXQNdtKUVOk4/mpBTCtFolOyJpvBQrgQC+FC1J8pAvhwSuKrx34jRIRmktbvjSR43VEigIpzw1SWYjY/mfILle70VBYP8chvn+rvtJBEokwslJeHpUkhBFLFNpZlyWhkUK7CuVj2pNvvISQYZ/GOugxLJIWDFAgv6r+bshYxrTsyOgtlLRJEAcstjntaBFmMLfHw06HO1ND0pZQgVUMk1lkkwolg6ohlF7JeBy0Vh7uHHOw+IF1dJk81YlwiCw+FpXywz/V//CusmCmbn/g065/6JN3PfJiQSrCnXNsN7ScCSarwDqx1WGs5kXlP9esjykA4ac6JiNu87tHrV/8nnOqOZq1urq9QMjrGvacw0OstoZMOzMtYcgdIkoyso9gdzdC7Y0TWpb+0gZuOyHpdOoM5yWHCK9//Phur62ytrbC5ukQApsfHHCjFg16Hxy+cZylPEErSzHJx6uehE68F4eD9aQWkPn8QUtfrhkPLQCdPUAokDu8NwccSG94FQvB4ArlK431OJASRUYoO42rOuPCURqDSLiLv4FWCCZ4H9+9giynJIJbpQCrmVUUAzm1tcfmxJ0F4yqrk8PCY4wc7LPd6VEnKgzt3UVmOTBTSB4yZc3DjPtp6XFUxG41x8wnC23ozgcZaSVEaSg+D4YDlpQFTVyKcYTYek3SHi76RLrC5ssqZlVUq5/nH//I3uHl3j488/xRXLp0j764wKfaYFWPGkxF3tnc4PJpy8fJlHn/sKiur6yAEb93b4YvfeYUvfudVzj71PDbp4NMOAsleUTKvLCWSpeUl5NjG7y3eoUTtYF+IBJCoE/rdhvo7UF26xxNwTVUa4Tg+3kP46CqWUiGUwtcOZk0gs4aXv/sdDu/e5vvfWmVtfZVbb9ykerBLd36EzgSmqHBBIYNGB49UfjHom6I3ofmGU6uFzfedZpYLEUAJpFaI+v5inaeqZiRplyzN6Hcygp/jvK/LQMSNqvg6I4NvysfET/XBM5vP6dSCtKrHrWgUi+Bx1sSMMvX9ASmo6gw8aZaRJqoWzwDvOSoqLj33NKvnHsddfZ5vf/NV9o/2mMqU4SPZb1q0eBRtPPNub2/jmTaeaeOZR+OZ9yoTUpKmCCne93jmvcz8FOrNFW0808YzbTxDG8+08cwPPZ5pNz21aNHijzV2d3d56qmn3rbDv0WLFi1atGjR4t2QCEmwHu98Xc4hwjvLfDaL5QnegUML3lOVFYlW5ElCN8uQCHSiKI0lSEnWienwlTPIRJN1crI8o9fv0ut3IvllLakSZImis9yh98FnefryJR7sH/Hm9Rtcv3aNB/fuMDrYY3x8RK/bQekkEsuPEniLHOknJ7wIWJu/iYLBw2TNO5OEAokipnFujuXxkcAHplXF/vExg8GAJO+ghSAfdNFpGsmA4DHGLBzVAJUxmArKqmA+n8ezEdHJi3cIBMY6KucorCXImjJzDkJgXhhKk+A71KnjDUIniAQm8xlLgyFaaSSSIDRVkCRKoiTcvH4duXEeY0zchNH0VHAQLOV0ynBplfMXzrOc7nPlygW+973XKIsJeerZuX/IYLlPd5BineFnf+anef37L/Hrv/4Vfv3r1/no5/80P/uzP8/5c+eR0uNdFYkr7wkuoLUmTRLK2Yybt95if1pyyVm0VGivqFRGfvYqKsnRcoUzy9C5vEU3T5js3yc/e47h2S2Uk/hZwfzwGmtdjdaaiRN0VlbQ/R4iTfEetI9lA6SMlGUqIM1SRJYzChl//2svs9TtsdxJGSSgtWSt3yPRKQ9Kz8tvbvNTz6Q8cUaTpTmZUlQikjwg8ErivIlp9MuSEGqyRAhkqEuHhJMNP8344x3GoJAS5xyVL/FVycJBLwXSB8p5idc9llYvsHSmYnqjIozuEYwhWBfLrtUihNIJm1ubTF3Fg8mIKniev3iFrJOTJAm9POfZzYvcunub1x/c5ebhLsOlJS6eOUs3z5naEqAuonFCJlvi+NRSkmtNnqVIKbDWglfcu/OA27fvcP/WDpnu1PxniBmexCmKNIRTosgJ6d2IAY5GHRMPE/iLz/B46ZE6JUsTulmC8PPF3G7Od3HEU33/b0L6NwJJ86N1U4pOEKRHYJASOp2cRAmm4ylmVoD19JZ7TKdTjCnxoU+W9dE6QUoDKrroFSdlK0LtthQSEq3i/PVhIRIGVH0+UfRq2nqy2sWxHljw//FfIcjSlE4OUlpAokkgSAhx3Qki0F9dRhyO2f3Ki3zxf/W/4eIXvsDZ9VXSbk73+AHzag06XfpbF3j8Qy9w67/9v3Pv177B7MIvM/xP/wobv/Bz0Q1cBETM/F5nEwjoRFGUhqK0GOdB+kWGi3BqM9w7qb4Lsvz3V4VPhKB6+IR6TgglyfIUKTxVMcW4hGywgsz6BDlFC8WkOMZaCbJHJTu8fP0By2c22Lp4mfXlAUvLc4xO2d47RFcFZnrMfTvj4OgBl7YuMNsfc3w0Ylsr3uz26D37BNn6kLSf4orqVHYECbWD/OGhGBbqsvAOjV8MPRfA+3iv7qQanXpSZfG+pCimgKOykiBSVNrDyFVUnlIFwf7U8Ru//tt8+8YB23szplPHxz/5CZZX1hFZQj4r+fizT7LU7bA8HLB+Zg2B4PLjQy498Rw//TM/T6IETkSx31nPZDRjPBkxnU6ZnBly6coVCgQvvXWDb33pN7l+7Ta9vMv66iovXL1Ef/gEk8mEw/GEuwcj7u8eUpQVUghW15d5/vIFRstdqqqiNAJbGJzXlAIm8znPPnmOK1sbFPOCV27v8tLe7/Brr15jZW0VJRQPdvawIcQMIA92UL7i8uOP8cIHPkDQPT58dZUPfvgDHHnJd+8f0lsbUqKZGs/tWzeYbG2SJRnDsxf4wMVN7nz/RY5GE+bWkOpYtkHUa3siPZmCRMX5WJqAt4EsS0k6mllVsn80wfqAEIp+tw/W4L3FBwcEdE2KixDQqeTWrVu88urrFPMKkKysLtHv5vTyDE2CkHEMNPNa1ouTbwZHveo9nDMmnPy3ftiLSLKrEEsjaS1RMiEoSFQgTcDPKow1eC/xqIfEVSHEosRVIIrIh4cHKK1IUr3IKtFkIlFKkWiNtS4+HpUH5vMZAYFD0ckzBBasxc6niEGfn/ipz7P03EewZy7RMSU//fwFto9G/Oq1Wz94/rf4dx5tPPPumx7aeKaNZ9p45uF4xr3DBsg/bCitufLMs3WWkfc3nnmE+fjhQkrQso1nTuGPazzz9p23bTzTxjNtPPNexzPtpqcWLVq0aNGiRYsWLVq0OIVeppnNBZaAMQ4ZateO0nTzDGM9/hQx2ASBSilWlpcRQKcbXcEeh5YJTnqC8DjnWV1ZQWUlWmvwjlwplAtgPY2jRwrQMqATQUChV/skeUIpQXR6rF64xPHhIfvbN9m9e4uijOmaO90sBso1MxZNzI3QEZ2Ni/N+h7a/szjAwrB3sk/j1LuDwMcs0Qx6PTbWVlka9klTTWUrqkpHJ5DWtZsovjbU7nDnHaomjBKdnPSp9yAlXkbnkQ8C76Iz1nkDwdDxkgcuUIQEJzWp1jgv8ErjZEwX3c27jNM5VghmzpNbh1YJaaLZ3zsAkTObF6RpSpAChI99FhTTsuLM5ibBHDB9ALdv3+P1a7ukwvPYuQEXLp7j7Plz7O4d8PJLL/PKd77N6nqPz3/uKZ59YYs7I09xvM+k32dtfRnvRSwFEup2K00nz3HWcPfWDUzagTQlIZBmimxlGfwQKVNkPqTjJ3STipQpvpwhRxUm6zGeF+zfucmZTc+FS8skWZe9IxBpF+ETpBUoAjIIZM29FXiMlGjh0d5QzSasZZqzSxnrg5xhGjiz3KefKKxx3NifcXlVc7YnWE4lNtdMHcxCdOgLLwnBkRNQIqCUgGAgpLXZU51Kq107ymphK84hD0LiRUyx7b2rs/14pAxkqaTXTVnu5az0MhIKqsN7iHKMCI5QlBSzAmRBakoUAVuPXe8d+/u73Nl5gBfw+LnzPH7xCt98/RVG4yMmScqzW5dYXlqi2L7OvYMdfuzZj7DcGQCBopqjEIuxf0JDyVhKAIESAmNhVsK0lKRJzpd+/ct86Tsv8crr1zjTXcdR0dD1SsqFUEZNTDfs70IwqaejCgHpxUKcXLhkRXQehiARQaG0IEk1WZaTaEOWQiYEWarw1uCce5gle4c536xnb3/uhNSVQpEkekHCNWcsfSxTk2YJ3VQx2t1hMpkR5kUcS/0hXmhKn1PeKeI4QEAQC8L/hPiOG8FEk/1KyigGyHgdRC0CRImkkQVO2iURizI1QoD3UXRUQCeVqKwHKsF4mHlHkAlChPg+FVDBsPcrX+T+P/kV0uKYx3/+J+mtr1PduoNkTndc4A8P8Znk8t/4q1S/+z3k976NvPcyd/8v/ydYTlj9zKcYXL5AsT8FqbBBUNpY5kUmijRNyXVGgllkGGj+BYGs0xn4hchxepOcaNQSTv2yIE4Jp3uy6c+oFHjrKeYlVTfghSSTUB3cwcuMYm5Y7naYzackWqADHI0mjGZz7k1u88bOAZ/50ONc3dpAJpLRZMyw30dJSNOU/nCASjJghFaQp5rte/eYjA/Z2Fjl0uVzPHX1Ch2twVlsWVBVJpY9lDI64ReOT7+Qol3dNiXiOBPBMq8Mdw8cv/WtOYN8QDdbozPokiSSNOkgdAeSHkF0yAdDbFGyd/02f/v/+w84mM6wAbpZh+/e3SM9t8VGZ4mzieH5z57F+egGtsYj0WgR54OSAiECSU0Yk0IvS9k4u4SQIKWg2+uzt3fE9i1BeTjCmkBlR5y9uM7f+As/wxMf/hCzoyOODo+4u3fAWzfv8NTVK1w6u8QgV+TKs1fMKSpL0ltFOk9Qksp7ClOwutZnVs7YPzwi6WjSQc7cVMwODiksFCYKo1oldFaWyaqSe/d2GE1fRKcdnvmFP8vKoMPWSofEzgjTKTrJGGjN+sYSg2GOtI7ElLhpgWquSPBYEUvzCAKSQCKhk2gSLVFSkmuYlyXCGwiBtZUhwgsOj2dM5yWpSkElRKbfIwRoJMg4zoWAfq9HN+/EMphS1dWZApU1oJPoyvaOEOIXDy8itb1YT08b3sSpf+u5EstXnFplFmtPXHNM5ZlTMfGGIAWhEQ/xeOdqRzQIYgkHLwIIj5SCtfUzZHnM7Lcw3p1aR6vCIJUkSVKyLI33jqUVjAvYAEeTEWmm0a5CmYr19XW6q5sclp7vfv1rfPzyeV576S1u3jvm60dzWrT4QWjjmXd6oo1n2nimjWfeKZ4R70H2QAFoqWNZKd7neEa+yxrxw0Bo45l/l+IZ2cYzbTzTxjPvazzTbnpq0aJFixYtWrRo0aJFi1NQ3sZgkIBzUZRvjJziFIEGDdEdg0ul4kaAyXiCdR6hJEme4pxFCQlaR6dnVZEoWOp30EoiauLKlBWuznjhAR2iE7AoLCYEvLeoRBKUIusNWNIpnU5O3utxuLfDdHxIUc5IVBIdlCdnufitiZND/duCbGxopHckB5tPEbUrKJx6J4QQiW8CJFKSaU0iZXTgJrEEggserK03dsRU6z40qZRPEXsi9vWibEJdQyKcnATOeoxzWGfpWjDOMAuBWVAYU1FVBpckeB+Yz0omyZjJ8ZjJbIZrWiIi+WCcw1cW73wkIxZpmwEUQiuK+RRcST+X7B8ds3s0Y2Olx+rGGq+8dY/Z7Qc4U3F2bZmlbka3k5Gkiso4TCiZ7L1BqgLD/vOkmSaIkiDqFPEh4IPHekdpHWmiMMYRpESvLJH1hiiVg9BIFG5yQDCGRFr6nYCy97FOQVXSyfYZXBqQLaVI3WGYLaPX1kEpnHUkWuLqkgYhBBABF6AwHuthfanDT33oMnmi6KaKTqJYH/bRwVNWBqXg0tkh51YyhBTsH86ZuUCJWxAxumYoJQGlJVIGRLA4ayhKgy4KQk2yRJLTLsbaQjRSkhCgLOJ4EbVoJvBoCYmEVAaU8JijBzA/QhIItorjXqlI3ARfV0IIOGeZz+d0s4wsy+h0upiypDKGLElZ6g8IAe7v7VMUJd0kI1MKvK+JQVXPyhPOSdYiQXwsOpZ9CJQ2MK+iC7yaVRTjgnJSogYCfE0chTjHZDP7FuOdur0n6dXjzBME4U8I+lqwa66lIKBlFOGM8xSVx7vYn3F+yofm9WLOv1MpgT/QY3Hc4n0tKkDpPZlk4XiNIo+NZVZUSllaUpmgc02vO0A9sDjvY1YsnaBEqIm4sKD8BbHknQpy4Ur3oikJGOr1ohk/zamd2jglQnN1CKhYOi8qUExKR2HBAlWdRF6EuAa5RGOnU0avvcbopVcZpmsMX3iaICTTyZQRhswUDMsS6SFd32DtT/0kU2GYf+NbVHvHuPE8Cr9SLzawWR8ojGc+rzA+uiNFABkkWsSMXiecZuPzPi0BsPj7REt4eH185DJFEaUWVURtjxYIpFIgk3g/sBVuvEeQKVR1SZckoZsLul5yeHSETzLGZUVZVhweT3j+ykWWhz2WBz363R6VKUmThF5vgM5zHFHg01KSdzrsj0aUzuDwKCRrwz7dLCXXCh8CnTQl0QolJTgTk1MArh5fqFg6QAhBaS295RUCA9JeQpkEuv01QneA6AwIWhOUgrqsTgiSSuSQdlheC/SW1tibllRVhZaW1+7c5/IzT7G0JOgKGedZqO8HQhDCSX4BX98fRCPGA0HIhUCglCBPU6bTGXsHhxwej/HeMRjkbK6t8NiFLc50MyoGrOYJW+srXD2/SS/L6GQZSsCPffqTvPTKG9y6+4D7RzO8CLGUkYeUwCDLKadzyqJEak2epiilsUIxA6wMeGcJ3qKDB5FQGIOZTHmwd5/jwyMmR4e42ZStlWVW1zdQWYrUkkQGynLM4cEhs+kMO+yhpEbGxfRUDoIo2Oja7ZvWIoFI6hKX1lJVHlEaVpYHKK1R4xljY0i0jmu1FDXJH+qujmNZShkd8xokCh8cgSgZ+Yagj7w81GJgswA85IZ+dN1qJmL9uAzxeobTT0NdqsVjjCBkEoSK80d48NRlPICmPI7w1HfWmK0viIcEy9NnIesxDLG8kZQCnaRIDTrE7zOeuryntSwtLeOVZm4c09mM17dv47xnc3ONj62t0qLFD0Ibz7TxTBvPtPHMHzSeeW8yH0WTyP984pn3BiIEZKCNZ2jjmTaeaeOZNp754ccz7aanFi1avC+4ePEiq6stSdOiRYsWLVq0+J8fvCkJwUcHq6/p8NqC5110a0p54oY8IdCiu3M2nWOdQyhFmmdMj4/J0pxEKyprKYo5SZrSzxP6nZyyLPHWxtTPzoKUdepkgbOBWVFSSYFx0QVUWYuXkrTfY7i6QndpSHqnx87dhAfbN5EuoFWoCdJ4Xg3l1KQZD6dC2EcFgre3C069eJFW/FSzCTWrL6mz0uAjLZfqSPT4Ot23iGfiQyD4SG5Gwu+ExFqUCqgbEHm++EqJqDdKeKx19F3AOcPMO0Y+OrLmszkhSQmpZzqeknvH8eiI6XRauyTFglyUUsW00vUxHnJ9CkGSZuzu3MPMRgw7koOjKaWxJJ2c9a0zjL//BqPdMSvDHs9cPsfZ9WWshONJyd7hjPWljLu7b3CEYHXjMmc6qyzsnAJwHmMsNpWgM3LVwYQK8g7Z1iZpd4CSPVwQeFtS2QpfzlEJDDqasjzAFhVpsOTDgEx7GCNwIiFfOUuytko5r6IjNpE4SXQYhnidApLDuWOv8JzRKR9+YkBVFDjnkSojz3KMteBh2OswHPaxMnB/XPDawZyZ9RgVSVfvA92gQTSpwlXcyOIc3hrKqkIX8bX4SKb44JGnShxYZ5Eyik5V6epxQe2UdzXVW/+IgJscQBE3xqRJBykVUmuUVrgQkJwSH7xjdWmZTp4hhWLn8ACcZ2m4xMbyGkVRcndnBxEE51fPIHxgOp/RyTK0UpQhoJrMAvWmpYXtthG3EFgPpYszLJEJqUpJVUxhLoI4NbzkQ1t8qLf8SFGXjIPa9Vy/6lQ/BRHJ7EBAhoD0gURKAhWVtUxnBmM9zvvY3a4h1mvBE7HwnIqGOGvO4h2FwvjYSfN9nQ0hljbx3lN5j890LGtQCzNSCpIkQUnFvKzwErp5l16/R5pNCT7OYyE0WoQoCtWbxwihLp0X82lFp7NE1Ju/JJyIBELUggiLMQPUsk69zgiFkgopLMY4jmaGwkZXtRMu9nFN/gatscdj5qMjTFmydukZ0scuMn+wT+Ec42GPsJTiE4XwEJxk+ec+izs6ppg6krt3SIZDhErwNiyyWLkQMC4wLyqMi5u+CKAQNPkrbLMgNuOEd0JD1EaC9FER4eHX1QquOBFkpaiJySQhSI8rC9x0hFApwiuk8ORpShdB10ruj0b0z27hnGc6n3E8mpJqTT/P6XUyep0uzhoSldDt9Eg6OV4EfHBIAcurKxwcH7J/eExlLKY0nN9YY21pyMqgh6lmJIlESwjB46ypxVuLtZbxtKQwFqlTEAKHYHlzC52m6E6Hwguy3jI66yHSLl7UeRFC/PHBMa88WqecPbPFM08/ydFkjDs4QgjJ67e3+eDBMVtrK6zlitm8wPlGHFgo1kA9pxAooRBB4AN47xe3LKRnOIC9wxF3d/Y4nE5xXrG6vMT5sxusLC9THY8I3pNrxdKgx9bWFmY2xZQVlXf85Oc+y/LSKp3vvsLd332RUnkIAhkUPaXoJRmFnVBWFVIqMpWQ6RSnUqbeI4MDWxFchcAjkg7aeqQSGDPn+PCIg51dJgeHnFteYWttjTRLkFhCccz9gwP2d7aZjiaU8mJ955X1zI+jKq5TkCiNVhqlJFpJEqUIQmLmFaaoKI9nPHb5HHmvQ9rtcHDjLlophJAoGctC+eDjfK7XVc/JJPYPjWxRiwRx7RXIU+ogcc145KHFWvaIyibqnQ3y1IaH5tfgwLmAdfU6LWQUAoRH+HrdocnoQa1WxPta/D4UFqVXTiME0EkSn0dgrUNrgU7ixopECKgsvt5Y4b2nP1xmVBqO7BQzr3jzzde4cv4iW+fO8WNr595x1rdo0aCNZx5tF20808YzbTzzDvHM9t0HHB2N/s0XmX8LxDEb1533NZ55DzdAxQ1BbTzzDj1DG8+08Uwbz7TxzB822k1PLVq0eF/wq7/6qzzzzDPv92m0aNGiRYsWLVq8DZNJgXUxcK2CwYVAJhOUULWjNxKdSinyPCfNMiaTCWUxZzabkqQpnbxDluUIoRhPZwSpyDsdusMhzCZ477HWoBOB0hKkxNmAd2CMZzIvsTZgnEVo6A56DGTOrAqkQlJ5iwkeqyQmy1m6+Bjp0hpB5+zdeBMRHFKrmD48nBB+DWX07qTSCUJD2DevXZCHDUHZ4EQtcMFS2QpjLJl1uMoyczYSxkqT5WmjFURxIoCScYOHWxypSXUuIXiki8cKLpaHUEpFgsDCWZ2QYJkGw/1guVw5bFURrMVXhqqYQT+HELCmillnpIyEhpToTg5JXaveh1r8iWSIEIZessR4/xA/PWRVGwY4PnBlnbPn11CdjA88ew6BYrC8zPrZs1QH2xwdeL7x3dv88u+8xP/xf/vzBDvi2O/z+o03OXPp84jxZEGyBGsYT6YMejnrWxdRRtEb9hh0UzrdBJEssXt/m3lZodMu+ARrxpiixBQgpCfJU4RI0MKys3uXWdFHJH0GMo/EkGhcvJHMsj6Os9RJ8v6Ab+w6Xh/tsvzmLlpGl2YIEhMChQx4Ect9uNKTCMXYGA6mBXd2D+l2B4hMYq1htn8InT79fgcrM8rS4ytTy0UWgSM4FckZ7/HB4Xz8fFETTnFM1IQ2jkQJ3LxiPp0yn85QUqC1JEk0WqSoJEElkZzq5Tl2PsEZh60cSiT4IABJolM21jeRSuKcY1qVHM8mbC4tM+z1SYHXb75Bp5vyiUvPsjJY5jvXXuf7965z4cxZLqyfQVcW6X30v51O9R0CPgisteRJQi9P6aQKaw1BBKSW6DRBNGOrdqZGvl0sPkMGUEI+5PaNxHiIYqWKbtamVIqrZ50UMSOBSxVKeawLTOYFxp+IAnHCNRkeTgpZvJMgIIR4G7nVzPFGGw31HJZao4jnY2y80t5bjKnoLudsbp1l3u8yOTxkcnhEkILUBnDRPSqFiNmiCA8LjycnU8/5eGBVrw6qOZ+6r+rmIcTDfkR5SgwVROHWCsHRPDDOPEEoEqVIg0cESxCKEEAWhjzrsfUz/x5LL3yE4ZVLTPMUtTxg+NzTnPnLf4X+U5fofuRpghRMDvbobJ5n6xf/Cmf/7M9RHh2QP3YBh2J2eEwigODQUpDqePZKpQjlYwmaeul7hFJsVsl3X6vF6TX9YTdm83zziETgZRR0S2NxgnhsCUiN9wqtUlKd0OlZ+t4zMZ6k8Bht0B1NP5EIPNY4NJpcZQySDv00ZVqLcjpJ6A8GKJ3igsA5z7mtLXZ3dzk6ik7hbrcDwN37O5SzKdPJiLOrQ3p5RpYkaCGwpsLV4vn2ziE267N56TKDlTNsnbvM6tKQJNHYut9MVeK9oTKj+h4jQHhCPVOEC2RasrQ05EMvPMF3X/4+ewKSTpfrb77JtTde5+JSl2effRIzO44kbz2uUKCTFILHmTlgUEkPKVOcAz8vYtkoEV3oqIx5YZhO57jKUNmCC5tnePLqFfqDAbv3H8TrIgWTwiDENGZd8TEvysXzW6yvLLO1scH3X36DGwcHBECnmuVORpJIpvMpo+MRMgiUFUgX8N7gJ7O4DnVy+umA5TQhTzvMTYXUknNnNlFOcnw4Zu/BHmY6YXT3Os4ZTDWjmh+TdIf0uh0QmsPjMWVZYpxHqwTq7DCiGbDNJgFULWIKEp3RyVKsM2zv3uXSlcDZC1uckQnfef0OedqUqhLgozDUiIHUkoQ/vZVBNNdT1ipgiAtfo1g8Oug5+e7yaEkboO7n8NBjD33CQsc/tZUiPDy7mrVULjZJRBF3OBjgOMnKASffpZRWKN1ZCNfe+xO3N9FZn2c5TiisKnFBkvYHvPrGDd44LLm/u8/HPvZB3trbZ2f3gHF25m3n3qLFabTxTEQbz7TxTBvP/OB45s/9wn/MG9eu/9svNn9QCPAqZlV5v+MZ+R5ueoqDt41n2nimjWfaeKaNZ96LeKbd9NSiRYsWfwzxt/7W3+ILX/gCf/2v//X3+1RatGjRokWLP3KwTnA8LzkuDBYRU5L7QJpqBv0ezGZUVQWAUroOlE+CzieeeILB0hLGeXb2D3AB5qXBIel2c5RUdWBNdKwKSJOENEnJ0ozSCIrKUlQWV1bINJbK0lpydmWZM0sj/PExU2NQgJApRgoGS+t85nMXeGOpz/b1Nzg+OKDT6y0Cd04HrT+g/e+W+r1u5oI8iSG0qF3kkfm33mGNwRmDNwZbKVIlUVKgpMBZh5AC5xzOObwLjeqAD7EvGhcrDpTUVN6htSRNU9JKgavQwtFLFVsM0EARAkdAZaGT5AQCJkCqFf1Oh363R6fTjfXr6z6QQqCShHlo0uYHlGro9MCCgQieyazE2Bkf++iH8X7MaDzlO995jXt3JnziQ1fZvnXI/+t/+goffnaVZ56+xCc+eo7LlwcsnVvhjZsjjitHZ6CiO1EAPuCNQwlJkiRIKTBVwbC/yur5s6SdjLkpSJ3haPcG09mU7nCDbpazvDxgZdglXQ4EbyDJMKXl+P4IEx4nXztP0tsgGZ7FmCqWRZBRcAkEgpQ4pZnLlI6W7FvDTmlwhxWIDkHq6AALjuBdTG8NOO+oXGBJZ5wZrPGxZ5/ju9eusTcas5Rm/MxPfp4Hhwfs7e4zKgwy6eBdwAaLcBatVWy3t9Hl7ANKJbUwEH+00rXjLJIszlqKeUGYzrHWkGpBnkg6qSJLOmgViWARLGUxI3hHcB7vmlIjJ2Pde4f3Me1/ojXra2t0hUIgcCHQW15iq9+lr3LSoLiyscU3br7Krb372OB46sw5SlHhnavTgDck0klBCCEDWgnSRC2cu/I0UwsLJ3hDxjfvdc4hEAgZNz75ELM+xawCYsFlNe8VUiLqDA7xFQrnPM46nBPRDV27/RsRBh4WAJrP+v3WgkfFhFCTduLkhXVbA8FayvmEMOyTpopKCSazGcYFlrMuOsmZzUvGxxO8D6g6db8QjY85fh4BQq3ZCSFQSsWsFPWmsZjZQC4IPe8lSHFK3KzbGkIktoUkCIWQEkdgVjmCh1wnDPMcIUMklYOHKlAIz/KPfoRVrbFIZvsjlBf0HrvCs/+H/wwrHMJpMIYlAWY8w6YKv7VGZ2uVqqwQJiA9mMRDcPQyzdqgw94gJ0k1UkViWRKdoYroPyXYmhBtFl6aSoqnLs7J9Qs+nDjdF0++TXWI8ooQOAKlrUB26Pb6qHyArddz5+M4zHVCpgJaACgyKTGuxEyO2T3MsVqiZUbWSUnzNK4rBJy34ANplqN8dIJ38pyrVy5z547i5s2bXLt2gyuXzrM0GNBbWiHv91HCUXlPNa+Q9T3FO4c1HisU+4cjsuEIYy2rZ1axRUE5qwhBIkLAC4vAgwCNREpFkBIvJMIJwGCNp5yVPH71cVbXVtk5HIGAu/fvcePmTXYuXyD94AtUBJC+GdoYY9jfe4AIsLw0pN/PebCzw2xeobMOZzY2opvbO0Q9aCtjmVcVxlryLOfSxfNcunQOgkMqQczEAY1/3/oo4gjgaPceSdaj38vZ2lrn22+8gVUpnW6P/voyKsSNhaW1ZN0OOgVFhRKK80tdsm6fTqpIJUhbcTzZZzKbkSaaLpukKjCdT7m7u8ubt2+yPpvQyVM6nZS1zXP0hqv0JjP29g94663rJ2KcVCxWvhCJ/Mpa8iyJGxKkQkhNJiUq8aR5QCQrPLh/wPb9I0pHdGCret2p5/IJUR9/98HGzRiNyAmArLMbSKx3vF3I5KG16p3/PtnQwDs82jyzWO+abwOnlLroeo5ldoQQsfRQvV47axHe46kzLbi4bp28L5YNa9YorfWpjRi1+OIBWRcbkgofBIejKXf3Drk7us9/9tm/SveN+3zx+l1+7esvws999h37oUULaOOZNp5pWtvGM2088+7xzHuNJsvT+x3PvJel7nbublPOZ1x57Ik2nmnjmTaeaeOZNp75Iccz7aanFi1atPhjiAsXLnDx4sX3+zRatGjRokWLP5IoKs/x3DIuLT6IRfYVagKkcdcKoKpKgEjE1m7hbrdLCDAvCiaTCVmaLgQBYwy2slTGxLTSUka3jJIIBN4HvI1EkVYSrWN2l5jy3dPVms3VZVQimZgKoVOODidMpxOcs5wZ9ugNYhpy4zydRatCbfGi2VXAqT/ehh9IBNYBc+SwmtJb0W1krMUYg3e2JmwtQiYE57HBIqVEyjpLToCm7AYhEsLW2pPDiJOAXcjoIBdSUHnPuDTszebcO3YU2SrWBpyQeBnrHXjnsc6RKRWJNwGqvj4+NFll4gGccwR/QiovSLkAVVWxsn4GW+1zdO8uD+7tsXkhR2nNbBbYG/d4cOiZzBypFmghSfMUrTRVEbj25g7HVY7unWFj/QyhqgiNUBEg1QlaKoL3FPMZptsDLRGJBqfAWar5AeV0jE679LsDprMp8/mY8u4IJcAGmE4qDh5MePyZH2Ft5QppfxmHIDhfp7g/TZjXgpGI7mQfAh6Jl1Ggih51T8CS64xEJwgp8NbgsCz3c57cWuMnP/Ysl69usrc3IpOSjz9xla+/+QZHRyOOJzOMUAilwUeiLoSAknWhkBBJTCnAh1poIkTyXcSzjOSKwDuPNzY6qkN0emslSXRAy7hZJmYaKmOpCeJP8K5pbWz3wggXNxPlSUrSnEuAvpZkMiEEjw2BpX6Xld6AaVmyvbNDT+b0ul20lEjZuNlEY5GLhFaIbWrc/oKTp5ttQkKKhfByMuFAePEwCd98powk6GkmS0i5IMJPGhfdikpJskShpTt9xU8dSpw8JprhUB+rOXbjfjwlEgTC4rxDQ9QvnH9xvioZSTwVwFUl1GRekqYEl6OSDCE03ocoGAqJVAp/0kmP9MsJEaeUrEXEWvhY9G9cheJYat4Wn5UiupBFCLWgyUJgkRK0ECRApqKAt5j6oSZClcQlCuNBG5DBI5MEOVwmSTOqeztMr13jrd/6Eisf+xDdZ54hO79FIizVgcFZX4/nWgSTgkwrEiXrdai+FsLHFPkIHA7vA0JBU7qmcU4+RHeKU+NFNHOnefYd1vVwQnj6EB28QUqk0ighQag4863DWY/QKUlPk6AojwO51iS9LtJasAZvK1CSJNckWboYk6pe36VUNJsCg/f0s5zVwYDZ8jJHoyMe3LvP4d4eeSdnMOiy2u/QyxLyTodExYxo3lpMVTEPAiMLBr0O3TzDhRDLKdbrm5JxTXch4KxBWIeWCmry1sxLpK0gBGyQHB2N6eRd+r0+83mJM4bxeMx0Mo0Z/UUcK83cKOYlh4cjlE5YXj+LFSmTeXxPUpRsnduMY69eo/CeyhhKY3AIlrodKmvZPxpx4842zgcSrVECRHBUVYnQGUqnpInCWovUsRzOoJez1O+iuwP6wyGbS30SWZcQyHMyrZDKRvHVWTwxawozMDiEq6icwxUlQnToJRqPQ2lFlmfkeQeV5ngpqIJkbhXFqGA2n1MYQ9bpgPc4axdrnqfWrIRAaY1OUpI0qwXvBCkCibBIYBC67B7OmZUFc+vIElXPh1rcgzrTRDN/Qz03GmGSKARJuRBKm3EeFuveH0C4fGhuCJpML488yWKShPr7wmJRqd9bf3+I2wgezkbg8YtsDKH+fiPq7zxNBgea7x68/XvWYin3sTOCj2NgaZCy7vpUegVpHY9vrDIVit1H7yMtWjyCNp5p45k2nmnjmT9YPPPe4fSUfD/jmfdy05O1BmtMG8+08Uwbz7TxTBvPvAfxTLvpqUWLFi1atGjRokWLFi1OYVIYjgrDuHT4IFE0ZZscZVUSvK+JEE9VFjEjixSLNOkuBIqyYjYvKCpDluV1sOkwVYWpDGUZA/cKQZLqmuwUdWAIKB1JLCXQWkVyyjtSDec3Vul0E45ncyal4bAsGB/sURYz1ofdSNwHGVPhB2oSv6ZKG6GAZrNC+Dci/R5OTi4WQoGoCTjbOJ5r0j04T1AeF2IJAq01hFNhaONKFmCtxRpTf3T8zOiOiuRn5I4ls8pxfzzDiANe2XNMBudZsYEgFUJJvPUYaymtZanbqd9bO5Jrwq0hC733uBDP96GsPCH2YVGWrJ09S1WNebB9k2uvvcnS6hWCVziX47N1tg/nJEHy5GMbnDm7hFIJlRGMp4IbD47RS1dZWb/E2bMbhKrAn3J1pUkSN5L4SIhVrsSFKERFbtHgymNscUwwJUnaZTTZ4/jwkHv3bpOmGWVZMZ0bRtPA1Q+dJV86R9bJmU6OIlOx2JMTFgKRAKSwBO+RiFiuQwpSldBJYzLuWTlHaU2aRgJQGokVgc2VPs9e3uDHPvwkH+wsMT6aII3hYrfD7nTEN77/GgdlyTx4gpIIoQlSYRsC/9QQatxiDQmNd0gRQNQEr4zp+YPzdQkAV28qqonh+noFF7BVFd31jUgQPCJEsvghXaweS6lU4IkClBB0pCZYjwkBJyDPUzaX1rizt8PeaMSb4R4Xz26x3M3pJjoKS6c2M1EfSRIFKSmJ4t9pQmixkUlEMvL0XASadOcNwbTYMbVwtjcNifM2EmwsREipBVmi6HUy9HQa3aW+dk6fIsVE4OFzXxDOjRs3kmEnIkHdl01bwkJfqEW+eA2liuUVtJI4Uy3cot1uB7xFKh3bWKdPX4iGckHdsSDw6vNpSDapBJ5aIGi4MdEIYHWpiwVBF+rPjhm3RH1+3vu6SxWJ9iQikBA3qTX9TggEATKAmRW4oqCSmgEK6R3eWOzhmKSrsLuHHL/0Mt/52/8DH/gb/zHZ1jmSixfw03F0SAqPl6BFWIiQsiYLrQ1YH4lGanEHBLIuOSQ5JQQ0BKpo1sb6yjXOaFG3PMTnF78/1KecIjeB2iWOqO8VWsc1UEic84i8h9AZQWrKgxGZ0vSHA1YHfaaTY4StEFKjUxVFAiGRQpJIVZ+bQsmAkgpbGTSw1O3i1tcItmL77jZlVSK1YmNjDXFmDbE0JEtTdJqADzgRM51JKej1OgyHfYaDHqUpsb4We4ODusyNsYaqLPFlgQohlp2xFl8V6OAoi4Kdowk37xzQyTosD4bMxneRAorZjOlsivWWIOWJwCol5dxwPCkQiWfFwM54ws5oRjUr6HdCnO9IHDFTA95QVSVlZQhIOt0uB6NjXn3rBj7A8toavSwjTxQdBeV8Spp3SfMuohczPljjCM7Ry1MunF2ns7xGf7jEUAs0kXwWOoGg8DhwLmaSMI4wmyKsRQVHKgK6m6ODI5OCfpYxr0qChE63w3CwRN7vY5yjcIEwc8zLEVU1w7qS7qCHLyvmM4+xBqH0gpoHosikk/onJQiNwyKEQgZIdIoP86hhibg+WecIdfmIUI9Fv5i7Ps5zcWqNqeeClGpB2p+IeeFE8DyFkyx64m3PLb7ChFMPNKJr/edJrptahAsnt65Gil5sZGjmYL0mP3rMJnvfYsV923cucep06k8IgRAcQgRWV3qcyzPIFdPDY3qdLo+tDvhsuESLFj8IbTzz7mjjmTaeaeOZk3jmvdv+05x505D3L555Lzc9Nc1t45k2nmnjmTaeaeOZH3480256atGiRYsWLVq0aNGiRYtTeHA8Yb8wTCpPCDIG3nU5qyTTJImsqQCJlAJrDSFE8idLM65de5NUCc6sLbGyusroeEwiJFmakPWTWjSQhNJQVhXjmUHK6IzLlCJ4h3NFDESFoJfneG8QeBItee7SVe7evcerb17ji7/7JV6/fY/jw0O0FPQSmB4eY6oKpetw7xQheBIEe0IdjDYk7Q/CKX41btaoSUSI7Q5EYktJRZZlpDqJ2W4EGGsINQGZJbrmIEPcNEJ0MQtO/iY0NHakB1IglBXzogQU1/cmXL+/z7yc8xY51ebTbFYOj0blCb7y2OCwBJI0unqlig50H2KpiRDisZypMEJG8lCpOu11bHEIisoZlldWWT5zieWNQ3Zee53ZkWFaao6KLj//V36B73/9V9DVba483uf8x5/kpd/8DtdvFGxPVvjQ5/4sly9cot/poZA4W520U8QyBCIEBp0+Vy9dpcIRbMDPDXLucH6OKWbgPL3ekLXNixzteUbzwMRXJGLAYGPI5toa5y9d5oknH0fYgC8K0pDgVXRW1UbD2tkaO1k4jydFS01ZzNnd3eYX/9Tn+eyPfJR+t8OL3/4e/+yLv8vt/X0Kr+j3Vpgfz1j+4CoXn32SjSef5lz3DEk3QTqDvXuX5HcNWjq8sOwcjzie5MjuClonlGVBVUwIzkGI7mQpVXRQ1k7VEx5U4GtiVUZmNWYLqDcThRAoyxJrKrSO73UugLc4ZxHORQJNCmKO9dMOsmYOOJyIHnB8QHgRCVPhcThCVXBueZV+r8f98YivfP9lHtx7wPNXL/PMY5cjsXrqI0OARGvSVJFmEpWlZHkPqVOsD1gad644EUmI2RCc99GVWgtVgoDzxOwCnJ6fDW0lkN5j8Iu5VFQG1VH0Bznrq13YG1M6T2EFSvpF5qnTqDnlKLrIhmQ/7fU7medxyIbFY6omr4OnMYPivMMLj1Dx2k6mI5yxdNKMUs2wIWBDoCM1eZLGzV91v9SFEB45fmytlCLqmyIQRIhl7xY92LyzbkyI7499GsXbTAlSIfAuCmDGGHoSOtKhvKM0Bh8CWsX9ZcpTt9sjPGg8XipCP8fbkuKVl9j5yjfRCsz+AVoG+qtD5PSQ8bde5M6v/BYXf/YL6PU1fCdDVhUgMc4zN4bCCWbGUzqPCSBkirXRkV85DzJK065eVxuPezM3EDF/AYJ6A53A1jynrNdOW2cGkLIWXIlrtwtQeYEQCVJmCJVQzQqcB5EkCKXpDofY/iqH+wWvHY6oiKUZzm1ucPXqZTpCMEwClSnJE0WeZQQbwEEiNVprlFQkUtLJc6qiwpcFWENHKzZXV+llCbNixmQ2ZefuPV5/9XW8cygp6GYZWZrWgoXjre07PPHssww2NlhZW8XaIl5n76gqy9HomFlR4VxcW4eZ4uDeHarjI2Q150MfeIbNjVXGkykHBzt888tf5Mylx5CbG+zfv0+eaKaTCYdHR0znMzKdUNlabFKaipQiHXDv8Jjf+Ze/ya/+xm/zwhNX+MgzT/CTn3wCYQXCSZRXSOXw1jIdj5lNpyR5Qq/X47uvvsn3Xn4NrVOeeOwx+t2Ms2vLfPz5Z3hi8wxHu/tU9j467/DYlavYMKeazRlkCR954TlmSEprmR8dcHTouXtnm+u37nNUKa5srJKnsRSD9QYXPIkQ5GnO+qDP6pk1isqS5zkrS8u8des2b928yb2d+wQMB8cTnIxirg6GJEkJeELpmU5GSGdjiab6Xg+xbJPBU1Qwm0mqyiCVxkswlQUHwQesd0xmU/J+l+Vel9loyqiaUtf/xCORSYpUkqAkBIesDMJ7hI9ib4gKQy2Mxs0HcTdFOJn3zfomeJfvM4+qCI88W0+wBV3fCOqyuV/UGw2kQASJFAEZYpkZkaSQpqATUAaIG0e0Oll1mzwaUsrFZy7OM8SVbKGfa4VPYnkbpKGygrII2HGJV4r/67/4Db746k2u7c35q5/7+Du0tUWLiDaeeTvaeKaNZ9p45gfEMz9kBMA4QDSS+vsXz9gfvFT8oUO08Uwbz7TxTBvPtPHMexLPtJueWrRo0eI9wi//8i/zqU99ii996UskSfJ+n06LFi1atGjR4l2wPZlReEFhLaYsODPI0EmG0jGDiVcp03mFMdG10slySmOprMM6S5bKRUCpswTjPePJFCUEzjuWl5fIMk2MHwPV3DCZF/gAnSwhU7VbOAiQGdILBsMVbAjcuLvNP/vS17l+6y73H+yxc3jI2cuPM1jfxBczivExo8MHOFeRaA3Oc8K+RoeP9+7R+PhteKc68s0jzlmsFCgUhCg1RNLdgxcokZAkmjSViEwjSKODTwqoyT4fX4oPddAc/MKR6IkuciFi+nREZO0UgZzAvf0x1kYXbFCeajZmbg1jpdifleSTObP5jElVUc1njEYjDo8njCezKF4IDSE6SV1drd5HZQKpYqrqQKhJScF8OiHRgotXLjI7fJavvrxP2u2xduU5lja6PPeRz7Jz83Veeuv3eGP7RXb3PUtnnuJn/sRPsHHuItVsiq0KbIC0mxIFiEigVM4SVEAkILVikPXQIjA72uPutdukg8DR6BghE5TOmMyPWT97jvNXn+IjP7XEt778ZTyBpeUl1lc3+OV//stcuXSJfq9PWRQkacZsNkMQWOp36J85Q5pEYUCgWel1GY2PSaXl089d5j//a3+atTWQcs4nnn6en/r4JX71xet8+f/H3p/GWpbd153gbw9nutOb34sX85AZOTGTTJIiJdokNXruoYxu2W7bXVWN7vrgTw3Y6C9qNNCADBi20Q240SgD1UaXWgUPqobdtqpslyWrJNHmIIqiyByZU2TM8SLecMcz7ak/7HNfRFIkxbLFQfZdZGRkvuHec8/Ze5/zX2uv//r6+3zuK2/impa832fjzD7Fxi7zoxnHxw1Cwd7WGpu7m4yGPbJjjfECF1K00GQ6Ic8LhPLR2eajc1UnCVqpGNXhHUF4lEwgSGpnUYkiTVNC1rUaFxohYkxKkhQ4E99bKE2e9rD1BKE6klIrSAQCjfAarWTnipU8tt0tgzLoxl/nOQ10kXKeXI7Y3Nnhws4+tmnp5zlJUaCLzi0nBAgFSU4QEiUgEZ66XNDOFqTWsZllbBQJ1oZTN+spod1tejLOkWp96voO3uOtiRujBCTdJqFlXynpoQoxykT4QJ3BRm7oZxKdSZz19KXEZAmjPEUGgXf2lFyTUuO7Ty8BpSXBd6JDiPMz0Roll1E1LhJ5BHyweONBRcKMoFHG0dOOTIPSAqTCGE9bVlixIEkCIXisieRi6xxl3TCrKpyyZPjTzk7ISA5LYbHek6YZuUwgiC76QxCcieJkd01r7zHen3bQUgIgtpkvnSUIjwsaqSU2DSS6hyV+b2EDoj8gTTRJZvFOxuif5fkRURRWvQFuOmXx7k3e/H//Ak/9zE9x6Y/9MS79F38F7ISjf/hPOP4X/5rZnZuc/ciL9PfOkW7uwnyC6G/QqoS5s4wriw8JNtQYb6iamkQKjPc01tLUBqFVJPiFwAU6l7fsNsRZROc6XrpFvYtxO0JpUi0ppMYBxgca06JdFNZqYxB5gVAZSZKRJhqlwQeLIEGqlP5mQl1sEeZzGmcY9Tx1ZXj/1l2Opidc3j/D5keeJzM1vfEJeZoRtMR4R9XUFM6RpYpcKbI0dvkwRLFDCkEiIE8UkpxCK3aKnKqpsNbivcNbR5plCCExreH2gwMGvQG9oo/UirYS2NrQVDWL2YLgHYM8Jctyer0eA+2xR3d5UI45uHeXZjElL3IWVc2dew9ZDy325D51Y9CZQBmBaVqaqqJtKvoy6+4NcZxWQvJbb9/hq2++zY1b7+Drkl///Je4+d77FCJw/c/+sa4jiEUpyXRecTyeM5nNcb5lvGggSGzrqBaH3Lj5AOkrRsOCr3/jBf7eX/+/kmrPbDbh1q37HN4/IO3nzKo5tw4PuXv/kDuHR1St4cz2Bs+de55UaxIRyJTlzPYGEo/zll4/pUhTUqUJLnA4meFOZuS9AWu9IUKBrWvKytJYwfaox52xIWgFSqGkwzaL6FD2ntmiQgUXu790arPo7tUBgcOTakWepaRJgkoliYibO70XIDXtPYfMM9K0R5UHfFkDApRCpAkhyaMbXQqEc/jQxm4mweNNg8d1AncXNaKTKKZb1wmGHoKMa+WyS1x3JxeuE9aWDebg8UaETmSTp1EpAU9c16QSJDLeM06fB6TEBInwBuE82gVskiOTDKUTMinweXJ6n1l2+lvGXgWiS/qb4ysCsVtH4gVBSmyaIJoEkCiV0y4c48mU2w/uUicptxvFzaOGyc37380j7Qr/EWNVz6zqmVU9s6pnvpt6Rkr1B7TqfGcoIdgd5qf3wh9kPeOyLXZHOa+98sbvu1nyDwI+BBobVvXMqp5Z1TOremZVz3yP65nVpqcVVlhhhe8TptMpb7zx/XmYBrh27Rp/7a/9Nf7O3/k7tG37fXnPFVZYYYUVVvgPAdPaULtY0I16GR+/fgaBwCFogubVW0c0bWzZr1XXQv3UTxPQWlEUOXmeRaeLj1933lPWFT1TkCqJ0hKpwAeH9Q7jA8KAEhKFQOuELOszmTc8OJ5wMpvw1s33eePWPaalpUaTrm1iEfjOZTudTqnK6D5VculiWnrquv/qIgK+Hb5lRIQQXaSCOG3BvHQgnv738keJcVRKK5RWsa2/kDy2ZgqEDIiuO0yQEhk8ISQxeqBry+5DTJSXQqClRspA3VqsCHgBGsG61ngh8cAsBCYu0Mxr6kVJ2da4pEZYy2JR0TZNJNVEF18B0eX0e88Ajxs+K6yxKCEZrY3Yv/QcR0fH9IYbnL/8FFjHYLROOHeVgOPmO19msLnJ9v41Nrd3wVvoiNzotHzi3USM91JKsahrvnHrJrtbO2yO+uRZRpqnNHZGCBY8tG3Fw4cHBLNBVlusbhifTEizjKmYcfPGTapFxcnxhPl0zmQ85uy5c8wWC1Kt2dpcwz/hgpdKU9Y1iQxcOLPFf/KTL3NuJ4X2Lt6csC4DL1zZQqZPc3ZvnY1ewhd/+02aRcnh4Ql1VdM2Y5qyxAfPsetx9+CEWWVwQeHoHJvO4bwnKwqGwwLvPb5zMCqlIrEJUSSQAS1TQKLaBmMMvm4IdRudm0KiZCRflHR4lWAJ4CETkfIWzkO1YHHvBnq4hrMe2xq8cbHVOzFWwHZUTQidaCGWLchjS3wpBEjftdoXeOuxzjNHcCAF1kcSTXSfozdaY/7ogNC2pEJy/803yBaHXCxgeGaNrFAYR3TpqyiwqWUUiI+t37USKCnRSpImmuAcPnTjPUmj27c7f0rI6HT1AWMdNYrLA8/uIGDx7G8M+WSWM/eKRIEWijTRiBBwztI0LRBQUqCljB0fumXCe4/zIV4fEZ18y9gBHwLWOZq67dx8AufguKrR0jIUAuoW4wOJksgiQwtPkA5jDLUtsVoSZGBnWHBZSJzU6OCRMi4SvutcoKUkTVN6vYJUa7zzmEQzEJDg0d01s0BtLb5bX6QUKLHUQwIyBJJEEDz08Yx0y6RxqDRnPc9YU4r5g0e4ROOtw9sAKpyeD9ERj3I+J1QNoeizfv0aydld3GafbH+Dg1/5MievvkF16zbpqI+xJfX0iFZ67GKGrGtEXbGeJuyOBtGxrRUbvYxrO5LtQQ8bApX1TKoGlESrKNK0xhEQKKnQUgIe6wxaK7RSgMA5hxDRjZkqSaJ0d1+A1jb0lEaouIHO1A19BcFajJVY02K8QMkMlSnQgjRLWR+NOLsLB8cTrFDM65bqqMG0hrPn9xlosD7Qy3MSFQUz52KsT5okFGlGUeSxC4T3eOcIwZEoSaJ1FDxkQGmJ0mBMS9u2OClIdbxvSAIbgwEbwyGDokBLiXeeuq5jzESi6RV9klSTJilplqN9Q57niCRl3gbGtyKZaqxjXtXk/SFWa5T1ZFkGc0tV1SzKktZYsu1Ngqyx3uGVxISSBw8fce/+faqyZJhrqsmcum3iOlYUJN4hrSQpCk4mNQfjKSezOcO8YH9nB+s81hjCWoGygbaZkxcJw+EQlCLLM4QI7O4YXGsw1jIvKx6dTDEuRlE1bQtCkKQ5WicxrkdJ+v0e5XxG0zQkWcLGaEgmJHXdcKuqMcaxleRIpdEqIU8LdJIhVUqSeLyrQQW0kmRZyqyeYa3BmjZGX7mlN//xM0IU4iR5ljLo5fSynDRNUaki7eYxQiJVwsNZgdcpIUkwCIRO471XJ6RFTlA5HoF3AWdqhM4QqhNyK4H2ARkex/poFZ93vHWPb9kx9AYfBFprhIoRW75u4iaGwKmwIZcWagmhixpdPib5EFj2nlNLOr/rBuOXRuZA3MQhBBqBefAAl/awJ1OCM/HpQjyOCFvGs8S9Gt8kLIeAFwEZQHmJFBajFKFaIA7uMzk55M3bFa8cLrg1n/OPf+dVbhwc4oxlLct+z9PLCis8iVU9s6pnVvXMqp75buqZtmm+01LyBwYtBR/dWzvtcvuDrmeqdsDrr7zx+26e/INAU9cc3LvDR599BhGSVT2zqmdW9cyqnlnVM9+jema16WmFFVZY4T9QXL9+nZ//+Z/n7/7dv7va9LTCCiussMIK/xOwMJZ54yiyhIubG3z2pcu09YJ543nUJHzh9dsExCk54/1p6vkpBdzr9ej3B9ERHKIL1HtHWZUsFhly0DttCxxweAI+BIx3eBSJVGipUVLz7r0Dbt69xYOHB9w7OmTmBKq/QTHqIURgenJEaFtCVWGmU9q6iuSKUMvAB5Zl6ZIg/m7JvaVYsHRCPa6YgY4wfCIZAo/oOt9IpNIorUmWjqbOnbQ8Dh8EwUtCNCIhBOR5hpSdp8mDEx2BJBWJFFShis4rpSiCZG0wwKUpCMHUOqZImrLBziuMaQiJpKckbdNgjWXZJydyAkuBp3PKLhmITgARRHLR24BUkiLvce7SM6ydsfSKHlubG0wPj9E6pzcccenplzg6Kdk6c56NrU2klJSzMUsfVBRUnjy3RLI7SZhVFa+88w7XreeZC+fo9/qMtjc5nNWkSXSsmmbBtH6Ib1uCFxwdT7h7/xF7Z/awbcv923cZDfq0jWE+m/PwwX0GwyFN25KOhow211k0Bu9t/KhaMVnMubw74uXnLvGzf+bTaHdIeXgTWx2SZClru0N+7MVdnr26y7Uzm/hFhbItD+894OjwEcKMsc2ctm4ZHzheeesmD09KGq/wQeJFoHUG5SxZnrG5uYX3HmvtaSzGUmQSRJerlkkcv2lC05rooitrjHWIU4FAgLcEmXevZZE+dhcQpkVMT5i9+xrZxg5V1VDO5izmJXXbYlzAeChdJIuC8+CjqKY6AklJETcdyTgmQhAxLkIqGhfdq5V1WGtRBLJEs3/2DObebUJVkQrN/TfeYANNMVS0xTpNY3AiEliJjhuaEpV0DkBHEmIsilKKNEkY9HvgfYwwIaCSlKppaVpDay2JTkiFojWeRWMphebapmYvKWn9mIs7a/TEBrUTONuS6ITRcIgE2qZhPBkjRdyYlCaaLI3EMoB3DtOaU4EEIdFpggsxdsNYx6JqTmMIaut4MAnUVjISklDVGGdJtCRLcxINralp5vE61qkgSeCpnSFbowFBSLwP0YHsY1xDoiVZkqCUxuu0m5MCZx0LDYNUo1Vc40pnMcYgVBQoU60QxLbxMkCuNaN+ghYeZVrk+ITD+YJer8+FwRrbieTBa2+SJBrvHW1TkWaxw4MQYNo2usfTDBkUMkvZ/eyPwd4Wx82E2TuvcPPXfg17631kphg8d43xYoy88RY+zWjaBplk+KOH7KUav7+FVDBIE86PRmxsJuyNengkjQtMuk4ZiU7QUlHXLdY6lFIkKoo9bVujtCJJNIGAtZ3jXQi0hFQlCNWJs8Gy3u8xWh+S9nLu377LmvI401C30DQNJkjSpCNaiXNsd33IdfqMyxYrNE2A0Dbcf/d99jc3ObM1guAZFj0yrSMJ68EaS5ak9Iseg16/64bhcM7grDklZIOIhKyPflRsJ3jh48Y6KeL9Zb3fY33QY5DnKCFxxtLWDQJBv99nY3MYiV/RRTU1gmIwZLC+TTqacnLwEGMNIJDFkK2tIU5L1KJkYgUHxyXlYsFkPGU8nXHp8gV83eKCwwbJtKw5PnxEOT2hl6cUvYy2qCjyjLzIqaPOiBAKqQsOZyfcOTxiuii5cmafT3z4Ocq6wVlDXysGacG8rtCp5Mr5/U5IVaRpwZn9M5wcHTKtGxZVzeHJjEG/IM8zkAKdJDE+QSconZDKhDTNOGlPmM8rRkqx1u+TIUh8QOOwJsYnKClJdUKuFDrJEFpH8Sx0mzelJEtTTqylqWucNSRJggsOuuiZZWcPAKkE/bxgWBT084w0S5FJQiKWsQcSVML6sEcrJA2KxljQscMFSqPTlCA13saNAc6CzDJI48ZIrCNBgIsikycgpOrI9rh5VAh3+lzjA4gkRacpUikaY+IaTyeQC9H9bsA/0SGDTkCPd6PQPdOJU6EwBGJXj87iHITAa0UewNx4j/boGN8fgG8/8IQVwmnvDUJ4UiQIp+JD6LIoRBBoLAaBcpa8rhhPJrz1zoQ3SslhscHf/8LvMj4sGSjJ+t7md/cgt8J/tFjVM4+xqmejs8lgAAEAAElEQVRW9cyqnvn29Uxdlt/lTPr3QyolP7a/Tt2YH4p6ZlY1/EI3/7/XaOqKB7fe5+yHnydLklU9s6pnVvXMqp5Z1TPfo3pmtelphRVWWGGFFVZYYYUVVljhCRgF47ZBZwlXzu3xmQ9f497t27x3/5jbx3OClF2RGluTN3UDSiGVRAbJ3bt3+cTHXmZtbcTacMRBOMC6QNNaTF3TlIa1rS0GgwF51qenW6wz1DIgVEIyHGGahsPjE974xm/zq197BaEE25ubfPSTn8KHlINJycOTKXce3uPu+zfY7OUMtMKGgAtdoSeiE0gs2WlBzI//Fq7o08itb4llwStOi2VEjKDCRwt5JN4lFmgRWKXxKsEhSVWClo+pciGjUhBCwFlPkCC1RCSaLMtPv9c1vcc5j1n2eJcSpQP9VLOXF3z06Wdoe5rKNcyaGj8YUFuH8p6eVuR5TqZTGu3RiTptcW2dj2SFcXgdHd+x9Xo8X4Ll354gYrv1urVkSY/NnU3qpuH2nTv89r/5VRQVKkkphlv8zJ/5WUSWUZVzxocPSAWEkABRUEJ0REQI0d0qJUpqnA9YJwhBsjickA49Ra/PhY0LtAcbmKZhbVQQfJ9ev8/R0YTX3nyXNMu5dPESeZby+quvoVXC7u4eWkl6ec7rr77C+QsX6V84z+D8eebvvkcIYL2nagxrg5Q/+8f/CH/8U8+xtWaZv/7bKGFI0gKh16mPx6TikI0i56c/fYGXr/9nfPWNezwct3z966+yu95n2NMsZiW/9htf5H/80lcZO8FgMKDpnJrOdoSz99RNTXAe59xjwWrJOKko3ngZxRvnYzxDkAqkxofoEJYEnDEs6hlSOrTwgKE1LV7lqMpBbfBeUQ3XOD464eToGNsYUJpZ3TApW8ZlJKqkEgjpsa5FETcgCeG6yJbYYj5Lc7RMqdqWsjVUxtF6RVmXaBEYZAn9xRXS+ghvZ1DAxqjH7voWh/OK+4djamfZWuuTaY1E0DQNqYpOfaVSenmG9z6SvN3Gp6qq8D5GAfT6PWZS0GqFdYG81wfbUlWGqQscO0eOJwkt0ht6ecp2VhBkhhQBJSVSqzj2ckk/i636Ey1JZCSWe1nsTGC9p2wbmtbSGkvbRke5lhKRRXGz10tprac1jqRpOZ5amo5IdCGQpJpysSA4R9Casq1o2hYpUwb9lIs92B8O8Q5wltIHvItxfyI4tIRBL8e4wK2jCWXbkCYJQQnmacP6QNHPUiSC2cLTpgohINGCXqJwIWC8JFGS3V7C9bMjzu5u41zgt7/6Fr/6hd/m2Y++xJkL55mNS371F/4eukgI3nJ49zaDPOfM3i5Fv+BkfES1WJBnBVnWQ+qM0dkR7Z1XaH5tTnM0QZmSdCdDnr9EsyYp/9k/hhakl6g8Y1KWZL0+w9GAay8/jZgfstVPOLOxzu7+HokWOBQmCMrWMF/UmLbFG4u0UTxtmgbrLFvrA0a9XRxQWcu942NE+rjNfNs2+HqKIpAoQZoJziSavTXN2taQO1URI3VMw3xuqcuStDfqYlk8xoKfzxiN+rxw9SwHreDewTEbRY/trV2++NXXeOsb7/LJj7zAZz/1MbbWRiQCvJTkWRYjXpKUfr/H2traaaRFaSzzWUk5X7BoF1hncM7gW0PZxLFmW0OmJYmOvtTgA9ViCqZBhhgLMFvMQUmKvGBtbYR3prtFSYJQ5Drl/IUrXLxwhU99+scRUhOExCFoPVRtS14UPDw65t98+au89Xf+LtPpjLfefpt//q9+BWzFwfEx40XNwgZee+82jx7eJhEta4NNauNACJq25b2bt/nVf/ErpDpBK40WCZ978y2+9tqr9BLB//Ev/q/5c//7v0hbzTFVjQ6KXGiETmI8kreMTw4pmxoBJEoyXBuwsJaqMTw8mpHlfUajDQrTspgvmFcLXAgolSJlwqxuqFuLswHpYWdtk1EiketDzg4zQpYzN4IkU2RaUS0qjqdTTqYzhmd36A8GNCicc0xnM3zwSKWicNtUfJD0jmKu7O6TiQCFRYsYTyEFJJ1DHyGYV3OGvRSjNKXxNLMxoBBS4lpBs5iD0MgkRacZ6SjFEgimBWsQTYuT8b188LSuwVuQNnThKE8KlVFUEkmGzAqU1si6xFVReIriVCAIF+/HDgiyi4GKP6Lo9jKE0G0A6TY3+KW25fESrFY0OqGQAnXrfRpjaGwDId5HiL9yKj7EJ6jlc9aTz1RRKHPd4aTBk4uuy51WzPobPHX9eezoAg/6Z7nbBnb0hC3lOL+efptnthVWiFjVM98Oq3pmVc+s6pkn6xlT1/8eK813DyUFF4d95rL6oahnVCq/L597CUHgvD1hlBSremZVz6zqmVU9s6pnvkf1zGrT0worrLDCCiussMIKK6ywwhPwIjp6Rr2Ma3trHN57QFVZpO4xGuYURUHTGlzwKBmz0h1L14tgb3eXIs87AaEmBM9stmBR1ugg8I3laHKbot/n+lNX2ewV9IucygVOas9vfvHLPHhwn/F4zHzR8MIzz7Gzs81oNCLNcw4nU6bVmJP5Ec38mE88+xTrRYapSr52cBcXFFLQtTzuEEPZEQK87ZzcT4gC4YlC9veiI/fpSlspCbITHEJ0woWuVbPxnnsHj3De8vDkhCTVFDKJhIMSnUAQ3eTOudOoAEKgaVveev8uxtgYk9DFWUQaQGCFoG0N59fWyUSgLwWjYUpfOQiW1Lb4+ZTQLBC2ISSKpmnoZ1l04XqP9w5EgvOOumnwVUPo906L93hKnvS4x/dfdpkhLzipKu69/ybvfu03uDKcs70+oCwn3Dm4zb/8B3OufujjbO3tszHcZjo5RGARwiGlRooskrQ+bg6RWtE0FcN+wYefeYZnn3oaZnOmR8dQ5AyLHNu0zOdzxGTMuwcPuXblKt4HiqIgyTRNW5Ikgt0z25w/u89wMOiUnG0ePVynPxiQaIWbz5HA1sYmW6N13r9xkw89c46PPr/N0+cL7O238cGjtUKqhBAUVhcE4ZCtR9y5xfpgmx/7yD6lSZnPFUmxTZokrI92+J//yXU+/9YtvvKN9zHVnCRN0TrHW0ewHm8dSkpcCNFlvDzLMrrmgwApBFIqBLIjdQRKKYTWSAnONJhG0rYeGwS+bcgEaAEYQTrMaJKEe6Xhv/uXv87UJKRKMkw1ZzeHKOGp25ZpZXjvJDCpG/prPda31zhz7gxKdccgFKlMufXebeYPTzCNJU2S2LlACLyQOBRVVQMeiedXb93nufXAC9tDLq+N+NwbN/iGu0mr+iS6TyoU2pRxjHkQvjOtEp14IklO52QIUaSqmxp8jH7IinmM1AuBEASSmsaWOOtxJnDcOPYfzviRrYSfODPkG/fG/MrDMbOQMCiio7RtW3xwSAJK5d37eYL3pEk8V4GAcRYTVTlCANcJa1JJhAggbNQHbcC7GB8xLltSDGiBUQqPYDqdU06nYBxr20N0lpBkfZJen8nDOe/cO2LRBPr9nDqUOOsQSNJUU5Vz+r2CRCcxXkQk1FbSWMvJvOH+rCTVCVKoGKXTOYRFCKgQkEoQOuHvxlTw1mzKxr1jcqAdHzNaG3HzwSF3Fob1rR0+/tlPkxVxflbzOVW1oFfkZGnCvotOUWSMcNFC0BOSB/YA32h2rl+kOLtF0isIxjJ+7W3cyFFcOEuxu432AkTG196+wRvv3+Sdu3f4meevMKtbbj0a8/k7j7BCYJEYBEZI6tpgmiZGCCAQSmGMxTtLLz9ird/Hh0BtDSezOdbGdVMqibcGrTqSPUBVl/SzhyTpewgt8I3hz3/qQ5wvEnRwaKWRBIJtMXVJ4z0zVyJshkw3ePraeQ6PjmJXszSj6A05mj1ibqKImimJlMuuGIJEKpzyJElKmqaYtuWtd97h+OiQtqrJ0xSVLNdZhcBTKE9fJeheSi9NSLVEAcEHTlTL7uYavSKjbVvKpmVt0CfJk+iU9dFlLQkIEWiMpW1KpG/R0iOSHrOypWoNlbX4IJBaUTYt66M+W9ubHHrHwdEJ/+xf/Rrn97YZ9XKkcVTjORdGBVd+6o9yeHzC777yJut76zz3qZfZXhuibcvs5BGD/oDSS+4fLfjnv/Y5xrMFF3e3QEpe/63foWpqWmPQEKMzgkQpTd4rWNteR2mBPOWOFYu6YVJWWKl4cHxCUaQoKbEmxhu5boxjavrS8OJHn+XMxhrrhUK7FjubIrzl2vk91i9e5Gvv3ubRpCQRcFSXnMxnzMqSLC8oihzXWiyeJMnRaUIIHussLvjHSU6dUzj40HHnAhk83lhc4vBJjGjBQ3ABIUErTdVYDBbn4ezGiMOjCc4FUJJgbXx+sBoncnobO9TTBXZREsoaScAK180BzWhnm0wnNJMJ1clxPAdd7xeBR6t4z7beYSyxI4Gx2KbGti0+eBKdxmgo2UWYhMfdbQggwxPXYvks0HVvCQ5scDihEFkG6z2SukI7QS9o8D263Ake26rhVBg4fd3w+NmMKBQEAdLRPW/F78t0g+zs04Ril4cnhqQWCBcwyrP4pmSJFVb4ZqzqmW+NVT2zqmdW9cw31TNdTN/3GpV1/IM372FD+KGoZ6xrvi9dnpYIgCFhuqpnVvXMqp5Z1TOreuZ7Vs+sNj2tsMIKK3wf0bYtf/tv/23+wl/4C1y5cuUHfTgrrLDCCiussMK3gHOCXCds9nIurhUI07LW7+E1PDR1JJd9dGnGDQuxxPORLefs/j69XkHwjrou0YnGeYcxBqV0JBMmE+aLBWW14MzOWiQvTqa8/eZ7vP3ODax3oDPWtodkeUaSZSA187JmUVYoGdgc5mwle3z00lmEbXj08AAdAsZ7gpBdm2TRGZq/O0IvdL+z/Ptb/ER0r8beyOAD/gme1HrPo5MJnsCsrsiLgp6ObkukOHUgRdLR0hqDc7Egds4yK5tITQrxBFXvcYBFYIxhp7dNKj3BGx4cPaJU64SqIWksTEtcbQitwXuHFII6S7HW0tH9+BBw3iFswDv7AddS/ISxBX7ojoHgIjGoNUnR48Y3Xufk3nsMOOHs3oAHB4fg4dJewWF5wP13v0I5vcS5y8+SFT2sbbs21JymTixFGSUV1hqcUajgyNKEJE9RHtApTdN2kWYthXWkSUpdV4Bid2eb3bM7DIY9sjRhZ2+L7Z0t8I62bUkSzaXLl+ivrUUSqKrAebIkY20w5NzOFp+4vsOZvCSpHtI2JSrtEaTFA8E3qKBBagIKXCAYQ65rksSTFRpfBIRWtFWLmRzy4avnWNQtD09mVFWFcQHfxW1YZzuS0+G69tyno2oZLSBAy4AQCmNMbAlvLdJZBAG1dK8LQZIVBC8I1tBag3cSbSykKeQ95JlLJL5gkCWsFQmjtQIVHP0Q6LlAO/H0q4r+Wp/N3U0uXr2I1rITqBSaFAbbTE+mNFVDkiY4fGxjLiUIibXu9HPYENgwj0h8jWss62fPce/9RxzNK0QwbA8KfBu6cd3FkniH95EgUkl4oi05EALG2G5EepK2xgW/7EaOCpbGNtG952FqBcLDSRsojWU8N9wYG46doV9YpJBYa6I4JQJK2tPz77uxqJXqzHo+uh+7NcD7gA/E7gEyIHAEB7iOoPWB0gqGUmKJrdrrqqQuS9qmIVU6CkRxoqGkZt563jiecn/W0hv0CNR4H8U4qRRt25DNWvIsY9DroxEY5ykbx0npCM6QyOi+90EQkiSuTiHGuCgJXkSJURJIxpCoOUMJl0RDlqXcmcyZLiznBpv8yZc+FMXdANZC3cxjRIiUCCXjcuccIXi0BNV4svNT6qZlNBxRnNnGz2aUd+6yKF8nEbCVD9k4f5ne+bNI2ecdA9Pb93h0+yE//cxVFo3l9smUrx9MIEloQ6D1gSYI3PL9vMMLdfpZBJCWhv60AQE2eGZlhbUO0UWlBO/pFRkgMM4xXbRxzcRBcPRVPP8BidZxnTVtQ5AarRNCa7AmpVlU+MWC/nafnfU+SZYSiJEBxnta63A+xjtKJXFx+BJCIM9zlFJUVcX9O7eZzqZopdjY2WKQF6hEIgUI77BVQ13NIDgSJeinCZlWKAHBe1RoWRv0yJSiKStAkuUpSZpEF69QRF9pnDdSSdIiQ6HRONA5jYsxF0EuhS9HL0s4d2aXc+f2mY4nTCdj7h2dUBvHM+fO0S8Kdo8npFlCv5dz++4DHt6+x8ULZ/nRDz/P3vYm7XyK8Z5Up1RtoNRTjk7GbG9s8Nz1p3jhQ8/S0wodClySx3gjLVHEyCatk9M7XXTgxs5vZdUymc4p2xaPR2hFkSYUeYF1Fu9jPMJiPkMKz9aw4PLuOjv9BFfOmPmG6bjl9p273F6UPJq3eF2gdMasrFjUNbUx3X1IRuexd1hr8D7QtoamLGmrBZkSqC5qRcq4VTN2DgldhI4iIPEhboCUQWCti11YpKasDbU1uAC9IkNrRXCe0/4nIhC8IzQ1zXiMq1poDSK4uB5ZQxASpVN29s8TXMDWhtY+Iu8ibEJHxgtAiDhPHIHGO8qqRnhHojSKQGMMYJBCIbUmKEmSJGRpijMtuOiclnQcfnyDbqUPKCFQISDaGDlDd88SQSN8IITlQ5FYmrFPFQjhHz9HxbVdgvCnz5JCSEIM1iIAVet4MK64X5dMK0/PBKypaZuKan78zQ9oK6zwAazqmVU9s6pnVvXMd1PPfO61N6Cqvqu59e8D6wNvTuvHcZL8YOuZ4C2bZ84xOXqEaZvv+ecHwT0voV3VM6t6ZlXPrOqZVT3zvapnVpueVlhhhRW+j2iahp/7uZ/jYx/72Pdl05MQgvPnz3Pr1i3K71NG9worrLDCCiv8YYezgr5O2cxTtnOJaSqGgyFWK5KjkrIsSdMcoTQBHwnV8Jj4PXNml36vB0Bd16RpJDOUlmgFu9ublNZQtg3z+YTehS2CtbTzGd948w2Ox1O29/ZYW98gywtaa5mWFZVx1I2hbkoKLVnbGLGTbfPcuR0mx4+ojwWJgIWPEQvh1C0kTolpAt+G/OcD7fm/UzREoGuTHIAg8MGfunp8gKo1lHWDTDUkeefQDgQ8USMQOO+wzlPVJgouKkYACJWAkMsDQkTLG14EbOfUGqU5eSqobcX7d+8wT3YodivSxuHnDdiAdQGLRQdo2gbjQxeFIfB4nO/EE+dOiddTVUJ0QkEQXaEez4dWihAc9997E+a3uLqjGa5l/MZv3WdzNODFZy/SP3nIV179GtPxIVoXXH/xZeoanLOcyh7dOAkElIrt+Zu6YnJ8xGIxY5BmZFLjhWK8mFBWNU3rCEi2trbx3qKV5OK5fa5/6Dp1U0EI5FnKcNRnsZiB8SgluHz1CkEptFa4pib4gBKajeGIl65f4dMv7bPFGHuyoHWKtBgQfIV1BhEaEg9e9gkyRyQZtrYgGoSUDNKcJhkRlKQycx7dfpuXLp3hpDJIdcBsMsM4F+eJkBjjaJqW0DnUl6e8298THfIy4KRHCEVjbBQTrAVrYOna7gj6NI0t8qvS05gGgiJrGkRS0Buu86FPfRyXr9PXiqEWjJK4WUeqBCcV52rPrGnI+jmj9SHnLpwjSeLrCymRJOyeucRiuqBtGlSiYnRJd9xSKITsOg5IBXkf++bvEN76OvWDWzz74y8hxl/naH7AfHKCSxSe7rW7OWGti659IHOuEwCWbJQgTrPOsR9cnGs+EkqpCLTWn/5+GRIqmVMGz7SuqdrA3EnGNlDVBoWKpN1SgDPtaccEiMSy0AEpRRRjCKdTIhCQQkZi0AmEUOBAeI/o1hUjBEFqhNAIJNVigWlqpITBqE+SaGzr8M4jEdQ+8O58wVsnC5LakAkLYkngxjknpKWXB/ZkTi9JqFtL2XjGTXTXawJSeHwA2zyWQmP4SsAu1zXvsd5grGBdQrYBTw9SjsuaO94gLOw9c50iy3EOAhmIFucchDhPlU5xNpL2QoJvPRsiEJQgSxOytQ0mX/s64b17ZEEgUPSsZk0P2P3ox0H0Gdy4jfnKV3n/cEJrDLOq5v50zlsHU7JeRuMclXUsrEdqjRQSKQReCNrg0Ykm0RppHGloo/tZSGaViSKb9LH7hPOspXH1ap1nbAMKj7MOvGWnp6ltlBy00hBihERQCTLLkNaA01RNy2I2Z3dzjTM7a3gUDkGeppFIthZjLVkaRYLTGe0DvWEPKSXj8Zi333mHfpGxu73F+b1dekkKIiABGTzNYsHJWGNtgybQTzR5qrt4CoczNaNegZaSuqpRUpEmKYnWUQAWCYjQrSlxrdZSoESUfINI0akkkwnKObx3NG1DliQMigEXL17g3Xfei2sOgXnVsnf+HJfO7lNP52RakKSKQZbw1Z1Nrp8/y3NXL3F2fxfXNFQ2RmiMy5ZxckRT11w/f4nnn36K688+zezeQ4KXsV1JKhBaooVEIiEIGkzHJANCIqWiLBsm0wVV3cQokNailWbQ79G0cT2UImCMAQQyOFLh2OwPSYcpJ0rSNJZXv/YNbs5fZWP/EpeuXkdnOdOyYlE3tNZGIXbZNaXrGBKCfxydZBwqiE5MCAQV8M7F5x4ZSW2lddwAICWhi/FxzmFDIMkz2tYzK2ust6ytDUmyFN9arO+6LXTz1DctZXMcHdciuvwdDmxcY5RM2do7R7UomRwe0jpPwWPjcXx2WZ7KeI81gFeKQVGwPugjhWA8PqFpoxjiZTxulWdkgwGL6QRX27jpw3WbB5bnI678aAHag2wcvjGgupEXYuRUEGF5QN1S/jhqirh/4/R7QjwWBEKQBCFjjBcBISTzRc17tw+4WQSafp8Uhws1i/mUh/cfftvntBVWgFU9s6pnVvXMqp757uqZX/rlf87xePzvvth8l/DAQdON1R+KeiZh9/wl6sX8+7LpyYfA2/MGoRMas6pnVvXMqp5Z1TOreuZ7Uc+sNj2tsMIKK/wHjDRNeeONN/hzf+7P8Uu/9Es/6MNZYYUVVlhhhT8caFq2+5rcLHj9rXeYLWrytSNmxvPGnQf00xR0LOQcqiuqIlHe2pa2bRgN+mxvbJDpDK0lly+fp14sqMcnnD+7z86ZfcbTKe+//zY333mXpmpoy5aPfPQlPra5zeR4zMGde3z9336BM88/y8lsQeha4++v9RHOgakpZ1N+694trG2ZTCdoHUBYvNA4FIrYDpzOqPM47uD3OqVjHII4/fdv/l509wq88wQZlkwcQgaciQ7jtbU+P/6jH+XyuV02NkYkWZ8s7ZzRIcS20UTSzzrPvJwD0CsKlNL87lvv8dqtuyxKh5QKrQSyo9c1QKK4c3zI+e01NkYD7t6/zdb4kL6pGPYK7ve2uLo7R5s5FkPqE9JeymI+Z9E2kUgS0UPnPUgfIPjOtayiE1TYU6MaCKROsD4wOxnzyhf/MRv+LvtXRuy/8CH+2//6v+eNtx5x/aqmlo4HJ8dcOiMp62Nuv/FvuPLUh0CoqHuEAEGcbmwJwuOdYTgYUk4n/M5Xvk61MHzy8iU2hwNaEZi5E8bTEo9EJn3On7tE8CW9PGdv5zw665GqKHxopTg8ekiapPQGPdY3hrRNPM/gsarFqgSB5OLOOj/6mct85jNnsYfvYebHeC+pyxSd5UhdgKvxtkQGhdAKdIrVgoAm4DDthNC2qGydvpRcfHqf/rjBfWXKo7v3SYJA6ygSCCmwXtMaT3AtzhkCHqRCoKIQ5G0cqCq6j5vG0B8Ooezjqym2bRFCYYOkdaCsi2KLaTuHu6dqLYn3nN3Z5bP/2/8DDHbAGDANOE+0WhLHvxYgkyhCmAbTzOP18Y9/5tkfPR8/u5SPSbwQSVAgkn5CRGErG3E3a3nz4AZ3b1R8+sUX+ei9hrp0vDNdkKUJQSiEiGNaEt3+AEoKEi1xXUyI7zY+ORcJt/j+kXgGBUKgBCQ6i25EEaC2pMKBh9YpnJJkqaCvJZnuHHriidgTF0ms5ViPy4TraLD4xaUTUqsnqKNAbJUuHTJ0bctVwAtQ0uO8ZV6X5K6l38voFRn7Z/cppxOa1hK8BeEY5prhIKdvAyofkp/2JgDXqXZKa/I8I+31CUIghUUHRdZGuk4vyU08wkcH+dJh6OIIQyDIfJQMtFT0FEhdgXdkmaan+hTDTdA5FkXrLMEu4keVCYSAmR1Tz0vy4RZJMaC1DWp3iCprZNkiKkfow60vfJVHX/oKH/lL/xus87z/uS/w2j/7H9j9iZ+AzKOkJs1yimHO8WTMfFEjgmRvd4NMSSoPC+vRrQEhl/IuLniKoFBJgko0AlhLNZnWkRTHIbTCC4kPAtO29LRACYFXGpGm8XW0Ai/ZLjJyHS+m8QKkRqVxjLnWIISgN8pZJIqqbXj11l2un9lnmGUYYxgMYxRFU9VU8zl5kaKlxjpQxONeG/Sp53Pu371DoTWf+tiPsD4a4q2lmk7wto1CcHeDUokCp5Ededyq0EVUOBKh0FmO1wkz4/AIFrXFI8lV0sVEpkglSJWgWVS8eeMG4+mMxnskGq2zKLzEvADQkqzXYygLrpy/xG+P1pEPDmgWc/6fv/AL7GwNUJ/4GFvDIcdlTZ5ltNYxWhuSpwnltOJITjCuxTpHKXNuPJrwP/zW7/Lo5nvMd4bcuXeP/9+//DWkEXjrqU3DuJoiHMyqhjzPee7pq/zEJ1/EW4sxhuCi8HKyqDkpDanOkBIWdUNZW2YLgzdTNgYDXrh2mYvnr1L0erxx431ODg/Y/6mf4OLHPsH6okTdvM3Wccs//ae/zIc3z/LsoE+/lzGeVEzmFfOmpbYBFQSpSmi94Kics7814kPPXGG9P+LevUPu3n6P6WTMYj5nXjY0pibTkrV+Qb25hkg1eZFRZCmgEUIigycRkPT7rK+vUzYNi8WcNk/QiaZxMRJKiS7kM0SfdNI9ong8ZrnOCkBIvJTY1tM0FdY2CBzCg5CPuwb4AK2xlI2jDoJnn7nCZz76Mk+dO8P5zQ2U8Dw4fMTRdMrDyZRbtx9wMpkT0hTynFffeJ3xzfsktuXRMEf0ByjhcAicl93TXiTxExmQ1nXrFXTBYB98djpdXR930nlCfSWc/tTyScchEAglCVJgfODg7l2mI8Pe89fYIDDqbVLrwPt3b7LCCt8Rq3pmVc+s6plVPfNd1DP/p/9z/99rqfluIYBULauMH6J65tvvjfwDRQiB3/jcv+WFD7/M5vbOqp5hVc+s6plVPbOqZ/7g65nVpqcVVlhhhRVWWGGFFVZYYYUn8CO7OecGsJ47Th4d8taDkoPqHj7rsXn2LPt7LQ/HY1pjSXV2WtxKodCq4Ouvv8nlq1c4d+k8/UGBaAwDWcBgSHL1Gu/fu8d7N24yOTomNQ3Xd9bY2NlgqFKKRjIxjo0kYT3V0FY8/yMfJ1cSaRuoTshUwHrNtDS8c/MOb3zjHeq6pGrqmGmfZLETC7FTTOTnl27nZbJ6QHwHgu/3dUeH6I6WUkLwp+WvNY62rmmrCpNrggXhDMDpRg661v8hBNIkQQSHdAbTVMzGxzhnTgn15e9JBAqBkJLKGmrTksiCn3j5JfyVF7mxfZb3bMPelT1ePJsyci3OBZzQjNaH3L5/n8o62qaBRIOSeOgIihg19qQwIILsNpgE8qLHg4OHvP7qqzy4/wZXX9rCmYov/Kuv8KWvvsUf+dhLPHVxj9nhgjdevc0f+fjzDIdDqoeK6XRO3ksQauk8f+xS997jg0MnmrW1NS5evEQqFd4YmnJB5Sy+CKTDHXTWZ3P7HGmaoZUnz1JiZoRAqwQfLMEHekUPJaOjTChJ3tNooVBaQiE4OD6i0AvObzo+9vwezFuE3kSPBihpaMcPoWpBKELSI2R9DIZAiTAVeTKI7fcRWJ8glMWZY5TMuHTtPPtO8serlq3NITfeusXDh/cp+lts9DbopZoiF3grcEZG57lIESJBCInDIoQn1ToSQkJSVhWpD+gsRWnNYjKjLQTWSCbVjExqdKoY9AZUZUtVtpjWQVkzPXiAnFtwlmBtdMVLEMEjvEcjaGV0QmspKZKEsm6wzsWxKgLYNpLqiFONIM4e8E8QPQhB1m8YT0+Y1xWVdUxOpnhjkAi0VEihcfIJSii2b+o6Ggm8iK8ZgzJEJOBDJ9xJGbtJBd/pFyEKXRBjS0R0gfoQqFrPeGapzdKt99gpeHrwiCe4rMfz/MmPBDEGInSRelrrxwKDJ7ZcF5HkDXSO7ch1oTPNIB/SJhJnDLfv3icJgSDjtV00NcHDWtFnx2WEpEBZG9cFotN52ZEgYWk8DKdrjYw9s+jSblAIfLdW+MdHH/ekheg+DUoCHoFHdQRcbPAQBQZsdz6dRziDkTLGo9Q1s6+/wfTeQ/Y++Ql6z++CGmLv3uLuL/0y0y99lWJnm2t//ecYnDtLuX+Ob/yzXyEkCTLL2X72OTAWVBOVyaAQoYvXEIpUKhJpSZMU5wONAO11p+iGbjQorHGxewQKh8U4c0otOh8QzuNFfF2CJVEZAhE723sB0kf3NKCShN6gR17kqK4VfWwWEUXMcj6nbAR21EdlCfeOSrb7FeuDATvbG6xvriNkjHd0rY0xNlLiAqRKkWcJTVVSlSV4zwvPPYdWmqpuo6CMREkdCXFnaKwlhDgnpNRI5buxFrrxqFBpD6lzfBA0ZcW4bQnDAYPdLbwzp45ipWBRLzgYT5mUNbroUfR6qKJAJnEdSRKNzlKk1hghuHrtKntnz9DiOLe/w7OXL5L2hhxPS3bW1gkIWhuw1iORpL0MkWiclFgLVWsZ03D76Iivvf4a55+6ROk9/+Z3X+Gf/sYXGPbXUDrBWcN8dkxWDFlM52ysjfhjP/NZfvozP4IUDd5ZfBDcuXefG3fucv/wkF5eEGhBQGsMR8djnr/2AnsbIxIk7mDMxrAHokerFL/y6nsckpLiOTk+Yjyf8md+5k+xMRoxSDSLesF8ViKMJ0dhbYBUsZgvKFvL0+cv8ef/l3+cC+f3GQz6TKcNt2/f4OT4iMnJhEeHE+7cv005nRCamlG/AKmpG4s1Dq1ijAeEU0fwRqYpU41Vms3eOsfH95nPZsyqmjTPY7eMzrEuumeTZSeREOJGyiBTMpljWsNiNmU2mzKbz5EevFSna5DxHltZzl6+wh/9yEf4z/9Xf4aLO1vkQhBsS2sa9s7t40TcXFnNS2alYWEtU2P45Ic/xNe/8juYBw/YmJ1w4mrS6VFcMnOFVQHlwcm43sQNDPL0uSp0Y1YIGcWOZV7Wk9qBEN3zTXi8+obT2Ry/5uOGhuAhlYJhnrE7GrKXpGR4TtIZSfp9UmlX+EOLVT2zqmdW9cyqnvlu6hnn3P/k9eXfDQIp43j8Yapnnvzd7we64MlVPbOqZ1b1zKqeWdUz34N6ZrXpaYUVVvgPGv1+n7/6V/8qv/iLv8jBwcEP+nBWWGGFFVZYYYU/BNhKBD0ZkMHTGkkQOuazu1iwhdMi9knXS+cmFoLpfM7JeEJZVhRFjyx3nIxLjqZz7t66w/sP7jI5PqGQkueuXGZjY52FbZmVcyZTT9AZoalIhefyhT3Oba/RTxRZsGS14nh8yKwJ1BIGRYExLbPFgqqpsT6QaYVAPnbghsdO5/DkP8MTx/1dQjzxv8ev8dhRjfc4Z+MfawmhjaZSKWLHGpZEVNwoITvHdHAOZwzOWkToiuzIpp8W4pGsDWitUEKQCMHVCxd5Jx9wbOHuoubj59bJ5JyeEXgHrYBBkTHs9egXRSRMkaeOpCzPsIlGStHl1nefTDz2MYUASZIxGK0xXlS8e/cEFTzHR3NGRY8rF3fYGGYcPTwiU4JenmFFShAe121SWZ5hIR6/PoAUEu8cw17O9aeuUuiU0bBHBriqxirBxu550nxIf7hBEI83y1hvkJ3lXYhIgEqpsNbQli3zco5EkQuFVIpWCx7ef8B6WjLMHH05JYQeQg8ixRpKknwdbAXe4mwDKiWoBOcs5axmZqcU/ZQsT1B5hhDRcAwe4VsyrXnh2XOsb/S5d2GP5vCI1qjohHYNgnR5IhBh6QXrrPvLFtrd6ZFSUDctLIl4rTHG4L1HBHDG4bRAhdgS3wdB2xpca0mtw1uHMBbvLd6ajoMRiBCQIRLgIoG6jW3RRQgM8h6RmHIx6KWLYhNLUn3Jsy859jh8QcQ4BYQidHPPWcdyoVhGxQQfGXtP3OHk/ZIMFdGx7x8zSZ4u5k1Gh+uT5wYRI1V8EDG+QUm8UrggqY1jXhush9AJbd9k1ltKDU+OzOX/P/DVOMfpNiOdymnxWnXrXeiMjbF7QhzTaZKSKU89nzNf1Myrmn6i0UWBlg4aQ101KCFJdYLr2vcvxTPrbCTRT6MpItkoZYxHEKcH1h1sR0bK0+sROmFEdCRz3JylROf6FgLrfeTsRYyiWbp0RQinm89SLfHWsnjvFuWDI9xHWlSWEbzh5HNfpPz8l6hfeR1z8Ry2nDO6eJ5Q1dz/wucRqWJ09TIb16/TmJY0i35zJSRCRFIxUZIiTciNhRBjUryLreeXJzZ0wocQXYt8KbGu01FDlD2Mi7EYXd8tJJCnCd6D6TaTySeuqZAyuoSVRogYzeKcR2mQUuGco3UtvudRMsGHlumiYl43DId90kQ/HtfQRbNIpA8oKRkOBrRNizEtWmt2drZRyCg+SwFKEjz44HHexbEXoqvV4ckTRZIohPdYIUiHI7L+EJlm0YU8m1E5S0JAndnBeRBEMct70GnC1t4+mfGQFVE4koIWECHQNA3KGtrWMJ1NkQGuXLvC3rl9zp/d4yPXn2Ytia7yaVXHgRV34qGUioJZN9ichzoIjhYlk/mcXMCf/RM/w827D3jv9n3uHxxjtjUqyeI6WjYUSZ95gAQRxznRU4uQ6ERz5+ARDw6PmC9K8iLDGIf1UeBy1qDTlDzPCU3L7Tu3WLQlQkeRqapmHDw64KPXr9FLU6q2pXSwNhiQqAQZYtxNAJy1LMoFpbW01pDnOT/y8sucO3sOj+fo5ATpJHu722xtrGNbQ1W2jGfPsJiOaRdzlLOxV4a1OGPw1iGF7+YTCKU5k/XxPqCUZn00ZHt9gQseoRRJXoAQaCmREkzbYNrONQ+dSOARKifr90nwSGfJtWY0HDEqerhu7XDOMy9LLp4/y8c+8iKf+cyneGpvi1RAsCYKa0KQJQlCSYQQrOuEzUGg9o7SWS5vDLm6OaI+PkKenLA9nuHu3KA5fIg5OeyEvrj+BN99TmLnjPDNyypPPHuFJxbhU4HgcXe7J5/NlpspQuiipEIgUZJhr8dGr49vKrROYseOFVb4DljVM98eq3pmVc+s6pkn6plvLhS+R3DOcv/mDbb290nT7IeonvkefeBvg/hMv6pnVvXMqp5Z1TOreuZ7Uc+sNj2tsMIKPxDcv3+f/f191tbWvqfvMxwO+Vt/62/x67/+6z9Um54ePXrE0dERW1tbP+hDWWGFFVZYYYUVvgk6BJrW47xEJpI8L9gQKUYobFVTVjUhhFNX8JKVieSURwpBvaioFjVJlqO84aQ64s2bt/nc7/4uQQXWewVnzu3z4oeeZ5QGTu7e4uDwkNsPFmxu79G2C4SwXDyzxWah6KUJhVAMsxEH928zn1vqFtYHfbI8JczAOHdadp6S+CI8UYbC4yo2nBayHyheO3yzcND1coGOrFr+Wbp+Tn8+eIKPDifnHR6LNAKVKISS0J0uOoJLdMxQCI83fCyPXnROpwAEtcyI92RakypFIhX7Z8/yuYOW9+oF93xKmia4ucPYaHP0woG3aAlZkiJFR0t3AkqvV1B3BJd3jzMzhAgEGR1KznmKomB//wytk7z1/gmFDORS8qFrF7l8dhPf1tw9OeLszog81cyMwAmJSFTngupEh+W564QVKRWmbSg2hjzzzDUykTBwBl9VWBtoc8HO/mXSrE+SFbRtQ+jIROMsChc9WYFuEIJpDZPJhDv37mGrhjxIAoIyBKr5Abt5zd7AQ3kXN7yMSIpIWtpA0k8I7RjXzgj1HNtqZFpgbcJs1jA/njMYpYzWczZ2JTrNEELjvKRdTJGJ5PL5La5e2cc+e5Xf+tJr3Ls3IUiPMyXO9eOUCZ3EJgLgTologcM7hZTxnBlnEc4RfCAohesIGonoSEWB9QGcwzqPaS3BOLwLSKE6d5rES4HAIUJHtAqJFAGVaBZtw8lsyv1Hx7z01FMUaYKSkhB8/PluRMYj5dStKbpx3HGHSCFjy3mVxGsBSCUJQuCIRJcX/nR0ex9w3nXHKIhRIXGMyG5uORdb4i9j5D4g+Pm4iUoI0ELhlcZZRe0Mc+Pw4Um654n5/gE6Sjz+LN1n/D1CwZPigXjiJ6XEB4/wAYLoSNP4ilolaOWo65bpbMF00eCLlEJoUunwqaEsq25TVyS+EyVjTIx1iOCRwSNVFEEiua5w0iOkOD33T36KTiuIxGI3z5absbq2WSiia9PhaZ3DBUDI0++LrsuDF5IgJUpKhDEs3ruFmVUEG4nNcHTA0X/3K7SvvYaajwnqDNa0DC6cIxsOmE8eoKVm+4UXGF25Rt3UJL3on5RCxa5dQKIVRZZQtJbKWJxzOOcI/oMrr8ejRILsnPzBhtN/90HSeo92UfwASIQkTzOs89St6+ZWd6VDiPE0Io7NwJKMjCS7lJLQib140DIh0QmzsuZoOqfoZWRpEu9/3RHmeYZSEuEcQgg21ta5d/ce1jrSNGW0tka1WOCdRyoV520b7xMeH89ziHPCB4vOMtJE463DSsdoZ59sbQOZZTStoa4W+Kpm2C/iORAC2a2LDsjzHrv7fXpWMPdwMj1hUZeYpsE2Na6qEN4xnY65c/cu589f4Omnn6Y3HDDs93j5uedZjB/h6jnHizI6jwlIAUpplFJxnASP9YHKKw5nC+qm5dqZPf7zP/un+Gf/+nNMpjVa3aWX54ikiPGVWNLRkCwv6G2sszZaQ3RkM0IgVMJ79w54eDymahrSrMB7DaHFCUi0xLtAojRtqLlx5xbvPzxC6ZTWWe4f3efe7RsME831S5dZNIb37z9gc21EluWkKkHnCUEGGtcynU0pnSMIwfbWBp/8xMdpvePGjZs8fHjAmeGQ3f09+v1+dFfnPUgSTFNj6opmNqVtG6q6pqoqqnkZxWvvwQe89aRZzmC4xsbmI3SWkhUF25MpJ4sFMstBSBKlUErQtjV1VRO8RwQfBVsPKinIeuvsDXvIesAwnMEMB/TS+Fl8EFjrOTkZ86kfeZnPfvpH+aOf+hjN+Ij5fIp1MYpK6Sx25ejmeyYlfSkptGBdpqztbPCxaxcwjYkRMJOK6TuvcvS7v83s84eoNt5HhCcu/v5UqTxdK+OzyrcWkJei5QfW2CdW5PjdZTRENy+9QwFFkpIlGVVTx/vJ91ulXeEPHVb1zKqeWdUzq3rmu6ln9na2OTh4xHQ+/3daa75beOe4+Y03GK6vx01P/HDUM7rrnOOs/V587N8DKeWqnlnVM6t6ZlXP/FDXM/CHt55ZbXpaYYUVfiD4yZ/8SX7u536On//5n/9BH8oPBH/5L/9lfvZnf5Z/9I/+0Q/6UFZYYYUVVlhhhW/C/QWY0DkP/QyZKpJEY3zLycmYsU6ROkEqGQlu6FqRW5xf8NL1Fzi/vUOhcqaTln/xm/+a195/n6PZnLTo8ac/8xmubG+wlkom40fQK1AipV8M0EXL4ewhV/Z32R0OSI1hYKfUreCwNrx7NOGf/spvUjUtvcEaz7zwYUYbm5StwbrAbDbHi4CQvqtAv10RuZTmIr5dQfv4p5funs5lKEUkZzqRIDz+wdjW2Tm892hFR1w94f8JRGdQZ2OLDmmJVpo0SVFCdq3eo9s3nJLgEdY7kiRhbX2dbH3A61/8IrfzHeitI73Ge4EN8feE6jLrXcA6RxASf0r5Bgb9PiLJkUpjlyJBEE+U69EJtzg65O67r/ORp0Zcv3iWtX5OqlJGwwJv58wnlovnNxiNBti6oqocebbOcNjDWxsJZ9E5wgOnnX+887QmtnVfWxvSz3qUd26zmEyYT0vOXv8QdVtT1i0PH91na2sL4WNLeCUlQhDFjc5x6D0UvT4ewdqs5PW3f4dqMqNalMymUy6dMVz+0Uuc3xpQntxi2tQko0skvR3SfBfXzPEJCK3p5Qnzwzu4JkGpIbs755hUNV9+812q8iZXzvT47Kc/QrLWQ2lFU5YE52kf3UcJSdZf44/+5McYH0+ZzVoaD9XCIZWMLd+1xAuL7Nz1iVRIIUmkhiBRyjMYjajLCYvGUjWWJMuQXVyE0gmtdTTe4wHbGHq9Pkm/T54X4KLI5EMMCYCAbQ0iSdCpJu31yAIEpZm2ln/8hf+eCnjp2lUu7+1STyY4lrEdsf2363QNFcJjEpoYUNB4z9w4SutpXMCFgFLqdAOTtZYgO2e7kDhncN6jVHyF0I2/SIRLXIjxDsEHROcOl1KeCnTL+RbwXYSKwCJwKkGkAmmik1JAdIR/8zxfmvCefL3lzOhcjVprtNYoHakj7z10YxkBoWt5LkSMhlFB4xzMZ3PqpKWpWoIX9HtDdBJb6mMsCRrnHaZt8V6T9gZIAqapIzktBEIohFIILWM3BClxS1f0cgnjSVHxCQ30iRVHAEILpOtc1QFq6zFYCLE7Q3Qri26pipu4glS4YLGLKea9myTDIcoJ2kcT7v69/4bDf/0rFGnG2ssfZuf/8lcRO7tU3sF6n+v/xX9KbjzlvKKsqjgWnSb46A72YRmJA1oIhnmKTjS+tXhpsTKAVNB1vmq9I9EpMi6oBA+9vEeiEoyL4z90whoB0ixDKRXd8cvzE5dTlrkm1jrKssbahqa1BMC0LcEHWmPQ+ZCgJS2OTEuMsxxNpggJVy5fZHNznSBgPJ3y9IV9skxTtYbgLWf393lw9w5KCoaDIVqp5R2EEDzWtHFdlwIR4riRUhNEgw2ONE1ASKwAk/X58Kf+CGpji9I6pk3Fzv4etqkoRgNqY3AmjnSpJEprrIPPf/7zvPL2Dd6594DZfEZVLeL7GoP2HmFbynLGyeSEv/SX/lOuPfMCSa/PzZs3uTm8xzATaKUpW0/fBoQC6zyt9QSvsdbTGktlAo8WLZUJ7J/Z56c/9hGuXdzg0vkzbG+NqMopx4eBwWgbhKaalxwvSqz1bErF1nADIVOEtHjfMJlNeOWtmxzNSpwQ4Jq48U9LQDMY9rl15x7Pntvj4oULfOjDL/PKe/eQwVAoycXzZ7h7POW//P/+c0a9Ppv7W2ztbHPl6ae58szTBOEocoXSHhNq5k2JrS1PPfMsz7/0YdRazn/993+JowfH9GTKn/jRl/nSF3+Hpq7IEs2L15/i7njKoN9nc33Eme1Nzl48R5JnCCXxdcNAJ6dCrnAOLSQ+OFwwWN8gg+zmqiBRGcfHY954+x1u3LzNM9evc/2Zp5BCYJommtJxp2uCDxLvW2KMi8cai9DxfqBUijWWna0RqRKE8oimNQx7vW7sBZRQqABN21K1DUm/R7+XRi3fe0RbIVpIhSLr99l44UOsPbVJsHMefO7folsDShNQiA8sMo/X1A8+XT1ed7/5aewDzzbLbn5hKdVG8VLpBLzBVDOmj+5z8OAhTV1RLiY0Tc0KK3wnrOqZb/XTq3pmVc+s6plvrmf+6f/n7/F/+y//K/76//3/8R3nzx8UltP0h6WeufTUM5w8esj777z5vf/wp0f4wX9Z1TOremZVz6zqmR+meuab8YepnlltelphhRVW+I8Af/Nv/k1+/Md/nL/yV/7KD/pQVlhhhRVWWOGHHiED4SU6KKRIEMKiAIQiSwddq/iliy4SM96F2F7eSbzKuH085tFXv8pvfOXLbG4M+dC1p+ivb5L2+vRlIMGiRSTfTIhOvKLoce1Cjm0WDIRFlmOE8ygjMfOad9+9wX/zD/4hSjo++9lPc+na09yatDw6GTOflzjjUSi8cB1xJhGnTcDDE4Xq0pF6Wp2efvbfPxoi/o73nmUUFR35/SRDJ6VAq9jSW2vVuRkFSkaSPhKvAetiTxwpouNUyuhi9ALwHiFD17o6uuaM89TGkI9G7F+6RLtYcDZTPMglD5Xn2MKkDYjWIIIjWI0ua6ZVTdm0OKFocKQEkq4F/GlklqBrww54CUFCEpjP51Tjh6jFXa6eSXj/5iNms4ZgPD/xqWsMhgmDtRH5YIRwC6YnDU1jGI+nNG1FL88JXtK2LUuSzC9dfF00QZIkqCxn2O/x3ud+k8NbdyDt8VTxCd5+/RWOxsck/SG7Z7bBpAgSEpGR6QSL6Bzk3fWwgUHR50PPf4j93R1eeeUV7ty4QWgm/OiLZ9haSxFZTrr3IqIZY2Y3aSbv4/J10vVLqKRHcIK6npD2CqToAzk2TLn+lGAw3Of27R6vvvIur33jX/LiS5d56pnznL+2T7ABU2mc8dRVCU1JT2f0NnMMKbO2ZVF76jrgUKSJjqZUAibUqODRIgEUZYjX21qPtwEhFEppnDXUTQDhsE5QVwbjHHmaEbBdPJrBOkMqfTdPPUkQJHnB27dvc+P+fZJUc25zHZKcw9LQyJxv3LvHcDSgN+jhWssoy0l1HCcLU6EIH4wrQeEEWBmo2oqDyYRJ1eCkQmmNEt0s9AotNELT2XcF1hqkjlEdUkqct90M851jN6D00s7ciZEf6EQQY/Ji5/UALmBCoPUeYx0qxDke4AMxNsv5HqP26DoIPH7NJ/G440HAdcLf0nks5dK3G1/GeQgyBpS0zhKkoZ+n4D2LxuGsQ6YpWmcURUEx6KFnHhrihjAR1xKlNQpi+3spO7EwvocSEiXU6br7eLl67Ol+0vEdiJ/NEdeRhOhObp0nS6CXSapEEnwXx0Bca5SDkCi8aTGzKeLBIRtnz2Luvs/9h7d5/f/199n6+I9w5qc+y+Yf+ST65Reppguks0ghKB8GrAsE36K9wwuFCHGzW1ASJ6BxFuPAe0uiQSYZTmqcsLTCo5LkdI1VzhFC3Fy3TEAM3uOxXUcHh+w23wUETeuoaxM7cRFO40tCdx9wrou+EfHnTWvwMnbZCq7CGYfRBikcw0JyZbjB0dGUpjE8PBqzs6145plnGKWSopeDlCgd1/tEScrFgvl8Tp5l7OzuxI5mUiCDIASJsRYtYic0ITRtU4IAlWhQGdZYjA/o/ho7+xcY7p/hpGyYlxVNY7h6cZ8s0SglMcacjmsXPI1pUULzzJVzjIYZ16/uIXwUr/Gxi1iuE5zzNG1D1ZS8+OLLOC05mk44LEumixl9XUTSW2qsCwhrmS8qDk5mGAu1tVjbMraWu/Mpupeztzbk4t4G9+7e4/mnLrOxucGLLzxPW1eMBkPyLEMKH6NLVMbacMQz1y4ynz8iURoCzBdz7h9OKZu4+U8JsD6uO1IIkiTh3v2HzBcl+ztbnDmzx5ffukkmQxT1nGDQX6c3HDLaGHFxf5fJ/Ucc3L7JN6TleHxAOD7gU9ef4uXr13nn7gPmsmF3/wzbezu8/vo3OJlUDIZDrp7Z5eUXrjErT3jwyGID5EXB4TvvcHwomR4NSb3g66+8TkgSeqMBl86fJSOQ65QsSci0pEjk6VzVOiVLYocCpRRZb0CqBEePhkxOCva2Ruye3yMT4MqKedOgCo1ExvGDwLk2Xru6xTcN/UFBnvfIs6JbFw3We5xT6MRhqooiyxj0BwAcH5/Q1DXGOURRYMqaEBzOxs42+Ni5TiUV4/df4cGXvsLD330dV1p0oqOzOoRus0PXXeC0LcMTO598ON2SQDcPhVDwLZ6XeOJXT7WCELDW4IIHBSqXPHj4kOAM1jVdR4cVVvj2WNUz3/HsAKt6ZlXPrOoZEeKa8O03Fv7BI3b58j9c9cz38Zb6jTdeZ319gwsXLq/qmVU9s6pnVvXMqp75A8Zq09MKK6ywwn8EuHTpEteuXftBH8YKK6ywwgor/KGAFB37JB6TZIJIqhlrcAJ050qNsU4SJQAh8M5z694DZq1hY3ONsztbXL9ymfXtXWSWM6kNdbPAhByUQmcZbdNQVQvauiaTCXujAfPxIYuyJNEp5TEkOmN9OODKhX2OTo6pG8PheMrBccnRyQlNWXXZ850AsPwb+IBAIATLVsTLv35fXeCbEEI8F0HE1xXdF5eRDlXbsqhaiqolC4o0iG5jR0diCXDeYZ3Ddg7MIGPbaB8CT1CbUeIIsSG68wFrLHlesLaxwdrGJuOjB6wpzVqWcZgojq3jYDzDVFN0MASlMcZydHzCeDKldZY26Bgt5mL8lk3d6bnpKnNir+dITLdtTfCGXhpwVcW9+xPa1rE9ykj6GfceTmgai5SSy+eG5LmilzcUqubOjTe4dPEZ0rw47dATuu49EJ2aWicQBPP5grZtMMGjspysP6QuF8zHj6inY9I8w7YOGQTdgEMIgVIK/83XVcSOQps7O5y/eoUkgXlasbcZHZhWpDg9jO/vLL5d4JsjzCJDpesIFFIOEKkjhAyCRhFItGFvS5HIIc6c5c237/P2uw85npQcTWZcvLBLpnO0VMSYhza6MaVAC0U/tZGACYJFbanqOg5VKQhS0LoWLRKE1LQdSfJkZyMfAq311I1BSIs1KkbACUmeZQgbexR4a6Bzxz/J4WdZwXhe8tbNWyglOLfz8Rhr4ixZlkGA8XjC+7dvMZ+UFGnK1toa26MhiY4bk0I377sFAogdmYz3CK1BKXw337TWaKlOYyhENzd9RxhJ2X020RG2wZ865zldeTh9vRhlEi+w98t53kVVBLqouYAQgUwrZOf+fWzdewzRdSyIL90RWDxe75bvtSSql8JgWC4C4vSnHm98CiG6R1uLk5Fw00qSJfF1nYpjV2pFlmQoWUKwOGtO11shomvYe38aORC/Gb+vZIy8C93YkLL7dhCn5kJOrxFECs+jhUTLSO4ZFyDTaOXRaim4RMEyhEAQEqk0NBVhUSHbGjedMrtzl3bYp//Ss+z/yZ9m+JGXUJcv451EOtcRh4HQGkwgtsUnPCHKhtOrELo1erlUK+K0jhvlwuPlO16s0+snACUljbFYEWNQ5HITWPfj1ntmZQUCWmu7NTr+Cd1n9KEjn50nz3PaYDHGYr0DpZhNJ+hiTH9rzplLZ3CNpawrvHe0bcOg32OYa/KihxSQKEWeZmRpxsGDB+ADg16PzY112rbthmEnZQgJ3sWxGrqwISEQSpOogLcOLzVZb8Bw7wwqyWiaGU1T44MjVbqLY4pXTonlXOyuH46dzRH9IuHC7gZayNP7lAgxfsJ4aK2jdZaNjS1OnGBSNwgpmNQLNvuKRKUIKbAh4FpD01pECHgJlfdgHXPnqZxn8fARzWTMGeHYzRW9VHBuZ5PRcEhTVaRakyiJ0kvpXpEkKWv9HOMsWmkCgro2tM5GV6xQCKJYENMV4piflw2T6ZyqrBgVCd62+EQRRIJA4IOhWFvjzMVLfPzDL/Le176GNxUP797EtQuu7m2xd+EyPu1j3Zd55cb7GGepjWUxnXNxb5cEz6iXIBVkaQLBY61jtL5OkWc0VYMxLUWvz/hkShM8vbJma3OTe0dH2KYF7+mlmkwLiiwlTzOKLCO4Fu9jzI8VgnJWcnQyYV4b3rt5m4P5It5vgufc1kbcNOEduIAWCc432NbgW4OynlCkuDTFJBoQGOew1mJ9wGc5KutxNFvw3s3bCC0YDYdY55gvKu7fu8/u1gZ5103AWYeQCWmWkgvBvS/+Fge//iWq926RKYXTIJyP+oAEUkWQEETH7Iu4DguiQOlFQPhu/nriRH9ifT997PhmdM+U1hmaasFiNmU6HoO3cRyJBNyK0l/hO2NVz3xnrOqZVT2zqmeeqGe+j5t+Htc6Pzz1zPcTdVVRpdmqnlnVM6t6ZlXPrOqZ70E9s6qQVlhhhRV+QKiqivv377O/v/+DPpQVVlhhhRVWWOEJKB/9ZadkCgKvohvYBYsQ+pTAsd6jtSIvckBQyYSbd+9SeUN/1OPp60/z0RefwwTF0bzi1sNDFJ7GC6zQpMpjminNYkpTzslVyub6WY5mMx4dn1AM15lPay7s73H27D7/iz/9J/jV3/w8D8cld6Y3ODGe8fGY4CLxkaqOJhJLpqwjqeIXT4m1+KWOVHnisz8pJnxrdMQh4ZREXNJXIQSMc0zKhvGiRqcVPS8pAiRao5SOAoz0OGtxzuGE6Bx/USSwrmvf35FHSwLJE4matmlZW1tnfXOLYjDgwRuHDJSmn2VIpTm2nocnM+z8hDy0hETR1C2Hx2PG0xnGW2x3da1zVHUDfR+d7qL7fF3HGSECUiisc0gJ/TxlelByeLig30s4d2ZAf3PEv/3tdzl6NKGXaS5d+BhFP2XDCXbamhtv/Dbrw202tvdRSsHyigQgxEiNNE3xwXN0eETrLHowZDvvkxcjppMxtp6iQk2uBG1tSLQmJN01DgEhJEqJzgUZiSQXPGW9oBgOOHfpIpujhLI3YdA/xqqEJqQEEnS6QSIEoRlj5g9p5/fRiUUnayTpCC8V1nvwkIiAbyvWClgbZJzZfworU9547X1u3bnFg4MT9E9qzu7skvZTBJFMiy3YHUq35FmBzDIUGm/geFrig0BIhU5TjK3R0iKUxgaJDJEQRSlCCFgbaIyjUgKFw7mAUpI01fSLnLZucXi8szyWmpZjPZCkKbOq5tbBI1ItWd/YRASYVQ3r/YJhmtGWJffulDx4NKUOLVfPneO5ixe5uL1FHewp1bucPdFtGiMjil6PNNVx8xIB/US8nZBLQv+xK04KGV8pROeuc933TgeJWL5DJIGfaOnvHQjdfQ0Rv+wDMniUDOSpJpEe5QMC2f3cco7HjgDBdytAWM75+MkEjzssxe5S4XTe0x0ePpKdYblpSwqct5GgMw6bhtMxmWiJTlJqosMvKEGi0ujm7ZzsEolUitCdL+8cQUqWAkZguSlKdiLB401jQgiEW6qe8c+SeJNBkMhAJlUUFDqRwIsEgUMhupbz4tSw6ARopRGNQyxqpDc0Dx5gH+4jtja59J/9ec7/zGcwSUHbBvzxHC1kJ5yCDD4KN2J5LuM1EwQI0X8tpUISx4W00b0dD7rrnGBdvM5hee67jydASUFtImHtnEctu2F1y7b3nsmiRHYCkpKiG6udi7MTRazzCOfpD/qIpsYHgfEBIRXTBwdIUcBol/PPvUS5VpMoaOoGZwxSBLTSaJ2hpCfVGptKUp1y985t8iRlY7TG+mDEwcE9BF0HCgSJTvC1RfjHIooXS8E9wZsKen2S4Yje9jYEQVPXtF08AEHQNgYhIU0U0guCDPH6InDes9bvsTHokUoRhZdOQPIhYL2ldTH2yYR4HlxjmWcJRZEyqUsqW1BkMabCeEcwDhBsjAaIVLHwsWvD3Ahq4/jGN96CcoE/uMx/8lM/hqmmZBLOXNjHW4s1Bu+7WAMCpu3E6eDw6DiZsTStxQuPVN3YsZ0bOBCFwRDjTE4mM6aTCaNUIXwDIT6DRCd3TdYbsHPuIh/5kR9lKDyP7tygnp2w3S946ZmnuPTUc4S0x/t37/O7b7/NZDbjZDJFBsFLT1+mmo2RrmVRlWRpgiSAs6ytr7O5scGEMYnWbG5uRKG6bjFNg7eBBweHHB8eUs7n5GmCFoH14YDN4SjeR2cT6qahbhrGsymzRUN/MGI4WuPBo7c4PB7j8Yz6OX/6pefYenSP0EQncy5zwMTnB+dJSCkV1NIjhcd7hfcqigRA+swV1q5/iAePjvjyq6+icsWnf+yTJCphUdV87ZVXeeHZ62xtbtLrFVSLCp33IdWkQXD3c59n/Ju/hW5aRutrLFRAex8VRS0IuSQEB921QXYbHwCExEhLGjTSd4uYd91C/MRz1gfmt3y8WaF7HlG00JRUJ2PW+gV5ogneUi6+lbqwwgqPsapnVvXMqp5Z1TPfbT3zfUV8HP6hqmekVOgkxZr2+3YaVvXMqp5Z1TOremZVz/zB339Wm55WWGGFFX5A+OVf/mV+/dd/nUePHkUnxgorrLDCCius8EMC2RVtASckHoltDYPhgKeeu8xrjxY8enTIbL6gtJZU1Hzy2WfZ3dtjXpUcHDxkZ3ubC+fOsre9wzu3bpIM1zBSkxQZZ0YjtFJMp3MeTo5Y9451oJCSk9kxr7825kuvvs7D6YxL165T9IeM3/oGOxsjfvzHPkkjCn79K6/y7o3bLKoSrMFaj5OCNMmIDJnsWg/7JwSBrugMgQ9oAI+Z1N8fpxY7HpNzosu6F4E2eGa1Yd56+g5SD8ZGIsj5KBAIHWJQhVBIqWgCNNbTNi21aemCDQihc4PpAB0p2NQNO7t75HnBZDxjPD6BdIC0LbSWJFUM+gVrviCzEp9CmiasDfrs722xtT5ia2MbrTQIGAxGVEqdmpaEiG2dAxKCIhgohj3aKmHcWvJ0xM7gkP29jBevb0OT8uWv3aGczfjEc+dQWiKkZfN8j+HVIXf/yZvcvPUuTUi4evUSS33GEwkfJRUiVXgC1WLB0fGET37io2ytb1DPK+7eeovtjQJrFL1eP8ZUAKiASIlton13bTvlSioVt8n4QFVbUhno9SU75xPCTOPpg8wRGIIHL0eI3pC8d5a8PGQ6GTNfLJC9s2zsPkUqSoKbYatjhB7SOo90jh4z/mc/fY5PfPQcdx8F3rgVeDhbpxjmyBRSFggCSitQ0a1nKotSLWtFytogY1QkjMeO+cLQzGpUnoKIjvFCSBSKkKTIIsOagurgiDbTeJmSe4XxNYN+ymhQkGcSSGmUZskUeyGjC71r722qisl0zrSs+dD1q+R5n16qEVLwzGQPMTM8ffY8z105z+Gk5HfeexfnLLcPH3J2ZwuBJnoxl+JYdO+rILu/fSTp8bEtfjXnZHrMyfSIi+LsYxeyj85j0TmrY1cBiOl10S3nfUeGw2nHAADV0fgEgRQhRqlIgcwyesqTSYtzLR5Nnqb0lESojmj0LhJa3TEg48arU0ttJ5SJsHRNx8Uhpr7EblU8cTzu9EyLuN50MTC5zvCiZVE31HUFQjLqFaRJiioynJRYGwgmktQ6BeXBtQYXAq6LN3HSYZ3FBocKcZ4uzehCglBRaJPIGDnwLcTNVEvODHokUrNwLd5Ygks4qR3zytAGi1AKpzSJFAjpwDmEFnjT4hYVsmpxh0dc+PALbP/sn0Ws7TFbPETgyQpFdmmHajqjWSwwTYNeKjIdKR8jeGInL+EtqZT0ih6lbZHGIaxYGiEfu6DlE0tzEMvV+/SLtjvvvuuGJWNoUfx1JWjdkoCn6zCxPCSBVAKlU4QSIJtOSpb0BgMGScKj4xO0kBzev8/to4rZ+hnOXjrH2u4WzjqmTc37N+5wMB4TFgv2nt8nU5pJW/Lw8AThKp77yEfZ2dzGtxaQmBCQIaCJjl+COJ0DUgtc43HGIq1BYVjb3KG3tYfK+zS1oakrrDMURQ81GKFpY1t80yBQCB/FZC27ud+2COejoAU4PK4Tsp0POGtpraM2lnQ4pD/osaMEO2XJ1LTUXmLR9LRmsajo65RLly7y1NOXOXKWg4VhOvcsKs/Nt9/lC//yX3HrnXf5F2sbPHVpl/2tNXpZwvjoiHoxjwQ/kiTNCYmmbWokgTUBaZ6hhAY8jXEYU2FaQxDxqnoRYuSPcwQEOu9FMX425/K5fZTWj2VL4dEKyqrhzsMxv/n6e/z0hz/Oyy9/GOkbtPXsjobMq5rDhwdsb2+gEZwcjXn08IiXXnqGq3vrmEWGaVpaLzm/dwZXVsxmc0zbsD7oI2yMPgHL+XM7OO8pioJLO2ucGb5AuSipqwpnDN5YenlGv8iRAhblOk0bBZHxvORkModgUTKwXgwZrG+iBznDvmb04Bbz/+of8vDkiHtJoEo0a1JHIc47+jLH4nAidgqoXELeBHpVw0hLrvzv/hyjH/kk/bBLenebgYJhPqIoeqR6QPmS4cyZHXp5jhKSICWD9U0GaUbe1AxKjxEeoSxS1sgA0gS0ECQokCBcNy2DwC874IXlU5frpp4k7vh8vNx+M5bzXRIQxiAaz4ULF/iLP/ocR6NtRF7Q14pyPgPvyNP027zSCisssapnvi1W9cyqnlnVMx+oZ76fG5+6/mM/VPXMYGOTZz/8UV77ypee6Lj7vcOqnmFVz6zqmVU9s6pnvif1zGrT0worrPAfBX7xF3+RX/iFX+Bv/I2/8YM+lA/g+/EgvcSP/diP8cUvfpGf/MmfpCzL79v7rrDCCiussMIfNrgnqb8AMgTaxpCuJ1y+eJl75jaL6ZhEDri6vYsUMBz02dpY4+Mvf4TD2QSVxtbC98dj0uDYIKXX73N+NGRvkGEWY5rZBDc+wfYK7j98xIODA+4+eMD2xjaD4Robe/tcvfYUBydjfuV//AKT8ZiybPnkx1/mzoOHHB3cZ3xwwuX9XdAptXEcPjpAaRVjtJal6FIf+ACWZeq3fxb5VoTb0h0ZOqfkaZt+YlcXHQRrgwGboyGboyFFnpMmGqVV58QM+OAQIhbXrQ2E4GKnHOljP3Sp8KJrpN6Zu0WXNd/rDRgM+lTVgjt3x+S9nBSFcg5fN1gErU5opUR5j0RRL+ZkUnL13D77f+qPkyiNsQ7rPVevXOXL793knVt3MKaNwkpQyKAQweK9odfPqdIRTVinau/w6T/2EpvbI8h6/Lf/5N8yPjzmqcs7/PhnPgTtmNfePmZSOpxMadJNLuydYW19Ddta0lx94MwLIaPIIiVKa3a3thESKltT+5YiS1jvDzDWkPQy8iLBdzQCJNjgo4N8+YIBWLoykSRS4qb3seUtKB9RpBsonaIQ8bwjQUQBxnpIsyHpaIBtJJOmR3nk6fd79LKM3ijHVicEY/Be4USBXZSMMkX/YsblK+tIuU8bMkofmLsFhTskD4ZUe1QqsS6OAds2BDlnvT9gkBVUjeJ4VjKZl7ha4URGXoxoW48xnmADxnZjWoAUDiUN+f+fvf8Kti1LrzOxb5rltj/+epvelk+gDAACKABRoppNsik2RT6AQT0w9MJXvYqP1CODEVKEGMFoUU2xo1tqNpohigRImAKyUA6Vlf5m5vXm3OO238tNo4e59jknswwJFCorSeyRcePePGbvZefa/xj/GH+i0FpinWf/YMx4NkV11+gNHBaPWpL5QqC1YmEM49mUYj7jqYvneHfvMY939zjc22dne5Ob8ykX6ooKGC2O+MKzT6MIHUhVYYLI07hcm+RvBAKpJEpI5nlBXgX3PRKefu4ah66i1pbZbEYcZ81IENc0PoVZBksyPo6j4/ssz3OUio/ToJxzSH/ifpVqqTgtm6eOM6FwHiprkSpBS42US4GgGclCcPaJ45EJTQLVMjb/9GiUxrDr5ekRBaJZOfzxzxnXXM9S4oWgdBYXJTjrqZ3HRikijoniDmnSoqyHVNZhHGA8SoTtdi64ga01qEg3+78k4T68Xi2v+2VLmEAimzvkNCnuhGBWlNRYtIdYK2xVYIXHq3BNCd9ktftm373BCYuToKMEPyuYvvEO/vI3aX/6s5S7+/j9XezRHovDPbrPPo8+c4ao28UWJcvEiJPF06GVIk5SojhmkRfM64pFWYFoISSN6BPG+gmpcd6BdwjhT8IuGqe0FIJIh7EItq5DmtiykQ7RjAZanl1CXD3LcTSENC4tcdaSz6dEaYYzHlOWTEYzoiSmnM248+A+9//D7/K5L3yWM+fO0euvk0URG90e09mcSbGgdhIRx+wd3uXgg1v8+l/6BbbPnCGJYhaLBVrHSO+Ckx4wUiC0xDuJB5TUJKrCqLDea6lJ0owoTrFCkbsqEMyEUQj/1//hf+QLLzzDpZ1NNrstDsYjlJQoKYiUJBaAcUjnsQ6kVsfPKOcc1oF1BuEdMZ7J0Yj7o0MKJFGc0HMS6RXeK1SUYpkynI6R3hO3Mt7bnzCzAhll9HsbJEnKYHubyXSKdJbxZMbFnS2iJGM4m9Nq9YJr2HmcjsmrkkRpUq1QEubjI3xSUJSGfD5HSo3WEo/AWQumoJ3GCCKGswWtNGK0KNiblLzw/AaXtrc4muTUxpJoiYsyZsMj7r73NloK3N4Duqmmk0RsdrrstnLuPXrAg92HHA4P6fW7TGdT7t69w2c+/SKZjtncyNCEEU8ijdjovYC1Fm8rLu3soM6eJVIaZQxPXrzUrIuCcj6j3W6x2e8RKY2ta7yxCBwiPN7DZwHvcc4jpG5SAhrBM1bMF47DfMZ4cgSjMVZ3ICrQkadMBJNjQQQWQqKFxLiI3AqmXrDVk6TthCjWJGsDKlcDlm4as9XvE4sIXzlcXbO9tcmg18cZw2w6ZTKdEiUZMeDrmoc6ZtEbEBc5QmmkMShp0BpiZRH5HKxBeAkyAhHjZEj1kM6RVhKkxUmLx6KcPlmcPrKenayp4I3BFQWbF7f4+c98mmr7PF4IBr0e8+mEsswx5uNLo1jhP0+s6pnmJ1b1zKqeWdUz/9F65uPE7bdfZ+vsBc5evvaJqmc+RomG6XTK97//Gs8/9zyRWo44W9Uzq3pmVc+s6plVPfOTYtX0tMIKK/zM8M1vfpN/9s/+Gb/5m7/5U3+vZ555hosXL/7U3+eTjG63y6c//enjKOIVVlhhhRVWWOGHw9MQgT44VJxzSCGpy5rHjx9jijlXLpwjjhNUnNHpdtCxxtYVR/t7HE4ntAcDWu02WRKTiIhUa1pSkEhPV3sqBQjLrMyZOMPd3V3uPdxlOp1y6fIT9NKUKE0QTvDo8QHj2ZyiNiyKinfffZ/9hw+pZxM6keD8zjZxp890UXD/3h1a7XZDC52iqD4iFPhmdNYyAv7kax/+mR8qFDSuzNCEAEu7r+dkLNUy8jxwVBKhFCpSwVdq1ZLLxhPm2HscSkIkNZLm9ZaChAN8iFAe9Hv0uz20FBSzOR0hwBgwNcLULJyj0hqrQ06+dSEZR0qFahzSEsiriqI2bG9tkNx/hACcdU3NvmSCCeKFdSRpl40zV3k0vUtVaobDmmk15rUb99jeHHD5wjZplvD+vQMejhRF3SZO+2xcOMPa2iZZEuPqGlJ1yu5IE/ktMMYwnc7opG2sszhn8Ti8C5HvYR/kcfKPkBIhVCAGmzEQorFSeu/DyDEUrp5CvocoD8OYNa2PI9nxSwdxEw4vLNbVSKXQsSImoTKKRS6xVkKrTRJJpCzxtsSYArxESolWjlRPqZ3AuT7Ot3GqRyUs+AXWlERUSA1SEsQi5xCyQitBlkasK4VSMXkBtQFvTyK/nXUY5xBSHZOBwUcY3PNlZckLy3hakMWGll+ewiaCnxBBvz+bUtQVCEG/0+Wtm3eoiopYxbRVRKQlQirmteO192/y+WdabPUHtNKMRZ43a8PJfeKP3ycQX8gmbt8LqrriyaeuMosk07rkD3/32wgRSF0akc0Y2zRB+eO/Aay14V5yDqmaGH0pT9yPyzEsXoADRxhVY60BGZqnRCmbBiKHlGGcxuk1INybHu9P3ePNj4iTlfDkV/zpfy9TEZa/Fgg/rwVKRyStNuCIOyDSNtpD1B3gpUImGTqKqb2jdo7aOoT1CAzWOZxvmp588BRLKY8bnz68pp1sg19GsR+Tb40buOHJrfeUtcFJjxZhzAwyOMqFUmH0A76J2vI4AcZ7UAqZxLgkJhtOcN9/k5n01PceUO5P8XsPMfuPGR48xo4K1n7xy6Sbm5hGJFieT98slkopIh0hhAznt1k3jxOzmvF9Qrhmb8WS4m/25dRC3lwDUgi01lRV9aFxPuKUSMBS0FrqPt431vKwSld1DSrGekdVm8aVG46x847J3j733r9JmVds7BS0Bj20VhhnGc/nGC9ptVt44TkcHmK8Z1GWGOcoygJnPcK7Rn/xzb674PZ1Ib1Di3DvOeWRWuGlIreOMi9Yl4pWkoCF0azgjRvvc3ZjwForY6fXQQiBkhKtJFoKpPfcv3+PydGQepETJWHfrAvO6MpYamew1mErT45CbfeJun2y1hq9JCbVgkgLokizKEreefMdxsMRKmvxsHDoTp/eYB0vE+JWi3NXrhAnEb4qyNKMYl6wt7fPH7z2Os899xLjw0Mm4zHTImcxn3Nxe5PrF8/zuZefh3IRZDpnMd7ihQxrnwvu30hJ+p0OkdY4L/AsWBQVh5M5xsHF7S3m+QPmkzmpTpFSUVcl89Ehu/duMeymyF4b6SIOioL3hmNuP7jHwfCIThbR67Y52hux++gR9+7c5emNDlkak2pNWVY47+m2e0ilOBweYfBkaUKWplRVRSsK7+nwTGZjEJ4oimhnGViHNwbjwvrk8USRZjl7RWuN1vHJNasESjlqHLYsyc5fJPpLXyKaTehIzxktEcJjCckMykOqg+vYesmiNqi6IK4rYi1Jn3oaLxSmqKirCis9MlY4Y1nkcwwWKSRSa+I4JsvaxHGExzMpC747nFP4iJaWbEYJLS3ptC0qU3R6MTKWJL5sUv5CU4nDNPqtRzqJW96XSwGAk/v09MJ7vLqJ5VgnS9JpYbIUrxV5nofrIVIIkeD8itJf4cfjL0Y903x5Vc+s6plVPfMT1TOfevEF/uZf/yv8y//pX/2nLC8/EcrFgqrIP4H1zMcHay3z+WxVz6zqmVU9s6pnVvXMnzNWFdIKK6zwM8O/+3f/jvfee+9jaXpaYYUVVlhhhRVW+E9FaFoAcRy+7lBSUhQFN29+QB0nfOq5Z+j3+uzuH3H52hXG0ynjyZh333mL3dGI85cvc/7CBc5tXqKtJWvtFpkU+HJB6hVaCyoBi/mUWigeHRzy+GiIUorNnTMIpaiMZTKecu/hHu12h+3NdZI05bf/wx9wsPuQxWJOL0vZ3tqkt3mGw/GUPC9otVoAJwSeX9J+P8LHKfgQufTjEV7Hn/BUTX0bRmhYZymLgqosMKbC+xjnPbUPUdxCKbIowTVkjTI1unEyOiGJRJgVL5xvXnw5FsIjhGRzbcD6YEBsC6bG4J3DVgZUjTCGmXEslKKWCoegrh2tOA7EuLVIL5ECvKsxpkYpeZy+vjxWYikUAF446qomzdpcvPo0R48/4NHDR5RmxLCo2Z8bPvvCU1y8sMF4ZnjjdoFPrpH0d2j3tzh//TyD3hpKSExZAhkn/lVQMjijq7Li8GiIHEisMXhnwRjqssDUdXCdQzPiI6TpIAXOWAJVLlDNawZCQiGFwOb7iGIXbSbESevYeSi9QBAR6IoKsEhZU1cTPBGxbtOPJaOZoCo8VeWpXcxGt00SF0g3o/IlkgThwNUGNx9S8RChton1DjK5SMWARRkhyhl6UTDog1YijCdwKrjRpUFKzaDbJk0yZnPPfOGZLQwSh7M1tamprT0WR6SUKKEQXlCZQP6VVpCXBmU8zonT9DZCSLSOGc5m5FUNUuNRvPvBbc7tnOHKhUskvmat1UIrzWhe8eqbN9jqbdKKYnqtBCEdVizlt1PiWvNHyEA0SaVwXlAUBdefvETda7E3nfHb/+brRCpBN+NHjq+3hhw7cQu64ED0Hmdd45xvRjEsHcs+xMNLqfE+jFqpvaGuK0TsybKEMNXAYr1HSgLhuBTeGmGJZl+8D++9ZNZDsP5y7wRCNELS8Q6HbTmll2C9wwuFjCLSTg9RO5K0RUIYWZC1B1TWoLRGKk3lLJW31M6hjMN5G1bchu933jdCgGwanwJh3ZzQU6T6RxTQ8O2TsRF4rHUYG8hoL30QMaVAKoWSikjrZl/CsbFC4J0nimNUp43rtUnuPqL63hvkt28ye/UbmJlFjIaY6YhxPkO1N+m+9CJRErNYNrJxcsjwHiXC+L+wkUE8FUpja9eMMWiuLX+yJp9eeZcvKMVS3AtQSv3AGn56dOLJRixfRCCURiiJEBpjHb6qMdZTVnXz/qAjTZolTKqS+7duM5nM2R9OufDkNWpjWRQFB6MRlfUM1ga0WgllkXM0nvBw7zGtNEU4j/ACiUN5j/KeqiyCOGxrvLUIYRvRI5xvrwSFFyyqmnI6pZW02UpTvAFnPbt7+xwcHjE/s0MkFFmckERREAkESGu59f4HvP/uDY72HpO2UqwL10BlDHlVUzpLZRx14Yl7A578wsvsXFTEqsVg0KMVS2IVxlfO5yV//J3v8+6772N0hO2vs3PpMjtncqwTiDjm3JUrbGyuI+qCdtZmNpnx9o0b/PP/+bf4tTph7/597t+7y43b77OYTPj5l57nq1/+eb788z8XhB4JeVVjvMMhqGqDtRYlPa0kodPukMUxHtBaMZnljGc5k+mcS2e2uf3wMUWR028l4ZlmDCavmOw9In35OQbdjE4cUQ5HfO+1P+H9Bw/Iq5JPP/MEg/UB/tE+eweHvP7a63zlmSuIdkokwElBWZvgOE9jIiWZ1CWxi3AiOQ4TkDrkEiDBeEftDMYaIiFASQQS7wS1cXhhg1DnPcZaZB2EEY/AC4+3EmpPJlNaV66h/0afdWPAQew1RlpyZymMxVaOdhLOf6wVEY77Dx8xms2pgOylT1H6mHpek89zclMiE4n1hrzKqevwvI2jiKzVIkoyOq2Mqq4Z5gVf359QuoRuHLGTddjSLTbannFLMW1FFLFknYKWL0jqnHgxRbgahAujWnwUXNPe0WTI8FEsb015upFDgBEgspjCGMbTKaPRKCReSNBaEkXRD7zWCiucxl+MeuaktWFVz5wcilU9s6pn/rT1zC9+5Ytcvnr5Y2l6gpMGmk9UPfMfWzZ+Cjg9XnNVz6zqmVU9s6pnVvXMT45V09MKK6ywwgorrLDCCiussMIpKCTG1tR1halyNjY22T8c0m+1+cJnv4Dr9SFSPJ6MePfeba49+zQvXLkCwL0HD3i8t0e/32dzMOBMFtGSngtrLSLh2b23x2hvyrwouPfwIf/+j7/JS8+9zNNXnuDK+Ss8PDrkjfducuvBXWpX89KLL/HFn/8S/V6Kqea8+dqfcPvOLbppQq/T5u6jR2yNp8ytZjidIaQ6JgHx8oS78z+MzfvT+xmFEODEset06UZcEuveQlVXGGtAQJalaJXw+t2bvHH3A3Ce3/jSL+HxjKcTyumUqzs7xCqCqsY4j8MHokBYvPboKAUkEonQ0MpidFGzMA5jLN56vKlxZUUuFHt5hR7PyI+OMEqQSU2kw9gAVCBY5kXONC+48f5NFnkJCJRSTZHuQQR3pAeEDWk7abfNF3/tv+X2O+8zmgxJXMH/8fP/W6rDxxxNx9y/kdO5+Mt8+vM/z/rGJgLJYrRHXubgHJGIGkLWnzgCG6LfeE9VGeZ1hc0rirzk8M4DvMqZzXOsEJiyRjmPVgIlQty7R36YiMQhlAqx6z7HT99D2UkQI2QXvMeJsH/SeTwGgUVQQz3HLQ7RMkVFFVlkSfsRRbnFvOhwdKh5uHtEvy9Z62Vs9Z6C/DG2mgbiKt1BkmOqQ2yxiyzfIxm8zESkDMuE3bsFV88krPc97RbEEUQ6xdoQOV4sJmgVs9FNWe8n5CZh91HEreGMyWgPUxrKylBWnqKUZJGAOGM+L1nkJR5BZzAgjhOccVh7bNoPRydLuL/3iN2jQ3aHI37nW9/m4uY6l7c3GWQx79/fY72zzv5wyu3He0iZce3SFXqDNrkrMMKifTN+riF6hAApgkMvLwqq2mCMx9nwxtP5mIPRIXujIaiT0XUnjll/3PDklteFX45aCc0++ODaFw2pLU6Nali64K33WO/AW7RSZFmGLmqsq6iN44dpf975U8RzsxY4jvXEk9XBBTraL8URcbwNvvlZ0bDy1hsqUzHPc3qtlLIqQUiypEV78yyJd9RlznB0xHA+oXQOJyRYELrRH7wIfFozEmYZ4S+jcP98OLVWIJAoCRbzA1qFwAe3olRIGYGwSDyxEqQyIq4ctSC49EXQPryAyALTkqjbQT5xleSXvsT9t2+SjadE4xH2zh2EiCGKUFnG+uWnOPurv0BybpuqbEZBfES78BDOrzUIIUJagjNo66gKG8Y/uEbMwZ80uAnxkaX6RCAIKQqOuq7/EwRemiYyjsea6Gb73RGURYHWEVkrI1IRJTDxM9LS07UpkRCMhmMeTXJuT2a02hmTyZTZZMYHdx9w9cpF7j96xPfefo/X3nmXg9GQ9X6fQbdLLDSmKnHWgLPgLMI3/7YWIRwKcNZijSGNBN3+WUTSxiUtqjwh3mgjOtBpRei8JDKeTGt6/Q5ehWMrhSRWmlgoyspxOJpyb3ePTrdNbZfJYj44o4HCOBalZSfrcPX8Ra5dvwZCsL7eQdWGyXDG/ekuCEWSdSit593332P72nVQknIxJz86QsQa7DKho+Q7r7/JL376eZ55+kmee+Z5bowLdq48xZn+Bm8/2KUSOVG7T3uwQbvbw9QL4iRBVob90YhFWSGEJEsjOu2YRCvuPniIqWsuXTzLf/tXv8abN27y8OFj/uSNt3j+ylm6aYxsbmCNwQqPUJpelvCVV77Ap194mnNb6/hFwf39fe4dHbIoCy6d2UZpSSeJsc7x7o33OTocsd7O0FJSW4cxjtFojBdQW8P6xjp5WbB3uI9xhl6vh7Eh9UPoBOsUB/sjdvNHSO9pdbskSUwcaSJA26a50YWr2WBoJj7hYkiFppdpOnGHhS8Z6TVE0iJO2yjrMFXO48Mh9x8f8PDREUpKuq2YM1t9/vJXv8wHv/uHvLsoGC9qPr15lmr/ELynEyVsRW1sUZIkMZcuX8TVljiOKYuC6WyGRzIYtBG1IM89e9kFphstolbKXiuhrRJqW+K9Q1rB1brFEx3PWZVz3o35grvF1mxE5C1EFicTlJVI7/Ci5od9EvvoqiWWLmkpw5ekIO22OdvvIgFrwmgiHcf/8Xt+hb/QWNUzPxqremZVz6zqmR+sZ/6TPkv+OeGkR++TU88gP/6up+P07VU9s6pnVvXMqp5Z1TN/Llg1Pa2wwgor/AyxWCz44he/yD/+x/+YL37xiz/rzVlhhRVWWGGFFYD5bEqWJrRbKarbojvoc+3Jp7BC8saNd7n2hS9hCkNpNL31Myy84oPHB2glaPW6vLC1zmavS+Qck8ePqMo5G9JglGL34QP2RkMmi4LRbI5Kuwx2zuA8zIZD9g4PuXD2PE9cvYKONd0kYdBpEScpSknOnT/H9Su7HB6MGE3nWBExmUypZyWj2QIdRadiwJfwHxn/cOo7/scVqz8MwSHpjz2HwUzpCLHz1jvaaYtBp0u31WFRFqSxYLiY88HeIe/de8jbHzwkTWLSVsyV8zusndlikEg8CmNqFsUCrwWdbp/ORsp8nnNm5yxnt85x+913ycuStCHFPBJnDd46cMHRaCVYARYJSiGiGKE1MtKouBkVZjxCNk7bJcHpfTMqoXEuC1BSoxwc7e1y/8EDJtWcJ598gcuXniNtJYzuP+KNmw8oS0V/4yKf+/Jv4FzB8HCIrQ393hqREThXgrfHTsXl2AmtNVpplJJoremu9RHGYRcL7GhCtBkho4TKOuZ5SWZqojhFKhEchR5AHhMsEhBCgS2x80eo6hCtA0FqPUiv8dJjMXhpUXikr/Emp55PUNajJAhvsOUQJT2pKNBplzgasDv2zGeWulaoKCXV28S6jbILXDHHolDxGtpbXF1QTd4mEW0GSQt9aZOiEDzcmxHLgo2+YzCQKBkjlcY6Ac5i3RxEQStp87nPXeHy+S73bz/gW7//LR4e3iOnjUt7yDRhUdQsioqyMqRxghOWqipZzOc4Y/BCIJZud53w5ns3ORiN6Pd7/NIrr/D8c09jF3MePdrlzce76IMh59d7XFjr8bVXPs3R7JBIGzbaHVKb4ITECXuKs5V45/FYkiQmiSOkVBjnMdaFURlao3X0IYIWTkbaHY+1O+WEFaIRrVTT9NRE5i9J4/A7NJkCgaz3gNJBIHJFRVWUzcgViXUuOE6XwgIfdtoKOPbrLf25hCl8x/fGMmDh9BJy0qAV/t85S12XLIoZPm1R5jlVVTObTOmcu4LUSZC11AyhIxDB9e8a1yzLNCvhGyerwVjb3DO+GQ8S/hxvnAxCiReE8QqnRjB4ERYopRRK22a98zgHlQ3JCgpI5ckoFYfHSodyhqqqEO0O5/7WXyNaG1DefYgZjsFY9FpGPBiQbG3Rfvpp4hefxkUR1XTeuCDFqeME4IiUIIs0qQzjD2sX9uVEaAqix/I8nJiZT15LIMJx8o3TG98cjx+yvvNhLMULrTVFnjMThqheYEzNfFGQpC3aOqLT6VDnOdY6qrLCkuCEJumkJP0NTLtHacIIg0QK/sPv/QF/5Wu/yjPPPMsX9oa8+p0/oTIlh+MRvXaH9TTDVBXGWax3KOERziG9a9ZbCy6I295apCm5dv5J1pSm1+0jkeRlQTtLefapa7zy7LP4Rc50NAIlsM4cX4+VF2RZi9Ei5/bjPV774Dab29vN/QJeKLyIcAJKY5kXBUm/IFaajXaHOI2YlRWTwynT0YSjw32mixlZGvPU9SskaURuLPXhPuP5DD2fE7VbaCFCSoR1vHnvAdeunGXQafPCE0/yP737kGwwIO2vcfnCFd669z6x9KRZgowl3hucjyjqmsdHQxZFyWa3x85an63NPm+8fwuVtkDXPHy8y+tvfJ/ChOv7tXff5VNPXuTS+R0mZcnRaEYWhUZKFcW0un1sOcfNhtCWCK1YG3TJkpSZjtge9BnPpri6xlQVSMGirnFSEWUptqio8wLrguqaZSnWeqajGcPxiFa3Tb8jUc1nD1lXSCEwtWEymXJ0cECv36fT7dBpt+hkIS0ljF/yxGmKcx5rLLUxTGyOqixREsZsSCl4cO8BUdahPVjHWcvw6IDDoxGHoynGe2bzOXUeETvD4cEYqTS9VgtNhS3nTMsp9/cf8NZ7b9Hb7HEFhZlXHB4coBLNua0tvHPkeUFRWzqdBO8FOtF8+vOfZppotHR0fc2WiiBWOAVeCs5FLS5s9FhMjviTG2/z1psP+NvbHS5nGcoabJM04YXFC4cMGSfHaQl4d5LGIpbyb0gIiIXkaDhhPBqRywSUxNWGw6Mj6qom0ponPv9lVljhR2FVz/w4rOqZVT2zqmc+Ws8sP09+LGg++36i6hng3NMvcHDvFuV89lM+AAG2qQVW9cyqnlnVM6t6ZlXP/Plg1fS0wgorrPAzhHOO7373u4zH44/l/ZRS/P2///f5V//qX3Hjxo2P5T1XWGGFFVZY4T839Hod+oM+7XaLrJVxMBqT9brIKGZkHYWp8E5gvcBYj3GeqlrgbM0cx+aVCyTCI22NLRYcPHpEJARSa+7vHTAcjdFZRpy2afcs+5Mp8zxnOp4gPXz25RcpnWWWL5hMpoHoUholMzrdLk4IJkUQBYy1dDptiNt4obCmBpYOxpM+iSWEOKYHmyK1oQd/hEl62Zhx6iuc/mFPiH62TeOCETAvSmbzgul0ztSUSCFY5DmxjpgtKl7f/YDNjTXOXTxDFUtuPLrLZtamLWMw7li5EMHuyGwyZt7qUHRzFvMFi6Ig0ZK03aEc5mgP0gVnXG0tnXabtbU1NvHIRBNHUSAJlUBHCiUkkYrQQrO9sc4HwzFS0IycWFKkPsRVE8Y11GXOeP8ek/kjphsDeoM27e4O9yfvspg8xLsS1XU8vvsedTWjLGZUVc75C0/TabWbuHbXiASNo1wItFbHJJ81hiSJ8cbhykBgaq0RWmNNSV0WeNE0yjTWVeHBLRtOACkUwlmo5/h8HyUsUkYIqfF4PnQmhQdrcOUQV41xxZhIKRAOJywOj6wdgiFKFrQjw0a7z7zWOCUoa4d1EUa2iIQiThTSSXAWbw1SgbYF+ClalkRZj0K0KIipa8HBqMDaklbmiBOFjhQGgbce4R3UOd1Moy+sk7ZSqnmOsoZWXZBXNaNpRdXEqMs0BhR1XSCkC2Rjc7ylkkgc+WzBrXuP6LU6vPTMeZ598jpdrTFRTLfVIoljhtOca9ubXDlzlp3BgHdufUBdlNQDw8X1Haq6+pCy1nhYkULQjmPacUKkI5yQGOdRMibSwREoG6Ldn9yCx0TR0mAspGxGvDUnVzRkkjhFADfEvPceKf1JSgECLwKzL5eEq5THv8/y/Itm/INwH7q3lxR14KBPqQfhFcPxPOXLphHTRLNNxwIYIZEq0hp8EDOkUqBCIpaXmihtkyQthChw3oIIQk5wE4fXdU1UfG0Mzjm8DWP/jAkjLnAOQTNGQEqsb/a5WfAsHudBewnOI3EYwCJCEoEN7xFJTy9WoRmrWd6W3mNfG4SSRDvb9H/lK1QHQ+x0jqst0VqLqN0maneINjbxrQxfhxEHwczsj9fh5XmLlaClJa1GFJQGpLBE0oW1uWHxBcs0K8HS/708x8sD5V1IkBDNzxxbsX0YhyhkI3osm8kaQl4KQErq2lBXHkwFQqCkaszYjsrWVOak4ex45ZcStIJIMUhatLtt1Ibl+9//Hu/evEeapnzqxee5ffs248WC2tRUVYXNWjhjAjlMuL+b8P9GJHAI11yj3lEXc87UFX3viCOFFz6cXxxplPDKZ17C2Zp+v0dRVs01s3ycOSyOweYaZy+c53C6YG1zg9LUGOswTuBEhMdR1hUqT9hYX6Pf6ZBFEbY23L/7iIP9IZPRlMloyHB0iK8rulnC89evcDQds7s/oixyitmMslognAtjL2RM1dYcjmc469BCcGGty06/TSeOUE9epd69xrXLl9jZ2ggjcfA4Zymrmsl0QVk7dJqQdttIqZnPFyAUCEle1rz7wV3SVpeiNuyNJ5S1YWttnYs7Bfce7ZMlXYQLOl8Sgy4e4iYKE89RWUaXKZmsSLSk1c4YzuYIDxEQKU1eW4wHES4ihFJYa3HWEBmDc1AWFYt5SZy2ggDp/XFzpmyuY4cIQkxeoLQm0po4UpjmPvbeI+ME3zSJVrUhLypMUZF6aEcRrTgin+fUVqLjFgKYTeaMjsYMh0OIY4p8js4yvLV4J3CVIQJ6aYRq1s601WJ9a5Nut0ukFaW11N6DdeAdOtK02x2UsURRTFmWVOWcVnGAysHVJaacc+QccStDpRFREkG7R/dsB9HJ8O0ebw1LJhspFo2mER9DZt2pRT/cystn93EiyzFkkAuFp8pzFtMZU5VhEWAdw6MJRVmi9YrSX+HHY1XPnGBVz6zqmVU98x+vZ/50jYM/ITyfkHqGD11TSauNVB/P89V7z+PHu2xubNLKWqt6Blb1DKt6ZlXPrOqZnxSrCmmFFVb4mcI5x+7uLltbWx8ZVfDnj1arxfb2Nnt7ez/V9/kkQynFP/pH/4j79++vmp5WWGGFFVZY4Udge2eL7TM7rG+s01/f4Bvf/g4yjmn3+lxfX2cEoDSiqskXBaY22Loin084GB3x5NaAGgd1RZEvuHvvAdOyRicJB6Mp5bzg/MY23SRjXFpuPdxlMh5ji4rNJOGLX/gM9/YOuHXvAYfDEQtTIx1oqYnihGlZMpznjOcFqYaN9XVa/XXSNKUuC/B9QDRum1NoGiiWSTNLB96Ss/5ROD2O66TgXVKjgtqaQHKI8OdwOuXx0RClJOM6x9oK4z3bvT5plHB/uEu71yVqtRDdjO+8+yYbcYsz3XWETVBaIYzB1DX5xDI5HCKtwJWOg8MjJrM5g80B7fUB4/37aKfRzuOtJa9rev0BOxrOpDFRJBGxRsiw8VoqIqXJooRERVw4s012/z5CBpHAE0hV4cO/nJcIFSGER5opaXmb8f0BrTSl3dtgd/cednaLTJWk1Zw3/+gxSaqxrqCoptTzGU88/Wna3R5eLUd1+IZnDmk+tolEr6uKSCuctThjQYKOo0CAOsuimCOUOCZ2l3H4vvHHSiGACMwMyhGy3EcphZAqEI/CIwhElhci/JatqOd7uOIAb3NEexMnTRNDLfG1xVEg1IJY12x3Y3LfpnSewpYsqohKRySRRmUtIqex5QJnK7SSRNKjbIH3JaksaLe3mEcdZouUgwMo8xnrvYpeV9LqZ3iVBkLUelyxAC9pd9ZoD86w0e/S78Q8uvEB4/sPOBiPyFJNq9VBxSmT3FGWliQKDuGl+KUjjcew+3CXh7uHfP7lZ/nLv/Alrpw/y613bjTjE1ps9/qMRwsGWYcrO+foDzp85/tvMB7OqErHlXOXEHXOkuwJfLJvCFZJO4rpxilxpHECrBNYI3AmXJsS1xC7IGWT1nR8HkFKGZz6yxF3zuG9BRHc+1LKk/vRNYTTkrP3HrzCNWSylqCUWLJ1IAXCn1DNvnHhnQgc4niiwzJ96uQNwoi5YxHBN/t9/O2TBcQjEFIRxzFJkqBVjIsVab+NV2CcBylJ212yrIuQY5yvgDC2YclIOx+uaWPDyBdnDQ4R3JPWUXuCs/Z4AfOYhhA/dkY3G2Wcx1kPzuCbwPwKqBshJRKeQaIIUlI4ItIHp7W3Bu8EVRLTfuE5OkIgnMdZg25lYddrSzmdYxc5DteQ/B9Zepu0ikhCpgUtKUiShFIodOmIZIUV7vjcBBf78rCKY/FmeYhEc/86QprDsZjjG4ETgVIS5wIRa4/XNMIDQEis9VhjUNYghSTNMqRSOGeZzqcsaotpRiwIHxK4rPdhvZKw0+9yea3PWivh9q33+e7rb/PE9Su8+PR1PvXsk3z79bdYVDV5sQgjH2wjkoog6Ep5Sq72ILxACZA4xouKeVVSO4OQAiua0TnWYqqCL3zupUCSRpJFXixvgsbZbqlNxdVrV/FIzpy9RNpOmS4W5GVFUVpqL/EYqrokz3OuXbrCRr+HMpbhwQHvv/0uD/YOmM3mVHnJ0dEh/SxiZ63Pk5cvMsn7+MrweDijKnOq6QzqikhHdNe22ej1KMuasZujsHzpqatsndskjTVXk6dZE4bPf+plrpw/Sz6fARJjLUVZMpmWVBZsHFPGEfvzkvk0J4ojpFYYJ/ng3h6DQY2UknltGM4WrPd7XDaGf19+Cy8HoSnQOxJtSau7+ElNJcZk3R49d0hXlky1IGllOKGJo5hultJOE/LaUhkb1itTo7WmrEwQfcoCpKI2FlN7nA1X6DKZzTfXu4oUUZaQtdsorcNzCAk+CI4ewnolFVI4hFcIp1FE1BI8GuEFiVYoJcPnGeuItUY6iTOWuijQQqC9IosSOp0WkdK4sibynlaWEClFrGK2Nrd56lnFmc1N4khRO4XKUqJmrYiiiP5gQBvotlOqsmA63Me+/13alSPPc45mU24WBVGrTdZK6bZbuI1Nzvc1PmkRxTFHtaTwNVaARh+nIiB8I/DSiHFNokVz/4rj9U+Ge15IJFDlC6bjCUMXUTqQzjOZLKitQWrDCiv8OKzqmQ9jVc+s6plVPfPj65lIa3a2tzg4PPqppz5Za6jKojmvfKLqmY8T9+7eJY0SkjhZ1TOreoZVPbOqZ1b1zE+OVdPTCius8DPF3bt3OXfuHG+++SbPPvvsT/W9fvM3f5Pf+I3f4Ny5cyeF7gorrLDCCiussMJHUDvH5tmzXL1+jQuXLvOrX/vL3H/4kKqu6W2sI7M2tx/ucePmbXb3d5mNj9DAWpLx3NPPsZ516bfb7O/t8off/Da3bt3m850u18+e5dyly9y7c5u8rtl9vM/vf+d7fPnLX+TF8xeIjGXvzh3++3/+3zO1glIoolaL6aPHtEYzIumx010GvS6b6wMiGdGOBEeHu+yNhhxO5qSdFo6GEGyccssBB8tI96XrMbgI/7RHpyEJjyNrgrNICVCAryxzUzA1OQtf0s3a7KxfZ+5qWsN91rJ38GfPgIfbt+9RyZqH795mNslxKuaFv/Rl5Nkt/ON9RgcH9Addrj/5BM7DeDbm7oP73Lp/j/V+m8HGGm8/uMP65lm87iFwHBSWo9gxNTWDYsZiASrV6Cg4soTU2LpmsZgzm88Yj0fY2iA8SCFxiNCwIsB6B6Wldf4cfQeb4yHr+WMW03vc++4ef/T7v8/adsyZbcn59T7Xzg+4c+8x7SwmihTWZ/zbP/pdrPGcv/oMl564hkDgvG+c5B4pJKYOgdFxkmBrS+kdri6Z1yUbSYqxlkWeMzUVSkRIqRFCsXQCypCfg0MhkLh8H5E/RDFBqRbWh/FpUoXBHfjQWKN8jc/3MMUEU8yBBYmNkbVEWIl3EUU1RsUxUmTYSuLVHdKoRao7tOyAXKxRmIii1hSFpp1skiUVUVrgzRCX1ygVI7zHuBJvH9DRGa1Bh3Z/wMG+5tFwxqODgsGaY3vHk8WeSDqcltROY44OQEDa7/LFv/nLjHc/zcHNB9z4w+9y8MbbTMcLnCo5JLjeO3FKJ22jiYK41k4Ymor/+//8P/HEpR1+/tOf4uVnXiB/sMdwtmC2mDOazxnnOS5VvP3wHrPZiEGc8sKVq2gtQDkm9RBUDV7gnTy5I8SSpw8O1MpYFkWJjjNe/caf8Huvv8XvfuPbpGkXLU8IXdm4lpf3UhB6+HASQUMIS6WOXbbu2O0aiCSa34mFQNQOqSBNI1qVQM8dshaB6BXBb+eaCPLTDucllo1Vp7Gsmz46aqD55vHPeEBLhfCePC9w0Sbp2gaRkCTdNl7HaDQKSZJ44ixFSHU80sL5QGQv91McKyCAd9SmxNpA7IeFTC0Vz5AEtdQtxAm5viSOja1BBqJR4omFIE1USFTAYwjjbERzTE+aypq1sqrJ9w4CoScDAV/efxjEFqVRaYrwtnnvH3KcGhjnqIyhNDXWWnzjVnYE0aL2ntp5jHMgg3d4OabDebucALE8JI046z78JqK536VESgHCYetlYli4FrzzZK2UJHaQ51S1YW1ji9pYZrM5eZljkcfXtJLh+hFCBFe19xRlifeO9f6A//1/81f5//37P2DvwT3+4HCXX/vlX+KVF1/m8eM97ty/z639PYqqAkAridYRUkmccxhrAYk1JuyUswxnC46mczbLqjkOhlQrYiExZU1pa9JYESsJdQVN8sPyWlzMF3zuM5/mKz//ReI4xhlDXVdYa8PxhSBaAAJJkqXc/OM/5ubv/HvufvA+szjmzTfe4XAyp9fuISJJJwFvC+xizNWdLeZlibv/mHduPiB+cJPzgz7PPv88v/43/waf+uxLUBUo52ilCXHWCyMrhCeOXiD5G3+FolyQlwvG4xG9NCO3nkluGU4ronbCa3NLcX+KnE25FGuqssQtLChFp9tFx4HOHXR6fPvtd/jSpz/F2e0tLqwNcMZga9BSonVKp5UQxSk+6uDSbS6eO8eFrX0qv0AIzdr6Ji++mHLuSk5uLPl0yujoiGGiqIucpNMjSmK8lI3gDmkrpV0btFY475prNIj1rqroJCmDs22eunyFLG0hcHhncKYky1oAWOeo6gqpQsOnlIo4zlCRDq7zxQwtHF/+zEsY4zDGIYXg8sZT2JeexHpPGsdsrm8QKYlzhslsxpmNNTYHfbI0xRuPqyx1UVHNc6gsJq/I0oSLFy4g6wpb5cwWU+aLkihNWet3GB+Neecb36H6+tf50s6AtSxhIRX/i5D87r3HHJUG4QROSv4fv/f7tJOUQdzmr6/FbGWKWAkwjkiUQahzwd0PJcprlJcoL7FK4aUCYcCXhGd0IwrGCft7B9xJHnLQLaiB3Tt3OXvmLL1ej3iV9LTCfwSreubHYVXPrOqZVT3z0Xrm0oXzvP/Gt/ncl3+Vd2+895MvQj8Gh48fMT465IVXvvyJq2c+djSbtKpnTh+TVT2zqmdW9cyqnvmzYVUhrbDCCj9zfMht81PGD/1wu8IKK6ywwgorrHAK9+8+YFGUvPvODbZ3ztDt94mjmLTTpre5RZlkPDoacufhI3aHQ9oHR1w5d47trQ2ub60x3n9EpkRIKHFw9fo1XnjxZdbWN3jtjTe4cfc2WbtNYRz9bo9nrl5nvdMin4x5+IEDGbF/MOTu3iEPHz/m+pNPc/bMDhv9Ft1IIl1FXeRUZUE/7fDuO+8ws4LCC7Jup3E8C4LDZtlSEHAcHX780cuf+vtHfx776EgIh8N5y2KR04oTtFSBjHOW7cGAs+vrdNOMb771NpPFm5SmZlYuePRwl07ap9VuE6cxdz+4jTCCZH0Ltb5O3e8wvVGwmM4xeYnq91jfXKc0NbVwXLh6gbXNdQbra7R7XV5/NERNK2bbNUmccr6ekMUSpKfWAiV0IAelQgqNlAohJDpOiLMMmphr6xpHoxBYAQiPFYJumjA82OPe3dvcvHWTjR3HxnqEjiqUn3J5a51OvEYrVRhTkUqLNxWl0xROM5zVXMn6JK0ezgERxyKBbYjIKIpItaTdbmFNhUwzol6HPjsYr1hUhnlZU1iQUgMS7wnx3FqjfHC5Kx9DeQSLB4hqD6WC0/t4xMUxoWvAG3AFtTVE2TZxOsC5EZUvkWUJrsLZApmAJkF4hfc11ud455HSoGVOJmco3aPyXSrXY1pCYSNirWlFGVm7j6+muHqO8qC0xvga78d0/IR4bY15p01edpnOSqo7hnbb0m57uj1JJDUmCs5ck0+oHsxJdcqFJ86yeeFrPHrhOo/fv82jW/eZvXcfhENFCZ28AC+J4pTpaMrjRw+JleLXvvpLXD13lmI6wivPlfNnkFHEzFQ8LkuEdDx/8RLPnT/PwYNHJJlk0G6RxRFFUWLVMqb7w/fHcfOSCzH3sZa0sza7dx9y5717PLy1y5Uzl7C2YJkqIKU8juv3EK7T5g6VIryHEk3jTxNpIKU4IeRFGP/gcDjrcD6447WUKBnhnMVZh/fBCauEAr8cCRG2Wy79zo1T78Ouez5Uo53+3pKQPS0pCMAaQ21MSGJqt+kPtnBCY4SgdhKtVRMdb6nqGuMtvvFzLw+kP7Um+Sb1CgFKqiDcEVY16cF7saSGcf6067t5HRu+b09pIsJ5lLMIajwCKzSVkyzHNwQDYyOsimbNPHZbgxKKbtbmnd/6t8hWRuvcGXY+9RLldNaIL80xP319NPe69VA6KD1hTIJ1eOdoBvVhfRAIKmuQUi9DrDDeNse+OW9SIlUQM5wL4sZJUkIQTeoqjKVweJqZIfjmPyEEOtLo2CNcTG9tDY9kkS8YT+ZYZ5Ct9Dh9zAmJcMFZrZVGphlOGGZ5zsHRIcbDV77wGe4/3ufd2/f4nVe/y9Vz23TXuzzXvc6589tUzlMbS1UZrLXkZUVZlhRFSWUds2JBWZXUxnLm0iXOX71Gd32DRVEyiEAhwv2gFVG3hzQFeItwDsIUm3B+pSDWEfsHB8wWObO8JFYKLUUYGWQqSltjncRaQe3g7M46j268R7X7mKudPl/+6i/w9NNP8v69R9y+/5h7B0dYoSmsZJ4belHEWicjUXC0u8tfu3qZn3/maZ556UWuP3uNop5hqooiL5k9mNJt99A6AgR1bcirikG/Taed0k4jEikZ5yXj+YLR/JAoUiQixvsYkFhnQrKFDJKS8yHJQ0lJFqe8+cEtrl+6yHPXrvDlz36K3/6jbzAvwSmF664hdz6P3t5BdXvITkL73HNsXyrI40OSVsru7ccUXpK225hFzmyxoKhrhJQM1gcYJ8iLirIqsZGmk2VIpXHeU9UVQgqSOAYEpjZI4VkUBYv5gulwRKfbJY0j4kiTJhFyOgvCHmFcj0CE8USEW6g2NTRO/izWpFmKRBBJ3+x7uG+8cwwXM27fu4OWknaWsrW2zpl+FykUKtLMy5y90ZB3b93krRs3OLe9RWejRz2bMZ7N2GhlaBVS5Kq6xuOZz6ccjkfcOxwxiVrUaUbSymjrmH5d8PJaQmEjhBVMasF2VHEmqnmiNeevXdpiO7YIB8LJ8KwVEiU0Usd4WVPaoPYpIBLgbYXDHq98spEaPR6lY6wTVLWjwqG0ZlHkeAmJSVlhhR+HVT3zg1jVM6t6ZlXP/Ph6RvyQhJ+fKj6B9czHjePey1U9s6pnVvXMqp5Z1TM/MVZNTyussMIKnwD863/9r5FS8uu//usfy/t99atfZTab8Vu/9Vsfy/utsMIKK6ywwn9W8J7J0Yh8tuBo7wAVR6RpStbp0lrfZK/2jPOc0WzOeDThLvfoRAnrSULVjZlNR7S7bbSOOHPuPHm5YF5WLPYPuf1olyTJuHDhAs5LDo9mTCcTMumpqoqqNvTWNjCPRwwnM/YPRpy/UGKqCm8i4gSSSAUHoxCoOKaczikN1EhUrJc9FYEX+lATgWhcc8f/tzT+/YBD+nRT+ofGavngIOx2O7S6XZCCgwe7+KXLTICXIKOIOEmJopj3Ht+kNCYk1FiB1po40kRKUhYlT5y9RtTtU2cpRw/3WEwXeCeIdExdVkznU5wEFSnOnj/L4WjIo73HxEpw/uqzvH7rfQp5QJS1Wbv3AUei5r4pKG1Bv9UlTWLiSlMqRaQkSkfMypJZWVLUJri9hAwEqoClm1xIhXGO3Ye3eXzvBrOD27gtS7vVIlIg3YKuyjE5VD4JMdUywlmLlJAmMe1OC6E81tuGKAwjIZwPUe6BsAOcp64qnHOoOCaOY6w15GXNaJozmhWYKCKKkyBkWIswAhHp4HT2Au0dLt9DmjHSl4Fk5KQp5HiMh3fgQ0y8jNpIFEJY8ApXFnjrcK7AugUJLUAgvMP5MrDC3oMzCBzKWyJhEFQoZXEuwxgR/lQK0jZaBTJLGI03ZZCwvEAIh1AFUjpiFSG9xBQdcmupCkOtKjaSGhlHSKWwdYVwBuEFMhG0ujFnn7lE0k7IBn0qlbB7+y5VWTGbzzHNPeCMI0Ly8tNPc+38ObCWB7sPESjSLCOTEu0hcp6OillvdzizuU5bOPqdDlkcE0lJUdXgJEu37Q+aKYIEFylJFmtiJfHGQe0QFpSUONcINqIRb069ThgZ0AgNy8QjT0NX+x/KwvtlOoE/cfY6D0VlWFQ1rnldcdw81dzXzf0eDHhhwfjo/vygQLAcY3Jq/eDD8qK1FuchyjKywQBkhvESby0Gixdh3XJAbQ3WWZz3aHGyFn1oG/AYa8mrCq8iauOorV0ucSwXu6Vs4f1yn8TJRnlxLJV6H7zGsWxcic5S15ZpWRGo+uWiKVjO0/nocZBCoOuayetvk2xvkrZbqCTBzWYfOrY/ACGojaOoDJUXGGuxxmGNwTiBlUFEcD4Q+941wz38h0Ub58MPeR8EgqVIcHxSmk2wzh6P/jn+c/w88NSVwUWCSCqUUszmC8qycS/rCCE1CINt1qogOzcueylxzlNWhnle4Lyn3W7RTjN67R6Toub248doLBGOWCiKylIaQ1UbjDHkZUlV19SVweJx1mJrQ10Zzpw/T3d9HZ1lVMbitEBJBcCiKHh09IjtbptBGtGKJObUvuODqBhpTZamCKEQgG7uN60V2iqMExgLyoZxkyrWpN02G90+ly6eR3c7bG5tg36be8MxhRPMKsfRrGC6yPEeur0uTz11na/8/Es8ub3F9rlthLf40qKEII1jfKdDEiWh4Q9JHEXoSBFHCima+1FqKrOgKArycoawkk5dkVkQvgYX0i+aR3gzHnO5lnsWRcXBaMR0PufyubNcOHuWw3kNWZsKhc02sMkaTrfwQtBe22HjzHkmRjLLS+7sHoCO0ElCVVXkdQfjwSuFdQ7nwNiaqqpwziI7HYqqZDQekaYRcD6I7cZhrSNtJVgPeVkyns0QSuJ8iiNBKQnCHV/T6vjGD88oUxuqqkJJSaQUxoWRLkth1gqonAujQYylqAxHkylaSZyHjQ0RRBXZpMLYIEKkSUq/H9zSEgHe4a1B4BFCoXVElkGWxjhrGM1m3BuNuWkEr9cwqhxta5hVhqfTmIEWDKQgt5LtOGUjgTOZ4EoCqQVvPa52zTETIZgui3HrfYwWgEXXNWJeIl3zbJan8u28A2vp9Hr0B+vM4jYmn9HpdWm3W7TaLdqdzo9YbFZYocGqnlnVM6t6ZlXP/BnqmY8bH2890zRGLb/GD9YznXYHYUKS2seB8XiMlJL+2mBVz8CqnlnVM6t6ZlXP/ERYNT2tsMIKK3wC8E/+yT9hd3f3Y2t6+rt/9+9y4cKFVdPTCiussMIKK/wQZGmKqQ35dMbR/gFlXQdCNE7QvXXe2Z9ihEfFMZ1ul+n+kAxJZmq2dEGez6jqiijNuHjtGu/duMF7d+9RGMfecMzPvfgMn3n50xjvuXnnATfv3MJVO2gPZSMSeHGHojRIFaFV42h0llQLWlmKjiNQGrQmSjOSML8AY+owI2spFCwZK/ERd7P3J8LAKavkaTLqo05J5wIp4bD01vtcuHaZjZ0tfvf/+9uU0wXCemKlmJQFk6qkD2xv7HBYvUFhLLFOiZM2UqkmxcYT6ZgnrlwhzTpMioK3v/tdbF6TRAmxjimKOY/39ohbCVnWZnNzkxsf3KRaLKgqw5e//Cu8fvc+xeEI7R2tynPr6IjDSLLVbXPx/Fk2Ol1ipVCEeOw4SZjMc0bzBdO8RCiNVKohEBsyTEi0VMxmcx7efZPR7g3i6gHebZJmMZ1MkamCoiw5OsjJ2i2yVgYqRriKSGmSLGZjrYt1JVU1B78BiGY8WRgHsSQVja2Zz+bgPVEaE0lFWVeMj/bZHy44mpbEgx5pq42r8kComTACwKPBO5QtcIv7KDdDSY8QSeOKbE45IXoebwNBgkIng8ZhaxFEKOHw9RzECOcEXsQhnRqD8zVKtgl+LoG3Bk+FFCWxnJMmOcJvMS8iikqxMBpnIzqtNmkcQRRhZ+Mw4Ew4rPcIOyeVC9JY0YnXmRRdRrVkagz5dIieT2j328StFOkbgr4qqesSIz3dzU16a09w5uolujtn+ea//m1GwymzPKcSFussUkgGnT6/9PnzKGW5/+gRDx/vI2REv9unO18EuaYwtEVMogKBd/78GYQJgkxpQmKBtC44+AQfun+W/KQgpDxliUbhSKOIdpLRSbLA/jb3mpSh6cmfclNLEXzKvrnnpBDN7/hAePkwyuM0Ce19Qy4J8M6DEtTWM1mUjBclnjQ4D5sNdN6Hnzv+/R8UAj769ROIY1FRfKgHyx83IRlrQUiybo/2+gZ5JaC2CGsQViCOBUeBMQZnLbhGlGte6UPjJ7zHGMN4nlNIg3cO42wYgyJkI3Asae/mX/54+WNJjjtPICZduAeyWKOtprYVs8IwmhchPer4tZajU5bHAxBhzKAE3HRK/vrbRE9dRV25gIx0yKvyy+wJsWT6wrlEgFCUxjErKwrnqa3DGIOpDbVTGATWNQ5vD8cjO06dCucc1lqMNSgZzvky+euYal3qAW4p3MrGtR/c1955nHMURYFNUlKpKc2CyWSCc5CkCUopjFIIUWGdxQp3fO5UI0Q566iNJa9q6tpQlhV1Zel1OmxqzR9/51UmwwO0NVxc22Eym1PaIAjgobY13gf5QesojCqpDbauWd/cIut1kVFMbR3WCZRSeOcYzwu+/r03+czTT/HEmS022z2srU5UcULzXbvdpteReC+oK3N8vzhncT6sDcZ5KgtRrFk7uw3dNp1eH5KEy5cvEbe7PJ7m/OGb71IYx2hRISvP3f0jZt6xtrbOr/zqE/ziV1/BzaYYaxlPJmTtNiqKkJmm2+kiZRyeLTI4y5WQOF9jXU1tHU5F1LWlKHKKMke4lB4zYqnAF4yWQo0Ij3elVLhWncOaGqUiHh8Mud9/zGeffpIXn32O++M5Y+spjaOSEQaNtRJfenqDDXbOnmVc1jw8GHLzwS4qSWi1MsDR6/eoPFghWeRzpFRYY3DOYmqPF5JFnnN4dEi7neC8oyor8kWBA7JOG6QKcrtWqCi4lJXWzfP2JFNBKkmYMbFsQghuYSUlWmmEirBehrEoAryQVN5iLVgLTkikTsI6p2O8UkzyBVoK2mR0ZEQrSji3vUPaarExWCcSwe3fSlOiODjWdSxpRQmbgw7z2ZjxbMbd0Yh3jYeFY9tW9CmYlI7Pdzq83NE8nQkirdhoJ0SRAG1hXmArj6nAlp7RuMAZj4wMuq/wZ3eQ/TSMcVrMENOCqFmXTtI1mpQ7Y2n1evTW1pnojBJHp9em0+vQ7XboDwY/ZJ1eYYUTrOqZVT2zqmdW9cyfpZ75OBGafD7OeubkZ35UPTNYWyMS/mNreto/2KOsSnrLpqdVPbOqZ1jVM6t6ZlXP/FmxanpaYYUVVlhhhRVWWGGFFVY4Bec9QklimaCSmI4ALUFGMT7psOkSLBYvPA7DdD7i/ZtvoeyEp8+1efKpp5Bph73RhNc+uM333nqby1eu8MTVa/zCl36OK1trtDsd7j3aY1Ea1tf7dPtrKOewCL7+6jd5673bDKczts5uk6UxJp/j25Knrz/JB3fvUFY1w8mM2huMiLBegRPI44D3037FBksm6aPfOv63ON5/KRWR1kRakxcFxgZnrxCerJdRS8O4mrLTP8dzP/cSe3ceMnx0QFJmfO/OB3xw8JD1Xo8zg20G7RZ5VYeiXisOhwdY32EjHnDx4hVe/aNXkR6iTouNp69Db0C5d0D54AHtGnqdNlVtGT8ec+fd+4yPhrx74xZvv3eH/8v/+f/Er3/pM7z67e/z2mvvkb9zn+HRId1+l/MXLyA6KSpNSKzElxX5fE6SZQynC45mC1566VNonaF13BwI20Q0Kyxw//EurWjC1afbXN94jsdHQ2QWoVVMR3ncQnGu63F1zXw8JBaK7tkdJouCt96/z40PZlyJh7R751BRBIRREMa7MBbCOqyzaCFIk4RISFASEWvidsbiQYXXbVRLodtr6DTG2DwQNgYUMU4JvJtQz28hirvoNEbqFOsbJvuYPfR4b8DVgEUCSvRwcYSIFCqWyEVJVY3BtNF2B1XlmOoQV08QSiGjNDjyoInjzpGqQlBCldNVFWncoYxajKsWk0XNdCHQStDqdtkYdMHM8NUUX07RUQI+xXuHtIcMsiN665eo9Fkmi4v8j//D/41zA8cTV9Z54bOfIs8LcGGXYmcoDh6DjpFph2e/+kXOX73I299+k91HI+rxGLeToyJN3G7jyTGVYK27Thp3meRToijGeoN1jieuX+VwMeFofMTvf+OAKO1QGkOsNb12ixcuX0SZGuMc5sMKW3MLeZAS6x2lqSjrMtxq0uOlw2NpprPh8Qh1yo0sTl5HAFqpk6anJevtgoglT7mTZUNGCyEwDqTSVK5mmJdMC4tXgRx2LhDOQgiEXL7uqSXgFNH8YX/0DyI0I53staAhjgUgJEJFiDiFJMHUFTXB8ZfGabhm6kByh1EVrhkt43/kGxvryOcFrp6jAa0kSRqjlQBncc7jTok2vrnWpQiJB1KcEJJBKHOkSpGoFOsqFiUsChuEX+kbR/RyH08LqxBFMdIajm7dxLz9LrqTES9yjBDBSexCc9rJ4Tl1foWk8p55bRgvSqrGuY6QVMaBUoSRND/iwDfnPQg+Hmv9hw7ZaaEACGKWJzTLiUDGSiexxpLnOVJEdFo9BjE8uncP6T2tVkbWajHP8yBAxzFxnFIXYTyFkJJIKxBhLIZHUntJCVjrGM7m3N074vFsjvIx3biPNDWLquRwPqE2Dqk0WZKE18MjhCeJNLHSRN6DtQipUEmCjCMwnto5hFIkaUbSc/ybP/oW77x3i1/61Itc+Y1fJsFSOMNy6seg3+fGu+/z9o0b/Mnrb7Kxc5a01UEKgakrlA9iX2Usi7zm4tlzvPjMNdaudSjLmlffuc3e0ZBFVVGhuHj9Cndv3mQ8HmGl4nfeGtJKM564eoVf+LnPw/oGpYqR3rO5tsHO9g5/8v3Xef3td/juW2/x1MufQ6cpi0XOvZu36eD55a+8wlNPXCZJI+JEUuQ549GcWR7R6mhSUaFx1M4QR5q6rqlNTVFVxFoj0hQpBM5VrLW73L59h2I64jNPPsH25hZifYOOdUxqi5nPoN1D6phCOPrtDud3zrA3HPPbX3+V2mvipIWIIsaH+9y6e59rly9w8dwOfQ1VkdPKUgaDAWmcMM4Lev0+15+4ThwLlAQhFEmcki9yytmMRAnObm9w8cxmkyYimzXNEkVRI5Z7rGuS23xYR4TIUFJgXXBZGxfEfec9plmnsiTGxwkSQTtNePmZJ7HOk+cVh0dHLHJPHCmiSFMZS23rMBpThMbLyhiQkk67TZoljIZjRuMps0VBL71KPp8zn8xYzOasrffYE3BY1cRYzmQtPpjlnPOKz8Qx61kNdYG3AisUohIUlaeaVxTDnEeHBikV7bhgrcgRzIm2BkRxhLIWP53jIwVaNmEMzUIWKXzc4tuvfZ9//94B4soT/NwXX+EzLzxDJ0tQUh4LgSus8KPwX2w9cxqremZVz7CqZ/7c65mPEdJ/MuuZDw+9++kjJKet6plVPbOqZ1b1zKqe+UmxanpaYYUV/kJhfX2dV199lb/39/4eb7755s96c36meOWVV/iDP/gDfuM3foP5/ONxL6ywwgorrLDCfw7wwrJ0tikvwmxyL8mrmkk+oXACqU6ROd6zvbnBlUsXOHfuDO/evk1uBHllaUcxv/aXfpEzZ8+wsbbBoNPjtbfeRUQxi7Jie2eHLI6YznPKxYJ5bTDzKfiCTibZXOvT63e4tL3Ohe0BKm5RVx7hIdaKVpJSWMhNiMAODKo8ZdX8sH9RnCbSjklNz3I8lEDhbYlUijiN2Nhe49HuQ6RVJEmHK9evMJqOGR4MOdjbZ/x4jzPnzoL31NYym0zx3pJ2UmLV4u2bt6itQWmFTjQu8iTKkXQyXKYZLib4JMJZh/GwpSIOHx9gDvYpxyOEr7CVwVmPMZZYSM6dO0ueF+wdDfkX/5//hV/9lV+g31sD47n5cI/kmWe4cO4ML18+z4Vul4cP9nDWoqXEm4oLrRbnzu5wvdWj0+8xfOcG8+mUOIrwKLwXOG+wvmawuc2te4JFXaEGkvXeOt96bZf37x3ycHfI5588z6eeP0NZl3xw5yE7nRbp5jpChoLfm4rNrW3W1jYxtSdWLjhTHUgHAoEQCqkkKk5w1qCaxhbjLJ3NDdan5zGjMaX1mKrCAdY7bDGjq84gzAJf7uNm75NEDifVibOzGScWGmdCvHQggsPoijqVaO8xu4ccfucdWpttkuubxGtdvI3AjfBSBTHAFtjaIaIaIWsEi+AjFwlCxHgrwI6IdIFSGarVIYvbzHJNUSqKA0Ws+sQqJtYtsqhDXUywLsSda93C2wUuv4cSewyiLV585hqPHtzi7fcfsXV+m/X1rSDOOQdCI0QUXLplSfn4Dskg4akvvMSFXGN7feragTB4ZxHO471oxK+YbjttRp2Ea/+MjKjdNmVeUuQFs9py7+iQx0cHPNit8PWCpy9eJFYa5STWW8CF8RQ+kCvWOea1ZVg6KqHQWjdOUocXrolxD3Hux+ekccdLJZuY//Blhw+k2vFoOd9EszucbZyqYd4Dzjcx6XWJ9Q4VaTqpRFYO7wNB7Y+TEsI4OX+cjrB8j1PrBM3kj9Oss1imTHm8bJISmq8LCFHmSlGbmtHRIflwgowy4jjGuXAOrLNIHFJCnMRkcUoWA3GM8g6Qx+MPvLcI4fHCB8+y1EEYEeCcwMlw7yzTH8LQvJO/g0iggigiLd5JcBpwVLWh9BYvBDLWiDRGeZBe4JA4LxC+cTeLpdsZlI4QxlLe2SWqF1Dk2HmONA4vHU6C8ALvTqSS5YgZvA3ubBmOsY4ipPeoGhwGhcC75hwjCMMPLAIX1hKhkFoj0OEs2upUA6s8FkeO3dhSnQg61jS/F8QcJQSDQZe0nWDrBUVpUEmGQTFflMxmc2yaMS8q5lWN9RF4d+w2t8Y2ozeC29oYi4ojajzzsmTv8IgiL1HWk0iBFJ5ISlACKVXY1+V13zT3WWlBCKIoJe0NyDp9ZJQwmU+pY4kzBhlFZElCO2mzdzji0eEh07qgG0uEbcQvKeh2uzx69JBvfevb/K//9ndIzl4m6/XxUlDlC1yRo4XHlQVmNuMLX/kKTz11hU5/ANMZRg0Z5nMKY+j210m0Jl8sGE/H2DQjn5akckIxzcmnc/6rr/0KT50/g5aKN9++wb2DIX/83e/yx9/+Dr/z+9/g2SpCD7aYj6bc/PofcXkz44Xnn+JZeRXpBUpFzBcLDo4OODx4hGYT4wzO1pS2QgtNFEVEaUYdx9RFgTUG6x1FuaDXXme20AxnFfcfPiRKEt7/4A4Pi4ovfOUXj68ZJxwOQ9pKUFJQLnLev/OI9XNX6bZSkiQm3j7DcDhk72DI4WjKk88/RT4ZMc8LptMpUzlHxwlSSKRUTWqAQilNkmm8FvhYUlWGMi+ZjqZ02hlJrIljSRIpouW1SRCXnHNEShFpiXeWqqqO0wiQijhOQQR3dF6V1MZQ1WEchNKKxXsz0jii1+0Qp22cFHgJQgZH+bQoGU7GjCZjHCcjSbxztJUgViK4wqMElSYMb484ODhiOpmhWilaQFdq1nWCNo6xNRwZz8Iq+kbgoxjf3L/SeFxpqEtDWYe2AyGCGzyJBYl3yDJH+hohFLVU4bo1Di/DOi0RCOdx3rJx7gwdPeDA1bz+ztts9luc39mi226hdcQKK/w4/Bdbz5xq/l7VM6t6ZlXP/PnXMx8XjKl597VvcfWpF0nb7U9UPSPUx9v0NJ/PefftN7ny1LMg5aqeWdUzq3pmVc+s6pk/I1ZNTyussMInAv/yX/5Lvva1r/HKK6/8VN8niiJeeeUVOj+FeaE/KT744AP+6T/9p/zmb/4mSqmf+vv1ej1eeeUVtF49ClZYYYUVVljhw1jSZM3QJQ9OgPOC2rlTBJJY/jixjmilGe1Ol6P330dFbdpZm/MbO/TW25TWMp8vqAvLcFYgtKGyNjzzm2aGsqoZz6ZcXD/HhfNnKYwhisOcc6k1k9mc772xx+P9EcZ44ihGC4XAnEgB4vQenPbKfdS1GQhCsbRCnugFwUnYfD3JItqdBGM8SZyQtlLcZEI+y8lnM6S1YD2j4ZThaIytavqtNtIr6ryiqmqyXgefaJwUmEUFPkZGCiPAYNFpgnKCSGnkdEG9t4+bTVHOIaSiKkIxj/NIGUglpRSmtrz25ru89OJz7Gxu8Cu/8CX099/gNgrT6zDFMxwOef/uPRZ5DtahhWdrZ4ftfp/1tU32h4cs8hxrLUo2FJj3eOvwztLr9tHZBvN8yv39EWcv9tnfG/Lo8Zjh3BMnEVp4Uh3R6/XJshCbraRgc71HvzfH2oLalOFcB7avidMPTS0eqKxl1mxHcDAHV1ir18MLQbFYMJ7OcdYhpcajyMsaicOWIygOEGaKSmOc0HgfRgD4JcHpHbjw2kJIhFR4lSCzGPfwiOr9+xTfeZfo81ehK4mcI+6sI7IO1iowMVTBEem9w5kKbxZo3UUIDSgCHWMRvkJ4SPBI7SFK0D6mNAm1BeMVlUjwkSaKJcrmeFfiXAEopDcInyPsAZfPZWi/xiKPg0BBILosBo1G0Iw4cxZXLfCxJOn2iXp95qKNc55AY7oPjW9YOvkChxoudqUkqYpJEbSUomUtUkM3jZnn8xC97gIRvMweOLnblq8tMNZTlhZjHWmWEsUJIE7SjJZkfWPCDbxu+MdyvJvzzfY2rl5xajSLa66P5Y27HN3i8FhrcMKjIkU7VogKvHUgBV56RPM+y2tiKRseh5Aff2/53idu3PCd5Qa7H2KhDgS1c5ayLLBlhdAZUkk8EmvqIJB5j5SCOI6IltH4spElmrXV+yC+iMb1rQV4FYS3YF72xy5HCQjnsW657Q25z3Id80jpsFYhRBj4UHsb1kgR1hQvHMJ55PIYibAvy9EKx2ukBIzF7B6grUVUFa4owdggFoUb5HhBbd7+xHHuw0tIAUJKrLXU3uEE6OBhZ+lxDkP/TuTbIPw15+nU9zl+z+V3wvlSKgpvhMd507jHw8ZoFSL6jbNU+YKirHDGE0URsVJh7EQzsqKyFiGTcA04S20CwWpEOObLi385ciKIMvJEo27O4TLq/pS23hyTsIfGWoSUZK0UGUUMhyPitkVpTY2ndgaJp5PEbPW63L59wOHRkGmR00u7IJbDfMK4BGsti0XO4dGITmeDHIGXgroooCzQQF0UFNMpZV0RSUkrirBakmiFUhJhBN45FtMZxSKnKAqUB+M9dV2Qz2aMj/Z57tknefLCeayH737vTfbmCx48uMvdew+Z5jWH84ootUzzmsfjCefXE3SkiSKNNzUCwSLPGY9HLGZDylaGcBbnDMabZlwPRDKhlWaUQiCcw1lPHEcoqeisbZO2Um5NZzzb7RFFMYmFbqdNFKcgmzXIS6SOEAKcMYxnC87EmjSOSKIIicL7I8qqYlEUQcA3TaIanrIs6CYJ1jmKssLamtpYnPSY2pKXBe24E4RyqVAqOnbVB9FahueSALwIImZzPVsvwucsG+5vKSVS6TDyobneZfO5TEqJ1OClasaohLXF2TDuSAlNrBVeCsq6DoICAqUE0jbXaZMkgw+NmFEckSYJ00XOeDZnXlb0Oxl9KehJRU9oclsSSYmSTf6Mk3gvw4dEmue3DefGerA+CH5ehG3Vjagq/PLeBuHCEQgNnuGeDiOfKi4+c5XPn32Gt2clb77+fb6eT3np+We5eOE8mztnProIr7DCR7CqZ1b1zKqeWdUzf/p65te+/HNoHG/c+OAnWH/+E+A9i+kEa00YEfYJqmc2um0uPH2Fb9648yPH5P15wlnLYj4Pm9N8RlrVM6t6ZlXPrOqZVT3zp8dK6V5hhRU+EfiH//AfUlXVT73p6ZOM733ve/yDf/AP+Nt/+29/LE1PS2xublIUBWVZfmzvucIKK6ywwgqfZCzdgj5Y2JrkdIFvyGlh7ZIPC7yRlBhjqY3DC8Uirzi3doaLZy9w9dwFKjPnu+/c4OH+EKVS2mmGQGKspa5rlJZEOkNpxXg65eXNTS712tTGcff+Pp1Ol+lixoN7e9y68Q6T8Yyy9sRJiIMWLiSkfFQg+BCJ6ZdE36l9bAjjUJ7aY3IrCBfgXEha6fU71IUBL1nMplR5jSkMJq8pJgU3pzdZ5CVVaem0gjjia8eimpHFCf3NdWotWNjgchZKB9rW1Hgh0XFEqmISqaiPRlS7j0F40iRCJwn5aAbWBYpMSMqyQghFmra4e/8xf/CH3+BLX/gcX/3lX4C1NrNbj1hMp3ywf8BiNuO9e/cYDkcU8znddosvfulLqCTDCnj3vRsUVcWxe5hQsCPCDPpet0N3/TKjByPevnePc9cUzizItOfCzhYXL6wTCUiTlCeuXEKLmnleoLRma7vP1uaE+fyI2XxEHF0HYZan5ITm84KiKjkcDbl8bhPrHKpxSKadLlWRMz464Gg4xluLihO8NMxKC3WOXzzGL/ZR3qB0F+/UMZUSmmgcwhlwhsDYKZARPoqJkpjF7V3K197H33wIn79M/mifajInuqBQmwO0aGNlhBcShMPWE1xdYcuSJFpDIAPR4z1OCcAhXIVyhkRZIp1hVUYhNLmoKGrwXlH6hK0sJVIzsFOKqkLIFI1DeoOtppzfThl0tylKUELjvMP4Gust0jeub7EUxKAqSmTiEIlG6bj5qidQw5KlM9h5B9Y1ZHC4B5wxgXwSglYS0dcpZzbXWZiaaVEwGY3BiSA8NITX8QgCEQhIqcJYFlsavLW02h2SJMM5ibEeoUKqgXDhDC0blrz32MbR63B4b8FxTBiFdKjmnPrgDBeqcWc3/28bkcArUEKSRQrpw0g95xuRTSzJKRcaq4CQrtRc+0KcWiM8XjQR6jQOchdG0oWbBLxvrjLRENBNw5axFpxD4GnyGrB+SZgLlJSkaYyW4ZUtHq/Cy3rvjxOslr1QohmngA8LcmOiRTUR884FItP75VgK0YwSbEYCSh/OUbMGlsKF7RDN+1vbbL9DeNvYwpurRwQxz0mBw0NZUu/uETmHqCr8Ioe6RrqQ1IX3uCZSTxzvc3hYLJu2NBLrBYVx5KbGCdWQ6Q2vLgReyCbtIhDuDtGQqh67DMFoBBHv7Ync06SDSakQjTDprMPV/vhZJnWEQ5AXJfl4Ql6ULKo5aZrR7bSItaZGBKHAOGQaiE1rLUVZ4mxGDc2YEVBSBoevlERak2UZ1XSKd/XSp473Eh/ONG5JiJ5qBDTGolVMqx0I5t3dXbrrhp1z56l9FUZmeE83jbh+bof7N98nn0+ZzeeI9cGxaO992K4kSciyjChJ6LVSRBLWMCclqiHDc11QeUm306GlIzIBTno6kaIdxZjaU5clh/v7lHkB1oU1WCtyUzNdLDjcX3D7/iOskNja8I3vfJ9/+/VXWeu3idOU3sYOkUyIdUwUx4gs5szONoN+jySOycscnGc2mzEejygWE4p5PzzbhQPpqV0Vrj0haHc6REphTIWzirQVUc5g8/wl4rUB75cjnmv1OHvuAmltSOOYJEsRKlxPGg1SHafOGRNcyYlWJEpha4+WCussRVEwm87JFzleSpTW2LJESol1lkVeMJ/NKKoKCSFRYj6n1W6HezyOiPo92u0MpUBKj0Kg9bIBwy/vfoSUjTNYIaIgoiml0XEcnpXeIRxByFCK6HjdjYiVJlGCLNbkZQXOEUlJGkVUQFlX4D2tNCVRGqd80wwRPtM5Z4O4ICVpnDBdFAznOYvack5ptpSg5SXSwsLCWqzpa9mkH2iklSB9GNXZrJPhs2OT8ofFITBCgNIIqYKQ1ghk4ZkAyOUTCpyx2KLk2pNPsP7Fr5LefMDXf/t3+L3X/wQ7n1IungeleYoVVvjRWNUzq3pmVc+s6pk/Sz3zf/hbfx1n6p9+09PxfWzDs/gTVM+c3+zzi9ef5jvv38XYn37T0xLOGpRsGn1W9cyqnlnVM6t6ZlXP/KmxanpaYYUVVvgLjCiKuHHjBn/n7/wd/sW/+Bc/681ZYYUVVlhhhU8EvBXYhpbxBGLIW4MRgQxdEk2CILoPBmvs7h/wrddeJ9LBrbm9uc2ZMzuIWOGdZJrXDGcVWTvj2rlzDEdHzBYzhBec29lhZ3uN+XzG1VuXePrpp0AIJrM501lFmkS8+u03ee/GDQSeM9s7SLFAGEO706LwHlEGNxAybFwQBRoVY+nyO8XXBRdhoyo4jklAS40WGikUtnLcvXufp568xsRMONw75N7te/QGW2xsrBOd2WYynTAbjbh+/UkuXLzE8GjErbdvEAnotjPWdjZBwGI6ZjSd4Oc1dloGl2asaLX7TOocORiQrbXxfo5LFHGS0FlbIx0MuPvaG7i6RgsFUURnZ5Oo3UJqTXK4y7/+/a/z2lvv84WXP8Pf+d/9V2xsX+X27Ts8uPkB/W6PF7IOs9kcZwxf+0u/zJmtDV5783X+7e/9HpvbWzz99PPoNEEqjWyaSMJJVlT5jDOXr+GZ82h6F5OP+K+/9jlu3x3x2vcf4r1jsigR1uIcbJ27yh/87jeYLnLWN/rsDTWffe5JzmxeZDEvaHcVzocofbc0l4pALtTWMJzNKI1F6QhjPfnRiG6nx6XLV9jeKSjLinanjS4V89mMwzvfp+XvkogZSRrjrESKhobzGvBBIPB1uD7QeKEhjmEQI2/uM/qtb1E/3OfCf/2L8Bsvkr91h+K9R+z+4e9gWgkbX3mZ9tMXYWuDcv+wETgiItXCeIm0NULUgEWKDLwMKT1YvBki/RAlY+JkA6UqtOpQuIRp4akLTTvuk8U94u4mqhrhywnWLBBaUZkCraGrJdiafPIIlXSJohbelDhXImQGIqXyktZgk6OjitHuXVTPcOH603g8dV03rt+mkUYEaioQshJJkyLEUipqmpDqEi0ka+02W921MJrk2MkaiCxBaHZK2z2ybod2K6WTxPQ7LZTTFK5kOBmipALVuEeBSAURUhISi1DLBCd/7K6juU+llCgZiFrnQlORrMP1430YG1ehcVGEFZ5cgEFSmIpZUeOcRUkd3ksIvPBUtj5eC0KqkkSxdCk24/Vk+HkJSBneOyRRNSM5mm1XDamcWYuSil6nS7/XJRcS4wKpLXWCEg7tHFJKWp0OVkoWtaH2kjRSS50z0OKNQCsgHDchkQKk8+AsUglwJ0JHpJLQWeUDoe68B2uwCIRI0RqsqbHGMl4Y+lkCKkJFCV7G1CpCi9BvdTzKgeV6KpBRjK0s9XTK/PFDMmeJ6hpX5NSmxKkk3GfON61ehEatpaFZR3ipsU0ywf4kZ1ZXHJQVRRwhnMT6IMKUVYWXUVi7j3vA7PH5L4uqWdPDz3uaEUYNw6ikRBamEQkExtdoG0h+ATipqbxiUVbMZwW2rsnihE47pd9r02m1eH/viPliQb5YEEUdbBNLpny4Jt1xS14z0mEpIjkXCNfl48U1yWWN69MdP2iXj5/G1erAYilMxfkL57j4xFMYodgbjclNxcJAURtaIufv/a2/ymdfeBpshTMVxphG9A6vWZYlg/6Aza1NWp2M+XiILCuQGucc0jqc81T5HDc+CqSuBiKB1x5vLGZeUs1zXKqZzMcMei22L13gpWef4//1W/9vzl66yNkLF7l8/TodLRiPp5jFAh8rSlsxLSSRNRTOMT+4RxRZorwgpuLqhXP0u1200uDBlAWHR0P2hyOkjMN+qOYKFAKpBdYYptMJ8+mMOI44f/ECFy6e5/oTV/nn/89/SYJBpilHfot3RhXXLl/hyU7KncMDqirHuRghIpSQUNZsDNa4evUyFy+eoyhL6sqQ6gjtLJHwTMcT9g8OUUlE6jtBTHeOzc0tlNZk7Q69wRq1c3gHSZqSRilahvvEOIOrDaauaKUgpEY6AU4gRATNelLWVZPWAUIJtNa0+y2MMdRVhakrYq1OGiq9b0aQGGpj8LpGxYQmUOmZ1xVGSGohKZzHYDk6OmI2m9PJMrTSVMUM4xxRpLEk5KVhMp1RlDX5zhZHkwnzvEBY6JcK1/Ic2JJZXvJclPFcEnNBe5w1eC9QNgiMXvqQdODDUmQRWAFOC7wWOOmprCF2EulOhBLXJPmdJAd4nACrBJPphHv37qKU5r/5a3+VS4MWjx/d59G9O7z6x9/ki7/6v/kRn2RXWOG/sHom7BGremZVz6zqmY+nntFJ/NNdoE5hUdRYWXzi6plup8PxB9qPAd573nrtT7h0/RkGGzuremZVz6zqmVU9s6pn/gxYNT2tsMIKK/wFR5j9vcIKK6ywwgorLOFM3ZBkNCJBiBVxXmKhcUxLpFBEKmJWLuh22ySdDtOq4o+//ocs8pKXX57z3PPPkMUJMoqprWN0sM+lMxukWcxOvEm31aLXyUiSBKU1L738Mg8e7WKabdhY7/P44V1amebypbNUZYU1JaYuqOuK2dRgjTsmXLxzoYFiyd4cCwVLws6duCCXpNKyUMWDCkSSsR5hBDryPHq0j3USn7aJnaeqS84OdljfXGf4+pjzFy7yq7/6K7z48ov8d//dv2Ayn9LOUjq6zXg25ejxI9a21rl+5SrCeg53DyjLkqqumE6mXDh/hXa7jQdGwxGmKPEOimiOjGOMqbB1hUfS73ahqintDOs95XTG5mCDIi949dVXuXX/Az7zl/8qG+cvcnF7h+5ixMIYTBO9rJTi3/yHf8cHt+8wmS94bmcHqQNxDxw7IL0UGAWtNCI/2sWXYwYZuKIZo1U5YlFRzuesbWkUgiJ3lMYxKx2lFSRZi6c3doi1x9TVyQW2jIEWIFWgZdMkZmtjI0RcSxUECympioKHhweMphPWev3gcsaRRrDeEfjFLipdoLTFC8npOPkQFeTBNwISLoxA0BqpIrRR7P6vr1IUBdETZ1BfuE5tHVHucfs509duY1+4xOTWQ8pFgUhS1p68jM8irKswZYGnwroCXIk1BTESrRIEAmNLKlshoxghPaKek1lLqmYYUnKVManbHMwEzkFLGTb7GUkao6lw5QxXj5GRRgpw8zH15AEubuPTPjJZR8ct8Ir/P3t/HmRZep53Yr9vOevdcs+svaqrNzS6sTQALiIICQRFUCNqRJn2OMYjCwpxRqHQzITsP2wrHJbtsCMmYkIRE6ERZ2xLCkkxkrWYkklR4jJcRBECSYAE0Fh7reraq3K7efd7tm/xH9/JrAKHlGCS6u4Q79NRnV2dmfeee5bvnPd53ud5nRMgEnTU5ejwTW7dfMjWpYbdvYt4IWlME8g22TrVXCCbHhszw4gOJWQgZ7zHugaNR2qF1IraK6hbJzIO68WZ8CaEYDYeMbx7G9kUbK11mBwf0DjF+Vjwvc9eYmtzB6FVcMPZ4MSzjWnH1XGW2iSlQEuFOnN6BkI+0gqlVOuMdeg4xVqLJDiejYhImoIdv0T5BbGtef9mj6dkhFKyjUtvzxAhECoQj7bdFiU0UoTxGgJPHMdIqYAwbk5K8M7ivGvHADis9xgHxsOsMjSFoBeHESmz0TFW5zgdo6IIoXX4rFKjdUKa90h0TNpGpCuCsClEOBZh0kAgn4X1SGnRSiOVDGPtlEDiAjnnLTwhcQQ3tAMVRmPEaYo0jkY6hNAImTGra6rGIBJPJ0nJe2vkWuDrJpD1zrX7IziSndbINKVZVHR3txhKSdLtkm1tka31EYUFp8EngAlNa61zXOAhjtGJJks0SaJYOEvpAKnp513SNCGqDSo2RFkKMj4TY0ybWiFaBdj10jM3unceJYNL35pwLL0QaKECeS/ACkOuE6xxOO/Z7PeRUuHdmQGcbq9Lt9clTjPmywoIhG0URRhjsSq4aYkUxrpwXbbrlBSgJajWbavaUQBehHQGy5l+ceYGPcUpNaqEaMci1dRVTRYnNCLcf2traTw01tHUhqpc8syVS2glyLQLbu0nhPDj4Yjz58/xQz/4R3n++acZz5agIjwyJBu4MB7HmJqmLnnmmesMOinLsqARmqzT46nr1xhOp9w+eMTx0QGxkFze2+ODH3iRtYt7FI1jPF9yf38fVS8ZPn2Np87v8Gf/l3+S7/3ul9vrVeKQ5FtbRJ0+CEn9Q9/Hixf22FrrM5vPQSoq55mWJfOiREtJrDXosO+UB2tMSHtDILxnPl8wPB4SJTFrW9tkaz3mxw9ZTsdEO1cZpinXFWytdci6HZxpqKuKSoQxA9Iq4ihifbDG3vYWC/M4S0VLgWsMZVGwXIaUj9Las3WqrmqEMdRNTW0Ni7I4u+PgoKwNcZ7hUDQ0LIoCFUvSOCZWGullmNgigsvfWINSMVgDtsE2IbnNO4u3Jpw1bTKHRVDUDUUZnh+MMWSdDou6oJvGRN0O3bxDrRpircNoFzx7585RlTVpFIU1lNAsenou9gcb5J0e3ll0HDMZnmDnU7YShdHwqCjQWDZiyYuZZs0blAMjJQYXGjKEw4jTUWKnkDhvw/1EOLykPU/Ddfz4Gez02SCI17q9KqQQ6Cjm8OiQ37h1n1/46Z/hf/0n/jgvve85rl65Rvr1b/x2j7ArrHCGf6/qmbOLZVXPrOqZVT3zTtQzxXj0+78o/Q54dmfA9sb6e66eieS33tXfKazqmVU9A6t6ZlXPrOqZ3y1WTU8rrLDCH0j88A//MFEU8bnPfe7d3pT3BD71qU8xnU756Z/+6Xd7U1ZYYYUVVljhXceHnt7FI0N0tJJ474h0xLyy3Dyec/fhCXmSIIWksjWLRYGKNI1zRFmCjmIOjk+4/eAhO5cvsZGnzOYLprMptfV0uhlJonDWooFOngIhmvtkPGX/cB/vLWmSsLu7x2I+JY0jNgZ9JuMJpXNtrDutG6yN/W+3P0Rs+29xip2ZoF2bJiNC03OILRY4b/HK0+l3cLWlmNdY5zi3sY2TkqTTp5PkpIsZJ3duUzYli6pgUZbsnbuAwzMan3B48Igojch7OWmvg3GWalnRLCtcbUg7OReeeYr5bMr45ISiOEJrhcNTVw3LogJkIHGrCukMm9trlNMFZl6CNbiipDaW2jSs9TuITDEfT5iejHj1oUfdeJu9wRqb3rJWTnGRBiWx3nN8fMydhw9xwNXLl3nq6hWKMsTpOx+i709HDIBDSMFyMoJ6zkaueXAwQeqaxjmuXN9m0NHMFyWREuRJwrKpWNQO7yVJoul2JKZZ0tRFGLNxdqza49WSNnmi2d3eCulAWuOh/erx3hJpyVq/g7OnIx0Ix8wZorhDFFusNcHZ3dKSDofEtCIBIGQYkRbHSAf+7jGLr9wg3uyTPXUO29O4aUHz4IRmf4xUiu77n0Jqj90/ZDkqyHsd9FqGSMOoDmsXISIdB8K2DTpN6+Bswn4UGkHU6hULpK+IRYKQNY2yWBtTe0VZKWaFxDhJrCWR8q050OJ9g0cSx12QCu8MrinaM16DzEjybZwVTIdT9m/fo5xbBmkHoTSNtRjr0Co4x4U/jcZvrw/vzxIFjHMY71BSoAiOYCkFsdbEjsfJSiZEqXtaR18cMb91E+ZTskhxdPcOaWfA87lm45kLdHr94JazFmcej3E4hbUWa5rH5JCQJHEcmpyswXtLlmUIEWL6rYeqaZBCkGqNiDJsMUMuLGo6o681H13vINMwasZ5hzEe48F6QZLEgfRv3ayCMAZGClAK4kRjTBBwvCdMETn1SjiwzlIZS9FYZmXD0bTkqKlIcJhqyfGDu+juJjrvoTvdQGoLcCIIFcJadjopzWYfHcd44RFtHDr+8b6VCLRSnIlcbSOUAqQIzmBrDdZrGts6toVHKkAJtFZ0k4jI+/BbJkbP5sj5kn6qUZ2EzVhyfO8OEeDaRrTTkSHCg1YSr0IyQzMcMhWO5dY6dPPgzr11A1uFEXvWWoSzaB2ovqDVOvTJMWI6Yi+PmZ/fxjcVQgiyJCXPO6RJQhObcK4CSidY684coPjQ3Cbbtdy2CQvgSePTn7UYa8O5fRoaJqCWhkzE4AUeSSfL0O0yJ4RASYHWEUJqGgvT+RzrQmR+pKIwvofHowob144Jke0fAUqpIOaZMEbg1IV9tua1xz9s/uOxI2dZBM63m9yK2D5cd1JLXOkwth2DoQSRCIKEbF/PCx6TrR6MaYjiiO3tbTrdnKIsEUIBQUAP5LELY1ScpdvJiZWkriqM9UilWN9cp/KOxc05xaKg9jCZzRnN52zvnee119/i3p273Lpzl/ObXZwzdLOUq+f3WO/3WqEkjByIkhQRJ2EMgN1iu5OhlcRai5KSoqqomgYvBP1ulyyJsSrs88iBlwpD6wo2Fi9gsVxyMhxxcHCEloqmXhIpzQeuX+TcuW02Bx00gsiH9c77cI+z1mGkQGlNnmUMuj2W43kQraXAhUk31FXNfLZguSwo66olv2UYL0M4/ipS5J0s3I+swxsX1jbv0VqiVUoaadIkCm59BN76x/dZ2vNGypa4dxjncHVz1rOttQzyWNsIaTw0zmNcIOS11kQyJ40jtNSUVR3uk14iJQgLkVKQxCRxHBpGI41UHq0E1npqYxEI4jjCOMdkNMWXFefyhEEEonH0leBqGrMrQXmH88G+7rzHSPt4opQTrQhwmjBBOyZC4oV//DDWCgXt5RDOfN8KaeLxGFTbNAz6PXZ2ttnc3uQ3vvQVlJCc293i6etPscIK/yas6plVPbOqZ1b1zO+2nqnfwaan4+NDLnRjXr5y7j1Vz9i6fGJFeucwn47J44hr53ZW9cyqnlnVM6t6ZlXP/P+JVdPTCius8AcSf/kv/2X29vZ49dVXOTk5ebc35wy+LV53dnaI43cuSvZHf/RHee655/jCF77AcDg8c0ytsMIKK6ywwh9E/MBHn0IIDVLjoxiLo593OZgU/MJXbvJLb95DtRHyxjiWyxIdRzhgd2+H97/wAsPxjNv3H3HheIjaWGc4HDI+GZJ2u+zubeFdQ1kUiMbQ7XRZ1iVHxyO+/MrXmMzGRJGg3+8SRYqyKEm0QkYRU2eItUIrRaMUkY6ojEWIEM4tTwtQIBSdLSUj2gLUh9FSohUJnLF4L7DeoiLJ5s46dVFT1yfQWC5fvsxwPiPbOU+6vkUxHzO8f5fhZMy8qViWNUpF3Lhxk7duvM6NG6+zu3uO9Y118m6XqqiIZUw5KxgeHLN2YYcXX3o/o+EQKxzz4QTrGkzlKJuGsrFoFYOz2KoiU57dZ68yPR5xfP+Qal7ibUO1LGiqhr2rl3ESIm+pyyWT3hq//rXXyE3NWjlnS9QkvQ5ISdMYDg4OGQzWuHj+PM9dv85zz1zntdfeDsk73rWOrZDgLr2jbizz8RFps2B7kPCrX75JEnW4+tQ2L37kKarDEa98/Yg8iXj+qTXGVUltPXGk6OYR0i9YLkek9Q46CuMZzhyCgPMeawxJN+PSuT3W+n2UVhjnQjqOlHTzmDSCrX4XjEUIhfGSaVHSjxU6W0fHHlOMEKbEeRVIFWERrm7JcIlAhej+JMKNC8ov38C+epeNH/ou8kvbVMUcJg2LG/vU+2OSa7vsff9HqV5/k9k3b1K8eZfZbp/s8i7x9gZ6bQsngyAlUAif4KjwrgFvwgiCKEGRIHyKFWDsAuU8Si6JdUVPV8SyQ2k6LMoe04WlbCCNBeudlFRHWDPDNQ1CxeRrVzG2pLElrp5h6hJUikqh1+0yG5dMj8Yc333Eyd1DxGyE1DGNg/myJNKCSEkiGZyYp9eB9x5nHY2xVE2DtZZup4NwQfTAW9bzmLUkxuNorKMsHWVtw3WnJd1uzvxwiJ+MiYTn/o03uHrxKd7fSfnw0xcwwlKUBmMMzko8EToKrmUpJVhLURQ4Y4Ir18Nav4eUwcE8X8xZX++htMZZx3S2YF5blFLkSUKadlkWntHRguOpZZCkXN/J6XQzhJJ47ykbS208jYVungfiriV6vQNrgxCgY4FSsJgbmsbjhcRHgjTWaKUQXtE0DfOqZlLUHE2W5LXFzCG2DfVyxv7dKZ2NknxtixyPUB4RxTigrg12OefaIONCHtPvZFhnQDgcIcmqMYFY01KRxxHWNGFUng9iJ16EpicsxjQYq2jqIHoo6UgyDVoHway0xEoQ5x28s0yaimJm6A96dLf67EWOG1/4NZra0NQWrxTeW0xZgLHkaYJoo97tcoksZqinLjMfZBxOj1H/6hdJ0ZRlQ1UbvLP0ej2UCiMJfWtB9mXNU52Utaev8Pprr+FVRJ5lbOSd4OTEIYRDa0maJlhjqauasqiQeCIlWvexoDIW74JI3O228fnWYWw4P+vaYG0gVRdKEjUCJWKUSiDR6JY8DsJDcGjWjcU2jvF0isg7qPYeU0ObRtamCrSE/qlQ4AGtVWjIawyz+RzX1ETeIdvvn5H/7Rrrn1gNBWCdw7frk9IK1xi8iIiiGOcWGBPED6k0cSQYTxZ478gzTTdPcPaxzVtJibHBj53nORvrAyQSJURYCYVsxQuBF4K6LGjqElM1GBvm9GSdHDEec3BwiKkNy6rm4f4hX/nmazzz0ot86Utf5rVXX2M+mbHz3R8iEp5US5AClXeRQkJLfkdKI4TEOUfT1LhS4PMEqSOkVMwWS2prUFHExvo6eZpSCYvFk3qJdoJaOGpnKeqGThRha8NkPOH+vfvI2qOFZHOtx6e/54Ps7e0yPR4yGZ6wWCzRV8+H86aVaAyQaEWWJvS7XR6OZoSxNmF8idSBbB+NRgxPThDCE+kYrUNSgPMOqRRJlrIu1nH4kD7ReKQPCQpREpOnGb28h7cW24pdVV0htQ7Hyjmi1rGOCmJAWVaYqkEJQaQEsdSACCMWTq9/BEKqsA1xTC/LiaTA24bF7ARnDZkWRKpD3RiKZYH1EEcRjWlQWhMJSSzBWsdoMkNL6HcSlmXJ8ckUXzZc7uRsRJ5KKnYixTNZyqCucQ6sk0gvwXuMNEghUCaMvPDucVKdJ7idT0U22aZwtKpIe/9pha7Hj26hycN5ZpM5l86dI75ynUhK/pv/+3/NwaMDvuOjH+JP/akf+j0+7a7w7ztW9cyqnlnVM6t65ndbzzQnw3dqqeKrr73Ohdjx/IsXWO+/d+oZUy5YyxLGywrzhFHl3zWGR/ukruba9XNsrWWIKFrVM6t6ZlXPrOqZVT3zbWLV9LTCCiv8gcVnPvMZfvAHf5ALFy58i8v63cRyueTq1av85E/+JD/0Q+8sifXxj3+ce/fusbe3x2QyeUffe4UVVlhhhRXeS/jiK19HqzaSX0XISLK1vs60cizHQ9byFACdply7dBlbzfnQyy/zsY98iD/6h7+Ln/ynP80/+Kf/jNfv3IU04eU//SOs93PW+jlrm5vE3iC1Islz1nTK9vo2j05OMOY+D/Yfsru3zvZGn/V+j14Sc7gouLX/iMV8QiQEWsVUjaB2ilERxgxIL4iEwJ59Cs/jERBgbShG0yTmfS88x2Q+YTydUNc13niUzonTOBCj3S5JmlBXDYuy5OG9R/jjCVGvR6fXIV/fhEgg8oQXvuMjHO4f8eDwPq4p2dvZYXdnh7oxHB4cMZ3N6Kx10ZEELTBNzZtf+Qaz8Zjx8SGL6YS400PnOT7WYA3GNBSLGUp6Xvq+76FzZYej4RDdS7nxldcoyjlZJ2V9b5NZPaPT65GtdVkXgsJmNGs94vkMNfdYqZmVDXVV0iyW9PI+dWl59PAQU9WsbwyYLhYY59BK43wo8JWWRErx5ptvUcz2Gaw5utvb/OJv3uJjH3mBC1LTLA3/46/d57V7cGErYWtLc/lil+95/xZpmvLsMxf5tVduYTtN2P+tpdGdNW14vBR4CWmWcG5vhyROmM9nlFVJbQy9QZd+N2c0LHj08AEvvPhhdJRQTRc8PK4wsgA8O5s5G9vn8UVNWSzwZgG+xNsgKngpQSXYfIBflCxffZv7f/8X6Ayn+M99DTc8Iv5D12l2NpEX14l3euTvu8Dy6BEygcGHrrH98Q/x8BvfZPi1RyA16flLbL/8AiJbC27JZQN2grUlzlY4W5IlCukN+BIUCBlc49aDtCWymdDRik6c0Uv3mBe7VI1guahpFscM9IQkVug4QXW2aciBhpiCyBwzPmkQ1gELmvE3efPzR4zuPkIaRSHhwfEIqTTeCRaLBXWxQOGJlSTLeqg4wnhH7Qylq1vXXiBOo8UYGkE1L6iWS6Qp2d5aQ0Yap0QgiZTGWINxlihN6KmESEuSTPFwNufR7QdkWUKaCmbLBd6djmYL4kSaZwgZIupN3UBLdHpnWS6W5NmUSIfI/clsQnwwDg1SDoqyxMngog/RSQnOFayJmr1OTmElv3L3mEYplFYIIamblkj2HmEhjoNbME5ThHwymtxR11Vo0rIe50Msf5pmaK2RQoSRLs5RGc+itgwXFaOi5mKckKcZO92I0XxMVZVYZ0iUQCfBmbmczbCTERdSRdqNWI/D9jgvsN7TWEfcS6mNwzuPlg1eB5LUOB/Gf3g4HX/iI4lxUKtAYsdakKQaJxRV1TCaDymamnxjExlFCCzeNKwlMet5ypopuP+VLzJdlJS1QQtJUwYRSnhPJ08plgXFskAIwd6FXXa+6/0cH58wuvUGvP1NNrprRHECSlPahlkcRvxIJRFeoIVA5z3iKGUt7dKTkokx1OWS+UggbIUUAiklsVbMCC7nxhjqqqHTyVEqkJJlsaSuDVKGWH9bdYKztk1FaJoGazxL41g0loUp0VYiZITQEVEaM5+dI/MVZV2zWC4gWVDPl5SNJdERG2sbLHVFUo6ZFS3564OgJoXAOwPOnt1lrPXBRS8lWmmsskjX5jR4jzgtt8WTvujg1BbO0piSweY2l555nrTfpxFhbGGkFE6D1GHEh3Xwymuv0+vvsLnWD+kYjQlJEioI4plOW5dzSC4oa8BWSB+i9pVSIIOwjgVnBU4qrBI0zhDFMePZnLv3HvDqN18jTlKiJMMJuH3zBpPphOHhIUpptne22D845ODoiMn5HTKtmSxmSKGDM1oK8jylE6dESKjBOkOmOqRpRpqlLOZzqrJisViyKEpwLowPwGO8Iomi1tEbc/XyeZ558QXu377DowcPGD56gHCSzsY6g909hLQshsfceusWw+MRFy/utGNvJEppoiRGS9CxJssydjfX+Obt+1TWUFmHNZZOEnM4GnFnv+FwPOPlZ69T2JrJcsGyWJDEGV5KrBO89vYdYqnZW1+n3+1gkgSBZ7FYMhmNuLG8w1p3gFQSLxz4hkHewVtLU9cUy4I4SUk7HVSUcHIyZDqbE2tFJ0ugl9Pp9rEIqsawXMyZTGcY0wCeWbHAC9jo9djq96htjW9aAc0JFouCr37jG2iteeraZS6d2+ZoNCIS0M9ShDQslzO0EmhhWMyX3B2eMFkueVp4fjCLcTJCeotqaorGgVAYD844lBfgJYLW+S3AC4HDY7zD4onCj+AkGOmJ0hi0xlmPn5ft01oQ/3S4IvBKoeKIe7dvMX/9G0TPvsDHv+9TbG1e4r/76/8Nv/ibv0F3Z40PfOIHfu8PvSv8e4tVPbOqZ1b1zKqe+d3WM8t3WCb5ma++yWffuMP/9o9/Gnz5nqhn1rtdfuK/+GH+Dz/+K/zazYfv6P54MDzh//Wzv8jf/jN/gjRZ1TOremZVz6zqmVU98+1i1fS0wgorvGfw9/7e3+PGjRv8+I//+DvyfkK0DwjvMVhr/+0/9O8I78X9scIKK6ywwgrvNC5/9FPUZRFGTXlL3TTEO1ucyzt8/7MRH/0PMm49OuZkNqexhq14A784YXL/Dq74MMezBY1QdDo9Lm9tsrexxrPXLpGnCetrm2x0u5TecTA84auvfI3YSYajMZP5jA+99Dxbmx00nkgq8jjBIZkulxRFyTOXLqGEphrNmC8LjJLkUhKrkHoyNyF2W536znyIcA7wWGuZTEYY0RBlCpUm2NrgrMc6w3xakKYRRbFkNp0zHk5xjcPVITq7s7nO2rVrjB4+YPTgCL3hQjNDHOGkR4uIR/ceAeKsuWPz0ja753bIOxmvfuWbDO8eBUeeVMSDPr3zuxjnmY9nVMsl6/0eWoVxB8PhiAfTE/aPj9jfP6C/uUFcFOhEE3VSZBpx/uIus9mc0pboWw8Rygbydm2NxWxKUhlSocl6XQrj8EiWZc3DoyFv3LqD0gmO4DAE2jhngZeCtX6PRZ7x6GTM/cMDvucT/3PyXHD/qODR4SH5pY/zyZevU82GfPHmF3l6OmJrs4cXkjdvHbA/kjx16Tz9tQ3KsqTbDePKglPSAQKpNDqOEdpgzePnQGcdOlaUjWdSNODqsJ3eoPBoFZOuX6OUCx4OJ9y5d4trl6+Qd3I0mnpa4W2DUiGn2kSKKM1YvHWL+cEI/+GXyT7xA5RvvUlxex/52q+TvO8SrKeo8wOifgaJpCkjytmS+dFd4mmJqD3EgtRUzL95A9frIHtd8vV1pF6jNjXe1ihZYmWNcwbvaryxKK+QMowqs2aCdx5MivCCRO+jU0upExojUC5CmjnVdEwpHNngCiq/ipA9cDk1ju76FlLW1NWEG7/xq7z1xYLpQtIoyRfuPWJ89yBE8XtPohTS2eCIBpZmn+lyzta5Hc5dvcj5688gnSXSCpRkXhtee+UNpsdz6mUVmpdG4ISjsZ6iKIKbTQQH3NLOeL6r+PBmyrP9nK/eGfPmZEwtFVoKtJJorcNYBmtb4m4WHKfOsigL0jghjiK00iwWS5Bl66wNtGrdzPHOo4QgTRKMrbE+kFGlWZJS8qE1yeWdhBOr+B/vzTlsPFGkUGdR7GFJcP7Unhcck/50fEwbSS5EIK3OEhUQSDXjrNXIBVf4KXFce48rG9YGOWl3wPZ2l9IesWws5XKOOR6SdfsID8vpjJvDKYfLBusd3UTinaUxFtuOrInTDGct1jqcC87D0y3GPx4XIFqHq7Ge5jQlS0ik1GGdwRF5QyMU1eEEZzy6qeikOUejKZSW89by/Z/8XpIsD275psGZBp1GKC3BGO7dvEfW69Dpd8m7OXe/dpOnX7hKZ3NAstHl9VfeYG2tz+bOBlvntilHizBmBoEXil63wyvffJ0vff2bvP2NV3lqkONEw7RcclzV6ERRG0FlwHsJ0tG44HJ2DnRRBJeldzR1DQ6UdChlUQtLWdVYZ3HW4YxBK42XCicETVWjhaJyJQ2OtSznk1LS0zFJmiB1jFIaYVyI8k9Suv01EjPBeosxgigKowWFc6073vOEBfQJx6okjhOMc0jjEda1xKPkNO9e4rECnAvpHPPFkrXNAXknp1wsePWVL9Pr5HTWN4ikphcndCNJL41I45iv377Hg9ltrp4/xx//zpd4an3AzBhq0+BsxdI7EgHONBRlgYwiOkmCEEFAWVZLGmvC+I7G0cm6qERjAeM9jXMcH59wcHTMYrEkTVIW1ZJIS67sbbOxucXtW3eQeJJIcTQ+4cHxCdOi5trTF1gYF+697TnrvGG+nOMsGOs4t7mNETCcLpjvH9NRijxKyKMYYww+S9CtYO3xLE0V1k/TMB4OuXX7NovZFISnm2d4HVGbhtHxCUcHY46853O/8Zs8eviQT//AH4boA8HtjwcRRkDhwwiQ7fU+RV0RlRWd3JKrmEYpUq3ROqISMdOyCs772mMMaGGQThJJBUpjvMR5qI3h7vCY7cEasdSICLxyIFqxTHqU1MQqBumJpEZJTRRHJGmMjjVXLp1j/+AQnCPRmiyJSXQYzxUpSaL7JFFYv5RUqCiiXFT0opROlLLW6QKQZRneC5TQXL/2NHGsOL+9jpKKPEnRQhDrBKE8e7tbZGlCJ4154/W3mS6WVHWDTiVdb2m8pXGOyoNR7VoqwEqHEBLtIyA0aYRhLnA6ysnhQ9yEEDjpw8+0zxf+9LnDczY+QvkgKAgdoWLJa2+8xo2kQ3o85qX3f4TGWT71A59C+oarly78vj77rvDvH1b1zKqeWdUzq3rmd1vPPL/T5//2Rz/M//kXXnnH1qzSOH7qzphUvHfqmd3tLkmSvGP74Ek45/mXd8fhmK/qmVU9s6pnVvXMqp75trBqelphhRXeM3jw4AFf/OIX39H3TNOUH/3RH+Wf/bN/xuHh4Tv63v8m/PzP/zxZlvGpT33qHX1fKSV/5s/8GX72Z3+WGzduvKPvvcIKK6ywwgrvFTz/4Y9SlyWmrnCmoqpq+ptrpJ0eKu0hultsv3GDm7du8/atmzx/5SLHowm2WvL2zbcZTRc8de06vTzlpWeeRnnod7rsbFo21zbBCWaLJccnIw6OjpgPT1gul6RZyovPP4spZyyXC6qqYVmMGU6nVMYiVYRWEYnSaBk8ZacjIEK8NUgTyBrvT33RgYg+JcCttYxGY2QqUbEkTRJqJPPZgqqsaWqHNTllUdHUDcp4JBI8KK3obW4wnyyoi4biZMrMQnfQQ3mBRGEbx2K+JM9zut2cZD0j66agobYN1jmMsaFhQQmUihBIhDMIY/DWIbwgihO89Dw6PsZIx3yxCK5lHYE2eCkD+aYkVVNjceg0IkskzWKCSzN8lsGgQ1xWCNfQOAPCEyVJS9455suCbidqU5kDSSoQ4MJ4gE43Y7B+Do9gtpjx0ssvUyxHLBZjiuWcvSvvZ3v3IpNhj9n4kIPlPbbyDs7DtDKs711iY+scWd6haWog5pSbPR0nLGUgzr13NK5uBYTw/cYY4jij2xsghcRaF8jcEKCNTHvk62vQ5IwnJ9x9tM/moE831SQqx2UC4QQIhfQCUS9BxUR7l1g7f57OuQuUXz1H/fXXKL/4Ks039vGbMVFZoy5v47sRtjHUZY1ZlMRCo3sZMo2RQlK8/RA36KE2Bmjnidf7KJ0idRJSiNyMQIs0YAxOeISQCAHOtWSKdwjnELZEiRNiEaNUjFQahcRagXcOV09x6hCpukiZIGWfKNY4N6Ka1ty5MWJ0bKhUhkpTzj/1NBtJircGYQ15HCEBJQAE89oyXczYvXCOS09d4eIzV5HWoJVEKkHTWKxNmQ5nNGVD3umgogiLoLGesizC9SclQipqLzlnRvTFHCVKrly9xv5S8WA04XAyYdDvop3EOWhMINdx4Rq2DqaVJfWWDE0sJAsXxs14F4h8pSOKmrbpCTpK0pjgcrbeUxpPR3jKNjGpsjBuPCe1J/bhfBGudaSqsHo4H84nXDuyoIX3IRpeyXZchnNIIRA2bIs7JYhbMVIARgikB4MAKUPkehSjXIOzjrpYoqUCD8ViyXBecHO0ZGYsSSzAe6z17XUhULrBtYKatRYpRXDVtjynbkdZnBKxxoH1Hud9G1nfoIBUwkYmQSuKusE2htRapNYcLyoaI+igOP/sC3Q7eVg1TY2XQVTyxmCrEr2+TZ5mZElCLCXFUUN/Y0B/d514e8C8jkgjTb+T0R2sMVg/F4hz73FC0V9fQz08YtJY3j485HL/KohArhY4FBEL61nUjqoxoDgb5eeEDGuSD8fMGhH2pXH4xiANNMa2oxMtOorQToUxJ1i89WjhKa2ldgYdWWQUkWYJcdMj74bRDxpBAiRJgtAycMm+FYzOYuxPBzs8dkpb47Datvu+HcfQ/oBvEyBEK6id/qLzYS1Ikpi19R5be9s4L1hMTuhGgo4SJFoxrWs244RupMO9T8U4FXF/OkZ1Okwqg0EwmhfMl3OqxZRHj465srNDVZXcuH0HEcWs9/toKWmqkqIqMM5RN4a6Mbzvmae4fvkSWZpQ2oZFWfDgYJ/9/QPqujkTRZQQ9LKcLFJoJVASlBIYYzk6mXDj7gOK+ZJXXn+zXedke5c2NLXBA2mS8r3f81EOj8eMJwsq4/nI88+TxCn9TgfhWkGu3cmOcF4jBN55iuWSh/fvI7xDAlmWsmjMmWO9m3cZj084GY14eHDAw5MxC2PZCMpfewBkuMakpNvJW+NTEAo9nmWxoFgsiKxjtlhQewcOpBUkOiWNFLXxJJFmd2eXLA2JddYFUtxah9CaKEroCU0Wh3EqIXUiJEoIHwjy2AukFBhrcTUkccraYI26qnDG4ERYX8PJE0Q3paNwzxCSJEpIejFpHHN6c5Vag5Q4IUBIBoMBaaLpdDp4D0mcoGVoQq1NibMWKQRJklBVNVXdYKxFSt2eqw7rPRYfXM8+NGP4YPNvCX5BGPrwOGCibdU41cbCs5gP9zPfGt1OWzhOf/70FaSUoCLmy5LX37iBLwCfsLu+yfUrF+nFin6W/jZPsCus8BiremZVz6zqmVU987utZ66IOfni5B1csYIJ5NbDB+xt9Ch76XumnvnY9YtMlhVfvv3Opj057/ny7ft0ewM6WbqqZ1b1zKqeWdUzq3rm28Cq6WmFFVb4A41er8ff+Bt/g7t37/K5z32OxWLxbm8SAH/9r/917t+//443PSml+G//2/+Wv/gX/yKHh4dMp9N39P1XWGGFFVZY4b2AD37sw/jGYZuGqlpijEWnCTpJ0VkP2d+laSzlZMzt1xY8c+Ui3U7GaFHxxS9/lcl0znd/x3fw7LXLXN/pURcFWio6WYc0yRnPltx78Ij7+w+pm4bD4T44y6B/jvddu8rr3/g65azkeDZnf1pw7+AQ6QXdLMMZg1QKLSASHodDipB44r1CStkmpdC6oOBUKACPsZbhyZS0G5P3MnqdFFcLqmLMZDKlSg3WeZraILykm2ZUdY2II5K8w/rmBkf3DqhmC+yyZmbGRFKRRIFEWS4rnHUkScL6xgY7V3aY2yWjkxOKogABea9HXVXUdYVE0cyW4D3aOqQXGOOI8hiZae6dHJGnKSpJ2Mi6LMsKIyTOeCgtUeJ4tH+I1JI4S+nvDigfHFFRY7qSZGuHzqygms9YzqfEUUyc5zhncbYJgkCwtuJdiGGWgLce21iyPGV772my3jnWyor3vf8FRsNjZsuCorFcvXyZCE8ktnDv/xg330h4WHqEBJVpnn/6g6yt74KUVHXRsgYtcdaSbUKKIAC4QNI471ryFhbLgl6vT5LmJHFM05JB3nvwBpRm49x1FAWzouDmG19gejRmZ33A5Ut7yG4MZSB3tXWI2QnJxi7xpYskT30EvdZDv3Cd5Uuv06S/yOwnfg754JjO0Qy5vYbvRLjlHFuUODSm0yfe7KGSCD8tqd56hNic4xYFC1vjNaSDdWSc0HiBrRu8sCAU2Bora4KeJfEukI9n7kELzo1AKLSMiXQPIVMStYm3NZUtqBdvo3QfHW0QJZcgcjTzkul4yq3bsCwVNoV0I+fT3/V97Fy5gG0Mpq7QSvKkENQ4RV3XDDYGbGxtMNjaAGMD+S08SMEHLj9HuSyxjSVN00DqAsYHwe2UEFVKE6U9lre/yuK136C88wbf84e+C3NYYV97g+HJEBXHaBkFd7u2eNsSr+113PjgZtVRRBxHGJMgmwbnQYjwHkFcceF9W6ej8ALlJVIqOiImkgJjoGoMSaTpCkEcqUBG2Za0koTjQmhCEu364HAtzxbILyllON9cECGVVMiWaHTOAkFkcC6Qw2HkSRC3yrpGRzEJmkZIrK2piznOOor5gllR8XC65LBsQAs0nBGroDC2DKSmDOQg7bgK4UFaH4jHloK1PhDp7jSOHWicRwtBL1KQKRIhqZXCOodtHLn1TCuDER7fWWPnqefItMSaCuMtotNj+eCA6miIs5prH30ZPy9htkSXhkvPPIOOFFEaIWXCsx95mXI0oRpNGN4fcuVDL4GOWpFA0NnYJF3bRCQpY1PTWIdEEqkYESmQEVZYKueYGotoUy0Ewd3svG/lGIFTEhlFNHVN01g0HuEVjXNYIOtvBNGxWmLqZXvMBA6J9xKPQMcJeTdBScNgbY2qdiRSEsUJSZpQWUNtbTjuSiLC3kW0+9ufytDO0ZgGZRTOBgFYeHDWhoQub89E7FOK2uGxzhHHEf3BgOefu05vrc/hwQEHD9/g2Qt7XOh1qZKY+5MFl9OMntbEUiJR7O6eRx7PqSQsjGFhLY9ORhwfHTM9PuSXf+Vf84mPfYzJfMHP/KvP4aRic30DrRRVWVKWSxCaylkKU/Ejf/z7uHj+PBtpyrIpmJZzbt+9x937D2gaQxRHCARSCCIdIb0jatPbQKBlzOHxCV/4yjc4OjrmX//mK0Q6QmsVCH5vWZYVWiku7G7R21jjN1/5Gg8eHbG+tcf5vUvEac7GYICCQKC3+0oIGf6fCid23dRMH4zI04xup4POc4rZnDhK6Hc7XL50nnIxAe9YVjX3hlNGi5LdbhD6cEDbfCiBbp6TZ2HMi3Oeoik4OBlycjIhyTqcnBzj5GW0FCRCkccpSSJYVjXGwVNXr5B6hxQe6x2dNAcXRMk0juh3e2jncM5inAWvEEK1zyUepRTWWsqypnGW/lpErzdgzox5PaOynpwgplWNY1yUGOtbQcwRxRlrgz4KT11VLMuCKM1IcWEEAx4VaXQcEcURxpiwxmqFVpLZsmI8mSOAXienbhpqY1phRlI7R+09DR4nCPdnwLXXEe2a49rrolXOzu7vp2kG3ksEAgXQGM6EgNMFy4eQgUZ6tG+d9SiEirn19gNOjgsa4/nkd3+M9+1dZ6ffRXjze37eXeHfb6zqmVU9s6pnVvXM76WeufWle+/omuWdY/rwJuf770OSvWfqmR/+yAt04/gdb3oC+NrNm2xcuMr2zg5k2aqeWdUzq3pmVc+s6pl/C1ZNTyussMIKwM/8zM/wN//m3+Qv/IW/8G5vynsCP/ZjP8aP/MiP8P3f//3v9qassMIKK6ywwjuPZdW6pmqWiwWNsTSTeYgWVord3RMevfl1mtmY7/+e72Y9j1l2UmoLphQ8tZnx1HbO7iCl8RBjqE3N/cMjPvul10gEPDx4BMLz/ueu86FnLlMvJ5SLJV/+/K9z/+497gyPOVoUzNA4AxHgTgtjpdBAJCUVjso0RAq8kJzSSoFg4kwksNaBgDTNGKyv4YXFuoajgxOiKKbX6dPJeigZGitEmmGs4WQ8AkCVYO7v8+v/wz9BJYrNrU2uPHURY2puv/YW1BYtFEkW0+v1KJZL3n77BvuTR7z/Yx+gthXL5QznPf31NdJGUxWSxWQB1YJOL6eXdxk9kCzNjJ3+HtuX9jiandBdX+PytWucu3CJN159nf2bd6imU5plwfHtMXm3x/b2Jjs7G8hYwSClahoqL+ieG7D+vvO42ZLy4ARVe+7ee8B8tkB4yWCwhtZJaCBxwZVtpQ9R7KLBVDVZp0u/t4EUitnJCalOyde6gfifTilsg9aaS+cvcO3aMzSmPhuj3JQNTVXinSHwSQJ35p8C09Q400a4t87H4FCD2liOTyYUVQ1ArAOJYE3rjpZAs6SYTRmsrfH8Bz/Nxcsvc+vVX+f24U3uP/wNrl7aY/viVdJeH4elHj7Cd3rQ7WJMQ71/TNTfZP0Pfy8b3/udHH76u6l+7pexX/4a+3/nl+j/xh7i/edJr+0QXb1I4SUiSzHzgtkbNxF3TlBWkKwP6F0+x9FbbzGaGuK8z9Z3fZhofY+qKjFlAVaTqCVVM6dpSjyefmcDiPAoBFCV0+CI1jle51iRI/J1pI5InSRZHlEujign+5jkJtnaNo/uznjr1TFv3luS9zWZSFjPBnzyoy+z9f7nkXioqkD+n7p/BYACoTBNQ1NXFKYiljFg8ViM8Oxev4zWMUoHh5wxgRhHBPIOIVqHn0R0BpzEM966/yqjZcnO9i75YoTzgumiICsKIlXTqiQhwelMNAoR/sY5Ku9x1gT3vj8dgxec5NYa8B4hBaZNGkB4lATjDBpDqiM6WYSfL3GuCYkCwcONEL51RPszYioINWGnCC9bV757/PUULfHrfVhjWl2hJcXCz0spEFJQW8tsWeKlQicaJRQyyymKJcvlnMX0hNgbunFEITVeQaTaITbt2uW9fuJYhfcJlKxHOUilDklPBGd45dukJwFeCCIPynsSCVFLXGutwDkaa9FKkCgFQlIUJWVt8BZsVWKbik2d8/D2ffZv3UF2Ys5950c4+ObbPHzlazy6c5uP/Cc/woPX32L41tvEAr77P//PKJYFD46GfPaf/yw/uNanv72FSuKQaJCmOOuwMsIpRdWUIGIkYRu0dKTaUSdQuKCrnQqY1luU4Gz8iBAC4Q1SWJSCSIc0B29BI1lf61PVBb4paGqL0hoFRCKMa6CoWE7nFJEjdRalJfWyRKmINIkx3nFwdMx0XgYRTIKWAkQQMIUQ+JYUts6eHZ/TL1VVUVYl2htidcabttqbxzpLFMV0+wO29/bYPHeOeVWis5yrV6/yh158iSub6wyR9ITn0kYPqSxlXaIb+O73P0e+toaWsB4r9scn3D84YnIywSxq7jx8yMHRAU3d4OuC/eEJBw/vI6VESkmUJkihaLynlo7Bzg5Zd4CUKXXpydI+i6JgPBlTLEvSOEVJiVaSOJJcuXiRnbfvcDKdU9YV/XzAa2/d4g3xNrVpEGkCUuBa1yxE1L5G6Ii1nV0eHgz54jfe4Hi84I89+2GGswW1N8hYgAQrfKvThdErWE4vVpSWrHd7OOcoioKibhiORly7do3dvV02N9YZj4ZIKen0Byy9ZLRYUjXN2aXsRBCklRTsrK+zvbHObFEwHB7z4MYb3DMNcvcc565eh41tuipBioalM8yLKWWTgoqxCN688Rb9NGVva521fg9RGiIAaynLgvFsRioEra2eSEVoH+GsoTEN3hgEgvmyZl5UTCZzup0OxhqMMQgJOqporGNeluwfHbNcllRFiWssi/MFx72UzbUB652c8WxGVjdkWkOaM5xNeP3mW2ytDegkl7HWUTWWbp6x3uthrcU6Fxo/ipqTyZQQACHD9epkO/EkSGRnIsHpHxHWpdCQ2XqihcCL0/EQAisEFoGzvk1/AeXbMTztMnr6+6eCYBCKJF0dU0+GjEvPaDLmj/3AJzifpMiyZHJ8/Ds/x66wAqzqmVU9s6pnVvXM76meWczfHWP466+/xlV3kc6l971n6hkZRe/KvgA4eXAbsRhzfe2Dq3qGVT2zqmcCVvXMqp75nbBqelphhRVWIHT9/8k/+Sc5f/48P/zDP4xz7t/+S/+O8dnPfpZPf/rT/PN//s+J4/gdfW8pZRsLucIKK6ywwgp/8PDLv/wrCK1QWhHFGq1jxpMFy+USW5d86uMfYTLc5+aNN9l/9Ij/2Q98HJ0P2Or3STLFpZ0+a5nGm4I5jkf3HnDj7gPu7x9xOBxz7eolNuUWy+Wc19++wXO7HbbzBGzDF772DUrjMNaRKE1RNpgmNDmIKEJFCtemnkilcELjLdS1CYSNFDgc6jSK2gusM8HFKAUGQ1EXwRnsDHgwTUiYUVKjleJkOCRJIqIkotfvoKKYpjRU84piNOLCM1dYX+/THfTxtqH/weeYz5cslyW2ttja0slTkjSCVNDUDTGage5wdDzkYHZIp5/T3xqwd3GXcllhqop6UZIMYv7Qxz7GxcuXSfKMf/KTP4FwcKe+wfGDQ6TQOGORSpH3OmyvbTAcTjl6cMj48ITuhQFWgFWSSEZc3t2lKZaUxoEQTOsll89foCkblouSO7dvc/7C5eBQVqpNi3EIETpNJDHGNnhrAo0tJLWzCGdRzuOEx2qNFwKqGlObcHyEQCADKeANwTcVGL6W5wukgJTt305HdjiiSFHWgkVRcPvOPdY3NsmzDHwY++F9aIYRSqB0+B3bNDSlReqEc898kPVzFyhG95kf3cTfuUnez+lubpOt7dKYCrO4T1VXiN4OEgs6wSvFxie+F3f9GvWbbzH/pc8y/JV/TfzZW0RfeoC9+pDOH/9uSlNRnUyxh1PEoiDKE0QvpxrPqe4eILxG1I7Ra28Sb/fRvR5xmsJahC8ipEtRVHixpDINSgiU8EgM0nuUyFCqB6RIGeNFgvURVjpkPCCWEUkzxhdvM3645MabJa++OaP2hsQLjDWB9F/MKceT4Mir6m8hvIUAL1yIXG8JTOssjQqj0fASay1zUyFkEH2884EE5/R3Tom8IBhETjGfzVkuCqqqYjyfMlsuaRqDROKdw+DaNCOBNTaoPu50pFsg3711WG+QUqKVPnPCC2w4VlKgZNhnoj1vvPTQNO3PRCilkFq2tFb7mQPFFQgt4fE+xPufnY+cEmH+if9Dy2C1xLQQj0emIPAiOKeFdzTWhBElhJEbaZpRuTDCpDaGWAqMC27DTrdDr9tDz5ZgTbsRpt1OgRASJ/zj43XqyW0doyKYBlu5zeNFEC98K3ZIIRDOID0I52mMpTbhwwoHqdLE0tJJJHk3Zm+rj3QlRAleSkRR8Pkf/3GSXpf1cxvg4XP//d/m3MU9Ljx/nfjcFvPDMcopts9fZH1vk9d/+fPEShMlCR/79Ce5+8ZbDIYnrO/tsH7pPGAZZDHnBz024whnakSkQoy+MdRe45xCoYhE62Bv/chCqMeaDOCMC5HybQAWtgEhUVEQGIcHD86co0ppLB4hPFY4nLCgBM5a6rLEVXNMVYdxgUqCcFRlRWU9tq6R3pHoGK0kjXdUdYW0Fidpmf+QbiCkxHpHaWtKWwdyW4RjodtRIbYlusNhChH/1jmmsxn3Dw6oi4pMKm6PxuxNpmS9Hs+u9ejECmcsC2PwLBCu4YXddYRzKGuxQtI0lto6nAzjhPJuRqJ7PP/UZW6++RoqzpFRjFSKsq5CEyEeoTWvfv01Pnj1GfTFhCTvUu8fsmhHJMVRHMh656hNQ1FV7O7ssbW9TX54zOjhhEEnxziL9Ya6qZnNZkSB78c5T2UMTbFk89weH3n/c/TihCzJSTuCTjfn+PA+xXKBkJJOp9veHNqr1p/pL+G6BYRpR34kCbrbY1bW9Ppr9PsDBHDr9m20jnj6qad4/4vP05RLmrpqUwwsStuQICclu5vb9LOIe/fusn9wjHWK7No1ms0dFoNt3hxOGU1LEuVpLCAjjHFILFI4skSh8UgHtnEcTUaobpc4zYjjGCE1GZI2wK0Nb5PoWJOIFFtWSCdIooxux7FYzBGuoZ+npPlaSGdwDoVDxBK1sUbdd4FIl5K1tQHSWLo6JUWHazCKkG0TpTOGQafHWqdLN0ppMETSk0YxQgQRptvpkmUZDs9oMsVBeIbyIJCcjpnwhPEuSBmeyc6+FdZiicC6J1ZbIc6aMMMfEOLJNTl83/FYFBIepA/jm6ytSW3DCxvrPLt7nj/80gewt+5z13qqsmI5m3H+u36nJ9kVVljVM6t6ZlXPrOqZ31s9U9cN7xa+cO+Qo2XJn/rw8++JeuaD16/wX/3pP8H/5R/+NI195zUj51f1zKqeWdUzq3pmVc98O1g1Pa2wwgortNjb2+OTn/wkn/nMZ/jpn/5pDg8P39XtGQ6HfO5zn8O281Hfaezt7fGZz3yGf/gP/yF1Xb8r27DCCiussMIK7wbG8zlxEpNmKUknI806pMZjnad2DqEUVghq7ymsQ8Ud0rxPHncY6AxBhZaCsiyZ+4Z7x2NuPdznZDQhTRMunNtiMoKxL5nNS6JaYnzDYjJlPJlgoxShFWmkWBeaSjqQHq0Uxnlq2nFOCJyUSKmxrsZah/Xu1EwXSKWWw4lijYwUcRLhvUNKgZQRAiiKAistWhps02CcJdUpURJDY1FKEucZmU7AGKSD2XBMuVxy4cIOl5+/xuHRMY8eHTIbLmhMTRyHQh0lKeZLXGOwtaNc1KheRt7psb6xgTCGk8MT6iLMoe/0u2yf3yFKYyaTGeWsIiJiWo6ZDWd0uwNM0SCFRClJ3RjqqqGpG6SCTtUl6QVndN1YzLJksn/EcjwLTsDlks5GQhIlyI5mPBvR1HUYGSZlW9CHIl55gfAaLwxW2Da8OsFhkW2zSsjpPh1n4EKcvjiVAySt0fmMTAYeM30iNJqLNl4/JPoIojiGZcFkOmU0mrC2volqm19oyUOBR6uWeBGBiGqMoXElQsek/R2StEfpHMvZPerhCGsrxNal0DAjHa45wc/BNTU+6SKSDnG3i7x2Dfp9sjShMQ28eQtzPKT56n3E1huYvS4CT5YksLdJfGEbtd6lGU+JtUZ3eogkpdo/pB4PSXe2STY30Bs9ZNJFyQRharAa66tAkLgKzDw4F1WCEBnOK6RSrVu3DaOXGqUTJAn10jMtPCczy3hhiSNFJCJwjtpUVLbBNhXW2vAse3ox0O4z4VDOI0WI9S7qGiEtsdJoqc+EA+d8iCuvarIkQYvTkQghVSgIPB5Mg7H27Nosm4airmisDW/rHNZ5hAzvGZys7gmSqT2YPpxLIFsRyeH9qZf+tCkofA7Rnnunp5WQEqEUSE3Vupjb3+CxHPCkCPCEGPDE//G/zX+fvp8QraOvPbmFAOFOx9KdbUmQJ0T4apwjsg5vLBLI84xOJ0PKJd6FsRRPHh6eEDfOttuHV33yMnp8Of3WLW2vk5acM0BjLEpKYiBRkkQ0dLREZQm76z2UD01oAoHUmuVyjkwTYuugaqjHU+RTl8m2NsmlJtYJLi/xWtHZ2Wb05j0KV4bxLkmMnS0QzqOkbsUUR6IEgzhiPY7RCpxsnerW4ZA0VuIcKCHwUoR4eXy7bx4LVOLJ4+rBeYvUEilkGM9QVTgTHMxSCGxLQp7+kSrYlf3ZMRHhnqCCUJAkCY3x6MrirQ9JXTIcX+dsENfCCRGOjRBhDBEgtSLrdvDWIE1IMTv1gD4pjjohaKxlsVhy8OiA/Uf7WOvpZR1ev/+Q66MRF/KMC/0OOAM+nEelbWhMQyfpgJM03hKnKVIoqtowny3Isw79QZ+9zXX6nQ433noTL2OE1iAVTgqqpmZZlsyWFa99/XW+dO06QgqevnQBby1VVVE3TWg8dA6JIEli1jbW2N7dpdPtoSNNYxoEYJzF4UnThGsXemhxeg/2lI0llp5nn7rKJ77jZe69fQ/ZupObumK9OyCSA2bzGUpKjDNBkBSPG/4eNwG2rlkhUFFE1unQ6Q0YrK3R7Xapq5KDg0OK5ZL+ZodL53fIkiicB84hVFhTXHu99TodFFAuF8zmM7LeJjrr0hhHMRpzTzgmz19ls5OiZYS1tiW7AymupcA1Db4djyNoRya04xAchGZH5/DWI5UkiuQp7x7OdwSxVijlsbVCSoi1JInCutA4j5KKWAum9QLnAK0RUURpDZkMTZLGObSOiKIIJSXWOcqqQmtNHMVoramb5uy+67yjaRqUiHHWUZc1s8UCT0g2kUKG5y4ZPlMr2T2xoj6+Jh/f2P2ZqOPP2jLPvgNCnupqj9evoEvjZRBbwr0ABJZcwOVOjtGa/GTI1375s4wax7IxVHXNx//0j7LCCr8TVvXMqp5Z1TOreub3Us/4xw/m7zhGRc3X90dcuX/I3OWg4ne1nunnGe+7vHt2nr/TqOqaB/sHrG9shecaVvXMqp5Z1TOremZVz/x2WDU9rbDCCu8pWGs5OTlhMBi8K0lD3W6Xv/23/zYf//jH3/WmJwgPFaPRCK3bQvsdxPPPP8/f+lt/i5/6qZ9aNT2tsMIKK6zwBwr9zU3yNCXv5Aw21un1+wyKmqooqZcFcW8d1enT2djlcneDzcvPIEREEmdsbaxzeHLIeFkwmU0YLhsORnMeHp5QVyUffOECz187z0M7pzMD103o4RkeHfPoeIQHjJBooYijiPVOQlFbam9wWIqqwUaa2jms91gfCCkJuAZsUwUC88xZB3ESkWQxUaqJIk1Z1EQ6QqsI7z3TyZTaV4HQsB7dzYm7OUmaUB3P0FKytjEg7/To9fscPTrk4PZ9LA1XLn2Sp569gkwFo9mIyXFDXRfEkcaaDKUkk+H4rABfljXnz19gc2OX9X6f+2/f5NGdR+A9eTdnd2cXJyW3797n7bfuUE0behE0tqasK8pxiQLiKMJpz+HRMcaEilwLBbVnLekypWBeTDm494Cjm3dZTOYURYVygshG9Pt9unlO1mRYazHGQOuSEoD0AukVeI0VbQO68OAFsnUZIgIVKk9HOJw1rZwqAoEUc+EVz/jYxx6rQJh8S6OHUERRjLWeo8MjFssivKdUWFO3r++RQhBHCimeIGK8ZVaMwEvSpMvGzjMs0g4HrzXMj29QTm/hGstga5c47xKpAjt5iEuXkA8Qcgs7dtg4he1z9H7wPNHlbRa/8GsUv/plyl/+Aot/+qtkH7lMdnWH/toAs7uJfOYithdRvHmDwd420d421glOvvgqxXSInUxxiyWpu0x2fhOpU3zTIKqIkhJnZ9hmjimO6fTOo1SKkDEGgRRtWpELLmYnPAiDE5aCjJFbY+bBiJJempKphApD7Woq4fHCByussLQ5Sq2TE0DiZThuzjvmRYnxnm6a0U1DBL6XYQRCbWpGszGOAalOSLRGtKPVTkkeR3DACaUQWmO8p2wqjA0uaWdDDL6UPpBBXoBrSaazk0OG1/Me5xwq0ngvcA48oREquCXDuXo21cEJvFQIJRFaY5Vkvqyw/tSrfDoYTnwrZfWEViCEeNKC+fgsbUVH2TYQCSFASry1Zz+DFAinOD0ZvQsEsG0JauMd1hi8sWgEnSyh200Q2uKoUcQ8FjHCG0oRdLjTVid5tl0hHd+fbfwTLVKeM9EOAV4JvBIYIalsTSwglpBpQUc4TKRJ84S99UF4fWMRHqJOh8GlS/jSUI4X+EXB1pUrdHZ2EXkXP1ywfn4XJyzL2QyyDmubGxw/fMh0PKLRsLa2yWBjk95gg8aEcS9KQBYJNrKYJNZUohUXrccIR20djQXhfXCEerAujH958jNKCUIojHEYG0RCGZ3aNAUKFYSG9vjIM0EhfFVahz3tQHhBFEXUrkZKQRRH5EmH2HomtcO6BWjxhMgjWgJbtOdiOBbGWBCCJM/Y2N7C1RV2aQKBfHayhjVUSIUTnqKuMKMRs+Nj9kcjEJp5p2ZYzHh5+BLn9rbZ7W/y8PAIqTQOKGxDURmED9uLhPV+jyyJqcqKew/26fb6bGxs8OyzT7M1WA+Cc1WfCXgOwbyq2D8+4dW3bvGNr71K1uvhhOf5Z5/CYcMYm6YhijTWOCKl6Hd7nLt4gcHmJnGSna0dwlsaY4hixd7mBt/50kto8Xh9MFYwWO/x/DPX+GPf9wn+/oP/D3hHU5UsJiNeuP4xFkUZhB3vccaitUKpwCY7IfHhYJ2tF6e7M4oiBusbbG5u0e91mc9nHB0eMZ4ukXHCZrfDZj8n0prGWGSkCI2UYQ3IshjfNDRVTW0s3W4P0Vj86JCqLLnXBdT9HwABAABJREFUSxl/74fY6GWkUUxdlUilkUohHUgHVVFijEEJwSDPkSI4yRtrqRoTzn8bElriOCbpdbGmbUqoGlSSoqRDCUcWK4QSSML+sR6sl61QLnj0cB8nNSpL0XmGXTj2NtbwXpBYi441sY6QIqRbLKoSJOFza0VpalSchLFM1lI3NZEU1KWkKSvG8+BQ11qjVbg2rAlNAR5JG7DQNmGerkv+bN0OcGcJfd/aiglnCoF4/Hvu9L8ERC6Mh/HtM0ZXKc4nMaPFjDtf+AJ3RiMeOMGcMGLi//jf/dY3WGGFx1jVM6t6ZlXPrOqZ30s9o+KIXp6zKIp2ZOE7i9pY/r+vvMne0++j2095t+sZ6z29LGWyKDDv8ISQZVHw6ls3+NDLfTpKruqZVT2zqmdW9cyqnvkdsGp6WmGFFd5TuHfvHru7u7zyyiu8+OKL7/bmvOsoioIrV67wEz/xE/zQD/3Qu705K6ywwgorrPAHAp/85B+haRqMsVhjqeoa6T1ZljJYG2CiDBnn7Jy7yNPXn2Vj7zzlZIQWnjTRKOX5tS99mS+++ja396f855/5j/jgtV2UXWJmQ8TDN1ifH5H7BYYFD04Mb917wMF4Tr+TMRSa/fmC2ljW0i69OCZJU5CC2WLB4XIeCksh8NZiaoMSEq1josYCocFACElv0OeDLz/PopgyHo8YjSaUpWXRzPHGgwtuOqEktHHhvbyDLWpG4zmTyYwPf+cHOH/hAnEU88X7X8I3hkQroizhyrkdHt26QV0UbK53cVXFud0tltOS6XjKwcEhG7tb9De6dPspF7NzdLKM43uPuP311xk+3Gc2nRMlEcJLtEj58ldeY7EoWE5L+t0NVJQSZZIURzEP0eXldIYxls7agCRNgsPKWuaLgng0odPNeHp3h8PDY5xtEEKQxilXL13m6PiQ/UePyNKcP/Yn/gPuPXjI8HiEaxo0DpwAJUN8MxXgHzOlVMiWcnOtEVT5U1EG+BZKQJwJCYHiOyUGHqOuT5tiLFJJ5kvPYnjIndt3eXjnPpFIOD4+pigL8jxDCAU+jDfrJlEQMxA4ZyiWU3wjyPNOGOtx/JD7d+8CO0SbA6SYczx8i8nom2TdiI1zu6z330djKurFI6rFfVTnKg05VsbUaUT+7AdQV58m/Q8/zezzX+Lg//GPKF55i/TXb6L2duj+Z59icTKmuT8jOjohvbQHUYQZLxEPTth98SJ6cw1jag5+8V+y8eLzxFu76MEAlffBZwijkUhIGtDbOBkjpEXrCEeGbMcN4DxSO6hnmHLCcZNxEu+wVCUGA86TYhFIhI/xTqDaQyLcKbX2uMlItGTqqaOuthWL5QJnSqQ3DLo9rANvwZpA+CzKJTZ2OBLyODkTbIQQ4BxxpBBxTKMSyhqsqXHetgRSSxp6h7e0keLgHWG0tqCN4w/kn7UG2xhOI8ID4dSSnJ6WRLbtZ5EoEaGocdZQlRVFHWLXpQgjYhwSJWgteU+4VFv37Cken8GC0/h5d+r0c60G5l1LUraCw+kXAQZPaT1JZw3hLaau0a7BWkOcJgjnMbWlKupAjKng7FVCnfU8nW6NPP3Mp5uNAxxOnFLhjyW30CTVbpcTKATShVF5wgka12CtRCHQOC4OYkTlaYSjtgYjFMoHJ2+lI9bPXUGWFdQVRT2naEoa5WmcRaeO0fIBg0s77KXP4CvBm7f+FW72iFzU9NZ3WOgCkWpklkNTIVybeoVHCYey4bMjJVIGh2kjfHBrWkNkI4SQKDSGJuyD0y43RDsOot3pSAinEIowdsGJx2MTgyDg2z/hjLHOUNYGihJUhE5BRgk6SujkOYmKOCgM7mjOqFrQkylSduikHYSUeCzWW5y3Z9eBFBKFDP8I2bpCLc5LpBfBYR1pyHKaqmE5X1AWFXmcESUpxjrG8ynPnb/C2sYaOokYLxZoF+Flg5aONa04mMz5+vARUay4dG6Ti5diLu2sc+em5a3Xv8lzTz9FnnXpZl121tf5P/1v/ktq09BYE/YtoTnwxsN9/tm//lX+1j/+KV75xhtMxguEkahMMZ7MscahswzfNOQ6w1aGV775DR4en/DazZuUpaGX9lGipiwL+r0tfuDj383//r/4TxHO4IzFy4RUCIhUWCfqhvXNPntbfaqmIlee912/ijU1pl6SZQn7kxGDPKOjE2IpMc6eyXYSUFFMXVVUZUlVLcm3L7K+0Wd90OVkOKSsLAeP9hken/AzP/Xz/Lk/+7/ACs+yromyHIdAS4cU4GOB8ArrPNY2UM1JDkpUtcQ3Fc1C83B/SK/Tww8UpWlwxoIx1MZRVjAuDD3jWFOSQRSuY6Ek1kNdFggPWqkgEMQh9aWYFxSzKZGKSOIOi/mc6XRKf61H3ukymkw5Gu4jVUZ/rcd0NuXBg/v8+q9+nvX1dS5dvsSVa9cYbG+1I2kgURppHBrCeSgjtjd3MXXJoNNBKo21FmUdyjtSrdna2KGTJFTLggePDnjj7iGN9WitkAp0pIidBAveOhovkb5tDjAOfJuo8sQ6ebrMhqS5IPa50zQbQIjgsPYEpUdgz9Rm5SVGuJCwEMXEFBSLKSfW4yOFzFI2nKPrPf40jGKFFX4HfPKTq3pmVc+s6plVPfO7r2c2tvf4R//1X+Av/ld/lTuP9v+drFPfDrQKz8rvdj2TZwl//3/35/i//r//BV9449Y79vkfw9M4Q2H9qp5Z1TOremZVz6zqmd8Bq6anFVZY4T0HY8y7vQn82I/9GP/gH/wD/upf/avv9qZgjHmiy/adhVKKn/qpn8Jay1e/+lX+0l/6S+/KdqywwgorrLDCO4mT8fQsRQUEQkaoOELK1lHmFN7KQGorxdZ6nyUNi+mYO2+/zjduvU1pLRs7W7goZ5DClqxI7JzaznjtlZsU8yWmrLB1yXEV4ubTJMHJGNc4vJc45ymNxboCVy4DrackpTGPDYxSYpvqzDWnpMB6gmNMCJq65q23btE0JR7LoD8gSwzj4YRFVZFEGVoJHAaHJ44TisUc21ic9aRJl7qCt9+6w2w85fbbt8h6OZefucTeuW2KakllF8hIMRh0WVaW3fVdjh8e4mxDkp4nThNM3TB6OKQoGg79AUmiiSNNNkjZvrCLkgopBfWiYrqYU9cNrnb4wnJSzJBKoLVCGEddVhhj8QiSOMVUFU1Zh+aKSHN3NCZJIrI8Q2hNUxmcdXgvmM6nuDYyOstytra2GY2naK1xp3HWbVJMqNkdj6P0A069Tp5T/+i3/Ct8zz/+lbPnuND5cuYkBIG1BucdSIGWmroec3BwwGw6ZW1tjWUDs/mc2hqU1jjncM4ggCSOQUBjDL59rTzNaKqSyWjJaHRCXZZESiNEzML3ifvPUNkpTT2hunmfaqOku7ZNnA+Ikw7L5UOs0xDlqGiXetrHEaEH59j59A/QPXeBxa9+ifLL3+Dwla9S/8rn0ZsRKo9xOmE6mhM7gVs2uDil+74XcdUMcTJkgGP4M5+n+9ILdD7wLPGV68jhGGFypNJk/T7OSbzX4GIEKdBgRBBZIqlJ7JzSLJkYz7HcY1TrQO5qxcJYYuVxSuNccL1ZH5zpp1Tpt4zlaI+lcw7funWjKEIgMI3BGovUUYjKR5LESWg4chZjGkjSs9fy3uOdRakI7xV17ahrQ1VXLKuCRVWwE+1gvTgjjyQS4QXOeXA2pD9FirNRCyoIGVJKpJQYYzBtlHkcxyilsG3dJIRCe0Usg5uuNoYoiYiJiQnue2sC8SSECGPwXAgrP/37qVDgfHAyIwhksPcYYxEiuAXPkhecb89nh3MWJcBZQe0c87JAxRExEU5IjLU4AyISCGuxTY0zJgg6Up9afU+ltPZoheN1em251goaGr/AYAOR1h5JZy3Oh7ao4Ppune/eY7zFeIe0BuclcSTod7rsu4q590yL5okL2oMzxIlEJF20GtBPdjl8+xv4xT2Mu09s5ti5wrGgWnSZjCZ0smPWtjTdTpda9knjC0RpRmMbvLMIoWisZ1EbxvOCi52cWCm09yETHxUSvnyI6jfOnXZ6oVpX/9lYAB/W/tDa5fHGPSYlnThzWYp25ABChOPV7jvnPY1psFoRSQE6ohOnyChGxSlRmtJY15L8HtMYXGRRrRhgrA3OzVYkci4IAY9FCU87wOVsvbQCrJIYLZmNRiRJj/Wd86zv7rJ56QLb/S6JBO0cH3j2Ck9fOEcqFM28RCCxiHCea431nkfDIxatu1mLlG6W8MJLz2JkTRrlxHHOfF5zLIfMpKSxBovDC4iFxDpwVcX7nrrOD3zyD/P1r73KdDLin/zcP6fb6TMZzdE6RSiQeJyT7J+Mefgvf400iXAywSPIsgxPDQSSfTadUA6Psc7QGIsTEQkCVDgWtjFc2tngP/4Pf5BFbdna3GC5nJBlGRfO7fHpj38P/89/8I+ok4hEZkQqIioNVrTjhhBUzobryhnmoxOi3oB+ntPv93l0/x6VaegOBngkX/iN3+RDH3qe73zxBdbPnQfnEF6d3aCElEitUJFGxZpYCZyxSBzGG5bzBQcHB+xtb9Lr5liliHUYOxJJy8W9LZ69dgmFxRdz8iRGxElYa/AMBgOwDiklWgoSHUaLxEmM910AGhxOSnScgNI01hNFMRvr6+R5jyRLydKYJNL0spwsy+n1BwzWBug8ozGGWIWrRKsgxljvsE3FZDohVSqMPrGeLMnopBkSx3KxYDwv2Lh0iaosGY5OeOOtN1kaw0ZQVFkUFbWpaZyncVBY8MJj/GkCnWiXjiCS1f70qjl9TjgdDyQeJ/O165gQ7TiotglBnH7FB0XW2DDmC/Dt6K9UgG8MUdv8ucIK/yas6plVPbOqZ1b1zO+1ngkjt99dHN29xdrOLjuXrrwn6pknm6veady6cQMpFDvdnOeeurCqZ1b1zKqeYVXPrOqZb8Wq6WmFFVZ4T+Inf/InqaqKj3zkI+/K+3/oQx9iOp1y7949/vE//sfvWtPRKX7pl36JbrfLJz/5yXf0fYUQfPzjHwdgb2+Pz3zmM2ffOzg44Od+7ufe0e1ZYYUVVlhhhXcCzgu8lC0JE6KrFcE9KGXrPRMaLzReCBbLOdPZmOnohNH4hOPxlN6gz6XugE46JG+muMUJ88WI2ckxBwdHlEWNd440kvi2sNVKsnSepgnR4d4Hwt85G0g2D0prrD213wiUB497ovgMwwdOySVrgiAgpCdKNFpFOGlC1HEcEmh0oknzjCRLyNIOt2/dwjQ2EAne8/DBPk1VUy4WNJUh7UN3fcDa3haj5RwpLbFUeDzFsmLMJEQsJzF5L8Y4TzVtqEqDlhFeNESpJu0kdDd67O1dYjlbMhmOmI4mLOZzrA1OJ1V7LAavJKKRCAfWe+J+j7TXRyYR9WxKXVY4a1FxhLECVxhsU4TxYI1HK42KNFVVo6OIOErI8w5VWYamkyf22f+E/P+thfipOfH0299mof5bdIQnEEgC3zZu4D1pmrC9s8XxuOBgPKFyS/JO54xgkEKQJCm1CQk6SiqUVBTLgpOTE2azKYv5FCUlUZSghEbgSaIU4UAaQVlV2NGcpbHknTmd/iZC9YhEFKKviyHWaWTUQSQpqrtG/uEXUVmHaG8X19E05S1E2aCERXQ1fj6nnC5xjSfe3oBOhl2OMdM5cjiHk2Vw8ecpOFBohBIIoRHUWF+BCNcXXoOoz+gWIRpEPcVYy9JHHFQJo7LBeNBaUxtLEwUC53QEg28JHH9qA0Y8cXDDz4ZDL4jjODhUkS3ZGkhQJRVxHJGLnKqpka1odEbAPnkkhcRaR1XVWNuwubPBznib48kYoRW6PV9Oo/mVVDjnMFaA9OhIt68LyqlA4MmwPaJNgdJakyYpSkqaJrj+pVRYp0ikR2mDcRbnPUprNAohIYSH04oCcNoeFIRQiZDhfYX3SB8IaiElznukAikDQStk2Dce14oEgRLWEppGhQYmKUEpvHMIIYlkhJEOFWukD+uZ1gqlNUqFsRHIkGh1ekkEt3kY6SH8mY/w8ffbhjDVHs9ahjXj8WtIhJQgwxgLJOAdEoiVJEtjzLRktiw5Gs/OzgPvPd5a4izByxipY1QqGazl2OoAM5ujtSeOM2TtsYxQZsmg7+h2BWkugQ4y30bEKdaFtAohJWVjmC1LZmWN0hFaSZRxeG/xTj4WEU+Pjg8Dap48ffEC6z0qUggLshUVaNcG53+LOPXbLVCtcCCVREcRzjtkHCGiGBlFKB1hTYl1rn290I52mjpmjUVo2TbkqbO3aD3aCOeDTdT7M90FFRy+TVMTpzm7l6+ysXeOjXPnWd/bYbuX0Y80a5HifZe2iZ2DxoXRjsrT4JBeEHnJIM/ZGQwYzRcY43j7/j4X99bIu10+/KEPspgUWA/j6RRhS1KlgkjgLQ5PhKQ2lkUT0k92Nja5cO4cEjga7nNydELkJZEOoyo9Cu8tjbUs5wvmc0ea94mThFhJfIgewxrDZDZnOplg7KlIoElEECi99zhjyJKI5566DCqMsK/rEqUVvU7O97z8YX7q53+eUVWyKEuyTh4aAJ3DC4+MY5K0S1kU1Ms5xXJBRyv6nYwsThiejLHGksQpDsGjoyFv3brN+65eRWkNzhL882EdkyK45F17dUnvEK5NVMPRlAWzyZi6qUFpjFRIZxF4lJZ04ohep4Mpl5iqQShNpCOct2FEpwrktiQ0MUgRiHApFTqKApkvQGiNSlKQKoxO0RG5VMSRAu9QUtLJcpIL59E6Dg0bQmCqCiAIV2EOKB6wzmK9o6gKZJJRGcOyKimbhk4WxkAti5L5fI7zjqppOJlOGQ5PUHmGkBF4QW0MpXEY72i8oHagzkSCdujmE7cB8cQ17NuGA3d2PZ9eDE9en+0VLgAv22/78DrOYwAnw2wiJRXChnXdAWHxW2GF3xmremZVzzzxyPs/xaqeWdUz32Y986HveBm+8Rp3bt769k6S32dUxZL5eESS5ww2d8Oz5rtYz3zs+es03vPFdyHtaTlfAKBMxVuHKdqmPFzWuJ5la1XPrOqZVT0DrOqZP+j1zKrpaYUVVnhP4q/8lb/C0dERzzzzDP1+/13Zhk984hO89NJL/MIv/ALj8Rhr7buyHQB/7a/9Nd58801efvnl0F38LuC5557j7/7dv3v2989//vN8/vOfB2C5XFLX9buyXSussMIKK6zw+4047dB2CeCDPRAvBFKAwiOQoGK8immE5PaDexw9uMdiOsV7SeMV5/b2iJKYY90Qz+5zcviI4fCYR8cjxktLVTZEUtHrdeghKd2ShalYVg1l5XDGgw9jrDiLFHaY5jTZRTyOcW/nzYfmCYtu3Y8A1lqMscRJjCTC1CaQNFkEWrNcVuhcs3Nxm53dbdb6G7x96yaB01GURcWjo0fEOiKLEzpZFyEUMkkQec74eEw/jaGGuqwYPhpyf36PTpbT63aJspyyLKm8wAjN7vYeugsq8cSJZG1jk/N717h/8y6P7j1ienxCWVWhIURIEqGIYxWaGYyjNgafJ6xdOs/uU9c4vn2H5b0SW9VoHaHTFJ3m2LrBFiXFYkGcxKR5SpZlLBZL8m6XLM3J85yHDx+xLAqc80ghOWUYvBdnhfuZ2++3iAj/Nvy2TfOnJKR/TEBLZOtUNDjn6Pe65GmMtZ6GIQ/GE6qqYlYWLbkLUinSLGN5UmCbBlSEUhH39u/z8MF9los5SgviOEKqGiHCyAWlBJGKifQWabpGUdxmODsgjQ/Y2Z5x/tL7ibTCecti8RBcgfB74AeUTYMc5OTf8SGyF68Tv3SB+b/8WdyjO1CM0dTo6YTJ/TGWiK3vepmqLihHY5pHQ9zbR3R2L9C7ep7s/Db1pET6CKd1cFUu5zjZoGSCUBrvFb4lqyUeTYErT2h8xtx3uTf3TBcLlHNorWmsxfpTd6kPDS88ycv4lgR+7HT33iMEKK3I0gzTaKQnCAXt95WSZDpBRxF+EUjPSH0rlSJox80BTdNQlAXWNTz/wtO4fo6LFI9u7ROpuG16Ams9UZxgrcEbH5yDUYSQ4kzEUEq16xAIFZqg4igiTYMrW2mFFKF5qDGCTAm0LnF+Tt3UyKhPpGKQHilV68AN57LDtOKJACnPHLP+VFVp1xZBm0ogBSrSQDte4tS5K0BKjRASUyuUjkjyHNp0KuscSmqIPHGWoAV4JcmzlDiKUDqkHEgVxAfhw74ITGL4e+iJElgXCGspPJFQxEqhRHALN6JphR1oqergzmxTFSKjEE4QSUGmBUmsqZqG48KgD0/Cr7Wfx1lD2s1oRIIRERWWzd11RvdusZw/JOn3GCQxVTPCWMt6R+NlQuMqls4gsg7ZYItGSKw3SGlBCoqqYTRbMK9cEAmER2JoZxy22x72+5mzsiX0T88DD1hPe0yAU2HYE0j9b7Nm1UoTJwlJ5DE4nGqFcakRKsLYEmOD811LEcjetiHPGosSOojbWiPbsSNShrPDNwZvw+eRSLyQIBWmbiiN4fqL7+O57/wO+ju7xFmHjo7JI9joJFwadFjPYmaTKc54pNbUoqERQSRQVnJ+bY3kmWc4ms15eDLm3vEhjSm5tLfD9SvXOd4/YHQ8pCxmLIuYXpbSmJrGGBrToJxgURsWdcO4rLFVw/bGJkoqtFS89epXiLIYqVK8iHEywmHRWrLW72JOl3Yb1l4vVHCMG8NwPOHwZIK3NY2xIDSJVkEkaFPdev0O692cOE3wzjFfzHHFkiTO+MTHPszL73+ez37tawwnM7Y6myAFxgQnbCfL2Dl3gdHwGGNqYik4t7nOZq9HJBVHB0e4xhInKUiNtY4bt+8zmi1BKLyp8D4Ox4Tg+vbOtoKOwNsmjDogjEzwpmY6GVM3DVJrrJQhVUUrYh3Wg6qqEM4hhcQYTyQE3gYXuLchcQIhEM7jIDQ5CoGMNNY2wfUbx8QqCuuQCOMjpICqKmhMeLax1ofXAuqqop4vaJwlyzJwDm9NENoA4x3GeyweIzxL0+AXiyCq5BneGpZlTVGUNE3NolhyNBoxL5b0khi8wntB4wiuaA+N99QeFGEshD29t7RimGjv66fPEKcCd9DMwn3/ySw7508F8NORQmGECqevYz2VkDRS4FxoWlHekUcRWmtUpL6ta32FP7hY1TOreuasnmFVz6zqmd99PfMf/dn/mN7P/RIHj/Ypl8W3cdb8/mMxGVMuFqxv7aLaFJR3q575T/7o93D90h5v3HvEbFm+K/tjUlT8q7du86/eCn/f2dlm4/ojxtMp/U4vjP1e1TOremZVz6zqmT+A9cyq6WmFFVZ4z+LHfuzH+Bf/4l9w8+bNd20b1tfX2d/f54/8kT/Cr/7qr75r2wHwcz/3c1y+fJn9/f1wI3yX8Z3f+Z0cHR0B8Of//J/n7/ydv/Mub9EKK6ywwgor/P6gLCu8bRAE8T1LInSkCRMWHFImeN/Q2IbSNIwP7vP2G68jkLz/gx9jXQ2pT4ZIabjegdnNt7h3dMLD8ZyDacHWYJP1LKerJXu54qSwPLKWWWOZNpbSOBAhwcT5BmlBIVDIM/dSHEUopbHOUjZ1cN74tgB3IFUgdSKl0Do434pFwfHRATu7W+xc2CPppNy9e5fj4QGdjYSBG1D5htMyNo4065vrXO5coCwrmrohlym3br3OdL/Pc1fP8b/6c/8pv/7rv8bB0SHDZsRar8/R/QOKacl8WiHiGd2tTRql8XnC+eev0uknFMsJxXKGVimf/eXPMj4cUc8KNvprZNZSVRV1XSOQgTjwnsYZamPY3r3EpWef4uJzz1Iv5xy8GVydSZ6yeWkP6z3ldMlyOME0NXVdkyQJWZKys30OHcdUZcVstmT/4BChAhkdRIDgLDx1vwb4s3//duLAtysanP2888Hl5h1pkhLHCXVteXhwBAI2t7bw3jKfF+yJlDGSyhh2N9fora2FaHkvGAw2mE2mVEXBbLZg/2jEzdt36Hd7rG2dI0k1jgYpgyM+jZPgSlYarSNUGmPNNajHaDumYsjs0S3ywYC406fTH1AuJ/j5FCcz5OA8jdzDYdBRwuBjHyd/4WWmX/8Ki29+lcmXf4XswR1ip0nW1kjNguXDBvvaMfbNBc1Qsvdffh/imYvUiUYva2rt8b7E2zn4EUrnSOVBWLyrg0NVKrS0aE64MTxgmV1jKAccLaeI5QI5W+DmFUopkixF6IgkS8O+PiVbTvd9O17uyWMnhUTgqKsKnCeKY5I4RqhAwBhjaKylrGu0kkRaE+uoJXX92QtJqaiqkqquMKZBSs9HP/YSu89fJVvv8j+8/o/IdNwmN0kQEis8xgfxKxBuT55xQXAQUoaUJ4D/H3v/HW3bepZ3gr8vzbDCzifnc7NukHQVQEJCWARjgoyNcDtA22oM7oJRrtGmh13DPboHtsvlxlSbLqh2dbmGa7gRxoCAsgFbMkEiSCiHe69uPOGeHHbeK830hf7jm2vtcxUAmSsdXbGeO864e++V5ppfmPN9nvd53zbxp26aKAgqhcDR1I66CSzkfvbqpm5wOpYiVyp+niZ+/wBYr1sycOqWjiQerd9PiejSc85RNzXWOhAx8cr5gPORSBRER3ggildJktDpdFFJgrcWJwIeR9rpky30MEogyxSjr5IaRWI03gukCAgjW8I7imZSyFmSmBASpdr1JjzdJCGTkZx2Aura4O2U7JRRaFSCLNGs9HI6mSFYz4II9LseZQTCpOAMZP1IYgYQXgKG2nmcsNHdqBRCZ1ghKGyNKycsiuMY7dHKkWWK3apmZ6IpXIeFfBkpdZx/PoAKQKxulaZddNantg1eBYQI6CRFGUNQYIWnLJsovrRkahAyOiF9LD+fZ5JEG5qGdj2aSEdOBUiYjev+z9M1EB/XqSHrdsiDZmMwBDSJUegkiaR3kiKVgVYkktFWjxCSTpajZJwrQoJJErI0ZWc4YrCzy9UXryOcxRCFULRiPBiTdPqcvP8sb/4/vJNx7fA24EcTRBYwQZFmmo73VHuDSK5qgcNhnMfIFCnaxhh+QjcXqLTHwlKHlcPL3Lq+xWeePMeHfvdjvOq+46TdlKJxnNvYxRclRTGhbioaazFoCldTuoayrrFe4DzUVQMIvvXxxznSz9jc3uG3PvkUZZbRk4pUghQBmWgWOxlKCiZljUOSZzlSCC5du8mHP/EZuklMLAhBs7y0SN7NyDs5C/1Fks5iJL5H4zhfZUJjA0o6OkuGv/IXv4MbW9vsbD2DbSpkbgiTGh88Wkh0bfm2V7+OM4cPkuWSsNjl+OEDFMM9rly6jKwLTp04Tn9llVorhpXl1uYutzd3uPdAv61+FhMDNTV/7hu/gVIY5DPPI31FL02YjMd417DQ7fLc00/R63UIIXDq7D0UTaCsG0RVkUqNUQGjJEqlWGexRYEMHuk9Wmq0lCgpoxDfKl1aGxKVoW2DUjruc62I660F7/CuoaoqRuNJ3PNsvE5XZUlV1zTOsbC4RJIm+KbB1TUnTxwHpXCtWPy2N74RawOTScFoNCbvL5FrA0qjFhW9pRUWFha4eOUKl27ewEkIwUJQCKFwARxR2PBTdzuiNf5H0T92aPG44FvhlZg8KdrXMXVIR9Et6rAB37Y6Eu0LZhohsQ2VV4YtN+GGc6y7QGoh1YauSTFSEu6iKW+OVwbm8cw8nvlS4pkvFfN45s9WPHPwgVOcff0j/OMf+r++DLPnvwzONjzxwQ/w6BvfTH955a7GM9/yptfzjQ/fx5v+7j+hrJu7dk6mWF/f4Gff/fP825//Bf7FP/nH/I13/mXm8cw8npnHM/N45s9iPDNPeppjjjm+auG9x1p7tw8DrTU//dM/zS/8wi/wkz/5k3ftOEIINM3dv5GeQgiBbsWZv//3/z7f//3fP3vsp37qp/iN3/iNu3Voc8wxxxxzzPGngvMVuIpga1xVsr65TlMUBNegVCBfPsTu9csIEg50O6APwWRMWVS4ZsKhfoaf1ISqYDLY5fyV22yUgWGToBJF03j6aUqeKiSW4GM57yZA4RxIjSa2npAGpFAzLlJKBRKc89EJ2jTxnikEhFL0FxZxjcM2FbaxhOBpbI1U0bmYZT0GewUm22XB9zmwsoZCYEvLlRevcSWsI7ymLEcoIXjbG9/Cg699kHPnz/PcMy+wfX0PKVN2twY8/8wLfKD7e3z22edoREPaTXnszY+xeniNm1fW2bixyfbNDRYWFlnpdrHe8uSnP8nxk8dZWuzRS/pcee4y2ze2wAU6eY71AdPpIFKDqErcpKR0dkb25llGs7PHcx/6GE9/9BO4uqEZT1jq9Th0YI28k3D91i3qcQHeopTEWUdZlQwGe+RZD4HG1p6mbqIjWoY7eOQZk9b+bSoW7JPNfvosIT5PRpiWhb6TnHsJwr4LSrSOaBegqBs2d/bQRpKYBZQU+OAZlyWVDwyLkuLKdS4dOcC9p09ipGH31i021teRWrO+tcvHnngGmeRkaRpbh4nAysoCWZ7jnWNnZ5c0SaPcJBRKaSpfIIVgIc85ffAwH3jqfax0Co4f6PLIAw+SLR9F5RkhFNjBOXy1AdlBRLqEcx2C0vTue5js8BEmZ+9l8vHfxd94EVfu4a9eoLd4kJ0XbuJuTei8+RHS+45gtcSOJzQCEt/g7R7ejmOFep9FUlZUeD9CilgJCDdm+8bzPL89xPUbiiw63pImUA1H1Ht7ZEmCThRCK5SW+DAlUKZjKFuiVLxE/4mkaUC2lYGC9zSNjaXuhZo9r7ENyuQxaYko9kjaMu+E6BRGoLUhS3MEgUkxYjQeMC5GSCVRQkfiV0Y3snUulvZXmk6nEx3Lfj9xCSGQQqKlpq4bnPUEGcXKxntciKST956qDvSDw3UCaW7oZDmtTxXVliVvbDwnYlr5aXqGWgd0bHcTCeWZm1wJVNDUVY0KHuHj/FVKt8fp4zmUAkk8XiEl1nukVqiQIBAInYDJkEaSiECSpHE8gkdJ03aRiMRlCB49dWeHQAguOt1bIS/+3p5GAjaAFyGSeaFt3dN+Z0JAeeiYlCY0KCwoSa/XIe/UGAwy6+2vUQEBDTRoYtl76zQ3N3cJMmVx7TBLC12S7hLgaOqSze0ddiZd0t4xVvuHUFmPQA1BIIOEoCDYuL6zFHSCtQ6pJEmS0NU9lBL42lPjUU5gjCAQWwPVLuCReOcheExisHUTydQQUEbjnUMI/8X3nulG1c55kxiyPCMXOibQpQalFcbEthDGeaSWEOIxCBGJXoSgdg7Xdp2QQpAYg27dr01dUxUFmVbItlx9WY4hz1g5fZp7X/9GmkbgbUA411Y/sHgJPvhYxl9AELGloQgenWXslLE1RSoUiZFI69A+kAc40F9gslBw8dzzfOB97+WFZ07yhm94M0ePH+PsyROUe3s0TU3jGpqmZrA9RBcB4z0mCCa+RmUJY2fZHW/z8IOv4c89+iBZU/H2Q2s8t7HOZGLZKxuujSecK3ZZWz1Emhiu3rxN1SikSfG2YWd3jyzLOH3sIJ00YVI29Po9ktxgEoNJO3hlINgoxhEIQSMJeBfYHmzxyEMP8vZveAsCw7MXztNbWiI16awly9PPPUUnVOSq5uEH7mFU14SqpBgNuXLpRb71bd/AyVOnKb3g05euIHRKZR1FVaLVwmwqeAFSK5b7fZYXF1lZWaWXK1xV0ViHLCq6PRjuDfjIh/6Qp578LMsHDvHga17LvWdPc/TgAVxVUhUFRkuM0QitaKwlE4JMapRQBOtpiO2njGgTHZ2Pe23d4KRthQtomui6V1KgpKa3sBgrLcTZhrMOa22cylLEexspkSGuWiUFLjiCi/N2MowtQ2rrWue/wIm2TYmUlEXFaDhkd2+P3cGALO/Q63TIEoWQ4Y7KGsR9LMQKG5LpJtm2BpqpcC5WP5nuz+2imxac8LBfHaUtdxAIBOHxUqG8R05d6kKx7QK3i5odqVjr9xl5wfVxg1CQZdPzMsccXxjzeGYez3wp8cwdKTXzeGYez3xePDOeDJlUk/+ivehlRQhcfPazrBw6wuHTZ+5aPKOMJO9+9Wg0EOeAtY6f+V//Ne/5D782q7L0X/2ffoBv++Y/N49n5vHMPJ6ZxzN/JuKZedLTHHPM8VWN8XjMz/3cz/Fd3/VdLC0t3bXjePzxxxmPx1y6dIlf/uVffknG+VcSzjn+3b/7d3zrt34rJ06cuCvH8IXw4IMP8uCDD85+v3z5MktLS4QQ+JVf+RXK8u6Ue51jjjnmmGOO/xJIVyN8E52ZtmS8dZOdmzewZUGaauhtsHXjNrq3TCprXPAs9Rao04bcSHLhGQwmDAc77O1usjuuGVtJLQwiSanqGu88Ao0yCYVzjGxgYgMOgdIaIyVKSYSOcaiUKpKTUlHVFS44rLMxGG7LDwuhSPKcWpTYpsa7SOCZVKGMRBlNV3coioLGWorJhE7eYXVphXExZrw3oigDC8vLQIiJFbaiKCc0LgbxXgry/gK1Ddy6vcW5C1e4vTPAS0/HeQ43jm63R5YPIkGoFa4oMaoTiQFgPJ5glMRpxXB3j9C4mAgCNNYinIMQCQInBa6JDlRBTIrQWuGIpaaldcgwpYED/TxFBYe3kUCTSqKJpewb76m9Q3nfCjNRnBFtkI4Is6oyEXfe77XJFnc8si8QvPS+8HMpui9M2QmmpfanLQmS1BCCx3lP0zh2BiOu3lpne1Swsb3D1s3rPHDyMGdOncKGwLWbN7l07RqLi0ts7+1xa2ODzsIKed2gpYTgSBKDDwLnLMPRiCppUCI6vpTSlG4CwtA4SZ45bhUpE1fiVMnS+i0OEOj2VzBJN5KAfg+cRlqPFB6yPrLXxXQ7yO4i0hi48BTq5gXc5nXsCzdwoyFqOaf7dfchexmq9tHdrQXKVQhfIYMDkyGUjpkseLxwCJ1SFrsM925z+fptRuYwNuQUlceHgA5QNpamrjHGoAClJOm0ksFLznmI4x1ZGRCxHLckEp+JMZF88gHXEloBEDJWGEqMAR/wPsy6Jdw5nlORQAkZqxkRWqLKAx4lFUpMqzxFF7G1FtpWJMaY9rkQvJ+1s4jO7UgYy1Zgms3D6UGGeDzeRzcgUpBohSY2eiOIl8xXH+LfpwKJmLaDu2Pqe+/aH8N+exnv2woRkdCjTdCKP8Z1KoUkMUkkebVBtRbB6C5WSKPRIsUk6Yw1E0a2LQXaFh5eIpRvF1n7ncR+ixYCWB9oRHRmW8GstV10aot4VC0ZF0JASUEdontRCEHe7aKTCaKUs+rrsdRTK5qEWItCEEik4MrWMO5lWGpXoUZbCAlNXXPr1i66d4rDBw/RWz5K7UoQHjEd71aQCWGfIIxjqUAoYsuhWJUr3LE/eBcFq8b66Fdv3dK2qXHWxzEKHqEls/1JTH2W+3MltHNxOm+kkCilUdoghUCnGdqkKJ0gtUEZg7SWgMA5T57EVoRCKayIe5YMoEWcZ/iAbltCQCBYi9QqfgcB5aSks7TG0pHDLB45Ql1brHVRdJKxXaH3Dh/imPuXeEVDPH8yEDwEGVu9SCtQRDGhbwzdRKMVTOqSG7dvMxmOaSYFFZ5UCkyiqWtPqD2L3ZSF3BCcw1uLDZ5kocv23h6MBpxeW8GEgKsaUgmvP3oAYTVXtoesX7jIYjfn7NGDaKm4duMWRWNR1oJtELZkY3ePe08dY2l5ib5zSGVQRiK1jpU4pmsxxNUjWvE4hEBVVXTzRR685ywbWzu8ePUySgT6/QW0NozLgrKpubp+C60Cta9jAmVdUVY1VTFheXEBgmc0mlAVBXljqeuGqrEgJCIEAtHFG0Sgmyd0EkOmDWmSUljLrA0WgixN2/cbsjcccea++wmNpakqLp0/x8ljx9FJjhSSsraAjW1hlEZJg6CJjuAQkzYJsRJbPAEOfFyDHo+3FqWILYyERBjdJjjKtt2Ew3sTndQyVgxobBRcEikQ+HYfaPcla+P9VghoGZCqFZ8EGAW9PGE0GrOxtcPG1nbbdjNBSvChFSOmrR1acWF/nwyz/feOrWmWUxDaajV++lQPUayWxCvE/vUjXlTiZ9Du2YRAE0QcM6nxRrM5KFBJTre3yOLaYeaY44/CPJ6ZxzMR83hmHs+8PPGMkLB8+AiDzQ3cXTSpjwd7CCkxWcaBo8fvXjyT5Xz9qx7gyQuX2B6OvuLn4Yvh3MWLnLt4cfb7qeNHGAyHuKB49Owqxs/jmXk8M49n5vFMi6/BeGae9DTHHHN8VWNra4sf+IEf4EMf+hCPP/44WZbdtWN561vfyiOPPML73/9+rLXUdU1RfGV7Wdd1zQ/+4A/y7ne/m+/5nu+h1+v98S+6C3jXu97Fu971Lrz3fPSjH521wQMYDAZ3LWlsjjnmmGOOOf4kSKoJIjgIFiMDsp4wuHmZam+XxV6H2/YaN9dHLBw+hqh3mOzuYXRKN+uwkAtEtcvmaIut9Rvc3NjConHC4WVApl0mk4qirqkTSUgW2WxKNgrPbhWQMkGphCzRaC0JeOqqIU0TtEkIAYbjIXVV47zDi4DwAolCtSIETR0DWR9Jo6yTIVOJSQ1LC4tMJil1XVEUJXXVcObkSVxtGZYjmqLh7P33k/Uz9na2eObZZzl37RJN42iqBqEE/YNrjAd77A5Kbu8OqXVCMZmwN9pF1ufJk5Smbkg6CWv5GnUxQchAutDjyImTVMWY7Z0dQlPR1BVZkuBdK3q4gB02KGlQUiKCRISYGCJELKfcWVli8eAa+UKPjQtXuLk3oqwr9oZ73JOcZtEkNEwYNjWpSsmSFJkYZJZSuAbjGzwulmMGZNgn0iIBMCXv43z4fKdhKw3M7memtN70eeIlpMEU8nPeIxBQSgGeNDUcPrTKcDgBBKNJyY31TZ45f5mJ0Fy5fo1PfvKjfMNrHqFpicPnL17khUuXufeeWL4973YQSpFoQ6okQihSrTBCYLRhbXEJpTVaa5TSSK2o64zGx4SSneEOi0cfwosxW2rEZzc2OV3ucuDACZZWj7F46AxZOcD6HUJdEqRDeEmoM4ROyQ4eJTt6Gnv2PuzzT1B+4LfZ/L33o1dyOq8+RPet9+NDQIRAogQoQbAlEg9KI/MFgoyEIwGUSCBLuHljnRcvneMzNyecfN3DlE3OaBLJ0QQQIRKMeIXygY5W9DODEZF8m7I2gYBz+2MVCJHAVlEISLMMOxxGF2iUpFoyV2ISQ09JRuMxFlAyttXwdzjjplAiklFaCIzUpFrH9SwVAhkd2IASisY3UQATMlYmEiIm/rT/1zq2FGhsrHKgtWrJsUjQirZRDCqgVIhdB4TDCU+iPEkQaCQEGcv3qzATx2LrGBfPkRQoGWKrktbN54OfzfF4XKLdc1zrDhd4Z+N3kQrnHdLH8v953oljKgVBKoKTBK0RSiK1QqoMnWQzkQwlUcbM1pAXPp6D6ci1iU+i/ScRVDbQBI8ktr8JHkTbykVJGfULPHiPDRbhA7Vt0MGiRELe6aH0Lt43NFXdEraRPFVSIYIm+CjoZKlmc7tka2NMXezRzfbA3UKblIBka6fg/sf66HyZvN+n3i3jN4ldBVsXucQ6T103+KYi1Us0QtM4QekaFFC3Dk7vHdZCVdVRFG6iq9OkCcJoJuUEbCueitgCSEk1ZSGBWMlLtP+srSIJ25LSRmuUUrHNhNB0FpeRSqHSFJRBpQmibnBeUNvA2kqfTGtqLalbkUgDiZTkJrYVTFQrjmmBIiAl0YWKoJhUHH3gMEtHDqN6XYZbA1zwsb2Clmgh8I0nOBcd4qFtTdKSrR7IdCRNNQEZBCpIvIhzWqtATwlW+j2OnT5NORqhfc1kc50bu7ucPnUCBYwnYza3tzhx7BAL/UW6aUpXJ3R1RrLS59b2Bnkz4Z6VFZ555hwXLl/h/NVL/FdvfT33rRxmJdvg1554gpP3HeM1Z05hG8eHP/kUZVWTWEviHYkUfOa589x76iTHjhxibTVjb1BE52wgJjnSzK4cHqKjvf2D94KymHDq+GEG4wf51FNPMSrGHFpbwpiEp5/fYnFphRu7e1xdv83Hn3qKY6tLbG7cJM87ZEYzHk64fnuDqxsbDLe36S0sUhRjJk2Dw2CcB+ViRRbn6eZRZElFoKoslfVY3yZsNpbDRw7SX1xEJoabt9Y5sbrMQmIYb2/ze+//LX7o+3+ApTTFodja3iPrSJySOEEUSIRr9xYwiHaPbPVg1e61RPe/lAIjPWoqHkF0Cofo/FfEFioieISP8zwQRQBC3DOigz+2MJFColrXfQhxH0skSBmQUtDrLfH8+ctcu3GbazfXWeh329ZbDhvCzPH8uW7mKcMvpgLCNNlgKm2FuJ96EdeACwLftvaSQrUCom+vR9P2pVGA9qFt8+kdEsFCmmGVxgvBzdGAU8dWOHLkKA+c2TedzTHHF8I8npnHM/N4Zh7PvJzxTK+bc/LhRzj38Y9RDIexus1dwmh3h2I0YmHtIMHHhEOjk69oPJOoDn/7O7+F//FX/iO7L1yYmVe+2vBvf/k/8G9/+T8ghOB//Ef/EBmGNOUO/Y6kk+SYZB7PzOOZeTwzj2e+duKZedLTHHPM8YrA2972Nv7e3/t7/MRP/MRdPY7l5WVu3rwJwLvf/W5+8Ad/8K4cx9/6W3+Ld7zjHfzqr/7qXfn8PymklDzzzDOz3733nDx5kvX19bt4VHPMMcccc8zxR2N07ukYmEqB0ZLTy4ssnDlFudcnNBXj3YrGO4Z1zXBckEqJEA5bFdy6vcX2zctsbW0ymkyi+0yWLHYzJjLhVtmwOSgYl4JbgwlP3tjmysCxawNow1Kvj4ucLUpKUq2Q3UXGkwnjwZBJVVKU5X7Vk9YxrKRCINgbDPFVgQyRgHbB4Yjlw3UmmTQjpJQkMqGuG3a2dhlsfjYGuiGA8wRbs3ZwlW6/w/lnn0Ova6SUKKlI04zhaIhMDN3lFeTBRZacQN7YZOf2LT755DmWVxfQWUra63DmnrNUO0PGk4LJsEAHCd5iq4p6MqbaK+jkPZJ+F2UUo70hxWiCc7GUutIaY3R0VHmPc56FxSUWlpaQxrCzs4vUmqauuL25xac+9gkWF1ZIVcogFAzGQ/p5h063Q9rtsjXYptaj6IaVkrqqkFlL8EpBQBGC3Lc3vYTpn3qhwx2/34kvoAx8Llr329SRGkLAWYeSiqWlFTrdRcrRHlXdsLSyzKmzZ7k9LLi9N8ClKa7bY9h4elmXs4+8kaNn78eVY4wxPP6mt0CakyNIlCRNFUoKgvNxzJMksokytj1ASmgklffUtqEuJph+yq3xDlu762zduMBosom7WKKvXuPASuDw8iJVtUNZV1T+Eml3DZN0UMq0BLAhWeqgjx0jvO7N7A49nTMHyc4eYnsgaMYFUzlFEahqAS5FIDGVISQCVzcE61FeEZKa7WqR4cIjnD15mpWj99Dc3iCUG6z0u/hbGzR1SW1rUqM4sLRA3uvSzXNo3e93jo/30ZGKAOsdUuy3UyvqiqKpSExCliS0Bb9xzuGqGh9CFK6IDmE9s8bvzwnvPUJBminyJKWT9OilgW7Soy4qAg1KtRUDnMU7i2/Lho/HEqXUvgvZObxzLWkU8K3jTwuBVhrrQtt+QSBFJKgSDEYJlGrIlSBxEiMVXmnAIaXHexX55ZaQijlPoXU7t6wskVwLIn4n7z2qbfcQqwjEmS7FNIFLYiSYNCPv5GSdnKTTwTqPEB6JAWNiKxvvqJ2LyU+tY9h6R1k7lJRtlQTRkobx3Eb/9VQM8iigmrZCEAIjFHiiE72l6qIF0+MQVK4hiEBlGxIFnSzHAVVjKauKMBVWRRzUuqoggEmiA3Nvb8Sb3vSNjMevY2d3l0tXL9EUE3rdHisrq/y5+x4kIFAqUEwm9LvLbGxsgYjzLXhHt98nhOgAzRJFkiU0Dpra0fgG66CsLFUVXdDWRuHUu/g9u3lOkmdIHQUZk6R4a3HW4ryNrv87WtR4H1Bxeu+3RmkT5aSUURKVCqk1aX8hGpCNQRgTE+KIAo+UsXS/Fw4hBCZJQCmUitcdKQQEh5ICrSVGSoR3IMCFgHUBTMbKgUN0e32qusYpQbABrQ2dNMX7QCdJ6KUpmZHYxiOJ69cFjyhKFoxGiIC1DbVrBV0p8NLTzRMSJDhJ5RRN05AngdHeOr/3ex9m7/HXgg9cu3GDTz/xBI88eD/pYgedGowyHFs+xKQpSAWc7PZ440P38+TTT/PpC+f47SefYGuwzf/527+bEYILwyHHtnYIg4pDec43HjnMN5zQvP5NX0/e7fHZp5/h//Wz7+bogUVWlrscXbmPgajxIjpclYjJeZFrnvps40V/2q4meI/RikMHVnnrm9/MBz7wu6zfvNm2bxAc7K2y66GwgiQzrB47ytZwgN/e5sDBgyyvHeDyM+tcv3GLXmLYvX6N9evX2Nw6C+pViNDgQ8A2nropefCeM9zeGDAYFbz/45/mwME1kiSJ5LoQTMYTVJJwaHmZv/23/jzv/PZv5/qtW3zoox/j6U9/hsP/zd8l+MDt69cpNjd4w9u/jkndsLU35nbtuO/UMRbznFxphG8Q3qO1QCuBb6IYJVXcD7x34FwsWYKICZ+EWRulQNsGM0Ti39qAJO7NSisSo6hs3DmUVGR50p7f9jLgfGydgkcoCavHuPHRp7m9PcRJzfLKEjeu3yDzntBJ953N07Ipbroft/cA4s57gTjGoU3XhIAVAQvYEHDe3yFcs/8a7qwEcOdPHuMtwhtKB2NXYtOc23sDxsULXLp8jf8H/7cvdrcxxxzzeGYez8zjmXk882WJZ+55+DVs3rjKzcsXuZtwtuGJ3/0tAFaPHOPMw4/elXjm9Nn72WoUFy88d/dOxp8AIQT+L//on+0nOkjB//L//CesHjo6j2fm8cw8npnHM+2bv/LjmXnS0xxzzPGKgLWWX/iFX+Dq1av8/M///F09FmMMAH/hL/wF/v2///d87/d+L865P+ZVLy+ci71fXwmYnq8pfvmXf5m6rnn++ef50R/90bt0VHPMMcccc8zxxSGpIxkoRSTK8JFM6OT4CoTydPMeebdHL0kYrN+iLgvGoxFbW5sY25AIQW4SalexuNzFZl2KccOLl69ja5g0Eq0ioVMLTZrF0txa61hKuxX/nXUMJgNG4zFVVeFDLDEe2v9EiM47ZAAcoakJzkXxQMZ+8GVdop0hQSFR7G3u0JQWawMoBUbjbEwmyLOcC8+fp7PQJc1T1g4eoBqX2LrBWktTDfB1TXdpgcWDqwSjseOCejjGjkbkaUKiEySKUFhuvHiNelxEskxJnPcUkwKjFZlKqEJBWdZY59EmCh3GmOgk99G9rJNYito7R7COC08/i3gusl+uqtEiEuAhOLa3h0zGFiE1eZpGEgKYFBNK21BVJS5EA6FQmsNHjqKVimRxEHgiMbrP9X8h4l/e8Rif93jrJWXqlJ7+7qNd6g6CIBIgyhiG4wnPXbyMUoalXoaQksV+n64Zcu3qi2xs3uLAkUM89dyzjPZ26aQ5dRWgHrK2kJFlKbd39hiUNanSaBHZjOCiI00Q26lFF3GsmuM86KCZFv0XwrPjJ1zevcXWeIeqGKEJmCyW9q8nFzl18DB1E0l5T8CkaXTJinhOUikRiQIpEbUjX+nixxP8My/inrkAbtpmIZI+Ho9rHNZ6nIODRw4wGY+oJhO0kJg8oWkanIMkaehdvMmBlRW6vZx6XDGcDHC+ITWaPDMsryyClHjvqOsaL4jjSTvmRBe0VBJpfVw8IhJORVExKCZ0fEArQ0oU60LrvG5cFHOma9NPCR8geI8M0U2stKHT6dPpdvnIhz/Bk5ev8qlnnsW7QBAWHxzeS4QA62KKjpTy8+7vQ7hj3KSgmBSxgpHxBOdj64oQiTMpBLWHSjmkUCx0OvQ6FrfnqH2DUnE+uBBaDUDg72gHF4WSWSmAVgCQUWSRAnzbak/JWds97zzCSISILTAEEtlEQaEsohPXtW5cHx9FKYNUErzHpClax5LvUdBxCClnDtKY7OXbFn6hPdfxmK13aKFRdxCHfpoiFYgkoJimTkUSdqp/+BCwBJTSBMSsHSBAmqXUTcPTnz3H4lKXQ4cPoo3m/LkXOXX8KIPhGBskX//2b2PzyotcOHeOF69c5cjJe7h85Rqb67extubee+6J7QubhqouGY12WTt1lqB1TN4SAp0mGBdQDnzp0G0SmNQCEQTeu5Y+jG5O6xx2PMYD1nqC8q3VOTqkfdu2TwoRx6g9X6J9fLoPSQnaaEyiMWmCMRJVJDjnYdqyQ8c5F/9J6rom1TlKKoLW1K145JzF2hrnXKyy5QPCeZqmRruEYAN1VZP0e3RXVtB5J7Yk8A4tidXHZCT+8ySjkygSEeemacv9BxGiuGJtHKsQUMS5IZ1DeYf0Aq8NLk2wecZqfoAjhw9SjkYsLOQcOXKApnYMxiNUkjKpHXbc0IwrRpMJz52/RrG3x0qS4k6fwbqa7/rOb+F1b3gtf/P5S/R7CXVVc+7cebaKId3xAkIo7jt1mkcffJCNmzfoLq/gpETfc5aThw+xvLBAahKshSDUvjg7W3EvrahAO3eFiCR409QIAadPHqe0jrIpSTsZx06e4PrFG4xHI5SSnLznNH/jB/46T3/mMzzz9LPU4wEHDx3AnEto6oZUG/ZGI8aDPUbDvdhyoV0XQkikNPiq4vihVR5+4Cwf/ewz1LaJgqqU2ADD0Zis1yPVhpWFJbLMMC4mbGzvAAm/+YEPcnDtAIu9Bd7w+COcPnqYYlKjq9v8wn/+z/xmCKwtLHJocYnlPKGTpZjUkGUJh1ZW0dpQ1Q1V05B3cmxdU9cV3jmWV1ZompqqqqibmoX+QntNLxhPxjjrSaTEKIXWihA8tm7YG+yxubXFrb0RSZrEfVRInPNx7/NxzjZO8uQzz3N9Y51ut09dN3G3ku0+2RL9juiSdkzrbEThIIiXttGZ/uAJ7XOn/wIh+Nkcnv6LVTLaeXGHeDCT+4SgdJ6xh7GQKJPR4BlWBZOqZo45/ijM45l5PDOPZ+bxzJcjnkF4FldWMYnhyrnnv9St6WXFNH7Z29zg3Gc+xYOveX184CsZzxiDVOpufP0vGc7dkUDn4X/4X/41WZrywH338z/80/9+Hs/M45l5PDOPZ2Y/vFLjmXnS0xxzzPGKwZUrV76q2qIdOXKEb/3Wb+Wv//W/jrWWy5cv84d/+Idfsc+/fv06v/iLv8g73/nOtpTwKwNvfetbAThz5gx/7a/9tdnfd3Z2eN/73ne3DmuOOeaYY445ZpBySryLNgiUCGMQJsE1DZWN5bQ7WmFsydatazQtia5CQ6ZBWEHTBvu6k1B6yaTyjEcVJutRCUkTohNKt+5frQ3aaALgrKN20fU2LAuqusY6u3+ALURbFQUR66IIRySMWhLWJAlZPydJUwiCprbURU1TW4KU5N0eK2urjIYDJsMxEI/HWgtloJNmpCsp4+EEPxzjm5YoDQJfWUabu9Q7kYBomgqVapIkBQSucext7RC8J88Tkkwj8FSTMZ2lJVaWlzDGsLW5S11XOHtHpZspl9JWoxGz/6AcjnEutojIOx2EkS2bK/BWUNGQ54Zep0NjNUVZ4RpLUzcIAjZ4nI8BejJNvJBiVgY/TAn+L2hy/kJu6NlgTHm5lzwm7nzN7F62FRCCxxhD1TS8ePkqQipOHj0US1IrzXCwx+b6LYaDbbJOgg+O2tYE59nbGbF+7UUevvcUy8tL1KHgk089TaYNWkk8kbiOLPnU7SoiSRICIQgW8j6dTh6d81pwvdzm8nCd3WaMNpKO0eSpwQXYqCpEMYZgAR+dkaFgxoQAWgRivXiFMCn5Qjc6N+saV1Qg2jYDQNuXjLr2VFXDaDRhkudU1YS6KkmNIteSonKUlUOMt1kLExaXeiyZHnvjAZOmQkjI04Q00ZhE0biA8y660GYOs/Z8i4Ajjr8D7ryD9iFQW4dRFuf8S0e6dbQjmDn0mOo90xLhTDWg1gEpFZcuXuWZ517g+ecu0BEZAY8PbUUDEY0MQsroXm0dyLMWDCGuYQUIL/DWIrTGW4sNseUdTJOeJDYIGh8FFYkmMRrvHS5YhNdEqn46H6Kw4X0kllXrMnzJzJ46+Ke5UFNiy8fvK6ZzOTBbN8F7nLVUdc1oVOBEm1TkwegAQiGVRKFbcSCex9iyLpohRTsWvv38EPYTlqacagihFUYlgZg85u4gwkM7v4UILY/eVrUKAe8hCIkyCULIVjBzBALKGIJQbG7sUJQFHkiMYXNrhyRRDPbGoDQHT52irBomRcVgb8SVS5fZ2x2wt7PHeDKmKhuOHTsWCUvbRIOMErN5VDUNymiMFhgLftIgRCtAxQ4xBBcT1ASRXPa+FdhCQCAJ/s6Zvf//0K7zEJi5MMXsdXH+aqVi1Q4VBQGdJPjGIpRGKD3by4QQUdRBxHhz2gZkuhbaz1UyfqaWksRo0ixDKkVdVVRVzfLqGrrbAWNonMN7T6JEPCUEQnAYCYls/xai2356LfY+FnWAVuTzLQnrPcp6pPPoxCA7GbKXcWRhhUMHDjCQAm0UZTGhrh110yCVoqgbmuCx3jEuJ1QTSzOeIEzDpfXb/M4nPsHRY0dZzjscffBB0kzy3o9/nEsbG3hlqCqLlIJ+r8uhlTV+7w//kPriiywsLnLm5EnuOXaUhbyLQFKH6RUlFv0X7X6C+HyRYFppTIhYrSEET5alrCwvk/U6dJZ6qH7Gc08/T1WV9Bf6HD56mPseuJ8rV67ihKJxrn19bEeglCA4R11VlEWJC20tNCGA2DaoLgqW+l1OHz/M4YOrXN/Ywjk7qxxhvaOqKorJBNs07I3GnL90hc8+fw6Z5GwOhhw6fJRDhw9x8vgRUmMoXEkxHnP+4nmu3NpgqbvA0bUDnD1ygMV+j3FVUFQVJw4dppNn1M5RN5Ys71BMJtRVRQiOQwcPUpUFZVnSNA29hQWqukZpTZZnHDt6jN3hgK2NTTZu3WI4HHLq+HGaumJ9c5NPv/DiTJRGSOy05Y2PrS+bumZ3OMYLUMZgG4dmmiASd00f2stc62b37Trzd1JT7Vqb7d8wExZm+QHhzn01zATs6c+fx3QJQRDRVd20yZoxocG317GvrPFujlce5vHMPJ6ZxzPzeObLFc+YJKHTW/hCk+uuoKkrBlubbN68DkCa5/QWl79i8Yw2KQtrBxlsbvAFruhftXj23AUAtnYH/Mqv/Ro3btxka3MLLeU8npnHM/N4Zh7PvCLjmXnS0xxzzPGKgveewWBAr9eLZQDvMjqdDj/7sz8LwC/+4i/y2c9+FoDxePxlr/70qU99ine9611893d/N51O58v6WV8OnD179iVVu5544olZ0lhZltT13Lk4xxxzzDHH3YFUCoQkSElA4aUgKINTmgrNsPIoBFloCIN1rrz4Ajrt0e/3OLy2hK4LtpqKCQGpDI1KWd+bsL4zQWDI8y6hTXQwSqAFCB1bXhljkFIyqGILhaqqmNRldPUoOQsyYZ98ngagBI/0vi1fHEBIekkMoqumZDyeMNod4b1AaIVONf3VPvc/ej/XLl/h+pWr1JOSM/c8yN7OLsO9XZyQHDh9AqF2sE0TiXgpcWXN4MYGhW0ox2NcU4NydDod8m4HWzU0VU0xGpPlOVmWsbDQpXYNdVORdRKOnThMUIJPfOzTTAYTXB0wJmkdRC0RKcBZG8kuH4nbNEnAaYQPKBGdUKGtWpMlHTyeLElZ6nWxjcHWFts0eGvJswwvDZX3BGXIuj2C8y15F8+cmIoEM+I3fB6ZQzsCMO16f0eA3yZXyCD2nyH2Ezb23zqybDoxVEXBrdu3mZR1dHOHA/T6fV68dIntjduUkyEd0+fEkYM8/qpXYauGj3/sUzz79FMcXu7R63YRSvHRD32I3CQkiQElyFrnMgG8dSilYnKLAKk0p48eI8uOkSUGKQNaOXTHkOk+S6tdVhLo9ZawXiEyQ97vkKeKzEiyVCOF2ydHPNTCo51ABQEoChmQPkH6DOkDLkzr8QASvFCUjWdS1BTrIDqSvNulIzt0OxmLnQ43NgcMd0aMm4bVToZOJSF4Lt++Sc81LGhNN4MkiW1DpgJBAESYEnMSIQMuOGrb4IJHCY1W+/FEPE+C4HlJ8pEQIpK3Us4Inv01OB336CL0IWBtJCO9d2ysb3Pj2m1uXd/g3hMn918RiBUOwn47l+lcuzPpSWs9I/xgSv7GhCfnHFKqdpZ6QtDU1lLVgcYKlJKEYPE+VhkAP2sPQBBtYpFHBIELbubwm871WGVp/3i884SWgITowPV3nIcmgG5qrG1orGVzaweZJEit4vfTCT6AlBqjJUiF9T5+D63QUt+xzlr34vT8i9jWZPp4kBJPQIpA8LE9hxdTsWK6RzpcAOdD2yYwCmROAErFigtS4r2ntlVc/1LhhWIyrtjdG7C1vYtJFLbxXLg0YjycgBc0Zc3e3h5VUeKbwKc+/glOHDtOr5PjnOOJJ59EoEnThDTTHD16sE3Pislck6pEGk2qDKmXhK0hkrQ16gt8u06mIk0QMXFLyqmQGts5TIlgSazkMUsSQ8z2m2nSmGjnmhSidWFLhFQIqdFphqWOArTSBCFaLUggZbwuJSbBKUUdQpssF4/FKE1qNIkUZEbT63RYPbBG5R1VVdPUNXmvj0gzrFI0jUd4h1IGI6Io4JxHM/0XkB6kEmgZWzc6Ma2cEa971nls06BCAOdR1pJ3UvKFDmaxw6kTJzmwvIodjbHWcvHiRZo6sL03QAjJpCwRhQXhMUqQpQaRr+K85dzuOv/s5/4drz91ltecPsObX/UQC7rH+SuXOX/jJnlvGVe52FLSO7Y3tvnv/s2/pbYNb3j0Yf7vP/LDvOrkSbomoaotFeAF8XshZlXFPu9q0ooG07GLekH8ng/ffz8PvPpVdA4s8bFLTzOohuDide7I0cNkeYoNgqKJ7REGgwF107TZDgFBoGkayqrE+tgyU7SCZxCSsijp9XucOnaQV913houXrtDUdVtlTqKEZDwes75+m93tbc5dvsYffOQTvP/3P8xCt8/C2ipn7ruXxx56iNVcMBiNuH7rFhevXGZ7a5Nzz7+A1inX1w4gwqtYWV7kmfPneeb8eQ4urbLQS1FJglQGj2Rvb4h3FiVgZbEf7zGci9dVrdkbDjh56hSvffx1PPamt7D5/PN86vyL/M5v/iYvnjvP3/hrf5WDa2uUleXpC1fZ29nCOktAxMoobUKADwEvHAudHgvdHgu9HgqFQaLbdIGpw9nRVnkQsUWGa8WDdvtv19pse28FhunzZfw5tBfK4AlBzoqshDteO9tQ2/+H0IoMtIkgPqBkQIhA+CJzaY45ppjHM/N45uWOZ8T+283jmXk8M9tn/Fe4+8UXg/eO85/9DAArh45w5qFeO+/3z8+XK54xeYej9z7EcHtzlsjzSsKVa9f4b/7b/3b2+4GVFZSQvOF1b6Db7dDppPN4Zh7PzOOZeTzziohn5klPc8wxxysK169fZ21tjU984hM89thjd/twXoLv+77v4y//5b8MwJ//83+eD3zgA3f5iF5ZeOyxx9jc3ATgx37sx/iZn/mZu3xEc8wxxxxz/FlFdJ1JCJFAEQjq0lGOKopxAcIzKguaLbhw6Tqrhw9w+OgRMm2YbG5QT/bo5QaRZAzGkv/0kafYqz1eGBaWl/ChwvnY/iFNkugGS6MA39Ql21tbDEYTyqZBaI3UekYG7RMJ7JOzArxwSAQqqBhnykj0jIqaqxevYW1FU9c468mzLi44JBLjJKmX5FLTMSlJrikHE5qiJthAWTfcvH6D8e6QYm+MaAIoifACbKBpajrLKcceuIejZ46TL6xw/bkXuX3lBuPxBBD0eh2WV5boL/R48dIVsIJiVLK3O+D0A6fo9XvY0tI0DYJI0Ma8BIXUEmsbvPPg49+EicQFLiZ/eO9ITEKaZNg60NQ1ZVFQJhKjFXWoCQKSNKfTWWDh+GG8UjQBGgTBRqeskCDEnQWc9/EnEgqmpWjaijkekNwxVq0o4FvHGyLgnKcoJhgpOH70KFdub7G5tU1TVSwtLPLpzzyFDbFl2fbtDY4uLvH1j38dqdF0VGBn/SoCj2sqHrznAd742tdQFzVSCNI8QSmFIlquvPOkaTor5w+Bs2dOcub0KVZXlkiN4vnN63SGV9nxY7JuSmg8xgjwNb2+o7+QkCUKLQUagZEaJWV0lguBVQITJDpIFIJaRDJREBNTLG5G3IcATsC4aRBlSU819Po9pHAIGTB5wmLew0mJ6Rr2qoqTy2sUk5L123tcuL7Na5IMIRqCaNBG40NDkDI6PKUBF0dItuNROcegKiltTa5Tso4mtMfTyTIOLC2jhMAoPXOvCWK1AKkUTdPMBIRppdVpopAQ4LygbjxlZQnBs9hbYHVhldWFbZQUSBRSCoSK5eGNjI7TJElmYkRoSVgpZWwPEwLOObQxaGNmSVBKSYw2bSsGgSAh9YIkB50pVOvenLFbEnxw0dzs2yQriMJKS2zF/DwxE+rurLLrnZ9VgxK0iUftc2LJdIkiYIyh3+vTzTLG1kJQdPJOJAC9iGtNS4Jqba/tutLtvIyrL54LF1x0lAqJbysmCAJKRoLW3eF4lELEURbT9gghOnmVjGSzj+0ThNBkeaw80NiGoiyo6pLEKEJdUeztsLV9k6L21LYGAZ1On7WVg6yuHSPRkpvXb1BUNcdPnKDf63Hh4nleuHiBVz3yIK976F7ue+Befue3fx/vLEePHeTt3/xmtGsItiFunR6TZUhl0HU8x8YYtADpPLiGJMkRFpomtjKUWs7cx4joKm9cbJFglEZr3Za6j+XlpVCzuTO1ZQoRW3poIZCtyOBCAJlQ2RKhIDVtxYmdQdty0UUhVkz3t7bqWDAYJcmzFC0DXWPoZSmLiz0OnDjK+uY2cjRGCsXKyhqNEJRVTVk1rCSGLDUkbVsWESBTCiOjDVopiVEGLUGISKqqaYKfj3tnphQiCdQK0kxhhkP0cIQajtm+vs57//P7uXnzBhcu36A5f4k0SUnSjKXlhegy9/EaiZEIF8+ZEAadL/LczpCnPvYk5qOfZjmF5SxlYKFRCasry+zdvsy19XUuXL9KP9H8H//y9/BNb30rjzz6Kg4eP8i73/MfePrZZ3EaXv/6V9M0W4jPEQTF5/wSpkpyCCipMG3FjvF4xF/8tm/h+ENn2NQ1v775WYq+wfgG00k5dfIU27c3uXVjnc3NAUYZnLcEIUHr2MlFCOq6ZjyZUJQVnSyN/LQIoBQuSAiOhY7hLW98HR/68MfZsSUWSZp3qaqC7c0tbDlGSHj3z/8qH/3Dj1Gs73DwoRW+7rWP8NDZI6z2NanJ+Ll/9ys8+/xz7O5s8sZHH2ZSxs9ZXV7i8Noqq6sr3NwdYG7vsLVXcv7SRVSaki8ssrJ6iElZU4xH1JMJV69dpynL1qUfhUUfAjvjit1JzWOvf5zFw4f5C3/pe/i6N72Jf/k//c/0FhY5fOgQSwt9PvXCVRYX+7FCQYjVMpq6xoWYAOlFQDmHQlBWJUpqrHBxv2kzALwAPyXrfdwHvRZ4sS8URAo/3qcEG58TZNx+bfC4MJW47rwdmI7559xbiJhEgncE7wnIKAgIgbTExAYlQL9yqn3PcXcwj2fm8cw8npnHM1/OeMakKa9+y9t47hMfoxiP/vSb1suI7ds32Vm/BcCZh19Df2kZ+PLHM18r2Nje5n/+tz/L//fn3823v+2beMef/7Z5PDOPZ+bxzDye4ZUQz8yTnuaYY45XHJqm4e/8nb/Du971Ln74h3/4bh/ODFPHBMBP/uRP8p73vIef+Imf+LJ+ZlVVvOMd7+DHf/zHectb3vJl/awvN4SIPe8BfvRHf5Tv+q7v+oLP+/7v/342Nja+koc2xxxzzDHHnzE0zs+COIJA+JrGNvhgI4GSCIRU6KzLwWPH6Y8SdPDsbW3zwos3Wezm7I0nbI4bXhw0DBqFSnKyJCVLM8oyOnGTxLC8skK/22FzZ4fdvT1Gw0Hs6x5ASBnbX/E5hMIM8a+B6IyjdfFY7xEmQbZE52B3iJKglUBpg1YKX3uaomH71hYf2fkwTVMjCKytLTEcb7O4ssTxM4cRAp556hlw0Ot1kEFiTEI5KZmMJhT1hOVsgcXeAr2ky+2b61y7co1iMEYqhUFRFCVbmzuMhmMG20MOHTrMyvIiwcEn/vDjjHb3CC4SQzEKj+XPhZQtKRSJWkTsP4+LTi9BwHtLliYkSYLWmmI8AQFV07A7GJGmkTxTUiCEogqBysegvWpsfL/WyiSRhLYENCEgpm0Lwhc7//HB6fhMHbIzu9NMbGiFhDusT1M/qZKKwWBEJ01ZWFjk1YuLbGxtcXNjgw9+6gn2JiNIEhKd0uvmnDx8GBNqbFHEyjdBsLO7h1KSpdVllha7bBQldeWiKz/UkZxuhSXnXZtcErB1dIvLEJDe0xQ1/V6Hxw7ci9NRfSqtJEiL8zWnliYQJElqSI0hVYbcpDGxRgSCj4y8DkRhQkom1kXNJAiQ0/Zj0dVp8QgZKJ2jaCzD1ZIuDqkkUilSk7CSZJSLnsoHglH0rOCZZy7wwoWrOAQyBLyzeGfJspQ06yKCJOR5TA6aJu8QQEZSNUiBShK0NlFgC751jnuQrY9QRGGI1j0I0VGaGPOSRKDZWM6IIo9JNN1uB5OYWMkoxO8plYjJR2J/3U7hvZ+JDtOkJyHE7P+zak+ijTlacl2JNkUpBISMJcV1ltJdWiCtRzhfYp1FBhNJYT91BcZkIuEjUSWliNUH2uN6SQWG9vO99215eGbrUU7PDSCEROKIrQQ8SZrglMYT2895bKvYKKyPxLYxCiWh8W1zDiFmwowUrWA7PSbBbB5D3MuUUEgk3gesd3GvCAIlNTIElIxCVlAppavinBECpaNAIaRsRTOJSDrcvr3NjWs3WVzq87r772d9YxPrHI8++hh/8PsfoSwlvdVFHn3sXi5fvc6Z+06wsrLKpNzj4MEVTp44ysEDK2gBjz58P2VV0Ot3qIqSpJNG0r1xZElGN0uZuBCrcEmJC7H1nvexBWKv20G158PVcf76AI1zEDxCxu+NkEiTghAIPCIWoccTK3m5dh+LQyURQbbtHARSapROEHU9a4HifRTAvBBYH6htQ103+CZEpU0Qk+S8R4SAwuOViEl17fXH2hpnGwSCLMvI8xwXoPGRmG2qmlvr6xzodVg5fBCfKLI0w+gUgUQIiw8WF6IzWrZ7cmjJdKkStBGxupf0pIlhdHuDnYuXGF94kfTxZZI8RSSGqrEs9hfRRiOUah3nHiUNQimclNS2jMJJEEjr6aYZLk0IwTGxDRujAhEEJvX0hMakCS9euc6ZI8d401/9Sxx+2zez3Fia0R4fef8HoNuBLEcogyGQqDDb80HixVR0nrY5aq8ZIoDwUeTVhsykpDoh73W5evk810c3WSvWecc3vppr5zbpJossLvTY2dtla3eP4WTCwaVuFPLldN/wKG1wIYr+ZWPxSRLdte0VLChFWTs0kodPneDeUyd4qixY39ykazSNhE63R7fXZ7g7oh7u4asBWeJ49aP389DZM6z1+hSjCU9eu8Qv/dqv45uaE4cOcGj5ILYuWd/eZGfjJo+fOUGWaHTwKNdw6MghlPbUTYVwjkQEagQ6SFyQGCMwuttyLSru1VJgspTBeMi//l//Nzr9LstLy3SzDrULJMZQNTVXb2/wzIWLLPV7sQqGb5MlW7FTAdKDkAYlJVpIxrbGevBK4oOkxLX1UuIYWgGmFd7xAS/37w9kEDg8XoTYMiJMk0plm3sqY3vT/bIF7S1Cm6TQWqRFu9CCUDTEajTxuhmfNNUUgv/aEljnePkxj2fm8czLHc8EYtLBPJ6BeTzTzhgBR++5l53bt9i+feuLzrC7gel3vHnpPMXaIQ6fPP3ljWcI3PvIa7l56QKjwe5d+MYvL2LiEXz005/ixatXeM97fwMhJVvbu2xubrG5tUuaaOog5vHMPJ6ZxzPzeOarJp6ZJz3NMcccr0h85CMfYXl5mcOHD/OOd7zjbh/O5+F1r3sdRVFw6dIlAH73d3+X27dvv+yf473nd37nd3jsscfw3vON3/iNL/tn3A088MADPPDAA1/wsXe+851sb29/3t8HgwHvfe97v9yHNsccc8wxx58BfD4FGJBSoLVEBAU+tp3qdDKWF/uoao+6KBiMSp69ucPKomBnNGG7aFivAjrNSZKUNE1JszS607TCJClCCIq6YTAeszccUkwKbNueACK9PA1B73TmRhGjbVsQmZP4uBQEH0tVSxGpdOscUkgEEtW2c3LO46ynDhXjwZgQPFlqMLFqO52FjNVDKxxYWuaFzz6Lw6OMIk1TtDK44DHe0lM9AoHB9gDfwO2tbcaDEdhYqQYBzjkm44KyqGhqO3N8NXXDzsY2AoGSAidjsgeBtqWVbFs0hKleE8/ItOS592glydMUKRXOOXyws1LmjfOIJpKRoU1yqFsizgZPXTXUtkHHD4zk1OfIAS/5bUoaz8QZ2mN96SsiMXPH7BHhzlfE79EmkmRpSlGUuCa2rHjgvnvY3N5hfXePczdvkvRzxuOKrsm578RJTh07hiJQlkUsJ+2hLCr2BmO2dnfpdXM2iaW/TeMJweLauSClQFo5m0fWWerG0tQNdVXjXY3MIdRQF5bReIITBlQAHNZ6QnD40uOUQ2iBE7F1mhSCXidFKYWtS5y35KliLYtuYmcdQUbXmEfikTgVx8nagGwCugShHF56ggy4QlLoEk9s1ZabjGpcsrGxx62NbfRKglK0/yTGGJRJMUiCMYiWqLkzvSiuJjETEGarXUTSs24sSsZ1Egf3pe20p5WYpvPhzvf1PiCkIEkNebeD0i0hSZiVXt+fJi05PPtVvOTnuHbE7O+f68oXQrRVG/z+VxCBIALSGPJOnzS1MxHE45FBIcIdgpUPCL///YUQL2lpd2c1gDuFkTv/FqssTYnO9m29x3mPkKoV50QUfrSK7QaQ++JLcATv7mhjsH9Cxf6AzYS72XYYRDs2bZs+7tg7putYBBQCEQS1EzQutrqDOF9QCik1UiqUkHgEdWMhwNGjRzh+/DBZZrDOc+zoQQ4dXKLTSVlY6LK6ukRtLYsLXfI8YXVlCaM1vV531m7hxIkjNLbBGB3L7ft+3KO8J08z+t2cZlzG1nwIGudpbJiR9bOToGRsxSeYnWcCbcWwSDRLkxCcu8O9HPDBzaowBIikcZAIoQh3vLdo55pScXwEse0QQsa9tCX+CfGx2HZi2ooiCgUEH0WOVl1XgraSB+hEI3UUJoQQKKUpJiPsYMCKlnS0ovQNEuLaUwalbDu342dppZBtOyQXApnJUbpCW0ViFWmaUxRjir1dGI3o5YY8M2itCC62GVJJdEI772Pyn9pPIgxCxxZNsVciRrfVxYLEKU23t8xqv4+RUBS7NMZwa3uHSzdusbU1oE5Tnnj+eW5fu8q1jVuYfh+ZJCAVSimyLI2CTpAQJEGGVlQT7fmS8dotwAeLEholdfy/0lS2Zm9wi3p4jXvyhpP3rpJMHM536XZTtnf2GAyGlEWJXO4glUJrhZaSxvnoKHaeomooqwZ6YrbOAiC1pGws2gsOHV3j8IFVnjmnGE9KeoudtsWLY1LWvHjpKmv9DveeOsaBlS6vfdX9LHS7lI3l9vomv/3Bj/DCufMcWllGHTlCWVnKsqCYjAlNxbiYsLO7y2Q4hKoky1OW1w4wHO5SjkeUkwm9xWXybo+qKCiHmwjf3sNIhfRAmqCzhAA8++yzJEbTX1ii11uI1zJv2d7d5dbWLmXTYAPImdjf3k+8ROxVaKXpGE2FxbpY5cKGQHHHPo8PrRt6Wg2l1b/bLIG4RYVZU6npFSaKBlHC82KaUnBHcqmatgCJ+/KsXYRQOLm/Z4v2HmR2f+g8c8zxR2Eez8zjmSnm8cw8nrkTL3c80+kvxFbSwbOzvs5XG4rRECkVaZ7jnaO7uIRJUuBljmeEpL+0zGTtIAgY7e3eza/9smFzZ4fNnR2eOXfu8x775PmrNAHWhwW3t4fsDkaUDqogUQvLzOOZeTwzj2fm8cxXOp6ZJz3NMcccr1i8973v5TOf+Qzf9E3fRK/Xm1VZ+mrBW97ylln1pe/5nu/h/e9/PyEERqOXv+TrT/3UT/Hcc899zSQ9/VH4l//yX37Bvz/33HN88IMf/GNfPxqNPs/RMsccc8wxxxx3QkpFJLIiIaKkJk0TpM1AeMpqjyRNWOhmrGSKSd1QNrAz8Tx5a0C+HZg0jgYBWc6BpR4agdaatNMjS3PyLCUE2NvdZXNvl+29XcqqQkqJEHJWil5OaerPSXpoLU3RYRVaQ1WQCBVdxbINXB2RlIk8UCTsqrqmsTHRQEtJkmWUk4KqqrG2pL/SJe0kZHnKww88xO92fo/BaITHk/QSrPeoYOhmCxzpHuTWtZuce/Y81cQigP5CryWcWnpWiuisa13eRTlG6kBqDEYaksRQVQ2Fa7DWIaWK50FKXJuEEAemPQfeE3wsEZ53MrpZTlU3TMpyRgcLKVE6JSAwQiFUbI9VNh6sB+dwdUNZVXS1jkRm6xoUU+dS+FzBKJJ0U7FinyTedzpNidPI04WZkBAI8fDFlDyITu1+t0dVVUxGI/a2dzl9/Di/9cE/5ObWFiM8h84c4bnPvMCq6vHm17ya+86cparjWGmlEV7Q2MB4UrGxvctiP0dp0ZIMcZrMElmEwHuJ960TTwjqxjEaTVAIHBbnJedv3+bKxiY3NtfpdhPSrINSGmcdaW5w1iK9oK9yhnsjirIgNYZ7T50i6yQMdjYJ1ZCji5JX37eKmAwpJxOcbwiNo/bgkOg8Y1QZ1gvJdinYG0u6qwqLw/tAYk3r9wejFcsH+mxsjrhw+RqbuwOOHztCQiDPEjpWkCQaqQ2aqHRJEQWaKVEjQmyhJoIH73HB4jVIFSsmAUzKIpbWv0McmCXc/DFwzqG1Iuvk9BZ6KK1nS1dMiZ22pHcgtlcItOX5jW6TfkT7t1jKfxrfRFfyrHg4IUQnvw8uziYpERJC8EityPMeWVohhMTjmJZxElIifdvmzvlYVpyWNtOqFeCmLQVCSyi3bl3vEHeelzsSo4SQeOexztI4h/VxvcY2dYosy5BpTDAKQiK0IRCwTY1taoIyuLal32ytBWZOXCFjpakZXSdiWwkXbCTE2zYI0ypYIW47KCR4wai0NC7gbdw7lBQIZZA6Vk4wUmGbhixNWFtbZe3QATp5ytHDB+N3tSWvfc0DEMRsfzp96nQUeQcD1laXyfMcgmA0im1wDh85GN24CIqiJFhHcLHdTD/vsrrYZ9RYrHe4EKitpbYhimZKUxQTmqbGiUCS5bP9Z7qPR30gVnPwQtK4YiZaCiGp63q2B4XAbJykVJHol62+LCVCBNI0BeL1zlkfSWql49h6EMK03x0QCk8syx+8xztHoxwOUFKTaYUIUTRTRuGERwbQUmO0Yq/cxIhAYiS91FCNhjhbEkJOkmTUvpwl5PkgCIlByXZ+WkeaZkgVCFaCy5AqZVxVlHVJpgWry13yVGPktPVMPDFSCgIS5wUNFinByCguCjzeBRCxYliwFoQi6fS47zWv59UPPkAoxnzy99/PZHfE+nDAk88/x2/8wq+wXU54/8c/ztZowJmzp3ns8TdQVZbGS7xS6DQlTMV8pm7vqWAb0ErFNSEE1llc49rng1KGzcEWttxi0Yy490DKxsAxPJwzsT163YRzL2yws7NLWUwQYRmtNYnWJFphrUVJRe0847JiOKlgbSrSRTe7NorBMO7RJ7KUw6vLSCEYDMasdjKqcsJoXDIaTfjEE5/lb37Pt3HPqUN44Xn946/GOc+NrR2eeOEFfvZX/nfGwyHZ4YOkWcblW+uMxgVSSJIk4cbGBjc2t7l18ya2KLCuYeXwIdCCopiwvrnB4w8/Qm9hkaaueeajH8SNR22rS/CNJ+1kJGmKMpqmaqjGIzY3tmic4NihAzRNwe3NdT57/gpLy0vtOgwIH3VKSUyAdD7E9eNBp5qFbo7XjrpucD5W5BhLj6at+BFakWC6//lWEgiSKb8PEISI7ThCIAgf20mIOPcC8qXXlPbiFATtnQFRrKIV7KaiQvDIINqkgzh2ws+Tnub4ozGPZ+bxzDyemcczU3y545nlgwdZOXiAz2z/Ps7aP/ZzvtIYD3YZt9WXTj34CN3FpXhf3SaAvZzxzMHjJ8k6HUZ7n7mbX/krgn/1vg99wb8neYczj7yO8WgU4xlv0Uka9/hZkhkYHWONeTwzj2fm8cw8nnm5ME96mmOOOV7RuHnzJgcOHOBjH/sYr371q+/24XxRvOc97yGEwGAw4NixY9R1fbcP6WsODzzwAJubm3/s8x566CEuXrz4FTiiOeaYY445XqlQbQnzac912QaWQoJFUwUV3UuhJsOjkz7nrt/gqdt77DqFRJPmOanUeKnBG7xw0aUZoltsc2uL4WjE1uYmtXMIFXveO+e+tOTcmVPGR0IOjVaa4DzOluADEoe3UFsP0sdWE60bGcD7GpMogpdcuHCb3naP5TXP+FbB0x98lmuXbtNdyFlYyOn1U56/dIFOvsihQ0d51YMPUVcfJdhthCtJ0qTly/ddp8H7mIBgDEopxqMxO9s7eO9YXOyxunaApKwJYUhTj9DGxBYDhLZsueJOP7KraxKj6OQZy8vLjCYlRVFS1XUcL6WQUuC8xRFwXqK1QSqNcJ69jXUaH2iQaK0jUUYAHIaYROIDWKZOKtGSvJ8rGoiZSCBmz6VtSQYzJWd6HkJsg0DrJBTB47xluZfR76zQ7y3wy7/zIX7ttz/AoJnwuje/lmsbWxw5uMrjDzzE93zHtzMeD3HeIaQg7+SYLCFrMhrbcPXSJQ6/9jFe+9ijuNrhbSBJ9YzI1UahRHQZa6UxJmd7OOLZFy5QTCakSQKJ4Eq1w1aYUGSWmoylTCOUZWtrm4QMbwXVsGL36iZXz10nBDAmYbH3JLkxTKoGfMVqVvI33nqQ155a4J4eDHfW2d7dRDQehyTVGXtbNYEMS4fb9TJ74yXSRJJogfQSmRl2dnYYj8fkl1NkrRlNarrdDgeW1jjT65Ine6jdETpJEBK0VMjExLbJYWZXAwGJTqh8oAm+FYamIwnGaDJjMNqQtW57691M9HnpstufCVOiD2Kyism7pAtLCG0wSqIRqLZ+t06m7TNimXYBJNqQ6qRN+tmv7hQFM0HwUeSRCIxUrYgpCK5p1UERy5w7i5aQSInRCqklSmu0Cmih9ueoENH5LQWImNw0bZsx3VL2v9zM2/fSLKSZfBPPhXMNVeMwwSGVpre4yMLyMm44bpN5PAu9dJY0JeMh40NbqSkEmsaitXqpkUVMPy2KnT5EYtoR29lJBHKWB9WeuzYrzIW4pi0BnEO1RJ0PUSyUWQekjntk8KRasLjcZyEzFHVN4x3dbqdtOxhYXlqaVWqCQJqks8Svbi/DOR+FXSHJ02V8cLPnd5b7yMVFyHKk1nTyhOW1g1wfN1RO0FiHUlNVMmBtTdOUKBkdywFmTmNBrHTQuLjPRNI+zHajqcu5ruJeI0PABVCJBqkRsTfQTKxyzjEpKyZFSZKmpFrjXawMFkl9HfddYhl9S3RlexFa8jPOBekFwjpcVVLsjWjKKlYLMAZvFEbFc+2amrWjBzizfIY1o2mCR3q4trmJA5JuH5EughN4D0Xj+NSzLzC4epMFITm6uMAnn32C1OjYLiHJuby5yfkL59kbjjh+6jTdbg9XVzR1QwDSJF57fAg4H1tN2MajBGgC3U5KXUxwoYnr2IKymu7aKsdf8ygTrTl26iTHe11OpQn//U/9FMXCAs9u7vLhX/1VghBMvOPYkUM88urXsLywzMXrt3jh6i1+7fc+xic++hFsU9Hpdjl59h4S1aWsG5y3GAPj8R40jkRpFpcWOXLwEGVRUdYWnaa4ZpflZUUvX8ZowfXnn0UYw+rqCp3OApfPXWZnYxPf1ChliE064vUm+IDSGmk0XkkmVRGTBFsndkCy0O9z/dpN1jc2Wel3ed2rHuDJzz7P+fOXuXZ7wH0nDnL2609y+NhRmnSRT1y/zqtPn+Gxs/ewkixQNjVPPfs0v/X+3+X8M0/R6+WcPnmCB+65h+fOX8bZgDE5QqV84KOfIDQWnSSkWc721iaPnDlFt9/DdPt88oMfIZGahx95mOOnTqCLMU997COUZYHQHiMV3nmqcQHt/qlSjWkcAcV9Z89w+OAh9gZjtjc20J0l8A4nAClZ6vWwRUlTlIS6QKSBwhbUzmKl5kCny872Bs431ELRBEFsvRm3Qh+ITVdCrIYRGg+mvQKI2W7KtA3RdAeNP/tWwJ8+Mk18gKDACYFUAi3iDutdjR+PSWRGJzEILdndm8TxFLEd0hxz/FGYxzPzeGYez8zjma9kPJOlGW/6lm/n03/4+4wHgz/5+v8K4/LzT8f7aaV58PVvZtpG/OWMZ/6sm63rYsILn9g3pt9x1/MSnH30daR5Zx7PzOOZeTwzj2deNsyTnuaYY45XPOq6nvUZ/mqFMQaA5eVlfv3Xf31281sUBX/lr/wVmqb5U3/Gxz/+cd7xjnfwS7/0S2RZ9qd+v1cahBAkSfLHPu/f/Jt/w2Qy+RO/7w/90A9x9erVP82hzTHHHHPM8QpDbEUwTT64s+UTeBmofUMn79DNu5TS8IFnLvLklQ2u7ozpZD2CBJ0olDYEaej2clSbvDCZjBkOhuwNBhRVCRCrvEAkxD/nOL7Qz7PfW3Hfz0hoj3e2TVqI5KgIPlLYYkoItJVCAAT71VOEaEtlG5rSMdrao9odMxoUZKmh00nJO5osU6wtLtE0gt3tbZ741GcY7O7hmgaCZ1KOCMHHfvJtGexp5RUfoktXKkWSGLyX1HXDzvYOzgWa2rbPDe05nyZgtA6j4AnWsrayQp4lGK3Y2RsyqeK9oGiTQQjhjtcGXPCExiKsx1mHreroWk9y8jRFOIsQ+wG9IAo5cnoOhdjP/Ygnv/2MgBT7zEF8WH6Oi31fXRAIcNHJLtvPKcYFywcOsbTYZ6u8yi/9xn/i2vom/dUe0iisq3ntqx/hja96lOV+n2K8ixeBEBxpaujkGSJAYxt8cNTW0ksTkk6Okbp19kuUkiit4s9Coo0hzTP2LgwoqzGj8QjnUkIZUDksLy5w7PginSSh08nwIZB1DIsLS+zc3uP2YJ3B5g7LvQWEis5yHyxlVRKQoFN2g+H3ni8YF4pHjnZ4+Nhxzp4+SQCsbSjGeyxnN6izLttyGbnVZ6t3iKybkmeaRBl0R7M3OsRwUmAbz+alDarCkeiUew4fZVWAGllcYVFpEt2PWmHSJCaLTCdeKxSINnlICUmWJG1CSyRwtFL0sm4UUaRqR29apjvOgeDDF2ZsW/upEBKZZshOHycVzjq8c9Hp5gPeu1lSkXMutlWzDiubdo3s00rex0pPPnh8+z7e7a8L53xbijy6LRvvcdrjkdEZnuRxlnmP8w7ZSiI+eFxonZezrSJ+nvfhDgIrzASvmdN/5jBtp3X7fB88AdeKegJlNCpJ0ElDkBKlFI11EGKZf59ojE7RSYIyBitkWxVCzOKkaXwnhGjX135ilmiJcBnavC+mQl+74oTAhYANkZSL7XDAek8TwAuDSDKC1tgQqOqaomwQSYKVGhRRXPXT1i7RVRyQIAIeH6sssJ8k5t10GjiKZkLAz9oxSKBc32B7Z5dRWdNd6JIuLCCSbWxQ1LVDaY/z0XU5mzPEPc37gFLTtn3x8/aTw6Lr2GiJa+eNUgqTGHwTq0sFQqxuQCxJb7IMrQ0gcM6TpBkuxGuR1DK22BNxD0+MjtUo2vF33qPNNDlNtPt6vK44aylGI0Y7u9gymnyU0VGgVQppNFJ7itu32N3bpbeyyMFDBzBrq2zfus2nPvkkv/3e3yFd7JPmfToLS3RWVrlV12yt77JgHeOdMb/5ex9mrdOhl3dJspxnb17H1gV10+AIlGWJmu7VAvIsIwCNtbOKBErEqmdUTXSAWw824F0gSRNMxyC0YOv6dS6eO09vsMfXveYxvun1j3L61HH2xhOs93RXVmLVhUnBQpLT73ZobMW5ixe5vbXNuUvnGWxvcmh5mTTL+My5K0ySPt5kIDXSO7avvEizu0GmAidOneA7vvXbWMi7pElCN8sRokYxiW2ObAMClpaWyfpr7GwXXLt+g6ou0UZR2YbL12+yOxxGkRMwSYJJU4RWFHXdtu7YJ6kTE1s8bQ8GfOrpZ/n6t76F+x58lmOffZonnz3Pd3/nX+WNb3g1B44c4jPPXuIPP1Nzc29M8/x5PmKf4eCZEzz99AvcuHyLPMno5GlsRVHX3NpcR2iNMbFNjs5zcBbnLM45trY2GO3ucuLUKU4fO8bulSuc+9QnqHa2OH7yBIPNDbrdHK3AWou1Ho9DBIkMYtZSIwRLCI6lhT5KxfZQTd2gchf3bRX3mKq2sf1SAK8NStVQ1IyHcKORdLWh9p4gJR5wwceKd1LgpGICqMZGkSCEtqJKu5WG2ILIE2b/4j7QrhM/Pe/TF8T92wsIIQpvEO5wQwtSY1jIOlTa0AkwVlUURqSI7SHmmOOPwDyemccz83jmayueEe2c+GqPZ/hqvzyFNj3QNlx+9sl2rsfvvXrqnrgX/Snjmby3wOmHHuXyc08T21v+2cPnJn59oWlx48UXYtWmaZW56V4ehwDn3B1vEDh65mxcp/N4Zh7PzOOZeTzzRTBPeppjjjm+JvBbv/VbCCF4zWtec7cP5Y+EUopv+7Zvm/1eluUXTHr6gz/4A27evPklvffm5ibve9/7+KVf+iXe/va3c/z48ZflmL/W8Na3vvVLev473/lOrl+//iW95vnnn+eJJ574kl4zxxxzzDHHVw+mYVeI9XkJdyQDIECoWGVja1jw2cu3+PTl21zbmTBpAp2sQ2YCeZaSJBnSZKSpwTtPUZTs7u0xHo8pyoKmLR8/a/9wB6bEz+f+/87HxYys9u1BR3J9SpTvB5CiDTpnv86+6UsdniCkwjaewpfUQNM4dKIREpyPrZm6eYdhU1KOC1xREwhII0mEod/rk6YJtrE0VY2zNraYYt8NGR3nuj1+TzEpo4jgwz7hFcJ+aeXWSQwepSSdTkZioot8XJY437pc2ySAAO133w/EfUs2ihAI3kGQ4KITzQePaK3vaSdH53l0Hk/P4/SU7XMq7bljfwxacs5PHVTxw6JVimnyhgSToLSaCScoQxCa7cGYJ597nvMvXoxkqlSMipLV5SUefuB+7jl9Eu+a6Jxv+QMtI4HnU4NSEuuiOz6SGoEsTfAhzjGlIqmnpEJJRZJo0lSjFIjIfuO9BRHQWqHzlN5Cn15qSLNYhahqGrq9Ljs39miKhtAE0iRWrgl4yqrB+oDUApTCScPFrYrgCnZHniZIXn//KqtLXRYNlF1DogqGrk85NKxf36X36En6Cx063YREGpI8QSUGk6eUZcMg3SUxsdR5bhK0iy3XglQopQmItt53W8kovHTKT+eSaIdnNqYhiimdNI1Cg4jJRlMtLj5f7CfWfK5VmlgWH6nQWU7S7xOkxnnfEt0xecbNXPORxJUqCnXORRFhlnDU7jWB2NbNutgCzfko/PkQycwgY/UiGdokH98mPSU5utOAiK93rcPbt3uEc9Nj8u16YSYA3KlVhBBFrSgoxmOL52H2hHatThOf2te2LkSpFCpE1zkQ20U0YF3rOG/bvsQ2BfFMTxOsgPhYO4LhDpOLILbwaOlBojlX7rfla8XQuOxb4i3E6k8egUoyhEnRSQpKsb27x0c++RnSJMH52C4vuC+8J4ep8HjH3hlC22IveFyYjuOUWI9zIM0ynnj6Bda3dzm9uEja6SJMikVhrce6gGtbAEzFESllJLClbj/HtyXoQ7uH+HY+xwS5aWtCd8f5DT5AS1daFwjORWdl267Eh4BJ2kpjSuzPgXbiSwlZmiGlxLXnXguJbCeG88Rj9x7nY0sQZxuC97E1kVJIpdFKoY2B4Ll96xbdRHNQK/ITx3BaEhrH7WvX+cwnP026uoTOe/RX1zhw/DjLZ06T9HqEomRQV4Ag8UBZszep2R6O0TTYpqJ2NhKuU9FXCtI0pWkaGmiPCwQSJaO7NNg2odALhNToTgedGISUFDvbmMayees2165fY/3MMbJeh0FVEqwnNSkiBFzdkBpDp5MxHBbs7u1y9eZNNofbrPV7HD+cYXTCras3GGYlydIqxuRQNewNC8q9IQaL6XWpGovoSow2JFrirIaQAA3SeFRqSMiQQbN+e5vbG1tYZ9FGMS4KBuMJLniUUlTO0c1zlFRY6xiPxzG5UsS1E6unSIRS1N7xwuXLvP07vpPDB9c4fmSVmxubHDl6mIMHVjm4tMg9hw5w+eBhqrJip67ZGuyxeTFw+dpN9nb26HQ7ZJlB6+iEn1QFnX6PNEnp5jlBS3ANdV1RFhOKScHu5hZnTp3i1LGjPProQ3zkwx/h0vnnGO5sUpUlaWJIpaCpGzb2BsSdPiCnk3SalOk9eZYi2nltvcPZBu8FCtOKlTEBwQuBV1EkyxdW8EFTWcXYQtNdpHE1dT3GpVGI822ixSgEEsC1e6MM+/tCIJ5XT9sygngfE7gjaXS6b7R77p33FNP/xfZNbSqBjG3JMqXoSs2elhjFbP+bY44/CvN4Zh7PzOOZr614Zjrtv9rjmYXlFUIITEZDvtox2tuZ/SyEIFtcRAFXr0n+4OOf5vnly9x35hQri4tfUjxjkoSFlTWWDhxktLtDU1d35wt+laMYfmkVwUZ7uwhlQEhuacsHP/kES90cKSTOx8IISsXqd855RuOa7cFwHs/M45l5PPNnKJ6ZJz3NMcccXxP4B//gH3Dp0iX++T//5/R6vbt9OH9iZFnGz/3cz33e37/v+76P973vfbPfi6J4aXb7F0HTNPzNv/k3ec973sM73/nOl/VY/6ziX/yLf/Elv+ZnfuZn+If/8B9+Sa8JITAej7/kz5pjjjnmmOPlh/dh5qiaRniudbRIIcjShCs7BZd3r/PCzU2euraFMjlpmtPLE5YWUrI0IU0y8nyRUTlmMBwzGg1ZX1+P5biVQksZkxGc+xw37b4IEIXs8JK/Q0wGgEh4SGRLgrcEZhs67hdymdHckRBmmlARwBMJ6/a1Sgmstbg6tnDI8gy0oLaWUVHQqTOMThGuwpWW3kKO6klkIpFK89CjD3HwwAG2N7a5cfUGL164hAzxGOW0isuMeJVIJLZxs0SJWC1+6mxu3eg+tmhQEjppitaSqmkYjSeUdY1pyZxZtN0G31P5PrQEbSAglUBJhbeRFNeAFwopNEIb8oVFZL+PFgKtk30yeRrpC0C46WAgnJ850wWxddadlXJmx0OIxHWeoxKDVJIAZP0lbu8MePHFi/zce/536mpMnvUgKG6u7/D2N72B1z7yMEeXltkb7JIoFTkGL1BCoZXA6LYCDJHgmpQFwVq6aY5rW6B5H4kRrWO7EASopkIrEQkYo1GATATGKJxSOE8Ul4SIDmutaRrHztaAva0RSdIFYWbfXiuFk6Ll6ANCK3bLlI9fK3jqxoQnru6xUygef2iBU0f6ZF3HkUXN8ErDlReG/PZvPcd33fMg4kAAE3DWgkvARWJfykCaJVE4QFJWBbUDaX2c7DK613zr8ucOIU0QRRrvfRT82sSQoPzs+0kkWZLGkWudoDMxIEQ3O2I/KSTO4zsqE9m2rUu3Sx6WESaJyUreg4il2V3rVARwtnVG+xCPxb3UBSzadi3Bx6pOzkUSljYRyjsQiUS05JQLUDpPIzWyu0BSaYJQUZhwbuYU9y2ZOxWUCNPPmr5TmE3Z/ZZ3YT8WEQI+p8rutFLU9Ms51/oCBUilSE0Sq0rUFXVTU9dmf88SsYrSdM8N7QahooK1v595/xJXoWrXWlyXUXAgeIKnrQiggOk4Bpx3MSlMSkyvh0wy0l4PjOHFGzf4//xv70YoEwk+IRBe7m8pYT+RCtFWkGrnPUShx1sb379d/3E/cLMks+Asu7tDjBS89q2vJesvIpKMBkHTNBjnYyWmaaIUASEl2iSkaUZZFDSNw1o7E7KCd+3+6JFSzdrpNU2DaveY6ZytG0tROyA6/+P5jfPPJJokTfC+bcnXujRdcATvWV5eQnhNEHEfT5RCt0NhraOqG7RWUaCUoFUk4L0USKnQWpMoTaINAc/6tav0u13c2iqdPKdwDQZPMx6yce0qarRLgyBfXGBvuMl3PPwARx88S7O7x/DaVV772KOcEJJyVHBhY5vu4jKu2Mb6ArzHJMmsHYXSmjRJ8M7FhEHvkUoihURLGa95TYNr54Y2KWZxiSSRuKqk3h3wqocfRhrDzdsb/Pvf/C2KYPEyIGRAMx2rgEok3W6Hnc0dvHXUjaUcW+4/fZrTp05jpODFG9dI+x0OHD5At9vHTUqqNDAZLOJdTWehT6/Xo9PJyUwCwuOcxrsMj0dmoLMUWygmg4pbt66yvrmN8wFjNIPhEBBkaUaepext79DvLyCFpBhN2N7ewYn2/iB4pJcEF0jSFJKE5y8/R13XrC31eOjsMZCSUTHm0sVLVLu7nFo5yOP338v13V1u7w1QSnP56jVu3LzNcDKiu9AnSxWpSdFKgZQcPHSQTCdkJiEYibcNTV1SJClN2XD7xg0m997DykKPb/7mt/HM85/l9u0Ntvd2yU3OqSNr9Ht98J6bW9tA2G+wKQVBtMkSPpCmCYG4vzsfsDa2BEmEJDHt9VkokPH+YlQGzt73MEEk7G4PuV6MyA+tUe5tMrq6h8tThFR4AnUIbDvoeh/HP4g7EkZjBTg/vee44y7gc5NJp7cFUyFrupPIlzwDgpAUAcq6QUjDWp4xMCI2+xDhc549xxyfj3k8M49n5vHMPJ65G/HM8dP3kiQZVy6+8BLTwlc7QghsXLoIwK1LF/nwRz4GwH/3Y/81b33Da2MFXu9xtkEE/8fGM0JKTj3wMC8++xR7m+t38Zt97WD92n4njtuX4NMf/+Qf+5qzJ0/w6IP3s7ayAg6ctbimQWjweKqyivtwOaGxGZOqxHo7j2fm8cw8nnmFxjPzpKc55pjjawb/6l/9K9773vdy8eLFL+BWeGXh53/+51/Ssu97v/d7+Y//8T/exSOa40vBj/zIj/DDP/zDX9Jrbt26xZkzZz7PGTfHHHPMMcdXHt67WdAvlWYavgkkOghW+ivcuPwiF7aHZGlKmi6QZZo8T+kv9FhZWUB4jxIaozTPP/0Cg/GIylqiFRWcs7ECR2QeZ66ZqTCw37qI1jm4f28zCzhbJ9DMcTN79KWJ0lNX9LRksZLQNJa6tlS1ZWFxYdpECYdFqLQNdT1BSZaXl0BLgoKdnYrJ3ojJsMLZQF/CYDTEqcDq2gG++R3fSpbnfOrjn+Hy7ZsEwAZmPd3jCW4PpCVxlYhCvyeKBEIS3ejO0zSOVGs6nZxunuKD49qNW1jvQSiyLJ++FXe2xgLRlu6fVl2J5GOkJT1CS7TSXLt0GVvVjIdDCIKf/YVfYbHfiwkEHhKjY4KAbEklrZCC+Pu0xYIy7ZgJ0rb9gpASoQRCxnLPUkik1qxt7XDpylV2JxM6y8tc39rkf/r//RxXrl7h3NVrPHTmONs7BeNJiZg0vOm1r2Olu4Bo6QcfIpkqpcJogyAgfHT21ZVjVNaoAFIKysaRpTnaRJea0QbnLFppTGIwaYoSKXgFKBKTMiwGFElANIa+iGRE5G7jHCyGE+qixLkGpQUhNNRlwaHVRb7rW76LnfU9tvcGDIsJjWtY7OScvec0a2trNBbe+/7/xC9++IP0UsfbHj3DX3rbq3jixRd5/lrgDW/4Bh4+fZJhUjMua3qqg7GiLesecMKT9HKWtSHRCbJjGG+NyKxFE0WBICU6Sck7ffr9JZTWENoqOECv0yUhYAHpPZkxqBDdkbGVgZwuuti6RKq4+tv5pcK+4226JKclvqOWJEjyPnlqUPkyZVmwt7fL9s5WbD0mw7SDAraqSZMEozVKqf32Fe0cljK2KHPOUpZlm4wSxR7nYrs6YUVs9SEEjfUI4XBCkywfImeMB6qipLYNTlsUsbqTDXE+ORvbx0gp7hAL20SnVhUT7fkI3s32msD+fjX959tqUoqAMYY0zWBcYm1DIwRpt4MxKRKQSpPkHSrr2BuPmXhJrmLbCHnHOhYt2eYJs6Sn6TEk2rRVoeJeOHWzx+OSs7WP9wTvaGxD1TQsLXTprh2kd+AwIukwLhuu3Njk+q0tgjQEqZAqoIKfibfTtn7Tfdi3FRZ8K2RGZ3xbFYtWdJrOJWLFCoHAj0tWOzm10nSOnUS9cJWybrh68xa9ssEJSe08RVXgQoMxKcakCAR1Xe2flzAVktv3d5apyjodC0QUgKWQbUUKTzOpUF5Q1GcxWYZJE1xVx+e34x1CoKgqdoYDRkWB9S62MnEeiSA1CY0Q4MFZT91YKmvRtaWxNlZRqOvYnlEZEpOQd7okQmHLmqIqOPXQA7zm+BGOrSwxHgyomoblQ4f5pm//Dt78jW/HSYlzNo6Zt/SFokFwczDgs+cvsNA4Hj9xEptU3NgdIQT0ej20htFohDGaoihofGxrIYUAH1uzBB9QOia0eQEWj0xSkk6XoAyohBpBnnXRylDlBcPhkMoFRpMxW+vrdBUoEUiNwnRTHAEnBd4YkizD15bFhUXuuSfn6NkTrGnFpWvX2B4OuDoc8T1vfCtvfPTVHD2wCrbAqIDSBqSO71VV2KYmeItQ0Fvs8vy5y7x47QI3dm5gfcLxw0skScnz588zKQsSLdDaoFXC2ZOncWXJRgjoLGVpcZGt0ZDNm7dYv7VO4z0eZkS7c5alxQXW1la4fOMmV559knuPHOTwO76bT7/wAr/++x/kmf4Cj95zDz/4Fx/ghPPoxZxkuEhx7jJbkwrqCo9FSUMnzcnTjE6ac2jtAAvLKwjnsVXFsJywMxjTNA0CwbEjRzh37gLnzp3j8JED/Nc/9Ld55tNP8gcf/QTnLl/jwNoag50Rq0c6nDh6hN3JmOs7e9ShJpF6dmMRExM93U5GVdaMB0NcMeHrvvWbqaua27fWuXHtBv3FJVAa6S3SWfbSZUYPvZ7DqyscrcdsPnOe/Mg99DevkTcFO7s3ybIOSEXjJWXwWGJSYKtFzxIz4n1HrMTiQ6wsF++/YmvMEERbZWf//sxPK8rJgPCt8BGi0O2FZGwtpdckmeJQt8euiHuTbO9L55jjj8I8npnHM/N4Zh7P3K14Jlta5szDr+biU5/+kvatr0b8+P/7XyLkvhHjn/39v8vbv/4Nf+J4xlp7Nw//zzxevHKVS9euz+7Wpkl/0OZ/ttVmpvmggYDWhte/9nFi4bN5PDOPZ+bxzCspnpknPc0xxxxfM3DOcfPmTb7zO7+Tn/7pn+bee++924f0XwxjzEt+//Ef/3F+5Ed+5CV/++hHP8o//sf/+Au+/p/+03/KU089xT/6R//oy3aMc3xxTAO9LwWHDx/mN37jN/7Y5/3Yj/0Yzz333H/poc0xxxxzzPEngDSKGHzFMuXO1uAtEkhNSjeLlUvS/z97fx5sW3bXd4KfNey9z3jne9+Q772cJ6VykJQakQDbGAPdxm6Dq8NhU3aFcbc7oqdyRwWO6qmIdmGiu+w21eXGFDZdDjvc5TbGQEEhbGNJSIAkJKWGnKc3T3c+457W0H+stc89L1NKhBFOIe1fxsv37j3n7rv23mutfX6/7/f3/WYZ3UGfDopEapRQ2DoUa4+PR8xmc4qi4nAyxkSA3LkTUoGQJ/LyQQpdAj4CBCeggFRBjngBDFjLwlJqSQnyq5G+Q3f0kqy9B1t5pM7orPRJE0k5zZG1RTqH8zVZFuT9vQTVTen1OuRFwXSSk5sSqppur0fa6+ETzwNnTqP6GYOdTWpTc/HV61y6dpXRaIR2Ah3BgAipN6OlUWdx1i6KrFolAaSxFuEcw16HbhLsDmxtmZVFgECkioWfSBKPQEogOzQnD85HMF8E+oS1HqE0KklROuPm9euYogBvkTj+f7/4KwipYrFYIHUAbGQkEygpKWdznKkRWESSIEQKBAJC1ksZ9lbRWoUOauGRaGQ817TTYTSecDAaM+xkfObTn8VrQ7be5f0Pvp/9l65TOs/KyipPvfMJ1rorOOOovCOJVl/hWjmc8DgDdWVw3pP2Ul5+/QrOVKwNeojz50mlRkbVm1RrpAzkEKU1OkkYT2ehGK6Cgk3a6ZMn4KTCiaAqZJ0NCjRahS53B9KFCltwV/AkUnFuYwuVe7SUdLsp86Lg1HDAI3ed5cK581iR8MVnnuG1a7e5spezfb7Dh+v72Di7zfuHJd+xcZpi3TCb7lGXNfQcVrjQxYcAF+y7VgY9VvoDUqmYzuZIW5NoEEoidIZOuyiVMh2PKaxHyqaEI3A+FAYBcI65KIKsthDR/kEuij4+7ACLySQEWOubtv5QzF5aa9Y6TFEgHCA7OGN58qF7WR32ePqJd9DrDxEyEoUQWGtQMtp0KIlWAmODco93fmHhYa3B1DVSSpIkCQAVMtpPBPuzRCm88EhruO/MKZzuMVxN+ME/8Z0cjKcgg32IFGKh4GS9jftGOJfwb9nglg2zJu6DIu45DakocrPitRJSUBvD+HCfjX4PvMCYaNOiFEJrXO2oiqhAJFNEb8D65gZ3TXNKkdBRgTQUaUaLNReUEtwCqGr2wSTRsTM9FN5YBgi9xzgTAEEfOhhrIbC24vypTVbXNymTHsOVFe4+vYPXHXR/sCh2a+GRInbNN7NHisXXgdQULf+cR4qg7CSXiuY0a9V7EA6tOsymM1IpWN/Zokayvr7OOx66n5mFlbV1EGG9GWsxziBEAE60bLQPTuJkv4/PBALJKYDKi3chUMFmUCusqZHec+HCGbRO8Uh0koROTmOQQqASzby2zGpHaT1CKhIktZQIHcBREUHd2jtKG9ShqtpiTHjoOAlIF8h0KsE4hUIwrw2H85LOxgY7p0+x1snw1mKcJev16ayssaI1pTGUZcmsLMjnc56/dBVVlBzcusXkaMz25iargx4lDuUNWRLUMVxZUVnBSr/LweEhZRXWjfNgHEHtwZ8AyqHT25EkHWSvDzqlNh5ra+bGoZCIrMvurZvUMqhlVabm9HCFsxurKAS7B0e4RKKFIhOSzHvmtUFmGdur67zn3e9l/8pFJkcGnSasrK6zP8157vIVbh4dkkqD9A5vTHgWGsuZrU2GwwFZmuAdbG2s8YrMuHVrxm988iu860PfxdwklKZi99YunTSoXVgvyKQiEQLpw3rurq5gfU0+GWGdYzyfYy3gFcJLnATjDKv9HmfW1smk5PPPvsD73vduztxzD9u3bkabHElhHbkJnb/jecnu0ZS8KinmY+qyxNae0uScXV+nk6Wk3Q5ba6vgLUo6rHbcON5n9/YhgqDKoTsJazunKIqK1198hfn0gPe/6zH29g+4fvMAIaHwkrmx1Lbm/jNbXN87pnaetCsj+yF+DhCSTpJQlBVlVSNwXLjnPCvDFb74uS/w0pe/TL8/RKYhT5dCMFg7zc3DktVVyeP3XmB430NcLlNOTc/xyPltvvTP/hEDX9LRKuy/jb0TwVa0+QpAOol0Qakj0CzC6xZ/B2ETL07+YE+AAcK6UlHlTzhHXyfY2jCejLhla1a8xMe9Wba9Um38HtHmM20+0+YzbT7zduYzzlqKjzzNP/8X/4q9vf2vZ9v6pgxj7R0czJ/973+Bf/Xr/w6tJPO85PLtPXzW5cLD7/yq+czp1T4He7d5+fnn3qYz+PaORvXs9xPWOp574QWMDyRClWiuv/4KMu0ESzFnqYucj/yN/5S1lZU2n2nzmTafgW+afKYlPbXRRhvfUlGWJb/2a7/GL/zCL/Cn/tSf4sknn3y7h/QNiaeffvpN39vZ2eG55772B+Y3Eqfa+OaOLMv4gR/4gd/zfZ/61Kd4+eWXv+brH//4xzk4OPhGDq2NNtpo49supNQxeQtJmLMGLUOR1HiY5iXCefppyvbaKon1JDrFepjkOUfHIw4ODplMZ8zzgtrUACx3MC9sHZry5UJFRNzx7zCek+6X5U7ohWR9OABLf4X3Lo6wVDd3nrKoWT+9xvqZbTbObPLlTz+DE6C8RAqFq0NhXRCsIWbTGXlekM8Lau/QCLRKyToZKrW86x0P41NFIeGVV15lNJtTVzW9TpfCHiIUsUO5OSe/IFosy+0LfCQNBGsJqaDb7YDzoQBrg7w2sdNtIcXf/Fl0KEma/vFgSRW95GPXktIJSoXi+Ww8w9UlWgYrjKu39mPjdvw5yR3EB4RAJwqlQCqPKUGrDlpplBSU82NcuY9wDilsHFMoxgjhQYaxSynRSnLj2nW2795mZ2eDex69m4tffJ3ecJWzZ8/xwD33420ouqkwEQLBQ4KL162sauZ5jpeSNE05Go1JtaSXpczynMIHgoKUwZJKqYa0ETq1q7qm2+2QaEUiJX2tqJOSXAtqZ2M3V+zuUnJR4CbWZXwDADnPfDonnxXgIU1SqtqS6hTtJakQZIMBg+EKNQnjSlCqIaJ7lq3UsbFlGW6v8uXR5VC8c2GOONmoCkVwRECv22Gl16OuavK6pB87mKWUCKkQUoMQVHlOUZtAEpLBMiMALHEOxuJnIw3vvEepE5Cgmav4ZjWFJosAbp3M3QacCmSlOgJ54F3BQ+fPcHZni8JYdJIifQDsWHT/RqKMFCjpgyT9shVFBBadC2NT0UZGSYkzNtiNKY1SGiEcWEMvy/ACslTz7kfvp4rdxUKIO0lPzobrIk5UiZp11XT8BZBRLDpiGyVa0Xx/aW+p6ppLl1/HGxNBzJNrYz2hM9U7vPUUVUWWdXjsgfvZ2NzCqAQtbbRdCXdIChlAGuGDbD3h/gLxXsWOQx9/LAKwQdwpkJ4ivIRCYhON9zWbwz5rgwFFWXNme4un3/kI95cO1R8slKES4VFyaQeNa3ZxHVW4Vi5WnQMRjSWAKZx/QxKTApTuMMtzvHdcuOsU+XTGWr/H4w8/yHBzh36vE7bCaJ3nCddfAElUXFjs7f6kw74BjhuliaCuEQEsB94LhAqWDN47hHf0uhmKAEopfFQRYzE/qtpgXChyChHXFgohVQS0oxKA88E+yDpq6zDOYX10cPE+Kl1IaidQ3lM7T+0g0wlpmpBqHa8hzOc5vqoRiQ5gghS4rAMIrt5+Gbe3Rz2dkkjF+mDI5nDItDZo70mzDlU9pzYOYxxpohfPyUQnASSI9pAinmO8kNEayCGkxCuNcwZvHGVlwnVPO5R1jRSOjodBJ+PJ8+d48MI5ZnnOv9vbp7LBPimVQemsNDWVMQhrsMZQ1oZet0OqFUl3hcNpTnHjFp2DhFR7fFliZhPq2Yx6PucDT7+Hey6cJ8kyvPOkSYbSgTx2eFyR9deZV5ZqNmE0Ggf1LWfi8gmfDYSI1ohpSlmVFPkcayyzfB7AuwYswWO9I00SVvp9VgcDLl27zmPveIhOcoaOkjx47z0onbK1sU6ez7HOUdWW2bzg8PiY6XRMXVXgoKpLsiSh08nIOimdNKWYz/BYrCmZTsbkeUGiNVpJrJVkq+sURcGNvUOuXr7Iw/ffzcuv3c0zz71MaS0q6zK3nqPZjLu21+llGbOywsZ1IOLfSkpSnTCdzqjrsO+pNGFje4uNrU36KwOMNaRO4X3oDte9VcZGM6mgsIJT95zn6LCkP+jRW+kyGZ5Bzq6jjCHRydLzIBT7l4kfcbOIH0kaS4gTCyHvI6bhl3fOxaHueC+E9yZS4n1QCSjyOQMhsPHzoXozL6SNNu6INp9p85k2n2nzmW+GfGZ2uM/vfuHLPPvya1/v9vVNHS++dvFN3xusrVOMDrEy5jLL10WIP1I2f22E59zR8dEd3zvee7NF4fPPfIHjWzexZUVpLWmvR5J10GlCZQznHnwY3evR5jNtPtPmM//h8pmW9NRGG218S8aP/diPcfHiRf7O3/k79Hq9t3s4fyjx9NNP8/M///Nv9zDa+A8cP/ETP/GWr3/v934vv/3bv/2m73vvmc/nf1jDaqONNtr4lgpFBAm8R3iLxJJmCYW3HE0LXr25S12UbGZdHjlzijIvyHoDJkXJ3sUjDm4fMZvOqWuDj+ogLnYzv6l7eenrBqxulFWWi5AQCAfeucWxli1RFyDAGzplmo7oAOaDMY7JbMZ92w/x7vc9wQc+9BS3X3+d2XyOTjTdJOP6q9cigK6ZHc8Y7YaCj9KK7soApdLQ8WMs6+td/th3fYBJPuW5117jn3/013nokXey3ltlcFfK/gtXUMiQBC8pF0t5YnvRFPqFB+kFUmmyRNNJE5RWHByPKOqaytpYTJURIAjHcuLkMkoZjC1CHTuqw8SCr/OglCdNEhACa0PnVJIowGOBwfr6Qq1FeE6S+2hPYbA89N7HWDu9QTboMJ/OGPYHdLsdOknK68+/znOff5F8NCXTAfBwrjm6xZsTKwnpJGU+Y33jAc6cP8P2+dPsj0a87z1P8MQ7n+K+C/czHs/QWUqaaECGDisRAQ8vmM5yDidjhJKsJAm2rtk+dZbN4QBbllTGRQAGCkFQ2Wk6FrUm6WZsbW0EAAEQiaSujtiVBYWpsSJFC4lCoYQFqcL1dE1Xv0DohNwYnn/5FY4PZgzWhuhOSm0cZe24vXeI1il33d2j1+2QpCk6zdhcX2dz5wwdL3F1DcpiKosN7IvgISL8ovHNuNCt38kyemnGzcNDVqzFCRE7jBWCYNHmnMVUJeVkFNRyYid9bd1ivgW7h9CV3KgRJInmBBiI1I6GUONdLEoJZAO2iGDNISKQJ1OBdQZbW4T3PHDXDp1uH5WkOGsQrm5aMxELO7lm7doIaMV57cNaD54iGh+LQo0Ev42AGTL8CWo/jrIoyeczlBQ8eG4TrdVirci4FzjnsQ5kJLQ03eNiqXDVkHcQLHX/NQVWf8ce5awjLwryo13G0ynWBds8IRUeHwquWoAMZKvReMRgsML3ffj9JFkGSmN8HQCBZZAgrkPh3RJwGiz6wn2OhTURvudc88djnA/7hRAkQkCWhv3QWVSRMzs+5NH7zvPoQ/eGrl2pw/GcR+FIlVhYyRCBtWYIUkS7PecQBNsYfDO3iJ32zR7tY3dukHc3zlHMx4xv3mC90+XUk4/x/rSL9FUgPHmPVAH0Q4T7JT0oIRdqW9baxdzEe7x1yLi2G9KUQGBdfK8P801GplRdFOwdHVEW4RpVeUGaBrKcMYbJZBrIYlIFtQClUCiElngV1cA8WOeoTShghiJ2ID9VtcU5F94nJaXzSOfxMqwxU86pygorJYlUSARXrgS7hLmp6K9vsLq9TWe4gur22Ts65OC1V1lJEh68+x7Ob21xanUNlZdooej0Mqa7owDKVzYAzUKSaE2n08Hjqa3BuHidnAvKXTRrqUJaAzqoexnvKfICVEKadtHdPmvesKEU57o9fvj9T/PwQw/x6u1bfOKZzzMzOX2VksZ1lNc1k+mI2eEBX/jdz4C1PH73OU6fXaNC8StfeolL4wlGgMBRT0ZU+7fI9/cZ7+2xtrXF2vY2g/V1cIbaOnSSMlhdYeuuM5w5e5rdmze4cfUK09mMrN/FlT7YC1pDaWpkosn6Ayprmc7mFHmBc47JZExVFXjXRWmNpdmSBFmWcdfZ0+zu3ma0exN7dgPhHN/zkQ+HvdJ7Jkf7GJmGZ6a1XL16LXahl0Hxrazpdrr0+j26vQyBg7rGuJqizBlPZkFRTClQkrnxdLZWmTlFPpvzuc9+nh/9j/8CT77zQX73+ef49POXOHvqLFNTcungmMceuYedrTVuHRwzq2q6aYInEA/TJEEnmrIoqWuDQ3B4NOau85Ktu87y8Lue5NLLF3GmxNua2ntsZwC9VfZyz5cu3eaxs/eBdxRZh5vZWWb3vZvshQPSekLiHeGR6qJansBbh3cBwHZ+ucS/tLvHb4fPOJwA7TSPm7Dn+cWb5eK5TQOECIHSOgDRCw8M2mjjLaPNZ9p8ps1n2nwG3v585v0P/W/47/7FL/N//rs/TVGUX2vL+iMd0+Mjnv/sm2vxbXxrxz/5h//wLV//X/xff5z7n3gSpxKu37zJ4Ssvs5IkPHD33W0+0+YzbT7D0q/6BkZLemqjjTa+ZeNnf/Zn+ehHP8rrr7/+5oS8jTa+ReNXfuVXFl34y3F8fMz58+dbL/E22mijja8nhEckobgsgWSww5eee4EXXr3El1+9zKFaxaqUnbVNHrjrbl65fI2bt/e5dXjAjZs3KYo6AORKLkD4hcpKjCUoffF302HZWBoJIRZdki6C1yZKRvMGAOHNseitCV+5SHbAIzsJK8MOFzYHfODes/zrd9zHYTGFTLM23GDveEQ5nuFNhRQZzlvSTsLa+pBHn3yU2/sHHBwecmvvFtd35/zTX/xFtNaMJnNme2MOshvcrhzz8QxDIAiEQSyBGkKidYL3DlsHvXipFEhBlmZIAWVdM9o/oBSxm1WdiPNDqCO7WNC/4wXxhn+E1myCwnKQAPfehaIt7k0/+sY/AI5AJqioefQDj/P+D7ybdz5wL515zYiKSkMtPb/z65/h9VcuMhsdkyXd0HGLioo5cqkMEMgHqVZ4X1OWU0bjA6wtufue8zz66MPcd/d5JrcvxXpBEIo2rg5zxIPyntLaINE9m3H74IjaCd712GOcO7XN9YuvcvPW3kJRpekQlkoiZVB+KY1BOIdSkl6W4JXDTnMKN8P0uwg5JJEJHonyFQUGi4ty1D5YWOFQIpyRMSXepUF6xxTgMqwtsbYi0YpumqCFA1eBKbH1jNKArQwyTZFCx4J/7HF3gJBYKRjZCiEcidYkQnG4f8CK0iiZoEUCKOrakJhgL5IlGqyIxXeLQJOpWNRXgejj8CdrUHggdAwiWBBa/MkMiKSjAGYJEeejs4vu/SoPHYb9LEUJyXxyzGx8hCeQcPAydtoDiz0h/H5rHUQgR0YwRogw0b2UC2DQOw+x8zHRofPdO4OxLqyhCJDVXnA4Gi9AjnAujY1M2JNU0+3eFK6EjO+yeG8Xne9SSOIkjsc/IfcQf6IoCkbHh8znBYnSeCERQuG8IS8LvM+AQA6qjGWoFKu9lCxT1FWJdW6x6CIsegKQ4qm9CZ9xfQCFnPckKq4m53HCI3RUQbCOemF55xDOIOsKoTQggkOFECRaoqTHVdNg+UJ4vXYWUxlktBj0InY0AniBtaFL3jobACe9dH88cf6e7NFCCEyVg3OBDOWgKkucMVRFgXEC4yOAFPfJNE3RiUYKSVGUmNosuugXalDx+aB0gtZ68byxce4GMDYAz8bY+BwgqoRFANs78qpEpRneQ2XDbpMkCWmSoHRCbTxei6AokWaUpoyd63FPdQ6ExzjHrKg4HE/odTsoJUiUwJmaqiqptcZJ6CUJk/mMHo5h1qXf6/GFj3+cL37xGS7fvMZw6xSrO6e456FHePK97+OD73sfu9vbZEJydvMUOpV88toNDnf3GXV6pBrmsylFngfbQ6Eoy5qyqvDOha7SuqJ2hkTruKhFXAMCJQX9JMFqTeFqUApX1uS1JXeGsiP54IVH+N77HuDPPPEUaiVBnN2h6GjuOXuaG8++QLo9oDdcQXc7TKYzivmMw+MR+3u3cdZzYdjjgdOnWFlfZ3D5GiAwzuHmc6bWIdMOYmWFqqqY1RW1DTmb1pLJdIYXirWNTd752GMcHxxx4/oNbt/excUNSymNc56qMgipWN/aogDGV64zm+WYOszV3d09RvMZmytDMh1Kwk4IKmuQUvDkOx/lF37hRV567QrbWzucvTuQAq0xmCJnNj1mVMHKYJO7z5/jY2XJ0fERqVR0uxmHR2PWNzfo9DoYUzA9PuBdTzxBbzBgPMt5/vIt5sURzku8SKlRlDKjWO9CXfGpz7/AX/yhKQ/cfZrv+uCT/MYXXmBqHM5AIjTJ2jbvfOxB7LMvcfOFV+nu7ARSn1ToJCFJNLPZjKKq8EozGk/pDld533fcy7ve8x5+8Z//Cz7/O5+mmE1Ie13qfoqXcDjNmR1POFccsa00EwHPoNn6vj+Bn10mv/YKNp9QZBmldVQCTHxA+Kja4WXzWSGqeYQnSlA2iU99udgZIrHVubhGT8J7t9iLw9fhX46GaHLyCbKNNt4y2nymzWeW/kCbz7T5zNuXz/zp7/lunn7qCf74//yv3kF0bKONb+X4R//l/21BJrTWLp4fL3+hz4d+4u+2+Uybz7T5zB9CPtOSntpoo41v2bDWUhTF2z2MNtr4Dxppmn7V729tbfFLv/RL/NiP/RjPPvvsf+BRtdFGG2380YpxOQeVoJOUTqfHwfERr+zPuVko+mfvR+oue4dj5tZweW+fF65cZ3d/j8l8Rh3B5MbWyHt/YudwRydz7Hz2Hus9SmuUUtGmSiy9T1LVJc7ZBeDwVgCBWJKZD6ogobPUOEuSJtz3wD0kvQyVwqVLF9m9/Y5ASHCelW6Pd7zjUa5dvs3+lRvMD0fUpWd1e53+MKPXz9g/us2snCOVZ9jvY1WXFy7dJElSvBf00i77125hKosxFpVoHCzAceccSoZOZGct3tpAPEgTkjQBBNMyD3ZL1mJifzNE0oEQ4DxexCS5uRZvSJb9nT2nEO9FUM+JCT2A1mANTc276UQCFtZSTVFXEpRNpuMJ09EIM50hrKMupuTSkStPbarQ9dWowsSBnwAZ4qTjCVBKYUvDdH8UCukIXnrpeSyO/cNbPHLfObrrQwaJRtYlZVGS6ASRKIQLEMc8L6jqYL+RiUggMRXrG2tcvnqNRKkFAcKaGu8kKBeKGc7ihcI7AV7hnKHf7bKmFLNuQpGXaKMQKCpTUlrDNC8ZjWdUsxKUQriK1HuKec10PkdlmtQ55vOCPMmoq6A0A5oyN9h5jZvV5PMykChEuK5ogRWO0lTMi5xZmlFJR15W+MqyJjO6qz0yrSnqkqKuUWmHTHdIRYJBUVsbyd8BVPHNTRVyYeUmhAxdkTKANs0MCiWdUNzxzkdln7iOBOD8wtpLiGgFJk6WthQSZSTKS7wBpyROgBU2FPJEvN5xYiopT+w0EFGppwEFbSQhsegMb+hFYeIG1QbnAknHRyDKNpM27iPSR70meUKYEj4WqkRzvj5yg+JeJaKVnW+sP6JEeSOlHxeDtZaFPQjhenjrqWvDPC+pnMcLhdKaLEvDOJ0MV1kIKufJjcFKj7UGYXyziS2UkpZW8NLeF2xdEDJc14ZsFNcoArxUUdUqdjBGuzfZXMdEI3z4eReviTE2zIel7nRcAAdPuh7D9YzedcjYCelssO47WeMy7lyNNHw4Rx+L0ziJ1xqnFD5aFnpnwzVGoFXo5MeFOSxF6KANF0IG9S5ncZKwtiJfTRAIbFKwKLA75wNIJjzEjv4wuyJw6iFLs0XRUScJGxsbzA/HAaBzHu9lmAM+EO6cdRhjcV4vrpdtwOyoIuYJuhQahxvtIwZdfKeHE5LhYIDuZFgJeV2Ckjz6+GP014Y8cLhPOlhBphnD9U0SCRurQ+TZM+TjKbcPD9FnNrlyuM/1G9e5du0mq5sDrLWkaUo/7dDtZAFM955ut0ttgzVPAEkVprZoQCuJThI8oF24v1JpKlWBd7iypByXvOvxR3nPww/z8NYOiSspXrmMrio2red73v0ePv/iK3TSDt1Ol0QnFEVOqhVb62tsbG0iRIpTmsu7u4ijQySWh86cYWtllQGeyeEhtSkxxmDqigfuucD62gpSeCSCoqro9npsb2+zfTjm2vXrjEfHeB+e6z6qPGgVgNK8rqg9OARVWWDKAqxDJZpuf0BpLJWxuDTMLWvDnqOk5J5zZ1FJxivXbyG/8gJPPPYQ60OQ1lIXBePZlFnhqGUXYyREVQoflemyLGPr9A4Iz9HRAZmUzCvDxnCV1VNneOiB+/jYxz+JENBfWUGjyK0hGayQrPS5fGWP5158hXNnd/jgU09y4fRvMMVhpUIkKa/ePuLMxgZb66v0Uh1JnWH/TRONEJAXcxyCpNPjpedfoNPr8cBDD3D2zGmybrBMlEDqIbt9izo9hR2ukWxs8/jGOp264vlpzZfHBf3NU3S270fs7VPtX2Oytc7IwMxLbBLXXrMv+7De4pYd9n+iLkrzTU+waPIe6QKI0Ozu8SNhfKaEzyue+HknfoZacB/u6MJuo42vHm0+0+Yz0OYzbT7zzZHPSAGpetNSb6ONb+mwX6PxfD6f89/+zP+LB9/xOMaKNp9p85k2n/kGRkt6aqONNr6loygKfuEXfgEpJffddx9PPvnk2z2kNtp4W0JrzQ/8wA/wmc98hgcffJC6rvnVX/3VtsOmjTbaaOOrxMwKvHNoPFYLRqWjVh2S4TobWY/Cw/7xmKPJiBcuXuTq3gGzyYS6LoMqS+xAbrI9EQv2i/xOvKHA70OhUgi5ABQagoK1PnRDO7dQ94CvDRA0f7uoKOJssGHSiaI/6LNzZpt0kDI+3OPqjRt8+ktf4Xg0xgrodHvoNGV9Z5PJ/hGTg2Osqxmu91lZ75Nmiul0RFWVYEELRZKkjKc5Shq00nQ7XfJ8ijMGZxxJJ1sU3338L6jLEIowztLrd0M3m5LkeUFVVxFQ9wih4jVcKuI310dEsGUJIPBL/ycSIQJDIlxPT1RaUQqSBC0lbj7DO4eMZBIaMIJAzlgGd4yx2NrgjMXg2J8fU1gHiVoQFZrROJqu8AhZeH8CDsVz0Immmhcc3zpidHBEKlJmec7u/h5pLyXVAmU9W4MeAynQCJx1lHXN/v6I8XRGUVZIAf1eD4+kKkvKqqTX7y7ZhcV5JgLYISJ5wVsbureECOeWwNbGBv2eYtoTKFvSV10EksRpJi5na20Vs11SdXOcUuBr1ns9+is9htWQ/lqfJEtBK3r9HmkvQ2YaoaE76LC2uYaRjm6/i9AS4TzCSYQWpIlm2OlilWO9O0SphJ622MySygS8pShKDidjpqZEqFWU1miRYOzyYliaMF5wQhmK6jR3rJ+m6hLeJxq7hua9cW0KGQr2Pt7TxRyJhxAEmwiQeB+LPzJ2t0UbieAxEudDVNppOuaW/heP6xeWJI35RniHWFSTfJyji3l6ssHQrLpw/GWAkiiF36wNlvYqv/yuO9aXjwClCJIEsTgXe8tFILiAwFrPLC/JyxqFQAmF0BrjCHL13kdXPonzYF2wqVuc+cl0jWSmZSCnAVWar08KcsS/wzWLli5C4KUKw3VycQwaUlBDaqLpkm/+xH07yrwjAulJRJKY8EECnqh25Fmy55HNiOO1j9fJ+fh9H4hJKImXAgckIigyNWcqVRyb87gG5xKimQwNVhrnVLwOy0XDZr4tvuMCKU2IWLwMgvJhvwq2CVKqeC8CaC1lANOEUKG26TzCOYQL4K6NJK0GkHXOL+Tww18ChSQF1HyMnY6wQkB3QDdNUVqB8Bhrsd5x1/33MdzZ5vx8htCa2oHUCUmvR5YqhHDM5zMObx2yfWqNW7MJ18ZH3Do+RncDMC+VJMtStJTgA4EsyzrUpgYhgnKXkAhstCQQpCoUcIVz0IDwSiOUCophsxmnNjc5e9dZVjodpleukr/2Gl0vGGyu854H7qOfJSRaoaRESUldlmgh6A4H3HfP3aSdFZQpuT0aM61K8tKwliTcvbbKVidlPuxTx2KwlIJet0OWZWGuSUVd1yRJQq/bRUvJ4f4eZT5H4NFKYRtLw6h8sbt/QOWC9ZOpSrA2nJbS6DSltEGVy/ugGNd8XFFSsr4yYLiywrSsuXZwyMMuqIi4qqYqC2pTUVcWW9c4n6JUAFmstSAF3X6f/nCAw1HNpqz0ety8vY/qD9g5rbj/nvN8vCEMKIXyAl+XJDiypMPUwiuXr7O9s82Fc3dzz11n+NKtI6zW0O1xaW/EuQfPsrY6ZHNtyLSqEQJ0Eu69EFCWZVCCS1NG+/s8/+xXSFLN1uZGUGSJK1wKUOMDpJ3jkk3EYIXMeU53FLfKoBpiOynF+g5y7RTy+DpKZQjt8cJRewcizLNmXXsfrKecOAEK3GI38Mi4OzU7a7OLLSvDLVbyMg7QPHd88+xYeq2NNr5GtPlMm8+0+Uybz3wz5TOp1vzJD78f7+HazVu88Nol2mjj2zGcszz/3JfJpUTojNHBMbp7vs1naPOZNp/5g0dLemqjjTa+peP4+Jgf/uEfBuCv/bW/xt/7e38PgE6nc9Kl1EYb30bx4z/+4wCMRiPuvvtuJpPJV7XDa6ONNtr4do7c9zC1gcoxqUoKp9g5fY7hhsF5z+FkRF3NuXbrBoev5Xi1QiYdSgmssxjn75B5D93JIbmTjYR885pzJ7ZJAhrrB++CPHxdG+q6Di8L7gAR7ugGfsM/GxDaWE9dlmytbLK5tcHKep/K5RRVzsHBET/3i7+MzB1KJZgart28SbfXxSvBrMzB1Aw3+qxtr5IkkqKc4mtwuUNaT6YVqZDY2mCNY7C2Sio0+XROMS8RWpP4ppjqKV2Uu2+K796xvraKEp66LBjNZlElJHRcCaEiycAjhUfEduVF3XepKN/k001h1QPWu6D+4lkUyYXwkGpEf0CiNLN8Dt6RhJvFwstKiEUHdnNMU1ZoFDrNMJ2E567e4tRgk7V0yGq3T1dngVzgI1lBCoJVWHOT1WK8Qgg63ZTpaMb4aEJdVGSqx+r6Jp3VNea14xO/87tcP3uae05t8+DpU5zbWmeez7m1e8AXn32Jazdv4Z1lZThgZWUFaz15MWc+n7E+3KTprg0giSNRwS5LCIJSjDUY5xDOhQJ4mnLPmfP0t1fJtaEq53RJEUjGvuJwOmb18YTjU2coZjlWSQw1vTThwvZpVs6u0ul3UImmLi0rWrMyHKAHmjqpOHPvNg/lj7A9nnD2njMYFQgPVlqUkAyzDvdun8FIz2o6IE0yvIVEKLZ6A64d7/K5V17gyt4tjqocK8M1lkIivQznGrvSlZQ4qXHWgSOSbRyeYAl3ghOEAv4iN1gsXRFBlqCMJGVDtglEj6CEFGk3cY47SVDxjgCAEgLlQcbijpdiQZC5Q1FoMT+WSUcnf3kvA5ClAnGnARy8lCBUVFwiFEYFeO9Ct6NYOh0iqWlxTIGzUaJcRjAujqnByRrQy3uHdzacnG+ITz5+howWaj78vLGe+bxgNJ0x7HRJlSRRGqsdZWWwztJNNL1Mk0qJ9ApwnCzUk6vglwphWqkFfcu7ZoWH8St5okblF2fsUVKCUpBofOURFoR3COK+oELJzli5BBwFQFFGcHe5QcDFfRzngiqTbG64REiPi+XA2NcelKAa0pMQuFgx1HE/wzc/ERWhmt9DeDY4G0A+IRUQSEIeqK3FWIvWCqVUUJqy7kRVyrmwZ8owN6yp0Co+F7zH+jBCKSRKxY5SpTFFRZEXgSTmg4qFTpIwdmsg/nE2dMFa5wLZyVmMNThvQfhIqpNoIelKSVLNmR7uUXnwaZdMSGQDWgqBc56tC/ewnWicCNZ/xjrKqmZWBKWHvVs3uHn5Gse7Rzzx2L2YYk6VzyiLOfOyi3E2FH2VpKHBKaXI0pTZeLYACYi/UwqJlpIkkWjrwTqcsTilUGkHZTw2L3C1RQlBNuzj6oobzz2Lee0y60iG6gGeeux+tvsdkA4fr2tVBOB2Zdjn3nvuYbi2zaXXX+f2zZtcPzqmKErc+SnZVkW3k5CurgQVLhmsKUpjcEDlHDpJcXUZbHyEZDqZcnSwjxSeNNFIKajMSX9tlmS8/MqrWAmVqbFVgRKQaI3WGuuhsJbauvg5IpaoRQAYskRz5q6z7I4mFM6jOwlaQFkXVPkMIVxcQ+HzSJZ1gsJXXZNqwdraOp1eB1/PMFXBqc0tfuXTX+TS3h73PXA3Tz18P71uD6REAso7fD5DdQNZoEq7vHj5Jg8/+hh3P3yGxx96gC/d/jQkKXo44JXdEe994CxrG2vcfeEMn/7S6/S6GZ1uSqfbRUpBURShS1unuLrm4isvs3NqG/PUk0ih8TYo2Xkh8PNDZAqi36Hu9Lm+f8Qj59Y4083YSj21NOxvbpFdeISNJGVldJNVa0jNjMqOwmr3IJB4rwCJI4Dvjapd4IiKhrO4+OwiI5HRLz6xNBYQJzs2S/tC3J3CM4A3YN1ttPFVos1n2nymzWfafOabKZ9ZGQz5r/8v/xlSSf75r/4b/sv/5h8BBPuutiG3jW/DuPiVLwLBFnX79AbGmTafoc1n2nzmDxYt6amNNtr4tomf+7mf45/+038KwCc+8Qne+973vs0jaqONty9WV1e5desWP/ADP8DHPvaxt3s4bbTRRhvfVDGykqIEYy2egkRrhE7p64QkkXz55efZPx4zLy1KdnAYahOsC5QIVgAN+Nykd6FmKBZ2SiGakuOiNxKAuq6xxmKtxRgTiQ4nsVwUvLNAHgojVVmR9jtsnNrmHU8/xVc+/zy2KpiUM65eucze3j5KpyA6HNzeZzXrkPUSiqriuWdfYHo4YdjLeOpd76Au5qxv9llZ66G0ZPeaJp9WWOMC0WDiUDIUUY01XH39CpSOTpqRZRnWeywenMdah6lqKipk7CBLhGA+mVJVJbPZjKPRlN5gSJIEiWlnHXVd4QJCEuX4JYkI/y7rCgtIpZGxi9rGpLvRxjEmdIUJKYncDLw12GJOrTQM+kjfQwBda4O6Sry6SkiUCF1z3lrQgsvPvcbkaMxvfeKzvHz1dVazPoNOn37WYffKDVxhWBkMUI3tAJFs4pvU/oTaIYXEWIe3DuUFla3ZPncXj7/3fTz2yCNMLr3GzSsXuXn7NpcuXsLXQbLbWMN0NmF9a5VUKjpJijNBLmd8PGLcSblw5jSz0lCYGVrliDjTpAiWaPhQyugmCZnSaC1JfZ/f/dILjF3N7uyYVCt6SYrWmlpK1tcHOG9IN1O6GxlGgJPBiuxSNcZ3HMKVUIJ3muszi5/ext+0iOc+Q9Lp0T+7Rv/cBtfKEX/3V34eWxuEg1Qods7sgAideNJ6tEwwDhySbidjbKfsz0fUUlA6y2g8o1zp4rsKW5dIoYN6UChhoWSKszXGGsAgpQYseIPUalF4C+sqdvfFu6O0XlR0mnUWgAK5UC6gUTgSkRAjg0pPYwfineWEzRLJMbDokIZlnwcBPhSJAuloia4Uf945ovqODHYVREKSb+pOcWw2WqEpdUclScQKkHcenEEqvShSORzWshCJajSUGks7p2QEMD3enNjcCMGiCIZSgQhkLN00QcgIqQhBmTuqKvzba40XzRUJcukB2AyWNx6Cbcxi6GGOhXNdfo9c3J0TnSS/2AsdUVWpJqo6nSg5SYj2HH4BBDXh8Ti5VJpzzf+WFLe0CtLv1iGVwvs792nrowQ8oSMVC96bxdiFY0FawoMzIhzDe6rCREJVIDpJAVIHclCz/ydpwqIjE413cd+Lv7MsSoSQKKlJszTY7zQKHQa88nghEUqTSU1tDWWdM53PyPpDjPUYU2PrEiEFdR3AsEQnSOeQNsxV680CtA6EK4MzObXr4lSC7g4YdgWj3RuMr15hLhNmH3gf2eqD9DsZviqZlyXGCUSWoToZJtEY4ZnMS27uHvKx3/w4claw1enxxH0P8vj2KnuJYIrnWEnm8wnFdE4nSegkEusslXMU1lKYinyekyTJwpbRe4cSkeyXpJw9t4NSKftFzY2jEWL7Am6QgJL0lOBTn/0yD3tPttrj7kHGqQ9/iGl+xOHrz6Ouv853nj7Lc7XBCo9INZWpMMAkL3np1VfZ2Mqpa8PprW0evfc+PveFz/GZ3/kkv/WJ3wjEPK2QeLy1VJXlrgvned/T7+a+e+/GWstKv0eGQEkYHR1S5DlZkuCkosIEsBCQUtPpdjkcHwdVj/gczFSKSaCoS774zOe58sc+zN0b66jNDbytA1kNgfGCeVXz8CP3Ia7d5NrtQ/7hP/tV/tIPfDd9WYMrSVWXTuroDDqsdnu85/5TvPhJqGvIkoTTO2tkWtJNh2RecHg849KVK/jr18nnOX/xh/8MH/zAu3nptUvsHx/RW1lBjUdYK6grR7ba5fX9I27cvM3T4xF/8v1P8qtffonbhWFsPGZjh9t6he1VeODMhH/3O19EJ2toPWB10MNZy/GsoKjqYKOTJOTziquvX+bf/I//FpxBKU+WBAtMhcHsHmP1CNFZo6sEVZ5yeGC4diPnwj1rpI/cw9Hp07x8+zE6X/40mYf7iz02Z69jy5somQYCobdIsWQHEa+pEj4SCaMiGh4hHEZ4nHQILxdAc/OkEAQrCQRINHiJ9UGZTcd9rHUJauP3ijafafOZNp9p85lv1nzmh77ve/iz3/vHkUrxF/7XP8aXX3z5zZtYG218m4Szlpc+9xmGW6cC4abNZ9p8ps1n/r2jJT210UYb3zZhrSXPcwD+xt/4G/zFv/gX+et//a+/zaNqo423LzqdDn/rb/0t9vb2yPOcH/mRH8F8Db/pNtpoo41vp/j1Tz/D8XhMVdUgFd5Z+qlm0MtYW+nxxRde4nBU4LwikQpjTUzIxQK4D52WIoDdhA4tKWUkJSx1ykYZfqUk3nmMC53QzobuywYgWLYQWP76jpYZQknAGken02V9fZ3NU1sM1wcc7+dM5hOKYoypPVkqSJOUU2sbTOczpLWosqa4dczNq9d48snHeOTh+3F1yUuXXkUKEaweioKNnTU2t7fp9nq8+uwLVHlJZWqQcOH8aQa6x2Q8ZzSeUtYVdTEnSTVZJ6Pf69DtDej2emit2Lt5k8PJCKUTuuvr3PPoAxyPjijykqqwCCSdXh/nLLUxOO/ABysjb2MHs5SBSOGiAs3SRZFC4KWk8ZNHBRKEsw5XVZhhAmkX6YDaoKJEtvcB2PBLZX1rHalOuPXKFW6+dhWLpzA1t0UoNDcd0cqHYrJojtHYdPjmDjW3Xiw6bvECrwQSxbQo2D08YvXmbS70+tz1xGN4Z5jNcw4Ojlnp90m1pC4LEmFQyGAh5uGVS5fIZ2M6qUbpFJWmjEdjTG1ItEBIj3cqjMF7+oMOZ7a22FhdIU0Skl7CF25d5bXD21ydHnJqY50V0UU6yTgvyMVqKLB7RyI1QitEVB+yxuJlhLu8xxhwQuOcwXsTOtvzCooAllnjKKqSqqqpipp8mnOvKEJRv65D8QzJbF5S147+oEvST9BZQpqkKC9IZIJSOhBEYoFeaoWIRBIfwSGl1WK9BeJHYNwE6e1QxPfhzYEIgwNbh2MvTSmP4wT7iwoI8XUlT8ADRyhCLmzN4rpVKs4mF8gpUsYuuOagDShxZ2N0sKBYIiI5otUYgsa6wjWqQt6HtSBOxrmsIrAAL2X4veF7RDUHTizTRMOXElFKPoIhDfEJvyBENe3kxgSQpd/rMRwMKIqcyhi0DvOzk6Zhj/Khq7ubZYhoc+etj3hKGHiwSmtE04MFHg22Ete2iOfuvQ9dr821dUGafplItSBveREBnjv7EYlgTzM9nA8/I7y4A+STArwKY5JS4H3ooDfWoiNA5GPnaLNPu6VOUiFEeN3Fjn6pcM6GeyvC76hsTapSdJx/dVWhlURIhfNu8XxYJoX5SApzUS4+zGuH8xbvdVBAiKeppMD6MOZgQxfOJ0tTVlYkOhuQ5jU6SdBJIGYJLxFaR8uBoFjhAYTEOo81BjwkOqWbZSAELu6/zhqGWjM7Pubg4IDxvXeRPPIQvW4PKyWXb1zis7/7DLVzrJ/aIVlbYWVzi7TTI+n1EErSGQ5YW1nn7JnTPLSxyfp3fTdn1nbY/7efYDc/wlaGjkrQcR4E0pjAWEtd10gJWmikklTWkqaaTidFZxlKS1LhSHwNZYFAIrI+QidoITncP+BLL7/G6TM7vO++u0nyEaNLlzk8PGTsE57auZf1noJT6+TFjMJ5itqSH4+YTJ+H5DLb66s8eM853vXYU9y6cYnP377G7d1d+lk3FIMJbhS1cUyrmnPnLrCzc5qNlfWg6CYlIpE44ZjlU8pK0TEZaZqwc/o0w+EKQghu3rpFUVZsbm0x6PeZTsdMd4+QUpLIhLLKOTo6Zp4XGOdRcQ9o9invPavDPmdPn6YWGZ/77JfYPz5G9TRdIZAqwbs5yhn6WvLuh+/nlwd9bB26uDdWBghrUEJjheJwPGE6n6F0Sl0ZpE5479PvYjydc+3Ws3S7XYTxiLrCVwWdTHM4GnHp+g0u37zJU48+yL0XzjG5tsfRvER1Oly6eUinL9heX2dtpU/tHVJKep0uxhiKsqQ2hkSHz1/9LKMuSq5evoqlRhCs3z0EC4nDPVTSY7De5f1nPoAflYwu3+Tws6+hi3v40089gt5Y4/V+yr8+uI/btWB+nDCc30Qai8VhZfgM0hAd45aBJYAFPj5zXNzH3cIWiBOmaSQuIlkADR7CDzWWpATFDbzFmpo22niraPOZNp9p85k2n/lmzWekFKhEIxD8zf/VX+F/+I3f5P/7yx/9era2Ntr4lgzvHPPjQ+rZlGpyFJpK2nymzWfafOb3HS3pqY022vi2jE996lMMBgPOnDkDwHd+53eyvr7+No/qmzeeeeYZrly5gpSS7/u+7wvM8ja+JeJDH/oQAHme82f+zJ/hN3/zN9nb23ubR9VGG2208fbGy1euMRqPKes62DVVFcNuxtqgx+b6kP3jCUUt8T7KzguizLtYWIZKKVFKoZOgpKKVRiqFFAovGqWSAE4LZfDOYa0Nssr2BER4ox3vAhyIEUDnxasBWBdB/cQZx2Q0QgqHFE3xOxAMnHPgHZ0sY1rkGGMp5gVmXGBLg61DZ7Z1lulsRnfaRwhFXRuGq31W11fo9fvoLGE+n9NfG7K9s8W7H38HhzcOef21y+zuHeCxrG2s0umlpJ0EJ2FtbZ3+YIBOEqyoOLh9AEKR9Ducufs09ZUclQqyHtS5J+tqnHcYYygrQ5kXaK3pdXusbq5zcDhiPi2o84os6wQHrqXrJWVQqHERpPcNEcQRFEU6KcrGbmhjY3buEMTuV0/oIo4d7flkFgrbtSFJEqqFAo1HZSm9Xhct5YKE0pAvYp13MTYZPAvCOGUoIEgUo/mcvaMjVleOOL+9xupwQCeN177XZXU4QAtJPpmysbpCIjVKSOrKUJuayXzK0XgV66Hf77G/d8B8PqeTJUhFsErz4L2j09N0OhmrKwO6WYZMBAhH7St8R5CtZGS9TrxeBV57MqlJpKSjElSaRHJMVASIuA0erIPCNao6wc7DeRcAHu+wDozvUlWGoqgZJQkyERjvsMqhswSPxNZQWoO3OVlt6elQ/NNCkuokdDcKgdIapSJoIFTodHYumjeEtbQA2aS4Yy2Foo0LFg2x2HMHINcwg3xTzxGhcLOo5scXmnvuPF76BeeomXPN7zwBCxer+I7f1ZCTTl5Z/lcENXA0dBXRWJC4E1bQwqziDUDiyetxai9tKVFkHCJ41ShIwdJe5EUAg+J9F0tAiY92d2mSIpWM1mcOj0JKQSIkNhbIrA1nsLB28wFQCySmRqq+GWkcq18G2SJBSgQXlwWcJzzLShPeB1CmAYXCNWnUD+KBuPNefdVr5mHpsMHmh0BictHuzgmxAH5kHHqz1sJepGisYprzbYqJ3kfQSYY/QgTQsyFKCaGC1YgTweJk6V4hI2ksno8Q4fnTnIcxBmPtArwWSiJcGIe1PlgoiABmJ4lA6QSldSQ9JWF9KxnBbrUoJvsIrgU7vmAJmOmEQb/HzMoFJKqVIpEC5T3S1KTeo6Mlg5NhDu/fuMFoPOZwb5fezhZn7rWsb+3QW1nh7OlTpB7WewP6/S5b3R4b585z4/YhaZKgbEpKQidLA0GLaLzjPbWpadZeQ5LDB5UtrSQ4S5nPSbIO2jkSE57DIh0gRIbwHjvPuTLJudiZkCPpSkcnTen2BlRZn4fPnGZzJWE87DCZzylquyAAmqrAaU/Vy/DOkqUJg0GfTq9Lp9dj0OlhfbBldF5QW4fwIn4e8CRpivPB6kIrSb+TsTYcMBj0WRkO6XZ7DFdW6ff7GGPY293FGYMWgjTRJFpjnA3KIgKcMYzHE/K8pLYW4d3J2nIeJSRptPHZcZLTp08FBS9r8SpaRnqHMIYEuGtnm363x3RSoLRiZThAROvDuqop6jo8e42hyHNGowkPP/Qwr1+6ziuvXaYuqwD4uxppK3QNk9GEG3t7XNvf553vfIjzZ09x8Thndz5GOMHN4wl3pX3ODYec2tjg6t4hAk+WZhhjqGqDdY5EBLBeK4W3lnw+x2iHFoGw4TxkWZcBJcOk5OEVwWPb61wtD0irHLl3g6PXof/Y/ZzfXOGudJ1L43tYvXGMmihMEaw2XLOneIGN69vFHdrF/Wi56L8gnvpocUVjNXTnxtNo1i32psV2FAiMKmlL+m28dbT5TJvPtPlMm8/8Uchn3vPEY8yLkt2DQPT43FeeZzyZ0sZXj3c89ABndrZx3vHJz3y+bV7+FgpTlZiqxNYln/vCM0wnszafafOZNp/5fUabIbXRRhvftvHRj36Uj340dBF87GMf4/3vfz9CCDqdzts8sm+++Kmf+in+8T/+xyiluHTpEpubm4vXut3u2ziyNr5R0e12+fmf/3n+9J/+0/zGb/wGwEIZrY022mjj2y2Op1PKOoDE3htsVTBzFbgKjwXVBVOHDkhv0VoGtQsfumeVVmitSXRCkibgg72RkjrYUqlgNeGcwwmPUJIyz6nrOnZwyTeBAV81Gsw7fiEie0HrjKow7N3aY1pO0MKjsQy6GWtrG9za3ccLjxWW2tYoralKQ16U1JOCnbM7HOwf8OnPHGDqgtyW1M7R6UxCsVUJ8vkMU9aknS41Rzz4yIN853d/hO/57u/gn/zMP+XFl15lNBqxtr3G+z7wHtK+prAFt4522d5cJ+t0kSphsNmnf+02k/EU6xy6n+C0p78xZNhbCcV/axbXdD6dc+PmTforAy5cOM8HP/QdfOrjv8NrL1/kaP+INO0EcsPSRQoS/j6A/NYHAECG+2G6HWaJRApHxyhq7xHWovBoZ7E22EsI48AGSwiZJnTThF7zW/wJxcIKwDmMc1HSWXDCrli6dULgI0FiUbhCUkvF0WhCenjE5saEca/DsbQMu5pOpjm90SdLUopZyeRohHCebqbRSlP4cKzJPOdoMmValGxtrnPl8lXKsiRNgvWYhIWSDc6ihCdVkk4qQTh6mWJjY0h/fYO7T52m38lwztI96rHW6bHRGzLMunSUJslS6qpEClgfDsOasOH8dJayOzokUxmpSsA5rHAncxcWxBrjPJOiZjI7Yl5OMM6ysrKCECnHsxnj+ZyqKslnOeAxtSVRik6aBnACQdYdoKRGJUlUD7JBtSASge4ACGRYPA2oR1NM0kF5R0qJtU0BWSzIK829EoLQrehDIWehuBRBvVgCius9zDnnTsAKFfEF505sS0IR804VhBMFhSXgK4IODhAiEE1EJBJ575bmV5ibTYFpIcq0uAEKhLvjOyc1qmZzOSFNCSEjaBkIN97bE1UoxAL0jLJQFKXB2EgAEpI0hbKOBdh4vKYwam04KRmJPt5HKz1/cn2aa+FFWFdxFJFsBUs0pkh0gtgci5DxXi+pXXkfLPoELLoUffPDYXYu7qULFzNcexrSUmxWFM3YgsqFc5ZE6xM1JO+wNnRuhvUnwIARNpCOfNiXvPNBHUEIdJIubpYgAGBSqsi7EiDdybWOHZPOOoQMYB0CkiTFWYepw94eEWSkl2id4KXC2aCgJZWK4J3FWodwDqUkaZKQZRlSSLQKe7BSQbnJRZLd8hxWUtFNM9ZX1yhH81DM9I5hv89oPEMkHVY2T3HXqbNoITB1iTE1p3d2uHD2FFfqgsnBLspb/Pomst+nuzLgg089EbpryxrrDF2lqUyJcBbnPZs7p+gKTYpDKNBSooUA6yiKgjRNSdMMIVgAQ0GRwlHNc47mM7KdHRSCLjCzFT7rgErACXpnJbu7h7w4N3zpynW+82yfrYefYnMwRN61g93bZ9ZJuIbnk5Mx87JGek83S1gZrjLcOk2WJTghef36bazUnLtwDzunzrDe6SFEKCjbaJtUliVb62t00oQ0TajmJRJJVyac2djgXY88wt0XznPm7Gn6w1VefPV1iqJkWlakUiKsJZ9OEd5R1hXGW2Sc866qOToeMZ7PKeoa4S2SSKSzllQpvPVkScKZnS2+7098hBU3Q9RzqtqiO6Hk7YzBGctKf4VBv8dhOkIowcrKKso68rJgPJnivCDrdMmLnKPREa+8/Dp/7EMf5PBgxO1bu/z2557BqoTEVWhXouewfzjm+u09Lu7toocr3HfuDC/eHvH6UYFOMnaLCUe+j+iv8uDZc1y7fhOsJetkwXbKBpBgsZN5H9ZGptH9DuW8xFTB7mnQGXK6r3jy7gH/0yfO8NDWAJ/PObMq2UpyrrzyIq9ffYR7VjP+5D0bJCsZe//2s6xXe+wfXee+HYHHYa3E2mBBab3Deo/xwdLBL+0jC17q4o+8k08Z96gGXD4xl4h7kveUpiZJNSurK7TRxltFm8+0+Uybz7T5zB+VfObD73sPH3n/0zjn+Mv/6f+RL7/4Mt4HZdg27oy//Of/LP+z7/+T1Mbwx3/4P2Y0mdDkbUXZXq9vhaiqiv/qp/7ffOQj30XS7ZHneZvPtPlMm898ndGSntpoo402gO///u9HSsnW1hYXL158UxdSGyGstTz00EOL5EUpxcWLF+8gQbXxRzt+/ud/Hmstk8mECxcuULUJZhtttPFtGLdu74KXi45OJQWzumI6K7ixe4iVOnQZaYHwoUPKOPDOI3UgkgpELEaqiI7L0CHjLbYMXcfOB9n5+XweEnTvUY1F05ukRt46Qtdt+J25zRkdjnDHjuG8y/ve/SST8ZTR8YT9vWM63Q4OS1XXjG4d0ddDEivACNAJvUEfIT1SwLkLd0GmuHr1JtevXWRluIJ0khsXbzA5HOOFQnvNaH/Elz/3Jb70+S/zm7/+CcZHE9Jul4ff+SgPPv4Qhc3ZP95jVVQMVvocHB5xe3efqhY89eTjnDq9g9KaX/vF3+DVF66xs7PO/Q/2ufDwNl/48ksIm9DXQ0QvRfU7+I5mTs2rl1/nxu3rHE+PKF1FZQvSKJV/R5PRIjF3CxsvZy1VbXD9AaSCShrEfE5iDcoLtJcIPNoHYgkoahwudl43SiI+quwEd/qTZtlwY04S/jvuV+zYFjJ0yOIdwgdRcK0V3V6P4do6hXXUXmKcpKoD6SIRHmMceVFhTbQbEwZvLUpIrJfkleVoPOHM6R2yLMHjkTrBeRuLEUtEkggYlEVJ7aoAdElFqjKkB2+DBUeWdpiMK57//Fc4vj1CWUeSJJi6Iks150/v4IVlNsnRacJ977iP/WIfVwqKccnV126iOwlSBmKHlJIsSVhdW2W40ifrp3TXUrwElYTP4lJYUA60R3qB1BIR7cmEt5iqotYGo0JHn0w7IHVQPAIQkmBj5jHWkCRpUCiQ0fZh0akcr0rTPSkDUWcRjqWrBk1JJ+ByJx3SC9uJpfvcvFsuLNYC6CClRMRuRE/sjl/+2cWhPLjG9O1Etl0lSbAgIc4BQGkdSDyxQLaMT3kfuxqFOLk+cWaLSJA6AR4DqQgvFmBFGHqwWJMikJWaQTkbLdyi5U1tLdOipK4tSkCiHVKCShKIxTOddLDG412Nc3ZBPloer3/D10KIMKbF6zbOExnt8fxC8UrKJRAoXpNlfSREsKXz8RouFxUDqasp0EWwb7Fymn7FAAwHy48wd6zz2DpYyulFd2tUy1AK68KYvYsWdc5j4rk0Fn8LKz6pAikM0GmCtQ4Xj5ekyUmHZbxGSqkFccsah3WGuqopi4q6rukP+kgvcU7EsTtq6/DWkSQgtUaqsO97IM0ysk6HLM2QiUJEux2hJEol+EjyKosikJ/ifLPe4UyNtzYQ2RLNhXvvZ7+SpKrH0MOp0+dxDoo82L/0s4Q/+x/9IKauKIuCRCUIleKFxAJF7fnsi69Qz2bo1VX66yscXLnC4XxK6Sz33XMv1WSGLXI0hl6vi0Rg6pqyKFlfW0PgMcbEZ28oxEufkEjJar9Pt9fF145eKjmcj9kY3E9vZQ0x7XK06+nft8nt2YSfefEV7tt8N6fe+wSdnS1sPub/88u/hF/dJNnZYXBqG1fO6XY7rPY77Gxu8KHv/i5y5zk4nvDxL7zI3t4tHnroAR65/16efuhBMmkXhe3AnzsZ6+h4n0QqlJRkacK9F85h6wprDdeuXONo8gKvXrpMnhc459BpSr/fZzIec3h4SJpl9IcDXOwMzkczbt/e52gyZVLVGGfppSnGOKyxSKnIOl0msxmmqjm9tYkflbg62BhWxmC8ozA1qak5u7HB2toqN/YPMDiybsaZ7S2ODg/ZPzzi8o1bpN0Ola2YTCc888Wv8L3f+V2889FHOD464mOf+gwkDmpNR/Z44uGHKGYjRpMpr1y6ijsa8/j2Ji/ubPHcqGbn6fdSFGPQnqkwXDi9Q+oNGkcnS5lNZ1gTrmNY2x6JxBlDOZ+iVweolVXQOeQ5e7eucvr0NqcyyV3rG/z3v/BxXrx2mSv7x1zY7HDlsy9x6XO/zfOjm6yd3uTKb32Mo+eexR/tckiF99txCToUNYl3WMBIgVOBWGgDvQQnwMn4DPAs9n4asFj4qJKi4nM5qtbF7UfEvchYh/QC1e3RRhtvFW0+0+YzbT7T5jN/FPOZf/T/+HGccxwej/gTf+Gv3ZEftBFyFmMMAvjoP/uHkawGxjq+5z/6yxyPJ2/3ENv4BsVv/dYnIT4TH3nqPQho85k2n2nzmd8jWtJTG2200QZQFAUAt27d4s/9uT/HT/7kT/LII4+8zaP65oxl9R8hBD/yIz9ClmU88sgj/O2//bffxpG18Y2ILMuAQHBro4022vh2De88grAPOjw+OgSEpFOdAOA+QNJCBF94JSCRFq2S8A4pSZTGWhuKkkIs9ldrDdbUQWLZ2FiYjF2VDbj/VeKNEvaLqqUXOO+o64rNMxusb2+ysb3O2fM7mOmI6fGE2bhgMq84c/cW/f4Q7+FmJSicAgciUSSl4PbNm+hMs7o+4NSpBzCJZ3//GEGwuNg5fwohFJPRlFvXb/H0B9/NqbM7OAyf/a1nMJVl2O+TdTIm4xGf+K1PkXRThJKMj46opiXWOTKdUZYlXmpIMrzSzOZFUGhBoJEM+n200IzHM8aHU5QPxdtqXnHjyk0uvXSJfq/PhfsvoHTC3s1d6lmF8BKpdLh/zkX7C0LRvpG8kQ5pTLg3UmJSRzp3KO+QCyuAJaqDCEl80/EsIRSsOSlGKJqvWep2EosE/2vOOaK7QLRqKMuaw9GEQabYGib0pcLLAFvhg62BdXUsNgcVGEFNWVdU1jLJC27cusW7HnmARCdY65kXFakOE9k7T2Ur0lRTlDW18XSyDFt7vNAIqdFaL2wThACdpBR1yfhwwv6tQ0QtUFLhcUjpOb49wknPbJKTdTIYdNl4YI3RwYz92Yzru8ekicY5i/cOJQVSBkUanSh8Ck+97zHWdwb0Oh2c8OE+LOrcKhT9CcX49fVVdKoQSoKUeK3xcZ0FezAZ7LNEY9Gi4lqVQYXHCYjqP3esrzhHlFLxd8cWtkVr8gkoIGg6msUb7m/slo6vSxH2jmUSzYJ2pOJPymAH19hACNG8E4QKIIGJKknLe4EQIFSYE8EKJliNWO+Qze+JwELDUxJSLMgySyfPAjyK/xNSBHuP5rcu/mpWQOwMbwSgfCD8WGsxzuOkREmB0kGlqCwrytoEa5NOn0SF1RTsVtyiCNaMZ0F88kHhoLm2CxA1/tVYjJyssmWFqjBiGWXsG9l7IUTsbvcRTDnpcD9Rc4p2JkKGa9bcqqhC0ahRCbHUSS8VIDEmWtB4SJIE54I1gbUm3DvnUFIung3B6i4MWisVSUxEZSwRre/kAmC01gZlLBVIaM1zw/uQr9VljfeeNA2Wb8EqpVHrgtpYZvM5RV4hEQxWukidoJLw9LPWBKUmJdFJwmxWQl0jjQnKA411YTxHa92iAK9kAMWUECRZh5Wds5wVKcPKIJSm082wWHDBJsZWBiEUUqV0e0m4f47Ffnswn1BOxmjjWev2EakkTRNSlSCtYDrLmR+PUc7SXeuiUk1Vl5R5gakNC/qaCB3R0suwD0gRnimEPSTtJqxvb3DlsGAjU/QHHY5NhfWK/nAFlWgu3ejwP7xyhfesbZHcvMVzr17kZz71LO//8Ht55KxiUwQimRKSLEnp9XocjGaMi4LJvCTt9BBZh0lZcTydY4wjS1ycmw5ctM2JwJ8jPJ9EopHOgpZ84dkvMy/qUEBGYKyhUWaQAtJOBlKi6zqofTlHohS9bo+NlVUOjo7ZPTriYDplPVELqxxPUIiQUoW54ipMMQlKMB4EwebICjAurPN+t8vm6jqDTo9JkTOeTel0Urq9DkmWYhEkOiVLOyjpuXz1BhcvXmR9ZcB991xgZXXIeDrBW4uzjusH+8yKOYzg9o09rt28zd1ba1zY3mR4c8TY1fSHaxhqRtWEwTBDKE2adej3+5TzOdYGkMAFjPgOAmJpHWm3Hwrz5QztSkZHh3zyKy/zklnhdpEyfe0F3OwYYXPOZw7x7Gd57fUvcthNuX7tFr18wio1XqdIZ8KzQoDzEoMl9RbpovKFaMBk7uhxZqGI4u94puAb8L7Zi+K20LzsBTrJsEJwMDqmjTbeKtp8ps1n2nymzWf+sPOZ5sjfyHwm0R0EkOiE/+Zv/ef8Vz/zj3n9yrW3mHnfbhHJBS4o2TSf7Y1z/MR//jcwxnLxyjX+n//tf/f2DrONP3AsmmdQC3Jqm8+0+Uybz7x1tKSnNtpoo42lqKqKX/qlX+KDH/wgr7zyCmma8r3f+71fnyTzt2F47/m1X/s1AB555BE+9KEPLV5bX1/nwx/+8Ns1tDbaaKONNtr49w6xSL2XZHwhJnVRTh8WYLhzHmQomAoh0YkOncoiFKoXx3AuFEitxZgaa0ICL5YSQDjpiv69Pn+88VXvA6jeG/S46/xZzt19ju2dDV780heoSoM1Dq1TBv0eSiqqyiLSjLTbQ0oFxlHvHzHLJ3jpMdaSlzlp2iXNUjq9Dl56smGXbJihuwk1ho1TG/SGPfLZjNs3brGS9OgP+nQHPYwzXLqyS2/Qp98fkM9yEqEQSmGsp5xXTMdz9tVRKD5Yy2DQo9vpAIKjwwnWQpZ2kKlmcniMTpLoL2+Zzmasr2+wtrFO1u2wv7eHdQ7pBEoIEKHwsvCcD+gNscKPthbjQ1N46HgOhekGJICY4AsCSECjjbN0D8TyPxpCyx2Mi/CWO3kaLL5qfl4IpNRY48jzgqPRiNNbqxGcaGD7UDiwzjEvcvIidIKnUlFUFUpJet0uSgr29w9IkkcZDAb0+32EEmRpgo5FM+0USmnm84Kj0QRjHYWtqWob5rOSobFYxJK3DApBxllqY5G1wAQYBrylsDVeCvJ5Scd4ZkXJdieFpMAIgqqMszgfyBRSAN4CJc57Sl/z4DvvZ80P0SoBZxfrLBTal8A5IciyLBTztSbJOsisg5QJMtEorYJlV10H5ZlIHFlc8hMGRLx1DcHm5A4twCR/J8izAASWAIU3r9STAs9JheeEVLT4HUvH9Es/eoJJBLBBxHGKSOZprF8W5yPCfvOGtnzeNDJ/UrBiiWSz/DNNUWrRGP5VABAfwZsTDCUU3k8sN9TJtYlAk3MwLSqm84K6qthZ28A5F7u7/QLEW2yHfvk3hvNrLOwWe+PSwKz1d5z+CdgqTjrf/cnPeU6UpRqFgMX9Es09P7lGy13uPv6Mc8G6zrmwv8uodNWsleYUAoHKvfm6iZN72yg3QOiab+5PeHYEpYoGOFqob0WVgabY6KKdQB3tjIQIwK5urPWkQipJXdcYa6njH+ua+xbuVzgnt7ifWmugCGQ2YxdqEM67uL4sNv5pfs5G6zmpNL2VNXaSlJWowNUREqkcUnhEU831wVYp8NAsRKscBBhT4eqaRGmGvS5eQK/TYXM45MzaOrNZzmQypZcqOp0NlNIUZUleFou1fwKqBwBQqkhksx4hQ9evTxS94RBuTehLwbCTMOtleBRpkpIIz+FgyG8fjpm8chGVaL58+QbPjwveISQkGudqmn3dAWVluX7jFtO6xiHo9gboNKM0hllRUBlDV8toFeAX8yoMVZ6Q85REJpq022WWFxwcT6itJ8tSulkSFB+QkcwQ1MGkUlR5GT53SInWmuFwSJ4XjKczxrM53WEfVRsUILzHGoPzwSpBS4EzFTgTdoa4Vq33uLqirCo6acb66jr9Xp95WVDXdVB0kwLrPSrNUEqTaA1YDo6PeP3yJR5/9GHOnj3F+fN38eyzz+FsIEvUrqIoC4y37B4ccn1vj/Ondzi9scpqv8uVMmfYG1J5GHnB2qBL1uvS6XRIkpS8Pr7DZofwMQDpQAoXSBlJtlCrUcJRlSVXbu/zsrzIbP1ukrxmMJuzXh1zWhjSwz1G+zUHEorCo7TDpwqRJNQSauFxAmohmHmBa+yPvKWsa3ppVAQJdMo7PgM0z3URnzMnz6HFtrrYbxrAOhoL4WnVydt462jzmTafafOZNp9pPksJLxbND833v9nzmTRN+BMf/gDPPPsid587S20Mn/rsF940ym/PEG/KZwC+8wPvBQQXr1zjmedepLkJo8mUZ77y3Ns12Da+AbFYX20+0+YzbT7zltGSntpoo402vkr8zb/5NwHY2Njg8uXLaK1RSpEkyds8sm/eePHFF/nBH/zBxdfve9/7+MQnPgGE7uZG3rqNNtpoo402vtlDSZaAbliU8nwo/+oIOjdF3do6JA6pFalOSJMk1gWDIodDUlUlxhicd0HCvqpwNnjPhwJGA8q/kYRwZ3wtAEFEloBzDoVk0O3Tz/pMj+dcvbbHaJKjkpSzm1tsbm5w48otdneP8J0uZ++5iyTLMHnFrdmcjvCk3QQvJc89/yIX7r+HJFWsbQ8Z5RNKaugIuhsZm3dvkK12qL1lOs3BOaSz9LKU1bUBeUdiJ1DOK6TLAYWrQ2fzdF5wfDzm5qvXuequMpvP0d5z5q5thoM+lfV87nMvQqK59557OX/2PJ/55O8wmYzJEs3K2gpnzp0h1RlKJdSVJa+qQD5wEowDGa0WTkoGocM4FncTa8N9ETp41cumEN3ccoEXDi9CZ/RJN2p4j5N3AgV+UfNfAgcWReVmAHfc0fi+ULBWKqEsK0ajEWlnj3ed20EnKnTWOgtSI5Sksobdw2Nu7e0HoEBrbF2zvjJkMBzgnOPoYB/r4cyZUzhnmYzHDPpdOjoNHc0SyrrmcDxlNJnTSRNIJOOkwg1CgagBR5wH5yyoMDc6wwxRepyJ6pAOlACvBL6v6K306XY7oduwk9IfdOn3u2A9UmYBfCCABt4GQMoUHm89wototXEC2CnRKOE05BCwxmMxJCph0BsgugO8dyRZQpqlaK0xzlLWFdY5tFIIJ5ENMAcgWSgSBJUct7CS0FovEZ8WiwwaBQNAReUdOOnEFGLpe1H952Q+iAY/iEQXvzjWcsFaiCWLOiEQXp4ASfE6NISYBTglGks2FsDEnfuJiPPTn5xLnJt32sixdNQ757CLikzOunCIWNDyUfXHAiiNTrtIqfGEgqmzDuskh8dTDkZjjDE8eNf5oFogwOJI9Eme5WxTEBNxHxXE9nLwftHRfEJmArBL6k53jH5x7jQEKBFISItrLhsbnhPSkeKkYBcUn2KR1IeG+oYAVNeWuq5J0wSlBFoFCzjpxULSvyjLqN6k0UphbCgUCqmQUuEAFZlmTUHb2aaHMihRLfYfEY4b0LswF0xd44CiqiiKirKqg3VKnJdJopAydOELEd5X1gaEIut0SFIdz9XhsRhrY7EavBPBRkUrnPfUdR1tU8L7rampTY0QaqH2VFlH6RxVVKXodrvsdDtUzmBMTdcJtLABCHQWKTVIDQQlC49EKhEUDCJAKiPIOex38MaxNhjy4F1n+Y7HHuLXn3uB+XRCtjZkfWUFJTXjfM6kmOOlQEmBs1F5y0GSatJUowQYUyOUIq8dQkOn00VaQ4ajl2iGq6uoRKOFIM1SejtbfOblMc98+WW8EORZh+yuM6xurNDraMqyinw1QV7W3No7YL43QmQdBqurDNdXybIEZx1FWVGYmhUxXHTQOmFxsqEiNACHjCIOmpXVdc5duBuR3mY6y+OeQFTbsigVrC7SNCOJShRFXWAtCKnpD4fkxjKbzhlPZqwMVijzkr4WJHgmZUFlHFJIMq0RyuOsQXiLkB6voDKGus6R6ZRUaXa2t1ldGTKejtBSgU6Y14bRPKc7WEHq3ag04ZjkM7708kvcfeEunnj0ET7w9Lt49otfwVaGJEnYWutjqpLpPOd6/5DXb9zgHQ/fx9ntdc6u9Hl9MoXBFnMPe1bw0OoKm5sbrAwGKCGZl1UE1kOXN83+JoKqSlLWCGliqV2i0VghqU3FLB+RPJSxmp1l/bZh68oBm/mEAkuuwEhPf5CSUaITge+kHKSamXPMPEytxHmF7HYw2lHbnPHoiDW9ipIq7CnOYn347OdkWNvSEUmmInwOWaAEArf8zPAWIRx1WZLoPhsbW7TRxltFm8+0+Uybz7T5TJPP+D+kfCYu6MWx/jDymf/D//KvAIG488f+/H+CdeHzpvm2dSgQkRz2tfOZey6c4+//5H8Rv/Z8+fkX+U/+tz8GQG3MHRbgbfzRCClEtFVv85k2n2nzmbeKlvTURhtttPEWcXh4yKlTpwD4kR/5Ef7BP/gHb/OI/ujE5z73OTY3NwH4qZ/6KX70R3/0bR5RG2200UYbbXx9oZqKr2gUQu7sY9GC2JlLyOyEJO0oklSjdIb3HqmC/dBkNg0FQGOwtqauSqqqDoogS8XGP2h46VFSsZKucumVK7zy/GsgYWV9lfseegSvc2bTQ4q9a+T1GDO3KAPVrQN25wUmkdTOMTucsNFbZW17lWwl5fKN1zn+yovcc/4M9547xa1RysHBhLt2zvD4o+9AZI7PfvaL3L60z+T2lM2NHVReYJ1hXleYYRdUkJtOlSJLO9y+dYDOMjq9AWd2ulx9+WXqsgahGG6uU3c9U1MjccwNvOtd7+SJx9/J2Z3T/PZv/hZFVYESdI1l0O9TzkuOR4eMj6eU4wpRViAMKItPoh40IGKBCOcDEiQUzhtMmeN8B6TGKEmtBMJJtHGAx8nQtSSjKssCM/KwDCaJN9yTN359B4skdq/5WMjweIRzoDy2qphNJlgBne676WZdUq0QdYkEjHVM85rd/RmzWUmiFa6TIoXknnN3MRx0qaqSmzdvczCacu+9F7jr1Ca3b96kk3VIVLCG6ve6XLuxzwuvXeTgaIQGvLb4Uyuo7pBMKIQPEtehOysQNawP/bo6FSgtUEaAcUgvcBkYLRGZQkqPcKE4Z6qaYjJHSEiylERrpNIIp0CBtJbMVaA8zhussyiIhBiP9Q7vDc5aep0eUmqObx8wO77JbHfKLLtFsrpOmmlMqvHdLt2dM6xmCWUiqfE4LRGO0AHpLFoHJYPmXjprqY1BKRnJ+p66DlZkYb2KoCDglwAnGmJMnAeNmo5UWGeR6EAkie1tspkAS6AeEICHNwB/UsqoJGSp6po0Te8EmzgBHxpxIprxvCXoKBb/hVE0BKP4WjxOGJtfjEUSiDjeLXr0l4hPAR0zHvLKkI+ndPb2EN7QzRKS1XW88yidkmQ9rKgCscYFm5PKeSDY5jTWfw3gFvAiRzCvC0SbqqyjZV7Yq6UIhKJFRykBrGm6TJ1zKKUa8aTFOS13IULYGqC5TydqR0KELk9csHErChM6UVVKojzGOZROg5qAijNDhC5VY0IxeDjsRbKWB+uQKqwBpAJncd4iRXi9qg0CgU6ToLLkTNwnguqT86F47LzH1QZbG7yQlJVhXpZhX7EQaGiGnkzodROSROOFInVwdDDCuaCAUBqDMgnWhXsodVCvUCoh0RmdtMtg6KiTFJskVLUJqlLOYayhLEukTqmtoywM07LGRAu+YjTitReeZeOu0/QGfVSacOnideaTEdZWoVfUa5wNNjENTc17F+69c1y5fJVZmbPe76ETSV7W9CXcdWqd7333O/nKK69zqZhhXcb26pDZeM7B8YhJkaOzBIlFCLAExTGtNYlKUNJjbEXa7zIuHc6WdJxA+Ip8NmfFwOntM9w6tYvrdzC2Jut2mJTHeBvuiSwnuNEemZLopMPR0QhJUL3Ky4rxtKT2jlFVMlxf5+zZbbaHQy5evsze9SsU45ucGWzihSQ+cYIlYVRaCdPOkqQpWicIKVGdPmub2+jOlIO9XRKVBJUIqUi1pqoqitkcRABEcI7aOWpvcK6k8JKjvX2OD444e/Y8+5MJqx1NN1Ec1hZTGlItyNIUIRzG1EhrUFIgREJRGfbGI46LitoZNrbXOX/3WTr9hMcfepjaWq7v7XPx+k3k4DRZt4s3BbaqSXXCp7/wFc6fOst9Z8/zl3/oh/gfP/W7HF2/ib6xx/9kp8e779vm5XHBNVfzwqtX+d7vFGwPejy80ee3X7tFURcYIal8hlrZ4f4LZ1ntDXFFzeFkjlcy2Hz4YMdQS8IDVyiS6QwtwNoapzWycmRoVD6he+NF3PFt+llCUhcYV5InCUhH6mUAlYTAyD5XVca/ER3+1dGMm3VB7sB6ReoM95/Z4tGH7ueJhx5j9vnf4fXnvsS0zFlZGfBOpdFWIeqwx3gs3iucA4SDSEbw8blnhaAWnlpKnFQoUTPodvFecHx996vs7220cRJtPtPmM20+0+Yz30r5zLDf55O/8E8QQvDL/+Zj/Bd/9+9/ra3kWzo84iRn+TrzmUcfvI/f/KV/hpSSn/yvf4Z/+au//h941G38wcIjsSBEm8+0+Uybz/we0ZKe2mijjTZ+j5jP5wB89KMf5a/8lb/Cz/3czy26i7/Vw1rLX/2rf5WPf/zjv++fdc4trt3f//t/n49+9KOL1370R3+U7/u+7/tGDbONNtpoo402vqGhpYiKHyFZu7N2d9LJKlnuaA7dS0hJURQBbLcWU9eAwNQV1gZLIdl0U76x4vdVwr/lO5Yq07HojPcBJI84hxSCG9evYqPaxvrGCp1OxtRNqPMK5y0I2D61Q9Lv8uprrzMfTZnPEpL+Gmfuv4fD/UMQCcolrKg+l2/u0fcJfZEwNzOqypCtDpC6S37jCGsNibWkwLA/RJwB7UDVjuPdA8ajCaubik4voZd1qfMhVeGwNcxmc8gEKtWoVNHpahLgxsXLXH3xVSb7R2gnsNOKo/k+090x2UoPpRU6lXScZLC6hhOeyhny2iIFSGQoulobrDp8KPxr4xHGQhLksn3swPUidlB7iFMBB2hx0ta63L3afL14bXFTTrrYF7XINxJRmuIuQUJGC0HtBdPC8PrNXc50NZ1hly4epTXG1BT5nDyf0utmpEqhfZintq4xlcYZi5KS+XRKd22AkIKyqkiTFIND1J66ClLfJv5BBMKG8w7h48yObcgidpXhPN44XG2xDpTQi65ukQoUDkyFq2qqqg4FfsK18y7Yp3jrMJXBSRuKTlEkO1g4SJBRul0s97MT11QoVHU7KZvrA4qL17l++wb5zKH7Q3wimUrItSLpDXn8oQc4dfd5Vk/vMEViCLLdCBF/T7AEi7cqqpPKSL5hsVaFEEuqpWJBhDm59+HfcqE8FGzbUArvJV4GBZtA0Il2b7hwUZamw0L5KQIPgbTj8c5jjV2MJUzDaGGx9PuXAYsTkPPNx22Aj5PXluatECffi8c3ze9ujrs0dX2cu957GtMKYy3GgpBhLufWYcoSrSWDXocsTaKSj0QpicazfFAlA0jjnV90MHtnF2QtpTVSCqyLAI8IylOiWbPhzi7OUyoZCFtxPQoRVITwwYKmqqp4jxOUlCeLkuY+ACIqLvlQZLbOYmy4p91ul0QpEGH9gMA7i1KSbiel1+2glKQ2BlNbrLVkWRbGJpsx6UCaih3uUgawSgDWndzvxsJOeHDxenitcc6TpCkDLREiALMNjqmlQOsERCCKSRnsVMqqxhhDXlpqU+A8WO9Juxm1yYOtQKIpyoIiz5E6oZNlHM5nAcTzAuMCKOVt2DPSRLE6GDAzUySEjtPRESubQ+gmOG/5rd/8BLPJBIEP9j4+AaICBWC9Q0uJkgotFbWpOXv2NJur6/hZQV4UdHodjHHMRzOOZzNMbUikot/rMp1NyedzTFWT9bL43NVILdEuqHgZG+1mhCJJNImx6CRhY7hCqiROOpywJMLjs5RcpxgvMCJFmxyqAuE8eImqK1RoayYvqwBGRCUs7xxOKja3NtnYWKfjK86dv4tUGI6ODihGx9wezeK1dJSmQusMLwTWeaqqprQ1xjqU1qyurHE8nuEdpEmXtfVNpsdHwTLGywBOymBh6JwjSVOytIs1BmsMWMtsMuLmrZvcuH2T97zrSeo655iU3AXrC5FKCmvJ8xplCrpItFQoKUh0hvMwmc2ZljV5kbOxusqprW2892SpBucp5yXj0QRnEhAeLwTOCzKnOdo94qXXLvPli5f54x/8IN//9FMc24pT167ykcmY3TXNw5sb3EiGHI6PmR0ckHnH+Y1VOhdv45ylkoJcKuZpn+3tHbpS4p1hOplAA+hGhQ3i/uK9w9oKiriH+9AdLYRH4Umdw80PkYXGCijwCOHpKIVwYe0bqThEsW89L+VzKuswPsMLCUoBjt3DEbe7uxTbZ9l46J1cOTrmaO82z9maB43lASnpS4GwjgqHi13RUZttoWwRLCQtDoX1gtpC1TybsQ1VpY02vmZ8M+Uzbx1tPtPmM20+0+Yzv3c+A9DrdvDe8x1Pv4uf+LH/Pf+n//tP3aEu9a0cUkp+/D/73/H0E48D/L7yGSEkWdZBCvjzP/j9fOA970Igqa3hlz76b/j05595286rja8vjLUolbT5TJvPfEvlM/wh5DMt6amNNtpo4+uMy5cv8y//5b/kh37oh1BKce7cOZ544om3e1h/qOG955d/+Zc5Ojr6Ax3ni1/8Il/84hcXX+/s7LxJSnVlZYUPf/jDf6Df00YbbbTRRhvfiJBNXhnh/BNNlAimL4r7YgGIW+MQykLiqOoqWPQ4F9QrrMfYGmstHh+KrYKlo371eCvCU0NKWLweAQIPAShvpPydpy4KuoM+3V6PLOkgCFY/1jpIUxj2WbnrNKs7W+SJZPfZVyjqCj2fs7ZzmiwrmOc1+/sjkkyinGV6fMyNsmZWztFZl8FGStWzjK8fIL3HGEtV1nSKCi0VvraUecV0PGNRSxcOlUpWN1aZj0umoxJbW2xpMEWFkqAljA+PGO3uMz2e4GqLEgrvPMYZqmmFFQKZSoT3rHY7bGysM6tL9ifH8UYuFVUFOBmK2l5JlHNoY8N9SnS4kCIUda13aLdcRH0zsPNGW47mdy3dlHCy/i3uZTxu6JJ2i5tfWc/+JGdaVFSdhI6WSK0o8pyyyCmLOWmSoERQ4RHR+ssai7OhU74ocvCDoFTTSNn7MMetseEXLSn1NMQWsTg3cXIqkYyBA2ywbvDSRYJJIJyE2+rxcX7ZMC0Xc1kiwEXrLg8iUCdCMU2c/E6/gHMb0CX8dCBxuAimOMp5wfHeMfVhju6OKJRkD8ehDwSVu7KUnbVVsu0t5kkDzomTAntTQCJYkimlY/df6OgWUXlISLFQDlpemY3MeDPKk+OxVNA/KeaHZRuP58NcW+w2XwUgIK4VIUSwOYndvIHMszSjmkW1dIw75ttiDH6xa9xhaXfHhIxjFeF/3rs7gAfEyTEWrcRxqqtIVLEohEpwEEhPdShOaqXoZRKXRqs1Fa6F8nJxXxp7N7kAiUQAYX2wmJMRsIp0nyWy1DJievK9BlSx1i6+LxogKhYRrXUIIYMVkAjgr/fN3I0WgEtrQWmJqQzGBDUirbITUMuLBRFMAlJJtNIBeKxjZ76HZduQk/vZEJ50OH/Pojs+rK84NkToto8/i5B44ULHrwg2JkrrQGJyAfRDKKzz1NYuOv4DSSuMqaqrcI5KgXEUlQmFdAHGGYwxJNFyz0TlKeuDUoJzwZJQeFBK0kkTtJB4H56HHSXQ3lPnBZO84PrVqxTzOUpIOp0MIVJQIJREaIVKNFYolDA4oRiurrA2XCFFMts9wMxzvNLUs5LRwTHTMgDzWinSLKUsCkxZ4W0A68LaOQE7tVIngJ5QpGkHWcxQeHpak0UrmdrWJMKz0u3QTRKEd9RC4IxBWRMsCb1EEcBdgKKsQsEYiIg0lTGc3tjgwrkznNveYHvQwW5vMEgVxeQQUZpAHot2SqYqMM5T15a8KJiUBfOiwCOYz3Lqql5M+U7WIU+TqMDmMcaQ6iR+JPDhvmiFcMHiQQiPNyVHR4fs7u4inEEJT1kbSitZSTWld8zLElMWrApLX0RahBAoobDOMZ8XGCqKqmJtZcDa6iqzfI6SAlNW5POC2SxHp2VYf85R1SaAcM5z6+CQF65c4SPf8UG+48JZ8leH9K9XdOc5eV2RDhWnM8FoMmJ6dETS63N2fcgg0eH54B3COyZWsLa+TmotBkee54HEEUH/Ozc5h3fgqjLu21H5JN4rKTzSlkhr8FJRa4lQgsRrpPBY4yidJ8dTYJh7i/eSFB062aXEeclRnWOPj1FXL/P4mXOo4QbeeA5nEy67EeeFYxifJ2GMAYwIwEWzhfmo6rakxOHC95KoNvPmzx9ttHFnfLPkM28VbT7T5jNtPtPmM8tT8+vNZ+46vcP66of415/8bZxz3N7b56XXLn2N2fmtEUIIvvtDH2B1OAjX5t8zn3nkwQd4+IEHEEjKquTg6Ajini4iUW46n/PFZ59/G8+2jTdGUC5u85k2n2nzmd8rWtJTG2200cbvI6bTKT/4gz8IwF/6S3+Jn/3Zn128ppQiSZK3a2h/pOKnf/qn+emf/uk7vvfUU0/xO7/zO1/1/aFLRX3V19poo4022mjjGx1SBCAg1CIdxAJhE75R8hAOh8QYh/El2jlSCWVVIAky/85ZqrKiSfNkPI54Y0Picr3v95H4Lb8z1CdDsVcKiXeOYp5z9vxdbO3skKQp169fw1nH7HhCUdYkWxtw7hTpvefZuududh56kM/MS/ZvXGe2f0C6tspAD7h14yavTUY89Oh5zp9Z58bV27z2wsuoJOOxj3wE1+0xmswo3Qt0pKQqDfZwTF6VqExT5AXFrMAby/rWGkmiKfI5SQobW+vY4oCD+SGJV4jKUk1mmHwOSF558aVQVLaefr9HmVdIpcjSDC0EpfGMxiPKPOeDDz/E2vY21/cPuL5/QOJE0HaXAicIHUipwqSaWms685JeaRGJxaYOh8JJhZWRIOLForBCtEO40xZs+WYsFdUbQOHOSm18W2y1XoBRsRApBEI4bCzmOiEovKAynto6jAKVJJTjMbN8Tl7MUUIBEh87oxOdImOnsdYpeVEAAh3lwhdcEEKRWScapRQyFkq0kNhIKGmK2c20OsELxKKz3BmLjecitES5JTDAi2gjEea79CB9A7mdHNd7h3MW42wEHMKVdc7RKNZIpZAyWJSZ2jCrp4wPD+iXlgSNlBkCwcjBDS+4ZQ3VZIQo56iygLLEdzVaqDh+j/H2RFFHK3QSu2KbAn20dGvOuSkqN4SWhgckY5c1vhmziFZqJ4SWxh4t3Nc4V4QKZJTm9zm/dE1O5kujBmSMXRwfD9bbha2MaApGMpBhXDyIjKBIg2ss72NucUZicW/f2CnthV8AXG/cl0R8v19CwKRUQbJed9GdHkU5ozQWkZf004RECNJYqEVLrGhAtbDHhm7GAGB5EclOzeCdX2ibaNWQhvxiLd0xNrGkctXM22ivEeEacLFgaOM5RiAGG65HA+oGkEhGYIclhpjA2XBPKgSkadj3m2sh1P+fvT+P1S1LzzrB35r23t94pjvGjbgRNyIyMjIy05lpG5PGNrRxWtBgGndhA5YwKqS2SkIUEi0aWg2mq/mjabqRLLWaaqsF6lI3VNECXDTQVBmwSdtUOo1NzlNMNyJu3OnM55v2tKb+Y+3vu+dGREZmmsyMHPYjRdzzDec7+1t7rbX3+zzv876E4FPruRAR2hCiSNWZpEpzPKbqWFKmKlGuE/KMyXDe4X2qChVjQCuF1hqpFEKFNEYdmShkEoW0UmiVyEejNc6HLmkqYGWktZayaajqJrV1CSFVmlJJ9JBSoYRitiqZr0qWdUPrHONBEgGtc/iyApKz2AmJi2B9xPhUkUsIkF1bwNZZ6rbhsUt7KJ1x7+CML7xyCyUNA5ORKcmoyDF5QZQCU+QMxyP2rlzGtg7fWnCea9dvEG1LuX/I66/fgQ+8l9gKqv1TDu8cULoWIUVyOBuNaxui94jwoPpY2mcScV7kOVmeEWPA+YbxeMzx6QLraqJtGeU5Zd2yqmoGGp7cnjBSgnblua0DNhgEASUjSoA2qTIHIlLWDVGorjWMRMrIYjZne3eXZ599lt/33A1ef/55Lk3HbI9G0O7hm4rGW6xztK1lWdbUraW2lrrOEUtJjI6mtbT1Cts66qoEIts7O0x2dmjKirZuaKxlUAzQ2hACtK1FyxxEEkG10gxNxuLsjDu371IuV0yHQw4XNWVVsaW3OCtTe0DXNGzvTUiNNJKoGRBY61mualofKOua3e0Ju9MxZ6cFIkQWswWz2ZKybLh8xdDicbalWq2QBnZ2t5nVKz750pf43Gsv8vvGY8zuhHKs+MS85pdu32O4O+bRazVuYjk5PGTn8QE3Lu5wscgpRQQcg+A4nVue2LtIZmtO5wvKstqs2bQBrHerRMSLtMF0wrzcuJLT9ThiBGhBShQAfG7wQRJdoA2Oma3xNAQhMEIhokQRkQQkAeECclAwb1b8+uc+wavPP88PPvEsF648Sbua8/zhJ/kQLRdIlRkChlR/bX39W18DIsEHXEhrSgnS34mRzGQYk6F1z4/0eHv08Uwfz/TxTB/PfCfHM6PRgP/6//jzAPyLf/1Rfv7v/F83m0gIAec932kQsqvg9nWMZ/74H/px/tiP/xhZlpF18czzL9/kz/6X/+u3PAbXxT89vrlICUB9PNPHM30885XQJz316NGjx+8S/+gf/SP+2T/7Z5vHf/pP/+mHkqB6fG34zGc+w8WLF9/ytb/1t/4Wf+Ev/IVv8hH16NGjR4/vVjRtIMszTK6QUmFtm9ykMjlTtdFY57E+EJxH6JhaHdWOuqnItCLGiOvKjKtzFT3WhGmKVM+TzGsy743qwea3HnpmIyS8xdvFgzchpcK1lv2792hty/HBEdEGtna2uXTtCsXjj2D3trh7+y53XriJOVmgVg2DoFiUnpd+63NsT3fw0TPIBmS5wQw02WjIYGwZqyH3n38NphNibrjy6DXuPf8SufCMyKCJLBYLQi4wOwMu7O4yiMndW56VtFXD+LExKtPkQ8P8eMVoMMUEhQiJtBvqIapIYn+9WBFlEl+8D3gpOD44YToe8/TjN3jq6Sf49d/+HY7mK3xQ5FlGVJ3LaFOtBtykoN6Z4O8fYZoWXQqMVrTDjEZ4QhPJmpR4gUjkj5SSrlH9uXGXIM+NeewI8DfpPOcTMzqhSDwghYkCEdNnmUxiFbTW0jY+VVIRkiglXgqWdcWyqnA+MMxzQnC0MSCDYNU0lD4FsVsAAQAASURBVHX3uVKxf3DIo1cuMyoKiuEI63wqIh1SMkTdOmJHMNuqZJqPcFIQZWpRFtdEM8kpjEhJG1GIJKaRyP+1Ay2uyW8hEw8uRXJCt552VUGeYVSR2pcpiLITEAToIJPrOqQy3UrI1EbCB+jaeEQkTesI1jE/qyiixCtBm4HPJYsoWTUNUsD7nn2aD73vWfJhzvz0BL89ApFIEClS2yxtNGvXMAjcOZFDdK7l0LmsVZesIkjHx0bYSf+tEz7WZL1QD9rHJTeu6rzdbMQXLXT6/BBAxK4VwQMRInZkf4gRbSJSqg15tJ5u68Sf5ExXBJJrfX0+BCQX9focdXM3rgWH87N048Z+8PxagEg022Zr6Uqpd4kzQBSeqq2p2hqlh8xXJWWV3KZmNKSVEiUESgq0jLS+pUUjMEgkxIC1yfG5bj2Spp4kRI8QErMWREil8ukI//XhPuwYf/Ad1vNY6gcUmEClpW1SGx+hZGq74T1N2+JDqpyklUIicD45/tfXgizPyfI8nY/gUzWMTmCLMXT7uQCh8UBZ1tRNi3WeQZ4R2hYjJVorjOzmfuwcqJskMDqhLI1+ckp6tNJkJk9JUcGn65I2SXAK6bpUN44QIz4E6tbSrGrqtsW2LrXWU4K6bViVNUI6RpMJzqfy/lJpFlXLbFWxKEu2x2nvEDHN0YEx1CHgPbgAdYhIZ6mcpQ4eKRVDYYhBgLOsyjn/5t/8W56/fcj+quW9Tz0FrsRoSZEbnA8cHxziThwmy6jqkuWyZHY24+zsjHd/sOTk8Ijs+JRHFxXzF26xbCwv3T/gxTt3kcMhrGYIKTFGE2MgU4pca7SU5JlJIl3wBCJGK5TQNK5lVSYnswsOQsCFmqHOWZy2+FnNpUIzGSs+/OgVrgyH1B98lv/T8TFf+NQnmJ+dMBzkqCzDZAohA2VVErvWEDKS2igIwWuv3eaxq1d57o/9Ya4Nh/w//ttf4t//9ieZz04ZTgoQsqto1k3rrp1BiIEoUosAIwTCe8bDAm9rqqri+PiYa48/wSgfYtuWxWIBUicCPAawFpHrVMElRJx17OxsUznPnbv3+A+f+Tx/+Pf/CLlZcnw2o60XHC8rZo1DR8FQ5wjbpE1aSRAS7z3z+YrZqubk5JRHtre5vLXF2eSU4ShnMUsCR1k3BO/4nve+lzuTKbdefZVoQEbPcjbj1quCF269zveYjOXC8qUX7vPL05rbxRbZ0rF8ZZ/3vPcCq7LiaqaYXthCVQ26PeD3vutxft+Na/xP/+5jbF3dpQgNITrmszlRZgiZKo2d28k21951PYr1fiYD3XVNpetcbkiLDwozIErJsqw4a2q8SOdGAUUAh8eJsGkbpVBIFxgoxSAfcdgEfvX1u1zc2uXGxUtcnfwezuwBO27OJJYon+qDIJIosd7Yk9ARcZ0TXxvD9mTI3mjMSRO43zhmi5oePd4O33rxzJvRxzN9PNPHM3088/WIZ/7oR34/H/n9H94koP2rX/0N/vd/5//25o3l2xxKytT6s8M3Kp555sYT/Oo/+YfnKoMBQlBayy/+P//f/NK//Ffv0Ah89yLLsq7FZh/P9PFMH8+8Hfqkpx49evT4XcI5x3K53Dz+1//6X/PTP/3Tm8c/8iM/wl/8i3/xnTi0b0uEEB4az/P4e3/v7/Frv/ZrDz33+OOP83f+zt/5Zhxajx49evT4LoNDYmRqz6S0IYp1CXaJyQzFoGBiMqz3nM5mtKsVUkkEkeg8zlpCiB3B2hFQxAc88ZsIZB4QeN3Dh+WDc2GueDjk3SB2H9G9vi4hLKVkuUjX1xgCmTb44PF42tAwDJZLJmOxqpgdnXDnhZeZ5AVIwXg0ZHtvD2c9MgZ0LogerNdIlaN1xuz0jOX+fbKtKcV0SoZm+9JFaC3eWpaLORcfv8bF61fYvrSNLytuf/Emy/mSxlpGeovD4xOCd5hJRlY5PBHfWGKT3FgmK3DW4nxFcI6iyIkRnPXMZjMmo5zHrl7k+rUrfPaLL3I6X+FCRGUKq9m0KZABpBO4yqJmNbkwIBVOBQIBaT1ikIh4JdeE9xvOhpDnctA65+v6xMa3EgfE5uSIh85xPPf7DwiLGCNKSUyeMVIFglRG24dIQBCAqm5YLlcsFysYRogeSG2cnHeJdJepHPbB8SHz5YrMGHSWcfvW62RdxRitJDbAaDBA7+0Ry5qxhqWQ1B0xHbt5vD6+9bxeO3flhnFOJPr6y8QQCaSWHcSAkYJhniGUInZual2YjVPX0znCw7oJRBImUjX1+GCARCK6vItEL/BSUUpBIyNOCpZeUruAkIKnLl9iKASr2ZzTVcn03TewXhBJrdTUg2IHnYNR4oOHsF47KpFMojueIFL3BpEctlLIByXlSSR0Go40JqFL2lmP3/msoRASsbweu/XrYe0yJzndg/fnjLiSjadWJkExEdTdPBKhEx/eLDiGjtheM5AxdutC8JAYcV7f2szOGB9Ug1i/IB4kQok1kRlSW48QPcGnhBshJZlWjIajVE49+OT0i566seSZR2qJdBHRlevftF3rWpes2+9IJbsqBWzaXcQYCQSiC4hOrZNCILsKsaGrOCRT9tBDK3Mz/gi01jjvkgAgUos2pRRKJ8ErxEjwHmJIQxhS+wjvAz6EzXqjG0slFTZ4rAubcWisx/q0jm0ISJWEv0S6do7N9f4dQlexQBJCxHm3EYdCDN26CZu551q7aZsXYqRpHJkxKTEtRqQ2eBsQyqALjdSK47M588WKZVUzGk/wqiaEgHWeEF0i1WMSTWzwKKNRxqCVQnTjELq/52Kg9h7rUyua6FN1EUfEhsD2eMwjO1scHh1zf/+U1195mZ3pmDzPaBuXjisvUCYgEJydzogITJ6ztXcBBjmTS3tkUqDcIS99/kuEquFOVbGMHj0aEI4gkipiubJCC0XW7XORlPzlgsd7h5ICJRUxCprGYp3H+YC3LYtVSYyO6EsyLFcGOft4Mi3Y2hrzxKPX+JN/9A/y357e43PzU6plxc7OhDwvkEJRVXVXvSAJsQIY5jnL5ZI79/d56c4dPvjk4zz6xA2mL73OK7duQ667qilrclh0glTczN80DwWrsmY4mVCMxngBq2VJtVyS53m3JgJCK3Rm8N7RlA11WWFMjlQqtZLwqZ1CVVV85oWX+d73vY/JMOPStODmnfuUbcC5gAqOZrViaECplFAou/VX1zWz2ZyTk1OeunKJ0WjAsEjXrCwr2NreYWfvIiEEPvx938/hY4/z+d1dnn/tJerlElTOYBi5d+uAf3f/PhcWFTtbF/ljlwquu4AYjxjuTNBjzZ3D+1woH+fJ8Q0+/K6nOVuc8YHpgA9Ocqrr13j60QtUsyNOj/Y5m80pti+gOyFWrC8f68RIzlcIicjNptbtwUZTx4ACjNS4uqWKgaptaYkY9GZPCqJrYdndFgSAGJDeQRRELzGDMW2mOHQ11eF9mtGAXTPFanhOtOhVTYz6wf1GfHBNSCtcUjc10+mE93zv+/m+3/N+fvljv8Ot52/y/OEZPXq8Hb6V4pk3vrWPZ76d4pn1gz6e6eOZcyeab614RgnFQBWb4/ih3/MhfuG/+qtIUjLY73z2C/yDX/oXfLvjjfmh36h4RgjBZDR+UzyjouAjP/qjPPPMMygpyIzCKMXh0RG/8It//5s8Gt9diDHiY+zjmT6e6eOZr4A+6alHjx49vk64desWt27d2jw+OjriXe9610Pv0VrzkY985Gsq89wDPv3pT/PpT3/6oeeeeOIJfuzHfmzzeDKZ8MM//MPf7EPr0aNHjx7fgYgqkXE+Ah05u6Z0XYjYAEbpB+7JjpQVCDzJsbtuFbAmQddx6Dna+CE8TPg/cNOt35v4/4fvHx5OjFo/ER9+Tgjatt2ICEophBGE4GmqiurkjFE2JMzmuLM59WKBth4zyMmzIdOdLebzBd62ECLVssXkLb4OyChQuWZUjBBGIZxH5UN2L1+mni1YnZ3hrKMYDphMx0wnE2aLFdWypC4bUJLRcIg2ApErTK5pV55ok3vLe0emDcJAcB7btETAmM7XFAN4x8XLl5hMhjjvuXX3Pq2LCKMRShJEcozKNfkiIviIrC1mUeFNxEuIIiLWzt+OBEawIamTm12cc7WfSw4R68QmkiPuoecfvFO86eyv5YK4eehDRCNQWjMYFCASCel8YF3YpmlalquSxWKRCA6R7LxKSRBZIilEcuQtlktWZcl0PMZkObP5gmGek2cZMvUII880AzkiMwOMa6hE7Mit7st2c0eQWg0461JFnihQ67kuIAZJFALbtqCgtQ7bWmJwaCXY2Z7QWM+iqmgbz4CIKkwSfLzHOpeIdTpBJaZ2HCC6BItkPYsx4F0guIhHUnclyj2pfYZFkCvFYztb0DSUZc1KG3ZNho8pqQIhiIRN8sz5FbjRI9avxXR+187wuB4W8eZ1+OBUrtuJPHhh06atI+pTUs+535bJySjWAowUm2PZHN9ma3iwN6xd/yJGUqeRdQJNSqg5DyFSAkjsxmH9+2vRZ73niJjcg+udLISA3IgUohsbce67i40oKaUkEDdz0KjUckwRqG3AhYB1AeU13keCiASXxBjVEXs+BIL3CLokp25/FR2BFrokrMBatEqkfQwQxOZb4b1/6PjSoKVzmUzOyflvhCGGB99GKZXWWyfuxe77xG5TiKRWJamSUsS6gFQRTWqpIpWgdYGqtVjvMcpsxkfEtKB8FPjYVRbohMD1XqBixHSiUwgR61KVAh9CEupIYsUmQcw7sD6tgwhN4yii6MrUR6Qx6dxJmcQsIsuyZlHWVG1LNnDEqiJGsD6VvU+tKzqxUILJDEond7/3nZgbAs4GrHcgZGpb4zxV22CDJwiB8zDKCz7wnqeQMlCulrxy9whNpMkMUgiy4RhiEhQJEVvWmCwDKdA6jfNwNMQ0DRydsr+/T1s2HEZoMpnaoIgkyhklCc6n8vmdECY6wSuG9B/dfpJ+ThUJQoi0rWO5rIjWEkOLwTFRCnKDqWv8bIYHPvDoJT5++QK3Xxly694xgyInM+kcV3WTSH5SVS5IgtCqrjg8PuaVu/v80IfezyOPXuPyI1dwn1HEQKoS0Qn9aZqHTTJijCnJMMaIdZYYwWQZmS9YLlbUVZWS/aTcOPW16VoAhVRdI82V7vrmU0U1W7e8fOs2r9zb55lHLzI0gqqpWVY1RgjGmcG7FmFSdQDZJTp6H6ibhuVqxclsgTKaLDMY3SXqRQhRIJRiNBhx7dIVDJJ7+/fhtsJ6hxYGYT3HByd87LU7PLGsePdoxLu2DaJxlNMB1XTMi2VFe3zChaMTds/mXDOCoQ5clJ4dEbg+HZErRRXBuYgNkUKETtA/d8/04HJ2fkfsnn7wYogxfRepUEJiW0vlHa13qdLERvBP51hs/ltvLx2979NGqhUEEahdQ1k1OJmzKzRC52yrgmuqobvVPHcj1x1Vd/1z1mFMxiNPPM5zP/RDfOLeMdn9Uxp1Qo8eb4dvpXgmnnu9j2e+3eKZh89uH8/08cy3QzzzyJXLXLt8OcUzMbK9NeXV1++sNxQiqfXbb33i0w8qGX0bICK6NfTOxTNP3XiCJ594HKUlWiWDy+HhIb/5O5/EddW76rrmc1/80jsxRN+xSPf1oY9n+nimj2e+Avqkpx49evT4BuGjH/0oH/3oRx96bjKZcOfOHfI83zyXZdk3+ci+M/Daa6/xkz/5k5vHzz33HJ/85CffuQPq0aNHjx7fMVCZwcWIbRtiaNi0TIrgqhpR1YyqGiGgqWuUEMiYAngXwsY1gxAbEu0txYGvMQn6PCH3QDB4ICOcf10KUhWRNaNJIkaiAGkUwQWq0xXNacX81f1EaATPeDTBtY7QWoRpMUqQaclq1VJWNa522EXENzUyeq48c50bz72Xk4Mzju4cE71i79IuZ+YA21iK1QrvWk72D1gcHTF7/YD5yRKkZDQouHzlAlsXJoTgWa2WVIua1WmV3MAuIjONEhIvBCA7csIRvMPblt3hgCcff4x5WfGZF15gtiwpplsIo4myc6YSk7tdCqIWCBVRBGRVEUgtPqKA5I/uyPCOAJAxIGLonjmn8nRDukkSeYtT+qbz9QY+9SE+oCODQhAEl9yqw+EATyInrPfE4BFAWTbMZktOT05RXUUVqSVZnpHnGcH75FgWnsa2zBYrtqYNxWBEUzcUOiO1ztKAQ8ZAoTVX8i3sasWdOKfyLSORKu/I7vCUVOAjbZ1ECoVAd2KCEKnFgpCa5XKJ9oaybmmrhugcWa549MYVTo5WnLyy4OTsjImfMIgFkdR6omkb8GmcpZRE7wFJQKbkiegQIuB9wFqHt442CDwKJzQhgI0ClGZQZNzYGlOenbAoG+rRhCIrCLah03+wIWz+lpSpddiaVIoxYr1HrasZdckYqQNZ54zuTp2UDwi86H368G7prQWPZO4OdN0ekkBA7EjANHEEAu98V1UJtDZ0o0/qlrZWpwRSronO9fRJxHeErp0GyK50+0aSiiQ3dFzvF0nUWos8a1Fx80/nCo+dU9x3JHmMYkNqRrohk4KoNCbLKTJHNILcKETUKckmOAa5xnpBaSPLtmUgxsSoCUGmldfxaiGmNjoiCLTSHeEayIxAk8SbEAKo9SIEUEipO8d5xHcVkUI3ltaDNiaNkffYpsF3xLAQgiI7JxMJEFLRthYVBUomEllnKrUTiKn1g1QKGQXBWxarEh8DozxjmGcQYNk65quKurWM8oLd6RhDl7ClDXXb4ILDyIAWgmXdQEzz0WhBFh60qvPOgaBLlIq0LiU4radEdKkljAup3Zz1kcJ6cgmZFgyMSaXm00LFB09lHTbGriqWoy0tNgjaAKvo8E2Lsy5VyzKGQkmiUjhrqeuG1qfNS8aG1rYIYWhdoG5aTlYzKgtSGEILAyX543/kD/CB995gJ8/4hf/P/8jp2RmSAM4y2b6ACy4JcSFilMLkGVGkeTfY2WO0u4uWEic8s6ZkUbWcKUWbD3FtCzGihaRQEhsChogiEvBJHHd+rf6l+WFbfLQUuWY4HAKSqnbMRYWvKqS3yOjQ0fOBrS383QP2v/ACr1QLnn3qBs/s7HDryhWef32fySAnU5LgHfPVKgl8IpJqQAgyJThbrjg+Pub52/fwQvHIY9e48fQN8q0pIsRNwiAiifhr4U6oh4U+oqcuS7Iip8hzJGCbmlZJlNEgoFpVTLe2mUy2GYxGNKsa532qVKEFrnRIIQh1w82bt/gPL7xIkUWe2NvC+sDx2RlPXtzj2t4EqtN09YsCFQWSgHWOqqmYr+Ycnp4RtEKYJI5lWcZsecq9oyMOj0/5/g99ENFaVrMZi9mMfDhkOVylNkG+4ujwiC+9do8ryxX3horHxpLHpmNu6ZyXWs+/fOU+j00uIV94lbr2+JuvoKTHb2nKcpuxb7j32j5nsyWrKpCPxyB9R7B3LubYXdG7Pe3BNfp8AkcSWkPj2d29gFKSqq6Y2xbnHALIlEyJBsiNuByJyLBOAYgb0TZKATKimiXSOsDQxpzXmoYyRo5zickn/C8HLXnTpBZXnVIkRIAoCFGxrsphdM7WxUtMn3yWR574Eo/fPuH+0YoePd4OfTzTxzN9PNPHM308k679P/Ch9/N93/McSLmJZ5ZVyY//9H++aa8NYJ3jWxk+JkPBt1o8s7W9y9/6+f8dy6oB4PXbd/nzf/l/846N03cchEjxTNeasI9n+nhmM5R9PPMm9ElPPXr06PFNxGKx4JFHHtk8Ho/HvPrqqw8lQfX46vDcc8/x8Y9/fPNYSvk27+7Ro0ePHj2+eghSpZG4cbukChYhBIIPyLZlXldAR84J8KFJ7sQNyfa1CQDn8TV7DTsdQIiHhYLN9xEPCxZrYlPG1Mt+tVpR5BmZMeRCU0rLYHtMVuS8+tJNYmMxWUZuMrwNvP7Cq0AknwzYUorBdEreQFZGhnJAOT9lOZ9R24rRhS2euvEEq2rF/uEBh/M5OsuIPtAsV7z46c/zxLseJ0rBalVxsn9MoQeMhwNAsJjPWS7nSKXQ2pDnhroqER0h930f+AAvv36L+4dHnM7m7GztEGQicYNURLHxqBOFRBhBVMnBG0RH3K65IxmSu3Qt8sTklwok0nRtgP5d47yteuPY6ghalf6AdBBcS7tYUDYtIyFZ1hepnKd2kab1nJwtOJsv8TEitML7tiOIdRI0fCKavRAMhgNW5Yr5fMGVS5dSgkMnnBA9BEnrLJmAiYFPHh9xZ1BTFwP2MoXzFi0ToVxXNdvbY973Pc/w+PVrtE2NkTJVU5EC1YkE5WKFUoLHnrnGpeuP4FcNbqfB7zZML63Id0cslysGo5x8YABF9BCt49LOLrlUBO8QUuJCV93GB5SUeOsoVzXlosF6z8rZRKoLgQIWrmaQax7f3eF9V69x+xOfwEvNcHeARKAzA6TzHKxCKb0h59Zkfjr/Ae9s18pFIFBdq4UH5zCSWkCkBx3hL1N7NSHTHFtXKgIIPlH+CJBK4Zyn9a5bo5DJRMQR5GaerR3i63Yf6fwJQghUtkWSKslmWm/Wt1TJwehi2Hw3pRStbXFtIvWllKzvnKVMbS18CHjfVRQSgrhWQYRM8yym1gYpAwrakKoN+UA6F5VlsWpxLjLZGpFrTXQOLZIopyJoNJqIFAHnPbVvCEKlfbTu2lvEkFrgIdA+OZIRqdpRpjMkIglFje8I1DQeUgaUkptqFFIoEBLvHMvlAoDMZGkeuYCNsVvbkiYG6rph3brDRVhUK/KsQGtN8J7paIgg4L2jKmuMsUDnqHXQto4QFV4EchlZNI7jRUVZN4Spwpg2nb+upH7tUrKSiKklm/Vdqwk8xkmoGuhkokykcxpJSWi+9UhtEEoipCRkmtC2HUEZWC6W7K9WDIqcyWTMKGpOzxY464hEcm3wTiCFJgrPatUyyAq0Se5xYQMeReUCp8uK5pXX0NEw3NpluLNL4xyVbVObESFprCX6Gtsm96jJc7RzBB/wrkVKQXXnNu3hAVpGMq3JioxMa3KtuXj5KsvVguViznK2QBcFdVVifXKWD08XGFWQVS0ywJFvmbualTC05IS6wURBoTSZNDSNxQRBhsSSWj9opfEqEIIjxlRZQcTUqoEQcdZibUutBK1zCBsZobk8HFD9+kf51D//Vxy8fBMRA6dPvxv1+FWuDnOKrZytIqeQmugC8+USKdbrSqU5IsAIqFcln/niTY7nJcYYppMxxXBEaOZd+xWxmYNrRXFTZaETY402nJ2dsru3y2BQsLOzTdu0lGWJMorpdErbepqmprENiMBwPEjVXkIgjyOqRYZrG1zrmJ8c88KXnufRoWHC41zf3eKzr99j/+iAUM35gcf3CE2TBOzOvltbj21bbF2xf3SMs55CGaZFAZnmpddf5d7tW7SzE/Z2pxRDiYsty6okOkVRTChXK46XSy7WKx556lFuPPIDXLp4kX/5pS/wmS98nhcPz7hdtgwuTtlerrj32m3iomI/Cv71F27yIxh2rj2KlYH//td/k2gd0zxnb3tKVVdJcF4nRorwIGFDKJRUhBjw4WFhU4jk5g7Bo5Qkz3OKwrJcLSHGTfuf7q6AtcqfdmjREfwQ6VrD+Ai+ARnRGYyGQ8wwY+4Fn6oNy9pwaQDfZ47Ycg3CpZaXQq7F4ZA2WCI+BiprgdT2yWjFY1cvftnbjR49oI9n+ngmvf/rH8+cP2d9PNPHM9++8czADPnlf/jfdPFHZL4s+RP/q//iWzrx6fD4jBDEt1w88/qtW/xv/8bPb855+DaqnvXtAAFdPBP7eKaPZ/p45iugT3rq0aNHj28ylsvl5ue6rvnZn/3ZNyXs/NW/+lf50Ic+9M0+tG9J/N2/+3fZ29t70/NbW1uMx+N34Ih69OjRo8d3OgptCFKdcy927kmRyDYpu3LhIVA1FYuyTEH82rh47rPeVip4wEie5x7f/J71y28UHtZkQjznqgKss29JZr+VcJFaJaQ2StEnMVqFltFgwGR3GzPMODs4QkeBQmKdQ2mFyQzD8Qjalhf/4ydYVJ5VHSmGW5y8fJN2fkpoasQ4Y75YISSM8iEzZQjOgZRIqcjzASdHs9TyoLUMdLFxq6qO0BZKJ5GD5DzNlGR3e5tLe3vMy4rZqsZFQV4M8SG1uWLd/qprEdX5nvBS4HUicB+07CCJAz4gbSKnUcmNu3HCrs+PeOBm3Zy6yNo33Z3GjkTezAfxwC3fzSfEAxfuA4dsEqVU8ITgIQRCFDQRmggWWNUtZ/M5y9UKpVRy3m0EjNgRyTqVAPeeXGdUZcVytQIpMVlGEAIfAzoKfFAMRcZESWT0vHR8zOJijokKQaJCUvH75ObNjWaylZMZ8C5H6/WaSCS7D5Ht3UEaquA4uXOP6CLCRSRgxorLj+5xwe+gjUApCEHiPTStwwwyokzlxjMpoSvhTgARJRIFQRB8oLUe7QMyprmtomLlV1yaDri+t8XOaMTnz5ashiM0iqYJlNamtlciuYK9C6li0boUO+t2WOnvuTaNr5SSTBqcd8m1GCLaaJDnznuMQNdGwKcWYDEmwUBIgW3dpj1EEGCto25TKXClFEanCkapGlFAdOS97Lo6OO9IpDT44FlWFUpKsswwyHOU1ul3N3a/BwLhumXJut2bQGzKx8uUVUTT1KT2GOl3UqX82FUeMrTe01pL8J4YfWo/pzQRgQ1wNJ9zsippXYDa4csaokdrg8py5m3DvPaUrUtJM2XNOFNoAcF3paOkAGT6/JAq80gh0IJEknXjFTsxzzaO1nnqxiIVaCU3Yo5WeuNsj8rgnUtErJAEqTk6neNCol+lUjif5lqIYCOsbINS6RiWqxVGCorMpHXnAt7Nur1KoJVCSsHSenTVMBgNmVeWk8ZRNw5Zt7TnXPdIiVQKEZIb0+iIVGwqVQlS1SOtNUZrnAhkSgHgkbQxoiNEF/AxYEMqf++Jm++UD4aoLMMJxaqxBCERSiNCxPtI01qqpsV6m9yeQqG0IiCo2oaTswXHiyXzpoFCoxEI1yJdu2lRIwM4mchjZz2+q6akZJq3zjrquqJsHXKyzdQGLl88INMi7dGdYGatZzQaErxjtVzg8J2QrTBCkDzGgZaIlIJrj13nYt1wd1WyP5/TOreZzwgI3qMQZEoj8wxjTGqLFJKrXRlNMRgQQqCpG5bLJTEGlBIoCaowtMEjvGOM4Oill3GH+8RmhR6PWR7fw01Ta77hwKCz1D7Qe0/rLFLITiCUiE5ty7TGe89rd+7x4p1DvPdMJ2MuXb7M0a0FqiOc6WTJ7srwUMWCtXjg2pambZFaMxgOado2iXs+sFyumEx3cD7QupamWlLPl+gsQ2cZZBlZMcSYDJVZirDi0vY2o8EIpQ2ZjDy2u8Ph2SmrsiSTF1EiQuxaK4ZUBcH7gHeOs7Mz2talah55QSbhPTducO/+IU5KtiYFe+OCqxd3ufbINU7CAUJq6qpltZqzPJ3hg2f49JM8/f73oK8/xr958RUO4gKXD9ibbnF6csr3PPU4P/KDH6Iab/HpOOTFGv67T9zkxt6Iq+//PuzpEau7r7M8m6Mz082fSFDrdZ02RaMVWhliDEgvcM6mNSnSPiilYFmuUpJhjNR1090rSdY3aZtGOufuAdbnJ8qujkoAsW45Ex0hWIJviUYispxlELxoHf+8mlMozXukZ095am+JUeMBJyKt97iQ2oK21oOHCzu7XNzb5e79/Tfd0/XocR59PNPHM9+YeCadyT6e6eOZ76h4RghUkfPn/uyfYf/gAB9gNNkiH0z41X/7P3L79q03b0bvAFwE907FM1XLP/zv/iFVWXYJqhIfUoJZuVpRVfU7PTzf0TBap6pkfTzTxzN9PPO26JOeevTo0eMdhHOOf/yP//Gbnn/ve9/L4eHh5vGHPvQhLl785jr5Tk9P+fjHP/5QmddvJCaTCT/4gz/40HNCCP7kn/yTXLhw4ZtyDD169OjRowdApjQBn1oI8IAo00qT5RlIgdG6c08HFqtUkndN+T7ggx/0Re+e2Hit38pkK+L6+S//nq+ENwkBG2flW7wu2BDyMaZ2EFIYtEjkrBBw6dGr+OAJq4ZYWax3CCUxRUZR5JgQWNy7Tx0zRD5hsLONHBRQZURrsa3j6OCIPNPgPVoIHAIhQWmF0JqybnCNI1hHrg3WuY6ITGSa6gjoRN4GptMx29Mpg8GA2/ePCFGS50OMcTRVhRZ0/TDOM/kpcA8kgjaK9Tg/CPpFiEjrEZkiSpUEBiGISUWgM75uzkk8P6Zx7ZHaMPbEN8+I7lAiIqZy4SKkY4gdPyQIiOiRMSARWARtiMnFKRSLVcXZbE5ZlmileKBWiEQQh0CnFxBiRErFsixZrFbEGBkMR8n911pEDATnuFSM2Naa2rXcWc5ge48spmo6QXfjFbvPDB4vHFF5tBZoJVFKIlVyAEcf0LlGRLC2YXW66ghpiVbJ9WVGmkwYhPCIGLA2Vf1ZugrLhKzrpSBi+rwN8R3iZpxiEDifEjx0TMW5A6mM+u4o5/rOBEPgZD6nQlJYx6KyLJoGLcBIgermxlpgCzGNnRSJnCdGnHedOVhgXSL+10S+8QGtwoPZ4EPnX0yPnbUEHxFKgZQ0TUP06XxFkYi2xrak9g4KqV1qJecTkSlkmvtrIj+ti7hJOCmrGqkEeWYYDgLGGLz3BJ/GSyn1oFJCTI5pWJ/LJCitP18IQd00adw7USH4tCcIIdFaU7eWpm3wwRFJQgkqJcm0LnD/6ISDszlRSLKJQzoPwSGloHGBZdWwaBy1TW3YmsbiXQTdLchurfmkCRFIxJ4M3XoNAb+eA4CWitp6qtaxqlu0lshu+UUCRhu0lGipyI0hyoiLAu8jzkPZeqzz+G6fCSRS0MeIjVDHSHQW51wSOkNgOCjIshwQNHVN9MmxXuQZRZGBA2ElOkRWraV0AR8FpY/4uu3WUPpeWqekLCUlJoDp2LmU+BQgBlQM6BgwIuBIAmiI0EZwLpGH1nlsiGhjCJvHoHWGUJoQBa11IARKaxSC6Fz3XkdjPahI7jxGJue2j5Gz5YJ5WWFjZLK7w1DlFKMxZlhQuowVyU1vYzovoiORCWk9SpFI87KqOFtVMNpiLA2XLx8xLHJWzqcKXUpR1xXTfERR5AyGQ1pr01qUEonE2QYfHUKCzAw7ly6igqc+PMafndA4l4RCKTft+yQCLRXCpMoBjVQbZ6vpxB4QCKmYTieMRkOsbVESJqMxJ1LgrSWUNfHoBGWblFQ3yGhdTaxKlNLkUmGyDC9EGntnuzW1FgjStSvTijoGDg+PeP72XZ6+usfVR67y9FNPsv/6TXyIiYxfCwLrJIDuGvPQvYCAprVI3TIoBkmIjGnvqJxjurWbznVMrXNC05L5bryJKGHwJKF+ZzriXY89yvbWFh7wznJ1Z0pwFluXKFLbwK6uA+v2PclZHJgvFrRtGn+jFdK33Lh2jQ+8970Mp1vsTScUUlJozWAwYDCeYMsV3jqaqia2lrpcMT89ZVUu+cB7nmH7ylUGq5q2LEEozuYlSMnVy3sMHrnKlc/e4eb9Mz572sDWFk9eu45VgtX+HeqqYmJMd647Mr9L4hBCPhBOWe99D/bE9JJI7Rq751xXpUNsPo9zFWjWinJ3HxFjWgtSgJCbaioxpr0QZ4kyQmGwQXMqPL9tNe/yhpH0XFQe04neIoIiMBAe3X0HGyK0lqsXL3Lt6hVefOVVevR4O/TxTB/P9PFMH8/08czXFs889fS7yIqCKCSXrzzGeOcit+++TjEcYnSqnnL79m1W5wzt3wyMx2OeeebdSJN9U+IZu2jZ/+IXqZ1jtaqwtmVUFPzGxz5GufrmfvceCcYYdNP28Uwfz/TxzFdAn/TUo0ePHt+C+Bt/42889Pif/tN/yk/8xE983T5fa/0V28F9+tOf5o/8kT/ydfub56GU6m7MHuC5557jl3/5l78hf69Hjx49evT4WqCIqHUwKSUh+gekmpJ42DiVM5MlF1NMDP+DcsEJDx7FzvMUN8+uKeo1qfiAKD73++c+7/zPD0obC5CiI/lD97kPCAWR3vRlvmncuCaDc9jg8XnOICtYns5oouUHPvgcPgbmdw4pqxO8tSAjQka0hInWGGFwoy3M5es896N/kNcefZTXn3+e+zdfpr13j1effwkjBblW5INBSk7oxOnatQiZXIm+canlhPc0bZsqnkiVCNTOIWpE5Ppjj+G95/7hETdfucX1G0+hjaZpa+4tlqn3fBBEL0ClCiiI7gzElDwR13ZTElm/Pu+6tXijCErijCba5FINMSI7Evm8iNN98Ho0z/17/sx3JE9cPx86oaB7Q7Jfd78XEMEloUBKSudZWUcTIkJrDg9PODw+Yblakefpfi6GB8SFbV1yE8eAiwHvI7P5DKU01nu2dna5d/8eVbmi0pJhCFydbDPNCj53cMq9asWenSJcoG0cRVYQOvuXEJJVteJ0fkLTNAzyHC1TaW0pExHmiUnUQRBdOoYoAAmqI/fpWiQIHNEHFquGs3nJ3YMDti8XDIa7aJlDSKJEiAEfPd45nPVdgZhE9nbFCxARWmAgJU9sT3nm4jbl7JB7x0eUQTBcrBierThdVcjoyVVkmGf4GNE6zbG2Se0AjNYopaEje9Zrq2mbdA+9WecVqRdYt45D3Hx/JSXBJedglIIgBGXd0Dq7Sc5I7RW69SnlhqBbn8/MaIRIFRnW1Qucc5u2DW3r0FpiTMu8bjBZhm1agksiQVEUuC65JXbfU3VtI1zXtkF11R6SoMDmvZH0r7U2OSCDp6xqrPdpHUmBUgrrPHVrWdYNh8cnHB0eMhwMmexdZdB956pJrXKqtqJ0ERcEEsVQg/cSokErSSsC1jucD1gXEAhCDJ3WF4idy3C99xXS03hoXaB2kUKpTlxMk6JxHikjRkOUBi0N1nusCzTWEVSG9xbXtcAQWtF9czwRmeVUdUPjPEEpjMkIOsMrncbLBypb4V1LS8RKgTaGCJRnc1Z1jTYZRZ7jpaKJqSpCiMkV3y5LsiwjzzKyEDEuoJRCSIkPEaIkOE+sbRLknO/a9wl8ELimomla2taBUEidqnU453HOURSCDDAx7QdCgDEZuTGp6pNMEzeIVPmgDSBjEqyUMZwu5qzqisGw4IMf+gCXt7YQQlE2Fn1LsDheYNuGNlra4FHaPCSQSymw3rGoWu4cnuIGW0y39njsiYq93W1md/YRMs29+ewMYyRZkXH5kavceu0WPsaUFCYkq8Up4wvbaG3IJmOy6ZitPOMkBtQdQzlvMCI5+KVWOL9OekpEeGYMeZZjnaP1jsFwwLJM4yeF5Pd8+AdYNJb4yk3a1YLLj1xheVaxqir27x6Q146RLlgVnpU2ECXSRbT3GAuDYkQUisbVNG3bCdsyXStCJEpJZgxt6zg7PuA/fvEF3vfuP8yNJ2+wv2j49x/7DWxdIUktGgMPBAI2IvS67UBAKU3btMQAWZaTZRlt06Tv1zRUVcVoMkUbw3I2Q6lA9J6mKglNzaCYUNY1SHjqqcf50R/4XhpnmZ2dsWhWPHLxCtM8o6lWiNZhdEZqayEJJIEzxDRv5vMVZWs7gTFSrUquPvIEP/5Dl/hwYwn1grZqODubM1vOGU9GHLxSspzNqBcLpllONZ/zmU98grOj+/y+/8PP86M/+P0oA7/zhS9y53jBsgzsn5Xsnxzx7JUtLk8zTtwei5gzywpsphF5lpI4IkShkrgv0z4iokCqJHbGEHGh3dx/pUoQnQq+vkZ35THWv7d+Lp6b3+L8+7rnYvDE4JG6K1q3/h0REcGhm5bWOUIhQWUIFXnJT/m3qwYlHM8OPCNhCFGjCUyE58kBfKqMGClwKOJyybuuX8M2NZ9/6eaXubfr0SPhuyeeoY9n+nimj2f6eOYbFs/8gY/8YbSAncmIqq34b/7e3+MLn//cJg/zrbam+OUeiIf+SatlnRD3NnjiiSf4+b/+N9BSUH+d45myXeFaS+EdRQxoY9i/f59f/L/8rbc9ph7fRAhBbgyuj2f6eKaPZ74i+qSnHj169Pg2wM/+7M+i9ddvy/77f//v81M/9VNft8/7WvG3//bf5ud+7uceeu4rJWH16NGjR48e3ywEQiIHITmkSe5Q71pmZyVlVRG9x2jNaDAi00lMD1+BrJIbOaArF3yO9HojF3aecH4bin+DGOPDZNlX80vdmyIQZCIm5k3J7tY2W/kAU+TsP3+T2f4B9arEBgeZQruIazynx3NOTw5YHi+ZvPt72L4+4otyyN2tPY4vXGFxukC+eg8jIkJDHEj01pAiSGzdJFLWK6KUuNal1gZEpBIIB9EGEAqvPShBlhmeeOxRFssld/cPuHf/gN3JLuOiSE7TJqYWCj4kcUGlBAPkWqBJJZqli0QFUXfffTMakax1lGMISoJRBCk60YH1WUOK5ML93WP9u+elnERkgEjEJyCU4XixYlFVtN6hjOHk+ATfOkbFgK2dCUoZglDJlSbANjVVW9M6iw0eESVniwUmy6jqluFkwvzmTfYPjzCZ4cNbQ7ZsQ1PVfPyV16gF1MFSe0uLpGxc1w4jMm8qLoxGPHntUbbHY0aDAbkyqYWY6HxzIiKU3BBbEo0LDh8dSA9x7bALuNjgbKB1gtYGyrqltiuqaslsuWA0HVPiqPA0RGIIVE1LVbfUtSU6ECTSyhNYELlaTHhyOOFRrbj3+k2Wdc3RYkl77z6v/odPcLyskDFQaMl0OqYNLhHpfk2OR4xKLcW0Vmid2qK51hKCozAZxmiMVggEq7LEOwcdKS9kJDOGwuRkQtHYFhcjLkaWTY0LtmuvkP6GEB05TxLE1mSTAJTWG5FPCJHcnSK584UAGSMx6tTGoPE0Xdny1EpF471DENA6JbKkFmTtg3knJEGlD4ykNmmha1GQnIICpIEY8B6UyRE6bsYpMwYZa4L0ZMDOeEguLyXBpapYnJ0RInghOD5d4mxFFIrWp7Ymx77hbD6nyDOs8wQXqeo2CREdg9e2LSEEhErnQmuVRBigIO2lXoCXMMgHWGsJLlVE8sGjjEIbSS4EUkSEUPgIZWPxPrVBix0xG0NIBnfvWdQlVbCA7ByOiqYTiaUAfGBVVljriDGSZ3lKLJKSKMEFx6qqUVqTGcNEG9q2ovWRgCBTpnPZd0lasWvFoyRCKmJXmcC2LdY7lJYE55JgpFL1Kmfb5KSPgigVVVPh14IHoIRKglP06XoW0vfMMs0wLwiupWobyrYlCpX6ZQgQUtIoODk8QCnFYGvE5Z0J16YjiJFlFTmbjLhjDMuqSSISAde1JAzO0dZVcqGLiBWC+2cr7LIh3xuwvXuBS5cu8/Kd+5TlikVmEAiOjk8oRkMmW1O29y5QrUpsXWPrGpyjLRuKaYGYbvPPf/O3KIyiFNAMUhWO3GQUeUGeZbimJZOKQZbTFjnaaKRcV2hQOO+Y7m6TFwN2trf5sR//CK/eucftO6/z2sv3ePzG07TlGcfzJXfnS54YZEgRMW1LvtSYrSnVYMC8bTmYzRlv7yClpK5qZrMZRTGB6AkibK76BI+MDhkafudzn+P7nnuKQr+b555+gutPP8O9F75EuZgzGQ279Sk2+0GIDxIAUjUTteGzm7ZhMCiSOOw9ajBgNjtDZTnD6ZTtK1eZ3b9HDC2iU6aFErjgGBYD/sCHfw/Xd6a8eOcu+6enRCKXveXKKIcCqpNDFlERhURozSDPcK0nFfUSzBcrTmZzChkQmeTC+BL/r3/wDzleVuSTKT/2P/sRzKykDjAajhjrAa/7BoVF6YilZffaBW7d3efWp57nH/2LX+PRyzs88dR1Xj0+5j988kUyozhd1tw7qfmR4UWeGL7O/vKMhV2gh8PUCpJUJSIfTohSEkRA4HC1YHtnm/FkTFHkvPzyy8l5DBAiUimUEIQYsbalqhsuXb7IYDBACMHBwQFK6TdUndGbfVkq0r7aCbHDbMhqVeGiTa2SlCQGDzEgRI08OyPbuoTNR1Q7mqA9XwiKuDqhPDmmyAK4mscywYenOX98POFzy9c4iYFWp2unNhKhBKX1/wn3IT2+G/CtFM98tfjdxTPd79LHM2nI+nimj2f6eOYbGc/8xE/+NB/5I/8Zy9qCq7mwO6XIDNYFgo3Uzbl4RkLbpORHqVLC1jqe0Qhy4J/983/C57/w2bddbVXV8PIrr31D4pnf/vf/jhc+/+luFXemiPC17t49vpFIa0n18Uwfz/TxzFeBPumpR48ePb4NUJbl1/XzfuEXfoFf+qVfetv33L9//z/pbzz99NP8zb/5N9/yte///u9nOp3+J31+jx49evTo8Y2CiBBF7ByRieALpCAyRIFWGqUNWqmulHBy1Yjz7Qc6PEwXiQ09/EZHoNj8L5kt3wpv5QBcC9xrZeGN7/hyrkGxdvR2yQWyE0VcCKzqmmk2xkiFXS0JbQPed0cvIQa0kBRZxnA0xLVQzk5Zfelz7I/GzJdLWCxR0qCM5EPvf5ZnnnmSS1evcPOVO/z2xz9BVTcoKbh4YYrKNKtVzXJZ01pH8GkMQgwQLa52DIcFmc5oasvp8SnCR67sXWAy2aKqV1R1zXK1RJmummWM4MOmjHOU6WwIQEeRzmsIdMw2a4ezcg7lPV4rvNF4AYJUQlsg8EJ2Jvg3j+tG3IlvsHBuHsa1gb6bABLw3Vx7cN5NCIgQUCLNPRfAe4G3kdl8nsrQh4AxeXJedVVVTGZYlUvKtsE6CyIRn0Jo6sbx0iuvozNF2VoiMFKSH/+eDzKqPV+8c5eb9+5QDAqMlEQXaFYNLjrqoAk+sFyuyLXk5PYtQu1TQkSed+IJm7YC6ySNvb1dVss548mQ0XhAYXIO7p1yOptRW8twMkpVbTz4EPEysnNxiA0WT4u3moVtWLWWpnVgPYu6YdW01NbTIjBCIGPAuZaTyvGevV12B4aJjBwdL3CVZbSbsXdhl+0b19ldrdBCkCmJUcmdLzuyByJSPGg9ggQtJGtZQwkSMd65wBHgXVdFB9KeIMEoiVG6c6Pb1K5NpDLhsRsnrRRa6nNSk0B2BocYElnPejvpHHaqExFkt17XZc3X1Y9it0ZTGwkFXVsL2Tm1RefwXreziApkJ3YA+K78fAwR7zwEUDK9mtaiSK0tNlUj1u0TAo1zzBZzThclJ2cL7h2ccDo7Iy8KjNbEKFOriuBorU8iYV3iXY2UEusDIUjatk2iBzGV3hfJmah0RmMXhNi1X8gyhkpjrcV5h4s+udlJrvMsy1FSEUSSAVUIyJDWWojQhkj0Io2ZgDzPMEp3JH8A25B5j4sB1+0VmTZJuBEC7z2ZtxhS0lKom9RiQKgkJOSKkclIRacc0jZI33bCDoQgUUKidfqOIUYEPhVxkGBtoLFtqtqgBU4CWnetShLpGL3v5oVASIHM8+7cRlDdHHAeby2NbXDB08aWOoAVHi0CQQZ0JokqQ0SVKmRYS71qqBuHNmB9QMfIMNPEKGhscsr74PCxEzRR3XxMgjpRIkNEI9FScvv0lNNlyXQyxkqFyAxKKmJIFYBH4zHLut7MKSElk+mYNjMs50uEkihrCXVNKTX7yxVPPPE4ZBoWc5z16EKQaYGMkaa1ZEIwNAaTDwjRAw4pA0YrtNJok2OKIdlwwulswWQ8YndryoveEa3DOscsWG5Kz/bVa8xff41V2xDygubSVc7GQ85mZ1hbMSpSS6W2dTRVS25sR+x3tVBUGg8TYaIkr996jedffo1HLl3m2Sev8+xz72V27y6HZ6cPBNd1mZROSOwuLuvtYLNPtU1Nlk9QmUEHT1NWaKFo6xVSC8xwRD4YYGsI3mKUYrE8oxgOefTxR3nvc8/SugopA5NBRtsGlmWNLDRDo7hw+QpGKO7uH3B4cISYrXBRIIVCxsCiXDBfrYhGgovkA8WsXvGlF19kXtboouCD73sfy6bFqIwQAspoTF6gfWBhHVeuXCaflZTHS/79Jz7Ff/ln/jO+970ZTWn5zV//LZrBiNlizvHpCUoEdoqMkdbE2hN8xAZHoTRbW9tsbw+pWvtA+PURpQ2ByKqucNE/2HslBOcIUSBNRrE1IbtkePTx62RAOTvj9ddvMxisBdxuu1aiu7eAqqoZKMG18Yhnd6ZcqBe86OF2G7lNuhVRsTunPqCqJazmUAxgNCI0Y1ZbgZeUYDFzjF2J8HDZwu0q5/uHGY2USElqLyJBKIXJcrZHk7e8v+vRY40+nunjmT6e6eOZPp75+sczab+KKDyts8wXC5ZfRTwjpGTV1IT64XjmqWefY+viJXzwaQxV14bUGJQy+OgZjUbcOzj4Xcczp2dn/Mff+e10ls4lojjvOdq/T9s0b7nH9vjWQezjmT6e6eOZrwp90lOPHj16fBfiYx/7GB/72Me+bp/33HPPce3atYeee8973sPP/MzPfN3+Ro9vDj7xiU9wfHxMWZabsuI9evTo8d0GqQ0xdkQaJFGbBySuVipV5ZBJJFgHjm90Nz+Mh2nltyuHvnnPW37Ol3uf4OEo9svjze0iuv91TzZNi20twTlUkJ0zMmBtQKJARJToSFOdk+U5bb2iuX8b/+pN2jaQR8idBwWXLuzy5OOPce2xxzg6OMV6R2NbBnnG1SsXufroRY6Oz3j91n3u3TmB2LVOkAKJQJHaFmUmo6oa2taipaIYFgglWa4WVFVN3dQbN2mEVM4/xE3J/tgNtoyduBIiUcA5SgbpPcp5vJIEpQgdYSM7G1pAIvCbcdwQOevRjOItz/1DP52bNGsxKnaMcARECBACUkSCFPgYsc7TNi3L1RLbNsnFKWSnaIUNceRCSlqwziK1JoSIkgpnA7fv3md7dwsXIlIqtJDsDsdglxhgV2suT6cMigEDBMNVhSAlZ0QXUKuKQkpmN4+ZHy8JMSZHXlolXQl0RdXUKC1xj11ldnbE7sUt3PYWPp9y8OJtbu/vs6prti5cQBvVtRsIRA3T91/HZA6jPUZK8qrFtw7hPNJFCuuSEzk4jIwMpUDIRMJHEbgxytmTEVHXLM4qgouMTMbudMyFRy4zrFZoIcmkIrrU2EWITuRQkkJnifwm4qLHiJS0oaVMBE9H1kgpuuoxHZGNSG782H1m8vjjCRtCPUSI6Z2sW8iIrgT5ulqClOemS4zJad6JGCEkMTJ26zyEQBRr8RKyoti04gDwcZ1Mk4SCTKnub6XzFVUnGnTigVIKH2MSPlIaC1oJlEpCihQKpMZHaHygbmqEFAhlyPOcqdHo0QSZFyxbS1m35EVGnhmMFAQvaa1DGY/JJHagicR07kMkKokZFJiOCDVaIWVXft5HylVLa1uEELgYyKZbZJmmIBKiJSI70SztZW3wuJBEgKFRDAZZZ9hPZeydE8kZ2bULQIALHh8CRsvNeLgYsM6hhST4VHkhSNjZGqf2aeljMEXW/X6q8JCFJMBIIdAIbPDYGJIYk4o7Jed4SGMZQsRoRZ4XDKeGxlqcDzjvqRpH8BHROXuHmYHgNypSBEQUncAUsDGilESnRiKs6pLSJmd+IDIcDTGKrjQ+BJEhhcZ37QSa2YwoFUFKUAqjJM57QpTYKLA+4IJPjn6lUMGgpSJ2whtIRCcmGyk5OD3lZLliq25YOo8eDtFZQYwtQihMUSCtI5LmudIqnRutyUfDdF6dw7cWUWjqQYEdj4kC6rMZEYHREq2SQNy2Dimg0BqTFaAcTaYwTuJDEp2a1hJkTV7VvHzzVYJLgtJoPE7rW0SaEHjVOrZGW+wXY6piSTYeMLp6lVnwLJcrlFYMCgVEbIhEpVFZthHqgJSUhkT6wEgK7h0f8srrd3jqyUOee/fTXL54kcF0isgKvMxQIhLxnUigEzlMt/7p9vyuzZGPEYdAZHkSB6xHkoS32DZQDNGDAd57vA8oqWjqBZO9HS5cusDu3i6taxlmmovTCaezikVdo1XBoBiwvT2lMJrjszll27J/MmfV2CROE6nbiqppGZChfMRbTxMCJ/M59/YPeeGlm0x3dmlay3JVsrO7i85ylMlBNFStQ5uCQTGkyDJOTo7JTcaNq1ex73mGZx69RIVhoAX1aoH3LZPcMNAa4VMCgw+pRUY2HDEe5jRNm67VOgOR1lzTtDhvESK16mAtrkpBkAY9GJBPp+jRAJXlhKbBWbtxRG9ukyIpV0KkawcRCpOxNxjw9GTI0+0ZIy3QQXLkI2VM7YNiTNd25WpcOYfxGCF2ICuoRMASmDU111apHdSsDRw7j1aRuRCoGHF1QwgO51N7kWuXLn75G70ePfjWiWe+WvTxTB/P9PFMH898N8YzTz37Ht71ZeIZH9jEMyj5VcUzd+7c5uTkuJtjARsCxyfHvPzFz33FfbXHtxZ2BkPyvECPhuSFoW37eKaPZ/p45iuhT3rq0aNHjx5fE4wxb3ruL//lv8yf+3N/7h04mh5fD5zvhf5X/spf4Vd+5Vfe4SPq0aNHj3cWZjQhti3ROZTwBC86waAjnUVyHmqtuyB+bVv6ymlK8U0/PXj/ugw7b3rly0O8UWX4ChrB+XdHkUjJtdMvRpAYfGsp5zNMbLm09xinQlLXltXSMh0M0TpC7MrPC0EIkDvLsF7xyOKMQy8JAWhqyhhYnC64dfM2Z8dLnv/8F0A4EKlCytNP3uB/8ZM/xs2bN/mNX/s49167ixQZCIHUhszk5MYwGKS2RbPZnCxPZZp9iMxOjllVFQiRzkfn1kwDGVA+EmUkCIgymZYTyUIi9IMAtTadJapWWoc0CmcUIFARZCesRFLbBrEWB865oMUD2eDLj/45QSGuT1iMqcR/BI8gOEcMDqEiMpd4EWhtw3K5YL6YYV1LCB7nPNqQiOkQcE4SvCN6T3DJhYoQaKXw3nPv/j5CJ8IiMxnWRv7jF77EU4MRjw6G/Ofv+x5krnBFxOWR9myJqbr2Gc5jrUNEy/b9Y04OFvjgybKMjptNhLHUrMoSRORCXTFuS6bLBZPxGYNszNbLdykPDjF1w+h4iZLgrKV1ljY6Lk0U052CvFBwWlFbRxkCTYxIJHutZ+EcVbBECQMt0FmGGQam2vCHLg651lYsblccHJYIoRnpjB1TMN7eIg7zJDzFRPovFzOqssS2DXmWobdzMmOSY7tpUHmGAKzzLBcl1rbkWcZoOGBqCqTRaKlQMhHaTVNT1RVlXdNai9KKzKS2bKvG0frkxPOto2pqBOCdx7aWsq7JMkNR5AyGA5RSRAJaKrRSrMpVcsp7R2stq2WJ1AopFcZoLl28SJ5nRB9oW0vdeqqmJniPFoLpcEyWmdSKwmiQcDqbUzc13geK0ZC6bmmdS4/zDKMFxih0ptFS09jAbFly7/iU+wf7OB/QJmcynXDh4kUubA0pJgOefc+TLFY1unOgZ1oSkVTWApBrRZ4PqBpLWdXMFyuQisloTJHnaK3IlKKuG2aLBbfu73NalsSuVYSXku2rV3nXY49wcXtMJh0OzaqqmS2W3Lt3yN39IwSK4XDAjUev8uS1qwwyhUq6J5UL6w2B4APHJyfMVgtaa8lMztbWDiYzqZw7kXK+4ODgkLPZnBgcT7zrabbGI4aDnGJQIKTi7v4+9w8OOD45gRAZTcZsbW1xae8igeSO9905nM2XnJzNODk9Y3a2IgbP7nDC3u5Fbjz5JAjJ2WzO4fExt+/dp+kq/xZZxmNPPclkNMI5T9u2NG1D9JHgA845ZqsVUUS2t6Zsb29hbcPZ/CyRnhG2JmOkUbTOUTWWygZAoaSAGDD373N7Pk/C2WREPhxx93SGF5oWzdI62hBBqlQBy2uyTIJPLfhETElLWkqMUuwfHnLndI6ZTCmbivGlq+STbTwLgpA4IYgibdDBR4bDEffu3EMoxfbuHkFLqlUJITCebnF5ukUjFbPZjP2jI1SWYYocZRQueKomfc9MG2QxZLhlUF0rhKZN62j//n18hLPTGb/60V8jE4I8K7hx42lGkxHbWc6JFzx/WnO/VdSiQA/GXLi4zeTJpzi8e5+FnjPdu8xkNAIpCdqQ711idGEPrU2q0rGpXqHx3sP8DP/aLV587SZ7L13h/c89ixGRrb0LnCxKqsYxFBBlSJW+4rolSbpeeO8helx3syClZuUVg9EQM1bk2ZC2anAi0gZBU5ZsjcZE5/HeozrBcjAaM9rZonSOgYCLky32BlNebO/xyvwYOdBs6YzhcMT2oGBvb5fB8QnPP/8S+ydLmrZFSYmPHucC0QAeZmdzGh+JWQHZkNPTM7748ovcuXOXk5MT/uj//CfIhyOkMrS1o141+MYxHRQ8fnmPx3anrOanXHnsCj/8fc/xF/7sT/PK6/eRKiJtSVmvGGWaodGoGJGtR5jkbM4GAwolCTYgBiPM7h4ueGaLJdK2yODJTZ6utT6kNTMeoLam6GKAzgqGKF790gs05ZJgG4bD4ZvuuSKRED3BeyaTCdPhkDw3hNpycVExkBlKw21veQFBkAoVIjoElG+Jy1NiUaCmu9hiTK1Tex9hPdddhfQNB2XF/7QscWHKzAsuOs/86JC6LaFtGBjJ973v3W9/w9fjux7fKvHMV4M+nunjmT6e6eOZPp75WuOZyLJxm3gm+sDJ6Qm/8iu/zK//2kfffhPt8S0L0VU2iyHwvVevc+Xao8jHHmG4laqwQR/P9PFMH8+8Hfqkpx49evTo8VVDKcULL7zAzs7OQ8+/8eLZ49sL/+Sf/BN+7ud+DoDVavUOH02PHj16vPN48r0f4JUvfoGz4yOCt0gpIAREDEktR9BYS9u5ZpTSqbXA18rwv6PoXD3IJPqH2Dk3AaWo2xa5DLiy5ep0l3ZuqVwJsWU4MASR/hOjIbY6wLaeQRA8sVXwJz7yh7h563U+99nP8Nqh4mOf+Cwf/fgnkFLy1NOX+ck/8eMc3jnmlc+/wr/97/8N27lCahhpTQHkmUYo3TnCDFI62nLJct5S1i2tDwSS29R0pd83vP/5pLFOKBBRwjq/QUBI9UmQIVUlCSGR6etS77J1CK0QWqFl8mYnn1pAh7UPfe2mPmeLXwsAX04neuPzsfulGBAhkQSBRFjiHNp7Ht3d5sLWlOGwIAi4f3zCrG4RIVJFkC1El5xy1A02GIQZoWWqwhKCI8rkPrXBp3LmCKzQLG3D//e3Ps4HguCGKbg63UUMHEoCMeDqFmcbxjLDCEUbPT7Ce5CIYdZVq4md+S+5WVUIhCxL5+J0iTaGcFgSDlYIt897kTDdIkzBOZ/OkcpB5QQBxWduo3Rq1xVFTI7hru1BJiBGSetSyzGdJC3QEjEcoaUkv3nI/UXJrHGcbY2RowzXWM7uHPP6y69y6/SMu7fvcXJ4zKAYUC0XNHWNbS0xBna2d9jZ2WJna4vhaMiqrDg9O+PsbMZqVRF8QMnkpL2wt82VSxcYDQbkmcHaltNlydlslhJjvCfTmjzLGQwGTHZ38Z2oF0OkbS2Hh0eslkvKqqSqSwbDAZPJhK2tbbIsS8KFTq3DZvMZZVlhXXICCimZTCZMxkMmoxEvHi1xzqW17COrqqSqK4gRrTTDosCY9HlaK4KH1rb44AkhUlU11nqM0YwmQ3a2pzjnEFJg8gylDfOq5Gyx4vD4jKZuEAi0aRisLK8eL7myO2FrNGQ0KGitS0n1MaKkSK1eQlpnWmlaH1isSpZlxaJckReSIi/Is5yiKJBCUJUlZVkzX1S0NtKGlIDUVI4Xb93l6OSM7dGAva0JjYejsxln8yWnsxVnqxqUIM9X7C8srx0uKYxGkYSaKlqEUvgQWS5X3Ll7j7Z1RCEohjnDYcEwLyiyjExnnBwfcbaYU9Y1USpeO1syHBQM8pw8z1nM5xwcnXB0dsZisURqSWYyhsMhj1y5QvLPp93DA6fzGa11WOexzpEJ2F/c54XXDvjUF1/BmJy6rinLkrKpUEpgrSX6wM17B+zubBFCoG1bVmUFAoKPxBCRSnFwfICUka3tCT/0gz8MZoSPFt84js8crS/xgCdSt5ayqVFKoTNDGA648Og1hJAMt7Y4WDpev3vMwdmco/mS+WxJUQwpjAfbUpYljpyybDibLzg9PQKTE6UhZgOOjs545bU75IMRg+mE3avXkVu7CJGRbU/ZfuQyj+1tMRyPGBVDnPXsnJ4SpSQfjziazbioMybjCVvTLe6++BIvfurTLM5OCMEhIwwGQ7K8wHpPWZZIqcmNQWrJhd0LrFYVyBIbI7WzjIYFMUBoan7nt36LJx5/nK2tLZ5693PUdsE4g6gEWyKjuf4oTfkssl4wvLpHuHAJu6goHhV84N1PcfHGM2A9Iyt57od/lK293U3blzzLcSHtWU1Tszg54ux0weuvvUrMM55+13v4Ax/+vfh8gLj4PJ954WUujrewscUFi/DgnUPkKl2/yhqAENP+KdAIlVNcvMBke4Iyhnt37tK2LcE6gm2wgwJlMvRoxPLkhJANiWTYJnJweobPBFeGMMmHXLu0x6vzfdq2oayqFBvWNXmR88SN63x/hP/fv/1NvJTILEMKxf7+PtOrVxjkOff2zzg6XuIcFIMBq6bEeUckYrKcR64/ylldcv/evVT9w1nu3nmd9zx1g4/8wPcyspEXXnyeLAt88Lln+FM/+sN89uO/wcFiic0LTk8821nGtUJw3TRMfcsg10wzySQUXJxs8aVXDogDyc7OFkaAdhEZBdE1NNGiW48xOXprj0c+8D4O7t9mdnjI8eHLZC4JKVIpVLf3nocUID2d09ySDaFR8Ip1HFaeSm5xJTisb9h1NXJlifmQkGliLghtQ7ZcIvQZcXhEuDElNgVhYLAMuF8fMVgc4oVnZ2vALaewtWC4coT5DFu2+BhQQvD4tUtf5f1ej+9W9PFMH8/08Uwfz/TxzHduPOPalv/7//m/oqrKzfpN7cn6VnXfzvjB3/v9/Bd/7mf5zX/5q7THCzBZH8/08Uwfz3wN6JOeevTo0aPHW+LZZ5/lr/21v/bQc1JKHnnkkeSC6fFtjbIs+fN//s/jveeVV15hNpu904fUo0ePHt8yeO3126zqetMCwjmXgkaZykg7l0qMq86RGLxfG1w76vitITqH1Hm88bEAwrmfz79+PlhdPx/jg3LxXwmp7UByscoYk6FbRBzJJR0kRAIxCASapo3cvbPP1mTM7ihnWlzCekttXXIDXbjC5RtPcnDvNvuvvcry8IDXb77MjwTHYztTyisXeenTDVt7VzAmYzLOee97HmE6GLLSMwqlOK5a/od/+e8oBnlyeKqC6ALRt0TREILsSusnEjo3GiECLgQ8XTeEtbiBYP0FNw0vutYKCInoOihEKR4Y2gMEBWuWXwjRtYRwKKe6Fg3rVIW1n/mtx/rBcayPoXueB7/SDXn6rK5ENAKCBE/i+m3TYKqasQt88Ml3cXk6YphnBAlbFy5RVi3eOsxkgggR17ZJWBCC4XDKCLlxbnlnUysDoPWOqq3Y3rvMuBhQyMD0S5LLdw4ZLhqoT1Easq7LBD6w9C1aQxQS4dekvkzEfdx8OyC1KbDredm1tnDSEmLnKe/aKazLmKsQu7F4MDhhXuNFJ710rQ782oWuNTokecZE0AgyYdFRQlQsgqSJFhEUQktWsgUC0bY0q5Lj41Nuvvoa9+/us5wtubB3keg82gwYDMaEkFy+1sFsWbFoGlZlTVnWNF6Qj7ceWktnlcUfnZKZBVpJgvesaot1nqAyEJEWcC7SlC2tnBNlRAqJFArnQ2pTMBkzmIyI0TMcDMmyDKU11lp8SBNUSJlakBmB0ZDJJJJFbagcuFUN0RO7Ke9DJKKR+RjVueNdBKLE2ki0jhhB64zU4SVS6JysEx/QinmZSr5roxGZofFQW0BmbO9eQERo6hpiqgSrpGJZeoJvsE7hrEvkYEzfubEtSqW2cVpD6wJtgCA0Khugc0MbAq71ODzeedrW44OkGI0ZKs2qqmhsS/CeKCQr62iXFTOb3u98gCxj59IQMV8SRUAqiZOC1w+OU4sYQElB7Ro8odtvJTEfkBWd0zxXCAXLpmVZNRRZQVCGyfYeo0gSKoOntJHKVriTOUQQpmC6cwFZjMjzDKUUSkoWtSV6z7rdnVAKT2odp5ViMBkxyDJkjEQfsG1L9BYU5MMcjMI6h9Gp4q6TkllZp3XnA1F2beVkJ2EqTTEcMzs7ZnXnPvfu77O7vYu1jrpp0hqMESnTnqe0YiCLVOhBCIiand2LEEFpw8uv3WNRNcxKx9mqZbZYMc40uZQYIQjG4KQkGoMcTSh29yhGE3QxJKqMV165yf7RIU8213li5zqTyYTRzi5WGRiNcdmARpkkVtU1AkEcjqit4+RsSd1Y8q0xNkqOFyvu7B9Q1RUiRjKlqX2NFhItFCJKqqalbloQkAeP69z+MUqUMngfGQ9HCCFpq5YvfPELFIMBWVGwtzehqpcIFFIIFJbxhV3C9UfIyhIzGjEc5mgl8NYyO63AC6yNrOqW48WSRqq0zqVI88+nlkohBIKPjKZbrGannN65x+deeIEf/8B7eOqJ69xfLPjkyy+ztJYoAlGAkeClhqgIgJepuoHo2sMIIYnAsqpoYkDnhpVtU8sgBEEYSh8pBiMGxYC29bjKkhVDpoMRA5MxaxYEF5lmNZPRiKcvPkImFROd4wm0XUWRQhuu710mMya1ZwyQ6YzZfI69sIccDjipa46XS1rv0UrRupbZ2Zy2thAFBydHZIOC4WREMRowGA/RmWE0GnJxb5ergzEvHt7haL7i5Tv7PDUYEPOMdilZNYGzVc1ICZ6ajuDyJVoUUxN4ZJCxO1SMhgVBRZpywfL+PrmUiLrChxYvLE4EUIGs0KhRwfzgiPreEayWFAiyQZ7aN5BaT6pz13e663aIAaRE6xxC4Gx2SoiCYxRIwTU8g9GAR65e4E9ffJyPf/FL3J2fUtYtY5WTeYeoS+z8BNlcJaoR5Bor4d74IsPZEh0VQ2mRPtJAqoYmM3SWw7pq3Nvecfbo0cczfTzTxzN9PNPHM98p8czy9Ijf+Be/zCDPUF3FnOg9Z6cnqWpOj29vCMFo7yrXLu3x9FPvYjQYEQK01oGSfTzTxzN9PPM1oE966tGjR48ePPfcc1y+fPmh5z74wQ/yZ/7Mn3mHjqjHNwqf/OQnOT09Zblc8g/+wT/og6MePXr0eAvc3b+Pdm2iLkUKFGVM5d6llHgfurLTnXBwjqRfU8hfThB4KzI/hJDc1x1J7YPv3v/gPW/8va8kCqz/fipDLTetAWKMnZsqEcEB8EIQZTrw9I9AodFEyuUKHQPj8YjpMKd1Auc84/GYC5cucfHqI6hM065W1GcnHB/u085O2MoN13enXJgMuPDodZACqSJaZRzePqQ+W1AoyDLNzZu3yYuC0XhMCBLbViTpIrVcMkojlUQqRa41RgmsTxVSXAgPSPjz3RY6aWHtaBcRRJSIczS/iHQEtniY3A8B2YkEUQgCINcC0Llhf+P5ZfP6g7kAbDpGbLjwjlxfH0NEEERKvlBKQusJVUNcrnhiewcpUsun2nvy0RihDa61NNYSI3gXNiJBlmmU0qk9Q1QoITFaI5VAiUg1c8isIBuN2CkMV6bbXNmfs+0bMl+jpWbQHWoJLCNIH1EikLvUmitK/5AI0nnS01qJ6TjW4opfnx9AxICWIETYnCGE7NpriK5EdyKVQ3cuvAcfPV5EMBHpO1FBgEGQC0eGJMbA3AmCAZ1rRCaoRduJRJEQA7ZuODk8YjFbYBuHtT65qfOcQTF4cNaEoHWe4BzOJdI8y3JMlqfEkphOorMNVWNp1yXWnaN1ESkVWVak9bch6kQqn67Tz0RHRJDlOVIKlJJorSjyIpFQIXbzS3Tik0DrDCF05/AXhI7QdyHimhZiQGlNiAIfQGmN6dyZWkq8cyBV0tLWrWdkN1eAYmCIIdUNCASc8xAFKioimhACMQqMMgwKQ2YyVssFznmUSOsz+kDTBoSw0JGzaeuJNN6jYtz852MkCoEymlymFiVN2xJCxPtIawPOC6TQ5JnBZBleALXE2hakwIaIc57K19A6TGZSe5AsJ2tq1pKrD4HlYoXzHikEeWZoXIv1jiggz3OKYoDRBiU7lSx0e4zzIBVGKzKTp0Sm1lHWFb5ry9JUDXmWo7McVRTILEtij0qVJ5qqwm2uGxItRBJffBr84WhIoQ0SCN4TgkdJiRISjUG2Hmltty7SempdagOzVqeFlN3aECAkg2LAUijKcs7x4SHT0RTvU4UEoUCrJHprKdBC4WPAd+dFCUGWFamtT4iczVZEKVDSMCgGlGrBqqzwWjHMCzAmXUdMhh5PGGjBaDIlK4YEobA3b3JyekpVrRgNMsbDIcPxmGVjaWJkWTVYJRBlN6+VJM8HlFXN0fEpWkoKYWjqFhsC8+UqXTeVQKu0/pWQSKmIEZZVjcw02bAgz7M0XxBIqZAi0b55lqOkIrrAyfEJxycn7OzusnfhAiIIIpKAwHnHKM8Z7ewyHI7YMhm5kmgRcU3D8ewU3ziaumWxLDk6OaV1IYlRXe2M9XoWUmKMIRtNMLMZzWzBiy++wLyuubC7zRPXrjCdjFieVmgj0RpciKlilkxiQJQapEmVTWK6ZnjvaJqGxlm0TU7s9XU+SknrPFlRoE2OHI5x4owoFEppJlnOQT1nbiusdRituTAcY2Rq4wLgSfu6FAoVBG3T4qwlhoAxad9QSmJygyXSOJfOD2CdpW4tCIXRkpOTU0xRUAwGjCZjpEpjEhHU1lFlLYuyprp3SOsCT3/ofZzawL1ZycLWWG/Js5yp0VwwBicUk8yzWximQVAMCqSG0NbY0xM0Ij0WAU+qQiLyHFFkIAXz+/u4+QLpLUpJ8jwD0n2OD+HN920CQnedEEoRQ6CpK9ogECrnJSU5jY7HJiPe++ij/IEP/wirtqV9+QVePLzPaJgjg0O1FXI5w5QlYjLCG4UXiuVkDz+eMQieUXuGxBNkIHT3FgqVhF083vZxfI+3Rx/P9PFMH8/08Uwfz3z7xTPL2QnONmR5wXJVEgmc3r/La1/49JfdK3t8eyIbjFIlHikxoymXrz7C7oWLfTzTxzN9PPOfgD7pqUePHj2+C6FUIjrW+Ot//a/zMz/zM+/gEfX4RiAFZg8TGH/pL/0lfu3Xfu0dOqIePXr0+PbA4fyMC1pSiM6tCoSOSJOk62jHP6eSy6ETDZTk/K77Vk7mN762fn4thgskLvg3fY5YM3msxQbZvZ+OvHsLwvqNn5F+SCRsSGSrVwrXEewaGMXkjC0yhVEKgmW1WtG2LUVRsLU1YWBytkYTpuMJZ6slalCQjUfowQBbn7H/0hd5/NpVnpzm/MEPPcfetXfxxVdf5bMvPM/NF16E2YLHLk64emnKhUsTVlGkFgVRsFzVVNWc6FskgUExwownKKHQMlVNGY1HWGspq4qD+YqoTSKm32IMUkeICDImUjpsRmRDcgciQSR5JAiB8BHpPKp1BGFwEVSMmJjmQTznbH7ob6WP3XxuFBv6vHuue0XEh4SC9DgSiOTSICS0Vc3+66+h2op52RCcY6gizlr29+8xOzxilGUE0VWOEQ+LVaIj6jOpUSpVctEDgyly7h8ecHR0yHIy4nrVck3C1UKRGYEMBYPOcbcQERk0OTBAMDYK17XVEEKgYdMUI/3NiBNsqsWIIHgwk5MQI9X6PEUQadylkMgoUCESperaQIBH4q3gLDgqAkOhGQGuI94GSDJZoCUdqW1xQmCNpMw1jRPIeoGWinxQMNAZrqwxSlNMhkglMKpbR1KQ5zm2qdM6FwIpNcNiSIweay3L5ZIYITMZmckIOk07Ywxaa6pViZZ0YqJKYp/RSJWqB3nXMshznHM0dYPUmuFwhA8ea1uM0dRNk+amkBhT0LQtInpkiBgtUVrivKe1lrKuKYoCQRIMjJZoZYhCIH1HbMVIjKn9iZAp0UYbjc40wUaqVZncf0pSZEO8tbhgsXiygQYrUIlhQwpBJhTIgJaCUZEhfYG1DiJoo/E+ErynrUsKoxDBEUMEqUEoWueJziGJGJMELaUUJghkDMnlKZIoF4VEqeRk1kISgyPTCjHIyTJFiA4pss2+SXQoH6GxrKqG1ewsVYEQEiEVwbuURGQURZGhg8Y6SyRgcsOwUBgZwVvKssH6SIgRoRRBCqxzxJA+z7okYoboiTIyGI9QSGJXqiHXErxDCp3c4EXGKqTvp7RGa42UgjYEgg8YBLZzmQsgNxkmM0QRkxAaGkw+xIWA9Y62bREBgnV4lypCCWOSq11AcC2Z1oyGQ7ytOdzf54nHrpNpTciS+FkUBq1URwYr6qr7zghG4yHeO7qtgGADUgh2p1Me04o7Rc6nPvUpGgFyRzMcDHDWgsnJdE6+vUOeGxAS21qQmqOTY05Oj7GuYTIZMRoVxEPH7OSY1ZHCFBlBQBscLjou7OxthL2t0YQ7+8dEpQmZIVMKbRQCiVDgCEitkgs5BA6Wc979+BPsXbqA2Ztw7/gAIw2FzhFxiZYa2c09pTVCKU6OTziYHnDp0iWkFHglqSNQe3QFu/mYq6Mxz44HrGYnqACuarh7+y62rFkul5ycnnB4sI/0geAdPniSfitRmUpzXWryyRaj8ZxqteDFT32CX//0p/mB972bDzz9OO9/+kl+9dd/m205INcZtm3RkwypU1uiGFPigojdPmXS9c+3qZoYyjPICrxzeOeReNrW0TQtPkRCPsJ5yaJpWTQ1O3lBpXJWvmXeWvzBEVe3t5hMhowGGVJ6ovcopYh4Xnz1Ne7dvcdysUAEzyDP2NnaYjqdMhqPGI7H5NqgY2r10FiHHAwYZyOkD6xOThhs7TDKCy7t7nE2O2Nv7wJHsyWf+NJLhOaMxaIGobl48QI/8ft/kOfvL/iPX7zFomz4Uz8dUYXm7LDhtaMjntm9wKODgkJ4VtWKbDQkN5rQ1gxsTdM2+GmBEgrlBaYVFBcvIbTG1zWzu7cYjQdgVKpEgeou5IF47k7s/OU+dPcNhMggBFQELQVBKma146yu0Nu7fO/Va/zYH/1RbC4R/67ghf/hgDaLSNkSW5ClojiZYYe7WG1ohUDu7EK9xPua+uw+JvME7UA6hK1hWZLlOrV4atq3vN/r0WONPp7p45k+nunjmT6e+daPZwR6k8yI93z213+FV7/02bfdC3t8G+Itknx3H32c0dYWUsH9/ZM+nunjmT6e+TqgT3rq0aNHj+9C/OIv/iI/9VM/tXk8Go3ewaPp8Y3A6ekpzzzzTOo9fg7L5fIdOqIePXr0+PbB3sUryNkRbV3iO2dxcBaPJRCRSDKtUTI5rHz0bwgm30xonH/urV+XiTCTirptEskqJRJJlBIpgI4gSE5K1ZHDSahYu6Df+Dff+HeFEETv8HiCkDiZYwLsasVuJpkqQbSOECOWwIJIkIbp9h67W9tUdc39w7vsXLzMTgZXr19hVZWI4x3s4S77yzOe/8IX2FaeJ557F3/qD/9+/v3vfJpy/xXO7t5msYo898hV3nXjMS5d3uL5X/8YJ8sVtmu5cXXnEt///ncxHian6p27B3zx5ZcQITDOC6aTMXdP73D98mWeffppnr9/wAv3D/A+kJuHw9v1cKS2UiARBC2QHWEd6MqDB5HaHIiQfEdr92tX4cVH1zmkICq+IuK5f+MbXxBvfGMkhoiIAoVIve2lwHtHVTaUdcXZ6SmxtYhMQ7Xi9O7rnBwcInd2U8nwkJpliDU5vxGgIIZEzwspEEYx3ppS1Q2u9dzzkYmvuAAMtgq2hjo5fJsIHpyEHS8ovMAA0ki0rRhpTW4MIsuxAUIMRDxeeAwSiehENE8MMQkJEXzqN4IQsTsf8f/P3p/HSJKm553g7/0OM3P38Lgj8qzMOru6q6sPspvNs0lR3RRFiRyIuxjsQhqODowEQVjsAIKkxf6lP0bAaqQBZgcCscAKI0IzmpE4lHZ1DIYLSuRIZJPso5p9VXXdlXdGZtwRftnxHfvHZ+4RWVXdJMVmF5u0pyqRGe4e7mb2Hebv+7zv86C0QiRJp2sELyVKUgIsVjCOmqWQUYeA1A2ZWBSCkpSUUT2NyQUxwlIpnB5P2IkN07LGRGE7K1gdLqNW1zi0BZUHtKU3GLC8PCTPLb0ip8iyVIRi2q7kNlE/J0Sy3LCil3B1la53aLBWY7RJQ+o8RZYTgm8JpNS9rI1pOyMdMXicj4jOyAZFmocBNAptcxSG6WyabBq0wfQMGk3dNNR+hs0tIkmZASKbm2sICi2J0DO67ZIOAac8UbHojM60AR1xwRNiQ1M1DPIh+cpyGhwJxOBQGjKdkQOm1yMoTV3VjMenaAXDlSFCpJpMCHVDL8swSre2EGk8o4DzjplLHfTKasRaMi+JWSUiApk1RCJaK7LMMppNQLfXPwRMnjpZRRSQyIfcpi5pZTSF1VRljfcRpQ1eIIbUVa+0ZnV1DW2SJH+M0pK6VRojldSderrfkiypeCjPC7LCkNuCumwoXU3tGlxZstQb0O/1EyHU1EzrEk1K0CoU1XSGbe3sYgxUTYNrHKGBfp5Dr0/jQyqk8pF+XpBbi/OepnFE54khFRetrC5zfHycXtsSvIvueSw+y9CBlgSKlK5mMpsl6w9riTpiraUXlqmiY+fhQ+qqZL2/xrBXUDY1UdLcyK1mud+jpzV1HXAerCjIUhGVEkUMntzoRNooxdXnPoBxnrfu3Ob+zgM2NzfIbYYovSCiT0czGu+pXcPS8oCHB0fc2dlj/+CEC9sbbG6s8eDBQ46mM4bLQ7yAzi0rtse9hztohMHyKqv9ZY5OTrB5jo+RqqpR4jHO0dSOUkWmxlBsrGOXBoynE2qjqAcFxYVtnnj6cY5fOGW3OmJazTCZYWVpiMlyvPdUjefCxib9LCM2DaPjY0JVMjo95MQWTMoT9OyY77m4yQ9e2uCHr13i377wVR6s7LLb61HoSBwI1cThvKdvLP3M4n3qWG6a1IQSfaI3o2hcbumvrqBCzYOdHX7xf/81Lm1e4Prlyzx59Qr/bvpvQQSDxQBlNUFcy0q6NK+0CKI0TpHUWlrVk3o6o1ga0NLi+AgxKEajMblVPHn5Ej/8f/4pHuzc4ebOLX75c7/BH/v4x5jUFafTKbEJ3D86oGpKNpeHXFoZUnqP6RWYDN68fZujo0OauqawBqMzrMnwSuGM5vqVi1zZ2qA6PeG4KlFkrK9uYo0huhrwjI8OqKYlKkR6Yrn35lvU4wnNhQvsHz3AV8kaZ7A85P5pSewtU6LYPz1iNj7mwuYGjSjujSdcUoaV1W1C9OyWFUpZ1peGXLj+OM8/+wzHkxEv37jJ0eEJ09kMbfrkw9VEzk4nGAPBKLSxZFGo66S0BgElb7NbaO/fuTK0Xxkw4rmgDdZm6LzP8UDx1q0T7u/t89JbN3h4vMcf+/QnWb20TRPhH/9//iUbm+vkFjI3Ix7sEFY3iMqgdUGjHMX2KsqPiLs9qmpEP18i1A1f/cLn+W9275Ibi4pA7fm//ct/89t/KenwRxZdPNPFM78v8cy7vrCLZ7p4potn/mPjmV/+hf+Z17/25cV68k1X1PyHDcpaHv/RnyLv9fAhUFU1hXjC/j6urrp4potnunjmW4iu6KlDhw4d/hDDGMPP/uzP0uv1Hnn8k5/8JKurq+/NQXX4luLv/J2/w2uvvfaOx+u65uDg4LftlOvQoUOHDu9ErJJ1DqKI0UH0bYK9TbzGSAyeKBElgjHJGij6uOieeTc7iPnjZx8Uz9psY0qCtW1UyapIaQwad667VGT+3q30fgjf0Kp0TgrMO7fTR0ZCJBHTRFzteHpzi8sZLNNwOhkxiQEXIj4mSf/peMT1j3yI7/7Ih3mwv8crb77G9Hgfxge8f/O7efGV+6zEhq1+xv0mcuvuPa5dXOfJyWWW1pa5d+8B1axheWlI3ZyyvD6gjnB/75R794+4fPUxrl27xBOPXebJS1d5/NJFlvoDlNbcf7jDV195hddu3OGNG3d5485d3v/4Vd735HXe9+QTvHz/Qbr23ywdHyMEDz51r3tI3ciAxIAOiYQJkLqPEFSUZD0Qa1Sb1Jx3M6f/5d2a9Qi8axNfW+8Uz7EGqYV6Xgcl7WtCTAUQ01nNbOZ5uHucig487O8ecLJ7CLVDkxLPcyhJRFNKRqXj1UolGe8YCR5i8IwPjgkIPkSqumFfO+6KxoRIr/EU1mOdJkZFrQQXA0XbeVp5z8AojIo0OB56zzEqza8YEQlo0RDa85KI0imhLxFc4xeJLJFEHqSUf5INNwJK1fQQhqK4WOTgGg7rhmn09K1QhNTaHiQiOmK9oGoBryi90MTA2CmqCJn1LJlIz2qCMZTeMw6eXFsya9tOv2R9ECWilGCMSQ4SQOPbjkAFWknqcNaGoCKCYFsLs+ADwaU9wjna9SuY81YY7WOegBKdikMi7d7CQunAWkuMqcAlxFScY7NEFkQRQgypy10MmbGts9m8KEajNKh2bxKjIaSiGaMVQUV0O/cMikiyEVNaoZVFydz6JqJJa0LpQDbMWFrtYazm4emISdWAtonYMwZEgTZMpyWi1ULlwTuXVCQkWdzEuTx9jHjvidGn9RiEqqlpgk/KQiEmUs5HjEkS+gHaOZLWsKSDTeRe9G3hkyJIsv/QElkaLBHwhFZNCSXkpkeMLVki7RxVgrY5s6lL9m+E1E2uwYhBjCYjtvYTjuABUYm8SF4diCiKvEC19GPT2oKg0yL3PqbxEtcqsSa7jSARD1TepeScElDpeokkUsW3Fh2xSV351phkkdMWREUgViqNndYYa4FU5GWLgmKwxMHDXR483MUYy/r6WhqDEIkxkVeaiBaNMgpFoKxrYmt3pJUQQ+pCz6LGaI2omisXt5iUU45Gp5R1g0KjVKJGBYVrPE1wNL7GZpbj0ZS9w1MOj0cM1jXOt6R7luGJONegjSbLDcPBMmVV4X3EKs00BnomFZfZaJiOJ4nAtxl5r8d6vsxgsIRWiqaqWRqucH9vH8lz1re3uLx9kTdu3mbWVAyWl8myJPnvfUgKXhKxWYa2FucDQWmuX7/OE8NlVh+7yGAp54py5NWY2ek+Qxt49uoFdPAQKmKomVYzZmVJrB1NXSHSdtimT2pncEz2DnWNFpDMMrCW26+/xQsvvUqJ5snLl3j/M0+w+/CIg5MDljNFdLpVAFHgG5QLaGPRohLp7x3SKlp474lNskqMMVLNKmbjCf2e4fr6Fn/uR3+A5557P6/feJMbt25wfHqCNZq1bEBmNONxydQ5fGu14gNkvT41wmg84d6d+/hWQUJri1KG2XTK3tERQXmGvRxRELUCa9AeKEvMUh+xitPjo6QA1qR7cDHo405m+GZGMxvRMzkHpydU1QlRhM+88FUuXbrIU48/RqinTKqGnrX0swyjLaNmjGYZK4pMJwW1jbUVLl/c5rFLlxkc7/Pmm7cJLuAAMzDMZmN8XVGNxxhjkaiJQRGUQsSj5t8o3n4zj4kURyernR6K3M3Y1oa+0mgCJ6GhtzRg1jR89cVXeOErL/P9n/g4F7Y3+MTHn+dXPvs5xrWjqh09Lcj0hDAdQX8JXfSo64oyWyIur5NtrmNunbaqEnBclrzxxs32ngs6vo3E6NDhbejimS6e+X2JZx6ZD10808UzdPHM7zCeccHz+f/1X+J9mvOiBK0U9996Iym+dviOx+qTzzBYWadf9Jg2NXXwKFFkJqM2Bl1kKITcGMrxCV7o4pkununimW8xuqKnDh06dPhDBKUUP/ADP4AxaXvPsoyf+ZmfeUfRU4fvPDRNw6//+q+/4/Gf//mf58UXX3wPjqhDhw4d/vDCTcfoENpO0/SYkpQwl3naL0YIKQlqtKaaK+u1Wd9vVHR63k89nr28Te56fGyJhDmpjkJi62EgLEwMYmsBEcOZlenbO6HneOTzQnptbBPKvq65vr7C1QzyeszJwUMapWkiuKiIyuKcx2aW4cqAcTVFCDTVhHpyQu5rmIxYtoor2xscXLnC0e4dDk9H3Np5wMR7Hh6fMnMBmxcMBjUY4Xg8pmk8W5sX+L6PfTcf/MAzPPvUNS6trrE26FPkBcYYnrp+kauPX2X7ay9D9kX2Hz7gucev89iFbbTRnEwnIHFxXR497/aah0gMpM7nyFnLdJv5T4UTgpIzAkUiaB8Rn6T4hdTpem4kz73No5/9Oyk3lvP/EkktzDESJWKsIQ8KFyOzsmF9dRUf4HQypak9y8urWGMYLPVSF3JLHCml0rnGdD20ThYXiduIyTYkRFRrn+G9w85OqaY1oypQB2gyj43pd2YIpXgySSTURCKm6HMSA4eN43bjOTam7exOCWhR4F26Alme5M+1RKIPVN4jMREzqiUJDCASEIlo8fSUph9gFXhKw5bAafCUvmZVFEOvcICXADEwaJLyjBfPKEaMj1Q+LdxsfvYS8UQmdU0VA1aSukCIAUJKFDrvW2uLlryJoU1sJyuFtA5BtEbHCG3Xs9IpETjn+lDzHUIQrYk+LOabaE1oFQw0kSig54RTSxUZY8/mbruPiBK0NvjgUSGRCdqkbvK2hzsddmsPIzGApCKgxjm0zPestK8oUSjR1K5BjMZKKmTRRoNLnd1ahBgbshBZzTIuLfdZWVtmVk6YloEmJvs2I5LWhRLqpkGFdGzWmAVRGtrCoBj94pi9T8VINhoQcN4zpzpTQU5SRAqxLXoSwYpqjyvNZcLZnPbRE3V6LtIWSFlN49oCphBQSrcxkiCuoXJ126gdsTp1OjaNx7mAtOSWMhrdWq3UrqHxHhciWptk8eGTioSWpBwVfGs3J2CMxYsn+lS4pJWgQiIXQwgQfdrn1byDNSZVBpUsP9LcInWTxzPCSYlKZJZ3acxFsDFiXfpZ63SOIXqMySh6fZQ27B8csry8zMrqCs4HmsQ0o1xSMSiyDGIiEF0E5wN4t1AxkDTNEpnkatZWhmxtrLFzsMzh8Qir85Q0jz4VPbmQxiUEsjzjdDzi8OSU/aMTiuEAITXoZEWBw+F96ojXosmLHnVwFBrWlwdk/QKnJZFejafOFBOJKB8obIY/ndAzhkylRHxWFBweHrG/d8Dh0THXtrfS2AuYLFtYQDQI3nmiSgntqNO9T2c5672C/nCZ9SzHVSWqjITaEILDhpJcR5b6Gdtr6+AjZVVT1jUKCD4RfGlfSHuQxNiyyDGRikrAWoqi4OThLi+++ip60OMHP/AM3/tdH+XXX/gSd27fYzJ1qCxHTJovhGS/EkURROFDg3MOpQSJQnQOV83SPGjlMTItrPZzHttc5RNPXedDT19nRTlsU/Kl4yPK6QznHdOywqNRqrVHIqmmoTUHB0fcuH2X/f0DfNOkvUbptG6cYzyZYHLF5vIllNGI1qB0+l7TlEjIUEbhmlT4F6IiSrLj0FYjeKKv6WV9YjhiMp1RVhVfefk1Pv3xj3B5e4udu3fY2Tvkw1rRy3NymzHzJ0is0NFgYqDfz7m4tcXayiqZsbiqpp5VuMYTlRAMBN8QmobgGqwoJLT7rcTFLfl8jfL8e5vMiytIe7iSSA4sK81QBBUc1tesDQeMxhMe7u3x+S+/xPXr11leHvLs00/wwWee4rdeeYNZVdHLDVLPkHKC1CVKrRCDp9Q9Yr6MXdsku3sHE0OidUNkNiuZuZoQI0Z1Kf0O3xxdPNPFM10808UzXTzz3sUzLnj27txaWA+64Hnjq7+VYoUO39HQxvD+55/n6HTErKqp6wbvGgbbl1ndusjKcIXjakYdHIOiYHN5mXHju3imi2e6eObbEM90EVKHDh06fIdjXuAEUBQFv/iLv8jS0tJ7eEQdfq+Yd4ycx/7+Pp/61KcSSdKhQ4cOHX5fUY6OyY1tE5wpWyfS3m99Csbn3YgiKhHCbfI5nrXQPpI8Pp/IfyTgbBNotF2UShSmJfmjgCe0nZMpmdhm+lPyMgZCbMmMtyfJ5wog5z5zfg8RpYgYvA+E2TFPXdngUq6ojxTTL59SDpeoVErGShTy3pA3bt9j4ht8aOj3LDYzTMqSV954g7KcsbW5wdNPP8Pz3/1xfvMz/4Gj/Qf875/7IjXg+6ucRGHsHBubWxyejCknE3qZ5f/yV/4iP/6pP87G5gbWaE73dhidHlPXJVZpVgZ9vv+Hf4wrTz/Dk49f4KoWfuoHfpSbDx/yy5//Im8+uM/ycLXtcj13FSJn3dLtOIQYEJ8knqNK1zc1k6UkDkibLGi7fAHjA9pFJEBqQpKzDud3IWRSN1p7CO3T73zVuYNc/Cvi8Igoti9dJiuWKMnpLQ3YvLBJPRmz//AOg411PrD8XQgeqxMxIOc+R0kSl1EiCIo867XzsCUPJCWrjbXkvRz9+c9x8eVbrM/GDCXDSoaV1C18EoSJGGpVgo6ErMdLvQGfnUx4c1Yx8Q7VM8xz0Ejq1ndNQGvF6rCHyQzEgKsaTqsGISWfZF5E4RIxEsUTadjONpEYMc6x1ZR8UmesREWvhqqZASmJ1xDJY2DJWaIoagkchRlLeeoI7EtkEAMj52kaT1PXHIzGhJhUc+rgoCzJ8oxGu1TUQoPVhhASadB4j9Y6KdZEh9WazGbpuGOaL96l7JLShqZucCEVtMToyXsF0Ud8myg31uK8g9DgvUdrs0jsxzaZZ6xZkDqp07rCe8Cn7n9tDKb940MiIJRSiNYorambmsY1uKZBjKFuGvCaTFsCAdrOZR9pCTbIs4zl/hIhRCREREFthaYqybzDxIZ+L+eZC9s8PDrhtArsHEzRBGxMdg4CRBWgLcIREfIsYzabEUUo+j1c8GhrkBiJTdPK5KfObERT1+VCucgHjw8RmjSpRSvQmhgCOMERMLTWLjFSO48vXdsdnqxyplVNWc5oXIMRTW4lEYUqkSpN5WhaRSUfwIVIXZVAZDDoE7Ukuzpt0hpbSPtDZsFYgwupex4VKYqccpaKibQ22CynrhuaWCfpee8TYSKt7YukcRSVbFImkwlKDEoUTeOx1iI2kUahJa4ESURiZpmMKxRxQfBom4qdIhBcKlbKjEbygsHSkL3DA1bWVtjY2qRuHOWcwBGoHEwatyCRV1bX8FVJXVW4uqFXFC0ZpVDaICEwGPbZ3lrn6vgiO7v75Fk/JWFDSva6xL2itKbXG7DXPGD/5IhbD+6xdWGDpaLH6vIys2nN7PQQH3yyAlGGoA09q3j80ibf+8FnWVvZ5GtvvsXR6YSAYvvyZd66f4fx4SF+/5C9119n0DzBkjHoIseLoF3EjWfs7e7y8Q9/gO3NbU6nFXXdoIylX/QgRJxvUP0+jbXMRDFF2Fga0NQNJ0djTsYPeTA5oXn8EturK6xdukL9tS/x8ptv8urOIYejGhMyqrKhahryIscgiQiLyZRhfu8WH7EAWuG0IRY5+fISeueAl770Ag01n3z+/fzMn/lpmginkzF3X7/B8soaugkItIoJGi8aCSGtG+/JMovRBh0Cs9NTbJ5hsoz+wHL18iYXl/s8fmGTzDfEgz3i4SF6MmbNWN568yY3bt/h6HTEc89/iK21ZZQRlFX0hn0OT0Z84asv8iuffYGTySTZp8ekulI1NSazhBCoy5p+r09/MCTLckCoQkOjalyoyZxhub/Cw4f3cQgYS/QNpsgweY4YQ6/IsCJU0xmHVclrb77JT//IDzAcLFNXkc+88DV++I//MFmvoNfLKY9qlC/BQahmXLq0TVEsEVzkwcM9vvi1l9g5OKD2AZPnhNrT3+wTtEGqEj8ZE6NP3988tB5K7452b5u5BheSNdiKUVitUQLRN6zWNesbGxzajJtVyS/+6me4dv0JPvrB57h26Ro/8SM/yJs3biXbkcEA3QTMdIwvx4hfIzpHGQSJQ/TwCutrr6FmY3oBlslY7g84paGWQFTf+NtFhw7QxTPfqfHMI+jimS6e6eKZ76h4piqni2qDuqn597/wP+KbrsjpOx6L6lNAYGk45G//t/8tv/L5L/Hm7XvsPNhndnqI810808UzXTzzXsczXdFThw4dOnwHoygKXn/9dQaDAZCSAF3B03c+fu7nfo6/8Tf+xiOPhRC6gqcOHTp0+DYhzwx2nviKsggMz7K/qVtR6dQFOJ3OUsfWN0kHzzEnCM53TnvvKXp9enlBkWXsHB601ktyLo98RhCE4AhhTgG0z73zgx5JYp//PGMMEkPqoOz3+NKNe2Tve5JnnnmOP7e+zW++/hqv7u5z6+iU3dEBVRTCbk5/uMJP/6kf56c+/WNsrq+xsbpKL++xtbFNUWRJcj44fvyT38fDvT1efOU1/qv/5r/j5q2XWdna4OLVi/RywfYG/Okf+zSf/uFP8qFnn+Jod5f9G8eAUBQZWytrGCVICPhZzewrX0UOHrB2fMLTVzf5h//q/8sb9/fZORqxsbKZkp988+ufeJiADhHxidSJUUDREgPJ/irGlNJRgIqg6kCoa7wIGIPSqbuOc9fz7RDOp//f/Xlp/xUldViHoIhe0Fp49smnuXb9Or2VVQ7LGdPdtyB4rl1exep1tFZoAR1jMlNoZcBVTJ1aWksiCdpOPKXk7DMlghKUTcm0up8x9I7lsmLDWrTV5NoRBXJSI9/QFlS58JVM84KaslOA0wWZj1idIyF1kquW6nDUmEJxcWsJO8iR6CnHJWE0Ta+ds16pBbdlUzQRw/rFVaKOVN5xr5zyL/bGfHKQ8f39jA+NJoRpSNcpKpZRFH1FEKgD9MpkRTGVABLIiIQsxyEcTWe8efM2mmSNIC2jIlbjI5RVTV1V5DbDGo3WatHhOF9KSmuU0oTgcc5TNQ5r5v3XSZ0IJMm0t12YUSlChBAjdeNSZ6bRGG0IwdP42H7HS3PO+0QUGWPo9XuINkSXim2sNYgoQoC6diidurrFBxoXqH1otwnB2Jxe1sNVSQ3AuYCLjumkwmjDUn9AfzikqmuCCJVzKKVwdZXOLQpRGY5mU24fjvjqgz1+7d5Dou5ROshFoUSSdUSIKK1ZGSwhxqYiHgRfN+gsJ8QkuV9WNbOqapvPVeqIbmXNI0l5oHZNq4KUFIfSHigoBUE0DnDOMSmnSIwMij6ZzdBWM6sqQp3Oo9crmExnaW9QioDieHTaKj4p+v0+KIVui4Sc99RNQ9UkYsjkBUZHnHO4psZai817iHatlUXanzNjMZJM7WrvUdaQq4KqqqiqOhG/xqCsJcaYxl6S7UBwjhACRoRBr0f0Pu1TzDtrhbnYexSVOkljIERPsXgMmjZGUEojrXKUi7RWHApjMq5cvcprr7zM7v4ha2sHXLlyhcnREV5Aa0MZPLpxSEzEY01EFRnRO8qyQvuAdzV146hNTS8XohYyq7m0vUmeaZrYABnW5vg4wyCgNcpqctH0ekscn57y4tdf5NOf/AE++vxzRGXY2T0gKpUKV7VhWntGkxnPX9nmUx/5EP/FT/8p6qDJcLzw1a/z1q27/Jmf+inKpuRrt2/x2m99ETMZcWlllQvrm5TaMyln5FmGhMDDBw9RWvPE449Tusgrt+4SRFHVFWU1Iwo88/7nKAZDTJ6jlOLV117n1dfeQC+v85Ef+0kuf+g5Dvfu8bXX32R7esQzlzZ462TM/dGMl1+/i5953MzhKocED8GhVVIv8LG9Ay1uCqnD2StLUGCXAxvHE44PTzh64yZfeOlr9ArDk9cu8YMf/y5ezPosra2hpbXWUaB0Kj4zxjLo9zjZPeDBgwecnp6itWa518NYy2Aw4PHHH2d5eUA1OeZ4OuILr7zMW3fe4pd+5dd48dU3ed9zH2J3f8Rv/ubnuHX7Ft9zcMhP/OD3EdyATHmMvc5vfv4L3Nl5yJUnnuCv/V//Ov/ov//v+fyvfYY7t25xdHGDzfV1+r0co4V+Zvjoc+/jwf2H3LjzgGvPPMtw+xqz6YzjyZQnn3iMaCKHR8eMxjN6RZ+Tg0Nyk5Nv9xGrCQRW11fYyi+SmZyvvPIqO4eHTK3lH/0v/xpwFOsXGdFnW1UUISnUFNownoypnWcyLTk6Oebe/iE+kNYHEF1NbBze+bRnAjp6xMeFskVs1Wje/p0ihuR11FMG0UKj4G4zoy+aTWVYioYL0lDORmibk117jK+8/DV+7TO/zsBY3v9jf5xP/dD38usv/Ba19xxOxgyXLXZyAKc5zXAVkxdcMA1LPaHXv0B//yo8uIkvZzwgcpcqqUgE0I4OHb4punjmOzOe+e3Ki7p4hi6e6eKZP5DxjHMN/+b//f/Eu5r517+u4Ok7H+tPPMPl7/oEGZrbt96iXxieeeox1laGXTzTxTNdPPMHMJ7pip46dOjQ4TsIWZbxD/7BP2h9e1My++LFi4+oPXX4zsDx8TF//a//9XeVC3/llVc4Ojp6D46qQ4cOHToAWBG0UkSE6FNHaVLZAJHU5ZSSzpGmaRaWSr8DjuAdEFKnsg+BxjuUS/L2StSCnJB59/SCIAhve4ez7ufz95X54Txyp4ltABw8SiK9wYDDqPjKgwP2xlMe72dcv/IYg9V1rk1nHDYlo1nJhz/wfj720e/mEz/8xzHak6uIJRKDkNtEECgVUTHQLyxXrj1Gf2OL/3Ja84/+h/+ZSTkl856LK9v86Cd/hPc9/jjrRcHd199ANQ1GCdZoXAmH+w2zyZTR6YiH9x7wcOchu/sH7Bwecuv0hLdOxoxCQC/1E8lPeOQcF13oiwuR/qWQlsxJSXXaAohFB3ubYI3ERBBEUM0ZBRFIj51/z3eM53lyZjEvZDEOsU3sz49vPrRIq2YTA6++8gp37t1BZTnjyp3NPUCURkgEj3YekPb4kty4cPZa5vNW5sREOu9AxANOwYd297jgHUv9HtoHUD51lEfQQBYDEc1xFF7ynvFwGT1uKFyD8zVGh8V7z60NYgAdwGohKywEhS+bZAMRNbRKApG46OCOQB0FlStMnqzMlBV2p46bMXAhwMfqHtlxTROFqJJNmBefOAaJFKJxIdlPaAK5BBqpCVrQRiONYJWhyHKKXg9ROtkvtC3yRaHJM0tmE0noG0ftHL6dT0rmXc+Qro5PxIAkqxhtLEbPJcNTIY02hkgaQ2stWZYtxgajCQiN8ykhLgqjDaKSPcRkOsNak84VhckybBsDhJT1wqq05oNPdnBzMlEQfOPaRD7gA8Zqer0CouCahhhVSzoEprOS9CmSuptDpKlqjCnQvR66pxl7jzhHCEJhDCH6Vp004EMkzwua4HEuFQb52iVLDVJSM8uT8lEIadwbH/C+hJgsum1h2muTlk9mLT4EfAyUZUX0HmtsmmOicE1DVTd4H0FAG4vNWrUALS05I0m9Qhu0MbgmWc+JVlil2z0zXbZe0UNUQwyRuq7BgA9pDTsXiLQJRa3ba+6TNYdO8vlpX05KUv1eD+daiz7SFGtaCf3YrlcfQ8oXhzR+3ofWrq5tdlj8rJKKRTxbv6PJdDHPog9tQZVdKGA0dYM3ESWaKJAVPbKiYFaV7OztsbV9gRhCspGJEFHUdY0WhTWG05NTsiInhGRF4pqkCBII1MGjUGimKGtY7hVsra1ycDTCh4A1vZQYl4jEQPBCI9DrDfCu4v69BxydnKC1ISt66DxH2SLZCaqk5lUUOU9evcpj21tkAg9PDtjd2+Xhw10ePHjAS6+8zP2de9TllPW1IWhofFqPS8MB3nlmVYmPlqyucN6xtrLK+to69v4eKIUPDpvnXLp0GVMsUbnAbDShbCrGp2NCiPQzzcpQ89T6kMOHjuPdHX7z3uv8uZ/4JNtLQzaXhgiBw9kpJ9WM0rmkPhYCRltQKg1+TIV86T4SiLFGBY2KGm0KmsKSu8BQaVZMj2k5Y3NjlY996AN88MoTOGPSviwRrUAr1XZdgzWWelbz0osv8ubrb7CzswNLS+hYkBU5SyEiownl6Smj2ZgXjidYq/j6zfvcPzgmvPUWWltOq5pY9Hn97l2e391Hi8fGwEtff5kvv/R1bh+ekK2uk2WWn/zJP8nKoMfnPvt57h0dUJUlS0WOUcLR6JTrVy7z2GNXuXt4ytXHryPBU+QZ/X6f4do628vL3Lp9hxu37lKjKCvPyemE3vGI97//faysH7J/cMjp6THLyyucTmfk/T6XH7uCi/DvP/db5INVdD7kiRXLL/ljirzg1Al3H+zjxXB6esre3i6TskS0ar8rRKLzNLMpog35YIlxOUXFdA9TiVc/qwGYfzV4pOAiYKNCtCIazbgpuVdWTJVnXRlMllHXNS5ETNHjwtYGL736MqvDJT7wzFM89YGneOKJ67xx5y739vZYHqyiqpI4m1LNZgxswX/y/ONcHg7YP57xG298FSTH+ymlm3FYzQhRo6Mmi10OqMM3RxfPdPHMf3w8c/7Cd/FMF8908cy7xTPEwBd+6d8slFJDDJST8aLYoMN3DkyW8ez3/RAHh8cgirwoaOoGEchX1kAZgij6SysQKg4PT7p4potnunjmD2g800VIHTp06PAdgA9+8INsbGyQ5zl//s//efI8f68PqcPvAnfv3uWtt9565LGDgwN+7ud+7j06og4dOnTo8M2go7DoJZ0neudp6DYLHEndjtGlpGr67xvzBPINkspzIsDHpDQSYyIN5o+rNp89t39If2Lb5frunc+Lx5gnoh99LoSYOnxEMJmlsTn3xjMOTkec9AzXV5cp8oJLRcGFTNG4mg8/dZ3nH7/C+qCHVh5xFbgmJZvLGUFFlAIJDcRIMVjm0uY6f+pHPskbL7/MvXv3iL7h2ctX+Pizz9C3lvJgj72dHQaZTdYGArNyxvHxCcfHJxwcHHHv7n12Hj5kNJoynjUcKMWJUQSTY2xOdI6UEn23XuSklBLPXSeJSfKe1gIiJWzPkvhpnFK3Znpt6kSLbceUhLao6dw1PX9947t0Tb9tBi1GJp5/UGJroRXZefCA8CDilcJFnY5f2iSH0sTQQFMjVYVE8OrcJ7WFEXCeqwiJSoiJUvAh0sRAFQLb1hCkj80slK61ZUgd4kSwEihRHEThRoyEwQBTTcnEQ4joOFfZmifRFaTG5PSYUeCTksCcoDk3GgvCJLaJem0UWc+Aikg0xF7Jfmy44z2TqWbJp7XRkLrK/blsjkbho05kBKl7N0pFLYkYIUaMaIy2GJs6eLWxKVEtkcwYsjzDasEI2NYGzYVAGva5fYskIq/tom8fSjZjWogxtF3SbQdjEJQSrM3IbJ4KQYJHKcHFVJyjQ0QrhbU2FcR4j6trjLWpSEcU2lqstWnfiQ5RgtGWEDwhNC1xGdoudfCNnzfCp65KY9AKvA+42uHqRGIQSSRlkywvoghRAq6pyXp9dJYhmaEqpygfkChoUYDCxWRDF0iKRU0I+JYkCDERF3PSxNgsWVvg05wRlRZAO/eNMe3e5oikZo/GOUJT472nIcmvo1Q725MtHST1oyxL8vepAMkTvCe0O3kkEWxKh0ScKJ0SrSGtGR8iympCBBd8a7WmmFdEzcdYiWqXf/q9edFTsshruylFMMYi4gkRfIx4Iiok6+oYkrVHlPmaDUQX8S6gs0QSi5qTvu1CTpvTYuXUTUPR6yXlJ9cel9YQQvqDEHwktNdSlKLo9aibmsOjI6qmxioNcxJJG3zToETQAnVdI8oAEaM0OIc1BiNpbhEV0QeMFbK84OqFbUbHI5x3LdEjEEJSrRDwSiiKPrNxzeHBMQ8e7hF7yzQx4kRjsiKpdSCEGMhyy/rKkGF/QAieW3du8+DhHscnp8xmJb/11a+y+/A+9WRCkWfEXkFQAlrTL/qEEJhVM5rQsOSHNE3N6vIy62tr5HmxIGa1MWTK0NSecjpjVleUTUk9LVEI1hqKTLGVGWbecTw65ebRfabTKT1tWOn16BUZp+WESVVSN02ykJrviyKJ8I+S9pmY1kqIAeVBoVHKEooMXTksEWY1x0cnFFbYXl6iN9hgVNa42EAMGJUEJbx3bTGc0BQZK5mhL4E4GYEWjAJTZ/jRCZO65vj0iOlkxMgFnMDe8ZjSR3YePgDR1DGSDYbsnoy5v3/Ear+grzWvHL3Bqzdv8fBkQn884+btm7zvqSeopjNEFL/yG79OVc4IfoBWOYfjU9bX19m+eIGth/ssry6Tu5Kiv0S+tIzNci6tblM1gZNZzeF4hhR9JpVj/+AYF6AY9IkH+4xGp7i6pKwalldXuHb1Cv1Bjzu7hxg7ocj7qJOMXylP6PX6KFswiYLKM8azGaPTMY1zaFug2nGRGGjKknywRH84ZHxyhHcOkYiITiTtYq+fq83FRwsD4sIfCofiqPE0CmqjWDVprjQ4vHOsrKyws7PLi6+9xldeeomPfM+HeezKJbY21vC+IXqPNBWqKpFqhqn6XFaBx2wgaMcoKHJlsNayZKDWBhc0MSgkvM0Gq0OHt6GLZ7p45vcWz7x9HLp4potnunjG2IyDBw+YjkcE77nx0pcJKcDp8B2C5dVV1ja3ENr7kwhFv88HP/YJXn7tTVyEfDCgqdJ377l9dxfPdPFMF898Z8QzXdFThw4dOvwBxCNdOsDf/bt/l5/8yZ98D4+ow+8E/hsEOv/sn/0z/ubf/Jvf5qPp0KFDhw7/sYgRVMvbAmcpXomPPBZjTAm7xc9nvzNPzp/dzuVtf5+ljEUpXAi4UOO8T7ZCbYdj+hOIsU26hXdLhj+KRZd0OOsYFmmFjQWiD/ggoDQ2RpZXlphUFff29vnNz32VK8t9Lq6tcnFjjWceu8hTF7aQkxFvvPAC97/+MkvDIXm/IO/l9HpLaGUwVqFN+txMG+LuPjFE+tbyF//kj7K3u8vo5IQr2xfQuzvc39tlf3eX4AJ3qprRdMrxaMTe/j4PH+4ymkyYljWlD9giY2Mw4Pr6KpcGy7wwGjF2nuAa1NyvXuYFCuevQzrhOaEiSNv21HYLCxDbpPj8dQBtQr2tFkgJbiULW4Uz4uj8nIlzTukRKIF5J72cDcb8l9p6hpRVFyJRBNEapQyiM4pimdDrEY1BlCKzltjMCLMJ7vgI5VMBSboG0h59Urcx1iKica4htp3wcw7DI3igX82QMhJcBNGtNUab1MJjtGdPFDuieagzNos+ztRtAQqYEAkCQUEtEY0mBgguJdZ9S3YFETxh0Tk8vwRKkmqORIcJFYU1mKJH1EJsKoa9jFopHviG149GbCmFjkli3eNQPin7EAWnAg0BHxwSAz2xBKOY+prJdMLMZanzUgQfI1YlFZsokSgRbQw2z4iuoWkaepnFWpC24xJSok9EUgez0VRtQU4MAR88dYg41+Cco99aToukY8yyjOA8SoE1GhCaxqFF0SsKBCHPc7z3VLGiKAqMMfgQCKSiE2tsslyLacZm1uC9LLqRnfetJZoiICkBZQw2syijqINP5I0S6llFBlhrya0lhIDzHi+RCkdJQy9GmmnD6HRE1JBrjUaQ4BBrCVHwEnEhUk0mST0IWsKjTWAJoJKNWpYL3nm8dxhjkzWNCEhSKcizLFnN1TV5kaHrVGTUxESqAMRWGcnaHJtlCBFXexrvU4JLBOcDtfMt2ZpsPRTJtsJojVaazJhUTOV8UoAyKh2n0hiTCJ+036r0OaotfooRFxyZMgsCpKoqdNZ22ceAm5OX7b7jfZOKkkhxHq49fwRNuiaN92gs1mZYY3B1hQ8eYsRmGYGwsFKJMZAVGa5Jn5NlGU3TpMS3NgyXMsqyoqwrqqZBaegvDTk5PuT4+JjpdMr2yiohBOomdQgXulVdAHLRlHFOrAnaGtaGAzKtW/pcU2hFkWfkecZ3vf/97N3f5WA8xnmHtppm5lKuXIERRa/oU47HHB0f8uLrbzG8/BgPT8YcT0o2igHBlUTfFkoZw8xVVMHhlOZzX/wyDx7sE7ywtLTCf/jVz7BuDLap8dMRmdUUwyWWVpbpFX1E4HhyQpYZ1v0as3LG1sYFRlXD0nKfxnuyzFLOZuzs7DEZpWutjCIrLG46TWRXjDQhoMsaUzXoCH7Q5+Xb96n0Ej1tuLixzricMh6NqWclmbZASuJDspGJWqciPB+IyqMkYBpQIRC1QQ2XqBlxOpvw2kuvMi1PWS00OZF66jg9GeHrKeJrMvGoVoGg8YFJgN3jCYcHB4wOD7HVGDMJFJmgS8Xd229yeDpiNJtSVzXGRWpR9IqMpZVlJicHlFVNPlgl6w04KUtuPjzk8sYG64PIW6+9xVt37/Ng/xhu3+fnf+EX+Av/+X/G+559H089/gSrWxvU1YymmqEGBXsnI9YG66xub7N5aR/XTPjwYxtsX7yKXVrnS19/g2xzi2vXr1OsbfDi7TtIXrB75y637+6w8sprLA1yYvBU5ZRQ19TTkrUrV7l++RJXL2xz4lPxohXYPTnm9f09MpOxvrTMh557Hq01WixmYRAJ8zuxFsFVJf3hMitrq4xPT5ju7REIFDpZeKDa4sQF6X6O2hZF7R34gLiAwVCLcIwwDpHDWUVPWyQKrqwh11QIb967x7/+pV/i//STP8aTVy7y5PWrFJ/L8K5B1YqsmbJanRIOHb/yizdZxjMNkfHohNXCcm24ztOrOcWS4jQGTurAwaTzt+vwzdHFM10808UzXTzTxTO/93gmxtSwgErFH1/91X/LrVdf+m33sA7vLUS9fT9NBYAf+tgn+PH/w3/6jnjmYDxmb6eLZ7p4potnvtPjma7oqUOHDh3+AOKf/JN/wp/4E39i8fPy8vJ7eDQdfie4e/cuH/3oR9/1udls9u09mA4dOnTo8HuCa0kCkbnoe6SJ8/7blshvO2W0Uvg2MfcNhczfyQu84wmlVFscoJLyhkAgEqLHueaRxLS0idd3fk56TMm82zRCCGitQSXJ/YW9kwLEAw2HD+5RNw5mFdcvbWNEOKwq9u/c4cU3X0uy1UrQCgorLNuCnjX0rKWfZ/RM1iZcBdFJKjklTQNl02CVxhqNCIxnY0ajMa5xeBdoKpdsn0TQWpEbRT+3rC4PKDbWKHp91vOMtbygyDI+P51RnzY0IWKjWZD0j6Sz5oQAPEq2fJNBkUeemWewIcz/GSOK0HYNn33OI3hbTu38P99BEZ07pgV5gBBTrxyIImghWouzGdFatLGEPCfUSdFFF1P0bMr5fuNAUn1RxmKzIiWJJZKog2RlEkTTZkHQgA4eFSIxqPkrECJBIjGxBihRmFxjTXre+0gdIkZSSiF6T1nVlPUpIp6VYomNi+vYtSWUgkmesfPmfY52j9Fak1lLryjwOnWuR6UQMYjSWC2IVcRe6u7TvZwoGdNBidM12vv2uFO373ykI65V4gkIHsFgsDRN5HRaMnYN+XCIUZrQeEIU6lgmcmf++7UC7yF4aNI8UkojKOqqSl3RRqVO+ZbkybMMbTRN3VA5h6DQWUHjPE1do40hL3qINfjokuWZB6NTh7ECQoRpOVvMXUFaKwlBaU2uNbPJJHXwnSO0ZmWJEk1uCyblBGtMek8RiAoXHU1VMWtqEMEY09qxafIiRxsNAo1rqJqaLMtpLwjDXp88S+pLOqZCoMwYkIiPjpOjY/Ki39pcWE6nU4xNdhfeeSrXkGUWow1GK3wMLanigIhGCIsua5iWJWVV4hvXEk0Ray39vCDPM5qmTuoAoujlRbLqCE2y6AgBFwIlbRKvqqnqCmUUNrPY/hLVbJqUiiQSmoZZSF3ijffULdETYjhTvQiKxnkQKIxBRVnYznnnaaiZE3SiNJOTUWIFiZRVTYgBYyx5lrHU7zOqSkrX4BqPdoBzNDERksZabJEtxsJo3crSR4ieOoTUJU9cWGaUswnaWHRmmFY11pg0dhIwolha6qOcRlyNEk0jMJ5OmYzHHN6/x4euXUEpzXgypXSBfp6hWoWKiQ8cH55QVhX4wPbaOlXtCeJQ0ZOJMEVopkJtFBe3tthaW+VwOmb/eJ/HLlxDeYWPniABFT2mZxmsLFE3M/79b77AYx+PTMsGIzCZjcgzjco0Ck0g48HhAQ92HzLaO+DzX30Ns7xCvqmYNg9RWU5TzgjljFjVrK1tYTJD1BpvMq5euUJuFbPZlNPJlNmkIrtg6PczbA7HJ6fsnR4zPjnmcP+YC9ee4XR/D+cq+r0M5Wo06TyXxHJ/d5cwXOLKhz/KE1cv86/+zb/ERjA259rVK7x843UOjw7wtUvKDiLE6BLpETTG9omtx1AQ0E0E3+BDlewZVaToL2OXljhyI06+ssuy0vRU+r5xsHuXcvc+qhyzsbFERsAAYjKa5U3KmSI6h9IKFyIrK8sMsgzfNNx9eIBYCzEpQXgJ5NaCtfgY0GLoiQcCQSLDpTV29w64eW9AqKe8df8BJycjhoMlVtbWKccV/+h/+uc897738b4nn+DDH/0oe/sPICtwCJY+J7OGvaMR+4cnrF1Y5cn3P8+VjQ3w8Fps+K2vv8jm5hYXti+wsbXOK5vr9FeG3L+7w4PplI9sbbK9sYkvK3zj+OpXvkTZlFx/6inWL11kfP8BSmmKXo/QGzCwlsIalqxlPB6TT0B8ZGVljeL4BOeS6ppSKq2FuuRo9z6T02M2t7YpjWEyHjEZnTLo9ZJaHBC8Y667cv6bglKm7aT2FKLSXhGFGuEgBvqhIVcai6E8nrA6XKGqaz775a/xD/7xP+VP//iP8qkf/H6+/OLX+fLrt1nNFdnpCFe9xXGW8aoVnrt6iU997CM8djjiK5/9LDf2dlg+PeRPPrfB6kZOXuQo26NDh2+GLp7p4pl0Ibt4potnunjm9xLPfPbf/C88uPHGYi00dfX2hdjhDxiWVlb5z/7G/52HhyeUVQ0hsLW2zrDIKDJDNZt28UwXz3TxzB/SeKYreurQoUOHPyD42Mc+xl/7a38NgB/6oR9iY2PjPT6iDuexv7/P3/pbf+sbPj+ZTDg4OPg2HlGHDh06dPj9ROpmbBNtriGgFjLBhDNrokfTy/D25PMiEcxZN3V6//SkUooYkwT2/HMFWRD5oZWVP9dH/chHqVZQP85/VjrJUbeJT9pO6jiXN16cX/tZITAZjfAuEL2npxRL1iBBQVAorQieReJYSaBxNTiHm1VUSnESY1JRIaJ0IBOdbCyIuOiTzL4yGEnXshciWqeko8otmRlglGC1osgsw0GPwmbkxi66gTPRuCA0p0lKPoZWYl4btFFtEB+Twkob0b/TJCIlvJM6Szt2rRXEo/l+OZ+5XwyztJ/xLs4bCyg4l1B4ZODOpXbPIb5zntCOXzq8+fGl+ahUawmhzcLma/4ri+7ucyRSCMmuJJ3P/JwhLn6OixTI3CUjzAs5gqC8EC349li0tejcEi1Mj6a4pkZbg8ksyxvLXFm/RK8w9JZyskFOHWoMiv5Sj49+4sOMDsacHp8yPh0xOZlQlSXBByCgswgSEtlkJCXitUIyi9GCLXJirNI8VvM53l6zGJPcuk7KOUoUwQWcFmZVw9iWNLpHQURimusOsJltr13qhGOhZiB43xJQMRJCwJPmrZgkGV7XzWIdh7ZgxhiTElHnxka1RT2z2aztaAYtiia2a0onq7WcVPQSQiBGklUYqbNSG03TBFxVtfZsCqMM3gcUvv3Mli5JrcnEAMpohHS8VVVhdYYyifTLJV+smbquCbCw14gBilY2PwI2MyilFzYPUQXyXpEISKFdk0nBSUQR22Ro7T2eiMNAiG2SzqZO8+jT3JM0Z7XWqeMcQSJnKlDtcPfyIq2/EAkBMqMJQYg6grVYYxe2c5nSDPo9XEzJweCT/V2uNVZrjLGUIeKIRC3kppfmYUx7btM0ENUiMVg3Nbo9/+jbfUSlNS3tsSulWmu8pFpljCWESN00yaavnaMREjlDQIlpX2vIitQ5D5F+v0+TGYJzae6JxlqT7gkuUXnJZiCpEPjGtQROsrUrfZ3mthK00qA0ea9Pf3mZpiq5t/OAajRiud9nqEBiAx5UTHt+bjW95YKmMYQIw4HFSkDHiJKIbZPREhzKRaQcc3VliaPjHnvHh3gfMFmOwuNpUDER7tYYiizjaP+AS+Mpy8srZE8/zu03X2M0mWHF0DcFbjxhcO0CVmlOZyU7pzPWlzYIdoBeGqKPx0RfIVGRmZzh2gq74ylL+0dcUpYrFy6xvrbBZDplNBlx98EeeW+JcV2xsbbBwd5Nin6PPLP0B0s8+fQT6A88yeHxEa+89hrjWU2USK6Fwgp3D4443HvIYxe3+eFn38+fKj/NW1//OjsP99jZ3+f2rds4H1A6Q0IgemnVNCJKC7Gp0ardp0NINkYhEa6KZLFCCLiy5Ghvj8cvXmBzuMyw6GGM5doTVzjefcjx0QFHp8cYiSwZTaYN6KTSVUVBKofJB1ROaCYVzqdiQCuJ7Iyc2UFFn1RFlDagG3wIRN9gtacuK+7v7DA7PeRg/4gYE8GYWUOmhZuvvcr05IS9vX0++F0fJaDQIeDHY27cukeUyN6De9A0RHJWVrdYXhqgmobnn36Ce0enDIdDttZXuLK9xcZSj63VZW5sbzIbj1ndXActTGYzbt+8w4XtLV597TXeuHmTvb09BMFqi1YmKVoYRWEVmRFmk1MqUgf0fO+GuLgnRkDrZIFZzaZMR6dsb20xXBpwaC3T8RhXu2RnqRRKFIsSDYlJNUSn91ExsGYyMq2YRse+r2iiJ3hLE4UgjqDS9wZtNFr6/OqXX+Ti9jZ1OePiyirCbWgCqBpUSbZ5iY3tdR5/35N85Lu/C+4fcntnh3E9ZrR/g3tvzginGavrltV1+87vFB06vA1dPNPFMwt08UwXz3TxzO84njl6cJ9Xv/CbxBDYvXOLajb9xgumw7cdylhWrz3F93/ogwz7PQSY1fOGFEXe63F5ZchaZmga18YzfayQ4hlCF8908UwXz/CHM57pip46dOjQ4T2EUorv//7vR0T4Y3/sj/GX/tJfeq8P6Y88vvjFL76rMtP9+/f5uZ/7uffgiDp06NChw3uCeRKdeJZfXfigx7OsfJtQXKSQ5xL/i6RyG1eeJw1k/lZvSxrPP6Ml9mNLFDxyWPLo781tHubJYd0mEGWeaFbJQsK3xQBnpycoSV2+TV0TfEzJDYFcK3ItWNFk5BDmJEEAHBJiSvqEpJoSnUdiRGJEx0BOkv9WIkRtyLTCABbB9nKKLCUaMi2pE7qXowW0gLWGfq9Hpg1aNE3jcFoRgzCuArV3eB8IQRFVSqAqm8Ja7z2O8/LIb2No4Cz5v7iGwrsNA+dfLo8M3e8CsU3cnxt0Ulqehcw0i7kU23/HxeHJ2TST1PEuAEoQpYiiFs+fP7ezzvlIaO2xHj3u+XGcWZnMfyYmawdp304FReqmTu+llWaw3Cf6Bt8kFRiTW4pBn9WtddYvrpLnBtFCFWpmswojmsJkbF5aZ219heP9Pkf7BQdGM5vWOOdBItnAkBWWqCI+zItlUoGFylqrhsVRy+L6JDWcs1WoRKGIhBBxCmbOM61rQr+HVu0aOaPtmFuFCLIgCgipMxzOSIKUfG/JidheD63TUPq0TufFLyJpjBZd+gJ1VeNIBTFBaVQ7VkYSqWGtTUU17RgHHxeEiEKBUoRWmrzdmYgk5YYYU7djsqBJEyaomDrFkVT84k3bGd0SGNIqF4V0rcTothgJ5koMzrUkkwIf/KIoRwRMlrckSroeRicyAgEf0rV13uNjSthJiGRzuXVJhU3zaxShVSrinKWESQnNGJCYnk9r3BNjSDZ0Si+sXfKiSNZ5IUAUtNVUztF4T/Ce3GZkRmFU6gx3VYUnJiIyy4lNStwG7wjeLe4BiLQW1tK+d0SrRAfKgrhLHexpY0/kr7UZrklKVI13ENPjBsHK/PcToaS1xijBq1Qclec5SgteqzRGbWFV9GkXDiGcEYHz63tuj2mCQ6JOxFm7pyhrKPo9qn6fvQcPGJ+csNnL2FjKKWjSryqFaE2RWSRXaW5EwRidEtsxzTplNI0PiUAOHuNrHt9a5ej0mFsPHlKVFf3+ElqlNaVjRCkhM5Y8Lzg+PqY5GbE8XGa4vcnoeI/qeEwsHaGsqCYlfW3JTMbMeQ5nNXFSEY0maouyFpp0V9ERYp6xOy7pn4xYWV5ma2ODmYNsPKYJkQd7B2xsbKLzjK2NTd6SmxRFD2sNq2vrXL92ievXrnB/d5fbD+5z/84OukgJaG0Me0eH3Lx1l6ZpOJmWfM/zz5LPTvFVyc29Q05HY3q9HkYraEk+0Tp1z8ZIdDVodWZB5APS3usV8/Xm8WXJqW+o11Zpeh4XEpHY39hmeWkZRheZ7exyenRA5WuMD6jG0RCpXMBF0FlO6SLeNfjgiVoxL9JTtOvNJ6JPRBLZrCQxg77BhJrQVBwcHDI+EeqyRLeEvXOOcjphcnLE/bqmcZ6txx5jeWXA2HtOJhO+/vobbK4uQVOxlGlOTicYndPPe+RWc317mywv6PUKNlaHPLO1hpbAUr9ga3Od/b0jQnDUsxn9pWWOTk7Y2Fxnb2+X49MRThny3hDdKlYobdI1ynM2lwoOygnHxycgCqV02jNFzt0XW4vJkKyDZpMRcWOdPMsYDpepqhqUbr8vpb0x3WfTHq9QZ0UXERRCTytUFMoQaEIgEggo0JGoVdqvtEZnGW/tPOTzX/oafQXGeYxRbbFl6k7vLa8w2LiAXdmg0jnF0gprFy6iDndQe29Sjk7xwwwVCvKsU3rq8DtAF8908cz85d8x8cz81Lp4potnvr3xjA+e/Tu3iEqxe/smb33lhd/VSunwrcfKhUsobVrrTSGQ7imIJlvf5gPPf5jHL24x7OWcjMddPNPFM10808UzXdFThw4dOrwXmAcPS0tL/PIv/zJ5nr/Xh/RHCmdV0u/En/2zf5bXXnvt23xEHTp06NDhDxIWdgoAJKWMeQI3BfNxkaCbkwKySCTPf0ulpOLcxmGREJ4nON/WYRviIsnrY0gy2uc6o98Ngpz7/EfTwCkgBkQTCYj3nKWF26RjTIUHesEyJCuMGCOZFZa0YmgsPTQaMBIojKOvkn2SEY02KeGtW4JCx0AWhdwkZRKlUzedFoVVmjwzZFanZK2CIkuBs4uRxvsz/iUqQoBJcDS+wkeNQ6h8xLu2C1ZFxCSVFO99UnkJ8ezaPHqxzmX447kH3wULv4f0R53/FdJYxyjnXn72ZJxf+/l5cEYsfbOO6nTe7bwTiCKtFcVZYYVS0nbTKUC1PXVnhRmL41MpKTRXrkmY92zDnPVKqjhvv0jnyIMISmxrJRJoZhXiPY9d36J49jJ+XFOOJ4jR6NySDXtMmobZdMr0dMrp6ITU8BcxohgvHbO9tcbm1RUuXduCWihHM7wPoBV22KOxNUfTY0bTKT4opk2FjhnRZGT9Hl7OCIz0d2hPJ9ExSXE9ze/gI42C0nlK55Mtg83oZRl5ZgkqdR9rkkVCZgy+qQneQwhk1kJbkINOtIKPkdB230tLyM2/V6o2ERuCRyLkeY7JslatKFJWFdH5lLw3KcnvY7JVIwSKLKd0DqU1WZEnAqDtoPTO0++lhJASSWpKMZIVWUsmelb7A0Sgdp5pUyciqbVlCS6yNByilSyUjOpWfUhEyPIcpRSzslyspVC7RKZIIo5ijOTapnWtTFJzaMlIpTQrvWWUFlzjmEymBCLeBUJrKSIRXKuKYG3qapR2/cQQyPOcoigWs9D7QF03pPqjVAjlnaNxDh88vaxHlllEBO9dUlfILCGAcyGRRYUlJ+IbhzWKhXGKQO0diGCUQmuFwoIPRKXQRuMkEGLEx4ALsZWT1ygtWK2p6xKtLErrNP5akSlLiCb9TLIKiTGdi9ZqoV6lQwSdSJkQI41rEKNRRmNVKgyLIe0d2mj6RY5rPMpmaJX2u6ZOyeYokd4gT3Z/8/3CpGPwPiRiRwQfPMoYbK/H4XjG0eEuH7m2yXc/dYnjgyMawMdkHJOJwojQ+gbhvMe5gA8eFz1ehCgqEUfe07Oax7e2IUTuPtzj5b1DsqK3SORmmUUhqCLtQ8e7exzfvoPRiourQ37wE99DNh5z98ZNvvTllxiPp2RakZsCFzPG3rN/6ybaWrJejtYWTI4nUgXh/rSGaU2/dDwePOuby9y4f8DR6Qn7+/tMZxnf9ZEPsbm5icoMN9aH1D5ibcba2hqXtlf44e/7LnYPj3nx9df5ytdepp/3if0latvnYG+f219/mYcvf52er/nv/uKf5uPvv85Srnl9Z5/hcIO8KFBaU5fNnM0nOnChQkIkNDFZRomgiO3e1RYVtP8OMTCeVHzxCy/Qz3Iya1FG03viKS499RQXty/z4StP88v/2//K62/e4uTokBWbYXUid9AapQ0zXyfCD7BG44NbkJZGa1xTLV7vmd/nAso7dD3BR5hMZoy8xyqhNxjiguPw+IiDvV1W1jeIQDU5IY6PyXqWo5NTdnYe8upbN3j/p3+I7bUVhg/3+Wf//vNMTn+awYV1NouCw91jtouCtdUVtjdW6Ynjgo1ceOwiH3/qKV6/scNvvPQSJkha43meFB6coCMoMalwsVWciBHqumbr2hU+9txTvPq1yL974w0mZU1W9JN6w0KR5uw+qbVGa001m/Haq6+wNByyvr7J1oULZDannM44PTpiNDppSYakcqaVoUGn+S/CXl3htWagFI+ZPmE2YaqTsofKTFKbaJJVkTEap+Hffuaz9JqaZRUYDjKiD3gdkcyy2jOUTcNvvXGb116/xfuuX2ZjaYXtS1fp33+DJ9ePePoDy2xdXWH50to3+VLRoUMXz3TxTBfPdPFMF8/8TuKZ2M4n7x2/8s/+cWp+6PBthTxyvzrDx/70/5F8uELjHFhDHTzVbMb4+JjXv/b1Lp7p4pkununimXegK3rq0KFDh/cA//Sf/lM+9alPISJdwdN7gL/39/4ef//v//13fe7o6OjbfDQdOnTo0OEPGuZJfzn3gErZsEXyVFQqYjZaEX1Atd3CkcB52f95J2PK1aaOQmvtWedqmxhPBdGkhGAruf52guB8gLvo1gwBqzVZnrWEumq7I1WbzE7qIt77RQI9Hcn5FHmbNJaUBHUtCSIiZMCSUhQqdUwvZYbVLMlQW62xRpFZk7pXtcKbSC6Gwhis0aBB+YhWoLQiaiG6QIypu1MrnTpMvQOlaBbJqIAP4NoMhgNKIjMfETRGKXKTjqFp7aOapn7bSD56lr9rxLNrLrSNUXI+sf7u7x3Pkwy0efq3zaf097v9vmpJgDbJJMnEghgJPqBigNB2z2qdEvjytvRg2+kWOU8SzD84toUfckbIvO085so7nshMwKuAzmCtp+kPC7wLuMqzvLLChYuXGE8mTKZTJicT1EC4fHWT5eGQpX6fIs8W8+/o+JSHuwdMyorgK3p5zrXnHiczGU3VcOvmLfLCcnF9i0tGk2cDlnv3MYXhEpHeflLN8SF1Wc47ilOyuiXLYup4k5iSOmJIXX9aYbOc3OZYY8lsRtYrOB2PiS4lxYt+j7pKKkE80ol8fthakk0rsjzH1Q0CbcexJijaYhPPdDajX/Sw1mKMZnW4jHcO75MakVapGzqNYVp7Wa/AGoO1Gd55VNvFrEQobJYSvm3H3mw6I88sWqWEbl03GJPWQzktwehH7ETm000Ao/WiY3auNBRipMiztP+EgKtqbJanjsgYqJsGU1i0MYQYqRqH0inpmFmbEsIxkmlLNlyhbGrqxuOcxzWeaT0DaxAs0ShiTCSGUoo8zxDAVdWCuDDWYozBaJWSqVrhydB5hjUWq1LnrvOO2jsK1YcoBDzOO6bjGVkvx2aW3BiMCOPZhMrVaJ1sCdpZk8bEBWaTKXVVEaJHZTqtI1EEBK0TeaYgHY+oRLY0deqQR7X7VkAhSapfhBjDYh6pOb2c2MTUhB8CoqBO1VrpOjRJacpog1LCdFKmLmV/dl8osvwRtScXkgIWApk1IMliLwuJoFrKMnrGkGnN0vo6X75xh+2Nda5fvoKKULs6Fan5SB08kp3ZC0aB2kecT92keE8MerGf1EET84ILK0t815PXefHmr1GWK/T6S2Qmo5zOsEUPneX0csvK8pDRwSFoTW95yMcf/z421paQyTFfywM+b1heG2DynIPTktl0RFM3ZEWBNsJAKWoPRvcZrm0z2NqkdoHRbMaUiPIVt+++wYN7O8xGY2y2znh0BL7kzr07XNpY5qVXb2DzAU8/+TTL/R6Zq1kicHVjIxXVra+TrW8ycYa9mzfoS8DNpvzGL/07/h8nb/LjP/QJbG+Jrc0NNjcuUQwGWKMJTcXewR5liPjQamN4194HBJQmxIDEpMIQvSe0ndIikGlD8A2T0YiR90QlHB9OuXVvl+ef/wB/8mf+Uz7w9F/m53/+n/OZX/sNjvaOWFke0DMaYxTeN4jWKNWS2e3c8y6pZGilsEWOUhpiSPNTSAl4H0A8Mfq0bRqdiiZUuucqpXBROD6ZMuhbVnLNsxtL9DLLrbs7vPDFL/PW7ZvoT3+Sp554nKtXH+Nf/YfP8trLr7AeKibLPV744pfY3z/kox/+IFurQ248fMi67VPNphwen3Dv/k2O9x4yOj6knI6xYnBlRa41mxtreLGcTmucKMRYjChCk4hdowyZzWnKClc35EU/Hf+8k/kc5rfGLMsIITCdTBiNxvT7A558+mmWV5dZWl/hzp076MIk+yrg+OAQakmFEtoQe8JOWbKqDNeGa3zkyQ/w2sN7TKoZItKSypLU72rHrKzZDJ7HC8WH+orPTxvedIqJj+hyQn18wtJwgyLLMaFhSYTltS1iOWM23CTwEFEOUeBCl0fq8M3RxTN/WOKZ3yO6eKaLZ7p45pvGM7/6z/8ndm6+2c7PruDp243nvv9HeP/3/QhEqJqa0N5jRIHt9VPBURfPdPEMXTzTxTO/M3RFTx06dOjwbcLHP/5x/spf+SsA/MAP/AAbGxvv8RH94cbOzg5/+2//7Xd97otf/CIHBwff5iPq0KFDhw7fKVBq3lfbRpFtG2YkEqMsFDgSXZ66FK0xKKPxBLzzOOeSxLpoekWv7VJOHVB23i0JuLYLMziHdylZ0KbsHzmm8wTB+cSlEoWxFq1N8riPcUFAxLbL2Xu/SPwtEt+LbtpIjD6R7+kQCcz1UGTeprzoEo6iaKJqu09lkThQWqF1umpaWil8pUFppCUgAiGRG+cy5pHUBZ4KA1ICOBAJQuoMVkKMCh+hjknuWkRhRKE1hOiTZURLtpxP6hNTkn1xDd81qf/OwqhFzl3mafU28d9aSkUkkQWLd5yTAvPrNT+GeSL+3PM8eknPjqEtitAapTVRtV1fMrfOkmSp1ZJO0iZu0jyMLXlxPiE874w+O5lHLEne7ZrMDyymV4tA4zy9aLhgM55ZG6CjInOClDX7D+8gotvPjGQiKK/xzZjpSUPMJ5QmWZ5FAlXVYKceXwfqxnF6MuP1oymK1D1JgLW1IcomxZvcFFzfvIiPjuXxGMYzTJTFWpr/Y26JQgB0uyYBFecFJmn+iSQLsrmKTt00WGOIRLRWrQJRRhCXinG0Sd2LbWezdw5Eoa1BW5vWarvelCh0a1mG0mn+k9a7XyT2QUyyY1NBEKUJIsTg8TGgtE77iNbJ4k0JVreWb61yQOPTscW00FIHfUsY+iaifFqDJs+ISf89kQjGpE7vGEG3RKJqlRWUQiuNDx5T5ItCHG+z1H2oFEYBlaBtS0R633bgt4SlT4U7zvvWQiASlUKZiFGgtNAETVHkGGtQSlG0yTlIJKkWdWado9RiZYrSFNamvRVwIe2RIYRUUBU8URQuQAhpL3DteQJEH3GuSSpKJlmVOCIqCr4dw8a1JKrRWFVA9EnaXyf1gapx7fJo936lsDolyWN7/FXjcC0J1M9zMpu1hFHEKI3ODLQdsCZThCCL50XbhaIUIWCMRZNk+72LhJDEM1xr1WeMJkSX1nUE55KClogBSedbN3U77YR+lmEyA0rIs4zty5e4f/cWb957yO2dXT5weZPp2IFEjE4kmKPdb2JLNqZhSfu6gASNFpW2IR2pXEmRax6/sMn6Uo9pOUWbjKWiRzSeEAV8AAn0+wXj8YS6KmnGE3Z2dnjrcJ+dnV2wfaI7ZinPsAZOyxF101Boy8DkDLWlmp0SfY34SD2JSGyITc1uecpLynOyu8vOzZsUWvH+p59gIoHGOY4Oj7l35x46z9o50TCZTDg5PuZ0f5+6bhgWOTqSupnriunpEU1Vpc5Ykwjrz71yj0sX73Dl0iWWhwOq2YSqGmO1wiqFVok8d6LwMSZriHO7bgiChHTvh2SflO7F6V6gVRoDT6SRwDA2+MM9br0i/ML/9m+59uRTuPWLXP7Ix1neP2D84C61q3FVg4qeTBR6ruoQ2oFr1026N6c1HJxLhQ1KIUGQkL7fRELbvS0o0e39Q0A0RlrFhabh4OiEz3z2C2gsd/cP8L7ksctb3Lh9H2N7FP0+GytLnB6fsHNwiHcD9o5PqHxg7+SUN+/eoylPGWxe5c7xES/eu8+Lb9xgMpmhRRgOlwihScciaV9p6joV9yUtOZBI1ss5PDnmS1/7Gvdu3AClyTKV9EC+gSTJ/FEfUlGF1oKoQF2V3LrxFjbLUTZL9pdFj16/T57nNHUgVjU6CsZYQm5xSlMrxbECXI0L7XdA3xY8zsmiEKjKGbqwbPUzPrRmOaim3I2OkfNo31BPJsSqwuYZQyMUwTHMM9xwyHhjneo0FTYqUWjsu55bhw5zdPHMH5Z4hi6e6eKZLp75FsczBzt3efFzn8GHwO7dW1TTybusqw7fKhSDIc998tNEYlu86rHtulq/dBVT5DgX6RVFu7fP4xnXxTNdPNPFM10887tCV/TUoUOHDr+P0FrzPd/zPSil+PSnP81f/st/+b0+pD+UuHXrFvfu3XvksZs3b/IP/+E/fI+OqEOHDh06fMcjxkeS9WcJ1njuuQQh3fNThr0l4ecy69bSK/qIVm1iOXmhCym5p3zAu4bY2jWEtwW0iyRufOTBNkeaAltjUhHB+WOfdwLNpd/nEu+wyFUTz31ee1qExd+JTJ9TJVEgqpS4bwLJzoFkOuXaN0hWTYGm7RpX2qBQScK/TTIRz1nMCgQRQqIPCDF1h8Y21x4lElQkesHH9Ln1uXOQNnHrXKtwMr8882T9nIt4N27g3R985Hk1Z0bOjf05DmCeTz/3Geez7+dedO6151+TOpcfnUtKnRE40iZolUpJaKUU0Z87/gXRI4s3WOTOmSf32rnA3GziEdbkkWkV2/GZs0VRwAVPLxi2ouJpnXF0dIoJgpuVjPb2qL2nyDNyaymyHDIFIjRKiMqgVGwTiynJlKEQH1BNg5+VjGYzYgBrLOvr6/QyjTbpnLWxbKqMuqnonUyQoymGNjFOsl5QZ74bb+Ozzq6/zP+0r/MxIt4jDZg22SoqkSopKa4JLamQ5Ozb9R8UIokQU0pRN03qcEShYjLRCCGCkkQ4aINvGsK889EopJVtVyIolfaApALgyVqiUWKyqUCSmoC0ikALxYSYyAljLFqnQqEQPF6gCR6lNDbLQNKeY5QiszZtTwu+KiUh5/uUqDQZrDUoSfY33iarigighRAD2qiUOAxJ4QlplY8QJMZUcBQCkfS8tHNXG0UeLHmRo7XGe4c2Gh3TMcRFom6+ECTJqOu4IEKJHrwjhogPHkGSkkLweCTZW7QWOgEQrdJ0bsmyoBXaGEDhnENiu4fF9H6JqDFoa1AhoLUsjqNsWr2Idl0qlYhhONtH5+ScasdftXYcxLPHY0iEk1ItudbOPaVU6jyOgeA9eQiIaObWf8k6JP09/5wmuLRHtMVbxiZ5e4h41+Caud2Hom8tKiYpe11YNre2uPfWm+wcHnN3d58PP3EFPZ2AjmgEjWqVN+b3h6T8sSB/BVQwaJXuQV4SgZVZzYX1FS6trfDa0ZQmr9HWop2n9pHoAyKBvFek4rO6Ynp8wtHREUdHI07rQNYbEptApjQikbGrcCGSZTl9m1MoRT2bYHxFCIHa14RqSvQNR95xUxke3r9PGI+4urXG1sYG1eiIqm6oJzOODk7IlnvttYfpdMzJseLk6JAQQQePFUUsS+rTEyb7D4nRI0ow1oAy3DupeP3+IU5yvO1TzUY4X6OVkJkM8j6iFEppXAhoJW2twZmdFDHNL0GhFYv9I3iHklYtpZ1bufJU5YTjnfv8h898lmdnnpjlLD/+FMOLl9jVkenhIX46ITbVgqwWkcQRiELmXxFU2qND8HiXlB0SidDulCGRzixIVnXGf0dpSfq0p52Op3z55dfoiUEVGZvrQ7a3t/E+cv/Bbjq/4BhNxhycjtuCQ0FnBQfjCe7WHZa0kIdDXr//gK+88Rav37rN2mDA+toKvWIJJQHTEppNU1OVAXS2UH6JRExmORlPOD3cZf/+fURrMjMv9vgm9/r5PVzSvVehaeqGk+NjtDFkeYEYS2g8wQWiBaMt0fhkyqTbe7VSNDFyXFe402OqqkoqGC6g5t8k2uLP4XCAkkA0gtKGobaY6NL92jvCdEoop6h+TpFlGFfTM0IzKJD1FXToY5cGZP0lTDb4xufWocMcXTzTxTNdPNPFM108k/YAgZ1b95loy/23XueVFz77Lmumw+8V+XCZfGmY5llbzLe0ss6TH/0ELvrWejE1caBSrOJj6OKZLp7p4pkunvmWoCt66tChQ4dvMc4H6cvLy/zqr/5qknrt8C3B26WxAX72Z3/2G9rVdejQoUOHDr9bhBAJohZJtXl3mZAS08SAj8lySYcULEbREKGpHVVZYjNLkRcMh8soU6TknxKg7QB2LnkdRHAu2TP5kGTtH2EfgEXWnLjICyulWzl5jbEtuR8D+PQaJYogQu1qqrpeEOVnHdYpAeTbc0tJi/SzC/PEpeC0xhuNM4JN+afUZaoknZNW1NFT1qnzWsdIoxoCoLQh0ypdw+CRRDekYJg2EdF2VYcIwacEa4ip+9sDLkacB+cVzsPE+yRVHsBKoMEtyI9HiJK35wUWP7evOZcsfQeUah+X9pq33WIxEiWmJFkEOddCfd6RIUoqdIgyZ3Pa054THPNkUXsd0hAICpVyNTEQ0GAylNYLcgWEIKkIQtprEKVVjyGiQyDqtiM3BPD+HFnBI/NqTv4EYT4qIJ7oIOp0mbwIUQt57Vk/qfiAO+D+7A71ZIYrK1ZnNY1RqJBsKgRwMqfTBNGaQCRD0ECMgpM0CxDQxiBRpSugBNU3mN/KsK3tRRUbso0NrDL0PdjjCi2KKEnBy6mInnf1R/C03dAxESJR0SbKBRXBek8VK4J3WK8YSh9tUslODJHxaExm89ZeI6CVx2qbuvZDJC/ypLYTAk1V4r1PyjwEGu/JJaNxDUprMrHkvYxGhHpWUlcVkhnyXi9Zo7T7S+VdO95ASwgE72lalZ7gPTqzGGsJVQW+taFRip7NMNakZJkASjOtqzTPBHq9HO9dazCimE1nyU5Cksx7IiFawjIEfAwgarFXGa3w80IiAv3cAhElgskygnNoY1BzQtJ7au8IIuSZRULqrBSlEKPoG0NmTKus1FDVNXmWtcVLNXHe9U4yRcnybKHuUIV03M45mqZJ5I1W1MHTeE9EMS1LtFLp2oog6KTkpAK9LEukDEKIQu0Dg9yiDRACVV3jfEBCRLXrNL0WmhCpvceoZPmh2/3BSHsu3jEpZ+RZzvJwCVGC947G14QQ8a0iRDktz3XRx1R4JYLJLFELdeMSwRw847om04ZMaUxrG+gaR5ZnZLbPdJbGUred72IgxkAMyTrEagUhyf+LBKqqpK5r8l5BbzBge2uTwWDIuGy49WAXjKYwCi+RgCZGhfI1viV1U0O9LAilqAzSWg2EGNK6jBGbWbI85/lrj3HrwdcIVU3MMyDSjMZpThiF7Q/JipxqNuXhzRt8+Llnef755zk5HfHay6/x+tciznkq75k6T8CS5z0ya1G+oTzcwxqFInWLN0srhKzHVCwn45LGO9Y3NugtDTg6OeXkeJ+TjW1c7SnrgJvNWBoU5EVBXU05OmrYPz4mhsjx4QEDq2n29zjxnj4KqwWyHBUtRZbhekNuHlYczO4RY6AuRyijabwwmlYUQ432Se3Mh4BYg5rf+7xvt/SwIDUj7T1VWgvDc/cGAcRX9JXG+Yrj23f4rbJh+33vY/PaNbavP83G5S1237zB4Z17lA8fUlezxfsrMYi2aJUqFGOMNFVFqBvwTVLcINkKBWkpjKhIncfpP02yoYwieJMILB8jzkcOR1Oe2d7m+hNXefypx3nqA88xPi35jV//LL/x2c9yc/8BH/7g+9mYTckGfS5euUI9rdg5OuDVe/d58uJVvvrK57m9u8+th/s8fLhP74krFBc2WFtfZjDoYbSmrmqq8Yxp7eit5Iv7vfcOyXqU1YzpyYjTyYQiLxb70tvxyGMtEZcUZNJNUhvN+sYG3gcmkynl6IRydMJh+52gbwuihqhaet9FXJO+/8xiZD/6hT2Q1RobIk0IRKWxSwXf+7GP8MaLX+fl4xOm5RQRgxghD4kkkvKUOD7G5xafrRLLKQWBrGcZXljl6taTbD1zkeXNdchW3vn9pUOHc+jimS6e6eKZLp75ox7PKAHv0jxtZjP+f//o/5WKbjp8a/Aue8+Vj3yM6x/7fqzNzuKZNlbo4pkununimS6e+f2OZ7qipw4dOnT4FmJ5eZmXX355UeQkIl3B07cYH/vYx96h6jSZdDK0HTp06NDhWwcfwpndkigIbvFcRJKEO/OOWIEYqMqK0nnqpqbf77M0XCLLC5Q2OFJSU1LraWv94PBNk5I3VZUIgnfGs+cQFwlnpZJ0vdYapedPJTIdHTEi1N5RNQ1lVZEOUx5JiM8T1JC6t2IIC1sqFx0BQ0TjYkpkalFYFLQJAuZdSbGVtSfiQsCHlOSWukFMRZZbYvBtqoG2R2ieLBcICqSVyFeREDwGQwie0DR4FyAqgg9UTcMseLxKXcuOs66m30mn8zsfefffUe9GHEgr1R0j0be/OycB5rNBzv6C9vXte7VD335qm6KPKQkTYkSLJrM5AZ/IBaURnaW5GMIi+Z26nV2bAEoy43jaZKAQFSnZe/aBZ2PeXoXYEj1Rkl1YICVTFG3nbHoydcJnGbPgCbOKWNZsx4jvD1CXL9O/eiUl4INHhQABXPQLTiv4gDiPaeeq1prY+MW6CUZoRlN85QjBU2cR10RsE9GNoymnuNMaF0tMAPGWRoEkJXDmnJAH5itULeZDItu8U/iQruXmcI1MW7RJKj3L/R6i06CFGCljwPs6zV+BrMhTkl4pjLZUTU1dtZZhkkiyTEk7pilxH5TGO8+0qqlmJcaY1h6mIfhkR1bYjMwaJEYmVY2LcWETkWlBKUNfC00MNK3dWXQeg2BsgRZJdigxgHNgkoWIj0lWPtmHaKpqlpKqkBQEmtRZHQV8k0gdayLGmqRaZITgGhrfJHsMpVCSbOuMKHp5jvO+tWwRbK9I6yGS7DXw5JkliqCNwaIoyzLNb5USZhrwzmNQ5DZDk47X9vo0zhESm5YIR98qJrR7XwgxdSsy7xKP9PsFSErE4j3WWrRKCetZVaN0KnYihKTq4BxNCGgU0zrZi2TasLyyjHU1vnGExhFcIHhoQhqzjbU1MmNomgbnHJVv8FWdyBmtsL2CSFp70hIrASFKRGnQYlA+KTqpdi9OpGMiExvv0SHSy3uYnqZ2De0yQREpXU3jHb4M1HWNC4E8Kwgx4IJHiBSZJdMGLUIIiu0sQyuNUoYQA6PxGOcds+mMpeUh1649wWx/l6++doMb9x5yZXUACFUTqL1HMoUOgsakNR3DnKte7C+LfT1CpkyyRFHC937og3zljTvcLxt29/fYvHiJPARcXVE2DWXToIoC6orJ6Igbr3yd7Ytb9DNFkSuWV5cwRqHQ5LrP8vI6Ok/JVEVExQAuLPa1OBzi8gHRZmRGc3lrjdHxMTu7M2anIx67usXxwSFl5RBj0UTq6YxyWjIaTTktMqqq5uj4hF///JfwAsPhkOXlIVZpmlgjCgpbsLGyivcNDw8PuTEZ01Qzrj/1JFl/CY9iNCmJCFVZ0TQNEgLiw7n7QLJ+UDprCeikbCDtxVVGE8USvUvkegh4VxGDRxFYV57y6AGHXzrm4OUXubG6zvZj1+j1CjaefoZw7Rrl8RHNdEqoKqRxuNAQXUNwDX46QaoaFTyRkGyF2rkaZK4gkQoE53cOS2yLIdIeF1uyULVk95//z3+Guprw6ltv8F/913+Pn/5P/gzD5T7PP/c+Hquu8dzTTzE+OuYLr7/J9evXMDGyf3DIzYe7HJ3MePFLL1DWNYhmNq2or2wynoxBBQbDIaenY5q6xrlElPngiD5ZVipIKgA+qVRktiVEOGeBBO9KGDyKuFCKmN89RQnWGuaWQEltpgaXbj5BRXxT8nhvib7WOBxvzGaJFJJEYikXsUrRAJVzvO/Z59gYbPDy177Ov/6N3+B7nn8fEgJFVad14RvqyZhpnjO1ikr1IZRkhaW3eZXf+uKLnB4dsDE8JVvp89Ef/m1Oq8MfaXTxTBfPvPPFXTzTxTN/dOIZ19T8D//131kUOc2bNDp86/An/ov/kt7KSque52nqhl7RJ8+LLp7p4pkununimfcknumKnjp06NDhW4Tv/d7v5a/+1b/KxYsXH+3M6fC7xi/8wi/wy7/8y+94PMbI66+/3hU5dejQoUOH33ecVxYMISxSu1HmHZgh+ZqLwmrDLKbkZ14U9IdDbF4g2uAFUO3vhkj0nqauU7DeNPimbi2QUgpXFonnt0ElFZQkMZ26iVOnNSxy0QIiisa5JH3dNEBMstKPEARx8Xvp7zPZb92+P6IWSicpT5kSCCHElEyERdfcXF3FaE1orTDmyaT0GWqREG8zDSxS1m3CWlDJOkA0vrWvcj6lfhWp+672jsYlW6soqasXkUQ2wNs6DeekSPI2iIsW5Xd56Xm0CYJ0aIF5CjidTpuYB+bmCufYopZzUWfkQ4yJXJifbmivxTwFEVMHekpCa7RWNI0DrRGliaLQ2mCsTRYiCuSclQbq7LyT1LdK2bpz5yKJzUmHI2e0wfy85DxVIu0cazuPBVABLDop9gDTkzHDx59m7RMf4dKf/ONQ14h34AKx8UQXCJLGWbQGJdSjMdVozPTkhDgpcY3DE1GF5eL1x1EqjXlTVYvuYLynHp3y4j//RardPZhV6CInxrMETiAS5CxnGVuGRlpCJRBaa5Z0jQfDJVb6PQKhtQqLibQS0CKp49GneRdaAiz9aTsCfQTRKJWkw6MSrE2JWBFFjAGVWWIwrW1DTJLzVifrBeYkTeqELvKCwntMDEQlNFVJI0Ivy8h7PYzzhLoiIu35zMc6EXsSFNoK6HR8s7JC5tZqWkOMyWKuXS9FL2/Htk3uhpC67GNEKaHfG1DXdUqUtZZrUYXFfuF9wBiLCpGqbpK1hdCeYxo3TUiWLoAWKIo8zTklGKUwojDKYLQmy2wiAQFtdZLal7ZLu7XQSHYU6XrFGMjzDFXkpCkS0nmKEEIkOpfOvX0PZZKtRYiR0DRYa9Me5KEwlso7jFJoEZqmIgSH0QptcwwKF0MqpgKstfTzjNpoqrpmXFUgHqUlXQejkNDuNAJa2WSr0SYWXZKHQKXhSvYjtIVRJNs7oyy5zSisZaB6+OBSJ3EIeDH4dh8E6OU5vbwAAU/E4cmzHCOSdhhPIgi0RkRTNzVFUdA0DSGEVOi1tsr46ID7uye8dXeHK+vPYpRQuQZRkehaMrfdLH1b4Ja2HnV2r4oQQ8CTjtUow9XtLa5fusDo/kMeHh5w+do1vM0JLiIx4KLC9gZE5yjrhp1bd3n95VcZrq2yubbKs888xXCpn7rzvacoCqxViAp4n2yV5lYAIgrnGtANQcCJ4anHHuPNuuL44JCT01MuXbzIvQf3mJQVQWuGPsM3NaI1RgWOJxU6LxlPHc7kDNdyhsNl8v4AFwOucdh2bEMMOOdTkV6M6CwDbfCicFFoRKG0RhUKm2Vo7xNBGJISiogk4kBapRMtqUggzGdD231Oa8MgbZdykPZ7ScQGh65n4BqkrBhNpkx7OZJblDUY76BuoHHUTYWra6JrwNWEpkSHdo8DQlAt4RrP39kWPymSWoOEdgdzybpK2r23aTxeK/prq6xvbzKZTvnCl7/C+tKQ9dVVLuQZ3/PBD/LWG2+xf/8hn/3CF3ji6hXG4zG+cdRNjc0yZlVJVZYYZRn0+hBhMp6hlCWaCC5ZTGpjiK09ZPRzK6i5IgzM5WPSfSFZTIo8ShLM53RSNzlH5Le36el4jAK0D63CSfsnthZaMv/SpQDHkji2jdDXhocljON8z0r3KK1VIgNrz9dffpOLwzWWV9Yolpc4cg1ONKIMIg5ipGkq6rpsLYcEg6ef5SyvbPDivsM/uM+lJc/FK8t06PDboYtnunimi2e6eOaPYjxz78abfOU3f43J6PRsk+jwH4UnP/zdXH7mWZwPqYBFaJs4FEsbG6g8J4ogLmCzpLDbxTNdPNPFM9+ueOZsrXbxTEJX9NShQ4cO3wI899xz/MRP/AR/4S/8hff6UL7j8MUvfpGmaR557F/8i3/Bz//8z79HR9ShQ4cOHf7Iow0wfQzJCp55/1cbOEvyhjfKMMgzQKG1x4hgioKsKBBtiaJodUpSkvz/z96fBtuSZfd92G/tITPPOXd8U1W9mrq6u3puNGaSLQocDIcom5JN2BRN2ZTDtCmHacs2gxYVlijb+iAqEPogRQh06IsiGEFZLQYVksWwBIdAisRACAPZBAiggW6gqrqmV/Vevffuu9M5JzP33ssf1s5zb3U3mqTRQAPoXBG36t1zz8mTuXMPuf7//V//ksnjyDgM5NGUkiWlHcZsX/3V6LUBtmIe7RXEFzdZQQk7RBcj+PtxZBxHcgWlpmNeV/1MSLiqKVipOW8IHnFuBxDsAFitCS+gco0kUMVrVROLI2OKqWqeYUpbrr5/AuulHkcmcH36lHOkYSDVTQ8TPJ+10OdCSlrBbKll++V9ib41yVduPr8iCK5DntPnpva4jvXDVIr7a9wPyvtfV7sWACnvJ3mm0vwTsi21xDZTuxYlNIHgA4hSCjjx4ALiHS5EnA9mEXbtSqzCzDUKYwJGKpCx+8u1zrUDf+oFfxVJoAYJXbWY2ZNFhIAnqJDXhRtHN3nmox/hhe/7LP29B2itHOBcxBUHHvDgvLDZ9Fw+fMTl4xPk8WNcPzIMI2MaGdPA0cdeZnXrNj5ELt55D+8V9UJxApp57e/8LJv3TpB+Teg8oqUqu7WCXFIJgvffXQMPBUemdbCMgbxoWbStAS9psE0z7upmOSe42v6C3Rvrg4KokT+T/YLUMWBj0n7yqDQh7DYAjTmRSqnknY3TK8DKpN1miaFklH7bM7iR6ANtY3OHiKtj3xlAVftUVptZvAu2OQlTLgdnKj7vHOK9VXdAKFJomvA+wlAFtptNBXkV7wPOGegmzts1XXOV7sfEMjY4D+KuqjIZQegIMeAriDrWea2JBjkVVcJEQCL44PDOk8tgx3CC98HGnyopCYOOhsVpBf+8o2kCIUS8iJGgFaizucmuG7HraWIwIimbXUfwHkIgOCXEhqCeUNu1327xAk3wxBCIzleCyYBxJ47WezyKEBlLtnnGGTKpIjg3YYeOEByCbXrKJaPJ1MveCd5dnwWuRptVDwjEGImNZxh7SkqUrESJ4Bw5m8VD1zR0MYBzFAfbPNrp1I1lBfBSyava/5oYEQx0F2C5WiFNw8WY+PK9B/yeT32UEAWoRKy+nyRAJ6r8aj2abHPGSoqVStAdrJa8+PRt3n5yyhv37uNQmqZFs6nyNSdit0JzJm16Tk7OeO2VV3nmuWd55plneO7uM3RtYySrlt0YE6mEdVGcq2uNCtoP+NghWRjJ7B8dcHDjBptx5GQYOV8PvPvgIZfDhmZvhQ4rHIXYCkGEi3VP3CYG9TSrPUoabWyKtbltvoNcEtvBiE7vPW3dgDfmDMXIj6EkI1G8/QTvGbaFQgItNm1zrdKAOHJOkLMRdlIVvTv1OYh4G+OYitpJJqiRMjKMDOsLSgzQRny3oAser6C5MI4DeRwgj5CT/b+SLAWqhYiv1TbKrvLDbk0Qm7dsorBj2r1wKFZV4vHFBXe6Iw6Ojrh752neeedd/B3lxrN3efbWLY72VkbCpsSXfvUVbhzskVOt4tJvOTg4YBh6Nus1XdfRxoBmGMaRtlsyqDCMAwp4782qCDv5UudUJ5W8nTYp1GeD6dnla8W0Fu5Gopj9ZRoGokB03taZaW0VsUovvlaFQdjzgQMp3CSz7xz7zrNWe2axPRFS1yKQrHzxi7/G3kc/yWKx4O6zz3C2uSBoBGS3YTOlgZzsPkmINM6x10Q0NKyTsN5eMLaJLnRf87rmmGMXv8vzGfu3fXbOZ+Z8Zs5nqOc/5zNP3nuLN770K3zhZ3/6q/r9HF8/bj/7PG7Kyeqz3wc+/Rle+rbvpB8SaDaRiLMNpReb7e65a85n5nxmzme+GfnM+1+f85l509Mcc8wxx284nHP85b/8l/mDf/APfrNP5bd9XFeZgS3Mf/SP/lHefffdb9IZzTHHHHPMMcdXh/PmsaA10ZvCcD7FA9HB4d6Cj7z4Am+99Q6bAg5HWC4p4hFvAAMlU7KVYS7DyLDdMo6DAQSTIlqMKJ9KDk9ftlPvUNV0zhFC2IEzIhNATPV7h77vWW82TApK+BqJcD2+1r/lnM2rPUS6JiIVjJgqtoi7AqBVhIzWRFKuCIRiKt9UMj7GCtQLKWcrk6/V3x3b4HClv7JNEqUUSjZYftv3DClXIMgxFqUvwlqFIWOWWAKuKuOmRjCiwr8PKjbEWnZkz0QCTGrRCcxD2CnNrc12rA0TOGKweT1z+YpNC6o7YO3qe67KS+/ulV69XlRxLtC2C0Rgu16TVRAXcKFBYouESCl2Ls6Z2jHn0a6gAsSoAYf5GjlyhfNMSuxrhIfYlUwAkPW/69dDBaSs77tKFMQCWoT9pmURAnp6xr2/8zMMkggHe9x8+WXi/gFx2SBSWJ+e8ys/8TMMvQFu+0f77D9zCN5xeXrKaz/19/mln/hZPvoHfz9Hd5/hrS+/SvPoMaMT3OEeT33m4zz3zB3Cl+/RP7xgmcFl65si9dZODEx9xlSZ7NCEtg0co4yLBbJc8Yool/0l/dZAvsXeHt6H3RhIOTMMA23T0rYNJSWG7RbvrApREyOxbciqZkcmsNlud33aiyMETxM9IUYW2rDebFDAeYePEc21r2th26/pt72BSN7jQsO6H8lZGYbMMCbioqNpIjEYWLnebhlzQUcrjX7oV3SuwYvZ12gqIIoPjqbx1QoiU1IydXYuOO+IMdAs9ykFtn3Pph8op+c25ryjaT1aYBgLiBBCYL1d40MkNpF2uWC9WVvFJxE6bWlDpK2bnIJz9OMImm1TlDhi2zDkRFEDoYc8MOQRcUKQUEGxSoAJNG2EYgpIvBBiJNf2y1VFanOGgjo0625OG/oRlzOxCXjvzG6DwqJtKxAIR93SQMCUOc2FZrWgpGzWGUNv82cFbRtv5KUKROc46DqieEbNO+udTryRBE7IFHIeyTkzpsx6s2XRNYQQCd5xsd5a9YA6IXknVkDC2ZrjxbEZe3KyjV+LbsFyubDqV9kA28kSxoD3kfV2y/5yRVy0DDnTjz3VpaWq9+0+ugrMxiawOjygPTziV954hyebDSG0CNWCp2idQ2xua8LVpjRTpO4mTkIIu3495oSOWz7+gbvce/yIX3r1ywxnZ+zduINvO3rnYG2grhfBDSP9tuftN99g6De4oty4fZtciQcXHGO/phAozlTFYyU6vIBXxV1u2Tu+hXPCZn3Go8tTPvCJj/DMhz7Iu2/f55Vf+iLnmw2p9PSXI5sysL9cctC0xOA5PT2lOzjChchq74B7b7xCv92y2BvY95EgDh0Tm3HLZr0hNC03jg8JIqzPz9icndO2C4IX+u0GlcFsm5wjCIzjxvp3Kfi6XgyDEZXiTL3rJpAey5l3laOVq40AKqQMJQ9WOc07muDxIjSquG2BzUBCGaXO6LnU+b6gYpXTBl/X3VzQccQ3DSXnSpya3dRENqNGaOwqhJSMhGgbFtQRQ8Mrb75B1oGjvRX/i3/un+f/87d/FFLm4vySww++xN/96Z/i9Tfe5v7jx4zJnhGWrWcsyr2Hj7lz8yZjGrlcX9LEwNj3+GBE59NP3+X+u/fYbNdWUcN5sipSjBSQUokX7yk+wG7dndT7efdcJdfXyGvPRTsirP6/jZ6Fc3QiPN6OJLRWpxGcd2wwZXnIyqeWN/mgblimxJBGDhYLnmx6UlEWzjOIkbo4RxTHG69+mZvNgmeevsPv+97v4a//jf+SvWZFdM42SYwDJQ14MstFS7u/x95yya3VPrdj5MVn9/l4+zQfudvysU9/lDnm+Hrxuz2fscPP+cycz8z5zJzPXOUz6ckZP/yf/se8/eqvftV8McdXxFdsThUR/tn/5f+WvaPja/mMVeC1OXnOZ+Z8Zs5n5nzmt38+M296mmOOOeb4DcTh4SFf+MIXuH379jf7VH7bxz/4B/+AP/JH/shXvf7w4cNvwtnMMcccc8wxxz86REytZgknu41CRc1KKSAc7+9xzwUDLJ2HJuJ9BFy1UlB0LIybNanfkIbBAPQyJajOAP362/SqTD8iVtZ7soFw03vtHZNCLY2JYRzZ9v0umf3HvEhijLQh0ni/87TXIlRsmsKVNUQq9jdVq6hikIZVQynFSkO3oUFwht3mQsbsJZxTUxVNyrBKQhRVakVnhEJsPCp2LIYeQsOawqOUuCwKU3Ormt1GvY6JmJBdS14D/Ss5oFObv6+1eX97qVSLiQrMVEC95GJAj16pXXUHpFUgX13lE94Puk9EASo7qwAVuH3nDt4LQ9+zHXpoV9RSOogPpor2oSqrhKID4h1oQFPGDA0MKBcBDQJFcFkrPZDfR8js1NJSdXYTAKVWcjyXYqpkAHF2v2pbeS0gGY1CdtA/PuVXf/pnWOdL9p65zcGdWxzcfZbt2RmP3nqLX/6pn+Hpu8/w/Mc+xuHTTxEXC7bjgG8DT5fCS8+/xH/7n/511q+/zbLAOGwYHr+LK5GwSZzdeg+XC1GU7DIqybAyFdyk4C6CUwjiEM2oKJlCkQIS0W4BywV0LSRwFI67Bd1Bw2J/j9B4Ui4M/cjZ+TlH3b6BdgJDKiz292tpdhjSgGrA43AuoBRi1+KcI3rP/mqP882GqTeomlI6hEDTNoh3pGzlz4ex4L1j5Zam9FRYLiINdj1ooY2BZtERgic4GPqCazpSUXIuXKRLgvNEH2iCB1mRi91tVysWeOd2Nm+mvE9Qe432Pa0XfBvIGfb3VqTRSq47b+9fhLhT7O43DlHMTqPAatnRNKYib2PDMrZ1qBSCREITrXfaIGcYR2qReyP/stnVGGEnNI03FWoFn0Oc4CqhYJWdrPS7EEJk25v9RfCermlYXyppHCm50MTAarWCkhEKvm0ock1Fr84AZimEIBzur5BFZOwH8ggL16HiTXWpSmwaLjZrqxxVx0OhWHUGBxKEJsSdCtM5TxsbcqlVr0TZW+1DgZQT4iOLztt9KMq23yJNoAuBVhxpO9CEliwBQdlrF4gWhlIYzJCIbrWoKsrEUiNNu6BtGpzYmrBYLRlzsXlUjUh2XtEQcCnTNg35mbuIws//3N/jC6+9xnd++EXuHh/z6PEpi0WDSCUwFLw4m79Qxpx2c57W+T+EMC0YbDdnfOjZ27z13jP8zC99iZ/8iZ/k27/7u3BN5OL8jKEfGYpS+i05DQylh2J54ZPTDX0Wnt+PvPyJhnh4g0eP3qE5PKTd22ex2gMfcd4WjZSVSx05WkSCCP1FJo+JtB0YLrdcPHrEm/de58N3b3G8d4OA8sU3HnO6FmgCR3nF2aN3WW8Hlnv7HO8t6U8fsvf0XZaLliZGNEOIsVo+OpoQWHQdi+BYebj/9n3O3rnHqFDWW0KIFFUSBXXQypW6togjKCyDx0VvFkJilkkTiWxlw2T33CG1SotUUn5MA/04MIwD680GcZHGK1Gs74lMIHgBcv2cWcCMOdOXxKJtOTw44O6dp+i6ju1my8XFBY8fPybntFs3NBfUOVLO5FLIJbOMzk63OCjC2cUlX/iVL3LcBv5P/9M/zsP33uULr73Jg8dPODm94L/8kf8KxbNaHfLSBz+EOOFgf4/9/SPuPTohNJHDGzdIWnj0zkMuzi5Yb9YkLcTVHnfu3GG1WvHkySmX/UjpByOzMHI250QZB8Y0snt6EkHFbCcrLf7rxvWqMQWQojQoSydsfGStSio294VG6JIjqUekoTjYix1DGvjSesO7YWTlHA1CUDgpGW1bu6c5Qd7y9v23ePqpI77vO7+Xn/t7P8uDxyf0eSTGgOTE8OSEkzTi0shyHFimC95YRHQ4Jzx+m9WdRMMem+RYfp3rmmOOKeZ8xt4y5zNzPjPnM7+785n1xYa/8pf+LTaXF19vtpgDq+j0z//L/we882Z9ppkxZw4Pb0Dd+DjnM3M+M+czcz7zOzGfmTc9zTHHHHP8BkJEuHPnztVD0RwAfO5zn+PHf/zH3/fagwcPePDgwTfpjOaYY4455pjjHz+m8sJTqevrAPIEzat4LjYDX/ryG5xu1ozEmuyb6tdA80wZR8qwRccBsoFFuZRryrr30wOTgtY5V8Eeh/cR792ulLuWqRyzAeObfsswjKSUQMyKiYnc/3VS40kV5MTI+uBdBRaKkRtQLQ6q2ldBVdACqUCsYAUiVvLe/kkbA8G7nfq5H0cipoIT0Qk9RaqkWtWUfqoYEYGAekQV0UyP8NZ65LWzDW+erlFxeLlelhwm8wO7oOmSr16bWthJBQDUPqUCroIJ0/lP6jOukQTiHD5EmsXSUJqJbhDZgS8TUTKRJ1f9RUxxXYFfoZIimHIrNC39dsOYslWJ8QENgRIiuICP0awgxO6PlIArpvxS7ynOQTELD/HesH5VUzpboZpr8IheazU7ty2ZESWL2ZQlsftvthamkRcRnCpBQVRJYyEVwR8ecfPTH2M/b+mOD2lW+5Rx4NGX3+Dxm29zfOMGdz/9ceJqRRIlDwNDKSydR3Ph0YP3WN44Ju6vKE7YXFxy++mnuHyyZpsS+9nGkKptPGHacCLUCgW+Xosp/qj306mRV70ov5wTj0rmQqFrWxwjixDpYmvVBMYRD3RBCAd7pspLBvp2sTGFdCmkUujaBu8DpfZ9700JXUc8jXN0MSDO451jVCX4QPSB6AKqGec9ThqaGGiaDs2QxswwjsQmcLhcmsI5F/o0mmLaWSlx10Qs5bBS7EerJSGYlZrzpqobxhERRwxhwhlRIERPQRGN1WLNUVKmCx6p1ZCatkFLrOSoox/6HUkZgidbHXtyUYacUV/nIhEWsaH1gTGNplp0Quu9kYWloGNmBIL3u/YRuaoaAIKznVaUUmxewKwLFBBnG5Cox3Yi7C2X1qdLYRi2pDQQgsO3reVmqvjo8S7ig2dMqVZosLHQj4kSTFGOg5TMsk+9I6uaZV/waN2wVTQj3hOqPZ0Th5R6DWo2dt55vDdSN/hAVsVXuw4RR9JEynZ9XjzROVwQnLSEtqFxnoDQl2KWftVm0CYijw9C6wNFi6lsRYhNA7FB68SdUsY3DWMuJFWKmM1PSVd2A91ygW8CcMDQD/xKUV596x4v3L7BC3eesnt0bWnaWZIAFDXlbCXqFLV7M5Xil8KoSifw3O0bfN+3fYz0c18gPXwbDZ6mFFp1eBwqmdx4usMVw9CTS6bvN5xcrDk5OaXvB/a6FqcJ7beUGFBvoz5lA8GzCMc3j7l185igykW/ZuEbnrz7Hk9OTnjy4B45Zw6WSz724nN85MVnefLDP8F7mwGwqgb7XUO3iDx1+wYvf/CDPL7/JnF1gA+BnAfGnPBNh8SId44YPev1GmLgeG+P5eIxi8WS/b09bhweknMlkqudYfTsqlAoEDE1s63F4CcsQatFAxMBbwtTziNajEwvCtttz8Vmzfn6kocnJzw5uyTlgY3aehUqsWwEjpFEUpXObYgcLA443N/nYH+fWzeO8T6QV4nD/X32l6tqPV9J/JzBOcZsGxEuLi9J2cYSxeyNLi83pM0FJXo8mQ+/+CzvPH7Cg5Nz7j9+wrbPVuEhRhZdh4gzgp1C9N4qyLUdTbdkyJnYNmYROfYM6zV7i6URojGykFpFDrsmSqGk/D6g/2qJVnDe1Nx69aevtYVCp2cSZMfGTFVwJFUyTGAcE/vtCh9aVCLvlQteEWGrjjeyYxCl896sHZLaBgnvUWdkfNMEzs5PWW8uWC1aPvT8czx6csLlpifGQBQh5ZH+/IwHQ08+O+Od1zpWQVmVnk+XniA2b2TS17iSOea4ijmfmfOZOZ+Z85lvpXymdcrm4vyrXCa+1ePTv+ef4vkPf4S+H8ia8cGxOjhk/+gIJ46xZMaSGcaBomXOZ+Z8Zs5nfpvnM79ezPmMxczSzzHHHHP8BiLnzM/+7M/yqU99iv39/W/26fyWxsXFBV/4whe+5t/++l//6/wX/8V/8Vt8RnPMMcccc8zxjYldmetrwL39AXaYsjjW/cjr7z4A5ymtlcrOqeB8NqA9JXK/RfsNOilq30e3Sf1Vr7+Cr2WknTPwL/pq0VSBYnWuAjhCUiPkh3GklFzBm2vXcu241y6QqTxy8J7ovQFSE9ANZIS8O62C4owkwOwgctFdqXFUrWqKs+osIVjp8aKFnBJUoMSwLgOypALdpZSdCktxjJjSKhfos/JwKHzptOe18y3vrQdTCksFhncgyqQOrlcp1/59dReRCiIbcGowjNTPT+8UbAOEws4SQp3HxUjTtAbm7CRqRuZoKZVIUbL6K1sJVby4nU2WloQXqSQRO8JnTIWUzBpCvUdDRGNEY0MTI3LN/sMXgVxBOXHVI8Kq7Yjz9XoKuEJBUDWAX3QyeLDKOlLB9EsSPUoCWiALZMArUMSADazdvBpMX1KmFHB7+zz16U+QSiK0LXFvn+3pKU/efofNySnPfuZjHD5/l37bM24GKEoRZVxvGM/PefDWPY7uPk174whqqfz9Z26T4hNKn2nbxjailFzvoAMptY/q1fARI10UxakzEkihp/Cac5yIo+C4rYU2QBsCbYhkhSGNeG+gehcjzls/dQIhdrRNZMxGGth9MGsTVYghEJsIWigl7zb/qDizBCgFvLNNQ5UAk+CIYn04xAZVGPoBcUoMnkXXEpyHUgjjVTl4VYVgx3FS1dBNpB96u6dOalUl+3es/VSq5YCIkVNuIj6BPveE4IlNpGnbOoKqtYVziJaq8nUE5wnBCLCp/xYR1Fsfj84om2zdxhS1U6UCsX7kXCXcvCd6hzgDXAWroFCwShQiYgDwbp5SULebh10dW8u2NfuBcWCzHYGCD4G2CTRtR7/Z4r3bgfbeeyTnHVnZjxkKaBC8CGWah+oYjdV+pYiS+2kDmJWD10rUaBFzY8kGCnrnCN7Xn2BKdYGEVgW8XY/3blfO34vgXUNsGiNAi5K9bahywZsFTDHw0gWHB1O4l1KPYRYP45isskFRXBNJqbfvE/DezlOoxHATcMGxWi44PjoiLld8+Z0H3H/+CemDmJpe7VhajOiwibPUalvu2jxH7V+lAqmZXKyf3D4+4Hs/8TLnF+e8+uABYw/dYsGi7XBi35Fzy3DQcXJ6zsVmy/l6YNiec3Z+ztCPrJqWZXDosGa8LAw6EsSRU0K8ENuGZ56+w+2jQ8owkJoGSYWzxyecnzwibS+JTUsTIreODvnMR1/m//vf/UMuypltwhPhaH+Pp5++w/PPP8uHX3qBz9+8w6ZYf41BKKJGyPqA857YODZPzinDyNH+HrH13Dpc8fydO3z8Qx9ks9kg3vqsq31/IvukEkSurjup5FpNhUqymBVTqeMPhDGNZrdRlKzCetNzsV5zdnnBftfylnvA2WbDZhgYUkLyREoIKjbunVif65qOo8MjDg8OWK2WdE2DiMOFwLJpWTQdOY11Rp1IAiEXIzNPz8548PAxKWWz7BBlvdkyXmxogqcfel549hluvf42X3rjHU7OL9DisHoWtqFyHBN9P9jTxdAz9CMinna5IrQNi9WS6AW/VcaLNRMl5VRpg0eQSqZUoqK43eaAnQ2TqpH9zirRqFR1+Vc9EF2FPRZdVTURwKNMKmxFKCkTF4GuaXGx4Wx9wSulMKjwKLT2bOJsjsjThgVxO2V8GyNn5+dcXJzTDwMvPvsMn//CL+2sX7wIqoWUBtb9luHsgnck06DclMInPrAC78CDSv7aFzLHHDXmfGbOZ+Z8hjmf+RbKZxZN4MUPfZh7b75Jv93wrRRN13Hn7t3d3Ke1vZ0In/qe38tHvv27Wa/XJE344KtNoM75zJzPzPnM78B8Bnvb14w5n5k3Pc0xxxxz/Ibi/Pycz372s/ytv/W3+EN/6A+9Tzn1uzGue8V+/vOf5w/8gT/wTTybOeaYY4455vjNCd39p+IiOiWNBvA4QMWTEFLKLJeeGBxFC+vzS1OzCpQ8Ml6eI+MGdCrMfKWcFbkq1D+R6KHaNflKEJi1lL8CiQEfIqhVJrm8vGSz3VYwwr1vrX5fXHtG0WpF4b2ja1qid6ZQVnBiCsqs1B8la66bAaA4S3xzUVIqeA8xOJyDKJjaLwa0khcpDQaqeWfqaKoTRgWfckkGsleV3VAyOmYuUuFhX/jpd0/5/JMNGzwaOjoRUrFS5FptJoTJ674Kmmtb1l/e3wzXiB+5vinjfc1WmVFXP+GFLMKImFLRXztuCFcq76J4H9+nIJzAmUk9G7yBx1qUnDOnjx4xjgrq8U7ICCU2aLvELfYgetTL7v6Kgm4VdaWWDPeor8C+8wakSEGdkp2VF5eScaoUsgHpeLxCGRInpedSHKM4OhwJOwcRU3RPInFVkGIVbrRkyBkncPtDHyRVubL38PbnP8/lo0c0qxXP//7fw5P795EMTdMQVy3Sb3nvS6/x8LU3eXL/Pb7tn/1+4o09csl88NOfomsii+deQJ1nFT2/1m/JyUA1M2KQCkYWPIoXYRRldIWSFckOKYJ6GKRwfnyLzf4x4jsuHt3H3+joQrR+o5DHQhMa2tiy7bdsB1MWhxBZLjrrDVV1PqaRWAmwKUo2ZZpznrZtaKtycdBCn+rfxIBZHyKhjQbqOkc/DKhAbDzON3ixkutjSpSciT6waBtSzvTDAALBC04U7wqr1jP2Zi0iPtAExyIGcikMKVNUaRqbm9oQCEBWs3XJqmhr4HEIAe89JWc0GwGkIgQf2PaDqTyBxgerdiQQglnCdIsVglLSSCGZmpFAShlNaeJVrWoSnlwKoonoGtRZ+wlC5wODgvOB4gpaEmhh0UZEHGMuNCEY0J4T49Djlwu0GHgX2wVt2xkVU+dQbaPZMWjG5Uz00aYENaJskzMEA8ujUxiVjCcppDyAmu2Cc84sc1xkQhnFQwiNgbY5k2ND8K6SANCGBi+BIY9kNWVkP24RoG2sbym1kpUWI5xqWfsxmcWgqTkdVuhCjGw0xggnQtu0BOd2a5RrPLk4UjGAGTWbFOcgiBCaWMlCtb7XZ5p2wY3jQ1788If50mtf5KU7b/OZD7/M3qphs91UEpddu5WcGdOA4HEh7taTUjJq7C/ilJIdYxb29vb5+OEBN24c8Dd/+u+z6TNHB8c88/QdshaGlNgOI5uUePfxOa+/8y5ffPUV2J5yenbKsB04bhc8dbDPk7ff4MnJyLZp2GtXXGqh7SK3n7rNt33ow4gPPF6vGTeXPHr3XYbNlq5r2HvuGUZ3wcWm5/GTJ2y3F7Rdw+FqiXpPKnDn6bv807/3e7lz5w5n257RNWzWl+yFwLNP3eLL7z4gu0DCEUXw0TOmTH+55Y1yHylrbhw8x4fu3uETLz7D6cXFbi0uauSQr0Qeu+plAQVSzqScrcKZTaW21payW4rQSNZS12PlaH9JP+zRD0c899RtXnjuLu8+esx7jx/zzoNHnJ2tKYptMlgEutjS+kgXIwd7K/ZXK9tcuF1zurkgNq09a7hgFjZdAxVsVwyTDsEbwJ+e4vPDFzk9fUJKG/DC5nKLDCAhcj4MfPill/jiG/f5wqv3WA8j/aaHrKybhuCF97Y9y8UaJ8qDt19nvR259cwz3Lh5m/TBxNGtY0LJDNGR+8Sqaxn6DalfE2JL0ZGijpId+GqRiVx7/rmiw6nPLqhV+qhPCFdr/fTv6ZmPq5ugBYKtyoBDxeNc4GK7Bg/7S4fElleenENoWB4f4s7P2IowOqs6oRRGtQ0kuUATImkYee/hI3751Vd5/tm7dLGBYmR8BnwMBBEWAHhG1DYIFMfoI2PIFA9B50oWc3z9mPOZOZ+Z85k5n/lWymdi0/Dn/h//Nj/0b/9bfOkLv/i155DfRWFVcCzuvvgB/sy//hdt01DNZ4ZhYNkEgo+AzPnMnM/M+czvynzmWsz5DDBveppjjjnm+IbEH//jf5w/+Sf/JD/0Qz/0zT6V37T4qZ/6Kf7YH/tju9+HYfgmns0cc8wxxxxz/CaHXCPDYKcCKzVJd8VI+P3lghA9Rzdu0y73GLzji1/8EjqOkBOaEuB2WhsvgpNQqTbFobVsu6mhYwi1xHuo6mgjCYzcV2L04CMnZxecXqw5v7zEV+DScJwpSb5CvXcJsUI2nwe6JtI1kaaJaClMBgsikIupOBO1cgswkvEoA4FGsQSdK3XzZB1RVEnjWBWGBTRXawdTtmrO1frBgKxBiyXFeLwG8nbLm9tzfu18w5fOtvzqk4xvWzrvUefYZrPSEHW4a1eIs40aooJMf/kKHOCrCRT5qjdJJQKoqjJRICtp3NJPwM9XHGbqKdM9uDqkERdlUtpPBMakVoVanh3EKWimqLfjeYdrGpJ3ODKTPlnJpnjGwF4jf4x40grq59oOoZITrrgKLEaiQMBTcmI7bBmzklQockVsUG0kMmbXsVOOy5WyXJwg3jEOPRlTEDo8t565y/1fe4OHr7xK89f+Bnc+/hGKQup7xtNT1g8fM4wjftnx6T/6/axu3mAcEpKVo5c+zCAjoWtx4nCPT5DNiBuTkUtMenjd9fVSiRyvDl9gdAWcEr0QF0tY7NGt9oirJTpuGbYjfexxsUcUUwUqDFur5NP4hkELmzTy5PQxy8421uSU0aIkVYJz1VIhGDBVlJwyJY/0YyJjakHxQtGMekWjja8n5xemUAwRUKQSgU0ToRSGXUUhs1Rp2gZfx9e4XtPEtlZhUsaitG3LQoxQ3AwDBQghsGg7qz5AMeW3D+RxJHjrN5pMVUtV1G63W1Nw1yoJThQfGoIz64GSE/2Y8aGK8oKjbbpKtqjZlIgyZjsvp44iZacizwhd7NCccEBwMKpYpQNMOei1kEtPKQVX57quMbu9YTvim8hYMqkILnguh3EHqsYm4AV0TLgCpIKvo8w5oVt0aC6gvnbuwiJGa3/ndjYbQRxBhSBCE0K1noHQNYhzZC2kbNUcxnHA1QpYTWwr8WN9YL3emIq6loLfi5EGV+02rtYCH8KVAnlM5EoQiTNQP5fCOAx0bUPOycadM/By1IJzniYE0tAjWlg0ZuW33mxZ7S2IPhCct7xNhDEbML8ZB/qxEFs4XHZ82yc+zn/9a7/KL7/1Lp//5S/w/d/zbaxzplSrnmFIbLbZrtdXcHsca0WIYtXAYlPntML+IvLuesvPf+EVfvwXv8g7jx5Q0oBXV61RtALhmZQyRYXF8R2KD9x45jku7r3DxdkZm4sndC6x3y14+3KLL5k7h8d82yc+Q2wcXRfZ31/x1LPPsClK2lwyXFzwxsMTmsWSEAPiCm+98TovfPyDHB/d4PjWbRZNIOdk65uP4Br+67/9o5ydnfPwyRnPvvASH/7Eyzz11G1u3rnF3//ia/RZKlkTyNkRgyePPf36Ai8Z5wI4z/lmy8V2s1sItNi1Sp23vDO7Fxhr5TOrlFCKWUUVgRAD3htcW4qCFoKLxEoKAbDo0FJIKfP00REvP/sMF5sNDx6f8Ob9Bzx6/Jjziwv6YWQZPYuuoW0agodh2FjfFOuOCSU7q4g2jM6Ibed2FRe8c4z9iHNC23W0tf0260toOjaXl4Si5EU0OD0ENus1D995h01OFFfoy8DJ+Sn92CMIz9y+wZ2bx3znd3wbj55csoqOg7bl6OWP0DUOxp6cRsZ+ZNE0cHBASSNn5+tdlY7JNKOoklNiHAYjlaPNS6oFnNklUTJf9QjwtciC3dOZXpEK07OAQmwi22GNS7BkweHeitPTU3Lu8doyilmyOFGCCsULYyrkklFNOM10i47LzZaf/4Vf5L/3+/4plqsDusUFuSjOc/WMIZ4QGpxAzoWTMfFmUT5TGlxpiPOepzn+cWLOZ+Z8Zs5n5nzmWyyf+VP/u/8j/+Cnf5L//D/+K/xujRc/9DJ/+v/8f+FsTIhzNE00e+85n5nzmTmf+RbLZ379+FbNZ+ZNT3PMMccc34B4/PgxP/IjP8K/+q/+q/zgD/7glSLmd2j81b/6V/npn/7p971279493n333W/SGc0xxxxzzDHHb11M9kmIosXsjOAaNlxLLCtWej3nzGa9JimUJqJpxOWM1PLfKhVYxdS4ztWy7RVwDd7U0DF4Yog0MVSVkpWSN6zB4ypwdP/kCWeXa9bb3kAjvjZ1x/XXd7XODRhdtJEm2gYHFZn03laGOGcGb5sSEq6WVq6AhxZUAiqyU1B7zBoii21mKMXaxTsPzsqCK1WxmzNOawKuiqZCUqXXwpBHHp8PfOF8zZc3W97uE9p2Vj1GjLAQVbzWzQz1HMyyQCp44iqILFcX/zWBAdltmLhqKNt8YT+1XWX3zmvvfX9rT+SDCDsyCEDl+ufqOSlmqVX/tjOiqGXWi1ZAwlVLAbH2VAVPAS1cnZig0zNnLTWdUduIAjv7jSvbDFPWu0ItLZ7IahYcCambVK7awUq7f3XzTXYSqJparyhSFO+Fxe0b3P3EyywO9ticnHL+xjtVHaaMQ093fMjh4R7d4QHtjSOSMR14CaTaTzRZ+5RSyJKtnHltRpmIkVpgQKeuXQQpUJxWLwfPtmlIixXSdjQxEFzD3t6Ktutw3lGGERciJWdTt2rBR4/WMaW54BTEeXxwlKxE5/Deqv/klK0kebGTSCnTp4w6cMHRhIj4aBuJvIGAMcSqyocxZTxCSSOJgWXX0LatET6qprQt2cafKDmNpMFDCATnKGk0VT6K5mJVBmpbUAqNs7L1zjkQpc+J6MJVR54U+iWTUqJdNsQQqtK2MKSBrPYepar2khK8AdM5X9lgxOAZc0FwBFHUKYTImK4Un945sppdjTpPSdZ3UCiYotYA+IyWQvQeLYqIEIMRZIKRaq6Wp68na6BrJVm92Ean6AxYL1oYh5E2hipstvHlx2TzrxOi96BCKgWpm648Uyl4A76HYURrhQIfIyWPiGglzoS+7xlTMas+LeRsbeWLIjnRBo9qtROpM67zRgSrKmlIiPcUZ9+RqeM0JXqp1jvF1g/vPZvNwLZPNMGzaILdIefxPqK6NYU9SiZTJNOE1ox9stLZLi9EC2nsOT4+ZnXjFk+GxC+/cY8/9D2fwTmPczZflQqYKrZeUN5PlmpRSjYZr4iRKq986RV+/ouv8PNf+jLeKa0vBtyWOt9VwkTE4UPD5f17EDziHYfHB+wtF3TR40vm8GCPveWSpii3Dg7wkml8sI1ymzWdd6z7DV6Vo4MD9p874pXX3+Ts8oLVsuP7fv9neXa/5fD4iHa5x7N3n2GrgcshEZwn55Gzs3MuLy7pQsPzTz/Fpz/6Mvv7ezw+P7e+XiszqAo5K8uuQVxh7Lest5kYIl3bmHVTvXdTeDfNYHUejjbvqKqRPyKmPMbvjI5UJ1JBACMNbO6x8T0V6Mgp0zrPsgkcdC37i5YbByuenN7g9Oycx0/OKbkQQyTEiA/BxqRWolULPvj6eFBsLIVg40qrjU1VaZci0Pcc7C0pt2+wXDScXG7Y9luiCkNKnJydcSeX3Tzx+PwJfldNRNk/PMQDB4eHHB0dsr9qoRgh2tTxFUJANeODkVxOhEXbcri3z+X5BpkUwRMRgNlyxmDPNGaXZAYU05qlV9slvnbUBcVsr6bXKkkiVJshs3jaX+4jTjg9OTeTCzXiOPUDUMiaKZptV4Y6qyRSMqqZjBG5pRQenTzhjTffIuVsROW0n0OnDQuC2frYTNTnwpsXG55sVwxZ8OK/5qXMMccUcz4z5zNzPjPnM9+K+czi6IhPfeY7KDnxX/6n/69fv3Lc75D4rt//fTz/wQ+RS6FrrGrT4dExN27dQtZbZJp753xmzmfmfGbOZ/TqUWm6V99q+cy86WmOOeaY4xsUX/rSl/gP/8P/kB/4gR/gk5/8JAcHB9/sU/rHjldffZVHjx7tfv/c5z7HD//wD38Tz2iOOeaYY445vnlhdg9Ywli9z3c2AqqIczuF5lS2++LyAul7NAYoqXq2KxkDzy3VnKwBjLR3YhsJmuBoYyDGQBMiMQYr7S+WeCpm3SDewNyz80s2254xF2KoILFeh6e5Soctr91lvdE7Vm1L03iCs/LJZUpMAVVHLj2jFnpgYLKwcLgKjhtBYDhR2QEJVmLeiSAUPAERVxVfxcAQgFJwtfpLUUhJ2eTEZS6cjYW3zhO/ejbwXspcYAruyBWI/j41NAaMX2X+rt4z3SX8smuAa20j9f7Wzyo6vWAWEVJLrE/fokZIiLsCHK6IAn0fkFoLejNh2dfvhyBmqVAlViKGRuzwjunkrGOYchCq+lAJu7taSRIEnDPwQybwLu++eCKn1OkOcPCAL6NtGNFEwZFwjNh5ZaCI4HcQ/BWwddWvZLryev/tInIecQcLbr7wHItFx8NffZ2y2eBLg2sCzaJleXzI/s1jmtWSvhTGyx6vZumRNVUSJINA0Ux2unP1cPr+cwF2ajWrfm+WGyqQnefMR8piRew62jbSqGNvtYePDYgjJ0fwjqRqJe/VCBbvvKlPEaK3CgWoERAhekL0iBcrca6mVBUxa5gogBd8sCpFsVYqmvpJ0xgYVyqw5Z1HczIQzwmLNhrho1r382QEIXqzikEzgqvWH7rrwwiVVLAqBFoK4j3BWx/IVYmKszkoOjHAqiJi4hxtE+3axc4vjz3eCUWEvDufqV9560OlKg/FkUsmiFlfBF/7pis2f6htXppILec8Irn2omlTlbsiUr0B4YLNoy44O1dv/d6pKQV1AvXElMZtnO6XWtl1B6laLISu2fUXEKKvm5+8kbOCwJhAspXRdw4v9v04x5AHRIysbZuGPBrAaj9iNg469R9HnqZmMqJWBh6qirPkCjhWGx/ABUV3hLSQpqoTxdTYxU1ErhEbBSjVRsDunUPFURCKVa8nq1XbcqI4LwR1BsSLEGIALWjJLBYrDm/dpj95jy+/d8LpZrR2dp6ipfKSNu8V1WqBMy0rNh5zzkbeeSE74cvvvMOrb9/jweMTnj48qIRXJhdlb7Fgu1nTNg37B/v0Q2I4P6OMpjxd7S043N+na1o0J+7cvsn9o2OanLi5v0dJA3kQdCzkrRKdkPoecuZwb48XP/gSb95/wNnFBU0/8t3f+e204yUHx8cQGo6ODnlmKFxsR5I4RAvleMN+t8SHyNO3bvDcU08Rm8ijxye2Ec9VQLYoORWOFi1N69l65eLinCYEurYxEmca81i/99OcjFWvcN76qK2Npiy3MWHE95CSrekilSQwss/JNA8osZIRCRvv3gfa6Fm2DUd7Sy4PD7jAflmQAAEAAElEQVS4vOTBoydcXlzaeuw8BE9OmZyLkbw547xZT5ailKI47+tGiGle3S13pHFkf7lg0QQO9/cY773LsN2izjOkxIPHj/lgSsQYWS07ysORveViVxHi4GAfj3Cwv8/+3h6l96wXl0hweLU5pY3RiOIQCcEjqjQx2vzNezbviLA7Q814J8SmYdl1bPvBbKac7uaeqf9On7lu6wPT/D/ND7b2GR/tsFFlL4tCG7tqx7W2jZnR5qo8DIhonbftvlAg1N0BitKrzTtFYbPdcrle2waQ6Ek54+qmKxXZbXaYiOXihAcXPafbjm0SnJ83Pc3x9WPOZ+Z8Zs5n5nzmWzWfefb557l56ya/+Pmf5a033mC72fA7JW499TSr/X1sfDm+65/6/Xz02z7DmBL7q+Wcz8z5zJzPzPkMcz7z68e86WmOOeaY4xsYFxcXfPazn+VHfuRH+P7v//5v9ul8zfhaCoe/+Bf/Ip/73Oe+CWczxxxzzDHHHL/9Inip6hg1peoOeK1qNnEIxcA4LeCEi8sLNkNizIVVFw0AFkUcBGpZ5WvAsne2MSAGTxcji7ahi5Emxitclmof4aBbLhmK8vZb7/LoyQUSPE30OwD8K1d32SmxqnJIC8F5jvdX7C+WFM2Ukk19C+gkgRWFnNmmnuwG9puGZWxZ+oiPHi+1jLdUy4gCPhs4i9jHQ/A7YHtiA1LJVXUL5ExSSCr06nmw3vKg73m373ntSeG9QZHQcNB4WinkTHWgF4LAUCvP7AiC6biq7yNvXFV179pk9/8JRNerv4jB7nCFQe/eXzdRFM32OXcNcNgps+wDO1uFKwQNqeoqhwFodsoGLhqIVEkkMSCoSLXmQAn18goGBk2WXVSawDln1zG1g/Om5p2us4IjguAddAIyDmjJuJxRFxnEMTiluGIK6Uq+TEQJ9Vzc+1T49V9aCBIgK/35BacXZxx0Lbeffopnnn6K88sLpBRC8ITDfdbrnuHJOf17j5EQ0AxZBYkBf7TCZfClAo3AKIVc28FPPVoNtsqqdEVw6lApJJ9ZqNLj2OB5Sx1huc/B3orjRYcrmWW7MGJFIO63uBCMAFBlyJlmsQAnkwb06jpr/2q6lqZtCDGwbtaoCm3X0rYt/dBfATrAOI4sFoud9UnTRHwF44aU0KJ2r7RAKZRiFg2xaYhtw6bfoiUTvCeEQBscOWezjwjBVHfOg3PgHEc+kFIm5WxqyegoebBy8uJYrfaIMRCjJ0ZP3vYMQ7KrrMfJqVZuip6sDblAqmXqhTo/2ODDaaFtW3wI4AK5vmZQqGdImeg9TbCOlCr4JgLRCftty5iNBGlqDfRSogGj3kjMUmzuElFc8DhfqzLkQvCOvh9IueBq6XzvaxWFkmmaSFRPSgk/DHRda9UqcmEcR/aXXSXYTMXehkDjB0ou+BBovRG+DugWLeFyw5AMnNzrWtDAerNhve3ZDAnfLulCpPUeH4QRZb3ZMIwD3bKlDaECjcqYM3lM5FxIfQJguWjN+gfYbHsCwiIuUeBsGBmKzbMOiOI4uHlMTomUR0DpFh2lFDabDSkXbhwdU0QZ84hXiFVB7aQFzTbWi5CKsk6FZ+7e4V7e8tbpE37u1+7xsedu0gRvRFLOpsbHlLjTODQM00ixnFJdH4WH55e8+fgJZ9sNi8bRSUHTgKB0seHbP/5RXn/tFZ69+wzf/u3fzt/9yZ/i6Zt7pJzZbgcenpxwdPMm7XKPy83AZz79Scb3HlHOz7i9v+JMM9vtGkohOCXGhu22Z+h7Gu+4c+cmH/7Iy8Sm5eTeO9w5OuLW/lMc73Wcrnsu1ltuHe7z7FMd3d4+N27fpkG4PD3lzddfR5pASQPFCXvdgquqFgXRxFAGjm8cc7yIbNcdD957RBft3qdxrFYO+Wr9KTsKkyIwaqpWIQ4tZrq0szFCbW2ubWmMcaakbP3Ve7xM9muQSmEoRqA76jNFCOzFlhv7+9w8Pma93jCOyeaHSjqlYtZWqRJROZuqH4zwGXMmabY1oEx2PNYMy3bJousoCv1Y+OLrb6Ex0qeRV1/7Mt/xme9ksVhwfPOY7uHbvPz8i6y6Jd4H1iWBCou2o2ta+n5LFKGUBGkDznHr4C5p2OKGnqYNZM10YUEMDcE7agkREOuT4zASg2d/teLmasmrX/4y22EgK1aZoi5Zu0eFa+v7FFJ3dU6bCHbkNBMtb2TJmEYuLyp14jziIZcRcra5XDyeYDagqpScWFV7j4Kw6VOtkldw3vOJj3+MN9+7z9nlOduzLSEuKtlHJc1jJYqgxXN2mXmyLVyaxJo55vh6Meczcz7zvvfP+cycz9T+9a2Sz+zdOOb/9oP/Lj/4f/83+aWf/3l++4fdo//x//xP8T3f9301n2kpWuZ8Zs5n5nxmzmfel898zRlkzmeAedPTHHPMMcdvSvyJP/En+JN/8k/yQz/0Q9/sU3lfjOPIJz7xCS4vL9/3+snJyTfpjOaYY4455pjjt194ZxZPyASEyE6ACBB8QKMBp1aGfcSL0MVI9JN6V1FnZICphA1BVzXAtIlm+9AGTxc9i7ahiREfI7kfLOF3jtAEVl3D/cen3Hv0hC/fe4iEFl8B2/I10t4rKgKyQhoHDpZLDvdW3DzYp4wjuTiym0D0TM6mci0UPnD3Wfq+Z7vZ8ODkMWPbcBYiezFwGIUby5a9pqFEK68u5tOACHiBMRfGbGCaFyGIkDOk+nOZlNNx4GQYeXc98t7llsfDyJOUWfvA/mpF5wPROUYFiYJMYGoaKC6bTkl8rQ5TS1VXMHYCdu1fukP9r8O+VcyLygQAVOi+qKmuuAL3R1W0lF0FdM3ZFMGV9bCS3gbMZkoFduycvZjq0QTPgvjascQUteaYMdW48agExqzomJF+RBpvgL0zVbyrqnREkOAJ3XJXDlu1lrCvIHUpSs66+64gQjOuIfWk1KOqDAKjCEkEFcegwgA4var4ruKMkKmtV0RRVwy7KoKPpp68XK+RPPCrP/oFTt94m1ETH//Dn2X7+JTNk1PGlLj9kZeNJLq85PLdB+zdPMbt7+EODliEp1nu7ZNjqGMu0PVCSYorhbKDqKgAmSm9pSrtM0oQ5VKVRynz8ycnvP3Kr3F8sM+NZYcXx3KxomkafDAyLrYdKZsdAs4jIYCz9uralqZryUVJ9Z4bmWTq41IKlxeXBugJNDFwfHzEouuIIVIU3n33PkMaGdPIdrsmBqFbLOiWK1yIrJoFXdPShMj55ZqTk8dVqejAwWKxoGnNJiIEm0dSMeWkQzg9fcS2H8zOIUbSmBHviG3HarVi1UZEHCVbvz07PSOlEUpmuWytHZxVA/C+qdYehX67IY89Y7H770KgazsjE8TGiYgwpoFx7CkIYwYXvIGYPkARXAg2HhRKSoizzVNOILYNfuzJY6L0w47kE+8JoaOQKXWGcyoM24HN5pSSM02MLJoILhBCJLSLXd8oxcqxn15cIEBwnm6xZMw2d7vgaGOLYgRCSpnNZgsitF1DswgoQkq2sUoobLZbzs/P2Y4jILixo+sWLLolsVshQ+LB6ZaEkhx0FfI9XO0hpbC9uGR9eQ7B4aMnhEi32sM5s3EYxpFUtowlI6WYKrtpCCEi3hOLMgwDombvF53QijB6GLJZ4hzuLylFGVNmubfP3mrfQMpx5Oz0CecXJ7Rdy3JvRbtc4FMhFwfFoWnDc0/f4ez0jC++85Af/sm/z43//u/h9uG+zVuakWqHIM4I2pKKzZxO8N7hfaRxQnSOd54kTteFrLC/8EBP1kwMnrb1vPX2G6w3l5w8OeG1V1/l3htvcPz0HbLC5abHJ88v/sqv4ULLjeNbfPLFFyif/Cj58pJbeytOcubyYsM49Igqx0dHaHkNJ3Dj6Jhf+9VXWCwWvPSBF3nqYJ9HD+/zwu2PcHh4jAicnF3wzNEBe21kf3/BwV7H6XsP2V6esWo8q+Mj8jBWS4+IZgVfcFIITtgO2e5DEErwHB0csGgDwVvfbpqGcRx3VUGMZJ5U8WrErjNrgTAprnfVJyA4syRyckUdTKt6yjZXObH5wJTVAb+jGQpjyaScyJoJQVgtuwpM27pV1EjnhNETUtcvs8ARxnE0slHtHiYt5GJKakSQosRKIN08OMAB275nLJmPfeLTLJcr3nzzTX7mZ36as/6C7/34t7FqWtJkgZGmNR0OD4549PAEsL6d+oG9tmMQ5dJZfZlxHBiTkS9OHE58JemtTaZjeRy3jg9IKfHe48c8Oj01kjBEBIcybcr86tBrT0/TRoGpMokT8A6k2heNmurzhrL0kWeXexxRWA4DX7oc2HhBXKALjj6viUWMCBGhiy2SHb5Wx8ulxzsjM1Sr/RaFyZqqFEVIePGs2pbhomE9YiRBnCs9zfH1Y85n5nwG5nxmzmfmfOZf/F/9y/z9n/kp/vP/5K/+hubUb3R47/k3f/DfpVvtIyHi2wVQWK72QMKcz8z5zJzPzPnMr5vP/Pox5zPzpqc55phjjt+EePz4MX/zb/5N/rV/7V/jL/2lv4T/JpUeTynxb/wb/wbb7RawXc6vv/464zh+U85njjnmmGOOOX4nxJhzBfUt8RR3BbxbpZIREdNpKpANIzSfdEcFEyv46+TKXkIMCG5jZNE0tE2gjYG9ztQ+znvwjti0OC1E79k7WPH48oJ3Hj3m3YdPwHt8rYqi+tUljakKHsXOY0yJg0XH8f6Sw9WSLgZ6NWDVV6A85YRzaqXDsyHDUTyEgHQNy66lrWWZS3ScjCMXKRHF0zhHgxJFaURpxCq6jGqAgpXV9xQVMkJfCmfDyGUqOwuIscDgA855vHO4GMnOUxCyClqruygKPuCzAaRItdhgsscCNynRKlBuxIzdN5BdWeVJ+T5RBFM4cTsrhuljUlXergIloaqNnQjemWp1Uq9CuXKfUKHkvIO1JxJGS1WepVTLwtezkEBpF/jYQYhI8LaJBKmqcMGroj5ArKrEGCupUVWTWhXYGCHlUjHNnSieTHc5MPYDZUwkBU9mIlUynlEKI4qviuQkxdTetUGUYm3oAuJXLI9u4b2gOXOshfHkEenuU7RdQ0I5vHOHbrXP4sYNxmGkOzqEkimLjhga/LJDFgvC/orVwR7NYklpWrs3Q0vA49S+v+xu01V57+KKKYyBRiNCIuXC6IRmb5/9CC0jPoEPAR0hlwG8J6OMwyW5kgSqoM7GYQiR0jT0TdiBewU15WoplJzotz39ektOCdVC9I50cUq3WNJ1HS5ELs7P2G439MOW1PeE4JAQkCaCb1gt9lm0HW1s2KwvOT87YRi25DQi3tN0HaFpCW1L23Y29itfk3Ph4uwJY7+l5JHgXCWFPK5paZf7LJatKQNVIBWenJ7Q91tSSXTLlqbpCLEhhIYmmtIxjwPj9oJhc4GEFhciLgQWixXi67gsGSmJMm4pKVlFJh8oIeJ8sGNWElJLQVNmKNkqHDhHjAHxMA49uR8o2x6txKILntC2tWqDEYAORx5Htus1JWW8D8QoEBpc0xGXe3SLjpwT4zDQb9aksUdTxjlPu9rHxRYfrEoFqvixZ9z2jONAyoqKI3Ydoe2Q2JLGEVcSOg5s12dcXlwypoQAe11Hs1wSF0tc01F8w8n5xgiA6HEU8naNywXSyObszJTu3uFioF0uie2Spl0QYgvA2dlj8nYD40grDhci+ICGAIuFVWgomZJGxvUFbkw2v5SCBMdq/wAXAuoCxVVyqO9JmzWnjx+S80hsIt1iwXJ/D9d0ZBxjcaQMfb/m8YP3uHxywhvpksvtZ7h9dEDbRCOCq21FUasq4SeCVQTjPh3em8UKZChiLHXJiBecd6SceXJ6xsnJE5z3XA4PePfhEy7Wa05efwMXAsE19GPmS1/8Ejf2VzSf/T28cHzM45sHXEZT1Dpg1TaklHEYgKtkszHKwr2HD1DvELWqCoc3biAC2822csC2IU+cI4+JNjRcXF5ydnGOK8qya2iiMwsj70ACTo1AKyGY5Uw2GxnE0S07YhOt0hgGXluli2srczGIOlBJYypxjFSid6piYQ8T01pFfQZxbjq2TsuLEfHe04rWsWZEd8FsqxyCloxWSwlxNh4DYuNTbF0mZTSUClC73ZxWtDDUsTtVOymlroPRUVQ53uuI3jHmwlCApmHoR1bdghfuPotfRZoQrJ/mQhcDF8NASkZuHu7v0TQNQ05GXvRrq7gRIk23tOogY0/JrT0jtLa2lKIEVVzR+jwkFM2IU24dH+LFwPb7p2cEZ6C8TKC7yq4yimBrPDKpvyuRD0w2W14Ur9XuSh2TRrygJO/ZX+7xtCZulsSjULgvpoAXZ8+JQTNtUcQHWucZfbF5rmnYjpm+z6SkiHd4d7WxoVAHXK3WUUpiRNkWYdDaieaY4+vEnM/M+cycz8z5zJzPWD6TMrz8yW/nV7/w83ylVeRvVYgIL330k5RsVWmcd7z6ymv4bvEV+cw7cz4z5zNzPjPnM//E+cy05n+r5zPzpqc55phjjt+k+OIXv8hf/st/mR/4gR8gxsjx8TEvvfTSb8l3v/baa5ycnDAMAz/0Qz/Eer3+LfneOeaYY4455vjdEGNKUBNyoZanr39TMeskkbDzo0+pIM5V9auBwRN4slM2mdQZ7xyLtmHZNHRNpOsa9rrWcD9VsghN42gEuhjYW7T86r13eHh6xul6Q7s6sPPYYeETmi2781NAiyX0wcHNwwOO95as2tbARe9rqWEgK5OOWLBNBuM4olXBtGjtHNvY0IRAbDyXZwPrlBEyURytQBQlOmgQtrmwTok+J4qHfhRGhVFhcMrZdiCJo0ggixBDIDi75nE0q4ixAiqomEy3kgJF/CQsvgL3d8r1qm9WdiQPwpUthQi+Ks7MUkCvjlHbM3iPOlMfFzF58EQyqCpU1WLwnuA9MUS6tmWx6Fgul/hKBhgJIYzDAECpBMNYEiUVhmG0UvHDaMpaFXCeHBtCBTFdHvG5ICp4TGXuVNGSoIJAeAFngIXDSK3JCEQoiGRGBShECm1OjGkgp0RWe4+rpchHgQFlxIiQTCG5arGx628O7QfS2SXbh6cwDmQylEwsyjj07N04YLm/pCA0TWeKyeXKlHfObl5YONrQMJYCIeLF4TVTBrNAKEXJZxcmpcfaZqrPMfFiguGQdnuc2a5Iqvco8OztmxzdOaQNgc45QqyqOucRcWTBNtZk+9GqYvTB4YMDD87Z4FfsvTF6K6GflG2BIoGS7LNCoXGFRhKNJKJzqC8En2lDRrC+l8gMQyLLSBEhlRE3NDAMdGScJsbco8XA1pxGyjAgQ6oAbCUAx0TeXCK5xxcDr12BgiMNPXlIjENL9J5WHGU7sDk7NcKiJMaNJ8aOGFuauGAILQqksWe7PmPYXtC0S5yP4D2pWyO1pHkqGVcSZdhS0mBq7hgYXQAfibGhaxrrZ2kkj6PZ27laCSp4iiY0jeg42qanaR6tQDreVSjObDNIidSPtjkKwEPxAYkNYbFib3+fYRwY+55xc4mkZCpwHH6xh2+XSKjzQik045a83ZLH0cBJ8Ui0TVRusWRMo/Xvfsv2/AmSkwHewBgi0rT45YrQLWkXe6RhIAfP4B05jYznNj50HEnbtSllAQ2edrnCtR1tu6RpO0KMnD5+QF6vkWFg6RzqAgkhe4/b26fpGrRkUt+zPj2BftgBlwTHRdvhmxbftEjs6MeRtFkzXl6wPjshVALMh8BitY9brcg4chGCb8k5Efstx62jDVbpwjlH00QkVTW0TiS41jWyjkSxOdc7wVWbI28d1caGNyVrUSWlRB5HQtOx6TeM/Rl7y4b1+hIfIovOsVXl4uSEs5PHjNtL9sMtDhcdjAM+BBpnNkqIEELASWG73fDk/Jz1oJyve7wUnBPapuXw+BjvA+MwcrnuUdzunNJo1SxyttoLi64l+kATHCOOIg4Rj+gIquQKLueiRjiIJ8SAD75aBwn5enUNN9kMWeUK51zdgGCE/ERYi1h7OgHZzeIVpHZm/TNZFuQy1USx+++qQ0KuZCZggPM0efnpPVbFQ7DqApOdgoqzBx2w17LfEc1+HAkl2xqgSk6ZsRRC4xCUG/tLmui5HDNDVjZjYhgGbt+8xbd98hPQecr5FlLBB9vkcMkGzYmSEm0TadsGHYWkBaeJNPb4GOm6jkWMeC14lOCF0LVk7FqjKk5tzcXbHOxEOVh2eA4RVR5fXBqxK3UTwLTYV7LrGve8s4CQa88GWu+dTI8i9S9SnwsyjtgtWZWR4+0lB0F5rErPFVkTdCQqRMySaeMdPkaapmO9Hen7kXGstmP1u3aEnIKqbZLIJaEC61FZ92YpM9d6muPrxZzPzPnMnM/M+cycz1g+s9+2fNd3fhesTylauLi85P57D/+J59X/f+Kp27dYLZcgwnd8x3eguezymfNHD+d8Zs5n5nxmzmfmfOYbGPOmpznmmGOO38S4vLzk9/7e3wuY5d3nPve5r6Fg+sbEdY/3v/AX/gL/2X/2n/2mfM8cc8wxxxxz/G6PVApMQD9Kmkh3BJyzUunJlEwxenyINI2p7hzFcFsx1ZMTU7TG4Igxslx0rNqOLkbaNrLaW+IIlLGgJSMy4lzm9o1Dlk3D+vSML/7aa1wkaBYrU6dpqcmt7FSSE3KuYrYIOW2Jojx744iPvvAsDiWPiW2fiM6jJYOUCjI7s0aogMf5dsN2MLXlYYx0aWTRRpousNctKJsBIvjgaJvIojVbiyZ4GgcXQ0a2W8rQk73j0ck5j8+3nG9G4mLJkIWua1gsFvhoaj+nQinwZL3hdDvuLBC8+KtnnAr8T0889kRltgR2r9zuPVfvcDsAy+6mvVyuHQd2umnSBMRg8IwWrRiYVBIIs07Iphx3IqTkSGOgjKmSE3bfxTnUVTUW4LSg2ZmVApDTiKZM1mRwghRiuiRf9Oilq+CPoziz7hDn7Tz1iiDRSWKHlfimAiGuqvJKyWglgmK08uWJzFASWhwdnraAaGYTMlsKJQFFSN5Ig1KoCkdlEZb0r9zjvb/1E1z2Q7XTUKQouc+kmNk7OKDtOnJW3nr1TVwM+BAIznNxdorUSj/tYsH6Ym3nHD0X+y15GHG+gVHp773D5sFDs1DpWihWWQA1GMyUeg6KgfRJEq7zdDnx1CrwRz79EZbf+XFi8ISihOAqeWZkR2wbQhOrtQc7AK5UEC5XBfYEzoXgcT5gpRKsN0XvDVwqpiLEhQqmVmsSsSFm7g6OlDJjyfQ5M+YJrKrad/F00eGrbcwwZoZSy8cXiN7gm6KFkq0CUmyDleI3ToOUM2Mu9GNimwrFmSVJECH3g523txL+Qz9YmftKKeVcat83fWDbmlWBKuRSKthZCbQCwWu144CsmZQL65RJGIDc+HBVBYqCdwHEyJ6s9lobHME5AoKv7apoJdWUokIphTGPdDHQxRbvHCWb+V2fEn3ODDmDOHJOUJToHI03BWNWZTMq2wzTRKda2PeeMM3TzpHFsd4O9CmjMaJeKMMAKROdcLC/RwwGjPb9yPl2y5ALGXA+0HYLm1u0kMYRSXdwasDm4d4Kh4HHuSgZZb3tjVAWR/CR9IGb1k9RmuAZszKMmW1KbGub7nxs0tMsY0cTrSpDn0cu12vytLEsBAOLU8LlzKIJtE20tkyJzXYkAbnY0HZESs7wwjHef4TDvY7nnrrFYtEQvICPlFJBUjUQc1dhos7PIkKotjN7y4YmGLiaFFzoGNZrlssFz999llv7e7z9zrvE2HB8fIOLJ4+5cfOQi77nzfcek4fC3Y98mMODFb/yxV/gqAtmgVKtE2LwNDHQtC17B/tsSuGt19/iF37lVznZDvzh7/unee7mEeMw8O6jx4gIB0cHpG3Po3vvMqRcK4tAjI7t+pI7T93hqTu3WYbAk5MzgjhUnLVLjYJZw3gtBHF4541zSoWsjoKnFMg57daLaUEK4RrJObVdsbnTX5dQqylgd1YSdsU2110t+OiEaGupVVkcPlg1Ea5Bxz7G3RpXqrXNMIx1p0HBO4fWSWpaR7OzflbU0bhALGFHohIjfRpr33M0NxsWbcuTPtPnxP37Dygf+CCf+tQnefr55/kHv/D3eby5x2K1YtEteHj6hFXjaZ3idWTZBg5WC0LvGUth6T0Xpycs9/dZLVru3L5FKYnlYkGz3GN/tWcKbS22KaIUdEw4H2m9ZxUbGEeOFwuOFnv0Bd545x2zkwjximVGd88T03pq9lHGFqgteRQgT88OCEWutNNBBU2FbdNyRqBbtzg8noLmkaFkuuDxYyEW6Ars+8Q2QOgiq8WKk5NzNpueMY0MJdEQCZU9cphVJ5X8b6ud2MMnl7xz33Hx3h6HzDHHrx9zPjPnM/banM/M+cycz0z5zJ/6Z/5pQPixn/ppfvCH/p+/kSn268Z15udf+hP/Ar/3u75zzmfmfGbOZ+Z8Zs5nfgvymXnT0xxzzDHHb1H8jb/xN/j4xz/OL/zCLxDrYv2Nij/zZ/4MP/zDP7z7/dGjR9/Q488xxxxzzDHHt1K4mixP4DKVeC+lUNLA0f6KEAJPPXWH7/6u70RD4Kd+5u9x7623EE14F6x8vxO66FktFhwsOg5WC24cHnLjxk3GYWAYBjb9BucKsRWCs1LBLz39NNtx5K0H7/Ejf+/zPOkV8Q3OBUuO0R3QYGgpBjKrITfbfsPNVcezxwd854deIDSNgRi5kBZwudly2W/pU7HjFGEYC5sxoblQMjj1iAhJAhdj4fLhCW/n9whaWLYtXdPQxsAyB7a9mso7BhrnKARa8bjYMZSMWxyy0JazuGV0EFeHjGOmv9xUoNkA2QIUF2kafw2IFZjACa1qaa6U5yBVWQZQTNq08+8ooPkKFDCpn7VXLqSc388pYGDA9ZL3O5DG8ASKMzBlUFgXsyJATf1XStnZd9XbYkriUnakh6ESBSdYiWoqGeEge5BSJW4VPJJaylvFfpxzOBcMVMYIo13ZcHGoFTA3QMhBdla+OgJZCq4k1mlkK4VtI5SkND6wj2MvJZ7kHl+UIsoIJM2g3kgHL+zd2iedPGb8ifuc/O2/S2nFlFwKaEBj4HwHp0gtrW0khRcrya2ult7eVQ4I9VqEzIA6R1FHGTJtHq0ae1OVemRKtjEwAk1yBnSnxFB68tEKgscfdfiQDcgTh5NSa2tPd7uq40sdP1qsXcXjnBC94Jy8z37B1T5Xaj/0ziNOKhlg43dSXU8IqpV5t68tSQnRE51j5Q1sNjKSKz5rUvGrYs4steICBoZNatSJyJJKghl5dGVjU4wtwpVKcNZuPCkqtfaXaYypqBGHV5yBkV1UwmtChK/ja3WD0jT+xmwKfydiCu7artPhijiKTGCbVgWoAXNagfMppmuciD+Veiy9pmQUQcRK3ku13qGSHFKUkpORgYJVsvCh9lNFtJAmhakWsxQIsY4j00W6KjdV1Wqfkky9KmJVBSowO7WDd54r3NbGhGqp9iF5Z+MDIFPfYiqxr7XfF5sJRStpY+SRr/PIbl4qZv2i9fpyrW5wfT7TemwUPHZ/jSR1OB8NwNb6PjyquZIoRo6dX65JKVFKwgWbAyaycOKnJwXnNEi0mK3G4aJj2QhBlJwKmUguhUYKzxwu+NP/4r/Aj/7Yj9K0LR/68Ms8fPc+h8t9vvj6m7x38rOsXMP/5gf+GLdu7HFy9oC37r3Dol2w33RoycQQcCix8XgyFxdbLjYDh4fHfObbX+SP/oHfx/Gq4/GTU37pldc5O33C9vYRKWdOLtamSo2RZdtxsFxwcX7GM8/eZW9vD1/gwf2fo2QjffKYyHlEpdRNfoWcRnwI+NAwri84e/KEzXrDmArdwhNyvddiQLyqkCfbgtr3p/VFUdxU17+SLj6YDY49d2SK5mrRYH3FOalzjY23sVjlBXGOEJwRxrvOAs5PxklCytnmpjqGcrUTmt5sxUM8ue5uDD7ggpH5WoqtTSjRC01w7B8dsYiRvb0V+zeOWHYtBwcHbFOB83OcFl68+xTBWRsMY0twyqraVO13DYd7+3i/YUgj3aqj6yKLtiE0Lft7++TtJYvgiV5szbx2/gUoXhEvu/l1yIWUCrjCS089TU4jD09POV1fEn3zVev+tSkSp3VOUmFE6IG+KGN99so4fCWQA0IaM+eiPPCBPnbopnDcRCJwkROr/UO6eIBuNqxPHvHZvT0ehcBF47nw8N/8nZ/g8vIcr4mnGk8Wz5iNmvDe5oWM7emQUmi7jrVuONkmnqy386anOb5uzPnMnM9MMeczcz4z5zPvz2c+/MI/y//gD34P3/8/+zNWFe8bGP/Ov/7n+IOf/Z7dc9r+ap+mbeZ8Zs5n5nxmzmfmfOa3IJ+ZNz3NMcccc/wWxWaz4dVXX+XP//k/z5/9s3+Wj33sY7+h4/3iL/4i/9F/9B8B8Lf/9t/m7bff/kac5hxzzDHHHHN8y4dzsgOhRa7KROdSyCnz8Y+9zM0bN3ju2Wf4zKc/xaOzC375C1/gvliCGUO1CvDeLB2WC472Vxyulhzur1gtWnpnysqcRmIXaYKw3zU8e3STUoR/+Mob/OJrb/D2ky0S2goIgMGGBsBOWJ4PBqprUYZhy2HjeenpW3zo6ds8dbjPkJUcDFzIqjRR2NMFqSJMp+seuVzj+t5AnujZboV+6BmGRNM0BNfgJdI5oesi0QlBHFGC2U6VzHooXKJkdTuwyXlHVMei8QyuZbvdQEkkLRQxoMGFhlGVQc36ANQUvRUKV81MYNqkxJvUjCIGLuuU4osl+HKNOLC/G15jCjLBieJr2WUKO9DAvuMKMrgCEqp2SrWeI+ZLr4aqqnMUqSTCtLFDJ8JgKgdugKYpYSvIoBUcdIL4qQR3MuDdsQN9td7sSW23A5aRXb9QqjoXu1izh3CmvKuf26TM5ZjY5ly5lEIOgnrHnovcUeWw8bTBseeFOHqOB2Vf4TBGNJoqXJNZl5VY7FoKuBLt+imGjcl0X3Sn5rb2UAOl1VSpBslWsJREwRloGTwbChsgi2OJo/OuKvghNI7YeppUaAdPNzQMpXChwgmQBOIwgIY6UPyuz4iYOng6l13j1v4h9R5mna6lAvK13Z0YOSBqhFCRafNO2V2PiOxIJgXyRDqiUPKOINDaWVXrnDN5uky3eAcGXyO7qOB30St0qxJm0/1XbMyX3V/FLDCmqN+jUpiYNrmGnk3trPWXK5XmdN5XZNjVfih7Ty4G6O9OTRVxWvt+Jd9qGyvvOwC7XyvZtiMudmpF+37njNwwWixb6fvp7WpEiVKviwz5qr0EpUzNWT9XUjEwVawvprwzi6FQS87X85xOyRW19wO5jEY6FCMrY4y7dkWFzNWtkqIUvXplUshOt6WgaKnfL1YJo5TJuscOm6jzYW1HV/+gtR9OHbeOLiOvav8pagSnTGcghXFMVwSUmk2ME2vvUu+n9VmtquLpeLprZyuioOyvWp65ecgrb0XeuLcm7x3gQ2A7JN54+z5/92f+Hq/fu494z8OLDaUfySnzxsP3eHR5wQdu3ubm/pKnDg9pQ2YzmILXOyPvgre5NIjHlcLpkyfcuHWLO3ef5Xs/80lutpFlE9m2DW3bAXB2ds7F2QUPHj7i+OCAxaJj0TXsrVasn5xyenbOth+I4nDBLB5UIefR1NCeOo8Z+Ze0IMFzfHzEpz72EW7fvEGMgVyyzQ11KJnC2chUrVUPJrspsOsBMauTayrz61UZJrJR5OpvZlEgSF1uZZrCxO2IHqlkqFwbW16Erml2fTGrWXSU+t3OSVVdC07K1dqKY+pRjQ+gmZwz0RWODw4gK8e3b/HCM88gAo+fnHD/wQNuHB7hLy927eKcsFq0LGIkiDD0fSXyjMxqg2fR2IYDrYS5ufNkyANp6Os6zG7+ynVc2rmbmjilSp25wK3Dw0qeKpebrVUPmKa6q0kKsLXSi0fFkXD0Wq4po23NnMhV5+wZZd0PSHAkFQ585ACHaGGjyuV2S2hbmq6hW7Z8UAp3vfD22PPzD9/lYrvFoRwF4cUI7yTlsVoFFl9P0KY/IYtnGBNlkXEBmnaG9Of4+jHnM3M+M+czcz4z5zN8zXwmeM9Tt27yF/7s/5rP/b//K1594y1+I/HhD7zAH/8f/jOoCN/9mU9x8/i4jh3/vvOY85k5n5nzmTmfmfOZ39x8Zs6Q5phjjjl+C2McR/6D/+A/4CMf+Qhd1/GBD3zgn+jzqso//If/kFIKP/ZjP8a//+//+78p5znHHHPMMccc38rhMKCQa0m2lR+2nw+8+AIvPP8czz97lw994AXSr32ZxpnuKHhPEyNNCDQhGEnQdayWC5bLBW3bGF7phBg8bdvSdpGDZeDGasUzt27zc196lS+8/hZfeP0el+rZW1YVmxhsrihUoBNRYgh2ntlArrs3D3n57h1eevoO+zGwGRK5VLAHZbloIERwES1Cd35BiJ5uE2pSnri8dFxcChfrDbnYdcXg6ZpIGwVPMQWROHIRUlayZtY5UYoSgMbBqot0oWEQh1fHtpjthTluWDn9pmmhmPKrHzOpKown5OB9QC4T7nYF5msplkZLvXu1DL+BG5N1AIABeg4DUXwF2Sawdqf+vEYSWFQoTUwdSymVaBDK9TLe4lE/bQSxc3XO7fZzCAbQ7Mpqq+JUKSKIeJx4kHzFBABCmJCpCjAbyI24HZFFBSlVr4F+9V9SSRU/nUuISGzxVgCelAvv+cTbokRx5OjIS09pjOharhXVgV6VtBQ0iIHuGgnOoT7htOCK4Iop9x0Vx6734ErNekVoSAUzuUZ5GfdSKCooDnUtLgteISFIAokejyDeERuHawWfCm4UdOt4cNnziMCTEFg0DTknineorypgX5XLzo6hO6JFdmOea+deciVrqGxSVeBaVzFiZuopO3AWEDWF4QTcG5Hg7Lbuyrzrrj2sfzqcn0q+1zs5tdMVb2Bg7fV/7/q2q0CfAbmIKWbtjbVq0hVjgBQDAGtNgtpfwzVyo1B2is3rYCH1+G76Jut7OlFCdbjYoNqNVSdiwB47rH1HeEzvna5bJ4JtNx7rsWp7CFbwXsXuQBElSCXt1MYi9e87kkqHHShYm7sSP3aNJSd8vbel2kjs+qZS73XZzT+T3Y/Art1TGsmp4ERou+5916O1Dae22kVtMJeBWgUhV6JN6t+KTqSanZEiFFGmOloiUx9Vu1cl22+7agyKXCOaJ4Xr7hREGYax2sh4s+iRquAVZ5YketWv2P2/nk+dc4tCLkoThOefvs2d1w/45VIYhy0IbIaRt+8/4kd+7CfpU6r2FW+walrON2tONmtO+y2feuEFmuhYNAHYR1nbtEitsICp4r04nML64oI7t29z69YtPv3yh+gf3yeKvVfEKptstlsu12s2mw13bt6ljdHWtRhRVZ48OcWHQNc0iPf46Em5kNJIKRnvHKLgah8cciarslgueermh7l1fEQTPGk0Kwfv3a6vT6vR1PcmK4cJ1C+l3uNSduNvIgNsDslIXQPdJGmv930C9SdSAJnUvXWequvajjATaGKwUVSfaeRaH6tLXLWzdFWZXXZrkAg47yk5k3NBY2F/tUJz4eZqxYt3n0E1c3r6hEcnJzx7Y5/N+pJUrW1QpY0NTQg4hW21RUEEV4mC6BxejMAQtdfMTmlk6Ptd95vmP60lLhwTSVAYSyaXQnCF/WVn1TRyZrPt6/un+WbHQaKoWW06W2MHhL4oE/VbKW6mpUu84MSx2WzJwZNL4SAElpXE8ygX2y1+tcfKO1aLjptpwDsljVvCxUAm0HjhZhA+GoR1Uk7UCF2zkZpmWaE4z2W/xrlC1wqLbob05/j6Meczcz4z5zNzPjPnM18vn4E/9T/553jtjbfph5G3373PP0mICB/54Es4Zxud/qU//j/adZqcypzPzPnMnM/M+cycz/Bbn8/MGdIcc8wxxzch/pV/5V/hx3/8x/lrf+2v/RN9brPZ8Pt+3+9js9n8Jp3ZHHPMMcccc8xRIUpQamI72TZ5JHgkNMSmJcaIaOGt19/gyaMnpDGzd7hP1zQsu44uRromcrC3pGkaigibMTGM50TviU2kW3U0qrx0+w57yyX3Ly/4T/7O3+SNB6dsinC4PIIy4LwlrtF7O0Op4E/INE3LuBlwTnj+7tP8oe/6JE/tr1i2DbjAnrIjOLJmAxGcObWLCrcPl5xcrowQSBktmXU/cL7e8PaDR9x/+IhxVAbvcW6BqOxUc1mUJNCXwiZlHm8HWhc4iIHj6FksG546PCQ9ueStszVPemXQwUpQF2XPNeyJKau3Q8/FZkt2HldVrC548AZc4oTgDOjMKZOGhOiIuMkkwkrlF5lIBLubO+BcYaAC11V1BhgxQsUoK6g+AWC7PiFf8cLuA1/5+zXgQYR8hZYjUiqkbKDOFbjsEMk4ESDvVLOIVJCvAj2V9JgoCKlSOJmICs1X56K1NTQzpkwSxZXAcy+8wC0CF+sNbz94h5OLh/zX+Qn/XUk8nR0vLlccO2GZhYaGOAjjMOI0s+dH2BYuh8Q2myJ1IZlQCk6FIg3RQRAMxHNCQfFV4SXeQM6gugOxqCBkEchO8c5U1lqEpFs+cHDEorFx9t7pYw4PVsQYTSVJwcdIyoVNSrzXjfz8+pS0uMHixk2evv0MXdsRo8cHR4ixtpcRBRMfMKmlQ4hmsVaBpyAe9RU8Uq3KVmtXL0CoinelQkhC9sJUzUgmAkFsRpnuyxXAelXpaDqu6mRlMqmrDTQsO93v+0PlmkUAUORKhS6VxJvAfcVIKuNi6nfLFQhu+HK1spBpTNX/XzvfHawmvoLfBkwzWRKo271r979pt1MF2ZnA+WmsUghqjak61X2wY5digJ542anDBWp5/ToGUHKtxkBtx6ldoeCukzJOKLWkO7uz8iTVCo4yobc7NbRZYphdQ64qVYefEN8JOgTxuFCB6R0BtEM0K2FWVZ04u546RRSuxu+kwhexPjTWPunUgFTnFL3GT1IqHVqm+cHVoxiom3IlDirIW1KylilcA/i1EqbTtRgA6lXwAXJJ17gBh/N+B2TnXPXpRRlK4XJ9zrd99MOcXGz58tsPeeP+fVwbrNUT/MwvfZG4twc4Us40XpB2wZgzmgu3b92kWUSKFIZ+xANotn6hQlKrTuC9KfU9yrM3b3N0dEBJG3Luaf0xQQL9duDkySkv3H2atu149uySw0WH5Mx203PRXLLZDowobQvLxYqkajY8BcaSzQJBjbD0BVQcm77n7PKcSOIDTz/FXtcQvTD05VoFhtqfanvixAjSifwq1mY5pzqG6u0sZbc+ZbtJlRy7pki/1n+997UrTnYNRkYXhSuyYeqLRrH5Sj67AhLjji4cxrSbA1Vl10d0N75szSpidjguBhoPXGzgcs2HnnuWd959lyGNdk5Z2W57hpwZVRmz0nUeXwnbzXZEJRB8gZIZhy157PGxxfvAcrEkry/xFAqFYRhM1S+yI6hDUYIKvl631P6Bd0bs5cSyaXj65h2GIfPwyQm5ZDsHprW40tb1+aggDKXQA94MeRCUoNVuQ8QI/uBZn17SB0dpHNsgLBPESigXlNOzczQ23Gg7tgwclQ031fFhCfysgwWFu075PQ7uAa+r0hfrb00qeDLiHFkj55cD+23g5sqzct9YO545fvfFnM/M+cycz8z5zJzP/KPzmb/45/73fNd/+2P8+X/r3/kaZ/frR9s0fO6H/j26RVOfo+Z8Zs5n5nxmdzvnfGbOZ75J+cy86WmOOeaY43dA/Ok//af5kR/5EVSV7Xb7zT6dOeaYY4455vjdHeIrgKKkMZlCTwQRxXvh9u1jDvb3eXxyxk9//h/yEz/5s1w+ueBwucdquWDVdXTes2gih/srDg/3iMFUWD4EvPNEURov7LUNH33pQ7zz8CE/+vO/wOf+m7/Jw77QxBWHbWNgfNsRvSM6R+vM592pgVbEhs1mzcGy4e7NY/7wZ7+X5+7cpIwDaRzBOZqm3YFuVjp6ArmEEDxFHP0wMAwDOY2cXWw4Xw9cbgeeunGHtx+8y+PTMy4v1wxFyYOpmEvJOD9wORoAgMJR13AjevYbx14T8TS8du8h956cc3qx5mhvn6yB9banH0YkerQ42hhYLDtu3bqJD4LzkYLnydmGTU4QPC4GnAsEERgTZdtzeXkCFaCVHTHwj4hiSuuyA0yoCuIJJthhITseYGftdY0/qBzEdaxmFxMpMYHBExRcj3rt5+plqYDsDgyW6VO+AqHX3qMGZpiay67eQbXJkAosK/1QVdzewOI+ZW7fvsPNpxpu3r7F+v49NumcIW+5nzOnlwmnihNHcJ7GO1i0OFGCF6J3SACcw4unyab+EqpKPCWTR6qRa1WzbiB7qYrXXXvrdDsoqiTN5DHXfyvbsefw9JSI4FTZbDeEy22FP43Ii3gcQnFC38DeC0/zoQ+/zDMf+QjPfOB5fAyIczuFoJuUolwni6SC6UKzU99ypU6c+lU9X+dcBY2vCKXpiJ5J4a0gYQeoe8TIHyrNU49dqhLSOwPNVNUKAmAAP1Of1Ly7z79uSJkE9Uxch1DV/LsuVVXqTsBNAvwKqpfp7Kbzv9aPr/Xe3f8rKSWCqcp1KiN//UNmvVJb28qwXz/IbrwJ43SFO5LPFJk6USxadp9IlQRzO2X99SuEqqWv1Ruu/jaNIql9zjSPBeeV2DhyLqRSdgrpKm5narJJGV9UK49Qj1fMisVVpaSIoBU4d5O6NVWQ/uqqd/1D6xdM/axyCEYbqBCcrxYRlaQozjhBR91QpmZnUfu4c46h79luNwz9wN7+Pj4Em/uukaKyI3+UrmnMdgipdjwTmUElKN7fB8ZxrMeZbF4svAjn256j/T3+8Pd+B5/80Et8+c03KVItEtQZaSEBxCpHfPm1L9O2HQerFbeOD/nQi08TRDm9vGBUuy4771K31jlUlDEn0jbxgRefJyVr2/HslNY3RB8REbZjz5NhZLXcZ2/Zcnl5DpeXeHEMJXH/8WOc89zYPzQLj5xo21pZofT0/ZY0bmlCa+cLLLqWB++9h24veOGjL/Hc8ZLgPVmpa/wVyWXjSysobvc651xtIoy88ZUs1aqOxvld9QQb+ztqGBB8CJUEMCuHJnizrap2JKVMymojP6c5DTBCglTvdVVlozsbHO+EpImSC6WAeCH4QMqJnHKtlFKtOMQjEmmahtOze6w3l1ycPOGFF16gd1YpZPveY1Owu0LOhfPtQBcCQY3USj7THRyRx8C4VsaTSyMuNKOSiEcH+DDQouQxkceRkVz7bQECDiEiLJ2ncw0pFLMWKpm+HxjLUFnqwLNPP40DTi8vWG97QlPtglQIBUJoGDFCcCyVQLtmASGA5mI2UqlASFW93FJcy4lckmRgoDB6hyRoc0ZLz/3R8ZN7+zxTLsla6MVx7K0t1EMODTejElNfiSlbXXO9T7kM3L2x5Lue7/j47ZYhbYnMMcfXiTmfmfOZOZ+Z85k5n/nHymeuPvOPjn/7//rn+Ox3fweC0C0i0wPznM8w5zNzPjPnM3M+803PZ+ZNT3PMMcccv03jF3/xF/krf+WvAPCjP/qjvPXWb8xfeo455phjjjnm+MeLKZGfyrBLLUsuIsToOdzfZ7Vcce/+e/x3n/85Xn/7HreWC/ZXC9oY2OtaOu9Ztg0HywWLpqVtI9F7BI/3jtYLy8ZzvLfH2WbD57/0Cj/zS7/CvZNL2sObhNiYF3z0uBiJztF4R+sdMUZCLXe+HjO+aXj5uad4+YW7PHfnFsF7klopbFRNBe0D3ju8dzuAVsQADRS6tjWbgpJZ7Y0cbAbW24HNtufoYMX5es2mlm0uY2IcR3JKCEqfBsZkyq4bi479JhDFSqX7EBmahluLFatS6A4OUHUMYyLlQtN0dF1TAYoKNutIUlgPhYvL++gwIs5K1YdugRTTqEp26HRvYKIJ0DKB5xYqX3mDpwozV0DqFc7//jdf4xGuwNKr/Ry7X7SCB55rhMK14+n7jv0VJIFcUyNef++OQ7g6XoWcKnBRz1z12rEmmwj71UdH2zbWZ2IkAWebC5rU4KXw3R9+idAo6guDFmRtZc+9DzQxEsTVTSuAFjtOG/DRE1zA13YXNWWmpnEHSJmiz1StKlWdX/RaOyqaC7lMViv2GSvlndj0vYHxGTRfqQelKvQEswBw3uGDJ3Qtd566w1N37nD71i0Wyw68v2q7qvSU2qY7tXlVDhowL4hOlmxTO5oqbrIauFIaXt0RkV2HuOogTq4BfWpl2zGFpV4HmHfkhW0eel8vcZ5J5W/9/Kp/TgDkVTf4ir/LNVR36oe7P+vU9diViQcmwH93bvWjRhZc9WKZVMPXgO6p710d3Y43jSHZ/aHegWtKULl2pN3cq9N31f/XA03vvf5NujvuteNpuaYitc9cJ3uukws6qU8rkVWKWSFcH3lars8NdqyMVlKD3UQxEUx2a2wtcU7QSY1+bWzvrrbY53fkmSp4qSTRZI1RdkTCpH+ehqZwZU1B/X4V2RFw1D5m3Vl349VdtSBOXG35UttuOlqpVgETiWPn75yjlFKV65UsqMxDypDGkUXjefGpG9za76a7CkAuADbPOOe5vYygcOPwkOeefopUBtZpQIvswPWyO4LsiL+pgy7ahhIMdJZSe5IoOY9sN+dsStwB8ymNNCGCjtWaSNlbdkTvq/2F0DSNkfpiFclUswH6FAqenEaCcxwdHvCxlz/EXhcZEqQykYiYhcLUWyby8doP1+6d95UQ1EKqhKpMa0+dN63f2LykOl4dW5WcqaC+1vtWdt+TRnYkFCLkXHBObH7+irlFpc5RYv3aeeu7zjmCeiSYWtd5h6jfzV17e3us9pa1mklDqoRZGyPJe7OwKErKmfVmi+4tbF4RI5MXwRF9QyiZQeupaqH8/9j7k1hbsiw9E/t2Y81pbvPua71vwiPcIzOSycxksklSLKFYKkgEAZU0UAE1EjTRQAQECBA0kACNNORAqJkgAYIENVBJBRZUFFgkQbKKRYKVDbOLjIzGwyO8e/76257GzPbeS4O1t51z73sRQQmQMpNhK+L5vfeY2bbd21n/b/9aKZCMYKsaEwckJsIw6P5pc78aqxEhTIloo8+KJJrMpq48JupaEJOofMXt40ON7BIiXcrkHoVGtESEiJDMOMXy95OynvJKEe1/k++fBDbGEklEEiFrqlsBTyLFxPd7z0VVYUzkLEbmbYsxic4kPkuR89ATTSb8KYRpfrHBQFMZFjZQY+mDZ8Fkk/1km/yZyZ8pNvkzkz8z+TM/y5/Zn+8v29fff4f/zn/zb4AYfv3PfYsHd+7qCFz7Tjf5M5M/M/kzkz8z+TN/0v7M9NLTZJNNNtmfkJ2dnfHtb3+bX/zFX9z7Eqb24x//mH/4D/8hf+fv/J0/odpNNtlkk0022c+xFZAQFLixRlUwKNBnMGy7gWen53zvhz+mW6157XDBom3w3rBoauZVxaJpOJi11HVN23i8cxhRxelyVrGYNSznc373B5/yO9/9Ad/59CG2njOfLZh5x7yyHM1rvK2ondMUEt5pOHxjiSGS4orlyTHfeP8dPnz3TZbzltW2R2zWCsWIMTYTBF7B1L0Q8QWc2AE80Cxg0fd03UDXddy7faIpBZI6vsMwEIZICjE78pEQFHBZthWNtaQYCSkSsPjjNfcA6z3z+RyDzaBwDiXd1AreDIHQDfT9hlUfeLHaYs0TvY+1Go7be9IQc2BoVR6K7ADDEpa/4KcjyLf3izG7kPsj0Jqt4Ma7D278zQ7qsuxAv1KCQxXJN2HTfQB0xAhlRInGOty87uVPd6SEmAJqFCB614hyv6pytK3OQV9V+Lpm023ZdlsWHr7+0fvcOZxRt45ggUGVYVVV0TS1AkT5e2qMEV9VVG2DqzzeWk1FkVFSiZGUAmKKspgdy2K0vpJkJBEESCESY1Eea9/FFAkx0A09Q0yEKEjM7c5EgUgaAWTnLd475s2Mk+NbtE1N5Z2qavNcLyCYG4FQo+HexzEwGYzege7GMrYdVJ2NjNr53LS97/Dluut/5j80pYAU2TPlfpaizt4H+Uu5hbzAMEY0KEC5Kitfnmu71SBjOaWdhQDd4dQyRgUo82unv94DszNJWhaWgtJ7kQj2yYi9ssf7vmp+S7kfGGuv6atH8LuQFSMzt2t/AefLv+veVDk992kGadnrh1ElnUsoBFbeGsY0IOX8JLIbj7H6CgzqObsdYb/vS81MUb7ut3O/M/aZzfEGu7HQ9l6jkK6RDWWujvPd6H5ZSU55YvdGNu3InfGFtNzeNJJwZmzLNcB7HJfr4Pf+Z6DK6co7Zk3F0eJE55k+SgkxYbEaMcR7GLZcXl1xfHjIg7u3eHr6nG3oSQZNgWTSmI5lrIfZ1d0ZQ8oyeGuspliQRIg9sVsxSMsw9AzB0YdA7ducdifirGE+b3QfignnLNY4XFYO54nA7n8Q+sDhouHk6Ih333qLKm7po6bY0PQ8add/ucol3UZKZcYyzk1jCl1jwegztZCvujdoWhAdBlGiJ5dgjSGKkh2SXwoYV6BAyBEZjMroczQGN45tIcpT3q9LH5cqlUgb1jrMXqcrnK5lHiwWHB4siQK9gBl6Ykx4Z2mais470gDDoPu6cyUdBEhMGETnQttyUeZxiqSo6WC8c0jS7yBDCBm034sykKvlLPoEzmRyWQMG7YeYElYSh/MZMQTWmy3ddjNOqLJkoySiCClvRHZ81iplHPf61wDWCEY07URnDQM6zxMaUaA2UOX+ft4Hel8hGDapo5l5rLXEFHjUd5zFgYTPhHZ52uR/RrBG22CiIaSGySb7qTb5M5M/M35w428mf2byZ/IsmPwZROBgueDr773Dxz/+dK8ctTce3Oc3/sKv8D/49/+7wG5e5lsx+TN7nTH5M5M/M/kzkz/zJ+zPTC89TTbZZJP9Cdk/+Af/gL/yV/4KT58+pW3ba8f+9t/+2/y9v/f3/oRqNtlkk0022WQ/35YyULLLF58dfxGGPvGH3/4efTR8+egJ203Pa/fusJjPaCrHsnEcz1sO53MWsxnL+QzvDK7SMOIWw0FdcffeXaq24enFFf+b/9P/lbNeqJaH/ML7b9F3HbfmLQdtzby2zPA0dUNV1bi6JgHrrmO7WXMQHH/9L/0Kb792n8PFnM1qRRQFwq1TBVlVVQociCGEhKvcSAgUoLOAvcYYWm9oaweLFjhAksFadVoHCUQE7xyV83hr8JUnZTVX36tiS7IgMQwBbD3CTTEMqpISBZ37riNKYrvtWa03nD8/Z5MiEoRLEUiBftvhRKiaBul7YrchbNcM2xX0W5oMsjqjgJ8riil26baKq63qv5gRXNlTiipAYK0lxaL0y0D2HkCWsexxXuh8KeBdVk7dwPp2V+p9RK79qco0TEZlMhB2jd3YAdkCxJShEasA+KgExKiy09nx0qVv8abCUOFsw5uvv8XZ+RlXl2ecn55Sz1vaRcu89jjnaKoKUzmsdwreYbDOjfc2KMk1qoOz2k5v54BK+6EA7gA53UJRVOZmozpy9sBbo2rUrBq0VhXPu95LWV28G8/8sa7NEFUJmjIQVwiBMQS+EK3sgPKUdZYZbLK5/0elJwW824HFZKD8uvp9ZwVEK0BzUYpeIxDMDki1Zahyeftga/5gXJfkKAClHsZYUknJUEAssyM+bv59rZ57xY/15iaQXQi3vevzebs18TI0X4B9csj2UtJeo/S8MXdF7ovrhYxtgByOfa/8oiAXdskodEnLbt821+tmTVFzc72P8zg7D1by+syllvEpc0L3DHOdfMnz1dceBYVVLbw/p/bJhmvz5yaRkPfG0jZjy5yMY+qQoqLf704F4M1YRwBnLQcHS5z3hH5QFfPeXjYqpfcK0nQEZY3IWJwzdhT+xwxQmqyYLXtB6ftd2w1DiPRDANYjSC0iDGEYr3fOsjhe8sWzJ5xv1qyGnpNbRyzm87FtQQy2KMUFQoj5d50BoYtkcbnW00IfeyT0LEj0oWMYtgyxxviGgQoXt1iBxlsWTc3p+YqYYDafM4REFJ0FQwi6fwmYnIYpRaF1nrnz2CRsh4BIzHW0IJaiLkZ0/JQgzdMlA9g6nj73WyEQ0HQShVwFnFNwXy9OEMnpdfTFBfbmY4wxR0LRuBUxxpzSavdYkaREQ3m+eecp5HoKmn5inPN5ZVprAKfRK1LKaU+ElALLecNi1nK56fjul1/wXv02Eah8RX10SHd5Slpv2HYdpvI08zlN5ZAYkO2GYbWlWjiapqZu60wQBAQLmw5XexKGTRK2mWCyZPJENJ1GXTlmbUXthUVtCUE06gZCkAQhkmIkDQFjPbOq5s6tY7Yv9IUGa1ShHoJ+xyk8XCFnytPNYtigKWmiiKYrMgZSIPZX9IB3lUZwEaUKIpalNdxyjj5FHm89Z1hWpuLdxZyFMywl4rst/VWPDRYvlF0Am6KS7wa2Q2QbHQMWZ3eRPyab7FU2+TOTPwOTPzP5M5M/86/jz/y1v/hr/Mq3foHf+G//B+P6L/a/+B//D/mv/8ZfnPyZyZ+Z/JnJn/mz688IOPn58Geml54mm2yyyf4EbbVa8Y1vfOPGF1V48uTJn1CNJptssskmm2yymMKozAN1vL3PQGmM/P1/+s9yTvLIrHHcO1xw/9YRtxYth43n6PCQw4Mls7rBGUNdOYwvYKTh5PY98J4fP3zMf/wP/wnbEPm3/sqv8eabb/LicsPjLx9z5/CIRdOSho7jkwPa2QzrKvooXG1W9KsNzgu/9ue+ydfefIDFsF2vwRjqqhodW3JqhCRZNSzQD4OCE0ZBKWftCJ5ZayGZHVBt9LhQwvbnPpIIMRGNoR/CDjSOiZAVYgUR9QRiBkacMTlAsiq4bO2RGGlmDXPvmRlP3/csLq+wFt69d8zZ1RnnmwvOVqd4Y2kksagrbrU19+6fcHI4p648zjq8s1AIHgRvKkJUTV32t7OitIQ8L8CdHo4xqBKXrOKUpMA7WkSWSCEUJaXJaQ4UgIupgHWi2HUGWlRxqJ+FlDJorSCgKviEGDM4l29WACUF18rchGgNKYOZARDHCO4NMTLEgYSoqixCnQQXIrbv+c73vsvZ2Sm1SXz9tbvMZi1iHCEZvHMkqxBBjAq+YBwkVaZb73HGEERDlSvgZxgXizVYKSgdI8CiUQX2da960JAyOaWfJDSU+3hGCEhvKBqzJKIgagH5ASNxD/mymRgwsAd/WmNUMocZCR5jFCized4WkLMAsftr/1X2KmXoTpU4XqxVz3Hdx1KTzo6bhEAhEJS8kBEgRoqC8TpRUXqxqHBv1snukQo3FdL7n/3r2Kv6odT/ZjkFuC1kUfkspTSqNq9fkhfmDch6v86FrHgJIH9FncZ63agnMF4/kgnsj2Umsiiq95t1KX2u4H8hIwrYLaKqfhHBeiWVyzrfv9d+u/ZTKRQwtqhlrz2EkJzZxOz9uz4n5FpZu/IlBEKKOeVFmWdmnOvX5mAmjG0mxVNSesaNtSj349o9SvtLfQo55tCZEFOkRAHQcdgvT2hqz3zWcnp2xo8+/5Tbt3+V1A9IjCNZqyRQBrhzCpmSGkeSkPK6Vr5VVaUiidgPbNYd267Dbjecn1+wqOfYYUvrYd42SvI4VQvHlEhJ1a9DSmy7TokTxdUVnE6JikhNhBiVILWCkZ2ymHHGlD7I/W/dCMKblMBCHELuvzzvrC1ZaLKaV4ka60DEMoQ+ly5KmOzNTxGIUbA2Ysrzu5AQ6HiFFK6Nd5BACJEYSx0tSVJ+WSLhfZ2fRzrGIUYlb4zBe8fbrz3g868e8/Gnn/O//t//H/if/0//J1Toiwqz40Pqs0OGp6dcXW2ZNQ1DGOhQhS/Adr3BOY+Zt9RNowJxq4p3YqDycwYM0Xkuui3jakkJsUKNYVlVHM8a5k6o8QzBMoTERZ80PZV3eGPoos4JZwyHbcvr9+7y9PSUEKKSelX+DpF7NCadgxYF0Bs0lUaJzSKiRL1IIqaI9Q0GfVZaIr1NbIGZJDwDv9DWfCmGj/vAH3Qrnl9s2WTS5sAHqrrC5bQmkl/40CUne3uOfYkEnWyyV9nkz0z+zOTPTP5MGbdX2eTPXPdnFvMZ/+D//L+9Fi3GGOHk+DhXd/JnSjmTPzP5M5M/82fMn0Ef/T8P/sz00tNkk0022Z+giQiff/75n3Q1Jptssskmm2yyfUtJ1a6CqmpSwhXQDdhuO0QSs8rx4HDGu7cPuXN4wHI+Y956FgdL2rrWsNJA09QaWt45mtmMzx495svHj/n0q0d8/uQZ9x68xvHhIbPKU0ni5GDJ4WLGom3xbk67bPF1AxiGdY9BuHf7FkeLOe+9+QYes1Nys6fGFEEyMKPYiRnhJUTBH5tMVlKr4ykpKUBhzIhFCaoA0nD95VD5fQdYCqJAMTu1jskvPjiDqpmMpWgarRjFbqsKSULTQOVbkgQOjhfcun3IwdERb739GqeXl6zWGyQJc+9YzhqO5i23ly0H8xbv7B4gkkYwo7KePgykmAGPtHsRwxgZkScRBW1iDKS0U1WnGMaWkNueRFWKSjYoAaMAQQk9vyMFiso0iRBiyj/jqGoz1tIPCtAMIVFVRV2ppEqK+k9EVVExooo9EWJMBMkgWQaTtiFoyOyY2A6BVRDCsKUftgCEzQXOwO2jAz54/T7L1tM0FZW1+KymS86MhFZRRWOvg4mCcgHGwqjLFv19PC/jVgVsyb2qBwxABlpHBkZG9aXogOwVkudYkmvgqUi+ca6DjLXZWVErF/X6CNgXMHEPUB5B0z3wf+wLW+5R5swOJB9JgrFtShZJboPZVWbsjUJQaHF7qRsKGLSHVMs+eZHnVFnnktfqHiw+1mtfCVuav+u7lxXePw12+snkyUjZ7P1+k1TYJyfYq+kNQHUEsRnnQTnnOgGTMtljxrQsyEvJEna1KcdeCayVfvjJrS97467dRQGsjUmkkShMCJLIhNkesHej/FGBLmX85cbxXb9pEaVFwhjxIa+fooJ/uWyBrMId4/uLkmNxjyQwY8frjxjjtfamG0TCeI9yPF0nAdPY31qesy4rf3cE7m4f1ggat09ukZLw6MkTXpyds6grjDXEGDKBuq8y31/nSr6O/SsJm5SgG/rAxdWG1Sax7jvqOMNZi7fC2eUlawt13er4ZkW7i3FsUwiRvu8xWYmLCClGDMKdkyPu3T7GG8NVn/I+JIgE+pDymGgDh6EnhvL8cYjRcpCEZW9LK+Ns9TlT9gKJSUkCa3G27Dcp7687MkrrrX0zSMAA3rsM+ufneFlPxur+nZKOTdSUErakqDEGkh1J9R25l/sBwYghCcwrz6yuSRi+/eMf8+L8klttg7Me3zbQNARjCDEym88yqZ12xCyAc1hf4Sq/U91bS2UMzjiCTURr2Q4DiMn9llQJXjuayjNvG+Ym4EhEZ0mVwfqBrhdCtJquIgiDC0RgwHCZU1f0g/ZX7f34vUbKMz2vRWPAG0NlhCDCkNuh6apyqgijMe6sCDalHAlGy/ABjmyHdZbg4JlzPFut2YrQWGGoEnNjMWjKqzxS+fuI/oZ1SIkjITfJ98kmu2GTPzP5M5M/M/kzkz/zcj/uXbtXEsbAg3t3SvXGG+0umfyZyZ+Z/JnJn5n8mT/t/sz00tNkk0022WSTTTbZZJNNNtmeVdaoAhVVQ0mMRCOIWJz1VM7hnePWvOHde8e8fXLAwXxJ07b4WUU7b/FWUy5YBF9VeGfxdU01X/D73/stvv/jT3h+fkFwLXfvnOCsY+h7LMLxwZLFrFWHdzkDZzHWEyNgerwz3L99woM7J9y/c4fYbVWpZ9WXdd6NwGYBog1oKOsMqoqUcOcKHBmjDrk1BuOs/g2IKeBMDsOfBGMVkLEF6MxlKMirCltDuX/aw94y8GB2YJ9ITk2RQfmqAWcjyJKUEm+98SYfff1tLldrrlZrQky0dcW8qZjPGha1p/Z6PyGD+CmDjyI4a+mHnhgLsC84V0KYF4BdwYAC/GtHan1CDlte1IoGIYb+GkkgZNVzEnzui5EkIB9PmSSIiZCvjSmCdfR9TwiBECN13eR+yfWJkWHQUO4YiAGiaLoSVbLtwLYoic0QCTHSx8hV3/Po/IrVtmMYAjElZs5ycnTI2/fv8s1332Q5q/FNhbUOh8VmQAljMGKwTpXLeo8CZBeFMSPAPgKSu6He/Szgptz4nDJtclQgBIxl12s7QKsAgDtQdEdUFfBqBFwpdd1VxpQ670G1IxCWTzRlPdwA4w2FPNirutkpS0tZCJhCZpjdPfatXLsr07AP+r7ScpvsCM7mD0eAd9efBex+ler5JZB6PJ+RZNiHqa+VsU9oIGNZ+yWacmxvuK8TBmaPINilG9hVKEcR2APlrtXPlM8Y13q5bxlfszeWu/qWitwYi/2OKyeWOTIC8i9b2Vv2iRJJStoJMgLAxjh2lX35+vGmutGObbt23q7hIwE28mrs1oNca++ubjIujL01snetiHLCZZ8uaYJSjDvSOZPjtnSalDbsl7MjpgyMkTZKD1uj0TVSBuJhb/4n6PvA0cEhQx95fnrGixdnzO/f1ediGlQdnO+/P/YjC2FEiUxRdbLLaX26ruf8cs3VYNh0PUfGcHiwpJLEZrMFEY6PMtmbJKvHk6YOSZpipusHRopHhBQCxgh3jo+4c0tJgn5IOCsYo9DuMISRuDEG+r5Hoj5nhIAYJaBFEo6SpqhME1VFxzjkPQZS1PQLzlm893sETiGUZewPJa5jJnqElBzWufzcyKS9c/o9ALLKPEcKyX1rNL8ImBxhI+l8LuC52ZubQsKSaOqauq758quHPH1xzuz2LVpX4eoa6ppoLTEJtfPaj5nACinirX6PMNZinFOiLbfH5PQkCcMgQhfC+KICqHLZOU9de2azmlYAiXk7sbgKtg6NPpKgjxAqS59gHRL9tqPvB4YQsNZSoUQJoorn3bNK57x10OS29JL2FqTBGKskgRFcJm+s0+9KTqBJlmXoOLA9WMdp5fmq29AZQ3AK0M9sjSnfHzK5nb+N7Z61lF9evUdNNlmxyZ+Z/JnJn5n8mcmfmfyZV9nkz0z+zOTPTP7Mv6n+zPTS02STTTbZZJNNNtlkk0022Z7dXrYEFHSNMTIMiSFGjBFmteV4MefBvdu8dvuY9++dME+C814Vvk2ljqavqLLSNAAnR8f4uubJ6RX/0d//xxzducVrb7zO++99wOc//BFnFysQw63jY4zArK5om4rZrGEbIIkloqrlg8UBy8WS+WzOrK3xbVU8ewX3nR3/dk7TJBQgJ4VADApOGGNomgZrFCRK2dG1VsEigyrD67bFWocIXF5eZjApA/Mx4WsNo51EGFLEG0flK5xzGgI78wLWQBgGnPdY5zBGAXIFHtQZrgBnIoaEFcFZzwdv3cfXNThHNwQFLiSSUmDoAjHsgWKyA9rEKpQRwl7oa2NGYmQHJzNiTda7TKZkoiC3S6/Xck1WkCUpaLXZAaymAN7ZMqhFEgijnmlU3AsKchQQ2KDgVCEZkmiIeTIYMQxxBC2SJFLXa7YBDDind3YOMTDEyNnVivVmSz8EUkrcWsw5OTpiOZ8xazykQVMlGE0DAuzmTxJVeGUA35iYVfMeY+wIWtsMqKYoWc2VYdsMOJqCPAk5XQAUxfyIcAvjwRHs3P+4SAcNkCGTAge/DOfujev40+xdkwkCnTC7CbAPo4vsyAO7IwhGBaIB5+weMSHjPC7tA9G1x46Uc9faIXmOlcml19pCRu2Bqd55CgA4Eip7Nd5h6eVvyffTMPUja2FL+7WcUMD8EXWV/dMwZo84yCC8yC4FBZSh2SNLFA4uNUH3FANYUlZSvoyc76/HNN5TCTq9h6Q4ThVMjswwlpLrXfbB/Gkq6R/yWtsnEbQYq1NTJKct0RIl/2+E3bN6U/dKDe+/r9Quil9jNAqE9ksOL5+VrGW8lRMQnNnjCgxg8j6dFdalv8d+TftzZze/S21TwW1HQBtNPWK1fWVOCqrcNJpbIKvnM1Ga+8SWiAH5Xyogvei+o0Xl9ZrrUZ4ZINpP+Xzt+0w67JFNZdhT0jQ8s0aYz1vu3LvD8yenyL37OKsq2co4JcnLiBvBFFWosfhKW2eTYKNGIznvtpxfXnJ+ecElc642gdl8wXuvP+CLTz/HNy1hCBjrWK02pJhUNV15ylLeDoGLda/zzoBIJMVA4wyHi4blrEZSGJ8DZFVr5V0ex0gIUdMaOIMY0XRJ+lDIhJru+SEFBevRvUXJ4ZJaTZXZIRqGYcixR8y4Ypwz+ZlqkJCQFDGau4KIEHOEjzJPbFWR8tpSZbJGLNH3ASwxJaJoBI8kggxpR0iKwtbOV1jrgcDQb1nMKu7eOmL49obvf/4Fi7bh7dvHVLaialvwngFVDIOm2ogxsu57WhFkGBg2WwZByZkoGAYuVyvaW7dZDQPPLleEOGjqCGOJyRBjoq4r5rOWxazFDZEQnSrRY2LpHfPKEWKiD5Guj9imoo+GF+uBLx4/5qofmLctx4slQSL0QdMgSQRyKjAxmtbKwmFTUQVL6BKbEAi10zQfpgaE5IQoEPLDyRpDK4ZbAq+bGTYKB9bQ1p5HaYOtWl53ntet42GnURV0nVps2U2NASpMuCTFiiiOtPfCxWSTvcomf2byZyZ/ZvJnJn9m8mcmf2byZyZ/ZvJnfp78memlp8kmm2yyySabbLLJJptssj37819/KwN7AIa6avFVTVV5ZrXn1rJlPptT1zXOOipj8b7Ceoc4BU8bXxTUnsW8Zd11fPLDH/N3/9F/yUoq7h4cszg4onWWD7/2PvPG09aeuvJYESpXYYylXwc6EboIF+sNP/rsS548eYxBWC5mfP2dN1jU9QicVXXN0eERm76jG3qsccxnM/q+Y71a8fz5U968/xrvvfMOd+/cZhjO6bsNzqoaehgCfQzEYUBioq4aXlxdsu16vHN8+N57tBWEkIhRmM1no3rYWauhlIGu6+mHQcF9YAgDIQaapmIIib5XtfLx8TGVr0ZVlHcWkYizDuc8lYcnj54jCNZbZm2LdZY0BIa+Z9v3tE2L9x7vHb6qATsiVAZRoLSApl6BOA3dbLAGrLNY6zDO0oeAkQwWOQcGQlZVF7Wyr2qctVjnwRqGPiiQ6z3GGWIYQARrFVgowCAIEhMxp6tIZNDMGWwG3cMQ6DvtG8HgmwpVYSYFjDBZIefwvsIYYbvdElU2z34KAGvgffca3nuss5nUiTnthQImQ6hHQFgyT2BMUWAlSEJJ4DGi9pYcrtvhMuligGgiQ8j1IAPxmSgAiGgIegpmXbiaYvvh/o1RCZoITgQzAsdmBJGFQs7s/oJCBkGSkiqhEBZ74GTGGm1pEwZjDcnsA6rcqCA7+FoYQ8jvQPQdQJ/GCAJcq90OyFVAVvGyHdRtyz+jdU9ZvSiic3UkK8o9xmvNSHQx3nNX/2vkiFHQXmLQMPHGkIzN7Y57oH+OmmBv9EUGovX/JUR/PmwUCFXJ+q6/U26TLYo/STmiwo4nItehtGefvDBGSbLdHND6mYKEF9Kh8KO5ow0hd0YaiS1jFJguY1FAZzExEwxkpfpN9XYmksz1/jQGrHU7xW8mUHZESi5fG7QbF6PRGfZTUZj9/+SpaSSnGbF2rI81VuvvRNuWn1cpg/iupE6gEFuljxjnE1l1OxIZOdJDadc4ixRrJklOcWANcSjkj8XaXYocCrdmykwWBAsxYCw4Y5A87sMw5LkA3jmuVpfYyvPg3h1+9KMv+OSLL7h9fMi9kwM2m5WSGiViR0oYV8gKSzcIxmYizjp8u+Dpk6ecXp7TNp6nV4nTyzWnZxccVYmL9YblwSEOYdZ6nHc0Izwq1A5SHOj7gU0/QEpKEAi4POe6zYZuvSalATGJIYb8vDFUotRqyivEYDBeySJrDckKQ4zEmIgRvPF4DCKRKIntZqsz3ILPiuSYNLJGFKDypBgJIdB3W5wxNG1DVVeAIaWYx9FiR4V+XhPWEvrANgzEFKgrjzdKeKYkdENguzc21pBBed03bCYXonSIOJraIwvDcj7jjZNbHJmK3/zd32NRW+4cfsSD4yPqukacZyuw6nqM95reKEX6CLNNT4yXWL9mNfQ457Ak4jDw+eOnfHa5ZhMTLy6vMJI0YofNa6BLzP2MmW/wxhH7iBEHYsfnJg6cM9TG4q3FCiywzOqKD9+4w3ZILOczTg6XPDm94MtnF6xjImKpKjBExBqCGK5E8osCSVNxkUjS46jxxmNDApMIBsS7TD4KvU10NpKsYZNgaxK1Gfhz3nIZAi5EvvKGz6OhMzKmznISsQIJT8SRYqBnSfJHzGa3mGyyn2aTPzP5M5M/M/kz+cxre8Pkz5RbTf5M6c/Jn5n8mcmfmfyZf1P8memlp8kmm2yyySabbLLJJptssj1757UH7HK+W5p6hnUO5yxtXXF0MFdAOAM1hQww1gEWYwXrNO1AXXnu3z7hX333B3z30y/4/pePeeONN7l3coej+YKZr1guW9pKAfLKWy3LqApyCBFjLPQR2w1EMSQ/QxAug+OPvzzFezfW3XlH254RJDLEQAyJedMQQwbV12uuQsPpYDl8ckpMgfVmjXcuq7krGg8mRZyBxSzx+OyCi6sV1hiOT25za9lmEiCwEFGSwKiaa9HOSDFyeXXFar2mmc1IIbLabNj2HbPZjH4IbLcdYQicnKypqgrvvZIClctguII9y8WSp8+e0Q09xsC9e3cgK7xTCISUwNgMUAkHR0ekqKGtEWgrz6ydYZ0CkF3XUVWqJBeBrtuy7ToFca3l7PwcC8zahoPlghgTlVeFu3OOpqkJw8AwDHT9gHWOpmlJKdF1Hf2wZTGf6/1SIiYhJQXdnNX5oGJcBeAKUJlSYhgUsJm3M5xTRe3m8gJnDN7anOZDyZwQEtuuI8TArG2pfKXzQOKItYckrDbrDC4rwuxtnisZcLUuh73G4HIYbiOqglQQd5caBDTUvXU2HzNIEvoQM/jlaOfNDraXol7M4eLZEQpFoW7yeZIVeD6nMhERhhAgCb7S9CuSEcgQAyFEhjAouVNCqZtCGqQR3DJOCRWbSbCiUNbWGA17n5KG7c4Ic1l7ejszgrbGGAVfM+AmSUgxQQbeDULMKKstampjcrlahgLJ11NdKCBsgJJeRFMbSE5XsgOuFdTd4zp2asWxzB3ZECVlsbuC0fq5qMpuzFdRiIMcwl/YRRkwmd6Qon7foyCuKbz1M1XV7tUrp/YYIxWUskuKmUzIyF47CjZtyKk+8rWJnTpdjwsmg9wYYYxMkJF1KeUhYNJIHignZBCr4DsSXyJUMAZnDEl2QLmmxXE78jFHltgplwuxkP8oY5aLTeNQl0a4PbIg/5ZixuRFx2sPqL9G0xTSY/eHtiXPQaQo0wvxsCPSdjzPXvQG9lIKlBslHdHdjNrvH5ujTmjdx7khJQ2EyWsy38MYxDgdRQFr90qV0j5LiInKGLwz9EPPjx5+ySCJN167zzAM9CFpuoZrxI2uCwkRW1nd01PEdIHL1RaD440Hr/Hw40dcXV5weXVFvL0kJZjPZ9iUkDioslhsTvMTccYrEd1t6bstdhxM3be26xXnl5dcXK20zUlVuGWPSgIpxZwmKDNSSUnGfhhwlRvneUyRwDAyV1pe0bvrXBqGQcfUGCpXkZLufyGoKlufb0rek+e4yer2lCJlEQpgoii5MAw5NVFOY5T33RADQwiZ4FYVfZKEdU6DLESN1JGSQWX3CTGafqLyjqZ2nD9+TFitaJ1nIFG3M2azBW09Y9UNNDNVYYdk6EOii0qgI8LVtufg4ECf17Hjcr3h8OBYeSffsd12LOt2F72BhDE5MkuIhCQMUV9iSDGRSCizktcKhoTFGmgq+NZb99n0ibqqqJuaq/WGkDStkrWZ4MqbUzKWjoTJ0VhCfuYggpWIS1HJj/IM2dtbNsDaWHoR1iZxYeAUT2UaliaSjNBZYZvnmpUcPaGEJJCEITBIRHyNa+bUszmTTfbTbPJnJn9m8mcmf2byZyZ/ZvJnJn9m8mcmf+bnyZ+ZXnqabLLJJptssskmm2yyySbbswcnt3KocVV/Kgisiqa6qjg4XFLCpMeU8AWExGKTBS9g0ygOCzHy6eOnfPzwCZch8s233uDO0ZKjecvMeQ7amsqV/PaWumkR0XDwrhYa5zHbQBcSR8dHmGau+eBj5Oziihh3QJ+NCYa1hp4WVSjPenUwEcE3S1bJ8tXpJc9WG2ztudpsMEDtPXcOb3HnoKHJpIVrW+r5nDoDqQGI1uV/iUEgFrDXGIIxRKAX6NHw3EOMbENg0weiGRhipB80TPb5eov3Qwa5FehOMYzh1wcxPL9YsdluSAiuaVV5nJKCA9az6Xu6nMf+dhfohx7J4csP2pbjoyOcrxBJnF9cMJ/NwFlCSpxfXnJ2fkGMCu48ffYcZwzLxZzj40OGPnCwWNDWDXVds1wuWa2uuLq64vLqCuccx7duE0Lg9PQFl5fn3L13j6quCGGgH0Imegy1r1gs5jinADuS6HKahmEY6LYdhwcL7t+7x3zWYgw8f/ECbyyVd1RVTULV1uvNlmfPT+n7ntfu3+Pw4IDZrIUUqStVwnX9wPPzc2JUsMoAi8UCbz3eGWpnqWo/KmzrugZr8QgOVTFGQUGWDLkaC6SIyMAwJLp+YLvtiClRNy13bx/hnMGIquyQqABmBgKLjtiOgDk7ACsJMYPaIgrwGFCwR5SIMDaH3k+7dAOKS5Y8B5ARYCUuKPpEM64BPS/fYwQ+CyCfAVPAmAzSiYLLtgDuucqSEjlDS1YLZlWwzRURRqDOoDihtXbkBERSBp+VdEkZzC+qY2v2AfTrKUxKHxksI0abAcZRkR6FaDNUaxToH+nEggebHfheIOVcdbK8eVfeCNSXZAm7Go2AfO6hHbmin4/4c+5Da23GuvOYmHJCSauRy9tLlzGC3UaJC5eBdCUclLwZVcbGjMp7IzvCS8hgvjHYnKLgpvpZ9/087uX+kkmPPPglncl1wqb0hblW3i61REGa9xX946S9RmAVQqO0Sa6VbHK/Mc4HyaxY7l5iSqp43p3CrqUmkwSS26iEkCTJ/a5/l5QepZb7UQ5wRoHxclzG30iiCvjSQmOMLpJyzkhU7IpLkjTlRIjYkKgqx48eP8HWDR/1QuUahrAllf3E7EBtRHcWk1MKRdEoItttz6yZ8cG77/KHP37C6uqSq9UaMRWbbUdlDM4ZUgw4a/SZgBBDwlvHdgj0fUffbZRwLP8zlhAD55dXXFxdEVPC5HqVdAtCUJKgpPbJKX+SaNoHJw5nHNYkggSi5IgEomC5NWacMaCkibEG7x3OG8IQtUxJ+PxswOS5JiBjuh5DSiGnY9HjMUZiHDKRLoQgJBvHvUlMicxgdf5LysSFIEYV2pJiHr0EQ6KPEEXwzjBrPXboaY1h3jSsQ4/1nsV8wXJxwJPHX7KYL3HeEkXoh0gfEtiEWLhabzk4OgY0HVEXAvVsoc+T1YZtP7BIgnE6q60RsEKQyDYMhJgIISJRxu8sGhlBVeuusJGZkPra/ROGICQsXYIgCecM89rTOM9q2yE+P7ONEj2blIlJY0f9v0kJYzW9SHmOGaNpvAZgi2GFYUtka4QrhOdiiNTMTEe0iZWDIa/nnM3jWkwDIxEhUjU19XxGNb30NNnPsMmfmfyZyZ+Z/JnJn5n8mcmfmfyZyZ+Z/JmfJ39meulpsskmm2yyySabbLLJJptsz6rK47Ia1jtPXdcKYGQgta1qfKXq5ZgigwgxRSBiXMADi9kBQ4IvnjznP/7P/jm/98lnvFh3fPTRN3jvtbscz2fMnMVLJGxW2KbBUIFV0AJrNU2BsdRNzXw24+T4kLfffJ31IPQhsO0Dp1drMA5feSpvqWsPTgF7EUEi1MaSQgAR5rMZtbUKHHjL7QcPuNisuDw7gxD5xtvv8daDYxa1p3KGYQiINarKBbartWJ6OTR3CAHrclhwA0QFjpyvcN6RQg5LnQGIIfRY67FW88qvVqscrnwfqBPCMBD6AYCvvf8BCQgpIrEnDD3eGpqqopnNudxslCToegD6YcBg8M5Sezeq2EUE37RUdYUYYUgDrq2oZy0hqir1/usPKLilSKIeArP5nNpXeGsJAr1xpLqhWqqCtXeWPhp66wluxmoAJ4mQDKv1wPnlJZKEtq6Zrzvm8znWat89f/5cUz9kAPlstWUzwMHBgvmsZUiOdYr0m57N5ozL1YZuCKzWW07Pz3EJXlz13L51i5OTYypnWTQ1IQaenZ3z3c++ZAjDCMjfPrlN5TyVAS9BiYyg6Sxmbcvx8QnLWUNTeaw1PDu94HK1JkShnc1xFjbrS1arK07Pzzk9u6TrB1IC5z3f+vA9jo+WzNuGumqoncVbh80K5fVmTbfd6rwxlq7rmM1a5rMZy8WCF6dKfFhrOTk5wTvHwydPePL8BV0/UFvLyfExd2+f8M6bb7JaremHQYE6A1VV085a6qpiGHqGqxXbzZa+7xlCoGlarNH6+NpycLCgaWpqX2Gsoc+K/5gSdV3RdT2gKTgEVTkaazVSgjH4poRJt1gMbVWRRMO0d91A7T0xRvphoB8G5rMZi9mM2axFUmToBzAW5zwYRwiBrF0GhL7rMcbic/SAEAr4mNeVs4ypLgRijCP4Wsl+ygmh8hVt04AIwzBwdbXOAmklUryzOboDQCKFXlN+WKftF6FyXglRa+jDQIhR16/R0O77OHISPVZAbmMdWFW+W6cAdghKCApCYhiBWDL4pk2zSAb4bYGlDdRVpfuwtQq+DiGnGEhYl0mNpOSANS6nStDLJSnR4I3ua7EA2uIxYkAC3mgboggGt6dEBuvcmFZlVJJDJqQYheMFtVdMPY4clcuRGsq1qh7eZxzYkWgoMCk5HYMtJEw5UYQoEZcKCWWIGaTOVHcGzzPRkMd8nzxIabf/ZqwaySSRtbp2lVAQUgo4K2AyiTSC/vqM1LoGrOS+yHUKsq/dR1MQASElttsO7z0xBiREPvrwI7776Bk/+OIrUvot/p1f/2W8t3jx+Xmhil2DwThVtfZDwPqa5eGCH335GGsib752j/feeIt/8Xt/zGaz4mq9wfk53/3eDzhezri1nHPveLkj9JIQU6BpWzaD7i2b7QZrdQyNqAL6aDlnvd7w/OycTdfhLFS+UmK+35KIShi6TGKoMJzKOo6aOZWtFcAeAiYGgiRN/yIGCYJHI3FgIISBQKL1FVXlFdyuK6zT1EbeaVqDEBMxz7GE7gVRdE3OFkucc8QYubq8pG4sM9dgjGcI2uZCIdW1YzZr8jNQ03Zsu17HRpQEcb7GOSUou65jtd2ymC9YLGbcuXXAr3zzIz54730Oj0/4/pc/pl8NzNqWB/fu8gd/8DvE7ZaDwwPaWUvXbdlUnphqxBpOT5/z+hv3cdZgnaFuKnxds7lc8ezsAucqnXNJibrKQ1MbhMjVZkO3WSNJ8MZROadpn3DU3tFUPi/JXVocLJzMaoZkebLu+c7nX/Ctd9/m/nLOjMTf+63v0JsGax0eqBjwrsJap/O939IbCHne18liEZyxVL7GGejilk4il0ZYG080hgHDVV6PJ5kIlmTYxEBvDIMyU/gEYi0Ji0Q4tob7RzUnxzNol0w22U+zyZ+Z/JnJn5n8mcmfmfyZyZ+Z/JnJn5n8mZ8nf2Z66WmyySabbLLJJptssskmm2zP2naG95WCG5Ko61qB5qyWC5KQGLPyCIZNBw68t1S15e6d1/nk06/43T/6Hn/3H/wTPju95PDWLR7cvcOHb97j1sLROhWXGSztrKaqGyUmcix/A+qUVjVJVHnVWMfRcobxnpiSKi3NPQXaREapWYyBkEFE72rmTQsIMQa67ZqT42MOjw+pZzM2IfDk2cCby9dYNDW35ws2q0vO1wZn1akOWSk1Kiv3whNbQ1ZdXQedJPSEYLBOQQ1SwJCoSZAG/dsYDptqBLwUgMooXlNRZHvG5vQNGDAzVZJKBscQ6qqCQxlVfkWVOQJUGdxSIN5koEoUxDJmBLGKgvSaANBaYmENyOCiVdBYQRoYYgBK+G1LiIOqVo2eP4Q0AqkgWKfK5RQim/UaMQbvPU3bIDGpMlxUiT9rW4IkhhDGFBwxaRlN3VI1FX3fKYCThLqukBRJKXH3wR0++ugbCtplINChaTYMMAyJy6sr+hhUPR0ji3ZO5a2G6paE2w60zpFEaKqGyltc7annc5a3Tvh60ypoY3LI8tCDNQzJUtmKwcCQBFLExUSIwpAgJIBEEEMfBTNETB94cXHFdrtFEDY5zcSz0zPOLy+JIoTtlk0/0A0RTMXZ2SnbzYau1zDhh4eHHB4eUFc1T1485/nFFZdXazabDSmmDLRH+n5g3W159923+KVvfZP33nmbhw+/5Ld/87fZbjuMs1RNTdd1GFFV3HazxVU1xms4/BQG5vOZgtwx4J3n+NYthmFgdbVivdrsloWxVJXXNeQNTV3xxuuv8eDefVKMrK9WdOsVtvJYZ3DOMqsb7t+5S0w6TlerK2btjKpWAg5JGGuISRhioN92tE2jesWUqKtagX+jAPHjR095/Owpvqq4e/8e77/3LrHvEYk5bQf0g/6svKWpPV2/JgQN9W6d4+L8im3fE2Pk+OiQ2Wyme5YIlfc57YIqAuu61t+dpiFRUqQnhqCkXEq0bUtV10rcZRBTUlbtGqNqUxFSjArIg35uHc8vrth2fQ5dL9xeLjlYzGjbFl9ZhhCRZABNpRJzWHdNzeIRCUp+WgcYgkRighSFYQgKQJtdRAyN2JD31bql67sR+Lc2k5BWgdMU4468Iav0rafsLMYYkoQsotcx7Icw7lVREkl26Rhc5ZWoSaogNsZSV40qXfPeFLcdMQRiDNTOUjcNJkGKiUGEql3gXCZF+i1DH3SPzXug915T2MR4Q/Gt4+e9R0SBaJMJDCXMvKYQ6ActyxhSHBi2W4yIPiOqBhPKvmiwzlF5wxACqetoqlqBeATnDXcPT/jg3a/xu3/8A/6Tf/rPef/BbX7xvdeZ1RXbbccQgj5brCM5y7MXpzTGcbg85M7rD/j2d/+Ydx7c4e6t29w6OOTuySFfri95/uI5q1XHreMTrEkMSbhaD/QR6qoGF8EI4ht62bIJiXXX4zJhn0Kk3275t//6r7OQSO2E7373O/zyL/8SYmoQx7JdEGI3kt9lzvZDYL3tePTsjLPzK33M1TW3T444WhzkKBoD0QT6rqPrOwTB1xVv3H8db5V0v7y8ZLvd6l7iPDSWy5WeH/qBFAO3Do84nM/AWp6cXfLwh1+yWC45OFgymx9h4oDNmltfJRK6x4cYubi8xPuKttE0Q7XzeF+z2XZstz39EOm2G7w3iIk8Oz3nh589Yj6fcXR0yK//+V/mr/zlv8jga/6r73/C4bziYFbhbgn9sOXO66+zcErubbuePkXO1xtmSfezZy+e8+z0jDsnt1gcHrLtex49fczj0zOePX3McjbTtDw6e6ldjR0M26ueF+mKYegJSZg3DYeLBm8DQ9dhbUXrahaLBevtlpAkE7CO5uCYx4+e8lvf+z5h2PK1B3d4684JIpE7nz7my9ONRjjxjkqU8KuMoXWO6DxDCgSjxFrldA1Zq3u9rxvCNrAJAw/7DV/eOWGB7nW23xJsTy+CF3AYeqPRZhI7VbQYIYZAv+l54527fONr7/HmO6/DYor0NNlPt8mfmfyZyZ+Z/JnJn5n8mcmfmfyZyZ+Z/JmfJ39meulpsskmm2yyySabbLLJJptsz44Pj7DWZTDYUNVVBpM1PUTWl+WzFRxzTkP2N23DZ4+e849/83f53e98nydXG157800e3LnLvZND7hwsOJjVgMcYj/eeuvWaCsF5vHcZGM/qS+cZkoa69s7ibA4FHmOOL59wkjQcvVFAMCSLt1kdmdXXGAX+ZocHHB8dUDUVSQKb1RVN5ZnXDYumxtmkobGzYscaTQtgjKoSFdxS6KOA8JL/1rDcqpRLUkJjh6xCKqH5FUQq4jxjMgxWADWr5MPYwxas7NIRJIAM+Jv8uy3sRK633UO4lNgRDWuNqJJJUr63y8qo3fmSQURb7pjrWlSLxmgbrUEBzCSYrNBygJiEMzKG1DbGUBmdM1iygj7fyBpqf6D1MUaVgs6Rkt1TTILDYn1FZRypUQW3NZaqrrHOMjgIwZOShgZP4hWMEyUEcixz5TlyqHGAGBPLeZ0BSVVetrbKmRUUfDxYLhSEFPDGYp0hxkQUnX/e+Qw8mhxmPBSJKN65nL5BwTLlkjTNw9g+Sj8pMXFwsNR0DwjOqvr0zTffIKSY1a8Dtauo65qmapgtZqocDKqKreuausrrtXYsTm4xhJgV+hotIIRI1w28uLji6GiJ8xV9CFjnuHv3PiFFjNMFlGIC0dQqYYi4qiIaCBIJXUfTVDq/sip4vliQYqKpWxaLflQ2O+eZLRYMYSAMPSkFuiFyud4gMbLddnR9oLKZAAuRfkjMl5pq42Kz4XK1pouJJjTUTa2AtdG0GpoiA0LUdTgETdkRfR4bEXqEPhlCFK66wHrbQxyweWyU6Mn9HFTju+0i204JmCiJi8sV682Wruu43PQcHiypnAdJNE2jIH8GRitf5aWtc3u1XrPZdDoekuj7nvlsxny+4PDggKryxKyUxsgYpn/bDzw5PaMbEs55jHWIMTx59pzzqyuGYaByjrfu3eX28RFtUxFCx9V6hXM1vtI5MZ+3IErCddstTTNTtXRKhJTwVa2pavqB9WqDc46jowMWsxaD4KzRvRAhxEDbztC0QArgOaeq8pQUbDXksZGEpnrYpaSIMdA0FSWdAQYq68c9x1UVYlRBbTBszi6JQYkaa5UA6TadpoDwSnIuq4bGeyrvcN5zebnWvk6CWMfm9BIRwRmYNVVO76CkaQghA5sWZzXdgbOqzrXWEoaB9WqNsUYVwFHTG/RDoOt7sI6qrnRrSwlHYtbUeGsRiVy+WKlS2xicNRjn6Lte562Qn7dkZbkQrwbSkLC2orOOf/lHP+D5izPmtafve07PzqjqFjGWIJG29vylX/k1kq359ne/z/c+/pjN1YrLF2fMq5Z522D6jm3fc7XecPv2HdabK/q+48XFFc2TZ3jn2HYdZ+cX+MWch0+e8eTpC/oh5HQimbw3hm7TUVnD+bDh7MmXfOuXfpGzi1MuLrdstz1DjAxDnwkXSwwDSWC13fLFk6c8P7sAY1jMZrz14B63lnNV9fYdkhJNVbPtOo1qYYTbx7fw1hJD4OLikvV6TV1VOhbGcLlZE/oeUqStK04OD5jPZiQMnz095eHjpzRty2Kx4ORoiSfpMzmTYCEIIem+sd52uWz9XhMFjKvoe1VIb/qBEIWqAmOFy03P50/OiPEptw4X/M1/99+hqms+/uxzHp2f87f++l/j1nKOd5YXV5esh8T586c6T53jxfk5TVVxfHRE27Z8+fgZ7cFnrDZbZk3DDz/7ktdcw2azRfKeYAy7+WuEL56+4MXZOW3lSCSNbOEd87rC20ToOyyGuqpZHhzSBSXbRaCpDIfzJY/OLvn+oxcYKn7w6UOePDtFrKGLA4YeAYbkEcCliLEadcY6C1EJTYsh2YQ4QyDRDT11rVE36llL2874hMQyGKyA9zXBCFc2r3NgQEDMmJIJm19qMAnvoDOOHzy8oPKOtqn51i//rG+0k/082+TPTP7M5M9M/szkz0z+zOTPTP7M5M9M/szPkz8zvfQ02WSTTTbZZJNNNtlkk022Z9b6rNbVEN0p4zsmaajrhIzh0YdhoK4qFu2MpqoR4/ntP/wd/svf+QN+9NUTbt25yy98+CH3jg45nFUsfWQxa4jJIcZR1y1VrcCMc56qqkZVbJGnWaOh+Y21GvI5REJMY7hwZ8F7j0aPVmfTYUeSI4Uhh7+vWR4uaWct2ziw7jo2mzXz2QF15XHWECXhKg9iRifcWVNE1wry5n4S1FEvIaJVg5iVPGSlsxSFIGOfmgxMFRUgJiHGKhAvIGIoMmuDgvFIQvJ4xJx/niJ/lqwfyuUnY3fX77DoHCZbQTt1u1UNlmKBNbVtLhMDRmPlZ2XSrhBbVNICMWX1diaRImm8qY6E0XKMAWeISRWhCjZZvNPw5imnDHA5fLUxmmqi64exnALglTZJCMSgJEllDDiv/aJ4lp5nBJvj6pcyx1ZZy3xWj8SIMQaf+17yON/KIKExBlOUfpmM0q7fpS7AgLOelBR4jSlgrCEVIBQlLZTQ0j7xzpFiUuB+6GiaRokNoO87UhLattYw6AgxCjFGhiGwXm/HNCWacoCsoI2kmDjhhJSJPWedqtZDJKbEMARenK9JaWAxbzAIRwdLPvro61kpaggh7CnrlbYy1jNIpI+B0HU4p6CxZJKlqRosRsdUhM16S0nnMF8s2XZbtpsN2+2aynuaqkIyGNfMZ/i6VmWmJIiJlAFx37a0MeErj6trfF2PaRRcXnDee6qcpsCFgPcuR1pQAOvw+JhkKwRLM2uJSZW81mgEAGcdIRpC1BWexClpZxORwDZEknXgK9IQ6WJiO0RiMhom30T6oR9D0hvT7cggEU4vr1h3Qy5f2Gw2zNqWxWLLrS4y846UVc7GCMPQ4Zxltd3yw4eP2QxQ17UqcVPi0dPnnF1eEsJA29RsB+HZ5YbKWa6uzjm/Oqdp5zR1Q13X3Dm5hUik67acnb5guThWNeoQGGJksTjIoe87Li+vqCrHg/v3OTg4YOg21HVFU9cgifPzM+7dvYv3Ss6t1yvapiWmlMPyy0gWxKTK85iUWk0Juk7D4QuioLqzHM3mmTCDumlxOZWNJOHx48dstx11U1PVNZuu4+zFGa7yVG2Ns5bXbt3mcLlkOZvhG8/DZ2dsOlWJ+qbl6fMXDP2AM3Dv5BazeZtV84nNZsMqA8+ztmXoB6xzY8qNq8srnjx6jHOexXyhaQyc42q14vzikqptODo+VoKq72mc4cH9O9RVRQyRr568wFglPbzTZ93V1SWIKpK9r9AAFaqK32wvCF1gOV9w9+49Pn74lPOzS1rnEAk8evwYV7VKaKWBb33wHlV7QBciv//t7/LZw0fEPvJ89oLaOJazFn95xdAPXKzWHBwc0MeBzbbj4mo9Rsm4Wl3x1ZOnvPb223z16CmPn71gGEJOX6JksPeO58/PiG2LdCvOnz7ixfklL15c8OjpKZ89fMY2GU0LkSLOOvrtBuc8m77niydPOV9tMNYwb1uen19wMGu5Wq/YDh1W4PatE7qu1/1i6Dg8PKByDkmJzXbLer2mrRvtXxFOLy5zdAbL8eEBL66uaOqamOCL52c8fvYCYx1NU3Pr8JDaa2QWZzUKQ9fHkSiICXzlsEYwkghJaNq5kghDYNP1SEpU3uCcIVhHl+Dyck1MidcevMblas13fvADfvjlI/7d3/irzGczoknUs5aI5enZOW1d0TQNz0/PaJsGXzcYX7Ha9Dx68hyMYzlf8PzskuV6Sz/0Gg2iPNBNeQnAcLracJ4S3qLPWVGy3ufnehxCJnyhns0IyRDys3jRKPG46gMX24GDZsbHnz/Ssr2GsKm84ESfnxGLkUCyIM7ijMH2AykrrfWFAE1Rsx16jFPVfzOfMT9e8KOnj1j0woF1HLUNkZ4LPBHYSiIAVvQ7jts9sPHW4GrHeZ/4l3/8kM8fPue49nzrP2CyyX6iTf7M5M9M/szkz0z+zOTPTP7M5M9M/szkz/w8+TPTS0+TTTbZZJNNNtlkk0022WR79i9+/9vUTUM/DJyenXJ86w4nJ3dIIjx5/pg+DNw6vk0S4dHTpxws5vzqL/4ii8Wcj7/4gv/w//h/oZkf88EHH/Frf/6XuL2smdlIbaGtG+azeQZeFRgPouCRJIghQV0RAUmR2HV434CvCElYXa0Ag3cFNNZQ5klQha7KabDGjWC8cYa2bZgv5hwcHXO+XnO+WtOFwMHigMO2VZVvDCSvoKFmW0j0IWoO+RxWviiWi1JMZAd6YwzRZGGstUpQDJr2wVqbFbfk9AT6G0BKIKhytRATe5g8UTXHFEW6cyYr6iRzAxqCvaR8kBza3hhTsOnRCkFgc9h2UDA/F4XLaufxYPkxsgRGVcG5bkWNTSaPhKL83rUhkdXeAQ1jXeolqki01mGdJdlMVGSAwKBq+JRViJL7lrGtgupe7U4NPuLxqs5GDCnm1BRjrxeSQ2AYGC/E0OdxBLJCddcPRm889n1JXSKlm0oVct0EDZM/Uj7CqAItpIQhq9tEwf8wDNg9FSLA6moYq6FjqPWvaiUTrNVQ7Xpvvws5n0kyyWMqCKatRtLjndfuAGRFd8RYTWFQ6j+OeC4LylzdqfslE13GZBW6UaATo0Ou4KJaHCKGQug5ur5nCAMmh9o3JqdDGK8QNtutqmYrj3du17dlniK7SAO5LWW9iZCjGGhFjbXMZnNEhK7bcnV1kZWvu/QmLqcqCUMkDApel/FIIlR1pelMgL7vCcMwkpUppxLQKAnQ9T0hhDGVw5uAqfJ+FSNDGPL8yOTgMIAt+4wSsIJwkISjB2+C9ZqChUQ/DHjviXmeGevw1tJtt2w2G+aXh9znLdpaAfQYVdWOMVRhIPmGrk/00RArR7tsqJoGD8xEuJXTcPimZRXh+eUWoaNqW0JMfP7wKYenHZX3pBh58eKU+WyOMZlwdI5t0D3BoNlthj4wDKq8vtqsWR4cjfuqrzwnBwekEOi2HZcXVyznC0IYWK/XfPbVE4aURrIYa7DeM5/NWMxnLNuG24sVs7qirjzVvObZ6SmrbmAbElXTcnFxRb/dQozcPT5juWwxRtddNwycry6pfcWyndP6inXfKQnR1FxdXnJ1eoEVwVvHEAOz2Zxh6FWl2zYcXXTEmNhutlQW3lgFmsoTQ2S13oKzeO+oK8dyNmd12UNKVG7AWkPV1DR1TVs3iE8sF55vHh3wC19/j8fPzug3KxzCrHbce+0u51drQky0TcPf+pt/E/EVXz18wtn5mnuvvU+sLFfOsnCW1w+O+eTpOf2q46vTM261FZsusA2JrbFstj1tW9HFyLPLC16cnvL88pKL9ZphCMysAeuUNK88j19c0C1VCbuyB/z9f/KbfPT+G6Q08Lvf+wGng6NuG5qmZlZXmGHAmYBxllv33+B+fhkgxsim77k8W+Eqi20WSoQ3c+rZEhsCZrVmGwPJOupmxsnhbY5S0ugYlWc5n/F23+EyqXNwcMB2sx7J67e/UeF9RUyiUS0yy1/2cUHXqkG/k1jvcwQPGetocnSPkjJiiBFnbFbPWzCObRhYLOa8/cGH/N//0/8Xv/87v8fTF2d8/NmX3DtaYoxjuTjiFz76Jib2eGeZNQ3zqmJxuODOndscHhzibUUfI4vFnNms5df+4l9iFWH17CnrdcfMOjBCSBEhsahb3nnvbdqqxlmHOIN1OQZBilxtt1yut1ir8+/J4ydcnW1IIvjaw/KYJ0+e4xBuL2YcLmZsYlDQH6i84eToEOt0j+67HkkB5zx1PSNJ4qpbk2IipYoUoHZKsCZn6MKaZdvSVjWYmi+vEjWOZVNx4meAJ/mKAGyGSEgbJcvy9zAkp+NyFt80fPX0im9//1PS0HHQeP5H/yGTTfYTbfJnJn9m8mcmf2byZyZ/ZvJnJn9m8mcmf+bnyZ+ZXnqabLLJJptssskmm2yyySbbs//sN/+AulWV2/nlJUm+T9vOEYSrzZoENM0cMYbVdkMKgf/8979PU1ecrs658847fPTeB7x17z73jw5YOGhrS1M72rZR9XAB74yldW6XogDD6fkFYizOOdqqpo+CpIEowpBUCR3E4LHM6loBt5joQsA4Vf5qWPdEVVfcvXOCnbX0zvHli+dsNh2VrzhoZizqBhnD+AvONyMwXADcgnGLAVtUtzCqWzPePYLFhUowGFUSourRcpYC+oxgqHeaKGL/s30rV5b7Uu79it+tNTs15n4ZsgM8XFaPvnz97lrJULoVMwLzmhYg7ZeawfkC+ksO337dDDmXfUoYp8pHY8hkhGVPCL5X910bSpskpazU1d+1DWYEWvf7gQzUCunaeMqrenjsdwWVyH0FqCrdFKXvru1WZYzjxWkkbHZ9aa43Y08lu/s7pTgSBiWc/j4Qvk8mCKUpel9JelxiIprd+aWMGCWD5bvyytVjnxQSIZMXXT/k8TGYl+Zj0igJGDA6zjGVtCgKtCvZle9j7LW5WMi0sm5SkqxUz23cn7fG5FQr+lkXA31uVylDyoIr7TKakmNHkuT+HAdY6LcbCvjn8j0lQUSJkpjnl6bkgBChNMkYSLHfrXVzcz0kvNfUHtY6ZrOy9rXPUr5vyuW7cTNRMscam1MnlFmqCvWy9sb5lcEzZy3O6NxPUaNFlHKKIrxQdyKiEROEMcqByDASLDEmCnMn4/xJO0LIODbbLVEgJNjEwNB3Sq4YTaNRSD3nlPztBY2EIBEjkapqxnI3XUel8fQVZFytqZtaya6UWK/WNFXDMAx0XcfFtmcgpwmyBuMsyWhqFhGhqRqMJIauY+hVsX/vwR1CiPSDpjdxvsIheAxHyyWNtThyOhbvudyuMAK1dbR1w1aCqkczCVZbr9ERUtJoDHWdSSQdkxSV6MUaJAUIAaM9iK8bnDU5vZDumy7vH5JTdJAjP5SIASkryUv6DwkRchqDmAK+ntHM5jTzBT/4+BMuzk65d2vOf/+/9++NpCrWYpzl0edf8Puffsrjyyu+/Ooh/vXXOL04Q+LAvdtH/MY3P2K5mDHEwPOLc+7ffcBWPI9Or+i77zNvGgBCDAx9z9/6b/wNPnz/axwuF2y6Kz7+3d9m2w/cvX+P/9X/8n/Go2dniLV4XzGbzbAxZBBZ62SBYdAUHCB477BW9/q6qjJxXcjARO10nllrcd5f2x+rqsrkqs5VjdoSx+dpGvf/vKby8yrFCCJ4r2mIdD/WSCFDikQje4Ty7vlcFL8pJCQKGOFys8E3DYujQ5qDlu1mTb9as7245He+84d88MFbxG3H+fNTfvWXfomT5ZzTs1M2mw0fvvkexhuapqZuao4ObjP0A4vljOVyQR8i//Q3f5vHX/VsN2vmB4cka1l3HUmEv/4X/gJ//Zd+ERkGTk/PmR8daPqFSiNFXG1WrLZKKlaV48WzxwzbgBhPL8I/+uf/AkzH8fER33j3Le4vF/qyRu5vb/TpY43RFEVGI8HElIhRaNqaH7aWL56c8uXzS9rFghAi3jmqqmGzvmKoNBpH7Abee/0N+pgIceBF2OLxtH6OGCHJSvdwWyLIaPqpKJrGpx96bh0sePP+LdrK0lx75k822cs2+TOTP3PNnxnfwJr8mV2dJn9m8mcmf2byZyZ/ZvJnJn/m3yR/ZnrpabLJJptssskmm2yyySabbM+++eHXswIPhhBZbbZ4p+HkBQ35WwCePkaGoWNeKWDydrrP0cGSB7fvcLSY03pH5QyNt1T5HymjewVkt5aUEkkESYYhRHBgnMdWNXFImoZC0gh6WKskggAhJUJK6uDnEOQaYtwxm80xVc1mCMSuB6BtGmqnDrSGhHYkgzIBeyZGVcN2zxEVEZxzI3gLKJiZj5kbTmsBmEq6hQJojnix5ND3GE0zAAqQ3iijgJyYHZBvbtSr2D5QfPO8ooq9aaU9IrtUEqXu4z1I47FczZdB/ZtAb7kvICNgPZ6QUZd0ow1y7TyT0y+Mat0MqFtb5tIOWN+/r7GZGBiJj1dRMIwg6qusANrGmFcSK6mkiHj15S+X9RM+259PY732gDApwHImEgrktSMesqL8RjnX+mVsL3vzcL//9OgI5O+VUe4h4xm53akoky1iBEmqDNZxStfmoNm791im1T2FQjbkpkkySIw5UkAG5Auov1d/uN5n+6RHSnFssYiCwftEz9jGvfqk/RILPj9SSFybYyJp7LPMJWkbBN1LjFVqp4BsUvpO53RRs4+kopFMlGTCaSQkDYZUmMlxTEwSTVehHYYloupOPc3m/TqRcv12JADGYJIdlftBVClqcqOTqOpV+97ircdJQ8z79KHxxFlFIUEkb23OmsKrEkdiJEFKmtpBNDpDTDOMMYQYCSFwWC2o6lrHLwlhXo9pUSTBEBLbMGjdMyjfp0gMkZQEaz0xBlJqstrY4X2VVaxJowdYizGCA+ZtjcfgMDhj8U3NutPUExadK9FUOXaFYLPynCRIjDhrssK/EDIacr/UL6WoqT0yMea8x+VoGUo2JUzuKxDENDmcvkaPMEb7ssxA7VyDJE2pU9ct8+UhCTg7PUVCz6z2zJoKZwVX0tCYhBjDctEyb2o4X3F2fs7777wDzpNSIIrWBQTvDEfLOVVdsR0GNn2n+74oqStJ++beyQFv3j/h6OCAzXbG0a/+Cp9//mOGMHD24gm/+MEHbLuBIeqeJSlp2iGRcV1ITDliQ1k7mrrH5+gE4yMlpTHqwrj29nZzHVd/7dlpcGMRJidpMhQyLu+nTleDcxoVYSQJklAl/V4Rc1obKYsqL8rKOVJOuyMCIUbq+Yz5rGW9WXP/9gl3j4948fwFP/jRJ3z65BlHTUvVtNw+OODs9JAh9FiEk8NDtv1mJLsr73AIbe1pa4exju1mzdD3lGgvkteJJOFgseD28RHbqysuTk9pnMV4R+U8lXccNA0ej7EW7w3VrSOOloesh8gXT0959uwp77z+Gm+9/oC3H9xn/fwpTgRnHd4ZPIbGVzmCBJjK4l2l+5JA3VZU9k2c97y4WrPtO+rKZ1JHqKpaX+IYBkIM3Ds+zM8NofLQ1gv66Di7WnG6OiOkhLWOEl2lPDdSAieJd+7d5vatObPK4kLZ4yeb7NU2+TNqkz8z+TOTPzP5M5M/M/kzkz8z+TOTP/Pz4c9MLz1NNtlkk0022WSTTTbZZJPt2V/65V8iJg0P73zF5dUKUOe9qWt8BmkxqprthoE0DFgxNFXLYtZoLnaEJBHjXFbxgZUERrBGQy9jDBEI1igAg9Fw685jncdaT3IRI+rkIxpi3ucwzIICe0kUlIpJ89hX3jNrGw4PDsA6tpuOIQSWbcuineMQLJrj3rtKne4CCRUcEAUSSzj4Aj4WoD3DcwUtvwb4jqBjBpZ3yuh9guA6uK+NsyOgWu45HuPVRMS+/aTjxhRFcgGZd1BvwR4LyFlaL+U6rtdT9soU2bXLZLSwXLdDTs3Yl2MaC3YAWQHaTUGI8112eKxwrWa5fdZaxGg6juvdWIDZnRL6Wv1vECqvIgjGPtwng14B4qeUfup4jGXs33cPnP5p1/400mC/3vvg9U1i6CeRH6+8Xykr1+1aedcrov26t1B0jMjAuezA7NI/xozjK+X6DN+VNpSytA4pK6d36+8acbFX51LP0i82pz+4Vl8R8O4aafRKE7lW9n6dx/7YH0+5WZdMUESwN9c2Wa0sCk6mmEYiwhgDWe0/1i+ymysZ5MSUfWMXFSBXe2/syccMoPutlLAOUkixBCkTFQIpxVHlXsaglGWMIRJ0uFPCkvDWYCunYySSCRjGOZFEqOwuSpxgMJKJ4Ey0JhF6iViJtJXD1y6PFeA1LUnlK7yrIMF6sxlT6SSELgxI7ZTbNZY+GqxtqLyjcRWShJgSQZLue5KAhEHBScRgsXhrqSqDR9tjRDRSRiYiVXGbFfNRSLkrnRUsCZvJVG+z6l1yyhmnaStU3RszYeQwhRTP42+tgrpRO45EZBgSOd6DEisxZKBU27RwNZsucrm64tGjr1i2NbPZDGctl1eXVK6Qmgbys3LWNlhrOL+4wDU11WxGksiq67ncrBEJOGuIJEIMXK7WXK03GajVthsx1FXN0aJh2TgWlcVExxsffkg/9Hz+5Wd8/PH3+MWvf0DVVnR9oOt7Tdc0PsqSrgRrxv6JKWEkQdS5uSMfdc4NOU1MQl8CKKQhRoHqUrgZ572SGmSwuxA/YnTwRJKSZ5nSNHH/WabRJiQoCRBiyvS4VYIjRx0gpfydBUxObxWTcH5+yruvP+DzB/d5+PArfvTjH/PDLx/ywRtv8trhAYt5zWzW0DQVoXPMmwqJW31RIa91JXoEY4VN13F5ccHQd3jnSGb3bPZGIyRY7xADMQTC0GPEZ2LG4tFoAKSECbBsGx7cPeHL52c8Pz1jtVrzzfff57233uRwNuN7Tx8zDD0hWFL0SsA4hxMlMp2B1lmaqqL1nqp2HBy8RhTh80dP+dGTFzirczGlRFXV9MNAHwJdCGCEReU4Xsy4f/uYdnnAF8/OWQ8bNoOqva3s+qLsbwahMvDeg9vcuzWndULKL35MNtlPssmf0X74Wf7MaJM/M3bD5M+8wiZ/ZvJnJn9m8mcmfyZP5cmfmfyZP73+zPTS02STTTbZZJNNNtlkk0022Z7dP1yM4BDAg+UMazNg4nI+ctTrF6OqOm+cAk7WgIQcrj8yBEj4EUzCGLyvRhAXICTNMe+sxXjP/XstXQyEGIkhAIq3KPAMlTV4l0Ea52hcg0tFcG3wleF4uWQ5n9N4z/Pzc1rnWNQ1y7bFJQWLBCEm0TDjGWA0KMClYJnBWF4NUu4BvjuV7A4wLmrqEmaaa8D4zorYVu+vKsUCphS4soCDOyT1Bmj7M0DqonC+DnYLSBqBzRGc2zObQ+PfvMc1teve59cAdynq5uvnutwf1xXS18HU0hdazL66Vj8rIf+dc1TOEUXH7Fp/QVbBXgfNS/1jjKPS2Ht/re43AXbZa8tN4L4olffVy+XvMm/27TrdseuXm/34qvK89y+15VrZrwC/b7bpVVbuN877vXHbO6kUSJkv46G9z3fjr5fYvf4p5IL24454uxZloJyX94p9go4MFO63pYxjIe/2+/waGWTtS6TcTbLoVZbS9X5QwDeN7d8nDHXv2BEJce88be9Olb0D4e1IoOhlZe7KSERIPm+ka/b2gpT25mvS+xYSIibBjeQbEDMhAcQoCJFkd1pwZ3M6jaT7alXV4z4eU9D92YExDsEREsRUlMlaRky5zyTqeJjd58bIuJ6HkEgC1lY0TUOKATMI1hkwlpBVp33sCXYAsYQYct8JEWHW1Ao2G4PzjnXfjXNBZMAZi3MGnyySooKp1mMyAjnkPB+JxHa7ZmBHvFTW7+aEaHskj4k1sB0EGEbw2eV0BQrkZ4ILq6SAMSTpCUnwNuJFidGu73WuWENVq8ocgWT0Ps4rTUDSfWbddThfcXBwxPLwiB/+6Ees12tqX3Pr+A6b7YY+6iBvcqoDrV/EOctysaCuPF9dnCJGOLx9mzPnePL4IU/Oz3HuFrV3dH2HbXsu1xu23YBzXlNtDAr43j454d7xEWm74bzfsgk964sL3nnnPZZHx/zzf/nP+bt/7+/zX/urf5U7t+9ydv4QrM9REGAYBp0XsltPGulCVctRADFj1AtrLTEIIWj6iCEEqqpSsN6Y3MYdoWXJJEBM+tMmvHNI/n5ivQUsrpBakghp11/eWZxXAs1awTu42nR0/UCIaSxDiSODYJnNDkjOs1r3nL94xC+9+zWunr3g+dMn/MN/9Tv80Xe+z3J+wP17dzG1Y360xJ09J8QeZwKv3zlmG2E96PcSa+HwcE7Vzvj9733K4ydP2W476rrWKRkjs8oz9xVXFxdcpYSZtSxPjhnigBNLiro+m3nLQVuBaGqWdlbz9HLDf/Gbv8N/9J/+fX7lz/0yf/lbv6wK7c2ar3/4C3zvB9/jxYtTNusNR8e3mA2Rtqlo2wrWA15WLNqWW4sDKldx5/CYD996QLfd8uMv/xk0LUkSIfR4P6Ota2JKPDq/4OGz57x9cMyfe/993n/zA7Yu8K8++YTPnz5ktVrhvBvTPoGm80hxoLJw1FZ8+NoJh43FSGA7IfqT/Qyb/Jl/fX9m/7vY5M9M/szkz0z+zOTPTP7M5M9M/szkz/zZ9GcmF2myySabbLLJJptssskmm2zPvFfVWgH+nLdKChBJyWBdTYoDIponPmARYxTIF7DekVCwxxshRUtSfx7nDGGIBd3CGMcQBWxRmyk44K2lspamdSQ03HJKCddWzJoa7zQ0cUyGdZ9IBKwxHC4XHC8bmtojwOXqAudgVs+oqgorEedURQ1GQ3znthoMlfNZPZXB5rQDh28Cp+WzfTCcAjzoCZgR0DNgrgOiIqIhwTGImPG8conJpMcOFJQRAB+102anPswSwb36vQyKFlXyS4wA14HS/bbdvL4QKEAOhT6eQcJcA9diVrGNbS5N2d0pA6h6ZB9cH+s63j9hjGUYBmLSEO9uNrvWlLFPR5JmR0YVwH2M1CW71B67++2B5ntpKvb7Yp802icOSt1v9ts+8DuCw7kPzauIhJ8CXt8kFG6qYW/O0VcRB69SXO//Pt7jBilys38UlLte/0Jk3Cx/7JMMoF87zitIrwz+FfT8J9WxlJvyfLg5Hj+rL37WsVeRLOV+xhiN2JDrmERGGqCcLeM1er6krIbOoL/EUNgUJEFMWatpAGOv7yvKGuSdy+6ps3XOi7I1mSxTxWfK6lq9t6qxJStmNfOLnptSJj9yO0MIxBR3Y2cEb3y+H1ibsvI4ElNSQsQUYNVmEXYgSolQYHcklAWjWCug5QBYp/2URNdt5apdmiAT8bUbldsxCgSN3mENpH6gFoNYr+tK8no34J1Bkh0HQ2Q3d41oyp+6bjAxkPIe5DJRYQw5hUNOrZH391lWfY7RNEgEComgEUESLm/fVoFsCxhhkEgiYW1RkwNRQXB02Kkqx7brtF8E+q5nvlwyWyxp5nM++dEn9NsNbeNZLhasVpeEFIm5jgZwWJKBZBLewuHxEfP5gvMvHvPpZ59Rzeas11surrZsVh3Ng5blrMECV+dXXFyuWG877WMLMQUa03B0dMyyPVAyRyLJWlKAft2znB3w1/6tf5t/8c/+c/7oj/6YN98455sffcQPPv2MOOi881mhr1PcYpwjhMAQdL5ZY6iqisr7HAHFEdyA8QkbBOdzKidX0pnYXTon0e8phTAQLBEYYoBoYDAIA5vtljAMOpZ1i3VG7+ccQ0o6f0WwRsAZmrZGrIEhECRhnaYzQGDoew6aJVd9T79Zs7SOprK8+cYDPvrw6/zj3/wtPvn4E47v3GV5covqzjHP1wNbHDQz1tsNy8WM1jm8N1hnaGaWejZjG4SPP/mMy6s1kiJNUwEwbLecHCx4+8F9vvHBu/TDwOGs4b133+T0xROcr/IOYTDWY5Kq0SvrmC2X/D//k3/EH3z3Y+4c3+bf//f+W3QX53zx6AxjHR+9/wGv377No2dP+PHDL/n40y95cnbGYtZy++iYReNZpcAqrFn3kbftMbPNmtuzml//8F3+1fc/40ePX7AJHQeLlm67oakbvHd417B1ltOY+M7TZ6x/7w9Z9xu+96MvObtYYXC4nYRetz1n2G62tG3L2/fu8/4b96G7YrvtSOnl5+dkk+3b5M/8WfVnbtZv8mcmf2byZ35aX/ysY5M/M/kzkz8z+TOTP/Pz489MLz1NNtlkk0022WSTTTbZZJPtWUxxB0VbQ1X5MTzv+FrNHrBbVNE2wyEmB7IWIxkJ0hDbWE31YJOMUiZrPQ6IgiqXDDgD3lqss9TeEaKCcmIMzqnCyuylmFtt12Bg1tYcLOc4m8EwBO8ddaVAg0bndhgjYxj6ynk0NPoeAGpNaWX+fWc3QcN95aoqq7W9iukriCDlOGYHXpRyiiNfQMjMCZTrGPsbBb92NdnVp3w+Apm7i6/XfwfH/izweb+tr2r3/uc7leuuXi+Va/aIiQK2l24WBe4KhhxlP8XC9XqlHCbc5VDtKe3Ceo9Eiin33ZW/X/dXET43j+//vAmO3zz/5rEyJ671XSmz/Ns7f59UuUYwlH7bq8M+QJ4kUdSFlK43pR8z6VLKeUW7b47pPgl0TRW6d/1Par+IjCD9zbb/JNWxtmFHHJjdRbufN+YMN+uaiZkyxwR2YPdPufdPsp80N/b7vSiw98e11N/8VCJip5y2JpMa+UDM+09RjpNJxV1bd6rdl9YgWUFvzHh9yuMvJoeuz3vSGADflvmzU/MWks4YgykKZ3b7VPlbBFIaFLxPsjcPYyYeytzY7UMWXdf6LNAaJUrxgkEQMbsIB1LSMChZNCqeDRgxOMjPATPWzaDkQNmTNGrBvhp/R1Sm68yiqrvH/buQjXY8ZvKzrPS8NWVvLeTBLtpDIR9jTKQoufckpxQQHQNR9bnL8yJmIsWg9ZAkhJgJFIF6tqCeLQhJuHr+gmHoqaoK5x0xRUImOMbnR9JOV6IIvHXcWi45nLdI6Llarbk9W+CdJZI4vVrRx4Rxjqaq+OLZC84uL9l2W6qSdilGrIXjwyXz+YwUAzEmvPU4Z3R8E7R1w4ff+IizZ0959uwZXz16xK3jY84vLui7XpXge2Sis5ZUyDJjcFb7S1IiGTARkkTt88qBd/klAx0XYw3OgIgqosehFTIJpN0RU8qPeUsSGGIixoSYgQpPMlHvlww2lw0Qoq4d7/X7SkTwVnDGYXAMXhAJ2DQwM3Dr1gmkyPHRkvffeZPX797m9NFXPPz0M167f4/78xliPfPFIbUxsLmi7zvEOCKW2npSMlxcrXl2dsXjx08R0SgT2kXCEALOOY4PFtw7PGS73TLzDr/UaDDWW6xxgCVEi8hA09S0TcsXXz3n29/7LkkSf+kv/DLv3r/LMytsNltdBwhHB0uct9RtS0qGh48eE2Nks90ybw/wVYW3BpylR9iGwNxZjtoZv/zBO5yvVpxerQkh4E1FCEGJMSy192ANF9sNP/jyC7bdlqv1Zny2j99/jMl7hEVSYtHWvP/Wa9w5PmF9ZRG7Jfq9tD+TTfYKm/yZP6v+zN6xyZ+Z/JnJn5n8mcmfmfwZJn9m8mcmf+Zf16aXniabbLLJJptssskmm2yyyfYsJcFZzSXvnKOu/Ai+pKROs4JJDiuCtaoutcbijMWIKvLEKNAiRFXFGXI6gJSBJKukgZDBEAWFvFV1kHMW720GjVH0w1r6kBAMxsIQYTv0zJqapq6YtQ39dk3IysW2bjQUdEYOXHa0FU8xVDlcvYbwTgWyH6Fu+/8ByKgKSUaAUgpAPQKJGaDjFWWOKP8OvNqBgQX4zsDuHoGgiIgdwT0hXT9+rZwbv/MyUPwqYHyfCNm3AraZ3Catmoytu6ayRZ1+UhqPK7C7127JQJMUvMhk0Os60VHUzDYD5ZLRIGFHPJisQi9a5JdVvS+r2gvQvd9XBZy82TevIghKmdf6sADJ5fOfAiL/LLtJFCRJY79fI4VkB6I7+2pSSHt9ByoboyrfUtT+GO6381Xt3e+jfMLL1+bPZZ8syfe8WX45/lJP3SBiTCYxC1lYPs83f4nEuDm3rxf9Mkl208p11qii/SYZVIiCm2vv+vzROVD2w9LT+6lkyt+2qM6lkACMakcZ66PjF0UjWEhORVAAf0ZqQPte0HVoTAbKR36pkEoZ1C57WUGdDSORCprCZ78fC2lSwvLrnN+1x5ob5JmxaGS6nY1Ae67LqBDPfRdzOghjDM66kUQAA0kjZSRRYN04m/tPVcrjWOTyUlSlqO6BECRi3E5tniSD16Kqb0PC4nYkjinPBpNJgrhbdyj5HGKvynERvPOj6l1JEMF4rwSHQAwRjMUYNLWGaFqOlPQZOlseYrxnu15x+uIF3jlNDWDQlEnWjOQLBhJpNwRiaFzF7YMDThYLKhKr9ZYHxmGbhrqpON92rLuO4zinqiuenZ1zfnFB122YOQVrkyS8M9w6WtK0DdtNwkRDZSzGG2KIpBQwQfjwgw/47jBw9uIFn/zox/z5X/1Vhr5XcF+Epq52aVyMxVuD5O8Rbk91HqMgRongooQGVSMXcsYZgaK2lt3+V57jFgXYYwoj2eacx7pIlEAo5yCYkiIp5bkMhKgq9so5bO0RBG8SlfFYU9Ebx9l2jZNIU1vu3jomhJ6j5Zx333qNr73zJv/Vd3/Mk88+4+GD+7z72gPaqmZxcIhUnhQ1zUSSRDSazmpIlufnl/zo80c8e/4MYx36VUUncJREXVfcOjrk9sEBP37+jI33xPmcytdglSgz4vL8M9RNjatbfv+PP+bh40d88P67/OVf+/PMrOP48JC6qui2Pav1JbOmZTlf0DQtMWhqjRdnZ2y7ji4lZt7hnEZXuBh60kroQ2TZzPj6mw/4/mef0Q0d636grhpiiAQJWCzzeo4xsBm2nF9dMAwDRnT9Xnv2UFJBqKL71sGSD95+g+X8gBAjg6mQenrpabKfbpM/M/kzkz8z+TP799wvY/JnJn9m8mcmf2byZyZ/5t9Ef2Z66WmyySabbLLJJptssskmm2zPKl/hvcM5rykUXFYXxUQMA30MOO+x1qnCWBR4EgvJqYJqX0HohDEMujWWpmoQVA04xEjfdVjr8c7ncPKq/IkxErFEAVyFscKAY7Vea6hyVOH84N5tjg8PmLUtEgN9iFijCpxZVWewyeyF3hdMkgwoyAg+jgBxBi8NN1MTFLBxB8LupwbQkjM4ZxRwUgTXsMP/dkrC0Uy5Mv9XCi5nxuNFpbU7kx0wLEUZvQPoS5mJPYB6D2wvCqQCI+4rTUfQtYDb+8D5Xl8YVHGWcnj5QqhcK2cfIM19fR2k3ZWFNXjjlGyQ/fYWYsFkEM2Wv3ZkQv7EWUOMcVR9XiMpZJc2oPx9EwT/1/375rX7f49pJwqgHSOCElTcqM9+f4332VPMsv/z5r2008a5VTgJbafOI2t3Y/YysbFT6l4b05RIKEgq5LWb62X3b5ZJlJhTteSCXwLo9z/fvz/swOXy2c2UHWM/ZTKvmMvEXynxVWNprNW+L4SJcy8RdDcJoPL7zc93gGYG228SBPv3Zae8vUlHeF8pqB9j7sJS/g7ILpZiGusSRUmDKOk6mF72AGN1f87pHlwGvCGN97HG47z2Y4hxN74iOKNK5JgSKUUsBl8IVZQ4lt3OA2anXDZGyeSxTwqxZ/wIXBtjcOJyP5LnjoxlCKKA4N5+GfZTyZR/2lhEeQEKQ+a80/tGBdiTRCTG8Rrn3BglQtuccHtjmwCXx3Xcz0pql9zkGAsxIhjviDGO6S9IkEJSMLeqMMZQ+QpjAiFFjPc4IZNiu7lTonJIjFhnlRi3FqIg1lHNGhYHh5iq4dnTJ4ShYzmfMZ/PVG2aEuIdxleaJid/5pzFOIMVfXZXxvDa7RPeuHub4/mMR4+e8sE773Pn1gnGCWmz4enZKY2H1+7c5vHpOZdXVwx9x3JWgbE4Y1i0NQ/u3sJVDro8HKLPJ1dZvNFUGv2m4+sffJ0Xpy/47d/5Ldrvzfnow494cP8+X37xBU1V6fM9RiQl2rrW58zes6YcH2Jk3tTUVYW1lr4fsLUlBAX9wxB2eytKIEmZr0ajpLR1hTWWfoiEGGmammokKsB7i3cWa0RJF3KqCWNpZzmdR3mmm4Sz4I3HGK/k0fqSprIsqgqft7p52zK7d5ff+Au/yu/94Q948flnfHKw5O133+Abb7+HIPTW4eZLbi0XxO2Gbrumbito5jz//Cv++JNPeHL+lKODYyrrMJKIEmjrijcePOBbH33I63dv86NnT7labzirWu4eHLPeXhGDroG6gtfu3GUb4ZOHz/jf/d/+H3zzw6/xK9/6Fq/fvct3fvAJi+WSIQSuLldcrZ9yeHiIsw6SMFsc8c57H2Affsn3Pv6Yi4dPOJzVeG8RI0TApERlLIuq5s27J7z7xn2icXz300fEkKDWddeHiITt7tmY8ncWieP3nMIdSv4edXW+4d17x3z4zpv84gfvsdl2BDymntHU/9+T7pP9fNjkz/wsf2b3wsyfbn+mRFOZ/JlSr8mf2bXl59KfuVGv/1/7Mzdt8mcmf2byZyZ/ZvJn/vT6M9NLT5NNNtlkk0022WSTTTbZZHu2PFiqUtmQQRz93FiLr2sa50ZwxFpDCAFQUE7BopBJAFWVpSgKmlunUaoz0BVjou8DKUa8y8ofC30UNiEwhIgJgbquSWIIydCHgW1UL7KpPfcPD3lwcjgqrrswUOX0D945VY/aHTg4As4ZdHoVuJh/uQZ0XweIGY/dVF9CAcigYHg7fEuBsd3tct9mYGyvoN3vxoDsVIPXQE6j6S1GrDApKFIIBjEWUrrGR9wsQ5XN10FWEbmmYP1ZbrikrGA0118p2Qd5b/Zhubekkn7AqrhNZC8dhxJJhRIYaZRShjGYMbHH7s4F3Evp1TV/qR9v2E3F6z4pFDNwWe5TzpdXjE8BYDFKoNwEnM0eKSUiGYgyhBiJuQ7e+x3wzk1uyYzzqtxxN44ynlXavD8GhSwp0QD218NYJ/IYlZIymFpGx+R+LiCxySDvK/v2BqESRXA3CLb9vi79uz8n988px4dh2JFS7K1LlNy4SfIVAPtVc+AmeZPyeBhj8PleJX3F/tjfLOMmeVTGIoSItSnP9et7h6YP2JEt1+ZKXuAxRCIRYy2VV1K173tijGMZwJjqoa7qMc2DtZ6rq9VI3HqvAL7N455yKH/HjgQpfVva46wd50npl3EPTHvjlLJi1Wp9BAghKOjqXI6ykfDeXyO8rDEY52AkQcocz2OQUwiICCGEvbE2GG80BZAIxurciDHuCCvDNSKrzPlrhGW+b1GpD2HQ+7pMblCehwoaSyY3QoykmDRFjbNKZg8K1iOaigEKcWPQ8PZkIlPnU+UzE48QUsRay8GtW/iqIgl89fALZnXNbLGgcpo+wTuLlDVkDb6uoPJ73KJkEi+oYtkZDg4WvHX/Ab/98ec8+dq71I3lqJ3z5PKcq65jHRLiWr549Ih+u8FlpXlIA21dc3J0yBv37tF3PWHQdBDJ6khZqyB7kJgJo8TR4SF/7a/+NX7rX/0OYHj9tdd46/W3ePT4K5zVKCgx6T4nN9a+MwbZI5/6Ybi21vxeSgkRyc9BIYao09QaHPq9Q2CMghIzieScx3vHEEJeI+CdHwnK8XleJLuU3TS/PGCsRoCJgWVdUTlL4x1dv8KIMGzBWs9f/fW/yD/5l7/Hxw8f8sn3vsOD1+9jgqWZzbDWMLctj7rASdNyspzTJfj+F1/xxz/4MR//6FPqplbVdqbpzi/P+fr77/Gtjz7gl3/hI6rKsZy1rNZbTs/OeOeNDwkp0MmWmAJDEr7/xRP+8Aef8F/8zu9hm4q/8Zf/Ku+9+Tqbqy0XQ+DLT79Q1XM3cLnaEMOXWO+o6hrrKiLCpgs0x3d48vQpSYTK63q9uDgnhgHynv7w6XNmhwe0szl3b9/m7MUlNmmfuvwsG0nUkTO7/nST8Vgkbld89O63+NbXv8bhYsazR49JxiLGXnuBYbLJXmWTP8PP8Gfk+rM8258+f8ZM/syr6jv5Mz+//szePf7/4c+kvbGY/JnJn5n8mcmfmfyZP93+zPTS02STTTbZZJNNNtlkk0022Z5VlSdGBbcKIAgK3lprqJ1VEgEAk8GpDIwjWGevgZIFQxLR8M4YM15feU+Vc6ILQhcGtkNgSIloNIx4PwwIliiGrh+IMTKftxwsZhwdLPDWIrJL56CqboezGZRBwQOt3g580s9fba9Sr+6OFdD/5tV7YP8eUFP6Sf++BqOTMeSxjtdLyuCEZa/G7F0gOSWA3d1Sct33gOXx/P2a7oG/Yw3NXp/sgcXs/V1auK8ctXY3S/bLv97+m+HgzY30A5Lxsut13rV5r07jpwXw3ldiK4gHgjHppTrcHNdXv6Ty6vEWSdfOjzFeSx+x3z8FZH9V3+/XI99sPE9+0jmlzygk0/W5dpN42oHmL5c1guA30jiMcPYNcmef/BnBW2OwrwDe98sfj5W5tkeUvJJUuTEmL6VbuHHezXbdJO1MGQNe7svy982fItc6c/d3JkJeRQr8pDru1XKcPzEmrN2RDK8iMa7vnQqCi90DsG/0UamTZPLCWnOjTAXgdmTXXr1v7Ifl3FF9vfevEEG7Ptup8hWM3+sXzFh2AcL395R9OnFXl/wf2dUDEdAgB+Oetn/dzfm0d1CPCRgh/2dXV7tX1kgq7f3Njb+NNSOhYkTntLU7xbjWxe61O12r3z5ZhAFjgVi6RTIwvVuDEUMUGLqeruswgPMO5+xIbkgeA2ctCUGxeq1raU+y4K3HOoeRyHLe8v4bD/jt7/6Is7NTbh0fcnzvLvO2BWtZ9QNfnV7w5NkLUgiq0hahHwZuLeacHB5y++iAru+0TWWupcRQ1P0iOAMxgvOe+WzO22+9ydXVii+/fMiiXdDOZvRdR4xByRNjRuV5IbvKLGAkA69HTSg/jTFj9IlC0O/2QDMOvbWWyoCYmiSyI3yMB9K18sY4AKJjXGVyC9F7OOtIWEJKDGGg8Z629tSVY8iAeULTiLx5/x6/9Atf53x9yceff8EXH/+Qo4NbHN25y+xgSaorUt8jUpFMxXob+O7Hn/HZl49ZX22Z+Qanq5KEkj7vvvGA+7dPcBbOL885nLdITGy3A6vtVr8zRV3rj56d84c//DHf+eEn/PDzh3z4tXe5d/uI2hu2mxW1d8xmDb6qmM2F41snXK3WdEMgSKJE36iblqW1DDFhkkZgCDFiqgqfyT0E1qEnrLZ0IUcfcPm5LmCSIWup93aA/W8iScF/LCEMdNsNb9074cN33uS12yesVlcMEseUN5hXPyMmm6zY5M9M/szkz0z+zOTPTP7M5M9M/szkz0z+zM+TPzO99DTZZJNNNtlkk0022WSTTbZn1tgMSmXllilAS1Y/kUNjZ6C/OPWSiQDnTE51X3LWCyHErJKOuKoCFKixlaOuG4Yw0IWBIQ70Q49Yh3GqfAl9jxhPFA1Xbq1h3jYcLebMm5ox/LcIzhiMdVmltUv/MNYvO/77EN6rrIB0N8G7l8mBPbB2D+jev+Ya4DcCUAVo252nH5Qfhj0vWutiVLE44mVAigrIlNNfAqZfAcLufbAD5G8AYzfPu97e6y3XMS6g3v5lP7mPy313PXfzPuwIj7EpLwO9BSQtoNHLVX91HfbH5SeBzjcJC/3VAikD7OmV9+Qn1PkaCH7jb8PLbR3L3iMA9JiMc9kU7LUQLnYHv7yKyNpv8/ivgKS7s64N5X6vK9m2T2iYHbj5CrLFvgKo3//5k/p+v4yb9pNIH/OKeS9pB9bevO5a/98Aza/1E0BK19JJ7K/pn1THm+vemJSB/TKG18t4FdGynxbjpmq6gKrX+6m0iRFULWSac/5aPxmj+2kBqfeLuNk3N9eYlV26k/H+GUAtJJLi5TpXLXbcMEYSba8uYxlpR0KNu8MriCxrzE6pLa+eE+PPpHM2mevtKm0q6sp9hXnamzdln7LOaY1KNAcMmKxcH5XukqOKyEgaiBY+Em5FaKvnmzzOu/1e9BZs+oFhGNisV8xnM40UwE4tXzB66ywpq3tNXo9l3RmxSnD4ipASB/OW915/wLxynJ+fcX5xi/feeJ3D5RJfO1b9wMXDxzx/cQYxUjvtm37oWcxuc3J8xMmhkgS69i0GIYqmWdA9UzDeY1LCRFUpf+299/jDP/oOz54/Z7Y44N233qTrO2JShXwSIaWoa8NabNmbcg+N0ST2xlAQrLE4W9T2eo0tY1rmRU6Jo4FXHM57hhjGDU4V+hpxYEc65HElz5OcpkrbZzBG09HElBiGwLKtaSpPVTs0wGIixQRWOD5Y8Cu/8A0+//Jzfvzppzz80afcPrlLTIkjhHSwYNt3hBhY9wPnZ5d894c/5vHjZ8QhsZi3IJEgiUEiTV3xwdtvce/WEaHruLw653i5IEVhux04u7zCDRFnDNZYTi83fO/TL3n4/Axf1fzKL36T5aJGZKAftsyamqapdfZYz8HikIurKy5Xa87Xa4agfR9FVeXL5Zxt17HZbFit1syzqF+SkGJk6GDdDQwhAoLzJkdBUXJM5/7eM2bkJ8fVrfcKkTR0/NIH3+Lrb73OycGS84uLnIKKHYE72WQ/xSZ/ZvJnbp53vb3XWz75MzcbN/kzkz8z+TOTPzP5M5M/M/kzf9b8memlp8kmm2yyySabbLLJJptssj0bwsDO/xK8NTivAElUzkAxuAxIOudJKSISAVXq2j1wBczouFuvimWchmiOSYhDj8SETeCMo21nOTe6oXaevolsQyKKoZk13D1aMneGViJx6EhOAaWSsx7AJpMdUg2HLgVwHoGYHdhZbAeIFcfzFSBWuTpl+MJmYGg8/mpQ+Lq9DCy+BHC+wvc1cC38sQL0N+qvyNyNK+WVvvQ+AL7fzhH8y5VISZVMztkMSO9wcLP3X0UAX3X/l+1VIKsZQcR8/z0Swdy4tlRgBISMzrEkgrkBtP7kceAVnwtZhjkSNTvleUnJoHPNOU9GQhW8NCbPtleN8I176o21DbYoYNVU0b8/BbQ+AnneWXYz9IZpDoOx3SnFEdz9SSD59Tqxt/Z3IGYxa9y4L+xfrveSkW/KeOk1BWLpmWvjUUD4vXrt/9wvf6xDBvP2QfNXEQH7x17V5nL/a3XYq9OYKqEAlGXeSdZN7oPrUvpnR7iVFhfw8v/N3r80ybYs6WHY5xGxMqtqP87rvh/d6BeAJoTmAwQFSiBoFCVqQMpMkmnAiSYa6fdpIJPJZJJMA5pI0YwUAVIk0ACabDRu377n3PPYj6rMtcJdA3eP8BW5al+Q1kD3vR1+bJ+qylwrVoSHR0T696W7n06nRiI6IO1gtPeHA2g/Eos5Zyt7oyUI/LV4bWr7kUe9U/t9CaUCXBdOEpRl0WFwjz6Nun6OrHMSJueMum26DpP3U0sJIKleGLxbuz6vjVBxfVnphZI7MOuAL5mO07Io8C8Ctmu8FIlyYxZhK4BHT2YiCFkZht04FFjPObd9xDpnC4H2y8DOEWJBToQkCVsC6sYgATIBSypoFI0kpJLAUhsZSGQlD3ICs5JPycDUbWOsG+Pt+28gEAO1K+TpgiUnnJYMJD2PGdByBq3UBQDRdtqCBgFUsOSKjx7u8Fvf+Qx/6Xvfxk++/Dn+6HTCb/zoh/j2Rx/j/HDCn/z8K/zH/9//Al99/Q5nCEomMASPT0/49LNP8KPvfxefvn6F/+6P34IMoF9ygciKZOUZiIxgA7CtK65Pj/j49Sv85q//Bn7yxRf4T//e38P9wx3Oy4J0OmEjgNer7reJcF03nE7Ljng8393BjKCt+xy+DJCLZWMx4qDPVT8zmWsrEVJysWh1W+OuMyO/qBRTKSETsLGA6wYRxikv2NYNVxFczFbPSUmRba1IqSCfT/AvWTy9/Rr/9r/6e/jmy6/w+edf4v/z934fv/93/3O8/eYLfPvNj/GdX/t1PJzu8f7NO/zDr7/G3/8v/yv84R/8ASAVD/cFLBfknPH0+IinbcW//td+F//m7/11fPvVS2zXC169eoHPPvkMiRZ8/e6Cn3/5Ff7Kj76PkgmX9Ql//a/9Jn7tN38T140hvOHjO0Cq4HpdcY9XoEKAne1EGd/+9DV+/IPvoFbBu8sFP/vi58i5IC8FuRS8vzzh7XrF23fv8dVXX+OnP/0p3rx5g+t6xbZtqJmwXCvyuoFwwdvTBdfLVc8HISDvPiX1NQiCZ8D56qtvcL8k/OXf+DX87/9X/wu8PJ2wXS94d92QM+Eu3yFTAaNiypQPyfRnpj9jdwE48Gf6bf98/Bl//vRnwtXTn2l9mP7M9GemPzP9menPTH/mn4M/M7/0NGXKlClTpkyZMmXKlCmjGNaVUkZKBAE1cBCARWmZU530OiCBrSxD8tTY5qSfTsXAwwRu4BSDhAEmLOUEgHAvgtoishUsu3DCcq3YWLAsZ3z66gFnCLLCTmABSkqWCl2jdBNpONQuwg0ddEgGqDtY5hFlCgD3ce4JABVGw4m6ulr7t4BmBKs7MOXtHkRokgLSXuYABk7HSDrYN4+UFIDd4zBbAIltHA0OG4FSA+3ia6yhm+EuT/vu4P2uF2ADXgBgWfIOaD2Kbh1BRwcBAYBS16O3EaMTexSmGPDYQSDRzu9AyPjMw37E+8WjYdsFKDkbAdZJJbcTZaHEwCa7BXvdNH1a28XIMXYA0kgp128ifc8BT242Y+SVSEtN374cJj2Kb4/pd0A2ljH4UMRxI7+IjBzp9uQR2d5XCX3T1PjbTgMematTYvtCTu39WuuOLGERiJXYcHD6OYLHgfTRbuM6v4n4HUSj9bjZWLbIU29x2zYDIQnwaFkYnCW2/7FrWm2YgwGM9t/LNtyugZTSrrxISgnbtrXfY9kIJSzQbSHnQB66vvKu3IfvS9TsoRohqHMJrkg5AxYJ21PyS9NVZHPaWgip+xszBEaLCk76cC+lklI2Iqrvb3p+pN2cMrPuM6SEGZhRAgEjzAApEdNt0AmbvkfEPouItdn3fdWJP5esdICNLfxfsxA4ASONaPBxFxDyktodSlTaHk+sgKZ04tVVS5RQipJDySjtioT364plWXBaCu5KwdPTI0pRUJxFtKxItHUW5JRUl2ZWtLMzBkjP1qftgn/ld38bf/D/+o/wB3/wiB98//v44b/2r+KnX/wcv//f/iH+/j/6xyhk5SVYyc9TAr736cf4zqefAAIsZUGt3HSxbRsqMygRTueTEje16jxVxtdffYOXH3+C73yW8OrlT/Bf/4N/hL/6l38bH3/0Cl99+UUruZDJCx/YGU0ewY5G0N6c53GJC8BgwKdeVBEJmgWARbOnpEQgi65VQrBn+GC7DmRkYMrYtk3XLTJWEC6XK67MqCI4qQFDUJUowopc2UxV8LSu+Pjjj/A3f+93sUHwD/7wn+D9+zf4wz/4x/j8i5/hiz/+KV7evcT79+/x9Tdf4+uf/QxL1rNQEqMmwvvHJwgzvvv6Y/yH//5/gL/03e9iSYLHJwIKoRDwcC745OUD/snPfo67l6/w6r6gbk/4uF7xIz5DGKhc8Xh9B+EEQYaAcKlXrKzzJyxY6xXyVEEgnJLge9/6GNU+9KSccHdf8BET5NNvQX4gePrt38Ef/eSf4o//5E/wR3/8x8jLiuXVAl43PD4+op4K3r17j+uTkgXbahlFUj/XIYK6VazrFXWt+PF3PsVf/ku/jr/zr//LeCgFb755i+u6omY9BxdipCy7L01MmfKsTH/GFDH9mRt/Zt+L6c9Mf2b6M9Ofmf7M9GemPzP9mV96f2Z+6WnKlClTpkyZMmXKlClTgpSSDQRRUEfBWTTwxYFciNaKZ+GWfpoZEAZSJmQD6smi9dRpZo0yMgCHQAE4tAhnhoL/EKxSIQLcLQUpZZxPJ9wvCYkZkKSlEAzI66nTqZEcHoUWQQWNwEH7f49K7aCd4dwmsnuvwe7kKdEjML8H454DZPUZtPsZr/coL0h83wE+scdTowViFwkOgN22nVLE0KQ76dZ5B2I6GOwAngffBaLAzUC21j/FZPbRrqMeRsCXAA1GHiD2rn5nEG71FQmOSITE54563pM1sammQAMEre0GUDX2oBMWrqhI9DzTrkcL7nQRhxgIgmO70TXk4BlEozxZesRpGsd+0MpN32Kf3a4oNQJDr7NxtzmPr3uUdAC+3UBMRcIGH7OCsk231ki3Y2mkSmplZo7X0NG6eU7GOXdiJ97FzLu/D+dR4p5xmxEhzu9tnwS9DEz/GcmQHEB3Lz9xGNEdwO496B3HHIFwtH9RJynsj0TNsg3ql07U9YeH/tAOqG5jAnTCbafV/9gXORzVHZYx2tOdyGh7Qr+4rWFSGxXrI8HKQ7Q9kn0y+kMSGWERyNdwTrSN1PbXqCcRNkDS9RTLZ+znmVxPgmbXOSmxpKS26dVJYNe9raFKwGWrWMoZmTJKSgqge0YAJyZ9vsjOYUfGxxIoBEjdkHLGxoKff/MG3/vsY3z7k4/xk6/e4O//g3+I7336bfzk5z/DH/3kn+LxzVsUKAlTWXC9bvjs9Uv84Duf4dOPX+O6bUhEqMJKrISIfRhm72ds+5cSmCsKAZ++fo3Pv/oal3VVYoEShBgsQCJBziH7h5F3qqZkOhq03UzEMko4aSr9bYETUlYbgpLWNGH/HNKbyykhi2AT1tIDBJ17drtMuFLCylriKongWjekZgcCkaqfScxeHy8XfPLxK/ze7/4W/vbf+D38x//5f4mnxycIZXzxk5/im/QFtm3DdV2RARRKGsUPwbpWPL57jx995zv4G//S7+Kv/9ZvAsJYt63ZYq0bziXj01cP+Ec/+Rm+fvcWhe5wVzTbTMoAk5bqWHLWKHZKECSkDVhqsnOHUSuDyMmUjCJArWZaJMgAxLINpJzw8OoFMn0fD3dnnE4LfvKzz1GrgJeKZSmgkvFwPuP9+0e8ffMW75+elLDZGGJ9ykRYEuH+4R4/+Nan+M0ffB8//u538Pq04Mtv3uH6dEHlCiTNxHNNGyo/d05OmdJl+jPTn5n+jPZl+jPTn9k9b/oz05+h6c9Mf2b6M8Cvpj8zv/Q0ZcqUKVOmTJkyZcqUKUFyTuo8Q9N8S5UG9Tiw311vA/VIowpr1ejBBAIlAx9JgRZmATOwVQU0CFqXHgUGOCg4W1kd9JUZ17rhZE7meVlwOmUU656Q9q8BoxRASvKo2j3A30R65vyUqIH7whFI706oN8sicOiV0KNoRxC1PWYAJ8dIz9HJvfmbnIigXZ86/NaG06P6qIMziZKNrUfyjaDjCNZ6g04yOKB2G8m9V2gDKrXRw/GMkaoOCjqwFu8d9TJGk45g7K5UxqDf50gB1xMd6EVHbRFuFAHG1GzarzsiMFrU+a2yFAT3sg9O2iBBS6rsx+zvuo4b2GvouwOEGo2pkYW/CDw5Jk6MHHHQdPfsrvsYcRv7mlKYGyhoJ84OCMLcRnvqCugEg4Ogt8+MIHqM9h7HsmsPezvczXGIpo0R7q2czWhzfp9FjWtktfRMDOjRz/15XYejjMRVHK+TBIBFkYf3KfW4db8/jstVE3URp5SIIIwWZZ+y20NYU61Ns/loA0Y4+msirPMvBIDBXJFS7ueG/18EZGuKaD8XnaDqwHdUZrRZjxZv5TOge52SN4SKvX0QJbDvi2FcMPBZO2MZOdp67Nc64eb7fCRHID4uafehzbbp3SJxIwvleiFIi2IGtOTSuik5TiAkESwla6QsrISSnZVOGImNzYHekvJgGxV3p3tUEXz55ht8+um38Rs//iHer/8Ev/8P/zFef/wZvvjqK7z9+ivI5YpMjArCWgVPT1f89m9+D7/2ve/g049f43LV0g3ikdE5o5RiWRX0bEpEYJ/kpOU7tm2DcMUnL1/iJ198icfrBdd1xWlZIFsvlaFlQGCfI3yNyq7USjCLtqV4WR0RsnIreoGegdK/3BBnwM62SCjllNtrVektZBR4tpIKYBVgE4JUwQbB07ZqdhZfX9BI9ZIIlBLePj7i/sU9fuOH38O/92/9m/j9P/gjfPHNe9S14puvvoKwoKSMUym4X06oUsGVUYWxXlecc8Jf/vUf4d/+H/8N/PBbn+BPfvbHYN40Gl4Eq+jnpE9evQCL4POf/xwLXuP8+gV4IwhVy1pTUSghF7NfyySy5NLOkZU21SclzRZRBTmpzW0iIGagbrr2GHg4vcK3P/kID/dn3N2dIcJ48+Yd1nWD3J1xfzphqy/w7v17fFkSvvxKSZOtbqjW3pIzHs4LPnn9Cn/zX/or+Evf+zZenE7gp0d8db32L2NsDDpnXLcNRBvqxpgy5UMy/Znpz0x/Zvoz05+Z/sz0Z6Y/M/2Z6c/8RfJn5peepkyZMmXKlClTpkyZMiVIZU03DTi4lCzqLKFWRnXwhRTYrFtFznptzsWc+YC3VIEggQXYKqNWtFTSBEAuV1x5wyrAygVPG/Du/TtwrXjxcI/f+dG38XB/xpIzaq0WuUPIBnzBwd0dMocOBEEc4w2gWTLgqwNBHk3HtcN5HSY1gLy9oSBbK7cQ8IsI+B2Btc8BuOPre2D7eeA3gvyANP3sQVP9x4xdqn0anhufQI2cuAXpnDAABDmX3djtl5t+fig1P7w1EQN4QmToM+NtTxgAeL9/LMXhfW96Ce0pjuvIagTQKT5J7zcwiuNYA6Afgd4d8Cv7iEVvy5sno82EFXR1kLNFv4Y+AAZI2+sJo73g8J7nyKkdWSEwaMzB02OAPbYXJV6jZWIAsJXTyB2BPVofTgLIQETEeYz2G+c69uno3qPn7Yso7NduK8EQ2iVyRLave7eXFPcTLVTSYGMvfeBRnz63sYRF7KOP0/tARN2eYCnrMc7nnqSMY4nttvHl3MpdECmw2m2gl6BxgkD3PANSSy99oHRrJ7D0nKitv8nODrY9Vvkf14Nel8uiezYpQZPNdmsjYXqJn2jL49i8U3H+fDzJ9ZP6OMiJg60aMY6b9ryt0dY5nIP6t0amR9iSTGfbdQ1zpe95m42stDnmdQVfL+DTgpqAzcZdGVZKSduosnu87kdWMgbZiT7YvibIiRS0ZkamhH/rX/vXcb57hf/0v/yv8J/9/n+D+1Sw1IoTGckCLaFQr0/423/rb+Ev//bv4OOPPsbPv/gCIsC6bdi2DZfrFQ8PD8glN+JnqxUlF6RlAVgM+Lfo7ZLx7vIOb969wUcv7/Hpwwucc6eTWhoFxLXr26wzLdReq7WilNyuTUSQ5KS66jfbWdDWOTNIjAxMuWVjUMJF1/iyFCwpAduq+hfNAnO5rHj7dEEijVhf7s54vF6RCMhEKOUEEaAkoGZgISXt3r99j5wz/pd/5+/g7duK//t/9P/Gf/p3/y4eAbz8+FvIS0EhYGPBlQWPj+/x+PgWSxL8H/53/xv8nX/jb+D3/upfxp98/hOssiFBS5hUETCvuL9fcP/iDh+/uMMXn3+BV+eCH3/320iXi9lqAi0LAC0LIfpNC5yWYl/S0PGtII1CBpDEyONSzMaArWY8Emn2HBbw5RFICWcA3//kI7w6/w7+6I/+CG++eYOnxwvuPnkNALiuV7z79if4+Zdf4u3bN7heLti2FZfHJ5zKgo9fvcSPv/c9/NUf/AB1fcL13VuAEj759DPkrKXGrusV5/Nd20fKacGUKR+S6c9Mf6Y/f/oz05+Z/ozf/9/Xn/HWpz8z/Znpz0x/Zvozf/79mfmlpylTpkyZMmXKlClTpkwZJAK/hlGYk60RhFvVVMiVK85lgWXPV+BOBMSefplQtw2P1w0bMygXLMsCygtgoNHjpeLKCy4seH/Z8NU3b/Bwzvjkoxf4zR9/Dx/dnSGsaYo9QrClxAd2EWw3kbcNuPMrAQe8AAd6AiDkX1RooHe4xUEMA84SAVLZwN+EEQM/6s9zoPWHwNeRdBivH0Gt+Ewdn4PdsQ96LQtaRKu2oYONQOyI9+/7TEhJdgSMXdSA8/2YI6HhPbsdq84Jgyhb+nQjlTz6kXxEHXhzosfBzVGXDhI5ocRhfkYA1e2ADOB1EFSAFk0WSy9EdNajNePYyUDOPaHjg26DtzFLA3FHvY/CEtKc3+gVN7ro8xAe7fNDnRDRqbISLjaO5wDtD0lrMuleMEbJjkCuiAHCw9hLKY0Q2JMQ6bBv41iPyBG/z+cqD88MF3Zd2W++TrzEgEYd9lwFcbsxc4MSeMeR7/5z27bd++u6tnHuxkA9etv33UQIIDwhEUApN1OrDoTaeJZSnp2/bk/WF8NmyUgzrtWu6cBsCvbQygNgiKQPwD4FAiT7WIKQiL2eAfJSNWj3qP15JwXjPrdbf2230L1bCoHIop6ZLSNGJ471nEmtS11PxzbWbNP2Dbb+6yuWxaJyix5WW9uXstHMCJqd4+7ujPNpwWnJyJmwsZ65POyhvh9d16uSIOikg+pdJ26xSPpTTrhbTvhH/+gf49/9n/3P8cnHL/GP/rt/gP/nf/b3cDm/xENZcAbwdHmP9XrBw+mE/9Hv/A5+73f/KjIEX335c7x98w7nu7vdmvH1qUQT47QUI10Ep9MJwjrmExFO5wsulyu2qiUT7pcTLtsKSWL8G4HE1wcaWSZWroVFP5/4s5gZy7JoVLjZOLUSRox6XXE6LeHsIGdVmyr9LEgeFQ1BZQFkA3MFMaGUAsoL6rri/eMFL1484O7hAff393j/9q19DtBo6mT632QDcUJOBPAGrle8/+Zz/Lt/61/Db/34e/jbf+Ov4//xH/8n+Id/9FO8/+YrvOEVJAk5Z7x+8YC/8uu/jX//3/138O/9T/8NfHR/h/r0DgCjlAWJMhJSy5CQiEDC+OyjV/gnf/weT2vFJp4rY2+9mQiSE5Bs5VRd0yKMlHV/YRFUi7JH0uwPmQiLZJzge4eeWSLAulZc1hWvPnmN77x+gfdv3+PLL7/Cu3fvcL1cQC9OOH/3U1zX7+Ly/hHbtkK2ivV6VR0DKIlwefcVXr18gfv7F7g73+Pu/g5IGdd1hUgF1yvOp7NmXvgF58+UKcD0Z6Y/M/2Z6c9Mf6YrY/oz05/Brv04T9Ofmf7M9Gd+NfyZ+aWnKVOmTJkyZcqUKVOmTAmSEnZAqQpH+Eud90yglC0NuAJk1UCOnKiDvwbWVBYAG3Im5FQaGEy5QADUbcX1csHrl/f47KMHfPb6BV6dFwjX5pDGSLKGXhtYPWKEe9DQr/HXYhsR3AYCMgQh14W/1McPWJQse7vU+ujP94jG+PfzfXz+tZFc+NB7hA4c9jb7tRGc1Nei7hxsu20/jiG+xqEW/a7vBmDuY5vjX/vX97938H/3voTBhD7txk8eNReAffuPPoAp9Ps7iC3sqevVxqNtsAGucV4jIKrPlhsSJOpHLBpfPJ97e440Xe2A/B3AH+ZtmNNRo/u+KchNKUE+eMfeFkZi61h3+0jVVuqjPeh4Appd+lPbGur9is8dbfjotSMQfjfaQLod6k5CJGUg4XTviJC1E1D7ddIIg0BitP4caONDRGC35WEOSG3byzj07U12+xaAHh0awPsP6dPeiBoBeQkIGfT1CwgjJ39am2bnRKTp9/28MXLKCT3fy+K62+vEm4qR2ft9GAIIBVsQHwjbGta/nSCA93WwpdYYYKUo+ly1iH4oOeCn5458TFAyXfZ27Pq1+HKklLCUjJIJ2YgKIi23QtZd5Yn6fq/nqWlM/H2ClmmyEiUsSMi4O9/hj3/2D7Fe3+NH3/4Y//7f/lt48+Y9vvj517g+XZFE8PrhDk9U8dHLB/zaj76H73z2KcArLk+XltWklA6nuj0qmO+21gH+ytVIJgXQt+sVvG4Aa9kEt+WO2/czvdl6zpphgXm3blJKqjvnv8y22p6UNCuLl2oYSSs/n/V+JZlZAGEtoVCFNYOCJDAShBJSKWARXNcVy1KQcgaJwvUsbCA7g+xsXCTBT6J6XbGcTvj1H3wHH79+wEevX+C/+Pv/GF988zXeP75DQsL93R2+89kn+LXvfw9/86/9NdwtC9Z1Rb2uZj9qr1oCRUAoavW14tOPX+OPfvY5LmvFu8cLXpZuy/04tVJE9gWQBCUMiBOKrScWzZLj+4h/MYMEKGTkIwG1bhAGlpxwXjJSIYDOeDif8PL+Dm/fvsXXX32FdV1BJHhxfoDc3ynpE4glYStXUQruH+5xdz7jfDrhXDKQEnI+ISfNGlLKCZohopOuU6YcyfRnpj9z1H4cw/Rnpj9zrLvpz7S2pz+z6//0Z6Y/M/2Z6c/8efdn5peepkyZMmXKlClTpkyZMiVIzsngSWpOtAgbeGJAR87IZKmXuYNh0iJYixIFlCCJkUtGgUVySlUQRRKEBMtywiqbPlE2/OA738Z3Pn6JV3cnFKl4XFd1iFNqEXcCdeRJBMmidpyMACJwPAKNfZwdjMPuHgeEu0P9DHhmAEZL6w0YePg8kHr0en9Mv/c5MuAQzIug9A7MbBfs2rCnDeUSDKgentcBlAMSwNr26HKPPPNIqXZ9BCv9GXvsMfzRge8OqFobhss66CzSbunYegSSDWhyAJeZW8r+5+ZhD6IKmGtL4S/oQInAyk6w2HrBDnBqc9j5jkH/rgZH/RS87AQYGugX79uBzW5zw5xTeH4EIzV6U7qeQF2JBBCSrvMPyIeIgp1EgNYGJNwnr/N7Ye8IlMq4VrzPR3o8Iolu9Dz87fcclgxBABu1tzsd23Q1e4SglwYJbcd+7MBif3+Iym/lTwLh5PuT/hsB8mTEihsQAmje++f3+d7pICkzt2eOkeVxX4iAe9NbKH3hr4+kw5E+mv7ifkK61qjNvQG59pwjYjLenyz1f8T1xew6kWc46ASL9p98C29zQX6WGbgdNi30ddjHFPXVdCtigKquZ2Ytn7TLwGBR2I1IE/9b2yolo6xAbvNpxAFpOYUWAQwBGeFwPp3BYmQ629iTGgAbOM9Vn/PixUt8/tXX+PKrn+M73/oI/97f+pv45ut3+M/+7n+Fn37+Oeq24rNPP8EXX3yBlw8P+P53P8Orl/d489UF21Yt2p5QSm57viml9TVR6gS77//CWheBGdvTBdg2JBbktv/Y3KRkkelBz2TnQArEqc9DSi0jgN/vUdRIGs3bznORln0gWdYAaXarWTDcNiozNmZU6PtVGFWASoTT+axZXZ6eABE83N2phVm5rJRTW7ObCFiol3epjPX9e7x4cY/f+NH38eMffg+//uNfx8++/BJv3r3DkhJevrjHtz/9FN/51rfw6ctX+PrNlxAr41HyAqKMlJORWQKw23zFZ5+8RsoFT+uKN+/e4+XHL+2zUVuR9sNJFCCRkhzZ1gbMjFis7JCE8jAiICRdM8nOKQaIClIibHUDAzgt93j14iU+evUK51Lw5s3XePfuLU4l43S+s+cYYWNZM9gyDCxlQcnZ/hEoJyyU8HB3bmtbeJ9pYsqUI5n+zPRn/Nrpz0x/ZtTPh/TXOzH9menP3Oqj6W/6M9Ofmf7M9Gf+HPoz80tPU6ZMmTJlypQpU6ZMmTKIRlMREjI0AsXAjJyRigGt7Vo0cPSU1HEtKQMCbHVFTglLuUPLPSybgUAEpBM2JPB6RVoqvvX9T/E7f+kHoFpRryuu14qEjv44aLBZ6vWbNOkYgewOikbZgXUjqDgC7Q4wEFnqZQM5Q7uNJJB9en53Yp8DVCNw+BwAG4G92P8GXIF3rytwuG/TdeAOtt5voxEJPAg1EK/N7w6cY9S6Jyq8Lw08Z0U1NXoQViYjjr/Pl1TR6HIHx3dEAe3uUECILJLKUWYbBkbd9IhtJ668oSPyJt53q7PePhvg18E4fY6qciSBelRwIwMcwY3zhQ4gRyAzzoWwGOBYkXNWcBfQyGMJdzV0eE8eRHLI5zxoNmhabWI0VyKN/nTdO6i9G0cEwuH4uQQig0Fpr+MdwGjEVXw0s5MYxyD/rR3230fAfbxmlBuyQBSclMOLu6qPCInxeW1uw3hvn69lZdoDTFKinX61b8BWNyOnPEI4jr83Me4vPm9xHXXCtPe9WLkIvUZB8/b8tO+P39Ofv59nj6J1W2BmS8GvRDIYYFQIO1lk5woYxGE9UbTfce73ZI4VZTCCoK8HJ5m9TRApyWOlZJwAicB1zn0fcDL1+X3EnppJgVzTDbOuY++D69fPCC9JcMoZX3/9NWopkERAyko6ZC2Ns21b009KOp9LOWGrK+q2oUoNRpCQKYMg2CqjnO7w/R/+GFtK+MPP/wSffvoRfvdHv4b/4//2f43/9u/8T/D5N1/hzds3+N53v4//8//1/4Y/+dnPcH/OuG6Xdpa//Og1GJtGOyMQHlaKIeUEL0IksBInAiv1IABX8OMTyiY4Qc9vRoVixQrqSyTvAN3/XMf+OpGC2Fu1OUr984DtV05eich+nzT1JCLk08mIiQ3VypwkZIAThCuKRdVXyVjXiq/fvMXrVy/B24b18oTPP3+Db3/rW0hJ52fdGLxWnfuUkQBcUHBfzjiXgu36hG+++RKff/0VchLc393h+9/9Fn7rN34dD/cPeP3yHtu24rJe8XS94P16xfn1R8ggZBBOlJAWjZgXVDxeHnG9VGQSnJaCT1+/AknF+3fv8eXX3+BHn32Cla8tt03bGlh1Qux7hCtbz6oMsrnIalOBZODKAFdI8g9CnWhLOSnBLpr14+HlS/ylly/w/t07fP75z/Dzn38OgSCXgtPpDkx+jgHJ15CRXCURliVkT6C8W/fHm/OUKXuZ/sz0Z6Y/M/2Z2M/pz8SLpz8z/Znpz0x/Zvozv2r+zPzS05QpU6ZMmTJlypQpU6YE2ZhQq6bmhaxIIORcNG0zCGyRr1XUEUyUGyAo14umXs4ZmRISAS0bMQGVCSkvkFrBlVG3iooVD+cFr1/c4/XrV1gfH1G3DWKpiEF7MEgEKNlea6DPcTrzEXx3gCqCiBE8clAhtsXM5qASElnqZAMrmNRBZmYFho4AvQG0jSTCeN1IDoxj8qixlBKShc4xJ0A0Us5TUSdKrVSFg5lEhFJO9jwB8wYRjRYWA8uESKPXtEc7fWmfBUDdAWUtWl2cPFHgL6XcItacWCFY5DQcABIkpYEaVN0JggDaKkugkYcp6lOfF8kFdqCjtZePMNkbgLcRLGasKZERHQpw6zUpqCc1AoIrzD485zsMZEwGiGq661RoZ3uw7kvq4NdoC97HlNOOGCPSdQpLGc9cwWxgWYsAHyNyHfDthFGUmF77OWItAsNux1EaKWN6lHZvhpN2TUHYDVsjZL2vihIrIk7dhqNOboD9A9IgvhfBbMJ+/turRPZgNh5IX0u+Ppw5cMA2rOlI6DEzStGyN0spGtWKyONQiEL0frHZpYPeDLH1tB+fGPBq7yXrt+0DLnGf6fMjiHtL7G+ztTCvuz3JAXrZR94ftR33WQfmHaxnA+QrA0RsIHNfN/qDfKT290i+xL2zR6Lu7MuPidBKsyOyM4y7/okIQqZORpuv5LUEkCwS+xid9H2siqAaeO1lMDyDgpO6LFXtpiRIrVrmgDI2EL58fALlDEpJSwHwiq1W1CqolXF3dwdkQmXG47rhcX3UOZNkNirYDAROJKDtisuFkZcTXj7c4bOHl/jjP/wJXiDho3KHp6cnXBPw4rTg9affwj/9w3+Crz//GQoYv/Vrv4avvvgG18cnkACZ3mM5FRTLVlKSAda5OF4MQcVaVy0VIAVECzYWVCQs5zOW84IrVzyuG6gUnEvBlaueLgRUdPIYBEjVvQzk0ecJKSdQEsjKZmu5EWDJ1qtNNsgIGZaegcBtX0lN/U/v1/kDkX3mYVApuKyMx3XF+/dPeH0qeHV3wunhNeiTj5DvHrAJ4VoF18dHXC8X8HWDVMa6XrFum35eqIynd2/x5Z/8MWS7IklFrSvK6Q7n+xe4f3iJFw/3RqjqGQoQTolQKKEkPWOWZUEuBctS8PBwxuuHE3JOuF4e8ZP/3z/B9tXnuH/5GiVlrMzgyn2fMhAfIJCB/KpTJ9R8reoekySB4KWDLDKfOKxR0lInADZmCNtnJJNtW0FEON/f4Uc//hE++eQjfPnzn+Px/SPevH2PF69eotjny5IIXKuSN0TIOWHJGSmH/Yf9/EyHZOuUKVGmPzP9GdPe9GemP3PTp+nPTH9m+jPTn5n+zPRnfhX9mfmlpylTpkyZMmXKlClTpkwJsm0V1TM3V0bJGSkTGAr81LopmAIDFQmWmjiBk0YPVa6oxDiVDCaN4BJhS2WdsVmq5XVjlKXg/m7BySKU1nXtYJWDcwACerRHFk2OgJsj4uBD94ygsb9GQEP3BB2k0gt61z7Uhv/9i/rk14/t+H29TX24dGQG/RUD6+BgWmsJaK85waJxbGJAAHm7sgeYHdjsZSOogXP6O+ncsTSwZQ/a9vGRERBjZHsfY5hiw2RhACB5SvDd3FFrX8KNz6taDu0lTmYEa30sUff9fSAagIPvpmUDQI3I2vWpz0u81kmKBsgbydIih9tcOPHiyqUdyJ9Tgsg+XXYHqBHmdtTb/u8jsuBGa+1eB7YVyGuNt1u6Pr0//Xduv/sSJ6ghKAnoRM7N45+VcR3t3gv9IhD2a1WNTjF8GuZN73BiMq7L+KxdeQdbOz5hQoSE/l6M/vW2UqJGSDFLAKpDL1rbOiKH99xWRl3E32O/9wTZ0Zz3ce/B+f3aHUmbw+fHe83+VC1i/FonQnyPa+Cl7wHW50hsePT1rj8wcFncfgCQZu9gn2frQJwrB0Q73xI22AP9+FzHMTq52XJMGMFZqOzaIQBsz64suPKGKsC1Ci4b47oZYJ0zlqUoYZ8TVt7A6wahhLUyknTNbZWVaN9W0HbB9fEttvUCShl5OePV/YK3X3+NP6gb6Lph3VbUpMB7TgV/9Ec/wddffoVcCn76T3+KL376ObbLCohgWRaczmfknJGSAunJAN1ECYWA813Bi1cv8PDyBR4eznh8WrGuG65bxdMm2JYTvrhc8frdO/ygMkrW8hEVOj85xS8IiG9vzV4gPleCtCzYWCORiYwgbxujaj9TApOvWpvaUPqmcg3roGc0gduE6OmYE3DKhPr4Ditfsdyf8dEnn+BSKx6fLnj77hFvny54eryg1g1cK54uT7heL2D74sX29IT16REkVSOp1yuua8XluuLdu/f40jJfpJxNtwlLImQCsoHj+llJr3v16gHL9z5FujsjA7g+PeLTVw+4f/WAF3eLZaFpFo2t2lj9NT/XnVTz7VkAIb8zrFMCegaNeL7bmrR1E8lwJRYIJRe8fPVK+5Ay3r97h1IKcurrZzktSkalhFJUB2iMse0JRhDQAUk9ZUqU6c/s753+zPRnpj/TZfozesf0Z6Y/4zL9menPTH/mV8OfmV96mjJlypQpU6ZMmTJlypQg26bRliKEKkACoYqWhFi3DbVuKFnBSmEBU0XOFhVKBRCtAy8QMGVwJgNJlRgQMNbK2KpGby15wfl8j2UpBjJzSy3cAXmVCEKNEYlHgGB0VEcZga4jh7e97gSBo+jergTwy24fI6vjs44iFcfrxjFGID32U5jVIR+AeBG/lwGPUJIOE/S2/Dn6uwiDiXp1hZs+UgMIOliwj4D0aEAHn5VE2INrcYxjhHicy3a99UfCPyIa2u7goSuijdIb2Ol51EUHAXt3pb2WUjoEXXv6/qhR6w9awY0WLN1JGit1IPv58Ghjn3MRB34dOHZ9dZCrR6knMK/t2qUUbLU2+3CAVdBLNESC4AjojbYXo1KfJ7qet+vn7nE7Gs2t3WNgn0fAj6TGEfgd7awTTLLj86Je3Z52nSAjCp4ZKYCWFWDfjv6L5TKaTVPYb9B/96wDe91mtKhhiT3Xbia6LYXTCM3Q6XFfvCX/9N+2bbvnj/d0+9/vl+PcjmTJKD5usohaQCORhQIYDC8FYoBjsgwD3Nd5stcc0B0jXkUEibq99D534Ff7kpCSEVLk6GggpnYAaSfxorT1Gp7LiTrPEPSdkwKcMUo/5QyGQDbGum7IeQFSQUXCpQLnJWNZzjidTzifzrhcr7g8Xi2DieBaBZCt7S6X9Yrr5YLt8gh+eot33/wcl6dHzZ4ghPtTwhdv3+Mnb97g53/yBQSCS93UrlLCm2/e4ulyxVIW/P7f/4d67m9b0+tyOuuXB0gjWIsRGCVn3GXCxx+9xA9//YdYSsby+jUu2CB1w7ZVPG2M/Oo1vtoqfvruHb65XPDtJQMG7guRZr8Q34FFI3gpkEq1z2cqBYk3sy1CMTtl4Z2dZ7ufAZsn25uFUStrhg7LMtE+W7idiaAkwv2S8fHDGfT4Bvx0RaWK+/ItXK9PWN99g8evvsF1rVivShDUuqGuT9guV/1cI4yzCF6/eqGkCoDLugKkn7WqCLatYklFYftakZK006mKgFJCTcDWyNUVjx894FwySllwXgp++L1v43T/Ag/3p551wca11Q1LWdCDl03fzabtaeRfMohr3td3Jwz88wYRIeUMhGwcmqFDANaI6o0rTqcFL1+/0tJiKWHJBRDN6lKZcSonJAFyIpRSbJ1rNpZEovsCkRIFH9ydp0yZ/ky8r70+/RlMf2b6M9729GdUpj8z/Rmfv+nPTH9m+jO//P4MyYd2r/8hDT57WE6ZMmXKlClTpkyZ8mcvf8off6f8Csp/8n/5PyFTUqfSHMl13TQdNQtAGUtOKJmwZHXamSvqxrisWqrA06BDRNNgm4NamfG0bmAhIBWczg9YSlaSIaltnpZszqWWDoDsyzcAHbAco+GekwhoHQGWz4HW4/sO/jnAmENZBJdqkUcRVP5Q+0fgc+yntzeCjtzICS/RUS1Vub6sxTtSd6N3Y96Pj0U0BTYs+moAAv1nrb00hIIFIc10Sti2rY3J+zuSMQr2cQMex9Tz43tdH30YDtTVuh32Mz537IODmByi4eJ93j+rAnKcPvwICI3ci2G6uzlzUDAQG63Pdq8Dta6/CCSOwqwZDBT0TMhZS4U4oJyzRkr7XMUoUh3PnnyK+jsClSNQPOp5T9ZEUqjb+xgFH++Pz2/zwd7XACCjg+MCNFD2aAytb/bTdZl8/oZ7GuEjnRyS9jcAJNTaowyjjOTeHvx3Qs95DiPiQBbpeGyzHwLbfVVLf8GIH5v/tlboZn3F5xztq1FXR+tjXM8+Tr/3qD0iasQUj8+2Nra6AW1cnbRz6eQrtbIhmmmDWx+yAY/V+w+BB5TvdNvKvNh7aL/YtUpmO50zEnT6vLy3q8G+2WyCoecerGRQTglUCtpa8X03EZ6uK75+94SrED775DOUlMDbhlPRc/bp6RFff/01vvr6G9UtESQlXKqAa20EzLZq+Yh12/B0veL9269BXLGtVzw9PuHNu3dIOaNWxuXxCW/fvcOXX3+NtVaczyd88upjCAPbWnG5XnC+uwNl3aeYgbVWbHUDCbDkjNcPL1X/ST8TLJmwlIz7uzO+9a1P8Tf+1X8Zy90DLkL46ZtHvL1s+OlPfwpeL/iNb3+K3/vtX0etjK2ykjY57ey4RcVDo5h1h7MsEYYVW7WIpoM2BwYq+/xsXMGNaO5rRoQCUeTXd6PYlSG6PgGs+kYquFxXtWsiLHf3WE4nsxlq5UBIgESCBWJR5BlECRsDnfmooJSQKemewUb6JS3zIdByCW5vEMHnX32Fx8dHlJTwcF7w6sUdlmXBVgXXbWufyVzWdTXwvRNocZ13k2SIMJhpd42vxUa2oZeMctLUz67r9QoBcFoW0/0GQFBSUV0z493Xb/D+3TtsdYVAWtR9Nt0peaP6X5aiGXiqkoO1bvhX/oP/EFOmPCfTn5n+zPRnpj8TdTf9GWD6M7i5tz1++jPTn5n+zPRnfgX8mZnpacqUKVOmTJkyZcqUKVOCPDzcY9s0QtlhlZITSk4AJbCyAkgAiNSZExYgCfKp4FSyRU6rM5lyAaCADm+MAkIuJ6RcIBY7mkhBkpQyuG4KCgKOfDWgqdW4N/DYI0mBPWjlf6fUgdMIYEWAfgeWB1A2Aj478MeivkU0imvJSwPAHCSPoLXfHwGl2L8jIDD2c/y9AZIO3iYHJDPg0XwO9DsAYSLSwQ4FU/T5BAWxGDCCBm1M+/4Stq1ChG9A7AjuRx3HSHH/3UHFKBFoHckg7IdxA3g/B2TG/o/PJMrI+TjaWQGU56Ptj/rdSjWkPRnS7hMY+dIScQPocyHgnZ39IkmUFLhrwNYtkBP7OtqbyJ70OBpjtLcjcm0vOgqyheuA09jO2KdDMHz4M1GCx4hXEZC1E/Xr9sjMEGaknIdmOrCueF4HfbXcgvfP+9sJFwJ1Uk406nLUDbAHitu4DNxkYWUJSCAp6XpLBJLjOb8pMbAbCjmDsRubQfGNGIn7RlPtwbqJ4xjXfLxnJIt+EZl01O802njrWydWvF8NaGfel9eAgvxL6uD9tm16bWUQwdawasSfybGPtnR0io2UMIBUAID2JOd+HeTd37V2Mi72H2ariRKoJBAr6V3Xq0WREoQAqRuSEO4y4fT6AU9bBS5vgZxxtywQAO/fPeLx/XusT0/45NUr5FKUIIaWWcpxTkQjaAUaccu8AVVJgsvjI6ooIC8sEAYulwvevH+HrW5IlPBwutPobNHyAcvpBEq63q7rCioZuSyACLb1goe7e5zPd8hJibTLesHj03u8ffsGf/yzP8F//l//N/j+D3+I1x99jM9e3uG3vvMRvn54wOP7d6BUcXVSx3Tn0e47PTqhREnXkm17KWVI7WVvxFaAR22zMDapnVirVYkaDYeH3tr3wEAX2+u2s1UtR5ATIZ/vm50QCKfTfeOGRRh1W+F5GJSM2XQMIKBkXFcrfUNK5AuoEUqGz1tZJuh+YSMTgZJBZq861QQqZyAl1JTxtBGetq3ZOow48XV2Pp/DgjRttT2CbMwSfte9Mu4FuuacZLg9P/w6ZlZSwtYus+tMLOo84/zwAGQtA7ZuV4hoOZPrlXG9ruC64Xx3xvl8AlJGQgWMAKr8i8/JKX+xZfoz2LU3/ZnY3+nPTH/mOZn+zPRnpj8z/Znpz0x/5pfXn5lfepoyZcqUKVOmTJkyZcqUIO+vVwhXqPNI0MhkBU5T0hTG4piKMAQZlDNKysiUkAnu9iKVgirAdd3ALCil4P70YLXLycAfjepMySAuj1AkA3c+AEy6IxqBufjePwvY6vcdXTuWmmiAWoAfHQzw62M/ngPcIjDbQCgIekyyAw4Ojuyv3YFojgKQI17+Q3vWoyj9b798D4oQKWDpPdb+qLCBDTnlPk8jaRH6FV8bQfRRV0dzEfX0ITkCtz9EusT3x1IV/syjdsc5i9cetTFeG1tz29EovNAWPUcucQPbW/9gpQigIJGCTIxensLgq/DgUTcNAH9mzo51e7wc+5ztiYr491GUdxxvfL/raP93YB36zwOAuxEUN4SEQVRyTEoBsKhbB8/86a67vvYj6fccSOY/RcSATep2x1quRejW7o7A+UbCQImGtic0RcNAR2ogcbf7vc6fWyP+rOf6EdfRc8TSc0SBHDw7tut7fWybwn0dwtTWIgkAADklKzsUI2L1Bvb7Ds4EslIQIgjk9DMkh/XK15mTAnsddFt1MJT6BQCUOHCAlowoqCJIIKRMOJcMrqxnKSkZfV4KyosXeLg7I+ei8wu3SA7nhJguLbsIeoYRrhV1W0FEWFlJggQCV8alrhrBLUCGZaUAGgEC0nIX67aBUsJpUeJAo2e5pe4XEC7XK67risvlCd/+1qe4Oy94cXfGiYAMBq2PeHmfcX96oVk92OH2W+nz1W0lkxIsndyxdRJIKLcNIULutQ/0HOqWpToSJQB8/RD5WSyA2N4U7abAyODkC7A9QSOJE2rdsHHVL1Qkaja1VYHY/tKeYf9vJEFbzvo+h4wMOrzOZpWSQTkhEaHYnLPYFzwoEJc3gL6EIcWI6D3Rq1P/TOmZYZ8YyeDT6bTLLJKI0HB9UtWlJeOU7pCWgnxJeHx6ArMSAAxAUkZl1dtWGYnsMwwRSumZR6ZMOZLpz3SZ/ozK9GemPzP9menPTH9GezX9menPTH/mV9OfmV96mjJlypQpU6ZMmTJlypQg37x/31MhCyBVcFoWFEogBgi1udiVGaAEStnu0cjmyptGO+eCbdvw/kkjXl6fzjjf3QGi6fgZwFJSACGkp4IGGhAC4BBcikD1Efh1FOn8nByB+GObEcwkA2LYwCBCj9we+7cDjD9AaAh6hBuCs+0A8o5IIIVVPD20vuYkBjfwWCcREChIybInDrzvRKlHLToQOvQvJYsmlj3o5+MdS2BEwMDfdyAiQufjdUdzdkS4eLRzTEd9JEekDJG08hZH87wnFI5B0REoGYmTHYAINBCTiBRkEouYDYChtuUaEmeL+tzaM4qBou3iQV8KZO7tv6+HAKQNY42kxF58nmM5kD1RQrQnBWL7MSo7YvyROGpzIGIgWatzEECyWxAZ2K91BzgdfHPwdk8GdLuJqf71H4eW41OOZbSvEfQ/sm8Wi/De6e+APBzuFQiYtWxLm5kB3FMQPfdVLtE2qOnjhnS0TBPj655dIpZoGdfEUbaDcU/9ILHmayWOK7SN3b2MlIqdI6GvydZIZZtD03UY1zgPnglCxPbBRI2gFekR1rVFpO6Jl2jbTiS1f2R7LflZaeeE68LbSAl108wUmS2q10oqka39+/s7JeJTxrqudu748q9qy7Y2UyA5BABXP7P0X0oJVZQQSDDw1gB+YQZXBltmAGZuZ4y4vhlYloJSCvKS8fbdO8sWAOSyYKsnOyv0vLg8vce2bai1grcNj49f43Q+4+58QkoFq5WyGO1Gn6lzEPcfLwMlIqjcP4/4GWiz1ID2nErbP5p9+5lFhC1EZiPrfYl8JUkoL6KfUVgqiDKQNLJcPFOM/ctWasMjos/lpNkdiLCtbHuSXc8VmjFBH5rMttr70PInxmEMZ6iSYycfswT7tBt2tjDYv++/ItTajAQBvBRDIAmeW+NxD/G9YlkWAMC6rUZI7e8RCJASSs7IpaCkjKfrCq6rZmnJBTkvYN6wVca6acmrTPYvzS89TfmwTH9m+jPTn5n+zK1Mf+Y5mf7M9GemPzP9menP/PL7M/NLT1OmTJkyZcqUKVOmTJkS5P0mqPWq5SBYXeuH+4xTJWRZAblq6udcIFVw3VYAGqX7tFZ15Eijnc+L4PL0hOVccDov4ER49/Qep5yx5Izz3dnIBgNVYY66dJDGwZ4jkD8CfMAtsAagAVsAWpppBzljWYH4DP9Zax0iNr09c5itn4rliqb4Pujj2N/orGu0UI+1luQRYgoQbbzZM7OByh3cAIDiGLFoivNq4FEiTUW9Wh16BY9g/RZYMFoDQnyEHdjbj4GSpuF2bOs5EH0EOX2863pFKblFSu1134HnI70dCTNj27Zde7E8iP/u7cRSHSJyYwvRDmLfYhujXR3pwO1Fx7z2+82MNBX5fmwKGt1G1SsHkDqfQmRlUzS1tkash/XhwGgD3mPabiXt9mAmQ6Snse+2ru93lThwdUukRF3lXEx/CmT7OtmD32y2DzA7wbUHXh3wa3yZXeOAf0oJmwGLTmiy7yHkOLPSXynMfweUfQwj2B2JgQ49jrYYbYCZUWttkaH+d865Z0pIhIwMpx6qlZRxMiQHe+h26ICd/13NRsx+pcJJkP1c2TxQKGEBQoKWixEnnmyY3l/fJ3f2d5B1wu1n27amOyfnxrUfX4vjOyLhxPfAgWgDYKUbDCwNexWbLSWU3le39eTj7evR52zsY+yn2hfZfiGAQZs6Rrf5Y9Kot+EWvN/POrhrtiVq1xkECSROCOrWOeSKulWs8Pt7m074eDkMj/xtOobtZ9a2vl9R6woB2xrK7fmud/a9pM0DdzIyJVzrFdd6BS7a0XVbdc+9XnF3dwdIRb2uuG4V56XgdDo3loIh2GptgLtxAK3Pe3JJn+n7TM5KlIgIKvoejmh7Nm5RJbm5NHsB0CLWGUCx9pw0iTPnxIv3L2UtYSWse2+iBOVNPJOI0hOn04JlKXaflnqACPJCAIqewSzYNsb1ekVOes/5fNISW3ZGCWCfK3r0vtqfkfri6wOAlTBaSgHQMzf4vr8H+CPR5eRoX1tx7/fPBZEo2JOr+3Xsv7skSmDiblvs5XT0iw9KNp1QTmc8iODdm7fAVfeX+4d7vH3/iMfrinePb/Hxx6/x1eMFdatIYPx1TJnyvEx/Zvoz1tyu39Ofmf7M9GfQ5gaY/sz0Z/BMG9Ofmf7M9Gdcfpn8mfmlpylTpkyZMmXKlClTpkwJ8s3793hYFiwpgzKh5ozrumK7XrEkQjkl8FpBK4MZWEqGEHCpFV++f4u7F6/AVbA9XfD0+ef40fe+i1cfvUTOCe+f3iMTgJwB0gifWtnSFwvInPUOptxKBHeik7qP+OkOqjvGMapvBLHG1zwSMAJa9iAFbcjaqhU5RB6t64pSSoeGvD+h7w7mdAdeU1snAJswrpdLA8xKzsiL6mSrKzSjvIPTCWRpvgmOjBK8VgeLQKTuAJdadTwcyAYij7TWqDiNFnZd9YixnJJGyBlwnVK6Ad5bewN5A/T07X2+bud239fa9ONtrut6eE8EHX3OHLgcozrHyK4YwRvHc0RSjKTSUUmLqIsGvILAxI1MUsBbGoiVjIRxANKjk4myYTSCbastapPZI/fIQFABIcHj97BbPwIRaoB976dHrjNq7VHcETCP60tf9jVbGwkTdRLBUyUM/PVO3jRkCpYmXWRYa8EOWtmD23UEOEkiLfqPiFQH4sCXNEi2z5f/tRkovicM9fluJx2si2RjJKCy7SmJCJtHrEaQE53gAHViAEmzKiQAoIwex+yiMKeDwH3cRp4SIM12UwD89G8HIX3tuUmI1/LBvp9xnYzr6TkQ0P/5Wo1tFYvs7fbT15RHGd+sM3HKw9alzTrbvmVwpd7jgGMVbLwiZY0IJhAqV7SsEBSjxLuQRVvH88HbtSsc096RUCK3xMdI/noT2txY6kT/34DWrCBqyrA9e0+udqLG9wxBTmh9rQE8b0A5C7iB+oRcIvG+6W6REnpELAHs5HJCBaOk0tpSI9VIfs3skPTc9ihYSjgvZ+u3WTwRkI3cTgncVqLtzUJgIylAoR/Yry/XQScg2aKwtSxEA/HRCS8lR3wSui6J99ksACBBUE4dGhYjVPS80vs8EtttWQl7acRCzrmR1ACQEdYLWPXnrIXolwkyEpCAklI741LKSHmxWWYgE2rlRiKSt+GkBTSC3j8/AawEtJEHMaLZ+3N0VrplxvXfbR1Nt95GzEASicRRt359PCe3uoFZz7ZSMrZ1xbVeOtGSMu7u73FNVzw+PuLLL7/EWgV100jzr795g0u1M6jefh6YMiXK9GemPzP9menPTH9m+jPTn5n+zPRnpj/juvU2fpX9mfmlpylTpkyZMmXKlClTpkwJQgDOyxnnpUBY8MQbNt7UYcwFpSyoVbBujOu2onABcsJaKyoRnq5X1G2D1IrlvODhxR1yTiASLDlhKaVFETpgQgQQQqRpx2lunNz4+3NRbuO1H3otgl4jiRCd6ugIQ7rT3BxjOShJ4feEZzno0YHVHtFHlLA+PRkR4QAkNYBBgT5rLbRBBhhXgUa4GRAoRmhoHzyaSxARM3EkwMC9DtQqMEYOYrex0c28fEgc4NKpInhk7K2Ou34igPHc3I7zEvvj90Qy5gi8OCKI9v12VfPhPREgGcsfjM9N2cs3GLjdsW/FfXb9158O7kpoRzw61IDPXvIjAJjtpW4ft9GcrmOdl2jPDaw96FObH+6kx5H+fOw3dh7aowYc9rInbl+9l3vyyH/2sfs9HUjbUQMiu3H0sQe+Al1P/yyysyXfN9BBXt9HWssioJzh0KUD3hzGgwBs+npwkqLrMY4Lwfbj751QMX5JM1ykYY7C9Q5yfmh/jL+PWQc+NP/PvT+2O+6xnZiN3Q320x6CHs7qLyWPot/3oR0r1IlRhDlo1sjSwG7AiGxWcDzO7U1fvcvsBNsA0MIjaG/3L5Db7odE6SbPouA3kG/YcfyS2pl0s+7aM8lf6DRcIhA369H7jTAmiEXhJgN6e2/9/Mw5Y6u1Ea65FLfq3gFRMkLnKeryeJ92EP3ofIh2GMFr1XdYUyDQQFTvrvXXnVAI6+PWNsM8yZ4sdjLJyT1mRm59MT2IzhclICGhFI187mSHzkmiDCpJOQbxKP+ENIyri5fx2p+tN+dt7/qNjESCv+YkyDgX47nr14oORAmVoV0nFfvZqZH4GwtyBlIpONkY326r6iInpLwAIJxOBYIFqBPSn/Jhmf7M9Gf8eJz+jKt6+jPTn9mPK/wx/Znpz/S+tPunPwNMf2b6M79c/sz0kKZMmTJlypQpU6ZMmTIlyFIKzucTzmWB1Ir1skIgyEQ45YzTcsITr9h4w/vLFZkrqGQwCJQXXJ6eIHXFeSn41icf4+XDPWrdIFxxPp1wPp3UsVUvEkQKGDjYxp4qHWhgShR3NGNJh0Nwabg+/u3Xxnti5OwN4DY8T0FSA2a1FRC0/AJEetQx9o64kwnhBY2k9H6mhMqMGiJJJQLUsu9/c+JBSA24MJCVAnEBfSw7KCx7ANd/1lqxLMuhvrquOjCsYBQawdGA7gAm9qgvL8nh/XbdpoZVjQTCEQkU5z++N4LzMVLtaDzjuEYiwH+P7XiEXCR6jkiBI5sjIkvl7ZHMOk/jHDhpBrd9ez3nHoUsAMbCIzsgDnvbPhqfR72LKCC9Jwm84x2GR5h3JxKY2R6p87lff/vo9xFU8lTgijk6QWgAv+zHMWLX4xy2+GlygmR/354IigSSAp0pdRvq4+vqJKIWfQ3aR/r531vdbkC39kwJeoSTcIHEkJ5M3vmOuD73474F8Eabjdc3Qku4kX2+R/ivmTJGm43tx43MbWnMChD7NJaWGC4MoPTt+gU6CSEijqd2UmO8J1k5BWm5BpBShli5jBEkHXWE3ZxLm/OSs+6ZLFjXDUQJpehcexT5kT4cDG56Ri9ZImIlj1rEqvfPdIH9mvW+7vc611MnBWMbRDZ+9vHb3MDvtSwX4YYUbc328h4xbuVnqtqBlkPwCOheZinuy1KrlnsQjQIe7YCNhCH4/hr3Cjq0JR9/znk3n6WUG3uMJJbv30fnxpFNjCRQvPbwswTtPx/ASlQcEWr6bCs9Af/c4Xvwvr8p6eeJnDVbBtcKy6MAJYlsDwbvbIXCPjyu3Tae8NJIiEQZiZI4HpfUPl8EsgdoEebx8wi17DQVIoxtq/YFEiNORMCVsSwL8rmgLAXrdQO2DSKMYvtwOp2VNBjmacqUUaY/M/2Z6c9Mf0Yvnv6Mvz79mf769GemPzP9menPAL96/sz80tOUKVOmTJkyZcqUKVOmBPno5T0u1yfU9YqX5zt89PAC5ZXG4tRtAzNj3TZctw2bCE7nO2z2eqqCu5zx6ccf4fXLF/j41UtcHx+REyHlBWUxFyw4tTmkDQc0uqm1t3Ou9+DQDiQPDuzozMd7Y5verr/m141p3yN46gCFC4vWtk8IQF3uaca3ACYREU7Lou8HALURBOZsPzw89DT3Bi450DNibjGSuUsnDhwA68DDbUmMmA59WZb2fq21RUz6fDw8PKDWirVWXLcNOWfVVQDEejc6kDyC6EdlFPy9liY9XBMBoyMgI86Jz9G2bQN4s49ejvcfPbcB8oFEive57cS/RwLnOdC1vW//jeN5DthMKYGy3RMAaH8/exmAyjdro4sD/d6uBMLAKS/BViuyR0YGoMntCu2lDsh7n8f53QFIUaeU+2vo0dteusKJo1oNNBt0vNf3bXmO+NxYssD7qzbLqNX1pPCZ+LTa7SmMl4VRlRJtgHWtvWwKBVtt9kEErhXsad2tvbIsDRhrEaKi/doDlZbuH27Ht5HEm63HGLm46wdBo16NoBX4IL0NjWLUFPhejoRsXgGxUhbGMGr7blsOHkuf35H88uuJqAG7cZ4aL0WEsiy6b7X9k1DlYO2mhAzCtu1LvLiOvARN3ONSSljXDUpQ92wYcV66TiuuV43wXezsWtf1cH3qXoxmp84yjXsGUWnX6z8nUsNshzV0RPr4egDinmS26yUexIkBsTI6GmG8nE5KPFclEXJbM7ZnuM2nbO3oPKjuE7y2gUbzZl1XIg0ABvSLBiWclfsz2Ne1j2XUfbftuG+7RJJgnC+/Jwdi4ohsiM/zfcGJHz8D473Rpv35sY/RDuKXDZgZpSwgiuu1ZwepVSs7lFIgohH4/VnkR6j2rf0H5OxzAdSt3pxPwpvp0aLzg4lw6Gu7PvQ96jPK+DmMjFzS57ERyABAqBxI9C1+jiMsywk5F9SqJIHvMzlnpNw/CxIllFPBd3/wfXz95g3ev32Lx7dv8dmnn+Bp3VCvm34pY8qUD8j0Z6Y/M/2Z6c9Mf6aPi0to0QAA0hVJREFUefoz05+Z/sz0Z35V/ZnY96jPKH9R/Jn5pacpU6ZMmTJlypQpU6ZMCVJyAqogCUC1YllOACqEGRnqEBYilJJRZEFdKy5PVxCA1y/u8frhDq8e7nB3WgCpoFKQSIG2JApAVlZAJecFwC2oehNZ546j9XGMeI3gwAgER1DcAfPo4Dtg5emrR9AogsfrurZ+iSj4UlJu0V+VuTOIcOe/P/caACZALy1JgXaC3k8AshEGdduQMsFTkzen3/QY0197m3EcDlZE3fr7fs0IvPn7PubL5dKBfpE9uBcGKxBsGmra5iqVAsAixdlS+A8AkPa962wXdZVSI0wUcOmRySNI52OMc0fOsJiMJE+UkTwZCYIjYmO02xE0amO0+YrtHwHaI+DUxolQLkLa/0I7otFzUuHpyH28DZAuJYDLQK1reJatFTKokQAg6U9/DT0Kzga3A3chggyDEM0O9rqmg18b1B7Aq5HUUHGzi2n6JYDSvVu3wF0fP4fr9s8jShZNCoiGr+r1Dg5SaiBdv60DkSkpSYPBbsIDYRVRkGwtkV23nBZw3e9pIjWMhYcxph2xE8nPRgqKZi4ABSJKdG5TTpCNDe/XaxIVA/kVwG2R4AJAWAkdw74ZdWeGIgQWWLYINvsaQH3fB8MYO8G03wscoPf3O0lEbR8ScVAcxlD5/WIkgK/j2sBdQM+Odb2CKBnJSQaIc5vWlBLqxthWBfK9fFHfS1MjsrxNJwTCcH3amy0wswK+tj724Ll0sDQ8S0Rs7VOwOZ0oH3bnoqLNGfFmC7ikDIKWcVBg3qxCKiqPJUeS7R064du2mq4FwhuEQrSyF7igBIHaASXNEELCjfiDAISEbHrTOdyD/oDY2Pu6PvqCQNTPLfm3J2pdnyOQP+71cf2M7eWc2x4eP2eMbegc9r1cbU5noc0bNntOPPdsPdvf2TKsqK0k7CkCdNImabSxr61mm1QgUN1rJLt/jup9JTdOeJYMM6aw77mu9PwP69Ts0Lsv7Z8TpsE+OO5dZERaAlFGzguu1wv6OQBU8c8QuofVreJ8PqGkV3hxXnB9uuDpctV98/4BU6Z8SKY/80vgz5jOpj/zS+LPHPR5+jP6y/Rnpj8z/Znpz0x/5s/On+HpzzSZX3qaMmXKlClTpkyZMmXKlCDX64ZEBngBBkaoMyqAgksE5JSw5IKtViwp4bwUfPzqBR7OC5aSADCYodGCMByHBUgOTHVnGtg79+016xMppoG9+44bh34EZ49AhHiPg9/xdQ5O7QiieyRy7KenWPdoUjgIjj0Q7IRDHJ/1qANerCmUCYScqOlNn/chYO123D62+LwRTB1/RtBjDy5biYUQ6e3ttb/9dxFHxhBpBHGdGQg1zsFRVFZrD2YLIuhWsb92pwcYyEn714/GP47lSC8+z8y8s8FINsU2xjmOZMqRvY/vjVGj2kIyYDZEkSry1oD223GNQHj85wC0k2kECDWwyoGqCI41G0Gfh7ZGiWydBl3snr7XGRzgtzHY0KCR2sGE4GnS9XVugOaxvcZ5INrrZQQcb3Rm/VLsLEHxN1EU1nWm2urjiVoeiIOdbYTrCYRsizuREoSjXeyeQb1cxq6VMOaReCMndAxkJtySNn212N82184AOBGgK1Yj+cXW1h74S41MkLBGva1RBz6/g2Xc7HE+xpyl9c+j0Pv7aODsXn++deytcFybzG5z/rqREKRnVweZQ3Q13Y5JCYwO/EbbjEB4LBUUtHyzl7QRUiDm9IV41w2I24Bu0tny6/xLl9jZgPek92FvIx14JghEeEfQ6Di1bEFKTsIIEgmEnRwPNhDWEPlJt9ujfS/qkcWRmB91430e5egM78/Yn5fjFwvcZqSNz1YI9Z9qC7YvB3X5HOwJCYKvZW/bbd9/+ti1LA5aeY4GsCdyfL/NowAgFmSkdiaQG6Cv9/bMvW3Ce+9jDfuKf/4Q6BwmZzbR1+xoQX3fJCSS9hkIQM+/QJ6loK9Hz8ayI8QaGSZtzwcBeSnI6R4iwH3S0lP3d6ebuZ8yJcr0Z6Y/E1+f/syfgj/zAb1Pf2b6M9Of8edPf2b6M9Ofmf6M9uvPwp+ZX3qaMmXKlClTpkyZMmXKlCDXy4q78wkpK0rHrOmqQQTJgm2tGv1EhNNSwNuKu7sTXr64xycfvUJCxbat2DZBygWl5Abwsmga9ZZy3wGsARzdOfUiIJLg9Paonuj0R8c/gvoi0iJEY4r2CCSO4EEE+GLE1EgkpJQ08ogIDEGtWwP0UkqNoDgEf4w8kTBu9ui8pMBbyQlCHXh+DhDdtbsDwBz8AByMeG5M8d7Y32VZWlsRvDaM5Ob5jiAoeMdt3kCWipqBRNxtgPdp2eMc+P0OQDALKIVHDX1vfzfg3AAdA1GO9Bf1EOd9BJbGv72/8XpP8e56O5qbI3Jg7NONiANT1OArAimQGUBJQjJAqYPg2scDfSli12zQiS6f1yVpqneG6i8bCAjHoQbdOynTRnFjF2IgmAG7whaRiR6FGwAr1W8vDeHp6iOwdbTm/Zoe+azXj/albXSwveNrTs4RhBTc5fAaiJBENAuCSQIaQeK69nIq1JXv6rO2TBegG1VpfzoQL7IvW6BruZcL8L1oR/hBdSwS5lc0bTtxY2AA6N4V14eIgJopdLA0JTW4va0Sck4NuGywdOrryvXmbfp9EZTtID7aePw6/zWWT1DyyKfSzxUjFVJC680tommgvT6rl6ux6Pas65hSQir5Zp/KOTUoVdeLPiclau1ZpxRUZ0bOCdWi1QVOGpg9G0mWQ2mUvR3QLoW/7qOqrWx2orbe9yIn0gALZre5YEgr8eJEgttst/9k9qUkv5//cT/VM8vXnkWJW5tcGUS9HICWIklI2ebbSyOwr7mxtAnaPIpo9hEvczJmLXluz4zn8y8ia0ciX/VXmz27xSa4ksZ2fAxo55iWT/I56Gdt7G7vFzUgPKXc91BhkBGhHhmvc8hmcmoEAm77uNsdvK/Wdkpjto6ebaERFOQEhJMNbgNeVgI2x/ps7zP5f9YuEu9Igj5e1YOWaQJSUpstpbRyU0DPCsPClmkBYKs4lU8LzkQ4VUYCUPIHzswpUzD9Gf85/Zlf4M8A05+Z/kzr+/RnMP2ZcP30Z6Y/M/2Z6c/08f5y+DPzS09TpkyZMmXKlClTpkyZEuTu7g4NYsmEy1qBCqBkpKXgzfUtLpcrKCU8vHjAq/vX+PjlS9ydTwZ4ES7rFcwV55SRiVClKkCRUwOsmjRn/HlxF7iB7gaw7645IA0igHsEpkXgOzr+Dkh4uxF0iFFUKSWgAReE0+m8a2sE1SNo2EE1KNhLAGofR5UKLxPhbXlq8jie+LwR0Hbw0x3454Bt10MpBafTqYM7oS3XybZtDdzKKe9AlkyplS1o5IeBaNVsykFfYUEuHfgZddXGgA7k1ABs7MZK2OvE3s8paTp0B6aZe1mFBt7258VyEVGHAHq6/n7LrhyHy7PExcF1nsZ/jNiNZBaF/4fuhnYUNGQG+lR4L1UXrloOY00pNfIlAdhqbYSM66h4anaIgo3G9iTXuYGVO5068WBR5C26jzTaX8cdQc9+zx640zHsSzg0VNimj4bXOzehwJZHMPb7JRAuXVf2m68PFlBVQkpgACEA4X5LodTHcQOIUVunsB6MWRWWZWlrG7YmY5RsA+6kR5hGO2lzeKO3YINVAvG4H+vtBhoiSglYikUsskOl0kkkk5GYyKUgo6+hDoKTlpMY9vHeiT3oyizD2vKoZAXFcy7tmSSAVFtHBkQuVjYGBjiu6xXb1tdazgvWdQVb+Y/z+QwRLT/BzNhqBVf9m0T3taXoqVjrhpISQAwx4D9nq5MRxuE6KDlBeMO6VSBl5MVLIKEbK3yvDPeF0jcsrOQfka1Ry1IyEH0xIjiuywoFXXWpOblS7LlO0HSyTF9fG+HG7OReQll6NGrc2xKREivBFnekL6BECRinshgQ3UmleDb53PoaGomEDwkR3UTbxn4eEeO+F4sIyrKgitmAMJai81WFbY9y3YZzz8qKAARmIGfVnwLiyYh2JY1q9XJN9qWFakA/lEDxL1KQ7cNVpIUXJ6iNM1mGEqFOKgQRy6oCI+DieozkZT9v+r7k561QAiiBhbWEB/U92Um5bnl9H9ByDtKIg07sxH0/QQlaafuin71cOWQgcWMUMNmXDFJC3TZcHh/x9u1b/PVfaBFT/iLL9GemP/PP5M+I7PQETH8mzoHfO/2Z6c9Mf2b6M9Ofmf7M9Gf+/Psz80tPU6ZMmTJlypQpU6ZMmRLkxf0d1vUKEgakgqXi3eMVT7ViZcbdklFOC5ZS8HBa8OnLF1iK1nq/csXj+yctFXE6KdAhCrSQgQgYAOiAuw0AugO9Wa9xkD44/jSAixFk8PZHEDq+P4JqTgTE+yPYMLadczZwtb8Wo6FLKTugYiQp4n0gIJXSQPsRMI7Eg/fFnXoQtb46ENQjs3v0YSx/EUGcCDpGoDyOOYJXu745CAmLKDQAounKcAQiQsoJ2YBohGdEsqaUcjMvbH1nizRUgAQ7IDbOE6DAnvijgFC2o3cLCNHotI+QTjm1tPcOlkUZwX/X7fl83vUpyo5QCXqKgM0RECYimpq7JHTKbN+PHahqALqrWSBGEBgIaGjXuq4gQotqjgQeVyOpwpqNpBYAlJxB0u2KIf1NKEkDyhBmkITSLEYa+Ppt3Q5zML52tJbjmnYAeAdMym3bTpqNa9nVRqoQAPvU/QLsbD2lhJz2oGMEax3kNVYCJWdrlxopANel72Og3fi8nznTMC45/HsknaK9+XvRNhtYyHugNtpitKuot5Fs7HtLauSGwtg9sjLaen8G4Onyd/v/bn31PUr7Q+01gJAXPWcYxpY15LTRLhrRHNr3aFtv0/egvgZ0zSkBAYCyzZFBumRlEAAw92whHiXueiACuG46/5RALKiVkZK0dXddV5D0jBrj/CfWKNk2D77vi0Bq3XEt8Www0zNixSOefS6xE18b3YrJzrBk7WhE7ng++jlzSHC2NU7YWEH3rW7IlJGT6QfdJsafgGaYSGQlOgLhuCMogt1u29Zec3u/Xq87ex73+ihcq37WACFTRknZxmOEUSpwUhrQdbSuG3IuyDmpLYR1qFHJvXyER9CLALUGnQVCNJlutB9tgsxuExRktzUxRH8DSsz6/iqy30OBTlhGojHaQSQPmF3XgVhNtLNVJ5dFNNK5c59jFgW3CSCSBn1tF+QsWB8fsW0VAuDFyxeQyuDKqFvFu8sVkghbWnBNE9Kf8mGZ/sz0Z6Y/M/2Z6c9Mf2b6M9Ofmf7M9Gf+Ivkz00OaMmXKlClTpkyZMmXKlCAJgpIIkKRptTMgYGxbxdP1ilO5w93pjPvTCfenBaeSARGsteLxekVlxrIUlMUBXOkYRnD0d0CdSANn+mu9T04YOIiTBsfT5Qj4a/fJPrIw/v0cMHv0WmyjRf6GfsefOzIjABtHILzhMjfP62m3HZTQ8hgwYC4FR191mBoYLrAoRAfkGqCwByOPSnI48DICQGkEJQbUvRpAku26+IyUEpLVMNAqDXug0wHJG3ChgbDUnkclK4Bt74/gJgidULJ+eZQmiYFBQRTYRE+9LgIPhX3OFuK8jNcdkVL+dwRVR+B1XBueQr6134iO3QKxyMf9s9iA7p6avBuZvmcAD1gj7iC7eDd9XidaEF+3vpEooZfES1VIX6N2o7cXUXuCAuRCw1iwLxEy6nwkEOLv/b2Amh7ce7RPsANr3hYs6lZUT2w2Ne4Uu3UNg6Wpa9p1R5Yy31tw3TpIGtsZbWO0v6P9KtpM/BntLfZ3bGPc18Zrou6O1oP14tnXqpNOg70fSY+mBEbb0Hk00NbmxEkxhHv2TStRcbN3Y7CF1lQCyIi1NIx5JElAYX0YACqDLshLSPRnOD1G8Cjb/V7QbqV9+Z7WBvV1Cm/v5vzwNvZ7drQrJTLiOoutPr+/xXbiWbefO19LVvYlJWR04vw5+46kuDWic0adSBOb40TUQHEASuzgtjzK0c8oY2R29rkI89zvjft11/O4dvZnpRM0t/ML3yvhOsHuTEspNZNi00ebE3R7iPob58j7dzQ//t7R78+938cf1uGgy6PPXWN2h9gebN5ySqjEqFXLUbTAbOiXIFLOuEsZ6SAzyZQpUaY/0/t69Nr0Z6Y/E1+b/sz0Z6Y/03rx7GvTn5n+zPRngHGSpj/z58ufmV96mjJlypQpU6ZMmTJlypQotaKQRjFrdGlGyYySEzIJcibcnxc83J1wvywAMyoz1nXF49MT7s53KKVoimTm5sAKzPl3B5Z6VKQDj6NzugPgWMshgAiUtcyEX+eyc/6t/XXVtNYEtHz5Ireg8gh2+HVHr/t7McW7i0cWj++P0b5RRvKg6YVDGnDSmDwRjdACBJWr5p628akTnhVAYY1kW9fNXiecckFKer1HYHvfHIjYtm0XIe3lHxp4EoD8G9AW1EmMcA2IWqp2GPiqmF6/N0Z0HgGSDtRUUgA1l6K21YAajxzrJSbiP2aGJAfERFNMi/S03oaNOcgLEQPBOwY52lqMNB914ZGnIxE1grkjMBjXgaeIBwTwKFy9ag8OQtq8uZ5YrUVTsLOVYmFLqa8d3IH/gIH+RhSAgAq3NSAEZrZI2mpZASJG64m8Hdjzh7D0aD0bkdETQBK0CMBxL/gQoHwL9jk43IFOvc+jE3G4nndk1o5w01+qCIQCOSk90ni3J9i8CGkkp+OJjSjQnig5I7fR8XGc4570HLHh18dSM1Gi/R21EQFN//uIUPHrjuYhroPYRnzf95uU0q7UQZRj4JjQcFQBamWIBBIl6d4iwe6ssZtn7Mi3AKT6OvNyBtLaZUhl22NiO0nBaJtfDieZ70U6Bv89wUuQEKDRrcLNyErOUJy7R5zGOY9z6Do8kr1t377uahkB4BjNrPr2UirH5+sRkTFmpogiiuYjp4SUM3iru3vHc3QkCdj2YoGV+PHxkRGNlRsBvidTCCx8k6Fk3ANEvNTILSDeo4i9jIbvJ89/+cB1Gs9K08RAFHSihwjhjNQ9lmvt+3zSc6tW7vuKLwrs1178OZ7X8fNJXNO7fWZY/8c664RmGnQf11ittWULcaIwkqDjPuH7A4tgq4zr5YrllLRURmIsi2Y0yKUgl1c3tjZlyk6mPzP9menPTH9m+jPTnzm4bvoz05+Z/sz0Z35V/Zn5pacpU6ZMmTJlypQpU6ZMCXIihQkZhAsD7y9XZCJ88uIB3/nkNV69vsf5dEKmBFQt/7BuCgB+/OoVckooiUDurKKnNxauO2c+AiKejjtGRbrz3UosAJZueA8EHYk7qASgLIs6pxblewSYjYC0t+HXu7Mdo3FriK4dyzT43w5Q1JtI3NAHGQGzvdNfWVoqemZFrdWZPoG5GnBm9xcfS3+OAxZtjBHMMVDMgZg4FmAPUO3BpN5+ByR6BN+6rnq/IXwC0wGj2Ua0AR9rBDlan11JBCTKhpt7BG4CZXSbeE7HeQ+scWIlCqDRwQ6M76MEAYZGv2c6BmFHfbjuaq3Ytg3LsvTSAMMYxwi2qIdI4jTdV3ZNoNo8UgCaNgO0FPBKajcG6HNVUHKzNlLJoGREUGXI1gEcEcb5dFJgx0jAnFOLDnTEVhy8E4GUPeAjIqhOxpjNInV6I0HbTkS2po6BxxgVGgHtEYzS92NEdScG2AizuK9EOxv73X4HwCSQtO+bXxNLv7iulGRK2LgauG1gsY21jQ/Qkjt78wHQgb0+/zEFf9+fFPBzULOvVb9vBAyjbkc5suPnCAygA8t+3RFA3PQy7H1RGnkyPOOYGJFGFrRnMYB8PMYR2Ny2DUS0W49jRGrLHpFJSeUk2K5XI/0SUiq2t1rWgWbRilh7NyIppbYX5hAArBSEPzdeH4Hcna4Ozq6j/bivnf57tNXO0/f39zahqfkBwdD8je0cze0Ygc7MWu4iJSARSsmNnWzPNoJ2XJe1VqSlQOk1YLMOtcwbtQJJ97xk7Sf4uSF9zwr9V+A/kiTUPqMoCL+3Ox2Pl3RwarNHPsfsIcuy3MxZ37cymH239nEC67aqLaRY0sZLz2hWD8qqPy1XATsLdU9m+/JEJI/2drDPaBJBfT+n43qJWUOcBDk6q4GhDNFgH/GZ8cw7st9mK7WinBbclYy8LPjq519BngAqCXkpGiVdN/C2YuX3mDLlQzL9menPTH8mXDf9menPTH/mpp0/LX9m7NP0Z6Y/4/dOf2b6M/+i/Zn5pacpU6ZMmTJlypQpU6ZMiUKEjQVP64ZvHi9Y64aPXz7g/v6EF/cnnMqCJALhDdu2oQJY7s8oZcHdkrFtq5HYQMrFXHQFUkop8KjCUdyRHd+Tykjo4I3WkJcGMhwBWCLSIrBTANz8CmHe3TtGyfnrEWBqoLXdzyI3Trk7ujQ47K1P0iNYc8nIKRs4omBB3bZdyYZqkVEcQANmjXIWQIGsMHZ3+mN/I8i6bTVg6UOZjgDKkb6tr7WIMQfo9pFRyZ8BBaKjHnLORhIoqF3ZAHnRSNhUyq48yCjeTvs79f61fjjIH+wggsleTqG9zwwQUHLRSGsD4/ekjQE4BG07JZ2rQXLODSByPXt/IxC5bVu7/kPSQfpbcLBuFZQ9FbqlQbd59LT1Co4BMNIne6SnKFDvEaQsbOBaUrDfUqg7oTBG2arNSyN72usBhG2ANjoh5MAbJfSsBKbfjTfTsREO6Gsu5axzgn1ZjQg6uV72/YjRqLqGiIBSEta12+YRsDmCr/aiLc64Jx083wgmge89dfd+A+/Duik5Q1hQ0cHbcR308cXoy9v1ylxbv472w7HNWmsDM+N6jteNUdsNzLMn8bCHHhEtuz3FwHkHwJvOzZ6PiYwOoEeSx4kCe1qLXnU7jESQ70NxrL4eDSlWMLlNtUbZIkQqqy7EiEjdsJ0sJot2JVjJG4qEVtSPD8wf3QH/yrfg/6iLkVDEwRxE3cd9P87FSOjsiTYnKXSc3uexX+PfTr643ns0Me2yQ/hZBtIoaSCQDK5akZ1tXq/XNs92lCCWtxAoMN+gdxHdq/1aQQO9nSzXM7ifa2on236C0Pvv+ycgyFmwrn29jWftzZkl+6hj3xd1HTO4WoYF9PtySsi5gLISv55RxqlUirZNSW1Y+p4b98mR7PO5irYQ++k69XOGEKLDU0IJ+8L4eS1Gx6eUdF6oR81n29fHL4b4czVjgBI1IELKCa8/foW37x6xXivqxri/vwMLW2aCX0w+TvkLLtOfmf6Mvj39menPdH1PfyZoY3j+XyB/xuVPy5/B9GemP+N6mf4MgOnP/Fn6M/NLT1OmTJkyZcqUKVOmTJkS5FoFl1px3RT8vDsvOJ9POJ8XdZhBuG4buG6otSIXjfwsOTWQBDBwlQbQHbcg4whm3QAe5Hfu07GPoNIoRKRAdHB8w5tAcN4j2NJAFCiQfQOQiIFCina2dse+j054G4+/56hi652DZWzlEqgBVwG6R0r7tuNzo0Me+9GfIm1eAGpAc++XPUciCGcAAjo4v+t16AOH91pku1gEIYuWtoiAvg8rgFEjeBXnA24OBuwQPBLxOFW9pxDXx4RnCgwE1NczJVByEqFH/AIWZQzCSCSMuo/jPpIIxB7Nzzj2MVpcRJCQbA4CCOU6RLBdA19aVDuC3glI0stlQBo8bwAcBb3GB1AjE1zfcQzxeXGxOUEjBg4iAJRxnqKtk2jEqZNVEEEuz8E3HX0dSTslFPVvjxbHoD+XMQK7vU4EpKzgsfeflTyL42VmG5vd5ygltFwBElBZDBQ3LZr9tfU1AO7SjPW5/c5tgwGk9rO9G2xutNtxnFGOwOq23xz0Zdyz454/EjnxOlcWSSgjAtyskaNuUiAsxz7EaMtI4LlUi6b1VxzQ7zYvgJFi5HZFB2P2MTixIGEPjzq3zAASxmIryjmH0A/ff/cEy7gf+Gs6/n2WACUnOiEZxz+Cx/v9ykqYoA/NyZpb/dPN3MZ/RwQ6oLy22/zufddCol6WQwSlLGDZl49w/QG6zvRaQEtsqD5gUwgRJd7jSUpOQOme0CObnYD32bGzMgLoQjuSYgTdY6YAny8H0720UiceNK4+G0ngGUO8q033/juFqHn42NCJ1vAvzsuou1ty9fYzihuCBAMVcaL/do94bi+JWSjGPml2F9/X+z4O2N5IhPPpBK6Cy7ph3aruE6QZC6ZM+UUy/Znpz0x/Zvoz05+x16c/016Ln9Geu376M9Ofmf7M9Gdcftn8mfmlpylTpkyZMmXKlClTpkwJ8sSCp2sFC+PuVPDq5Qvc35+wlAwhYK2M63VFrRsgjI/uHgxIZTDvwcOxvAOwB3aO5AbsjU4uQqkCAx2fA8FugC7phL2XKBjBMiJqKZeZFUWOEa5kwLG37FG3se9Hv0eJkUt7wF0dfo/gJlhEHujQ+Xd0fQRnKldk8tIV3gd7Hx2MTDYn7vQ7KdEDnaiNsZElAVvd6c4BYNezRaAB3QZYPHost+c50E/U23tWh+KpvaUBQhRKNERA0IUtCpqIOvHSrmUwermKZAByRQWzgGvV/hrouq4rSik3c+fP8+gxjygdyZqe5vsWMDlK4+2/t7IQ1ImvBkoDGiUXdOXgUyM1Grm0J2hqrWgRv0R74Ec0At/wMSNnSCPSpPdllBEQavNJmmJ8nNvdOk+pRcnDQMEGhCHO27h3WAeh6db9ud4fL2+h0Z6uo33ZhFHv/UV9PSNp/DKpDlgqCpW9jddANIKQqdt1oqxlJbS4CIQNlFTGDySD/hHJVV/nDAnlBsiB0Tb+uEd0gHIE9t1Go33uSsWEuTv6fXxtBERHMsyJ3pw6MNoiKqUTdWN7fRxx3jrBE68bU9Q3ADaMf4yOduyTYFkDUnJVa5kO39NS2tm7BADXCTlYtgp9nw+jsQEFPsVe6ySxtL0HgLYn6OSmA6o5A7u1nax7BJGKlLzMgz9PsySI7DMyjOdjLCGyP0cBPTd6OaCj9efzGe+NmRV2RJWPhzSLRiTnm9UmsmwcqZ0716uuYULfz9rPpNQpi9mTBB2KYBPG6Xw24xmzsniJBgGRtDH7XMFs09ewz10ppelj/Hzjv/s8uY69PJBfsyeACEruqa5qraCcWzaJZNHPCRotvG5bYLQIiQAO/YnzOpLWfjY1Eh+DjcbPGHpQd1ICgo0rip/hg8TPIUfnceyPXxdLnxztKTkn5Bf3OK0b3j0+YRW22T/Yr6dMGWT6M9Of6dqe/sz0ZzD9menPYJTpz0x/xu+b/sz0Z+K4fpn9mfmlpylTpkyZMmXKlClTpkwJIkhImbCkgpcvX+DViweIVDBXbLViXbWcwVIWnEtR4MJTOueehtvBzSNA/LnoUQd2Ruevu8NBjkA9HICPCKCRAf8RxKBABHh0Y85ZgbSDUgFSWUGMRI0UOXLOW3+Aljp8TNU83hcd5qYr6uCBA0N+77purSyFP/d0OjUAxYFL/dPQrUiIGHDjjda6oW6MnAuWUpS48IhAixiOgJNhagposSBZuYw4L9XmNIJooIRMHSSLc7EnQiIIz7unOogYgYk4335lBOAIQApgZXxdf8Zow32Jkm3bWhp9fy2mzB/Jgpu+BPAkjs8Bsj0Vpnrx50Sbyikhp4R1XVEjRSUatQbq/XaAloggDFQe02fTTo+7Lgg3UExEUIVRrS+eyn0E2ceSAS4tUhVHa1j7mik1gNXfyzkpqWRtR3Br2ypyprAeGLWq/q/XK+7v71CKg99ocwP0SNEIbkZipZTSAUDQzg4S9VT2ce7JAGUnRcBscexoUY+FCEgZaPtPfz/aRF//hJQaVhin2q7tkdj99T7WaGsxWtmfMQKD/vsOvB1ILW+bmy3kHWge74tEhJeK8WjI9gzp5NIeOL2N8I4SI1J1L1x3dj+us23bWn9ySkDKYGGs24ZaGadSkJOWr/GyKDqvaXcuxfYgonOcx4j8W0IQUPtnyK69nBLYS9pAwenKDMAzPxDAgiwaRdv6H+Zco+L12ctyOrSHGI076nRnw/BzuK+tODbXt9tXBIJ9DY1lb0YiKVG6meO6bdhsfyqpaHkb68BpWYxo5p29+5kZn+lr3NdUooSck2Z1YC0j0MBxFly3i5U0CmA1sN+o2llJGLMqeMkDb9PPCQfAvV8paXmEdV3bHuPlhPR9arZ2uVyaXs+nEy7rRbNdQJBSAQmQQRbdLzfPinPqOo9rcdxnRpItZhTx949A/F32jbB2e7kdwrZVdGLPS7ns24l7cPxbnyEgCO5OGXd3r/DuuuEnf/wnuFyvuD+dMWXKh2T6M9Ofmf7Mv1h/Zi/Tn/H3pj/zS+DP2H4w/Zmuo+nPTH9m+jOqxF82f2Z+6WnKlClTpkyZMmXKlClTgrx9eo/7U8Hd3YLzqaDWTaOOYGmMa8XptKCUBSUpgO3AMAXP2h3h5yJjRvApAlAjcNrAbOydUQc2xiik6ARH5zbnvKsfH9sD9lFekYRw3G/bqgIFrACqghTFnl+bgysiBmiIfikAUPCW9n0j69PowB8Bx+01d6KdVAh9Z2Ysp0WjwjxiL2sqc1c3BYc/AjzaRsJyyiBKlo4ZyGRRUBqcpRm3AwDTQBWglZe4mUs1EO2DCBJJA/BdTxEk2M2HKx/7NPMaBbsnCEaAYXwvaBPZwWcHMNDHlXPeRcSnlPDw8LAHugY7XpalAUQuo/3H/uwAdQNlVAcamZ1zsvElpNRtuZXcII2UE1Mv78BDjaCLa0nABvp1EoKop5PPOSs4ZH9jB+IJtq2iLLnZ8A1AZHYQAR+y/cF1nsJcMDNSzsgOwJvecgDu+1rSsUVyL+f9/iGi0dw+N/q37lsiDh72PeOISHSJ0Y6jLY9z6DabUmog745vIbVV8rDYpq8+FQI0AlOJrBR06+3dAt9qEzAbybbGj8lYB4mfG0vUZfy517HswEEiTeMfI5vjtbs2bR9gYLdGQL2MTNyTIjlLMDCc+r4f14+DxA5e+9i9PQdjGymEnuQhpYylLJr1QtCuFwOka+UGtuuYOlBNaX+2RYJgB6ITgVJGBjSKVai9z07m2L05JVAmcLUzhAEkgcDPrarrFkpQqN2Rlk8h2L6xJ4lqILtdv0ekgY9hXDfRToioRfjuyMgg1bJKjDY0XhdfTymh2PnhhH4K+vT9Uee+20u0paZ/K9ei68muYc2G0Qh0X7vw40lJEaliXLpmehEQllza+SAi2LZtt0bjZ49SCp6eniwLyJ5g0rJZBdu6tr3Sr4vj8X/MjBcvXmDJBdXOBdlYI5OTAu7rurZ14XL7RQWLviba2eVI6rY59rlnxtPTE86nE3LpmSBEpH3ZIJ7J3XZ83/rFe8lIVEaio+1ZUvV5XHF/WvDZJx/jcrmGLw5MmXIs05+Z/sz0Z/7F+jPuQ0x/Zvozv3T+TNjzxmt3bU5/Zvoz05+Z/gz+fPsz80tPU6ZMmTJlypQpU6ZMmRJFGKel4Hxa1EljddAoASVllNN5nxbfwMAdSUDd2RsBoxvwaJDoWDbgYrg33ifo4NLu9QMSIgKPI0i+A7sMwIeDnwYeRQA89snjiFgEZMCDg6YauRwjq4JjbO2M/dnrxZ3oHrmtKbChEdrDFw6EFeQVmzMNDDaIo+PLbUxRJx2w8FINoZP+C2FHBjl404icMJbYfgO3RcEaFoBybsD8SNy0v1PC3kokABC9r66DOJ8iGg13BMw3vQUww7XofY7pux1ofM7G/LoITsb5PLq2vyTt6Qoq0/B6j8iT8Tk6tSAk06X9Mz0DtjYTaUkMEKQ3BLdmSgRiae/tCRYDBHNqcz/qwec/9q1pmjRlOTWorTEbEIdrpUdCjmsV0gHC+Ly9LXh1hRLseATMe7tjpLBfE/eHOG8RGN8RT8HuGGJz0YbeCIC4PzXwmrJvAI0NaOtoJ2J997XrfUggEvuXwOzX7sG25yLWx/1wBPWeIxAiQHoE9HV969iZGWkpfa8eyD04OOujHdrrVkOHfTuKxh1J19szQKNkmRnZCCxxIoAIkE6AaMkF1a3vm2NU/fjsqFcEckKXIAFJSTyuVc9PzxwB3cPFbInFyRJb60RmZwImt7XbPTRG28c5+kUS9fah+8Z5OCKwjtrZneth302k+7wTFG1kB2c+0NfYrn9tHaHpgEhLJIH7WnXisYoSc7URUn3H7cfV3r7jFxLGvcBfj8D/CKKnlLBua7MhJ6Pjc2LmAADtvBepSg61bCn7NQz0EjjteaRfEkDcW+1MjXt1JOP895QSFvtihevbrTjOR1xXzNXOL+8XBrm1m3HfGPciLwQFAjIRXt7f4VQK1nXM9DFlyiDTn5n+zPRnMP2Z6c9Mf2b6M9Ofmf7M9Gf+4vgz80tPU6ZMmTJlypQpU6ZMmRLkVAruzictK2DgLpFGLJacW7ppByT5wIn3FPwj+LRzfA8A+/jec9eM4ORzAES/3sGc3raD9w5oswHruyhlB3qwd2QppwaGA1pCIV6zWaQWGaKnIIGBBtIjuSJQ+YtIDpfm/DMDBlzF6PAGZFv7KcdIbNfBAdHiYFj2CEuBVI2sBnkkoAGVHiKNW+ceQIv0a6nXDbxjqQoCi0BYUFFNv/u5o2Q6D//tUBu92gDT3KJhffzkzwgkQ7L2dW4ccNXnFO9f6wna/ev1auB4buCFA6Suc5+TMVrUCYYRHG4jcFBKOrCv86kAS7eJ3sY+Mjyk6CZAkkYGN3Uxg2tV4DxlI/x6JKA4SeBAl6ATBXILyo0RfDfgXwCeYv9c19mxO1G9p0y4Xq+6zrAH6KN9jnvBqFMHzh009/mpdYNHN3Yw7Nbu/adHiwIhpXwgCEawz9tkAOT9ESVmJIBq0ta8IOfS2vf7kwFpEWgbbcVJot73fdS6xvlq6YhAUbT5GYG3qMMjEPdI4vUjmXJkD6UUtVlSsq0Qofq6JEGhDpwr8L3PVLFrHx021q2Ad3oa+94iVamD7zFaVIFUQGQDbxtqEpTTSYF38bW4H68+p+si2sFIWMS5a3urXyPSIn7BjI21FAWCTtu5YP2oYW9BSrqOqe8TTTOEHu1LezttlhTW2Kjvo2uOzteYESHuTfG9OP4Y5T6C2LDet88atnYShS8dhPkbM+Rx7MfORmy+yM53B/DbezZPiVqZnDjX2q9uTxR0Ef8dnQWxvBQz699u6+182+s6tnc6nZo+mfuXDJIRSwI9Q6O+Xc9+jessFSPSTV/NFknXRxrmnZmRRIkFArDcP+jZaOe2RpxjR9hF3Slh6bMa91i0s+lozYzz3M9F6GcOGHcnjLtTwXkp2LZ/NuJryl9cmf7M9GemPzP9menPTH8myvRnpj8z/Znpz/yq+zPzS09TpkyZMmXKlClTpkyZEuTHP/w2CJo2+OnpPXJKuDvfIacE2So4UwNjWeoOPDyS0ZEcfz8EyWm49iBWEDAnfAD43Fl2wJSSaKp1OHDpUYohApkUaGHRFMjer5L3NeWta61EQWXGFtKMi1gk9M4JJgOytwD8oPVJQrptBxR3YKEHjjYwCIAQNNhLoyJHnRARciKUknekhIJfBihSAgVAoYEYwkgeeZmz3mMp0AkK7mp/3GmHtVtBlBvR4qDBtm1tbjMISBYN2jAzBwEF5e5sY2bUbQPcrhwACsCoAgsrPPLXgRl/nk+WQFBN3yw9BXgyG66QvXU5KCbSyzlQSN8eAI0jQNvn8XQ6tfnYtq2TJQdRda4MfU3Hs0/Z30sdxPtGwK+Bwfb3YqnhCUBGgoRg4Q0aFZgMlGPhBqqKqVlLRLCuIwqkBDopIKbTum0opLpq71lPUljBjfgBGhE5gphxPBGEuwWyCZqeX9eG9q/a+q+odYPiqrekZXxmBDpdIjEQy4NEfefc7V37SxCL8Mw2Z70dQMQj+djIuIpafTx9UfgzepYERq2ueyXyNFqXA3itUfBOoI0y7jHRlkfQO+rFdfEcqOf97DehgdX+dwR4V1ufD3f3SLb2IfuMEDK0XyHYhJEpwXdkTtBoauZdRP3NWdTW/h6ILTmj5HvgfI91vWo/zFaEuz7Gcj0uY/mJqJ9YfmKXQh/d1nIpKMuC8/kOtVZsZhs5EJLViD6S/donIlTTYyUtbRMoTj2fdRJudRvWcKKe8WEcw4fII2Zu9yzLoudkuG4kBY5IE/sD1cFw0z+ItKyNdIKtlJhtQi/0s0BqxSZWOoLCBmfkat2q7vdEyEQWJEytNBTD1q21vwPYU0JJGWyEr5+R5/O5jWu9rqBkZR1ICbG61VbmyMkyASyyHUgld1vNvRSO75L+7L6PCZzwHKWUsjsrdueLk5g2Pv9Ch+/5kOMveQC6ZwO6X5NFlYvpGwA42KLahKBWxlJsDsTLqOigifTzipIe3RZGiVkO+jme22eEhA3EFYlSK30yZcpzMv2Z6c9Mf2b6M8D0Z6Y/M/2Z6c9Mf2b6M39x/Jn5pacpU6ZMmTJlypQpU6ZMiUIZlQVbVQf7dLcgJ3WwJScDXSsSbiPkIhAB4Obv9ogBgIjXArB02LBSE72N1h46uKzgJaxuPCvAZCA+5RDlJGgR0PZEbdteEuEWgabP0CjnUkpz3ivrM6oB/dzASXQgWzrY5uPsjjusbnt31lNSIN7BTAcV3cEWb9/vodQAdteLAkoVBANYFB3H5bJqOnHEPhlgFABisWjYBEJCUkATDu4JgGxAsRENNpaxDy5Nhz5uZX0smlv6s4mATQy8F1DdQJTgjAQ58OvtAgEYtXIXYIgo+UI2R05oUM6mNovuDgC2qaDpuo0LsMhFAlEgiVKC1KpgowGAaNaooxzBVCDYtduHPVjB/K7PeO1+LbmuHSTcg7kRFI3P1zaKmgqp3vYp7/vcxTGSESRk+k6UVC8J4Kpri4xgarYBAVcH6jzqXAFAMoBII/ZCmnIDUH2NxH47KDsC2RHs7GvFozW7TYqBUUTZXovRdl3XkWyJ7/t7RyUVntu3yBcNMxhiQK3qLxcjXyzCMOcOAirhJShl2c19BCxzTiDKDSTV9ww2EwHzhpSKgW97QDbuzSMIfETUqm5jZGwnn5xceI4UVmKRwLaXWgugAESXknUPi5wn4FuWSgNtbS6FQWylPwBL36/gJ6ViZFW3lWVZGpC91g055UYkNODZx++2ybWRB8LiJtNIvgb2Brt0O46v+3tRR+t61X3ewOJk68v3AWQCcXIl6tyIIFMCcsFWNwNdvewH7+ZPMKbPt71AABJp2Sq8fbdNBiDbhlot8jop0F6tBJT3JdqGiJZRENuHKgTCVQFwUJvW52yv1rrTTwO4sxOMCioLQQnynFCrRgf7nuFtqK2myDnrHuX2Dd/PQ6R12PPbfl/0cw0LY93WTgxB4vYOIkKhjGo6YGa8e3pEzlrWoZSCZMQqpYRs/7hWI58BAbczmhQ5h0cZJ9L+92h+Qq26tnUv658bfI9cr9dGUCAlI48Ayv106VNPtodLs0XIbXQ1oWcnURKn78datoP0bBdp2Vf881CKkwEgQdqXKnJOqNKzTkT7iGS624d/qUPpZj2Tu2kKKN2SDFOmRKHpz9gzpj/zZ+vPUD8XvV1Mf2b6M9Ofmf7M9GemPzP9menP/On7M/NLT1OmTJkyZcqUKVOmTJkSpFbGum7gysh5UVDHgD5KCS2OVdDA8wiajYSAv3ZEIuyubV6+A++W4p9uI6sk3BuBeGY2YqGnAfemHbhsr1F/kwyl0kzHDjh3UM8Ba3++R9n1PhkgJuhR0XusuOvMHGoHwcieid14OnSsLnIHbiWMIoKpCppTmxOPAHa9Z0eLd8q2KO/U02lHcEjnqwNRR7r39o4A1wZ4EnpbDRhUAEZ0UPpaKz8hFgnMDUyDBP1ZN8UAbSVJFIzoBMsAuqMTA4BHj/pzdA5hIDf7uAyMbPOvrEKb6z6kvib6HO4BssbzULBHZjh/4gZ5FAEs4pbg0a8CL+/hz/Lr498evQkHfxxJJ0KSDui5xBWTAmprkJYyBQa2aZdDRHOipl+3QQfDlHBJu8g+B4GeEweK/lkIx4boDnILjOvYRiLH2z0CznfkZVhrEcx3sLgZgNkv/D0j9vZ7lv8kEEUicf88a66tn263Hj0s4WeDaG/GOYK9HyJ0dR67jbW1Fq4bbU1fRF+bCBkHyCrLmC6SE4Fm/ATfBySoUOD/OVmZ7FoHfNv+PIyxEaKJkJBbFC1hH3Ua7yPqe6cTB5Gw+pCM19zajWexgO1lRjCzgCFaYsj1Gu5xcDQbOd+6N4xz90x/rvR9zwFfkQ7ga34MaRGwSsRQf85gO96enjNKmNaqmUGWZemEs/fD9HG0jneEVFsb1mnel+ZJRGBYBC+7/fdDw08o32PbPm1KyLYveYMOSOu9pnOfmzRE1gtQxUgMu59bz1TXZSn7fSP3yHrfd/3shq8XQfus4e+12R/2CbVX3yf6ubYjVds+Q+CUtJRT1IOtJYh0Itef1ewt7G3wL0Fw21XaZx4CkvS1YzvUbhdq57kIGKwR6Slhl40miH92i3/7+Hsn9+scB+1MmTLKNv2Z6c/8ufBnuPdp+jOY/sztXtNfn/7M9GduP+dPf2b6M9OfwfRn/nvI/NLTlClTpkyZMmXKlClTpgS5XFeNtqGE+7s7LBZFBUEDoT1qaIwAA4ARiDoG9fbXw9q3F7QNNoDByw9AWsR0dyI9zfgAFiVqkZsODBE8khlowLdIBwqIkCkrKOBEAZFFWHJzWBtYfkB0uDOM4MD708T05umbe58dOCeNBCOrIx9AIdWJRfCmHvHUyl4ALXLM54fZkAg4qOsO+h7sayANMyCdSOnz2qMUYxSxtxH/jXPNIq2/bW5AEGGLAOvgUQrgkYi06LdsqcYFANnfRAlCvbyDp933qGpXq8HpDT/N2UEXNLtRDEearYgBXFUEwj1iEOJEAUANBHVgUeDprxtgPZIEMtgokUWt239JiYpoyz0S2PXiQEoGsNf1EWgYgU62CEQHWjOlAHiZlUiwViJbL9LwmJxSg+aUDEu7Z8P07brx/jdbG8BCGuY8jiWuLxHBsizt+hgZ6v9qZeS8H7uD8R08pxsdxf1oLEsxkpv++tjH1qaPgVKL+Iw22Ag+B4BJbdHHdNSP3s8UML9eNka3mwi++Zy5fulGl2N5DN/HvQ0vX+FN+h4zkihd972kjPcghd99/SaiFqXMVVPsk7NkFAjIHe9AWHIBPArS9mnAomwt6ndZlp2+AC35kor1Y6tKjll07bZtDdwvpVgpgRGg7EBtbHckWBzkPCIgXN9sytB1Awgb2Wz7fEvRH3TGLCBhpFOGIBDR4RkeSepjyW3i/Pzw/UPPGUq6rtnWKIhsz+tER4wCb9kWQueWnHGpjFpXrNcVOSnxo0B911+0O2/Hz79GruWh1AN1wFl1nxvAzdKjoXd7CXr3YvkYABrpDmnlVPbEIfVSIkZmlmXRLxrY65W5nU3EoiWwbC/KlHB/f2/RxGFN5ARUy1Zi50bbj4w8BBkRi/63zpnrzfpTin0GsV6Gw9SJkWrnYkrJsoEIdhe6rTKj5EUj7v0zTkqQ4csGTjyICCTpyehkgcBtB/alEbTztu85trew6kASqR2njEjo+vXruqrthlIocV9q+yrbWgxzNmXKh2T6M9OfAaY/M/2Z6c9Mfwb29/RnYrvTn5n+zPRnfjX9mfmlpylTpkyZMmXKlClTpkwJ8v7dO9ydFpxPGSerPc8ETU+NvAP3RkDlKELM3x/BOfi/UcgiCROQJCEb+C0ArusKAKFGOsBcG5jggHJzcGEQiUQ4FOigoYO9/XUif9dIgQBYO7AH6sBfA3qJFBDPqUWbVdHSES1amjXlMaCgvo5XQb4EjQCDXZvcSdanojqXYs9LBEuhLSg5Y7GyFdu2af+NKClWbsIB5jgHOqbuaisWtAfARPZzStTJGb/O3/f0/j45QujAjhAAjzKz+anVwBWgw2r+HNq150AGxzGwgB1TdJDPQEYhKw3hJAo0OnNZFiUquIOfSrB46Qg0cEPfs/TX0Z4cnIG09OMKUCvw3yLj4M8I4CsMLM09PTxDMdBIEESQsouBOyJgrlomwP82kCXqr92VEk6n0w2JQ7JfozkAlcwOROt4s9s8NFJP+x4i2IlC/xV4RVtDvU8RSz8iEx1IjGOJMgKxERzvwHnaAbver6NI7JEEeK5fz/3dwMRa4RwLEUE23XM4EXLu+wkMGFZ91V27R2C0A2cj8NxhUY8872NQm6tQUDHd9Nn7O0bhu863rc+pExmu41sFYrduQISlFAO5exmW7OeGkyOUIaE9vlYFy5tOw/6oHbx5+hHx5jr0zBhODEfCzPdg319u98RepsCvi/o/En+uXxcBciWLpE9ZeN8BT03j3/sKFt0ngU6GCpSsTB20j8+LBGsD0mMJHiL4ZHrZIrF2EsX1wjvdRAKESC35lDMyTkgg1HVTgtFsdZyLpgNr4+7uDuu67sg+hH0kEvcKsPe9Zds2LMuy0+9W+zo6nU57HZPpjLrtj+QloEA7W6YKPS/RbDkBVjKJsTFjgZPaAG9b/3KAXbdum0Zbo5fTqXWDbBLW2IZVVu1v+4zRCVkn+HwPdiIwEiOAAvVr3bBuFYm0nMlyPoFFsBoZU3K28l0KgVfpX7JI1kb8TKcZafQJa60oJSEZcaRlt2r/TkejjQlI2H3eIUpI+QygtnW3LHfoZDe6vYefcV52Z5Z+sMHhPjRlyoFMf2b6M3Hupj8z/Znpz+DZv6c/g926mf7M9GfGuZj+zPRnfln8mfmlpylTpkyZMmXKlClTpkwJ8nB/h/vzCUvJBuBS++nyoUix0fmOJQtuIvJq1UgeE4L5gYYckwGMtUXm9chXEekRQYGE4OBUUvi5By1CeuP4bAeCyUBQB7psDJUZ5EGpBvYJdx14FA8byFBFsPGGRAmZQtRyiPCqtUKSQEhTfluJeNWd9IjsnAtSQojkUvC2QPvD5ryDFETKlNVxFwU+UrI01cId0LC+JvQ5GwGzOKdHYNlRFGcbIwEkHmHKICSfjKbvlJLNxe2z3H6ADtRFMKwBXz6nIYqPSEkX5zOSKHCoAFEATg38rluFCBl5c2vXInqNv56Lllrw+Rey6HvmbkPiEbqua4uyA1mUfy8pUNu8+/X+z8afCgBWAgQxErlDJk0vBgBy5aYL16XbqYN/DQhNeXctuKLYGPXeihidWyvvwJ7e9j5iOgKXCnh34DGuvxiZ63ZwtL8czUvcc0aAKaYaj++NgD+AFqEX+xLBs/issU+1VqSSdd3XCnLykTWlfM4Zwqy2zqwRmGE8/hyfnxFsdh1HYLz/nvdzmRO2zQrJhHU1Ro06EBzv9bUnoiRDnxvs1n4E3X2j7SCy7sMkULKzMtjXvRGXfp1HvZLZxY4EMlt3o/M9w6WUglLKjb04iVKZlSgUQaH9PpXSHnT1vdjtRUkut5meZSBeO5IUUbxPXpKl8p6o7vpWILadtdYn35OJrEISNGOGPk50L4XuEbkkyOZEcNqBrWp3oVxSJCKCTVHq56iv17gXx/tERKPOc0ZZlpt95YjoHEkT/71aOYmol3ENj0TWSG6NJJq/JsJh3SrBOvbFy6jC966k5YAa9E0WwZyhJIjpwveJbHbS7MBtzcyttn7ZM5l3oPy2rhqpbmR3KUVXhXTCKtl5tZnN+br1UhlOWIgI1nXdf1YjUkLI+2Dngp6TDLL1E3W9yxBRK4g1HpoBXC4XLYHhxDk7EQOrXUWAOBHey7/knDB+uQBAOBdSIyGibYh45gLCxqLnlB/doeTXlClHMv2Z6c+096Y/s7PXv1D+jEx/Jl43/Zm/yP7MPkvZ9GemPzP9mV9Nf2Z+6WnKlClTpkyZMmXKlClTgtyfTziVomCpAbEjgIGDv4/kFrzZv9+cZWDnFCuW3AEtT0vvYFEE+BV6NxfYAXv7X8OBA0HQnu3gmI/Fka4GtEoHTc3RhoG7bXxQAEd1YaBL9brxGsXLIrCYZwUbCP1ZrQ31sF0PDnQ3RNb+TKmD4pAwB6wgFAuj5KJAG6UGSjWSJ/rU1Ia40wms7y3iiT7siI8graca15/ebuiv6yCAouSKGPoS244AlJg9xHISXsZBYnSVdPAzCSGVHt3nY1QixYE47fcIBKPNqCI5IgBVBhKantSWOknlxIgCcCHVu5EFInKwrhxAiyB71yGbXbqVO2DoUgNQlikbUCuqm2HORoA9Ai5ihuHgVCtFArK5DEQNuo1EvbX3sLcxB95ugEAHUamTCON1u/6Fn63lA4IApmcM743Xjj9HInQEhEeiAkBL78+ikYVxT6lczXbUxpTQU+JTQjvjeEVkV7rAn51Sjzgfx8FxjxrmKEqycjFK3LQ7DGDt9te2obAmox7GiMabM8KAxEhm6fkS/76NVnXw8Wi+jgDoZHu1WEQ2jfvMYKexvRs9eQPjnO8AZi9rs29PSxB0oFPLqNh98CbESJL9+Nuzkp850vZMYUGtG6hqJoe251a2yF3tclu3LOAqu5IHfQ0rCR1tF2RnlO0x3i8nBqIeR+LpaG6O9DvaTHzt6F5gT9B4KY/xfZdIeLkNN8XTsM7a+9JsxftCvu9KL50x9izuE042ELRsDsiyfQjDv/kQz8F2X60QshIdIsjh/Cf0zzQCtCh2EQGT00R7mxUYSZmSlenoB73Y3Po5HHW+21uc5IVGVTdCQPxLE9Yee0kn66HvbyyQRJ1QIWqkVyRsR7sf9/P2PPssISJA7eTZuP9NmTLK9GemPzP9menPAAifY6Y/M/2Z6c9Mf2b6M+O4pj/zq+XPzC89TZkyZcqUKVOmTJkyZUqQ+/OijizQUkcDHegbnf3RqY9ArohGUN26/Q78dsDEARWNOmMQqQNZubZomRYta5BLTprO2MGsyrWl2Td/vIM9of8iaCCIdTo42h61qeBPogRJmrqcDFjx9h0wzl6KAh4BZwC54/LiYHIvdTE6xJW13QgegxxI03sd5Ok/zNEnBZWSJCy5dAc6KQhJUNAjZQUwxdp2MIRg6cCD560A1kAADFHREXBpoCoUjBAD6/ReBaEjQdDsBAZsoQNB3l5Max7BBI3y62NvNiWDvbITEzqeUiwSVHpUb5wGJwGIbiO+tV+pXVMrI5luAQPkqDfmkYhEgiSC4qCQge4QQaY9aWGME4j2kc9Oku1tJgUDUyXWGsLqbS6rPYsGEHbbtqbnFu0YwMAOgDn4aGUgQn8iqDZKm0sDqmgAAOOzID3qL6WEZNGPHp3ah3QL7PvvI4ApvsgNBEd8PbQVSYAPEWI03B+BSzL7rk5oCoAldbCRBatFloMU7NvYbNuWeJy7EZy9Xq+71zoo3+4A0T5yOudlt/V59GjvP7U2eqYA3WdyTvBU9PH1SAJFsC9mMfBnpJSMHCNI0o6wLSlmRi4lkG7HYOEILncRS53f94NEhFSUIK0+RiRI1muSZdB4rv3dPuaHR9uf9qSIk3+eGr8gt2wTMH3Uytjqhlor7u7utC0/l8zmnahN4bnCcc8V+1uJJGbBel1BIJxOCSnrM+u2Qdgt0TM/MJgFzBtOpxM0K4W2RURWKoehBqp7IjjB0XFhLRUkEFC+/YLASGodfS7wa9y243zlnHd289y6dNuNbecQneyv7SL1BUZ6+j7VSZO+L9l5JKJ6tINaSf1eMgMG3qt2YYD3PhNEShkAg6vbmmU58ewGRtwkEBDITyICb/aZh7QcRGXVdyKNhGeuemaEdcqi5IV3atT3ZiUqcsqtr3oGh/MwrONY+sNJArfRxSLfmRmw8TDreyKCU86W6YUgZIQs3HbISh1JJ/EPzoHx88XRvPrnxKh36Yf/lCmHMv2Z6c/YDE1/ZrTa6c+0MUx/Zvozrpd/8f7M/sst05+Z/sz0Z6Y/86ch80tPU6ZMmTJlypQpU6ZMmTJKAKGBDqiLRRpG0B3AjYPfomcA5GJgNzzaagBmLe04EbW00O4UMtcd8OVgasoZJSdkJPDmjiVrRJCDm8l6786pPU8dXgNCIUhJo9i8LEJKhMqCjRlgB1VaDBKEUgOQAKAkrTtfGqAqjv80UJyFlQQwYC6WX4j6c+U40Jh3IKmm+u7AbJ+slLU8wZ2RCj62RvJYu0RkZQXQUl63VNEHZM9IEHTgeH/d7m9AAQrKqCCLAnbcjRsAM8oIBClY2THwXfkAA0y2bQ0R09w4jtb3AUhaV4swhb/WAVeQRoGpuhjMDtoacJKTpl3nEMEvaB1U8CUAXGwgJWtUrBCj5NT0XEWQSBp5pEqgFv1MQo3Q8IhnBXN6JN7GWyd7iIAQOS9NT2TjtLH5emJGMvvylNwOGvn4tq2iA206B1vV9XM+n7FYKnGfm23bdiC298OppRjtHOeFkqV49zvYSrAYcebXxXscKIz9ZeZmD15yhUJ5Cie+hHqUn9tejO6lgXAZ3xtfb/bA6EAkJ1B2YkWJIjZi5XQ+o277uYv2HQmbOL7+fusCmBnrqkBwrZ5CXfeKUgrGFOydTElGRsHGuyf7fLwB+w7j3/c3kkVuR/GZqRiBaLph7G1FQfW6AxC9HIFf0wmLPv5I9DIAtqhhm2wtPUHJIlQdAMYNoeb6JwNWuWrqe18ri+/D5KSd7s2UEhJXJEqN0GKuuG4rtm3Tkim+1zRiPEHA4GrrKiVk5JbSH20VCHJOyMuCd4/vtU/s5V2UBNhqJ3zO53Nbg9f1qvMoupddLhcsS9kByWpTXR8CoAqjimi5jlCmaXOQP9i6kyI7YjLYgp+F454Qnx9B4FFG4Pjo7yNb0f5ueq6RR+T2szmSLwxBymSkZLX5shIKoJCBRZrNEYDH61Wjswl4/fo1ku2PKVmGDSORN97URpmxiWZGWErGVjcrp5Gw3J+11Y0AbMgJSmYrYwQhBuyLFgyB1IpUrDwEVyRy2+njO51Oph8930sgAVrUs7g90c0cRnIwB4KeiHBPhKuNveSyW+v+ecfPIK6MnFP7HBK/ZBDJ6EjwRnESyfc0tSPv+81HlilTjmX6M9Ofmf5MG9H0Z6Y/E98bX5/+zL9of6ZZyvRn8OfVn8H0Z6Y/80vnz8wvPU2ZMmXKlClTpkyZMmVKEAdZFaeWHfDmgMII9Ln4axoVR0gEZCgoYq52eJD+LcO9/rv2Rf9elqUBd1IZOWu7ROTocweoPLINHdQQa7MYqNkjsi1i0ECLla2ePBRcBKVWzgEAKhgsSSOERABUnE8LUhJ4NKvY+w0M0YEC7kAHgsDBfMMVeiSxgxNbBQUHPwJwIhpFBeId0E/JSRlqOgAASRalFOcwXNBnhhSghkV4fcCJH19rAE54BkShWR2TgWb27FqrAgg2jz3azVPUB1DLSaIGMmk0LVk69pQ6gO/z53+r7lS/0R6WpQNXZvANVN622vgwB1e0LQVxxAA4j55PYpFgwmCxSLgY/YsQeQyL6s8ZcOC6LwsD8TWSNq4ZbesWvG6gm7XvpIkYCBhXqc/ZcjodzmNc29QMRMmHKmK61pev12sj4DzSMYLvlDpJJMKQ2oHB3f5BBMoZ2TtrrzdwMtwTQfN1XZseHFDatk3bJYuar2pP57IoWSMeOZxbHyJJEkkPf3afw26jMaKv6TQlFGZs24YlGaEjmi0h2bAIADFwysVsWkG1ZVlwuVx241nXte2/Cvh7/yo8Ul0BdAX5S1mwLKcd2B5JVtebtxXBt06GNlquWY421QkK34ui7UVdeUaDBkxC106yVpi5lSgZ9/qo6/j6zbXGrREROFF/DbYuAd0b9BWHw9v4Y799LARodGeLItcm17q1KG/ELTAREmXltRxMNs2lsiAr542tViQjIHLOYGJUVGuCwtrXqFdmBkrW7BJG/JGR0ZSTrXMl4pWw0H0E9jvtElhY9LGVJdifsXZe+xnQSCnppQSIgMpW0sIA20QKjIMAs884Xxxei2tznOf40/dGt52m4hjxPNhBfD+8ibwscFKApZ+5OQGUgFo3P6TAdt4SlNj2o4DbZxbdqzsAnoB1RTIgf902VDUFVVUFKnQMS1nAtbY3hdAihFkYteqc6FoBFoveT7ZrC5SMEtIHZCJUOy8AzciSctaSEr6v2Tw5aa3kRWokVddTQiI9V728hmdP8M9vLRK7naHh8wc64UL+eYoEqEoytbk1Mrt/humEq1/j+8a2Kdmpr1sENqR9FnBzjH2YMuVDMv2Z6c9Mf2b6M9Ofmf7M9GemPzP9menP/Hn1Z/Yn25+OzC89TZkyZcqUKVOmTJkyZUoQMrChgccHgA6wB2/G9xRUtSgcA1r8n91sTq09im7b8954VFUELtXp7aUX3CHOAbjrABc9+9NLAvRuMRjaZ4O2b8aoQJL+3Z3p/TWJkoGj0vSYDGh1oMbBMge6PHpLo5yoAZ0wMKZFOIpHmIvNjcO4Hjudmj5GV5oNDKFhvvaiqZwb0eL6QgewR53sldjgxN5fEUCcAEEDbxCAAmCIfobpcQANuWrK/ZYm3X5vKdo92lX2KevtFyWRpAMcEXCMUKICJrclAhzsUJtNZucWSQeocVAnysAdCEezPVtn1hdRhmRUY7PPI1LukKhzcDyC2jaVLOyZ3rW/4V5p61Fu5jf2B3AShRpg6HKUzp8t+pCFG/AVUVZfBxABsuo7kgR9nm7tzm3liLzy+x22pXD/SETG8Y+AYwQwI1lwRBr4nicptX2ojdielcNaopRATjYaadFJzH1UtJMkUSJYFvvdiaNuP5E0iH0edRo4G507hvVnT9j15XQ7N0dtN53vnrWPkB3bifYZ53o/dxT+31puvzFzA7Ep0Y0eYj8AzVZAIm1/dwpXBEh9YwNJ3zvEU+GLk2ES9jXrj+11DoLv+mGgcd8n+5pgEYArSingTQlKMiK8VrG1PeqFQHRbLmE/F9LOk1HHvscTM5B01Sbfr8jIV9srFVz3Ifb1MJKOox3s9vMD8P85e/Vr4pobXwNEyZXwgaPtXaZqP9tFlGjWslK0G4vA7ID8WiNZSJBLRrLSQxzGkrDfe7OXwnJ9WNYVhOvI5jrZ+7Hj/iUIEc3SEsuJ+BnuXxBobQFWSsLBfC01lYh2c+7zOa5TjWbOOwJ6nD8nIvz+BC8jQkp+9Y8P8CjmlG6zJsR593Ux2oM+s5+bUYT3n9+mTBll+jPTn5n+zPRnRpn+zPRnpj9jT53+zPRnpj/zZ+7P8D8Hf2Z+6WnKlClTpkyZMmXKlClTgqREFrHTU/97WnZPAX0EI94AH+4YG5DvMbMNiICCUA0ID8BPBAFGwGFZFkA8DfqKlHIDsTwalQ2wAfaRwBFIU4e0gxthJN4lBS0NgVcSQp1ysRi/Uix6TEjr0lN37hMSGLUB9gmELEoesAgqGFW4pXNu0eSm4EgSgDRSWEEj156mHgd6uv0RLHK9oOlb28pISM+BwQZsieAmHf9urg/ubWCNPUvIAR4vJZEbsCAGjEaw0FOUAwBzghDfzFk1kgDQqDGP5NNI5gAkwQHOEKHZwNQB4IUTQDpuvTa3+dT+7AGJSIQpEARAuNmKRos1uMmi7rx/SSPEBAr8yK0VEtEOQPWfDubFyNS49kYgzgEjLZVikZiUQLm3F+c1trm3C2ljG4kIQAkDj7j165kZm5V0WUpp63MH7Lu9VNGMAzBCLR2XYCDqUbn+vKgLM5ZGVHlEIAc7im2Nv4/kSXxmDRGIUU8xEhRA3ycH203DXDoozGanntLfweRIEoy6iH0rpexANl1XfV4jyeH2E0tzjMQqMxSElg6EK4Hh9lJv+nNkR1FHdgOiHJWYcVuOZEPUQRtTyNqQAugLoNGjbnst8jn0NZJssbyLCJCW1NZjO4esTWGxp+nZxh5VzwoYV2bkxeajVoAFp2VRQNoiUN2exqhfPxv9d7UBwrkUVNRBr2htxTHGEiVRd/ssDeFMtWjYscxDtGtKCZRMr16aQLychGd76PMVI6Gfs4c9sN/HEtffaLM+jhjtP5aZqCKQfowYOM+NSPdvK+gZxdjWFZyTRq2TRSWLl6bR89czpyhpDJxOZ3smG1Hqe6I+IK5h71tKSfdi2Ww/ApKfNY2RV43GbDTM3MqotPPMbJycXBb/W7F6jz72NVHZymWg612vpd05zMyoXHGX73bnT4xajzbmpEn7QomIlq+wzyet/8JgTjeZXeL+4eONz8g5gTnBP+GIpLaFHJ1RU6aMMv2Z6c9Mf2b6M9Ofmf7ML5s/A1tH05+Z/sz0Z6Y/8z9E5peepkyZMmXKlClTpkyZMmUQMmeVSOupj2DNCFTpPQFwQ/MbNdqH1dlu4Bq0/Ug3RABjlMvlAhGx2u4JbOBP6yy6Q7ytGzxcyMFiGp7Ra7z7ndbVCO6JQGrFcjopIC+MWjcQJSxLQfHo7MoNINE29sCTiAbAtsgr00miAsam15nTnrJdxfr8DlZ3AmXd1vaeX+pqUN2YdonAATgwrx0VAqaKHIClpntRMsfBqpJzizQm0oioHfgC3GRb0GoYgs2iubzflBKu29Yj3TNhq9zAFREgp2L94R2o64C8CMBZ2jNbynYJfS5FyREARZKmRyeySGorvWDd8vEzK9ij6bVTA5VHcKuNm3oUnRID+pqn93dwZIzMtuAxJADZgU0jgSpRG9cOFHZ9+d/eN2Bnxw6aRrZBSSW1Al5V91SKlmkIwCQz4+npSVOYL0sDjZSE0+dDoLaXEignlJSwnE4N+L5er2Z7ff24jnPJAHeQ3MV2Be2nvZUoIZMSfTfAcAA6c844nx2s6wBWnCtBX0P6urZRSh7AqA6SHZEjDu66xChmt50bcibtQbEG6Nk8Xi9XAwMJhQjX63VHoDhQuCwLlmW5IaminYy/x3HE/Tr2uZTS+nekuwjc11p3ALdft1sTdk+8b+xHFD7Yf+J6icTX2J/Y1wacEoFrDfsVNRKpLAuqlQkZQWcnWLZt03ldCgRWRCFl/QcvM2KkRlkA2w+LkUfMCpQ7CZoEINtPltPSxuy6Hsm/mFlgqxViqfq5MlYA8CwDm7TSDnF+Hcwd2x3P6gjwEnQfugad5ZgdwM5PZgH5erS9NZGVXTIiPSctizEC45EIHuduJACfi5JOKWnJA2ZszMil6FkEzZThX0IQ1/FW3WhsftkI89A/oJUYIlgZH0bbZzU7iREhliVDAXuGVIt6zvFzTbZ9hnBELnOtQCA1bs5eHXUbe1w7OWXrn5VzyXsoW0TPkEQ9A4AOXz8D1LppqalasSxLI9RIWPfbnFvb9/f3O3sBdN84+uwnTsKifzngdDrt9hMlxPxzFbd9Lpbf8ev8s2a3XSc8IhHkx+1BRowpUw5k+jPTn5n+zPRnpj8z/Rngl8ufiW1Mf2b6M9Ofmf7Mfx+ZX3qaMmXKlClTpkyZMmXKlCDuJENuSQB3+P1vd2ZHh96Be+ZqKeiHSKEWCUQY/bzoOHqb8e9aq4Ib2eq/swM/gioMIo1AStZ2A0O1sV2bLYosgEctFXJSgJbQQc+cM0rOmu4dhG2rwXlO6pTXatG7DMq5gSxAVTCbqJWQKCmjct3ppjbUW4EqIYtoEnX2Nxs/UYIkBek9+hPQCDCYDutaOzArCOUyCEwCrlsD13XuySLedB423jpJAAWxRSy6doxGRQd8RTqQ7+07uC4AtqqAB9cIBAtQyIBjj5rT5xEIFQqOM2L0scWDJUBKgggrqE5Jo9gNOBMI1uuGlACIRXkxN5AjJU0HnqD6dMApB1sGgJRz06fUITqUqAH/wgzZagOkHWTnyjb3HgsnTScRQG4A5rI0AqmvMdxGUotAqqbtd+6NCSjJ1oEAZKDwGIEWxUFeX+ct8tjWScpJ+T6oDXi6c79WI9kYddNouLwsOh4CUNWmk9m/i4N6nAiLERhxcBHMH6N5Y4Sk624cjzKeRvqJRmBv6JGGEVyNJKEDyP73tm27a+MzY9/ia/4MEQePvTsKtgJoKedha4aMgPDn+s99ZOu+BASwBx29L/HaMbo4Xufz4BLtI+778XljNHPUXUppN2+jvnx88dyIZA4RNANGA037c57rA6Drk0Y7MYA5Xj/ai0f155x3Z1y/xuZHcutb1Jdns8hk8ykAlXRsB6Fd18sukpigpBoZocnQLBZJS1UArFG16bZ9J5bi83wujzIS+J6TU9IiQKFPfo0T5LAzhiQBBvpSBP6ldX9nf3FNRGJgtO04HyMhtSdujUD2ubOoWY9erlsFUdL9fdMvwREUMPe9O/mea7JbB6LnWBsWM9zKyM9PJ7QEWNcrspGunHhHlMXPGc+VQtBx9rEy93NPP4QZOWuy2J7qOmwkGXp2lUiUpZRAC1qmBamqH2/DCU7vY9S777G11t3+GPfdNiY7kwHc7FV+KMV+jZ8bXZQU6HvStq072/WyWWrvt2fYlClRpj8z/Rmfh+nPTH9m+jPTn5n+zPRnpj/zZ+TPYPoz/yL9mfmlpylTpkyZMmXKlClTpkwJIjBnL0T3NGeQQnSvvrF/P7zegE/pmB8R7TJxqNMprSlyAJG7g+0OanMovUSDNrJzNLXvAbhF7x8AHLno3s+RmHDxyCsii/IkS+MfgUYAII3aYRErR2FRsqHNatgGQYHbBIADIdOfZZHACjlbBYjb6E9uYdGOMzYU0nTF2r5JEjI9dxhkBK7YwsMS1FnXMZqmUurzyZoyW+83zRspEyMPfV5YNDLWSZ0GbFnEnZIuWwdYoOPLycEyVgAOCLZISAawGNzVZlXEQW+NclPwwW3HI617ZNwIRErqILOTRG79LdLcbNBv/v+393dbkiRH0iAmqmbmkdUNzHxc7vIsL/gKfP8H4jk8e7E7szNAV4a7mSovRNXcM7sB8uLbPcRABaiuyowI/7HfUBEXVYn54UG4qDLNeI5zeVx7jkfPUZhzKPrQPZ3EIZv4buUgSu4x7znO9hyKX+73yyaXnn2e80TDQfh0igPYxFZ+rokgeoOiyjeSN5tDmwDOMi3QFEFk32OSSKIKMYWqAxop8uN+Vb4Sh0lofSfzn2T3JhWTpEoRKUQK/Xb/+XeKg8817EncbiJuE1VfnYspRO3x8W1dSlhOHt8WTEAEBv9C+j7b6HkN34nm58/pev5+b/nvZxvla8+19bsA8X2c/NG5n+3xvJ7n+7+LKCk6PHG/hpi32cf3DPkjfBc9vhPTeBzhKSh8v+aneLbHW545ltQWpWye73u2F5eVWyT8fn1/dM1/+J6Y0ysJ0MdakNkhJNboZ9s++/2PBIlnW3+5B7PtcpbH+/deEse0aJMW15j3mutO7ii5hv3RdeDb8f/otec5n9fOJfchQsdbv8mlFLPB1dbc4baYacEcFvtFihz5iX0CSAiwD+H8mxCV/SExl2/RBXvffV53igZfxta3/vgyXiN9hkhemyOV2ed6nXjOQwgd2FvMyLuL8WnRNxKiAgS/Gyf+/Zj4Knb8/nrzPF/vLdec+3dfHwh5HvPLGrmP/3VteeJvjp1C4Rsqnql4puKZimeAimcSFc9UPFPxTMUzz/74PzWe+bauVDzzf1w8Uw89FQqFQqFQKBQKhcJ3CMsX4FuQ+D1gc7MvIfoz4HMy5snJMuBrLdLTYxOT6QzeBKoKAKZcXmt9ca0BSWRH+nXVcG0KtAHu4YoOVyz8UXRiE+i3M0oAeDqBETSu305pCFgCIs7TWoMEmb/cbvLJPQh57DIGCMJ4u7AcMHG0RxNKXIsFOUYHm9zuVLPtgnVz2Fr8fbS9OSBNgkDSLaCkgAFEymuAjqkguwGHm6M1ffIaJLein00crYWAkaQ/bhJg+YOYehAmT5GA5OmDzJV0XAbRIbwvD1J4XvNOEx1t5kF2m3s4oX83VCl6+FfyKd2AFmUIRus4Hw4zOigXIP67Y6akJN+J2u2mfhA90d7iX0mgp0Nu/y5cX3saebr9tnYRB3yQVPcFfRHANByfZgYH3ctmFhkBFCpZLoJ9/ywF4I/+yTmbblW60eYXp9wmjfR2pUmsD/4gKM04fnvvJKXi0kV4DW5MI/8kWXNumzJTAOfSTeo+SacZKf2Br+67PxI1/G4wXqtj9+d38vtZmuDZX3nePPbfek1b+9p330QYM4Nt4pHilyf7DApnR++81gf5/GynP3Ky5zWYGY7j+EIWfycinyR64umK3ALh4x6/k3c72wFu4SQJ9j8i7vJ3z3Ty6T5+voeft71E39f+VfB4tudToHjuTc/7tG/j/Pn6U+jJMehuXC/StZ7tGXM3j/MsD/K748efZ4mQzCCQrfs3hYKY92ZMm+/x2aYC1chSAArtuT/dB/na7s+1MOdFrs0AMKKkQO6DDTfhvvvzW1/ePYK9t5I0t9h7Yi/6JjKlMBE3e++Rgee4w7e24di37XzOvVnBfvrSBCLQ1jDNublusQPgKUJoTvEwzneLv0HQI0pByCPjQM5ZYGd2EDyyV3wj1fN6MrvE8xqf6+pXWLT/s7RHivT6u3Hzvc3cWcLneL1C+OZ9sE8aXO4x+tyr9nr++L70nCc5jnLc5z19X1Oe8wrgHHh+b8uyE99Fomc7XJdB5C6nk/vWvW/+bfGpUPhDVDxT8UzFMxXPVDxT8czzGBXPVDxz/6LimYpn/svFM/XQU6FQKBQKhUKhUCg80DarDngEkt/dK3SGMvhWSbeYQp1EexLouA8Vn3f8+PiBYH/3sVnwALhg+OvPv2K0jt4aXq1jTmwiyszQe8Oct9MvU9WTD1SslTQNA17NYBmCGURbE0VrJBJPm7wUkU3oZ1pywNGOFoReuHYAOlFFN8ECezgUjwhqk1TPRuv6+Ml3EG/uyWBAVTFao9vXfZ8jyZ1MdZ53KACG3I5OswU8yOpsmCTcFwwNLPlgyx7XcyP7OlOoe7CtIoK5LNzht5s4RYg81lykhlMgyH6BhKfWF0iU3oQmNQZ+5lqTfdAaRu8cHw8ic39GeGyzJymDfS0iijkXRgOgLIvQoFi79RDuWyGZ7b6voYnCHqQI+1HgNoMsv4l+W7fIBW1YRqJRQCJORPC0UkuQ+HkDAqZ5b8/BIvcPT5fe/fl77Ejc227vICy/E6mbtNzs+S2kJPGZRN53ki/PO6/rK0ET93dfocZQfpJHSeRHHzZAwsGuwvTlKSImMSn6dQznPbxer/275/jpvWPO+eV+trjiN2GY95ZE1h+VXUj8LiX9Q/DZa09nf19rAU7RTUSZNcD9MdsdvgxdFRCKisssiEeubx6iIHCLHch7iPM/Sf1nuYYxxi5X8Wy3fH+KSt/b9CmwPO/1+bOZ4XyfW9gFEGV3bvEiycD83XmeOI7jd4Ldcw7fruwoo/PFcXmLfnElX9ofAK7r2vebrv8/Kg/yt4hVj/W19xai83qIFNnmdK1zPPPv7+31nXxP4vz7nonYq7bIutaXexaR+7Mi6PF5jfm6HoJJ9v8Xcn2f/L6/PyJiBRQ/liwKd7c+sY/xFDmeRHde63Vd3PtV0VuHeZSMcO6t+q3NPcb7ntcie1+BANecez9UUJBJ4n7ZitI9jz1vDB4XiA0Aew2BhoDgAlfBnN8zDADnOfkdQBu6tshkwlIQuXYpYv2y3Cs4VkVyveLx5lz8bpDC/DXR+/hD9/+TIM8yC09XfgriKQglyf8ca78jyPNC4u/zuuAAjuPA6IPZU+SrK5l3yfWpS2M5pcdakN9xeC26x1uuMTlQbiE3HxTwL5/5IzHkuY7l/ezvj6p4v997bctxRzF87e8Ff0uULBS+o+KZimcqnql4Bqh4Js/9bJM89/9p8Uy2bMUzX66t4pmKZyqeQcUz/51RDz0VCoVCoVAoFAqFwgMqLYjJv0G2qMKXBZmh4WQOHjTe4wY6ed0jFbNFsM/UzPtYAsxr3jXte8Nff/sNR+v4OF740y+/YJOlQSBe1wUgXJoOzBUEA0jG3jXkGfCmM1aU17rsJujMDR6fgYPEzKIDV5UkguNO8w6nazOJW3eDi0IkCGcj+S4qQCPZPK8TCMKrtfYgHxXS0skd5QKERRiS3FzmEI3AOJx7SY5tIjcCdHfDQtxrNq/qgzijy1pbh2qD6E3qJSkHAMs244K5slxDCDBGskzgkCZwc0xbm0C8VpC8SasL37OJFdwO3SQHEpssSAf3Zuso0LTH9T7JAZJlt7t1pzaPc97jWGD424TodqrKo6/j9+LIERauScFaOb7CTa66PwPh+L/CiS1giQQVwYprT7fk5uakxb0+CVIHHXHYpMpzLn4v15Ck95f2fJCSz3mHb/zKd1LrSeQmKfMUadwf9/cgoZ/ny/cBN3EEPISefb8e948vffwkQZ/EeRJuz/Hz3W37vJavJOF97HxfnveLCPXtWFsgdP+S/SDexHs2kuG9N5ocU/wLMSSzASCuQXquW19Fj7yf70TvU7x53uNTMEg82+b757Kvvgtvz/b90iYxq++x+rWdnu38HB9PMrSH4Afgm6DjcE/h7HmMe01SbZtYTKL1SRRe17XH/tNR/72vv4+BHI/82x5EaqxicZ61JoU/CTfuH4gtW4wR2cLuVzL3K1H8HG+7rx/9NcbYn59rAXq7js+5uM7HpbrfWSMELNtiiAwfwG5rAR2yiLGsofKvZdy0wf0fACQcvwCgTbHmin3cMLRxrxKN8i1ZesGxxKHf3MDZ5jBqZDEF9oMGTTQyB3C/6aJb71BRmMTaE+1q7tFXcce2KDyoRJYC2dfe9KCz+uGSl1g7VCNbRYh1yXM/58uKbBNf5oQ+782/jDnZ5X/uteOP9qzn3H6uVaptv/f7Ovd83x5fIpDGvQfu+NOf/rQ/f83rd+vvlwcYYr8TEcANdwYJ2etc7qtfhctbslHJUjjsCvfMwHLvC/c6nmJgCm/3AybPuTBGjp97bVbJLC7PuYdC4e+i4pmKZyqeQcUzFc98OVbFMxXPVDxT8UzFMzk//iie4cNs/8jxTD30VCgUCoVCoVAoFAoPrCTZEYF9BOM7CIRtglEhu4QAf2awb/5Ifv4kaTxqtCdBInTprhVUvABHP6BIkjII7jiWgKmwRUiuMX33CqJN9nU96CtMX0zVH0Sume97m0ZXkzjvRR3bERS3yzTXPBQkA2AJ4vdJ1PA/0XYCuIQJMmnzuGZL96fxZEFCJLmfZItZpNF2bEIj4vubHAwnNB4EBImWuOAkydzhZkgPefIz++8niREEyz7i/nc4moMf8BXpuW0Fieo3eaUkXnb7Bbn2R8TiF8INWS7Abzrf//i9HFdBJMZhzQzQm1QQvYmQ7HP/du7vJKw+XhMVElsCqFN0+f7ZJHmf5LeIMMWA2d3zki5Lya6J67o7gjzpVwLx7xEhT6L0Sfh+d0z+EWn+JJ7y7+fnngT6s42+98Hz9e/99Eef/4LUgII1vO/596nGE08X6j6H/564ztfyd9/du3msfN8XN3jO5xC2nqKG+yO9fZoyJfv0JrZba3Tc57VKCk5fia9sTnu0kcW4ea6hf+Qqzteejsvs579FjH/vuz+E3OKqbhLxdr/emuk9Jp7ne/78HCN/y4X9bLc8wf27m0zNvn+WlEhReD32lT8ah8/x+TdvGs+14ElGct/I17+LBN9d2/jWtnudiPP8LUHqied41CD1+Yd98tzvzB36PINQ9IB8L73ALAx4tJOIwiWl8IfIQbaYa18Q8Cn+iwItSOe8FhWFq30p9/K9dYUXi+f3CYD78i45lGPr0b67BFJcu5nt/VLJNHMbjL3rPjY2uazf5ocIyXBR4cMAD9L+S99Ct0jArCQO9a9lfp5/9Hnx397zfQ19Eu/PefL8+/nvXBfwZV14iHcQtKb3tX67p+9jLttUQh2JEb5LgWUP7kwQUc4B+R3oVqmQC7nwS9KX+3xccVxvihVPMTLWHOWYkxwbOdYVkeDiXhf//nwuFCqeqXim4pl8reKZimcqnql4puKZimcqnvn/NZ7BP3Q8Uw89FQqFQqFQKBQKhcIDn9cFRHpkkpuesVw4i9cmCBYEy+j0VYSL6UkwS5SGiMC9NaYCliQJVOCgW9TcoJfjX//8Z1znhbUW3u/zC2nbeo9o0/f/1sqU2hQQNnmhTL3u82IqbQOwFoBwh0EwpwEq6OE6axCgKyJs3qSGyy1SJIm1g+YVad09ziGgiwwO6533LfolFbgH2ehrwdZCA9N/S2uYa2EZNhnfzNGaA2h0eIGpqs2B61p5NXR5SYog8WHzTV6aBRkDEj1zsbwESYTbZQXcok6mwDYzzLUwRqNz2RbJf7NN8JoZ3peh9wFVwJSESbaj++0cTfohU/In0bTSVQ6BUCWBazqiYlQFt5CkqkDCFSjhmgea8Dpb07sciN/czZOAfhIo7ZsIQCGLzugmmxXJoU3HYbsJo2krUp7HcZTnJ5EluOYkMaQSDnqNsWPwtdCgW4gQFYh/vcYnwfM9JfZ3wuT5mSQy/4ioehJJf+TOzfckMZ7H+aPU+08S7rto8f29InltnFm7L/9AYMifk/zKdv8dSXSzZV9ey898J5DTUax6l8NwpOvQYp2IOQQwI0SSxJ5i6D1WzFkKxczRe4hluIWCpyv2+3X6t7a/rgva9EubfxeBnm2UGQeSRP9OQP/Rz093+BciWwSu/JtkIcVhN/9yD39T/MHtjH+2db63tbav9/v7NymcxCPky/j8Pg5FHGv9XvD53te/H3/P8eV7PP6+nZien+Ui+Pr3NPfPn59j6ivRS/K+d67V3/vwOTef16mqGL3ntgcIMHr/IipJHieIXf47ysOE2OKxoYhHpg1RKKKdWoNbiIZBOrMckEGk8X2N48Ai00WTRzkA5NrZtkP9KQh9EVGc+9P9u1tAddxZCBKtNfQYDySoAZsX/OFs1hAJzJwu8j2M2R5NBRJlkyi8OyC5Lt4uewtye86523aMoI3X41vHt/7Zf6tA7Pdr4vf5+8xg8XTL58/f1+wcE3n/LZ3Q8b3HH2Ppe8aH59x5tqk7Hxzg+oXg+n2L1pkZxtY95/ZYfbjwKSg+XOch8gN7+YhSGfxyxP2PYsOaed17Z457+JaFIMRahLBj/18Fv0KBqHim4pmKZyqeASqeqXim4pmKZyqe4QCteOafIZ6ph54KhUKhUCgUCoVC4YH/1//7f8HRBwlWVax5kQAAg+T3+cbH64XeOhQsx6CZqloU0wzXXHB4EMBMbd06A9trsXwAOWzHNKaYNjDl//kTN7GLWxwQEczrYjmFIBclUz8/AuJrre0ger06uihFiGAQVRwtCC9ZhtfrV/Te0Rzw95vlEJowxTKYnpnEL+vdiyi0NbqsnSJD00z5zvIR5gbzhTUnhg70MdBaY9ry42A5CkQJgd7p2ubZmDZe6E46xkDLABmA+QUFCXpbhqaDvbIJviD0zIPkARCkddMWrinsmvJRfCIYUEdXpZsTSRgAZqx7PzqJsLUsCBaSDeqAg+T+8WrRd5unoXgUZM4WF+LFJNVc7lIKay6EKgCVjnnN5Gkx+p1Ke6fXj1sQCD4+PjD64FixifN94hiDpTQE6K0jJZQ8B/v4Jh2/kOgiW5SCfC1l4e44jiPKUdgeK3NNmNMhPo4DgITbXtD6IKESpSTWDGIUJD80nXLR55mW23OO2J0KfxNeD/LmmWY82zfxJO+Bm5x6krdJ0D5Jvfzck/Rl3wj0W/mJ/Pt5nXmMmwR+/rnLlSRZ+MT+2ZG9xrE4xtf3hHDVRuP4d6ZxlyCT0kk75/zSZt/JdFvGTA1uWO5oMTZy/k1bEGfZmLVWZFbg+vQk8aDA9K9ChQgF1jUXbBnG4Dhdj/bKa1FVGKJv4Bg5buL14zi+uB+zz76T4Dk2nwTl93Gx791ux7k0EszLOTf7I0X9856+C0bfyff8Xe/9y/Xm6/neOeeXMjeqivM897+/k/50aDrXEzeM0bEWSd611qPUxP25e47qt2vM8ZDt4I97uVPVP0WwZ59+FQK+rinf20JVt7s0j3kfw/e5nsdLEv9Lm6oG+R/n+1YqBeBeqg1o3bjez0XBo+nvysjwHI+1j0OY7wfCGezo2jA+2n4QIPszy3E8x+HzPp4ZCb6LR/e/HXBnqZBrord+iy8hxAOOJoLxeu09Cri1QRVBj3oTBkSWFq5vmmJkyBFbEHv0+R9dl5lhzrnXixyj3wUld+7JPm2X7fhbItpTFEhRMZHlorKMgpnt9W6thbnYNlv4AoAm+zvBiD7I63yKh3ne8zx33x2xR+Xr+Z3NzTF97vnrjl02hAItrz3b5YnR29f5lCKrO1Tj+0xrwGhxTI/tOMcj9t8pJO+HBwRo4MMo2VaFwt9CxTMVz1Q8U/HM989VPFPxzJc+QcUzFc9UPPPsq4pniH/keKYeeioUCoVCoVAoFAqFJ7RjQWAGwCZsLagtdFX0rngdB7o2NGFQPtoLADYxp6LoGiUIlkEaCR+cQRi1tssoMM5k2moF3Va+JhDkDIQixJpzE8u2jI4ZVfgyigJ+O5Z8ZckJh9iB18cPOniDPJmexKzgdQz8L//b/4brmlAI/uWXH/BwepNEAYZ2jM5rvtbC8jg3HH/97a/orWMEQUIHtcB9AeboKmjHC+85MZfhr+/P35FXeSySDCSSKLgAJg4Xunrp+pqbnFnL0HvD6B2Itoc7RBtUGJgb0rUXRES4jQWO1ij7SJRNyAAcDgogKuitR/kNkk7mjhXlH3pTOrEXhZPRFG2FxBCC0R5Soux3yG5XAOGAuknrW+zg4BBRutVB4WiZ3Snpnenpm7bN5asKzCfWMpznBW0NcxnUeP+qihnEosT7n0TnNa/NONHpRvFCnMUw0l3rQVBsZ7xTxTDhNSZ5o7IwPRy05lBRnNe1SxNo03AyAr03+CbsH+Uanv99nDuJ0Ceh1VuP8iokh5/kTZLjfyQcJIH5HJuca2szNpuU+huk6DJ70G5fcRNNKUEZgN87R5/uvSfBaot9k+Rjpm+HAp6OOZBMfN7/6AOZ1p+EfBDVa+HofTsD9/m2AEQBx+1ul13GJRSOOSc81sAn2eqpaD3byzmPpTVmbuhB2j1cnCOIPwidqwshoJmhA+hBjH8XdCBfhYxnH6U48p20/SPiEojU+fm6RAkVOKQpxcrHWEmyN0WKp/v9+7meLmD5g0Giqls0kSDSxxj7XH8kHlFUoEu0NeZgUPXHuJLH2vLVnfp9nJFQZbaJhnReKriW32TlH+H3cwj7M/f9JcFJJzfgaJtozbJG2NcBIDJ+gKTqPv/9RyTPfQtx7APAbe3yR701lkloD/rTcZfKiT5O8dYNcF/QxmMz20aSsXvX3n0L3M7wFGjmXF/W1mybZ3uxX56O4NRtKQJmhpO9IIdwusderLFutjNriAi0Cb8/OEtfzCw58JgfuxEeP3t8h8i7+y5qPMfgc+zHi/yc0CGuuZbE+zPrQv65hRKOU7P0hSMeSBCuFxw9zOwCwFUApwtc4jyf7zeOPmK//CpgJZ6iQZ4/52r2naiigWU+uOYunNcFN8fHj49YSxRrPsu+YPfts6245gDphmafty/XFLeOphoiMMfkXCw79cf3covJKl/F4kLhD1HxDF+veKbimYpnKp6peKbimYpn8m5R8UzFM/+V45l66KlQKBQKhUKhUCgUHlBtQRB5cF0KlTu471HiwDOway2ie7qPDE7y0283mNtNfsLpaklmb9PCQfSptigBEYTZJu94fUG3AAhndQSViN97ECgaF2lrYQWpbkHY0VVLQurnz58klLXh119/wXUtMhZwNBXowaMCwDkXHLdr8P0+Yc3gy9H6opMQgLhDAfRjYK2J61p4Xxd+nidaSwcZXczTLBxcdGKO3oMgkXAwG1ieQrYrytzo4lwT6l9daq2tLdiQtn2SIGTTVQBtEq437He5W5BEKeCEsCACiMc5Da2lazfdlDzCXOFiFoGro7e2haA54zr4I8t/iECf/UUaaBOtAuzyCE2VLnzp0cckHDlcbxLOg0ASMJW3Csen2QrSP8bRF+IxSl+QBX4IWEmTRpsYBaoklGaS+jGe7+uKY/k9XtMxTzJTdv/f/XMTvCTtIsV23FcLovEmY0mq3OJKkDP3JLnv7kGEZSfcFFaS2zkGgoR8ks772vNeiJtsTXL4JgK/nC/P4dh/8O38T3dgviruW5ha6WwFyy6QYEyBjWTTCsd/klUUZ2ST9BbHc3dMo0M5z9+j7Z5crNst8Jg7CS3c/ZREuvlXcjGmGSxd/ACJ2seYnkaXIZCC2kMwwU0y57iAcM5hk28Pglv0S59+J+m/E/dPJBm6jweQlPRc/yVEta/i0JP435//g9cdgM+5S2PAHSoGl6+p9Elcpxv5dtX/EfJ+cl96OsBzHUCInjnWnmPySXJmi2e/iwia6GOcUtC6z83PUeD8Lp79/rh/JM7wVw73FA3k0d+Pvog10cz3oixbfP06f/RJLMv9uyYK16/H57B7rLGicBjMAcfa+648hd7dHwKxx0361/IYXI8MQLvbVR7llfJj2RBxHImlUCLLCsfLLWLkfebfnp3BVr4P+u37gopiYcKzkFIeI/77RftxxHeTbFfssfh0fc/cY6K9zSnKi6dg9+idvMfcF2RfYrYm2y3usoUqlNenaVGPea49Xon9ozXd5Yay9JA8/jzHyC2I6e4PjYcx8mpUuFZZXMeyeZc4aY3ZO+B4HPrv4D7fU0zz+E4hyO8RUQoIuZawBZ+fxaO/n/dTKPw9VDxT8UzFMxXPVDxT8UzFM0DFM0TFMxXP/DPEM/XQU6FQKBQKhUKhUCg80LYbiYRtG0qyHAgicmDNSQciHEIuIALWBreJlqSXh3NNAXcGfu6GaaReWD4hSFkHoMAYB+A3ETp6R5KQtgBvvkm4ZY4ZDuQeLjA6QINQcOA8TywHphnOa+FjDLqR09W7FhocvQk+Xgeu95ukn/O4o0fq4cUyF6LAMpJSvTXeq5NA5+8XujBFfG8Nay6832/8fL+xnO2QjmCB4y+fPzEXHZq/HgNyGLyxBMV5TZznm25n7ZjT8PF6BaFiuNYVzuQ7+G4qN9mrinWl+MIeFNFg5IVkf6TZdgfT4O96EMC67vT51gzXdUU9+46uDWteWMDuq/M697maKvoH03avtXDNCWkNBsVaPNbrGBi9se+CIExOhG5GkuOqdBHz3oJshkNggFgQLy1ILoOCrqmPjw94pIjH4gAmCRUurxCQVASvcUD6sVUTAWBzYW1dgW1GAYNCGEtjAJB0UduX1OcKOsohgrkMc028Xke4rjkOPASpLAlCAixewy2mQNPlTGKEhBXnQI75dP0b3xBkL4KYpcAgIENlbpuoEwGWc26mQESXrGzibxOicQkiwj6F3xTqTmcvm8hG3tODrPYgur+X4NhEYo4pRJkCZztrtEGS/YqbNHf4FgncDK13knffHbtBLq1lUd5FtrjyhegNi+sWZYDtwPSYv/mZZQviNwmY159kYroNHUk68lh5utbovI6BDRcukLssjhnsQZjluEmSUnY33/cpcqd4fxL6z/7As63dtytTnc5vbY3Cb4h/ibXsIRBltgoKmxxeD5EgCHVNZzlyj3mUshCN3Ua2KPxdJPhyvnD9a5Dt1/kGlzuSmL8XCG7iMUWXHM9J2LOUB69CW6OIFPtQkqopCLKMyXoQlbdI8BwD2KRnktY3Ie4x30gE3+IT94avruJ5Tc7JptDedt+6OdwWMwWoxNorALj+ZhkjfxC0gEOaBBkee7Qq0BrXQ3i4btmOKcap9hBHDK5BhjvucRhiEstzRLkJCCzWgxwXOQgkGkKE5XLE6CpPIQ4herDD7jb9WkohhmXOryCYWSYkBB9VrpEwlsdoirXy+w0oKMRPEp8F+MCDqKB1Zbtrg0iLtQa3iAZmqrjFkBR6U6jSvXdxizA6+XO6b2Ejb0i2KJBN5/n9SjVKq6zd1h/HiAYVSEOsTTeB/syQ8RTI0iUN83goA/s92hpaB3pkmbiui993ALyOwXH7B8Jji/X5uc4AdzmQvJ47i4vu0ib8AMfZFstj7XwKUu6+x/N/f4mg8F8NFc9UPFPxTMUzFc9UPFPxTMUzFc9UPPPPFM/UQ0+FQqFQKBQKhUKh8AUGrLkD3T4aYNh1zDPIS/JpWrgyVTDGnX6eRK/hsjd6ayTUVfHz88SMEg4Qw7wuHIOEOtxxXuc+BjM7tx1MOxwLUWvegYWMooMgEaAfEfy64P2eOK+FCeCyhb/+/MTRD5zXxHovXNfE//x/+W87iF3niR+9Q4+B3hSvRoL6Mp4Zi8F704auDUekLKfDB/iQAbeJj+PA6zjg7vi3f/t3XGbQY+DX4wfe75PBcGNJjQ+wbVtr+GV09GAGDMC5AB0k0nobgEzMOUO8ELTxg20ND5FFSb4GOfIaA9ecQbR6tLljriAMOtO82zLMOSHHC2uFY1kU8BmkHbAux7wuSGtYc+KnLYogQbTbshAzSK6ua+HTP3c6eltG0eNamGuxZMNb8OM4mJq/d4gyzfuaFGFeH6/tVMsyGSTOHcvoF2+9QVsH1PE+2T4C4HV02F/+gnVNOBzaO9ZkKQkLYh2RAl2EY6Vrg3QKNM0cHiKBKft8BTlLoSDde6ETCNhHQJQkmCSK7HZ2NVEsM8x13enghZPFDbhsbuJMVKFQEpzum9DW7R5VmIem0Tj+rvPan81zJgGUZLmI8EMrSkSk203YHElUP7QiOBS9MV14XjTJpM7MA+Ewbk22g/BJ6u75/MVBOff1qCp6S3LIvrikW1ccMmKcY687shuP92buGCqQNrYYsNYi0bj7STYRbstwHK88Aonp0aP/HB1fSah0P6twrYN/c5MLnYMpWqgI+scrV8NbGPxG4N0uX7nJMAAuQZRLktrpOgdGPwCl0COxHk1bt4P7QdJlSYgnvpN7T1JORNDQWGZlXz0AeYgsCmhvIUwy6wCaQDTW0TVxHOMWjIAtekGitARuMpMCRVzX5gNtt9fT2f2FgA9C9nZesr2yLMKj65HstAize4SURrf5vkn2qK0VfR1rcTpDY+5wb0zpULZIFZLNng8pHjyFG4rlKRTwPp/vz/6Z0/bPHvPBxSnqCkLkmlGiBsxYIgIkiQ2DOH8WRPmSWEtba1GGKASoNdkOAvQ+kD5VeF7LwpqxL6vAJMSBuOMt8qX4ojknJbIALMxJoen1TOHvDohizmuLj+6+yxCoKl6vg20VJX2AZ58Su7QKgNZ7rPGR5QOKPl5cd6+FNS9cp8FsQsTx+jhCBNHdJyvWeBcS33/59//Af/71N3x+MrPJ//x/+7/idQyoANd57j5zXziRAhfHQj4wccWKyocesMfBFkOin7cgFMsB3yYQGAzAPE8on7qAu6H3I8SbhRnroj5EkxR2EluQiqwNvTVAsgSEQbpSdQTH1PjTwPv9hq2F6/1GV7roRVi+6xbjsOeAewpNt8i8V/SHAOhAiOTZkdcWRTnU7lJN39eo5zpaKPxtVDxT8UzFMxXPVDxT8UxePSqeQcUz0QgVz1Q88182nqmHngqFQqFQKBQKhULhgQYD+SgJgt5xhQO0tQa1CXc6c/iuIFZMcF10sgSvTDJcBMtBglYc5jfRp2L45eMIF1e819YmXVkSwZK35PWFI2u5wdcK96lud+OcFiZS2aREc4OaQH58QCPA7b3j4xh0gHqUjZgLH8dAj3INJLYvTKMDVQSAhyMOgjUvzLUwOp3Cdl0YvW0X6vt9wsOBZKI458S1Fta6ADh+fBwYndZyoaqChRBi3HGMAwY6LK/5iVcfABwqDMZ7b7iCKHLj8dwZgKswVbToIJG/FollIJzJCz9/nnTqikCPA7LJXYdIOt5ut6uBTnYP0rolpxd9OpTCB1NGN8zrJJmkDdI67DrxGh2/vA60pujiaK1D45i+SDy11tB62/dB+HazpzDRWsO8DLguLEz8+3/8J85J9/H/9PE/4DpP/O//8R+4rgvHOPDLrz9gRifb+33hOF4k/aKNtbXtZn1px0fvmLAwVQtsrignwFT+xzHwOgZaU9hccMgtoAVZm+m5KdIEkSJAa51kjNM1acuwIm2+hgOO48x32vvW+i5n4OEcF9zuTIRYtckTv4mUFW7B5XQatyCXcV2AOylTwb5OQ5B/1JUwVDCyvEeS3IjsBMtgBhznid50k1R57tuNJ/dYMgOiYAnvUzcpDvD+cs4n/ZrHyXs23O0HCbI6Lo9kVXw2FyTJogZ3eYt8v6rClt+/EN1p0AWyxSS2UVx/kr4ey02MXxHA5BaP6MYnIUyON4ivJylst1jAebiYpSDmBrNOpN+SB162AMfDMR0OcfffEXBPQm0LJZbt95WwJ3kdbeTpBLbdBikqZQelYz1L7iwzHF3D6Rw6WLQkj6FAuPiTmJdwHychqHq7KWX/59E9kqn8FTqOWwxzQCRLUfBeOB4fAozf7U4iPIjRnI9mgOs+T5LTHiJrCsX5u5XZKdgKkdVBb4L0IXjk9QM3kWvmdMviFmy+4KHW7FIni32jwtJEyx7OeV+xnyDK+/iXe55zIss+waMkAEhSLzeoaGTAuEUYePaUQz3n7LdxhSf5rXseNhFI6/veWSIqx6ZFoo4oA9Lo1nXN+cBsGaYWhLTv8ZD7sC2KNhZ7qIaIZ8K+aaB4Z8spgquGoEVxqqWoKgDcwk1tu29UB8b4gDkfPnCj6BUK7Zc9KuetSpY48kdmGGCtEDlCcNtrbM6VofFzrPlxWRbX4naPQVHuV62xL1Mg2GP7W//QDd2QZZzcszwOv3O5hqAQIqeEwDHGgPS+hSO6k2Pe4muWhewcN9sm77038S5xf5u7/8X7b9EejzX1y0Rg+6p+3YcKhb+Fimcqnql4puKZimcqnql4puKZimcqnvlnimfqoadCoVAoFAqFQqFQeGA0BRNzA1DFNSeADOJIgLVIqe/wHZAD2ERTOmHMPdIXe5CPBgVJCW1M9X88nVIgKZzkmjMORcaZ7kwBLwAUQG9MFdw1U/AHQRtX7GYYPUo2KANo9SwzwDTNJHkyHT8DehEHwj0718I0h1mQnPBID63wuUIwUcAVCkdvIWKshfO6NikmCNIxSBxbC46B0UmKwGyLC8FnAm4sFeFM2dyjrenOZPkBC1dyltBIciHJuZ1eO9r2JlwbrhA8oOxvs9sRuP9kCn441Cj4bAJDNdLWBxuFIEndv5B60XmAAKM1jN6CcLZNTGbaf9EYfZIEeBCenq7kJJuZ8nxOEtQGwNaFLhzDqoKf1wyXW4wlI3HK1PsxRpyG92vRKX0GaY7uGKpYTuLMDSEEBNEPo4O7NZJYa+Favl11Khqki++5MIPYZ8r2BfOoURFjdRnnB527mW6e7aZBHO+5tBYJOFWSfMnNpdsbtwsTCFHNsdPcGwToN/k514KqYoGlIabTpadxDm9KElx4/8tIRlNAYxmRX71jKUnBaZH2PChikm25RqSIwLGxx6zm7I7+zqGDmxh/EpPpjE3BhMS/77Fulo1yu5x5zBB6kvSWcNmmIztIyxWCEcA+C3oy7siRpUksBEQS/De5piEOqNOFmsQcECTvvjxhqZk4j0SGA7cg7EGiPtdfZkHI491zkUIQ07mn+59iy1c3YTqcV2RNEBH0IHFTuPBYw1JASGe4aK4JvknabNcUx5YZxMduc0GULYm+GK3t9QoeZShUb3Fi2cPpiz3mnoQjydAQOKLsQV6LyC02cNzdggMQBC9y/EWf5WYD57yxaKt0Qj+IUI/5iDj+XHOvs5nJQcDxeIseT5HgbpkkvlPgyte/nM9vYWS7XjfJ7vF/Cpga+wvty4jxmTsiG4dlYbj2OG6SPIn2dLSm0/Up9m26d5PSUaIhZ4XHYpzCQ/bR416Qcz8JctkzM4QPuZUhsy1YcK1wIL+fQOJYMdccABYkBB52kcN9Au5o3BCjPZUOf+GenmJjun4VHnsa0FXw4xg4egtR8M5U4TEXUyLKtc3c4SLMXtEzwwFiTAAIEeSa4brHLSZnX+12yOMZoo+Me7amQ/orlX4LaP5YI9hPrXGvyu9jvtYWsgUS+0B+f4jWju8HEmvRiowMFD+Fok6cW9PSnePFn2IxQiSI/pbIxoHcBfN9FmPa97jMNZtzKefQPWcKhT9CxTMVz1Q8U/FMxTMVz1Q8U/FMxTMVz/wzxTP10FOhUCgUCoVCoVAoPDBGj8CZAeIygwRJNXpDFwCZ1v3xuZuGI7mUJR80yZ8kQZuid5aGGIOpytcKMmUTizz6WnYHjkkUxElVWKpC9U7BvixcncsimF9oS6CdTmdtBpiFYxUgTY2dMn4EYWDzCjJWt4vbHeg6IFCMY6D3jnmemPMKksHQG8taWBCsc024MnV/E4VgYfQGN6bI7qp4tQaIwYXux9OBFs70z/PEeX5i9IGP1wuDyk04nBjQ25ybzJhrokmk7g8SDR5kQ++89yjZoKpo7XaU21qY14XRO1oTlu8Quh7NHR6EqUTQP1rHcQzMaXCjQ50shsKc5GJTXocF4dhVMZqiq7Dl/RaPlnG8jD42SSXh/E2yb16T7vxONzKWhVBjaAL8OBp++fjAK9rq3z4v9PHC60NxtIHWZBOqr3FAWseCYwYRdS2LFNR0Lqs2NDjc6ELtbVAPU6CJoLckhYLYD6KvtY5jDI7dGD/suYXeOwltWyDXk45g2Q5/VboBmao+3cP3uE+CbJPYDaBEte7yGaKwxXnhAN22QYwqBHYtzCRbBfexhHTNdS18/vaJ3hTHGHj1F8Uto+Dw+T5xLbrGZ/Tv0f4ENMFyii1jjE1qzhQbg+xkmYKY61sweKwmoRLuS0KUkxA6HCkI3ERsz5IHeZxGUSX5MxJwN0kv0SbZ9jD7Qri5ONa84mcNwpFTShzQxrVhhTAkELSuQfJLCDiAq8LiBuia51phD+LX3fGONPB5raoUKZ5k93Ecj/URm0hLIi5J/TEGhZtFwj2duxoZH1LEuK4Lay2oKI4oX5PzziODQLp8LRyjT8dv7x0thFauP1yDHRQ9bVGkU5Fwz5MYPEaHivL4a6GPATTZBLIt9me2B9egu+/YvS2EmtCoc71pJC5tLe4H4Ti/BaubOE+RAIJY155E702G5z0DiOtgVgb4nSVijH7vl8I9KIXPHLu3+5ydJ6Lxezzmh3xpY3cKctn2FOWj7EK+X1qsMSuKDtyCDPC1HAAArDU5NmK/1EahcWcuCGE01xFVDaIWsa63Lew0VaxrfhUSnE730A32dchD5Mpp57Gn7PlsWVqDfcPSQGvPlTwGDx4CuQhGzItrXrtMigig3THnGwD3tNer45rXLVZGOZO8bgq8FI2asyU7HK+PEWVVBL/9/MR1riDQG1z5cEFToIvgCuGe/Q8IRohNzFDB0klsn5+fb6gqRmMJlnNOaFO0EFs9ro0qAyAtnPqZTQaCKwXlfBBCb5d9Ounz/lprXx7imMvuPUcF7/eJo3d+D4px03tLrSKWnXCtN8XoYwvvmTlAW9uiK53MnE8scXIL2sCdLYTfLRAZUXLPX3uNQ4iE3MN1f2cpFP4eKp6peKbimYpnKp6peKbimYpnKp6peOafKZ6ph54KhUKhUCgUCoVC4YHffr5BhzDJ8I+j79TXLOGAHfQts9tVFUShA0CQnDASaHCHAvhoGViSTG+t4efnJ6654HCM1hg0+i0IJBEEkNQTYRkEkSAWhQTznIa50rFJd3QTIXEOhzQ6VSMeZaDaEGStAS4Y/QCCaHWQxWut4fU6SFoJXbRrGeZ5AgA+Pl6b2BivA45wJ6rg1x+/4H1dvG5tkM7g/F/+9V/xGh3rfPPaOiDSMcON5+D1tQb8crBkxEcTHCIkP0GnIQD0rlAdaK3D18THx4tijpJUMDfMyVIXEMW0CYDETMOdXlwA/HKMTZxq03ALss97E4gOIJ2UvZEUGYqug8JEkA1rLVzXBYDtBdBN/zFCZMLCWkaX9SblG7rc6awhQSLZTdyOHtclArjgt+uNfnQMGbBl+KGKf/n1F7gb/v3f/ld8ngt//tMvOEaHm+Evf/0rjt7Re8foitYB0YZlggHDCQeODzrCzSG+KODAsHzil1/+xHEtt1vwOk8sY0ruPvr+PcUjjsHWFA0UihwOrAUPN+XobLPz4pgZvZHwdgsxIR2qgNmJdNkDmf49CCFhFoLEnAsLkYoegi6UEXb2ArmdwRBBHx1H7yDx7vC5IMeB3hvGMdB6w1ozTPwcW713dBEMAD8/F8ciBGvN360rd5ryu3xBXru53aUYeDfhHsfjM2QcV5DerWm4f0k0nb7QewvPJJWc7XwUXhP1zbYJ2yS9mM490tJDYS4QkHBOkn0ZMELgUQH6GDivEy4TPnlOR7qQucZ90T1iDRSlY7vrs4yDA0F8cd2LlPXCts7rpCgarnInUc7x5nhfV6yLeb+OozVI73D3eO1BrgnwGj3a37frHg6WkekUG7MUQm8tRCuOxxGfTQHI3XF0AYTudgMzAZwXM0v0KPsiIKmuUbJBG1PAf/42g+RMVybHgLvjvE4KxsLXW2u4rjfLFYni87zga7I8y+gUex7ZOOCOKwRP0cafzwsikR0jqHXdaw7QNDN2+HbsSwhAAGA2KVZFuYXzjPIgoKCYwkyuB+u87rEcxLtEuQKSq/kaM3ystTbRjMayP6p0lXelIEi3fMPn9YbHmGmN6f4550iUp1CxBTCns9pir3yvIIOl4aN3ZNYPc4erYkG2OEJSnmtNC7EfzowLzCzAEg5rLsxshxCnmiq6UhzsLdbGEKBy7/7i+o7XRZCyx35oQJ7rg9MInnOQe12ICg1YV4iFLkATaGMfuAnmNK4NW+QwmLB8SH5PmOsETt9ChS3BMuAyx3k5ugK/fgz8eA1IE6gvfH5+4rfPN6YB/zkGxhjovcGuk99NGtv5t79+QgR4HQPHMfC+Llg8rKBwdDPozlrA+TKn4VwL11roKjgEu6SWme1yLxJzca65+z73iOWOOR1/+fkJh0Fbw2gdXRR/Ne553DuA13EAQJRKAo6j71IXx/ECxZ2FOReuOR+CGPfvuWZkTAD+869vABQrjjEgIpi2KNT7wuv1wTEfQhjXK7rCUwDHni+C/ycKhb+Nimcqnql4puKZimcqnql4JsdixTMVz1Q8888Qz9RDT4VCoVAoFAqFQqHwwOgD17wwzYDrgh7HLi0AobuFJdejmrk5ps1wEDssSMDWG3pYozKRehOSwkytDlzXhTknCe8gWPI4SUj0CCSTEriJv0iZHq7A3ht6b7jW2k5XuENdtgvJbUVKY4FB4OtxPeGMkyDI9/WsBYEDNnHOhXOFMwg3qTOCIE8PDyQdvcDRBwPktXh+AFgTHs6wFk5FErf8eYVL/Ggsm6AQNNziiQtFh9EUa4YDTIB2vPDzfeF//8/fGKyPgfP9Rm+K1zHw8eMD6XnXIJVsZTp4xaGyU2+7RamIIF1FBA0eBAaA7XRvdFZ2wTlJNCZRSoKIZHZXwWs0eDokHRChKxvblZju4nQQhmMqxp5qu0m4ecLMcS6H+cJ1Tbwar98cuBZJhvM8AVu7BMXoDb0rWue9z7mCnEK4olmmZPTGv5vgBZLuvgwzXPIszxD9Ckf6OJ9Ut6rSEYdIwW22x9kYHb2RwF1zYs4LH8cRDrQsr0HKW4P8uS1lSaAG2agKEdtEIXC715iS3LFsRdmDcCM2HpsEOAk4VsSwndUgnbhZpmQt9ptC8MvrB3TQZTdtYcgL6fiFAK/Xi1kCjMcTyC6jcrsbc0wHARiiB4UyCndhrWTfO8l0Ed8uXIjGGOR7LdrX7C6FYma4rkWCPojjPHIokVDQdefumIszPF35+WfZYjp5EXg6MEFSnb3DI3JteIxfCVLTyXppZD6giPcs27AvByuI27sMRLx/8cq2mAbOI3Ljt7tzjINkec6fHDdCovF9nWxZoWOUY6fta4cAPYQAOB2a6SClqHeX7mjhnHULIjkqXTRVlpnwtTM1CJh9Y7saQ5iBxHgXzr3X0QHYdnFSeE1nNtgHISivhShnIVhGsZkLPcu4uKVTlld8rclxlMcDwhnNy6EG9ixhkO1IArw1Zf9Itinv35ykOwn9ll3MMeg5rx2qjuaI9WNijE5y3xyXrViDY49tDcuB87xImo6B9hpBcgPvdeF9ZVYDjrMc9xx3iNI7ef+CZRMSa/JQwed17fOZkiDPeYaYF10GCfhlOK83rnlh2cIxDoqIM8T5ZTChAxjukc2AaQXmnDjtgir369Ea94QskRBNuvdQYTmFHs5tD4FJAO7rMceyHAwEuMt/sG/mXICHsKxZTEIfewoAtD1Xs8RL7kEGQ2sjSr2wL1eUixJzuE00GBQGiTIGTQXH0WHOjAcWa7zHAwmiFC1tpZOZ+9p5TVzXxHp8X/rll1+ZPcZIwLPElFKoDCf08eK+scwozl9s99aZraHF/aXrnns5hcpljjMywZw2IePA6D3GrmNNw+eVJcGIay3uMGaANmbAaJ2ZZSQytqwsy0Vhp/eOVxtw79jZOkQiq0TsRbbw831idD6sACDKbjRIi+9ARtHQnY7tQuHvoeKZimcqnql4puKZimcqnnmO0YpnKp5hX1Y88183nqmHngqFQqFQKBQKhULhAW0KdQ3CB+GgilrnQcKIMP2xAJvgMqd3yR6ETFIkGkFtS2YdJExmOKmTi7YI1LHJLtwkl6Q4kAQcwhVJMjHJXU+3oVuQeCRqIVFnPu4zCULfJiwBJN1P4TgN0tyMTt65FizcyyT96F6lK1h38JvHZ0pj3NcSJJT7wlp0hhlIUGHfuoUjOciRrBmfriBedRBOEuUBSP713vHb+8LPc+IvPz+hY8GuiR8fB46PcJNDyJ/55iwfxCCPlanIRZVvkps4lLiUdGZ70qPO+9RgUtLBqUFycrxE+Q0HzFOAiPva/eq7P2za3VMiOM2CVHV4pAGfy3CZ47oW/vRiSvtphgmWCxGJMeSO1zHQt+N04T0N5wyyOYh/9SSl7/tuEKAB73lxzDrQACDEBURfp4c/Sdx0uSfBTHcl58PodIrOB5ErjzHjkUb/y/HC7U6BhW0oGnNTbjIzRap8400S/8E4wk2OXZMC2wqC50jBwbOXY4wINikvYFkVjTIe2XdjjCgREiVh4g7Zv3kNsslXpNMxGkKcBF2OtzDL8fJV4dPDKefQaB8zCnq8NJaEudPqU3cRud2yuUQ5HE1CSHSWNXBg30+S6w4SoWKyMziQTKRAkP1LseuxlglFs5tm033uYERDKHnQ+dkuIgBCqPEYb+K7zAKnbQhsHuUfHuUxPPpZ/W5zkZjjcQ4LwjlJbTeHxHzlGObItnCutsZzcYqkC1P2e+DMFKEiOHqD5iKT/ZzzIhURcG1UpbDQ9viNsihyO3uzDRx3hgSPxczMscTQletxspSbrAwBCiDxreHEznGy51m0wbMv3EPHkDt9fi7abk8hhvuYxNhACGwWazySjA+xKjNw5PpvxrI0Lh7iaqfLeK0taMzlaMK99rzWFkTdHb4okmy3tTrEWV6Aa1qIAPh6f2YeVLdBHHtPaZpjDLEXpPvboG4QWdDWODYsnNyxz6fIkWLqMsM1FyCC4YjMGNy3n+tSntBjQOZ3DgpCtte7yA8Bw6I4GfexBTQHbN236qBYM82gLYRK8T0mIBQfqJkmUS/MaiKPeSkGVSehPCg5NM025XF7a3gd2VZ75sFVOSJj3dFYv/O7zAzxKdfx5UmhYwstrXeeI8d5fN9Zsc5xF0e0HR84yD0+M86ICLoKfhwDgOOMMbacjmzNuS+Ka04KPiocd+57zMxl6J1zV1WBzr31Cre7qkb2Fo7BozeYhXAde0NsyFg5v7PvQjiNvAQU7iRc7fmdpFD4O6h4puKZimcqnql4puKZimfuvqh4BhXP5LyseOa/bDxTDz0VCoVCoVAoFAqFwgOqdJy4aZjLSDy5MHRc5miSRGqkCIZApQHK1MvmJHFtLXRtkcacbkcVpbPVMqBPlzNu96cz+FcNh3SQ4Tok0mWTOFjTNmlAcucmzgxKgiAJBYlrRAgboMPYJol+piL3LyR1E4HLHRCbS6STDzf1nOiNadObCq7pIZzwHAbgfV1Il2rrDRIB9lwT7XjhinTgQS9sx6CqokkjeelOp7dGWu4VabbdNpHTlOSdtg7XjguK833iox1o44XX6wXFFdfH1NvQIESE5EsSy0l407Uku48QfeHhOBQRXMuwo/oI3EUAMUc/mFI9uBgso+uUhK+wLWAkzsMhZg9CZT1JeAX++n5jhpP7aANdBPNauMKx/PEaWGsxBT0Ev7wOKAANlujH6wNuhmUT7/PCb9fCe9JZ6S748dHQYRAYlgqJiBRD4vqvIEqhJIYESfDZTruu2nAcA3PSIZbk5mu0nQq+NYVNugcVJJXMbbsD15rR7imARbrvTBEPh6Y5E/c1mt0uc/eYD5qEKjYZZ5FVAKAwOKfj/b5wmWMJ6Bx3kssksxSqPcgyx7ku+Pt2sbPEy+3W1SD+VBUDJJZyrCPng7Y7y0GQnp5p9FV3enkIMM+5yUcoXZsUy0iEkXyyeHu41n2SbEphIfoB9iDZY65LE8DSCQ24kMQiVR3tAZY4cAd6EFebPASPkcRVOjhvJeCrUNBao/E7yEj4Chd9kM5BgMebQKqMx2EZDB5f9HZJzzkp9Ey6bXuUrzB3TONazHHiEGlAELdm4Xx8EqEmLJ8T6yXHeZKpQrJSU3aNe4t1G8K1v2mDNpaAudZKJpHnjHWIojI26Tkax+2cM4SbECrhe3yYKJp2ZCkZuGEugYb4qAB6PzaZf83J9VUVTVuk2I+5BWCtFNcaWhsQYVtmJoMUPFmmgQJDa40EvDjmydIMTbJtZYusKvKFvM2SDbYM0hSjKwUdY0YHh4RIYGgQiAHXtUATqkBax/taaML2uObCin0iy0ikSMU9zgBrLIPTGlrjOpZCs12G65qYcX5Dlm0ARhOWxYjxw3HkWC5Yzu8CBoPZSQUu9jZXj7HX0LSxnIcZrkXyeC3FgmG5AD7xy+sFFYOAcy6/A3iM9Ssc9xR7Y+7AgRYPBiCc6kjxy0L8YbYHjbWFwgxgy9C6orM20Z15IMQ7uxby6YGmnSVLYqzmXFY4VIHRHtkcQtz0mN/MNCCYOX9CHJrrfOqk7DdzTGeJJI4HZhD57fPCj8M4p9zp6leWBRmtQWJ8r/hO0FT3vKSTfGLOhaYSJVm4Nmb2j19e47F/OJYv+DVDENieb86PtdBHlK0RgUvDORd6XxAoGiiqcD2i6DAi+4BKZJkR3kt+x2h9QLWjOR8ouBbnamYtaU0Bjf11MePAGG2vo4XC30PFMxXPVDxT8UzFMxXPVDxT8UzFMxXP/DPFM/XQU6FQKBQKhUKhUCg8MFqj61MZ6M73CfFIm6zA6Aw/DZH6XxZaGwAEn9eCW1JjjrVdWgiylCSBgy610Tve14XPzzeWGUZr+HgdSJJjmaFBg/Bq23XoK0pMqGKE2wsAlhtd3UG8NW1RpgEk2j1JTb0JUiX50pqGoykEC3dc1wRAp572ht4R144I7juO0RmMrxV0GSCbAQCO3kgSAegSbrok08HzTPdNiM9FsrDBcZ4ThwSx1TvdYpPOtR7EYBOw1MFouK5P/OuPgX/99V/w/8C/4FqLIggAdZIO7/eJBcCFaaTN3li2MCfwp19/ANFGgGAuBzCByNzeeieJIwppguuaLLcApof/cXSWugAbqWuDG91e7znxvlYIKiGsSAT7gmhQljiYa+KaJ1wEQMMyx/vnGz9PprAffaCPgTcMv10cO8cYuDDwv/7Hv+Pn5xsuin/5OLCuKG2iiv/47TekkxOimPOESkd7kVBd50XnttyE+1xzk3x06tkmf9OpCA+nWTuwFufFdRmu8+IYE6bDnga4z+g3puFPQlyd55jXjGNHWnIHDBZCxtzjxmPMAEkWY4/1FFZaa1iLpLEGeZTO9WUOW3OLEKKC8RpMU++ABWkXXRmk+xV9G4NbJFyBiqN1tN4w58VyMl9I5Lge1f1Zs8VxGSTSOS+Ki0HMHq9XEOXh9l1rO/m5TpGmn3Pic55o8igJsEspkJijaZHuTAqKgmtOXEGqjdGx1sSK6+mD5DpLuEQa9dZJpgd5Zxr9sChUugDdFK4aXHiIkkFaQhTvc5IcVjrHs7QCy+fcKdh535xjHvd/rWvfU4pFc07QqdxC6CFRaKBjUcXQpLEkDRazM7hAobHeaYzXLPOgX9yTlopdELaQKPHQda/PANcij/IlkMZ1wt5ItzKEBL2BZVHcjOuGOxDiqcb4EBGc54n3nPj4+MDxem33KJTEa5aCmHMy/X3Ml94aCVahkKZC12rXBoNvgav3juu8opQLcBwDR/S5qO0SOSm0Id4DcAzNtXamAwAYrx7tBcAMDUxtTydox2sMmEU5mHj9OL7Skd4k9kxDb4rRXxxfZvjx4wWXg+vKefFYYCaMP//pB4VoN4h09I8Pjost9vK6fvt8I8U57SxrQWf1RO8dTQGbRmH5NeAuMFOWiDFmdpiLJQmmO1Q7sxE4cC1SySqCdgyWNdhZLThG0Vj+RlIzi+wWn2vClzFrRaRbOa9zrzucz7730KEN5zkhQgL5dRxxXxxOFPQn3O+yM613lm5YCzavGN8KWyGsSAhVyrEyRqeosBaueUHWvSfS2Mx1U7Wh9YFlwDSuFV25Hu7sIsLvTPee39D6BwCuC2bA+31iLsNAgzQKa7YMa068f/6Go/2C0bhHtV+PLRqrCK554TpPilkieB09SrB4PEix+N0h1nwo8HldgDt6F/zraOij43DHWhcmYu5Pg/nC6+MD43VE+QlH7w3vxT1CHTg/P/Fvn/+Jozf88uOFj2Ogt472o+PHj3jYIubDe0785+ebD0Kooo2BZRO2JnrreP34Afv8ic/351573CNHgiqaHsjSSNwr7u9ZhcIfoeKZimcqnql4puKZimcqnql4puKZimf+meKZeuipUCgUCoVCoVAoFB4QWKQ2BsQNY3Rs54xZOB5v11Jrd735MeiCzrT0rUvUr49k8NqDWOHxLQiuHz8+SCYZCRIHXcrqitHSPUmC47om09UnW28OyHrcQOSNB53NFk5LXqEEyZ/lLRw6+nbmUZwI75M7bDkA26QrU3TLJtMwdBObJAQU2qJEg5JYMQDp/NY40RYIzOlknhPnnBQIhCQeBDj67etNQrO1hhb3YxCsKAth07EMWNcnyZrG8g/rotsKAC6bMNNwwDne119YloDMB641oYIgfluUHwi32Vo4zwtXkImtCea8II3Ec290US1bJNbccdnaXTRdsXwhrc+qgoVwZC4JMtZ3O5g7pDeIM8X/0RWjf+wyFDbfmKq4Ik36n378wG8/SS4uZ0r4eZ7orUFHR9eG9yRJC6G7sbeOBYpY13XB14WjHxijQ3vHfH/yWsO56y6QfruVAR6HLn66Ful6XzivE603dKUQ4HC8P/N4gjY6lmVK/SifYQbEfGrKFP2RHDtKGGCP1TkXdnpsZX9lSnYPJt8VWwyjAGVQ4UHOyX7SIKnHeGHNhet647ouvD5eOI4jSGPD+/PajtZMoX70voUxd8N5RcmU5UH4yXa/ttZykkEEOPqx3Y4rsgGkq7S1cDmnM7kptIUjL8jrz/OkMiKCY1CkXJlZIeY6F4koZBH3medJcYJ9qfCVadYFZiuIyLusx3VNzmenu3ohBAyjgCGCWKt28nZej2RZiRSn+CoJ/uxPw/EKemoTnXRTeqyTc17IxsvSINoowvTR0fuA+SezGYiiHwfvY04MdGR5Hsv/WYhQSLH0LpXA8h++BTWNUjfp7mQBEJKIbo4Fil7LLITYaGsuwxRFmmBOzn8H8HEce2y2GEcS67Wq4vXLL2hBCLoDmoKayF7PJASqMRStDY4nW9yDzOHKkjG9dwo58T8LwZTrmO49jO5LC1NszGlpu23cY18K13yWkGiN7m1VRzOByCuIegC2gry+x3OuKQC2KGbwyBhCl6nuPQqQ3oJup+DHfbNDwul+dMW8DGYs59KP8RA5KRxdF8l67YoeQhYgaH1wnY+9/RiD7tPObCbTget8byHx9XphQLBmrDOi0K6weSHL9LhTvEMI+TvziYMis9kuTyGxZ8wZoneLsf0o3WG+0ENQbjGHU8Q5zwvMBIEv8xXAnpsUS54PBkSGAud6sq6594RcSxUU6tIR/8xqcIwjpyrWMrzPGc5x4DX4PWE7z83QRvS3U3iEUygUpZte45uJO+BrYq0Z8wEUMG0BAnSEAx4U2wwU346YSykeu7EczOgNJsD7vHYmEzTFOA5+3hZ++/zEcbzwOjpG/xXvWJfggLhz7RXhmu+OeU18npNfu5TH8sWxspyrrer9HY/LDveZ0RS/vl7c50QAafj5fmNeE1NOzHFipTCtkX3G/P4+A+Dz/f6yTxQKfw8Vz1Q8U/FMxTMVz1Q8U/FMxTMVz1Q8888Uz9RDT4VCoVAoFAqFQqHwQHAHAL6WZ3DcJQv4KwbUDPT5WhOBgSmXxQGB4pEhnqReEu5IEi0IAY3650FcSQSVTR4p15OUy/eJbPcRCSPZn03wdZJbSeyk044E2O00JZkgm0zI68m087R1sUwFwKB7zXC8uSOyOGNH+NFe6dS2te7U/OFMm+EcXsb779oipXM4Z41ERLoxb+KW13uthWnhlILiuk6osh9IfmkQm4aZRI3RmQpfGL2TsADbUjXqyyPbPYN9hfkMp+NNxna969urKEwprsy1MM9POj6DUNX4G0FsO3hBJDgU0u4SBSmkaPZtI/FgLcaAGeZk3796wy9Hx3/+9km39QCOxtTz2tomqFl2YIXwAbTRYdMx58J1nfg4GnqIPCRRbJNja/G82h+lFXIMkWEMIvIed5rEuAjJwHAmJjENDwlgCwX8fRJktzss+yHGaJBbJJqwj0lCHluQSldnihTMZKA5pbdoRgLPozQArzOd20wRfs/ZJL7oCo8x4ne5B9v9FwQbfwg3K9O58w1cTXIcp9iR8Me8vecS/6O7wIdHe/H1dESTu2T5kjj9PZ45uH8v2KUSGGvBWrejMNeqbHd3gT3aBHGMPB5AEYCnIBm4rzVSmz/FGwB3ZgUHbAXJuLD7XPReSFN0+U6SZemPFF1SwWF/Nba5M4ME/Yq5qn+FRAmJHPtcb0KwcnwZl/enhSR3kPyaLnhhX0hcn0e7Z0r/nPtPBSxTyvtDtEjicQu4nv0skXpfYCt1CUG6ll2w+8QtSrZECY08P/ac4utZNihJ53tscZy2psDyXVLFjaV43GPdhQBCd2oKfblf5ahJJyvXJAoE6eLWKDkE8PMsLeS73dMdbrEfdhV4lJeZ8wI0s39gi7x7rVJlmQ3Il57nOgb0TuJ6j2NbmMvQmqKL0sXuAltZnsNg97a+hZNM96/gfXJd4v2IO5poEP7hWDYKV3mN+pjXpluyCvf8/T0Ee/24xdss35HOaP7bWcKnZd/iXoNCLVgmaMvQhOKbisD1FhfYYlGiBL5LRKTo5DE3p9xiUK4vezLGXqyu3EbjPCoKjde4gHNPba+DLul4eqHxi9XeA6VFJoY4jwjieu72kJi72acU/7mGndeFHqVCtCnMG9bK8RLZLGD7Xlc8zLGXS/U9rt0pXitwi1z7O5mgq+Kj3/uCueBSgUlm/1jwx37WVHHNK7IcxD7guXPd3wsLhb+Fimcqnql4puKZimcqnql4puKZimcqnvlnimfqoadCoVAoFAqFQqFQeOB2x5EAmctI4IqAjkjAoeFcaRBboEeXgfE1J1weQeJN55GI2QRTOCKTcN2kN+NKkuRjExzuTG3sCNI1PjbN0ES204rBJO9l160Pcmoa0y+PxlTrqvf1AUmwxvsdmMaANMUJB0nWJHFEFWc6HCFM3x5E5eYEeGisOIYCQZAwOP78+eZ5HOjacfSO3lguYQhwOUWE67pI1IwOcZLYlzne1wkRRe8dr3HAoHQFGiCtoR0DWBNrnoAK5gXMcAD+ODpU/Esq9mSQmcI+bySciXMhzNLwZThGkAtB1tCtRwJ3nRf+8ttvGMeLadoh6JEWuytLgZgtLE/nmkHBsheNAyQcgCQYtxAjAhfFBcd1TnyMgT9/HPjzaPirGX68DkgTdAFEOokekMBXoVOfxzKM44VrvnGdb/z1L3/Bf/u//4909DrTojscfQyIKNa8cF0numRK6oWmAwKScWtOfK73JvglRSBMpNu2dZbAUKWD3mYQeEgHcEPTHgSfbYISAGCRSj8ITZYQCBIXSV7nkbAJleRR6FpN8hcQbZAsbSHAnBfOi+Uejj5YFkbodvVFZ56I0Pr2IAItyBqWNFmbAE4BT1WgURJmk0sCLGe5lpgedNk1xZp3+YoUrwCE+5jtKsrx7vumHYK2iTNzRx8HhSmRLXwGvwaWeLkFnbwGj3Tp34UqC/EkndgpigZjjCYa54jMCwDO9/UoM5NzSKKUw01s8oIc78933GuIFyrhnuY4eL0+kKnQz/MkORwiBn+OVP8quD4v9NZ2iQNbXHfgCgcJzRFknbltoSDdlUmyJlkbw2+v3beAInvNYCWERVenDBKY6Sgmq0kiMxzOvbPvzSioMMsGXcrLFqZRUNVHm+ZaPJcF+59EsGOtdOJyzFCkyA5nKaI5J9ZaOD5e6EMx58ScF0ndmC8OoA0NzeImnN/vT6gKsyZoQ1NgTtAxPxfLUIDObF8zyvc0rqVrAQtB6vvt2g5BINc6bSwT0tpdjsDcMM/JdVJkrxHnvIDl6CEMsd0c11z4PH9ijL7FGQgwxoA2RW+CJpGtIso7jDEgYGmhPV98YRn3c3NgBKnfIJh+74ksPxKEdqxF0G9jqCn3k3DnjpjrbDPHFYJCilt9NB4rpofFniKxfjN3h+xlLj+3SfAU50QB9MdcU3iL/THGfVOBe9vkPMtxZCYXuqT32hXjb93LDssiqKJD4qECi7Utyu9oiHH7uwhCM4+HHYyiD4tKUQhgBha2Txsdnz/fUYbkQnPOueWGueiS/3i90BqFuSGCtSZOM8icoATnWxTxWB/5XYbfidZcEHvsFSse3mgNr94wL5ZsuOYCGktPNXNMc5ZjcQpnTQWf7wuAoYvg6A2t0xkvsVa8en4X4p704+g4muIywxkCJhriOyezhcw5WUaltb3ub/2hUPg7qHim4pmKZyqeqXim4pmKZyqeqXim4pl/pnimHnoqFAqFQqFQKBQKhQeYQnpGIKY74AbotKQzlqTPxALW3LXr13J8vk8SJK2hd4WgBTFluNZ1p/ZVBc1KGq5RpkjunYQbXdeAe8Myw1qG61qY5hBtMHd8vj9xtIZ+vDDGQBcA4dw0ADo63BbmmpjL4FD0TgLL1gVV4MePF5IY98USBhZkkUYwningYYDLQheSYtfnG1kawkH3rEMw1wyHoNDt1hteo0NFcV7Xrgdv7oAoRmNAfrwG3BcawqFuJBv048DrdeC6rts1JB3NFtRZ3iFdoMfokEj5Dwd+fv6E+YKIo3fgvX7CJknVf/nX/waZF+AsDSAIj2LeL5lQmFuksXY0B1oQBaM1uC2QnFMAF9QWBgz66vjzL/8DEO2jgniv3M5JkKxO8Wg7IKP9X+MFC6fnmieJaQimOT4XCZ5/+THw61DI9Ylfjg4TwGFY68J//vbegssxWtwj0BWAM4X5aIo//foDv7wGfv34Qc+tG9rHi+7xoIRHV4j+wLVYKgBu+PH6ATOSj+fJVNa9d/Qx4nwkvvhnYvQGUWYQUBEcH0wrToGMxKsZU//Pa6K3volkAcmwdGt/vD5uEjS1LiGx5e54XxfGEaVaghRTbUHuUeTRHg5GM5KBELxeH/h4DehaeL8/SdS2jqEOXY7RBwmapphrbbKsNcHHj1/CBen4y1//QvEpiB0B5xeA7UxFknrxX1t2i0GaaeR9Zz9Ya2HZhRkkdWt3mYPWFOP4geVRjuN9Uahxjgf1uxRMCpIrsyrkGIVApUF7sk+R4twzt0F+1uI8EwrB0QdEFXNeuBDpyzXa3imWjDGyq0k6eqau55lWCkbC8gsAid0kYt/vN3onQX0cB67zitIAJNHG6Bh9oPcGm2u3u4rgvd4w57jZGRXmRZE3yLvWWEIhSwe0TufywtrjDnttMLzPk2VjWoO+XhBRHK8XxtFxXXd5Hjfg833iOt/4eB14HUdkNbgd1KqC85x4v98AgF//9Cvnuhkm6NY93+ctgnm6w5OAXvj8fGOMgddx0NlthnSCa1e00bCWYQap33qDNkFHB4SClT7GHHWNxTIxIRqpti3MAJwDQ5ipgmUHDCk6XxeFLgpmYFua7xIwFJwiS0GKn4gMBSHYGXCL3ltIB8nhSbfwCeN6Fnu0to7LJt7XDLEE+PjxggjFCLdbCGra0AfgxvIDvXFsmbF/lzlGO9A/Oo4e4oFRYO6NpTTcO0JHgq+Fz/ON4zgwBtf1tQznfEcZGcXQhldr6HvsKz5+/ECWy1ARvPpg2Rpwsujo/PwW+bgqpyhgii0aUOwPcVIVqj310r2vuwq3yxBox8ex14M1+V3jFilkz8vMHnKdc5fuQAgQo3cc2uDi+Pn5hoACelOWMVjG8j0O4OP1iu8zFz4/3+jHASBFFgWU4+l9viHhXB6dx5nnxe9JreMlHzjfV7Qz7+cCMDpLo8w5Keb3AYnyPOdaEEuns6Br3/euAHo78HN94n1d/N70cTC7jSi0D4zjA/C1O+J9rl0OR0RwGbajnN8J4rsjEOInYHPB4HDNTAOdW9lyvM/3Fm8VwJ9+/XULxNwfDe/3J5oqXj9+QaHw91DxTMUzFc9UPFPxDK+p4pmKZyqeqXim4pl/jnimHnoqFAqFQqFQKBQKhScc0Agcs/a7BHFLF5sBQoePiODjGJkdGaqO1n9sR2FwK0FC0ZmkmUoZDlW6cqEkTFSBHsFw8P24lmGuxXTIqhAYVBxdgf7xgrgwfTNZ/RArDHM57EIQj450yx2NxBhMsHwhzUoOuhERjr4mFCwMdOKt5TAYPg6SfcvCbdtk+7Sui3XplzuWAeu68DEONGRqZbaFGbAmyzOMxhIEXQUKpv2mHuF0Y0mkim6C48eL5JcHsdkHebAZ7TMv9HReromJC3MhCBrgEMGfXh/Ai2T7+f7JOvcgX9UQTqkQZUQbsFPXC0an4NFbpPJ2YBrTOjsEWHYTh42Ev6ULzRxjtEibTaJJooQE4HBVXNeEGwmBFi5QwKFuDN6FBE/ThpcIXn3h1emePMOdlWUczAUfR48yFSR4mHCd4tfoivd5oYlQ8Pg4MFqDgmSqwel8nAvLSBKna7Ar54gg0nczWTuO3sPZ2CDudH82IVGG4PmM1KsIIF1prXM6OjUmoAuPd85rC3WAfyFVpWGTZMhjB+Fv4cK7FsUXhLCTpUEQQojZgvOOsZzuQ1t0yqnQvYzlEDWYP0omuMBCCEvXoR6/QAwwD1HEHQsOd4V6ZDsYSRpx/kybcHBdMbvC9Un3/zLHPM9YQIC7JAGJ/BalZdg3jnmdt/go4Wi1u9TK6/WCdIpVDQZqXiSvmgA9XNpxEhyj45wkDa/IQsBx5Ey/rg2jDcDpyj3aRxC1HLP9aHnpyQUjb6aFWJMlaSCC14su9JjcdGlz8cQUCqU+ufZlt1uMyzGOWFsMzYFjNPbXXBRGQjOEW7ibfROudCsL5ySYdcBBx+YMAdDM0Hr/Mt7oqufYPd9vaB9o0b6qmQWD51d1umCd88mF6zEiQ8Pn+xOn3WPpfZ7s7+DHoVzvLFp3rcU+C+f5nI7XMUj0S7j57eH4NlC86xRqlxtsUsjgiLzT/6sqpq3I6sEMBRSlGhpVaFiMhdy6VFN8EZjFZhiCgEW2ADfZ7e0A9ydfTO8Pux3oy/F5nbzH3kggew+hxrFiDvboDxFgQuCLJTJG75Ao4yICdFF+zmaItYq3LQwVjK54tY41584Wcc1POFhuQlQAdczzDXG2rZvht/cV6wnCsdrh3DpxLYdMR2uPciImIYwAIk6Bnaw2HAK/4tpU6Dhfin5rKCT3Ld/NKSopnMAB5QqcgheiZynIGb7AwwEs93os0aZNBTJafHExiAs0MgisXFfdoEHkQxquOfmgQ9yNLUMTuv+zDNNoiNI9ip/vic/3iXRqa+8sz5Liv+ouDdO0sREiKUNTwfHLa4tJ5hSAesxxd8d7XXhf3F9UBNoboMqsGDFuj2Pwu1y4pFe0kbYOh6E3jv2mDZdNeBsUSxZw/faJPmSXoPj4GFhT+Z1rRp8KM2X8vBZdzsbyHz3EAMDRm0C04ZyGmWU11uL3M2GpITeHNkDkFtznnGito7UG+9a1hcLvUPFMxTMVz1Q8U/FMxTMVz1Q8U/FMxTP/RPFMPfRUKBQKhUKhUCgUCl8gm4TySD2sgkj37ZjJqkcQ6vFmiTC5Z/pzRxB0CzTIeLiNkjh2IEikdB3RYZyp5llP/R0EuLujBSGcqae1N7zfFyxLMKBBxHba7dvhLeHIVsb2mbLfSdhn6QsVZY13xsiZ+Z6EWhD6TLsdde/j98kA2jJMeBAsCrGb4DUznMbP0FVpuMwwetv3k+nYE/xZ9klEgggGIJ5uZJKMCHJMkxSaK2rLkyAIhh0jSgg4gPO62HPC1z36bK6FuRZaU9CtRoJi9IaRxDuAedFFvgxYAMwmuspOhX2PKPa/CgmEnW4ft/sMAniUasix9CQzWxD3mcS/qaBLQ48xc5kjSb10wI0YLxJtJB5lJaIERo6NJmA/IIh3SZfqHurs0zhvA8cBPK9G0Fo64UIgM5ZRUclyCI4Zgkz27VbR8rxwSJDAO42+cH7AnG5OlT2mUt4iIftl4HA8fjs+BQ2ScX5zxQAUojEfnSnt0VtSrHCjlpHnlCTYHidVEfha2zGoSoHtSSznwuLOjANJ4kJIWIWEg55C34wyFEyRQKItBDOuL5HFQJhyX42O6hb9YC6wGB/LPYzkbGOPNklyUvOmcsxJCKPOz65lcA2ykywdWvzANPC5voX7Pa6Zt50dpHs85bnT0alNEYOSczxEEQliNcdMijxcZ0lutyaPcRrkbAhGz7XVUnggJb5/LyJsSwOWsZ+2mATsuZzjSVUx2tgi2XpfLN2yWX22IfUWilup8rn7dn57rNOZIUK70CEc8zJJdQCRScP3sO8tSnDEPY1x7LUz2ymJcu432KS1rxzL2O3vyGwQFk58rt2tNbgYM1QESQ4A3vagzrM+fs6yGxQrpLXHq7zXFOQcKwjTcI+GyCQxWrjHUkx02Baxn224QmjMdbWp7rWriVAsCqEXKjCwfxvoyNbe4ca9+loXDCu1Ms6BIPQ18u9fmXlEMpNGTm/F6AOARBmp0P9TLMiHB8ByQ5mlgaVAGrgCA9d1wUIAUpXQUVlKhnuJREmHEFhF93GBW1AEEGPe9zjPOe6499L9ejaa57oveUAK9yE8CULgU43sCoL7rYLeGtckjzJSyvvX6Jc51xYHRbOMRJxzOebFslcivH9+/xG4U4C3tTBDJOi902UeQsrndFxroavuBy5cEMJ/CJytkXwHyfzronDnsjBa576pHa0JLlsk7Z3XMa8FQJn1hulOYoxiC1gea6aFEqNOIYcjD+iyn+cAQiBwsyhbobvluZx4lHDi9401J1qUhJjrzsBQKPwxKp6peKbimYpnKp6peKbimYpnKp6peOafJ56ph54KhUKhUCgUCoVC4QGXrz9vMssZ9F6OTait5TivFaSxw8m+3Cmwja5BEbrH8vcIsmXOCcBut6cw9b+AJOZ5TZxrBqEHOBo+jhHO3IauDX/5y0++3pSuMPEtQpg5RLHTco/W6DhrCu0NXQfO88R1zXDbdUynuxkQNLNwThmaCD5+fGCBQsm1nORNBMjuJLDdDG109NEgo8UxDJ+n4b0WWusUCNbEXBOCEam5FdecJA6CtBe904GbGd62wg0UbuLrQrrXe6Pjb9oiiRBuRt8EebhF4xoBRMr9EAhA99e1Fq45ca2FD9CJ20RxdMXrOCgckAXHXAvXonPYXHBeJ0sv9A4dJOzhJDObkjjzIMA3Qfmgz8YYTHFvUR4kiRQRSKfreS6mkm6ggxaiMDdccwFimygDKFakhAWwLa/F9PongD4aNMk1Z2kAODDN8Z50p4mSuIQBdD8zbbw2lvZwY3mSj3HQaewO+IKtietyjNbpyB8DYkZxBzeZcrv5nhOP7tldUgCgwDOYet2dJSPck3QnqZ5WQlHOVzjdbkngX3Oi98ExCDo5EQLS6Ip1XekRBSTGSxK56+GOjes1YRp5bQ0ClntZQaSNQSKnhQiThDvJLscMkl2D7NY4h5lhXlecgpScmWMtxzHGdsW932+mQheHNL0d4SKwtfDjx4vp/Zszc8BaJK7FQzwjydeUTn9fdgt6bpAkIff4DGe6cK1ba0FcQwAI97A0aGvoo8PWCnLf4z5sj8UUTjYpGUKPipKsi6wBMOy1xzXmit8i2+i3293NECrXTdomzXkPoiDLG1SUGS2UBKmdhjkpYmobWGuhKzMhtNbwPk+WsnHH6zjwyy+/BAHPLBSSrJ9sTSsEDq69LBPCdaf3DnNnaQYzjPGK0iHMSOGxZm6xURwQrgcKQXeN1PAkDUU7jiidkeVS0nmusqlemK3IsoEt5iF6eNmKfo+yJBD00dFHh7psxdizP/0WQVeQlan70Q2MTWSKewgtDsAw2ogyQwZfhtEPEv8hhB3jgOnapXFWOPxtLfgydNUQqCikzWkkj9136vw2WhD4sZs99hVtAne6/lUER++Q3nemg/e8goTPOUhHuwjnqwtwrYkmio8QZxSA9o7+4wc+P0+8359YttA7+yrLu1g8ZGB7XmeWjCC6p2H5Qm8NPUTpbNcUfRTpOo4iLYulbkQkiHDd7891NgUO9yDlb4lyi/N7Xqoiczis5eHm5S/yuC2yVBzH4PXvvYKO3bW4Dy93XKpoaLFPd5znCTM+wNA7XccU6BxuC5/nZD8ps6aQqOd+vcxwXm8KJ9Lw8eEYvaOBfZpzwFUh0gBQNJ9RCkVVMKIUhzvd128/seaCXAvj14ExDvQYnz0EoTmZSYOlmRwKh3bF9fmGaotx1WC2kCV9Uojs0fZmi3uacmXKkhXcMwRjdMy5YJP3L53fIUaIbAYDnGU0phn0/whrdOG/FCqeqXim4pmKZyqeqXim4pmKZyqeqXjmnymeqYeeCoVCoVAoFAqFQuGBudZOU57kOgkGx+sFtKMx/bMzDXiD49ABVZYGSPeRpxsXEVgbHbjSwq0qjUFk09udFAF4kgLaFEf/IAljRuejKLDo9EET6Ogkr84L11oYrWGMgaMrxivcZ3HAOS86Nt1gky7RNek6UukAGOS7A+cy/Ntf/oregD+/Bj5eAyrAf36+8b5muJtICiZZMUbHsQUREjk///pXnMtxGvCfnyd+fLwwesPr44WPpfgxGrqyFIY0xefPT/TecBwHjtcPzHVF4O+4LsdaTLkPNxwHiZQ0fK0Z5P/o6AeJPr+CuBYJMgzhHu34OA5ck7Xu16QzTnpHlwYIxZ0///KBYyhaktPLcF0Tn+9PEtOqkeoaGELCyEEXVW88j4gASsK3P0hxc5AQDJsu04GTHE9nI9OGC13p2iHXCVsTc574cRzbSaWdJIuoo8f4tXnF2KJANVSxmm5Xex8HidBGF5nDcF0L13JMJ6kxNMqT+EJTEvWqgjkXzvMEpKH3gd5f+Pz5F8wgdEYQo1voADDCYUouisQe5wev0iBw1/h5cRIgiLFOkSWZLXfguk6sxfnSRoeC7kGWFAniK4g1CNvA3XHNCRPBMsDWBbeF0RS/fhwkqh34/O0nNEQBVZa0WDPSwO/SCVFiRTtUWD7A3TfJxiwGFJkEwOe8SHaaw6FwA9Qc0u7yMrfIA4zjgINufReDRfkWVQo2OtomLgUgYQygdQ13/0Sm6afbkTnmTXJR4vhj6ZVw5QVzLKrogyKDzIUxgj6iyQ9NY2SJb5HTQffevCazOETWeI0SC5nyf6+JjmjfFqLSRQKydcAlynWwrEgz2SIFXc50sa7lnEvK1PUcbk6B1sM1KsCcE3Pl8TqWL/gSNAh0aIxFDeH3wrku6OsFCWFRY55oOJF/+/mTbRviiXiKPFEeIR3a4d42ATTWKlsLn59vMPNGg/YB+EKW5wB4vVCBtAaIYM4rRDCOkc/zJDktzCpBwZlIoYACZ/TLnJghEpxr4ZePV5DXDXNNXCcFLniKUVn+IDoK2P2cROwTz58lygFwrnD+k7xnuaMxGmQB05kKn8Q2r7k35gfwEAiwPLIEXHAPR7gCWFe4i5n9Qh/zBgDmObmu2sLx4xe0INYp2vsWwn0urGlokdGk98F1douRhukNn+dJYta5Rl8rXMJN8evHC+u6MNfC588LEMHrNQAMkvJm+HmddCkLcBz9dnwL0McA4DujQtMDpy1c54IhS0NQ1FOh0zvXc3fHdV3MXOA3Gb3nGVimQuwWCr4aah3Tb2HJHGitgzlbnPt4H9DeYUFqz9hnESKoI4RUM/Q+OH/OE2sZfvz4gXWtKLoT9xDXDXd0jTUOC+YT0oA//fqDGVQW723OE2N07vUqOF4vinwQLBg+zzPzHEQpJq6Hc15w4V46J9cXVcFntCOMx9feMD5+oLWGz+tCX4pjdPw4XrjmhXPywYnWFMefPtDVMXrDMRp8l8oCtAne7xQiOkYbFN7A7Cos99OgGvuacyxgcuy2qAGyhBkvRBxNO7pwjXqNH/j4+MDnNfG+Js5rolD4e6h4puKZimcqnql4puKZimcqnql4puKZf6Z4ph56KhQKhUKhUCgUCoUnPBxDfqdMB0iCrDXRm6CBLqnxcaBrI3EP2W7R5YAgUjw3TY4lyMang7rDlQSQhRDwGi9AsyCA4FoOaSTjD1XY4isQwCOI79aRZSBU265J/9tvP+Fzoo+O0Tt670gHsG2S0H8niEw3tGVwHHj1jh9Hw2gkomwtKDzcOoK1LrqkWsPoDSokDkSEpMrrhTYNbRp+HCR+bC0Mafhvf/5zpD83rGU43+8gfhrMgfOcgC8SvKJYKiSz3AFRzAUg3FhJyGYqdbZ3w2vwHkO5gYvQyWwT53wQqdEf0uguhwAfEunZzXHOiWsa1qJj/X2eGMeLaeHFw+nH9ONJhJA4ITGhIAm1QvBYQTbSwUjh4mIu+nCM8u+5SMp8OtD6gXeULOjRX+cV5F6QrR7jiIRXw5wUidZaOI5Gkr8xvTVTZtO5a0bX4ZwWRKJhjJb2TqjS8W8gKeLmO3W9L7q5em9Mpx99IErXqhjd/nEoQNg3HkKIx1icK1KeO6J0icLF4v0azmsewM3pelbwgEGymzvEna5ObcFEA+3o0GU4r4k5J85leI2BY3QKZLYw0qUXY5DpyzkXeX6DrQkxQ+sDr9cHU/SDruLjGHRUxvqh4Y3TOMboHaok065rhuAhLGECOj1VJRyhJGxFBWMoSXLhe5sCP17MMMBhxN+lMNGbktRC3wRvOp8l3LqqSQoa7HJ0bVi2oq2FRGC4Z1Vb3CfXHDeDtoYt4AC7BAzgIUwiOxrSFHw39vUkeS7CzArqWUZHoGhbcMn083fpiJjbTSAm0CgV01rf5Wl67zA12MqxFX3Ysj8Vtgw66FaFA310uC9mVoCgHwekt10GxeMcHG8UIHLsznXh43iF+GMwF4xxIAo2kEBP8cocdl5RisewwDVprrnb/0+//kIhSoM0DDJcox2cm0eUX2mAJakoMe87svTAVmPAdpHWcH1+buG1CcWbXPv90T8AdhYJCNcq/khxI9cvM4t9h+e/HtlABLmG5BJMsZqOUYUeAw5m26AI1LDspCgSc6iPA6rHvVYAMGc/Sgirqo1tm8RviDrjdcBAQZHlPHgh6WYVKK61cJ7MRtD6wOsYUdCC7vIVAkyWrFjXZJuL4H2+MVSYSWAZrnnCQyBR5fhBa5ERgnPQImtHU4U53b7LJtcpKFwzQ4pBrwsymAVFlSVWuKZGpgHh/ayVAqLG2hrlJjyd0r6d33OuXZ5BY+/2LJUjynV7rShVYjC79vwbrQPIDBixD+TaGOfoqtDXB1I2yqwpAgf1UJ7Hm8OcezDg6Op7HC6zWFcVH6+PLf6xRJNEaZQFF3Ls6o4mQOv8vK2FNRcuO9F6w2t0fBwDa3HtYjmLGJStweG41sR5XWivg99J5oU1J9SADoGFM1tVd0krX4ZzGpY5FgBRfgcSF9ic3EsQZWnMYOqQoRhNo9zEBbeLa4ex7aWF6BVlQuigXrFeMKPDGC3W20Lh76DimYpnKp6peKbimYpnKp6peKbimYpn/onimXroqVAoFAqFQqFQKBQeyEA8fVZJglg4WFu4IPli1LK/c3/nhygwKAm2HUAHyWGLJK70JChYjmHQ8kimKw61nG4sFZKma0145meOVOnWGCxmCmeHP8i4cGdGYMxrYLpyOLbbkORkEDtO91nTg+KCZgr4i0SkkvgxSIgGJMdVSWSpktC8JnCuNP4IPo6Bz/MdRI/iNQZsTSxPsjzcq0CkETc0MKgXUXg4vlQZ4C8YnFnut1hjkf6ZYoFCQRYzCSwHIn18ECBu0Vck4zLFclfBUFKba0Xph2mwxdIDaznCMwwDwhXp0N5jHCiARRe3kUD1cAFSpLG7t0SCPHK62lzCWag8ty3YAtQXLp9QAfrBcD4dn9LaToktOf6QBCeRaao1jt0EoNSDXXKApS1I6Gg4MYHIBm+3yx5OQibLKYgxfbsHUbxJSjg8KzUEWbh/H/3u0R/LovwIKHCokHx25Lzx+xgSFKymU9ZCWPMQNVLg4e/SvSohrgFMiT+aoqvAjWRjChaJnOqqGnwc2ytLwgD5M93gprwXTxIvrokiFOeVrXD9GgUiAcKZTJdraw1ut4N+j/noC65DdJGDWgKvJ94jIW7l+hVvCBI4Wz9Z27s97jHDVPUgvRVzxXf5lJVkci53wjmlSAdg9BlYmsEWgpDL1Py4z+0xH+9hxbnx6IftunXs+9PGNTEUCjoQPcp4RFmJWMrBEhy2FSrzIGpN4erMWpFjHMxgYU7iT8SgzqwDuU66LWRRE64luPsqxrTs3mffnNOC7A8RqzWYGGCOacz0YGvBhGSjRYYKisK4j+fp9G9I121ShdnXoim4RM9KCnT8nT7GkYU4k1kKsq1TOBUEOe7PAgIkmHMO75JJD+e7pLM59kjK5vF+Y7kPTSERHlkiHCacx2bZ38BQgSOczbbCYaz33HIDpG3iO9s8SfAkyy2FCM1yCgYX4Uqdovky9GVR4ohiRM6FHLBNmPo/NatrTQxpUV5Fw1WM3WYuGuSxkPiXey6zeyiGRPfeYilin36sp1nKwdyZLSX6OrO3JO55FY34ELVyjct9mGcKgc99r/PmABbLIGiUNKL4ESVXHIAbHEqXd3wX4trNPrvm9RCeJERF2RkHYoXZInRrjRlH3KCwELz4PcjMOUnNWDoEBlfOZ6Sgv9epEJijv0ZvFOJlYeVaJ0Drnd+JjEJ/PnzhFqVhIPHQhqM5cEZJkuUCW8r5647LHJcZWhd0ybI5wvGKEGBMsXzBGlje5vHdLNdG5JiJ/pf8zuixN4fQ1PTrfCsU/ggVz1Q8A1Q8U/EMUfFMxTMVz1Q8U/FMxTP/DPFMPfRUKBQKhUKhUCgUCg+8jgPndQURR+JkLYOboamiawfCIfO+LlxzBUnIYK93EssUF+jeNJD0trXCnUyIKj7/+hO//XwD7vjx519J3CyHicOF5QCYIFvRkwYNAmeXrXAG+U0ba6ovEra//vgBAcJthEi3nqQZSYkxWpBGjnRjdhUMUbQPhoxmDvLziqORDJEoWXBFUN5FoG6Ar01IOYB//+0TAHC0hj9/vPB5fZJUFMdCurUMIo6PjxemA9c1cZ50171USaQqMGekyx7889f3G3OxnaU5XuOAh1tpzoUxDrZ5UxxB3p9zBQHgmzym4AG8rxNyXRja0KPswVqGZYZrkvTkvQPSHNMcLciaOReWA70zeCeRJ6xqAHwRCG76DUimaZnDXXBe0R6gu3JZnrfhMsM5J47BchnLJq5r4loLDY655iYoIBLOUNuEGV37JAmHCgWC7dAWEh9OQvLoJIUgguXhKI5yIy3ErGMcHIMOrEXyJT/Tk9O0INFVgteTLZQBt7a2nMS/BYUjoIBBfxzClR9OXGVpjBmO6yRnp00SokqCZpOmYAr+JMx6a+hdt0DQVKDjAKA8T4iCwkl6Ox2lkxp29t/Pn2+oCo6D2QikhRBD9Y1jG4YZJQJGGyS0ozzCirzsbhyTvSuvrTWg3eKiW4qXvI9lBh0dMGzHMluB12YrXNoI0nfZJv+ThIQA0nKskgSTINhTZFnRr+/zBAC0KI+gwqwHiHnpYCkWFUfrdN9fJ4UtktwLvQOtUUzh2kPRx0GCdi3fhPiKzBEQEplZ5gX0BbJcBMIRK21f4+v1YtvFnMwSD3MZ7AqlChRKzZwp/QVoRtfyXByHy4H3ecKWYYSr1YEoPUPSUMH+yao/qiFkeric19oiXe8s2XNeEw7Hn3/8wBgDYgashfOaXD9bEKvmMAjmOWHTmJmit3CpGuhKVpznCZsTv/76ukVG93Bg6r5W2eODf5gx4Cblt5NadYuKZpGRoin2L1N8TcEMEk7xtoU6exDXy1heZq4JDznSwUwM/Dz7VbVhGsVQXxOtDdB4b7G3xo7pXA/WMvQRZQSuE8suZgRQZiI5joN7RlyTBnmf6L3j50knuprhxzjQOteL5Ybf3m86gEUpFO21hKn9f7zY3i6IPcxwDGX5n6E401VswIoSNqK6ReXRG/egtTDd0IVlgxxg6aR1kdgOQv4mg2+hw4LEPlShjZlRPMQ2igoh+H0TJBDjODSY6NNY55zObvYJifY1F8yuvSY5crzHuHJmdVj5QgoaQiHG1/r6XUVTDglBxCa/NzWWYACA6/0z9gfBcXS854VzGq5l0CXAWmgCdOoaIbJzMbpmZGpRxdEHTATHoAtdAVjs6dl+Ywxc8+S+7I5xHAByHQc+wuEtyzB9Ys43rsmSYYd0js/ecLnh57rQDDheL7TecbSB+dsVS1kKjHSmqwCtCUbvEB0s3zMvzoNrwp3z1OaEh0iGKJuT4+k1itIv/H38/0U8Y8yMUPFMxTMVz1Q8U/FMxTMVz6Dimb8Rz7SKZyqe+e8E8XxErVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBT+AVC5cAuFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhcI/FOqhp0KhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCofAPhXroqVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKPxDoR56KhQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCv9QqIeeCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFwj8U6qGnQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKh8A+FeuipUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAo/EOhHnoqFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQK/1Coh54KhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXCPxTqoadCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqHwD4V66KlQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCj8Q6EeeioUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAr/UKiHngqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhcI/FOqhp0KhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCofAPhXroqVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKPxDoR56KhQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCv9QqIeeCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFwj8U6qGnQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKh8A+FeuipUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAo/EPh/wNqfqiIYBqaQAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Run inpainting\n", + "/content/lama/bin/predict.py:38: UserWarning: \n", + "The version_base parameter is not specified.\n", + "Please specify a compatability version level, or None.\n", + "Will assume defaults for version 1.1\n", + " @hydra.main(config_path='../configs/prediction', config_name='default.yaml')\n", + "/usr/local/lib/python3.10/dist-packages/hydra/_internal/hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime by default.\n", + "See https://hydra.cc/docs/1.2/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.\n", + " ret = run_job(\n", + "100% 1/1 [00:11<00:00, 11.47s/it]\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyoAAANUCAYAAABc4dl2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9ebRtWVnfjX9ms5rdnO72TfVFUSVFKxQKwdCIBH2VRBGMYCJEhzqixoTY4DCD5o0mQaIx9mFEJYovQTEYjD9UkCopVCwaaQqhqP7WvXXb0+9mNbP5/THnWnufc281QBV1y6wv41D77r2aueacaz7P9+mm8N57OnTo0KFDhw4dOnTo0OEignysG9ChQ4cOHTp06NChQ4cOu9ERlQ4dOnTo0KFDhw4dOlx06IhKhw4dOnTo0KFDhw4dLjp0RKVDhw4dOnTo0KFDhw4XHTqi0qFDhw4dOnTo0KFDh4sOHVHp0KFDhw4dOnTo0KHDRYeOqHTo0KFDhw4dOnTo0OGiQ0dUOnTo0KFDhw4dOnTocNGhIyodOnTo0KFDhw4dOnS46NARlQ4dOnTo0KFDhw4dOlx06IhKhw4dOnTo0KFDhw4dLjp0RKVDhw4dOnTo0KFDhw4XHTqi0qFDhw4dOnTo0KFDh4sOHVHp0KFDhw4dOnTo0KHDRYeOqHTo0KFDhw4dOnTo0OGiQ0dUOnTo0KFDhw4dOnTocNGhIyodOnTo0KFDhw4dOnS46NARlQ4dOnTo0KFDhw4dOlx06IhKhw4dOnTo0KFDhw4dLjp0RKVDhw5fMq644gqEEAghuOeeex7r5lx0eDz1z5ve9Ka2rW9605se6+Z0uEhw0003tfPiBS94wWPdnA4dOvxfho6odOjQoUOHDh06dOjQ4aJDR1Q6dOjQ4e8ZOu9Ih680mvkmhHism9KhQ4e/R+iISocOHTp06NChQ4cOHS466Me6AR06dHj84mLPu3is8Xjqnze96U2d96VDhw4dOlxU6DwqHTp06NChQ4cOHTp0uOjQEZUOHTp06NChQ4cOHTpcdOiISocOHb5kPJzyuy94wQvaY2666SYA1tbWeMtb3sINN9zAvn376PV6XHXVVXzP93wPt95660Pe9zWveU17zbe//e0ArK6u8pa3vIVnP/vZ7N+/n16vx9VXX833fd/38bd/+7cP63mcc9x888284Q1v4CUveQmXXXYZ/X6fLMs4fPgwL3rRi/iZn/kZzp0797Cu95Xun+Zab37zm9vv3vzmN+9IdG7+XvOa1+w49+Ek4L/97W+/4Pnvec97+JZv+RYuu+wysizjwIEDvOQlL+Ed73gH3vuH01UArK+v89M//dM861nPYmVlheFwyLXXXsv3fu/38tGPfrQ97pFM3L7QM1lr+Z//83/yj//xP+aqq66i1+shhOAP//APL3iNj370o/ybf/NvePrTn87+/ftJ05RDhw7x/Oc/n7e85S2sr68/rLacO3eO//yf/zMvfvGLOXLkCHmekyQJy8vLXH/99Xz7t387P//zP8/dd999wfMv9F58sc/+xWC+dPE8LjTfHg8lujt06HARwnfo0KHDl4jLL7/cAx7wd9999wWPef7zn98ec+ONN/oPf/jD/ujRo+13u/+UUv5tb3vbg973u7/7u9vjf+u3fsv/1V/9lT9y5MiDXvONb3zjg16zqqoHbdf832Aw8L/zO79z0fXP/LUe6u+7v/u7d5z7xje+sf3tgfrqt37rt3acv7Gx4V/2spc96H1e+tKX+slk8pB99cEPftAfPHjwAa8jpfRvetObvPd+x/dfLnY/04kTJ/zznve8C7bhPe95z45z19bW/Mtf/vKH7Ovl5WX/+7//+w/ajj/8wz/0KysrD2vsjh49esFr7H4vvthnvxBuvPHG9pjnP//5D/jbw/l7oHegQ4cOHR4IXTJ9hw4dvmK49dZb+cmf/ElGoxEHDhzg677u69i7dy8nTpzggx/8INPpFGstP/ADP8BTnvIUvvZrv/Yhr3nvvffyute9jvX1dYbDIS960Ys4ePAg999/PzfeeCOTyQRrLW9+85txzvH//r//7wWvY63lxIkTAAyHQ66//nquuuoqFhcXqeua48eP85GPfIStrS3G4zH/7J/9M5Ik4Tu+4zsumv751m/9Vp785Cdzyy23tB6IG264gWc/+9nn3evh9O2DwRjDy1/+cv78z/+cNE157nOfy9VXX01RFNx8880cO3YMgD/5kz/hda97Hb/2a7/2gNf6yEc+wjd/8zczmUyAYJG/4YYbuP7666mqiltuuYXbb7+dN73pTezbt+/LaveDoSxLXvayl/Hxj38crXX7TGVZ8olPfGLHsadOneJFL3oRn/vc59rvrr/+ep72tKcxHA45c+YMN998M6urq2xsbPDKV76S3/md3+HVr371eff92Mc+xrd/+7djjAGg1+vxtV/7tVxxxRVkWcbW1hZ33nknn/nMZ9o+uhhw9OhRfvAHfxCAX/mVX2m/b77bjcXFxa9Iuzp06PD3CI81U+rQocPjF1+sxyDLMq+U8j/3cz/n67recdyxY8f8k5/85PbYF77whQ9433nLcZqmHvCvfvWr/ebm5o7j1tbW/Ld927ftsMr/5V/+5QWvWZalf+1rX+tvvPFGX1XVBY8pisL/7M/+rNdat5by7e3ti65/Ho535Es5Z94Cn2WZB/w3fuM3+uPHj+84rq5r/6M/+qPtsUKIB3z+6XTqr7nmmvbYK6+80t9yyy3nHfeud73L9/v99r7N35eL+WdqxvX5z3/+BdtbFIX33ntrrX/hC1/YnvfsZz/bf+ITn7jgs73pTW/yQojWE3fXXXedd9w/+Sf/pL3Wy1/+cr+2tnbBtk6nU//Hf/zH/vu///sv+PtX2qMyj0dyTDp06NChQZej0qFDh68YyrLkV3/1V3nd616H1jsdupdeeinvfOc723j3m266iZMnTz7kNauq4pu+6Zv47d/+7fMstisrK7zrXe/iBS94ARByUF7/+tdf8DppmvKbv/mbvOAFLyBJkgsek2UZP/ZjP8ZP//RPA7CxscHv/M7vPGQbHy4ejf55tFCWJV/3dV/He9/7Xo4ePbrjN601P/uzP8sNN9wAgPeed73rXRe8ztvf/nZuv/12APr9Pu9///vb8+bxyle+kne84x2UZfkIP8kMxhie8pSn8L73vY8rrrjivN+zLAPgd3/3d7nxxhuB4Jm66aabeMYznnHe8Xme88Y3vpE3vOENAIzHY372Z3/2vONuvvnm9vpvf/vbWVlZuWD78jznm77pm/j1X//1L+n5OnTo0OHxho6odOjQ4SuGpzzlKXzf933fA/7+5Cc/eYdy+7GPfewhrymE4Bd/8ReR8sLLmdaaX/zFX2z/ffPNN3Pbbbd9kS3fide+9rXt5w984ANf1rXm8Wj0z6OJX/iFXziPUDUQQuzop1tuueWCx/3Gb/xG+/lf/+t/zdVXX/2A9/vWb/1WXvjCF36JrX14eMtb3kKv13vQY37+53++/fzrv/7rD3n861//epaXlwF45zvfiXNux+9bW1tAIGrD4fBLaHWHDh06/P1El6PSoUOHrxhe8YpXPOQxz3jGM1ql9uFUCWryCB4MT3nKU3jGM57RVv+68cYbufbaax/weOccH//4x/nkJz/J8ePH2draoq7rCx77yU9+8iHb+HDxaPTPo4WrrrqKr/7qr37QY+a9DBdq6/b29o7cj+/6ru96yPt+13d9V+vNeKSxsrLCS17ykgc95uTJk+2YP+lJT+JpT3vaQ143z3Oe85zn8L73vY/NzU1uvfVWnvrUp7a/X3rppdx1112sr6/zrne96xHNe+rQoUOHxzM6otKhQ4evGJ7ylKc85DF79+5tPzeW5gfDc57znId17+c85zktUXmgcsXGGH7xF3+R//Jf/gvHjx9/WNd9uKWKHw4ejf55tPBItPXTn/50611YXFzkuuuue8hrfs3XfM0X0covDk9/+tNRSj3oMX/913/dfp5Op/zQD/3Qw7r2nXfe2X6+7777dhCVV77ylfyn//SfAPjO7/zOlqy88IUv5MCBA1/MI3To0KHD3yt0RKVDhw5fMSwtLT3kMfP5IQ/kxZjHZZdd9rDuPX/c2bNnz/u9qfj0Z3/2Zw/reg22t7e/qOMfDI9G/zxaeCTaOj8Ol1xyycPaF+WSSy55mC384rF///6HPOb+++9vP9999907ql09XOzeV+Xf/bt/x0033cRHPvIRvPe85z3v4T3veQ8A11xzDV/3dV/H13/91/Mt3/ItLCwsfNH369ChQ4fHK7oclQ4dOnzF8Ehs0Lcb/X7/YR03GAzazxciF29+85tbkiKE4Du+4zv4vd/7PT73uc+xublJVVV479u/BvOfv1w8Gv3zaOGRaOtoNGo/P9xxfDRzOB4q1wRgc3Pzy75PU4a4wWAw4C/+4i9461vfel4S/+23385v/uZv8upXv5pDhw7x4z/+40yn0y+7DR06dOjweEDnUenQocPjGg93X4nxeNx+3m2VLsuSX/qlX2r//fa3v51//s//+QNe65H0ovzfjHnS8aWM42OBecL7spe9jP/9v//3I3LdNE350R/9Uf7tv/23fPrTn+ZDH/oQf/VXf8XNN9/c7u8zmUx461vfyoc+9CFuvPHGh0WsHgy7k/o7dOjQ4WJD51Hp0KHD4xrNxoIPhfvuu6/9vHvTwFtuuaW17l9//fUPSlIgbDLZ4cvH/Dg0yvhD4eHmDj1aOHjwYPv51KlTj/j1hRA87WlP44d/+Id55zvfyfHjx/nEJz6xo4La3/zN31ww5Gw+1G631+ZCeCS8Qx06dOjwaKIjKh06dHhc4yMf+cjDOm4+CXp3tar5vIOHkyT+oQ996GG27rHB4yWE7KlPfWpbVnpzc5PPf/7zD3nOA5U5/kphPpn/k5/85FfEw/OMZzyD3/zN3+R7v/d72+/e+973nnfc/D5Cq6urD3ndz3zmM49MAzt06NDhUUJHVDp06PC4xl/+5V9y9913P+gxn/3sZ3eUwW02gGwwvwfLQ4UgOed429ve9sU39CuIPM/bz49lwv1DYXFxcUcJ49/93d99yHPe8Y53PJpNekhcddVVfNVXfRUQNhud3wfm0cbLXvay9vPp06fP+30+v+WhymYXRcEf/dEfPVJNe9zMuQ4dOjy+0BGVDh06PK7hvedHfuRHHjCp3VrLv/pX/6r99/Oe97zzyuBeddVV7ee/+Iu/eNCQmLe+9a186lOf+jJb/ehivizwww2peqzwL/7Fv2g//8Iv/MKDks73vve9/Pmf//lXolkPip/4iZ9oP/+7f/fvvijPxO5wsbIsdxQVeDDMhy9eqGzxvLfn//yf//OgpbPf8IY3PKKltR9Pc65Dhw6PH3REpUOHDo9rpGnKH/3RH/Ga17zmvCT39fV1vvM7v5MPfvCDQAiJ+o//8T+ed41nPOMZHD16FAghSK94xSt2hINBUCjf8IY38PrXv35HQvXFiCc/+cnt5z/7sz+7qHMRXvva1/KEJzwBCFXAXvziF/Pxj3/8vOPe/e5386pXvYosy77STTwP3/Vd38WLXvQiIBRWeN7znsd/+2//jaqqLnj81tYWv/u7v8sLXvACfviHf3jHbydPnuTSSy/lR3/0R/nYxz72gPd8//vfzxvf+Mb239/4jd943jE33HBDu/npaDTiO7/zO88rhTyZTPixH/sx3vrWtz6ifTk/537/93//Ebtuhw4d/u9GV/WrQ4cOj2v85E/+JP/1v/5Xfvu3f5v3vOc9vOhFL+LAgQOcOnWKD37wgztyCH7yJ3+S5z3veeddQ0rJv//3/7617r///e/niU98Is997nO5/PLLWV1d5aabbmqVvre97W28+tWv/so84JeAZz/72Vx66aXcd999nDx5kuuuu46XvOQl7Nu3r81fueGGGy6KHdB7vR5vf/vb+YZv+Aam0yl33XUXN9xwA1/zNV/Dk570JKqq4pZbbuELX/gCAL/8y7/cbrL4WOXiKKX4vd/7Pb7hG76Bv/3bv2Vra4sf+IEf4Md//Md5znOew9GjR1FKsb6+zm233cbnPve5Nrn95S9/+XnX29jY4Od+7uf4uZ/7Ofbs2dMS5zzPOXPmDJ/+9Ke566672uOf+MQn8iM/8iPnXach4q985SsB+MAHPsCVV17J13/917Nv3z5OnTrFhz70ITY2Njhy5Ag/+IM/yE/91E89In3y8pe/nD/90z8Fgsfpfe97H9dff/0OMvRTP/VTrKysPCL369Chw/8d6IhKhw4dHte44oor+OM//mO+/du/nZMnT16wXKxSite//vX89E//9ANe57WvfS133HEH/+E//AcglMF9//vfv+OYPM/5hV/4BV71qldd1ERFSsmv/uqv8vKXv5yqqjh16hS//du/veOY7/7u774oiArAP/gH/4D3vve9vOpVr+Ls2bN47/nIRz6yo1CClJI3vOENfN/3fV9LVOaTx7/S2Lt3L3/5l3/J6173Ov77f//vGGPY2tpqlfULodfr8cxnPnPHd0mSkGUZZVkCsLa29qDhbS94wQt45zvf+YBevVe84hW8+c1vbr0vm5ub/K//9b92HHPttdfyB3/wB3z0ox99WM/6cPCa17yGd7zjHXzoQx/Ce8+NN97IjTfeuOOYH/qhH+qISocOHb4odESlQ4cOj3s897nP5VOf+hRve9vbeM973sM999zDaDTiyJEjvOhFL+Jf/st/eV6lrwvhZ37mZ/jGb/xGfvmXf5kPf/jDnD17loWFBS655BJe+tKX8j3f8z1cc801X4En+vLxzd/8zXzsYx/jV37lV/jwhz/MsWPHGI1Gj+gGlY8kXvziF/P5z3+eX/7lX+YP//APueuuu6jrmqNHj/IP/+E/5Pu///u54YYbdiSRLy8vP3YNJhCPX/u1X+MnfuIneMc73sEHP/hBvvCFL7C6uopzjqWlJa666iqe9rSn8fVf//W89KUvPY9cHT16lNXVVT74wQ9y88038/GPf5w77riDs2fPUlUVCwsLXH755a0H7MUvfvFDtusNb3gD3/AN38Av/dIvcfPNN3PmzBkWFxd5whOewD/9p/+U7/me72E4HD6iRCVJEj7wgQ/wG7/xG/zBH/wBt956K2traw8YDtehQ4cODwfCX6xSq0OHDh0eAK95zWv4H//jfwDwW7/1W7zmNa95bBvU4SuG97///bzkJS8B4KUvfSnve9/7HuMWdejQoUOHRwtdMn2HDh06dHjc4F3velf7+YYbbngMW9KhQ4cOHR5tdESlQ4cOHTo8LvA3f/M3O3JtXvWqVz2GrenQoUOHDo82OqLSoUOHDh0eUxw7doxXvOIVfPjDH75gDo21lne84x38o3/0j9rNBF/2spedtx9Ohw4dOnT4+4Uumb5Dhw4dOjymcM7x7ne/m3e/+90cOHCAZz7zmRw+fBilFKdPn+av//qvOXv2bHv84cOH+fVf//XHsMUdOnTo0OErgY6odOjQoUOHiwZnzpx50AT5Zz3rWbz73e/m8OHDX8FWdejQoUOHxwIdUenQoUOHDo8prrjiCv7mb/6GP/qjP+IjH/kIx48f59y5c2xsbDAcDjl48CDPec5z+LZv+za+5Vu+5bFubocOHTp0+AqhK0/coUOHDh06dOjQoUOHiw5dMn2HDh06dOjQoUOHDh0uOnREpUOHDh06dOjQoUOHDhcdOqLSoUOHDh06dOjQoUOHiw4dUenQoUOHDh06dOjQocNFh46odOjQoUOHDh06dOjQ4aJDR1Q6dOjQoUOHDh06dOhw0aEjKh06dOjQoUOHDh06dLjo0BGVDh06dOjQoUOHDh06XHR4xHemv+pJT3nA33z8m/3ri4UHxM5v5varFELsuKoU4VgBSD+7ghHtycyfIdpLS6SUCCEQYv5+HiEhSea/3/kczoNzzQU9SkKWZgghsNYxGhXUlcFUluXlJbRWWGsZj8d4D1In1MaihGchVexdHqKVxJia2lisddQWtFYopUiUxFoD3iHxgMR5qK0DGb7xHpSUCDy+rnjKNZdy5MAKlx3ay7m1TSbTktI4nvnUJ7G4uMDJ9RH/3wdu4fYT5yBNSZRCCQEepLVgaqrpdnhyQewr1XaFcRbvHVDzjKMrXHdoD//PM69nMByQpCk2jopgNj4IgdYaKUKDvfcgJEI2XHp2fDtQzb2lBCS+OQ+Lcw6PR0iJlAohBFVd4pwBHIlM8F5QGcPnjt/J7SdPc9+5NVYLx0Kq2Tfo8+3P+Vr2LS0x7A2YIvFNe3345NvWC7w4f0Z7H+enB4GPVgER2x9mnhc8CES8jqeZUt67OMF8e/3wXvn2XnHqhd/j9x5wzmGtxVTljmOttdSmxtYGKSVKaz51/BgnxxucGK9x5aXL9LOEVCT8yQfv5OTpEefWxuR5glQyDocL7xmCb/y6a9h3YIn+nkWK9S3cpIDtKbfcuUlRGfqp48x2TVk7jPF81aUD9u4dsPfSvdBPGI8L7r/rDGvHtxgXjm2rGWFRAlaURNma4SDhsitXuOSSQ6RaM94cc+LUWc6uj7jj1BjrcvpZwmX7Uy4dKgapQGlF/+gB9CBHpIpT921y+tQ2n7z1JEYKeonkicuKyw8uMOzp+DYpZJKhlveRJAmjaclff+p2Tq5ugTU8+aDm8J4BwzxD6IzRdELtPWJpD4cP7qef50xHUz78ybs4vbrJtQcXOLSY0k8Uk9KR5zlKKYpiynBpkcHCkIMHj/J3d57g+KlV1je3ufTAXvYuDeknGmem1HXB6tYqKk1Is5yjR65AGA+1hWKbwloqa8GVVOUEZ2t6vZwzG1M2p5blPUe49NA+9i0P2RxtUI3WqafbGGMQKkWphIWe5rYTG9x5aottn/O0ay7l+isOgSnY2thgtLVJWW0jlERIAdZx4tyUk+slKwsLXHF0H5cf2UfaW0QhUN7jvKEsJ5TFFAsoAVJ6Tm+X3L+6zYlz28gk5fC+JS4/tIdLD+zBW0NdTFldW0MohU5StiaO0xsjTqxukmeapV7G/oUelx45TKoFStSMRhOEUCidce+Zdc5tbnN6Y4vlhSVSpUi1YHmYsm9piaP79nN2UrFZGVanhvXVdYrJiMlkmyQfkPf6DIZDElOzlGkOLQ6QiWZsLGfHFSdPn2M6nVIWU3SW0+v1WVxeYVIVKBzDxHPNyiJaK6bO8/kTZ9jYHrO5uU2SJuS9Hosre7BIsA5VlVx7aJk9SwNW9q7w+bvu5b6TZ7n1zmMsLO+jP+iztDhEAs5airJAJZZBP+HyQ4vUlWN9c8JnPn8M5wRSKvI8Q0mFFAIlYVKMybKE6668jKuPHMQ7+OTn7+WO4ycojeHwwQMYLzFeUHrBdLSNwnJ074BrrtzPoJ9yZmvE5287xcb6hBwF2uGFxyGpS4NzFiEc1113hIOHFlnZq7jj9lWOHd/kY585xSBPyBKJxuOEovaCjcmEqw+ucPn+ZZ533VUYY6hNzbQYcWhlgf0LA67es4Kx4fpSJ0ilWjkglUIqGddZGf6IMkJIEAoh5GzdFbRyxeFw3mOdC981Yiau90oIhAfwuPgHIEXQFWj1jVZShU9ShbXbuSB/XN1KD4dECoF3jg9+5nN84ewp7lw/w56DAxaUZI9SPP/ya1lZ2MPCcA/QwwmPkw5EWHPD+u5n9wOc9/ioiIhGHlgLrVxweO/w3of2xgY3z+KFbGXOnLhtZUYj+31zTw82/hhkS/hrWyaCHG5lu3fhGHxoayvnPFIqpAAlHOAw1jGeVvzx336GO8+sc9e5MUophADvTZRtHmccS9mQVGkkgsOHDyOUZnVjky/ceSfjyZS816M2BqE0w+UVvuXFL+aJV13J5UeP4FyFsJbEWD73+S9w173HuOljt7A5nVI7R6IVWNfqnFInCKVACtJcoRWAwRQWb0O/Wg/WeYraoHSCVBolg56jpCDNM7wXeARKCSZFSZqlvPh5X8sr9wx5ip1y///6nyR5hkqT8G5Zi/OeXj5g5fAhBnsWoV9C4kER9BTv41wFgZsN3Bx81F2aQZ7XdWdqtWsmDKK3QJ0O+NtzlrtLuK8C62F1a4OzGxt89vgZtqYFk7Lm2Of/7rz7fTl4xInKQxEQgXiIIx787OYOD6rfXQDNOfP/fbB7hI+77iIe/MzZMhFewGbZaib2/EQIL5kPCrX3kWT5Hbd3vlFGw2S31uFcVJKdDcdLTapUJAqW2rgwyeLC6b2nNga0Rsb71cZirCNNM4aDAUmSUdlwo7KsqGqLdUG1VkKyg5PNLSo+LvKiWdPj/RrFmaYXhEDK5kUQ8SWYeykI161rE49retMjnGtfIi+aRbdZgGVoT1Tcxdz4iIbwWBsFD4FqyEA4hJTgw3/DdUI/Synj4u+wLvR3O06xT+dJr5+fD0Lumlvzn0QUbCL2WTs7HmBGzc+k+W8FXojZQjJ3Q9EMRJxGXsQ56EVsgUC45tlnREUSFgKBREqBlDISHIfzs76VUiCkQCqBSjRSa6QEITxKKJSUJFoxyDNyJfDllJ4SDJcXOXjkKCc27mJSlCwONKXbpKhqpLdccWiJ4UKOcR5XG7T3rAxzsn2C0cThxxZjarQULOUp+zPFcKBYGvZwwlB6h9Bw+aH9LPYXWBufYnNsWeglPOOqozz5yCILuaa0hpO+Zuwsk7Ii1YJBL2NxccioLBj2NE+65lKedHTAQi4YT6ZUtWRqJWfKAiEVCkme9ellNZmGp113mCccWmKpnzAtK6Zlybg2nKwkCkdlDEZqkixjeXGBJ199GVfszVjqKcalRQqF94Kidowri0HiSou0jkGiuPSao1x35REO7VlBWLBVga0L6vog20XJpDIYW4ITKC04cMkB8l6O1op6vAGuRghHf2WZu4+d5cTpDVZHNb6u8KampzxHDq2wmK0gMagkRyUZWd5D5McpvOSOMxMEFu8c3jr2LvQ4vJig6aFTjU4SJILP3XMOJdc5fOgQh/cvs3dpkY1xHRUVAcJx+MA+9u9ZgFQjvQNruPfUKsuLmywMN5FJRj9NSWXCZHvKME9ZWVnh2idcEQS9VKxvTjh+dp3lU+dYWVkmk5B6S1lWeAv9TPK0664iGwxRvSEH7znB6bVN7l9dZ9/KQQaDAYNhn/vuvQO8Y3tzk/0HDnPpyj56+w9z4u67WV9bZfXsKQZLK6zs288ll13GyXvuZrK+xnj1DINBj/0re7n2+is4t7rOxsYGZ0+fYnFlheU9ezl8yWWMq4Kt9XPcf9cXKKYjer0++w4c4muPXML29pgTx+6jPxiwuLzMpVdcQZLm1GXF5rlzjFZPM60dyXjCyuISaZqzsLzCcHGZxcUljhw9ihThPTbOcvvdn2MyWmc0GpHrlKVeypOuuoThcJFer8fKyjLCObSU9Ho97jt9itFkhCmmVOUELTXLCz2e9lVPoD8YcO2111AaMBZqL6nKgnI6Yu3MMaS3FJMR1WTEwT0LXLp/P0+96mrKehyNZgrnJUVVce+J+8i0oJqWWN/HS4lQKqwzIhgTU62waHAeJYORUAqJkhKvJM5LlJIopdE6IckypFVY51BatyRECIlQAiEkyIaohJW/JS3xT+6S7d4HZV4IH+VZkEOexqQESNkuthKPbBdh2a69olmHWwWwIUuEtdPF9sS13AmFlgLhPWmaoqTCO09tLVaCQ5FkGTpNAwETMpwuJI35qiFPrUDwHuE9XjRUI95NqPicHu9MWO/x7BRhDcmL7Y/GrlbMtB98NPTOaVUuyjchIFI5nI1y0YMD5+xMXjX3nLsezoEjjJ9sdA3C2DbXnuveuRGMelaQVVonSK2xzrM9GuEBpVVLrmZ6QpDHUgpaBYPZOLZSeM4g/qCYN5xfQNsVc8eE5xKtnieERKkgR+vasLG5yVo1jgZc0RrWRRzfMM3iWImdd2mo93nKxRejOPu5D56gdyhJZQompWVceFSS4fz8u7bjxEcMjwJReWCEKe1bpRZmk0bMPZufny3zaBT+h7zH7vN2/GfXNcTO4wQ7PSnnXfDCd2+O3z2fGy+PmPt38xcsGjMiM2fCwQPWe9wcSbG2ITXgLTjvcBKyPA9WGQ+VsWG9QBG8DJaqNuFlFOBtUJ6sdaRJynAgyHsO68Pibeo6EBXPTKFviFfTTj/XocLPvdDNT74lH83CpVQQPgKx8/T2vKAYSyVbUiMazj+3ODVWnSBUmrGJX3ixoy3OEwRnhNYKL2eCa7YYRQIFM6LkXVTUffSSBWKG3ElHnfexXQLVCCQhsM7Npk1DmtqFNij8TReJnRMkWp3m5kPbuthnQgbPSrxvvHLDFoMg8oHQ+Ubgeh+FcBTkTZ8BUqgovKMXUYr22axzYf0Ws74RSiK1RmmFFB68I9GBpORZGiylSlCWBT2tObA05MmXXcWnbl9le1KwZ6nHma2KVAl62nDl4SWSTHNiVOEqS+I9K8OMZXK2xpaRn1JMBYkULPZ7XLVvwHCg8QuebQzWebSGy/cdYM+g5o6TYybVFgu9hKdfeYTnXneIpX7K+njCXx2/j2prm3oyIdUpg37KwsKAylYMeilPesKlfPWlPZYyx9lz62xNBatjy5njG4g0RyHIsj55VrLU1zztiVfx1Cv2sNxXrK6epTSGraLGnthi2zpKY7AyI8lyloTiSVce5brDPfYOFdPSUNUOY2BqEu45ucrqdoEtLdJ6Bonmqdcc5ZlfdSWXHNzLdNtiywJvKnpJwbHTq5xa3eKO+zfwCNIk5egl+zi4Zw8L/R7l+mm0dCSJZHDwAEu9e8ilYv22U3hT442hJx2X7V/hioOL9LRBZz102odsyFZpObM14Z7V7UBUfCAqe5Z7HF7SLKY5eS8ny3O0zhAexpOSKy45yJ6lIQv9nNWNU1jAK4lWgkMH9vL0668mGWRgDbYsWegfYzgY0O/3kTqnrg1VUTPenrKYZexfXuFZz3oqaZqCh3Nn19l38gz5sMfRSy7FVyXF1iaf/fxdOAO9NOcp117J4r59qMVlDg77nDy7xr7Taxw6eCkre/axsn8/f7x5jtHaKtubG1x57Vdx+bVP5AlffQO3f/pTnLr/OPfdO2B5334uueIKnvz0Z/CRmz/MPZ//PJ+79y56iWTf8iJf+6yvZnNrm7OnT3P7FzIOHT3KwSNHecJXXc+kKrjnzjv40NnjjE6ukaYJ+/bt5fJrrmUyHvOFTLO4vIf9hw7yVU9+MgsLi0wnU+65+x4+9BcfYntrAzmesmdlmYMH9nF1kjEYDFnZs5drrnsSSuroRZD80Z8W3H13zanjZ8iXlljs9zi0bz+HDx1mZXmFo0cO4uqKRCmWl1f49O13cM/x4/ztJz5BVU6RacbyMOfIpUc5cuQwz77hBiaVxRiwTuGcYX19lZv+4k+YjM4ynYwpp2MOrhzikkNH+bYX/0NGW2vUZYH0CUKnbE2m3HSL59T6acqiwLoeSBXWDhmUQyUlaZpivMTbhqio8KcUyju8CgqcVhqlEnSWIa1GOYfUeqasIaNRK8y3mRIXvCphwQxrXCB5jUYSF2IvkI0BrpXRs3USpWjt0L7VUvAurovx3vP3nV/z8Q6hPELoYBwTEi8UqZJIEYiKlgqcx1iLUcGrkWYZSZogdfAGCSkQwmO9mhMvMx3CR29FIzOCdAuKf2sdt0GmKBH0i1a32h3BEOVyw1Jag2rjEZlXh1qDmQw38A7nbTwuRnc40wixKIeIbW0EdiBXXgq8DjpOo8S3Crls9K2dJKuRm0JIkixFKkVtK7a2t/B4lIqerZmG2ZIfFYmKd82Yz8a0OWfW2VwQM5Pj+eSkHYO2qXNHeyLpVOg4z8uiZG1asFpssy9JCLbUYO4UuF05G7Orx65tjZU7j/ENO2qf/YL6bEtAZ+0DiG4gKlMzKSq2J5b+QGNcaNnsqR/nROVCuJDav3vuX+BdOP+ceW/Fl9EGGa0j8+7Qtg27G9Pe+wGuOq9c7/glfGNtCFFyzkEkEhAXwaARMppWCDzWmqCgEtzE3lmklMENXNYgBM4ajA1GCYtFOB+vD6UxYapaqJygtDCeTEnTlCzPyQZDDq8sU1vHvevHKE0IH0kguKy9R0FYoJqnaNiCmHsVRbMoebyNZAtAamRUhlslW85elIY0KKWCxV6quCAHpXgWquSRu+KlwhoqZ4MjPMI7hLA0/msPVIBw8T6AMY66to3oCeTHe6RQ0XKXo3QSXPeeSKIaa5yI86WZe3MCCcC5ljT5xivj3c6Qwmit2uFxi2EArZGpWZ6iIA3z0KNV0nRatMjMXOreeXAeOxcSYL3HOTDeYxGte76Z0lIE4SCVItHBW+KEoLIGJwCtSLIkkJgoT9pwN2dxxmJxWAUTNyWVIPsSV1VMqi3OrN7HaLrGeFKhKZhujwDD8lCyt2chVZwYBfIoncHX22Syh1GeREBV1lgBPoUFnbCUeozUTCKR97aiHK9TTILiX9mU0imqumDt7ElMrpmSYkrwJhA1Yyuq2lEZh7MOb2qYbHD25BobGM6sbTP1OROrETqPiqHH4pnWNUlpqYopm+trVFuOu46FsJnSgiQlkQonQp8LHLYuOXv/SfbJBZimWO+xxmKMY6tSTEpDTUKSDjAypfIltvQUm2NG0nPuzAap9qTaI5OacjKiLCocKSJJ8VpzbnWLYntET8FQ1UhXIDFM1s9y+t5znD2ziZE9RL6A6i8y3Zxw332n2T5zPwdWcqTSSBmseqfvO8v21jpoBVrjpcJbQTGZso1F6i3qcUKV5+zddxhrHEVlWT13jhzDUC5ifbSt2kCY6mrCeGOVhWmCMTXTouD06bOsrU8YTWtEosO8lwkytdTesT3dZnP1LFmqETjOnj7Dxrl1pttrTLf6JECCI5Oy0Qc5dXYdYxzL45Lx9pjt0ZStUUHSKxBpQdYvw1rgBc5DVZRMtjbYPHmc6foq5cYG1eYmE63ZOjfk3KlTTEcTjHXovAdpQuEMq1vrbG9tsLZ1lvWNs/QWemT9jLUzpyjqmmJ7i1RKBgtD8n6Oc47N9U3G4wmjsiQ1hvG05OzqOkVlKMuS0WSK88GAIBG4usYIkM4yFZY0FYw2zqJE8DChJN7UKCnRmcZJhREKLzRlZairEkVQTIUz1NMRuYKFLKGfZ8GD6n3wvk3H+NEG1dYpvBUoJJnMcUgmVHhXBpmCwIsURAjTSaUjUQKUIkWjtQVdM0wliZJUNhipFMQ/gYoKotYKU1uctXhrSCRkqUJJUEmCUoralK2S7AmhW14qvAyhNyKGdbWeeyna9VEKRauLN2FarYyeqWSNl0VBUJqjIc43MiYacLz3yPmwKq3mDGSN0uCDB142pMXHpwYRw4g9InhptETiIoHyaIL8Cg2WSBkJmg7hyohAl1Rcf733SDlTXb2XIIJsauWm98hURV3VI2xsrxCkTSSEm9OuhEBGTUUKgbO2/T4QI4f3FmNtew/REAEP3kkciiBdVXh8Ceg0HuOpY+iZ9x7hZvLIuiDDKtuEkXtcDAMPEREuyviGNvpgqBUiRABIwcJwgdoZtqdj1rc2UTpB6aDuCimjdyw8RwjAiyFo3lHXNcaYEInRePj8nCLxUIh97EUw9rUmS3E+sXOzPAG8h16vh1aK2++4k+sWMy7RcCTvYX2N9bGvG0/Zg3l5dhCqllLP/fchtGS/65hIVL0QVLZiXBRsbtdUTrM9GbM5GlEbEyMwHnk8dkRll3fE72bHgplixq5+nz9sB0uIivLcOc2H3VZ8P3eM2H18QzrnSHT4rqWWcwvcLvYcWfgDBfTMK6cqxtZ677E25A3IeA2PxzhHWQePgPezOMOgxAbLucVS2vACeOciO4+WhZi34XxQlp131FXN9qRkNC2xHibTKaIoKYzjyL69aKUophPqssSaOt674csz12sTirVjHGaGGWYhSj6GULng0Y3HiihQpJTtwtsIllYxdyBEtA7NBRX7xq3fXKtlhHMvpPcI6UikDu0U4KOXJkYtI5UDqRkMhmRphlIaV1WQeKQkkiaNVAkqEqs2ZKAhJ/MzQM7l3cwJDiHDBIzO650Tbs7d7Hdcu7HQxOuJZmElerbmBbFox8l7iZcebx1aSbxzWO9DfHUTEoEE18TaNlY2j/RBKDVeQA84ERTNHZ4zHwjw/Hrnm8Y1YySiMHMuxmaDsQ7jHMbGRdw5itpQxZhhLwVNZISSgl6mKOsgQIwDKTxKeKSwCCTONkJE4JxjXFSMCkvtPV54rDFsrG9RLq9Qa0UlHIUxlNbi2mf0sT0aj6KqKqoykFzhJaa2VBYQKvQB4dpeQGUMp8+cpW8S+tqzPSrQWQ+VJiiSQN5sBQisDTlmRQ1F6ShLi3GGRGt0ohG1RTTxwMLhZcixMkWNLWtcWeHqEbUzreXZeQvCYb1DeYfAkwLaW5QPstgZi7NVDPXwIacoJILhfQgFstZRTEvOuRJjLMZ5+v0em6MJpXFYL3BeBgWR4C2sjKG3MEAQ1pStrW2KssKhYrhkeBTnwcd55xyU05LNzS1sGry3RVUFz511VFWNJEFJFRRZBFpIpJfgBN6GiWacoHJQmhAiI4VA4dFa0oTuVLXB1MFj7bzAWE9Vm9l0x+OlxAlJ7PmozAZrdm1DPzgbSJY1Lq5RQSH2KLyX0dsdj3M+hNUaj/WCduGRCnRQql18sQTBQ+mcxcWcPusMNn6WjUIYw32tdRiCdcAgMN5BVFyEUO16ImRQ4h2NccIGg5ipECKMv1KKNpwVgY3vviMohlVdMx2PglfdS5Qs8TKhrqbhPVdh3dbBRY8zNaaqMHWNiQY1ZzyVNZhodBFCRC9EnEWtIhS9t85jnQUfvB1KCLSSOBsMLqa2WOejPRksUQl0PhjA4kLkouxWYs4ghJizQMtWB2uG57x1fG4NbhSBmaiL+X5ShmuKkAMk5s+Zk4Ezg5xvz/aNIhsno7MO412M6AqhtYlWJFKiiO+wsTgb1p5W+W0t47O1t4loaNZm4WdkxTvbyifE7Hld0yE7zPTzT0wb9jY7XwRCFO/VqsCRFHl0JI667X1PyD8JTXR4U4WoEBrDrGijCzzRmxLfOSkVSZKRJEk7Hk1uTBu1IgQukq2sl1PamtoYqqoikxo1e0126oDRkCTFzlxO51x78LyHYUcXRRncel/mZWKrdM6NjQ9j3FwthJTL5h/UZYXMUi674jKu2DPgKDXFiTuQmuBVifP1fO2ymU/M6Q+75+4sdLEd13kdrmnnnHa846m9QzjHoD9gxfY4kHqc0NTOkFZFJMsPQYC+RDw2RGV3L4tdJAUfFHFx/nDs7obzLoU47zhPo1TvIjFz1pQZYZmjMrsIS3u11iI+r0jO05YHp92NFUEphY4sfzotaMK6gtXaz6wVbauaFVDMFocY2tRSKDlbuNrci/hv4xzTumZzPGVrUmA9FEWBMRbGBdNLjyKVZjoZY+sKbNQMGuk+Z4m6MBmbC2OLirGPC3FYdPxMdkeSIna46GeWfkcgV4imEMKcYBPRgtXGHO9U8GNL5uI44wsuZWvLUi4ot0Ia+oMBaZaHRdQ68C6EyLbJmSFUIXC0NjJ4bv40yf8NWWrCr3y7bgRjSiOY58IN4iLo59pO+1sMkxNBeDcLfGjAjODMW9Ma74ojhEpZ58BaPBLpPdIrhJ9ZwSB451ycazJarrwQkaRAEItNW6Oy7mbJkE3ynm86Oi68rlGGHOAE1oWYdxufyQGTomJcGhJlg+IoQfhgZc2kIkkaRQ2cEiQKlArKvDEGkgx8eM5RXTGqHHVsl7GG9bVNysOLmAxKaSlqQ2ksDoUXQYmyzuOj8llWNab2pBoSneIrh7V+bl7H4RGC2lrOnDtHWgqGicSQsNRfJsn7SC9xZpvamqAMWkNtLKUTVAaqylOZmmSYxBhkgxBNEq8JZEU46rLGVjWu0mAmGFtgpUOnAxwWBDgsCotEkUvIJWQKlBIhQdiFQgRKSZRWCOkJ8csWrRRYQW0cG9MJo+mUsqpZXllie2KpDRgb8gRi3CPGOWpr6Q+WqcqC6XTKxsYW06LCR2naTC9LY+FWeGsoipLNzU1qHcanqk2cCx5jDEq5YESQCi0ay3u8tw9KphcJFkXpwFiPliC9R6k5C7CxsaiJwiOxHoyxO5WUaIW1iEhWBEgRyLTzmEi0GkNPs954GqKiYqhI+CMSIuPAC0Vw2SiQCicVToZQnmA5bxQrGxT0SBy9D3NSxpWiyUvEEpVZgUFi8a2VN+Q9xLVOikhUgvwIHnWLrWuSJOR9KK1xzmNMkzweihpYJLXzlMYwmYzieiMAjdAZZTWNyqZEaomSgDPYuqauSkxdUZs6GIQkFMZSxzU8yFHfkpVGrDRSzbrg1WxCcaSUaCWpI3EztWnXWEfwglnf5DCqWWiMj+tHmEWtot4qwg0ximvvvLxum+SbUNqZ4an1q/jZ/AkeE0noiNhXDfGZ6XozAuDnFPkoG3BEQmgJlxMIJUkTRSoFWoA1BhsL6XjlwpzEteHDjeRoSMpMBDdhWvGerdyYyVrng6IsGrLQinTfvsONDIVG54mXlPMPF94R33SOCF4UoWZ96LxHRFLnvMU5E+YfxFzRkDUTnsXjXUNEJFKlZGlKqpOQH7RLw2vgYrRGnvcoRsEzYkxN6kNoFVEO73jUOAuliIY5NzOuijDQs2PbwQ/6yPmmdB//NdMR5++z4zpi7stItuqyJFGKq6+6iqv3DrikGnPPTVOyPEWnSTg8elRaHcL7GQm64I3m7jU3hg/IKeYaPGd7RDiPsIGo7NGayVAxLioqWzEpp8imUMWjQFYeG6Kyg87u/qLBjAQ81KXm//ugB80P0oV+ftB775zWszY/NKGaJ9Ye3y7EtnGn7po4sT5XtIqxY641S4OfS5Rycydb62f68m73nZDINOf0xhZKCta3tllaGEBV87nb7+bWz96KkIKVvQfZv3cZl/ZY29okSxKQMloDZy/jzgee82w01qKo7CvZ5MvEvBprEQQLtYrKjxCgEtUqu8ZY8kSTKEmqJcYFBWlS1mhlQ0ypVLPhlHMrT5MM3vRThLM2hm4p0GlUMqCqwoLmojIiPOBcEPTx2s7OeYP8fMGA+MzN4i92LV5RSM5yUhxNXgk+Crv5+e+bRbuR42o2j/AIrxA+VDixMdnduVmIl59LaJRSh9xL5dsr4MGmsxAG72wkKjXCebSSJFqT93okkxSvBNY7rLc4V4cncw7qGm9TvGyElsYLhfUqKFfWI5PQB9Y6ptOKooRpDZmBRKXUleHMOcOdx7ZZWLaw0McKgRIelSSYckJZVIzHY+oa+lqzb2HAgcVFdCJY255SJFBKT4VFmIS6lqg4VpVxnNioOb5aMq08hZlgYiUmtERrS5p48kwxqSSV86yPJly9d8DSYo+VfAF3borZrjm1VtHEmwsXPFZKKw4ePsqiLulJh1CaxYUeTivs1jaVrSiso/CSqbPUeLR25Boy6diejqjrKUjF1KY4HwwXwgmUB+UNzq9jvcbRQ/uCspiGMU9ypINEhiqEUlm8KHFOkGcZw1xRVhOUCn09XOiTZ2OUnNV6EYRQk0GeMtRga8j7KZX15FlOPpogfU3iBdp7lHA45UA6HI4yWsyNg43NTYpphRIelMQApXPEyBxUoIbURclo01MnIWdMqhBKmacZCwMwMe6+dgbvLQYf36lI9IWk1xuSZQVabVEUdXB2YRE6CeumlCRJgpSS2jqsCqFrItVYX4EwJDGiExGUkhASGSi5SBN8oiiFxUoH0iOlD6FRzrYhukTC3uYrCIFUGaiEWoTfRfgapxxeGaSo8LYK1fd8qArU5ME1vl6PpMRSYtExOVwA3hhcWeMqE7zNjYM0KuzSWzShQAWNF8gahA0EzVmPlfFewoN0ICweQxNSNLGWcV1TVybeOxgsytJQTEZIY0KoltdMfEnuelhnscYgbIUyJQIHOsE7TyIh1RLnBLUzFL6m9BahGqUGyrqmNIbKuaCUxnAbJQVOhPAzLTVpGoo8SJ1SmynWWKQW8Rl86AwnEd5TIOPck7NVWogoO2fKtpurfAW0BqPmmFn4VDDZyKjk2tZw1wqdXUbNRmg3kmKmwCJmPobI46JxJkUIjXWCPNXkWpHHHCQhNcgUHxPCReyXmRRq2t20N4ZUedeSNGvtjMw0xic8SskQcRG9b0372+s438qseU9QG6JMjJCQs5XFWTvTFdr8EkFdmfBeCBHWOUL10nlDnYiFAry3ZDJDyYQ06ZNnfRKlEc6i0/CuWBcrfDaheDKEiqd5htkw1HXdhlu3/e9p88y9dwjvAiFUgchonYQyAy56PObCmXaoP62xb4amONK85nVBb0zbb7IdExF1HykUy0uLuHLEZGMV7Qke8jBa0a7vdzxXO+Xam+4knbvve0Edbg47tN1WV486Tm0xhaEsPMYEb23wChPWkUdh15NHnKjsDMXiPP2+dZ7sUu6F2N155w/uQ9MW/wCTopkE/rw7zHOY5l/tpG4t9U36VZP0v3uCzhaJHefRcJCQg8LcyyKlbC1erSclekDmLz6/CInYlvN/b77xMyG6u+5ttCQkSlJVJRujMXefXOXavE+qEwZ5Qq6GpGnCJUcPsSW3Idnm3OYG1kUvxFzvtvaEaO0PbQiLt59bJLWSJKkmjcltIfI1xKCGYDAT50O4cpPHMsyzUK6yrPjkJ+5g795l9iwvctnBPZiqwNamaQEtNRAx7tfHGNb5nvIehG+LwXg8Qoby0VolrffHeguxglWqE5TSIQHUx3Pxc+PYjPX8+EeVqvG2zHkLw/FNIrtohdROQdMoPU3DXXz5468NWRRzT9+c4MGJedJimYUaxD6P4R7tNHaxmpMzeGexTkVvUFDbRHx3hG+eK9zKtoSzKQ8tYllsSxVDGXoyxChPjWF1NGZS1VS1wdoKLyxeCIxPmJYOXRuEr0EE175znqpy1HV8Fm/BK4RSoUyEdzhvsITQEOsdvSTBJwLtS5ydYhV4BRuTCYIKgUHp8A7M3hiPJ1SGc16RJoosJq9WJuRD6UZ5glgCPBJuH8ZzYbjAQhrCkfBgaovwITel8o7S1lhnwFuEdaRa0ssT+mWGcRbjLMIb8CE8CjdLwtUatHQo6VCpRpgEjKUqSpwJ81FqgZfgJMHKKUHIYKFvPJtKOrSCRIm43gQDQqI0ia5JtCcVkiTJcEiGwyGLI0++YRB+isAhhEPFRFbrBWtbBXVZUhUF09oyqg3blaFfGcraUhsbjDhBI8QBOknpDQbkKsaje0BJHIba+eiBCXPOeodQAp2mJFka2m5NLIkdEl+VTKK3M5J2bzFWgtDIdECysBexOsWzjamDEG2s9bMCKMGDqpQk0QnOC2rrqUwgPWiFSjUqCeW4w3sU3rkk0QilcAgKE8bSEwi/TzQiUQgNUjmk9KGtMhxf1S7mDiuUSkiTDO9AJ3pWUFREA5EjhNpYIkGVpDrk/SFDaVMhQuhW7QxCWhIhqWOYnPGE5POYB6JEKFnvJdTC4YSN81eghCZJc4StwDmkcLjaYUwZEq910JocIhiQbKjW52uLNw4vLMZCVVbBixX7NkQPiUjKfBvy5xDBqwmtQQcfFGcIJY49NhI6j9IanWYgw3rQhBHTJOILGb8PsgRBK6PaLQxE0ArUvKK/UxmIa2SUJ1FDbWSecHZGoOcKkcxHOwjvobV+z0UgxOcnElSkRIgQYhw8DoLRaEqSZSzkCalOQ3W9VGKVDiHVNBkvc8TLA60hLKoK8fnDIMR4gnicEqBVyBPyzmOtohJmTn77VtaE64f+FzEEsQntJvarFI0fkGg4jB0h5/pWzELfpGoMjbuDlEI/SzEn2+Mb0ZIl76LOFMco9q+MYcMSqOsQ+iXVfA7RnOLWpHpEoRby6QVay7b2Qos5A3frNQpl69o2R3cvM61sHq0Zd0crmu+aMOw01SgluOeuuzlabaInG+zt9+J9RHuS8LPQZX/B8sO+Jc4PTkkugFZPn91BzBV90lKRaEGWgdeOvM7olVkwPMndz/3I4BEnKnJXr8wPSHCh7bAt7DpSzB2848PcPJm7QWvVeAA0ZGjulEah3XXR8NscQZkPp9l5CT/3d97l2/Pb+E3n8dLFe8q2ESJ6VEKsrYuehVbd32WZn3sfiPkbuyCjsrpTyRU7nlEQXMuVtWyPC+48cY4jhw+yZ6HH8kKfPFlm0B9w6aWH2HAJhfN89m4RwwNCiIVoLURhgQ4LlJq5tKWPyeMuhmNIkkSTpClSaRqLhseFZHvXvGRxYRISoTSDPOHMxHD/5pQ//PCneNK1V3LdVZfypGsuYbppKOoKiwxrBSGe3UfrmWstYDtJY7Neh6+CcoISoe66CJaN2hsQSSy1q0O9dilRzs+RH98uoFI25Ig2Pjbkc0QB4UUUuHPtELvdwjFMj7mFx8elt3G1twRWtHHYMi5Y7SNGCdwIGucMjWUthFZEi1nzWjRj5kP4lzcmhKdYHc+1UezIOLdkrFnQKBk2FgJpatp7ausoTYgnT6SkAibGYIsRk6qiMgZnRSQqHkhDCVTrAlGROoS5WIurPLXxMccnKKIWAS4UigglIxyG8Hy9LEWkAuV1CBXzHp0IRtMJ0il6iURnCYkSIRfJN6E9IXHSe0WeJmRZhtYpo+0aPG04nBRRSItZfLx3nuGgz/IgZTStqYq4H40P4TmVD8QtlOW0CGfJtKSfJUz7PYpiArVBeRMIivc4L0N6p5BoLdHSo4VDJhqpE6yFqipxViG8QOqwN5RVHicJylGc481ao4RFS0JOig/zUUmJ1hqtBInyaCnwQiNUyp6VIQtrNXla4P0YcIFAqDDHjBec3Sgw5YS6KhBJyshYNquaYWkoqlAqvVHRcHEm6YSsPyAVsXRzZbGEPTQq43A6hnsR4/ClRKUamehIeuL6GF9xLUPZVo8N5NmF3BLrJV7nyP4yXp7DOI2pCbk2vjE0hHe6KeOthEQrFfJZjKeyAidCiVyvm7C5ZoxCmItWITHXRqJSW4PzIdTOKonQArRHKYdSLuqxgZCGfbHAI1EqiX8OoWRbqEJGT7b3AudCro7wsa3R8+BlyDvywlM7h3IhOMwJReUkhRWUzqO9jUS6jEVDQltKYZFAGb2xUmpUkmFNHffesNQxKd86H+aBDJ4u46A2DlOUIUTRGKz0lFYwnRSUZUinlkqh26qPTfiVw7qQV9DspSGikoRriErIF/O44LlxgagkglB4oSEesdS8jsUgULMclbaASbMKiygrRBPOG76bic258KNmsjH3X0C6xiMRZtKOUOTGk+EtwbQxkxthdXc0UQcNGRVSIWLbJTDampINJHUiSJKUJElQWoKKUQctHSGuY4HNNk2cRZvNdColQ99brxB4EiXIU0VZTsN6oDQaGbxMzkYZGsPlGs9TU2SgeYP8XNH9mXBlFt7nZwUFmrbGHLaGlIHf1cU2PkPUFaLhzLnGwBmMS0D0ZoY6WA7Xlr0W+DBnaxtKWO/ioQ2RbPoyhL+F3LBEN+/TTj1sPvy32aqgVcwantLEtu9QNnaHO+5EK769J8sTpBLc/vnbOFhv0XNTLu33qOxcGCWz8EW/i0S3D4ffefEdaGbeLh28GTvf6DiuvX6jnQsfcnfTRJKJYLTJq4w8z0iSSFQehYT6Rzf0awdLmX18cMfQhRKFaC0h7aV8DOqJoTUPesWG5HLBeTL74QKXmQs6CIMrbMxzELOgol1EaOc9orLp4kI249BzE6NxT/udv89rlBey3D/oY1/ox/A29fIc5zx/d/f9LAwyrjy0h+uO7uXgnn0oKTh98jjFxjaqnHBoacja9pjaGPJeP1YBjuRiLmF0Fmrl2/KOCok1hqKYsrm5Ti/toaSmtnWwgsXa+EmaoFVQuhQenOHcaMx7//JTfPjWu/jAJ+7gr+8+xeVHbqOfC550YA8HBj3OjUY4FStR4ZCiJuzpIXfOvdgVzgblVuBRMpAvZ2wQisZQ1xXWV6GajYSqKCizEiET6tq165JTs0WhqkzIwXGONMmYFRuY3dyY6P2ZG8Zg/dGt8HOz5WrO1ezb73cQbGJ8diMAXbOYz4hNQ4RC0rtDmKCMSNFUUpmfEyFfoUnq9T4kgXsXztFCowibdYXKZ4rgEYqWNzw+5nE4CPHk1pMgKZzA1BYzLXGmDIJKSCbW4rCs9C2XHUjQC4r7MQgvgyArKhaUIk0VaRasTNYJVjfXKQ/3SLKEpX7O6tTjao+WCTopEdoxZUxpLQOnOZCk7EsUmfCMyymlg1IJClPjSsG0sNiqwlY1JJKeSsmyBJVKKluR5n1yCWazpPCG0nu81EFBxlIUJZPxiJwE7xXDXJPnCVvFFFdC4R2WtKV7wywl0yrsN9PLSaWnripU5Tg9sZR1he6FPSEkkmJSU4wLytRTVSVVMcJWNfuHfYyBkZOUHrwIWRZ1McboFO8TUueQOg17MPRSRBIKLdTOMSkNo0nN3lyT5jl54tk+dw5kgtI5zgwxVUlVlBhbU+OoFchEY6djptMR23UZ8kikpKxrRlPDuLDRkllT14awoV2wdJYO7j27wfHVjfgOBDJWkrA9DblK0ikyJUkTSZ4PqI3g9LkRn77tPlItUcKzOjKc25hgnGRjVIWMDVfihUfqkPf2hfvPcGK7ZnByg+P3r7K2vsn2tOLU2gZTa9gYb7M5GeOFZzDoUU4nnDt7FnXnvZw7t0lRGNKkx2RccurkOaS6jTMnTzHe3g6bSiqoigmnThxnezJlOhmT5z3K6ZjNc+c4cfc9VF6wunqa7fE2ufTgLRvbW5RulUlR4xFMi4rNjS1O3n+K9bUNyqrk9LlTOFOTyFDZSaoQOFc6jzSOrXHBseMngyInBUJrzmxss1XUGCUxyseKUIrKJWxOPbfdc5KFNCNPEjbHNfeeWOfU2haFBWfLkBsgMgoD66OaW+8+ha8rnKmp64LCOKZVTe0SclGRKscg1VSjCWu1487bvwDehJBA79maWrbGFfefXWNhT59+PyNTlkQINJGk+CaMJSitiQybgs5KFytqW2NchfEGIcOmwHmWUhQu5CFFK7aHEJ6qPFJaRNxfJRjSZuFPSspoSAqUoTG2Ceb4SCT3YfPb6CXwM09AmzvZhokRyauNus2c9T+u3gIxt61LyBnEOxShwmIoad9slOxj6JGgNk2OVPB6VzYqzD7IsrbBje4QZY9v5bKI1piQiRUqQgr27dvLuLYcX9/mv/1/f8Dy4hI3PO2pPO/p16C8ZbS1iZAJM10klmb2HnzS2MRa5crFYj2tVFEN2Qtj6T3h+ZAI2RRTiH9Rpwi5iIGczqICFJ4aU5cUZUFtTShvnQR9IdYybVuZJglporFVRVEUVFUVNqVtFfidaoEUYra3mlChCJuSbdSFc01+7c5zPcw8RQ1RbIVqHAQxu89u+Pn/BntJaI9UOOu5+9i9XJsbJrlAHxhSlYTKlKLZE26OLF1QDxS0L9cFfnpgRbg5RkTdeo73RII/mU7ZKmCjhhrY3h4x3trGGdOG4D3SeNRzVGa61XyIygP1XtN/86yiGYhdYV3t4uLnv9p1xdkXc0dduJ3zF2nCkHYd26qM8Zjd959hnnDMu3z93BG7zvO7mdLO2dQmBM63Vux8stmZF3ru2TWbDf2sq1ndGDFINZfsWWBhMiHRIWa8mk6gKrj84F4GvYzRtGRjuyBVIkafhbdrVv4w3m3e2kLjjXFYW2PtLIRKqVDdRKpITmIoUZ7neARfOH6Gz951nNuOnaK/soJRnjPbU/7sls8in3Yd6WWHWRr2QoiJrXEyiZZR2xL6dvlquza+da5Rrh3WWOq6wnuLVk1ZzGApCvGvJvzZYFH2ouGNoZfrooghfJ5EzSx8QsxZidyM2PgdrvSmopvfEaPr5xa95n7Ee4bvdhYyaEmKm1nUWo+Nd20J7GauurnddYmLsXU2PiN4L2fHt1NOzAogzLmhm6mwY42Ov4pYLlbiUN6G3BovqJ2kLCwKz9JSxuEjK/hMcnJtI1TCEp5BP+NoNiRLauT9E2pnSLwg1zlLi4ssLKZsG4EcT8EapJCkSUqZGJAhzAsn8DUsDHosDjRLynOftEycwQG1s6EqkQNnDc5rfNojTQf0Ukme1BS1p7aG2hZUQlJJgZeBFEhAqCRWDNNopenlOVaAdBUOi7UGR0Yo6CHwUmKQ1A7KqkarhDTXKF8jRAXeIn2J9CZubJpinKQyIuyHpBRJJjBCUziY2EAOpfRI5bHCU5QVYxPyiVQKFsm0tNHT1eQx1HgXc7OQoDOy4RJV7amcZGNq2S4s09rEDfVCAq9rX6aw70VDfp1MMK7GWQc+9H84TSFkiFeywPakZDwpsSKJFag0XlqcFwidBqUzEmyZphgPW9OS+vR6W8lpUjsmlUUnKUVt8LbCmYJE6uD1EoKN0ZTNwiM3pozHhspasl4PC4ymU2ozZVxMUc4yTBVVVbK2us6ovoeNzTFlWQXvc2nYXN/CGMfm6dPUkxFJIhHCMZ2OOHH8PqxQFEVJmiQIL5iMJxw/dh/T2jAar1NOSwaLIeF7Uo4ozAbGSnTaxwvFeFpy7L4TYdfsumJtY5W6KpHRQtxElEiVUFvH9njCsRMng6GDkEOytrHFpCjxSsTwTxAioTYC7y21qdgWBiUV2caEsxtTtqbR2uyrsOeSytmuLcX2lI36VDDAxH23yjp4S1Rd0+tJ0kSjE0VpC6bGcW79XAgR856JsWxPHaPCUEwrFlw/7sYdAy29nWVIeCBasoP3Ixbvbda7aNlpPdjet9Z+EcOcdlRbbGRzzJmYhWQ1i5OYN3S3xp5WPDZoch8aB3Tr2W4MQo0asFMVbdZM0ZCdNkojahPChyp2NNeVpDrInCRN2kiOpcU+gyRFa9+WsFWxXHVT+Wl2kdm//Zy8awK2ESGPytuaRGuyNKesau46fpqbP3Mbn7rzFP3BJiMrecIle9i30KefZZSRJNE+fyN/5m7c6GhRD5j/Z9OeEN7YGNHCWMh4zTafox2LGbXzQsS9T3wM6wx/O6IkWlka5J/SOlTvjKSnKdBwQcwp+Q3ZbKMc/Oy6szBu0ejv7fPMi8iGnDaj0Xj0dhYpmI1WM7PbL3xTrnjmCZSxQEjo23l6M3s3zqND8zFf5+nEs7HZoW2KXefHBztPfxQC7xzGOMoqRDjUdUVV1zE6Zte1HiE88jkq8xXQdrc3krwLP0joVcdOl+rcT+xQzwTnTcDd47KTQzSK/wNQyTnysXvo5yeIiPcNSdWhSsR5ZGU2/8/z5rTX3EXRH2zytC5oYiJ+M4F2P8rcS/vACBYEiUdKwfr2mExL1kZ7yJWgn6WoVGOrEmlrrr5sL8NBztmNEadWNxFpGncxnz2QmzGD5g6BDyBihRIflf2gIMokCbGxkaiAD5u/WUua9jFects9J/j83fdzz8lVLrvueqbFhFFV8Ccf/TsOLiyyd3GRZx04yPZohDUGIzStJcsZmiT0RnCEdTSSLBcGwNtQhrCsSvAOrQU9nYTkwiYcytnodrazsDdLu4N9XRWhfrjz+Lw/RyKiou+g3awqzkHfTms318aZJ3HmBp9ru5vNiVAaeua8bWJ254lKMwrNAm6taUmlNXae5uCcw9hAxmRsx3w4Rrv4zu0aPR89bJvFunm/aXKBQnlNhCcRId/FO6isoCwsvRQGw5S9B1aopUOtbVE4QyIF/X7O4aXlkB/hTlDZikxr8lSzsLDEwjCjNy6RfoKwNpBemaIUCFEjqcFJysqR9XIWV3okfc25rS3kNGRHWRcq4Tnr8dbgnKOWOYgcJSRKTKjqiqKqAlEhpZICpEFgwx4cQlF7Se0liVBIlYASeC0CUXFmRlIQlF4wMZ7t0rK5XbC4MEAnOuwRIyoQFukLpKvBO2ovmdaC7cozmhpSrdFasm0Um5Vlq3J4IULisIbKw+akpLSGRElUBroGkSRsTyrKuibUzDJIDJWpKKymJEH3lzDjgvG0ZrRVsTauGZUWmagY0RJKXXsP1kuq2kfSDzrTIVTKOiQlSlqUAhmLZnhlsF6wWVScXhtRiZxEK7JEkySWLMvJsxxnTUuupVbU3jEtSta2ihC2JUJ2vtIJOk0p6yqUxq0K9g3TtgTp1rikMAWlWSdN+yRJSm84ACmYlgWb2xMmxYSekug8paorRuvrTM5uI3USPYVQR2V7bW2Tyfo5UmFZyBRCOCaTEaPxhHywiBCKTKcIL5mMJ2yub7A9mWJsgfcVak8foQTTckRtEqTskSRDvLeMpyVrm1v08h7WGrZHWwhTkelQVKqRiFJprKkoqymrm5soleEBYwxrW9uUrsSnzfEeKXTYU8hY7KTEmrLNDylNiXUueNsogiKrBVuVoZpMmJ4JHivrQphfOZ2iveVIT7JvnybVCUmqsd5QlCVrG2tIEQoSjErDuPBMK09Vhvh2LRSC4HGxhJDndg3yDkWwZiObPLBmdYveRRE2Y8TbsN+RMwTveENEfFjzG0t2XKsastBqFHNEpdUfWuNOs0T72V5UrkkuD+e2xh7PrMR+ozcI0X6PiBUjm/yZ9m4NiQzH4CDRCi0hTXTYfR5YXh6SCdDRU4MXKKmjXyO2k5lHvmlbW3a6ySFBhvxC4RE2GHMWF4bcc+oct95xD390019z28kNlNrk+NomL3nWE+ldephL9i1Tj6rWQh6iEUInzYfEtdVPffufVnbNtK2YYO6YywcRocLmnMCT88p3tN5rqQEfleAmFIn2fkT5EsiMjZuC6raK3LyBbod+OBPH7bseQq7dTOFmhmbeNN/72cNFIjO7R3OiFAJ7nsdjlzLo58gWhMpuCFSi0Vqg1YwYNVkpzTyaceS5NIEd5OWB9cCW0M+Y3oWOmj1M+xxxRJ0Nex8JiTF2Vs4ZEHMFgB4pPDoeFbHrY1RezvuR+UEKH5pNhmaL2E6lXECr6DVk5UKK+fxXD0XwdsRWCmhq8c9u3j7EjClH2rQjDWbGbCLp8e01Z62fNUZpFRVeQTmZ4mJozQOhYfwixrECzOpuPFzEZDoh6Pd6bI6mWGO448SAfnoEnSQkxnL5kUPUXpAN+4y2N1g1k1BBhnTHHiHzi8D8CLcETSqETBBKY2xI2NbWIm0CWiHkrNBAlihq49mYTPnbz93J1qQkTVMmm2foDwYs9BZY3a559y1/xyfuPsabXv0S9vclQ+04tX6WJBugkwzvaoJbXCC1ijkzIGIeUNiUOO7dUBtG4wm1qVAS+nmGJlRW0UKgvEdZi/Kxskw8z5nwxFqHBGSQoSpWfPg2RMCH6kIzCuznzVQzb8ScAGhyXiDGoc71bJhnYlZdxM0WsOCqbu4bF5SYl2Kdab9vBGUgPCJ6VIJ3SUmJjguNECFUYp4wh9cgloyN+TkutkwSwoCyVKO1wvmQp5JlGXvyHlmyzqQylOMpidCMp4aP3rFKnX+B5T190sUhy5nDVDV3n5twx+c22NiuWZ04kjTkCdy76fizT5xj2Fe4gYe+JxtIxqOKW+9eY7RlmU5StAIjFbduVmzfcT8LxwW5EqR7l7C5ZtDLKTbGlMZR1JD2e9RS8sHP3MFdx3r0JYxHI2ol8akmW1kIVeKMQ3uPkJpRWXPTrXfzuWHGINWAAmcQiSA7usxEePqZwhQjEuUZWc+ffupePnHnSfpaUE62GQ5y0jTBAIPFJfrDAf3MYxLPRl3xgU/exSeHGQu5RkhBnucgBXcfP4NOFINhzjOf+QTyXhDON3/6blbPbjEZTVkcZDEHx5MKGBWO2kquvOJyFpaHLCz3OH2u4POfu4+NzQ162YCt0ZjRZIJTirWxZavw9PcsoxOJFoZeprhv1XHfiYJ7j59FiJBcKeU2UwvWaxaGA4Z5Sq5CVTEiYa6tRUrop5qec0ExMDU6T/A4praOc9ORCwtmivSgXBPqCAgZqnsJMLaOyqBsCTguWtLRDLKEhUEW4s+j4tpLM8rKUVmLcTVGSCpbk4QSPzhj2NjaDvknWqGlRoiw34rXmso6NqclA5+BkBhv8aIKxEmn1LXB46I3qVF8Ql6FkALryuC99AZEObfhL0zLadiR3Bq0MyGHz9Qo7bB4ClMHI1HMoajKAgiJ6niL85baG4QFhaUyJu6ZQgjDcyE3xjjPtJriKcnC0kU08mNwVMazMSliWWowDorxBO0dK8kAj4yhWVEKOoOpx2FfLx/2PMGFtaOf5oGkeEmTSO+adVHEIgAetArhgS7G/DvrqKoKBCilSZMME/d3qaej4LlzLlR+dCG0lmYjPyGxzrSbBCaJnlm3ZXzYXZ6QZn0VhHZ74fHSI5xq1+lZrouY5SaIpjhFsz7PDKLSAzZI6CaXY96L4H3I6dVaIxVsb24wGY+o6jpsLOstU1MzqaYs2jrsKwR4GdZe58XMaNpIgHj91pLvgkfNe8HKgQMY5zk3Kfiv7/4z/u6e+7lvfcLRKy9hvLXFyftP8OFP3kaS5Fz/pK9iq7wPaxwQyV4syGKjLAy/+PhuKZRovB8e4ZqSzU1OiseJEGrnIcgtnbVtbntfNqSPlgR6bzG1I0uSELVArG7qfTQgiphW5Fvy2FbCjF68JvmeSGw9AmNDqG2TcO9deM+qOnhTk7jZ6Mwj18jsGTmceczmyMIOzCIrYnfM/aOxUM/O8w6saEK2PXjBzNM0p2sFa2Kjls7pnuGZH4SjPAzsOrnxCEX5n/VyhuQsJyB0gk4ShNYkG2NEab6cGz8gHnmPygU+z1sv2t2s5w7y553TvOyCufc+nD/36zyjnYeP95nR+wuRFbGDeMzfX7ZtvvBzzf9rt1vPM0dyWqbbEBsxG+/5lzMq6vO118XuTokn+pnv8fx2PdTkbBTO2EaJo/Kesrac25xQ1A7jRSjqIuN/XU0qIdOCJAnxvc7v7NCw8M7ZFGICVthwMuxLMK1q0riRV43HeI82sXSxCPsmLKSa42dXue/cFmfHBYePHmHliOT+s6fAhvr8w17K1Jbctz7iTz9+G1/7hMNcdWCRfiKxPii5iBDn2jxr01Pe+7hHjQA58xgYN1fiN+a3eA/OOLyNGxZaExY94fB2btHwoU6oaHaqkrNyy21/z7vL/EyYNIuejyzXtfOiYe9i5q2KVkNPE3Ls2nnQloyE6FXxbTKqjYnczcLnnWuLMYSzRFs3vq7q0HYVKvY4Z9tSofPzXApIVKiMFoyCLhLn4O1TjdfPhR2DEwm9GN6AD4qSUAJjQr7B7ce3OFB7rlwaMkg1znhWJ54TJ7cZTSxTqUi0RgjF6bGhuOccCwPFwUv6LAx7SKkxvubU2jbbW4ZpHUIAnJTcPyrYKCtSaUkFXPPknIW0R5aHvjXW4jwkicZJwT3ntjm7PkXjqcuChaU+C4uSSw9kOGdCorwLIrpykvs3KzYmBi0lBo0tJugELssTBssSlSRUpkAIiUVy39qUs9tVKL1aFyQ6fhaeJ16Zc7Q/DJt7aUUlJMfWC86NLZkOhSikLrA4Tq5O2LOYc1CmOEFUwDwnNyuOnS1Z3yxZWQjeLus9yjhq69BKc4VUSJ0gdMLEKY6tltxzfAOd1lQxvwRZMzVQO0W/HV2HlJLCONamFcfXxyilSHSCdyHnItUK5X0oketqqtrjhUVKhzGWhZ5mOV+kp1OIBGDiJNulYauYIHUalF0806IgT1L6Wc4lh/YAocTqVmUZVzXbZU0/y0nyjFwBboojlJBdWeyT5X2y3pBxUTMtCsbTKakS9LKUheEBjNuEWJEtyRIGvSUO9Fc4fXaVyXTCZDohTxJ6gz6Ly8usr2mm4y2mG+sgJf1+n4WlFRySsjKMx5NQ2jvPGS4NWKrCfiRr6yextUVpSS/r0+8tYK2iKCukEKRZQr+3SJqnWGPYHm2zeWaCqStKWaBkjpOeyoacjEQrDqws05p1pWezkEwnhsl0iktyBDWlKcgJBQIWewlNPiFSsD0uKOqKoi6RMlZx8p4EgcoUvX1LwRLvw34s23nI40uisbQp6KGVRKeaxWE/VOJzjtRaKieorEBMdCAg7X4dojXihfw3UFqHJFwRK9eJkLsUkjocTW6nszbu2TKNm6l6UAohFcT9G5q4fSuCJ0YIiTA6bt4ro0Vfth7ORv57ZhW9Qnl75tbmuBw7mqNiV4pWf2n1llY++zk7p59bo6OxqDFEObDWICSYqgrruggbiTab5VZVQVUVodql0HHD42BwbBT63feKEg9M2F8o0YppWXLv6XN8/HN38dn7TrM2qegvLIGt0cKxOOyxvr3NmfV1Vtc2wDpU9CrNjFQeLeYMVGKOKDUkqTEqREVGxlDhNjkeWs/KTA4S54Voda+dlWCDLGnkCr4RqI1BOJCRRl6FfY8aQXw+gormZ4YCMXsWCOtpk+MUIhp8sw1Li8Zj56PusPNWjQwPbZv35AUHV8xZ9bsObzuo+Xr2j0Z7m+nGF3q2XVrrLj229YLNvrhg/7RXmPMi4j3COdI0YyATlno6bksgMN6TpTlKVq3h5ZHEI+9RiXNL+LlKVIK4Nwizna6ZI37zWrmfm36t0aJhdKJ1g7d5EszGq7nKLBU5/F8oET9f9vX8AW6ToOPn+UQ5iJ6TuM437dtxmWbxEbOzmgnaXmhuAjYvZ3tZIeeU6nl4Gu9Ne5/YSfPhN/Pnirn/331N37KgsG0ZAirnObs5YlxaagtZEl8Q58BUZFrQzxLyLImlOWOnxr5vCUqj4TdERSZY56mNY1KWOJWg4ouf2GC9V3HzRq01Cwt97r7/NJ89doa1qeWJT7qU4dIiazefwbkaV3sWF4dsTWvOTSv+z1//Hf00ZWk45JJByrhwTE0VS8+FMDDnm6THWMggLu5S6tiPTdUZYqn8WUUNa0xIELMWH5O/fTt7G/d3cNUKqdo9YfDB4iVkaEbYnwXaqmFNzgizxb1dkpoFyhNJhGstgd7HMDrfxLL6mYDYMfYBwZNi242rmvu2tee9by2c1rq4S3iwzJZlgbUuVGaRwYLazCghRNhRXYUQNOObULKYvCobeR3O0VKQ65AYDJ7aeYQGW8Hm1HH3yRGVklxyrSfJUorSszGFz5+ZUFaO5T1LZEl4/rNjwx1rqyz2Fc9YOkhPDFBaYlHcv7HN5maN8zm9PMULODUqGG9v4eqaRDqGVxxEreQs6hDrHoiKINUa6x33rU2Yli48uzVcTsKRvMdlOglJ9ybspeERVE5yZlRjXRU2TyWh2tok1x69f5HLhgsMM401E0Bhvef01oQ6WpYVDmOKUGFNWBb372fPfo9QHq8ltZSc2KoQwiEx0RpeYaxhVDkuFQl6GMogN7uRnx1V3LtecWa1Zm+lsAIsHlGERN1B7gOtFCFWbOoV929WfP7ENlbWwcurBFJYvA97OBzyzcrhQELpLJul4fRoitYZWaawlSORMMw0YT9Oh7d1qPJGrFbqLMuLfQ6uDNjb6yNUgpMJx9ZGHD+7ycZ2iVA63EkIqqqil2YsDHpcd/VlCGcpiynH1rZwW46NoiBJFKnUJP2M7a0yGA6UYO/ykOHCEoPFZc5tjFhds2xsruPShOHiIocPrTAan2E6GeHKkjRP2bt/hcOXXEmep6yeO8epU2OGPc3evQtccvkl3N9XrJ/TnJ6O0almYWmRy6+4nGlZsb6xydZog2GWsrQ04PAlh/EyZWNjDWsneLuFlJJBf4mst4eyNNTVKlppBoOMQwcPsLi4gLGGtbU1phtnQlibMXhT42TYMNU7S572ObJ/H1oBOGpfcf+aYrNwTCclQmqUNNSmJFMJiRTsWQhhaUoKsjxhTRdsjAvuOzdFaodAhRxB4cnThD17lskEKO+wdcXatmIyrZiMq2CxjtZerRR5KtmzNETGZPCBtRgBhYEKEbwDzpEgolFHxtUiJP1nWuNFrOYkwgadPtTYpgnr8nHNs6amLgtcVYd3VCdIHaplOTeT2QZi2V8ZSno3ZaRb5bXJJZzlH/hGngk1W4vFhWWsb4SfmCndzXWC/uNbx7lvyMm8jIwXEQ6sDQZAW9cxUV9Rm7BVqXeesi6oqilVOcXKDCeibhTzNXYok1EeCB+8edQWlaYkusfZjU0+ddtd/MGff5g7T6+TZj32riwzWjtNKjwL+5YZTcecXV3j+IlT7O1lKO+p63rOSBW8YF7EymlzSnSb+9gow42+JGk/NKFkHtEUFQtj4RuZ2ihFUR424ddzRKANcRYi6k3RMOkdKhIV52bEc2Y0nCc+MyW83WutjR4QrQeWSGLnDYg+EqbmmPnwwNCwWFKh0Ql3GJZnc0USjdMNGRIz3TaqC3H2zBXOmWkfNBogc1dvNYCdj7qjDQ+NCxGZQMCFd6RZxiDvsSRyLMHQbJwny3pINX58EBXFjAvMJxOphoE3bs/5XnzIPvQtMVBziv/8ac24uHZAd5y+Y1sRseu/84Ox25MyO6RRzH3rZmxZbxjDdpo0r2Jzpdmu4oH1N781Vm7bsO5ZTcFdT9Z8FO1tW1L8gH03u/9uzC+9eZZSW8/Jc2t86vZ7mUwLXnTDdcAWRVkynk44uDKkP+ixVtQcP73JaFzOCGVDzOYWdOFBxg3ESmMYFQXrWyMyoVAilPxUUqGjW14qiU40fprziXtP8om7TsJgke3RNt7VPPEJ13J2dY3trRHT1VMMh0PkcMA9Z0b84V/9HV+47zT/9pUvIh9YcluzOS1AaoQMO0e3lV2EaMdPKRUoh4mBSz7G85JEJcsxLqbkvR6pzXGAa3eo9e08CeMaKtDU3oCVQMhVCO7ZeQtGI7xm1pDZe+Db79u9BADp9I55KmkS7WbfqlgyFYhlcP2s/GgkQtaaoPTUocqZjIJDq7AhIy4omt7LEFIgmsUUBCGJsfYuWvFErP4VcspE0F9DdScR9pBQ7SIf291U3pESr2K9GgmZ0AyVoifDUmQEOO1JMstQp2jjSVFIFxLN+zimSqKTBKlSUpGgkEihSRNNog2lqcAbhPdoLD0lECqj39P0E0kS92Vo9tFJpAtEGE+mYYgEC0UZdniXwlHaMVaWlNJQxPEWxpJp2uTlXAvKWpMoh/RhI8TSSibklG6Cc46BdigZw1wQVFbjvCaRnhyLq0ZsTBxTM8ESNjeV2FAsQKdh/fOSbTllqBK0yyiMIzMhcT9XJXuSEpEVDIRH6BgOo2FrOqWuHVtbm0xGQ5byDOUcy72Uw3sGFMbFktHBc1uUFaaaMtqSFOUQI/LQ53mPpYU+h/fvIc169PoDeion04JhJtl79AiLSz16g5y92RQhdCgaIGF5IWPvQs4w75FkfVTaI99bsffAhKObE3TWJ89SenkCpooeEEV/eYFUCIRbwg4XyccF/dEUbxxKCLQEl4fwFCkEqt/HKUlpKhYWB2T9jD3795DohIVBj31LQ1TydLa3t9hYXyfrDZBaUJsxhw4M2bOoOXpwSK+XobOMJLMsL+X08wMcPLBCmiTkeY+FxUWG3rO0d5EDh/awMOjTy3OGwyFCphzct8yh/YvUxVYkJSskyQLGOEajbaRWpFnG4uIi/TzHe09x5CD7FvuUxRSFw6FwXlDVApyl38u49PAB0kzhnWVcjBgXa+xZ6rNvc4EkzVEyI6FPBizkkiuOrICxaCVZXOyztggnzgVvJjrFCUk5qTi0lLE4GPLMa46izZREwOKgz1ZZs7o54qOf+hxS2BASZMN+Ln0pWOr3SOKaVnuHkZ5x7TgzGlNbgy09GNEqkDJo861Md4JWWRUEYquFwomwPjfGFumB2mCcwcSNLYWr4944abuaKkRcZATO1ViXgtboaHhBBlnQyvAmnLlVNKM083FNbvQZGqEX1UbfGGQiCYvfhb1v2ocKm+pG+d/uxYZDIuLGn56yrLAuei0ri8aROE9ZltRVibc1zutYGt2FIggzidTKFOuCYQ1rWR4OQFg2JxN+5ff+f3zm2Bn+7v4N9h8+CM4y3lzFW8dllxzihqc+kbOn7ufMuVU++Bd/yXe8+HlorRlPKwRBrrg4H70PnlrfGJlFE45MawCMQVc05c5Eqwcxqw7lm7waT5Nn6aLX3/gQPicl6ExQxHzQVlFqZJ73NBsNpllGmqXgfVs5bned2SYnRSUJWS8nSVOMtahYiCNLs1g51IMLY9TMj3ntstlnRkoRKoURNnBt9IOdmmaU7y1HdVgh2jkBIFRDMoKH3RILETRRYPhYOtqBlwjkLNyxterzReBChOQBjmpkdxNm60NkhPEhIkGoWfjdg+dIf2l45PdRQdAYloH4YafFNzyP2PVtQGOpaMqeNr+3THcXy/BzBgrR/jULkI8v8OzajXq4w8UY53EzuRpW65sVE9Hs24TEQdyQbDYewWrUfm4npI/KfLhra4uPJ8qocAokzth5Mv7AEJFjxwS589xJO7tzjkw1RKtpIzRV0sO+RYrVrTGDtU1WN0coERK6RK1IlWCYSI4s9lhb3WLsLcb7oCDHJ2sXdxEyIhvPQ+MiV1IRCq4GQiBV2KxL6hA3LqXi/nPb3L+2zdpoyhXXXMUwT9ESynJCVdZUVY2talRZoj3084Szm9t81pZ8+NY7ecqlB7hkZYG0josAMsa8xg2f4qZoYbxjS4RoE+N9YCNtfwkdwgqaZPhQkUUx8wD6uGg0CXuuJemtZSgKrp3u7CYEYX4+Ni+NwLe5aGGRn93OxXGLVrQwmWbj25CgxgoTGXSTUC98rFTVzJlWuFiaHXqlECQqCXs0NJaj+A4bP/MCNvOuIaWBlwjazacaFitm1a5a1358NCUEvUSwd6hY7oeNHJ3xKC/Y0084sjdne2QonI1hS4KlQcr+Yc5gkLDUU3hrMTiEshzZ02dBaY6vVlSVIVOCq/f02XM0I9Vhb4pDQ01PgXUhJCbRCikERW1ItOC6g0OOLqSkAta3pujFHnqgKOopQoEVgtoHQphLz+UHFxgkNYnyYcM2l6K0oL83w0gTK6OEzcewNVfuzTiwoOhnMuyG7kIfZWlGb0HifMHpsWN1a5PxeMTRRc2B5QUW+znaWTKdIKRkXJcIJcjzJGziZ4JAvXz/HvYkPaqpoZf1Zh4SCWe3J0xqw+LSIGweh2FhoLj68r0sLWnGRdUqG0mSU9tArJeXBlx+9DB7VvbTzxOUXGL/niNcc+WV6BijLD1Ib1HCMdiTIwcp9FL29QfhvRcq5jDB2EIxMeTOkuNxQpPlPZbjhp5CgLc1aaJQKiixZzc2wm7rtWGrqilsLNCgoyFMCvq9PkAkySoIU+PIUuinCYMsjXsAJOA9i4MFUp2QZz08IWewLkZoochSRZYsIJXE4anLCcIHRV/nGVmSobXGVBVChZC3fGkRrcIaV04LhKhxzpAlCVosxv14krBrt3NkiUJphZI+EMJqGlZT71leWoCFISp6UqzzGBPef60UXoQ4fQ8olXB4/xGWFpY4WhwOYVNe4l2CwpMlmuFwgDcmEAAZVuJMpexf2YdJJQaohGeQZ2RaYsoCXIUXnu2JYFobqrLA2gJjkugxiGuLjIpKrGylvMRJj7Sx/K/3sRwxbbGcVmzNeRcCd4kCvanwhG/31YuSON4nbhzsIRRfaEIMZx6bZv1RKoSdNlES8UdmYWizdTPIfzEnT+eIwC4LoZ87pol7aK8tmFVybK3xzfX9jjW6KcBSGxOKmszt0SKIngffdNAsLyEYm5ocDBG/FwgX9kTSKkGkGSdWN/n0vSe49dhpzm6X9AYDpA8eT2Erjhzcz/69K2RKU9WOjWkJRcG4mNLPc5ry9Q1N8ZYoVyxeNlpOJC6RRM17IqK2EzwWBC+Md67tkTaqII57Ew4WQo2i7mTDpqBuTvaEQ3zTE2iVhNL5CKyt20ge4eLkaXS01rs1w8zbRUuk2jBqZrplO26ItuBC4/Fr5PcDeuCifBbe42IetJubDyGzTrR9FDY4bdIG/IyozHvn5uamaOZaYzm/gH49g5j7/gGIxbz1vTlLhLGUUiN9gjCzgkBCPMB1HgE88kRlfhdSaKggjasKmFWuQJzXh7PYRzi/g+dKxQGNy8zFjaqafg0RN42G7meTpFHmWvIpZrXNdzRljp0KEC17mFco43nNbWS8qyfUQG8mn6BdOEVTzneur5QKilJVRHfmXOnCC02vmeuveYLZv2aYexKx83OzKDdqtQCUCPXH10ZT1LkN7j+3zsG9i6RJcKtrCUoLLlnuc28i2cBTuGAVRgSreisEvKRZ7J33IIP1PdEJiZdIH/pKJwlKK3QiGfb6gOJTx05w/+oWm9OKo4cOoryjKgo2t+5nNJpQTAuENYiywDvHYn+Bc2tbrG2t8yd/8xkWshs4sncfeeYoraW2UdFv/qRsw5Ig1NeXQkQvXbRuuOhxERKVxNhmqVq9W0by2myAhYwudjzWljRhgzHPLc6fmQs6zI1I6ObnT1u+UmClYwcPjfGsuJnHEBkUgDYueG7MW3dzJLXW2lAlJwr+JhFUEPI0gqvWIpwJlm+dBK+IEkjX7NgbQoyagDPfXqPxpkThPPe/+GLEA1TDEJFeIGzwsg4zwcFlzcqCQuGxdSAqB4Yp9YGcc0nFfedKJrVHZYqVYc4T9g3p9xR17vDWUnuPkIYrDgwYZRnrm9ucHhnyXPJVBxZ5+uXLDHPNRlFSDzSlgk0XNjtMkuCtqApLLiVPPbrADVcssZBJTpzeZs0LNr3neDUhyXOsEFQenKnJJDzpyCKHFw0LqSMVguGwD1pxsqq4fTRlVFm8yKirCmErrjm6wvVHehxYTKhcHZR4qckHS9y+scWpouD0xLK2vUk5HfOE/UOectUhLtm3COWIPBuik4yphPXtsIlmIoL+opTmmqOHyI54EiHoJUMSrVBaIBPPyc0Ja+ManfVI+wlOOZYXE1aWD+LEAUbjCcZYvPUMeosgkxBGpDMWl5ZYHC6ylCdccjDkt7i4Sar3jmI6oq5KqrpkUo4QicRlmv39XpiZzmOtZzot2ZoWlNWUfq0Y2ISwf4Fk2M8wtqYqS4qiRC8OMYSdz8+urVJOS8qiConuSUqaZug0i1XoJHkSFBWlFHUVQkawITcuz1P6vZxmx+y6qsiyjDRJGfSHFOWUqppSjLYgSUmzjH6vj3GhqtV0NMJYQluVDiGsxjItQ/hZlmb0BwNMWWHqgnFVgQ/FUXSqkSIFBFVZ4+pQZUtJgdKAMUzKMVVZAaCThOXFZZI0Resklj8Pif5SKqxzTKdlyCUSYcPVw/sORyND2NvJ2EDuvZjV1/LWgAvvjPeSVOdceugSpj5sJmf6ln4yJE81k/EYjQE8G6OK2hpG4zGmLgm3FVGRcjgfyKSTYX0TbfhC2PAwxOLHjVnxs6iHRkFtlFLvUTG8xMe8Oa1mIWIzY6VsNwcGEa3zPli/Zcydiwu2ECLkwKhm/RFtqFYTWrZDXWvl87ySF/SGWVSGmCnWzTFxM9Jg2ArKhG/Kc7o5ZZ1IwgjeCCnDWuqdoLYmjrVthYeIBCTk3wDCt+XhJSpGAsQNhaPslR5SrellKYXU3HFmjT/+yKe47dQGOu2xsmcJV47xdYn2lsuOHmLv4gBrasrKUk6mbNUFG+NxLBdNO3IWj7c27oMSKxoS8yY9c/KEVqEOFcMEvjH6+Z160KzfY9BfMNoHvaPZI8dYonNhTumfGeiEUMFIIIKsttZEgitmA+d9zJEO5Zqb9IEdZfjjPGpKc+/wDsxPjWZcncMJh/MyiLngKp8pcPOct5ktIoRMexGcbkTPVDSRt5R3jgcBs8I68/ustXp0S9qIpMXvvinnQ1zwY9NXOx66neoiFk7QaJFiXRV/cI1dYIfO+Ujh0clR2fHmN56L2ZdufmKc91CzSlq7VhAa/cvNL3DRSuvmxqUJj7FNidiW1UNjQdl9VzH336ZJwcYb7uzmDmxqs7cxqDFcQsQKXuE9DVpo8JjF/AIX6uKHWFofcxdcTNy6wIx+GJBKBgvdA1KbB8ZsCAS9PGN7NGJ10/LJY/fzNA0rw5yyKOjl+xgsDnnW5UsYPWTp3vv50N9+HiVSwj4JBCsL4c0KeUgxN4Ng3UmzhEwodPSmWOnb4it5PsTUgi/cc5Jza9tMpxV1ZVBpCEk4fuxeiljh5tD+fcQCPWxubpD1czIybvrYp8B6Tpzd4rte+lzkaAsmY6x37YIgo6CK4iKWyGwsbsFbZmwFhATQTCdonUTFhJbMhnx71XpNmrCyhGE7/5sYbiDu5ixmL3A8L+Y/EwTfTuvGTNGfo6ONpcSHxNbwswiCz/uY7Glba5CLe9M4H0o/+1g0YN6XqVRDmDXj6SRU3ZEWS43zJiQna41UGuHiXiq7LJPhOqolgaJJmm3eTyGRIm2TIAUKW07QGPavwJWXD+kt5RQU1FaQetibCfoHMobacmprSmUUyguU8xwelvQHmrNKMxKhxHBP1Bxe6TNWKbfpitpOQQiu2t/nuVcOWOlJTqx7PlV7Nq1hdVpiqfDCMKo9GxsTklKwTxVctbLEoaWEK/Ien1sbc9d2wSe3thj6JUwN59ZOc9+ZMwykZJDs4+qDfQ4vaobOsXfPElZpPnxynZNlybh29BPBaSmopGDYT7nyksNcfWgZrSFRgahUyRC5us3CpOKozvFHK1IruHbvIS4/tMLyQsa4XAOd4VUCImc0nVLUFUbYNh/JHJH0VUZPpwz7ixhnqY1hNN1kjwux+8EzFsq76kSSpgmJDkq+NRZrLOXUBAu4C9WFjDGU4w3IlsmVIk8A4RlPC0aTCedOnWzX5PFkDaUFVapQS8tIZCzTrZDWkzsPdY2w21STKdNpgVYKlSjWVtcoipKyDBtpSi3RqWJ7e4uqqqnrGidUFOKCIwcPMxwOGA4GbG1sUNc1pg5WaSlECC+VkuFgwJ7lZZwPO9cb5yhNHeZ+IhlPRuHcqkYJRZpm9Af9qLxVkcSFNT6JRL5Rtq13KKXJehkCKIqSzY0tamNIkoTh4gIejxSKJMmwxtLLUvbtXebQvpWQ61UVuDqGtaQ503LM2HuKosCJuD+TCAYgqRS9PA8VvfCU1jKJxjqlg7dDIkiURMiUxiUhe8Ha7GrDkXyFQ97zBOmonAlrlAdnRFSEKpytsdZQlTVFUWBFzsFDBp1YalexOT5HXVZM8UyNwypIZCi3qxwzT4gM3mzTVh4kGH9aD+tcyHUUwGEvYRfXjyBLjKmpjWqt9GEtFmFHdyFIkmzOsDTb5LHxCLee/2iwCZFnUbvaYYGerWvhp2h4sc2S3pTVb/QR257TtkxIjG3CmfyO0vHOWZq8CueaSme+3UPFOB/HwyFsqN5Wt8UDROwfj/GxgICXeBcMTTjHQq5JshzSHv/9PR/ko7cf46O3H2Pvwb0kSkK1zfraWYb9Hof372V7ewtbFUzzlKOHj3D/qVN85rP38bHb7uIplx3hqZceYX0SCu84JCK3cY6poNQ7F0LwCPvWIJkV3Gl0niizTFMBLEZktB4tZ0NfSxlC4YWIxQ9CHzprkMxkj/NNGLSMRjjfyqbWHCvmQqSbCTMTqyG6wHqk9yQED78XAhPJgMPjZROWGOSu8jNfRuP18FGXe6BomN2KuxQSFQ3SUqo4byXWB8JprY3h1LO57908uRMzstTeZLfSLHYd8CWgeSHnvF04h04VeZoy1DlKQm00aaFJtI6hdo88Hp3yxLuNEk3nXVCP3tmZTd8IdnxoWfS8uywQy2g5jr63+UkRStuFk3Zs3HMeEWrOnWtHDHtpuKmLJRp2D/2sXa1qxqxaxSy2dTeaRK4wCWc7hbd1yR8As3LI4XmUCkzeexcWsua3xuozd7/4Ya7hO59Ea43zcOL0GkeWhyRCsLKwEDZikwm9/oCD+1bYnExIVWi3JcR6+rZtfkYEnUPEkrihnnywfEoRHPfehyjd09tjNieGU6MptUwQieTe+0+jJdi6YrGfc2jvElma4J2jrCx1HZVzgqXF64w7T55DiC/wzCddwcFhj4XegNF4RE10tbYWBzG3qPi2v6UI7lyh5hLxmkOa54uCtEmCa8OZRHDZNnHXAtfOL9nOhYYiNZW84nLiZ/NcIKIFUrT/bhbF5t/zbZ6bGbHvm96POSZCgFQI7eOGji4ItPjsobhBaGEvS8NuzDHW1DoXwxFC9TAicW8X+fbOMXxOEMvRxv6Qoe3GOiZlHSrZeI8kbJ6Jc/jaYUqDqQ2QYIWlxlGYiqKsqSqH9ypszIhjkCsWhylJLqimJVYmIEI4y6Ss2ZoYtiZbTIttCp0wLWo2tkdIp8JzOIVzEu812ksyIeinsLzYZ3GgkPkAp3KcTEl6nv4AFkk5aHOGwwWcE5hLFYtqgZ5U7D94iMW9Q/JBQj2tOV0ritKzbXv0e5oDqaeXD9F2QDmpGO7JmOgeZ01CT/fJVI7WKTbps7SyhFpw1EmKqEF7wVJvQJ1qNi1UDPBWIpwizyR5b0CSD6icoSwLyjqER3qVQJpTK824qpkUFePCxHDmoAC4mJPlvY9lfcMktyaQW1PWVLWhrl0ouessApgm4IuEWgfRUVQ1RVlQjjfRSUKapizkWbDelzWyqEMooUpIVPb/p+3Pfm3ZsvNO7De7aFazm9Of22UjkpkmKZGqcgklwXK5AEuAjXpxoR78Yj/5n/KjH+0n22XDgAVVB0iAVLJEJclMMpPZ3fZ0u11dRMzOD2POWGufe5NFipdxse85Z+21YkXEnHPMMb7xjW9I4JSh7XqxmxlW52sa53DOMt3d0i9a6Fve+oFxGhmHLeFwwFnDctFxvx8YfWTykXevvmLfdez6XlZKFvvTaEpD10DK0BAIrcE6Q/aBYRjZbLegFa6xOOfojYHe4IeRPO05+D0+BGJM6JDAB4w1NCajgzgQKQYJ7lD4nQBOfvKE3U76KHjF/bAhA9Y6+m7BbrcjLHoeLQxtXmJCZtreoFEY27DoGkw4SGB2d88Ype+PMpaYxU7r1QLnHChFCJFhEEEHpS2uyNfrnEhGlyahrXRA17o0OBWnyLaO1hihuSpNsjXb7kpdRaLvIstV5CwEFqtzFBM+jKxXl2wWT7Apslw/xSihjxImscu5NFQ1ugQe+UQgpwYJdU862rcZkFQnCPoJ/yuVfbPSFLVWRWzkJMP8YKM/UotqIptc9t3Zsf26PZ2ZEDN49PBt9dIL7lS+p1SIV6BKtoOj0mKlEqlaE1kzDMcOcsW/J+aMrvJqqoxLqqh6sZ9lK0gpiNqeBtN2vN4c+IvXX/I//vTXfH59j+t6bE4y90PgbLWmbwzEkeurd4T1mr57gk+Z/Ri42uz58vqeT54+xjkrNY4xk5QBdewHX8GvlOvmWMZwFmspNLCTAKE+zBlsBqGC1f1Sq3lKVPbD3Lm9AmVzAMm85o01M1X5KNH8XvQwzzc5p9EKqzTOGBSl0WyVUM75SN+bfUWhbp02GZ0xScV8XdUnPP3a09ii7tOuabBGZr3IJJc5Nz8bVeaVfHf1ZeX8J81M50i/3l8+ftmpr/Cbsh3vT+7Tm1Y1UDn5ScLSaJyh71qWvsdZWzJYf8MA6RuOv9VA5ZT9+cARO5mtp8/ndE6cRsX5AQew/JkUJ1oLQKVZqdOXZsd/1rvmxOEs7xGaTSkwLm9S+jR6l9eOi6Je29fHpBra0wLqU1WO92O3NHOEjp+ZJ3V+X0puDn/m85mSjRHkM8wB2+llPTjDb5hIOWecE5rB519d8fGjM1ZNy3c+/JBD0PgsKh+PL9a82J6xdIrDGKV4TLXzusjkOa2qq9Z9vY8Tg+uQArBdhC9ur/niZsdXu4FoO7TK/PTTz8nTgCXy8eMLvvPhc9arBT//xS/Z4hmJYCJDFJSmW5/zq7fXvL6+4T/+ve/wn/3uD3n+wXMOux1eZaLOmIroVyNYjWSuaJCiBhEP51JVDzvOzeMGd/zzSGosfM3ymPUxwjnOklIkWudefnCm4/xSCEc+1x2MSh9Lx3soN6QKhQCli+JYAq2xWpO0JprSmMnHeR7PanNKYbtW7lbXzTUxec80BZyxx41bSR8VlY8ooTSCrDNU6pSMVniQbtrTRAipzOmI1pkQM36I7DYjqtWYs46oAikHxunAfhPYbiMxOXzYQ2tYLx3nZwuyjQx3G5JZoI3IF9/djby7P3C3v8P7DcF37Paer253jN4QdUNSjaBYpsHoBE7x9CxyfrbgYtViVpeMds1BO1Rn6dYdlw38Vt/Qr3qUUrxYPWP7caLRlo8+vmT9ZIluDFd55O3dlvvDwPW0YrHUnLdC43l5GfFjIIw7brGMB83arFi4c5xa4HTL+tzwyGq0s6I8lBXDOHB92DEdJNNHCOgcuVwl2n6BdQ1hkt4dMSS2uy1KtWSb2Q8j1/cb7rdbxvFAZ6Gxmn7RFpuaCTkwJlmnfgoljs7oEDkMI8MwMRwOWCPCFzsDk1Yy03Mi5ISPEX+4w+olzhgW3ZJxt2McJswUaRpHby1L1zPEkSFH3KIrTcICTx8/oWsbrDHcv3klSlJthw4j19fXjNt7TIycrRY8enQBb96xzSNh9Ny9fcveaDaN48mjS7qmpXUNXaPxPjKMkyCU3qLjSNctySGxnQ4cNrcAhMZx+cFL2k4Ka+9vrhmHPeNhxzQK3apzDUZFnFYsnSoBnvRholB2phCk4DQnXJpYdB3ee+5uN+L0NA1d8uyv3mKmFTy7oM0elQJhc4NxDe1iydpBCgNpOhDvr9nv9xKgNA0+Jay1mHFB6jq00oSU2W92+JDIWForTlcYR6IGZR39aoW2Dm0MxlimECST3vcsFkuMa0RBq1A0lWmZQRiNrH8tsrkxDHjvebnZcXi5Be+5bDIxeKIfme7fkdIoio8pil0syIaa97n3Qbxiw5Qqe0meFUIzYnx1+RHabSrAR5TCJxQmp9KvJZ3Y0NMAoVZTlD2yUpQqIPVgm6w0reqUzpfIySkKOKNmqftKJcr5xJIXu1gpRnKLSmhyRRoyxTzXpihVi/FBkkpHNaoUK7E2zhFSykqAAV1EYmzDL999xf/rX/97/n9/8WtwDY8ePULHLd4HRp/45IMX2BxI44army05w+Mnz9gNE/f7gevtgS9u7rneHVBaM/kJHxJJO9AelCqZ0pLJfy8jNRfFz/tToeHporKJSB7LNikS+nUUtLIFxMjl3qWovipf1fpJYH7uWins3JdOrkcrPUsjPxjbeSvNc5DijBUwRonSoTzX3+hFzeP6wD2rQUp9BqdOq1Lza6k0rdRa45oWqwpNNRdmjFIzwHsM6HhwHsreXQHB91B2HqhHfS0A+abjNwcpM5VTnFLmZtgx0DYtue8IKRTqnfqrfd1f8/hbUP06Rnan6kUPGiNSQpTa7KSM+imCLS+dBjriYFfwWZuiy10WAaZSw2r0WYOGXBAiTr9Zvq/MI1O+e3YElSp8QyBXOd7y6VK8pitOXoMoSlB1epMnx8xbTbWm5uT1cj0VmTntlXIarHwt2CnPxVorTkMMxErBOrrUMvHVw2zTNx1GK3LSEOCLN/coZXn5/DFXt3dsNjv++T+/5vnjM4w1/OH3P+Knn11zs59KgVtJp5er07W5V1YiYWd7fFaMMTOMA08X52gMP/38S/7Zj/6Un371htRe4toFi84RQmA3DDQkfvDdj/n+xy/oG8svf/bnfPjyOe1yxdvba3792Vds7u9Zrs5wXcc4Tfyf/2//H+7/yZ7hP/kDfvfjx+TDljgOWNOfbGAaQ8YqinEqXcWVIqLxCZQVBNZZjZk8goGBznY2BickBDJhDoRMDUSyEmpA4ZVqVbreH7cqUMc6PxmHIzqYKlqkFUrZ4kfmuRGVLkHrzPeeG0UlUrLkQn+MMaKTwehEKpyzmk4W5CiJrKxSpYaoRWlLiLAbJlFp68wD6tdpHVZFUoKf2O32rNeG5XkDRjMOnjc3Ww6Tx0dxzA7TyLCfGDcHPnjWo7qGfoyM00AYA9P1yPb6wO1dYHsTyGMQ5abHax6/fA4q8OR+YurWBGUIoSU5z/pyxT/+By9Y9iueXpzzn/z2d3h22dI6QwqK/6izJOtIXUczZVTI+KgITpyphoRRIwcVMCbzRDuemYY/7C7QxqGNptEZp3pU1gzDjqvNPVebHX9yd8Pre83oF6xXT8BFEpkvbxItGQOYvuOezDZWKqjBNA69aAvaq9AT7EahVP3007/A54mUZXxu3t2w3+1Aa5yVDNj+MBALN/ww7Dg/W7LsO6zJ7IeBYZwYDp7eKnqneXq5FPtppK5jc3/PbrslTJFPPvouH738hBcffCBSsNPI5uYaZzTOKA77AWMsyhqu7q/Y7jbsD3u00Uxbj9/dc1ecUK0VT7on5BzZH+4ZD3vhmseIihNKCw897G+5vp047A/o6MkpMOXARy+e8uTynP3hOcM40Pctq+WC77x8xmE/sN0eWC1WhGlkPOxwRkQJur5nsVoCIrvdNJ3QF60rWYnEixi5vr2eMyZPHj+maRqcdTx9fMY4Htjutuy2+7mD9sX5GQB+mohRaC7OGDrXkhH1vHf3d2iVWHaW50+e4SfP6zfvuL27QynFctnz9HIlNJ848flnn+Onievray4uLnlse1brNbe3V/g04vOB/eEWpRSL7oL1oiXFyP2bL+iaFmsb2rbjSd+jtCaExOb+Dj+NpOhJSpNyZnf9lTSe1Jq+X4iIhFYEbbjPxXJrg25aXNOyvrik7RcYawGFblq0scV+BRyKy4sLPnj+EmsskAgxMex3fPGTP+Lq9nOub++52w40WuNai7ZS62hL5rqCs/NR9u25aJss2WCF1ICWOkNjDTFFTJSaCYXEQUYJKGO0EXtmTLHtrlqqcr7390Oh28x7a05HXClTJIPVXBsie3E62ffL5eeHe/SxBgeOdQXlqFmIOQPPsTg7Z6ogbUKBsoA030z1IVFtvBSaG5Vx/QK7XPJ//W//Df/iT/+Cf/5HP2F1doazBsKO6D2Pzy94+eIl037D04tLvvvh7/Gjv/iMt3db/u2f/Blt6ziMnsvnL/nl1ZbHn7/ju5+/YVn2Gvwk7DmygIUUwIuZ/00NOKVeo+yDKNBCeUpK9qhURFzmes/ZPYmoGsTVPYoSyKW6j8qDj+pIqxY2gDBhYpDmsXMK7cT1OY5NKmpxpkgzvBeHZlDpqLR53PPk97VuSnH0devn55n1IBgvQ59qzRWMfuTFsyc8PlvTrzr+7Fef8vrtlTyFkAgeyE7OfRIvCHiaxFes9Z/qyOL4qwULf9mbxMs9UrjLA0H6OJ2tl5jFBTFldm9uuX73mnfv3nE4HPh62P83P771QGW+9a9da0ExmDHrr3/mNx7VcT/SYPLJKb5pEtU/6/fNvylRYY1vKg/wgeEq/64RubWaNHrh/Osa1JxcnXqIDh3jjDz//qFk2zcP5KzclN977RvPUW9SeLdKgbW6pOvrZx9+10l8X4Kq/PDhC3hE4yz3u4E3Nxve3dyhsijUZDTGOpZ9x/c/XnN7AH99z900FrWbk29RoLTFB8X+EPjy9XVx2rOgsF6UaX717o6rzcBuyPSNFNsbEilHWmuwKG6ur3jlYNm3LNcr0IrDMHJ/tyVFaEwjHcO1RjvH7Wbgj3/xGX1jeXL+h+jgMcEzkUvnWo3yipAiw+TZbLfsDwdG76EV+UcfAvebDa12aDTT5AXZUaKyU9GMWAyxxC16Rn2SlkBcYodaK3XczCR9f9zMjoBUORfyu5hO5m6ZA1LEykmAwBxQ15BJZ4pCiNSqCAWmdKCPJV2f4jFFnxI5xDLfDeMwEUOWvhZKzdOypuWP9IrTeSr3EZFgWxvhIMcsnbGn4MXBMB3r1YpFl9Fn57x8+Zj14x696lGNRUWFXsDODWx2gcuXnj2K9aplcX7BXegwOnF5+YIDDUOCTbLQGRaLjo8+ecL3Xj7nyfmKF0/P6FxxsJJF2YQyoIyDWJ+dwucJHz27/T13hy0xeRpn6RpFg8Flj1ENRhk0STYaQBuHdQ2uCbSNo7WDxIopE4JCkQjTSFYRpxNdK8CIQdGiaYk0eUIniCFLU7vDyDAOHA57wu6azWHHME3EpLi727LdH9hPE7bUAgUfyryGjGc4bGmcobVC3xMHMpK6BrvsuViuMEqKuZeLBQtlGFyHxvF4fUlnGjbbPcGPxGkk+AmLlUA5BgY/4lPg9votu/2Ww3jAtQ5jrPQwyBllNMYYbm5ei1BRTDhlyVHQ4ztf6H8artsGH4I0HC2Fa0orur4vfX6kbmYaRw5K6kT8NOHHEbM+QzcOldsCyoD3E8NeHFVjLMOwZwrSdHbwXvYDBfthP1NW2q6l8S3WGO42t+yHA7v9jmE/SqCSE2PpOj+NIyEkqWWxjs61KOS+pQAZ/OjISRNjYrMbOHhx6kTiO5JzYDeM3NzvSDEzDpFoByZ1C7/6DE3AjyMpSga1sZaz5YqUIj5HVNbsdyMxHQjhmhcvnrNYLOjbloPRJCuKioumIYTIWFTTstbgDFk3ZDQxRlFkLEXODWJz9bghpREKgDNNVpwhDKZIXkc9ypo2FmUdWTtQlq5bMIyR2+2B7TCyWjaopLGpgFnqCGid7oizDaHauLLTZ6kSrQGLKc1ms5Y9x1hTGo/aB79TSh+b8pUNP6tjsfsD6kwFb0o2RM/+QJWQZUbn82ynZwfkpDh73v6K5O4RbBQmWJ7dkOrkayVBojN2FteBgugnaZQaZwe9UuP0sS4xK5p+yf0w8frtl/zLP/kLfvHVW5QyOC0aUjGJzWu6lsuznoGR3llUhq7rUJs9m/0ezAq0YblccrU58GefvWLpNP/LH36Xi66lNUZEGpAgq9LQFLVo/sTvqP5K/SMLhXHOLB1Hfg48jq8UJ/8EDJtDgRM/SJf4SPbCIrIgX3Z0aurHTty2DKXZ47EZcnW+YlHXrEI7s49e7qvmtCqwrJR62KC73sR8vPdLmUxUipwBGq1YlKyyKp3pq+rXXFVa1oOqZyzgeq2zqupx5Dxf5dcu5Rsu5y875reesGKmcWSvtmyCyEHHEI7PMOevf9+3cHzrgUrlJFbnCY54c3Wj0umdnMzlyuA/nYjqZMLXCV4nivhuukzC4hTmE1lcVKVeF6nDh4+w2qcjwiJpWHldSUNCa3GuYQwZciwOwXG610VZHTgFR21xyvXVdz9IP6tisPKxi6p8gNow8f1DKfXg5Wokcrlmaw3Bp6IGdbIwVUUI3ptE+ehc1jNqBX3XsDmMxJz56u01Hz+75Gy5ZH0WWS3XnK8WnJ9f8NX9xD5m3n6+QbUOZWpbT8hoMJYpwGY38cvPX8kIa4XuHPeHgI+Kv3h9zf2QQTVYDCYldEzYHDGtQ+fEZ198wW53y3q1YH3xmPv9yP32njevr0BZWtcz+RHbSFOvbW749z//lOu7K/7e77zkZdey0oZdHKSTsdGoBKP37IaR29tbttsdh2HEdQ0pSwHy7e0trZY+HUMIEgAosDZgih5/3UAkMDNzoDKjcRlREJkDhlTmqfDEY/mpm99xJOQIiVldRynmLvK5qIRppdC5ZlVKZ14EtazfmXPC+2k2flOQIC3E0kxrVjmJWCPSrPvDSAhRinO1KRBWnud5Vbirh9SDHTdxlJ6zPjlnfIhM3pPQdN2CxdlSCo07x2/9nUu6VcPYGpbrMzrTsUodu2eeYQps4kTsHIlMOAy82SdaBxeP1tjDiJ4CW+9gsWaxuuQH3/st/uEPv8vleU8wHj9kYtRk1aHZoXNAx8RQUEqdMmYfyN6zP9zy9u4VY5jomhVn/UTfdOTgWSwy1rYMMeIYUcqQlPQB6hrDeacZXMJEzxghJFnLcX8gm0y2it4ZHNAoxQLo4oQLGTWNTJMnjBP722tCkG7UZrjhcHXN7WbPLiq2U2Q/ea5u71ApobPQF6w1WKtpWs0uRlTKLBuxCUob9ttIwxn0Pc8uH0vmKCdWZ+f45QXRB/p2BVhChi/evMGPB5IfaYikviO3Ld4PbHc7trst767eMIx7pjDS9d1clO9JKCNZynfTfs7ytaaBBDlktnfbslfk2VaDom2Xs71quw7rGoxtGIYDwwEOO4V1Dbv9wP1mx2J1htUKtCWmUmw/HjhsPW3b0i+W3G4O3G33vLu75+Z+I3bRGrKSzKRrGkzjaJsGozS//uJztvs9+3EkTFKgTMpc328gZ7yf8MFjlEj8NlqAi4zI+FqjWXSO16+vyChCLOIiJGIKdI0jpchhOBCTQWlL4zp2ec/1buDV1Q0fPn2EM5rgwSpL5zouVmfc390SYsaals1uw2634/rqHV3fYaxlvV5hnRURDGM4W6/xfuLu9hadpXBYlcaMMSMAT2elAF4rFq3Gmkz2W+IEUWuadoGP0jshZc2i79HW4HPCZ2kcavs1pltBSiy6nsPkudns2R4GXOjR2aCiZJb1ibz7KTJXa/2qLZN9O1OlirNWMq+0xqgSjGhR77PW0FhbauWU0MGKt6t1bSCpSsf7skuVz2ulpL1AzWKnOEuzU1D92nj3dF+vjlsSt0QaNJ5ssFmJWA5IgJVKVqWKCYmfoQudTdG4Rmol5gBJ1K4mL1k/BVgjAUpMFfCSfdy2S968u+Nf/slP+Rc/+hlTyqxXS5wSUMtnVfoBNaw6TRdanFbst/siyqA4jBP9WmGdY9Form+u2W42fPXFF/zPXjxl9azhrHOEQxBfiBp4yXeEIHVPtTu8PIQ8g6I55Xm0VX22WahF1anW8zwQynQ1DaIme5wv9RxaiT8pAZ8+oWfDTJ0qOnOq1KbO7SJSEZuJQWou6r2UsTZK5tlp4JNPQMRUg9PTBnj5BHAu7zuC1idBV5k7mVwaSgd0yqXGpgpayD46fzxlpE+GUOIq2n7MKR7X0hxXvff3mq37xmO2w/NpHgQ1WQmONBz23A2ZKzNw+fgxwXtyznNQ97dxfOuBynb0fPMjOk7SGp5W1Y06kFqVYmROtF2PcTQwB5Fl4tf3+Pn7cwleZvm3k2DpOGlAK+HvU+T3Zt4sunRMt6JqnYzM4RLEQA1sOPl+5sU0ByPlZZHwTQ8/q8u11/PUpVSRnvme/7LQ97SYSyRWjFPYqIk+EUI+WUAnKMXJGTL1Ho7BJMiEtEoTp8Sf/+I1rnE8Ol9xvmq5vrnl/v6eRKJtNGerHhU1JuqC8MqGnFTEG82kFB5L256xWLa4rsH2C378q8/59PUVf/r5Fdq1dGfnJH8gZBEIaJsGbRoUmbtx4P5qR3s/8j3VoVKgw3O+7NkcJg7TgI+e7APaGi6ePeb61Ve8e/OW/8v/87/hv/zP/yH/6e//DuNmS23sKL1wDMpnYlZo09A2PUaBVdLAadUvaboemh5nKkeaefORze5IIziqeqmTPzJYmdaaPBdA6ixIscmnc0EMXEhhHnuHKt3kZQOl8oEfgABlc4+S+tUFodLIhp9SBGuPnel9SaEXhDMn+WxKCWs0jTWYrUWjMUGcYaN0cRpNKfjLD+af0QIWWKNZrpYslmtcc8aUDjgiqsk8vlzx9PnH/G/+6T+l6xxoaU72pFBhxikw+lzWsKHtJ6YQWaXA7WHP5jBwMw4MNx5yoDWRcRQJzeX6HOUUTPf88U/+Nct4xYvLCx6dn+HjURUtpUBKUbIFRnpR+O3AuN+xH3Z8ufmC+/0dKHh6+ZS7+w33wFfB0zUNbdNyfvaoyM0aUgwM045h2DO+u2K8uWccRkaleHp5ybLr0OvAcrWicQ3EwJu3b7g57Ek3r9ivlnStY0yRYb/FjwfieJilKXPM9HkiNSI8oLWibyxn3TmdMzRO0xmFyRmTpUletQzWaBbLHusc1zd3oDTWJl5dvcGkiE6R9vqWtu9xzvHq6h03795xd3PN/f0tfpJCca0069WS1XJB1xj8NBG8x2lDu1hi7DnKJLrO0vWOpm0pQkCgYZgmxnEk+lF6GmRFs2hkzqZcalVEWXEMQ1lDidu7W2LWZKyAHn5iGAaqPAXA5+/uMMZgjYHk6VvLatHxdNWR0MS458tXr9kNI4fJo1KRo8qJKWSyT6jJ8/rqHa5pUcbx1d2GTJaCf1MaSipNjFW1SrNarEVeGHFYpymw2Q8cBnleh4NFkYkpSjYxy/0lrcp8LLTYJE6Hs46uMSgicRp48+6CvpV6G5USq2WiWe/Y7UcUisX6ER89fsHkJ9ZXb3Btx2574P7ql/icUMawWC5pm5ZV32O/A/f3d4zjxOADX75+x+YwstvuuDy/YNkvuDg/4zxC01hQiUXf07c9Ty4fEaJkYw/DJBlJEo2C8XBHmCaGd5+zXK7JwNWrV9zf3bAfD+Qc8Nljs8GhCwBYGj4WM6ZypfJkAlKbEpQQwEKOoAIsYDKBXRi5vj2Qkxe7YzQ2ZWzJHNYjJinGz4g8sdHSvd5YB8qcFhyWeKbQpGe61rGWtvoN4nvIeGtjZhB0RrU5sh5qrFSDEAlj5HpSQbxlFluZuyqzaBe0rsVoTSARUiKFTG56aBeoppf7QBrrNi5ijcVox3/9b/6Uf/Enf8Y/+x9/hHItS2vpnCKGgLWWvm/pnGZ3f8O/+5MrfuuT73Bz2PPm08/56maHT3B+dgZRZIiV0TStIw6J17cjb24PvHx8yeWTC+LNHTFaVHbEPJCyKA4610IugO0c9MlcF4KB+FwpVyVMZqVUkqieWedmWqJWGdML5S8rzaL5TIQfyMXX0CSCqBiW4NeHWAnVkrGtjv1Jf52UfRlDcI3BWlP8L6FdN1oaqYYYCKXrfN3bT+VwatykMMz9XzK1W8GxMTiSka3UcaUFKDQKzpqG17f3vLq+ZfzpL0BrWtvw/KNn/PA7z/jBquH+T/4YosekCAamqEhKEWuAp1IJ+tIDwZ8KhP+m4KHS1o939vA48iiqp2EAg84wDQP308jmbs922LHZbYQ+b41w4r7l41sPVNat8OlqjPK+q51nJ76m6KqzUywBuUYVHN1qdXrK+bzHpnrM0bMYC+nsmdQxPUdZHPWztqSIjT4GTKfByqnjGWcDqGaHUhbZ8fpVnSE1kMqgTt47v1iP2gG6TKZvpHWVe/wm6piqTTZULd6X7zNGS0F1iJxO03pnp+MyZ6bmsZH/i5NjySlzfb/j+n5H01ger1bEaRTlrWEUidwybtUnl3OUxocEtHY0TnNxeU676Mha8eXtjle3O95uR2h7mrbHaU0mSAO/ELDalOZNRcgxZmIO3G12OJPJORJJUjPQNLS6k4K/yTPur4HActnz7PFjFoW/bbUr24Mm64jN4IIU0DnnaFVGNxodJnEG+iVd2+Eahw4la6YpqVlJGStk09LKkHOa59A8nd9/uvMzqkWhdWKfUA1SFUUoXOUs80DmoZygUgDmh55PAph8pFZUXXvJ2sifJoZChc5FMS7P8sVGS0O8xWFFt4+YPGJNcS50KW6d5+IRhKhGTZOwGmwJ4KwGZcG1mvP1gkeXZ7x8/oTd4Zb94cDN/T2LTmgPfopcXd8zTBNTEJWZmGCKibv9gf04sdsPHPYHUvRYFUhhwBglakP6HmsNq77hsLnhNk0cbq/JSsalse4BpSSXwtw0epQKGJslSFOZmAJ+3KO1RSWYDgcmMtaItLKxHaCZxon7zT2H4cD97sB28AwhkTT48cBEIqbIfppkHYfA3eaO6EdsGnF44uDwKZG8R8WISYokkCkGCUyMUeg2cfCJKWZ80vSNkeJ4q4VLnUBncyxqJNO3Ducced0X+6e439xCCqiU6HSDHRq0sQyHPcO4IxHpe4c1iuANSslmrshYo2mXPVp1jFMiJErtgzhgMUaCD3OTwqQV4+gZxgmXNM5YnHEofexVQJY1lbMoHSmqaqFkI2OWbGYqTkOMoawXPXPWK9DiQ2KYPPvREAJ4kwg+ojI01uAqOOUMLgkSnBXkFNnv9xymwO4woI1GGSuIq3heNEqjjdDSBH/KQEQZgzWKvnUCOZIxOuGMJmeD1dAg9QZJKXbjWLp6G0Yv6877CauNNNq1hl0JKHTeY7VmO0wMPuLjhDGG9XLAWkfKif0ktEKTMsP9jjF5jDNYA9Gf40xL3/eghDLr77c462ldJrSREBP3uz0391varpW6PAPnqyXrxYIweFbLBdZZWvFVRKTDWnRsCCpjiagwSG3h/Q0qezqraW2x4TkVLr163zCW/eOIkmcyMQtNTpUaDt1afEjsppG3N7flaYJxtvR8Kuh3cRBSUjPFXFuNMRZjhB2hSzbcmJN+Z6gZzaaChjVYKeau0oa1UqiUZh/kQbF7PvEVqH4KxORLYi6XLLw4rynJ+WKO3N/dMQxDcWNEkCRlze39lnf2lo4G6xrZ8zWlAalFKcNPf/Upn375mrvNlvPLhqwhFTpQRIQObNuxaFqWjWN3GLnf7Xl3t2WKGZTBWivPO2dyEBAtKkW0ij/5/EtMozlf9+RJBCq834OqoFoN1YrUy0w7rl3nS9BSgDcfpH6vDnoqtkkX5ajKcKnywjFlbreyPnXNluW6+8g1x/J9ZBFPMiVbdervqDkypfhqWhgDyhCSZK6mmCTQLT7c+57ZESJWJ9dw9LFSrnu0PglUT6ZFCSJSzkLbLVmTkEUAo2scv/W7v8MnHz7iqY4c/s2/wSnZVx9cTJ1cs17ccUd+74Iffu64bR+v/f01+bW7ltcUUudmtcIYRSy03OADcx3W1871Nz++9UDlybKdAwNR3itohK6IBfNkqZtR9dVmlQX18MnWrqugjqk3mLvYShFxUY3IUgidSESSLNbiv01TKMVpuqSJS3o3VUOl50Gb09DkGalRJTqZC6hO5586GrX573PgUgILOE4oxTcGJ1X54y/LptRFoo7/mP9ujIWc8D6eBB7vpeRmylfpD1MpYbUfTJbzRDK3mzve3dzTtZaPnz3FDwN+8kzDSPCeFKI8J1W5s8yLR6WE0x1da3j05BG6cWxGz8+/+pTPr7fc7AP92SV902AVxDgwHA6EEAkqoE0uhka6M4eYuL7f0rWChvgUUcbSOkffr7i9veFwGLi7ec3jszUfPH3M7//wd3h8cQ45Y7UDhDKQirxgbESO0DpH5zQ0qjTcyiyXC7q+p20bQsm0SiuWjMRotWhQuPCpFGSi1ANludNx4mRTezCmtfeIUpKGrnO7ThYlxbp1zkm6nnkDqGM8d9RNkl3Jc6By7KvSlSZN1ZinlKTRWJCGj7bpWG/X3OUJFzZYK43ptC4N3pBCu+O1Qy391CQMuaTtM8aAsRrTWS7WDZfnK87Oe65ufs27d+/49edfYXWmb3uSz3z668+5226432+xTkrQfYDtYSKkTFKKYZRAJSeP1dIUjmlHioFF1/Dswxf4/R13w5bDZou2Cmct58ulUOaMQTddAVVFpc61FtU41qljfzCMk2catjjXoTPEYc8wHMg5MR3uaDoJVLbbgbfvbtgdRkYck3IkZbAWDocDIXj2PrDd7ZkmL2OrAk5Dp1qa6EnakKIEUk5LLUDGE3LEAIumodOZXmV2YxBp3git0zin6Z2FkItKkNg2azQhTDRGY43iYtkTsozzzeZa5mpOdNqRtopEJoVIZy3dsqWzC6Yp4KeExuK0EsWrrmW57Og6x7vrOzbbgeEwgbZ4H4tSXCzZAohGMRT1sKVtcVaoVjpGoorE0pwiluxKKGpUtbdPqrLrOUnw2zqmkrVXuoylPtKBFJlpCmyVpzEJpwI5Zqwu1CBAG41pNGNRjoxlX9kd9ry9uuUQwTZSeE8QDnlSinbR4bTw/uM0lOyoBGnWatqmp3VBnm2cWPSN2JiUQFkygoI6nfE5k7Vhv/dMIYh6WALrLIvFkmn07IeBcRxoSmb5s6++wljpe7Na3qOT3L9ZdFgsNmUOm4Fd2OCcZtEqpvGAsxrnGkzTYdqJuyHQd6mASC37UfrEfPrFV4QsDuKiNTw9W3KxWrK/2/Ddjz7k4nzNom9IUrlO0/dYEskZvIFhGJiGPfvtLY1KrFvLroKGSfpZFY1sZu+p2Lja4FZoWrJ/+xQlO6xBdRa/m4jTxKv9YQayXOPmrvNKUWhcipyEzkQGZSSrYo2laZuShTA0rvZkkZ3SlHmkELGeGWgsRk78BVHZ1FkXaq3MrWrPY07z91bfJhXfI0axw9JPJoh8cxAKsPcTV+/esR92MysEJffw7uoWO0EaUsnyGbLRaKII4GTFLz/7gnfXNzInixRBAJGGJjP6CaM61v2C55eP+Oz1a67uN9xs9zT9aq4vUypLnWsIAn5oBZ3hX//y1+yD53y55OOFJUfP5rDHONDaoLXDaAFWTBY1wVQCTslkC2BTpe69D4SaWUSUIVNZZ+IHalAiPZ9yxHvPm5uNCLtYc0Sfqc+5UKKLTyWF9SKsoOqbSoBw6qdXWCSjGUNiHAP7weNTCWv0CVUwc1KLcgTRvyaUMGfVxDeQQMWfvEFJBihnpmHEdSL24XTLfr/HasXv/r2/x3fPW57sb/nZ4YBuDKaxJ25xVVfNhVp7ZO3UqOk3e5DvHRVl/tprJy/P7ooEKs5ZWqUZvASqNSt+yvb4No9vPVB5cdZR273XQt1MDVSqg38SbWhpWhWBwY+FmlMm6xyJH9NXypp58etS9CTnrU6cZvRSfJZSJFsnxbwxF/BZoY2laZriyAmPVDiJUvirtS4Fg6pExqBLg56k0ulsPf69GMgaiJ3O3dPMym+KNR/yXwsa8w0DfjJfHsyHisxrrcBqmsYyTYGcqnTsMetRa4jlHFVxo16fFAZKs6OM6Xpevb0jhsD3Xj7j8vISpzXD/sA03rM/HGb0NkNpY6UFPZoGFt1T1mfneNfwR3/6M37x+Wt+9MU7utU57fljlosljQaTI6nrIIhcqh9HdCON1bSRjSMmeLc9kLcy1su2gxQxMWINPF81fHT+nGe/9z1+77e/y+9890P+wQ++Tx53DNsdIVopJk0KrQUF8H7CNg3D/p53u3uiyaydZdX3BO9FcjOIbPMsy6B0efYyGikW56QYiCqJPSNy6si7TvPnamBXixGPY69PNNrjTEUokpUlza1O0MNZGjJxEriLVY2FhxtLBijGSAijoE5l4lQkPHqP1hbTtEzjHq0Dq1XLYmnoOoV1CS0CNCQom0Amx7qGwDlNnAamw579oSGFEUeksULNubu75sc/+WNu7q/Y7HcEEl999RlOKVSIbO/umKaJnAKb+3umKbIfIiHInPIhEVUAldA68+jROWfLnkdnC9aLlq6xLNuWcb9lHxNTCCyjRcfIRGS9WtDYjqYzjCESUmTye5KGSMKWeh3vpUmm1JNoOgNd10pvjmEgeZHobJJm1Qgdww9ZnPIg/QZev9tJrdN+xPsJyKz7lkdLR9tZuj5j4ojSCmd7wn7iEBLbw5Z20WEah/cTKmaMVZyfrVg20qxwKpxqDXSuQfdWCqy3IynBECLj6PEx4ZwVe6bE0bLakpWYfg0yJ2IklEKEaCLBa/wUiT7RN2IXVVZ07RlWa4gJqyRYStGwnyZC1FhnWC0bjFE4BVlrOmuIfUeeIipHhr0oacUkP0obYhYgIoRSi2UUzgqlq0exWC0EgUyR8eBnm2usnesCUmmsl7I4ZmRL04gIg4xupC0oqzYwZrFVWVuUczRKicTzKFmLrjH46LEKOmdZm0TXGFZ9S0oCTIQQWa+WUg/TtUyTdHPXSontSIkUEtPoiTGTfOZxf45PkUP0pLMlCUNCSdaBjCHjVm3pGdVjSgG40H3EoUQbbu93DH5gvNrgDxv6ruHiUc9i7DA54YeBzd0Nw37LYRy52Y1s9xOvru+42e5AaR4/ecRiuWRhLN31PeMoWaaI5mY3MYZE5ywfvniGJoti335HyKAPA+u+pWkaYggM04Zxmri8WJN1pmkMG/ZscyD4TFatBC3k0pesINYV3NMKFcWhHYPnfhpoM2ib8TbRO01nep6erWhMg9UWbfXco0uaPlqRb7Y9tXO90mmuLVXUzLg0Wq2bqlJVWKf2g3oPGC5+wVEOdnaTj4EJeS68R2JruVcytgQpKQqESqXeJgMqkZLny/sd91eKr65HxmmSrIbWnJ+teXR5yZPHT2gWa9CWbAwhHEqgl/k//u//K37xxWt+9Gc/549//BPu93t2+x2u7VDOoZuG641QE2/vDtwf9lJ3adtSayFgVwpBrjFkbGNpXMu6NbzZTPwPP/2Cf//nn/F/+M/+53z36TkfPDrj7u4OnyTL4ZXYOJ1jyRgiwFA++nHzwzZFxa08q5gDPibGKZT3ZbKamILUnR32B6ZJsg9ON6W3U20pkefnP4N9wINaGU6ARSU0sJzh6vqGzz//kuw9n3/5JfebDfvNgPcjh3E4+k3HaVAx87m+SLbddDJf3gciT4D2LLa0As0xBdIgzYmzFgXX5XrNkxcfcvX5z4mf/ZK+2O+sapawjFcM5DBB8NDGk6v7K2Y0qkOojs/wLz1yKj65SI7X+9dKBDJMrQ/7Wzi+9UDF1gmoStF8paKUCaNkhI8OlS464Fl48KkUf2mUZGRmMmA9SrRawluZeJJmq781pZ4/aU0pRyBnpANwlTg0FkokOBfUKSV8fC3dymXbqDKClO8tV1HoADIvCm1nHiTFURD5N4YmDwb1G4OSbxj0fPL/9xeEXKZQ66SwPgq2kpK0IIdj3USJxi3VoBzrd3KBtxRgrGWYRu63B97c3NO5FtdKOr8a/wd644o5FW5whKTYjJ6fff6KX7265tXNFuXagnAZDBmVpAmhSke1jUgpdlMKZUuRfgpEH4AiRdgkeqvonOH5ec/F2Zrz1YqPnzzm4xePeH6xJk8HoaJECAqqclcNGjVCa4opC90oZZbOoO1JVHkyDFXEoQbj8+Os41XnyTcuWHViE97njoqBkSxXyT5S5Chr3EOe+1/Ud8kSS8fMZeYYuBQZ5Fyaldax0UrmvqpBD6frqASdWSgptb/QTI2Ugq6H95JBaYNWWRoSIs5HDe2skoxGiAdu7+74yc9+xvawlR4tPoI/0FvN0loWTgIgEzJh8vgcSMGTohGlywy5rswsgYHTEHpL75a0zjJNI36UwLGx0pk7ZQjjSNgPWOewjxNTI3S94KXDu4+RYR+kd8gUQUUaAG1pUp6fbZyi6EJoyV6suhZrDYc0spsiXom6Uiw8c3HGpX5nvWx5vOq57BrOW4tLEZ0zMUtQGrPQI2KCHCRgao3w6ykOhSbjjGHW3c9pXvc5JaaQ8CExjl7obSpD9KUxm9SvmZKBsFYLOJSKWltWpKhq+anIUhtD6YEtndKDZGnIScQXWkVQYg+MMaW+TM3Z0AzklEk2koM47slIplonQVKNyoAmhppN0bIGS1fmrhGAKkhEWRcZxgrQlVPG50gkk1OgbUTgoGst5FgoHpbWVtcmkQNkZcBYsoHeGc4WragNWsOia0itZGGcVqxaR2strbOgncyFlLg4P6dtGtrGMY4jANZaJu8J3jONE6RAyJGgovSkMWWP0ZaUNSErAdMQxb7WGcjynGMBQYzWNM5glahdhUYyXVZnGmcwzqCcwdHSKCUS1VY20eAnwjQR/CT7QVFgHIdxzsr2ncMZIe4qo7AqihRwzkzeM0wjSlnGaRTAYJjI0wKtFHd3d9zc3jAOB8gCTCxahzOGlEPp0p7L2B6BrXw0J2V/OmbnQwrSOZxUwDWL1pnGKDqnaYwRqlApsLd1T7EWZdzMgKgJj6OUbPVR7HvbszpxZGeX9MgSqHt8jWTmaaiLj1hsabXBOZd1A5iMydKlPiGNkEXcQGiDqMjF5QX9/h6U1JaonDAq8+hizeNH5zx5dA6ul0BFaUI0M71q2SxxxrJqOi7bhrd3d7y5v+dut2cKkSmKwqWfPIdBqIcpV2nfuoklqXMsFHltRLrXKmEb+Oy5GQ78+NU7VGN4+eIJT54uyVEK/pMuVLpcaNFKo5WZ2ST1YVefSq5BHu0UEiEJdXMu8tBpVi2cxkB8+5Z0v+Fqezv75KnUM2cl/sIMFJaf98KF9xIFRzaBDx7rLF3XkQMolbCjxRj9AGCu/tcp/SvPvl65qALE5zIPjr3tTvzEypaYJxiQMs5ZtDH88rMv0K/ekG/u+F7XlOAepCVCLPYrkIPsj4KHVj+13Ompc/INx/Gt1YE5+eUJoEr1LZD3Cu09kuLR5z7e50M10G/r+NYDlbo5iWRbGUpVaVTlKMXuqkTdFYLQFV0hH9+vjvxVgFkRK2dy4cqiFcqYmfKidZ4zJNI4KZM1OFuqJ4wUBOfSVUlQEvkuk7MU6FnHGLzwO0nil1a0pGYfToOTecGXxVjBg294RtXprM7ejKr/B4zwcenLv3J5dtZq6VGQMjEETElhpuPjrlRjUOIQVxslBXEZtMIZwzAmNruRz19dcbk+o7Hi6Gqj0dbMTvJ8RUoaDlqjGAK82+z56vrnfPnmjt0QWD2RbrdWUwKUQI6+LLijlGNMJbBAibMRAypI3YtRmjZnHrWWy2XD91+e88kHH/DiyVM+efqSRkc0ns31FWihcSSnSm+wNG9ItS9Izhkfo6TLFWirZ+Ssji+55O5U5c+WHbAG4/McOJ0H9aHy4PezyEMWs8eDZ3gMc+sHHmRP8sNwtb6UvyH8mQOUU3oEmtpzJRfnVrjJVgJ7I+siJ0HUc6yKXicRXr3HAjJUPnE2CSkc1cJvVlKc2DSGEALX99e8vrthnEaUUrRtSz5rOF80rM6WnPcdIVs2k2Y8jAQjm4bcYxkzZB6nBPebLdGPLJ1GP75A5cxmv4NJZKsXXUdAGguGcWT66h0WBT6Qn5wTrWIad+yGrUhV7zPbcWKMnpwmmpjBWrS20usmJvwgTeaUUTTW4npHlyI7H9iNnpBBWUVICpM0rhHaSd8Ynl+u+GC94lHb8shC8iMhRvaBUlcH1jkJVkJimAJt12CMkw7oOZByxjQtOZXANkapkUKyI+MYOEyRcfJgZUxD8EzTRIgRbaUpoLMGZxx1Q/ITqEoz1hLMaCVpfpUTpMhmu6ExmsZqTCl8Na4pYIc4gX3bYp0utUPHoDY2kTBFwhSISeELFWTyAa0zRmdyCEXJyYiTGyMxBNqSEYrZSIFxFgfR2OMzEK2JCNmz6Jes+pZ11+P9ILLbTkuQkRIhBBgjKIOylpA9OA3LnryQepZl6zBGy0SLgVXbYGqs7lyVjOTRo0c0Vpya/U5AmqbtmLxnnEZ2WxFJICaS8vLMlcIpQ1KamBXDlNBG9gFDnu/XOsPhMBTHT2q/nFZ0MWNby+Qsh1ZD59BO+oa0TUfvLGfnaxqjSDFgEKfXGkXnLH3b4WNiGkYO+x1KwaLrUL241hHQRBotdvAwTWwOB3yyIg3tA/v9wLAXCek3b99xv9kQY+Bs2dE0moVqcNaQg9A2IWFLpqxsyySO5qQ6djUQCBQ1pJwKAl961+hMZ6B1pf6kyBI3jSs0JE0s+5pSWahC1faV4CUrI1lFVRytKmgCc23k7Hzl/GCPFt9Ez1eutWVWgVJFySmnk+7ip45WGeMMNiuMMrSNxlrFo8sLFtfvABEZ0Vnk4p88OufZk0uePbpgyoaMIStDzLZQqhLKOC77p/ydFy/57Q9e8NXVFb969Zo//dnPeXt7z9ubO3aTZx8jISf6tpO6HnPc5yo1mAIEaivUYIfhrO84GM8mwx99+QbTd/zBD1u+8+FLiIG72xuiLjYMASQ0CqddGToJzOv+obQ6BhlZkZOai+w1kqHXJpSAUJOTY/ejP2UIkemL1xjXopQqVLuyZ9Z6NaVmCh8IiF0raOp2LTRDM9eRaK24vDhnvVoxroSGN07jrFyJ4sHeW8Hz42579FHnAKYAAALIV+64QmlTevPlE19SWEWuacgo/u2P/hR1uKU93PP7fcfBe8ZYmqdmCVSkwepECh6DoSCv9XIe4vvf5FueRm7feKiH/oSCXAIVYWaoOelQqX3yvL/9SOVbD1S6pikLXpF0nJ+FKQoFCQHEqkFJKRUkMdOWxoWiIiTqNagqe8eM1Od60jk/qwipFuOpomgkE2EcJ4nKi9jLlA0eI8hGSuSYyU6LwVQZq8G4onihgRCI6aTeQx0zCcINlPtW8/+PTinvTd3TiVsl6OZ5/x88uHn+o9a2iMKUxlkLWTNNIyp64XRrXdA5xVnXYVSU3iDasDsI/303BdTcPMjQtj05ZX78yy84W/Wk+IhnZwvGMHEYR5QxR1SmIDM6K6zreHtzx6ubyJgCfXfB2eJcsimAjgHCiA/S5C0EL6hoUbGIKOlevtnT2cyitfzWs8d01tFbx4vHPc/OF1wuOy66jtYq9PaONynRdYqmKQWfGDQidaxTkccs6ilGlQ67pXARmzBWHCVjRcpYZDDtnI2JFQKsqEP13ZU6jkgNqJUWtZOKytU3azUbKgFhanZExrDqGqX6njK3NMKpfxiiFmcQocjJjl8KC08piMgGkZ0ugQ0ijagUIMpg1mlcq+lsS/I7bt6NtNzT9462txy2AT/KuomlP8s4Trx5c4OzlrZpCaNwfcfDAZcjK2s4b3t8eMXoE9q2JJ3wwXN7c8fCnbOwBp0ScbclhIgfJkxCmsU1rThJIZERx1JpjXQ0hrSf+PzVFcPuwLJzrHrNo36FSpE3rw+ocWSlFR+tF/g//wXD7T2vf/wzwv/iDwlPzpnCjml3z24Y+WzjiUVMY9EYyc7GJNm8MZBD4dp3jqQ194cNLlqS1jS2xZmMUwHvE/hIDpGcMsYJOm6VJ/kdnokpOykWj4lh9CwXa5p1Q4yB++2Owzji0KXvCqKyFDIhRjbjgZwCkGispVMWqy0hptLEMOCcZEOM0sSsUVmEAXQCkxImedIQMFahrSK3Dp3EgVq1tvDJM41rRcFIJcJ0kKZ6JUPrfSSmQOMszsi6aZum0AMz42EQKknKKLQEW17c4HGaOEwjmUzrGhaNIw0DCinkNUlCXmc02U9iDzJF7aasgRiwWtE4zXKxIsSAD54Xjx9xtlxxsV4Rc0RbgylBCkkkSYcxSG+W/Z5xCiwXDS8eLTDGCVIdJRMTvWcaDvRty6LrWC2XUvSvNco1rM/OQYGfRhbGiPPpWnwUamnbtdjW4scRPwzoSoHRmt2YGCahMy67FmNKkar3UrDetSz7VoqTU2Z5vsZNHvf5a8z9jqA128sVN1c3pJDpdMdu1bJxhje3t/zWB8846zueP33EYjGxHz2LfuSJj6KWBEyTl+ajklyScY2J5EVfbeEyb199wdvXAj48vbzAGc3d1Ts8hinCZjdwu91ITRHn/J1HT4U6dLXDZktjFeerFf42c58Hhv1AbCAlxaKoXpEzPgjYop3FdQ6nNUZFcJGVNlxox+O+J4ZE9ANKZ6IPpKAJfhJhk2IbdAFnomvKPqsw2hbHXJP1iROaCriq9WzfMwJ2zjttBXdQJ+XLRXim/H5O9gGgRWWuZDxne12y5h6Zy0QRfbi9fsdue0+MgcatyN7j/cTm/o6t69jphgkrDJSkiHEiIEppwzThQ8b7TNCGvjX81icvuFz13NxueHN9x8+//Iq7w57bw14ks5OsS12k51OM5DyTjkk5ELPBo3AqYltN36x5e7vlv/vTX/GTT7/g//RP/zHfeXzBs0XHzc0NOYs9qhifV6p0khefo/q9OTP3CBOwVnw5rSEXADAp0AS0EkXYHHbkNMrrRWWyaBPL+vDS5LEK7Gh14PiFx30wxIBRisWi45NPPuJ3vvcdXj6+QFtNion97ZYfDTuub0sWpCqGvcd6qWGoVjXrUoOmh2yDysxRZd83zpBDmmtL9ElKcbvbc32/4yc//zXLVcvT3mBXDwFQqZECyVwFYvSYOSZWCAR9nIW/8Xjonj48KjBbf3earcmJ6D1hikxZ4SeRJ54bvP+GDM7f5Pj2O9PXYnMl/N/qQtmSIZlrSwqajTGStqOovGRBco0+oiDJmtnQAEXPWVDteXzisWerTJRSbGTdnGKMkjogJfUg0yUB0XHUVFkwRoucpNJaROSrucmn8fM3H/PvZxpOufD6+1N0Jn/zuY5Sh795wtUgf07slP/llHBOVG6cyhymUJAXgyaisxRnp3J+a+VZm/KTOV6X0nLfwxB5d7dl2bd88PyJcBKreong1GKUy0WlHGWRKoU1jRRqV7pXTqicpHtyCGXBHRsQysQRo9lpzVlnWHcNz85XtErTGMXaaToFNkUIIpQQyYQ0EZMlJoVVpVGZEqUeXbI9yhhUVmgrUoyUInmltBQilt42UrMjQexRPlrP8/AYoNbjJANYsyEnCJ0E2rmEHfNsrZNGDN7J5Hx4fjHm5sQkiuHiwVhJkKRQSc1N0Qrb4wQRkvvS1qCSImlBSyic2ylKL5kUPLvtyDB61H0m5kjTGc4eNWg0KSraKeGcxllD1zbcec9wvyP4kTZOHKzDLizbkDiESNwPhRpkWPcdZ33HwjmIiTBNxChF+YvGYYyg5Pud1B9MSaNyImcJLkGcHKUFOc4BFrT0gMqZKQfS7l5EH3Z71jtP3ke2fsPhzRWTisQOoWhlCQJiFlQoaUimFnlmCeqqVHSpj5tVxFKS+ZUrlVE2V6MVrdO0FlqtsGRiDEwKcuOEQ50VmlDWkjjRqqinmUaKty2KzlqhZhEYh4MgxEahS1ZEeuzUNL2idQ2NMVitBLlXkg0kSv1ZKn1vqoCgIeGMwSlpOieMQXHORGa0SH/OGv7y4UxiHAKxUEVyMZ5ZKQ77qXSUztL4sfxdAp1MYwxNY2lboU5ZYqEm5bm/lFYK1zkCSoRScsTHomBnxRFqnaXrW2K0+GA4Wy05W61Yr8+YUkCVLLkAWZEUPF2fGacB1zQMB6EQtW2HbXpKip3gPcFPjM6xWC7ou47FakkogYSyLbbpyt5WnFut5bXgQRuSVpxpLeeaJsnmZQHtbJfpQ6Q7THSLXvrhaM00HgCwXSuKcDmjUhanzwdsDJjbLVEpVO/IVpo3dte3hLHl0Fo2C1G5c86xXnYoM2KHER8ijaVIshpGJw5aJmNMoRAqRQgWnTOLVhz9lDJDCCWg0RII244GTbaOQ/D4EFCuZRMzefJ4k9EIxVBnjTOGtjOcnbc42+Kco+/tnIUwPtO2GmeFUlNVC8dxYNEapqbBWEulF82GcwbJSjaj7Lm57Pl1fxSVOFPUXFPxMdTRDyuvVSQ5l2Lsuu+f7LzCsEB8C8qeKcui2usj++Phh48gk1C3FKoISdQmvNJioWQk8xHAEuQaUsyEFAg5MSVRuvMhMfrMlKWoP6RA9B5rNGeLng+ePuZsXHIxHNhPke1+4O5+QwqxXMvJvYGAuUrWGUVcwGpD17bE4Pnqbs+//MlfcPXiCX/wnZc0WYC/Y8Y/Q8rEJEFHPMYpMwujfmUsrAPRWhARgYhG5TCDfkHatB8zZPW/Is07NwhVqjROVHN9jMRBqposaoYlJqHdSr8pJXVDqogyoIoc+dcGfw47eeBJnviS+fhd+qTGvU4NffKZmDJKg2scl8sVaE2IHkhMXvaSOq9zruC4KpleqXc6+hDqaJvrtR2H5JuPfHoH9aV8xN1nv6HIDiihyysje4m4RUJZrWUW3/bxrQcqTpfoUklxEMjfTdmQq0IAyKCqqrShNbXgKuZ4IlF3VO2amzkiQRA1+AGiqqoDCJpSHqZzhV2tIGgFPhH8STSvHwYCdZM3GqyGpCXbEIsaF1nPm/vp3D0NXNSJk18nSZ7TQLPZm1OUVR72r3LMBvfk/8fvpcITpJzonaNpNe2i4bO3d8L/dAqnEjrDOOmiggYuZWwW1MNpLR2UqYhCUT9L8PZmQ9e1/P3FEutEypVSJK6yxhRqSkYKxZS1WOtwTYc1otCiiJCCOAx+EtpGkbk73WTQ8nzWjeLJqufRouP52RqTApZIQyRPI1PyHEIgdx3oFksoBaoalKVq5Et/kSJJXehryoE2BnQGHVHaERJMoSjOZCUoNImMJmc9B4M1iPjaFqRg5i1DVWNg1uen9M2plvpBsCqGru53pjrCWc6p6vlO0tx14s5nqIYpFy6t0UjBZjrBfOSNWmmy0RKsEMgKfM7sp4kpTOgcOeylfmM/jVizYHFmaBaL4rw4YnSF6mdonePtOJCmA0MMNGhWTcvNSnMbEtsQGPYid7ruHE9XDc/OVqysQoWAHz0JQdG71rIEWgvbDZAyfiqOSAKlLWiDtszOTWcU58ayLAHhqBPhsIXtnrTPXO4TKlr8dGB49Y599vDyDK8yUZdajRLAewXBKKIRBDRH6b6cciyZqPqw5blLFiBicsTkUt/hFEsHnQn0NuMQ6eMpijPolKBfVgdykloCP4yonHBWitNbo2iAzrZkZYnK4/0W7TROWWzTorKW4u6yKRqlWbTt3MgvG03UxWGIIouakiIaLRtMylgCjTFCOwpVVSYVyfBJVNXabu59kFUqdU2w2x8kbNQaN3mUtWRtGaZJ+vSkLLTN+p62jLFrOFsvaFpH0zpSZ4tD7xnHYaaMLNYdIWvGmCENHMbAMI0419IaTd841otOpE+95Xy9YrVasVytMH4CbYSq5hpZB2HCaoX3E/1iwX4jne2t0bj+DNO0mKZj2Nwz+YlpHFkserq2pVv0+GEQZ8m26KYn5eKQl/szTStObulh1C2WUMUsRrF5IUZWCGA0TRPLxVK6q2vDuN+Sc0I7gy99CUyC6fqWnBI2eNT1hpjBnC1oH5+R1IS5e8V0cEx9w96sQWmatmN9fo5tBpr9Hn/YM5Y5bm2DnwwxlHpNJfRt29pC5VC0VgLhGCPb/Y62tThnWCwXdIs12IbOB6YQOAwDtu95PXqGFDjo0pPDGXKQjNti2fDixRqtHVZblq0tAUnG+0i/0DStqC96IjEGbu52tEvHctWDsZis0DHNHecpAWK1y3oGOmuBvEIoRHl+f6VmPKwvzQ8pM1Wt7BQsojhkKRdQqshla+ntMeOSHL22fGKcKz2MXOsHy7WRyFnU+GSf0PJfZUIoNftIISdijvgYmbzUpE0xM6bE/WFkmgaG4YCfJHvZNZYPnz3Bx8DoPTcHz+ura3bbHQc/lSBLz9uV3LuIByU8lHoTrTVnywX7ceL2buKf/7sf8+WHT1k0hj94+ZjWWXx5LvIsYyGenDjO+YRQVHwVH0TpUhcKflKaiCUFAW5i8HgfxFY6Jy0YZsxNxk8k+GXPc9aV+yg8E3Wkxcu+DikmdsPAbhhKP6dA8FK8T6EZZ0EgSrAwxx8iBjEDNUdfT35ynUqlGTPF960/lIyIKj1VJBhZOsv3PnjGarXEx4F2syX4EQIlqy/96eTcahZkoND1VDl/nX+qztsK/M7P/MFU/kuOUitUT1g+Y7SwTWzWeKKA+kryOOr0/N/i8a0HKmfrFbW/SSLPBkg0y5GxDaFsltJMbl7wuSJ3tZcoc7+IGmzUGgspOT1mVDSyoWljSoG0EbSu8PFDzky7e+LgOcSpKHIcUY1ZCaJEMBYlBehZySIqHBpVvuvBiFT0e05rqFL8USdIdWnFkKnTyV2O06zKsTDp68eJmf3mozqsWlLDnev4vY8/RGd4dbfji92AalsarbCFd47KpCiUN2UUCUvyglhlAznLBrZarri+3RFC5E9//injGOicEwQIjVJGKH4luBRLF9FR02gr9SEEYhjJKUiTwSCKWULFq8hBLgIT0sDxyfmaZ8ue88bit1uyyWAgaScdv7MSBFfLvEjTRECjosA4tjQiyl0nqJTS5BCIPnEYR3aHLTFOGJNJRjOFyHY/EmMu6m2KhEflwrE9ffqqojNQM4BUZG2eIprTUDYXB1AXGp6CB/r7R9REfmmoG9lsijDp4fkezJtqqPRx5olnH4WDXIrnhN5y3ECcbRimgdvtPfu4ZXlm+d2XH3G/CRzGwG7w9IsWbUxRasrSMDEIGU209T3vNoPQana+yHLe4eMrHvctzloaLYpGhECXFb2K9NrilMUtV0wxsB8HGAcaa1gtLenZirsh8+ZguL6VQvycE13fCO2n01x0irU1YDNJR5yxfNQtWX38kuZ6Q/fjXzOEAVpD89EnNNbh955ws2fbWO6T5jAZtvsdOUfSyrFqDMpKPVJ2Qo9plRa1usZJkEuQZpljJCvNagpsfeDdNrCfIj561s5w1jkerxekEIXClzJT9JJ9sUh3bKVwpkHrJEIYRigs5Mww7glGoyysVivGIGIEdzf3NEiwGUaPUQbnDDkInTIgtA4LGGuYVMIY5uBSinqhadZACcZiwGhwxrJoFLppUDicUuJIpUjTaVKjCdkwpWVpgKek8HWYiGlijBNVya7VivXZmkcX56zXS6Fixki7aLCNwzYWk8FPkzTNPBxmRb3V2RptW5RtCSkxDAd2u60EPtbSNA5TpJ2V0qzXK1wjtSdKU3qfqJmRmRBqqTINbW8wppOMXAw03QrjGrRrsGeSqQsxzCpCEQWuk4yKa8jaicMguIjQ3rRBNQaTEio1zMW3KqPOKq87F5ltyUpLxkca4i0uzmUPzYlYAIomw+df3nB4uyX+4i3rfcQtOs4XK84vz1HG4s4fceka/LLnDz56zosnT+hbkTdeNh2L9RmXl5cM44gPoRQq+7mnTU6lbtQUJDYlxmGSeaI1F+slqtGlL4pit9sw+si73Z40CbDx5u6Wn91tuA0Ti5WjXVicyby5vqG1hvPHPf/gH32f4MX+2BIExVil1sVkbTdb6d2UEoch8jZuySGze/YxF21PaxxTijOgOXelV2qmbymlMc5Se1lUepdSWoBNhK5ljJ73T04s/Iw35UwNSyAf+/coxdyyQIlIj/i2pe9Peb12YRebrgWsy1mAMC1U1r7r6NqWxhVFPoXUeZV9Jc8iPwmp8ChOeaGzayKqPI+cNSkZqZPyE8PkGX1pdKg0YxTboHTdo8o2UW5cWgQVkRuV8MmhrTASLJ6V0/SPHvH69oafvrln/B/+Nd/93/2v+XDZ05MYC41Ml0aX7x+1DKDS6Zqm1iHW9IPYIBSSDdXtHHxWUEAV4aW694UU5v5T0hOGOWio4wMUlTipibnb77nZ7fAxYZ3GKotpGqxrcaadqX/v+/pQg5Y6I+oKn3dl5qAsz1pdAgxXrQClUMaRklAv9/s9tzfX+GHLcNgQs9RC1ng3k+Z7IKtjG4KcEUftoW+Sy1V909OnBDTf+OsHvks9f71hVTI4Yg/aRtM2jtY5TAkA/zaOb1/1y0qjwJRzkWyVwTu9fskilH+c/EKhi3+f52IolRElF6oDnGbDUalBSilcBm1EmhAyRksxZqOMUDWKnF1Ftb/m7StKT4mS2jLSHVXoDseqAPm+gty8p0ZWA5VZe706rKeADceFU2tWTv/9mwKUk8v8ja+dgvJZKVIQtZjWGj54fIE2hi/vv2K3j+TG8uGTFRfLFms0UwiSOp4i76ah8EJVZbzJ6GhFQDFOgc++eitogbZHVaDqYGdxqJmfQyLHiaykliXHWIKTVLIpmVntqjwoY7T0zUiR4TAR2wacLZkuJT9KlJRcKQyuxYG2/mhd+PTHn6oQk4sIgzWWxjkxbDVzVmiF1jmMtUXeuVYKFH1+6rieDK46HZ1TK3A62U6FD47jPk+UAoXkmj5W6r3Pl5mlT8xiee7HOSSUAV13WcXswNWdqcolRx8KVTbNBdmoTN81WB1xraWbyjVpRdOYIo+qmEKRP650qJjwUVRaYsiEmAX0QQk3t3E4ZVARbBbwwuiSCSiIjDUOpURRSStJyXddw2LKeBKLpNlYI80gI0V9RNaR0dKszjgpTnVaMhF5eyDf77DDhO0MrBZ0Hz9lNUlt1OH2lrRYEbQlRFUkcjPGNAKGpMwUJnKQrJxkMHJR8AkoVZG8jDNC9fJJY8ombItd0kaaJ3atpdGavmnRdRNIkdqtO/ooWUxlJSiv+wO5iHogXdqniRAi1jVoK40eVZKKeMlcI+pkqhYRF3XFlDFK1JSqYoxstlI4LjWC0BR1qtZII0xrJahRWjKvy2XHGCKH0TO1pTFrVhx8kASlkuy4KTUtZ4uOx5dnPHvymH7RCaAwjDRdi3EW3VhpWmlabLPAtX1RfAssVhKoaNuinMFPI8v1kjiNZXortHKgigKUMbPwwlzLONNwxIbLXBcGgLHStyXHiHUOVQp/ldZoDHYGICQ3mzUoLcXrdU/S2pCNnalTZaE+xDXKOTOKmjlVutBltSEXR0SV/c8Um661KOc9/u7HHLRm++tXsBWxF7zHX91hGkfbtJw9uYCLc9Tz5/RtI2BfjBJY6Sw1NLbBlQxP04aZ1ljrJlPZ22RdGYyW/dAWqkFIiTglhnEiZo8zBtM4dNTch8A+BLZTREUrSm8a0B6ni5qUZRbxEPlljal0xJO2BFpptLUsFh0GsYshJ7I2aOsgIPdVA5Aq5kPdp9U8BqeqS9X2PjxO/JQKQJXFUZ3SeTArKDU7wMfz5pO94UgXLmssVweynJ/qCIs0rbMWZ4qSHRlUPtrXlErAVWnjRQ2To1qmqXujkTWntICGUrtWVbEym/2e3eHAVPoW1Ys8XpFQSUV2Pgu1JMqzFLyu7KkkGmNYL1c0bSfrOExzf5d6zjr3yccgpcZIZt6PmAPAjGSno5GHr5UqYIQmxSDCLRXAKwqVMcQZ8NMnDv5x/Z2On3yHPBfpQm+sPXlfLoBhfjAv8jySHP9832WrcyZXat8x+JV9Q64xnfzElDmMgVfvbrBWcX234aAtwRqytmVOVxt2jB3+p49vetd78/5r6+C996qHn1FaobIWBo3WWNdgm6YAmMX3+5aPvwXVL1H0ImWS90e0tyofodDKCK1HaVFfmVGHkuxUmca6eWX7HJmTibkWy8ujE5TLoNAYa6QLM1XVSRY/PsIkDc1y7TJ/MjY1XaiNgSRIt9UGZUTfvybsRI2Co/E5TRefoDmzdA4U/rdsSvlkYn9TYHJqOP9axfVKTnpclKXepxg3A3zvxWOWXcOf/Opz3m13mEXD95494wcfPWXROG42A19dH3h3d+Dd3W5OCkkdeM0QZLQRJ/FXn37J0ydP0drhrBSmqxRPpIqLXr0CcsRPe6CR+RGDjEWqHdMryFBT3RlnnTgyMXJ7t+VR4zizlnUrzpMtP40VWkFTjLw1giY3zojRb6yowlhD40SZRwtUJVeZYNH3UnynjXR/V6bIrnZlAVpMnaPZzCgO80Z1spgzR67sPI41w1QQJEQsoG5qYsBPDWj5y0nwkh/87jg/pJ6loixyGamIGcj3FaNf6lh0qvUyqcgMSqF4SknC8SwS4+dnC4Y0EVSmaRRoySzUIyNNwcIUORw8U0hlvmWRd0xS+O+sptGyNheLXjKVg8dmjTMabSzeB6YUMUrR2pbGGhrXSKbTGrpFRz8mEWTw0kvClyAlR0/0ELxB6x7jLKYxcg4U1ieGNzfENzdc7CfcszX6+Rr3nWecX2/Q9/fwxRUqKKLr8dESE1L30PQoIIbIMA4QBADpnBNaTBAamC4wkqiSFWUmpYTeGCOuWaClYyY+a867lnXrWFk7I2TGe1Tw5BCYTMJoaRyZjSLnSERoVkordMps93v240RKmaVrsa6h0xaddkQCKStAgk9dQJeZQquEyqhyJk1Fd0lpYtLCiSXTLwx9o2mtxpJYdEb6yOSEaxxN03JxfsH9Zsvd/b0EFEjLT0ZNLM1BTUoYK8XuTy/WvHj6iJcvn6O05rDbsQdpeOYc2lhSyLjG0hpD6z0peXIMtG2HMg3KdTR9R06eGEam7R0hBGKIaF2VuPTcO8oUBFkknzNK1+Cg1Jll2Ui0NWgsqgFta9PN4lLOcrUU+16KVUvgL4pcAm7FsjrEFOfZQa6LVUDKEgTkcm6K0EwuWdNCITJKgJaUE8oa7Krj5e//kOninDd/8Rmbd7dSUzVO7O7usI1l8eIJZ2cL3NNH2MeP8eMoYJDKZF3RbYN1ndiuIoghPT2EOSBNNiXYTSnROldwQUXTSKAYCyXB7A8YOzHlTPaBwXvebbeELH1qbMjkKRAR8CBFJXLMPkgNXAJtHRXSMkoaRFb30BqDdQbXO5gmjBKqTESRlCGpiFFSF5WNRpkStBSwU4KHo/1F67l7+akaaZ6N7DGQYAah6i/U0fYadfQFZgWwUjuoar2nPr6/Unhn71nel3ORB1dZKNLW0RhLUMd+Z6mAQClGalm+ZJAMtUG01A6IcF2jNdFIDZHWBqUCOUsGQZTWEtd3G+72OwY/0bhmfv5zrQ7HjIdSulCNI6rs1VowOxoijxZLfvuTj1itlzhnyX5ibtypTsOx04Ct5CD0kf5+VA8tO2CZhwqFNY6+bXBWE4NHV0GVQktPKRF86WdGLoHMcZzr8J5C5pkiCR8Tk/c4p+tKJKcoAVBOpc72+KHZzSpDWUHDes7KuIk5zQ2Sq/+kMlJPXeyCT0mazubMOAVut28J0bMdB7arBWHZkUwLwZR6pTzXzeTTp3riQnByfd94lCLYeY5/41HtHZB1qcctI6m1UO+0RhuHsQ7rGqn7PVVK/RaPbz1QSal2qRR0pi4oY2o30ePEBFH0UuU1tC4GW9DWWTp2mkoBK6KiU9OqGqwSpSFJBYLo7kdiKTLLNqGNpVss6A8HxjzANBag5YjEJDI+FMQHSTtapdE5Y5X0gojF4J1O9lTuUXzWkwL0mjEho6vSV1k8NSUniMVfMyj5puMB0FMMREaQiKywwAePznn5+ILFoufmfk+MgZVNfP7qTj5oHCmKRv2ykULsMYGf0olhkY0DFPsJ3t0dMGYU7f0YS9r2NJ5OReoRpmkkpSBzQek5SJGMkpoXTEpCdVn2PUorJj+xPRzYHQ4cGs3jxpVspCJnA06jnCCeVoskcmNERKAGMrpkUo6PufA5i3BDDEH2DSO9Z3xp+FdrbWaFoVIXpbQ+sVSn46fnJIipjhCKY/fP2nNGuMlCRalUt7pDKMysMViC2ZM5Mz/ZdFSMOxqVgricZHlqHUxIgdp8dS7QqoXR1agjm3vjOpZ5jVWeaBKoAYbAGKbyNUoQ6KjRUXp7W2NwXUu/WBCnII7IODH6IBub1iyMJvvIMBQgoxR/Tz7gskE3jvP1CqU1u8OIj2EOGJXaynNMAWsNjRNb0xjFotWcrXuUgugDMUNuHaoxcLbGPXsOo+Ltz95w2Rqihi9+/BMerS+5yIrz2HB7yGxDZGwUtnO0WmpmxAcpYXTNxiE2Bi1BnZn5yjD4SAiBm92efQilsDXD5BkjHIY9h8NCus0bQ1KKEANX19es246zrud7Hz1jHPdM08jmfi89IbRhigo1RqYUGMdBEEutGbxnz4GkLY2z3O8PHCZP2zr0osMaS4giVpGizBtRwtNovPSN0orGKmKRm+ysZeEcC2tI/oAJCTUFmkVLuzynW5+zvHyB5w3DENHTa/q2pesWPO4v5+USpjOca0Qyd7FisV4VZ1TU3BYrJfVOSkufAGfmAEBZJ2OeBX913ZJ2sWI/Dmy2A/e3N3z49LEobZE57A+yJjTEKMG3zwHbtKX2KIip1ApVUGFUdSQy1XqlVLqQG0ss2bIH6j8olDpSjlbnZ5Az0zQSD17WatYzTRmOgVG9wFzXbRHvSDGWIErWbQUavAbVWJL33H/2GdOnv8Z//iXDz/6MaXugffacF/+rf4J7vmZ8+4ZX/4//mpt3VzQff8Tz/+J/S5szVukiQGNnUKVWexojfWJyFEETVWoEjRaKkdaK7mxZRBoky2caaY7Z2JYpTKQU+RhNDpH7/Y63P/1zwtsr9octbXtGKk2dg4r4KIa6slSUlj1QG0ArVAZfQZQYyNFIT5dGYRCGxGE4sMURx0hQCW1MqQdzqFgoWKV7uS6Bylx4Mder1H8eaxEq1jRnxEqQW83sKYpdJViVKnSeYlsf7DGqFnsXkKjUN4qgUCGSGVBFJne5XLPoe9rGEVVCq4TW0DY9bdvhmhZiDa4UBBHdqEwUmyImaHInWZAYhAoWo8f7AR9lbxtDZHMYGHyY11ptbJhDqm7afGSS0LBSQulENJopeIYp8MPnl/zB9z/gv/hPf5eV8ULbTMe6T0XtlZKZBYTmJ6SraT0icZRIiCz21Qq46YwtDIGTZz2PSwm/tSKGCe9H6DrmbBonwSdqLpQPk2caBsZpFCAjH/veLBctZ8teGqwqeQaSPX3P98sCBtXlTAl8FJIBwjXElJj2B0RoKOKDyBAro6XWqGQzG9egrEWnwFIbPvzwJZ9cLBnv3wowNvue9ccc9/ScIFcGxSzn8xtihr+Ov6nqQxY/wWiGaeTqbsunu0CyLcM0sj3s2Q4DU5R98ds+vvVAZQ5SCsp0RC1muEJ4hHB8BlBUTZJIniZR9ampzJhS0dg+fkwXh04al4lRkfKzUjiVkAniPTpmtKk1EA9Bkop25OI0WWfnIm5nHSGWzaOg3jUqV9UQ5eOye+A8ntxzVZyYU6wPMAYeTP7/qeM0EHo/wKnAvkzcEjUrTWMsrRUn5u88f0R88pj9MPLpqzf84qtXbIeRpu1YOEHbu8bhvYzFsUZI7rtK6WWlGX1AhWPwJbFRccyLz1wd8FwWcJZkgtCDKi+63EfMgqortGyAuaB6KHzKTDGQssYkGQ9jRWlMpTyrCclYSgEmSqG9EcKWkkBEHo10U83pmFVIRVHDh0C0pZdAFmoTKpFrMbwqz7Y4p7P+frnvI2c1Hcf5gXE7MTaFt/ybKH+Vr3uSizv5HV/73Iwgnc6V+r6ZTpHm4KVuDkrpUttV0NtYaTEUJF6eUwjSGViUxXTpXQCLHjIG5xoWi47kJFAZrUaNU6HwSXCSoxRnZ/knU4h4I5xyjZK6pZQYRjF6OnqiU0xe6tqk+V1E1Z4Qpalf51xpOCndy4OOBCsKMebxBWkI7HpHr8FZxZOnl5zbBXo7sttHUvJMDnYx05lI24iynFVSI6SVntH6Oi900lhn0QVHN4W+olQihFiGXUnH9ZLB0Crx5fUGheFitcY2DRnDfW5JwRG8ot8MWBIqSa1dKA22stKYJJtTY53YrCyZglAK6VOpfWqspTUWh8IUUEAn4cUbXShcIYoqmXVYZ9gPnpAlK5ImUUwLDj54/JTWWawzZKuwXY9yLdm02HZFtzhjuV7T9wsWizVJN5AjOQfCOAlS7Fpst0S5lqiMUHyU0HeUMnOTP3P6d2MwWugeo4/4mBm3e15fXXF7f8vd7Q2TTyz7jlXX0btGejMhCkpir8pErhv3SRBf0CWx1dV25mN2v9rUrFSheRUloer3agvW8e52g1aKri2oYq58e47fc2qk572wCoeI2pvsaOIsZUJhD2icbiEl9rcbrn/2S+JXr2j3B4wz6L4hOYUyGpPB7Ea8deRxEhGNmB7Yn2IoTq5FPXj56LBX2fZc6IO6UHmkp1CVuXdkMgZjpL4ol8xSlXem7AE125qQdnW1jlH8q1o8XrMUmaqyKM2XNa6RzIDLqvS2KKCRktpIpU2hVhaUvva/0IX+N4Nhxz8VR7Cy+gUVOKwMjtN9O5PnR3nMotc/6v9PgqAT/yafvKCOBrxcrzxPW4QU5NQJUaGsPlWujsQxUDmZi6qI2gjwNhH9RC4CGDF4fKln8zHhYyw1wkAFeMu0zGq+tBmUzQqsSuIHJwh+ggwtie8+e8xHl+f0OjNNgwh0ZIdJeV5exTE4WQzq5P91HztOy5kZUkG9lCXLVva7lI/nOTpyQhc/9oI58dGYK8Tm16AA6rOfJNltRaIxmq5xtI0rfQHLdalKyX54B+p4k0X4RvRujdWQKrslzXk38rEGO5/cicmJwziQyHzy4Qf89m99l++f9ez/1a9LwXy50ffijG/2H9XJM/wPOOZJ+/XTCsAoNO+kMqMPHMaJcQpzkPZtH996oOK9B0owoSs3NBcUvDh21U4r+d/pgw4pElIsMnV6rpMoPqhkaMpmYgs6X9O3Wius0qQsNSU5wRg9qIhSAe+9UHvee5BHRy6SrZzPOkvXtkgLl90cBcyGqkyE02DhKJfInNqTN+tidBRH+/ZwF/urSBF/0/HeXkP91uokaa1pnRTBLqzh4skZl2eX3OxGfvXmlh9/fs2XV7e0i5ZPHq+5WLZcLDvGPBJS6RuSy3lnQw5ZG0YvWZSmKlEoCWBQqZh1NT8TXYoXE+LAhRBLsJKpQgUhRZoiIbo77AtAkMnKlK61ohuONmglsqtaHh4pBLKzgtTHQMilfgFwOeEKFSAXHX2RaZVamVR4pDEl6btTKCQxHR1jqRWovGAJIiRFzPxQVK4ljhmVTja4fDo6zFkSXdG9GnDkOqA8CGCq6syDTbKMcarBSA2KSzGqRtSdTtPplTN7vBAQ/q9BOVWEzzKkIttYyDwxBUKUzU5rg0Ykja0Rp8XZFoXGGkfXNQSvCUGUQYIGpsg0eYKPkm0JEWfE4R98YDKaqDUqQ5gmfIpsdlvGGMhaocc9h6Sl47oXCU+FgO+LvmXRW1rn0BVFj4HJBEyTMEphnz8BFJvHS5Ym0S1afvu3v4O+GxmmW27vPcM0cGgi25jRXWJhLItG06qMzRLIxYI+hmKklU50xpReCYi0r1VYK0F5bRAavCfkIhxiDb9+c8v9IfLBi4azs4amaZncJQHY+8T21S1PFw3r1rByHX7cMYUJlAXjAM2iWZC8n2u8YkxCF0lB6JDWsrBO1FhShOilHgbobCN87hixrUhKu7bh1e1bJuWIuuE6JJY6cNkl/u7vf0LfOqyBzbAju0aQQt1guxWri4RmR79c0y/PSdoR/UCcDoRhkCyqtuRmSXYtwTipn6Nw6NGFkpJL/yyxxdJsUuoufBrZ7AduNzv+/Fe/5ub+jrvtPV+8vePR+TnPH1/yg+98KDLZKnEY9rMNFGC1NLEzpuxJ8rtZm7lYThlie8yAUDKo4kpQfN8iw+zwuuEvPv2Utmn4zkcfsJDiC2Lp6VDOUNDkE5udsgiZkOZARWehPWsSIUsmMkVDrzrh0t9uePvTX5DfvOUlGrdcYBaOYdrCTSDd3NIMiXhucFYEChiOgM8JgsH8BPIpEHV8LmaufygwSQ3WjJvlsJWKswJcYw2tcfh0FH/IKYtNTBS1PKEzVWWnnAW0TLqqx4mLo5VQY7SRukNnDYu+IamMiyK77RqHNQ6QwmljLdbZMs6SDauHUmZ2U6uDfyyAp9juY1CiqrM+f74ERRxfO+65R4XG6gTPj1dVuwvHBoGze05F7ZSR+shaDymNImUPVUrhp0loTSkX9gfHMa3XkiM5BWKYGIcDfpiI00gKU8kyTKIOFhNTjCIHnCWzqur+UC47lekZZyAsixQtGa0zfoylPYDlhx+84KPLM8J+x5BG0DIWRKEfa8MM5lbBoqOvXfe+98RkONnTUixy/nqmsseTPbeyFRQS0OZYfAROxlOrY3AxB6KIkEUZX2OsAOOAcZa+behad8KMOBnyeR3XQGi+lRkMpNCd5VKKPHv9TM4z/VDWWrFR0TNsNyhr+L0f/oC//4e/w+92hl/8t/9vOi11jooSLBUOXp7X88PjeK3qG39f7+lr75//feKlVtt1+ialUcqCtoQEwxQZpkCI+SQo/faObz+jUhwlBUWSXBUJ4jq6ZXmVICRF2ZQqz7ca1JQRWThzjIffJ+LYovCVQiSVwmFtNKFIL2prcU4z+cDhcOAwjPjCDz4WSp2gHUpqUkJKhFKJWjt6ayVGNp1M2XnsTh34k0Cmaj19UzDx/tT4G9O/6plPriEWFHz0Y0GmDFMIXN3fEFLmP/rhx9gW3tzccbe55+nZAms0m/3Ifgr4kEtn4yjyww/uRWpEclZiJGfDLm5yNaIhn45XkbkMgcZolq2hXzbYUpDfdwuu77ZsDwPDsMeY2uBQSkpap7hoDZ2VmpRl39A6R2MtTWvoWkPTGZbLFudajBX1Dm2lM711Dm2tiC40DYTAZDXny45+azFaMUweekXbtJyv11jTCcKsxVjOPVTmUkB1nAAVgSIf12oWyoT89cRZUHWSwxElKx9J6cRRyrPDdYoIKlUKLmsETw1a0tyjBpeP30s1OrJGOfku+Y6EVZYpTjCB8xqfRDa1bRzWNizXZwxjwAfpJm60wWmD6URVRxe6XQyyGWkNVluiKUF6KX7NjKgMVmmWTUOjEM2aEBinkSlGDuNAyLkUAGsOCXY+cXMQZD2XeZWCJ02JaYg0RX523TvOugbnGnIM7MKE15H42x/x9t0Vu3HC/9Gf4a+3HO4OfDUeuF450qLl44uepUssncLmidY4miJtez+MAnYo6KzQjfx4oDGleFOBUYlGwXqx4H4aJCBXhpWzXC46/v5vf8yUfs2PP33Lf/9v/5zHFyvWy57Vqufl0ydcni1x3ZK3N2+4Gvd8/+kTnGlpWs0ubAhhL+DaBJ0qHeJjpEnSyUj7SdQOtaE3IE1KM+26wRbnTNBZcRraizO+3Ez86s09bwfH+tETVueXBNNx8/Yrrq6v+cHtHZ98/JJnTy4Z372bG6B6P+K6jn614NGHj6oYGPspg+3Rbkm3qjMvo9sllLUYhi05RLHxjaxhbQ19tyKnTPCeTz/9lPv7OzabOwIOn2CImc9v9tzsE9cHB9sN55uBZ7d33Nxe88Gzx3z3gxe0nSNFUVzLqpV1oxW5LFtZKmpem8y2S9bW8dDz9YM4irZp6PqON+9u+Pc/+WP++3/5r1gsF/zB7/8e//g//kP6pmXwfu7pWokqFTDQFfRCZE9rXwdzcikqRnTKmByJw4BuHU//7g85e/mIw68+5+3/918Q2gbbW1ze85N/9i/xb65ZK8WHf/8P6H/ru0KjCl4K6ZU4wEop2VOPTaCOKqTIHqiKfZ9BGXKB7XW5j4JsF9o2SDCiXXEWS1CnlcXZBgji9BpQTqMbQ/IyV3LUKGcL/14emFaZbLMAXlqy3w4YQyRFRbdYcrZ+xKJb4KOfAZ/TYCzrY9M7hZ5tpzSlU7PNVSXAyAVsqHvnMYstGWWVa4R1NPnzfOEoVjG3WagSw/P7jjZY6JdpBqOSSiKQMXmp2S3Z50o7r72VQgioVp/0N4qzvbcl64+F1AlFzikDsWHhYNUarvYTh8mznSZe3yWyEgpyZb9krfAZabw8jvSNnn2vYcgY19AtOvzhjtWy5ZPHF5wvHNYodlPCLtdSXK00Rol4iLamCCPJ866NYlNhz9Ru72Z+QgIwqpyPQiNI+YBII9qTPa2MUHnuKhtpKDtJbWBVOJsHbQb4jqPbGKltVXNwHUsvr8Bcn3MyL06PSrs6iUNLQFT9BF0UvcIRpKhvix5yFJZHCCTviX4gxZH16px/8o//EY/jgf3VK+I0kRuFwh4zXnOd/9GHmH8eXuTXL/yvdeSHf00ZayyrZceTrsF0KxbLBa5t+dWbO0afOBz83/A7v35864HKA8eKGhWXRJeSqDpWpKZMGEGp1Kz+JM+/PKBSw5AKQnOK+8znz0BJt4d8bNom3Pg6y/IsR3z0+Y70qerEVUUW7yNjycCY0meiACQUQGg+xFCV4AyY6TfVPs3IRN0RSqDzrQQn8iWnzM9MdeTktUQquuuCRuQggUdnNc8uVvStYXqy5qxzxBj59PUVdj/OxfBirPIJInK8bgnOjjzeejX5ZJzqGB2Nd+bDZ495fL5gtbLkQnG5PH/Ej3/5GdObke1OzmCUFAiuW8PlwnHZG7rG4ZwVPf+iktJ2lqYxgibPyl+KCoZKA1DmuSBc9KNGu8oJgyKWokNmB6LcQxIUQ9VujOphuClIB6f/KveuHtqOupEeH5b8+z2DMiuB5erkzCaRo9NzvB8yx/s7QcLm0KmqDFbEp3481f5AmVTki1OUJlsyr3WRlRZHIhhFTlJjYLSaA/lU53kCrQxGKYzOOC0doLM1AkooWaMdlCyfY+GEZqW0wueEL3S86gRppfEhMUyRg681YfKMVaHYaUrdk4pEHD5GmCbiLs/zUT++YLfbMwwD+c0WnTOx79Dfe8li1eEbi3KGVdvQWbAUznKW4kyNFPt21tA3DV1jsVbRtrLRjT5KkXpxsIRSnZmCJwRxLJZGsW4sC2e5P0wYN+Jj5jAM+NFzu1qQnz+iCYlWae4PBy4Xmq4RuVGMFtuWArlIyCqfWVhLZyxu2dEYW7pB59K4VomQgdZC4YkR14gTcZ81N28P/PzNlpvJ0A9XdNd7dH+O9p5GNfzizRXtqme57LC2kTybMhhn2O73HPYHIoG+belbaVqIMSQaquWd6xWV0LlwC5KOpBCZYiKHQMqeu7sD3geGceTL12/Ybjdsdjtolgwhs50if/7Za95tB673I33X8GTVkULCAklZtG355LIproKa15hSZZ5QGnaqSuulZOurcmNdczWnIItWayW9WNqO1+9u+OLLV3z51Vf46BmngTdv33B3d4ter2icY/S+OJInzgQV3Kl29WQJl+Wdqc6O7BfSXFShXUP3/DkqaxY/eA3O4i5XLF684PyTjwmrM7oYsR8/R1+ekaeqdFl8mNkJ59isVp3cozJULSWhuZxGMvI0qzGb8zCFjiQrMZNLxrxmsOSWy96X43x+rUV6NxV7lKqoRGb+XlUywDkGiA5yAWik4yTKWEonsNmWVpq2MrWrQ3nm1fCqeq/yHGY6fQ108jxdyrN6uIfVLLl68J6Tv822t9jDE/tfg9a5n5aWmgtV5qlzdm48mLMEP1YrVque1WrBsu9J1gp9LiWMrnTzRAqaYDWNVVgVGYyoHhI8loROAR80JitSkHpOrSRvo8p1pZjR2rBeLDi7POP5ZU/fNPSN46e/vuJuDNyXfidKiWiI1BjJ/VbhDrH9Qs+bg/6Siqy7Us3azEyCk2c5JxvSyfMqjIowA+H1LFBXkti2NAv1VNrgadbwdLwqu0XVuVvGTSE1S1K7Vt6Rj98Ekimcsw5Ko1SaHfn6TqHXHZXI1DwfaxNHyaamIqIS/ETbOs7WPZ0xXH/1jvjZ5yL9q0uGU2vmViqz7/vepH0/JfiXHQ9s08NxqGtqnvu57IXlWde1pkv2yBS65V+nlOGvevwtBCrvHdU5ynGWL9NKFlgqBUJi1AwxTg8ClcoflDgkzw+1OoSZUkCEPMREJMTMFIR7mJVCle+Z08316ZfCPZUf1gkIvxbGyWP0IMo1VqPDcVJXRbETV/REb7sEXlBSmpw4j7Vw/GFh9F/n+Kbg5pjSFEWfo4ShvBbJ+BSZSm2ASWVhpsDZomG5aDg7W9PozG6/5939RpBaXQOwoopW0O1MLT4s96UM1WioPIeDPDThEkCioFHww+9+wA++85LVIjMMHtB8+OID7rd3vLu5xkfpGOu04qzRPFk4PjxreLEyNF2LbRzKOOFGGyv0FWuwVtNoNV+79IkRtDsRxXlMYAKEcZRiumFHLuIJGSlwT0FUrZJ2ZBSRhFFluqmjqIJsRSV3Nm/ueXZGOHkOdexOjWLdGbNMnnlWZKUkwD9Bjupaml/J1fSdeDjkWWaUOTQXueCUOKacCyyTqqQ0ELPGJ6EJVJTNaiepZqSmyJJFacWY0mBNFVWaqq6i0dphtKB8jdHobNDZlcZionevjKPRmrO2Ye1sCVQSPstcrY6UKpveOHkOU2DvM43VWAWKKm8qRe1C+cuMNrAfpW9I2u9ou1ayq88uubq6ww+R3es9Zx8+or1cs/zwCY+Dp/MTi82G9arHaU0Y91LsWQJUi/Cg14sFZ4uOvnFYp2j7DhRc395JjUFO5JNgZZhGJhMJk8aGgTMH551jiIrdFAlp4vZ2xxdfvKZzFvV7v83Hj1r6vuFqt+GsXdCqhsa16LYFbWi4Qyuph8kG1l3Lsut5tD7HGAsaDuNB5LqtYb1aY8uY6ZRYrReY1vHvPn3HV9tX/OizW7a5JQ6vyH5kdfmMD1885vmTM/74V1/QNYbz1vHs8RNC0qSksV3Hu69e8ctf/oqru4EPXjzj4w9e8MnTFcYoAoYxFYekrEWXMippGrfGa09kYr/dcRgGDvs9767esS/iGZv9lskHxhBhYdlMkavNgX/1k5/z5m7H9Xbkww8+YPNoLX3PfGI7Zu73nie/+xGLtsFoQ6XgSV2jIVa6FbkY6iOwUD2S4/4/RzFCL2oaXN/z01/8ez79/HM+/+JLukWL1pq3797w+tUrbH7GyxdPRdL6xEWS1WrKei+BeIFIU0izeF8CLLLpJ1K5Xllb3fqMxjVc/MME1uKWPeuPnrPoLgn7LSFs0U+fEl0L4ySAC/PNANJTbM4AqELXJaNLp+ni8Z9khUujW1X3vmJndCaJ7jBC34tFtEOCOm0V6IgigkqorEuWKINRJCe1adFL7VueFdD0/NxTCASlyKERG6etqH2VECWVTwgYSmE/CJ2Kcp58siNVx6uOi/T6OMEUiy+pjzdflLxkZFSuwW4NcOvYVhscmSPf06NmT8qfqjh4ILVtGkXXdaXI2pBywCihvT26POfR5TkX52eMWYkqW4oEG2aPPkaR8Y7RMTWaYWzYuxETRloVaZImeIWNiqQzrckMGqEmKS2ZhBxpu4YXjy/4vY9f8nvfecyT8xVPztf83/+7H/Gnn73hq0+/oj+lXSn5qT6RUbVFgIE6RvPSyiIsUoPTeMyozNmOMo6kIqesCy07Jg7jhPehAKhHOJQS6mkNKYiKXY5HWfRaW1y2zHns6zUrRKGrcj+0tiTFXEdybO59XMc1TJEMZWlyXmXVkHou70XdVPzPI0IpoEFApUyIkHwg+cDkJ9aPljx+dIbf7/j1T39B9/Of8o/6xQwo6iLAVvkdc3at3qGuQf5JXbg6/vqvfpyGdQ8DIimHEn8ghFAK/UX44Zt6BH4bx99OH5Wy2lOqoV9GWUE4CjAtGYosEbDRBmcdOcomrzlmViCLSpQ6plNnZDgiGvQqY7QVxEsr9tM4ZzYOIRBiFCnEnI9RYkXWi7GJMTCOo3S41g3KWFlMUAIscdK1UVgnEzzG4nwqBWWBqiyyzHMne4UgCzr9pRmU/9AaFTmORlUlpNagOK51ysQkxk1lobAN3vPrd7f8N//mj3h9u6FdX/L07JxV5zhvEq2xLLvMLoRSrF4CPyVGoug2F6MOSR8zXipnDBJ51wyMz1Gk+FLhJBtH1yxoVSJpodxtQ2SshX/aEVOiU/D3zpd8/6zjk2WDVrIRZLRkU1wjko5tI06Y1kdEBuY5JCheeU4pE30ppNOqFGJKqjojmZ9YAi9dxiTOgah8vtK75PzCNa8IAwWhmQPr44U8GLJKX6o/dXIew9jynfOHy6acYwkIVR3c+bR1Yz7OCbkLpQvnOZ28jMIWxEshMrw5JSl4zxLggDhOPiem4AUxQ4Qn3s+spZQJQdK+KR5V3VKWFHouEpsxJ4zTmMaQNfgcIIqWfPCiaR8BbVsSiu1u4nAYiVNm2Vh8FGQtpojVLV3TsOoX5MlDShymgc5arFKsskgFK6vJC8f3+47cDKSwQV00dB+t+eAHH9F//oarm8jWB/a7g2xiwdOvelprcIDrWhrnePn8OSpMKDJN41j0K5JS7DYDTmUMCe0jTRhYp8DlRcejZcfloiUOI5eN4cNVw2M7YUyDbjTaLVEhkUPiX/3xX/DVy0tePl3xd797Qe4Nzarhd7/zB9imJyvF3d2vCOOBWNZn0y5om57V+RN014Ex7A474f5rhbNGnDKluTj7/1P3H82WZWl6JvYstfdRV/i917WHhxYZGRmpMyursgRQiUI1Ci2AbrKJNutuo/WMxgkHNP4CjjjlL+gmaEZOGiQNgtUsiEoUSqRWoSPcw7X7db/6iL33Ehx8a+19PDKygCoEBjhhHn79HrXFWp983/ebcXA8596jI/6nf/Ez3rlzyKOTJYtumfeD5eDgHo/nT5jcrpmpiImGbVdz5cJljHMY7RhfPE917zbN0RP+r//jP+PFV1/mi196g++8cYXLuzvsbW0TY8LWY5Sx/OBnb/Hx3Ufce/iEN197GUi0Xcfx2Znw1WKiazq66Omi52i+5LTxHC873r9zg+NFw+myxWuDqsbsnZ+SVivu3Flx69Yj6ollwyV2R/Ds+f+c569d4dL5CyznZxIUkQjayg5T0nEaVPVUvydCrrNLbNrla2iZTLd4cnzGX/z0J7z98WOeHLc88SO+/9OfsrU55etfeJ02KXzKIXR8msguQVkeuNrTyiUV6ehIUWe4lcKnrESIoUoVOhpiijRHh2it2H7pWUw9RSlJ0EfXLpO6hu7okBapmguZfDgv6WyJjYlFWzCvj4R02lL5pSowKUBFUhj6Kin7NKyDPBQ3BS/HH0XJSTrVDaFbUdeaytlMTiYHuIW8DCF2MrgRGSyqFbkqL+IUoGhjxMeYk3M5lxA9y2aFzUG/tqKiF1Xm2qk8iFhnoY5s0UrRUxdYuSp+d6gGJ6XWuBX0BSiSYt2EFgXIYuOTKsUjKZKmOMzRKGuqSJLH/D+vJBladR1t8IQsR52UICGeHB8xqcaM6xneuNwZFF8r09RbOt8Jab5d0bYdbdexbETeXyvNeDRmR1kqu8KQuDiqSF3DadvRjcYCq2w7zm85vvzSc/y3f/C32JsopttTZhd32LvyHP/0T77PT/7vN1gF6KLMWuq6lqbV6KAJek7lKqhqkpUCdMpS4SXzjTlrKektZf9lNE0IosJZhn6nIkoSs9cv4VZBw6RSkM3dt+z9jJYkz2YVQ9nMxZ8O79fGCGy3HJPK/NUcZ4ZYBA8GX5dTUhk8mZLMalOyq2JRC0qJtm1RSYZZD+Mr5P7HToJ9ZTSzaYWjJgXHbHuDqXb80T/7X7h8/y7Xz46o98b4tsl0BFlbWmUBqj54UE+7/KdWXDnqv8ZDFeyCnHVSop64XAVOlh3Bw3wx5/j0TODaGXL3WT8+80SlJBHrFyZBnkmX+pvcVxfIykreUzTIC42vz2BVUVvIdyWlXLWRjNkYg7WO0suTYDUT1bSWTFeJzKGKaXAiebMbIxWj6EzvWAbcY1ZeWktshsUBpU4mFRIl2FKtiHmmQkqgC5eD9cX+1++qPH2901OBsKJkvam/H70qkPdCciNLFwKj8Ri7aDk+OaPWBpPG7E0mVFWkTkIMVl1R33r6DPqbWf5aq0bKvRocr9V5YyHX5vaDRxAClUtZYQyq+0+4++iIZePRMTC2wkm5vl2xMzFMKo1zwjHReQiZOLPMI9I6k98GQ0MPXyvHnGANGysk3tzlyFWWp3v1ZS2XOkzGK3/KxpdX6Pxl6xWJT7txw72iXwnD/hje9invV3Jt+1yotHrLYUlJan1RiEEvz/UBVFk7sp9kzlDIqmASQvkQ8TFDDErdUGmMkWAvJoUMWS7KPpCiED9jGqQpiyyuQslsBKMxRmGMQAjKhAfBLqcs4CAVU1/mvaQM1UgqB935s7SC4NFJsM61MUxqx9gYpspgNiZoJ7NE/LLBny1Y+I5qVDGeTdkcTThwFU4b4UesZJr6qNiLLCphNDidMFGkXFGgVWnLk+e6yNrdqA1qWtHVhlE9YnMyYmNcM60sz17coRpNePb8HfabyLITHpAyAgXxreJo0aIOF5ybOvaqDS6dq9ncOw9KEnjPOcJqJAMbY8TaEcaN0PUEVdVgDFUJmrJjlxlFmuhG3D894K27B3zw6IzHi442yTkmLTMpFIam9XSrwCIElm1EW4d2hkXjOWtWNPuO2lieuXKJyxd2ma8afvbBDfZGgbNFS9dFLuyew1WGaAx39w/5+Ud3eOfGXaqNKUYrOu85OVsQEaGCLk/QXjUtj0/mLLvI3CcO5h2rVtYiVq651QodOzoSy5A4OThBbdRc3NxkvDGjmozB6L7TuV6o6o24Wt/j2U6rAvCQFW+sox5POTydc+fhY965eYfbB6fsH55y9+ETHs07vPHsn85pY5bT6It0w3f11vET3c6SOA2o2hyZIQWwpDQx27Xl3X2ZHTSbMto9DyiaoxM0HSp0qMWCONuAegR1hQpx8Mm5ct0rVhUz13vmdRuzfuhqMGtrAZ98FpLI5C5NTyYX0aoMA80DI5UUMUMOOteauf21CSkJx07J0EKdEWchUkBeEsgGD9GhnzqP8mEC6+2nePcFJHmucIRUDkwSCH+pvKYPrHPsUexzjkHE5g7iOE/Nr9DDoOoBVjMsO7lsakhu1uKAIuqS+usvNrTzwl3xMRBVnolUjjXfH10StD5IlDjHGeFuKBRV5xkbRag0l7cnxKQ4WXrmvsOnRNQyI6ztOk7PzvDLQL1aMWo9Dw5POV40IqNrDGNnmNUOFXNxy+hiaPpAtVyn/p5kf6DI1yzHf+uIFtbWolxfnZMRnYdw619aq+uck3U1VJ1ll0ssWK5VWTI5QpHrv7YWy7ruhW74xCPx1HErLcep1hdCORY0SZUO7tr9z5+jgel4xLSuGDmB45Lg7q07bDZzpIsynFO/mNRQWnkqSUlDUDbAWP8taUp/v9Zf9SkJTr/3JR7wXoqRoSTj/17F9r/88R9kjsq6Zvbwe6nmJFKv5hRTACVzBAg+Y1oFR53zEXJEB+RG7tomKAMe67rG2Uoy8ijzDlJuj1lnRdYzGXQK6BB6oZcCXRIFEY21hf4uGbCxWorlvpNsvU9WioJL6hd0IZprozDZmMVsIE0+Hsqnr12bgun7d+m2fPr1DqgowfpTi6sEnwm8F9ndVkNqRa7ZJ5g4xwvPXme8ccxbH9zEqYjTicloRBsVHZqqiuhV1xuaNbPNACeg3yAJckUCFHlaQ3Y6Romy17KFn737EW+99yHRJoQqqUlehnvGFHExcrGuuLppeeVCxfmJYewUrpqirEZbLdOQs2PQCBZfG913OnKeUkwRKYqsrYriXWKWwo0p9k5CmzLdmEHyWEnQLuekBgeYhgpjjxfNFcnBL6b+577DUuxKWdqfuL9PvTf1YMX+DUM9Ld9ndA8bKVGCnOuwHPqkK8Pa+kAp5WpWlGp+Sp6SusUQaUNH5xUx5qApJ9zGZLhmRDhheTq897GX6c45ISEkuk5IokYr6qrC9lPPYeRkz4SQ5LsSdKUrmxBHUxZaTPn6CgDDGYGBxbahSpqRMWyNanamY8aVY+QqzPYErRTVyYKTwxMWT47pYsfGZMJsusmGGVNbmawbQiS2HUZBtTFGFalLo7EaTAr45gyZ3q5R1FKZR0io0bfY5Lk4rTk/FvM6co7JaMSoduzMJmzuXODZDv7i/fv8mw/ucXA4p6ryJHWjGE0mnDWB5eMz4rLh6mzM85fHzC6cZ7XyhKbDsYutVijfoaMH5UjG4U2NElo9tprSe+Ak3W5jDKuoef/BEX/2/l0+Omxp2khUilGlCMoQlMVYaJcty1XL2bIBLJubm+iR4/T4kPsPDtH7T7i8M+PNN17nO79xnz95+0N++Na7JN/w+GjOctVw9eIO9cjQaM3tR0/4yUd3+bNffMT2lV0qJ13rs0WLMgZjnXzf2ZKTkzkPnpwQMCTjsPUIW1dsjDVtJJNtA8ZBMBqM4uzJnKvbM65fu86lyxfY2JwSknQJSkGih330/89coiKyghocfLbLtqqZbJ/jpz98h3c+us1P3/+Y/Rbu7x/wzocfE5QmtZGbD5+wCkH6q1kGXBV72PvxHMX3wZnYFWOloytLPNsapcAYUcQzBm3h9MZt2qND3MSx+fILKKVZ3HlAPDvCBM/EaNzLr6DP7aKmm4Wx3u9/8V09M0P8Wu6YE2OfmMTecGRq8PCWwUApkTrJO1UQDUYGKqqk0MngTNWrc4Lw1Eig9GB3S9dHimqFg1B8t3yfz4WvpBRt1xB9B64SnkQpLqXUy8emGNBZHakknyWg05mrVeDnMSYpaBm9Vvkur8+dlRz/pRI3kFEL60lS4eVQEpMhCS7qUOvcUeEcDECimPlEqOxHUyKkmLvHeTK9SsMMGpWVTq1BE7Iao8xMilHEbnRtCVrRJk+nIsqAqTUvXNjGGMPRYsXJ4ZIODVVFGxIPD474yVvv4kODcRY3mnDnyYK3b94nxcwXHVXsTEfozLPQZuApyOy09Qwy7604JHUpr/O+g1USRkUvWmBK10PlGTrWymT6uOYPyHsoJ+Far0PqMkwxRUpKcgWEzgABAABJREFU0q9fNfxGJ7KYgiEpiCqRcUy9HRgeORhH9TFhKVKntLZJlNhbwdYNUO8+7utXOWxMJ+xtb3J+Z5vjk1OOj064f+cuL2yOMLOK3u8/lZwOx9L/8leEib8qflTlWnz6u57+SZcktDQCcoKS74UuyZpSrF+Gz+rxmScqitImK9j9cp9VD9/yfRjJU1muNjKCrJCZEjFrNoeBYIfqq0POWuq6ZnNzk7OzU7pOFIkEFxizVrtUQbQ1dMuGLssTG2sF4tMGJuMJxEDbLDmen2aSsOiaQxn8l3oj1+t+54qL0oDOeE2QKoLOBZhPXqC/NLX9qz1ijLStp1IWpQxOOSJ54I6T4/QxMl80tIslVXAYEj5IQmdQ/MFvfYuNnR26GJlUhsVizk9+9hZnH94mrFrG4xo9X0InyGlFUYL5xH3PEoBigOSemuzgap3YqjVOO1KyHM49MXl8CswJGVOqcEGxPVJMK8e1jYoXzk24tOG4MAJrIi2RyhkxzCYH67niUXCsoDCV7R1XDL7HccYQ0KFMrTZ0vqVpl6y6Bh9jJsWZ3JlREAPJdyQiSqe8UTPJpa+WrVXtSBIUPHW/hyvVE81yZWl9C/SJSCJzQuSfxZGKNGV+tcq48jRUdfqvy5jY6L04tRwMpZjouiIT3Mh16tdyhih0npACXnWkkXjmmBInZ2f4AAk7mFelsLYiROh8Yrn0ucIi1zHFJIlH1lYPPuKznK4BCB482GTZHk8ZWYfGcDRvOJwveHR4ymwkxYiJTmyOHEonzjw0Qebw6K7Bb9bYqub8dMxUW8bOsTObsrU5xtUV1DV2UsPJnPDuXdLdfaqUeOVvf4uNr3yR0e4OBJkJ1DUrxl3L5rSmcgZlYVo76toxG49YzecYrdk+twPGknKRxYwmOGPY3d1jttGSUmQ8mQgUEcFNW+ew1jGZTNnY2WYjan7ra1/gwycL7h6coYVAJLmuAZU0wUfe+eARr13c5vmLc0JsaYk0KhGqHZRpIYhajHSPDaqq+zkkOs+jIiVChNF0inGWv/jhj/nBOx/yixt3BJagRPBg0bU0TUPTBpJOhNUSmyL/ya9/ja+9+RrPPfcsuhpxsmz56O4j/uEf/glvvvYSX3vjNX7/93+Xeu8C3v6AP/6zHzFWkS+8cEWmvCMwmNdeepa37xxgPnjAn7/7UCrmJFat76tyEdV3xuxogtMWZW1fMQ0pUgVPYRs+XrS0XUuKnv/Vd77Ob33p8/z+t77Kha0qB3+RqppRywZktVwNsNwyd0MpCDHDNWV2FHnPzTZ3WHaedz74mO/+8Od8/OiAu6cNb318i2UXqDe26YJnsVzx7rsfsFp8GxXFN61MIRKb3JHIila+FKyMVPJL4KtFFVEgIUOwZ6zGjSvGW2Me7R+RPr6DtxF18QLeGB7fucf49gP8k0Peu3OPZ/7rEVtvTNi5NsUfC15fjEPM0JvUB+BSqMhzz8hFC3LAXFRjStBWAhWlettACFCSgiTzq1rfCfyo6VicrWisqDYuFlDVFucM44nrCygF8pOC2D6vJMhsO0n6EqAbhSMRbUVolzSLU6zvwIkt11pnmJHMVJF5R1mNcq1YVTg5SvB8CPcypx4h70Fp+cjhqSEAVBnGJDzNHFinwQelJGC+ojZVxjOUoLYE7qVSXz5X6yzSUVcyr0hrVOowCZyWeUsb0ymT0QiPyQG5nJeOEA1EbTFWUzmHtQZfV0zHY5rVktB2+KpjXGli9IQ4pfEt56aO3c0J9Vsf8WjesN+0PD7x/NnP3+NHP/k5jc5d8lzXqqzm4tjy+uVzXD+/zfMX9tiZbTKZjJhNJ7jJGGsc1lS4LAPec8CU+Mo86U4K1ZnPpMjd6HJtynVKoPOoCZM0k/GYqpLJPSGudSNzsifuU7ppvmuxBionxRmPJEaG3KHJ32uUKNKWJLInHJSibPH5JckZnHkPG+s6j9B0g3S2so901pGivC+EVSajFxeu8nA3hbGOqhqxubFF1wZWVcN4JIN6+3Xbf2+/FaVEULqjeU/LC7TcsPUC39pxD8FCH8TyKx9PFaPlL+sck7FhMybSeMTIgTWJqq7QZvVZhrj947NPVLLShySjwyWWaknG2KVsOPKkZ7VWmSgyhUoNAVHqb4YsmlLpFqnNwKpZ0TRN33521qKTQJVijKSMow25Dd7DgTI0bL1lpbOUck+0yspGxaGlfiOV8LI4GZnWHVMCP/z+6U7J0wvi37tFpoQ/08/jUMPvBWIlsK8QMqnL5I4WmUwfEqv5nGpUM55NqZ2hs0YqYrk65vLsgJSEYPhLGyc/0toP+Y6LAUbkWrdry9gqqYT6DmMcKMtZEGw2UVNpw7RWTGvN9Znj0oZja2yyukghcwZSn8j2vi4PZiw7OIs0qITGSKKRSqenbE7hU3RdKxWofsNKsFIm1ht8TrDz/cot14KhLVejP//1C1McWFyriKSBULn+ljIPRbbN8JxU/VIv392/JxNgUyoVk5zk5CqHQK0CZZBlzLyckJMFpbKSXv+8JDchBYLq8gyaQIihb9n3Q6uU3A+ZaQJd7qKUSfMFCrKe0A/rI/WKXs5oZqOKWe0YO4fTjhBgsWoJTcCOFLXRVLWmSZ5VFwhtw6qRRMVGmZZsFYyMZqwVtU7E0BKCwUSNtWOZlzNfsbqzj1q12NphNMTMdRlPJsRmBadnTH3H3sY5xtMRPkU2ZhvUdc1kPObMWpSCerqBdiMSiqZt0G6MMYbZxja1l8nk1ajOw0sV0Ue0rUSrvxphbIUJAUMUR6kMfdSDXFsfoItS2HGVYTyqSF6Su9JVQmmR7DRV7gLqrKyT18KahLbAWxNN03Lj/j53nxzz+HTBculp8yyhsTXsbowZu4rZrEaFjrHVfPuLL/Lc5V1qZwldYlyPObe9yf7RKb/4+AGNGbO7u83e9gbfeuNlqtDxxkvPcXF3Fx8UqU1EpXn+8gWeu7jDpa0Jj48XuMoyqizBx0wQThLUK51VobL4iqbHtqMgJBko2nmPMZZnzu/x7IVzfOc3v8rr1y+zM3O89e5H+CiSqlubm4zqinHtcM6ho3AWxbfkfZbtSCF0a22w2hDQHJ8t+ejWPe49OeLR4SlPjs9ouyAKd1bTzVeMnOKZixe4uLPDxmSK77q+Oq606SvxiiiZaBT71MtOpUTSAtHRmL4AopQhdC2kgIor9HKFWTWEsCKcnKG3ZmxfOk96dICqKzbP71FvTGWQaMidlGKU1qrXiiGI7unmvVR5XotRjj/JgeQ/Qex1Igf2QqRNRELQhOAJwffVfq0HHH0qS9RIR1YlTdKJ1vvejsWcXAYiJgHGkJSWeVYkggp9ESl2oqbnnEheJ6VFAjmpNTkvqZxLECr+J/Vt8FJQHVD4/T2TK5G3zxBoCxxE95dUTqzAJYbA75dGSfQQctUnxKoU2bRAk4LvBNaWydcaZDBrEjicJNFmbX+vQZ6yXUYL0kAjIiMEJ/L+gMITQsKHCDGyWWuubta8emGT2ckSc7zkqNP4LrDoAp3OxxkiW5VjY6TZ3ay5OBuxM66ZOJH0131iMaBpYlaNlNZciRgK/Cn7v1Q8p+rPofhtifXo+USDKFH2P3k5fpJmkD+dEDq0kaTNOYdvZT8mvXafy7JG9V0REUlSQwFwPbHIn16Ot3BeQwgiUJGCJKdp+H0qCpZr7y9xbWbp4IMUj2OUxFhp3RP0nz63Hnw97MlPvCRRIGG/Ol1YPxP5oSRkarARaz8PoW6CKHOLJmPDtjGEumbZKCJeJOa17rvTn+XjP0iiIjecYY5KNjQqKSHMK6nmamOw1mbMqKbrxMn3WGKVh9FBUUFEKwsE4Q9rRdO2rJqGrmlxlWM0GjEa1f2QyNZ3hOSJbddPQdc6Z71aYYwlhI4S9lbOSaKTk+hicAV7WoCMOWBXA6FJG0VVCXSkbQYHMZC/5H2wbs8Ga1YkY/9tycv6BtNKUbkKY0XqUaoL5I2mRI44SJUrdp6oZfq7qmwmRQVufPgR7v4Ddi9dYGM2oula5osFSoOrHC6IiZMkkIxDhrh2PusHpsjGVWVpYTwjDRcmEzadQqeIC5GtyYjKWRZNg1EykbceOcZOMbaKiyNNZcndrSoPa1NAi+CclVQds1OIJUBGEVIr0pVaY9WAKV7LuEgEuralaWU2RiHWi1xm1q3vGnTSoCxRJ6nA5QBCeBRryUb2xmVPyyXJE9nXNzxQFLnWO7KxDIQqLnPNTsSi/qWGxaPLIsjfk9YMa/nKGP0gXxmEJK9SFIIh5KQrZqdSMoocNHqPV50odCnNsCyLoVZ4LxOOuy4S45q6zjo8a2j8EFUxzB1G10xqx+7WjO2xY2wNI1vho+JkviK0gdpoNuqK2dTRhBXzZaBbLVkswcfERIv2j9OJsYUxER0jy+UKZTrGeDY3JvizFd3jQ04+vEPVBczI0Rwe0j55wnhcsXVpj3h2BgeHbMeOa+e3me1us2xatrZ3GY3HuHrEyWRMCJHRxjlMNQVlMO1K5vRoxeZ2LdccGb5Y+DQoI9VybWQqO4rYNZyeHBNDxJmKFHV/39GGtu3ogmc0NezuzLiwu0lqW+gMKkjASIbJYKscEMuXPtXtzXbKOkfwHafzBW/fus+t/WP2T1ecnsyly6xh9/wOr17d44VLe7xwbY9xZZmNa7795stsjGoUgXYZ2N3aQr0gmPG3bj3krYdnnN8e8YXrF/l7v/lVvvO1N9ieTdiZTVi1oLxAQ9547iofPnebn13Z5p/+/D71eIRzFdYAmExElmRQ6WIPRXPPEPp1twwd89WKs/mS5y5f5ZuvvcJ/8dtf52/9/jew7ZKze/f5J//8u6wCTLfO8eorL7N3boNL5za4dmFXihDLtOZ7Y8/BKpw6Zy2Vc5y1HfefHPGTtz/g/pNjHh6ecm//oBdviSnRHB/xzOU9fuvLX+S1555nZ1azOH1CxIrN0GXgYA60TEkSgiQxxWJkyIzWhpQ8SiWsMSzPzmjahrPVAr1cUXWexfyU5skhk+mY5958jf1H+4SR49Kbn8M8cwU9mxAWS0k+si8d6AKp38fDANuSqJQ9Drk6U6gZYmtThh4lRfI+Q39Cntklc1t88GgLrtZUI4PSUrRylcJVlqqSropRlhShW4V8HyRN8zlYt5XC2QptjZB0YyAYQ13lQmTXsWob1GSCrlQukCiSAbB9gGnU0H0XM5zDuQKxGwx2b9162FbKRGhTgm3pyKTiC5R6mse6VvASnswQTPbzVfqguyAwZM2tFnPaZoXvOqzTiG5WIrYNsW1JXSeiRNn/xgwh7DmH2e/anKhoIspZggKvQNHSdRI469gxNTCZWkbPXeT24Rkje8iHx4nGOcJojDcBqxITk3huY8Ss0kwrzcXNmnMjx0hL4icdjA5tjchLJ4G69yW8Hka15gTLc2tr8imIUi68Ji8CKSoq8dMxStcsB9aFF/IUtCoJr8dUNc45RnXNqskCRxlpMnCes53MkLEinJDINAY++ShJK/39951HaeH+amNQmY/ddo0k1DFijF1LxCShJEqxs+0Cy1VL0/g8zFKgrAUR8dQjfeIf60lKeW0qfNB8vKydR/q0c1r76PX4s8Q0a/tDpYhzls1qygU1oTOG04UlERlVFUbpp8QjPqvHZ56oPDo6lotRWsjli4ztK7EpkVuoirZpe16LVG+GmxNTzj+1yZucrBwi6l4nB4eM6pqN2ZRnn3ue+XzOo8dPOGukSt6FgKtG+JhoYyImCbqMtpBK90Tnap20/renEyajmtmozlW2DMfQJqt4DIR6Qd3KzzFA18om1cpijRilhMxV0Cr1fAnIGGZlezxlH4z+FR5KiQyg0uJ4YqmCJURAAFnzlRbIRBsCMUQmlVz7TkV+8P4tHp4uOGkaJqOajemYF69d4NzmlMl0zLsP5sRkSJicsCmx7OGXjobSbbDFcGpHzG32nVHi8uaIWWV4dqciRBkS1o4tq6YhxIbaBCbOMbKWlDxJObAWW1mcUzinsdahtUNph3UOY10eIqVzp0xlvLu0fIfkIleujSZphUICdocjJYePDU1o6LwnhBqizo5G1GG6gnemqJkV5Q2eNsKqzBUp1z9XOAoMK3cTVNI96wUFDlHLISUCoa+aaSXQD8gVtJDx5E8tlTXIoVKyqRWETt6lcgdJfFoSUYVy2EmU2IL3RGMJBCpVceJa6biEiFZTuiDJQYqtEM6DJOchQiLgs/S1QmfIo5A7bW0wQRO6iG8FVrPhAte2x7x4fofPPfMsanlECh1d7JhOR+xsT7l4bszUBKqwwrSe8y6xcc5yfnKO956sWIXErLZ85aWLXNio2dIB03UYrdkYbzCdTHF1hSUw/+AWzYcP8EdLqosXCJXl7Ee32N07j7VwenaC+vg+54Lm+d/7DqMrF9GjEbOlz85LoYxlcs5JQcGNibYCpTEo0JaIIsWWLiViUkIuzR3kpC0Ri1WWzY0px6fH3HlwxL/+xYcsOs/Gxow2SIfPdx3HD4+IYcXWxPLf/d1f5/e/9SXefP4a82UgaE0yAo9SuXosAWYBQ8nNl21aMMWKjZHjzsN9PrzzgB9+/IT7B6fEtuHquRkvX7/MS89c4ve/+hpXdzbZ25hST2p0VYN1xPkZPiaOVy3aWia14cK5Cf/7/+Tr/D/+1Y/4x9/7Kf+Xm+/y9//mN/kvv/Mb/PrvfBt/ekJz8ETUpWzEpECH5/Xru/yD3/0yHz1ZcP9owf7+ARf2tnJ3XJJ4Y1QGGeaFDGAMy1XD6XyJDp5XnrnMVz/3Cn//O9/m+oUdruxsEp8csQqepCtefuYaP3zvQ/7JH3+XP37nA164dpkvv/w8b17dYWc2Zns2RldTIfGDzOpQiqQEqqadodqY8oM//QHv3LzDuw8PuLV/xMnZiuATyWiadsViccL/5ve+yW+8/iJ/71tfYWw8zaqj046Bl+BlTUBp5orT788wV2iVqEsmpbICmMI4i7eK07uPefiH32X3eI4DJjs7HH7vZxz87F0Orl/C3LxPHRN1F3j7//WPaLc3ufzNb7D77DO48YSuLVwS8XWKAckQ17q8fec6rU/PRoJhcnCXh+ERPUFJcVEFA06+IWiRF9daM5mMkDZgwjmdq64G3wWZlxQSbddKMm+0yMQaqSiLfRcbmoIEvEnLHDZXO8bakYzGZBEMEaMQmyUqhzmI9X7YGyoTloqNzdZzHabdc0ZzZJlSJHmV55uk/jL0xZjSuezvaS6eUdTlChsiJydx0GaU5DxKd9VLQI6yJC2Vd5nl5NGpw8SWSFZVTQkV5LrSH7cUJgk+w6oyRDIPfXUZEhdRpGokMUeM7Ew0YzPh8qziyycdSx9Z+UBUEaulqz2tnRSxQse4VlTG0/ol1iuU9lgjotLJtBi9EhuVURklZSm+TuyTcBLJhYKh4ZD6RCGpSPSt3PugaBZzuqbp1bmGJDD110G09GTFaSX8nVldcayEE51KyJtUlk6WdzibxRuSvF8pA9rhs8RyQrgsMcW+SaRjRKOwSmekQVlTBWaYecpJlzp4f5wqF+fF20c8kaA12jjpuKuKqDxeQTKaqBWxwBVzDNrh5d0l1itwxKdsZ+r/+tUPNbylX0xrH9H/UCxIwhpFbS2mGuUTTWzNJtS1JvEfwcDHyWxDZEgLDhg551Fdo7Xpie4FTrVcLrOMacIYmzsqBToiRsRVdSbaBuo8K8NZw6qxjOqayWTGZDYjxIRzp7gEKhhMilSjiWz1BE2QWSKhF1qkh8CUVp/RoiTkrKXJ0nip6GOXDVGyeTXcvpSENPxLjxRRZAlY9cvP/7skJ3+VITq52EWR8hOlIlFY0iYTz5NgJbXWLNqOw/mKx6enWGPZmjVc3N1kMt6gMkbgeqpUx6Wy3hv09Yy+JGHlGiVISRJTrcAZGFnFxBmcdnQ+4oMMniIqvFfUVjFyRuRgtRKRA2txzuJclhu0NUo7lJb5KdYUEqoZCF9GkipKG1WJopBWomgkrX9x1loZMUrFKbEmR6iGP8K7yhW0tVqFzonKAF/MSUyMmWRf4DelG6f7kHK4dAojUWdeh/R7p3yurNOsTabSmkqJwBqLzVblXmQDR77XJREvp1WGjhU71ivYRPAZT13a4U+JR+RmjE6l4JDPJZY5LUFw00RCnnKdYsJn6eORVezWI85PHdsTx6QeEdIYHxw+JCb1JlvJcPHcjM2RpbYaZxWbWuPR7KDozCnLLjJymnOzmo1xzcSACgmjNdV4TDWZoID2eM7i/bu0t59gtzaYvHiNpBKnP/454eFjmtBy0jTQBCYb22xefoYwqghaoewQ1kVlUEZ4MlENFfKYhOu1vlbkiuqcuKe1mTAaV494fO8BNx4ecfvglJNlousSi+USaxWV01w/P2NrtMWlnSm//vpLXNvboa4qlt2yV95L+d6VAZ6qb2Gv8S7KMWSRidP5gvuPn3Dv4QEb4zHPXjjPF1++zrPnt3lmb5PXrp5nYyRyz8kg/BLrWGLyupP1K5OjWz53ZYevvniN/ZOGOwcHuEqKBm6tw5dUKVgl2s6ztTHlteev8Ttfepmff/yQd+89pvVerphSVFm9UepWJUFXLFcN0QcmzvDFl67yxisv8PUvfp7PvfgMUycdiJ/+4l1CBG1rxptb7O7tcn73Me/e3ed03nI279DzC7x89QLnplcHt5tKAC92oRpNiMDB8TEf3rrLjbsPeXQ052SxYtl5olY0zZKxVVy/vMu3v/I6X3r+KrubY07bFV1C1shaJbJ/5HtW1sVTz62lEglJILyPjMZT2npM6DyNjigrs3zO5h1dgCYkTBOg9TRHC6qZw9QjCazz5/TdZArZeIhM+oSqP4Rs4dK6By/XRwJ34fB4opLZWFa5/tiL0l95fdkWJhcni9JrvzKUys0F6XToHuYr94MUMSZTZjS0XYtXlmgkWYoIUUMlS9Ih+5wBzpKKlLqSGRlFtHHon+T99FSwlnp1x1QCzPDU05QOUyzKcWm4nv3nF3+pyq7NvgCx7XJrUvZHam3vDutCqSHBjCkOil8MiWT59CIEoDIfROkoqABjwFqIkei9cKMyN9GAFO20xkZFGxJtEPidIDegso6UIj5I8O+MDPSVmCaI0mMQ1IlRiR4iV/gp9OH78O/sUzT03ajUZ4Gpt59Kle5nTvTSWsLff/LQN5AcwPSdwzqLJXVhCF76FZ2vt/mEOqjqj28tyVpHRqz529K9KCDK4cb1/3s6Znr6BVmVUKOtRVuXuy9lDZWvzWt5PXJQn/hMVdKINcGj4YlP2BqGRG/9NaydEPRFx/4TU+pjd62hjGF4ap7LJ5Oez+DxmScqly5d6SXL+k2kNdPJpJeXi2UoErBcLmVojA/Uo1rI9iEMsqYpMZ5M6brAqukk+XCWurK0XYurKiajEePJBB8i080NaLu+KlKPJygrgW0ETuZnHJ+dkXLbtDdkDB0NpRTOWFof+0BgfcJoz11Ja4pOkMncMJCySqeIgXNdNkHu5Hxa8tK/cr2d+atfRX5R5q3l7dJPpdZU1uCctNzxEZNEF98oTUiKNiZWAfyqISQ4PltwfndTSGgyLEbkgJXN141+I5QOWKkahbV7K5tL4D9WKyojf6zKCmAGTNTCJ1CJUeUY1446w++cs7h87M7anLRUWbtesKfWukw8lWpR31YtbUslEENRIjFSlUA2YD89uecgFSM3DLccHFyZDMPa9V6zuMXKlb2aK6O9Q0iIM1IDHGd4iKoJOvXV8TUfOrwqGeHL6JIIDnwPyFOdy7pD2tBkRS/KYLnCXynrJq4VBXK3ZelXBJdyZAAxdpKERJlZRDHsQIwF26oIXkjzKnnBleeZFcFHuqVHBZiONS/ubXJlVrMzkfvHeEOSnqjZ3NrFjaasTh6xOcqqPkRM5YTA7irs6ID5qkOlyPbYMR1VbEymKES62tYVdlLj5wvm79/l8Pvvk44W7H71DXa++TlC2/Dg+9+n/fguyzv3uHP7Lntf+CIbl69SX3yG45NDutWKohajyfdR2ay6U/BVkRC8yGXnbp1K0i1Ta8lM333VGjee8PH+KT+58YCbT+asWuhaz+nxE3Z3tzi3ucFXX7jG567s8dKlPf7WV15HG51FSFSeQQWQJdhTgReGXL01Wb3I9MFRSdgPzk65ef8+t+/c5fe+9Q2+862v8g/+4LeYpRWuW+CXS1Ye5ivPqlvixhE7SsRgpEJqpBvdtqfQnfLypS3+4Jtv8uyzL/KPf/ITnn/uCpubU9LxMalZyR4piTGJZdOxMdvgwt45/gc34o9++C76e2/xo5uPIEVqq5hWGp80K0/fwU0Kjk4WbIwsl7dn/G//1q/xhddf5tXPvQq25vTkhP1HT/h//+F3aamY7lzim288w7MvGhiN+Nf/4z/l/VtP+NF791HHz2Diq7zx4tXBSsUslpGRAJPZlOPTM258fJufvP0BNx8ecu+44WSxkt6As8yPTrh68Rx/58uv8Z/9zq9xfmNMPDpg2TV4pdHOSlkXhGie78Ngs3MKsK7RW36fcnIRIXWBc3s7mN0Vd89tsTxp0Whmk03m24ZVbfG7uzQfPiIsW5xfcOG1N9HXL5K2NwkKCAGN7uHTyqgsPKayD1KZjL4WlOXgUILHtUAnR04pRULmwJUudjFboRRbYsJ3HmsF1aZVqSUVAvRgK2OQdSwEZVF3UsmLzLOSbkwRZ1ku5ix9xBjXh/xRyaBZZXNXKvg+ASN3irQ2YELmccn7UvaZpRhUAv20lmzldCXDvEvRKgfKeX5HLzXJkDBIPSyRkORC9XthPSAuAXDsORJlnRQUiVa630MhBijQp7Ji1uIEpTUlrEtpmGcWURg18HVMCn1g22lNZ1oMChNyoqkUPgV8iHQh9MXAiBQSrDE4o3GZh5pCS9RIIggo5frlrteurdJmzesN8OcQ8nrrxR7kvlmlBc6a10+/U1LMHdiCWJD/qfxd1lrhV8bEaFxTVZVAXIt/LctciV0r116nEpaXZGXtS9eSkwKZzJukTzJTTj6H17H2GNJ+eU4EpxKapC26qrFdENQIucCY0UYDqT9/qEqf+OxPHmbqj2MwdL86jnyq6PwrP1TujVmbPeN9h88zfHweFK3/ku/56z4+80RlVlf9CWujcVYgOgpkkFsIaOOku6I1G/Woh2ClMu8j+ozTlQvoQ6SzgbEV3W7pgClsXctFAx493seHQFXX1OOpzFexhi5JJW/RrHJ7Ox8bqlcD0UblgUNBJiG3Hau2FRhQ4Y7IciIi06lRguxQytDntGlwPmr4bW9UPplwlIGY61LF5fFXhYHBetYu3220whmFs6DJxEcSqlemEoKvszXGdqQUULqiTYrpxhbWObS6T+k2lSC7kLBLojCqa85Oz2ibMol5MOZaSZtwNnZMR45JZVm1EWNMLvAZzk22cmUDnDWicpPlYrXW1FUtmzffUwo2WJsskWTo8eVaBn+Jc1Vyf1KGlSjpbgl3xREsGOdl+KDXGKWwWma+aCNwPzLmMoRS4Vk3GMUzJXH6ek1RJHNmilUqyUCpVvTJSnaIPnbkFKaUej71HitdElIEuxtST8YWuEYekJWH+yWdJS29XAtr89rNCUqp0Gul6NogMEkf8BGSMThbo5uVzDnyXubVKY02iRiUiDT4kDHJpZJXSj2KEBRdl1h1iS0Du+MRr148x9VzW2zNtnEb50heJmiPIlT1GGsdz7/6Jip0pOgJviVZIcwqV/N8NaNrW6L3TOoKl1vQ2o5R1sKoklbdKkGn6TZG6Ilj4yvPUD2/Rdd0uC++xv3b90ghsPvSi1z/za8xee455m0k+tSj6WQNWjC2Tz6UsQIzyThLbSVRCaRMlA7QQwakQzyqKowxfHznAT949yZ//u7HHM4bLm1MuXBxi6/8zTd49fpFrl/a5SuvPotZzVFdS/fkIWlzizga453FBVCFHYtC5kMNzlO60kq6mWUwh9HgKk67xJNFx3at+fJLl/ibX3uFzQs7rB7d5/TkjNgtSNqStCHqRFAR0ZYpSkZAisQmEBYt+08ecPXqs7z45S/wnd/9FjEEUogcLRaoJITgZF2u0kh3brVa0a7g5esvcPH8NX7vW7/Gn/78PVEsqh1//vP3eevmPX7+8QPq6RbtckWzPOPS5pjf+7Wv8F//3m/y5kXZ50/ufQT1LlVdceXKJbZ3N/k3P/+QP/+Xf8Fh+Ju8cmmHLz5/nf/jf/MHfHDnAW/dvMM33nyNl194junGNmdNzPM4hBButMY6y+HhMe/cuMUf/en3ee/WPvtnLUdNImpL08w5O7jP//q3vsZvvf4S/+W33mQzHNMcn3IWDcZNRF5fW7wZ+CGm+AAGPmLe0X1QX9SFNAm3Nqtp5Tv0zgYv/6d/g4f/nz+k/egON7//ERf/q9/j8psvM/7WF7h5/H+j+eAOGMPON7+EvX6Z00UjEuxezi3FICIqsRSaVO5mfBJ2nNZMUAmaS2c4l7KVJBgmd/ASCR+z/1wFKmvYmNZsbY7zgpWuyKjSVJmn0nWiFOi0IXokWSmd3hxgG2cwTlONalQXqaMheY0dWaqqkm6c0v3a7yWGNYO/KmRmlUgEGaaeIVnr8PQ+QYBc3BmIz0OOmWTYsV4n1H/ikQtTBZKT1roKEkDGniSubObSxMDZ8SmLxUK4GGNNSAkfPIvFnMV4xmq1IjpDUuK/Y+jo56hJdpulpj2lE5VSFkDRWniERoO1pC6jKhRYWwnpxSViLcqNMcjQUm3kGlQjlwt34g+tNYyc6efRRRIhd1eUARVyIZZINHmemhJ4bLnGJSEv+6Hn+OQVmJSMMyAXVlfNis53mfeVi5KC0+q7X0oL7NtZx2LZsGpbtLNszqZopTk+OSFphVY2oy7yPe0TRvl+o2VQsC1d8d5vr6k05ERV7Oza/llLaCROkRf3cEsGe+0qRxMix/Mlh8enzGrHdDbJkDkgJkFt5K8LKhcxSH3crAuc8ZdixqHw8amP9Xj0Uwqjv/Rk/jjrHFZbrDYon7BGU9eOceYcKvWZpxWffaISmgbIwY+zGf8q0zk77/He5+pGlhKE3KrVeXNLNyZkVaOYyrDCIFOtgzhO8g0zRmOspc1JRQgx8xgk62tCoGk75quW1XIhpC+V046M3Vyzx0BpuYe+ddgXzFVZjyVgXUsyGCov5VGeV7+cWv8li6K891fBvT6ZJn/K76XYK/yGXP1eJ8KvV2LKvTDagEl5CFvEuYrxeMTmdIYxpyTakoL0ga4xhrqumE6nLBdLCs9offBjn7jkKodz7hMk9GJ0pLNRpss7V/WdEOeyYpIxa10O6ZSQYV29YpvSub1fyjlPd1f6yg6502JF0MFkEQgZRCh/SrdFmtOhv8dDZWS9wZoGcnM572L4eqxB6n8f11jPvYpgqeaVz/vE/e/RFKih5fqJ+69yAl6+u1QC14mk5GvQa9jntRBiwqcok5F1vgauwphOOFc2iTJRkcJVQoB1OcDICrsoZAp6SNJu1zoQYqJSgXFl2JxN2djYph5vCoRDRdARm524Ugo3mhK7lThda4nKQFbNGo0C1rbErhUxDmP6AFtpi9JOcODaYXfPsfOlV1Fdg64SzekxEc32q88RrCE2DZOdDYJf0Z4eEicz0AljLaSsqpXJuEMhoVQ9dbmiGR08GHMJigYogLWWmODGrbvcuPuAuw+fYJTm+qXzfO7Zy/zOt9/g6kixNzJcGClWUVS/fBd76Jl03FJWoUt95UqtK3+UriJZgrUEpGiaLrFoE5O6YmQ1lSarCGkZ6ukD2hZ7FUgEKV5kZ1fIwCnK0FPvJRWrKoObTGiWLc2iFdUiBdoqujiIkaQ8RTsFz2QzsTGpGdeW9s1X8MHTti3/+ifvEADnHG3nSb5jpBK/8cVX+cYbL/HKc1cwi3siha0qko+4SqZDv/bsFe48fMKP373Bz99+j/ZwF3vtPK9dv8SVC9u89MIVXn/5Gfb2ztGFlAP0PKyQhLGGejzm0eNj7u4fcOP+Y05WHY2PIsPdLZhUimvXr/CbX/8SX37uMrtbUzrdEZIm4dCp2Eg9CJw8tf/y1l6zB2WWUYgxS6UWT5LlbkMHKWLrEWhLh6INHaP5Cen4iOnhCcyXwrPZmsB0JMn60qOy4mFP3C4bfi3w7gso5d8oylypdS8j5v2pKEySdzWoauUMRuDZRKpa9+duDLjK9J1yShAdlShSJnpRg2zJ0CZhrKauKmL06JTVsLQRn5CyDyHbpBLE6iE4Lh2Jsj9KmqZzMJzrOv2FKVX6X/btg3VfL1cPry//zr61xL4MBVKVu2sFopPygFAVAyGLn+QX9n4r5q74MKMuq7NlVcASuBaIuszwWZOnzb5f7MAQzJRrIryIRAgOawNKR2KGjJkExiasy3ZQ2OYYK6p4FDhfH9MVn7jWKYxKCB7r66y457Wfy/Ut1X1JFtc+R625SV2QCetwuSHMUnmWXYiJpmsxxlBZk4cZF9WsgetSdp2ixE06owaKQU9D4FSWwNo/h+RkAIAVCN8QNwyP8p0yuyvQNA2np6dUeoaR4C0fp2K9gD1wm8pnPPWp60ck//7UGRl/9cdT35OL1sYYaqUIKpGCF4jdWsfss3x85onK8vS43+SuqtY2uyQqnZfhcGWqfC98UVpbvUMcQCxlsExMkSYrgyUgBJGntM7hkyiOtF2LM64nZLU+0HrPoumYrxpR/bIWlBjKoEJvEAo2lpyoSEwuG1prgXVoTQ/56rHpw46UcymkOzIvRCmUKsaqXI+nE51h8FH61A7LLz+GNGAdcdy7QxHywRqRgbVaYZUSSehsOFMoWENNZTQRaeV2bUtlLbPJjAt75/nwzmMiCyIJo2QDxRhx1jIajdjY3ODw8FCcsjLi/CnKVsVJi6xdXddZApSnzl8pJZ039XSiorQVeFAPxcqORon+eHGM2ppeT58s3FDua76BDJ0YgdBoa7CVE2x9I0PJKqNxVhytzslKRPfTkrUSR9m7/Xz7FcO6UDAodqQ1Q6WgDLZKZW5G/ltlo18wgoO4wlNRhbg4xdAJQVEq+wmygcuvTaXCJslH2Yf9f31QIvN22hDogkA6tHXoyqFqh100pKQF4lSGcyohQxorykXGRGLWH9WaLAcOPiqaLoDRjPyC8ciyOdtgurmHdWOapCm8HadF4SahpKpv5L7rTClFW7QdYauE0hVeN5KkoPAMBGwTFfiENhXjF6+x9+IlOD3m9Be/4PTGTcxsg8tff4PxlUu0p2fos0NO793i7Pgxs2mN3TiHrkboICIUvavKFVbJA4vwh0hjSwNx2IkqRRKi8KVz5Wy58vzorXd5+/0b3L77gHPnzvGlV17gt7/+BX7/7/82+ua7pP37+MOHLNuOJoKpzoGpSLoCk0hREoiYwuCg05ot0ZncmxdiD2RIsGwj81VkNp6SfGB+ckJsBd+PciKjrMqgUA+pdBsUKRebYox5toEBLE3bkU5PYazAg0JLpU0LoblbtjhlsFqLIlSzwLcN8+WcylkqZ/jSV1/j4Mkxd27d4/ajJ5ytOqazDR7sHzFOLefHhv/+P/1dXnn+GhfOz7j/oyNwE+zWNmQidfIdv/Plz9EtF3z80Q3+xZ9/n5sbYx5ev8T/+f/wP/DMc8+wdekCzfGCZrnk7Ows38cc+CkZ7Dje2OTO2ze4cW+fGw8OOe0iba6/LE8OuHb9En/nN7/O3/s7v8uFkSHt36WtaryymOAg820KRCimRPRDANoLtCT6e9l3WzOHzmixMIHISkdiu0K3HXHe0ClLW484OzdmcftjtvySSRdpbt0jLJao5y/Q6Sj8kRCxiWGgXTZCugTUa76nF/owBnLRImbSrmVItIT3lCvgMWUFJg3JUzqqWltspagU1HUZ0KexzlBXDueEg0jQGJ0wTkmBQalembMkDwrhxdV1RecTJgqkWWvhjAmJ2eQ/uXily6wRk/dEXDvfUhEvRcgctPdRRcqf2VPk+5evh4tCqUmDf1OlELb2phKAP1WYI1fgI/T2RdAcBVqmsy/Q6KwQJ1wP8SX5XEqRK5WEW36WcQwlwM9SEWbNFiiV58hkG1Fgz4AOCVtHTIxZjn4tntAi/hJIWOuwWotAkslJipV5R6XoLAn7GrS9IDKyXSoFz7Kmin1NZZ5ShiiXprAoJw6T6Uu8qHK3TIo1g68VXpJ0f07ncyplqazFovrZPDHHPibLghe4l9EGm4dJr8nY0PND+rWQ+mfLZfqlkK0khE8voD6B1toQuo7Gew4OHjN2ipEVnFvMKI0yQkP2pxrGF6jhyJ5aYJB9Qo4O/xJ6Qf+29QUrhvETzw7/9t6jrMJax9Q6Qid88HE9whrzH4c88Xgy7QfhGD20yRJgQ6QKgTLNMqUMr0lFd7tUKEuFRvCdSsvslBCjwFCQzS7qXTLob9m1aOcYj0ZSPciJ5KL1WJewlTj2xnvaKMFVTIkYErYAqU0Z5qQJJWNWSoYY6UDMOHyVEjqqtXMr2biR1johy7IKP6HkvSKvu2a0yvX51M7Jv+3xiTxdCbRCYJhy8KL0odieTNieTXFG5iAkPD4lbAdVVTGqWza9o2siRkVWixUGw9Z0xivPP8eP3/lQYGoKlBGIlNIGHz1d19B1AvkqalvS1pb2tinKZIhi22QyYTSzAhOJIuNs8ma0ddVzXWwe3KWMwVTVWqUsO58cphdDauwAeemCwA61Eueore1x+6XC5Yho1dF2HV23ImXt+sq5HntbVTItO+IkUKdMyU3Z4A8wsFJF641XTrZjSgNUSyVCDnBJER0ynyEJcTlCL5sYA3nY41BBKlLHCY3LyZiop4T+vCRJDqQQsr2JhKBE8rOXLTTEKGtRhqLJMTtnCdqxMjU//eAeZ12gi8jnIcWCkR1ndaLMaQlZXrFtswKaQeYsJHQQPHjjA4erhnm3ZM9aLFYUQ6zFR41WFTontyVB0ymJClCItG0Hykoymo89RA04kTQt0YGWmUL4nFRaC2qCmVV0UbG4s+Twnfdwm1Mm//01Nl54luXZgo//+A5Tq5lQMTITfLQybRwkQUYqnjHl2RjG9uW0FIWPE7XMv9C5vS/OtFR0hdsTSZx1ieWqI/rIpfPnaZsVNz/6iH/8D+/x3IU9LmxMuVBvE87u0TQrpluXxUEnzaSqsSMRRIgq9knS2Xwu6WzpSpfEVUHlxhhtOT094c6DR3xw6z4HTeLnH99lPFLcfnjI9Qs7XNyaUY3rnLQmVMhV0ySKejFGIhGlDdp4lAkCyYsKoyq6FggeTWD74kXu3LnHndu3QTuuXDzP1uYu/nGL9itMWKFUoMPho6VqEx9+dIc/+u73+OEvPsKbitHGNqZr+Oqr1/i73/gcX/zc81QqcXz/Pso6TO1wThO0dNxPl2BT5LfffIUvPXuJ/+cf/5CjxRKPwmxs4jtPc/ceC6/ofEfoulwTEOvsXEVoWx4/eMCPf/4Ob314j4dnHceLhqZpaZslv/eNL/Frb7zEf/7bX+Xg/ff4eNVw/3iBqh3nNzd59fIV3MjhQ8diNZcOR0KSd2Mp0K51Na2y97SS/aeU7ueIRETylNNTlkcnPHj/IzZfeYHtL7xGNRvRdg3+bMHd2/e4c3JMNR5x9fOvkozDrzo0EZskVW0gF3A0OvultRCrGLCcy+Rqb+6aogaencywzAFyyN1XpTAqDQN0lw1np4l5AMtcijtaCSHerKS4UhSpKF2ZohQU0Vaq9CEGCS6tpWs9y7MVtvM0ZpOuXeG1oosDN0sbS4ymD5xjlKQxbw6505mLE8lBYBEiGVoeOTjO9yeuF9vobW6x++qphE9mtpWEsHSICg8IpHhD7nKpXIRSCrQVHlpIeZ8pGa5Mnl0mnzncszJXRCEdgHIMUqhLGQoU+q6h70J/D5UWDtWQJ2SYvRMoZES4MU0IPczbogkx0LQNxrTUrmI6tjnGMygsCEpLIHwmSnHXgEzy1JmsUnZcf7mHnwGMwipLCB7vW0CS4cqNGNU1ztn+ugu/ROBHKid8PYIiybUIKXF4csT56TaVFhGKVbMUSFkp3Bqdk/chDhMYeI51PiUBUUrhnCjYtX7gY/cnsjZIpy83ln2fZF5QShC6jmntmNQVW9OaZnnGsuvoQqAhstKJ0Mca+XYhMWfX358hcel/6I9hHWb6lzw+mWD9qheUOEdLR0VZS2xX+Kbl+OCAxWKOD/7f7Tv/Co/Pfo6KMcIlyIMIIW+tJJWRotxRqkhl0rtOBY6icgKYhxIib1Bao1KiKsRkpbDa9oPtlDIC2clt5RLMKtvRdgHVdcx1kaot2XE5aIbX6zIzIhPnSZmTMjyvs0JECkN2XRSSAGk7UoxdjwZmfSP01dnsCEqA9qu6KLnRwyez2/XyjdhHcUw9yTApVj6ybDo6IzMvQAYULb2S4U8oKmcZKYFAWAXNquHsbMHJ2TwT6hOif2T6tmM5qxD8EGDmTociEnNXyic47RKnbWDcerQtnCCFSkkgvykRuthD1KK0rDJGU5VSFAn6IZeptHCRKbAoGXK5bPIAMQXVqBIOQU5cpJolDILFquVkPufwdE6bPEZr6sqKskzwnJ7NqSpAObrs9BRyWIWAuQ7vKdLVZVOH4qTyIkkqSfiRZSFVTEK+zmu8n4+aA4mYS1oFPhhiyAl4JtHk5CSELEuoshFJMSszZTnFKLLU8rMk/zFEvPe03meivBDpmxiYh447d444OFtyuvKMapfXX8SZpQQe+VpLspKlr1PeMQlUTOhcAWpC5KRpaVLgZNbSdVGCOBMgSWez7JRU9mdKiEwnJC08h4is134fSAaX7XLZ27k2uqb0hnYoDKwS6bAhRkuMUI0mVKZmcukq48pSzWYoNwZMVhHNxECJBlB51knZuwKzGoitxRiUNZHyxpU1ZzAWzp/bYlw7SImzxZJ7T46wKtCsFM2y4+jcNmZ3A4/DOdkLzkgH+PDwmKZrCClQ1Y5RJaITo7omBCnkDDMCQCOJttaGm48e8+DJEYenC5IxNDFyvFpx89YNbGpw6gKX9zZo2wbfNn05VakcYOTCgASvLRBJulTpNSZkkmWleXxywv39x9x9sM9LLz6Pcy7j9VXeP2J/yzpaHB/z8ME+H9y6T9NFQkqoruP81pSXLp/nzRefYaSlaxKCB5tlxjPkIGU7GlJiPK6Z1Tv8+hdf4bgJLDGMxhNikplbPpl+ZhK9BYNqVHN8tuDW/Ue89eFtbj04ZNUGjDXMbIWbaD73/DWuXdjF+8CtO3c4nLfsrxKTUU1cBc67inN7m8QU8L4jtp10iq1DGdVXURWD/1NRfKRdnwmFQmFEXjVFjLa4eszG+YtMd7Zxk5pqNmLcRbrTM46jYfPzR7jKone2xB4sV8TW47N/Slb367OEOsV+9A5GldC5+OXcBcrohtINSGiUin2FXOXKLjESusDpacPBkxXHjScsB7ESSdbyV6aQl1VOiHorGvPsLFEQdE5UkJKa42LHljPMLo+ojBF+xTrES5emtHoq8OwDfZXQeq0rveZrlSr1+GJIezM+/K7Y+fXr1j+XBnTd2nvX44L0iSdVoj9uleOdMtPHlDJtSn2jNsffw/f1H5r/nX9WSpGUEPylO5X/TtnHiM5uTpjFbvgYaWPEx5RtSZIBu1GSF+cE2dJ1AR0SYKiqQFSSpqSMTFEgKmh5lYkAQo5zYoaA9ld6reu/lgiKT5M5UWUQcpt8FlnKPeK1hEfl0QGliyRFmhxLJYXvhDrgtEDV9WpBiFHEA5TuIbSS+0kMpHIcVfr9JcZb714UblTqVTJTr/Aon7bek1uL03o/Jfwwo0Vl1hhD27a0qxWpFFptuTaKvhtYEut82v3i6Jep6oeJPrVMy0v55Yd8ReoPdX3FPr0ZMsk/BGLoCBrapmG5nLNcrug6/ytj2H+fx2fPeskBQmm/An3QlfLTvSHo8Su6XwiCGBoWeiiBT8ZAjnSuOK2RD6UF7TBGUznHaDrCmDxEsGlYLlekeeqPrVz2bCcl0dfyjdooIYOpTKbLhrAkTMZIhUccTXaSFIMjLXud8ZHi6FNfoRk6SWIoyuDLBPjk/9JEZX2hDMnP8NvSttREMRQaYtK0IfFkvsL7DqMUjQ8oJa3dlTcsVx0hiOLWxrjCqkQXPCfHp3QB3r3zmMVymZVrAmSATXFmSsmE8uC9TDwHRq7GaQh6BXhWIXJvEdk+WeGTYlS57JwUOl8HOZEWk9u71kj7M+WAMCYJRLrQUVWVPJ+Gq1C5Ssi7wMnZgmXT0oVAPRlLJV4bjFLZ8Rk8geP5ioOzObf3D1AzhxlbZiMHKjFvGu4+fMx0tKCyNV3osvjBUCkHmZDeO6DiePLzMZYkIg0BJFIpDN5nOIY4Fu9jv8bzppGgzpSOTST5joRUAkMC7wO+8/2qSMjwqQJhiHnYlHR1pEsZQ6QLMvyqC0J+jXn1+M4TULTK8MG7j7h3cMLDwznbm5tYo1k30/2grdLdykGOrHvpOkpCBz4lVj6y7SzPTDZYLDy+Wcm+UnqATumyP/NMIDRRW3TtMncNmlUrd1zLMfRBUCbHooqavAR7ZagcHlwHdWfRwZFMBbainoy5/NVvYly2WXokA2iiz52k/B2V7Qm2Bc6lAGvqHmidSEQlCkS9l0gJsCRlqWrH689f5fy5DYyBW/cfomLH46MZJ5dG3H18xs7GBubNV7myOWZzuokGaufwGD68cZM7j59wslyyt3uOK3s7XDy3xQvPXWO5WtG0LZ2PveN00VFXI6JS/PD9m3xwb5/HJ3O297ZQo4pGaz688yEprYip44UXfoN4esiyWRF9yGRbI8iwKEUbrWsUC+kkmZSHdCuch3pSY8aWH/z0HT768Ab79x7yO7/xa4zqmq7z0vHSBdagqbShMor9e/e4efM2b9+4gxtNCBGWTcOvvXCJL754jS+/dJ24OKWLOQF1hmQ0gUBoQs+B6bJikDXwO1//PIw2SeNtDh8f4NsliyEKR2NQQZxQUpHxxpSb+0d898fv8d0fv83R0mMnm8y2Z2xPK65ujfja6y8zGTnevnWXH7/zHqerQMeUC5MJ4eSMyeqUl8cv4Zwlek/XNmhtREJd0eP4c7udEIOsciWdXK+kkh2UpcagUiCkDjsaM5qeY+eZF/C1IWiIyTObbJF8oLp4la2XrkPXkCqHX7XEZYOPHR5BN2iqrMyliQqUhJfCAesdoaFABbXOvrioYeYkRRuTCygJrQPGCj8keFnrofU83j/j9q0Tnpx1HG20fRK0Vm1jQPIL0qAPjFJCp9xJ0gFlHQnN6emCZ3bGvHJpm0u/tsPECtG5FJ8KFMiU6di5kAIZtZEfRksxJE8nGWxtH6sMXlYC6Hy0fYJFzwHseS3F3zN0P1KOU8t3lyC4/EPFAjNSaJ1xGInMsw09r0mnKHtMl0A5X0qticH3dr+HD+YkjGx7o1LS4daqV/OSjn3xDymjCjxdK9B87wNdF1iuRPwo+A5XyVoVlbdExOMqL1A8k7Ax5aJNRClNAExKGAMGg1YJoxOEmDtsQJICZ9f5PuHS2vRJiiIQUqRLUqBaNm2OYwr0KxcaihRikqJ1SiEnY1L0Th00bQtVxWQ6whxLImTICqRa9x0OWSMCsVMqSvJLgVgPa0CC+QGK3sexSYnYQnkt5TjzYaLIAWZ+TZbT1haFYbHqWC4aqCpGRjExEZXthMoCDj13Oic9usTc61lJSWae+sUnfnzq+bT2drX2STm6UalPCHWM0LUEtaDxjrOzE46PjzhbLPA+iPjMZ/z4zD/RVRV1VVNXFW3X0nUdocvGsJx+zEbbSbt2PeQOPhBil4NOqYyEMo9D66zvrURhR4FXQvNuCNB5lr6jCR2uqqnrEbHtCD5kSVadm+lJnFsqbd5MqgJqZ3HGYLWi8xnzqQSCEqNAa+g3CKxLsYnGeTZ6oVQIyMRBhTGetJZlq5Qyr0H1C7lcpb92TlqiOGNomo6TVeT+SUPanlJbw4qUyXkJn2AeEg2K8XTK3mbNSEVOjo9ZrZYsQ+LJyZyYwFmXW/b0QTRRJJlXq1XmHgUW8zNMZ9DOMJuNWHlYxcA7D06JXeDKxphre+cGuJG1VMZic6fK6IjWCWtlynBEWsml0tN6D3opUDFb9TC3ylmslSQnRGhReGVYLBrxt0oCPuc6tDGcdSv2j894fDLnYJGYjTVjbXGVxiQJkI/nLSlaRnWeYZIduqI4cfA+9sIQvYOKfcFDqlgMFS+tcosfGa4opksTtcjXYsTIp1gqawV+kVC2lqBZa6L3+NjSKZk/JJhqJVZZ5QTB+172U6pLkagiPllpsdcKo2xWl4morsMpzdQYvvTqa2zef0QTb1FVY3GokGcQUbw1JWleD0LKQs7jXiAmKkKef+SwVZ1nkph+PUlHPAievI9gXHb9GRaSSot9vaql+iBDKXEqUWVSv9ZQVyjdAZGuW8F0jN7eQm/NaGJL9BBGDtHpAhOaXJHVuSOYqxjGycmEghUZWEIlUYsooqmyKk+UgWwpkILl5OQEbQyvP3uVf/C3f5MXrl3iH/7hv+bO40P2Txc4d5HrOzVOLfmj7/+UL776Ei9cv8bnrj+Hrsb4VcvRfMG/+N5PePvju7z+udd44eIuV3Y2+PDjG7z4wvNcuniRiTFZOcgzclPSquN4fsJ3f/QW9w5PoKqYLxd8cPM+86NTXr12joaKkwaUnWHMCmfmxCqijCYiak6KHrkhtyIlTJJOqFKR2cXzPD4+5vbdu/zP//Rf8sLVS3zj619m+9yMro3M5x0ei9IWbSuMNRgnQfSP332Pn390k48ePsFM99DtitCdcX2n5vyGpbaRuTHELCKgkkYFhW6lUEACrSJYTQyRpQd/toIG4iqSmkage2pdaRGBelYjxpMx9/YP+Ol7N/hfvvdzVnoGI+k6T2vLi9cu8NtfeoXDxZyf3zzg++/e5OHd+yxWHYtO8dLVXa7sTDk620BtVVy7cJ7nL13h4PBEqsCoPFk9F2W0zbZf1LFigtOm4+7dO1T1iOdeeJnULAkp4lUimYRWnq5ZQNQYAxOjCXduk1rPuAvUF/bwROZnZ+jWg++IvmMZGpQyjFDCKUCLKEbZd2tqfSEHwznKoWBWpTObhE9RurMhEpoGvxQo9thZZEJ5oo2GqA3KRrDuqYBImyzsUoLrbCgKKkYxcExQ0CZNFyKLxYprz13m9UuXWZwdc7BqaVuPcdVQrNBGhkQa3f/baCNE8OwDepEUVSCa2Yr13aG1ynX5fUmjiq9WEjf0zIUy4RzpGpXOWBGIkeR0LdBd+zsmUEacRrCGoA0B4fek0u1AkZTBaIc2dYavQbR66O4y8BrlfGTgaBqIJviuo8xOoZaCRkyBru3ouo6maem6NicnkfEk9BxHSqJtLV3woorlsqCBNj18u6wdoyUVNkBV+B5KBHW0loJwzBDhVFf0EOo4IASSEUnllCQG2Nivqc9s9q0FvSAQ95ShtXJOBU8i98CZipPFkjp4Njb3mNU1TSckSoF4yfGVOWZC84xSUIyBpwYs98lpEkiyTn0SoXUihrxtsk+LfdGt8BsFcRKympmzjtWqpV01PH60j62kg2inM1xaYpHkTOWkuYcZktdiIaz2Rdv+zLMfLkFlGn4vq2XY5/17PpnYDIs19bxHBd7TxgWLxrPQhuXiFO9lVIixn32SAv8hoF89GTi3EPNMlSEDVr2RWMcq9u/PCUBPpo9SwVRJkoaCy5MAKPSQh5g5EYrEahXxQRTA6LpeEaxXzWAoIvXZLpl/kCv9KYliRIJeZadMpS3JZ/mMcvNLvbnohpM3k+4Ja33diGFLl6pr+bB/W4ryyedVblOqYeHmQDWSW77aoGyFcga8RoZkJQKaoARmpa1IzE0sqDhlMh3RKZflmcs9K1A++a6YK/ShXA1VsMylE1IcgJYqiXZoV1OPxj2sSTghplfdEuhXyu3yTFw3MkAxpoQJlej0g0DMyj3VRirZSnCnJgsa+KLEpRTJSjUyqEjUii4mmi7QeenQoYqB1VhtM2EzB1e59SbD8/IAzwQmhOz8Cm+jVOJUn9SUa1H2R1GnK4PYyn4oU9A95C5kWlNRyYycfBy1D/jg8cHLms3Jbuc9xa523hNjCe6yFGQQWIpSCpXFCmQyfaTzXYbjaJ6LmpUPfHjvIW3Mev5ZCjyBBDDFWOaVrPI+Tbrgswc1nL7TlK+Vzhwkjc37UnTxjS5QrjTsh1QCES28BF8c8lrdJ5Wu1bCVyt4jJVIIIm1pNLpy6GpEpzVRCRfD5CwzFC5WtgWy/wdVo6RUv5/Jz6mczEhHOHfY1jhYGHGCWitq5/jci9cxleX9uw945/ZjjuYr7h/MqZUmdJ7NWcWHD/ZpkubCpWtsbo8wVcXOzjZJa47mSz68v0/tZCAqKjB+9JiE4vL580Let0Jani/PeHJwxP3HhyybRoImpThbdDwMZ4ysoqqm7Jwr1ztlyVGV/XGGumUbQ4pDl06ZPO/IcbpqeP/uQ3763occnS2ZTMZcv3qJFCSwlQVswFQoFTL/TGSfTxctp8uWZeuZTmTmknWG3VnFrNIogqi6pWy1VA/6WAs2172JzOLCROHCrUELVd5b8jvZA7Ya8+jxPe4/PuLR0QmYSmDFyQvx/2zOo8fH7B8c8+TojOPjM565dJGDkwVv33rI7cdPaP2SkfO82QQSBleNsFWTp6JLIFNcf0HzGCUFltPlilsP9mmWK6xzVM7QrAIxeplLFTxaGawCv1jRrJacHh6gHx9B06Giwr32LGxMsFVN8rlTq40UOrJIzNP+du3ntKZcVWxVH+OsBT8K4fnFLAAQPaET6++1BMLS1Qv9tR2+Rj7fZtts1ou/WkshKiaRBs+zc5QWCeMQAhfPbXBlZ5PzGzNOzpasGk8XIjYMSYYxButjL4JitEDQbS9PnO23Uj3fcL3sURKL9XPWepidNZDm1Vq5cRBQERvnByUxPahRRvU0xKl02UvhNMTA48NjzhZL8XNaOucJmC8ajt2CqTlD12S+pXARIcejSta9JCvDPQ4hFINN6DxF5U71b8w+PM8xEbsNXYnboOcKip/oWDUNicRCC5LBGCN84b7KD844jJJr7FyHMaKoKbwOSWq8EHZkvpTLc1diyjwdRUwWKWMXGBzZr+o+YVClMJx9RS/KlB2PyuierluhOkEhVM6hlNgA8RH08LwS2xVuz6c/Mjohyy/3GdOwoZ5a8/2KWie155tUBk2mKEgWjSTaaEOMhphyAhjT05+bY+n+29ZzjP4oyTFZeuoY1xspfZGvT2Ty+f2KM0dl5ECM0tFODP6gxHD6V735r//47NOfJIshBGkp9omKzlRTrXPGmjPEzJHo87zs6Mu0+tKuLNWLphUdbW0tIbcpQ/CD8UyJrmlQasVSz4V4GlU2hIXIHyX4TAN+FHLFQEkQ6r0EsEkpVJEFzZCW0mJ9KkMtmfZ6gJT/0RPwoNdPlwpLytXkVFaV/On//SkXt/+yp7PffrMqsjJgbrEaSz0eUU8mVM4SmlYMRIgSoCtNUAGlFVWlmY4dm9MRFy7ssvAKxQMJ0JLg7MkqEtJ6DngFIMbHWAMhoSxgFD4JVMNoxcTAuc0tzu9uc35vl5Dln2vn+gBduEtSaRA0TZEtNv11BUPTySCqIu0nhm0oKpSUyuaOVbFG2ijZXIj8snYSiHrfEaMDHNooKgwj65iMJ9Qjcf46y+BqkyvBalizImcsxxiD/IE8SMqYp9YByO0Nabhv0kkyg6OgBDQlK1Zra6pHRj617lT+O2aZU5+LBMUoSeEgEDqBsJWKo1TdknQdsxykipGN7S1a73nrg4+4e3hG1AKrUOjeMcq6Fpw4eXaQRuGVyqpBApVLSSQ4ydVFY2UwY1ERi74MxCSr/4DKZMdIlm1VCu0MRtcsFx3eM1Rk80Ut6kLaylrSWhSL8JHQelZtJ0FS5dD1hOAqkrKMlaHWlhgjx90SjdgoY5QUOLI9KiD0PqDpq5cqJ9lC3sRnonl2hMZKgmWdxafE5199npdeeAZjLP/wn3yX7731ER/ee8JqueLC9pTPvXCNH793g/c/vs2FC5d47XMj9nZ3ePXl57lw4Ty2/pi3bz1gtrHFeHMb7TzLD29x7/4jfvvrX2E8nTAej6hGmruPTvj47gPu7z9h2UhSXVVj5quWs5Mz7j54hHYTLl2+lmXkO2JoCKhh2nAa2v4pZJsewOaiQz0e88Gdff7VD3/BH/7pD3l2b5OL58/z0nPXOHr8hBBzFds6lKpRUUuSbCqwNcugaYKIYPiQqIxlWo+4vD1ic6whdETl8hR0PwQjSNKetCIohU4idKFToMtzP5JWPZ1UIRXaGBPRd4QcEOhqws3b+9y6t8/Rcokdb2AUhNgyPznmRrvk6OCED+4/Ylo5ntvb5b/4G9/io/v7fPjoX3Lj0T5H8wqrIyE6rBmhc+cQswaBznsiZI6HRVHVjsXhET/4xdu8dPkie84yqpR0+7qWRKSJEWssVTWmPTrh5O5dbv3pnzF78Ai7alBRs/V3f4/JS8+x9exVVm2LCgbjRrg8iyqVwkRWx1I5mEZrQvR99NLHM5Khr3U9cgHIOULsJOhKQcjXKdHpxGK15Gw5p+26/vuKclepVNdWC2Khl3tXWFex6jytD6y8z/fVELWmbVtUCnzx9au8+swFruxssn/wRJQYtcKkvB60wsSEiTEnKRatI9p4bAi9YlTMcrcKcEYPle9U/I0aAsqc/KxLS5cCqs0kd+HeDDa4qFaFBHFNYawLPqMyIqhEiJ6QPEHV+BBpOs8HH99mv1kQUpQueRAo7uPDE9QSmhNPNdmQxMBodIHjMMDLRWZeilzBJ3xbZq0kKZ6Uc9FCIjdGFK7KcbZtoG0aFquSMGmczTNvgqftWk4Xc7ogs7Ym4wnOOBHqyUM2rbaMqlqiuijzc8TuWOqRdP9T0qy6gNaa8ahiMh1jjRboekoEDF5HXJYITj6wbEXcRRvXB/5iBhQlddTGZn50Tmi0BqvpVpHURZaLRVaeUyyS3Itc+8u8jlI0iz2vrlyb1FfBKKlT9uG6j+OU1NV6fwyZ86xLITt3fLLD02R+mhG1VONENCYkRZsUTdJoUxHDEmKklDuK51sXevjUbIUhGRlc5a9MQz7xxvWPXCsKKpXRLsMfqcdlP6jVp33av9fjM09UrHN9OdOpCpOEzyGcEeFkWHTW/x4kWIvDH66HziSvIFMwlTikGKIEElrTrFZZ8tiL+lEMeO9ZtauS25NSpO08vs3GNVcGjSkJk81Dv7Ijzoam6zyrpgGl0dZRSkwh+qdkBMswqQJdSikJ8ToJTMwWTkSBw+QEJsTIaFTnuSUdzaKRNvyvlKFOT/2cEk8Z0PJQJLSKOK0xOmKVh9gS/YqIAR+wAZHETQnftRAje5ubvHz9CnuzEatmxfbeHocLwY4qZVE6ZAy/7qvGpTpeCIHS/h0RkqbxirQSFbGRgYtbFVfPjbl8bszEQcpKYNaYvkKdVCQlA8pKqzuT5lXfqZFAeORk+q2oatksmwhrdoQiuxiSIiBqKkFFuhjpQuJ0uWBr4rCXdmh8QzUzOKfo2sRIKaZGs7c1pR5N0LaSTkmpyqkicCiPGBQp5spIn2xqCBpSKC02UHLfS01N/q/wgQJuIoEMUeurv8OrfX+Hh+BLEpksO1G6CkhivVo1dBl/XFWVGGAvimClWipJfqIMIYsZkzwdjbm6NePNZ5/hweEvJGkfaXSGziSgTPMtVUOdf5dQpBBRvgT2cmMGXkwn+0pbVBQpavqkkty+HxxG5wW6ZbRBOffUZ2ot1dGYqzxKIV2aJCTQbtVQW8FJR8CYhNWRERE7qqSTdPc+jw6PCUoxunYFZWqSUnS+BMVDhUm+1YIWaWxlVmgjoNIYFtAuwQcqXVPNJpi6xo4q3n3vPQ4Pj9iYbfDM5ctsbW/ze7/3bTrfcXV7wv/0R9/j8SJyElruzz/k81e22dkYc+Odn3BuYhjpyPnrV3jxhau8+PEt3v83b/Hjn73Lvfv7fPPN19geaU7mDf/6ez/mi59/leevXwVaHj7e5/2btzladIRkpZpIwlWOqDUPHxxwvGhYti2khhRWRL8CMxkq7BTFOUBFqskMO5nQTScctJZ3373FP/ruD/mTH7/Fz9+/yTdf+R22JjVE38u8a2NwlZNqfzCiTqgMxtWYeoIyFTFBFzznpiOe3dvmyvkdZpOJzHjp8pA8n8COwViSNVgjHWO0Jp6e4ecn+NMDJleflfk7OVCX4k9CI7YlJoWdVCQUB0+O+cE7N/jw/gG4KdF3aBWptEe7EWed5tGjlqMnJ7zx5kv8n/6bv8OVi3uczY9YLo4FQlaPGU+2qVSFDoqu7Xq4qALpIGkgGSH1OsfGbMqf/vAnvP3+h3zvxz/lm5/7r7h8fg8fOpETT4kqKXQ1BusI1uLObTPTmutdoP2Tv8A/ekyzOmNr9xzT8zskp9BVBUrjUpGiT1mJZ637Z1QPzVxf3z00bs2rhNBJkgMS2FqLipakFZPJmCI523gPxhB0mXK/XrotRW6Z61UZlzvnGudGJNWS8CzwmDzA92h+xFZluHbuHP/t3/xNLm6OmDrDxQuX0FYKT9rIlPSiRFj2a1QyyymlNbiX1kSk409SKG1FIS8lULoP+gRiU4qOqj/4Is8tQxSHLlVSA4s+Zd5HKWZKEhRpu3YQu0iBEDohI6tRXveBq1cD6eQJzdlB5n0mUhQYMm6EHc8Yzbb6Yq/K/KGYBGpKLhypJHDNoD3a5E5kjL0SpCrFvHz8YU2FVTrtFm0dIULIkbdXhiy0SD0RflcIiRWKJih0yBwVFCrCPJYqvkKHjJJoPWopXNwUBM6ltcJVBnt4hjEaZyQxiVHGSsw7xbIJHJ40fHR8yKlvqSqHIIwkIexlockd7LVuRYkdja1I0fPk+ITNyZSqqtkez7C5+KLIMPy1LopC4TJUrXRu1x/GSMEllvWCdJ/wSXjCin49DSXtkgTTJ7plHckaFR5ZSJCUlZjV+EwxSJRR3WsKxTkdXi/2rW26f9ek5KnHeoKWf1Nq5wlSFDRHGxVx7CCrs1rrnlL6/Swfn3mioo2ltDWVzlKIJMrwPNGEHi6vxO1DRyEvbRQanSIq5Wp1wXlGZBiPksqM96IGoRSiZBQ8def6gDFGCYx001KvWgLguyxbqDIWnQLrGoxVTLkiXSAP2dCm9MnbqPrNb0rFpkjKqk+0jvM7i/OSSroiZOMCrKlGPP14er190gmsuZUkx7s+3FEnMCphNURdKouKTpfERrM5m3H+3C57GyOOTo6o6xrbIC3hlL+jZOZrFSeV4VD5nyglPCCfkKnpRnDZtdWMnKa2GhUzgUxpQcWU9icI/hYFWvfDH3U2+H3LOt9bqU/I+0I5WVWgdpI4xqQJyeNTwKeADaJq1hmDGYmO/3QkMypIQn4slWSdj8EYkZ/tHVYZFUtaa3J9wpQpwe7396sXWBi6H2Q4kdy2IRTu29nlrq53Dvrf5fWU8srquy+5wpYSKnoInuhblNX9VUvFgMaATqUTWRRWPCl5DIGN2nF1d4dJVeFbSdBNf+UTwr/5hABilDrTL1VtlBrgk091lyTR6juL0CcoRSK0KAOWcm8x7hKAlpxL9ddMkrXY/4wx6LqiOrdBOD2jWZxx+t6HhM0tQoTV/Sd0KaKnE2wlXAjyQMASoJXLXpxN6ZRrY0jJE1KkbVbSibEWY2qSMiyajvv3H/LBzTssF3O+8Np2DrgDm07zzM4Gz108l1WfNG2E9kxEJ4xxJN9ycvCEg+mE0e4Om5sbXDy/x2hc04XI8dmCm/f32ZtVnE0dNkWuXjpib3uT+tIWy67heL6QboqzOC3VfI3Y05An2Gujc3LfawP0ibJsf7HfVT2SwMt3HK4U947n3DxY8NMPPubJ0THjyvDK9cvsbEwIbZt5fSm3GeWiRaVYt4pVNfDLSBGrNZNK5mY0AZoke1DWKL0KXFH/QStSluuOvsMv54NqGUVmJO9OrdBJo4yjHk+ZrzyPDg65ef8R+8dnKG0pykE6Acrig3QLnr2ww6vPX+OV11/k/p0HHByf0fiIMQ6lRKa0DR4fB4jNsG4Hq15ZgzKa0zbw1seP+PDOY9ouMhnXjMejta6qXCcZxmuIRuMqi52OqC+c43A8ohuPqMaWcHZCs78P7GKqGmMrQtOJvYmRoVtQfPBTm7Ns3lyPK3YpczAUck2iInnfcytljwqMz9rMOUMT0nBvi70uvwkh0anY8510hIgXmHX2MwHx5alruHrhIp9/5iLPnt+m0hJIjkY2JymSOBUVSFQJWiVRKWiZIrYgCVkeKJkUGLdWNFJrhZ6+jvPU9ZECUFHn1H1c8FS1ub/v8lRMUlAzzvX2T2YSCbQvpkpsaIzsbi858SseLY/webg1MVJZy2RcszGbUs8mFAl/SVSG5Kf4YymoCsdCVFEzLyWWwlHe4zmoL+IIKf+uDoFqNJKuf5KdE1LK87gCPiR8hFUkjxkY/GDvxbQUrBP0sYgu3aoE5MGdSimMFd6V1krsQFGt7Fo6LYVGV2uMPUPHIPFDiRfzZw8/l39HCrRN4qEclwSZxaeNZVY5qjxjrtiSAgscVvCnPPJyKYiCX3pNWRPlPqm0toI+7VPLOsof1rvy9FQ82PvvTyYRn3aMn4wR159Rf/nz5O/pO8HFl+fWU+xkZMDCBzo0zarJkE/Zx3/Jx/61H/9B5IllM+eNo4qzEBiXioJFL4GWybNLSpdUJ3Ek5Pa+6KOXibO5Cq9lgNgE4ToITGwYSBayWk9JVJqu46xpOVp5Qpqz6nxf8ZAASuQAJVvMrccY8DEPyotRmgk9cWkwZgP3RjJ4MqZQiJPrtLwc3K3hFNeVuhRpqADlQ/u3XGnKwlaD5enfKBA2geNYFLUxjLIRMMnkToOhYPF3d3a5evEyu7MR0Xtpr6qW1ofMpaCHhg4VAvWJoJOcHORWeoRalESpNDgNVkl1zypX5DRApdytKFAveaJwVgxibkpgnsR6ogt3BCUBWEl6rJAotRKydoidaMDHlhBk/otJkS5qRlVko65YqpY2BJRxxE6I6GGdRFjay/la96nKU63XtVvT36IhqUlZzTXHCz0MgTQkqkpLFbSk7NmmM8TpKnP+QnaslDuxVqyJEAMW6SJpAlYxqIOkJN0GH7A6q2xlp1Ocuk4dm7XlpUsX2JnNaE7nNN5TZaNe2teiclWSdfm7T1R6WyjXLiL32doyGE0G06XQic3IsA1xngFj5XoIX0D1DqcMBQXdBxZy7Qwqd12TgV4pw1WYjRmz56/w5MF9mv2HhH/6LwjTTYI2tD6w/drzTHc3qDcmLOcrgg8y5BMzuK2SC6dIDNIVstYJGbVpOTuds7Oxybgeg6457jwPDg/5n/+//5yz42O2JxN+99e/TW0rQtvB4RMuThzPnt9mVNfESua3zOde9qatGdc1R/uPCG3DxtWrbG5u8cz165y//AG+lTk2P3r7fS7tbXLh3IzYei7fuc/WyLB3fYtV8JwsGs5WnqmpqLXKdkESQWNcnqVUy8wiLROnQ5Yj7/kdWirpG9vnOD4742jR8O79E95/eMw79w74s1+8z0aleenKHr/9ldfZ25zSLpakqOQ+pyhJc8zD5FTmRcTIZFQxrh21lUTFKHDasH+8YGfXcz45dipLSyQ0EEyNQgbTyfbXYCq0sXQh0C3OCF2HDpEimRTToLCl8kC38Wybx8vHvHP3Dr+4eYuDeUc12QLVZXusSVT4sMQvT/jOr3+V3/rmm1x74zX+2Xd/xM9vPGDRWTaqGpLh+GzOaTNn6Vvp/mdfonROerKRHNeOpY/c3j/iuz+7wZP9R1wcb7IxGzMeV6ySJmGkw4zwupTV4BR10riRpdqb0U0runNTppd2OLz5EadP9hm/9nl2Xn8VU1Wc7e/LetV5InchPK8FIINaFH1yJ7lK6EMia7RAdWPCr5aghFTvfUeKHqMt49FY1H6UxmcFMK0GDL/KuNyui3gfaW3RF1MYJSIzCcAYugxTNb7hS89f5re/8CqXN8aczucCa9NO4KopoXCklAgZCihFHgOZK4JCBhsXlcLsIwtcbL1zJI6z+Dg1uNN1+15sSs51SpFQFwXSVAyx/CmFNG3G/UfFFAq4gxhzYJwiy1XkaHVCdQCrzktB1Xumo5qdzSkX97ZRkw3oO+6xN7Eh88C0LvyMbF9zglGSklJM03lvxyA833KO5XoM0+5z0YhSGIxS7U+KiKZp2x7eH2IZ1piyPLworJWOgVI6SzKLqqezuk9iIA/yzAOpY+68N0nRdokLi5a59ajjI+ZHS8DmmCSnwqWrr8v4iJTtdxLFwiRiw0nBWdOStOFyZRlXjtrazBnLheXcRSIOSq1r7vUTiYM8o/o78XQ8kMOasvWzivJQ6OpfWeLRqDI8pMxhi4J+KQWD/LKitplYTyRgeNFf7bEewXzaJ0hBSJO0IXSexSJwtAw0q46uWbKcnzFfrGi7QFqLej+rx2eeqHRt2wf7IBtY54hdOCd5sGMOOJXJixi5gSEGUujQWVfaWouxrhR66NqWNjWQEs65vPFlBZSQJUSVN5hUfoqySW+EVW9rsEY/BakZVxUgalSrLrcCtSIiTtZn7owxgsVLXpSbUlK94ZIgKuMVU5HNS7k6Ub5b0bYtoQT2qiRra1X4X/lIa3/3KZOce5CExxiDTj4b6Jw5+EjsPCifSVCW2ArBeDyasrm9zc7WBN8tOekghlOW87OeoF0q2EUTv/MdPnQisZxST4Quk4ujAmVl6OJsPKKyFq00SWtSniBc1CQE+pXdSBK3lULMkC69Ju2XgxyVJ/euJTc9TycpgWP1V0UG8TlAKVGUG2+e4+hsKQOKYuThwzP252c0JJ7b2WRrd4emTbhaoatc7YXegJTqW+yrVGt6+YmMb11fD9lFRBkymtYMWnFuMitIhnYWrCxrHb9E4YJEOt9mByDwu9JxKh2KlCeXV85hjREOSpJOYknsi3MTUqck/D4K6dy3C8CwuzXh2vldViFxc/+QejpBaeHY2OyzjVa9Y5NEqqx1lcnmCaUksfK+4/TsjK5ZZqdgBpyxFvnvBHivqEaVkHeVJDSSsRkqKlI0JAbtfmLsB9l13lO5McpoUuxYLQPaJC68+QrNk32WDx6TzgKx8tjdKRc+/xLnPv86dvMcy0ajowdEJKLzXXaGAptUgLMBox3GOEajCX/845/x0ce3uL9/n1deuM65rQ2a1YoPHp1w++EBf/G9H/F3v/NtvvaF17l8+RpnTx7h52cwmTCeTplt7+Csw+MxymPHNTfvPub48JT5/Dxfe+FZJhuG937wc37443f58Ud3GY+3aPWC0LWYesrBYsnh2SkPHz1gVke2Joo32peJTYtvGnySexaTBM0C0xBCt00JR0IZS9KOqFxvfpRSbO+ck4pkjLz9/kfcf3LA/SdH/OKDB/zizhPevveYk8NjvvbFl/mDX3uDK+fGKAVN06GVYK+jD31yJJ0PCXYVnq3piOnIYY0CpzhtVtx4+Jifb1ao0Yzp9jl2Ll5iNB5jXMXxopFubQ6yY4hEFXB1hR3XmFGF7wI2RKwagq6YMiQjJ9ukwOHRMT97/wbHq0gXRW0JFfsk5Wi+ZGo8b16a8N/97d/klVefh/mc+eKUZYYYj0ZjWu/58NZdbjw84tKlS1SzGXa+JHUdKXiUEYGDUTXh6OAxtx+f8KfvP+Qv3r7JiI6vfeU61XREtJbVWcIqR8ycOuXAhCXm/iGHP/4p7d2HdDdvc3J3H20dOlrS7TvYzSkb53ZwLz1LqmzvM/vCWhTVPy041pyYSDKxbo+e8jJKIM4Cyx1CNa0Nrp5IoqENrraohclVa9nrfQ83v81oQUOIXwwoScewQBsjHRqsZX56gk6B3/rC5/jW557jjes7HBzeJVFBEoEIlHQzZ66mIDBQpre92qzVnZXAc4s9Lm5CRd8X28paL6F6X4pUmtIFeKoLPESpZMkXipAQuaC03gUeJJ4VrMklE4U3pYHJWGOM2JyoQCWBlO9sTtnb2mBva8bKuBxwK+nYp5L8yPGWcxa1rhyHmPx3KvlKhBTEprlBlU3lT+gHE5bAuyyG4vty/KEShOj6wmRMsX9HzBAJ8ZGs+bl8tzIng9ydE/+dcoymSEaGd3ftgmg9exYOdsegVtw7oeeJBh/o1ACJKjdAhCSUIDbK2k6grHBp5quGjz6+xZdef51rly+yuTGjWc6JXQuAtqBdgf3qtStLn/SJTxU0h83BhgLWlBbo26N57ZXkWVH0XwfaQxmDEbKwhBRkxZ+X9SncSJXj3bj2RTnOK2vzs3iUYLlXhxB+d1JaFAmDxMNN27FcNXS+JZX5SJ/x47OXJ3auz8KLqkO5lLG0i9fZwCpkAo4Eu0I4C9SV64dHFr3vEKJUcdYCvERJVFjDkKZeYcMgmuFFOUj2T8lQ1VDpyv92Rqqy6DxRPUkC0Xrffx+UtaB6w1cW2KA6JAFaSZ6KUpxKRQlJ9euqV7LoKx6fmtMyJCUw6IYNx5+iJCqkLDRE7khoUdIxmWSolMB9dBq2XxcjPsk8ZG0NqcvX3Je5FZIMpJBJ01rLfZFIoTfk5doW+68yDnlaOcbOUTlHIOUEdl39ba2Fu35mpbC15ky0zomKLgnKMENDKVUobpSOlXy2yueugIizltPUkHzAR0/jA8tVpE1BZpoQ+9kwKcR+BkrKhMXSAejapv98V5WEOqvX5N9jytyVwWn1f8oGUaDiIGQ4dArisMbLMKvUtyTXEvSS/AwBhajApTyrsxAppZsiEtUhF1HlP5Gl9DIgq22xxmJry/Z0zKyupCKer23hgJVZQKp0h+SLGQ63P6PhnFVCVxZbOark8J10UArksnQ022YFSolYQvTZBhu6dilYehWzKpqcZ2UsMQTOTk9QiwVF0nw6rqlUYjSpqK/sEZ1BnQZSpVB4uvkJYdVixwGdJJGWgYJGYA3QzzUojsdkpZi2a/no7iN+/tFtjuYnuNkGJ62naxrevf2I+09OmM22eObaVZ579hraWVxVE5IIPZ+sBJolabdcXWsUqy7y+HTFW7cfceXcOfbObXPh+jnGdY2JkbPjY5QWHpyxVu6bTzxqlzw5W3C8XJIijJxlY1xRNB1SEtL5sBYzft2HrBAof4ytMFWNqmpOT09pOxEjuLd/yN3HB9zZP+D92w+59fCQxwdH7GxMeOHyLm9cv4SNLT4qQki5ZrEWBCu5lsQgilidZ3MyYTYZMaodSyUTsU8aeHiyYPfJCecfPGFvb5/JZExd1aIcZRwGS9d1faVWIGAGbIUoeqg+sVdAb20UKKPwXcvp6Zz7+0eEfnJ23mP5/963zKY1n3/2Etcu7bI1G0GzkCp1XvDCA/B0XSNT71NEWZsTQSV+zIps7XK14tHjIz6+u8/P3/+Y07MTNrZqnru8jTMmF/PEH5SKv1GKuFwx/+gGixsf0z54zOLOY+zODm48pkvQnCzRq5b5zVvwwrPo8+cxrkZ1rXDS1vwE2T9SKs79/Ul9sF1kb1X/iuJ2huANlbkoQozAh0Drs9pdcVlrPkprWdtGSWGj0gqroNKG4zbReOkkWJXYqB2vZ86kIXDSLCQwV44YvKheKfBdm/kpwnnrfXQStHiBq/SaZtLKRTjtw9BKOd41kYG83z8VApM/f+jGZJhpto1imjNsLseNfczSdxDK5xREhhRxvO/oYsg8KknCC0FZuvqp/z7WOvLriUX/7zX/rli7MGsPuUXDmQxCKeXZtXufQKf8/fmzJOEgd1hS/yGx2JeCoOmvQfYbWhFj8RNFFIB8/fMBGCXxCBGlFRNnqK0YMolllMjF54Mbbk/JBgr0qpxFUTsTS7voOu7v73Ph0Y7MZzEanQyhGY6ldGyGayD31fRzAoeEdOgcqR5eXeAQiSFJQaWnBcDK56sBQdHrFBbhllxZH9bqejw4xJhpuKu/+pEkBhq+/RNPr/2geppGWVvSaBBUQ+GeZxXPHO/9JZphf+3HZ56obMxmWTEhcjafr1V5VSbGBiFUFqPReYwxuEySFTUJz8RZbJbfPDs9lWF0PvQLQmtN61tRF0qpV+YJYZAX1UrhEOJmishgKY1koqVqn1ugRXq2dnk4oI5UrhLFIQNN1+SKXG4xI4mIGEGAPOW9ZNWfkKLL6xOddemLcciN45w9h0z5Xes4lSqPWt+I/RH0CRFACOC73AI2Aadk+FntDJWz1M4JgTA2+BSptcZaTUfiZLHkZHHGrIY2BNqQ6EIkhRatK5ES1RZCK9cuZ/ZFWnZwSrGHLklbN2CNYmdSsTUZMxuPmHcdNsNM1mE1JVmDkuiVDSq8JpWVXmx2PsbZNQNBf636PLjf3wUr69C6Etx30uhwSmgCbWikc6MdBLJrDsSuIbUNOEeMSipTOT9M0RO9Zzk/EYemFLONDVKSNnz0kR6iZNaSqdxdWe/KgCSCfdK3HgBQwApkgycBUhkUKgbEF2+Y15GSBJsIIRK6VhZHSQS87/Xxgx+qYD4Eus7TLDtiaLFVoK4Uu5sTticSIIdyb7RUGo3WVEZLRzHvQ02p3iOTxGMGdmSVFeM01caE0XiKa8cc+5MewonPncuupetO8T6wasuwTTDasFotBMOsk2CalQzu2p5t4NuWB3fvMV+tUMB0Ouby3i7TcY2yitFL17BX94hHK1b7j2jncx785CdoN2PzasP06nVaqwjGoZKoyqWYCx752qeYsNaRjObg6Igff3CTv3j7BvV0jNk84kkT0Enx1r0nnC5a/uArX+Erb36eV196lmbZUc02UOMRXTjh1sN93r99V/YLTqBxCpoIi6bj47dvcHFrgwvnd/m73/wGNx8dcf/uQ/7RjY/Y2NtjtrXNWFtMNaJTmjtP5hwsWw5XDaDZ2ZhxbW+Hqspk4pQ5XwjkNcSA7wS6ljcRaE01nlDPNsGOefvHP+Hx4TGHZ3MW1NzbP+D2g8f86L0bPD6ds+o6vvL5q3z91Wf5xkvX8KfHtFgiTtazFvxnAZCoFMA3pEaU7i5sb7G3tcnmdMLZMrDKog53j+Y4t49KkVUbuHJpj6uXz3Px/B7OiWZ/Oj4j5HPyJKI24MYYO0JpQ0wdSsYGo3NwobXCaljOT3n85IiP7zxBFP9E/rgHuSRPCCsu7uzxnW98hc2dDYxJpPkJViWMyolNVlCqTKBSAaMAYyElrFaMx2NC5ZgvVjx89IR3Pr7HTz64yx9//y386oxL12d87bWrjLUmdhGlKmIOarRS1Fjmh2fc+jffo7r/AH/acLqCF7/9G1STMce/eIfTNhCOT5j/xQ/ZOrfF9JWXOffGl+hODmWAYAlw+kAzJyuUgDaHRtmOa8jwnR6YLAGozpzRoISHmG1sSJHlqmWxXBF919u04mUhy3NXBmfEd8wc1EZTuYrmpONs3nJ8uuTi2PL87gbf/vwLbFaR05NjTlcrkgooZamVlVk6EVaL06zwpdHG9oWrBCRdBmyaXioYdG4kyXV4Sv69kLPKdcpqA0qXMHc9gOepGWoSXMf+uWKbC2E9lgr5WigpcF9NsoqoE2fzMxarlcz4mNSE1BI6T/Bx+KNDXwwlF2P7Lke5twyJUX+E2fYX31qC0JQDlv4MS2KlhvOIarjPJY5ZT0ZK5jVIwGQfWT7nlwSCMgMq5eHdfoDvFvSBfJ9n5T0xeKwSuKbNBW2ZzaJARxQdA1dH5YLWWrJiBqSHSjKNPimFN5q3P/gQlSK/8Y0vsbu9iXU1p2fz/j5po7PqrMqXPKKTjFXA5JEIIQx82zggT7yPmesonxXzHipBf15Fvd+MCuG/6oQPsiCFn50FeVK5ujlJ+WQ+Uj5+7d9/+WN4gfrkb/NTvfAEHlWQGlisFml6XU/AB3zb4SqTxXT+I0hUQigDtRRVVVMwzqLKFalC7JOLojRkrEx7V1phowUiTllUTPi2JSUJUExlqKuqr6QLDKtwVPJnkmiDz/AzCZu0UdhkMbbGmFVWvCBXhqQNWTahcxUoRRs7mbobpRJUZZGAkIn7Kjt1pYqsbMqWbsD9qrVVM2SpCpIE3loJNyZlHCKpBML/Lrd6MHqf/F1KGaefQCmDrWpcPe71w0MXUSlgK0c9G3FyuuLPf/hT5vdvs1lb5osTrjz7Ak1QbM42WJ6u6HyH0WPZnETa1Uqq6dZQuRFd14lUdJFfTimrjiWsUaiqxoxmuNEmTp/1il4ykZUcIOVOWKQP6pXS/byRqLJKGNkQreGt126KwMt6hyLv1f3zpeygsaOaejbGWsV0auisY9kkqloSmtlkzLh2VFbl9GuAcBmtMc6yuZGTK4Ukgfm+B5UTZhSYLAmaBSF0qbqsVZnLNRMHa/okbXCjSYxeEsZOgaKlbFUSkIxo4g8zhfIcA6NJ3svvg1TrUgioEElJukYxJnQI6BgweWBh7Dyrk4bLe5ucrBpu7h/wZNmQoqK2ToxxGEjDxU0qXYyvCAoYDWDRUfPkaMG/+t4veO+Dm9S2RqsJig7vWxbLOZf2zjNyBhM66WwpQ1WPaNsGYw0bGzOWqzkxRaw1mMkYcrU6ArYecfXKVam0a8V4OqGuHSpFTucnbGxsEpLi4cfvsLz9CN8E2N7h5IMbLO/eR/PnbLz5BtX5C7jNDRl4rASypF0WAokK5yo8iYeHD7hzcMDtg1MmS4PiiNlkSUyK5rRlu7ZcvnSOdpV49PCU+dkhsW3pmhUHTx5x594j5osVW5tTTledwCxNEPVEbTHRsGwDR4sVnB3y219+kdeubLC9V/PP/+Id3rr5kHk9w1lZKdNUc23nAi9du4Yi8cy1S7QBrv3//oSDuWfZLKnHNT6ICtEzVy4wqS3tas7yyQE6KerpFo8OT/DHDW1UfHTvEQfzJQeLFe/dvsHH9/e5s3/AwTLgHDyzOeJ/93e+zZvPXqB2iscrj1Iao0q4VhJyuXYqJIxu8d4w14YLF8/z4tWLvH55l5vffx83GTPa3eLBwRFnyxV3Ds64cbjkmQuPeP7KOS7t7uKcw1nHG88/S12NUMayWmQFvqQRIJHIn/q1GE7nezce1fz4nY9499YDPnr4COc0TgEhklRF6zsWq2O+8PxlfuPNV/gbv/ZlzOKELq2wsxki9pKo/Irl2RlXd2d8+fWv8rkr/3/q/uvZtixL78N+0yyzzfHXu8ybtirLd3UXurpbQAMQQBImADaCBKGAiBe9iKEI6UmhV73of9ALQ6KCDEkhkUFGUIIkgAJAtAXQXd1lurJc2pvXHL/tMtPoYcy51r5Z1QV0I/mgVXEq7zlnn73XmmbMMb7xjW8cclxELp69QCfJ1rPrK37wyQs+Ob3kB+99zB//5DkfPD3lg/fe429+8/P8ha+8zpsP7tMT6boWqzW9SoFDVCgsupphb9/n4rqlOq554+u/wOFrr9JcXXCxfMLhr34BO9snHNygfngHOzsgOgfaoG2BwktPKCUUKTnY0rmTmhQSFSRkNBeNk6GHZG9UlqhPYgzaGIy1lGWNsQVaG5HoHlzF0XvqfITGSTYSaQ5ptEJZz7r14D37wfG1Bw/58qu3uVUptk3HVdfTacmkFUpR6ZhUv0x6nuSUxpBqIJLkqyLdvxGlSjXayuzEhpAePYjimUoo9ghGqgF8jrneZvguO/m7dSHj8ORavZeOnpg/B6FgIs2rlfK4toM+UERF56SpJiHQezd8RZVFWYAh27vrASRXdjeIGhDOMfhQn/pv/nf+nsR+IflISmffQnybmLMGL73zTkCXg6iQzsZ0T7tU6ZD8N2lInADFIFni3POrricC8CoNnArDwXnaphOBDUAZi4nie2R2jtEa5fPT5huUu+xdj60q7j54yMnejKZ3/Of/xf+Fv/O3/iavPrzP3t4ekPp1eZ/YAhIoTssJVVkwn89YbBpcn1TMYkj1eHFQfbNy8CVxljD4mHpn9IfTPWfr85WXdI63VF65Y41UrqcZpjorVAyz/K+7htn+2b8arjisORVB+Uh0Ad8F1qzZrDasVxu6NuC8EnXZz/j67FW/BnmyXPyTou3cLVZJoblIE4tDMyiCQeLg6YRkqiSDrYeUs3Q2VQN1KASPT0HQqNgRCUnxScWMIur0t2Y0QOkaPjshxTEK1UZBorakQq1c+JaDlF3UIq/CtFnl/1JAlJR2htRe2px1OaEoDD4YFs1GNvHPJPj9nEWXXp5T3kqNClm5aEsnNRZJ1ycEEGnWNK9KrpYNz5+9wGylAVzTrNioClPU8j5JA75rG+GFBy8GQ2usUpRlkeh5aaFGUdKoa8ukdkyqgmldUhZGDhuTG/7t0rYYAzTF6NgroaoMPVKMTgY+Mqbzd7d8Hpad718avjhSBXUEo6XJmg9UMdL7JF09aNUD0QsdbgdZkVs2aEpy8BNFS0maApqhDebwjDmFG/PXzvqJwwQKspLX0c4qZUCiBtpfhj0+tVTyIKbPNhqCBbxPtUZChtF4bM5GpkA7ai39JaIRZoH3zKuKo9mUG/t7LFvJYuq06CKSfQ8pvY2CLLeTVdryulRaeuA8P70kbFfM6wn78yPmE4OhR4eOQkNpLdZqyhKMttSTCX1foo1mNp+iTRgAg6oopC9Lon8YY7HzgiqIk1rWlcy5cyhtcX2gX7dszy6JTU9RVFR37+J8y/bynP70jOLBPcz+AZZ9Ms0PHclUi8goMz2xlr1JzbQsWW5bLtctbRCq6NRa5pMJ7bbhW+/+iB9+9ISZjRjXEl3HerPmetPSugyqSMZJZQdIidNUVhMmkym4llmpuHM841d/4R2WiwblIj+8XNMlic3X7x7z+v3bPLh9i67z1NMZN27d5N6NI9bNOYvVljCtRVmJyLQsmFQF1mpenF9htcL7wOXWsWq3rLYdTy6ueLFYc7rY8JOnZ7y4WnK1bfE+8sqdQ77w6Caff/U2h1NL123wCL1HbKkaQQRlEJVBWWvS1E2Ufu4c7/Olx3f5zW//mJ5A30mB9boL9MstPD1l27VsXcflumNSFsyqgtv7c44Pj9jfPxwKlGWOMhVyBzgatpKg7y8uFry4vOZqvWF/Nk0OaiRg8EFkve+dHHD/1jHHJwf0V8/wzmERWtvQZ8F7VIxJ+UqzbVo+/uQ5dWGlJmu95N33P+LDZ+d8/72P+cknC66XGyazCV98fIe37t+g0JKhkD2b7j3xcBzAZMLBa6+iq5qiLJk+vMt2sWB7fU15eMze59+kPDzBTw8p5hPMpJJsphhNiInWlZxwcbi12MCQ6jCUScpdKZOf7JDSChVyoCJeuFJ66Eo+fBkrWSzRa03n/2jjQhTxh6RRItRAFTHBoWNgZiI35iWvnOzx8MaB1G4k9kRpS2xSaDJGows7BCo5sIiJvqe0/H70os1QfMzOuZ+pXvLzHZc71W/l78dwO/+9Gl/L7vresdnZCRg+b3z/3PxzPOyQc86YMYueAxxj0ElwaFcIASBLTqmh4+NOyDF6wPmAYZeWtuOaDUHG8HfZaVa74cfO2+e3zmyPnbEaArl0Bii1u/FgqCxXO1+k8/5TzAilhAWjldiToV0BpCBqZwgHZsVIPcpUrBwgph8O2RelNHfu3OWgKticPePH772H6zpeuXNHlButFb8m9ekz1lDXldDXvVDDvXPyiUkBc6Tnyb+HPkI7Y5TvMg/qIIGf5+ilAOJlX3V8mx3GST4vduZ0nLCfde2ul59+5adW0k//KQxSziJiFYaeh/9G8dGf4fofoEbFDs74sOCJKT2bioxz9iBdEYbFkyAHmr6nsJayLChtMQQRJnM1tbiJISg8CudFpUQcJptSaVK0qdHoaCmKisIUw2IHWfC5W61JRW5Cg3GC0KjEwVdZTjcFVYpBAUyiW5UZW+DV8BpjGGR2c1Qs/V469vdPmM8mRAqeXixxrqOw1WiMYjZYO4vqpcDkZcQ9OzZap8ZiIaeFRZfbhUgfhWCvtGZeTrlZT1joFT949oyLC+kO6/qG614zm05p2p6+lX41C99L7ZASmpvyHg3UZSmbNjnCIJS9g8M5h1XD0cxw82DCrNKUOhKMHZxiUufkIY2ego6MlA39alRCJgAVAmMn1Yx8yVxGEo1v16CmQ1+hCdER8Dij6PF4BXVVU4dIFwNNGymMprCCLIbocUFR2So5VtnxTqleI9CZbNJEiTJGnIwUfORUdOauBpKR30FQhKcr1ibErMU/eF2pziStWSRzEncscA5OJWCXgRzuM1HPFNJoSxmP0SHVYUDQiTduku58Wq/RibTxXllyY2/KoxtHnF4taPoerZJSWIySIByeRA17PqOp+exTxtL7yOnFNZUvqDUc7d3m4e19jIpsVjNu3b5DXU+xlaCzxliqqtoR51A0mwV939K0DUVZoZQhBCisoLtFXScnRqGVoW22oCJ1PWf19DmbT85ZPnnBwf4h89u3uPVLX+Pj732Lqw+ecf3d7zL/0pcpb9+hiDHVKbm030V2I9qKtm2xRvPw5CZv37vL0+fX/PN3n1BMa9YK1tsVX3l0nxuHe3zy8XP+63/+L1hsG37l7TfZ1x0TA/PDfRZdYOsim+0KpxQYnaQ0U2BqDTdOTrh3+w70Dd12iQodf+mbX+fI1rxz+wb/+3/023x4vqIPnr/yja/zK199ky+88ZiL6zXzo0Nu3p3wxcev8Ox0yYfrU/rjwyTnrShNZDarmM0nvPvRJ6BKIgZH4PnpBc/Pz/nJsxd88Oycj0+veHHdSj8FY7DNhl/6/Ov8nb/853jz0QnN1QWXlxdweEeaO1pL6CFqBVa09jUGEwrJeqiKQEEMntfvnVB88wv849/7Fu9fNpxdr7h58wZ98Gyblsura55dLfjocsW9kwXH04KbeyV7Gt549VUODw6TemIiKqUMm9SS5aWZnFkl6jUfPT3l4+fnXCzX7M1qbHIWPJYQNK4PvH73Fo/u3KDam9JcKVKykc55ehcJlBgFXe94erHmYuNwLNg+vWI+qelcz9Viwe98/8d8+PycH374gtNlYDqd8Ppbj/n1r73F5+8dsd2uUPN9rDJ4LfYqKFBas8FjD/d4+Ku/jDaa0LY0L8748Hf+MX7bcuvtr3Hjm79AeeMIrwyx8/iup1kvxa5qTfCGzC0fCroTkBCyDL9hCCZjzlwrhbHFEKSLsyxAhi0qQa+NKHIaW2BsmWhO2fYK4S8HkC4f+EGn7HOg8o59CweV4q1be3zp/jGv3j6mJw6ZM1WWogCqDNZYlBUqrtGiDJqDsNzrylhDdhkzoJWd5Ny0caxPUYMNJf98SFvkc2UMKMbzWf42Jkc56xMIvfFlEdn8eVopVGqwOKDUWn5XTCp0YfHJT9BGSx1fVYlQhC1w6Vliov7+FJ0sfxcZgFR2ZmOkG+fapN2bzGeJvC6DUaSWC4N9T/9VKegafpr8D6UU0afPMfz0e6aZkX408r0xI4sgx3faFkOAZbVQBIskDhOjUKx774nIWS0JjPSMIUobC62HAUlHNBFhnDTrDe987vPcPT7iR9/+fX7rd36X78xn/P3/8D+kqGsms6nUDXUd0Tmms5r5fIbWhvPzc5q2FT/IWEKyK1ob6aIRI1oSeTtBY/5nJt/KrelE8cq1LnGIwPJ6HNd1qnz62fHAAC78a6KF3SD257wmDq/JQat8ZUaSqPp5tJZnFQQ5YD4lbfBZXJ99Z3qEu6usZloXQzd4k3tDGI0NL09ORi198KIgYiymMGlThZQilMVuEr1KdPkFwVZGjFB2cGslWuyeyHq9TfVWPt2DbDznvRTs9h0OR12U1FVJ27WkevTkrGpKKwoSRCmYzwZfqEp+NEiDoWNYlGNkqlL6MjlvBqwVnh/KotLhhBq5r+FPWkjZEu0gB2iFChFjpQll9MnJ9tJRVqVgKirFddPhQqRsDXv1lFsHhxzs7dNqQfOrWc3Z9YrL6zVKSbNKraVHQesdA3KUjM9mvZX6oSj1Mjp22BiYGri1v8fD4wn3b50wqwqsjhTRYutK1NxScy+SMRqRFTksJNizQ9PGru8lm5YRlF00QmeKlUn2KuOqpM0pTHZwdNEzdZ5J7ygKQx00PYqmj0wqzXxScfvebVwMtN4RS4NRhiKpluWGWTZl4MTI2EHKOA7Iiho1/lHDIZkS4DKdGbVPl5O26wmhGYOQ6AacGGwyWkHqQMYC+nSAxXyupvHJ0t3B0wU36ur7HFBFvBcaWO97XOtFnSwGuuDwWvHads2Lywsu1w3rPuB8xBNxO4f6EKAAUWlBWoIE/hE4OTrgr3zzIb/4+DZH+4dM5rcprPTIcKFFaUskO+oyPlkiO4txbLdbvOsgBnRSk/JeqG4RhQ4+1dLkuiCLLQ1lUXKJxu3tceMv/zrF1QoV4fLd77N1Dn3nLvf/1gNOvvA56psnRLdLBcm7WFgwveuJwbBfTfi7f/EbfP7BTZ4//y+4aK64XCsa11KXt3n88IDf+LVfYfV//r/xm3/wHf7L/88Ljm8cMptN0MqzbR29C/TaCk1HaTSG6+sr+r7hjduHfP2tx3z97ddp1xv6TvoY+GenvPbgLndvnDA9nvGjD95j3Wz4u3/jz3Pv+AZd27PdtFR1Q1VV/O0//w0uL645e3FGs1kwKSvK0vL8uuFf/uAJn1yv+cbXNIUuiUHz5PSS995/n4+ePOF80xBNSVSW6DwmtMwr+E/+/t/gV3/5K3z1C2+y+uTHtG3AU2KQDFEfEopvLbqwBCXUxaCBII1dFYHV5SVTE/ncK7f53/7P/x7/z9/9Lv/VP/tDXrx4Rj2dMt/bo9eadR9ZPrvkw0/OuHc04/V7R7x6+x7T8wWm+JBX7u6jZxNYV9LbJDWCzOh6TJSctDo5mBfs1YZSR3y0aDRGOUKUho+zyvD49jG3D2bQNWjE2ccF7hzUHM8rFDCZTmmD4nsfnsI/+yNuHR9w7/ZNgvOsNxuen53zo+cvWG57XDEl9qc82Nvnf/LNL/L6m4+YTy3rswuKmNSrSM5uShGpKJmnJkYsBYFAAzz89W9QlBX79x7Tmch229K1LVoXkiDJdW8poySKbyMgMtTU6gykJGpYiux0ymobY1FZjMMI5VMUGnNRvZG+LVHRe5n3rMw47BnB8Qb0O0ZLgaLQcGcSuV0FbtTw1q2aOwcF84nFzg4olKJQmulkMjxDF+KoEKlzACaOXG5lkM9F+cycgU4KZpDUZ+OOHO2OCRsO2TicLQkCE7Yx6mUfLwsQkFowxMxfyGDap3wCpYaziSg9RJQO1LMZRS00xlwPhxIwLFPstFej06qyb5ro42nl6DyvSShl9EvHRsVmcGgTbSmm+880rBSoShNghvOINA7D6ZXOraik9mP4rBwg5CxJ+rgwBBJexA9UROkdMYI41vzmsyuf9entMFZTlNIgtvPbIX6EBOgNjlgKtFUOlF8O3DSK7XrD5N5dfuPv/Aa/9Vv/PU8++pD/9D/7P3JyeETvPKYoODo+YOoC9XzKarOmaTu2my1aS9Ds835FFDCjVmPiKPdQGaIktXMH4gdXVTXUaPsILgrQjBmfS/argA7JhUxzGkc2xuBs7gDb/xZXhoHlc1IaNIlYdN6z6ToaNI33tCHghjXy2V+feaASnBPp+uSoZVRG7zyCVmMHVcm8SPZFxdR7xIjiVghSSMbuZksGU/7LEOllg0wg0RrAa+m83btA7wNtu8W7HqWki70PXupcCKhyJxuUnKKcCTFJ3i87vbsZN2DYEFI8GAUtIm29IZ2XJl0hGRxtcL1wLX3sATXI+4oBe3lcf2bMsrM+8zjnjR3UjqHTueupBAKbpme5bWnaNY2LtM5RTSZSaI1IO4ZtJwXhmiQhpiB6oXKghoyAd571ejMYEq2TkpqKNE1H02nWbeB02XK17NAROg+2LFFW+rnk96yKIhk2eYasSqaNToFKTN3C88GTDfVOoDIgfolLG3OKWKX3ltXRRc/ZasPZcsXlck2wkaoumYQJPioulw3vfvQJXfA03g3qFlKIZ9Kela7IpAI+bcqENIxrIzu6u71m0hH4qXNxpKlkHm+eu5gyF1IDm/aDHZEi50YEQ7JAyL7KAZ9SKWCQQKUPYzG9aLRLRmroR+Qdrk+HrDI4v+V8sWKx3Qwo7w7ERk7ZZ6Qu09+ImeaWdk/0GB05mJbcONzjcH8PXc0GaUvN2BQt1fumgDOhoDmmSnMp1GFBO4Xm6CFKbVv2EaKJA50lBij35uiqYjKb4d77gP78gquPP2T66ivYw0Mmh8fYwyOpe0nRnmSjIjEhYTrPUwx03nPneEb/yg1+9Z1X+dZHVzy93mAV3D2c8ejmEY8e3OQXPvcK7XbFb377E1Ztz3XnpCEnCqUM1awkc7Q3bYPrW2qj+KXPvc7juzc43qvp2oUI7AVD13rqScF8XvP2/RvMdUfTttw9PqYwmq5tCa7DtQ1WK165e5O3H93lJx99wrc+fk6hLYUp8MpysW5xLy7Z/+AJloLoFZ+cXfPi9Iqzdceq8yjdY3RgrzTcO77Jq7eP+OWvvMnjO8dMLVwFS1AlyrrBKR3tXl7jagiiZd14NAHvHTp6LJG3Hz/gxaLh+cWa/+73vycH4rZNNLIUAPWBy3XLk/Ml7z89TXSiyIN7ByhrX8ogZocnZi9RZfDLceNwj5ODOfNKnGwdxS5712N1YDqruXO8z8GkxLVbMlLrXc/Dmwc8unXAybzG9T2dExv00fmCVefZ+IjvJRt0tVhyvenZ9o62i9y/eczbD2/zlVduMTWR6HpCSP2IklOlIsLzV0mZK8akRaGk1mQ6o96rsUoTug1Bp5qJVB8WJV0xHhKDmRmdOJJ9zAqZ5D/Jzkl2TfPe253RHRpZTF9DvWhkpFrFbKMT4r3jtRYKaq04rAqOa8/xRHE4nzCflEzrAlMU9B62QdE3PilXMvRhkvf9lER96qU03G3avznLbMxYvxhSIDK60smOEYd7Ro9ByajoOfjn6ed5vAYvRXyZGIafqfHlgwCNzJOiMALaTqqasiiSzH2y84rUpiF9wdCjJAsuKBgK5YfPGoY/kDddQA+vHxnmYjczdcekCVOplhIlPlnckdTPa+SlOsvIcG6rPOY5VNv5GWRg2qMTV2jo9ZJ8F+fD4NdrLfLNVmnJkpmxNjMHNC9FQiq+NJsqff5LYzM4U+IHxhiZTqc8fPgQo2B9dcX1YsG2lR4xtigIRmhObdfRtm1aI0mghPgScPrpS+1MSF6HwwaEof+LSW0EXpYJz1mUnZ/EnQCFXX9xDIz/tNdP/VXctdvjg0QtY9Z0HctNw8pLHdmm6ehcGCjRn/X1mQcqbbsdNrlGjQhzTHzZKAhIcD0uqYNlSWEAojSBzBzAvuvHPhRRVK2kSZE05MsIeowR18vr266XiN5KwNB0Pettw/X1JU3bYrTCBY9zjt73sriVoq5KMfxRlIeslToFMW5xNGBq5/BLi0MoYlLA5/FJljMrYMHY7VQCmtJaVqst21XDtu0BjS3KNAR/wuECPztQjgFirqMhHXiyQYwS2VxjLdZYjIkslg0fn57z/Y+eMZ3PUUVJPZ+j+14WmvK4AoIKqcgQlBK9+6EOKGoiom51dXVNVdbYQuRstRJa0ouLBUTHpvHo/il91+H7HuccyhgCim3viFGyDvPJVBxlIoVRqftJQnWUoGheJfpVBNe7nTFiQNWiVsNGVkM6VQ7ljCZ2SrPcbtm0DV5tuPfgmBu3DlD1lOV5y+npOT/60T+mA7oUDFklzTNF+lTm0g48aUNRSCM6mY8cUKX6lJcOs3S4h1Ee0xgz7AUhZ+skwSnrPmR0GoQPr0f0Kgzvo1Ow4fB+DOhiRJpxpT5FPslK54A8UxpFxlu61QcM2paYcgpxy2q94MXFGdebSO+kRknkuHP/GEXWfJf70oKqatHLUjoQY0/0HbFvpV7Gi2PTh3ws66Ee0KiQ2zwMNlghh3ZRVrhe4XyT1MDyARBQMWDDECXKYW4NkUjjHQd371DOZuw9fJVzW3DefZcn/+x7/PI3f4UbX/wy7cktVpdndG2DRdSSpNdT3pfSaDAktPpyu+ak9rz5YI//xd/5q/xn/6/f4w9+9DGLTvO1h/f4hcePOD6Z8Xf/vV/jl7/0BrP/8rf4J9/+Ee89O8cozd58Tl1XgsT5gGsdz0/PmdrIrdtH/Mf/3l/ic6/fY1ZrzpYNRtWApQsB3zZo5Xh4MOFu/Qoxaqamom1auq5BuYZ+DTo4Ht4+4ptfeQvve373//Rfo5RF64qinLDuNlyfrnmxWIBXRBdZbzqKyZSi3kPbSLe6pm2XvHP/Bn/9V7/Ov/PNX+QXv/oqrtuyPX+O13NUIepr1jDUDwTECYl+dOPEpeoxyTEKGrabFr9Zc/vx6/ylb8x54+EjPn72nB88veDj5+ccnJwwrSx7paKvJqzalu9+eIpqe165c4PLqyVf//pb1Innr5UBZYbgKJtORSCEHtcpXn94l9c/fs6dwz1OOyGNGW3p2iXzieHByT6P793kZK9mu7ocEOp2u+UX3nrAetvyW3/4E373h58QjOXw5JgXy46zZcN7z04ZqEFa41C0XWB5fc3f+Cv/I/78O4/5lTfv0y/PaX1EqQneGpTVaC8S/ioVgOsYxamLQajEtqK+fRvtW9zlBYs/+pdU925j9o+oju/Sr7cDQDM66y8fGXJ6JbZCyshKYDfWZ/gYIXiU8ynjq1IPHul5keWAQ7Ivzvuhz1hMEvL5jBT2X64JiWjdUWvN3FhuTSw3KsXxxDA/OGB/PuNgUmOqgo8XPefrnsVmyWGl2a8tD2/tUVpRbsttB0iqXww2NwF1yXBkANLokAA7JJufgrAhs6JI3+du94qhR1c+fmNMiehMNR+pynpQahQZ+AxA7V7OexE18QIMVsZQVoaD6ZxZVVFo0KlmzahIVRZUZUlVFngdh8AsDmt7hNMHlzZm6qMfpPQjmQ47LgjJyrvEwggZYRjGQgE6CmiTpeMHvzUKuJUBJJt8Pa0V0RQSvObTQEuNsDJmkCfPp2hI2fxMs29ahwsejxfRGqVERKGqJGhAzo1MfU9EssGy5IAnBw9JOWkIXPJIBa1wMdL0HRfnF7z1+hs8fnCfo8mE3/yt3x7oXVpbNIqr5TXbZovzgcKWA11NAFoBMXdyayIckhsVp5q8rECwGxbLLacWHbgkvb8TgMXhZYzwQf5254CMOy/+N4wWfu7LMqqkojRhT3T91rUsVmvOLlYsJoGm2bLdbNg0faq3/Df77D/N9T9Mw8cokr8j2gEhiBOcixBzfwevJJIPKPbqGcQO73o2m9XgfForKIPKmyCI+lbvell8qUB+SKdqkhEOtH3Pumm4Xq3p+lZ6hWiSQpVP9KKx/7RJ3dshpIUoqTilDEYLbU2p8NIza4VQmkoSOqzEWUUNQxwIeEKSNxbEv/dCRGoCqYZCrny4fNrAvXxlyGcHIdv5b4xQaE1dFOxPp8zqiqooqeqag/1Dzjc9a39K3zqUixJcRUEvogJTlcQiSn+FASnX4/unQy3fgykKKXK0mlFGD04XLafXW37wwQsyxpE1wkOMdJ1kk5QyTOoaa1MBe/BpjhJbP9HixFCGdBAwIFPKmAGZsNqQ9bxzcJJ5xz7k9Wbouhbve+Yzi7YTnCvovef5ixVn52tWV1cUVUVZ10nGUgxA8CPvXSdpXhLFKQTJ/AQ8SmUaghkchSyzK/6zHtGvHMiqSO/TXokRSOIOIR+m6ZDyOY2fgq8g/PsQ5KzWVlFYoU+GEOhTXxwpkJcGj0EFUZ6LChMV0VZgKignxPke1X7FfFpx7+CEVTzlw/dPcW0rs6/1SFXUCpuCFUF95b51CsZilO+8V7Sd53qxYrPdUlVTtA0DHSA3Rs21NkobyKIKydvQStp3gk6OkCfGgPeBIlMbcj8FFQl01MU+2hRQzdn2DZvO4z7+GBU8s6MDbn3lyzSV5mJzjammxNaBi0QzQHVpb6k0uErUkbSm1IHV5Tm6b3jz9gm/9s4D7h6XeK35lS+/zWv373H59Jy6nvHW49f5X/+Dm/yl7/2Id9//mN/61h/z4dk1l6trFl72Wmk033j9Nn/p62/zC2895GuvHWDoaK4cRtXoVDulosgmRyDaOu0DJXzqfotyDSp4CI7QdyxPT/niq/e4f/OEj84W/Oa3f8QPPnrBrf19YnQEIj7OxbYZT7Q9q+2asFlxd3/CO2/e4QsPb/K3f/2XuH/3DscnR6wurvA+4oPCWEGHQ5T6BQYlJOEWJfx6ROoU6RDXmNDLXFrL4sULqrLk7Xt7/O/+l/8xv//ue/z2H32f//5b77K67jkNUEyntH1g2zr+4I9/yHxScvfeLaZlAa3DNSuU26J9gaHG5c9GhDhC52i6jjt37vHmqxd89fUH/Le/+116XcLRDRYXF9x5cJNvvPk6t+/dYzKzbJbnKGuE1uMi0+mMr7z9Gv+rvzfhP/1//DY/fn7Bx1crms0GraGalGBKnPN0zZoD2/PWrWN++dd/gX/w7/817h/WuPYU37V4DLFOhelIYbuAzZqSmqIqcU3L4oMPuXjylHJ/j5u/+g3CpmX78XPO/+E/ZXKwz+ThQ07+3b8KdY0vNL71o/+SenGo7ImHmOgjBqWlBkUlJF0sXYkOyc4SCUr2ojaZ0gpKWbIguVIWH6Ufl2QqEnUtnxRaUVmLCtIXY2IQRUVjeLLacrYOlAvND9szbj5tmNXvE0zB8vAOV9Ue373oqLxjDnzt8JJpWFH6DYQNhSlSDewEtICJNmXVolK05MylZmKq5FBqgk4ItJIGxmP2Q429K4g5sYrRIqyT5W3zuWi1TbWrOvks4tyhPFlASJsiOfSJjJX+VsUU1BvD9598wg+efMJ62zO/UWEwlHjO1i329Jr11hBj9oOM+CpapxqXfC4nOzXYrQSNqZga4sqLcpZD64hRErhqkHWhlDS0Vnbwl2OUchNDqtkJIuVdVdUIwSYfzUCy3xptLW1w9L5jtVqB0mK3XC8VZUrEw3V0CdCKlEjrgsJaAomOaDVFKYXspHM9pIJPlTUIgFwEGuSGEsMi2+78mjSnOoGgTsQ7FlfXGBV587XXiV3PTz74gH/0O/+CJ6dnrNqOrDJqEyA9vG/cDRIzVyIH/nlWEsdGhTRXOaTRuOBR3oFRKCMCUL3r6YMEUjkQDCEStFBBX0bwclCuIGoBOj8Fdv/Maxe8+JNeq0I6l0F5oYpXk4pbt27wxvSE7eyQq9WSi6tLTrdbir5LFeKf7fXZ16ikNF5GxkFqF2KSTQ1JNjjPsxyQYph73wuSqxRd15MLyTNirLUgz5lv71zK0uCHzRIAF1yiaEpviNxfJXPc5fdifXIhvdx63PmclAlCNuYQoefnzOt+2PBiyAg5wMiBym6+e1wNilyDoka1hBh33pgRxfkTApZBmm54fUZC0kFCMmpIQX9hDYVS1GXuqWIGHjEk4CFTvZJTIRSeRM3b2ZwDbz/Zc1OIOokxZtgkCiXj7iQY06nwESO0pRghJFqZUhpnCmmMphUxODp6vHNoLQGBnBsys4ooznUaG2WSCo3RVDoj8+KQZ2RFKz1kFlCW4GtiCFSlxhpB6b2HwhaphiBSVRVlVaWsnkyUpGfzmOvRiOQ1FqU+ijT+IY5zmaUplco1UGmOh6wIdN7hvNC0iHqQOwQ1qKVJAJCZ00igEqSrvTYKXWiRR8x0DK3QAUHhvKClkZRdCUjQbEpiUROrKZOTW3B0gLl1jD3Yk74z80/w7QtUBGvtUJ8lNUNp+yealBhlJcXHGeRLCLM2Nh2yZqRVkAKVnd4Amc4oi1KMcUxBkOjjm4RQBcl6aJvUpGRdxrS/+9VK6g9MiaqsBLzbLe70nHC15PDwCF1VBK2gayUIjOOxs7vn857IymtaiURzcJ66itw5OUAVGmzB0f6cwmg2TYcpCmxZcPfGMV9+4xEn+1MKo/ijH3/Mxy8uOVusmdY1h/MZv/z2Q375cw94++ENKtVL88RoiKpMNOcI0ZGdqKi0INhpfRGlbifvAWLAdY7J/j5lPeXXfuELrLcdse+5fXjI1WbN1XbLohORBKMjB7OKqiiYViVfvH/MFx/d5p1Ht3j7wW2q6QRDoHVeelShsEYyI1nyPUTh6UeS45bneHc8keBaCo/ly7sOqyKFjrz14DaGQKU9zWrJi+s1l+uOPkaaQrG1iod3HvK5117htYf30CGkWjlBs1Vwg+0ajFck1UMGSmu5eXTIF954lX/+nR+yaDy+aziYVdw7OeTzr9xjYpVkNnZtcJBaxb1pzTuP7/LrX3ubu09e8EcfPOX09EIcj0LTB4UqDcWs5PUbU954eIe/8LXP8fjOMTMb2GxTpiLRqHYzr3K7kqk1tiLontA1bN77MX4+h8+/Tmgb/HKBP7+ku1hgPcTzM+zdO6iixKcFO55Tahj9fOSIU64HcGxY5AlglFoZnbnFyeVKWeOkUJepxaJ+JEDiMKcxDKwKm0RODFBpRZXUHxeuYxkiugtcxTVPr7cUWqPKmqo4wVUlz5WhazfYvsV7x7TdUPZrYn+FRSEVRhalBXzRma6Mog19Ul/S1KbGJB8jcZRlHMwu5yE9qxoz8xKQKAprKazdcUYjhREFMpMjBpUd1zC+o7JDvd5AERejCEqEBX787DlnywXLrWPKVFTOVOT9Z2e8ON0wNWdYLY670gpb2MF/UUPtFQw1OSloGtgVUTJIIUgdsdZgjbQPMMj7xCFQSWd1jteSD6NI4gtJsrcoiiFLE9O61eQsv0YXBeuupe07Nq00R45Benl5JRkXrxQmnesBx6snNziez7l5dIT4xuIjbpuOpunEHzNj7LEbM4wzmFklwwOM451m3SgoFFg1emlaKaqyZDaZMJ3UZLEFsXGG3G5j2KT5vdNN5KEXCEalcyjR3XIzxB1XMLt9Q4PVvEdVtpiRgUKS7H3evH8yjp3W4KfTqDvPP950HP/56fdIHxKzL5sYKtaWTKeGQ22oZ3uJae+ZTWo22+bn3dif+frMAxWjDaQUYUAKcoOL4DRGaQqjCdoRtBz4JkRRF/KOpm+w3r6kvuW9FITnSbQ2ZSgSTUY62YeXApUecSRTPVmSo9WEqOhDoOlbDGmza5vQAVH4oaowWqd6CTmQpDts6jI8pETFOGS5V5vQjRBT47qdQGXgzWp5KpB/ZhqVH6JxuXYPxd1icfk+/Ty/ux5pXpLlFOpTUInbGCMuqTRZK8ZpWmqmpWZSFOiiAC00LE0KRgxCPQKwekR/SOickm7YKpeEayhKocnZfOjlR4jylwEwpkBrizElGVHwzg3PaG0hPUysJhBo2wbneqyBsrKCkkWPzoGuGmtvUCopgmgmOvfJibgYRC1Ga0xRJCMbU1BjUWg26w1d29B3HVpr7t+a8erDivl8PhyyuwbPpaaiMg96CIBVOuBBE9CJoigUwzxBMWu9G421Y8PL4N3gJ7io8UECovzeUtgOOmX2jFapkN2Lvn5M/PkAmTtrYhRpadfRO5fsh8YHgwvQelhttrR9pHWK7WSCqyr66YR7X/wyByfHHJ6ccGA15d4Bm8WST1bX4HomZTlQNlUYUaTMmyY5QPRpJ6f7t7Zgb3+f+XyPejJhE1INS+7gG/wYIGS1PK0HgMN7L2vb2GFNqhjRpUKXFRiLo4eUYStNwfVPfoLfttTTPSZvvYGtK9Tlhstvf49wccntz78Ne/vEyQTXbYghN8c0Y9CvxsMva9ekYqA0ppqr5ZpbN25wfPMW2lrq0tI0DaBYbztoHZUxvPbwLm+9ep8/9wvv8Jv/6ju8+5MP+cF7H/L64zd49cE9/sIXHzP11xi3YbW4QNXHxGKOx+BxEBzKNZBQbo8S5bWYuOrJDhgr46eBLjh656imE/6Df+fXuTmf8MV7R+zv7fP9Dz7k3Q+f8NvvPsUWlrKuePPeCZ9/5T6fe+Uuf/nLr3H7cM7hbMJ209NstrSrNbqsx7FIKLr0y4oiDpJ7JjBsl2FtyBynzFiul0JUBPumw62XHNyb8gtv3Oerr93m9ZuHfPjsnPefn/Pe+++xbnq6qPn7v/G3eOeNx7z9+iPWp0/ptx1KF8TQE31P9I5MDJEzILnnURGd4/7NE/7qn/9l/um3vsN7T55zsbjg86/d4xtfepM//7V3qLotofPSB4Eo1KcI63VDWVpeu3vIf/Ibf4EPnl/wz77zQ771/fe5XCxZbNZcL1bsTae89uA+/+NvfJHXH9zi84/v45yn3W5ofaRQaZ8kEEcrOUO0VQI+YDHllOg82kY2734PZzT9Gw/pJiX94pzCe/rnL2j7nv5H7zI/OSTUNa0yae2OINOAuCd8IyoJ8HMWIOZ+ZCqBQwlYyC5NDoZjcOLAqMSvtxalTAJCMmNCTmBN7kAvbyCBiqE0hqAMawdbH+lDpFsvWa/X9D4wPTzhS48rTvZvUyjFM/+c6/6KTxZrqjXYrSGsPLrZovsO4zoK3WG0wxs1rKvQtwO11Oganei41uR+bql+boAfRJ3Mp7HKtsdqzWRSM6krTOyH4Npam+pZFWVpiVERgjT8816+epcYAs4ngFDGPiTmQN97zq6WTOZzDo6POLprJXtgNf/0W3/M6qphu+qZTuZDlkBZvbOvdjxNpfNBPe4yDQqRnPchUupAYaAqRBBGa41JwZRgQ3IG5whgDKIjoU+sgOQn5VpeWVsJpI0JzNSaxXpJ03Vs22agcvch4MV4DzbVB0/vGn7jV3+JLz9+lXu3btI0gdDL+fH87JwX55f0vaco0tlvkv8Uc+ZoDJzDjmOURyfxLFAEShWYWMXMGmqjqesCrSJ+uaZrt/Rti9KK2d4cPREgcb1e41w/eGwD0Dhk2lNWUmdOQbZ1Y7ABGSSIY+YjpruLyXZraWmR67hjAlyiVy8FKjnsGoyr2v33TjT0p7h2oaSX/jQJ8FhbMp9WHFcVm3pCYRWV1dzcP2C12kJc/ek+8N/g+swDlcZBDJoYCwoVRZ3IKDamZ931bNc9l82W1vf00fHq4THzsmQ+qVj1jTiupJY4CZ2OMaSJU+RiY5/Tj3FMA8YUefekQmKthWoWZSMEoO07lusVs8lUqFBFSbvdAGK7rUmF0hKBEBEZtuDDKP2a068mOy85jk8oBkEOHjRG2yFlnEhfCX1W9NmB5eXF8fOvnSg4fa916hSfkBUdM9VC+jlcrVacXhjW6wIVIxeXFyyWKxrnKMoCbQy6qCBIh1fImyxvMHnmqJXUMaRAReYkEnwHPeKMGqGRCbqQAk4FSpmkBJPfc6Ql5PFzrqNLXNXc3VVHS3A9Xd/jdKQwEjuJBCCElG6OwdP6xKEdGhKwo04DzidObQg7nGSVdP8FITImGRoFITwfEDWTs0BAjANsMvwsI2N5rvM6zVSwoeBzQHkkyCS9f2FsqocyNH0KXSOj4xDGgFwpyV6JMy3dYkn/DU4oQDGKUkxGa2NdY+uKcjqF2R7RVmhTUaqSsqjYr2c0aLAKUyru3LiFtSU46I1G1TXzGyeiSNN1Its7oI1pGce8kneMsdo5PIIEIm3b0XY9ZekJJpJd2YBCmxGhQyWRjJRdEodBgIus357RPpVWbb6RiELZiunRMVdnv8f2vfe5en7OG//T/4ji9k2ePf2A9ZNndB98wvW7H3A7wvydtzl853NcL5ZSG5fhrmRLsoCH1jsHlI9C3SgLUKKiF7Wha7bEvhflq7JOa1HhUKxWW0z0aO358it3eeveTfwvf43Z4QF1adFXz9hsFkTfoWaHoraVlOMIEZwnNBuUKcFYVCr8jzD0f0JJ5iyGSNQBq6DrWvoIte/5xbcf8qVHJ/jtim++ecTZ1at898k1xlimZckXXnnA8Z3b7B8fs28c3fqa84sXImZRTLHlRNbVQMtz6eAcsyZaS0ZPMo4etB0y0y7k3jGSeSEGcD2u24IuUaZmuW4hCJXtq2895guf+xytKnjx0Q/xfQ9R8fiNN7DGsjp7RlQGXc8o5odit6M0tlXsjEmaz2DFgTLG8Maj2/xv/md/j/PLNdfXG157fI9b84pbM023uBB6clGgU3GwT/frmpZV01AWmrtzxd/8c2/yl7/+RTat43q9ZrPZMptOuHf7JvNCak7OT88oJns4F6SmcrNB24pyxrDndQK3glYEC8uzp7gXL+i+8yPmVY2KnrM/+hb1ZI+42cL+DNs7fPA8/ae/QxEUxSuvMHv9LVTbDgI0ue2LUqSsde5WnrwenUCytIaS2Qcy5Rb0DstEegul2k2thebWO5yPQqXOxdMqU3zyWanp0BDkDN2bT5gg+wMTWaxF3ODV1z/HF159xM27d7h5w/LsZMbFcsHzF0/ZdIrWQ+9eITRbYtcyC46ZCtQ6MLEttfKU2jNVIqGqtEjQhyS2UWgrzXiNUNpyEJrXbEzn01BEryPW2OQjZAdYo7Q0rjRGU9flMJzOC+vDeUfT9MPARSSrIZkCL/RJH2g2nWQ0gCooYhPoNMwPjqnnihgMVTkRoEsroo5DNj8LrsSdrOIoV5/Pj3QHUZxYr2CL0MEExzdEowcxFuf7jIYy1FNECC6tHe9AdemolfpHOdcAzHAGklRDi3JCpsRHZWTM8SjXse4NrfdSz6omlOWMyWxOG7Z4H7FG0wZN4yDFSeJTWZMC4nTmZFA12eyXa4vSWvYBLFSF5eTwmIP9A7ZNw9nlGc1mzeL0nGdPn/DJi+csVis6p/FRDXYkZ4+MMWhrhybnRAaGRUz7SSmFjmYAa17K2qW/8d7vUNdyFWuq90FJnVgSvpH5Gf2G4ezNbzaA3D8vOvm0D/nSm/zUnydrnn6eat+0xihDWWgKO2Valtw4POb55RL01c/57D/b9dl3pg99YjBF+qhwAboYebFtWWwaFqst1+sNjWvpfY/uFfcO96kP9xNNJqnAZCMHg0OZU885jZ3HMqfLAiTJXPl5/udYRCyDbAb99cz3TOh+LmaOcVg4mW2X0eNPT/8ItI+RLkBuVJUzQcPrgdwMKwcB2e4Pm+lnxCy7NLCRyZApTQw81fEwUoOhapOcHk4CkU3T0nQiZqCCFAfHGFP8r4f3iVFQ/VTCjQqQO81qn+h4yAHoQkCnQrGgEqqbT8UISkmBOT6g9U4KcwetCUniDpRIYqb5FIpRmpNCEw25DcDQ/JEoxj74gO/HHFUkZ9YiXe8TbXA0ahnzzalaW4z1LX2furnH3U7wERVH3cB8sCfzODQpG7KKqeA8F7u/BHxlpzpGqqJM69LQuH58/93O7yGMtCOlUFEQl6xKF1JBqyDtCmsKlClRRYVJGQPmM9R8jikqVFGjygkUJbqqqaMo0ExKxXFdY6IUYhehZ2ICZn/Kk7qi6VtRS2HcZ+S1GzNmlSlcuzYv8cetlYAk5e9zk1dNEiZApXS5zE3MB0/ObBGHz5G1FVFRDweBUoaIgagJLmCdw263bJ4+p3vyCSp6WK2InSP2nths6J4+pz3cx96/l+gZJql7qTGLuWNzxkfKQbFsQm0sMRfiQsoUxAHVk7hL5tLEyKSSLumlLTBVCdGz7hqRio6IXHCS8M6+IVHoF9lrVAk9G5ynhGSixnkA2UfB9fSdYlIVzMs9tnGL3Z+wX2nmJ7el27pSPDg5pDqcU8xq6FsCWmSRvcPaXLSa17AaDucQY5KL31kTO02N8oE9UBnUS4sHgieqkGi7jug6Yt+xNzPUdc28mlG520Tv0FExrwrJUHQtqpoRlZHgLa2cLFeq8jjkw53kIGhFoQveenSPzS3HZtNz8+YhVewx7TWd70VulFKeNQFjRBGQ7SNSd2E0+6XlYDahj5rN0T6d85SF5XA+xTdL+s7TOo/Z2RPJ3A32ZTy8MmoOcbWmv7xk/eOPKIsKOylgVrN5fg7bjsnePq7xuK5jfX7FZLNFp0x1GmzGk2uEEeJLP9+ZpjynaoQd8utGUFgNc5+dwpBtcMy0zVRvg/gBrQsiDKAiOkgfDB3HzIVK1O6qsGhruXfrhL1SUbgN+04zmSoeVDMuy1s8a+G8h4uupdk2uK4l9D19EEENxQZtPFoHlI0UJmCVx7iW4HphSZBqArROwA8k3WJZKyHKNCSUfOgJlYC3TJkTgrFENJ0bg7wACWk3KDPS17NMtA4RgxnowtaURCfiBsF5Oi97QdtSaMLaUtgyIe5iDGKqO4mJci6F85mSq/CZbu9TUz5yIjjtg6gIIYuRSH8hUZUKqGDThtU7dheCEXl7odO7YVGYKOebALjJf4sRmxo9V6WFpIQWtUEb0NGjXYFqLaZ1+BhxQSNCllpodkp8ss4FWid/L7VCwipQO2HAp32n3W/zGlYpAzipZ3QusN62dDiurheslgtefPKU7UayesZYfCfKsYMNSb7VcKbjB39PD0EdI+Ur252dm4kqjvstjrLQ42GqUoZc7SymXcPBjj3L7737tOM5GV/66fiaqHZ/s/PnyS8bzzYGgCPXceXnstbivdDI19uGzvlBBe+zvD7zQMX5rUTg2rDuDddd4KJ1fPvFBeeLJRfXK9x6S981hL7hfH7Ol197xHxvxsSW9H0nxcSpSDjrhyebOMgeapX4/kqn4lqVggyHQRFUKgKMQtVpuw4XHNYaDvb3sKl83jmPtgVRaZre0fWdGAJjEoIkU5PVkuTKExFGxBg1NMAD0gYT45eDiChV3IzNWlV6njgINgxT/KnJ3qWD5c2iVA6IEoqhhE+tVEQbRegk/bxtO+kn02qCguttx7Jz9CGA6/BIoV1hElXEGPq+x/uertsmNQ+D1lYCNgXeRWzUg8qJUCOQQrPEzTUmJq5w7pMhTrfBjAGdMUPH2RAifXLQTFEmdEvoCDrKs/YlFBWYmDIfXgIso600wVIRFTtCcAktVEMPDh9yp2YlktXO06cMhFIGrSyFQ7IqCpzLKXQGBDLGsfiQGIc1EWNM/U/SgR93mkPqsdpR7c6lGlGavhpphV3ICiiKkNCx9CH4hMp3fY8hUgB7s30Cmi4YmmDRZUkxqdGHNzDTOXq2T3njJmYyxUwnqFL2lCkqmNRpr3j2lGHPWk7Kikm7ovItk9AS3ZrOdmxuzPnkcJ9T17FcL0WamRQIZh5/rqdJh68a4nfhuhpjmM/3mUznVPWE3mc5USDkJm1xoDDlsdKZPulzHVlyonbECbQKGC2ZFE1BdLA+PWeiDbooadZrFr//h1RPbzE73GNjSuJkzqQs6Z4+oYsdl7Zi//XXKPf3JDD2OydDmi+RUh4RhSGzpNJ6hZRNlOBleGUKYKMyeKPxvocgEr0KR9e1hL4Vp1tLAa63tfTFQGOC1GUpFC7m4D01RM0S2VnxKiC9L3JWKmQirKdpO7wxGALL5QITHPPS8MpXvwbbNX69Yru5ot1es+57lK5kbooJNnVhF2coZ750EhGRYLkspRP42PR3dHgH85YP2JhR/USt1QqHx4cWTY2IJXhWq6XompdOePGFyDlvV+skXiE2Ij+liqOdVjFnHl22uql+RuF7T+s2nOxNuXVUoExB13W4bU/XOemRoI00HcQSoie4DoUnqoLeTnB4VN+hNteUukFXM6YHN5jZmuh71ssF/XZBjGBsnWyNkTqvosBYaZBLdmx8onjYiC4Cym9x5y94/jt/yP1vfoXy8T1mX32VH/0f/hvMsuHNL36R607hlks2iyXz2ZxiPmOQbAxxCPYlUt51oBiy8WK30zwZk/1SuS+pThYnNp/BxhKDEiUnbZKTKXZ3F9HuIzgX6fseqyNaQxPBhDhQEwexHCfVJvOq5LX7x4T2mutPFri+5837d7h7+5jjt97i95cd7647/vB8wUXTseo6msWW9bYntI7QaKYqMlFwSyvmyjOJPaa/wjcO3zr6tiHTl4UMlNBqZYTaFhxKgylsOsckixB9SI1m5fm821Gf9JkOPT6/UioFxXoISFU2BzoO4JOKOknyazZNUr4KAV1K81uUxkexdzqExM4wKRBK7npUlKagKKwEBiopsiUHPzdJ7LqQgjLhefggDaGl4WfuESY1KuK3CpCnovhd0pS4F2A6A1BGy9mok63UQm+uCmGVCINAAC6PImgJKrV3bLqSdeM4v5rQOM9i09L2nrqqcN6zWm9YbTu2ncdoS2Ek+PG+Gzd9TM0/dappTGeHSedU9vgLa6nrCXsHN3h+dkVwkaNZzdXVFVeX5/zkJ+9zcjjHFiWHh4e8WL9gs91AjBTWJrZHHEBiElhorcXaFNSmE88Hh/f5XuRrEK1OwY1knpIfMcRaUm/qUEStB19IDQwECSZzkPtyLTRDnPJT18+LIbKbsfOi0UMRe0my6845utgzqWq2qw0XqzU//vhjzhcrvDI/+/3/La7PvkaFirWPXPeR7y7WnLae885zFSbE0qIOp8ztNbFtCU3D6fKCdz/+BBd6vvn2WxhdUhZqqIUYotOMKqvcm3WciZiHdkihiNOgjSDcZqgHAKstZVFSmgLvPG3bSz8VhUTsbU9VGApjpIt7DiV3ApJ8DUGKQigpXUKTtCE4j3Tu1ILAw2id8lvo/Gzjr3f8n+H6qSAlPfW4sDLhQgphVQSM1OO0fc9m09KWBYYSUxZ0vfBrX79/m1s3jzDWcnm9oe0EHZlMC/b2blCVBaXVhKT8FaMWClZSXHOuT3OS3UtGYQAQZyapXEiwqQYjKBkTJVmuYVg0Pgb6IL0T6rKmKkom9QRCkCLuUg50paVhpk7BWm4OCZLaHQvNxzQ+KcPkYxDlN5+a5wXQqkRri9VW5i3v9x0kP//MO0fftziXpbNzxmPMrOxudnEkJVgaU7skASlBhorCkgsdVTEqmKnM3w/C+Y5aE7Smbbv0XorLXtHYKWpywI27j6gmNVVdoqczKApiWWLKMgWhipmK1Eox05qKHhsdBR2HXY9e9Phtx/OzFzTbNd1mwfr0OfNZzZ07t3jtwRGTIvKj95vUpEpqElyStnbeyfgSCTHR4ACMJvQy/vLapMCW68uU7Gk5DlNVk0qy4DtqYEopbFESgvRZEqlocZYxNcGUoCvKuiSsV1x//4+5/Gd/QDy7YO/uQ5HCfXHG6l/8gNnelL1Ht+ivr1meXdO3PebObeb3b8N8Kr1U9GhXxmxmHParfC/BrzaaoESNLFgrFMykfCMvDug+EJN8dww+Pa3GBzVsaeUdMXqCtxQalPZSD+d1oufoVLSZWfIiKqDIyj5p/dkSo5KSX3REA9Gk+QhAUNh6n+B7eqVYbj2+8fguoIJG5EwtRtJgwEQynkmEY6z9UIOylEoHb47YFfnnonCYiB8JJVXJThdEI7QTYmrbqQKGlEHUBSoaVAAVnMjHAyEaSp36NqVnjkoLVS704MVRl54iImOduzuoCE5bmS+t2TY9UXX4GIi6AA/aTghmJcFl3w7gVbSG2IlDHlTA0hF9S+gbXDWVe03qYyT1y6ClR1cwIjwRkaWVeukJyOYjaMkcB53kxNeeg7sPUa3i1q9+ndUnHxNiw40vvsrNRw/wZ1csnz2jXW+gqjj62iOmjx9QnBxJT7NdatcQvMWEmudzZzxNd06XgbpidFItzMiuSqL7MZ09iYrSu57W9bgYqIPHhFHwISP5SQsU5ZOlTIh7Fkvpnef4xjFHJ4dsnOI7f/THPHnyHGs8PzyZc+twzusPHtHN9zmazPjG5Abx6AhfVFy7nrNtz6JxLK63tG1H1/V8f70mbDaoDg7dHrMwpVaeqmxoluc06yu65aXYcqUJqkhrNA51XlJ/qQY6jmNLn5oph35nbOOIWnvvKcqCsrSJGiev19oOAUAMbicjokZANk9E+l5n6rAWKrpRJAqX2BupiYgYFbl9vMfebMK00LhEBev7sZ9c5xyuD2ilhf6GxbvUj8skJN9L7Z1kqEmZg53FIZtRbHAaKzupkk8jtDYVFDiP75uh7iJnGVzv8TFld4iE0NL0gTY6fu8HH7DetHz+4R1ee3QPTeTy+oqzyysWyzXWCOUoBwkhBU/S+FhAUm00o3LbaLtBAhfnAh89eYJte65Ojnjn9VcxGiZ1SV0alqsl265judmgjDRlDMkHiSHTsqX8IPgRtDFkYQo5D8rCEn1ku+mHMoa82fJ4hqyMqZMNi4AyTOZT5qVCN1tCTxKjchDNsJ3j+H87u3f3n+rTP/gZ18+IXoa3SzBjGMG2uCNsc3a95Pe/+8f8wXe/z/c++oSgDSo1r/wsr888ULl2iksfOXWRZ05zhWJpDEH3QAe+x7UbtJPitSZGrlZrPnoOX3nlMdO6pCzLhMzw0oAL4jwqaaiE+qisTZ3TbzmAyeclatD1l02e0KwIqD5NuExG7zwmqXuEncLC4VZ25jQjDfnfu86U/CzTU14OKuT28xvtHBzju740prvF9D/rGoK5/LcpZTMcOjEmhzxilVSfFEZzUE85OdijsBa89DKIMTKtDfdODjnY3+PwYM5quaLveoIXh8R5LwVy20aMmx7vVxTcxohf4VEKysIOSmq5Y7hSamxWmAKVrNR2rWB/vsd0OuVg70CK4HNtSaohMVlIIB14+VCU4roUrAzceRkW5x0uBtAJAQaRV9VWMirWDqM/BqIqITVyo13fs1wuWa2WCT2Ug2w2nYzI/y6ykfDbEOMgxpFj1szZz8hKjAxFkjmwiyESUzGvT4dA21kRqvCRs+uWUNfoGzeYPnhAWVUUVmHLaugDVCi5C0tkGh1VCNR9QHdbcC24Le16TbfZsrpe88H5GdtmS7vdsD07Y39vQvAeayyzacXhfI42EoA552ljxCmhCfrohoBNp7URIigngWXvfMp+5j2RD3i9M25J2SvvCiUurko/R40IT359HKS/k9OuRG68azpi66jmc/T+HNf2LE8vqPcqTGnxKX3tXaSelMJ71pkOkYKSwakbDzwiwh2OCjAoU5BlXyLqpSUgbxUl4E5SaJKFkWxbTMYlpqyCchGiT4h4Sqfn9BS5Vi4rWrHzu2QP0h4b9qYW1ButJYDKfHVjh4DDOwEhfIjSZTqjk1qT+ZZSCJw/a9cRQDItSPA8BOt6nDP16fEbzIZCaQu2JKMKu3RZ8lim/wxObwxkmqPs14xU6mFchxmMMCqh5c8eAy0fc+2jEyGGKGOGMkSkEarWmdKqk8x8st3ypEM3dpmiVJsWUwPUfGrl1wzzKV7qeI9pLknZCw/aFphJjTnco38a6ZqW/noptAtrWV5dEQF7MGf+zhtU+3soYxJtdFiqo10bnnw8U0afZOcPXp6B9OtRICGmutCxHk/UoCqrqCyU0md11L5Kts5oNdQaGpO+MutARyaTiqqueXF+ybMXZzx/cUZZgWvWXF9eslm3lAf7mNkexeGGev+QejpDlZKpmlWKk6MZTV+x7T2msmzWBe22pWtrVJA6t65RBF2CtkwqmzJLGs8IgGk79gYprcVqyRo03mFcpFOJDTEA+GoI/HxyznXaSzbJ6CqlRgqWSnY/T77cgoAR40C/NG8546yDAT2unYHMt2O3Bv9Ha4yRz9VBxH+MMhSmQOsCbwNaGoYJ+0ApRhMtEWrMT5aVxPS4rgf6eQrm4i7IG1IwEsnMulRPQzqvldiyZLNXbcvVZsNivR7O/aZtaFsRhREAWg0CRy7dZYi510sGP0dF1/FElnvz3tFstxTWMJvUHOzNiJRUBu6cHNG0W67Wa8mgJTBVaz1kzGCku5L2xVgzkmneku2WuVWf2mgvg5nDHYpTia0qKAqCSeI9Q2TCy/9+aQPvvD3ZNx0sz0+/YPdz8zr7lHF++R7Th8ZIaS21qniyWPHk9Jz3nj6ndZ6ishRG81lfn3mg8u4q8rwPPO09i2qKKi1TY9DxlGa9YXP1nKtnH1Lpkkk5pSxKlusty6srnr214MGtIw7291iuViL3mibZqFRXYhLyHKMEKuJpyvhpKeqLPqU7k5qXRLei8JQdH5WKsIKG4AImyAHe9qLKYUslyEOUojOnEJWKbPHzISjAA+TjXg1lRwllDBBHyVbYCSjyV0hH2QBxvRyovHSlTZC8pJSxkPS5GAD58jEMcsFFYXHB03tPjaIqLNMIrqw4nM0oywK8orHSQK8sPW8/vMODu3d5/MoDPvzgIxaLJa717B/uExR8/PQpV9drmq5L8yOL2AN9Osi1AqOlaVVpFGVRpAaJalBr836sP8gyvt4HLuqK2zdvcXR0xM2bt+j7ThAp56iKEmsMvu8SGiFHoXMJ1ddIkWLweN8J7SMNX+/cUPxmUkPPnKbWSlOVZfJh4nA/EiAnKWGl2Hbw4cdPWC4XLBdLqrpkPptw/95NppOKqixk3ysx7zHRhySTlDMwyZjmup6YjYIG3w9UQ2PLlKkQOkXbd2zbLXUHrvU0W89i0xAPDbO7t5g+ui1UyL5jrmCqYI/Inu8ooqcMjsJvoWnw6y1XZ2esliuuF9csLs64Wix5fnnNk9WGPqXTY9MxLS0fPjvnnXfeZFJWPH54l77v6XtH0zQsiSLTGyMh9oKwJZnrEIU6uVEVVWHZtn3K0gW0NviMQskg7bh+mc7gU+HuTtFkVuNLczI0SQ2A88TWY4zi6LVXOD06xLc9k70J01cesF1veLL9PWZuH1VMUF7hdQ2zA45ef0R9uIcuLa6RAyLbDJPsuEu3ogBCEvLAUpQT6TeRfh+iFPASMu1G9r5OAbwEM+Joy7GuQVmMteA7CA76joAmpoZbKtG3Ygwio6w8RsWx7osor4sK0bJIHax1LR6h1uioUHjwXvoeqSQT3Tfgpeg3mkIoPcYQjYFoUuZUjF6mnw4Hbq7tQ4QjojIEbZOTJCCRGaDjgGg/JSqdUihbJmXEguD7JC+siCE5wzoKuKAVIdghUxBiSI6/xmbbrhTYEmULCbSCBAQmSm8jUrCQiKGomIKL1NeFvO9N6jEi3EakiatBYUAV8mwqYkl1CEUtAiwqEpQjN5xMGqsopLdRVIaopUdEdD5ZTVJdkeRZzEBOM8S+F6ER5QkHU7pCc/7e+4RtQ9t5zq9X7N0+4ujRbR781V9js+zo+iCiMjEFY2lfKSU2R2h5wkMOSdgkG6IhCCbf/m6YE2Q82XUMJcscQ8DGyFGtmdaGsnzZvcg9sgYBzJRps2ZUnCwt7M0qCmv4zne+z7MXp6y2GyZ6wuZqw0cXS77z/nPq0lBXJcf7J5wcHXFwsMfR3VscHZ5wd/+Ao5u3COWEXhuedUc8X3ecbzueXm3YbFquNw3hacvxZMpx7Xg4maX1FPFR6D1G53bNcr+zusKkjMa662idnKkq9ydJe16T6xSh9ZE2jV9hNaXVRNfigvRnC1l6Nu7W4SV8ImcDk1mL5L5zsv8LZVM2N/kPKdNSVkWiaStUlLYEtqqIQN87iq7DKCsKnLqgrESm3/c9vnfJXiu61MdMztFcY2MT5T5gdMB7nc02hTFoKz6HTlQmAUsS+JfUSEX8x0g9DgqPZMeD8tQ+sC01XgUWqxWua4kx0G62dH0vNCqTqWkiGeyC+EEhKnovc+J9lPNd64EhkWey77skQNDzxuuPeOf113j7lQe0mxXtZsntUrPebvjk7Izvvv9haiTuE4NAbHjGGEJUQnsMiZ0RpZbNZMBK5a8duGJnO0WQesihBjaA1tSH+zgiK9+y3myp8RKcjbHC0EySFDzKld4432D2WcmfN34z9nlhtBPDXaVJDckI5PdJNWDz+YST6pB/8v4f88GLCz65WnFwcMCsrphW/3+QUfnWYo0vSkJRsQ+0F6dsL07ZfvhDbu3PefvmMa//0l/jkxdnvPfxJ5xeLqRY0ZRcLK452qu5eThHkVPOwscOivEwzwpaWg8ujsqpvRgpnEsUokC3XkNCPabTKb139K4jdJ7oI0ZJT4dCG8qixLmG3jjhgBsNqYO9cL5JTgcS/KZDVAWhmWVuIjFIUZoCpQNFYbFtRPowx9TfIUNIpLoV6fT+U1DWzvVTAbSc3amgPF9qBMbSgWuMEeqbgq5vaXvHpum4Wl0ymdfMplOCVtiqFKTBed5/8oLr5Zaz6yXPz85Yrzdsth03Tw6pCstquaTpPC6OwgGifCJzEZB1XhYFxigsMaXO44Dyp7sfnNTgPLasiAjvVxtF1zVst6tEW0Ia8eHFsdeQ1bSs1ujCJueXgTLU9R193+O8BCtaaZxxhDDKSjrvhbdNIJqYAAZ5Jp/4mOvNms12S9N2lGVFjJ6j4wM611GWFlsYVqsrutbKwVAUw0FO+qyysFRFNdCeSmPFQDuhx2kt9TouQN95mq6j6zfC/U7r22W5Y+/xLuB6z15h2atq7s2mvFkXKN/St9fYtkd1LbrZsr04Y71aslpesbxasN42LNZrTldrms7RdA7nxs7DRVlRpH0VrMZ7xydXS+5cb7h/65i3Xr/DZr2hbXu224bFYkPnHL0PFJX0iJlUJYvVmrbraLqWprbSP6QoEqVWgm0dU8aJMcuSsymyvzwq9MKLJhD7HrxHJa40SKCJs2lTRLpG9t3hzVvcfPNVFn3Lj373X3Jzqinmc46/+CbNs0s2zRKPZe/Xvk79+iOqk/tAQWg9+KzKlwz10MAuOVyp4Czr+UQka4WK0hcgeDFaBnGalUpOaUblIlmxzeoRZY9DliA7MQJmZJkCFVNXcK1TdX2at5gDnoxkZhntoYgtHUiKkIQMgjfETG/zXnjyusBqC8YOhkVIlOolmqVRKYQbgjm5Xx1TZ2WCBDwZrfN9osOKK56N38DaVwZMmZaF1J6JIIhHRRGMlbNSQRTnNmqhqAVSnY7WYJIiobHj+0apdQnRDAevgZQ1DVKnlT7LCKSNqBWl+1Q+eddRgo7kbGgUxpbEoOl9TPOfzymL2qUFaLFZUYtzaYxNPovYfZWzXq5PzovCVCXnTz5i9ewZrta8/ht/ndh1PP3df8WkmmLv73HrlXus3n+Py/fe5/3//L9iW+5hb93k9q9+A7fZErxjlL7IoGwG8RgPj0ThGlSUdpgAKcoeHJZcj4byEBTRtVRGcTirefvBDeb7B1RVhUn9RUwKSKyWteKC1IZmVoTrHITIZFbR6ILrxZqPnp7jgqecVajCYnWV1p/cakPk2eKa0+srtIL63YrJZMpkMuH46JD9w33m+3vs3brF4+mcV+oJzatHNLqk8XD6IzhcFRz3E754bx+IiS2YUPBxR0MEo2NyeiM+pkonpYhxlB4OPgMQ0ATFxXLD2dWKi8WK6WTCjaM99utSmA07WT8YEfDkCqcMX1Y7lD3eez9kryT4lctkFDvkpSYiNcakrGiqBVVTsQ1aazZNy/ViRb9dM5tOOTm5iZVlz1CXEIXSvF6vU8AqtKoQHT52Q8YixpiK60MCD7LqlwzeuMTUAF5459LKN8RY4GPkZDYl7M84rksuzs84PzvCaC2NUXsBKoMx+CgAA2RWgk5gYvInQvJ9tBHmBePlnXSWv3V8zJ3bN7lx4whbWPrE+Ai+p9CRaWE5nu9xtnZ0vssWmyFvrHUCjZEaIZNUAVNtUYGl6TqRnw5CZc71aXn/KQVFIeCUd0IHjkrma7m65qpZyvPFpACmNXg9gnJ5f+a9qXa+/9dd+WzbPXdf+n16TaIlZ9swmUw495EXixU//Pgpm95xdHjI49s3+Nwbr/HG48f/Bh/+p7s+80BlGSLWeyw9bn1FXFxSLS+4ezDjwZ1bPLp/n1u3bxCc4/L6ilXToKqSUsukbptWUnxdL46eUrTRyYGAOLiZE260GagzKbxNvSQkE+OjcOJ75+m6fpCmVakpVUyIg9ZIxsUkTX8VxNHNBfmMdQXZjOSsyK5ojayR5GykH4sDKkXnuwWlOS2ZOdv5T/91V3zppRkpSKv0pcW2E3rH1OMjSsG3i4HOe9bbjourBU3bDQW4wYtzH8IZl1cLzq6uWazXbNuOTdOz2GyorMF1Ir0aEalim3whbcAlo6qUOKwm0fFSexZBjNOlM4UiQnQBW5agNFfXS5brLUVRsNy2FEWB1hrXu6HwMsY4KLfZpKYSY5R+kknxqOt7CVScdGZ30adsS8CmhmNSBC+DZ22R0tdCuXDO0znHcrVhvdnSNC2TuhLkFCXOfehlXPsWazXWSNfgrPqllYgrFIWltKUArEEQqMxzzb14rBHEtet6mrZj2zSJ2y20umwwshMXfMREh2nXqIszyuMDYrehuzplvdrgmi1uu+H67IzNeslisWC53LDtelZty3Xf0QdB0DKyY42mMOKgRe/BSJ+Q3kdW24ZN09B1LW3b0nXy7BmPGfZFmt8s0SwNWn3qsZEEFHSCDlWmPub0+c5GiFGcTC+NDCEMaLBKlJPd10mxpohsxKjwnfRUCHUB85n0FOo77HyCr7YEr/EaZneOmNw+IjY9SlmpQyAOUp6Q/LhdZDmFVypnGtL34rjnzAEJjc+p111EK2WCJDWDJtVA5AOCbCOyTVGjglyiccnP40/7lWRqWc6CMNqD/LtsF9KXGkQC4ijT6r2g/MNrd+xLRkMYbZjQ+JLyUvTEoIf7HP4mBy75r3VeMWOwJg7HTi1E4oerzMnPVlAZ+bvhzsnRR7qrHGiq9H7jUCh2llqyHS8xH1SmujC8RwbDZDzUMK/Ck8/27FO9pGCUSs2AZ36fYa4ZUd9POQ2+9yhjmNy/w+TeXfy6Qc32qW4cU1QVttC0Fy/ol2uuPnyCuvMQfXT00ucNR0T63JcecxjLdLZFCZ5yb4o8NrtrNjuwwhgQUQutpdZubzZlPq2pqgqbHEWtJJtgjNhDHwImBSoqKkIve2Vvf8LTRUPfblk3LYVRoxOe78CMYJyLPb0XNcmm7VhvtpS2YL1YsH85Zz6fcbJaUu0fUOzNsYcnzCZzJqaknCiOzZQbEe4e70ssHQHsQOXRKjeyhBhdsi8Rm2meWokCYhBgLLiQgKXA2guNeblaUxqYlJbZpGZaWSprKa0dFZIGatCYrcziLc51ZEBApjKNv/PJj5DsTw4gh6a5AakF1SLBbE3KwGTqYYDruMA5h1E1e7NahEdIALBOdiVENpVJzAWpvfDR0/pmFFQJga7vpVYkBMZEUcxWYVhtknEAl2SzZXxVWnfiK0y0BIBXV1cUVnrzWSvnRu8DPqQsMrkXDuP9DXtP1vQQTOUlFGUdF0VBYUVuOlPMInGgyypSu4qcHdnBHLJNGCmq40Yb9gYCVPoQd29ndCRztKHErimdQXCF6x2hF8VDaw3ajfZkVzJ795P/VNdgH3eeadf4/cw3ld8ba7lebnn/YsHHpxd0znGwN+XuyQE3jw442t/7s9zRz70+80BFaYPpe8xqyfN3/xV79NyqLf/gb//73L5zj/2jE9794fc4npQ8PDmki5H9vUNOjo5ZffQB14sl53VFv22GDd8mmGDInigx/Cb3ntA6UUG88HIh5Zc1Te/ZbFqurhd03ov8YVVBkEJlHQym0GiriVmNr4hgPF3o6ZUUTKqBa51rBmJySHhpUrNOfC6aygXM2uih/0I+HIxW6BjpshTYcH3KWdv9cUzOoCJtyvyL8aDTKmaJe+FKu064awT6qGlDYOsDy80W9+QpRmenKPOuLX27xXsHOKKWHiidlyDAKIU1Vja80hRlAYNj5hMqPwZzqHSfOXgp7dDHxOTnzHtWi+PRdIJgaKUoy5K6qrAp9dr3nRSwpWyR0Ts9X1LwJmyPKMWE3hN8oG96cuNNcWblub0fO6LLGgalFVU1kSC3d6zXGxEScI6y0ExnM6bTKQojTnvX0jfb1IRKE1QcgpCiKAZkUUXwSREMkOaNRlNYoYWUhaGaTHEu0HdO1EYQByj4IE0xy4qiLET2sdDEfs362Qc8ubzg5uKatllxcfaUZy/OWTcNq23DYrOl7Xta54BC1qO1ouRUGmorIhNGgY6BkOoVWufJqmhFWXG9XqOeO5rNkvWmSWMnBi8rylib5SM1m6bBOUfvPVeLFbPSgiqoqpqiKAlrl+hHoGJI4gqKXLBODMQgTQ5zcELiwu86URH5uULoULacoFzg+uMnnF9f0JeGO3/x1yEsCX1LVIHy0X1siPTbK47uzKhm8OK996kePULtzccgILvzO+inZPVEmEGoCBoIRJ9VrLKQhCIQ0IlmM3T5fenoFkQrF8q+xLE2BowSdqgSxzyqiClKqZPQo4Ke3NdYzB5ClNBH5yAurW/vhqDOxFxwrdBSsSnPAGSVGRVBh0zDTc5HgOhHGXCVg7KEpBIdykuAGY1N2Y30vpGXxiH3oiDKZ6tszHQSJkATXMSWGmsK+pgyS2mvxlxEmAOhILVcygysXKF8YXbs6M6hnOOF9FxDUKJ2MgsvmWOhgWWn36e1H4InaKHUqKgHqXuIQ61P0ELqIor0MloRM/gWU17RB0IUhcLQa6rJHtV0xtHbbxD7iHeKo899npM37lMVBi4v6S7OuX72gvPn59x9Z5/pzSNc38t5GOJQ56R2Hj/ujkEONJPDF+OY+Yt+d92TFNQY6Y9aUGSlNbYoqCYzyqKUju2DeZcFroz0zygQ8MZoQ6EL7Fycxr29CWfLJ1JP0vWYsqDQCnzKViiIiZJotMZUdVKTgq7raFzPqm04XW5Rz84wCqaVYW82ZTabcPPmCQdHx+wfHvDa8R73DkpuTmcczgtcmn6TaqVUjDvOvaLrugH0ms8mw5j4ECjKkrIoCCHSdi3bvuOq6Vgvl5zRcVAbDiYle3WF77ZQaIqJHgqpBwc3xlScrZOKlqH1EaM1pbXM6jplScQmWZMU6cLoj5gkFe282C4BoFJ2MUAIkbVz9G0LweH6Bs2c/WnFQTWhMGYQ4QCJwMNBjdYyZ9poeu/Y9A1Fovd5J4GKD8ku9n7wD4gjd4K043PtZYgiqa8Qv6KwBXVd4V3P6vKcp88+obCW6d4h8/mMSdOxWFxJRg7JsboQRNig79HpfYwaPYKXMleD6VUEn86szrFlK/TyEDBVRdt19EkUZvRlGO4/m6gBkotx54shw6RUEsV5GbcQmxBD6nEkcLgot8l4blcrVLuljo7ppCZuewleokhhR6USwPNzrvjTP1Iv/fpTPucQLH/qb3fREy1z9N4nn/BPvvsx3/7Jh9w53uPV28e8+eo96spwfnH28+7qz3R95oFKPP2YxeKS7vqCA93y1bff4Be/8Hm+9LWv8JP3P+C3/7//ip988BP25nvc2j/g6fNL9suak6MTKjzzqqCcTDiYzmWzhUCnRzRnV31JghahXIXcbyL1mmj7nnXTgq3YO5qyd3KT86sr2r6n8w5SgdZqsQQdKSpLPS3RNtBsPZebC+lnoTXWlmz6DqIoTUk6UadgOBVIR5Jqg0S7uTO0LWyifIzRc1SyQVQUx9UaJWk/4s9deGpnT4jtjONApIW2+/daSUq4rkrquqSywjM3fceUyDuvPuIrX3ib2XTCs+enXF5c0nYdwShunhyyN5tyMJ+mrEGUjZ2yJS5KWqDvHZdXl2grymqz6VSyF6lBZqYSGaNHQ0xGdAWxz52CjTYiI+0lJVyVpSAovXSMl+yZldohn5scpmePUq+gtMJpKej3ETbblr7riDHy+MFNcTljSDxf2azZOQYGTnBK7pKVuER7Xp7Hi2hpGuPs/ESyTr5SescJYACTxThLR2f5n2Xb9Gy2XeJGQ+cVsRWZ3aquKKoquXJ6QNrQUGiFVRobNPeOb3K93vDi/Dn/9w8+EHQzxkGSUpD4AlMU1AbQiX6oJDgSJykQum1SJhPjPSiVZTGALEvoDI1zND5IA9Cd4NkYI8bUBfrg8B5C6gnho0hg5uBG6knCEBgqJVW14mvm8ZO6tJCoVNF7svpk5oPHNMYquMSfN2gd8L5jeX7G3uuPqOqKe2++xZN/+bu45TXV/QfU+7dxVyue/cP/N+/9X/9bYmlY1DMe/fW/zvxgj7Ks8KmWRraZdKoXJy6l+ZVBFYnTXhS4tpX1tINAK60HmkBUcQhSR0Udyd5GbeX3piTQQghUKXAHoTWJyoygpdomVTGlRJYbkU/N9CoVPbsQ4OCcBk/qZ59qo+T9XZpLsWoJFYxOlIGiUFxdCuhVBJMda6L0YkqURl0UQsFKoA3aQpI2z4Wmw5GpICSan9KBECUTFlK2Vmg0GmxBtJLpkn5NucbiUwYyBThCK7JoY3AhvVPKapMeU+/cRvQKhaHQIKpWkYhkXElSrDoj3Ual2jJp2KdSzYaxNn1uIfQOotRNJvAnfZIEdSlwxRi0sRilid5LzaQOKehWKO8ppjOiBm9Ae5gc1Oz/4i26/prNZklYLTh8502Ov/IlHu/toyYzojb47YYB2k6znG3bqIgolEFIWFmifWUHSqmYniWbuXFdo4XuooxBl1Mullvef/KC3/uj7zGd7yfblRoDIjQ6kXA1lHWN76RWTXshphVFwb179zhdbXlxtWJ9cUlXlRSFTW0KCoyxlIVCKY9SEgDqtLcKK+paNgR6GwbH0Wm43LRcrhuenl1j7AeYQnM8Nbx664Q7R4doFUSBDUVdTYdlpYiSITc6UbDkbatSILacESiKIgF2it5JQNPHyOVizXLtuVxu2TTnnF9uWK+XKCP+QY4RBSsQGWPJ8Is076Su6JsWrUQA58bxEVprQgx0wVNYS2kL+rZFa0NRFOzP5xRGp3oakyjFVtgDvWPbtDy7uOL5xSUfPnsGBjZtT9t7yhgpbcG0nlBPJigkW1JZk4A0i/dO/DLvKQpZ1xIYZVpapGuaxKiwlEUhQUrKOilS+4fBxkcBP7WhCgqXMrjRlqyvL8B7VpuGzXqF67oBOyBmERo/NgFPwZo2egCWwjBPg8nZOZhHm4GSs6aeTGm3mwyhfMoni8NaJp1TL0t9j5LUSotPM/7pbmaSFNhbqqqiLGthG8RI9I5muaJt13SxFTYAKdsy3M8OgLbja4xP+DOilOGZx/sZn+lnXZlblnxXa4i24OzFKe9/+DE/eO9DojcUumJazfjcF77M+cUFz589/xPe789+ffYNH6/PiZslut8y3Z8Aik3T8ezslKv1gj46yumEo+Nj7t28xbsfvCAGaLqeYjqjKA22LDmYzgdE3CU0cQhU+OkBHjuwJqrWtqVxER81RVlRTSZsuh6/3bDd9BTGMpnUVNZgLNjSUNYFyooj4kJH07doYymKCt9f0/d+oJoMlIAkhTwaNiBKH5Msa0j6WXaC8wLLSN3Q0DIypPR+fqS8s7B29troEOdfqYEaZ5QokKCFY26U4nA+5/7tW+zN50Tn0dEL1cjAgzs3uXF0yO0bx7SNFE37LqCsHOKt78FH+q7j6aSQ1LK17M338EMRXu4zEjG2IHdX71LhZYzSndmmw6YwlqZtJZWvtWRRjKF3/YC9GmOTMlFIhcxp84cgtEAt6HPE4CNcLVZ0bQMx8sYrD4nBE4LbCaKS45yN1kuGJ47zlBycQKRLXdGJDF2KM/o9NiVkJ6hWA4ypohfnTkU8JVeLNeeXSwJxyL4ZLYXg1kg/Ip2oLjmwCgQKwKCxSlNOJ2hzyeVyyenFBQqoixKSalOu5RJuMrmXHOKQJMwoprnKe8in4E3LfouJF10UlulkwvHREVXVDkGHyFSSRB0S3ct5XApYXfBs2466LETEwvVEZwXFjgFSE80RB0tjnrzKYc/rlMpXKZhMe0+n+8xOYPQ9RIepCmb7dyinUzjYwx6dEKua+tYtqr1jTL2gunWbdnGObz3moETpiEb2A4zjk1FPCUrlfoaDaaB3xtRFWBA/iSt3iEk5C4tKmcyd41OliTGlSORGx6helccmbXQr6mTSgyhnGFIzPUWq2fM7wZBJPVVAZIOFToG2Q/AQdZECeZAsT/7cXIidgq7hlvX4W23ACD0LW5KVvgwMtRe5nuwlqVPZKGMwqI3U9+UoIhs2pVNWIqnvhTiMyADQDPOQP8+kPRB2DKNhpPKln0nUTga+fFabU6DQZHWrl0xwCt6HeEshz7xDycvqcyLlmmYvprmRxYMqCpRNymvBJZvj0/hruTUj/SxUTIGesZjZFBYLQkLE7d4edu+Q8tZdocb0Dr9Z7x4R43mR7yHHpWTq5Usv+ROvnIkmrQmUSPH6JFSitZwFRSHPFQzJgZS7cD7QbhoMwr03StQePVKLV1cVR/uKezdOBGXWo1JaQIm6WBCgCpMd8VSDoRKVe/cwBalvixHXO1zbAoGKKYt1S11scb6X90YR/WYYMGtUcvoTd0HJXihyvVIkObhmkK/2vhc2goJt52l7jw/QNFKvsN1u85LLR44ALCrVpbhAwFGWPfW2w/XSksFqTdMzKimqgDWiVNm13RAILjYdhdFYJXWPWsme0EYoRU3Tcnq95Gq1pu09JmpWm5ZnLy7Q3lFYS1VOqOpqDFQKyX5Zq6W2JAZc2GmETJKbT1nRrmtBSd+RwhYCKAnaJ37JjvyeUiQVL6EcW2soFUx0YOoChtR82aVzd9dZjyMtf2igPC7U4Swekq55bauddZw+e7Bng6+5u3Fe2gHD+6gduzD4bjufS7aPaqSOKXK9NTCsXS3KgumZXN9JwBt7EXeQUy6HJuPe42V38N/myncch//Lb55qENPa324bNtst22ZLWU6J2tI4zfmqYdN54m5w9hldn3mg0j77mOm0Zna0z97+Ce9/csa7P/wJ3/7ut3njjdf43Dtv8Tn7VW4dH3My3+P3vvse19uG648/4bXH9ykmBVVdcOfeHVSUGgC0GGtptBMGBx8YCiAH5DsEWuexqzVd0LjOUUymzA4OqDZr1n1L0/fM5zNuHR/y6O5N9qY1USlcDDjfS02nVbTtBqWEbvCt7/+Q04sLTs/OyLM4botsdSBPqvDwpYgw186IU5j+WkNUo/621koe7U8Y15+SKM5pRsZNajRkyr5IACdqVRDKjIoRpYUXq4xiWlXMJ1P2ZhP29qZ4t0/bVvjgeHDjmLu3b/L4lUcsl2u225blYs3h4T5lYWjbBoWi6x03DvfoQwRtmExmKViT7ItzgqZVVUlIaNF22+GDIwRP33dCATCpd4330ssARVWWqbajGMagMCYZpnTERkFpiHE4rIw20iwPxdPnp7TNFhUDX3rrTXrX0bmONvTDBnc+JMaHGgxzCDFRCkbnNP+8D4mypTWTshjmQdSVxu60KvXWMEruOQeMWQnEq4qPnz7ng4+fYsqCspBGXc5tZR2prJg0ZhFDkkotIqgohXllXfPh02c0nee9j04hQFXUg2BHzgIMRjWvsxjpOinY7J2jdyLVLeNcDA5HxAmK5joO9+a8+uAeX3n7dRarLX0vTTP7diuZHAIuCHDgnaPrHb1zNH3HpCy5eVhhtcc1C3rlULFCxyLNqJaO61HKoxOvR7IEQRBgdASrCF4QaECQKW3QKqCCx3QO55YobTh8dA97eAOP5uz6gsmjx+yZgvLkhtAi94+499f+XZ599AHe99x85Q7T4z20b8B3FMaCUpLBCyN/3KhCDjibGsMighFFdCjfE/pWqJ0YCAYdUiASnDj9WhygkALmHKgorTHVTNSgXE+M0ghOKS3NTZUGXWKmhUi8KtC+RwXZN4XRUuQfQpqPVCNW1gRtyDmomCSicy2W0lb4+UF0eCx9ogzJoa0TZaQoytHzVaJwIyFFKh63Hl3NUpCQUl/JRuZi0KHxYNpzWRo++iw/rlNGZkfGV+dmbtLnSOqadgxmChCUsZhC6tyilnovoa+lQBOTHArJaaYwd6RRKEVMNDWUH/omhNRYVs4cRIJdZRBAglmRNBaKV8x01JRBBiVZ96hT0kJLn5taJM1jlF4tURmkzZusf69FSlpFKBXJUYfNxqH6iHaB4FuarqVrO/pGAgai1IyolAEzZCcbyUQk1HoIVZRsrYGtYMx4lugdYYvkXEZUWpdyvjSbBVZ5DucTvvDm6xwfHzKd1Gg9Bvg+RNqmY9v0fHx2zZ2TGxzO5xxNC3pE5n4+38OWE3xUvP7gHtvtmraTHhsXyxXX6y0vzi4Gp58036YArYMoiGmFTu8nmUxLUZXJLsNm0xB84P791zicVVSVIbgOlCEExZOPn0qxtob92QSrZPyMzsESSMPTTFPUAsr5kJr7CcChFGAsSheUVYFLPc1MrldNjr0mZZMDmGiwRuii3ntWm17GOypCDHx8+hyjFaU17E2qtF+M5MdiUsELZwKWxpiAAVnvu/2o+iBZgVk9Q6FxjePp4hyf+7rEnbNvOGdz7Ysfz87eDY4/aW2GEPAMjsiYRVD57MnOb8YgUrCTnKPQdxzWBW/fOeKbn3+Nw9lcgLME9oldlf0UEm1MzqqCrKfokfrVQWYuOSXSbkK+xt9JoKmVkf3VOwbVu+wXDICJGrInw+8H/y/vL0VuYpylu1Mud9hfeR3lbDkRCE4adrse17U0Xc9WOboYKREwSQdPtmR+9ILG98iDuDMnPxXJZCB19293nybuPJfcGDkoj1HRtNI8XdvI/v4+zlQ8WfT8N//0X/LqvRs8un3MZ3195oFKZSz3bt3l/v37fPzinPPrDRen5/zFX/wSX/v85/jaV77K7/7gGR+cLvnWjz/mSddzeb1gvdlwcXHKm3dvUT26x2bbgvd0bYfXua5DkN7MGdRKp2Ilof1khaZt29M6cSx0hNVCkObn5+dcLZdcrRb88te/zJe/+AX+3J/7RUzoabdb1lfXdG1LPZ1wcHKM77Yoa6GqmdT/kD/67nf58KMP8H5fajUgLWJ5djVQBiCGgOsjbfSUthR5zZ1AUyuoywoiONcNHNOfHcHn988UMgZUQuvhbBQOdEKvwMthriKFUcynE2Z1ha0Kjg7nNNdbvveTD+gIzGdTnHfEKNSSvmlYr99lOvmAWz94n03T0nQdi+WG48MD6rIkeDcgSJtGlMQCinoyGeo9fPDDXtEqS2JKwGa0eAZ932OsoKQhZWFijOJ4GqGEaSNd62MUhEYFKew1xmJTA7WXtppK3b9j5MXpBZO6ZDqp+faPf5QaNTpMWaSCbmmKlVPDtjBDYaQorsjn6lwHFQJNIxkeo2A+nQyoIkoNhW5xp+Yo19EYozHKEoLGe8Vi03JxteD86pqDwz2iKtG2hJB0pBTSXyLKnPapaD0q6NPpEJVmhsFUlpPDfWaFSQie0E4Gfm0yroLmmrSGRMrSmjqloAtsIbUqIjLg2TYt2ijKsmA2mXB0sEfrAv/qez9KAYnIEkfXiWBCErnIcpebppU6H+e5uNoyNdD0Hc4tCb4HV2JMhwo2ibKK40NoxwPYOZp2I+uisDgXUt8TPxjn1nu0Aas0la1RVqGtxVVTtClRtqQuK3Q1h6joNhvAowvN3pffonzrAb5riZsVTbfGN9f4KOpasnZJXaMREKKUrIEPDOIOXilW6wVd2xBdQ20s1hToyRSsFN/Grh+yB05rnOullqSqKWcHmLKSNV3XEEqwBb3rcP0WHyJFWUmBbIhst1u6vmW1XcrYK8Wsqoas4abtKaoaW9ZMZ24IVJT3uFTnZctaCrJtifGJmkrExyQh7QNlUQrqaRQuFmSlMsKWjIiqFAhrFcG3qU9CIKYmbFKzJ0G3Vgrfd9lLQVvpvG20ZCVThY84fAnVUcET2wbPFdvNBnEEI2VVQ2qmGFMWIysLxRjB51qLJP8aQ8rmemnmlzL0fSc1EME7VFWlWgorim4xgndo36FsgbYlsSgHG6B8JzUqyTmUZp2BAU6JgeCcOLZR6J/4FnyPiQrlwbc9yjopqA29/I2OeG0pggBOWkWpfVMQo0P7iI4aW1boqkCXuf4lP6ME0FrvijbIaGgl9kHvZlK0OMsifR0GtFylQm2VlNFyFi1EB2GkL03ripPDOW+/orlxcMBsUlGUCa1G4V1gs21YrTbY4PjS5x/z6N5d7h3NKUqpFS3Lgt5FehdZN47NZkXbNKyblsV6y2qz5ZPTC55erLhYbrlYLGl6sS+bZkvjekIMlGVFWZVorPgHhQajKWvpo1JGz69/5U0e3rrB8cFcQDMfaTrH977/QzoiWMP9WyfgOnAdVaJ2ocAoTVFabFEMdK0+NVL0SbCl9eLEi2yuFJqHEKQfizJYbZLEes4yqoxdC6EyQdshpixU7/jk2XOmkyk3jo5585VHCWxqxd0cKKbZW1J471KNppMAFgk2vVKi/rlpMVHUOSd1zTYV7isUtUm0rgG4S1Sm5BN7pC4lMyW220YAr95RF0XyT7SoocUwKG0KeSQHMiko2lGeCgFKozmYldysIrFrOL++Yr1Z0zQdqYOtZK59rucbgeOc6ZSfjU75wDpJX9I+YMzBaC150tA7NPKsages1FqLsEl6/5zdCd5LzXN66wxsFtYKAJMDxRyUiPcGgPeRru2JPopNBJRzxF7o4E7ppDCXycaMCrc5UN65p+EBd1Ok/1bX8FTjP1PNDTEOdUtVWdJ0geenl3Tr1WfxwS9dn3mgMp/NmVQVhdYiR1iWFJNZ6mMiXayfXa94cnbBJ+fnXLnA2jm2zZaz7ZaTSc3y5gnbpiU6x3azIVhxrHRMRc9po2SEM8aINoJKOS/FzyGA1ZKibTsnPVyalm3X07nA8fERt2/d4M7NG7jthrYoqNG4vqeqa/b2Dghugi6l2dbRbE5dlLje4X0kmrhTXJtnEDJFbaDTeAg2DpF55lBao6nKStCJTTPEtRlchRxwsJNGfOmTECdBDXQPaRbH8CWHd0IbioKiKNEmo+RwerVEf/QJk0mFNgZrSogK37WcErBG8+T8ks45OufYbFv25peUhYUQsFbQ5r6XmpGIoqzrdEhK7ceQDYg73HZE41wpaf6njFgZkTckUbd1MiwqcXITF9jY1GRPMig2peXFnqQxj1I46mPk4vKa2XTCZFJzenEpXdG9p6zr1IBSpwyOjLWxIxKapSBj+qysXtV2HoIYtVlVyf0PYguJAZ4aFJKeRWiAUlAfgsE7xWLdsFhvWG22LJstk1oajykvQSYkLm8KNLrs3OlER0FM1WSyYrPeslxvh/40BD84Gjk9nrOPzvkh0LVWDx1066pMMsqlfEZaZYISCX+3aTrWztM2DdLfQzJnKqHzVku/HKIEKuutBCq9Dyw2Ldcbw9W65cX1gqZr8LFg3/ciVxk0WUoW1xG1IJWNcyzWK0KMlGVJH5TUafSeItVoqBgwWpz/oJMTag0xdw0uK1Q9JRayxmNGzRQEAxRakOquYb1e0PetPFc6VKw2olqX6EWmSIGKi5i0fkOIXC6uabuW0gRmppD6jrZDlaU4EV2fiqyFqij1U1DN5phCCmWj61NtQepB4zpc36S6Nk/QBX3TsFgvWW1XPFtdUyhFZQwn8ylEocY0fSryLSsJFLQFNNE5fN8SvKeazNHBocuemJq3Ckju8X0vwQwebUWuOKSgjRDAueR0MGa3lGQgvJemerHrxHEmJDqWjGjoOkH4taaoptLNuCjSqT6iuIKAKqJ3hLAh9i1NkpzXNgmU2AqQHg0C9kg9V/A9wfWSXUhZ6xBSMXjw4LX0cEHRtx2+73F9h+0nFFUtAaaRLn0qeCl+R0FRJrWqQAy9CAZEhF4XJOPpnCP3bMlZwdFxCtInx3UyPtqibNppMYB3g2KgR6N9GhajCKYYAgl5VIMqSpHSR/jtvu+HYHUXL9WJmxKUfEauuRPZVFnXkdGODgAc2QsUNUT5uVDVDELdsqYiIMqA21YACohYl4UmZH80TUfTC020aVtWmzWryjBXFSaJEPi+p+8csZfeN5UGVRoKVbNXWaal4WA+52rdcnG9ZNM5mt5zsVyx3m7Zti3bXsbIR2FbeCMKdr7pmBrDyXTCg5tH3DiYM59OiEFsVGV7jvamrHtHr2BvUqO8JnpNXdohqLBaUyRgx/uQus57go/4KBmFpu+kr4fzbBoHSmrZpnVNoS2FNuLsMQYXIaP+gGKk7PoQBYDqWwpbMq9LjvemaAWuT5RNnSleZphT53oRZwhhEKDRWtED623DpVlgomJa1xzuzdn0bXbbmRSFZC2CZIq0lkbYWuf6PFFyzCh+s21EPt9LTYtRMvfeu8R28diiGHyCAXRVehRdkIgLYzRlZSnW52wWvdR2JjA3xqxwls+mnK3ItXm72YI42JzRsZJVHZM/JuMdhjYLcjbuKFOq4Y/GSyU7lQHAFHqoHdQ0yauQldxiAmYEMMl7SObFK5VAgDgALAJK7mZNxncVOll8Kfj6mXHJp7MpP/dSL/0nj9POm5EDXXksyeApAgY5L9arDt98JhHSS9dnHqjcvX8fFRznz58wnZXcf3ibG3dvc7nu+OGHT9lg+Ud/8EOeXC55sdxgScVVWrE4X3Kxv+L59YbL1RrXNKyWC+JkglFSvGlTnUVUinazEVTLmFQfwJB2K4yiQFLfToEOAR9TcyFTcuvmLQ5nU9gsWZxdQkjdNkvpSL84vwKtKKuemXeozhF7j+uTUcqfmRc8ifqjxo0jlzQWC0q+YvAYFNOyZD6dS58Pf03MUpw/45JDY+d32TnICLY0jcbD0H0WQ+L9KigKVFETbUnrOkF4HLy43nC52ZDOEYyupKhdReHsxpAKIfNmMOOmUZIKV1EQb5tkiIuiwIUw0B2GG4Yho2KHww56cko5vzJz6lPKUUljRq1tUnoThZNc76NIymDWDjSwtu8FeSTS9r1kZZJxEDBbKDtqJ+uhVBhnLA2Iz6l0YsrqJIEADCmdIOav0CirsQNOkjnxI49UUvQjvhOD8I273tH1HlsIdc+kjs1DqjnNf0zZQqU0RttEFyEF6QUxiiNwvRK6YhUV1kpPmhgzpc3TNx3X60boXUWB0lOU1hRlpGs7XNfTqJaIYtt1LFcbGS9tKYol0TlxgnIzVsb1rpVwpOuJNPiKzrHZdvTO03rPauupbOQHzxZUasVBLYfh/RsHlNYKMpXoXj417ep8YNn2nC4WuBCpyglRWTGSXcfhdEpdlMxKoUINNVnaSNBkFZPpOUU9xR7cgQlgCoyWgvS+bdlcn7FaXLDdrLm6XrHuN/TB4YIj9NKOcj6ZUaR1hEacARTRBXmvGFg2jo/OL2j6nru3DjnUFSWaLjjMRDIhRZcVzCLS17FDoTg8uUVVzcFYuu1ClhAazQS3XeK6pSix6QkuaE6fPuXpxTnPFwu+e3VGZQvmZcmbN48pjSj2eBSFNlSF5d7NG7J3lKHvOoLrUCEwnx8RZzNiXeP7LgXVYmD6VhTb7N4eZjJHV1McEvxF10O7RpNkojuRkNdKEQtD63oR5liv09pAmuxmJ6VzoualDGEeiJOJABLjJpWsXAQXFbHb4voG121ZrxuUMdiyAsBWHlspaR6bqWOhpe9a2u0GnHupXlAQYEGXQbKkfdfRdw3tdsu0mlHtHTK7cYeiLjGxRa07/KaBwoOeYLWg1W6zgAjalth6gus6uq5ls14IBVUbGXdrpdbCOBQe1Teo7ZJuucRUU6bzE6lMiR7fS/AaIvhtS+d7lJJic1OJ0qBKNXnRVjCZCkjiA91mS9c2gp67DlQcbHeZ1KKc9oS2FcfdS1bKWIsySmx3qkczqR4sy71m1N4YCbZUhFKLAmQxPWDRKT48X/Evvv8e+/M5VVEMdTdAkrUVCpiLgWd/+G1KY7g5n3HraJ+D+ZSDwxmr9YZt07DZ9pRGZHyndcV0UjOpKx7dOuaVu+KMdz7ioqHzkWdXC15cXPDi4orf+e6PWa+39NstVVXTd4G+i1xdb/jyq/d4fP8ed27s07YtT18siM6LymgKbq6WC65WGyZWUZqI0ZHNFgpbYI2Vc7fTg/rWIKuucx2WQgXom47lZs359RVlVTKdTpnN5xJYakWhTMrqiVxvCB4XPAbptVJoAZBQ4ke0Xc9iueTF2QsO5pZZWVJbTeZyRJRkR7Ue+ocUShxvXZgE7lmWvWMbPc616fwXOmtFN4ADSRgdHT3e96ggYjbGJx9LqdQTzUgAs1cNNZECEOR9nLOrIZ3lWuT7g2STqqKgriqUQuxNXWFsga4qzt/rOO83nBqV+o0ESeam9hLZNxEQIGJSFlHFKGBEFqVAoQaEOwdEOTAUT8kWGh0srijxvscWxdB/7mdfYqtMTEpjSd5fpX5b8hKXvjxRWQHilEGrFOANfXIi6NT4MgRC30NBEksJ5P49kNRW8Zicf1PJE9rxGf7EW873/fNeoXb+8SktZCWYLNFHXBvo+55otmjtwVlW65br1HPms7w+80BltldhosZGKfo7mM8IpuaPvv99vvWTj8BatvNbOFOwN6kwMaJjCbGmdJHlesV3v/997u1N2Z9OmewfcbFeSwaisCI7FzP/WoZcah162ZxWisdyjxqX6DrEgP//Ufcfz7Zl2Xkv9ptumW2OvTbzpimUAYpwJIEHRkjqSRFqqCH11NRfp55CDb2gghGKeOR7JCVBIPEKAFFAZaXPm9cdv81y06kx5trnZFaBRkw2tCvuzVPnHrP32nPNOcY3PjONVEbz5OSU50+ecbRY4bsRsiGTiAGiKQVr4X6qpElTJAZIUUGSUWY0gVhQ6dnFUs/TA1OKN1V4hUr41cZYoYdlCDGz2+/xQdCGrOe2OP8n1pEqNXARJ5bGjBmInIEDrfEJ9qPn28tbhlEQ9u1+zz4qTo+O+T/97/+Eo9UCZRTbcaDvdoTJk0NitV7RNA3r1VIQvJn2NHkmH+in8YBUaMyBJhUPBewsIJOLI2j0w/yDcn2shDumlCBmdsNAP030fuLJ+RlHy6VMV4pWgIwUFd4zFdrMwfO+TDWm6V5kbys31yMSIll+b2Z2KYnMl36+/CmJA9eMhmYyKcybrOLt1TXEjEGxWi6LMF42LZXEHWnekGeE5h49mg810Qup0sCkGAsSpJjzRB7IAoF7iiFZrus8aUnxfiw//uhD3l5d8uW337IfOqxxuKpi6gfWyyU/eu8DHj85ISPFmdGuTP7SgXOuNYToRRx5lstxJX8E2RbEOB2e373ji1Bg4mGqU9UWWzscmaqJKKf41es73t1kGqdY1IbHpzvaWtO6VDzzFSEoAQViYgyJ3TgCiqqSQiqnRJ4mHh1FjhYtj47W2BQKsijvcWU0x63jvKrRSVETDxqRkDIqRUliDyO3V5dc397x5nrDLgX8PJ2bPFZpzo7BJOGd20oEolZrTEo4o4jAVTfx9m5gP014XTM0ioWxxDhgpiDrfwq0laV2Fte0hEloUVHJbqaQ16cRYXDyHWO/Zeg3MqlQQQJB04CyULUVrV9ilUFZy6Dk+LJZDpOmqUQYWzcoYyVMTCsIRpLptVCRwtQzBY/NJZwvRqEf+MDYG2z5mW27JhtDUo6QamZPssHvC2VSUVVLdAW2ifTJiG5IZRFXF2F0qEACKhX1YomtK5SxxVTiHhXOacTHicmPQi9zlrptC5ipSJMnKQ/aY6piECCpfTIpih6VA1owD6KXoiuFSex74T41OmeaShzjdA7oOIo9LVm0BkaTqwZcxVy567IvaSv/rpK4rjktxURRcxzEsDkbuddCwgCuaTBVLUVTmUKnOFuWyt6aciDHyBQGHALWGCWZUiqIG5lGpm/BB8Z+L41ontgPUwn4HaVu1BpdWXabO/qu5/Zuh6sqmqbm0ckxbVUC8opGTwpVitFHAaKUJgI+JhZGCXhob/j0y2/41Zev+dXLK9bLXqhS6d55TqbXsp9ELfu+SpnWWNrK4pzBVZYQ/MGEpXY1zjmsdTI51zL91aoQaVTRd2g9WxDI86orcsgMypONofcDwzTix453V5f8nYr8n//5v2SaJqYCFuTy/K42W8ZJQoJfX96Ugl2iDZyTqfNBC6Bm/akUvKZQRVEw+JGpTJPHmEqTZ2jqb3BGURlVmh6DVZqo5P2POYlRipYgalccuzCam23Hft+x7zout53ksjQVRs1gnyp1hjpcH11ybKyrDmfRFCb6aWI/DEyTxxnNoq4kumFG99PDMmQ2LlHf04WURsXYw8TGOoebQQEoGg2pj6ye6Z+gyqTTGGlElVL4GFBGmupVXaN2t0yjp2kWWHMrZU7ykJvDupqBTnkPYbYGNjPdsUxv8veg4HlQIiWblmbigJjK2j9kUX0PKJY/943BDNJQpiZZpRLnYNBWYexEyHBv+y3XczbgmR8hBKZpIsZANjNFe66zCqKsBfWeS8UHb9F/sgf5L3s8aLhgLo5onGNRO9racjXsqVSmUhmjRqzJVNUP9fvvHz94o5JypLaa1jWs2yOGqNmMkdtdz34a8TmxVEtcs8DVWhKcS0mmtWIYB6Z+z7dv35IfP6Z59OhQ8M1TEwrYPudqAIhdYRndlYMn56KX0uJ4FfyEdRXHq5bj1ZKmqmSznDvSB+/0vUi06GJS2QiKdeb8B0qHWcTwFI2ini2VD038vIIkgT6kJFa8IX7n+v1D6+ywmA+jvAdoe/mUVkJ/OEyWKCPJ4hyUsiDU2jjWq5bf++g5q8WCrBTXfc9+dyNo3BQ5PTtjvVpxfnpS0O1I9NKEhJQYxrEUp6CUKRkjsYT/IUge0lBphfBytTRtswcSCqFNFVFspQ1vb2642+/Z9SM//uhDHp2eCYI/vzs5M40D3nuGaSzuYgUBNIKmBq8O16Wqq/IGiOPLvJdk8iH74P7KyxsWk0xTDrdoFp94e1h/uSDVFWenJ4Qc8UVsTRLed+UcxkpzKu9TKuul/Mmit9CFuhZjOgxiYpamL5XD0JS1b6xlzmbJeQ77EmtuYwyVq5jI/PqrhtvNLbebfWnqZQ3XruLx2Rl/8Ls/QuXEvttD1sRYXFVieZ45M4axbP6a8GB6lYujV5yR1ywuZDOlLkQBDciCuPootp+eEs6ZIoMfebP1WANtbdmmzKJSrBpoaplLTROkkIRhlDNTkDvDxYjU2kIZmmxDryo2QWGzLlOUWg5nq0muIihLyIKy6aKXSAV1I8l0YBxHun5g249sU2Yq1JscIlZn7BBQxZXFxcSyVkJvmMXTOTPFzBAz+yljO0+rItkpiB5XJpDEgAnSUNuQGEvuSjdOdP1eBkopoq0Ebo7jnn7oxLxCGQJZhnkEscm1RjQaypKUpY9yvUTYLxMLyVC4P1+Tuhd95hwlZylrfKFvJq1IMUg2QYrEccAkMD6y1iUQlSx2uur75IAMRcCrMwcTFK1kKjnfgDMNS+fZ0vv+D1DeY4NOsYBP9+iemt+bQi9UaiQojSMXhzGN0BHAGUVOkhouhhCBFAM5+vtkbHWQRZdiTJNzwOQIQfRXKUWMc9JAadmzxORLi71y4e4rlZHkl9kZUJfiSUOxOU9RAA1DcQos6yeX5keGSul+qpoiOQVSjLgqFEGiKs5XsWRHFBQfMRlI0TOOHXf9xFgML6YpEHNGGcNmsy+60Du0tTSVY5o8R62jdpKrNDvAzTRfY8SCvo8wpczeJ1yW/T3pipvNjikE6pIp4qyFXKynlThQpSzElagUyVgo1yEpjU+qNO5irKG1YsoQfBJAoYBHcjZLOKl54LqIsWJljmRjKa0x1uFTojIa11Q8XrWcLBdYY3h7dUeIkhcl+lIBHHZjMZLIil0/IWkdCaUM1qRCA5ZGagbxZrqzVrYA3BmfPCHJ8H2KxR7baFw3YvU86dCYYsqQ4aC5FZaJZKloilZCKboxME4T4zTBxR111RVK2uyqVhq3cs7o4iSokGBmchHdJ08odLfJR8kwMZqmaVBl0nCv/1AHNkDO+cCy0EqmazNIlkJgzjabbe9TYTlQ1qjR5n76UdaFUZq6VLchSXfUWMN54zhzAiaFlA7A4nx+HsItk+w8h/1j7kDKrnffCHynrD/cawL8qkNNgj7YYh6o+vff/v3uQD0I6L3/sozUEAZ92CdUmCvd0uAeNpz5OeYDbVbOVv2dX/fw1/7HgywePr3v143zi3z48Xd/Q/7O5x6+KAFzKmNoK8e6rVBTIgbPNGlqp4qBxQ/WKR0eP3ijcre5ozk74fT4nH/0k9/j7z75nM8++3t8zBjXimtM16MTuJQgD4ShZ+pL2nXfMw4d//5v/prpd3/G2ckxq0UrKJ95EHCYwenFoSAX+8HZQafcUCmhDDQpUdeOaRhYVY6n50c8OluyWFh8twejxRGLe6s7XRKpVY6kEERcSmIe48wThpwRhxc9B3whKHcR+GPUQduQyoaYcsZ7T18yNcSBRf0GnfA7XXxpvA6tVCmYQ/DoUMR9jUNHhUkZQ6BSilXt+ODJOY9PjlFKcblb0sfI0XrFh+dLSJoxZgZt0HWF15lJTxy1FcfLhkdHS4ZeGoNRZZ4+OqdtKmKM3NxtpGFJFAQq3qewlvegdoa6chyvFlTWCl3MOHH3ijIZa5qapqk4PznhV198yat3l+x2A3/6x3/MB8/fY7vZ0PUdU/BoA6GkzY/TKI5dZbqgTLnhS0DhnEg7I1wy8RFxr7GGe0GbNGI5Z+qmLg4qiHg9l5ExCpIgHpXynBwfc352yrOnT5j8xDCOgrBmQfqWTSOjY3cvSJQNSDZZMQMo77McI3KIxEzIxd658P7ruqJtBRWPweOnEaPAORGxaS0bfVPX3A4Df/7Xf8sw7Pnl339GN3j8OGAULBc1z56e87/6k3+CUZm72xvm3Vkp4ekP08RuHNl7fwjCHCehngiSqZGbQArbEAOTFwRotiWOXrjrlbVc323ovQSxPTo5put7vvr6Gy53kZyg15rdbaCxcLwwrJdySPRDECS3iK2zEv3C5BXLdUu7XvL02VOcMuQQebfd05iaZd1y8t4znJEk7FXt8P01Q86sI9icpMgxYpoQcyT5ER8CY0oMSbPPmiFlvI/orHBKoyaxW9Y50niPNYbaGZbLFuc0Y4rkvScox5Aj43agdTVZZ2yYME6aKIxmjJEpRvY+EJInkxguLxj9wNFyyeNH59iqIqnM9e07dvsNox8leyLLFDGpRDKaaCxD1DjjIDuuxnigChy7hgZDQOP7EeeSiGGj7GkpiVjeF4OuDExhdnISimjK0G3viOEWheG9mFk0NZWzTLuNTHZVAUOKVssnQaNDiKDE0twYU/jaRb9VxtCSO+lQSaOp0LoR7FNLYdc4qGqF9Xv80DONnqnrZa+VX0eceqZ+Q9u2RUTdoF1DZQ2tbtj5jn7Yc7e5E0tVpbBlbxCbVUkTj1GKoaPVmrppqFTE7wf80OG7PSftooAhGZVDQdotQxI0Xp6PNCkqlomNUuhcYclkJYYRMQZMijj0ARjIUaaBRbcuAAOUM2iSQt0HdPKYXLJzckRl0YY5a8jGEBIkJ1Pl19fX3AwRtOP07DH99R3DODKMPfs+MEywTRa/D5jO040TJ63jqK15fn5EOtA8RRsmhiKJm13Hdph4sx3Y9Z4pZtAVm2HiZL3kv/v5mqaucUYKZl2ABWvFKS9niCF+Z+I8W6krgd4FSMqZYRyZvGf0xY2qFFnzNLdytgBkkTEIUDBOgeu7La5uMJVj2O94crzgyemK/+73f1cC/oaJy7udFOBFyxdLtMG50WJykDOxOCFmkEDIUkSauUnJAmY8pMjkLBOxuna4bPBRMW53Aq5oS1UE2iHMGtvCKHhQtwTSPWJfzp0QozT5pSH76u1GaJgpFFBQ7t0072tim1CaC1nblNpBUyaX1mFcw6ysnSdFcnvMIxWhjlE+l7gH1e7jGjgEwMpj/jgdipZZkD7XbDM1TT3491RquZWFD1eGP/nJB6yahjEmtt1AP04oJ01RwpCCTOiEOSWaVWseSugf/ve+fjqAx1mART1PY5TCOIsa7t29Ds5n3/3rez83H4DUXNZnjhFsoX8WE6C5Ucn3z+D+PlBzIyg6nxmsnPeIwrU4/OrvSgy4R1J+2tIAAQAASURBVKJ+4/H9piPfr62Zsvi9r/nNV1i+NkdqV3O+XvD+2TFfXtyRgqdPEWcrgWjyb30S/1WPH7xRef3qLbttx+XNjpdvN7y9uuT11TtUXWGVBaWpNOjQE3Y9/X5zmFbYagmmwbRLtmnkdhi47fY8PzlHI2m92mqUkiIzBkGTrJaU+tnR5dD9IQeSqyrqpiGmSFtXfPD4KU2zxBpHyj2ZYkeZE4ccOmBdC5edXPjIQVCIWBA9EZjJ6z5MNg7vv2RzKFWcrvIc8jj7eijaRg7lkAe8nwWZ+rde17mJmUeYqdxYwgnlPq9FZSkOcqI2sHKa80XFo0bskhd2xZe3HVd3e/77f/PvaJxDKU3vQfJFAt5P2K/fUlcVj85OD2L5cZx49uScZdEMDdMkjk+ow4SFMvpVSixdjRZL4eP1qiz0LAi0ko1gGAacc9RVxdnZGS9fv+L69oau69FNzbdX15Aizgp644wm+kDwgX0/FKvEDAp88Afk0xgpqlPw5YDLTNN0yE4p7d5hXD4HhtrC1c4K+lHEs1oZmmrBMIzsuo63dzt2U+CuuNBkVRzCQoAYhT/+ACWOxU1JgYSWlRAupfJhbVRVTYyFQpXTYSqWUzp49Btri+NHLiickrwVWx0czL55945Xlzcsl0e8//4LLq9uePv2AhRs9js+++Yl//Lf/RKtNX3fi0GrUiij6Ie+FAWekMrkMMoEQgLHxIs/F1Q4xECIAT9NxCChmkqBRVNXjvViwWUJEZ1ixE8eP0703YAOUoiaVEL1gCnA7XY6uNxUxsmBOc0GAGC14We/+9OSMH1M30/sdh372z3t+ojF2SlPPvy4ePcrTIZv/u6S/uYdn3a/4h//we9zenoqSOs0MfUdN7d3bMeJ3RS56UbejZExg60qqb1TYjd1QicgcdRoMFvGOKGMwUXL4AMvL295e7dnOwbWR0u2YcJMgVN7L3zUlZUpUxK64FT41n2cMNWANoajfpBOWSn2w8Cm8/RTwEwTwY+kFNBOs/Oarc9c3o2kMKKyoqoyWMlxOnI1u8GzG0ZUrKm1wZapa0iBmCRDwThJ+h5yYj8M9ONIIEohow2Vq7FZEOD06huWTc2icqKDKOt0bkSE5399KB4DE3NGRir0GLF+TdS2orE1rdmwWKxYro45PXtGyJEpTkKVSwkdJftiu9tzd7fjersFJa/RbsQBjJxYLhoWTctiuaRtVzIVmnqury/Ydh13+46dl6mLs+7gGplSLFbRmRAClzcbTm7vGPZ73n/8mEonkopM+zusH3HRM3V3JB+IPqLXp+i6RVeW0HdM3Y5uu8GnIIWlc7QL0NqhlKMyDms0lc0Mt1eolGmOQBmNjqVp8pOAbyozdhvCNDKNAwpD3SypF6uSHJ6IfmK/uSMow4jFB8/lzYY//w+fUR8/4unzF/zuH/53bO42TOPIOHh5j2O8v/9JEEYuvn3J2G15fdOVgk8mzExi+hpjYtsFdmPg9Wbipg+MIaN15nTd8OTIcbRsWDSLkk6vZYqVUxEbi7YrBX+g6lpXS1imFhv3kArjIMbiWpUIOR10BUprfJAsLGdN+RhMveL15S2vL6/51WcdygesczxaOP7k9z7mD3/8go8eP8YXc5gxeJSxxfK6aAiVMDCkMFNlj7tvZrVASgU1vg8XnKMBtdLyPSEQgRDBT4mLy2vWq5aT4yXOzmTAB2d9mXrcn/dlqp7SQVcJD0IilYCDlPcvxQd2v6WGSSrjbCWFc5JsjrmOqKwV4wMfuLrZsFouef74kUxJU0Tm4AV4CuEwtdL3/RgofTg35wZHxOmpODKWaiXetwYPZxvlBIZUbJSZJ74Jq2HhMvnuirHv2HY9ylisg7FcmzkLDYo4XVAPyOIqOutlDhd4njkV1skhg42MVVqCJou5jja6aFQcczTEYTiBQHUPG4P7V8hBIE9KxALkSHCwOmQBze9DYp68yCdSigWgLFS7g8W2erBOuJ+0/Lae4Dt9R/4tX/Cf+3jYrhTnvyTPdV05Hi8XrDYD3RiYfGIaJkJQzBnYP+TjB29Unp49IqLYd57bzSu23ZbdOOBad28jm0p4T4wE7zGupqpbbL1CB08ee/wYGDPC7SwC25SK25Iq3gfCOyKUjjgxNwzqUBMfLvXhjVYoY+gnQUuH3hOL8FrlRJLdFKUyYTPiTKayciNppQ435f3U4B4FAYWaJy7qu2soP7gpytte3Lfm0KQgC0E9XBxzt/u9x2Hso0rSb8n8YO6UAeQ6WSUp5k4LDULVDp0z+27g69trfvT+M1ZtC2SGQqkKUTbA3gwHS8UYhaqWUhR3KGMPIZsoVbQ2qTQqosXxQX6OUZqu62VqkUq4ohb5Xz+MRehqWV3fsdlu6Iae0Xu+eXfJZvAQg4zujaa2Wm7qnOmKy0hKCWuNGACkiLIOZ52gxw/EalOQkbVs3PHw3imlSVHGrnOTkkn041TeLYNzDV03sO96rrZ7dv3Ebj8wjKNMirWsHxVjsUQtUy8lEzURwSuqqpECkHk8Lw9tbCnyoiCz3G+mD9eDerDhUlpWYypm15hX1zdsh4kxaZSpUHrOjRA7ypvdni9ev0MZK3SvB/7Wg58Ok5yM+PyHFMvIXuGyEgeichCFMhULIRO94EgyG4pUEcY8cjsGvBdRNJ0v00kl0wWlyDFJ4QyMcECPYsqEQvlJKeGLvqh2iqPVMWcnZyyXC3LuiBHWxyesT05ZH5+wXB3hXC10jqgZs+VuPzK9fc3v/+RjTF6hKAnS08i+7xh8YIqJMWWGEBmTorEQFUI1CkUAr8GlzHYUO25XTdgQ6afI5XZgOwSGmFkpyWXyWQpQ4yQAL2EIaWLMGZ8TUxbqgs+RZYi0PjB5LwO8DNt+4LYb6UaPrTIpDOQcqFVLN0V2Q2A/RIluyIoxJrBZzNO8olI9KiWOqkyrNZXWZGXwORBzwpaVSM7c9iObbs9uGEhGlTVrOF4pWm1otaYbO1QOMgUp+6pYw4u5Q8rgfaEAhkjQgSlFxiQWsqGIhWNKLKqadeUJdpJ7JMOiWUDRdxhTCQpZwJP9MHC93/F2syMrCsVkkvsuBYZpYGhlOpZnXaIf6YeebhjYjRO3QyQrjdKiaRRHnsiqaQWxDJkh9BgF27pGPzkXgxILeRoEInKaPGxJ3hOnjFsfi/BcI3kmfUe336Oc6DpURBzDrNBvnNEYFDYboZNaQYJRYriic0Jnce1KORKngehHcih/ohPdjTbMTZoPk2RAKIufIvt+4M3VliN7xFFUtKsjQJLJU0j0hTarCqCSU8T3e8ZuYKM0t5evZJqSMzEJ0SploXLuhoFu9FztJjZDFC6+CSwaS1uZgsyLHkwbd9gX5YzlQN0STV5GKXEO0mVnMyUnJ2tQ1iFtVL5HkXXJ2ypA2BQCIWayc9SVFrofyERPa45Wxzw+WfP09IjGaayxVE7TZi3278oiUwMpxK3Rh6ycmExpVATNNmUadxAxKznH1ezcNYOaUbRk0xQZdYDjJY/Pjnny+AyrU6H7z9pFKWh0aQYUha6YCuugWOVaY9Fa6qCYYjkrSo7KrHFUSmjnciiVDDI5LWIMhyPHWks3TtxsO2xOnJ0c8+OP3iuOc1HyVEgCSAXJ99CFiiZUJfn5B7ZIEieqOWdldssU/HfOBJNNLctWRSqUb5UKLQ7RR6qSP2et4s2vR279JMBzAf5+k3nyoMaaYx7g8PVqrpe+P37I97qbeR87lImz3GCe+JVvT3z38bD9epg1o1As2hY7xy6EQM5OCrIZzeYeeP5+Xs09hY37mq6s//l5H7qV/5pe5DdfzOGDOWJBQQHdy3OYaZfkgy4nFSA+oX7zIv0Ajx+8Ufk//u/+D/zqi6/45a8/499//kuiihincFVEZ4NRicl3JC9Fi14sWD16xNGT56h2zfZuw3h5QSTgbcOE8MtzTEyTh2l2WLhfQGQK/1kOSkHKi1MSiHVuEQcOIfJ62/P1mytqa9ntNoRyGZQSalflKtqq4eWnf8/SwXuPjqhcQ1MvxForq/K756Yol0Rew5xGPAuggO/cWLlscMYoKmeKAA+5gXPmPlZMXsdvPubfDFpb2kVL1QiVYgyhcLR5kOeBTIqibNqtteTJs7m74xefveSP/snv89MP38MMPZ999gWbzUAqXGStFYShHMKZbDyXV29ICZxr7se4Shxp5oDEsZcC28dwaCRSSAzDcK/J0VJ2+8zBMjolWK2PaRYLVOXYvLwALtjd3hL6Hrxn5eD8bMlyUTFNnr4fiCGyXi0xhfrlUThbU1mZ1IQoTZSys0i3WCrPzRWaHAt6BQxe8imGKRKyIqDY9xN+ChJuiDjRVMZQq0RVaWqnOVq4YpktDZs28+FiDu4obRMgKWZpzMzv3Q+9GEBocMYddCBA8emPDL3kVmS0uFL5iWmcDodqUppga6K2RGXZbTq6MZK1I+VMH+BmN/LJt29QriJri6oXJG3wypBtK5SmVqOQyY6PkcoK3zwVW+oUE8GLaF40M5Ecit1vSuz6vfj2b3piKCF92nA7BVyMLKuGJokOYvAjPtwfKpmZQ51wRm4coZcFrDGcrCuOjk54dHKGtQo/RRpX8+F77wma3jQsGwE9lK1QpoV6xZAU11fvULGjNR6spQs907DjZrthN4z0IRG1IatEVuKaNQtlYyoZPkbRkfFjZOMntmGH1gJ8fHXd08XZ+MGQlOg9TGVZrJa0dcN+CPTDyDZMTCih6iRwMbEIkcoHdsOATYEpRr66uuVi07MfA21T4VTAmczatlxuRt5uRvZ9wpoaayxDHGWFJNj5RPQ7tt0e5xJHlaOxBjCFdS8p4ORM9IlP316ynybGEDBNVUSzmfet4axpsFb0FlOOUOimVkvRnSPiaqY0zhkm7TEWJmWYwoSfIrs4MfhI7wO325FVNXHaeJ4uasZxYNpvSOOO1XLJerlkuTgik/DJ0009l92Gr7bXfHm1JSWNUWLIYlXCEmg7WDUDJ92Aip66CLS1tWTjCCrQxUQfAkMQnYDcTZlqsaQ2Fmdhe9cxjCNj11FZQ+MMNY799S0mWyqXiNMG5SMqala1wTQOrOF6v2V7e8PN9TUnj08xVosrXBhwWrGqlmKrTMZFw+LkGOUsNBVBQcgyuVBazACCH0jjHqKnMRqnxC7aKXH9QRUr8yxAWSJz2w9sdx1Xe4/fTxzvR/b9hEJTuZp22bCIwyFjI3hP8JmkDS8++Iib1RGff/0N7y7e0fUDEU3MlojCp8xumJhCZAi5WHhnrEqY7Nl3tdCujIARbVUVUFLuZWuF4oUqRZpWuKouOiaF1bZMWoTOtlwuhXamOFipoxTO1RK6Gf3BJvri5oqu2xGjp2lbhknoox+895TjdYPKgbfXl5KcrTQ59KQs2hTZvmS9N3XFFFPRxXEfOqokCk3nTE7+0DxZW84+YBr9wV44Zdjterr9wNnRMU11yvnRkhw6xtEz+okhhqJxkHPfFEA0xFAmBglwuKahbir82BGmgXEcivasZHtkituhrAFXbOZ1yTszxqBdxVw1JRJTP9BvLwnDFp1qli5jnTQYIWVSFnfKFA3EhDGKpnJY4wqYe0+dHodBrlXK5Gyw0vtJtlCx+q2slbNiLsoP2pJyFipxEWuXyzLNqDA3b9F+ZLvZoenlbJ2bGWPQcdaWKGbKfUr5UGehZt2y3OsHU5vyX13AGK0UWasDXVyVDJiDfu5Bs/KwL1Dla2cjDB+EhVBZy48+fMHQdWy3e8b+iuSMMIKMObB+SlFY9Kvp0KQYLdqr+X2dR2WzI+l3m4p0z1b5LfXiw8nLb6sof+tDLud9E1iuJVqCR6epp+u2+JSKk76wUtSMtvzAjx+8UTlqW/7R7/wO7z99xqMnj/j61Uu+ffOaNAaiySgTSNMgb4hW1CdPaR+/YPHeC1RlmNoG6zTduOebmw3x7/6e5vd/n6OmojU1poizjZ7lIqWjK25aFFR69q3WpsZgcQkWiwX7YeBvfvUr/q//XFE7ySzIpSi3WoTuzlga2/C3f/0/s3CGj58/4umz92RTMjLdySmJg4pSB9u7AmJw376XZqZY6SlEiClczCioGCImnJOCZ4TlN9/qh727QicZd6Y8Ia4nRZSqBYlCGcaY6UJiKoLmbDTZNSRjSUXUtrnb0O3W/PzJmt9/9scYFPtx/K5QOs0jYOGd56ywdc3kQ9F3BJq6xhoDKeODIFA++sOd7X2g73u898TgseX63GTDX798x+tNT9uc4o6OsG0jLnwpCv8xZ3bdyLDbk/odH09rXjw94k9/98dCx4uBpC2VlpySEBPGWimcZkSpcE9n2t7MrZ25wuM0MXlPjBM5KFKs2Y6KT99c8eryhtuoaJsF7WLNul7g/ch+7PnqzQV4jyPzxz9+zI9ePOaDZ2diA+ojwUe0ludirBXL4EKpSjNP2xjGYA6bQVVVhBAl6G+2Yk4Z3zv2/cCm63l5e8W2G9h0A6NyRGVIGEy9xNgK4+T3GOc4OlpLQ4Ei+4nu+kooGCWDIWtJ0p7K3j6WEX8i4cnYYgxQWUuO88pWh4wCEZGqw4oPfhJqUy5W2TmjUkAVJ0Bna/IwEHMk5IDCiKi63AdaQTbCCc8Axkm0SlbshonXlxdYp1jULeM4okm40OH8kq6rCLd7fI5oW3F0ck7XDwxJs2XJt9tAutiS8pav31xytdnzzXXPZefZ+cQ2aMaopVDZe7nXC0pozIxoeVon12NI0Hd7+sHTTRKkZhT0g2ejLN7DNE5cDHusGekGz8Vmx36aiMrKxCxnbAp8ez2wrBzPjvY4ZwkZPn29YTtMTDGxaDKVAWfAbHdcbQbu9hPTANFGvMmkHCWx3ihSZdlPkX5K9F/diatPCcz0ZY9cLBfilJQiN3c7cqEaVJNY1+aU2Xa3rJxh5Qzni4baWqoStqqyCCxN1rR1Q1tLPtGm27HtdgStidoQtGLTJXxM+AD9qNiOgctuz7ebngZFqzTni471csHRqpWDP8lU/cuLS95uN7ze3HG7z4xjYpqyuEUVB6VlpVlWnqN24tN3HdZZjHPc7Tu6cWI7TGRTHTjjfuZ/p0S6HTGM4uaXNJN2VMHyyZs7VrWl0YaQF6gIm30CdUyuICbN5qZjvOrYDYG3ry+4vr3l1cU17eVI29YcLxsaJ9esqa45PTmhrirqyolBg8mY8Y4QMylE/NSjCp20GwLdoEm5wlnHNGls8tz5O9qqwmlNpVumLFSpzTTx5fWWz682vL4bWJx6TPTUDCI5yIqpjyQjBVFTNQRt8EoRuy3NYkHwLROW2z6y23tcVeNTEFTVWFzbolIm9QMHSFdlumQYJoXGIYgemD6WNJAS/DjJ10dB2lBKH0IhtVKI6V85SF2F7RJGTyhVMq60LrokmTLFrpczNsOmn9gNE7thxLqapRI9yHbb88lXl7y72hNjLlRazbJGtD8pYHQtyfIhlQJbLPaVsWKrrYWck4PksYy+Z+ZHiJ5VsoK6IYAWExVXO/p9T78fuLrdc7HZ8euXrzE64VBYlelDJ9RaoNGNOEEac5/tVdzf6uLMJmY+JZCzTD0VpREpzcM4jZKfZhS1rqSAzwlXV4ea5Gqz4ep2w6uLa7op82YzcNmNPFpocXDKcp/OuqlEEcprS2WqQ4Ui+7wwLoRuL/oXH2dNESXnTAp+W0T2ZI0hoFRG20xjG1CGoBROIudJ48j+4hWh32FUoh8H+smTKjnPVZm6kESXS0byjYwpExuxoC9d8X1tn2SyN9cs4uz9wMAmC9CjE2IokEszgKhEZqaLUsUKXT3sO+bJEXT9SD96hiA5VHmeRhgBRtVc+5Xv9ZMXYw7nBLxQEi2Q5knZPIVR6pBBpbKS5/ndMvG+w5g/8eA/v72NmCc45bVlULMzFBmdkkw5FUxJcdkFvrkd6AeZlFoFgeIUp377b/ivefzgjQpZEmrrquZnH3+MKQK8b9+8FZFQQV3FmtZimwW6WaCqFtda6pRoY2C3XNP1e15d3/Hm+oZ0tMasFlglDhUZMOXi3guYBFkOReSesqBl4uIkLmG7fc/t/h2ff2o4XtSsGgfm3mEjpojRhk47tndXjFrh0shiuWKapkMa+2HMd3DbKC8e5CaiuG3oYor3cAEduts0t6qHjvk3LuZvWVZzoXg/PJzBg3seqVJKMghSZirNigqJECd2PjEk0Uvc3m25uLjmRQtPnz3heNnyrDo9NCoxJ/zsclYO0owUwFPRroQQqJzYtQqlRpzBfAyFvytiwHGaZASaIk5bfMp8erXFXW5J+wjVgqgdU1aolKSZURpdVaiqAjcx9ZreR8YpcNw42naBdZZsaywGjS55I6qMb81hUzPWEYv71jyOBg4hoT54oh8whaP86mbkzXZAXW9ompbFcs2iXVK7ihAMblTcbWrGTaAfPLtuhJw5WjQ8OllL+FcQZzRdpgpod18chVSaSy33RVkb1rhyXb1MCMvmGfqRfd9zt7PkNPBOi1NOlww+SWFvfcTkgKXw+7WErubiJhNjJo5DsUU2qDBJh2002fsDJzqnRCTjVcLM7mTGCoBbkB2xUZb7zJTp2kzVShmikkA9ENDXKsnJ8DqQfJBmLObiWCNuSTNdLmslEyUlFB+UIefM5COv312SY2BRtdgccToTqkTz6AnG1myGLZv9BrRid/KI/XZDN3je7TN/9fU1X98JhfH15S133ch1P3E3igPXlBVdsSadqYGU0bzSopNJ0TM4R2Uz3aTZ73vGMdCHRDZgYmazn/A+URnFjUrUG2lKxzFw248MIUgeTPn5JkUqM1JrzdVmwFpLyorXdx2DF11c3WeckbwdpQd2nacfI4PX6CAT44zHF8vYGNWBhnHLSO08zhTxceGWN20k5kRIck/pglRaMWQiJdlDawONUVwuBpwWypLV+rA2dVa0VU1b1Rhr2HV7tt2eoDXKWjCG/TiKYDml+8mqkkOuylBnOKknFs2OprVM3uMjTBHebXfcjgO3w8DoDdOUGIeEcRFbtGuNVbTOs6hGWq1K0WLpJ5kATCFiq4y1YrSAygeXpdteipccM42GuwG6oNn51ywrx6oyYotadmU72yejGNKGfgps9wN32x3brufydkDfBZrKcbxshXKkFFbD2cmeupYgTrLQQq01xeVODCqMEeRynCaGfhRdmnXUdTiwB5aVCNYba/BF07EdJz5/d8PX7+647QMKLRqry3eEUZgFWRlxjDOGytRExPlt2G9JybPfb9mNns0Q2I+RVmdBThFnPWXFAruYXB7O8qiMhLH6dIgHIBeqdhF634fy5kMwsSlaT8nwSmQtzzGZiEZMBlQpvA97zNSTxgG/38m5oxTdODF4z+BFXG6NxmlNP0y8u9mx2Y/4ouWwRvPi8YrWJhqTcapM1Mt5JpZ1lKrCgini5hBJITKOQ2FT6BJUHIk5cNsFokD+GKuYholx9NTacLUfaW+2GA1Lp1g6TV0nrAKrFNpKY5S1PehAZD6SoVABjXYHRkemaN/KpGBOt5+CZKBlBVFHYggM40TUYoAy+sDr61vu9j23m46oHNuQ6FJiv3Ly3Gxx6SrXOxuKVsITtJf6QwkVcGYfzUb8RkmYZCw6O02hEUeZioMiRmhcoqoMq2VFY2qGaeTl9S0meGwKtASM36NSwBh9oASrfMhoP4Bj840pdddcS313GnKowQo1y5TaIOfi8nmg5z+Aih9QyR5qxO8dxtR9o1K+T2vRu3VdxzgFpiBsm/SwESgNo6JYVBsrcQFFi6qtZZ6w3NeV8p1Sd1LqTLiPg5sXzTwOKZ87fPzgGty/kAefvwfJDx/N17I0LCipKbspiqNglKGBLeC4NDn/f9Co7IcOpQzaWP7RT3/Gk8dP+ODFC/4v//3/jX3fEWOgNmIbaKoGV0to1+QnlkdLjo4tZrFg2PdsXn3Lq5tv+ZtPv+BHzx6j3n+GSr4IES2tK1SbFAFd+PiaMc9i90zOPWMM7PyENo4w3nL75g1Xfsv6+TkvfvQeEDCAiQpPJHjwCX7+3injMLDbXvLm24a7uy1N7Q6jugNKrSVd9uEiF2HdLHJXh4VMoUr9pmNDQQkOna38pN/2mKdw812a0sFcsxwKIgjMGULI7IeJbe/ZDJHX22u+uN1wMQaq5QmfffWW28trNm9XbH72I3784jl/9k//CGdE2BgTJGNIpQHJJc9Ak2WKhSxccT4R7muarRZTuk93LU9ca01bVZjVmrt+4qt/8a/Q9RVKe4K23O078i6IaHm1oGkqjk5PqZuGaThhf3dCTgPbSQLpfv6j53z4wTNWj98jeUX0WVLFg0x7Djk1IDf/LK47uG8pMPK8UIocPMvjE0yz5N/+zSdcZ8tNMhw/f4GuHMoaQt/TVIrKwXvPz3j98h0Xry55s/G8v5mYhsif/PTHLBbicrfbbsW5OMGUHm5q8silkZr54pMvvvNaskDm3CA/TSQ/Esae1xd7Pr3o+es3e/5q07MbB/qxI9/t5J7wIylMaA3OCd1HCsTANE4QlTQIIcgkMEKe9vgpMI2efTcJ/SBHcXNS4mw0pyVrpLB4OMJWRmOspSqFQ9K6oKNFgIpiBAadDrQJGWeXsXexb1ZKHGFijGhjaNtWNFEx0o8Tv/ibv2fhDDWa89axdHBceR792Z+h2gWXry/46qvP6cZeRM7NKZfbkT//as+//uoXJJWxNhIjZDTGViRVrK9Q5BzIzDaY37335nPDFJqA1erg3oPWZG3IaN7egha/Z+Ic4pWL4YZxB4/8eyEqqBggFdeo+ZAwVTGeoBwWokkgzjRPodYdOMukktskFLS5KQ4hlDV/vz+RIXFbXPOgqirmjKHZsGPW/akcUTkCs401GHX/GnIWoxBZF1YMSXI+vM/aqILHyB7ldEEMldB6NQI81UoTCExJcpIo2VXoEpponSCupYkc+2ITq7K8Z1mc2fByBoSc0caW5sug1K5oHLMEJs7FT1mnoMRKmlTsiQPOGNqmBqNFOxUjTnOwwu/7kdF7hnGiapdo61DW0Q+3kDO10UJNz2KFPdOfdHGKVMhhPyPS6NlsoxQ95bXe69Xkfa6M5GxUzgoAA0Q0N/3Afgrc7T1NtcL5zN/9+Z9zc3tJTJFmsURnjVZlulkblBFtWRc97zYdX15c83o3MYyZtU7FXRFQmRK1wTjFw3VsG5kGkKVIxVWSlxNKUJ1Khyb1oPAsQR3KxJKxpcTCmVl0LFpRVRDt+fus0ugYUSEw7bbUVsJdx6ljiv5AmbVWYw1s9h133UDKirvdQJhGnM4c/eOf8fTFGe+fr6nI7PcDXT8xDGLUoI0SirJWQDHAMIloEm6CnMVqfzcNDNEzRc/l3cim8+yHwG63JaNBG5lKl8wUcuC0VTxZG/7sZx+wWlSsa4etKin2lEWb6gHCXQx5kBwSbSzaFvl1KReEhhtIOVM7AWZTMXbp+57L2w0vb7dc3O14fXnLq7s92VS4ZklTt9Tbnubqlneriicrx4enNR+cLbAYCJaqWqCMFg1vjkWvYrCxAFTWUNlifpIiox8glsyckBjHke1mK+dziPR+4vS04vHpES8efcDT88d88faCf/2Xv4D9wHnj+OP3zzhZaCqlaKoKaxxaZTIW8n3T+50zqIBoWmmsthgdS0PCYf2oB/8ToELAmhRj0W1pcnEwfNCnPKi+OPyu+cyYn4Oc25qYA+8uLkAZUlYY5ygS3sMdDIBWLFZL6qouoFI4CPkJ072ORyFga3mpKnGgSKrDwcRvAbv/Cx9zl3J4peXsp5gWK9GidMPIbdez15bKKBqtaCqZtBb9xQ/6+MEbFde2xCgj/ouLC3yKrBYtH334gq+++YZXr1/DYkllQSnDOHSk/QZvLfVygasr1s2CoyeP5Y3Piquba/zLV7y7eVcOOaFdPDo65mS94uzoiOPlkpgSo58ISZMS5KzwIZGUpqoblHFieegHfvzjn/PP/uBn/K//2R+z39wW5EdGrmLLqXHNgm7oubi+4pdfvOLN3VbyMpjXg7jdzEhRwZfk3zUHxH6ecACHBTVzKaEUyYeJy8Or+VsmKofOX26OnOZi5x5bECeNVDifBlMv0M2a/RT55Zt3fDFERiqePT3n45M1jYE3+yv+H3/9BX/xxTt+fd3x7OSYo7blZL3i9NEp7aKldg5KLoixTrjpGVSKqFxeuxK+srT5Mt3IKWGcZg6/jKbhbz9/za+++ZZ/8a//kjFXHLdLTKVZr09p6goTo1gSTxPYTN04qsoQUyD0ievJ8z/+7Re83Q98/OaKP/gDWNQLKusIaIypMM7QaHvYx+bMAmaL3VTGujofqAfGOfbjxNXFHf/yF3/DxV3P4uiU0+UaXVt0ZahPj3DKY/AcNXCydDx9fMwXv37FJ6+ueHNxyW6a+PFH7/Pxi/c4aStpCgycnJyibQ3aifVlntH6+yY1FZ6ypgQsFoF5RSZNA7HvOFE99XhFeNfT9yNJGxZHZ1TL00NeSLffoHI6cPHHccJ3HW4loWWVq9A5kWIgTBMqN9Quo47gR+sljatoXcU49Adx9OQDc+aDTkrQvawIWjHFSD+NTJM/TFkeGkhQPjoQBBIylSn+lPPfqozsZVqT6PqBGR0zzmGspa4cJ86y0pmTxvHx02c8Pz4lpszN1TXGtFhrudn3rCvhwqdGs+sjPmWsqg51gPaSoKCI87K9L6Lng5AH9zAaX8ABE+/ve53FfQdKYN8BDVPzhiCNnkKMOwrSleepkxE6HphDUWoAXfaJrOeNxaJNK571ChKiYRJgYM7tyZD8oTmQfapMDZDia0ZByTIZiYrSmlCceEDPaVJKybPJVpzf5iamFACziFXlmc6gMAWUmZ2A5p+FEgMUQQPlmmSksQkZsfBFkW2FMmIVrwv8nrMi5lD21Iwtz03ucVUKPQ1OoTOSrVJ2xjxPicv3mgdQaIxhLgkZyxSYss+qmFF+Iub599xP/+7BRg26ZfAKQgAVD2XREGHOigJLDtJUZeJ3i4w8czji4TrpQyVSxMcFVdUZlPJyJ5VoF4XCKk3nAyErTNVStTXaKba7W7KfcCpzZKI00QR0juy3AzEnnKvw48T+tuPV9R3v9iNTSHSxZLrMV7Iby/1QzhmtWERVAkUVIUVWTtbbzX5zAGkypfArzevhdjLq/vwLpSUp+/J9ASjNsHysaZcntIsV7/3kJ6wWC5yz7HZbbu7u2HV7rFWsFg1tU1EXwUQG3s9WgpbHgT7B48dP+KPf+5DTStP3E/044YvDoFLAAwApzkyNlNjvdvPiJ6XImCO7aeJf/MV/4NNvLrm93XF8coJdLLCLFrtYUlcNtatJfsKGPRUjP/3od/nJ73zARx+9Rxh2TOPEOAaUcsxV6GzWk2JhYBRAMx3sgItFf5avMVaXotez33a8ucrcbjd89vJbbvvIkBznH/4Ut1hTLddELxR0S2SXIy4nliP8b37++zw+O2WxPGHcb8UgIGcouS/aik2ygGym3C9S8H88dICcAXGK+HFkv90y7PeSgeYnlicLTo+O+NHT96jMgs0wYpuGdzc7lCpTvEkmeTEqxuzxOWJTJQCGodyxptRCsj40MvHUMx2eslFxv4QzmRi9mCNYg7OWbuyZJgEcXMk5iekQX30wuDnUWQ9KM6ENQpSkaHFLrLUwx+Lc7ShmTbPIEhzLozWPnjxh1S6I3jMMPSlBW7cQvFB01dyQJVDmsJ+lA/pdHg9Ar3/w8fCff1tPczjv5uulypor0b5ZdutlXXG+WtCbmrZ2LCqHMpqhH+n74T/+HP5/ePzgjcrkJbl88oFxEFpJUnC8PmK9lJBFWzaOGBNqGshDR6oqEYgZTWVrFosl8eiY2I34uw2bcWCYdmLHqgzOGEYf6YOMWq2ryaRiO4gUUJQkXMX9Aino2/n5Kc+fP+XDD15we1VLSKOy5WshJ0WzWjN6z8nZGV+9vcMY+yAnRH2n+RCa2b3F3v16ebAjHw6kB6uljBDVg072wT8ePvrN5afKj5pdMPL9j7//0YLcWYupW2H4LI8hD6isZONslmgVubmWJu9yiJjPX/PifOB0teTZ6cQuwXo1crJeYgv/1qp565cCZradnHNKUFk41TEQwr0eY24eP/n6Db/8/BtevrtmvT6jaSyEEZ0qHJZFXaFywE6ZCS/oFoqjdUunMmFQvN7tsO/u6LKmOXnL6XrFsm1AO6qqxrmKZb0QdFIbUhY+rzi0GLKWjS3GQA5SWKgI7262vLy45Ot310xBo3VFHCVHRyVF09YYA5XSuLYRf3znuLvp2Vxf83a34a+/eEWXFH2EDx4dU2mhp2AX1I3F1pU0fUncwu4TalXxwC8TsZjxMeNjxJOY+kC/n3i7GbjY92yGnqHbk6saWze0Rwsxm8gJWzuUymK9GiOm64hKs2paKmdx1jJ2HWPfif2vMjinqVvL86dnHC9XnK+P8eNIDBHvA/uhL/kphXte6A99jOzHkevNHV0/59tkyZIoCGdmPi++2wDMo+n7dqUUv/PXFXqB1krQJqOpnGbVGFoybVWxWqzo9iP9MLDZbsnaEbJmN0SaKJCUqyyMkRxl4z2gRA/H62QkpO7BfQmlELi/9dIMPRVOrlLcF2Hf+XlzoTk3orrIX++bmPsztBiCzNekFPPzYZv13NTcF09Ki1W1IhPjvRnB3A7OL2BG5OZGhcOeU8Ib1b0bj3qAj8zQh5rv9hlBVJKUMF+zOWOutKBlsqLIJa9GJtBzUwOYfPi589aXy8+cG465MPhOgZDnaU8+uEjK9897ZWmiyjXTIFRjgJmmW67FzJuXolTsuFUW2ur9uzdPh+8Dfg8PNbfc9yhuLoV1Vqnkc8yhd/PFVYe1lMp1OtwP5dUcipD59ZXw4PmWEZqkkklDOWyM1pQtUoolpXDOYqwi60TvB0zOWGNY2hK6pzRG24PVfqOhUQqLYpi86LRSxsZU3I/kt895YdpKg6sjDJNHm3xYlxQXqBQmCQpOFH1mucVmvkpp1A/p4umwGkClw22UcjrckxlNDCMxVdjGUa+WtG2LaRdEV2NKo3K8WrBc1NRGP5gmSpG9IdNNAVfXnJ+e8Whh6IeJcRI74u/UcIf7e34fMuPJ0f17T8KT2E4Tf/63v6axCqMS7WJBtV5RrZaY5VrOW1tjyRi/pEo9yjYY01DVC46WDdGLuUEu9Ka5MZ6t4g+hwTmTguhictGz5DJ5N7ZoC5Jnaw27YUBpmSx1XqPrlsXqiHp1RLU+xk9eDCUU2BQAT68GOq8IytGsVixaK5PZVKhwSujCptj3olQJvZQJ7jIsUWSs0WQfiNPEsF4wdjuCn/DeYxeORbuQUOZCKW6qis57TA7cDRNr7UQXEeLBjnieBh/quQfV0bysDpRE7u/x3/aQEFN7mKhmyrXWZZ/JD386h91mvh8FYBSgeZ58HhzO+K6tsTzmdS+Ub+scbdPQti3OWgaQ6fT8fPJ8Zubvff/92jz8/++9yLku/N5n/4H/+x/7OnUPpmU5j9rKcbJsmaoldeWoK0M3TYxKtK0/9OMHb1RefvuacfL3Ht9aXA6OFitePHtOW3Qi22Fi1/XU1QZNIhDZ3h2LBTGJddtiT06pMNzsd0zba/r9iEsZrRJq8lxtO5rLa44Wb/m9H33Moq5xVtN1A9Y42rrFVDU+yqhxnAZyTjRVzZMnzzg5f4JdnmB2o+gIbI2xTm6AGLGLhraqePziQ37x6Wvat9dMU+BwIisOoXw5i6C0HNFyw+Z7ZwxmlAgOG582s5QKDoUM8A/fVnk+6wpVqaDSD0aKKR325ENjrIzBrU44a9f86dMfw2efcXVzR9hPXA+ysXy7j9R1Qx8Nf/7lFV9cTZwsap4f33D85UuOljUfPD3n9OiYRdvStAuMkht92TYYI3z7rh/Y9z05w9npObterEGvNxuyEvrY63c7/uKXf8eXr1/Te7B9J/adyeM3l+zrho8++IAnJ0eYyvL6+g0hjEDivRePud3s2O56bu8qPtkEvthf8Wr3V7w4W3N+1NLUFU3T0tQNT06f0rYL6rpGYwpqrQUJKofuZruj6zq6oaebAl+8veKri2ve3fbkrNCMdHeS3aAMnBwtOV8vOV0vWR1VuJVjtVywape8fHXJy9eX/OXX7/js3R3/7u8+43fff8px27BuWz54fsfp2QknpyeslyvZ9lKmbprDdO7y+kKQnJQZPOz6kc2+Zz/0XN7teX254ddvLrjrOzZdx+bNDW6xxmbN4r33qGtHpQUpapua5XJBt9uxubvj+vKC984e47SBnPj001+z2e25vttydHREWzecnrR88N45L54848cf/oilq6XoTJnL25ti9dofnHdCgHd3Wy5ubjEvX9L1gWkK9F3P7c21eMiXlU1xkCOKN7/VRna//GADnotxYE7slUNaCv3GKY5bzeOFYaENy7oF0/D/+sXfcrfZcL2/pV0dMybN1TawOJEE9ZNlwzAERpVxTh/SpPNcvM5FYhFbGq0LqFIC17xMitDpQBVUSpXD8TBjeHAw6e8AU9+5v7Og4A9Psfzg++SfCjpYbJoF4SvWn8WoQmfFerVAqYqU4OZ2y5yCIOLZBwXu4Tl8Dzg5XOtS8KtZv3U/6VW5FKBFOEyxqMwPXp8xJb2ciEJCJ7VzzOBAtxsZ/cQUPMqZ+0bi0MvJV6okE4Pyix+YyCTQ93LWWd6qivDVlKlyVuDL4a7LhRY6rBFhb2l4Zz650fpANfR+4m5f8oVsoeqUa2UypTlQRD2X7WVl5/wdrnh+cJ3nQ/6+mdKH91vdf8thvavD188LY9ZDHr70vkHW4oRltFCiGq2xXUciY2uNcYGgJ7Zx4sQ2NHXNSXuEWRqss1RVzdG2JvmAw7IMhp4tRn+NsQmrMq6S92p+QqY4J4LCGAfAFCM6Cce+aRqmUGx0YyJFAStMmtcQB2emeweoQnHRjspKNpikd0uxNmWo6gbrKtCGPvQM24761kHjUKsF62fPqM7O8SHijOJ42bJqalYOCJ4cPMN2y+bulr7vGfcjU9a0qzV1q6GOGB9LwSkXO/oCvJX3Zr5RjiqHMwanZb1nDd04sjT/hpWrOaoXHK/WVMsVbrGA5QqLxinNk+MzFo2hcYrP375mu9vx5uVL/ux/8SesVyvWRzXDsCfmEqCcvmvJm3PJ2jgg6HNhOGtVkPeNyMnREZvRk/VLRi9g1PFqwcooaqupa0duWuq6Zr1c0FSW1O2Yrt/xz//NL/nw2Qn/5A9/zB/+wcc0dU2KijgJYyVmubdinqd9haqnQela7gMN1kVcG1mslpBOIHr0OLIbOoaY+PrqCibYbDc8WizZ7js2YeJvW8fqxXMqo9ntOlKUkFWtC6SV1XfqnUNmyoM+V2UOIvT53+a0eVvWalPkB8YajHNoa4lhFID10KioMjUuO1ExIyGXOk4doCvmKIuUHwRsak0OZSJ4AJuMgAUlqDLlxDCO7LuugCXq8Jq0LrEM3IMjh31xHu3+lmbl+4//xD8/+IrM7CaYVeYhxc0Yzdl6yY8eP+LJ0RlZyXTqs7dvidnjCf/J3/Jf+vjBG5XWNVjjqFws/uaB6ANNVfH+4ye8d3bGZrvj5bsrvn57wbTbHYTNu81GbjmlOG5XaFNhjo7YP31Mqi3JOirfo7Owp5W2pBC43vf8+1/+PU9OT/jw+VOOlws5YLTC1TJqVzEdUByN4tnT9zh79hE8+pi1W5DGiTQG9n2PrRyL5YKp25KMhqMjjo+PaeuWyQfgwTQF2cBMWXQz8ig3RCJGCamT79GH75k5njMCd7/WfnMp3SejzhtTJudIToYSFyAuF+SDNoWimYkxMI09n331FcG0dPUJL05PeXZ6yu2m567v2U8T9slz8uSJScKPcrMkNA37asHtfo/abvnicuCkvWBZO06WFc4qSf9ua5wVdy3vA2OxzG3bdww+MkyB665nzJnOB755c8m3by/Y7QZWqwWm0mSjaahJIbLb7/mLv/wFJ6fHrI+PeO+j97AWjM4snKZ1hkfHCzaPThj6Hj+MXG33DAFebUbOzxY01UhlLJ+9vhGJvRbhqK0Mxkn+QIjiWtINgX4a6caJtzcbrm533G57pm4gzAm/Sh247d98s2dZtazbNT/5yUesTxcsjhvOHx/TLlueP3/Mp58vGbqObhj4/LpjvcisR7jwr2kvLmmbqjQqpWgtxahSsNnuhM+dFbsx0o2eXe/ph0DvA7vB88XrC3EpCxGNYtpvuNxvGLtL6mZB00hzZqwRl5EQiMETp4nXmw0pBMZh5N3FO4Z+zsuRSeh2H/mrv/+WX31+yf/nr79gtVjIKN0YtvuOKYhA0LiqZCtk+tEzjhP73h8mKeM0YI2isjV1XZO1PThM5SRTrDT5ghprrBZu9XwAyP0gH2gjh+M0TtikWNuaF4/O2N/c0m03/Op6y3bsSCqzPD9jmOSQeX60ZGUCfYw4FD5bhhTFxaQcaKnQFVKW5rCxRgwVomcK8twWiwW5EuHsfhqLPm02a5D79mGC8cNCVYq8+bOZVGhlqqDih2J3/rs8j0wmKkXyJdiW4prjHGa9KEV9Zuw6aueonOXDZ2ds+on9OLEfpoOr3ByodsDlZnEk3E9zZ4AeJXtlfoAsK1U+r+fNjZj8odCvnJVk6tEzxiAcf61RocdoMSt5fNoSk8H7indbWXMxg6vsg2tEmZiUa1F6I0ojoIo73DwBUvP3KAgzPUmBKhkggSxBpcXVMeWIn8TIQpXnaKzBqEjjKs5WS05X6wKubBl9cXe07lCMaLJkPzx8jg+u7YM3fR6BlE/NU+/yjifgwZk0h/bOerRYLMpTGa9obaibphhhFLR3zrlSElIclVjwKyUaqeOm5tnRGmfg9t01t+PIhcu0Uy2uRyf20Aj5EOlToo+eafKoBAb94HWWoq1MnsSqXF6ihPsackpMKNCixXn+6ISjkq+yriuO2gV1VeGcZdvtGceRYZxo2wVN3bBcLMVJMkXGENn1E904cXG3w2dNSLDrB6yHNExcvnzF7cUttm5ZLpe40lwqJaJuq2FZ2cNkbbfteH1xxe12ywePloRxZOhGtlT4DBErYaBaJmSuSiX9XareWHKANoMn+EEAjKHndrvh7c01n15suBkiWIcJHcYrrNes6xMq46iV5VxnbJhQIdDFnpe3d1xs3jLpwOPzEx6dn/Do/EzCBrXDuqoEUmrm1HsJBRa6VSqUuNlNsh8HdtPAOHTs9j1fvtvwZjsxUaOVxcRE3t2BSuhK8ejpM9rK0NhI2N0w9nuy3/Jut2P/1Z7LmxveXd/w/MkZL54/Ye0qwBCyOTi3qRJNMK9ui5Ln6RN7P8jZ4yfGbsvQ9+zu7nh1dcNdN3HRefrtDWGcSN3EP/vp7zFMnl2/49vec7Koee/JEz54N2Jiz03siVrMewgJVdaoTBlLcwIFgCjap/unx1ygiUyw0OqUQmmLdRIO3m0GoTnPW/LhNi47e6FCHeq1uflQWuIhdBIH0QL2xLnZ5YHuLCX63Z6Lt2/ZOsfN9TX9MBAA0zRUeaJK+Z6NpaX50iofJktz/XB4Xd8fjHz/oR5eCOYN/3tfM38wGznMv7wAjQW09CEx+pE5nkMlhU4ak3/4xMcfvFGpncMkgzFJIMNJROeNclgtSc9Oa7phYrPvubi5IE8jaegJ3Z7JWfqqYm1b9NzxHq1JwRP7ARXGcrgrtJGU5ylmuv0eawxHqyXHqwXaFEs88QJD0rVFtGi0oh8mNvuB601H7kbSOBGHkd1+h6tk0+o2d5hhpFaG7W7HOI2HYvLQPc9/DlSC76+FB5OUw2OmgZSf8p9aXPBgvPmgqmB2JrpHFVKhgqWci6+6THh8TAxx4m68Y2VO0K6irh16GjHOsm5PoB+hjL1zVeGNo0PsWqOP3HUDm26ktYrjhaVx4p6zrCVgURVxqB89KWWsGxhDZoyZ624gWcOUM7vJExE3KrdoyVYsEBfGihvUOLHr9uz2O2KOrI5XLJcNbeMwlcE1DagKt4CxqRiHkbskaeJhjJjB0yZwOjHupxLmqKhdg6sN1mkyER8lObgPiTFEBh+4uN2w2w2Mw0TrHAZDVImsFZVWmJyJocN7z13Y8er1FSdh4iSvePzkjMWypW0XTN5zdXPL9c2GnU94nxmGwD731ONIXWkW3XSPjpp5RK0YhomYpWjfTZHRJ4ZJOLA+RsaYxF7aKKzO+DGQxolp6NimgbFeMLQrGakzU0zKn5wZciYWUX232xbLael4Y0yMPrLrPTBg1EaCq4q9cj9KARViRtvSeMRE9LHQcOWem+leTdtKMJ+riSX1N6aIURU5BCmuvGd2rdHz6j4UrfeteyYLpSwkrDacHR2hhoGN37Pb78mVQVkJp0MpqkpzvGywVSKOEaOKk1W5P2aSrwKclXRq6xzLthaEPXjGYSjTrVAE6obayb7zAGC7n17exzbL3/lBs8JMNaMU/nz3/j8UrbNQUh3QOK0Nta0xVY2pHGpRU6HQMdJnBLzJ4gq2qOVeDOGeEsI8Ofp+Ei3fqaUffPIAudy/PnKh4BSXtuLkJIMjdaA6KWuw1ok9sJ6F+AmjE1YramsZQ8VYKMJzCOxc5igeTpfu97xcLpF68LmHa2PGNHMuYvni3KQKCp4LRU6aKJkoGGPQ1kAsjjsKKmvQuSK0DdspHBDjVEIK79/Ph9fmwYn/H4UtZ7BJlWa8UEXUPFWQwslaK05QejYsoDgISgOujbw/872S09wGZ0IR2kKmKtlZi2ZBZ26JyTP58eBwVtU1fgqkEEgedkGxGz0hZQ6FWObB7yqCEynBxMihTArmZxBiODgwtpVjWdw1T9uGk9WKtq6pKseitvTjwDhOLJcrmqZhtVgwTl5yWnzEuZFqFHehzicGH8n9IK83ZoZuIPcezI5xv5UmyBgykRRkGrKsK0zh9nfdyO1mQz8MpFCx2+25vL7F+7bMARXOVWXyVpr7EERonRMhBnwMbIaBYRA9Q7fdc3l3w9uba656TxfBK0U/DGIhq4XWnFLEZ0U3jagUSNmzn3aoNGFzYP3mDf3Y0089MWcRuVcNdd2ilUzb04NGRWthMYib430442a3Z9ft2ey33N7u+PLNDRfbkWQrVNb4ELFjj3GaaqgI3YZxciQUYX/HNA30/Z6u7+mGTD8MtF+27LqBEBPPj9Y4W4GpDo2KGEPIlEGVqUFKcr36vmfyE8M4sttu2Hcdtzd3vLrasBk8N0Ok29/iUuLM1pwendOHwDYqroMmB83atLSuoXWBm9CTVX5gr/Bwq8jf2bfKrX9/9837nxKcIJSMslziGrQSGuchx2wGP7g/k2RPuacFHxq0stfMuSfaaA6DrzRPW8rkpwzBQgjsd3tGa2RN5owxlspZjHeoIJpQfmPbfgBe3//f718M7nenh5OS37ZBlZ+U73ez+1Mr31/IAnjFlJj8RDeKXi3P1t4ZFPo3f/x/5eMHb1QWbSPOKCmhDDirCcGhsiL5ieBHWlfx/NEZTVOz316JAHeTqJtLxhyJStHYBavFkmW94Mn5GTdhItzeEPoBnQJGc3Cf0bZCVZm7YeSTr19yfrzmZKVpa8s4DhJoNU3UVtFUhqoy/L//8hdc3tzy7u07wjiUFF4pSGRpCiqsi2PH//Mv/oJv3rzleNmirRZh67x6Cln64eKdTWRU2cBzSUB+uESkq1biLzRzdP+BQ+67ZYMhkYt9sNjS6vnsy5qQJF28qSoW7ZKqPWF1csbGRz757Gs+v7hAW8fT0xOWVcXRYkl1fExK4uC1DxPTONKlRBw9xrVk09D3PTd9h4qBZqdY1hJ6WOkBZ4RSYbRMVUT41zEkxRgzV9PEk0fnrJZLnrxX0zQLhsGjFgtGPEolni2WtDpjcmDfP+fbb19xeXnNv/2fPuP95x/w5MkzfvaTj1muHXWrWQHu/AiV4ebRGRc3d2z2HZtRCvnKODbDyDgGvM+4RmMGLUiKllwOn6GPUcr4bDHtirWxHC0952fnmKpGOZkeraymNTBMey6vNry7uOMXv/w7lkcLTh+d8PM/+DnPHp/y+HzNn/zJH/D64oavX1/xyVevuQuB6ymx1JpWKRZKw9RLcZISWplD+CPaSKOSoI/i428ay1nd4MeRfr+nXi+JWREi/OpXf0f0vYSQbSfG/chgOrJGzAeSx5QN1AApiFhXkFl9KOaUiuQcmLyEWoqAM7AddyhlUIfhcy7TyVGclUKAEnK1bGtymDA5Uy0WrE/PyErTjZ7gJ8nkUYrVcolOgbi75frdO2KIGO2ojKDrMUqGhkxXhA6aszQq3ehJaN57/pSjynB5dcv1fuTs2TOmGPjkiy95/OgJj47W/PTpGZd374g3ExZJMBcrO4sPIwpoXMXTs3OOj4559uIF7mgtOTjbG65ev+Tm+povv31D066o65pHx8f0w8DoxR44ltIddZCei85zpvhw3wwI6qceGKNoKGSmWBqnypjS/GsSCdOuse2a5dl72GaJqmomo1jqTJ08+faCy1cv2dxcMY23nJydcnZyxOmy4XazYbfv6KeAKNPFsncGW5gpXuWZzgffoWV8QM05OJQp0ci0TSONZxbb67puqZqW6vSItl3QtgtWTjHut/SbWy6+fcmidhwtG/7go8fc7Xqubrd8e9sRlSIbS/VgT531TGpG9IDZrlV9b6+ci+iY5PksnKZxhrY2bMZMzJqQLG3laBcN6+MVq9UR2lqUMnSbLeP2lt3NBcvKslwsePrx+1zc3BZq5IYRhdjOVjhm3Y46nP36XrlUUkTmvfsA4h4MPBSiBZZAWPmK/X6PhI1XPH3+HkfHRzx6dMqyEf3mmzdv+Ozzr+iHkbqtxAyjFITy+mWq4rPCKU1lzMEobmkNj4+XBG8xRPp+oO8lgFNnaRaHkPi6S3x70zNF4d4bLaJtY0qzEj0pSK6JbZdU7Rpnaxpr6Lot0zSIg2e9oHWGGCPDKDbJlcnk/ciugAYhlqwe5eh9wqdRgleHSTK6MvikCDHjXIWOo2Q7xciYYEpCnTZKoVMiTT1jGJmAFEsYboj0dYOzrtD4FMSIUYnB93z29dcc14b3n5xKM5pEH5DL+tPaEHzE+0jnpzJNDtzt7uj6ga6buLresxkmNpPnLii2WbOPcP3uhvVi5GTtyZXGR5kys+2ksUgJvaw5XjScLVteX2+52fV88/aCL1++4Xi15nR9xHKxFBQ7S3Eegli722IOFFKkHwOjFxvid9d3XG93vLvdcHG1YTsG7qaMbo8IPnDZDazjyDIHsoq8e/tK9C4hsnBCfQ9Z6LJNVRGM4xdffMuvv33L3/zqC/7gww84P15xfro+1C05SXZKLLWHFPoR7z2bbc9+mLjtei63e3b9yE03MAUD2qJdQ1SnVE5JeGZ1Qq41jTni2801l3tFbxyxXlOFjN0NMlHVWfYJ1L2NcPl8QgxlBKDO6DwTaqVOy0oxhsS2G9j1PctqgcoJlSMpTjK5IsnaKvXV93MMC+xEyvHQrM3loDWaetGw7UTfSUTWVLF/N/O2T2bX95AT/TjRLBY0VU3jHMb3xDzIRFUlZu8tAdoU6WDaku43muIe+N3d57dtRt975O9/cPhh8rtVkEmRkQnRNIxstxvehIhVCpOhG3qmEH/LD/+vf/zgjcr11TsJ+0uJkIsAKiaSj8UyNjClWFDVxPHxMbnr2IwTcbORN0IZpuUxY4robsvm28/YX18wXL1D7fdoMkkrHj1Zc3xywsnJCZ/8+lN2+x23+x2vLi+I04A9WkkSdIh0PqBSpK0rzk6P+eSLL/j8q6/5V//Tv8VPXjjWVouNXE74EKmrSjb/GNh0Hdppjk5PcK64Xqiy4Mpj7qQzxZ2loDLayGh0du8gJ+7F/RxacaXyb6yj/NsWXaLQxwuakuTG00qTTCapRMYTMex84pObPSuzJFpLe/aIcbvHT553V9eEyYNS1Isa29QYV+HaBU4JFUmnKHxhp1nUDcNo8D6y9YnJzMnUGRVKQrFRKNOircFi6YaBIXumxpBrC1YLhSkJsp8mTyRgdML7kUWlqC3URw2L5gUv3n/MV1+vuLvd8eUXv+bi3RuePj3j9PSYp4+OWSxrXG1p1w3nlWI1LYheaBxGW4yuGLwI+pWTRN2slLgkTR7vA900kHxCJ3h6ekxVn2KdwYcsYZkxctY01LVmWSnWqyOOj5a8994TTs6PeHdxzdX1Df/qf/gfeXR+ytMn5/z0Jz8hG4erFzx59oyQpHjRJGonSfZ6ri5Ko6JKYNd+CvhxYuwl8NFPIz5ISKAxMp7WyzXDMLLpt1SrFcvVioX5iNzvZfoYPCEnaVRCEKoLgvDnQmVTWtMuloJ+W0sMU0Hgp6LPAO3m8bY6OOMmICTFrBloKo1KGaszDYFkFElbkqt50410PrLZD9RKpjK6cuggDcLq/BkntmHc79jf3hDjIL/PGIx2UuAn5pIQozWbYeLN3Y5PXr/hpKnQ6xXNyTF3ux39WIIkY2Q3DHz1+g1DDuyjQTcLnOmx2cMUeO/ZU07Oz3nvd35M1S6xrqaqG/oIPgRCMDz5nWMevd9z8uRbXn3zkv12y3bY0ywbqraishkf8iH4LM0FfSny5ybl4a17iHXV+iD6NEpjkkxBT44WGJXEArk95vSDn1CfPOaii+wmj+96/DhwkxOVgrNqwaMPf8Kz9z/k3cvP2e+33GxuOD4+4vR4wenxknEKjD4y+Uhf0rNTpriU5YPeY8YplTYHEE1nhbb6ENy2aiuWTYXVsJsCfcw8+vCn2MUK0yyIVU2KmSlEtlNP01acL044Wh6zub3i+vaKfphY1ELfWy2X7L1nP3kJI8ySs3Hghx8u4gMEVd3/R7ROYkcqDkTw7GxJZYRad/ftO5rFCedPP+T5Rx8SrGGbIrtxEhONyVOvH7NcnnDy6DFhc0X0Izc31xwvFxwtGp6eHXO129NPgd5HQsiFlsVBRxWLgFwW6r22JWWwhUpkqgpDpnKW5UIMTgY/cXO74cc/+Tkn5495/N4LqpMjqrpiVbVMweND4OzHPWdPPufq7Vu++PLX9MOAVoq2rg+i21ymH9ZqTh+dYtsar+BqcwvBY5SmbRaMfkc/Tlzt9zixEGNUite3nou7AVKUJHgthuQSeGo4f3yOrR3aWagqtF2gTYXSDjd0TMOezeVrpugJ+z1dCNztR4zWvHW7wxrSxh7ePXI+TJRTaXzvrZiLAUvMjDESyKxOTnj0/DnWWeI4EcaBOE3E4A+LIoaR1MpabpsWZ6xQhcgchwWQef/JOVW75mI3sh1fY60EQWpthZaYEqP3TFNgDJExSZBxSIkhBLxPTEGxUy2DbcT2vIajNrI+jRxpQxgG/DBwd7vF1BWmXlM3JxgjCe/LZoHGo9LIlzdXuDJxfNQH1suBo82etq7LJDaXBkBCinPSpVFJ7MdQWAGRbpjopsB2UIzVEThFmxWu6J+MUli/J4eJ3b6nXq2wS0mC12USprUGnVApQQzYCgKRy33Hv//sK46XLU/PjmUNz1SgMoWYfGAMMnUPMbLfjww+sBkDt0NmiIYxNRJMbCxVXYsjq9ZcG83GNGjjMIszfvTxT1hXhlMDy/MVi4s3XH5yI7DFrJubz6WUyUos4pm1ZYqid7rfOJRYBpKSEuOnEMhkjBIziKZy9CUEPMeITsJEmDPBHm5BM9VLBi9ZJvGFD7loapLWaBcY9huUMWhr5X6dPCl5ej+gkpUNLnni2KNSpKqOxAwj14TYkYo7ZtQPGDQp3leLh9GRun+dv7UjUQc3vZwffvv8vb+JlivEkGN2WdEKamtYOkdTVcJSImEngyo1/w/9+MEblX4QIZCfrfxKwF6YpEkJITJEsWVNOdE0NVUImMmTphGGAdV1+P2Wnh0hePavv2Xcb8jdDpVKBkMWZ41lW/Ho7JivK0vXUUafOxZGceQ0wxAZY2QKxRFDK+qmotv1+HHCD2KnqpWIVm1VS8hhCDR1A0BIkWwUC9Piaoc2M+1BP3hPfwvEB/fIJfPUZF4k+bsdiTr89Q8+ZLP6XiNz+Ln31pmzoA5t8Riux0jfTahKgamwToIEQ4hMSWg6sYuY4DHO0sSEMzNPF5TVYDWqMsQsCRNTylAEde6BDa0OCaPy4ZweYmAMHhqDMrr8sbimISpD78OBdxuiJyVNzpqm0lT1gsWixvsJlTO3ecsw7NncWUgJkwPNvqZqLLZtDo1xnCI6y+Qkq6IN0gXBIxEzjKNnKPzo3dSDT9isMOfnVHWLa2vS6NFFBxJSFKtBNHUtqcN1k3mRHyNRJ4Hx7cB+u+NNjGhVUS2WmKbFxwymWDkqLVO0kGWaUQTAPmRyFh/8be/ph5Gh6yWd20+M44AbRtrFktWxE1TGWZxznBwfY5WmNpqBRPYaAofQxBgifgwHMaC2WQS41rFYrqVRMZabmxti9KQU0VYabFtG4nLLSQikSqDijBtLToJGRv4xZkJWJCX5AUkZlLJUWFZuUag2msREQBNtQ7U+RZmKMAUYtjLdJAKmaBLEW8eojNOZMSZuuoHP31zy9GRNTplRITQSP+EaR9aJKU7cdhHdNNI4laKonGqcnJ7y+Nlzzt5/gVeSwRSzIo6BKWS6qNGuoWodj59lhq7HKthvN+QUBRxAQvy0EjF3UrMF672T0Uxrewit53LdTPkZhoLgKoUhEf1EVIrFcUuzOqY5OoHpDpcTRmdaXYuzUhYdi3IaV1ccnz0i5IjfB0LwaOuwRtPWFdZEKiN6F9FA5QNVdNa/zfQhSqMCcq6J258g7E1lqJyCEDApYzGszp+g2iXJ1eQIKkSyLtoaA85kDIkxeNw4EX0vg62UaZw5WFTbMtUNZW+ZOdLyzL5PfijXr6CZlXEy1TXQOI3KEEIiTJ52qVitlhw9ecY2JfrNlnEQO2prYFE1VDpR05BUYipToBACxhjqyrFqG6wJWOMZfSy5IDOlboZcBQTID8+GLMJdUyamRmWcNdSVEX3BlPHec3x6yvMXL/j4936f2yR5ICEopqxJyuJcxZNn7+G04fbuiquba2KUvChd7M21UlBozotFIyYiRtNPA3qccFpDsyACPiW2/SCuYkoxWcdm8nReDGOMziJczkKVNEqxXC5ZnJxg6ppeQVYVCcMUJfxSo2jaJVO3JfiJaZgOjmijndkKCmXcAZiZjz5JEy8OgUou3DyjjCkTslAEq8WS5WrJYtFKI9A7/DAwdF1xWEsY5VCVXA/nqqIvlN+zcDXGWtp2QT9F3l5vUMpTN6Klc7aCci6OXtzPZIojDXTImYAlKAgacg3GKaokv0RyxiLnzrK5ueV2HBiGiaZqqCvRDxrjsNrR2oYUR2LUjMoyxcgQAjHu2PYjt/uO9XJRUHg941oSYh0oNNxENwWmlJlixkfFhCU7i3WSWF9pQyp2vVpr8k4z7Dd03R6Xsugz6gajKuYYAa3kl+TJo3QmpokhTOz2d9zs9tzuO85PT6icw1kr1yUlvI/0Xq5TTDB5mIJmnyyT0UQNupKUe2MEuDK2Kg6xikkLdbRqGlZHa5ZWQrdFX6oPFOmD/dC8T1D23QMn5mFFdfBBLKCwTMBnotjszqW0uOVpUwJKf8MDmPv6jXsmzfz5g1Yxg3WG1tgyaS/GHjkRpgmmkegnprEnGjljU/T4FEnRo6qKFCOSFzN7RJYspYdP6TtP7WGj8vBzD75wvtnUg8/lUid974rNX55R39nL5vwwZzSuTIesUtgit/hv8fhvYE8s1qQ+RtKcWjpz4r2I9PaFAhKyuB0tUybEzKYb0F2H0Zr+W89mv2O4vSHeXmOspqprKBOPnCJDvyf5kcYqap2ptaIyhpu7O0zyOAJkwxgEAUEnlErYynD+6FSKAiXpsRKaqCTbjgyFb+kqR7NcsBs6opK8BWMcRumHUipZ1JTONBchWRnvqpLgPGtHZt6HCFbvF/mD//zDjxmEKv9Xl4WXc3HhCBGVM5WqUNWaaFpuk+XddYc2E8umpqoa6qYlrI/KRCYSppGh6+j3A5vb7SGV1lojNqQKrLMlA8TKzWMNylma5aJMjJQk9oaBpBUBx3B7yxgD6/aJJAU7x7JpOT6BaZr45ptvxBo3RcYp0aFR2dC4GqWhrgw//elHfPDhc/p+4PWrC7Y3OzY313z78quCNChc3VA1lQQlocT1q2mp65YQMiFEtrs9Uwr4FNjuOqYxEHzAI2FzjXM8ffQE6pZcWZbLljpGfJi4uXxNnCwxVDTNkhBGfAi8//SY95+ekf7o99jc7Pj0i6/59edf8S//5b9BW0vVNiyPT1gdHbM6Oqap64JSJQlJU3J/7GfXsb5nO8jIPEwjMU4y6o+RFsujJ09wyzVtChy1DY9XRxil2O13XF9fcbe7xZJY1Yb1ao1CkyL0+0FEqjFRLaFpaxbLBVW1JGf5mrdv34qwPibqykFlsbUp0ztJzfZjIIZECAnwgsXrjLWyJkKAfQBdNyxsw3sfvWC5ltd+1B6TYmC/u+WTz37Nfpi46jNnZ89ZHifWx6fcvfqcfr+h73aYnNAYrHGgLFZldJWZUubV7Y7/4a8+Zd0YGmdZtC0me5rK8OTxGWGa8EHE8OfLc6zL9MNbvJ/kOlSGpx98xKMXH9Lbine7PZOPNMpiY2QaJr55d8M0jCwbx5/+7of80ck54/aG//A3v+Dd1QX9dotRlqauqawVbryS1O6YBVlLRbR+CLRDkMlYSMq6OFyplA+C1O7mlpvdFo/m48c/ZQgGPSYqv+fF6YrT9RnnxydMAfb9yC//9u+5uNlgcuQPf/b7nN8+5e76kk8++TtS2KJV5vTkhLqqWDUVp+v20K8B90F8+d4FLcGh6CNxcMuCjE8jd92W3dUGRYutT3AnZ+yVYTdFuNmybivWi5rV2Zow9vh+zy7B4vFzzt//kNuXL7m6eMfLb16zXDYS7NpWqLYiJJiCmDTM1APBQQrdKqeDFepcwBmjcdaWwzaxudvS9YHt3tNvR1ZHgapK+Lri6q7j01c32KnjuK14drxiUSYdKlmef/Rjxu0t16+/5def/hpyZr1ccnJyxKppUErho78H4WYtULlmMWV85KDhMUaVhl/ef8lPioy+Y78f2XcD2/2AbZccP3nKh7/3u3z6i7/kzcUVd5d3mAQViqUxfHhywosPl7Trhv/5r/6S66srtrs9y1ZS6q3SqDihsawXLadHK9YVXEwT+9tbrNLYqsHnzERmHwObfsSjyM2K26Dps8EYOQtBzhUfEtpA27Q8ef9jzHLNN9sNUzFLebPbUvlAnTSPTp6yQdPtt+w3W6pKJraofLCEljCb4pyHvrc1nouiTLHCjYeGP6QIShHHAUOUyXtbETV4a0jjyOQnYgw4o6mbBuusCPb7Hj950HB0dERjK3bbPe92W4a+g9qyOjpluTriZH1cKM0O6xZgS7sUPTolLJBshZXZAxWgS37PSEaFARMHTvGEYcv1bWAYMy0Vy8UZ6+Njok/4MdDvk2RD1Seslg3jfs94t+XTly/JBIyF9z94wdF6zXq9xqriXGk1UQkNzKeAtwJ31NpRa5lOrExxINWGbCwUm/rgPRNJaMRjIG46FkljqwX1QqZzYlkMVtXU7YqcR0LWjGnkcndN13Xsdx0fPn/B2dkpz54+ZQ6IjVkzRAFPtXGYpaCWVYLKWpQxKGsPVKrZyvxhU6GVorGe1L0Vc4d+y6tXL7m6uyNkjVIWo7RkRc3tScl3yoVaa8iHhmJuYw52xgqcNTSVo7JOGpJirlE3jVAyH+jmvjtlkH3xoablPjdL7hedFa6uaa2lrSbe6ICOmdRn3n7zNSp5cgpMfjo0O05LqHHKwHZHXRmClTBNCAKAlZwWDmP60uFn/Z9RPMp99Z1e5MEg5f5n/rYfJKDqTLmV/VZTG8q+Y0rw6g+vT4H/Bo3KOE0HCkT04TsjhQMdWpXutVxwZyyLpmacJlKa8P0dqdsSp4HU7+n8HuU1epjIrsJYg6ss+37ii6+/5fXbS4ZhxMdUsk6SiKRiPAjQYoxYCkIUQWlJcDZGSVGWVRklzrebHMzWWVwtwYGRRFKSeKtQULIB5OXdd9JKK6T0hdJEy0h+fhPVvPwfdPnfXS0cfqq6dxOSx/2/C5J3kB+TgTCCD9APhqptMdUSp2sqK77nQUexGk0KjCFrjUYag8ViDQg/NadiiRmEspeihP3FwUOSxPNkDWEyMnIvE7IheEJ5Pk3KfPz8OU+fPOanf/RzllVNYy1L6zCVI6TMmzcf8emnn/D27Rvudlty1aKsExcso0X4SqSpFM7WmA+fsjlds+9GhsETvDzXSlkRPMbAtu/oNjt2t1t02awBeU2lEa00NMsWbSQg8vxUnFb+2T/5p6xXS9q2YbFoZZQdPN++/pa7ywv2d9cM/YSrFIu2IvgeoyxWO37yow/58MMP+Gf/7E/567/9e95dXnJ1fc0UFXHq2b4buJhdrrgv/uZx8SzOXjgnNAHTUrXCQ05knpw+4cP33+cnH/8O52fHNK6mcTWGzHa35fLqgn/+f7/j66++5m8/ecXjR49xlcM4e0i8ddawrBZYp1Aqst1d46fAMHgyE9ZBLu4yfkqE4IuWRZKarZM8Eq1B20YKBxRZ1/gIfkwcLxe89/w5f/JHf8TPP/6IVdtSO4uqDZlEDJ7PPnvBV6/e8Ze/+pL9IKjS8fE5p7VhOWxZbK4YrsQJxvsJlJUNPUdCFI6uz7CdIo2NnATF+dGSXDm8rshWUpSTNnxzteF22wnVMYGuanLbMKDIWvHhySk/f/pcCvlFi1Yyxbq6uOZvP/mSt1e3/MUvP+VHz59wsnjEH/zZ/5J3b1+x3d7RbfcSYjYO7Lr9g+BOU8SlqRxqxatfa3ISMEEoCIaoNNnIAS7F25J6eU6lHZOyNLXj/fM1/9s//RnnR0vWi5q6brFKbDJf//xDfvG3f8/nX77k7z7/hsenR5y/9zE/sw2bzR3dfkffd3TjSE4dovmRCYqbcxC4t7vMWR0CKXPJTph3ppwzSWkSjrx4QjY1oW756uo152eP+PjxGf/093/Eyaphtaqp2yU5yaT75VcvefP6NW9evWb96DH1yQmPPv6I64u3xHEQsa4X3dMcGCqs2HkiVVDQOE+DcglkmzMk5sYGPIaoHXm9ZrVYE+uaby6vePPpr2maJX/y4WP+8MPnnB8teHy84qhdkUJk6npuLl5zc9lgY0DZim7fsdvteXt1J5x3cqH/CkKdk9AozTxGTgIYifZQ2vmYyp+yR8lzhpQNgZpm3fDJF99w2UdedYnXux5S4vlqyR/9zgtOli2tMcSoxJ1vesZ6teDV69f8+pNP2e02AgSmQNaGcQp8/tnnfPH+KfnxCacvfofoXhP8xNYaukrjlcOqY1yM+Ji5HSI3Y892GImpNBNQhNuKGCa++fpzYrugPnvKUB/ReQk+/PkHT3lxvOakrllpRZg6+t2GX//q73n15g3b/Z6MlsDAnCH1h6LAGkfycq4ZYwroBaOfDsflQyvj7TSwv7sp1362e83kKGBKykky0fKOlCK77R3LpmG9WPDBBy84f/yI45NjVouGd2/e8O7dO7769lv2faS62XFd31JVFldZ2lZozNoabFUdaosxSvZMTAlfgnvJQhlNMUIIfDmN7LqeXTfgQyJevKXvO569eI9msaIuRiMxBqbBE1WmMcccP3nC8/MnbLZXXN+85YuvXmGMoapr1ssVdVVT1xVt20hGmNJCt01JALTYCxAcY8mzkinMGAPei0HIsN0RJgFttne3AlJutpw9ekLbLsTlMEt+yV3Xo5LnZNnyo2e/yx/+3j+mG/a8u37HzdUlN7e3vL24oF2tsFWNqxuZCiiF1lamJYeiX/aRqJAMvBjJU0CV6TAxkXyQqXENyQsYkAMMwx4fPEa7e4cvrSV4WCFGAyVItRRiZT/+DvPr8CRy2deUKgGRKgs1Os1ZKPoAQP82AXEqazk9oDrNDUtMmWkYOXu0QDWO5cLid2Jxj72fIMueIfVwyhmlBHiJADEiR4aFBxbVqug1H/6ZnyLzufKf07SoMgmer4s8ifmFfOei5fwdOT4gBkjOFnA/yf2X85wR9sM+fvBGJaRQwrFk05BusXT25WvU4e/i0KKkK3MGfI5EH4iTCNuNgpOTY4yyskCbFuMsprL02z37fmSz7agrV97oMs0ooi6l9QEZTAK2HRCb+aHNPHeeP61E3GzE5UdpsJXQUGJZVOT7JmJe7PMNcVjcBS0/dOUPXrl6ODL8jXHddx/fb1YEEZDvmfd9yoLVGKEXVIZkxXN+5sFTzp6iQZPvLwiXVoaq5HhYNb9/mRQCyhd6gfGkaZLDWiuxPTWapFXRLiiSMUxJBFWLyvL+82f89KMP+fGH72MBh2JtHbpyJOC0tuhhR0vmV+MAShEKH9QWDYy4IMnHeWEYfGJMCqcqTCXvaaMtRLG9rZqayU9yaJAO1ANTwkcjGZ8A7VDKkbTlgxfvSRPw0Qcs6oraWdqmlq+NiYUzvLWWK60Zu0tUyMXpTRofTcZZzWLVcnp2wjj1HK0b1suKrg/0Y6AfPZtdsV4t32e0jFGVqdDaFKe7GldVVM5hmkquB5mffPhjPn7vfX7y4YccLxtq66hNhSYxjEuenyx49fOfYULk6u01m7uN0MOaGuMUzmpQThq6EJgUhOALpzTStlVpqpVMQ4tWwBiDsQZbWZzVRTgMys5J1JopWQhij/nei/f56ccf8U/+0e/y40ePaJ3BkAkulkZRcaQ1p4sFu+2eX7+9wmfAVrijM+yipaotk4Jp39HtOqYk97FKYkiRs2KKiimIKxoZrHVMCcZYEPcEOWrJmtn3DDGiXI0xFXa5pFkuOVqv+OD8lLN2waKuaNsatOxdHx4tMDHyRV1xcXPDbvA4V/Ps/BEnQLM+Zthu2N3e0Hd7uC0BXxQLx+KkllKW1JGSKn+wJNaapA1JG6Jx5JJMn42DqFDKYJuWR6dHfPzsnN//6D3WbU1TWf6/1P1Xz23Zmt+H/UaYaYU37lS7wql0ch+ezuxuks0mZcGyYNigZJO+swFf+Mofwt/CdwYMwwYEQYBgwTRMiTJoN8hmd0vNJrtPrFw7v3GFmUbyxTPmXO+uc1okzdKFVmHXrnrDWnOOOcIT/kFpQ2XE2PPhoiSNA6XWvPrTvxAlxKhYn95DFRW2WrC9vsINvfCQ0uQNIdZcKsMjxXiP2SolkYjTmlET5V+DLsCUmGqB0wpvDC46TpcV337jHj98+w2Wi4KqtuhyAUoTo+KkKFhbjXGOLy+vsEWJWixYx4jb73G7HW23gyiBS2FUHksJOqTLg0Cs8h48uZhP5SW0FIqiKcHWmGJBoTWByMYFjvqRx6dn/OD9t/n1D96ShKquaKqG6BOuH3lVKV6WBrwjJIMpdgRdMMaI9yPBe6FnIZLRU0EqRrmeGA/7/tTp9lGuPaCJppQik1JoW1OagrKo2fnEcH1L/8mnnJw95Hy14pv3lnz/7YecLGu0Vuz6QMxcpoLEyfqIvh149uI5bdsyjgNhEIWpy6sNH33xAj863jo95qpPOBexoWN0fQ5mFW0y7EPkph/Y9iPt6JgKYdPZMEnj7vZbrm5uqG0D909YLRasSsP33rzPO2cnHDc1hdLo5BjaPUsD1iievXzJbT8wybVKXTsbFt7pmjChDHIgeRdzovKBF31g6IcZC68yB9TkIsCUNIw5ELa24N75fd54cJ9vfvAep+enrI7XrBYNx6sFx+sVu7ZlGJ2ooo0dPmlM0Pjk0EZMjou6JoQgDu0+zsRxF0TlMqU0F85ihHEMjAGCsUQ3MnQ90TuaZUVKCVtY0FUOAjUnzZr1Ys3Ras26CtxuTjm6WPLRp5/R9z37fUvwiarsqSop7Bor1yaFEVFgHF3IQgXCTwxRTEAH76QDMzqCk2De2EIKxKEjOkdZCuyttJZkLJ5IMHDv5ITHZ6d86+23OD85ZXA9r65f8uknH3F1fcWLly/puxbtHEXwqJSVjpCzTWkjcVZ+Pj4m+iAF5Di6LHAiiyj5gNGJWIFzihA1EblHZRSl1qg0wc31XPiGiJr0iQ/B2C8BRH013sqKra/FaOo1gvyEuLrz3Rx/Hbo2Ezoi/x+kxKouKaymaQq2rUelJKIbOeQUUJgEcQlJvJQyFGVJobzA76bYLx2K2eorScovz8byxvTa1w5xpIJDHMm0/pgCytd/L02fPxVZVbYekK6iUtmAVzEX4r/O19efqEyTLwSZfEqhxCkLwWUrJlfdFCTznPCBhdFEH4jewRgoS0u9OuL3fvs3OFquaMqa+vyEqA2DD/zDf/hfsdnuSKMnRJcx+AmVOQDD4LGVyRVpJOjORL6U9eImd98UE9HLBqO1oSisyFLK6SzqTwhmM3o44Pmm7NvkDV2+LGQvCfjN1O6+016z1mZJvzxw/925yldeB+y7qH8JlMj7wPHJI4p6RSrXvLxuxcfEDRhVYJShRDCrk1KGzv39kCJDQFzNTSbOGkWsCpmYSlFmnXwQff2yyO3RKDC/mKDRsOn3aAXffvwGv/83fpfvvP2YFDvSOKJCYKkEP49WPHp4yrsnv8Xlt7/Ff/L/+i95ubngtmtZrUsqI+7pk7lcTJCc53Yz8Opmz+CgqhaUVU1RNxwvG46WNW8+XGd+SqQbB+EPKJnsLvOnhqi53Q7suxGKit/4wQ/4/ocfcm4LkhuIbkSlUYIfq3nnw/fp3nyT29tb/ov/8v/Bdr8j7hxvv3kvH6qJT774mLIUHfY3H53xxoNjvH8PFxTDEOh6x6vtThyfk3AUrEqC97RWOFLW0hgtSUpRctV2dMOIc4m/89u/yxunpzxYL+l316TowTuIkeNFxYcPv8Hv/OB/zx/9N3/Gf/Z//3/yf/5P/lN2naMMS5bLBTFoogvcEsVfpTCsT9asj1YsV0uiy47cSokHkhe8sag5ldSLGpT4LbTdSHCi9qR9ot2NjMHjU+Lf/xu/zQ+/+QE//OA9ulcvSWMrre5BOqzGFPzGe2/y/ccP+N6b9/i//qN/wueXG668p1iuqVcnvPHoAcfvPMTtNjx98oynly39MJBGsAiPqU+Wtvfs/cDm+panz29IqJyoyOLVQbgSprSszs+pqyN0taQ+PuNb3/4OP/jwPX71nTfQvZBLXRC5xaKynN97xK+//zZPLm8oi8i//NkXfHR9TZfe4d7ZQ+4/LDm24Lodfbvn2asXdJ0c+AVuLkT4EOldxAUIGHRRoYwVrpfSOKUZVIFTSiScdUm72aJC4MHbD/i93/wev/O9DzmOjrEf8O1ASgIf00bz+PiEt/7g9/jbv/ObhLHnT3/yER99+Tnf+s73OH54xL03NO32Ftf1+HFgjAMxekL09PvdXEhJKFyc1MfIGlaKsl6QbEE0BRQlxkiyp1cLrtsN47Dnwekpv/+db/I/+81f5Uh5ejfSupHBtSilKWzBr/zwQ3bvv8mLX/kO/4f/4/+Fi27HqBM/+M6vYH0gtB0vri8kUBx78AM6SRHApcTgHP3giGM+C1UuFJgCZUpQ0j00VYkrVIa8FNh6zWa/4+b6ih8+eszf/dUf8A/+7u9yUjj82LPb7ejdiKkszdERv/b+G1xcXvLjn93jP//Hf0g0JcuHb/EmiaFvub2+5vb2luBGVBixuaPjQ2DM5qbK5KNVaVAGa4UwbMsaXTdgLclaimZJUTc0R0d8+sUzNrs9L7/8kv/db/wav/nhe/zND9+hUi0hDdyOPagKa0rWVcP33nyDZ5dXnB6f8pNPP+Py+orLywtePHvObrvl6vaG/+Kf/Bl1WXD/9FSI4gqMiag0YpRiUSwJWjOmxHXf0+56QvZhMUZM8IqqypxGz34XePLygnqEd88e8be+/02++9Yjfvdb71AY4WF1zlNpMDHx+z/8Pv/fP/lj/tVPf8Y//uM/QalKkuLkGd2Qg+koPJkoRaEJk2iLEmWkC0kusJFliYsJjmPyOZiSnEPek0IURUfnUUXB3/qbv8vf/p2/zg+/+20enZ2gsl+lSnKNY9/x//7D/w8//uTnfPH8S0EGjE5c6t2OOGQp8g1zglIbO4vk6BwLJKUpDSRbgCqpz9fC2fAj22cvCX3HuGv58uOPOHvQEkLCHp+wqipO6zV/8Nd+wPpoTb1acna6lBDWjfzpf/unfPTxR/zk5z/j8vqarnW0uz0vR88EYzJFRUIRcrIiCbuM1yzJjhgdF0XNg0f3iTHS9x3+xTPpXA8jL188ZbO9Zde1FOtTFqsF9++f8ff/R3+bD954yHsP7lEUInISQuDVqxd8+ewJ//Iv/4J/8s/+Kbf7HW7fYbTB+cC+G3BJCYm8qTHRk0Ig+oC1lXRNU8K5QEJhbIGtGoyWbveiWaBNgTIFRaUgedx+Sxh3OZ7TcwdlKhCZzAcUkIziNcWjKYdRaqoWvxZ7TaG4JKfyZ0qQUy4wCZzzAOVM6fCbMSfX2hgqW/Do7JhFU3B8smC7T0TvWNQaZYScnqLKiW0O7rXCWMvJ/fscdVsq1wpUVE2y8KAmufl0SKDIxSaUeS2h+bd73fn5X4hH9fyWWivK0rBoSpZ1hVEGnWC5bdllo/ev+/X1c1RGlzM9qSQqlUm2SCUoTFhostxahkcohKxnUcQkhKqmqjk7PeHv/0//A+6fnlIVNa6yDCGwaXv+6A//iHa3ZdvtqW2uvqVM9pkq6Fl5YvSe++dHJCWVlt71RBUFboFI2iULMWv9BpVI0VGaiuPVkmQVgxsZhg6tsmJJytUclZUkdCajTsmXloXiQza+zG6mM/cqV33natG/TbKipksQAnMiMTiPLTQnR0veePQO99e7rLDFXFXpRseIw2sybjjDj4wWuUsR9Jf7R6GMwSBSmgqEeaolMTO5ChGVkKkAPAqdNMuy4Ne+9SGPjpY0KbK/3VJp6dYUGV4XA7hNz7JZUp00/K1f/Q4/e/IFL29viEqqkIMP2JRQRnDox0cVj5OhXqz48uWG1gVuNzueXV5zul5ydrRk0WiapsSWhojgPl0UadoxeIYQuO1HLq+2DIPnb/727/DevXMeVhXu9hqjE6UCnUSBKAWI22vWZc367Jjf/N73ePL8Ka+uLvGDVHTQiXpVZ+U3aadPuOsYBd7VNJZjanrnGbzP1RZDYUVrZdozXfBs+5bdzS1fPL/k/OSMdx+/xTunJ1QK2qtLrI65kxMJBPwY2d54zpTiwzfu8ff/J7+PSj2fv3jF08trXr26JoWITdD3HlsmSq3EhKtLkAJNWaKUISRN20slLiWDigrXe7b9ln4cpYsxBkwypJgILnJ5c0OzXPLB22/x3bff4I2jhu7qBSqNaCMKVjbYmRvR316iteKDewv+g9/8Hp9dbvjxsw2v2iCiCD7y+PF7rCvNX/uVH/KH//y/4eLygm63ocTiXORq1+N1wovteK6CGZZVjSJQGMPpasW9h/do1iua03NedZGkS87uPeD733iHd8+OcJsLbPJoImXK9+wT/XbHYlHxeGn5B3/wG3xw/4TPX97wxWbk8vaW651mv6o4XjYsliu+c/8h0Q/iuYKnLAu0NoRkuG572jHQRk2fNENM3O5b/OAYfGA7Rjon/hEhjIxdy8oo/tqH7/KNszWnJuJvbzFJVOpTcCglOPDddkMdAo3R/Ed/8Fu89eCUH3/+jGebltaPJGNojo4oVysInk27R5cWbQ1FirNYQdKa1o103jPEhMuk9lGXOIzMNlPSxyC4+O2Wcb/DBMff/u4P+O7jx6xLy7C5gZhokggNQETFge3lS2xR8fjhMf+b//Bv8WcffcKfffIJn37xhMKU1Lbi7M135b6iZ+j2FNm3JsXE6BzdMHDTD7gkXhUuiByvSxJZB9FQYhjlGkfvGLetGHmu1vydH36bX//GQ9ZxpLvdEIKD4GR/iwk/RAZ6lhX8ynff49n1FR8/fcHPnrwklkuqozMenz/kse9I3pHcSFMIhNjkswCUjOUQ6MfAbvB4XYCxmLIk2ZKgDc4YyuUKbEHQhvZiA1rz/sNTfu/bD/nu4xUFW6LricFTuqlD3BOHPefLBfX5Av/tb6DjwOXxkvatN9l/8B7dfsvlxTO+fPKM3XbPi6srkaCN2YMjE19tukUZLapuC8tq1dBUBUerhqKqMGWNXZyy6RPb3tO/umH0I1XT8Hd+5T3+7g8+4J3zY2y/xaUoAgiK+Uw4rUt+83vf4v7ZMRc3Vzy/uGXXO7RdUyNKeX3fE8LBEwwyRNfo3JXK8JosPBQyD5OUiIrc/Y2C34+GGGDT7nj0xkPefedt/tf/q/8F91YLVqUl7K4xhUUbg46JyhhWpeEPfuvXOT2tOfu84dnlC1G/tBXC8RPvpq53OeBXWFNJLyhFumzsF5NmtxsILhdgy0LkokMJQxD+yX5PO7RcXm3Y9YFv/XDNt957i9/+/nf44ZtvgAGXRIPPoDB1ye//9m/zrXff4Xvf/IA//vM/Z8xFvpgi3gnPUhtL0pqoNIMXb7nRR8ZhzBBD6XxLBmOgblApUhUlp0kxdC19u8d1e/b7jqvtE954t+Bb77/D3/v3fp9f+/BtVoVCj1cMfSRGRQqKpYFvvv0W7733Do/ffMTnT77kZ59+QtUsCSi6MbDtJOnrBkdprSRgIcg9RPF+cV7uWRmLMmLaWRgzq4+CVBpjEpl8UCQ/kKLD43FJMcZJrdGRYpzNH6dAfiovT+G40XnnmwrJd156junU1OB7rckwQcNmdTFkLwYlXCgD56fHVNagQiCOI02hMKuCRV2gtHR/TBQlFqUkSdv3IyEp1suG8yJyPmpS+2rqO86d2DkEVIdruvu6o4/4V4eV6a9IZO50MQ9/p/k/k5Kxq62hMlkMI6TZ2NfcMTb/ul5fe6IiLdADbETIN9Lqm3TKQ5rM4TJtM5Mjpc2cgzulQBuMLXjr0QMent+jLCpu3Eg7yuIzGgmqvROMd34kJgffWomsYQhiiFSWlkjCpUByae5mTUpZkSQVGhWJGlLwaFOxbEooLHSZXKrvdLfuZOV3W3gxiSEWWs9dj1nvmikTzu2+9As+1v/a1/yz6UAei7llZ7XipGlgnRhKUStxLjG4yCYpdmkkKFE5Q8uiM0ph89j7dBibQ1Yl4L0JZ6+MOpjZTYs6c3aM0tRFyaPTY0qtpIrbDVirMBq8kmpwRKBCFIbKWt59cErX71BEXmw2srkmTZHHVykhli0XNQHNq81AFwZCdPgQBAaiBNrlYyQFlXHhSZzHcyA4Bs+2Hdh3AyEk7h+fsC4qyhgZxh5jsxxrEIcMSVaCiAGUFe/cvwduIDnPtu/BgLKaujooZIXg0SnLPGYMu9YCgyiTxijLUVNJF2WGHmZn4RDoRsem7dluB86PDMeLYxprwI10XYsqLUYLZIsYBLuuPKErWZeGD998yF//4fe59+QZqy+eoiK4cYQY6YNH2YyrzzyZNPMpyJLIgShGAoxe+Ao+ewhIF1RmrCgNyTNfVBUPzs84ahoKpeh2GwoN01auQ563MeDTQFkYVouG9x+eUlpL2wWU6mmdxydF06w5Plpwsq555+kzmtqy3y4wUTMMDmU3rFeNQEyjn7kCtipRKlEVBecnpzx8/IhmvcYsj3EXGzya+/fvcbpsWFqN37Z5vyB37qQr64Mn2UhtDd984x79ds+qLOg/u+DVMDLEQOc8C6Vpyoaz9RKTBPbg40hZFsKZw8KuwwyO5CBkcQeiQqkRNXosngINypO0xxaGo9Lw6PSEhTEo5/BDL7LBSkEQk8ykwBPxBoqy4L3H99i3LYWG4Wefs3GRAbBVLYalJJwREQxTWBpjsEoCA10UbIceO/ZE50k+EkMiBuFhxKRJ2pKiEzfSCJXSLG3JN87vcdLUEDzODbNam1HigUNK+OixGupywa988CaD77jd3/KXX16TiASrsNUCY6UUHG1BaS11WVJqgw+ehRtJXUcfE0NSdNllfgzi+xBzQSaEIKWwFBl9pDKGdV3x7oMzHqxrlOtxXZdx7Yd9OUbhPpVVxcl6wQdvPSRGz9XNDdtk0GVFtVpRsIAUSCFQWSUqXpWlLqyo3WnDzW5g3zv0fsQpCSR1IV0erxQDCtMsiEqL6p+11LoWgY7TJfcWhjh2BOeIIaB9ROGzu0HC1IZloXj7/gkXr05ZFJbbMRFOVoxjz4OzBXVpubm+4eriGjc6vPP0/Sjnq1LYlLlnpWV9vOT+vVPWqwVnJyt0UaCLinL9gGcbj9qOPI8V5X7Ler3mw4dnvHWy5F5TstnfZH5I5oyoRNIaYxX3j1coFfnOu++g1RNe3ewYogTxPkYiWnxFcmU65vM4aWbXdXyYo07hEcQZ4i1AigyDSbkzGAJnJ8e8/423+c7776KGPaHbkfyAVhGTjMBwlMFqw6PzE272DxlDR+92aFtiiwqjTXZ8T3SdxyeZI1EVWRAoQCxJSROSZvQWbzzaeZLJXFatKJtFLtQm0ujoBsfgt5wuGt55cM63332Le8saHz29H3FjFBSA0hyfndCUhkVd8er6SkSGXC9HRoh4FwUyqjVRa/psjNkNHluOAklMCh90VvmTpF6Kw4ZqIb8flMI7hxs7Nvs975eWN86O+cF773BvUUDo6ccuJwKQgkFrQ71YsDw/5Ve+/S0WTcVuvyWZgqi07OP7kV07kG53GHNwIEJLAqqcx8RIIhucakF9WGMztPIwH1TUKGtQRU1Ck6IlBpehqSav/RxP/tK46hBfzd+7E6+nKY5TzAbe0shLfDU2m/Kn13McldEl2dYhby2ltjQVFAaappys98SPSUtcU1ULElt6H7FWc2QWnBYa1b06xKeT55WCGap29/Mz7G0ytjzc3y8mJa+nMjmjm5OXr9zr9Au5W2O0iJdURZF/NcyqX/99KH997YkKSPXeh4NvaEoSKIbsn+KCz4GbwVotGbVzWG2IWh6w14Y+RPZdx8XVhUDDbM3PP3vCpttzvduy3d7ixp6UPOgia0snqtJSFgajE/vRM/qA95GYPFFFAoNMDm1Q2gjpLMv8VWVBNBB1ABUoasP5yTHVYsnF7Q2vrq84kIUOWXok5rYfHCaTuJMKGhzR10Y22uktcvOQSWzvtUz4Djdl+m+Vkwl1dxImURVTgOt7xn1LaDuOrUIXJaU1hKgYA9z0C27cyJgi0Si6TKhTSWFjIEbooyflCk2Kibs4T1HGkWpFykGTVkqcSUOkHQJVUXGyWHBca7b7W9pNYth3tDhKAlrn6olSlBpS6KlKy+OmJpyfsFBwcXlLKizJlNRNTUoDKTnGIEooi8ZyerREa8ui8izriscPzrl3uqZuFC5XX4MXHLH3ga7rcA5Gl7jpAiEUNKV4PKgxsL26xvsBIw0GmcNJ5rE2inHbEbXmm/ePOC0UD1Yr/vE//3OSVdimoC4atJYuIkE8FlKWrByDOLmO3UBZljTLBcdNDUo6Ii4KrMCNkevbnu0Y2Q2Wsjxl3dzjbHVO1+8JQy8S4E5TqIhNjpACWou/yvaipzSaxhj+4Dd+le988D7fffaCP3v8Uza7Hfu25cnVde6MjJydnWKl7M0wimpO3yeGDlAaVUS6YZ85X4nlQoQG1suFwBaVJAfn56ccn5zw7ttv04+Jq5s9frOhsYgca+6sGgWlMWASujC45HlQaey6ZFhbzqsV2wDXPhCCZXCWqlrz27/+qwxDR9f3tO1A2/ZcXV5xcnJGUZR5rxUFmKhAlyW2KGkWS0zVEDDcjvDF8Cn4wOnRAhUGxlaqjjqb52k8KY55T1Z0mxZbWBbHx/zg7fu8c7LiqCj46LblVTdy0XVitOYDi7phXYiv0FW7lUpmkAqmT5YxRbbOse8HhtGRhpE6QV0U3C9K9FqgOaUJ+H3N0moeLBa4fc9l8Kixn7HNeOkAGZ0wdcEYWoKxHB0d8903z3hzXVKryKe3HS/awGBLFk0jUqLNgjGIlHdlCxZFTVNWrE6PuNhvUfsdVzc7Rhx9GNn17XzgagUrY6m1oT46Ynm04qwueGPdoNzAxatXqDAIPCFGwIv0u1YYU+KDp+/3PHp8zF8v3+PN0yWnf/ITXrWemzHR7lsmrKZTChcVzsEb6zWLUqNLhWo7dr1n13t87xj6Ad+Ko7cYqCbKBJXV2HpBHSPHdclbxyveOK6plWNz/SoHx4GIy50KUEo6MrgRHRy//sGbPD5uOC81f/bZFZsRusETC4O2JaYu6EMgFpaqqVkcNRij8UqzVXuUdaAcs8SoFliVThEVPO3NNS4kepdoVOL+yYrf+uBdTssCEzxjt8+cGCn6FVPHOzg21y1VXfPu/fuY99/g6auaP//4GeXpCVVdsm7e4/d++D380NLtrnFdT7tvefrlc272LR5oFkfSIagKzu6f8eith6zXa5bNitaNJG1Znr3Jv/jyhuJiw8fVU86HHR+cLPnu/VNM37NzPQGHnqxPHaA8QUW245ZF2fBGU/L3fv9v8Md/+VN+/uVT/uXHT9kN4rrdlDVjIksQCyRcCMpTHTlmufJ85hktLvE+4sdAjB5SQCGmdBHh1b331tv8xre/wzp69rtb3Paa5XKBRWFT7uqPI62L1OmYt87uc1Qv2by65HK/ZbvfiB2BFo5OUVf4MTKEwM2uzSITCVtOHmmBkCZuj0bPsG7F2NQUxhDLCjU6fLtDhZG/9e0P+O0PvsG3Hp5x8ewLiAmDoBgk34v4MbEuK47e/Qbb3ZaffvxzfvzRT6GwFEXFYrUmIImBjMKIjQ6je2xpZmEEY7JxYRKV1ZmHUS0pbEld14wuEceI8zf8+re+wa9/+Dbvnq+5fvqxQPVSRDkRhElKMQyOYV/g2g3vPXpIqeHy1Us+e/IZKsFysaJcFpQE+h3s+pGkNKYssNqgDcKzvFPFN1o67yHELGglXQep80aM8sR6SSoXhEDmze5IqsUFjZ+MwJGunlG5AzMF37lBoBKzDHWIEW0krop5n5uhu3kWzrwUJm7c6wXrSRwlRkHtXF9fsz05Yl03PDp7TF3ciBlqvZR+mVJoItaKzcDq+BSvXnG96/Au8PD8hPctlDdPwQ9iEKoQ48g0KaXJuUoMOXI0TMIzE+rntc7Jv3EOMUV8OXqdbjR3VIrCsqwbjpZHcuZ6T73ZU1jzV7/lv8Pr6+eoeDc7k6YY57ZWSkEwHzGh40EFW0eFQVMoUQRKxpJSok7Slmu7kf/T/+0/pbQlMWqeXl7TDT3t0PPq+hafYLFcooIXfKLVlIUQt1yKcxs6KLi63aItxFwBV0bJc+UgjRjVlIWrHKiVVM1SpFy7HSF4gXthDgT6uXU4dVRyR2J+p7mGMMvgFUWB1hafSf5xJkal11L0X0hWJmmoGXiqBHOLInjQQVPpgpP1USb0BvzYM3pxOG2sxlpFwIhmeVFKJUvpWSxgHyPYYtY1F8KeocjEdtIkwzkpXESSVYRoKU0gBYf2nqcvbiRx6oVD0Kgww76IErSeryrO1sItuX9yzNMXr/j8+QVPvnhBUS8p65qwWlAWAq1IpSSWY4g0WrE4WVEUBQ/unbNeNlSlYT/scNER/cA4OMSMPIEXLbbSaI5swZiE7/Bkc8urTUT7kdBuKXWi0KDdKBuJgfOjJUdNzappCKsFt/stz16+4PLypSSDiwV+GDGFxhSKqiopraW0Ip076d2vViuMNlhjieOQj2LYd46h99IpCIZaWbDQ+o79fs+zyyticgzdju3tJbVKVEpRaVBJ5DjrsuCNkzXLRc2iqfnsyQueX97w9OUVD05OuXdyTkjweOhoh4G2bTO5UZ7jvtszjB6tA7oAsvFXs2goy4K6rDhZrqjLgqYqGIYhJ+MFzy6vidpwu7nlLz/5jILEeHtDrSOWiE0BTaIymnVV8PBszdF6SVnV3Gy3PHtxwU9//GP06hhV1Zw2Dcon0m7k8vnAclFyvDzh/nFJ78Wb543HPcoKMdnHSAwOH7yQYpN00za7ge5yy+AjrYP95TVJKdrdns+eX3BdWkK/o8zBi40DWkNpNKd1xelRzVLXaALXN9e8fHXFxZNPWdcrmqbkXnOEzwdu6Pd4SpQ1HK9WuascGVzgtLFUVrE0BbEpSSGg4nom1tskZqApBnb7HS+7hBtHnj1/ybipWRYG3Xc5sA6kOLKwmmVpeeP8iKPVAlsb3Njz5bMnPHn2gu3VFffKNffO19xGS7CaaOFssc5gL4UpCpHoLITfUZqGZaFYqHJOXDldUmipBloijSmptGW3ben7jhADz14+58YqLEECmRwIFiayKC3LsuDe8UqSpdIw7Pdcv3rF8ydfUIWBB1XBvUVNnxTJigeENxprLaUteHRySlFZdKlY7kTWd7vr2ZYj46JkPGpIKQicAmgIVFpTWsWnr64IKVH6kRdXN3Q7gxo7dEj5OmXOV1azKApOVkdgLCkqun1Lv9kQttc8LBzH1tJr2KWEsoqytihTi9RpXXDSVChjCFoRQmRZFiztiPMS1WiTKAFiFH5G8MQoBqo/vnUsAtRdx/OXG7aFpt1cEb0kflYrllVJVdr8d0WhNXHocN2O0G6gu6LzPX1R0lcN52dLjs+POH7vG+gkfi031zfc7jvGkECVxCQeQhQFylqGCDe3wucsrKLpRk514s1K82GtqW3FeV3RjYlX3QYbPUqJyIpKCRMjttQUhexJcRykqt8PPFgtUI8eUhaWq424lG86z95Feh9px0jIlfbgRlxCjAO9QL5ijBitKbVl0ZQs1hVlkSgLWB0VoBQ+RD759BVHyyUhJp6+eonb3+K6lnF0VEoI2ceLMnuLQddt0LpkaQseLE4IQyD0gUKV83HrVaIsxF9qdArnA84HcFmqFk1tIamCZLLDe0jiNVRaKC1p1XD/eEG/35OC4+1Hj1kWBcPNDQz9rEQlAjgSMHvvITmsTnz//bdpdMC4ni9fXNC7SOv3dMlAMiisqFAmTaEL4enEKQrJnaeczAv0PKGjGMeWZcn5O+/Q3Tvj5t4px4sVvh/48vMvuH75knHsGbyjVlCVllVTMw4DSSnGvuXoeM1Sw9tnx1y/LOjGAXxPqS3HC0v5+Iy2d/RjoB09fYZ7aaOpq5oEOC8UARKZ86vmeDumkL+uSTpmY1hPZTXNYsGxechJZajKGu+nzkjKfBIOxeEJsp6V0YL3AolUEZ1jLaNNNgC9Az2DQ5diisum8cx+PyCWFipCO0Y+/vwppdbc7EfqcsHR8phlJYaWIrrksUYSlfXxCZiS013L08tr0FYgusqgk0JJ42umVoSZp5LjxpQTtKwumzLO+qsNlV9oeKj5XxJ+3inFf+WHpCCuLVXdsDxSDEdyhiXvqZtbzHb/V2QG/26vrz1RsUbPuWuY28DinH74WzPJTRoEdlRoIYIlLf4cZRQoRvCRP//RT0lRIBM3bcfoPS546qaRrozREMEqKHMgrnSGVmUiHkiF3GauQ1IKpaWhpo04B6tscJhzlFwdmRkk+YFPSQO/+PBzn3BqYR8mEXkSTYQsISQJ2y1l0uqdV0qHhfDVV870pSoSGIcBq8wEIsN5kRH2IdDUNVpZFAEXHaiIidJujCnhkijrRBRKmzkB0UmJyaMSxZ+ikAVbWpuzd2mveiUkMI9Y/3kENjd4j+s6nr64pGs7+q7n5vqGWkUKJbyK5ANWK3ZHNX2/pOtFDvHV5RWXV1fZ7FATfWIbA1VViI9LKHH5gNfBU5eWprIc1ZbKJHT09O2OvusYxgHvBE8bAwQXQRkUimp6Pj7y9PIiG1uNxN1GCO4qYcYRqyKVTbjhhHC8RsWIWe65vr3l4uqKYehR2eSw7wZMobClYblqaKqSVCVKK1AkLWUiCUxCwnU9Lorp5rbzgqsfQ85VNSUakyJd1/Li4pLejQzdjt3mijoFSqWolUInT1VolpWl1gkfHD56Xr58wcXVht3tjtOHSxGEMCX1ekU/9Oz2e3bb7Zxw6gRWOWIcBPaU1+aykmr80XLJyWpFVVhKqxkK2Zy1Ldj3Pe3o2e/2fPH8JTpF3G5HnZMUk4QHUFvNcV2ilfgolYsFl7cbLm9uuLm5Yqk0ZRI4TUwe5wzbOKBZE8uSVIC2mqoQV+PBi1u0SpkfhpKgKHfShqGnbTtGFxh9InUdSSn2ux0vLg07a/BDSxECOgZs7LFGURcGv2wozBFGQ9n3bDa33Nzc0G5vqLV4N1nbMCIKhWloGZMjGDG6nFSNXAjYpFkqhTVkmJWmUCCmjeIjpJPAloohsSOw9SOvri7p2praWOh7YvS5gjxwVFqO6oJaq9nTyUXP1fUNF1dX+KFnVTSUOpHwDLkyWBXit6FRDHFAC14K5wLaBZZEHi8qXKEIQVOoktJAoRNFClTGYtG8CoaLkLjtRl5ciqu2JpIGl03vIrVNrCrLUV1S5q3YGs04dGxubri9uSa5jtKIAlFtLBSaVFliFuswGnToUT5DTeKIUoGigJW2xKiJ0dwJ7hJldJQaSgX9DWwHTz84nl/dsLGKNHTYICaUJgVKG2lKg6sqalvKGWUMu92W/XbD2O0oEwhDQSBw2kjyiZGzRLkBvGDoTdKUcSQRMDahiklFKFElgc1Fj+xLMTGGyNMwoHvHuN3z/HJDpWF/eyVwJQKFVhwva1ZNhTlaUVYW7xS7zYb97Q3tdkPsW5wLRF3gB8d6YWmqAmtrwY+XiRNdYlYO52MeOzE6dRHZu31gHEcKLfMz7HY0fuQ4Ok59j/Ie7RybdmDf7VB+wDAyqR9WCupFQaqKrALp8S7Q7lqUdzRW8fB4RWU0+6ai2Y3sxkDrItvO4YNAYJ1RuGjw0RLqAu+9mDYrRVOW1EXBSb2kLhV1qViflvgYaYeRy1d7QNH2Ay8ur/HdjjC01CpRK0WjNTYuqFY1Vhe4wQEB7xP4iI5gk8ZEIXVLJ1MJd8Iqxkoxao3XJnd7BFJlCinakcjqp3Jequz1o7VmCJ5dYXDjSFkUROfZb7YM7X72M7JKDPVKqwWiYjUqFBw1JSeLmrPFgpuihNHhoyAiUhIIr7LC7aBQpKQl0YsZfq8iUWmSTtmmIIoXfeapHi2X7PclNnlCiNxud3zx7Dk3ry4kUXEjq5wo+9XIOEqxyhQl97OQiEUCSzPHMplj2pRybjiP7RRmkHq90pqqEgiR1lo8uhKomGZwSiKr6WlAaVLUWJ0olKYxloKCcmFoDJTW5HG8Gz9NCc8ByjIlbTGLME3M9Knw/Lq3S4Z+pTnY45e3J9JsvpoSbPd7dEqM0bBcLGjqhlXdoCeDy+SwtqCwBU2z4MwU2LLi6cVl5lKrbBQtn6VyUvILkeH8BfULX35dGPoXf+a112tZjOIXPih3nW1ZUjeKZrFAxUhyjsIWc5L0db++9kTl3vGxGD56CRImuTbJXiWAltekTy3umxqNG6Uroo1wJyb972cXVzmYQnCj1lJW0i5UKaB8oDKKqhCccGkVRSY3GuFsoYGj1Zqq0dgqse86QpTWc1VZUZsoBJoQUxSS305UcrabW3xwdPsOUNmxXWTkQpDwSCuFtkKcDl6eborSvkSpzFFhrhBAXnwTlEPNNY9fks3eeSmFMppx7Oldz67dsD5eUdYlRVVwebtldJrV6gs+fP89jtcrjpcNS7fEO0ff9rR9zzB6hq4TR1pt0DbNn1/HgPIOchu0UiUmGUw8eMOEKMpuEYGAdX6kH0fcvmV727JzkX92dYNHKlxtu8emiEE6ASmIg/3TxvD4wZrTdcPy+XOevbzgNnMBYkyEvudifyvVjUIUS1z0xBgoNRjfY8c9F738TCTy5asX9ONIiJHV4oiUDCkq3CgbodaGAk3qRIrzn/7Jn84eN3GzlyprjBTeUSpPZRLvPTrnG48e8PjeOfp6w0dfPOHTL54JdNAFun7L9e1OKjgWjo6XLBY1y0VNUxqqoqAwhucXF0SlUdpSAm0/sO16nKlyEmWp0FgrFe7aaK6uLnn64iWL9TExerwbKIPDhIjJIgGLwnDciLnZclFSVYafffQp3eDxEbbXN5iiwhQ1p/eOaMqCOpaEXSJphS0qiqZh03bgb7i6uiXGRGkLfCn8msWypggOkji3qxhRSqNcYlVWDH3g6uUVzy+vADApUUVJAHRWR6qNYl0btkPLye2aV33H9cUlm+2WaBIxdPjOk8aOAUPSBkrLy1dfilnsds+bb77Jar2iWS64vtkwjmKGJWZvETzoJBWzcRywKAqgCYld37ILkWdPIu31DYVShGFAjT06eEmoCnE2f7Sq6Po3uH96zOkw8OzJUy4vr2XtXb9CGYstlxRVgykKgjdcB0/XDzx5eok2Yiq2Xi84OTqhqRqqZCiVwWZOTAwjITj6oSUk2XsWCoo04Ic9P/r459TNmsKWhK4nZT6ODj2nleW0Lhk2G954cM7x0RIXHc9fXLDddBSmYGg39O2GVBRURpSn1CiHpIuBjz/7VCTYlWa/33FydMzp0Qnvv/k2CgtJYxFZaB0CJkKMEhx1duCl23F9u+H6J46qqinLirDbQ/AyL21iWSjWlabbP+L+2QlnJ0dcXV7z4uKCq6sLtrsOKLCm4t75fYE0ajCFZhhH2n3Hz37ypVRemwoFLJuG89Wa4+MjVDIQ5DCLiO/Lrh3Ae5RzrIctu23H5bbjT/6yprQWEz2FC1giJYllBcuq4HTREGJiuaxoFiVffvmEze0tt/tbWpfwSeMpOTo5pbKGygQ6P7Jr91xcXzKen1BVpXR2Ly7RynC+Pub8+JjCGIgJSyIEz9ANBCUJ1NW+xd28onPws2BpO4dRif3tFYQBnQKFjtw/WXC2WvD+gzPeiPdRCq4ur/jisydsdi1DP+JNK6RqbXg63PCqqvnyizUBSa7KZkHIstOEIDC0HADFGDHACYbSeXTvGC6eU2vDuu1pXnzOVecIixU/efwI2h1p7PD9nkJLofC0KTk7blgvayzgnaPrOj794gnbtsOHRLM+4a2TY5S2dGNg5zzd6LlpWwbncSHigheokdKcHK8hBlSM6BRYNQ2LquKkXFAbgRCrEl5dX/Ps4pq/QHO92fHx0xe4sWfYb3DdjsIPLKxiUWjefuOItx894v7ZGXEIvLh8ycvLWz764nNChrTG0WHKksIWVEpjbIHRlsWxmmhaCBIziDGvj9Kd0kagldrS2IJSaaxRKJX44sVLnrSJCxe4urqm9AN9pWh3lyInHALHtWW9qDleLTC2QHlNHBTd1jFublBjy8OjhvVQsB89PQVdTLQu4vE0Zc2yWRDQ9M6x63vpgCNF2aqQ4nClNXWW/i+0ZllVPH8FwxV8+sVzNpsdl5dX3F5c4scRHxznR0tWleWkLoleJI1XR2uO7j2k6zqePXlB340kpaiLmt6JuWEisKwrVsua8zNLn01dx+Bn7kzISKMUI9G7WW46hUDMCqVaa1FsU8IJW1c1pdaUBECEk663+zvIJ+m0TvAyJZgvETfKRa6JeC/flyQjxkli/E7n5E4cfoDh6zmREFPShDGKupBEl5ikSGyhrAzr4yUqW0eEEESK2BYUZcX9o2OW64F/+fHHPL+6YKESf3O5QIWO4EXeO6qZ3TzHhNMfKaCn14rqrycrv+Q1F9N/yc/kZk3+oFzAsZSVZrmuSccnqBgIg0DaZy+pr/n1tScqL6+uhdCUE5O7pjgTkf4OP3vmh4QQ8CnKH6IQBqMoLpVVNeuUi0GZ/HaKTkjgxlAXhXRzlFSHxjAhXI203LXGWjFKqpcGH1X2eUksV410KULi5PiIpBI+OorVmrcePOJXv/19fvTRJzgnV6ZyhSXDZudnKaRyshqPfj05nZNaGY+QzZhCFBIYyc85euCvfqUYGZ1ntV5xcnrMhx++y83tNft2x/WtKDtd3F7zT/7on/HZkyecn57y1sP7nJ+sqcoSbWtsqVCmQNty5rskUiaBJSAIxCQE/DDQb8QbJ4SI0RZjDFWZOxxGi0Fj8lgVaArFsjKkEHjx8lWucifZLCYejZVWpiYRfYe2kU3X4vxIjJGyKPjgnfeIUapBm343q6aNnYfoIAV0qdnvNuw2nnHoqeoKYwxXuxuKoqQsK0pr8E7mY1lYCmOxpkBjcDHRR8+zTz/DFMJpKNEZohgpo5CrrU7oyx19MLy87bnZb+bDdLFc0/Ujo+9ZNDXWasrScHy8xAfPdrPlRbcT53JreXl1JRhdW/Dtt78hplYhshlGlC6wxrCoCoqyxFjLbd8z7nourm+odntpRWsNbkCFiE4RrQRStR8s6ctXaJ1IyWPQHK9PefvefZI2hCTV237sGN3Art3x7OVTUhLH6fPjI6LvUa7jpLT0w0i3u+XF5oLx+IhGB5bVI5Sx+ImOled1iKL4t7u9Ze97tBZyvcuCBJpAoWDQoo2v9DWvrrd8+uVLLJFFU/P+ux9k6XAYY6JRk2ljYNt2DGPPvt+y3d5AdCQ/wDBgQkBHkUmeigHGFoIXrsUxXueKZrKKV5sdP3/xCrfuKIzBOJ8Da5HBRnkKk+jblpAURxc3lKXM2aKo+da3v03vRpyPDC4x+IB3A0MI9N6x2XV89vlnVKVh0VTU9iFtjHhbYJIYO4oDckFlLcYommaBstLpHUdPYTbEwfH81SuOT05pmoV0PnJQqZNnF4PIaIeRy31LXZWMwXO2XvHgwUPOT4/Z9x37oacbPd4pggvsuxtRioseFQaurzbs9ntKW7CuCoxasu9eSeEiQZFM7nxr1s1C1Gu0Ii0cL7cjyW94+eQF65V4QLh+L5yBFBhJdAZ2RqHUS55d3lLXJaPzNGXJg0dv8TBzGsdcOU6IVGqBVO4ZOtrtFUYrGEpWyyO8UmxSInmH1VpUHgEQlZ7GiliAbRruRc11eMnuxSWffvGMpipZViV6HLGIIECVk9PLqqMbR6oCCi17dF1WvPn4HdpBYHzdKPNDxwE1JEI3MOw27C6fs7t9ToiBcfQEFzk7PuHk/QWp74lG5pALAz46Rt9T6YJFVWD0EQ9Oz3l+s+eLpy8ZY8Iahet3kkyoSKmh94HbfU/f9Xz26pIUApubG06Xa9bHJ9x72LDp94zeMXiPtQnCSH99JWeX0viyIhiB3CzrehJyFO5LLghGNDaBIVLVJos4FDy+d8L1Z8+4ubniJx9/TBGlG+j6VoqFVrNvCm53Bcuq4Oq2ZRg6xnHgZruhaRZUdYkyitENkEaUMlQqgg7swp6bzTXbtmUIkqRYa1lax3HTsG4qzo+PxYRRKbSTZyjSxZrkPMkFUvDc3FzjQiT0Pa5vcWOLdQOVhabQ3LqWV5uBs9UlOmiuN1s2+53Ifis5v0OEvuvx+xafkgAmlaL3nqIqKSpxch9HxzjmDkNWrtJKVLiC0qwL+dnKFtDu6Dcbrq62/Mmf/yvuHS04aQrGbksKERUTR5Vivaw5Xi9YrpbUiwV1veD26oaLy1dc53NERUWdFM4PxMzLvO076qLEN0uwljEEBucYu4G6LFktl5xVFU2haUqDDpHoR8Lo8O6GYX9D197yYjdwvd3SDi2xFyPL5D27wYl6Z/IQI4tFw/m9gbH4GV2759NPPgGtsGVBUgMuSTfEp8jQjRmyBWMSv7SkVYZ8AUlTZriVUdJZshqKQoOXYq7RCosRsQGdaKyntJpFWbDZ97K+XD8bMR4UvQ722inHYG4cGZ0jpizmhBJhniD3OwlEzCIRd1+KWRVsQuEYIxDBwhjefnifk6MGSHz05Uu0htEN7LsWUya0KXMh34vgTzpQAL754QcMH33ExcUrbuzAyntKbXDZdyVmVys1d33udIW+comHDsrh/v/NXhPqB4F1Tl+d8yKhBdgkipB1WVFYmw3Pv97X156ovLq+mbPRSd0rZfzcpHw1ZXeS12aX4RhFoQnBdetsmhR9kixOy0OYTWXy+07B/aQhnkjEMaBUdqXHZtWvwDA69KBIFoZBkpTCGqypMtdixOpSJpxS3FvXvPXgAe+99SY/+eRTUSCZkhQmDCR3Wor5SuYJPfFzpsz+7kgd8IV/hdDC4SfvcFRiSozjwMnJW3zjnbf5rd/8LT7+5CMury4x1mJtydCPfPn5Cz799FOuLi5k0aXIctFQmEJk6ZWiKMosUS+JhCerOSmpBoWUIHr80OO8Z3SBssjZvwEs6GRRKWAVJK0pjaYwGqOg6zpCEI3zwqr5HrSy0m5GQXBsO2kp32w2VFXBerXEliWGgpgUwUaGYRSjqj6IMZ3WWGsYhpHRjWx2W8pxwFqDGwdKKx0MgQVKK9lkA0kDuBAY/cgw9uyubmZH3VQ3qCh8qpRE3k0r0LuOEOF21/H81QuKqqJuaspmCYij8rKsKAtDVQhHYbvbsh9HbjdbisJSFgXbfQtaUxQlVSXyxJMSPFl9qbAaRcQHxzB0tO2OzeaWxg7YoqQoK4LrpaORW82j0YKXvgbvR/qh5/7xEWW9mtvMmd2Njz67FsufFCPeGayBujAsCoNZr2iLHh0DXTegoieGkRgc2ogQhQ+Td8TI7bZns92w3d3Sjz3WGGxYilmnSmidiBpCQA6c7R7yXF5WBffOTnhw/5EkKkpgUcZYko4EHIPTjFZTFFYC1hykGiUOuaBQVuU1ZzCF4NVDUrPUpKiuAdGzu70hRE9RFDQokcsk5Za9x6hIdGDMhqvtnuAHTtdHnB4d8bBZYMoCHyLFGKEbwDt88oyjo+s7NvsNy1hhTCIEx9AngjaUphLifmExSVNgMEiCEqMo7u27kX3bsdu3bG5uMCjwnsrafI0CI+xDIjpQwbHpRCCkHQbef+sRVV2jC0tBTa01UY2QxKyuHzvGMOKzoW4KDj8O1IWV8SQxDHuMslkVSZGUEb6fVgTBTYiIQC8dj9vrG1RIFArhVGT5eRciTiUGrTBGYTc7IawmeHh+St0sWC9rgaLGyIgnOFGnUtFDcBC9eHooclAqfgR9Emw9RYGxhcB8EfM8q+VskHMoMXrPvm3pRlgsatJqiRpHLIreGAoje9SuM6QwYPAk39M0C+6dnnJ+3rAqFJWPlGOuECd5tskPqOAoNOz6Hf0wst91LOpl5pYgGC8Edx+mA0Fn5b2EwE2NFM9ubm8xlaEojKi75QS61FIdHkZLdA59JePQbm5p3l+wOqo5Pz+jaAv6caAbBlJUeC/XaTLcOo6RQERZiyn0He6hdHumInChhIxsbSUmmgmWdUWMnn3b8ezFc5qiwADj2NNoRWU0yRnaVlOXhl0/MoydKHOmyGK1pqxqktJS+AsJpcXEMbiBvt3S7je07Z4hyNlvjWVbaBZEdKFZVWI0K4D8hFWSaKWMbBDPskC73+F8oFIG73qCH9B+oDTQWoVPjq4LXNY7bFA47wjRszpphICdFJ3zjKOnHwUxMBVMXXTUTU3la2JUjM4xOscw9tnc0GKNeLG5lLB1g01LiqqWCrR39EPPZ0+est00HC8qghsEcoZiV8CyKbje7litFjTNgqZpaDdb+q7FZANU8WmJ9L2jGwe6vmfX7nCmQA0DFAaXRBUvDB4TKoIBZSJaWYqixKhIUoGgAmPy6ORRBDa7LWNwGAsFFpUhooPPuEU3olJkOTicsYzxC8a+4/LqhvOzU0gKn4u74nMjvDsXZDzb6IkKjLWMEzclKhZVRWEF9maNxmjDwlaYQuapUSqbwSZSEM+qUhUsKks/GEprqKtq5g3fTVSmylpCir7SBfNM5pGTUePBtDzOgdsvhGcZApYyWVlYDWrKX1gvFxwfrSTOfHlNoaVQOokYKCVUg8mQWi4sYrThjYcPuXzxAntzyTj0JJXvI01XoUEd1Aq/2jBRd/5LTXHqv2WaIu/5S2Bu031qQRcZZMOoyhJr7H8v8K+vPVH5lx99OmdbKXMteA3zN5GPACXmisJdeb3LVGSoVEiaEUPuB6KsxhiDNQalC1ISM7Vu6AHBkYbkcuKTsY4otFZsun02utM471guGs7PTqhq0UrvuohKcngbFXj/g2/w3ffe59vvv8d/9U//mZwtk6pBkjRrmmApy+BON5amHCaPw10XUaUURouHyURkPuAe+YVJN71SEonY/XbHD7//K/ze7/4O//F//Pf44z/957x69ZLNdsNbbz9mu9vyj/7Rf80//M/+cz7/aMcQRy63N9RlRRgcbz1+xMnRipOjNVYptJLWalEqlCpAN3jv8G4UwQcM1jk0juVySVVVLJoak59zRFFWpXgb+B3WjBgNKkVcvyX4EVUWaCvV5FGLJKRopSu63rH3js8+e46uNItlw7I54f7pfVaLJdoWGCubWLE0oD1KR0xV0A0lXV+wH3rGEBgHT1OVrBYNi0VDaQ2lLZjIbmFMjMPIk1dXvLy55npzS39zQ2ErYlFjTj06SpDkJuiR0XQOLm82JOd59uKCxbJmvV7SDSOnx8ecnhyzXq9n0vH9e8c8feG52VwxuFHkrq2VYNVaFnXN+ckJhdESyPrIOHqG0XPbdtxsN1zdbvjoyXOuNztudnuOywVVWVGVNWMaBY+fPUSM1rTacNu3bPd7Lq5vuL+oefvill078uDBPeqmoq5LNIbSlCyqFY8fvEn0Hp0ij8/ukULgfLGkaNaMzrPZ79l3O+GwGEXXbqlZsDo54fJ2y9XNli+fveTL56/Y7PbcbLfYlGiKksIdUzQN2ojPBEHQ3F4bNltP13VcXFxgSZwerbna97z5xkOOj444Pz9ltVogaJke0siirDk5esDJ+gSrNWO/n+W1C2Owakp/pXvkY6IbA/u+Z+h6dt2ezz5/wouLK14+/ZL6aMWiqbm3XM/FhIDo3muVCFax7zc4P/D8xZfcPzvj0b1zVGF5eHbCcrFgdbRmMTp659jud9zctrT7DqcD1bJisV6Ahtb1KDRnZ0uWx2vqqpYOQEi4IMZoF1e33Gy2fPr8OU8uLri63bLZ7Qljz7hbcHZ2LLAHJZDWQKAj0haGfnC03cCzly/56MkzHj8449e++yFv3HvA2fqEarlkozucatlvB/pBgsfz1QnGGs7vnbFcLFg2S4w27LYjy0Uh7t2LoxnP3Q49u3bPZrflX330BZ88eckXz6+k2DDscG7DelGJx1KCoQ/zwd26gb4XzlDfDbz1+AFXu5b3Hr/B8XrFerXmtBGn7LbrSEOQIoM1vP3ue9jM29rdbsQfxfVQi4zsYllTlg2Tx8Kw37Pdbbm8ueJffPYln7+84OLVS0woGFYL1PkxBiFAG4Scq3Wi0ImLTUk/9NxuNtw/WvHu44FqdcyjsxOOlwselBWjc+z2HZdX1ygSx+sV9+6f8uXLJ+zbln1d8/6773OyPuZo2cis1Cp769SEBNYH4jjQtXsuLi+4uHrBxeU1F1fXuNDS1DWLRS1wxpQwKdHvoSwMV01N2+7xrodhzxuP3+LcWs7vn3DOOc5HdruO3W5PNwxY29KspLq7a1vadsz8hJSVkaRTYG0hZ1oCFRPaaKplFgOhI6YL+n5gc3tDN3QcHx9RFiXeeWqtqTR0G5Gk1lqxaBr82GM1vPXwIUWxYLFY45PHJY+PDjc4NruWm+2OH330MS6zPpJSwrf0gRfPX7B74yH9/Xscr5aokNBojtdrykr2F5cS1bKh6QesjtzeXuF8pM5VQimSDoxAj6Ld9jxRt4Ie6B3feOM+33jjPr/+rW8TxsDQOb68vsTHxLYbuO069n1HNww0hcHu92hjBNmjZfy6oWOKC0ttCbkyv1+vOVkdc7w8wjQNRVWgVOTjzz/leVOxbGoqW9KYkoUtuDERpTzgIIYM1yp4fH7O40cP+PY3v8uTF895cnnB55eveLFraUdHOzqGURKIaxJeQcpnhI2wVYpbY7ipG9bLhtOTNWeLhaj+NUvWTUUXC04v9nz8/HP82FLYyLJYYlCoGGhTLyquQWKgjfds3chf/OhH1IXl3skxJ0dHFNbQ9m12Y5cAT7uEawdeXV/y5OYSFyNFWYiKVoxEFzlZr1lUJatFxboqoW44Oy1Yl6XEKyDxRvDcbHvaMJBU4l59xlpZ6rXm+FHJdTuwd7spejpwViaYfZLEaRwGvA+oyswJRMhE+5hVT18Pvg+di0OolsfYWvokwhJlIXuZ8w7vIg/vn3KyPBIIbllmD5aEtXaGTFmtsIXl0f37fCNF7OkR9o/+a4lJtbjAy8clogpzXEjKnaO716n+6ljyX/tK079yzKqFs0yGuhmrKArNqM1smr5armgWDUVR/P/5oX/162tPVN785odMLQc19TzSnKtKNpYhQLnwwaySpdQMFCyMydVNRTJm7sYE5w4oqpBbe+SEgEkI64DZk9adKJAVhZkVHwKRpqkp1ytSfYJVmlUTUYVlt99xdXGN+Ref8JOPX/KHf/wX/PyLjwgm8o3H97i+vsU7MWtUxMyrkaw65QesjcJYcTAV8is56M8674jsXVIJq6NI4OWW+zw51EGS+EAMU7kNn/Cu5/LlU7T3HDcLHp6ccnZ+QrtY8Zu/8iuYIUg1f7nmRz/6MTe3G2JIPH/5ivVqyb3TNffOjlg0FU1ZUNW1YHFLLdAFH9GmxBYAhhg0ZVmJqkVeBDFJF6zbtfTOc7Ntuby+5ma7ZXtzgRt7gdg54QEZYzDOEozFaM2Yn6kfBUcb+sTttuOftP8t68WKRV1zdLSgbhqqsmRZFJRZUabSol1UFRWnx6fisusc1hradqRtPTFtsmpMZL/v6HsxnrrcbOmHAecc5MNwdCOYgDWZ9GxKkS9Min7w+EE2tf04sHcDl9stt5sdJ+sVx6sVZ+dnrJqKVVPS+5HNdo8PUqlxLhLSKOacKpF84tOnL4hRukVtP8xV9MvNnl3bsWs7tm2L94EYouCPnSMEL14TSlTaJtEDjzjKt/3AMI486ztudjs+ffqc8/MzjlYrTk6OOVpXuZNoWNY1uizRMbLfDcQUGXyi3W4JueUdk6HPKmE3+xaXEh7Nbrtn33VsNjv2fY+PcYaDOe/Z7HbUwWOtobCGSfIhAu0gUIlu9MQgcILLzZ6zT75gvVpw//yUBw/OWCwqVouKfbunHxy73cA7b75JWZSMQ0ciCVxusRCfCO8Zes+uHeiGkc1uz2a3p+16bnY7ttt9fu4DaRPxXQttLwGkMShr0BnWNvbQu4FhHLi67bjaPuezp1d89vQV5ydHHK2XPLz3kKoWPxxjDbf7ltEFmrLC2gKUZrPviEFI2O7qipt9h9ZGAr7NjrbtJCnZ7th3PZvdXiqgWYu/Gzp8cLjoqUrxFlnYgunAvN15dvuOtuu53Q/sPnvOJ09f8bPPnvPo3jn3To45PV5hC+H+da6XMRgd15dPxA17UfPFiwtUeoVKisJYmrqhKmusLmmHnrbrudzcypju91xcbxhGx+DkQL/dBIahZThaUxeW0uRALRNWb/bQ5Xm+3+x5eXPLTz7/krOTY86Oj7h3eszbjx9SFgarBYK53e25ud0wBk9hDKWxtJ1Am3z0bHYti2bJcrHE+8gwOLp+5NXVLZv9juvbG17tdnSDw/WOmDztXqQ/ls0Ca8RYTunEZIL+suvYtB0Xtxs+f37Bz5+84kefPOOt++ccr5acHR+Jy7YVCJ8LQaTvux2Pzh8QzxLt0Et3N7hMUJci0zBeyrPqR262Isqxa1uub295dnMjhm9uZLdNjH3J2NeURYnRcnG9j4yjohsc23ZPN3Rst9e0//RPefCTj/j2z9/hwekpi7piWVTYKWiwhnboQYGpCk6bNYUtWFR1FsCRvdw5ud6hH+j6kWF0bPueq82Wq+2Wn33xlKcXl+z7Ht21RO+oq4q6KhiVKGyO0nMDBdftyHa7xTnHx8+u+cmTC06O1tw7W7NsZB/y3rPZb9m1e1RhKHUhkJokwhPeBuyipl4t0VXFtuul7JTgpm3px5HBOa7blpvNnuvtjovrLV3vCDHx4uKFQG+NRudCpEDdxKw4IjDP1jueXd/SR1hl1cYuBsYEuihysi5dV1tUWCMJXlFYpgaPGxSmkL3AItLaXim8Mtz2I7vxhptNy6urG/quJRYlk/dFFzr2SlEoTSlKBgLyCYngHdE59n1k4yI3Y+DVzSVX2w2XbUfnHBHxjhK1z1zYnToKWhGdoBEcsA0O1yv6G2iHhFE9ig2jD1xudjy/vCZEh/KRbrcnFV7QCEqhtKiF+SAMnTE4tl1H6juK4zVnZ6cs10vZ8wvDdtfRDyO7rpdCxTjiFWhbUirxFSHbO/hRoFaj9wyDdPQEeXLF+WpFZQtKa1hYLUpspuJ6M+Jvbvns6SXf//73ePj4Dd58+13+6F/8BTfbFucjcy0Y4aNMGl3kZ0runIhN3MRRgZRTg8k4YpZ0zolFRspLUp+SxJgGBj/yyZdPeXj/RBQzqwKNJvhI5wdU8ChjsGWJihKrVoWVNCQmht2OxmpW6xXVcoUeelL0YHLMeweiMyUoE7DrbjcFUu4+Tr8Uc3x5ULplijiVknjn8Ku/5KVQtqCsCpbKss2KaSl7PRFEjOnrfn3ticrR/QfzjSryWKa8FnOCMkHYVBJ1nslwMelDgmOtnUlKykiIE2NiGPtZTSP6TL7XoqaREEwpxojzrtE5K47EGLBWkh/xABE5vmrZoMol2pjcTg0Mu5brXc+n/oLn9pLGgC5Hjs5W3Ds7Zr/f51b2QcGrKDQRlU2d4txVmmFiKWUdcJkcWaRXWnoZJqFStiu401w5JCl3JqHKssN+pO/2pCCbyKpZUGoLZcU7j98kusjF9Q3PXlzQ7lturq9BGWKIbLc72v2GrtuzWjasFjXNYklVljRVgxuFL6K1wo+e4H2Gzo24GOlzwplSyhWnkXZw3Ow6rm6u2e73jP1+hn65lEghEo2RaowR+csUA+Po8M5lrlIkJE/bX3JdbqiKgpP1ivVasvV1U1GXBVVhqZoKlMDWnPeMY8CNntEJj8e5kCUkE84FqS7mrsW+72e1j8JoUvCkFBl7TSwMwRrK/CBSElfscRgZhkFgcTESx0jykb4f2O727Lqe1ULGctftGd1I13d03SjKbtrhnJgI4uGzJ89wLjAMI/tuoO069m3Lzb4XffpxFOws0o0MyeOVYtSKkl+sWiSgH6SCk2KUIHIYuN1suW07Voslxzcbzo4bqqqgrkrunZxSaI2Kid12f1CTy9hckI5X2/dsdjuuNlv60QskopNEbxhHIgmlFbYo0LmjOPoRNUAIhhhyopLAJWiHMav4iAmac04Sta5nUVdcb7ZcbW9ZLhuO1kucc4yDY7frAFH98k5MD01OVPq+l+SnG9jsOvp+ZLPfs9sL72DXtngnevPWKoIbIQT2MRGCJBu6EB4BSWBDu75jGEcGFwnes2Ng27Y8v7xhuWh4dLVjvVpQ1xWLRc12t6PtOkIOmkmKtu2kqJEUZtuitCUB+33HzWbLft9xu93T9QOjk2RLW9nDjDXEGBjHQAsEVxKsRdWlFD1iou0GCQKGgZgSXTcQ91JRv97sOV4vuXeypllUVFWBMZphdDjn6LuOMcIqJF5c3EghKIpjdWlLrC0IQbHvenZdx8Vmw77r2PcDbhil8GCkAOTHkdZ7Sq0JRYEvrBSXYiTEwOBlfna9JJH7ceRqt+flzZaT9ZKzozXbtmPZVDSVwFJ3uz23mw3eBwprKIuCbhQoqg+eXeupqj111dB3Q06Eel7ebNn3Hbt2zxBCXkMCA/VupGuTQEhsQSqMCBtoCbS3eR623Yjre3btyO2m4/J6w9FywdnRmqOjFc2iZrVaEgmE4HBjL0lF9q3a3G4w2tK2nn4MDOPIdrfjZrNj1/bcbHZc3m6yoEaHy5xOlRJhHBiDFxhqFbDWghFIrhwEjl3X0w0Dm97x8dOXvLrecLvreHzvXK5zveZovZ4D6dEPoKBqalaNFQPPNMwBmw+Bfd8xDAP7tmXb9rT9wNXNhpc3t9xkmfTBiyKUioku751WNaCk+DapfiZgDCO3m5ZhGFHsud4PrJYNb27POD89YlFXpOhl3fQ9cTo3yRzP6Xw3Ghcj+2Hg1fVtDsYT250UdPZ9z+W2Zdt27Du5bueEc7nb78Q0NBdLsi3HXNSMCfaDGElf71t0UXCyXLBqamxV4pKYBI+jcAlSVIKGyEHOdFzPMjg5AAr5bBxDIvWOlATqdn0rxRPnHOT4QWuNDsLp0kDpzFzU8T4xDj1j31FUNTvvuR4G9kNPO3Ts+xEXwszDk+cqBq0mxdxBgKTEVDEoRR8ifnQMAYZRPEqc8+zbgX3Xc73bSxwDjMMAIWB1LjgZnWGPoljqg2ccO7R39D4whMC26ymsJfgoJsvOM4wj3TgyBE9QCMJCQVkUQMgQRzUHjwmBaKdENhkWz6llVdF6h4+w6UZeXW4YhwEdR3746w0np2c8uHePOgsuxbsB9xSQ5r8novwckM6cXZhMjae46wAAuxuIp9cC+in2Dylyu9txtG7QSgkEHXLMITGRTglthZqgCKSstArImjKaoizQtoBxkBhSRe5c4PSpr1/TlJXdzTjUnR+duyVfTWmmGzjc2us4p+ke9SypbCcp5Cww9bpS2tf3+toTlfr8kVRiEUOayXWeKC48Ok1fR7w0QjhMGvmSZNBao4xkrsaIwhZKY5OTLkkMJB/z4jQYK7eSFLNMms4yxNODtEWByTJ8pjDz5znn0dpgTEHsNvikafcdn19uqIxiXRd861sPuXd2xuMHD7i82hL8nrFvpeNXWFZHK0KQ4HAMA5OG9cSbmV9zFiwbXUqHJTBPiWle3XniU8VGrjnNLUWlwHnHMIwYpWl3G8qy4N233+bRw0d8/Mmn/NE//WcoP4oTelkzuiAH5vUln3/xZSbHlzSNJCqLRSVSikZTlqXo109ur0agFTF4oXWlxOAcm31PPzj6YRS1DmIOtqSdGnwgOP9azp/y70+jUxYGVRSAmgUWuq5lv90AU0JYZkK8oSilqiwFIzWPVz8OjOOIcx7vs7N8nldTAlsUhQgBTGOcRG6k61vUKOTRwhgmIQjvp8AdcWPNZKngA7e7HVfXV3z+xZdz67iqSiHvF5ZEFk1IwmUhw2i6YRDTuZhwPszJrahnaEpr5RCbupE5eB66jnEYZiLdXWhhiAGlNY21YO18/W3bsd1s+eJLUU+y1mALS1NKtdZoLa135HAM+fdikHv3UdSUlFIScCNdT2MMy6om4wDnp5tAeGFdy8BUnJiydvljgUJrTNEAoiQ3+sBu13N1veNnH38GGqzV1PUCowU3/hc//kRENKydq0jkNeGDx/tR5mvGHWsj81DbgqoqsntuXnNJggDvnOwlVpPCNJ7gghQkllWJqeXZjT5web3l5cU1H3/8OWVhKKylbmqMtVlBTvFMX+fPEPd0EQeRpFcOd8ck1W4LS1mULKqGYil8ookyKSslEoeebujpUGxz8ElKc/JljOKoaSAHKn70bLZ7Lq6v+dmnnjLzpKqymteDsRrz5BKtNKNzefORwk5wgeAj3gUm+6aU91prLIvFSuZnfgQxSFV0c7tll4Mvaw5Jn88qIUZpjk/XkhRH4bq8uLjm2fNX/OinP88+PRVFYfPPSJBkjaawRowgQ2R0keRfzn4Q4+jmIoJSAtMtymKuMueyQ+5i9kTvsEaSHzXvsYm+HQgxscKi16cSwI8jP/7sS1FdI1FVFU1Tc3S0RltFCJ5x7Hl4di4y7sBuJ7CT0lb0g5B221ZMS70PuBAISuCwRVlRGCv+Tfm5phAZ2g4/DLIfFIUUh6Jwf0YvNnTLeo0bBy5v9jx7+gqlwFhD3TTcPztltVhwerSm7zoUsFwtOTpaU1orxaMQCCHQD4OYwg4dl/sN/SiFla4d6H0QiG9dU9oiy/nD0Pd4N0DwAk3Rh0AlxMimHRl9zF1tz6vNC1JK/PjTLzhaLVjUJYtCfC60MTTLBWFWyBQz6Jg8KLjdPEUlsMoIhDRGrq5u6ToxUG2HwCQr3VSVSO5qRZf9gIwWorYx4j0mHLYJIuoZBil0/OjzJ9RlSV1VPLx3Rp29a3QUqLcxhn6IaJPQKrJvu7moOkYIzhP2I87BMIz0w8AwXGZlsMDoQt5nRdwi+kjwgaa0eZOXNZGSSK13IUihbAw8+dFP0VpTlgWnp6eUuWhXV+JZY41B5fFLUZEwsu/EiXMpksWdk663cwPR3UqxbN/S9j0JeRbKaFQIglLInkbi3SNwnxgjPnfP+3GQbuXFNRddx/mnT1jUNevFkvWikS4Fmi5GxnzOlKXNZrByNiSlISmqshL/pKKg63riOAIjT15cUGjNvZMTnl/fcrvveHG9Z7/bcbSo+bXvfcjDd97h4ePH9H0n3a98Jt3x2Ja1ldLc7RXUCvPPigCUupNyk+OMQ0A2x2pKYrkpcYghyv5vJVFt93vwDmtEkzAlKTokJUXqGCMuCUqCFKjLEq1LqqrCjuMMQ5sQRXKGiurZXOC/e0Fz5+QrydT8+tekEVOgOf3onOwcztkUpKhujeHs7BQVE3FwrG931FWJ/R8Cmf7F02cZdiWtS6XEqdtm0o1W09+yoVmlpt6CdDyMyW2s3FNLEcLB31BbUXtQVuOTPPjovHQlZIdnHNscdAgZdGrjjdODVVNSlKEtwmQGDNHt2d1ezxMhhoT3juOjNavlEpTCe3Hp1sqQCNm1WzYWlStAPop8q+gP5/efIGkJCQrTZAyZQTHq9ez87mueL/lllMrVB/nGdDzI5iwH+ieffMLHP/8pn338c6wxHC8qjLE4qwhR4730ckiKFBXtvqPdd1zfplk0QOXrzctDej9Jgi9RWj4IIaSUiW6FzZ2wqVWq8mI+JKSv3VjOMSZ4pQJKI5C/lAyhzG33JD8YEYUg1/k7a0pPxQiyXzC2sELiv9Mi1ZmUZnQmwc0XIZC7MA10gphJdgJByKpCSmR3p8WbrKUyilgVsxlnyptuSBBdTkDyU0peri4mUbArC5U7EFl1RMlnKT1tnJP77LRvqDmZOBiETnehKfNc0HONT8axsSUpFfnAym1rciUtBkb8oWKUpPovwDpNaU3+ssqBSJ61GUapZ4ULMtdPuGFJKVKycxIlkMXpfg7PRKaYzLnKFMQSfKwIsZRDQ+Xnk4vJKYFPiTC6r6wPNWvSTyhSNVU9lcpBtUiEHpaSnoNwEFLvPN+VksQj/7zNyU2lDQtbZ4JoPNx3TETnyVGXwPJywWIiQWqtqcqCCuEp6Xz/4hdi5mvkK4ckaJLWuVihBN6KzBlZbzIndeaGkRSxVISiJqRKzMHm1SU4b5SSgMMFIv7OfiIBpy0tqgBd3zmq8v42KeTcrdQloyBpUfnJX5zFKpXIdZL3DHTMc1nT6IJU2gN5FfFvcTHMzy4hXJ5u9LKXAOawMcmKr22uiB7GdApWFQqT5H6D1tnvPKFSIAxxlicnVz9FSlYJBMkY6qLC1Sbv2xGVRHGp3ezzFi//PHl++VrSI9L7+3mfSkjSPf1fmteACJDMQ5o9vEKOQlSMRDeIuhXiGWayeITWmlhVxMISqgI/JZXKcL3Zs9m1vLi4gjsIgMmFW+XqV5oKE/mM9FkWuFCWcmE5yvui0YaUxzsgalsKRd/1WSlrmr+yzxklnkSpsKRUEEMlTuBK+GP92LFRce4qFNs9UaI4lDK5C5AJzXf8LqZiaIxiQNfUBU3FvKfL2ZNT/DhNUgmso09oL/MwZVZbpQy2bGiKKnMvZHyurndkmiLWmJyMacy1zXNsuqb8CUoRQsgCPhJcxtx9SCnNfBZx28lw9RDou47g7JzsmXzuxEiGFopy6WKxIiZZJzebnYiWZL8Vm8nnKheFUj7TJsja3ZN39NlbJYinmTz/hCny3pmJ3vPemsRwcwgdbtrridnDW6GTJlEwusTVbc/1TTersZ4crXORxDC4XmKuHOtorRiH7DmVr6Hvw8zF27ddNhBPtJstVVEQdcX69D4jNzz9F3/JW2+9xXe//U3+wf/y73Hv5ITgXC4MHt4TDomIBApiGTE6UWqbY7GU8E6K4VK8PJz1h1pbysmO3H9IAaUtWktBzLkRkzTvvPUmD05WWAUff/mEpV2gbE1TVXJ+5WdhjPB1jTFyfpUFRVHMZpMp74tx2lfjHQGmRL5O7nxBvfb3Ib9Sh9/7Ja/5tJlRPHe+lvcOFMQYRIHTefZ1LfuqD5nuICiAr/v1tScqJjjIk0wR5zZroVXGOAp5UeeDpDCymBSRqixE098KPGka05gOKgymPGhWY7UEyT6gM/9EqyR+LFnhRytZ7DFXmyNxrharlDK2UE67lALddsvYdjP/JSEydraQLs04utk9Vboishi8F9OniXx1mCiHQ+zuHJkC4Ji4EzDnQ/yXve7MMDkI1eFj5p+ZEgMgGwXudzuGdsfR0bEYN2qF1TlR0ZaQqzZTxSvEiMutyenap2TDKD0nJCjZBnPjTzYWrUW+WOs5ADtc77TU5ZBR83em78l7TgGRQmQLU1JCrExTsppxu7niKJvLFPzeDVLE1dbk8Zi8bqbw725nNN3ZjERcTtrFgkeekig1dzB07iygVD60LQlzSG5TkmBhwr0ih7cQCnOApJilhk2+Lp2DsmlDyA1J8tDI6OWEwcco/z09/xzcGiXVFp2kYgMyv5Salnoihdy6j4lAFKxvdgSQsdH52co92+l5msM8RcU5sJ3GKN35g5JkJ6YsTx0TGAkKtJoSlTtZak6QDoeIwk/rlmz2lT8p3XnPQyif5KDQSpx8c3Aq4zZls3mM83qSADgnfmkKLKecS82BrlYJnSKZhiYbuT1AM2bFwnDQbBYlvVytS1Pgk4PmHEXd7ZapTD5+vXGuXv+3OvDw/Fy5kCLQlEwpTfYFECitGE+KUlfIMLswdcamYc/XaUQCUF4mF5QQFaLJi2pKVsiB+OtmuPKGJh/CkYTOVU2ZR4c9ASXY6QRiQJcgJZs7d+LoPfHz5vmVAy49B7bTN5Tc+KREk6VlRXFOPlcnMqRP1p9wAqWbmULMe1rmRRg1r/lps1AYvFWzQmUMzN2IWQzFKMZ+nHd6qaIC4RCIW1vI9Wj1lcRkmjM5cchQ5pj3kYQkvPNeqnRWbBSZ92QVCUssNS4KBNqHhPMjoxPondF6npeTh5h0SA97iDU6myhL58FoLT5buSihkL0i5KB/IiUHF2c/sLlYQRKVI63m5DJl2NAYIy5DyMbk5/1V4FAqP9PsKD7tF1OhcVKkVCkrUEoCYafPAEIuvAjUiTkQnYskebxlPso9Jy1KWtHmNR2SCMp4KbjazEmSMdMcVuvdjr3KXfIwF58m/uy0dEzmVkqJNolvW5DxTEa621OxJyZQKUpiow9wdo/AsV0IRK0JTmIqlQuVU8I+z6d0OM9TkvU1FWpTiDN83mgzFygntuzB+Vw6BlM3IKmEijIDDYKc8Pm5OieeLa0RDldZWKrCihJs3mRtHku53twFSgmjPXlJ0A/ijZViomsHRhu4ut3yxltvUxYFj++d8d5bb/LNd9/hOx+8RzkVrrV5LSg/zN7D3ykxq35NdAKt09xlmWtk06K785pRDNOazUUNrSWxQMF6teT46IiJPRJDJIVwp7t7kCOeEsppAseMKAnT/jJ9YypCzPf2S+LF1wqwcNjUp6+9fi+//KU4FFLy5J4umiRzbwwMwyDnRDZYljn/b/D2/5avrz1R+e0P35b/UORNTx5eoQVuU9oidzmk2lBYk1taiboqMUahDXRdzwSL8CEQYpZSVVZ4B6Pn9OgYlTO8mFJ2lhcdbJUrlBM3RILaqYMRDw86k0J0VqH6wz+9oB06hr6nKYQD4fH0Geu/6W9o2xYfong1hEQI0LY9KU/JhByWkyJTdFOF5XUd76lLJFwV+KWTDg4bDnfnSppna7oz2Um5QtN3HC2XPDg/443793JiJm7mUQWiTjglFbuYFBSaGO2kzi3veye9mjaRORGCmdBIirmboeYgFcj6O3dvRP4V01SVz+9zOH3ze04Y50MQOW0sCdkQUt7IpwCdOJHD8s+nKZ7K8sLqbsA6D2y+TzOP/eRsHoIEembe8A9jn8Uv5pdMITnQU27vSgIgVS2dAz6dRP1kSjYmkp5WdwOQOy3nlAdxvpc8fiii1nc2MOZrn2I3NXUh8pjPSWNKGJPmqRbRYpOVW91TojA9TZWfs9YiUjI6R0ShcmBwdy5OhcU0BxqH60r5bSWAnCrtvyhjqHNXNKQwQ/ayu0keF9A6wzzJcKp097mm3IWZZlD+lHRnrs0PbZrjKgfO+UbV1DNKs7LdVAGd19887RQhypyJQSB1Sqk8Cc2dg/5OkH4YYiDOhmNah/kHUnaCnS9pvpvD0k9Jk/LcnuYYgFEJpWalfaIS/lzQE177UGmVMcnB/Z2nru4mJwlMEnSfBoKS5FGWpQxEnPZZciI3/RNyUq4VhkmL/+7chKQTMRcHQpJOZJgDhOkZkQNMNT/HQ6FG7iMw8R09NknSblGsymwOHJOcFSQJXvOzkUST/PkJrwJo0CpSMAXpslHHBFErYglgIEpAFFLmZywLGbt0gGumjPVXE5cyeiaUQW5WHjy5ElKcURPnMko5P8mYZS9kMaVVkoJOczspCOpQPoohEqjkfnPUNRWMUjpUV/WdzUzl/7d35zppfg6y6vK+MZFmUyJlSPC8bvIz0vnmFCEXd/K7KIMvSuFgTIWn3IXRaEjSQdV5iol2SE4SSGiVTfym5ZRS/hzZM8b8fzEp4R7d2St1ytDPvLan4tbUYQgxkYxCWdBVOSdLkenMVfm5ZghRvkalJWksLGhl87WrXLidzump+q1l/ZLnflTyrEMUcnUu8lqjqW1emzFlfq0iFBZPLuYmKTyK2fS0tcU5wDwUsw732+jcWVaAuuN8Pl1zfh2CYpUbw/JmUSeiTliks8jUtVIGtMVXRS4KB8aho+9yZ8NMBWV9mHfT+Tad38FDElmhqatgtGFZL3DO8dFHn/A///f/Nt/94D3+t//Rf4hz4pHGbosLAWsL6tWRJF06+47d3XQPh2mW1/fSRQkiJx3nDkbM+860/84jxEGtNY9HijI2VpJJlSRhKcuSqrCcnpzi28hut6eqapLWBKUY/ZgTRIF6E7Oojxuorq9Z3VzzxvzJMvenuPGuitkcB32VyH648L/qC3/1a4qP5txGfs/keeUDdG2PCpHkPbc3t3Rdf+DRfY2vrz1R+R//zd+ZH7QxOUvPh6BWkwyiHCohxdzWk0lRF+Vcie/6Xir0uSoVk8jFPXn+SjoawHe/9U3pDngnwfJ04OaBnRddPtmnqr825uBEmlLmp4hSR7u74S8UXF1c0O22VKWlWYuGeV1XYLwcCDFmvHKePlFn80bZynWGacR4qLZMW/30mgLvlBfRPBFzwjHjK+/uNNNrnpgJ2UHkphNy4HsfqKuS1WLBermk3e9F+UwBphAOEdCNDkXE5hNwTuozkWyCKaUp4J3CJXX3enKrL7dzp/xhDuwSRMIhQE/5br+6b2gytEGC+2mTnO7+wGfRMmZ6/s5hN4GsxqYO762mA/jwfhMRcnoQav5ZUYSbgh6tpVIleNc8BrnaSa5I6bxBWJ27EDkkC0kgSqDQSQ5vc2dyKjVRB9UUC6CUKNFwZw7P+dX8+HOHQh2+OCeqd6bG9OOKdMCOT12nw0TKVb3MnUGSw5AvQMZNZ86XwTmfgxDRsidX5BTMcySh5/1yjs3vXJPM9imslm7J4f6mJwxRHSBnEyRl+oTpA6cq7t2lkYGdoA73fBgJCXZT7r5MkLCpzZ8SdwoIh4RaM3XqwKLnJGo6+KNKRBUpMglYBFbzAXnIElEq44ynRZKva1onkqhqSeySmpN9ec9cxVNpfovpbJqeqKwtjUpmutt57k//P+9CeZ7pDPOQscqrQx8CuLm7lp87KaLTnb1MSaA+qcsopQR/nTS99wL3VZoiJ8iyBvXhieSgJCmBCqXph6a5raY5pOY/U3c2xWmhyLiFlGYSswyTFGi00mihOaIT2CxSobSCosjJUe6yTDNUTXuV/PGZayb+1/L7Jnd9p66kdJ6h1OROKSTsYQ/X0A/ZQC7mYh5k75K8OhTovAL1PFVkLphpuiszrykx6J0n//yEg8ndyHlPlqd4N0B8bRqmw559t3CW09p57syFo2lGTQFmDpzlPSXVMSqb0iIwKZPnVSThRCSIoAv60eEDQtg2sjaFB5nhxGquIeRzUq7qAFecguo8tpBhympOesWdXM9Hhc1eHEoljAGBYBvaweGSXNtUqNBKH86VpIh4opEkI0zznlwkIO8rucACHKCFglOUTnGK81mflBIjWLLog5KYJ6ZImRMdMfJNc8wQ7rx/iOpOnJEXpeJgBZGfP/l+Jhir3I6ax2+KRHTizhNX816bpjbL1FHJG8TBD06QDVZNyawk9vO13UmI5guY9r/prLaFJLm52DV3tlMkKkW5LFmaxOm64dvf/y7DvmdoW26uXlHXDUprQp4sB1+dQ8I1TdI0oWrSwex6LkzGNHPuvhK1zevrboIwFXI1iCJYSFxvthgCRsGLiwsWdkVtG9pxpChLVPbamQoYxtos0jMCkSKGee3fLYzevZLDzi+X8lqeMi1kxZ2JMW0ah3hhOvfuzpvDA8r3GPIAxkjSEwcqzxUtSmdmgr/p/wFAv9559DCT3aMQWCclgBx1ThWFqBKeSD+K+k8Mgaqs58pgXdZCpLdyVIcQGMeR5+oSrMKUBQ/v3cNqhR+HXGHKHBg9VchT3pRlMmpjsMZirc0xboIohkNCslY8vn/G8xcrqsLSty1GA0rjXST4iDGHjV1UMWSh6mmjuDOtE8wBzVdfU3X4te9N82f6mbvffG0C/pJZO/1M/laMMZPfSsqipFf7rCCVNyymKqwHksAyMjQiTUEHHEi0+f3vdkKmwPRw4eq1RT3XMTRSYTjsEXOlTN1dECQOEIPcRTqcqfPfc19qSkIhb5r5Z+4QOucfRTa8w4H7+mK9W3PJjTBSulMV1IfMQSBp6fAe07fS1L1RmCnVStP9Zv7JFBAqZnOoQ1w23fkBQnQI577y2OeEZzro7oxSHti8hd4JVNWcxMiPTanxFJ9OcADyrMjjManSaMFAkyTgMPkAiIfHJHMm39/d53yHay/zbLpvyN0fXk/M52A0w3HUdHfptet/fX/Nz2fu8OUAIR3eN945qIzRcxeWJG3rNFXXlcpO1HeGfDpI54P8EESKC3U8dB2mXwD5/Lm5NafQ899372f6UsxfN3m8pucY1SH5mJK0yNSDu/OPOnTsUh6zlAOMeGe9kjLf7c6XXrtXpSS4v/PeOk+4Q+DxlfFgqhSTfZqmCurhkBcwiySHM0wxJ+nTPjQF4klNnSUpdBl9SKwOxQu5gZASLia63CJRKeY/ZFiYTFCdyBAsjbaGoNQheIyH8CnFkJPXNJ/Z8gyz+RwKgQAnQtJEJQWLygjPTkQ+tBSspmcWMoQWjZ3igjyvpAMGM8csTVN+KnRM8y0HYCoHrrnbJGpY8hy8miCgAHpe77+M66pkaoh5G9I1m9bbpOInz23aO/PanN5LHRKiqcM8zRWb/zbqgLJISTxcfFREI10PHRUFmlJLUhnz/NdAQeZfqcOeKOMiD2W61jDvR3l2ZWjzNJeNUXk9QWHkupTKSYuWWMOmSB9kHimmfVLf2WMESimdpUSczfqQEtX8/KbBSXc2b3ngIc/LuUmYVF6H0rmNWhMCeB/n9ak1h64lB45LSuKIPp+F8xNlvrbp/sl7g1EHbl1Sel5HmjvJuZqSFHmDKRi/e+an+dbvFFiReRcBk7SouSZy8XMaksO+pObROpj3TuMwrTmjyA9WUTUlTWFoyoLj4yMGY9mmwEvvKGhE0vgrw//VuS6XcDAbn13smRLpuwT2X3yb15dQXqTpcI4lEvu2xaqIAbphpFABayIuhGzymr1RjMUYkblOkwhMPkQPEsLqtWtQ6vCxpLvf4TDX0mGcD7Pv7pWnrw7NnRub4gs1n593WvkZmobAnUE4dHOs+0s2mH/H19eeqGy3WyZyoDKZ9pshXm50uEHcXVVhUIXlut0wDAPj4FjUS6y2FMZQ1xU6Cc62Hwd22x03N9d8dvmSqqk5q86IQb4/DoEUgxxE1ggJlMyRAcmOY8KmSEyi8T5VoJLKpPzR493AelHw4GzNmw/vc3OzZRwDY+/56U8/5+x8wf03VhRWEwtN7yLR583AZpUycjAh4FImqNLd1ur0uov9ZA6h/7sf8zxR7/ycVgajw1xtSxmaYSYJOWPxXtSBbDEd7rLJVbZEDqMpMEgi8ZwPyTgFC+luSH9nbcxBcV5IigPGk0MQZ2fd8YQLXjalu5stKlcUE5PjqvrKv19PAadkgHns5hFUry/IaalOi0jlz727wO9ySKwCtMB2purbhHmdcb1Mh7LOh3fCeU9UUmUtjEEjledp1PTE/VBSHWN+jwOOXwxE591H7l0fghMpatzhQsyByZ1N5865OAcm+Wsz7n76nj4EMLIBJVH3yhuSBENSDVUkjuqGRK40xcOTuPsU5jpfDpaFJ6Dn5x8zL2bqZP3CSXLnmav8PvZOUhdIMwQBNIfiYE7EtECwTJb31fO8C/Pba3SWQBfIRfCKGAI+RdwMkZo+Mx/id+aVPsQmKCUVJSnLytgVZuqk5H7EFAlyJ3A4fIIkqqj5uZKd1VW+jsMZMcmaHw6PyAS5lH1XDGtzYDet1ztDPM1X5t7BYX8iByMpRSbOhzJ67oIWSEdxSpymfUQM+uRDBIYi1d/KCARyZjQpSR4mo1wtus1S6TZWYH65ylnaicuYn7SW6l1lFKXRmd+YeS6ZaxKS8MN2XqTJR+ekCpgjQpMDPms0lTaUhaWuK5TJTt8pkjxZ/j7SuYExBAYna84Y6Q7JXhEhBMpiUrvSjE5gXUWhaEoramXKApJQBiInTUWIicFFxiwlnieAdOu1wioRR09RzrZpAlgzCQQc9tMJ1iRrXeZdBFycOHww83gAmTECDTJKz7C/qbBCykRfpV9bmRPMN2buWSCT8qfZlMzcXZoLJUnPCYZFlB2NVpioGUxkTAlvpBOZjHxdG/J6yvtlult0meBKExiTufgi15B5Y0o4WeIszkxSRx8SgpqJyKwyJFb2wqPC0rlA7wQWNL+nyWd2iswrYDr/5kTEMHESDieQyXNLOGIoKDRUism+g3SXV5WfkkfWgUkHIZCoJ/7E63vm9IjnLYQ0oU8Pz2++zmlfSnda3V+BN9+BCYqKoMwb8rNk+npe95NA0XRVcUpMpn2NO3scMo+mrGbuNeWzcxjEE0YZzaKw0uXInQ2tDfWy4Hi9pjAF189fMoyOru9BG0kccyyj87PyEyxLFtRcOEloOufYuxEXPSZJouy0yagK/1pxcC4ukzsnKWNBlQctXWSBPcm8u9ltKKuKuqpZro8JPtGHnmU6QmgN4jOzbBrqQnx7hmHAhUgqKqrCU9oq7x2HfXvilaU80JNYwHQGoO7GNlNG89XZwp3vTQHCPJOmN2OOT+9kfoqEdwNtO3KdSnQKqODY7G5FIj/wtb++9kTl6fOn7LuefTYxi9HPKhU2E/PKsqZ3jnYc2A5tJg0lwigTzGio6ooJPzxkDe6+77jp9pTWsqwXfPGzT9HGEFLEYPIiF3iFZPii0T0dZDEJLri0eiZ5ohXOj9SF5aipud1csb29wruBoipByQH26nLLEAdCObJa19Ly9yMuiY9D0zS44PLGmKucCulepPgLU2U6eL4K65on2y+8fsnX5gBUMeH+Vc7GUwgU1oqL/HJJSDD4SJnIicAhU1ZIJU1nIp01h8k/TXp520PFPU7ZC4ngA+TKtDVSnZyIzhOx3mid539C2anyLAFsStJZHNJEPM6V5JktewiuZ+ULRNp2SlVEKGEKwF7vYk3Exbv18cOyyxCCfEiZOW2CoCYSbh5qnQsd09rNX5tIwZPuvFKIUgxa1Msm0rfKz0gfgq+DItYh2SNm1bvpcvOmM8FA0Io0kTlVrs7l357vO8qmPt2oJs0dEWOmKPt1+FKax17mxqEKl/IoJqRyKttmJMt/G52/9vrYzpX9OZFN01fRmUwtn6df665JrDS1u9UM/5CxVfjps6acbhq5OxVjawzWaqqqkEAqiVgEd55VTEKKDiEQwzQWOnOkBNqm7uzb0zgZpTPEI0/NNK2lqQKbKHJ1VgIoNc/96VgQGMr0gA9JB0wBvyID0udKVYpk5TTBNx8CcE1KmZOiMh9EQVlYJiWmyd2cfJDLR2Wf46lgkvcAUHjvZqiHzu9p0TRZFei1MUz5XvK9qgBRCXFUqUhSRvwqMvZeocCQzRYtKsWZ6D9k6UuppKu5oj53fGJW6EoyM7TOHEcVSXpKfhLLGPGFxVubDd8kzKhKPYu6TMlOkRWwEiKd7I10+z0eVOYKWD3VT1BKZZNEqc5rlQs9gC00ExsyhEgKsm8eiPmyvoySny1sIYU7n9N8BcFo3CjcE2MMZSPFpOBGpuR+ghBKcKvndTCrXkHu1qhcKJvU7ZIExXmOC9TlTgiSsfc65rWfq9MTQdhMHcokMZrRU/6jCGHi+YB4RZA7lhn6raXDZnLhQgyO5dlVBWKanJR0xBUIU0bWhFYTJ+9wXk5dw/8fdX/WbNuS5XdCv+Huc661195nn+62caPNjMxUprqqkkkFpUqEKMCqMMMKwzAKDHjgCYzuDd75DvANMOMB46XMMJNUqIAqVVVKqhRIikxlRkRGfyNuc/rdrTWnuw8exnCfc+2zz70RkafANK/te/ZeazY+3YeP9j/GaJ8VNZnbok0xgNYltiHiTiE1jHZuu0HtnFKL04FFHDYNqtjZjHSeqRL7OFpRgkWvs1+a+dijFjlbE1eE7ZA4Ga3CWC4Ga1fn8256ExIMKRllOYuILVrQdEnVVVEVWQwnrDplU6wX9iysC1T0o0U4+vu6XPL91Oavfyti+9r3VUdht9sBPe9vpWs0o0SCGB2uxtFTA1I0KGQUxmhKagzCNFtrid3JCdvNlpQG8myr2PiDlgq1rPLhxGW0z217F4xW9zmz93LxlGKy1dEoaRwcFuyOEKdzmxMItXrvv4IlNGGGcIxorFzPez7+7DPGOHL/7JRtjGyHxNlmS3J4YwzKNkVOBmtIKjoQS2VyfcToyZwKVpjKXmYN3z1WF4UOJ+iU25gnQO101k63f7s52XmlhbdfN3OkrZVHg4IKIrXrUHfqqn/O460bKh///GMurq55cXHJ50+fe8NFa3a12245250SY+TV1TUvLi+ZNNMM0+kmdyVvux2tGVyxevOW5FbIWogSeCEveP75C1QsiTGQSEBSJUTD9lWFEJNX/LKGVjEIQwoMEsyTEuDm5pIHZzu++u67PH54xhCtJGtIVjFHRbg6TISbyulN4MHDnTHJJDCZkhljIFdXriqsa1kfJbuvjkU/aIzDlRMW8lqdfTzRRwTWrl55YVWJKTIMoyVvIQ43aI9oCnlTAKFVywGndR9bo3PLu9DFg70yYMTdMaaUOhCcRWi0VxCsAlx0D1HyiERQ9S7udt4CbXDC7/dYFOIYpBsqqFe0adPf5he6l3FZi/Xcdd7eIS59D68Yurgw8qrbnQfo4ho3LG67dceoh15BzsaCK+8rGkC7sF+vTGcx7j5pUxClFSSgR1TasW5g1QyNNsTozGVwha561SNxrHH18Wk4noPGuFoCc/dvdro4jgUudLsSiO4Fat64NmSVlaHiBGJ7Vxa4Gg0yZy8yNNytLJCPNunSlMAgJAkMKyMseunzqsqBSsmtPLkeRSxktU4iC523vI0o0uEYIopo6PTQciiGVYlGBY8+tTU93nfruTT6lSPbRXxcSitd7TlcLm0Fa+7WEnsbTKRFI0KTXQ0C1//XYFzt2bJUt6sGQWrJ+kmEJMImmvFb253U/ljDOgUzjHW1baNAWQs9UXNapUgMWG+JeTb4JHRoYWwJ011om4asYutmTqCG3W9kIYwhWAEAp8DqOYXmLLMI75CS5ZUJtB4FHQ+uViXSPJgOE5PGs5UU1CsoJkqerBgClpdZEWYsql493tVz4hqf9f2YghsXHsVqaSqTGzsxRIv8oVBnd0R3FZh+09Xctj0hog5NcziLLDkkXeE62o3L5g1rzwH9ESvHAx6FWPh7waLxtizOxeJavqzWFYMCRleQx7Dk+zTHT1wNSFbFQ3qVJRbFV1Eo2umwKVMSxXiOr9ti6EFzFLacll4yPZgsjRFS3zPBocNN0esqtymS0PlR4yUrMQHBilnEYHtjEKwxqlrjP6lylPCvVl3DnBK63LMbRDTHkqyiau7YEznipZZfsjj4zLhdFNPFqOpvxG3X6poU1vu6N/FuX6xoxVnMQo+4fO1i3dd2pQNFAVJ0g91yaQYsdyR7DttmHBnGkRij9y1ZDbRHvFYf+ThWbBXQnvdsxZrqkrOCGc0twtb5paxu0AVG4+cLTDCmQC2BWQv7m2uSTOzGgdPTHZthYDskQkxINCji4D8pCrW6bI4N6tinlAZBbFCuLltXK9f+7XtanIm3v1e63/E1t4523q3IXTtCEGKycspBAqGYvtkcXW/7eOuGyv/z//F/JyNkFWIYepm1F89f8sH773I6Dnzvh9/j6fNXvHh1yf2Hj42h58rJcEYYE3EcqHFgMybGzYbDPFu+yzAwhoFpytzc3PCTTz/mxcUrnr96yeE6M8TEbrPh3XceEKJVcHj67DmH/YHDYaKq1+WPwgcPHzEmIUrh1csnfOOrH/Dw/F/h3/5rv89nT16ynwLf/8VnzLUSNtGUzRSRmOyn5dpQyXm2xkQsERLBLV8XeLUU77OxEMiCr2ahurr6rGuzHP/bfu+Yz4XZ9NBxtWjSycmW03s7TxY0L9fa3j7ae91LrB5qBdEW/nfl2r1YSZoHv0F97Cd6Yn4IjWlbVGzKk50rwm5IDMlrhDujripswL2ut4Fb1bxU/uzgTHgJT9OFparDUHqt8ZZf4cLUS/71KnFh8cLL6xPcIydtXprwa8qTjXZ5f8NphR7mNgVhiVa0+e8VbPwFjJV43X2R1XPbe3m8aGUAt6enICu6w5XO5XlNMMVgkANLM/G8rWZ1qqVmWiK/lUyu7ijQWr3spTXarKrMarAVg9pUUEvDDRhOvzHvpjSnsODfe0luN7K7QeiRRxUrSU1dKRVOCQEzApqQLdoifKzgYEDJ1Jo51ImYWo36ZO+kypytakmtZhhkbXDQQAyGp4/Ro6HNCImeauwQoigwROgQFC1doY2xD9re2WmpKAQ3bLriJe71w6F9naLcu+W8wYwGBWmKEStoh53QmijmCvM+G/xQ3JPt0TQrhhCaWtP5QV5FXSTFVZKtupHrL+T7kGY0eLR6yoU5e2+XaNG7rMmiDli5eFW8lHNxhTCyGbdo3TMdJoIWxmgexiRNOGt/RdS8m4ecudEM1O4oAoPvDGEghEjJ1qzOYKamxE45Q4xmyHqScqnWqLeCw0eEKRf2c3Yvr1h1LhFqqczzTNDEJo6cnp7w6sVMLVYOd7vZoAixLmsI1rSyUefsOTKBAKHthUDWQq5Gm4ecQQIhBXItBmOpILl2xXfhSzanyxQpi8NLbY6oPVpsx8LXWxRF1SLL0RukFsfuq1YvmWtHFIvWbIM1ThbnPznjDsFmnlkkx58C6lFwj5RHL5EbW14KHM2ZXbc8V3okeOEHjV+ov1OezDs+xsowju4wWPIQAua1D2FVsbDnJ9DPbdHEcfQi3Up/BtB7ZtkWWY3ReXd1p4H1ezF5FcfEdkxoLYSSma8OELzoAEu/HwS8nTKK1Q7U5kAIS36SeJSp1tqbZDY/3sL/jS9o8Apyol4W3Y6lx8ixDO3OSGmRw0Y2qz4t1f9usk0a7VmVwGVG+6/0CvfNcFhbQE4n48lIg+QOZe4V5HD6PD075eTkhHEcaZDOJke6x3ElW9tatSeIGD/O1ZuHe16aD50hriqSLZexaCbSebPJ+UDrOzbEwLgZzSGWBAkWWX5x+ZzH52fcOz3l3slAGAbLmR4C2xSJwZBAKRiYPAyRzSYwboI7UxanX3d4rcvJH6kudxsXd77QXZ+3nbiybxYhbDpsSgO73YYHD+4buqBO3Lu8YbN55fv77R5v3VA5Pz9jKkLWwKMH5zx8eM7D+/fYDaYsqMCwUwiJcXPCO4/fhVypU2Y7bNGYqClCrdSSqXnmZprZnOw4ObvH9WFPzaY8/TsP/jbT4cDF1QU//PFPefbyJU9fvaISvcRs4eZw4N5ux8k48P67j9idnHB2suVr779vpUSDst0NPLh/xgfvPeab3/gG4+YpX/3qE+QP/hE1W+URDYb7mfaZzz57AVXIB4OOVJRa5+NGN52GpGP5ETF8d1g28FGJudWxeK5ZNls/2jWLErOqKmvMohZTKEJgM278fpUoS6M+FVlVg6odPsJa0EnzNhsj7I0mW4RBII1LVZvgCo3IomhVwcJkurxXU8Sb4lJdcNveW2BOdt6Sh9GYW2hziZ3UsZshELEKTMt+XXzZIQiDxF5hyV6l9mgBivefWDxOUr17rs/1uvpQFLp0MI+bdMW5eSRCS453QSQs9wZdCpa5Vu5FNo8kxhJdap5jZ5vSznXjg9AjMOpzY7eupuRqWfJuVlaqm5200sM3eUkmDMngGCUYXCcoJBSZvdoeHpXxVwqyGBitPHlKoWeyLL14LELgGUQI4v1SfDJaKOOI5kOnD5qhL+3bFu6nOfpNeS+O15+td4QlnzejziBh7cogge2QDBY0xN69uNbS720wcx+lOmwvBIaQiHW2HIxSjiN5PqYkC35bHSLaqKW/NnjBAZ+D9mH37rYSzO4X7dFPkGr0q9UqU3UajFYlStThmJiy3BobCvZ5qQ3KRY8gqa9NEDxnQntkI+ACsypEcaGVe5QujRukVkKppGB3qjF13hRUmfd7as4WtRkHhhjYRKws68pYakLyUIQspl+2KpJNfWiJ+DZe81RWlqIgfSo9f6HBEmOyprLWpXxv3wVZKlb6/KjYOxISFWE/ZWoIkAb3FnsDwWi0YTyweDTJqDwMZrxprtQyGwWE0p+TFE58jgZA5pkAbCTatdLyvDy1XQI1NGkD6tWdVOm5dxZZa4wGcpGWr0tpZQbdkdQgVTFa3kipjYwb7GVVp1IDwQ3kiDuOYnAPv9O2WNmWgPZeOhWskpcXGgjRlHByJjhP6dE9WVxh9DldjJq2d1MQxJVXgwwqWkrfRrE5uhq9NHnpOSodfuuGRlPEcWfTzTwzV6ORTfT+Ui441q418CILavCgUiuquYEeCQKn93bsNhteXV4zzZmaM1YmuM3rUso7dL6v4DC1xYB3XtiU587YZPVDdxKyWl9jj0vcqkWejUfSHWkBvHqYdB2m8ZsVt2Z1I+JCajStYokkL9KmHX1viiBaUBVCrT3fLjn/GkLg3ukp2+2WNCTyXC1fy6+1va8MKXV53hLlF2HnelM1p2WeMvOUvSmnz+QqwZ7jq1fH7TxCZcoTc52pUtlst2x2gQFhzOKV7FpkN5mRsttZgQkxhEOIwXoJjhuGdGMogNUcWcGC29Smq5/VfPY1ptsdIk22rM/T165xBc73zmKItqihOecrN5sbxmhZWCEulTTf9vHWDZXd7gSdCnmujNuBhw/v8bWP3ufd8zOub/a8urri3fffZ7Pdce/sPvfv3UPnTJ1mTtKGjFgN9DwZpjNnLq5vCOMJw7hhGKMlF9bK1z/8wDy8tXL/7IzPnj/nF8+f8eJy4uZmz/XVNTFEdpuB9x8+4F/9y7/HvdMdu3HD+48fGyMW5ezBmXV1HYRh3DJuT9idnvrat9KZxppLgcuLPWZFB4JPYa7VanZLE6pNx2rc0CeoWxZvmMA3frUmruZrWd0SusA+ulewpOEukMPiSaUJgqO76dHNZDX0dT+IoC0Hp0FrFkHZIDEt9G23Csv3ugiEFkE1IRlpIdTQogS+X0qfT7zEZeiMtQ3S4DjBiwmYp7Ar7P7sZtysHdG1LtW6VC03BQzKENxDbpVEFIIeGSqmMC/Kc6s4Iz5fuprPxfhcvm9z3lhP4w+6Woo+9i6QFlnUZr1f4/TVDMwmTESbgNZ+TetZ0o6ARTKqKx61jTu4EiG4AmJGbuxlmr1HgpqC3Iy+Bu9rxkoXjiulsSHp+jyYprVOP6EL6ZWgaec3JWQRycsc4nNcPTpYdDHz2j6obX58VaILQ8tdiD3KVKg9gVH7fC6VqfB9b12lxXPg2lhWUDdYKgZJf71job+UUlr8F047bpJ3hcLmfxFcbTgNy94UyiVPyM/R5Z0bbYXQ9rHCisbVN5hdvfSuMWM/dF4RonlupdqcVREKwaF4yuB5ScWVzzaO4vw8ihBiZAhm0C0NIleQGs8tbJG62MrBqfYoERiddhpktQbNyeFKTSOYlktYtFrURXVpdKqm9NqcCiKRBi7JxctQB/XogY05soJ3VocziaBE63UiIMmi7lUr2elkyTe0iyMQtJKwAh1DCFjlNrWStDS6WNGRNH6wGCmNpzY6UXUveTCDlx5hXXzGUZphtqJNTIle+W2M/tRpyGmp84nVPmj7K8hSFS+KVSdrGEWbOxtWbOvvc9OKmLR7Cw1lrX6vFlkTwipKVFnGZgVnFu/0WmA2esfpTP3c1ghyjymT1mfFleOWt9AM6l7G3qMKvh7VWwg0eO1uu+HxwwdUrVxeXzPl6gVWfA5qkxcsFfVk4ZWiy3PAeLcCdZX71h7f6H5xzklXrpGV7KFFpptBtYyh58mpx49k2ZvQduhy/9jFivfFac6rHv0AvI/MIqd8rVt0SFdVND2vKoiwHTeMw0CKkXnqHZ06b27jaPmVS2GfPiSbCzVDtpZCnnNvk9GRMdoofjnaM9aqve0Jm5xSsxlgYrDIk5OBTQzEvZ1vzSUdpUDtslEENLdxh56LuHZp2i+dqDg69NYfDQP52iG3LtU26atT1tfeeROLnObMPM8mr3oBpH9JDJXTB/d48dkTPn3xhJtyCVvY3N9yyBPPn7/k6bOX3H/va+Rc+fTzC77znT+lHG7QPHE6bri+uuLy8oKzkw0P7p/z8MEDfvjzz/jZZ8/4+PPn/Ft/869T8oGXL17wd1/t+epHX+X3fucvcHZ6xgdf+Yjff/SIjz99wo9+/BO+88f/gu9evOJsfMjXPnyP/9H/4L+HiPDzTz7l5uUVJRs28cc/+5yLqwteXb4ksOHi6ponr16BmMcuFJAheM3rgWlvda5TFMZkScqs8jvArfgi1BJo3e4symzdT402dKWs3vZNLDdr8A/bbE24NnNlMQg6EXbJYJXI0iYxpmTJXGmgelfiEGTxoHoXYsEUjRa+a2HsqlY1KXTsuPRzOsa3Ke7u41ozTJQe8m/cdomQmCCKRHrnM3R1fzMUVpPUrl4S3MRyEoIrz0nUcfsGGxOfD8MI2/WxJ+NXxKssVYSpwqHCfn/DbtywG0akFpTacd4NV9uYuvrI1x7JpiSvK7EvjG6Vt+J3aKZcFDwqoysldjWf63CUS/Je1ESPn2fXuaAW80xFWTosB1dqDBaBeZLmalEkCcRkSlWrNHR1fW0Kf4jcPztDVMnTwRUIa5omTYn0Gs+LUiBA6KU0baxLL4HeMwSHSC2qsTHA0NbXG9i1yRFxxaZVQlrQ4RV6adjalMFGL8kNCo1dmUMrkQzFesGIdytogk59PgesOtw2RSaEqRQu9zd8cH6P080AOXcqXRdgKLWhv5dE4CMeoNZ8szVQ6xEzlihjUaGE0PHVGsS7yC8CJopaFCumrnw1minVGmqCUnSlUPscN2M+OJ0v+khTpAxMZcaCnZukWoPFGIkhcVC4qcLnTy+5v02c7wZGzcwVpt4oyOdBTTjHtGC9q8JhziyV8LzPSVXmWhCxPMJhSNa5vdReWc7ocLZxRaP5DmFpHkpdIWurrdGUM5eHA1PO3VBNToeNfzSeGzH6LXnZww4S8uiL5+IBqVr1OWKCOPLjp09REe6fnnJvc0KthYv5QMaqg0kNHIrxGwlWmTGKVSRKFsLtTTE7fJCFvlg+oTmEhMVgsjly+CuWIyQIUmH0dyjqhk0IyLh43QPiXe2Nxzc4YMXBZC1kobb3107pIC3Xx0oAS7QyvNcV9u7YOt1sGWvx7+0tGoysVoOjZqBDCJyOVRvPMT4VZCRXa7Q8qUf4jJl0o7PtLwS0Gr+KDe3gTqbtGGnVz4TEOAfmADEFZIW86VO+XgxdYL5BvPx1rWieeXB2wm9+7QMenO/4yc9+weXLC8ZhxHaAst2O3RFW59y376G4MaGKmueli4jGz/t2be/cdI/VOy+6yiJXWyS16RHGixWrEGe8Js8F8dYRHdHAWs81RtcddtJuZ+a0BIMbx5Ylo+KV0JpxXSk1O4QVGGJ/pzKbA+F0e8JmGIkxUTksTke1IkA9F7fzqrWrqK1P9eaaipbKPM1M88yUhUw2eHdaQfpWy9tuYrG8VgFQvZR5JSSLHorOnJ/vODvZMr/MTJczL6dLHu1OqVKYy0TWyvZky5AGv21ENVJmkFkpc9Nj2l5vVhbdiJTbxoeuBr3++1c5Xn/hTtetVUHwSqglF1QNctmQLW/7eOuGyidPnzFutnz7m99izsrFReY7/+InaC5cXl5xdXnF7ifPuL685vryksfntmF/5xu/wb1N5LPPP+dnn3zCyckJH330Vb7+tW9w/vAnxOHPeHXxgq/cP+Pdd7/J2b0z/o//5/8rP/z451yXwF/8nb/A5c0zPvvkCZuTDd/8yod86+vf4P7ulMP+hhqUf//v/F1eXV/zs08/g7kyxMRm3HB2/9w6z794zv/l//Z3uDlMPH15CRLZjMk9MC3MjoXnwBtaYtak3vIMtFVukCptlbRcaaqvU8+x7Xx0Mxc2trFbh3ODclg+SQ/P9bsYw4gSuHd6xm6zYR5GNjFSgoWIQ0jc7PfuubDOqEGE6pU0WsUjXPkf8Go3XRG3zRPWinNzqQldCTaLW/0dtHvAxPWxNvRA86SYiG0TKuvpMIlLh/20o2IJg9Vc+ktSufZ5w42WKuZtLjnTw+dh8R7PpZKzMTAtlRILUrKXYFTmUrv2FloVnIobLbUr5201ehly6eYVitJ6U6yTLpuiY1VrwtGml049Pp/t85XEbFEkWJRIo5PmIW9KWzNs7OQgVq2k5kKgsknBPdKhe9tjiExufBRp3nq7f4NTWa1/g0S2IgIC3r25RfDaW0PDx4sRDC3ZMiykbGWrmwEY3D/emXY7Cbp/eSWwDfZje9N8WNpuau8nEIfk+HDzsFlyaiV7Ge0+D670BVprOIMrJokQKzkO5FK5OcwEL5cOphy2cr3L3m/J28EVYfpGaD0IGvW3cuIphW70hGrGZEd9NSVkpYA3L3Kb0+4kZFmXTlkumMyTbIni9nyLFKxLFveIl4LU4k4CRShY1z6bl6jCNiijLPNVMcx9SxxuXv82mNDXnG6Hd1NNjRZUrSu5ouRcHe5lUW36O9prqdN4U6ybNxgE4rK/5v3BoiOqjGmwHDw1aJK0uXHaSsGM7QYVK97wNCLeQd14QeuHYtFINyWD9GaZbc+JCIMWqxBWbd8Uh4smsUIAAswUN9ClK++dK3S+2eJHbT80vtDyn5YII43mdKG1thCp8fEmBxqNeaRJHILZeY1A67TeHFA431An2qZ4B6fLGC0f6GqamPYHilYePXhIyhC9ikPxSE/bG+ZwccefeHTe5UxsEaNq0N9a6wJ/9L0WQ3PcrH3VgicNLQRIg7E1bznc24ycDkKpwkELrRSultZDQhuh9PkNPjlW/MS87BqUl89f8L3vTiARnWbun+6sgpLz/Iv93t43BB7sdpRamGcrNlSQvj/W2sLaU2o8o65ot73qepXbl853wvKNISgdAlVmfvu3fpNxGCm18v0/+4GV4Y6j0bbzjUXnaVJOVs75xm9bQ2PrryNiuWsNIFYVsjcz3SaDbkY39EIwHeXs7JRhSD1CKIvuvshP6Pfz5DNabFUdNqk1G0Teob1WwbA5ZuvrOcWsD3HO1fZnIsbEdrclX1+BKB9+8JB37p8xhsCzz58TNBLFoi5WNb1wtd8z5dIROdvNjmHYoOOW3atXnF9e8hGGvZQQXMCyjGsdJjoe3jEvbGctrPbWZU1ovK6XHmuWti+HlNhuI7vtaAVPNJIub47ygd/m8fb7qNwcePRgx/1753z+9JLnz6+5vL5hf9gzTxMlZ94riauLCy5fveR8eMyD01N++1vfZMPEJiql7JmLlddMKfLhBx/w+bMX/OzezxlC4L1Hj/mNb/8G7z5+yMubzMuLK6a5kA8HDlcv2Z3tePf9D/jo/ff5S7/3ezx9+jmff/4p3/kXf8qTly/4+MlTtmnkdHvC/fNzvn3/PkXh6mbiez/4Mw45U9WiJCkmFp+5C3hXsltoFOglW3tTI1k2DuCbd/F2aV3tgXXYrT3r9lo3pX1Vm1xYkstbcn+7P844QwhWp3vccJOS96Nw6IGXq60Ou0gOh8lhYTwGG2nKcCtn6UqgC7ze/8SHqat8Gemv1DVpmjjFFcWufMnC4LqXuWsrjd0dT02D46yV7kXtb8/3a2vzrfiPG5FNyahuqBiOdMEG11VfEaV5LW2BLaTvwriX0Ky2Ju4NtulquOoVQ+8u3RWkp6vbrhg0N/qKOpoCxm2yQTrpLDCSxfDpRsItgUb/PNDK5iZZcP7tugAMpqE5RMRG25Rlk3NegcppUFbPUZoibZ41MEVDXaGzsr/r8elqjHZvK9KwKBnNq4Qrh7bnVlAMWRkqVSzpdKXitShg9N4gFU8G9v3TPLHNIBUxRdPAPy1PSRCJbNIAnhti3dZtz7SqPB06udqfeDTW1shpY0XrbW07PShdRQ3+fsiqQpp7uJtQaRX+mtetwzzaXDX6vK3QNJK6dYgTWHM+GF2o52otiloAEoFdCmwcfmVz3by2jgfXZmTZ08J6vfoa4fxytadNO7Kqda4wLFWhjgdfV4ruEl2l81LAq1M6FEM8n0q1j6HRYc+Pc6ITqYtHVXpcwfkErqyKlzlXgleebGtTPFFE3IxTjxpVMeWkwe5azkf1NuvV+zD0qVi4xoq2V0pze4tGd7JOU2/yZDm3sx1XQk0hdQdLmwOWaF93Pejxfu38v+25NS2HhaZEC1JrL0fdLR1/QVvDRiOL0hiEJZ9QTJi0KG1Wyw+paIfSLZ77Nmftpe3z0mbcTy+KOQPVIsxE+6lFyeo0KOL5SKvbLRN7/M7OMW9u9sz7G7bbHaUq23FEaeX8Ay8a0kGVNCQkQ8kzyZ1MBYtENAhXyzdqM1b7S9whN4UudJczVmMUmxuL2FVqKTy4f5/zszNSivzsJz/pTr7uIPE8n6Pbo50GuiHtD6wLuTo9WRRmrtKdWhuvCGj5Pl6xMiVOTrZWytp55fJesrwHK3isrh7WV16pWryHkf2sz1+MlLXwbdev5KjKsp9iYBwTYjYmu+2W7bhlIBDDSBwGogyW7xysOuB+nnn68hXXhwMqkdPdGeNmi4w77l9fItc3VuRIpEeFm66w3h9HVmv/XEwv7K+hq/e4dXTa8fU/0kmPaaTf+9Y3zXGtR7ro2zneuqESdvfZZ+HzJxf84T/5F7y8vObycCCMkfOzLe89POff/q//PjVnXr18xScff8zXvvltfuv3/jV+8cM/4fF7keHsnP/gP/4D/uF3/ownzy/5X/0v/jd841u/x6Qjf/rjX/Dwva/w19/5gP/d//x/xo9+/hnf/fHPeXg+cH15zeHlK/7e3/uPuH//Id/+9m/xN//N3+ejD97hxz874//1D/4jbm6uOUmBx4/u8c47j/nqV7/Kf/X3/xaff/o5/+gP/nP+0R/+IYdp4uzeGfe2Z4QoxrzE/CfVyy1HCb45XTl1j744N24lUocYrZJDI3IxFaN2weubW9YC263mZhitaNDoJ4BGgiYGiWwEr1EPYB5hqSBVGePAO4/e4cH5GfP1BYHMEBxGFGB7emIh6WLeheYNq8ENnWI9IVIU71RDV7yCV/Gp0owAG1qV23tmtXGczXYJqgsLiY7RNYJvGxJYMURrU9M6CLv/rgnG1aPE50RWW6udW30iFXXMeSCrhdKbxz3FwG678aQ6S3RtuQNRYjcoLIDSsGzaZJ7fV7rXvk2DUUFYsMY0Y8JnoTGUJtUXy6O/WOMzCy9p82DEsjyzrlSX1Vy4sG5RPpsr6c2qYjRjjTZfPtgqwm6z6dVGpskhhNEjEk7bwavz9MafLqVqNcEOlZRM8ESC5wAsgshW3vswNOG+uk+vPCOsqhEt1BJDWDrmSoAQUVXmOVO82UNbD1UrukHzuAcrsWiCrHpg37H1ccmrCCxQz9H399nZCXme0JoZE73y3ZxzN8BsKcUNoiVyElNiiAaLaIZSrRZ9MQ+qeZezJ4ELyiDCGKNDm6TPQlWHuylWeMSVndgKedToXc7dS4fzojaVAhK7fol60nlwXH7w9bK+S66Jaemk2nKQRxHOH+16r4iKwWXGoFRCNyDWhopblJ3u2+395dx4aOcuwrFVVmpHVFcixLiNzUel9fcggExWBLhWmIuVFj4dBiuLXytzrewd29VgqK3yUj8Uixw6L598LUTEopNBSMmavwoVqYV7J1YuPk8zz8sBxbzFczXo5EEzWStBnedGK+VrndRaftMSuRVcmROvrNcnLB7NSVtc1dSLC+jKWmnGYWMrzTgyOqh9zylmZElnYu4518XQalX9kGaouYFQrSrgXAulWKW1mODR2c4kw3QgZ5/PEDsBzGXtVWbRfNsaaLDSyF7VL4uXl/aCD0XMKJ9brkTnMatIrQKlva8ZAXtyPwcmh4cFK8Xci89YHkt795Vm2PeQTyiN+CYVDhWuryaiV8hri6AoNQwGdRThep7B+4Sx3JVC6eJiLTaCSK+caFtGF/nsBia1RRhlWT/UK8O5E0OXSN2r56/YjRs+fPcd3rl/RqByeciEVrXM51fASkl3BIpJuFqtITLZVf1ouaBu93GyGSkK80G5ujwwxsA7u8HRGvaCmyFycjJy7/wMor2/mZYRlUoNdNRDAHLJTPNMyRWpzbDGi+UohzxTNWMFZlq3dY+k+E/PcbyluHetRdxIDIGQEuMuIZdCniovn+05jY9Ju3MefvSOJf5rIJ3eZzsOiAg3N9c8e3HDp5dXXE974ss9IUbiuOFr88Q037gx58Uq3MlMMyI9r4ZarWrma+O8tVfusFHeeCyeMLu+qaZFubra8+TZnk8OSpJIUOHJiyueXVzy8vriV3jIL3e8dUPl1auXPJ9m5v3EIV9zdn/Le2fv8lf/lb9CLYX5sOef/ovvMkZhEwOPHz/iMB34k+99l/3L5whWEeGv/pW/wje+tefyJvPBV77K1WHm8mbm4mbPp0+e8v0f/pCPP/kFV4eZB/d25P0VYwh8+N67/O2/+V/m8vKaVy+e8of/6A+QmCiqfPXDr/DeO+9QamG323J2esr93Sl/9M/+OT/72c/5oz/6I957cM52u+XRo4f8/Oefk/NMGBxjGgKSkuHaWSnS3a27KN/dWyT0sGXn3bLAcroBwmKrq+OhSlVqmYwgNRujnTLTNJHGkc3JCduTHTFFagnsNgliw9QGNtstMQQeP3rI2e6EF0Ngng/oMBBDdML3MaVonjNV60VT3VsWQSSiBC8ooBCs+VA3NJrV3jeBLrp2WDZWU8dbV9qW59HmKaW4ssqX2MO6vnyrANMVKIdvNKWnK+ttLlt/BFpwwiInUy4myFRJMXVLYinX6ImZGnrisb2W4asbTrgUBWzcsop+BFf+gxsNTZFpNNP0g0DoyYLtxVa51CuLz5iU4rkrTYHo362jDK26jfTPhaZkBRckJryWRnRi1W9CYoyR4B7mYtoyQazbe4iJiuPjY/J5WhRlEKMNlKDBDJ7uzV7gYSuEhQuCZjiVo/EudNUEg66qlgVyR+EtHnXzyPts1Kb4siQ0r5m1sOQt+Ds02FiDWPaoREv2ldAhPiLBBBrmUd9sR4JsSKLdS598vwUxb2kTr2UqbuiaEVh8bBq8OZ8oGpTqHdd78nwI3ijR5rMlEDe67QZ5raDG4mNMXX+Vqr3QQRd6NE+1w9N0MXIb9EhECJHFYFjRFxJW8Entib+lVkuw9+TQtrcl0KMWrc1Q2ybB+V8rmGHLLs5mpRuVttZNDtcjqya4x0BhgbGo111qdg5qxkyEzWjPiiFwMx9aGJLWMNNuGzqtrRN1g3tsFB+zF/toPL62yn0Ec3w5D6tB+y6u4CVoAzGkrtTmapH4FAPbceu5MOql9rW/67LXLSoqtEIPbczGL40/Bmb0OJetrUtTyoPY+b6/hhB7X4ceHU1O/763VWTRh7zSl3iiPl1WmvEUY5MRBhrtuX3+bHFnmDUGhBAHg+P4yrX6wVUN+leb9AzBc90sqq2yRFNEWrTV6brxkfZ/x8W0NV7gyiwGxAq22RTAxqKisDLcrQlic+bLQuEugzwStE5+V+teLxROx9FVfXciurLe6KXBT40Xa9cjbYqFoIFWWVBd7xa0D12aANe+ZaBWd7A1eJ7xiWEc+eSTT7h4+ZLPfvEJ+5sZy22qPdenC+VlNvv/zaBeStW36a1aoQizRpiMCUSE853lZJnPwiexKptxw+nJKef3zhmHDSklhiGxGQZT5oOQiyWrb7cbhmCFPKonuC9S01yDOZthUorpAjlnSplRLHc512ol2/uVayOgcUoFh5znubC/mSmTsL+qfO/zT/jxjy7Z7M54/JWvcu/0Hqfjlu08cJ3NYXfQwPm7X2G8/x77KfcKqFXgfLrhdH+BvPo53YET2wKujI+1frT67TZY7a7jNnphfXV7y+PvjGavDhOfvLziTy5zb3757GrPy8OEDOOXPvdXPd66oXJzvWc6HDjsDxAqJ7uRR++c8xvf+jqXl1c8+ewJP/izP+N8N/Leg3t89N5j5vnATz/+GTIf2G0TZ6cbvvLhhzx4XLg6mKDbzzOXN3s0CNeHGz79/BN+8rOfUiUS0gmXL18yJGG3Hfjw/Xd5Ep/x6uVLfvyjHxKHkc3ujHGzYbPdGFMJlgZ1c3XDjz77CZ/84jM+f/KUdx8/4P75OY8ePeSTX3zeG1aK45mWkN/qpUW8dPd609IM7lXJtuWn4dc7A1/fDt9QLSyg0HqmW6gmUWNkFuFimnl5c2A+HAjjgZC8hjeRLHvqPDOroimiMXGYDlS1ykSpuDIkHuNwmgw1uAfSRjJXvHyjg5MaQ26K9Qr42PwWDRRgsIhFiXXRam8oTbFyxtXLULpSJvZ7XTHBIKFvnior5bt53GtT9JfKN51tyqIhq5SOYZW1UtS+Z4GeqKyqUDUR6ALquNmhdPlW+5BdeDdBI4tRipqnpFVsacKsOd6a0WYktkAtVn0xl1/amrDC6boHf10VS5RetakZgAa/acAzu664spwdt9tgXaImGGfvgWCVabVHm5TqSqKvUe+eTr93aBWHXPB3YYQxvE5Dshjzx7k6TUFf5sek7YJHB1nN39K+rNYVrMs1iGXfar+VKcTLvFmVK6PZFNxD63TV3rFiEI4k1sjtkE3wiFgn9Ij9W7AmtQccmqIQc2XyeW6KRaPBlgexIinGxovUEuIXGm/0veIh7S18zvucdvJZ6KDtv56GhRm04gIqIP1dDbLTpn/JPyjiuRCqXtbUv4/Gy3S9uRDLLVmtbnU4xUKzTbn0KlztUqUrc/XoHZccGlgDbhdzfrXcdr43KssKk3vly6K19r0pPrmNR6sbs7jhcmy8SR+k0JQ/M64bX/Ot0cdpP4Ed2YShAAEAAElEQVQqbW/Ymw1iUbxW/WgpGAHq8Rrxd+o5bixGN+BzZI6MQquM2IyF9c4x2vZcbc8B8Gp2jd5RNEmnt1ZyXF2ZFs8ra/Sy9g6sc/OqE3TF+EJdG4G1dGijRQJhycETlx1yNIctmhAsCRNVPVKme2Uvfy86GUq/p6y/bDeXxehYgDdrZ5HLvuBjVwhL2LyREXgksRlNRjp2n1ZjoqKMqXW9UUqd6ZFHXRTQ4I5DdUddu2fLtVxLYjOKV4qJjxNdzrR90358SoL1jrq+vuZws+fy4oIhDYgXzrgrcXrFjTplC63QweLhbEtZVch5yWE5GZbiAz0/qRZijAzjwGa7pVfYw6NhAvM8oXMhjxvSMHQjWbW4kesICiJooOQlib6U2QtM2L5qBkzPJW4Mp71X/9vmSatScuGwz8yTMu0rLz+7ZuaadHLBvL1PGM4YxsTNbPkxSkVTYHNyxngSGA8zOVsvpakUEhDztCgNK72qc+27Iih3fd6YPuv3uH0N65PWHx7fSmy/73PhxWxInFgL13lGUuL07PTuMf05jrduqBwm2GzOODt7wMnJCWkcqVS+88d/xNPPX/Dpzz/jyWef8vUPH3E+fIXH5yfcXL3iBx//EK2Zd959xFeG9zm/d8a8P/Ds5TP+5O//Gb/4/CmfvnzCX/vd3+D+vQ1Pn/6U//QP/gHPLw5cH6AykqKwGeA3v/4+9+8/4Cvf+Dr/yT/8x7y8uOL6kHnwznsM48AwJG4uXnF5ccGLZ8/ZTzPjyY5799/h/N13GDcDN6rUlNoeYcyVMFfIpZfIBHryW/PWLdCAVW8OWRSnbuiwVnIXxajWGYmBMCSGzSnj7h4hjYQ0cJgOTPNEvLnic638008+4ckf/CHf/7Mfst8f2O52DINVj8glE1WRnKnXV/zisnA1nJPraNUoa0Gv9t7YsQFtbByDiCWX1RbAPbhsaDXcF9FNv45O++292/tyZNitvD8iSxniphW6EFor6f1R0gyBFsFZPHHNY2oycalGUnQRJtGT9BCYe0fa4uWJjeGlaNGjxoxUDQ4XWTyTuSVGa/Ow+TtKU19gYWLiWqev9pqxr3Tsdf6IroS6utuvGypemGEFP14E58qIa30smqDt6yV4YmcbcxuDkBrUgqYQrOmzIKH0eS6eH6At6rLcqGOVlaYo+RhkJVj8DJua6ompi5IUZY2gb8OSI0XBBJQr8Ct+uojINvVtPC0vyWBdbW/avDvdsXinQwh9HprSbbLb+/2IebBbUzzV6pUBA7mad69B44KsvcZ+z05HLHugv2ZwBa4pEzAMg3vcFGFaDKu2uiILeQld2V/Tmp22eAcbjeitOSzqCoXQoXKyulUrrbyusb8ofPT9sTzbI29tDWVxVBj0zt/kaD1WuTahzV1YFQ5ZPK4KaFieVVeKfBuC0tasUckyB0Gssk4pVhFNhA6LWzZaz5pZHAhhpdxLQJyrd96ueuwoaJWSmlGoLdpHdxRpf6r2vR6kMk4usHVR/uxNylKlEVegxXvk9HddnhWirpKGF6jTWhal4EaoG42R4k0Jo0NdhJhYnB5uqNgaKiIFkbySErb+LV/dojXNiF1WqfEt2/6hGziCOlxafP/XvoJ1dZNGJxYJX8pVrx3HGpocCQtv7QZ9u0DdMG8P8aIxjWeqRQQja0NJ+kJ3Z5vdqj8HhNgMN2fi1jXeoxNNr/ANWVUN7YC9e1jlVTWDxL5TGidISzm7Lkua0WOO+drh2VU9L8ireQ7Sul1V0wqcF40nW9dPagPlMt7hOW9OqegQJYvc23rGGLxIh0XOQ8adEhGkEEQZHDKqatHYEGyPzzoTQ6ImYJO4mWeyCjdXE0ji1cUVf/b9H7Lb7ICEbHYWbcqFOk+UOlFqNlhVHBCEw/7Ak6dP2Erl+mvvWSNOn5f9NHO1n5i8eWlzqC5HT7AiBMtZmg6Fy5d7Ll8duLnKaIgcLm84XE88//Ev+OjsIZvdKVfXT5xWI2m7o0435Fq5urwyeQJclcrzqws216+YJzNUg4iVUw5yhDJ547HWn7709Ded1Ana4XAVYmR3uuPx48iHww7RSnRIbdXCuqLp2zreuqHy9W/+NruTDSebkcP+hsM8W3K6bHj07o7Hjz/k4b0t5ycDD05HZDhld3/HZveIm5trhs3A9SGRn92wnyspnPDgbGCzuccH73+Nb370nnWUr4W/8V/6N9lPhTlDdndEEOX0ZOPl8yJ/7a//De/UHLi4nphztmo+j96xevBVieNASiNx3PDpk094dfGK5y9fWInGaJ62gAvlXHztVtCJphw6A2zKt3Qing0rXrQzjOIha9/KXQHMOTNuz9g9eMCH3/gNTh6/D8PIoQbmkr1038TV6Sk/uJr58Q9/zsWNMs2B6eaK6p3ErddMQWohzDM1nFJ3AyVcw/4CnTL5ekLybFGI0NKi6RkU3UPUuLwsEJC1stC9Kv5PrnmF67wlAIDmxTm61sX7emOsBXYTAqb3uqdlfduVk2Cl3rTH2afdM7s8zfafmyZSEVm8i8uNtTtH28COfGmvMbEmNPxVenjl+Jwlr2AZv5GTvH767WP1+HWOjvS3e23Wj57Vv1sZTivH45uPfoO6UrZWg1prs23NVjddf72+7LXX00KfQPwhr62v/bWYRfbpSlf3+W9qxMpAamv62tse0w6iS0SsPUl0dV5ZLaD/zcKsTTlewwfueIYrEF1VlADuI+/gIAGZfM6bUtm9vnI0Va/NJUdDPHrnBcLEYkRA5wVyJBCXRTSv+dr6WYyS9Y7uc65Cz7mT5URpRkVXcj2+uNLmbcvrolDqEm1d05mx01v00rfSiqGst67//zVesfpufbvXNsmqmkfjjY2ftzuvj9tL1OQBAutGbL38/GojB6YlAV7pUfn1OvTTZXmP/uQVm27PWgW2epSx7ytZ3iA4fTR68cSy/tBmpPT7t1JM63dv/WPag++Ynz7Gvjdl+VnNufRml0vk3PaaG7qee9fXZDWUxZFWV897vcLiyo+zVMD0a62i7hI9M7JxdIHbV/UouXR5N5Se+9aqc3lYexlj+05bP6s2rlVEok9U6HtDaMESi80dRzacNustQxpdtR2Iy2w6nLLB++yj9tzlfn2+2uvpEm3u3wu9IpRt00Ktgnrp3VjAzK7seYLBHBuqEISwPaHEwJOLK/7D/+Qfsj39Y0QC02Fis9lws7/hRz/9KfdO7/HwwU/4yWfP+OnPP+XqZs+Ds3OevXxFma2s9pxnxjTw4ME5H330FT565yFnZzvL0yyVPM8cDjPTlGkpR40HLQ5J552NJ7kztsyFmjH4PoExbQgEmNWL9FTGk+hpeIJSmEsm5wyhVZKzeGOQmcjse9PLc8fg+o85k29vnTu49ZvEwhG93RmZaTSvC9Ki7ZH5sOfm4iX7uPc+T67via5CiW/veOuGyre++U12mw0n25Fpf+Di+pqL6xuKCpthYLcZ+c2vmrExSLV+BGkgxYHry0taBZlSAjFEznYbdidASEiyDvLUQs0T3z570BNH52Ie3uoJRvNsIb1H771PiAMaBn7288+52e85TAc2KXAyJE63G062WwgGybi8fsnLVy+5uLjEynCGhTn7RiU2r1/oLADo8K8WQBBZe49K9443D2pvAlVbIpd5+ZNCSCOn9x9x8ugdNI0wW+6ISiXEwouLS/aXN9zsLyAkcqlcXd8wTxO1WEu5WjKtS/bJMBLDCKmC7FE9cJgyMmdnBmHVI6TS8MKWf7AI4CWgDF0wyQKjUYHDXD2RsbJIs2VTdNhN+6brFuW18xcldCU1GrC/3Y9lI4F0odkiP13RVO2fdY4ucuRVRBYGvpK9NEyo9LGvGJQL9duJbE2xeY0HrLyx/aN1iHm1z9eK5DJXtzQtbbOwCP472E6fy55zs4zSv6nLWBszZjHCVBfon3me1orE8uttG/LWAFw4Ly+05AC0d10rf9KvWW7jFKhd2zl+4+aF7cujpsxL7feri7x5bd36YFvkCldUXPFqjecaE2/jFKHnw0DtTTItmuY0qw7B8bLES66OeuuUtbhZhLydUpbxd0V/2QprRcGuk9c/PP518RS6IdAjItQuoNdjYWWkHd+oHp3S5i34H0uEpb1T23OLstNX25X0Tnltnvtk2Petv87iSGkEaDys7fE+yruMrvbMzjPa7tb+Wbt0ketydA/VZS26oVKX+WwKab9mxc5qn2/tyl2bxGOqXPGA9m8vmb2eW2lT4JC9NlxZWKiqeebBk96Xp7QIQqUuhorIsc3RJ0y7gtZnUrDFX0XtOrk0xVZxp9EiRXR977t0Jl366Vh1vApae9+s1dvbe7SUpT4mutHXgyer6kRHEZW2lu2d/N8G/bRcHO18K7CKqrT0lSDU1qmxTdeKR1ssdo0m0KNXb9BqI/3VOjZsaI+oOS8JsfM7M6oqVhusfehUrbf4rw+651Q2B0VbJ1gMFVuI1Su1DCOH1HX+vd4rDTYqILU7d0VatEdRDQQfr9ZMSpBSYDcMoFYlbxwiBOF6rnz/Rz+jhoRiEK0UE7lknl9ecO964vnFDa8urglpQy7Kg/v3eXDxEgReXV1TSkZj5GR3woP759x/cJ+T7bZ3ga/VCq9Mc3EY9mq/H7G+JfIuvk41t7LGdnqKESEyTTN5noHKwwfnZtDUSiGSpkqOkTEFFKFgUbezMnKSk/EJNdGiq+ROdePgta25oqM/96F6lEvcbl5roeQZra3Cp6VIWEOzt/Xw5Xjrhsq/99/4m0RPnHz56prraWafM+N2y8tnz3jx9CkPdyc8OL/Hg/MzYmx16YMJF8syo2glBuvbMSRjRqUqh9kqXUiwpN1arBJXdphSVahFOUwHbvbXPHj4kJg2EAYenT0g1wIBHt0742SM7IZA9SjLYZ549osfEQ5XXD/f8NnTl9QQSbsdWYQs3o7QN3rz1IRgDaDG0WFXuVrybAvH17okabPi80UXo+rmwDxPHKY9U1HmrEj6LvHjT6ghMM2FISUIQhHIxRu3eaKdaGVTCxsvWSgSKMwUN4CmKROCVSbane0oSTg8fWJJwWqWetsEViHDmGVr7GOv7co6VqmjRwRUOx0rsAmJSqQFiVkLAW1diY9p33b+khS8bLSVErISkOsSeOvbmJRoQnkRsEuuh//teIzF57soJrfUkOMH6ErRXxml6pjstee9j+d4gEcv3udwVaBHXVt4bQ5Wf9/+5FjZk6Nz+7S0TzSvIDvrcy16eKfarm6muuLVuyXjuUKNsn0ZX7tLoxExEbsojyuFor2Z2PoeVVdiZfBJKwMRl5usnnf8ak0xWmYHVzbae3Ulbk3Ea2m7It+1wrh8uXwtntiuNXLk/l4p3rVHGZT1KyqBo0hdV2LaPVrjvbVKRt+T60Pl1lnaSjG0DjatoWV/q6M36bR/axlXavyKdmwXyUrZWjfXPJ6rlY93rSut10zC4ulfJufImLXE4NqLI+jxnU0R9tOPdMX1DVfvG26d0JTqrui2z7t+3p61dmgsynette8VOodZZAAY5KdBTUTliFw888VhY37PBQllcLy7PKJh5eW/fU4bgy7ruxgIK3iLAqX4sNuzj3e0rJ/p+7dzZOmuo04PnZ7a+T0ao0dVLYFbsNZ2ySJ7lgmPSG11B465ZdvC/mp9DD1Hz0en/T1WPESWQRxRyWo71rDIw9BpQfpDRRof47XDIjLqrFKO9m+702wCGEFIFVo2VgkeSQJidX4hDS7sfKbNRx+OLFXY/Ajr/aar1Wm/i9DK0AjQqoR1R6w6dF0M8hijN81t1d2kwcZ8HdVzTfu8tphOQHQgqDVLzDUTxy1np4mvnp8xBmUzJIadGRK1CvNcGXp+jI1yNwx85Zu/TT1k8px5eX3N2f0TTs5P+b2PvsmHH33Ip08+5w/+33/Is2cXTCIMyQpExCjsdju2mxO2QyKqPWO/n2yEwQyx2w2Y1b1dwYuEVO+Pol1fV3IUJi189vwTvvLqXb7+1Uf8t3//95kuXjHtr7mZJ8+Dtry4OVdyhf2Q2L16we7JZ8SPv2vVALOi0aLtC2S4EbYsP8cKy+sE+GsdC6+nVk62Wx4+esS74xlSKlIy+8MNWarT6Ns93rqhcp6CV3oKTGOilEzJFaY9+XDDYX9NqWcEhDEmhiQWifBSaCqChmDlFhFP9LYkrDEZ5bfISZCAOO5ZpXrfRXVGaB2SUSHnzFwK19PBO8MLL1+85JAi0yaSUOZp4ur6in/1t3+Dd++fcrKN/J3/6B9Tp8rpNhAch19jIIo1HKuNSakYVL5noDYGFYhpADHDa3/YA4mYBjQI48kJMg6kzYbtvQeebCnUKMTNlvHsjLg7pSLUOBGiVd4SCQxaGVURrEJMwwnXaiHGOk+Mklx+RqZwwxDh3bMNKc8cKDwtVjVefczdASSNlUCupXuSgC5YLDhUnRlqF9zi19INAZ8P/MaN48tabK+Ngdsby0VKF34rQXDX6e2W7amNWcvt746f1+EXK82my6s7br5WtBc2v37IWsE8AggcD0AXFev2uO88FNb16tt6HSuEC0MVcTiCLrOnLrjufMR6ID6+ppTezf7W/RhW73fr5COYmxxNzXL+SuFoHsV1RGeZwQ70OH5mu6Ws7tP+/wZyua2I9s/X4/X5FH9yn6I+3hUTbxGEXt5mGUU/s7/QMXTitfc6Ovl41Ha6Hv9951nLDC6xQCxH5PU70kYkt79YKWHH9NZiH+0quXW/u8anyzqtXuEoynrHyyxv4e+y8vTKa9e9bnDfHvP6s2XPLee8cTRtLK9N0prGZXXOWhNfGQct8neXMuv/7znPmKHZPffr+x8tWB+BRx6OPxe/9s51aevrRvq6EaewmhFp5674sd22/2V9RVphjGMqXlj9MdUcUfMR/2jfLObr2v6KK9Lsz1jvu9tb3B2MXVa1E24Pcn3hwjyBFlGWo0EvsmNFaetUu9X9wy0nzHqpBCue0ObbTjU3QysM0KIUNkzpxsmaZTSD4lj2Hj/ndRa6ENNRluDaUG1jcP3HitC4Md6nwLupd0G0PMs+bz3HQBvcWgQkojFyqPD55TWPdyMIXF7vIbbm22GpWKoGKctkrl9dtExSYoxMh4lalJqVKspmHHnv0TvUWclz5tmzp3yvzrx48YxQKy8/uOL0ZEsAnl5ecHG4YSozBbWxaSsD4ZMjy/irmm2vByyfCXvPmi1P8d7phsfnO95/cM5XPngP3Y2U/TVTyWTVpaqjFwOaNhvS8zPiGKhixY1yKYZ2AdCwZKmt1QqPth0t59GCr39pxNH01bsYkWAFICq9z1esxFAZpbBlIo2BMSbig/toYBX1eXvHWzdUpv2NCRCJ7K+v2d/ccL3foxK4ur7m5jBxM01c3dywTZEQtc3FqiHfgolsHosUIykGcslWGaEUU9wVtEKp5aiO+jzPzNPeIgoqHHLl+YtLFEghcFVmNilwthk4247UPDPvb/j2N7/CZhP57PkTWvO37m1TPBGveRXqsSe9Wrh8qWbhm9T7F4QQiGlcSguf37MmQGlgt90yxMRmSGSUGiIybom7e1RgPOwdShIgDlAyAWWMkHOhlMqUC3PFykDvhVFakvjAlIQklbMxUg7XzPNkwqRZ4Y3RycKQlJZsqYtQhQWve0TYS05OK3PTnDy2jIuSc/u6Lz9WeQi/zOnL2V2Yy9E36z9uS3ldzcfdw9OVhnVbTV6iTMuX69vBopgsYvq2R/yu95TXPj9WeO6emM6AjvE+r4/dJXf3xvl5b7jrGxSP9T1fe6P+22v88tZ5ayVK73rfNT2sD5e8dym5xw9ZBtr1jDfobLfHdkxIC6M/5v26fKZ33AM9Vk6lvfebBcbt8d0+S2897GgW1sUZ2tzd9YK37tmKVNx5rBdR2+iPvlhMhTc9S7hj3hZedPcDe5yDIyjRmgiPh+FDOFYMO6Uda7Bv+P2LPm7KgvaxrT9fz8ydt1PeMD/iioE7kpxmxS967XX64dCb1d9HG1Nu08nrxxHPPLr09qZZb/jV+I5Osn/D0Tzdfpgdb9JvLGpwfN1rc/oFupHN2Xo/+NjXfFlY5Hj/TFb/3kFXfv4yP07QizW5NM580xhvCab2qMitJeuOm3jr2sVxsjYJj4z+O5j10ezJ+p81/a7W+4ismyFj79sgjq/zo8Ya1g9o9wz0Erudnk0RVLGeUTdzpuhAqZWbw4RGL5MfrTFwKx0fYkRqIefJSuh7gaPpJiOy53DYM2y3aCncO9lxtTthf9gzTQeevnhBzjP3djsO82SGSgg8fXnB1X5vRWMUenS4k8EKPofpgbWuJ3cptb8ZBh5/8C7vPXzAw7Md2yEh2xGkUOpo+p5fGJyZ1ZMT0Eq5vOCFF8mpWq0QQxcYcmulb/ORRUou5P+aMHzDtctFqst6ttyzQCExMxA4GTbsTgbOzk5t7Hd5Xv6cx1s3VP6Df/hPLPGuVj57+hlXh4l9roTTdyFFJAVe/fxjpssr9i9fcXV5adUP4kCURJVKxsLmrY+DlhbuVDKRPFfmKYMYfnEIgpYMXkkmRMzrXAvDMCASIUSmKhCjJc/nmV2KPNgO/Pa3vsajh/f54J2H/OZvfZMbtW73fZPJCg9YlbhJtkmrdylXiwpVD0PnUi2cV5QYJ0JInN9/wG/+1hnn773PyfkZ9x6dc3r+gGHcEIeBk82GISaGkEADuVRupolxMyJiJQpLPrBJA++cP+bFi+eAcn7/jM+ePOPi6prnl1fM1aoQlXkm1la8UyAIebrh8tOP+fRnH3N9ceHvtsaf+r9HjIu+8RZm+PrRPAEhrC58zTo4JuA1/3ttDF/2+RcIpl/tWCtWX6INwpHAuwucdfzJoqas76xH1xoLbOc0JePuaXjTN3fNpN7Ne45OuYWDPwYXv/l4TbF6a4tht+eu+bz1+LXe0T3B7kCQ41W96/63VPK7TvjCwa31ywXgdGsDvWkV75Inb3cK33i8fRHy6z71TS/8RQxg2TNrIwWakvjLjmF1H6eZL372r3CsIpC/7i213UeP2fPRCb/K9B29+uvUD7cVGfu23qbnW1vmi6n8S4b3K8/L8Qv/cpcvfOGOWxzraF9Gol/wwDfza758b7/JbltN/ReLxNsGXPvuzQPWozPeaKre8c0dUm5lzdb1M++gueP51hXPvKUX5ImQImenp2yHRNLKdLihxNzvZ5EFdWi6bZLiVRZtpNKRJqUWJERCjGy2Wz569wFFK4c80/pg/ckPf8g//Rd/zDxnbubK195/l5PNSOx5hrf5vC5IK9p3QiRSpVJ05tXhkncfvsvXP/oa/8N/779PqjMnCX743T9CMGdVnCNi3TLRTSAVr65XoOwP1HmmSiQRPLrqDS51FVFdYxuPDO07lvaNx20qXilxAvSeVoJV1MvEek0qN5zvHvH+O+d88N4jpnlifzj8Kg/+pY63bqj8+3/n71pzr5iQcWQ4OWVzeo/75wPjdsu4GbjMN9zUwOWsfPLZM66vrthf31APExIDkgIxeYNEWgdlE0bq1SECcLodON9tOT3fce90ZBwiw5gYt1vvk2IB0xAiISXSsKEKZKkMqmxj5GwY+eo7p7zzzn0+/Mp7fPbZZ3zvz37Ed/7k+z2KU7GwV6VSckEjDsEy74nlxoh1mlZlmgqIUApMU2XO1kBIRdhfXZGnAzcXz5HwcxpyvPUHaFCyUirTPHPvdMeQIkkqh+srYgjcOzvn6urSLOxh4OL6hsOcOeS6eF5qtmR2ESQNpJQoeeLiyWfc3OzJld47oHvkWyhTXxf8HW3dEji55f11d5gl5JnXx/opOBb1NU/aLbPgDbJk9YQ7jy+S17+K/iHrAdyB+X9tNJ1LcCS0f7nR3WYLtxXcN6vXb+tYzKgvOBpcbAX2vst7c5wT4nf/MmV/PYhf87g99i5Ejq2vO687ZsnKkYv6lx3XbQ/s0fodj+NLb/cFi/FLyZsvGvMvqXD9Ssdr+/k4n0PuoO63PSy5fZMvPN5gNP6KBuKval7JF1zzpuv7Un7Bhb+M0/LXMSTuPu6+g0KXgV92uaKLEvmGSb87n+PPySRWgziKqq2cDLee2M6mO27e8H6yjqbA6wr5LzWq286j45EsCLsVj3ojER7vOZX1+W9iRr/8YL9or7wx8nrXOXo87/0V/dN5zuxOIu8/fpff+sp7bKJwdfmKHBKKIUasGWUwR647LUqxaqNgeTO9/HstXlLe2g+0gktm2Ij1QPF+Kjf7iU+evuD+/QcMKTBdvmQpJNRnYhm4Lr+I5+qUXKgVUtxC3HKThT/+wU+Zbi7I+0v+/qvP7BoVQomIKCkFzh+echIHAsLT/Z6T6cD962t+/+bAfRGGYaSI76Ujncqer7eNlBXSYo0SXvcNO1q21zCS63tboZ2W27Q72fHocSTfO+H+/XMe3L/H9mRjrS/+ZShP/IMf/xCGLTKe8OD9r3B2MsB4RtmcoOMGHQfmUpjCSE5bDhK5OMy8evmK/cUF0RPT02BJ9EOKnG63pCESUiQqDDEwpsDDXeTR+ci7j3a8e37GdjOw2QxsTk+JwcKDlGLdamNkGDdkzRzynjFENjGxTRse3t/x8HzH+b1Tvv/dn/Cjn37Mz37xGTFGqxuvdSkKWA3zKFFh1XCueCf3WqxbuYhQg9Xlz7kyz4UpF/Tqym2JTMl2v9JKCusSTtSq1FK4d3rKJkU2QThcX4HA8+0J0zz1ngpTVatHLsE2JBAoBj0LgbA5YUyJkmduLi/JuVCxcoQLcTqDPsKur6l7aZa1VNd6XbsyA1/6Pqm3YEl3KbrHf8oRQzyGMaxOXp+/vvkbmfAvqWLcIWuOYTT2P11/fiePXs3d2qC7cy78my9g9l+udHy5oHjN+FwxrKP7rOb2toBbPnldgThC933ZePrldxh+fJE/cJG7d5UUkNvM9o4b9bVr9nn7tO8Dfe385eG3xJXgTcnk+O9b575pLMuNji+xqdHj8X7RobfXYkVnPYT/+mdfdtx53u1IXHu+3KLTNzyvVTpaO0R+ueH8ilbFF93pV7VQvvyGy6+6UnJhte569zVyvLrr4iRHvG19m9cX4M5hdS70lt93fbc3kMitv9+WhfzrHE3Jv1OYfMmldxsrnW57nsXrN5bVv28SEW8w2Y6ufY0lc4eB82XHf0HT/+dZ1/YORxlTQu9rdrrb8cH7H7AdIhevTskhei5IJno6wHa77RDVUuZuqEgI3ndHQasVaxJbyuoVWGspnjpgzRpzLlxe77meYbvdEUQNjSPQCiM0XryURjnWkcCrc1VIYQSJXE8zf/KDHzIfrsj7K24+/UlX/CmRqjMpwLuP73F+ckaQyPc/+5T7pfChVv51q4XtPYyKl8df5l+P+MFqPF+26Hfxkdv3abyM5U+r1ChUIhpHpipc7zNwzWE6cJj2X/zcX+N464bKv/X7f4N69i5y/0M++I3fRdOGIpFyeMl82DMf9tSw4/7jcz744Bv8zu/+Ra4vnnPx4glPP/4Z+eol5folkZn7Zyc8fnCPv/Tbv8Xjhw94/OABm82GcRjYjCPn987MmImBs91JNyxaHxNr0ga5FKZ55uWLZxxuXnK4esHp2T3isCUOOw51YNKBn3zykn//7/8DvvO9H3Ezw+5kY9UearEGdApUyLNVJxNaV23zIKp6Q7yKubyCMJA43Fzx8uUlH//iKQ9O7zPERADSZksIiUFGrLCWUkNFR4tcDHGgzIWpCqUGNvfehSDsNTOcPmAIkSCBYRiJMVmJwiF5qdxijSPTwHByigA3Fxdc3czE+Rk6TbZga5yxvIG81StdxS+uO9eVlLowMNGlqssvJyt/CW3ujee/Le/bFx133f+LnvnLj+fXUST/izrWCuftkXyRsbJc9SV3/3Ms02vj0WWc3QHr/971mNtomk7+b7ju6HlrJf2OJTqat5UN9iW207/cx50JPf+/eMv//+6RLz3Wbkw/li4Yv9KN+OJ3/fK7LQVPvvz4wtyku6+44x7/RRgncuv3X+X+dzlEvuhJd9+/r8Rtw+VL73c0il/q3NfHc2sM/5Ifb3qHVnJ6f5gMrrXZUnaFSS13pdZCJJnzeRhJKfZUAVUHoIXQ+8+Y47TVoTMoWFUlq7pjV5CqTNOMXF4yvHjBPmfKPLHfT1atLIgVS2oO2uaLwpL7WwXYm8NMMWgNuxQp+cDnTz/hH//zf8w3vvoBv/GVD/kf/7v/HXSeKHnmcpp5/vI5h+tLNjcXfPTBRwzbU2S7ZdzvebQ/kJ49RbLplnf4TLuTaPlwPcl/PlnbojeBYBUtUwQqf/qDj/l7f/xT/lmx6ruDV2Ly9HT+W/+T//2v/9A7jrduqPzWX/pr5OGEMp6yGZXMzKwzV6XQ6pZvhkDy5KsskXh6zr3thu3ZOfXmknJzQb55SdKJKpkXFy/YjoEHp1vuP3rM2dkZp2f3SCla5MTDeofDgf3NBfuba7N4Q+TFxQWXl5c8f/WSi4sLRAspwP13AmEoMGRmtlxeH3jy/BXf+fHP+fTlJcP2BC1QpXr3YW/QlJUs2hPmuzWrFdXWjdUN0VyJU2aaM1qVk2Hk/MFjtic70mbDsNsRUiKkgVjBwGWVkizxfkzJW2vb81O05Sq1ENNgVc+CbVKLdoCmZBWeVYkpWlW0NJKnmXqYyGLv0ZvXgo1ZFx+B9AzA5kkSf27tfSLkaAMs3kPbtsvHLUQp0ppHCbSKH0tc+05aOopkyt2f93dYfdEaM8ndZ93h6fzi49h/vEpWbbe5E7OwEi56+x5yp9G2nomj81eK+NGDj0Z1dPdfDdJyKxFS2hO03231SO2lbzuNyK1r9a4Rvmm6b6+/vH7uLS3/yNvozz/2zq+rab0h8f/OZzejZ6mOddd411jsZZ60Q1VNaB1LjjU1trKet4/X5kf6i90xGl2+X5//Sx23evsIt+6z+uXW/Y+63d/x3DttFu7YI234ftGi0svrSu4XvNd6lt+8zq/f48vcIV/KGnRVEEGO1/f29c1ota27amr7pvG89r6vp+OHW99/8Vhv/StffIW+4aQvMrbvVK7XkbwGSV7zr1+SXBcDa62sf4G6vl4buIWY+mVW+Nbz7toaX3IsT1l5PWRl/uhdq3rrHreUTP3CFbjj+juZ6B1y5Q6ZcldM+4v2TNvHfdxfOLCFTxyZnrL8KJCpZNSSzVW9SSIEDb10fdHipcgFgrWmUFXLazZm3IsQqfNRCVaVLmql98LzhpsqAZVkkHUVU79Ue5RT+n/0WgBLgRLIXuULgawT0/WBqvCVdx7zzfff5S98/SP+K//6vwpa0FqYp8rl5QXXlxe8/NkPOd3dI40n3P/6t4hXV2yfP2P7D/5jdD4wl2xJwFWOeM+XYPJuLZy+gZ71tb+ssaqd1UoziwJBONud8O7Dh7yXA4pVI9tP3lB9yl+8/r/G8dYNlYfvfUgmMBNQPRBVCBUOmq1fcxDGIK4QKLMKYdywSVt2p/eo056yv2K+ekq9uUD3F1xNmcv9zNV+phKROJKGrXeXDgSJ7OfC1fXEixcXvHr1AvXqWL94+oTnL17y5NlTbvYHhmFgt9txOWZkM1OTMFfl6bMX/OjHP+PjJ8+5vjlYCeHDDKj3BRRQQYv2XioiC4H2KIqIlWhTRapahbLZutIPIXJyesrJvfsM984ZT3fEYSCkRPQNUWuluOE1erjSH7f0M8mFEJM1/JLQG0dGUUqIvQZ6HMyIUYlkhZrSkZdBu6LjL+CalpV7piuFbQx1rTysjAwTxIuxspC89Otrb4ZpzEIrvURur1i0Yl66eu5t9vwmOEpXuF2ZkiPB0G5+S6vmdSX96PXW17ZzVoxdbt+zn7PMwGtGyu2Xoim3eoR7Xg9qEXgCR89fDfTIgHqTQH5dOb89nN7grdHAbWly+5Vv6TS3e1K8frxJpVze7Wh6bs/V2hBanb9ucHhU1nitK9y+Z98DCwDhrvVZ3/M1NbM3PF2MlT556+aTx6t1dJOjJNCjz5fPjvaBz8FtyMltNN/tde3L+tqEvP62/Ya3vfG3nACv3WK9edcDvnXK6xet9s3aq/8mz/ztd3/tvl/6km887t4lq+/XNPja/cX37HKTzkdXPO2o3Dp37IojOFm7mdPCHXNyu6RDv6/crgT2hpdb8XwNr3/FF4z3C48VvSx764tKkcjRp7/yIbKaH7n7RnqbL6+vv63crS7zf3vfxV9hpF/wxDvOpcu05bm//Ny/eUTLNz3vwmlrvbp3OuJ/yX14FyT8biax/t03hyz8zltAmpHSjQJ62Wz1FhGVSms3aRmxloPS9DYlumHT+snY08JSS9nVj7ZBrT+NIkdw/GZFNUPFRn2cG9LVKYW5zNQKm82Gb33rW3z9vYd87b13+OjD90jJHLo6wWF/w83VJR+HGdGIxA3vvPsRcnFB2J0whIihdyrrqm9fSHV9TF9AyEdfydFXy8dNjrVr7K3P753x1Q+FKx2tuXfJXB0O3Oz33Bz+JYB+/eLHPyWIEkQZE4zDht245d7mjH0I3MSRq8kjB1o4oEQN1JoY4kg+GZi2p2wevctYMjFP5OsrPtXC8+eVz3nK2ckVZ9unpBA42Ww43W7Z76+5uLrg+cuXvLw+UBCKBD55/pybaWaft6ST+4zjCZcn97jQMyQPVE08e/6cn//0CX/6ne9zdXGD1EoSsyIDlsuh1ZTrWqVz8qDR4GW62mgK1mBdKECuyjwX5rlQiqIS0WFEz86Qs3NL8hcxqBaQCMTe1lkhOoytlt5YTyQi49KfJVdjOgGoYsZJjGIln8V1pVARySCzwczUMlnyPHvSPSSHzZXW8HvVBRWBJOCB0iUcyqKXtATiSOjFAVpjJw1KTIkgwebBDbOjEqaq3gxQnCEtX7WRVJZGgEehUG+oacp+WBkKy/9pjEe9ipyXMSzWiWphOC5N27WLfbCej+XO7VntnVFP3BQz+Gozdm+dL63WvOripVc9YiJV1RSN9r7OLMRH2BSgthLGe7UF4rCyQS3C4mJIlx7YLbSrqsTmXap1GWw7q00CgSUCo50zhyOBysIoVwIm3qEzLCU9Fw1ORSm0lnerm/qpYWWQrfln944dTeCicVXq6sLjBgdr1bu1QDEXnsEQ1lGU1gvbhhNXd6lHiphNw0rZbHMkoa9nM+rafK4u9WEer1O7p0jsbQQtJ6JFOm0y+gi7J3GZlyN1sE+evRmy+s5v2IysPlcr2hDEmrwpSw+F1fXdwF7TA6xK7uqyjgrBe11rozNd5np9rOer7YVlUMv5S8d2+l6wv7wgaNP9vVzhIt99FMtEsKZT6VOly/usJrWudJv1hHSq1mXk2p4ny15eOsT7LLdmvP3ttV9re/d2TSI9en4bj/payaqpbFd/daH9tZ5f0UUW9Iia9Hc4ymrs67Xaa+vISpszXUeF1lpTW8M1zb5+3KWkHanHsT3zzsv9HrI4N5ZhepuERbb0fALP/uxSRfrqsZrF197oeIT+nDstgdWxZlV33GbhM+sXkuMXvnvTrE5fmU5r0Xfr8jvf5c7Q6fozYR01fm2oNJ7W/m77IZijV6L9Xi3P1abfKKZWQ2gEEUOMeLOhUqspzbUClaKuv1UIKbTtb3ksVdFSlv0lZrgEidb7rszWYrML0jWFtt9cKihorYQQ2A4js84cZnOa/85v/zZ/6fd+l//t//p/yXf/+J/y8vnn/OM/+iMen9/ndLMllKY3Ve598BE3F9dMUyZfvkCuLog3F0SdGYOSojX7ri4/pLpc74a1r1SPYDZCWd6B4yVard3ry7l8JvTwUQFi4vd+53f4zb/xDvmDD61QVLaqu5eXl1xcXd5xsz/f8dYNlVkzQ0ykYSQOwcq9vXrFzf4ZNSZII5vdOTkERCKTqlfMUlIwYss5oyIkiQxhR9ptEJQ5KL9QCNeVeH3NNiWGMJHCFXOZmXPhkDcc4oaCMef5/gkBYSOCxEBKyXJcTs64ORx4/uIV3/ve93nx+WfMN9dsggnIWp0InSO0pCVTXcQwjqVVv7ajG58qDu9QQlWKI6aKQtFKEbWyd8GaY0YJZG2lhBcupCLuuvEbC6CCJHEFwn80+LULEjMQHA8tVMKiE3j4lGrjEwmEFB1GZ0ZOagnJIqa7BCEEYXBDA9xQcSbfEtYURWrt3ZQtr0dB3FDx+5ey7jvdKljYJ+ZFgXnKBHGDJ4S+EatWVywWDcD2onZYSliJwCYPmiLUPSRqwld8LdtS2/z7/K4Ef5NkXSmS5Q26qG7LpKaQeAfPfl0XcW1MrSpJV0j8FnWpqKYu0SUItVjBBera9yP0Rkxgc+1zsaByBaW6AqtY46q2fo0glEC0iI4qEmwerDFZ7fTTFB0Fyz9qc98iZa6wdh6oSwWQriY25tlmpQtJrxfv/7V1tOe10uO2X4z+jR7sTYUgyfdgpdbidB5Q9ftK7U6FVm3PpmFRtYK0+WSZx94ryam1N7/CnAayKDzKMp/SJKM33LQ1cUgB0qdGOsk1QWOVaHxALHxhWVMh+j5rhooL/digl/ZGVZw6Rf09117d1h2grUNclNwjhWdRklsVJnHB1SCxQPdWoi3Bc/WkNWGIWEKoao8UdChoWPiY9SXw+azNhUE3vBQIHvqz24XlWa08zcqRJIg34mxjX/F4cS+qiis6zkvWxUUkdoXqqN8QdGdC+/S1CIbTvGKKFmI8uu3zxm4byxfH2qt7dxdjsXuRfC8a/2q8JcaWBQOLtou/G/2nG2qdca0gLdC7t/doTGxjqDSL1FmR789jrWeJDC7G77LvG99a+GGr0FRLP5HW3X15n5WR0KikyUofc4/Yt//alvKr1pHBNqcicuSUK43PYnK60Wqt7flNZqzH5vdnIfvqskT6WYqu1jqw8NIux9r1ockUcajt6lqfxnXU+OjBXeatx6ZIbVc3vu8yV5f73op9dd670And4JQ2v30MjSc6f2vnHhlQ/l5hiVjUqqhUkEgIyZ8V+tKbI890J3VdKLX93IhQxPOFTV8IIdLIR0vbj2rVwFZzsxjgtQ3PdLdSKCU732lzvXpZvb32frGjW0QhxREJiblUfvrJJzy/3vPZi0v+sz/4R2zjYMWcTkZzEAuUPFOzwaZO7t3j3jRxfnXFX66ZkwAxRUrjI018rvYQC3UsY/MGkQudyNHX/fxbUcTl18bT24dKc8AaXwrEABojKQhl3JjR8paPt26oaAowDsi4JYyBOV+zP0y8fP4SiZE4jpymSNycIGlDqmFRzBSkmlDKGtAYISY0bayCligv8548z+Q8cZqsGldQ9QpXEeIGTQMV+yydjKQYGdKAUtlE2MZADAPTxRVPnjzlk5//gv2rF5BnhhDQWplg2fB9w6xYjbpljkkX9XG4C92ZlPWBaf1VzM53pcPikuYFDgGpKy91kM6AF24euqIg7XPsnIVZN6LzreWST2+/R6nG1JMwjCMxBNIwulfclDiX0uAbJIbAOA7dc14q7oXElEVPZJNauvsuEVfDVFd6TeHuNbnxmIuaVz6r/T0MG2fG9j7NM61a7LJgDKkxba1NORSSRypsmkwdqTQh2JTNFUzHeyl0uIljWo82eOcK0oWsKSz+3DbYNsfBPT3BSjaLrpQAZ3ml5F54QFfrRq2rSJ3Nm0W6rFqJVqtu1e2gbua0MRjDbEqO8fLiSr2/L+JrojQPdDN4USVE6SXBmyJZVR0DbGMOK8LqCrEunjRxhct+124arD3yppTT6U61+nrVHlE5MlRSICbvUCxKdSkUJBBdkVQt5OL3rdENFaitEh4gxJXSsHizQ1jFmqp6tA1EYlemVSsLzCtaSfVgyo4lc1rZFwnRxWno+6PWTNVAVTF69CWzZ/u8VDpPlLCaq6B9n4u4oaJK0IWmCGK5ay6lm9kkobGctToNlghqnuKq0RXGRpPtXOljsKih+iDp79fX1Onvtiey83fXxKvjn6UvsDZOsChntV1d0VJc0XB+pgstmR7pUe+uWC3RqdoNIoGmyGt1I6dFIZuRI9SyCPu1oWLr6cpcn5q2Js2/6obtrRyltVOnNpoKYW1LeJUhpwPtqvjCz2naif1T3WlQq7baLZ5YTH/H7rMR6VWQjFeG/u5t4UKPSIKW0nPRqkKIstDPSoG0ypM4r1lzS59nbwRjxsBCSiEYUqHTaTFoyzzXPneNRy1qZTOKhaZutg7vihwZKiZTjJcYFGGRiX09V86+IEtkq0jpBmSM4k4b0JWin4vvc3c8oE0Fl0XOugeiQS6bo8LihY7UcNpt46HRb1fspQd/1R0N3nOP40ylZe5bVP3IdFZd5OVKfxCODRWf9f6ejQ/0qGyLbjh1tnnC36/JxerGle09v6Y2JuC3V7t/0dIj1qrLs03Hss+qj1P7t8s5iz7W+HkgxNjheUbLzgfb4tuEL32K6kr8dj5Pbyp5NL9toG1rw2JUtblGSGlkLpWXV1f88ff/jJubS55fXPHP/+T7MGcCcHK2dQewUOZs+yJFHtw/53GtvD/P/K4WH+tqfzZ1ZLVyrx+r/bh+8eZRv/vU/k5r54NTQz9xf5i5uLhiv31p666FMSYO+xv2N/8SQL/uffQNJIpVUxCQaBClus9cvHzO1eefcP7iE9794Gu8++E3OAsbZlUmVTSYV39MI5M3TdzPE1nNup1z5tAUJpRdzowpMQ4j0WtYp5QY08go4s0glRSEIZpSuUmJ3WbgB9//Ad///p/xT/7JP2UcAqMYljDnQl4k6K0FtD+sXLEcefCUhpgJIMkYOMYya8WVC+nnShBXBpsG0Bg6bqh4KWCX8hErTyc0AbFUt2hM1liKw0+oVI3u5QyoBCpCzsrN9Q0ReO+ddzm9/4A0DOS6GGCh7Whz+5CGwSpspETRTNXaG12CmNVSiwmGUrpCFyV0SEItZiXY6y0CondlFRPc+8MNBOEb3/wmV1c33Nzc8PzZK6/mFpzJ2z3iYAap1so8Z5tTEVKItqmDQIzkmim1WCRHAkhwvKcpeUHiUnoZmq2JhCUS1armCJDSsJCDYEaBau9CXAFx5mP3rLg9gGBwvaKVOc/dUGllEG0dvXqJVofRGaPRYpqtqpJi7Ap1Lbkre0lMoYiAarDIX1VyLXZvEaoWF3iFFLUXYqjgdGdGqTnCLHpghkplniYzVtxgqRVKASXaPvcISWP6MZj3PQZ1o8XmsTXpaoZXU3yqK2hd+QXM+1dpoYcwRF/rSgq40A9oMSWwlEIuI6UqJQsQu1ouwQVo89CLEgKkFMwgdMVJFeuZpG2ZZRFGKmhYhG5K0fhdXCrPlFJ6z6Eem1Or3V9qpKpgDjsz5GL0aNCRIojPXTM8lhBMcNo0xSGs4BFmONm7FDfslc0Qe9GR6GsgblyWaj/7vER/a7WCF+2n68dO04G1YtIiG7ZOwT2b7R1alFRR7xodqKX2DtLLcxblU3xN+o4qpRvsWkvvhRBj9FKjSpkrpVq0d2VrmMHj9zdD1KIp7f5Vq0W4/fyS10ZA7gLag+0mtFukVGz+1Q2iXnWomeVqNB4ktqVzhUst2LBaa5weCZjxiyx7oO11V6Co7blWxSgKvU9EdEdXpXQHjIRo8OFqMOKg1kOrOS9EDC0VXMktJS5zoOasCkG6Ud85lQZvcly6GtP4HI1GXJ5ZzqQZKWkQktOpSCDPtmf2h2y8pa6MS1ZOQV3WoNFjO2r15GgRK+PqxsoaZhdWyl5znKk7bgzarZAWeRqCMo7Rqou29RdzmuZSybUwz5VclJyVoskNPpsrF9/0puVOIwlZIN60vd5fd8nNqNXHqXTe2ZAG6u+/vrfrBeJ7iLa3uiNv2RfS9jHLOJc8UkBjO9WUdzdCGu9usuiIT7SZDs04q26fSDdMmgHTIuZVK1eHPXPJHKYb442amUp2WbkYMSLWngJ3CscwEGLszy7V9IO1YitDNB6JkBVHsSw0gkBIsRts8zxzOo7Gb6YD8vwFJWckRoelcUTrqyf1f0OMnJ7d46cf/4Lv/fgn/P3/7D/nX/krf5mvf/Qh/8bf+ttcv3jO4eaaOWfmaSLnzOHmYO8OPLuYkXJgW6zhY0tsjyyRwtqZ0fJs7XviluXRhyjLv/qGc269TbMtO/IxVv70+9/jH//0Gd+5KRQBicJ2s7W9Wyr/h3/3f/qF9/5Vj7duqHz22SdWpxrl8eOHJIHN+Y77AYbzkfHyjFdPnpE/+4xXry748IMPCeOWcdhwlUFCJIZEKBOhVmI1waVJ2KSR+2IM04wQLBoQDLJiHdn31MMljW1Oh2u0ZKTMbDcD5WSH7E55/vOPuX7+jEEq282WoEqZsxOvH00RXR8uUDoDqraKKrbxGnOsGGEVPLRZF2Hf7B9x6JdIWGrvs4IBgFvnJoRC45JNQ8QS7IuHG7uCIwsRq8JclHmaOewnrq6vOb13zunuhPc++giJyZLa59w9wMFDqepGU4jJmJMI1pW0IlqwXQu2j2z8zXPcIiSRpQpYU/RtGhbPjLrCJEEY4oCKclOUEhOMJ4xn7p0OkSSBKNYElBDItZgRNFSDBbmwbnOrIoSayaUgtfa9mcSybRoWvHn3hKZumSBr63zkkYtraNnigW9L0xSy4OcHVX+WUEp2Y0sZsHB17YzYmH3BQz8CoXmVtTrUyuFYusDNqoeoqcrgSkoQUK8OIkBsUBIRhELQSqSQpBDF7lkbA1YYhmSoIzHFphV6GIZoAr1AyeZNrV4+uyqU5u8SujEhomZUuJISoudoVGNq6pVazKvuwrGH8CFERbWYAea5V6bISjdURIWczRidsyLF9HqdKiKJBsNqxqRSXekyEZZSIMVAGhKLAG7GE5Qp2z5FqBrIaiZ2iLAZEyma1mnNvqr1AmgKWgf+20+pkVKFeXYoo0KIiZ6R0CIieFCzKZviMASxiFdTJIsri6oOFxVxgV6JQUlROdkODofwSKHzDNVA0UCpQqowZ1e4SgOQLQpKp3n/MT2yKSetqmNlbEqUCrnWHtUxhaMph4tS1KA1ppyqR3+UcbP0PhAtzhttzWq1KG5KydhhqVa0xJgWh+K06fPS718rIpUQrMmaRQgq49BggzAfqnnPNZBrtg/FipUYW1UkLu/f4E+NpzWjpc/UUiwRcahWj/qs4WqryF7znrbctmbAlhWft+cZDTU6ib5nEEFD6k6hEIM5t7RSSiWSbNXcwQRqfNWNx6qm9NUK01zMQx2EFNwZ5spdKXbeXGIfVjPqxeeiQYebMR8CpMF8cza+BKPN0ThmylyoxQyMVl2zRe5cKHb6XfcB60q90391OWSLE2hohGb/tJKyBhlqME2MuTSDkMIQAykKm9H5UQBJsXv5D4fMnAvzrBbJ9eTQvs54MGGl4JrjSlmMgsUIMr7fF7nrA0u+FF15DGJVTyUsUduWc0mjJdwB49HeXrlP263cSdkerhYdtH7RzXCRTqfSnWQO2XNLuxmT5lBo+SQtVGHjqKvnhr4QcFJPmfLMzeHAs5cX1JKpJXenlvk+XLYF0GI3MZkfzQnh1rbRry4yPbh14eM5gsq6nmTywQ0XGu1Ul4lNJ5M+Vy2qa8ZttX5xavA62zeVkAK//e1vksaR7/7op2zTwOOz+/x3/53/GtOr50w3VxwOE9OcybkwT7PrA5BF2O6vOH35gs0/+s+ol6+Y8wQxubG6wMU7QQBrw/3o25VRcvcZ69vo6kRniu0j39SHeeLl1RWfXRw41JliJXJb6OuLnvBrHW/dULm8eMk0HZhzJg2R09MTdtsNJ/dPCScjYbfj+ctrXl1dcPHyOQ/vbRj1jCA78qEQ0kgYRiRPiHvqYxqRYPjFUZRBvHKYVIJUVzYrOc/WcGZ/aZpULUzXl9R5QvOE3jsjzudsRLh+9Yr55oYEDCl605+WyMmRtdmiIAvrsF+aItPyCBqRdwgDeEhbF49Ju49v0uahXBPEQmuLZdySPTs3W280Xc5vUJ9WmawCc1XmOVPmjCqc3r/Pg/vnnD98xJRNiS8SrBcLYvA7H0MNFkZFPLSOmKCqbfObAh5UuzO4wXEE3FDx93QlWnX5MSPPlAsCDGmwJpYFqiRkiAw7QMz4GGL0qIELgpLN26pYH50YHP5ghlUB1BPs1KFTqJKieb4CWCIciydJMBhfq+euYPlEzvgsrI17IV0w9qWw+wcHLgUsuhFahGCe7JlBCCG6h3OBemk1I7Ap+lKbUlbMoRHMGKtlBT/KbqiUaoqG25S1LvPfE/JRIpVIJVEYJVuSu3iDUjUBNTicKQS84697i9VtoiLM2RS6qoFchNKl8KKgC5nuwY5CjMGwttWV9Fw99wbLvRH39FYlpEiIQkwKWrxAR0TFjJY0BFLTU1QsCbGoRTtqgAKFQgipGxlWMUZRqa4oKdTCOJjA32yGFVMX92oqU5iwfJRgUaMyo1qICbZbM1S0ZkoMtuehRwBibG64pvyaoSJpyZkx6evOh7jkvVj00CFBaFdICc2gFnJxIwXp8dQgMCZlTMqQYHcyuiMiUKoue6IZKmqY8DBXQlZKXqCmzfNsCuKK+QV3zKBIzeDGxNZ7EwSFqdS+h7ILdm3KYHOmtERNBan2FiEom41HhgIEcQdILYaJdrjp4NHNWivzlJ2nRtKMRxJBNXRDhVxMZsTqhgqIVLbj6EaBMsWMVsvZybV0Yyw2oxv1XJrmHTa50XhOVTNYTeG1xSq5dp7f8j/sKjdU/BNTxOw+5sBsCf0uT/xa0a57mXda7Lwo2h1MEs251RTHBocutRDUUP7F87nUmxoPMXoeokXXcqkEKe40EIYESjGSHQaLZFUlzKXnJQQRgkNdFfU8Q/tJKRhCe1CPwuG5ZSbfYozkmC36XUOXnUGiz4vLl86PbinR0mg29Pw1rdXneXWub5Kle7mA84hmqJjyXYjR0A9piMRoWzV5MRsFUjRDZZrNSWKOG3qRm7ZvVGSVy2f3F1cGZbXPAaLLWjPSPertOkaD4UY14y/FaI4ONVos3nNDV/QUHY2gHolsk9Cje9Le22HqbvC0uWw5farV+6mZ3hF6oYHbhkpzONVuIMpKuRYsoiQuOLcoc8mM457L6xui0I2PFvnV5jylGVdujAXjq+LvaDRisq/J677oK+WjqTkLGHA5qgu6rA2buUQ3u7GyNvScyXXDpVaiVr719a/y4OEDLq6uOdtsubc94a//lb9MvnhOvrni5jAxZzPMszu5isIhRMLlBfLpJ8j/5w8BJee8oEV8FvvxRtvg1hdrRfQLTldnMAtU+PgIMTKMA2lTKNkQFnPOfv0XmkK/1vH2oV/3z3jxPHNxeckPf/xjzs/PeXh+zqPzc8bxhGF7j3e+veHF0ydcPH/Cx1NhmF8Sn79ADzMpJYZxJA2RfLjh+uaa7bhDNVALvLi8IqDEAJnCZjuy2+08+akwzzOfv3jONE3M04Fx3LDZbDk5PWUjifOTM84fv8f9x+/w4vKaXKs1FvIyx6ZtymIwNOLUctTIEMyL1zwXWoXiuG3IFK/MQxBLzmwe8S5cLKm8BrUO97V2ph6lhVyVluR5bD3jio1BetaHKR0wTZWqmYpSiJR9ZowD3/7Nb/PeB+8ybkameTLlARhTIARPyvRmSSoQhmi5P2pQGGiVMRK4UmlQaGNGMViOAJhHAxdYiEEAVIRSGq7Z4GyNXagIG0yAzzWbcExwsj3pnuKUnGS1UqcZqQMJGGMihmjwv+1oG74WyjQRVEkKkov13fHCAOt1NB5mQqB5YoJ7UFq6dozWZGr2OReBIaWFga32dArRjTclhQajqZAHz68RX3O72GBpNofFa7Gb4HUoU54tZB0MviN1UZRCLYSqFn10LcYyVKABjzqeGlP6xwgnEc5HEC3UmpkkUNRghRGL1jVojSnOgcM0M+XKYSpsxoiqkKtQiyncIUQkpT5/lNmMPlFScO9aNKMvuHESsrozXokx9RwG8xQCUhhDYQhwMiSkZjNUohiNK1YwYqNQhDpHpEaLqJRCS3gP0CuGiShDclhdqASyGUJD9H5FFg0oVW2fDwUJthc0DISSUS2kMLEdI0OEWIrB4gBJqSu4IUbyLJQCuQSiuqJZtO+hrrSzeDEb+xGvUz+60SNAzq48muu4R0tUAykEYhROtzCETIqVcUzUGik1cL0/GD/C592NqFQCGi2KVzV0BXe72VAbf53mvheJscNTNE9EDJqw24wWfUAZcjXeGiLTXLrjhnGwvSW2FgYBrEhu5lYlRqt0k1JgHAyyWGt2Q97pe6WIz/PBjNEQOMyJaYb9bHCcplhILbYPtBCDyZEUhCFZzkAUYTvOrsAKNSRaQzd7J3ckaEGpZmwHOtzZFGOjGctBMg/7XNSDnop5tQKiLQJvOH1xHplScuMDgxtp6YaZSnsXa1Yn7vmpag4BM+JK57dDii4qKmkcURFyKWSHkYYQmabslZCEMQ3GH6V4ZE3Zb90ACbDdBOY6GSQHK2ChCjeHzOwMcBgGBnVjJYgZNigSlM3GYMTEJZJj3ner8DQMiWmaybmiNRrETd3F4I6ueZ6IbszDMUSxuiOq5U8af3dngDPpbtC3BsaqnQ/3w52QNZtXHxFmica7UqBQOvRqu9uwUTMip2lmmiqHyaJlbcwtItDyjho3ptYOvW1FccHyOqI4DJfFUJnK3BsWDsNoMLMgpJjcsRTIOVNy9QjzbDwkCJthMCUeRbM5KkwxVoOMhkgpPSbesox8Mpb5aXDyjgQxroW63LIebqnzsOa0bUa+rZowOpS9YsbMLmx5/PCBOSsJDK7jiAjDZmOVUx3zIh5qLKWYYe1yxfI+lcFhtygcsjWODFiNRmlqGvT3qkW9Gqk10J4PB+a859X1hVWgHBqtHNOIHX4PN4BKMWOx1MK/9hd/h7/0l/4CH37wPp/97AlDmWG6gnyN5hs0V7YpEsZELSZ/K1DGDXEUmG+4TOJGpq4i5oupIuvBfJkh8ksc2l9s2RcqglSQrDBEfve3vs37v/tX+Vtn5+4QCVYIQfVoit7W8dYNldPTexAicbvlxYtX3FxPzPtn1EnYnu0YT3ecnp8StwO7x48o+wOUwlAqH7x/ynZIjENEIlxdXfHq1SumuXDx6opXz1+Zx81XJ4yRWJSiysnZGYRAFeF63DDMVgXs5N49Tnan7M7OuXd2j1nhx5895aeffc7TiwtKVwhts2sIHU96fPiC1eX8BWe/Xlya7WJMRxscSrsjEtwT7x7b2cvkWYjWvHDB718a7AYc+tWEnXtqqnYPvwJzNc9ldePIGEcxqMNm5N7jxxASczHms0mDjbNBAJwntaRXTbGzzyBxKaYDneE2qFlAqEEQUmeOfVqC43TNNdwVaEIHYLnQ9c91MQIl0ksJp5Q836RArMRkyvvJMHbMew1QipJrNSPL8xFSGhi8wllTchpGPjvT7rko3StnwqTj24MQW0laaWzclUrtWrApLrpg+c1wqgYbk7b53ZSQlV9HhFbRqUVnGjNKK0+7pLB4x4IJDGnQGRGS04qFQBSLLUVElClX9wpGTnYRoVCy5XkUNfqJnpQdQzBlBIukTNUEagSPBhncqxVcICaDBojDOqrRVxRoHvcqBvEzzVzR7O+p7okTM1RCEjOeQ2Ugk0RJAbZhJAVIyWivKBwy5AlK9n3pJZitipk4CWo3VCKunAYlJUU0m/oiSoiD0UUFzRUN9lzcUKkhkrQgZAYi4yAMQYi1LEXOwlJVrDrMUF2RaPCdOCze5K64NCGkTaDb7gt4/oLTjjWi9aqBQGt6lmIiCqQAJ9tIlBmR7A4JoXp/qcaMtPEr01ONB3l1xOYmtHw7u1Y9uooEiAa5DaE6/3IeFTyCJ54fEBISEskhW5YHkJYgE+pKk/EpUYPjIWYEGA8IRASqEDGY3phim2pEhM2Y+v2rmMGrEbKOZnRgHmDcOEIrFh9Tr2rlUd9oUbVSFdXonnarbhMcKkidnb9WNNSec9iiqwHp0QbjtdG2IubAErUCKtlh0kFrjwZIbHkIFiEJ2owrpfRKX4sxa/h1pyBRkrhjwH1Mpg0Wxu2IhEAplSlPqEJMiZQGajXI32KoVMJcKUVNrlYb3zhGBhJFlbmq5T5WGDUi7vAZUmIUa+qcUjQniZjLp+dJDWlxRGjtEZVcCvt9ZJ6sIEYtVv0tZy8U4LDvVg1yGEZKcU90Lsarq+V8qTbHYukQa621I1MkjSyFURwZgR7BmUwJMydAdvdPRRglIpbM1XlulMhuExiSMo5wlVsEUnpJ2XVEpUF+Q9s3xmVtX668/b3Ah5hMDR5hJyTw+cT5pgpINJ4bpKLWi8DG4LBAqzjqjjw3WCREQhqoUlw9bRFCe3DxPEKDXrZo6KIsA6TY9l+xNgnB8obpPAyfPW1DAjDHrEdeAoEH5/ct2hEjn3/+OfubPbt71uAbArVO3YiqVek4GFVqNjRCGgarlOlzvOQR69GYF5Sc88JgDrpDVaZcmIoXYGk0I11Sr46VngO04gn7febq5oBW4a/+xb/AH+c/Zr664rvf+WeUwzW1ZCJDf0bajISUQAIHCWxurklPnxBz7rDpXlih62Ee2WmRomVER7+tbZcjGNhto6YT2uomYhNl1Gl0sUkj97Yn6OmpRzY9Ty7GVQ7T2zveuqEybrZojITNyH4/c3O15+pqTwzXnEpglwaGeyecnpxz8iDx8skLhpzZaOG9997hZEyMSahUTrZWEeHVxTXXV3tymdkMW1dkIIwjYbMlDFs29+4jQ6IOkdO4YSwWQts9eMB2t+Pk9B6xCpfPn/PkF5/x6ZNnXF5drSoUuTfYN+Da8FD3gC4Jogvx+9ULofaPfAe4IdQUD1wYObDC8IhaHEXVRJyfE6NjJe3GC0ayLuPCDJfiRsNcK7kasw1qBkithYgyDJHTeMa+ZPeaW5GB4OOtxZSl0jeFJeG3mE2M7f3NYGufd8NGLCrSwrUt6gM42N6np3mCacxOls3vOzGyVJGRJN1bJO2eUiEaXC3FyDAM/R65ehJew8eKYaaDF1tIyYwXy/sxSESrDNLm2a4zYSTgsKSVMuaL2XwOirQCQHSvWIuQlOL9bgppGOxbV6ClY6oX5iArblTd2AqYUtG4R4iR0iI7Tl8NQhPE8rbM3msxNbcRA5Q6d0jSZjsgGsixImrwLVE1Y04MvhXjSK0wz8VzhSAOAZ17GTXiOBrEypUJpEFAzGgNAWrN3WBPaUOvchM8NwPpEEcVJSRcsFZGmYlUBpSTITJEIUUgClkFPbgRIvRk1gbna0I2uEIXVEgEhgQpwpiskZbhu7PBKCQQDDfowQOPpoigIZKkIJIYEcZoPYaipr7/PX+7+w+DJ7sLzQtp8xPjQJBgRrXzh7CCnjQ3gRnWZcViXDlxSI44QmGIqRt0m5Z3gbCfZ49imgLQ9nDPBjUixxromqFiydfVxtaIJ7jIaMaKmIEp4onMzUgJpngsxTyiXapecbDPpRkqtZSl8AQGiVIKKp7v57wxROOQQ4pe8KHBfcwYKKWSc6V4/5giguhoVdbc2OvR0mp5NVJLhyYRrKpcS9anOnjSFeOAEqV6tr7Rk4pDoQJeyCAwhEiplblU6lRREtUNniDR5qwCpXRFq+kMpmxGh/lVYm1ZPu6YUgirPkCm49o5ijshgjJExcOWoIFhGIjRnS+T8aCYEsYOlXmqFjUOBqlEClIUDVapMQgMQ0QkmXFVKkUdk68CUqhqNDiEwBADw+CRRVFDJWCyYhjsuxAE1dy94sWTOULIyKTkAFo8l69BmJzRSgjEYQMxI8Xzk6SiAUIYuqFSVLzfRqB6VUoFQhyW3E/PsVJVz2VUj3jQoaNzzrhZ4a44K2ISqveRCjCmRIrCMAjlUKw4hZqzoudiunOslSA3edmUaVe4caeT4jzRAUcymHFUg0dBjo2UpmRKtAIO6tF8tEUvxQ2VSC0mkBWcryeTtc15G8xIJwSkaOdJwfd19bXs0V+tZrwVoWK8SWOiVdcDM7ylRQc9khLEomlNb9htT8yBWyvPn7/gMGXeSSOb3ZaGgD/is/4SHTotC+SrN6nWNoMrFY3WZqFFK3A9zHq95VKtutvaUAkrw9a5u+iiw7RKbyrCXJTnLy55+eqSb/zG13n44IxX0zU//sEP0LxHtHK2OeXi5sChFIazE4bBShpfZ2V3uOLkxXMel2IZZQ61bTpV03e0/W9lLPVfRbirOeydR9OFWSB2y43XlpobP85eSi2WWuFO1oYIepvHWzdUDh7qP9ueMH74FS4vrrm4uOLJzZ5nz18Srq5498FDzs9OuXd2yv3H99jEwHaIxCFRQ2COwjTPcP8+5/cfEK73xPc/YPfNb/Lg/iMUIat5p8eQGCWh25E9les68947XyeGRIwj4+mGqoU8Hfjn/8l/zs9/+EN+8r3vEmtmSIGTzbAko0XDtdZSvMIStGQ91UivWqHmP1RdheB88/QQcts4Lc6oggEjQj+naLF3ETzvwvwNIeAlWBpYZ6mTD0an2SMiSRITlUmVnCvTzcGMmyEylkrIlTDt0Xoga+FQ6IrsICBl8kxPwwe7XwvEcKqHw2Tj9X4r2jgvdM9WEfPgtgoubvkAsuDtQ6S2bMDVvFVpwreVqJwXjOeQlusBLYVpmq3kM+bBMfiDsp8P1GKJ9dPkigfSoXESAuNma/PulcnMk2XvmUtxGId5t6lKrrNh7UVIYbA1LdYHJ4RohmQxXGbnxaVacLpM5n1QYZ6zk4Dg2fFdQPRk0J4PYxXB2jHX7F8Lm5R67ss0T90LjScWF7VKU9rmv5oBVnNm8ITvGKMrIpVNqAz+92YUrq72ZrDN5mEbhmDwLpRDLkz7iTJbEYVBgitFwiYmNtudKRpt7wQxJWgcUYFcTVkDY+yjRy0qkKPlTnVLHhMGMUGMyhALJzEwiLIRuLcZSUFAMsTArEIJypAV2xauFClINSiUimLKiPSqROMgjEEZgDhYEYepxkW5AOKwIRDJbf+KKUNDEoYQ2YXEGKolIsdgVQMdghpckQisK3pVPGZGTMkT7QXNnmsnwpgMtiaqUKobKcZbilaHBZnSg+IVAS1Ku0EZQiVFteaxIYEkchZmh0OCwU5LsRLTkWjRClkipLqCH9r+MWhIxKMI2Lu0Ah+1moJYXIFOEhniwN6F/TQfkBQ6f9BabfN5tTjzP6gZNTTl2r3OWpkO1SovpQCtAEOphHEBqKQwMqSAbAP1Zm9Rp6JLRWI1yaooWXEYXUA0dvhJCIEZQYNSE4gmnKGZ4kpFqhDS2CM/KZhMyDUjDERJjEMy/3upFDHatypdFttsxTUa7xBaJTer4heS80dVmmPbdOHSfKQ96lpqy8VQyAX1OSyeyxGCMoxuxMbAOCQ2w8agjTlbvgXCPFbDy6ugYUNMlnuo04QXI2MTB1IyYTeUmexRoxQyeyZqqYwyOIQy2D7xsva5FOZiHvsUghtiioRE9LzCogGRgTFlDjJzeSjMPoe1QChWddFyMRRkdsU0kQbLrxExY0zr4ujRYMpXLtUrwglpcLiUy+7oTVTVc8wKBsltToc0DhYNIzD5vrQ8R2uanEshqpX834wDKRZu5sJ+rkzOc7oTwHODFsWvVcQyeZBolSKbfGzRu2DRSZw/uIOyRQZW5qv1VArRdIiqFLXCEEENnieecKOHCQWTdzGZXCnGKyRYpD0MiV7V04vSNPXXIn/iBUEUiExqRRaKmvEa3ekV8Ch5qhTNTteBJJ6g7+8cUKIqT5+/4PPnL/n5k2d89JX3uX/vjEcPzt3B4U21XWpohSgJpXJzOJjuENxp5+x3XYkNf7aZ95kaKlXUnXKVebLoXGstQLvORfbSCNSNFVcCQxQSic0u8R/+p3/Id3/0c/6b/9a/wS4oj98540c//hGyf8lYJ94/P+Pp5YFXh5mnhz1BIrUKL24y53nPo3nP3zzsGUSIY3L/iAknqQ7o7ovullZPZhfnXc5P15bM7cMsZZfBvTFA58VilqQXElKePP2cn1x9wi9OH6CaQWdUM8MQGcbE1//Wmx/16xxv3VAZNidoydRcSEk4O4tsNifoxSuuDhP7OXP16oBmYZ4q904ibCKbkCgomUAhkhcDnhkhnew43+w8PIknNFrgPrspHCQyeiLXEAc244bp6pqnTz7j4x//iB//yZ9y/eoV2xgZU/Kw88rLWazhTvVQMoiXV3VC7bvTl7FrV0r72o4WkWnWi3bvzlLpq5GBCSjD1lbzALogz2p4RxPY9GT1Ug2io2qwlxmFWtnWyiaa4NiTSSLECCklIkICTjBl2HwegVCdsJXOMAkbL2MLQ25Qu5ZU16IfRrTmWVnmJYbQYRQtgdHGrH2riDSFxTZ3g0bl3JigeT6boRLMHW/nJe3h8+T5JgG1vI4Y0JqYQl1geapmgMXYPaWW++Oeawz7rpr885Xg8EpaqpUUzPsXWjSvRXdqM0QxTLb43Ab1crnABu+1EfrW1z7l5sntniE4ggrmOnS88sk40vTdaU6dUVo1MPPAuX1rirw2b1O1fgDNABDLqdgkuHcCwb2uSSZytlKbm+2W5IphLpk5VE4kc38LrZ9A9nLPwQtdqL9Ddo+luvCqQNbK0iG9bxOjn5rceHXvofNXwRLoN7FwmoQBGLQyjBsk4CUBbJ6228RZUcbiSazuNFBtvRcAhx2YJ0jZJGUIMAbzGiswam1nmVLZy68qEpN7NyspVJIouwhDaF0kKnU0xTFNs3kksXs0vH8eoXrPpB4dBGSzWTxVQnNCow5nEZSQRsenW3JwE8TGwWwMYwiMSTxS5Bh5YEherrkq+5wpLQlabT17EQ71CG2VxcMWAiFZfpYl2toYilfeEYDNQHRY5S5alTmpymEsvWSwzbHnqanS+nSoqBec2LoRYrkogZGWrzJE3FAxqGJKgWGIlj7nStzgpUpDSIRhy34qbIbMXDyvg8VR0CA5JvQr1EwrbV61mMISBPDomghSLDIdRRnbHbW60ezj8KqUw2B8sKiwKbDPZhxll1MNP994gVVZcs8uQ+9bErSPHMEgf2ZTBouYg0fl3ajMBv1yFwARy/M5GQMbh1vFFEkeVcdhPyDUDcy5kAvM1QuSAKkbZTDG2D3kow5ULApyyIVx2FNKZUwjQ7IyyTEGhsGifqU6xFYrIQkSTLZYkQ0zMkqBEGfiUAhskVgYR2U7F1cal94pnTbb+ojn70mg1NmNAQWPplWtbHWgUW0Moxt/lpdosRI7sifD1+aUdFnSeuSIFLfoC5teDtwcUxbRtXy3mBLbjbDPS76bUN1vmbwamxtUK4s0SCvCgpX/d8gfbnA1udk83yXnLpkbWqFBtqu6Mtsg5QKjQ9oYBqY0kHNm8mToIUa2Q2JWg8kVtciRYOvZvPqqrUocZiW476FB1UqAuZTGIdBaKP4OKbVqXdrzM21VPOKD6XGpGt+ac+bp0+fcXO+Zppnz++cGK6yFnA8ECQxxdCNdULXG01SfI99rDYrdDtUWzadvxtKi280l4BGapjfYqQ0e1wzMfrZHrZTdEHj+/DlXN3sOVL723hnvnm/59v0t7zzYcB6Vdzbw8FHmkCsvc+VwM3E4ZJ4fZk7zlns3e9KzF4ia8Ugvzcwynsan3U5x5bLLlhZxMgOrRYTuOPoaKEc5Sb4uznhA4NWL5/z04yd8rwAOe7U+3qaA/LtveMSve7x1Q0UkdoUrhshwsuFkB7NUuLgiz4XDPlPrnjkXKIlYE9sQGQYla2SqCW2KjwpVEnEYGYaRXHLXJU3JEeYKsWLJgx4GNRimcvH0KZ/9+Cf84I/+iGc//5SgsB0GBjFYVdaCuDejlomas3mEV0ZH69/RDJC+nOoaavt/o2NZn90MrsXKXWBOi8BUjxJIbCVftYcyWznBUN2LUINDvUy45WpK0/0hst2cMNfMpzc3pBBIEhhlIMlAEthKQDF8ddBC0AFRTxjGBWBc8lJKcWw87jkJqUPkDCIjFC1uZKhX3RKvTNHw1MphzjSWENch5dCiVEoO2RmMNdoKKfXclGaomHJrwsg6upqCXlYh7ik15mLTPAyD4Wex4gNVDZPe1k21NUnz9W0EVs0AqqUYxCxF98KuImnQnRWClctNQUlByXNhzsWKD7jQmpuneiEvp5eFVsxp0tbeIg8RYfQCAFqVHN1YFPHyxw1qVd3D5ZS2UqJaY87NsGWIgU0Shpjdy6SoZupgTGqzGR32BdN8IAdlGzxF3114xY3bZmi3d5qqK7w4hl3dUMHgHRZhmVtqvwPp3TuZTFhXMSUq4H2QJJBQpDTMP574n21HSjQomAhJm8oRQEJHN6lWktNFqIUoFgnZpEDxMrMBPGnerp9zMQWrFMKQemWZqKa0boLnAqCWyOmGYEm4t04IRS1VSgJDEDcMbKzFec3oVYQAcskOg3IFyV26w5AoxQydIUZSGg0CqKYwC+ap3iSD3YSw4O6HwaAwVSFMB/PCW1pDL4kZJHZjprSkE/H8o2SFFSRYSdtcC3muna9tho0lUQ+JbVDqNFGniSF6c0sM1FXFfp9Rp0mlUh0qFJECZZ7Js0WJmrqVorqHPhJCJSYzBsCU0Vaq2ApeJEIciFIQzRwOYsZGDBbh9qNU8xDX3NQOE4ga7fwalqi5lQQ3ZTYGqzoZmhPAYUst6oWYPhFTJGH8MEixRFkJiLR9vHJOqBkJxuMMJmf2urqSaCNUD22EYGXaDe3p1Q0Vy/eighaqm3pjDJxtR5I7kNS9phobpDB058w0Zaai6GSyHPH+XWoQ2BQDeG8Zu87WV6Ill9dae1+zBmlKwavfBSGqN3QNxjgFiBIYWmW+Wj2XMRJGc/ykWNnE6spwg0D57AgO8QxuqJhsmh35YJFzg+H1hrdN4dKl/PXgeX4tqjkXc05Uf08R8QIJ1ZPFA+bWz4zJorYhBPKcab1MBkd8ECLDVJhyMfgsSktGDzF4/qKjEZx+AqVHKmSljzRltMpSTFdVmTHFPIh4jy2jXbMfmku0Kd7KdoikEEkhMA8jU57ZHw4WZY2WQ3Twsv7TbHPXck5M8TcDPyV30dQ2rdYfp2J8JYlHuasbBRqdri3nq2qlZm/MiWAFJZZE+DQIFCXnwuXVDQcv/JDGkZPthjFhjgYxY0zXCrYr9FXaqq+LEvmed/5lJe7pBsCirS3vtUZQrY2dZuV0ZzQN1gsvrq54cXHJ51dXPP/6u3zzw0d89dFvMN474XybeDBM3BfLUd6z4erimpubAw/yxGZWthc3pD/7sRmGxqQXZbOx6GUQi0GxeocjZUPWf/9yh3jlwvXT5mnP9cVzXlzeIEMipIG5WAn0xdB7e8dbN1R+8bOfcf/8nPvn94nVDIEilXceP+Rkd8Lp6Q2fvLxiPx+4urjmxavMy13i4mzkw0f3CMHC0JvtSBxG0jBymK1OtebKGFoyp3DwxLhWwSNgAfYxCddXl/zs6c/5j//+3+Py2VPmqwvu7c56eL0J6KLmIat5ZtrfkKc9rcOpVeAyZluDY5BpdKJ3Eq/pbi3BC5MZ7QSxBltWTQhTxKpBCcCREJgnB23l/uhKccWeN6sykWmdWveXr3j/bMff/r1v81e+/Ru8vLrk//R3/wMqiSEm7m9PyPkAav08kC0hGMRk8KjAfn/tSrIQZejMOTiu15SFwBg9ihGjV+xSpnni6vrG4C4oJ+NgeSBiOQ+1whSDNY5MiZMhWmUSxyO3Ci6q6snbhkXOHtnKOVtuiZceLtnK5cYYLXdElRB2Pdn8ZsrdUzIMDgkIgXmeKLruEWD3l17i0TDuvpo21/PMnGekNjy3GSvV+7eUavCn4Ibr6WbD2XbDyTBwdX3NxdUV0zSxkciYIsVDrEHwnh2mjOZ5tjLRWolpCVUPw9CNrjwdyLUyU6nRKpeNw0A+zD2hc+vezDFF0mZDSpE0RC6urpjzTM4ZQmqOEYJEF0YTtdiabsaB1IzzUhkYDSsfKykNBIvFOUzEIAxztb4iDXsdMUdC1up5A4VcTNgNmwEtB+o8cX15bXQgQhoGtuMIVOb50Ne/1kydZqt+Nk2WGyXN82OQnZRGYtoQ42D5MoPhz1NM1Gx5WmWaOdudmJIfKodpBuAwJKYGB0yJs7N7DINVZ/v/MvdnT5JkWXon9rubqpqZu8cekVmZtXcX0D3YmsQOcABCOCMcipAvpJB8IP858o0ifKAIHyiEcGYAGRDEQKbBxqC32qtyz4iMCF9sUb0bH865V82jsjAyg2wRWndURribm6tevfcs3/nOd46HO5a4yFA9VdaptZBTFOR/maV1Q5PBPpFdm9trrcwx6iwiTxgmYpSzOwyD0AJrhXnUqn3hcDyp8qEnuNArZmWZictCzZlx3BAseBdIVCq656ulFkeuhtNyIiahSm42m7UHL8b+mWApKVJSwfqBYC2DNYrQS6XC1QARSIbNZhBgIidiznIvpfL8wXtM08AQPHE5cr3fc3P9lmGYiKmwpMJ4cSnVN2OFjhsjJUZqyZgw4IcRbyxzWYhpkV45o82/RnrP4lIxNWKNDBHtAUWVJu5WPaUKwmeSoc4J5z2jHSlJaK3Wwt3hwHI6cTgcyEkIJNZZrnY7OVvOcTjNXdK8UfCMhSXYHsWkJan9btRKoSw67QVKqYi9dJ5xGMj52IOanKOAHMYwlLPwIwkNeV4WqfxjtCohPShhcEzThDOOUugMBOHdawhrLY+3Oy7GiYeXO67fvuVwOnJ72EvDvrWMw8BmO+Csk+cUZ8qSqEmqP6Uie10kzPDWiNx/ESU6UfhTOnMVtcPROTmzKXE87EXwxBnCMEpFkNrpbwYtSoeAM1YYDa3h3XtsTvgic5+22rM6z0KrbXM1ZC1FGbHGospJQrGUCkJWaiNEpTmBwYeBcRjFRxhRW8xZZOCDFUZDNaI94ZwhJcM8R2JceLJ7yGaaGEMgLgsxRWJKHGdRIay1MFiP81KF2DgjsuS1st3upFpSKyknwjAwDKP6FenXmuOi4FGlxoi3XoAAbRBPpXCKor7W1CMbTXmaRklCGgXOyAGJWkVLRWhrzojfa7RjmQmj1GsKcZHEpVVfpeKzVs4luDE9fvXD0MHBkuVMGGvZH2diTMxLYgiDAGi1gApJ+CH0gcRgNC6TfkFjnNKJBgwiBPHq9TXz8cAHL57yj/7O32ATRg7HmT//1We0JNSK2otUbaucncoqYHA+H0YSvNzPN8Z0+nmL7X/bq9777zpqACqZwuVuZFcNN8vCJ59/xevbE2/jwO+//4jvP9ny9z/YsrGZMRgePHvKs/cCzjqyKXC3UF6+5fBHP4bjTM6LDE3VKxImxP3E5Zt5mbP/mg6grdXnwg8+fMGj9x7zB2Mg6X5MSyHpGIxv+vWNJypf/PwnlKfPGJ6/4P1nz8neEx04H9hstlxcRKL7ksP+yHw4YYpnCqNIF4+XeB8weiitlhUlSBJUbwijBPGpEEwSOolKdg5VONqGzNvXL/nJH/85N1+9hpTYTltRFNJsQDjsmbzMLHXRoGOhzfooufbgVTToW9Nj+3lJGprAwb2yoCL7jerSvteRci2pWrQqkjMe043FKkti+89XxBlLYlaEUwkUbWZ0xvDscuLZgw01HVnevOKUHN4FpstLmtxR0gZuQZ2QZvucWZYTlpYk6JhGTQhFQcQQgiM7q3x4aTA2CMLqqzhQasXkRC1isJM6HSnDJoiWmpwER1lRRtu0+yWCqFa1Qar2rsRItkYa+51Rg5tVG74ZaG20tEJJqtqAWp2lagAjXEoj9jUV+tA7Y6jOUZ2VoZ9qaKyVZnpfJCCrRhr0bEOCdC6LoJvSmLjEgX0cOAB3+z13+ztSTIzjxDRMtIZNEAS4JaG1aEBfslSaAIxhUHqPtYaUW98ApJSIGGaszscRGsWsFBznpeerJzmNOtcodq1iU2QidEwiO+us7VRBFM1O2vBbq8F61yG9lFLngqciAUbOSasFimBbldeuMtcCA3W2pLQwLwuHm1uOpxMAYRw5DYFaCst8VEaiNDU2GdxUCilGRUr1Go2oXXkvRt4F6cIXwQDXE9K8JO6CF2TXyFm0RpTkqjouFzzz/k5/rjKfZlJOSgEpvfpXst5vSkKn0WS3KRAJLUTObcoiQmCtYxgm6fOqlagN17VWZie0HIwhx0iZHdFZ6jgp0lcpaZaAulZq2HMKodO/WtXTeUuyDmdExjXqdcbTXvn7cq5yc6gVYkrkJPNmgpfqY6Wy6MRkP0h/FgbyNMm5KpWYMqf5RIyJa1tYpokheN5ev+HusGd/POCMVTncysXyWOWnHUuSxLPkJO8JnsUHqveiRKSBX0OVS2jyIwaDiGXEImpO7UwsVgKQ1pgt8ywMh5PIz8+qcCiiCZl5nokpsswLyyIBrLEGs8z4IDbjNMuap5TocuW1Km1JEPzT8QQIyHJxsWUcAptpoFqhyqWYcc6RjWUxhhijvF/R9KK9d0210BpHMVYmtS9LHzrXgidjZIbQxTQJ/75A1ESlFp2n4h2b7YgZB2oy3Lydubm+5jTPzOrnrLPYlEjGUL2Xhvrjkfm0cFgSiw5QrU1QBLH7bQZPUeGJRrdqvYfxdNJqXmGeT7QBpSEsYjerUp+K0DCD9WQr4h3ULGwBY6jJS4KUCzUlEZ3xXvok1DoVfWZgKFGSiJgSMRexBVbkxlu/yjLPKBtMJmkvM8m7Dkw2GfaqvX/S1C6yxHGZmY9HOReDI5dEHkbisnA6zX1tuzADBWfXZKroNWcFMqlZKjBxwKSJqkp7tVboMsGVlCLZJEyJWK8U5VIgLiLGoBV/55wAaSninOw5ryV6Y2RYZ0Ka1JMqtKXcGs7V1yv1MsaFvIi08Wgd42aSCls1zKlJwqsNdQ4/iOx0LlnOUpKftdZhlhMmFUIpdM9SagdpKg0UgTbXRRIq6fNraH5jZ9RcuHl7y9OLgRcPLnjx/ge8vd7zk198zCJIMZ163vAETajWBEV+VxtdWZXiXRU068WDxmxpMV1bqn4i1u91YQCz3osj46vhwluK88Tq+NnLI3dL4qPrDeP0bb7zYMtD57m+3rMJI0PwDJuJ0Q24MEovkcZitiElFRHdMV9T3TnPrPR65cCUexWn31D8Ov8hs35Y7R+A+tvKuBl54HbYi61UqWqVuWXKQPmmX994onJ49QWLd7Dbsnv+nMVKmdJbS3CBKYxcn27xtXDMGVsNF5uJ3WbHOF7gtS/B2Q6VEKzBeoMPQmtAh7oNxkn11UPNma2xXFlHXBLp5i2f/OoXzIcDo/dM07Q2iloDSUq0pmTKrOh4jEyD1yqIDqpCka+ae0BsusM39zZJk6VT/y+NcOd74Yzig16L2JwsfE3WciVGELpWpWkOsmrwVqtQxbLKXjpjuBg922AIJXL86hW3i8W5wDbO+FGQk1K0IapCSYJcZ9Vb95oweGfpg7RUptZawxAkeHLWyNBAdS4GVO0JDVolEMu1Ua3k+sSxGEywYnxLFnTHrE2QwlU+z+iFfpX17FhnWHIilax8WKcNjbY7+mbsq9KgSvCKHMkwrlLQKdaSQdWKSK1aK5UFpRcEH1p2SZkXmk66sevntypQMQ5D5RQDcfbEnNkfDuwPd5RcmU4jaRjFaRWV8/OSEDZpyiZhnNWYWmNI2gvTBrYp4ENaUp/qLvQh2WtxGbBetP6tcz05cS70BHU5nUSJLGdykoQr54zzKh1q1RDqTk2NZ2ys9CVVVM40q4GnJykxLaKkoz1BvaFcmgnkeS6VnCJlWciHA8v+Vh73Msl8jZJZjkdF+nSeie6fTBVUtBSsMsplInEBFyXA0/s2RvZLVXpQjonFKC1Uz5e1ohznlNbngqfMJ4yRxviqIguSKCUJ0nRNm6y11yCBIUhSU8ThtfPcmsSNtdQsM29srXoedP2swXiZHm9LpiQo1rZ8B2ohng4qfFGZ00ycZe8H77FOgqPqFSG1CLrVrj+2jrEme1602bXo3IUs6xlGCAEspNNJ0OsldPtm4iIoNeKU0ulEjAuH4KjjSAyON6++4hQX5bwnTYpg9J7sg1TxYtREv4gyVPYUHyneS5UsF+oyt+IUVXsm5E+l5kROCWtdD+Iza0DdUP5cYJkXAVSM+JVSklZKdX5ILpTlJOtsDYsx5OgwzhGXhZwiyxJ7UJBK0Squ2Nf9YQ9VJt0PrhKYMMFq71+FlKBq5SNnERYAfJD5VClK5cF7HUJrnfRe5sJpmaWpuxRilsoXBrw35HEUMK0aInTQwFvLMASCuaQsO5Yq5+n27k4G/6oIgrUWk7NQhJ0g5WmeSfNMnCX4TjlL74E2vydFb2uVALolylLdFps9Y/BBAZK0IMEN5KDAhgbPnWLtR7F5CBuhDUas3svwYQWrliLBd0OvG6YnjfiGHBfiLD0MS8oCXliP0d6unDPzaRF5cIT+WZZZBS3Qqr1I/uYi1fJUCyWJ/5vnE/PxSIwL8+CxKVHjwrxEDocjx+OJqBVx5x05Lerx2j0bjHE6HFUSvZQSMQTSLNWiFgDn/n7DsiwYIBpDDoMGD4W4SIU8JalU4D02BFKKfd6L1eAcK7SqNolSKlfi21LKat4b3TUxz1JZ89biB89kVHGrIslklYpBE6UZTICaqTlRl5mSFrlO6yinEzVLhUsEoQwlVZJOYq/orLLahCHEn8SsybvGVLmIzazGcbh9y7zfsfOW9549IYQRamntPLhqpQm+iSGx9pQY7Uekzbyi0ezrfcC5fb2+kwzQgry1otFBFKv9eBTp5VTxlMkJEDMbx8vbhev5yMvDiafPn1PHC/IwMR32HLxQfLcucJkNYzUdRGvCJT2prI0cfBYuNSCe3/Zqmct/n5fAQ0V/3FBwfiAMI7uLK7ENVsYxkFU6+xt+feOJyt/47rf48L0P+ODF+yyHWz59/RW/eP0VuImL7SWXu0suLycutxcwTOymiYuLHZdXF9rUh6ylHmZDZdpOLDFyON3x8quP2Q4Tjy8ueXp5wWk5cXt9S7m75cXVQ777/AWfno5cpIhfZi6mCWck8K7OSpJiYN7fMVnD08st1zfXnJZIOs1YP2jjXeZ4OpFykuCVzDRNPHz4QLXBjSKnrfrRtupvbpLGEG3ob5OirXqoAAm8MZRMH+rXfketIi1IWc9HlgSWYhzFDmQXOFJ4+9HP+fKnP+MXf/JvuSsDzgYO08SwDTqQTMryOYvCS0OngwoMOCtNjij/GJW5BUmgRu/FeFW9TkXsjU4yd86Rk/TOFFOVLldVtlBoVdaHtbHaNp6wwVQrk4utpdoqiZBy160G9M4aneCaBc3WQXcW04UKSksIa5vWLKXfpiwk6Frt0sBVURhJLtd5Ko2+hoG4xF7WDV5DPiOD92RtKr5xvY0hKrK0xCjKbMsCx6PQDI3UxIRGpQ66aEOhXr9rA7iKDBwrxmDHoVd6g7EUU0lk4Z5bKXMVROWLKEhXLUUQfDf0BMKUBVuKni8kGbWeENr+VVRJq0/BCb3DeU9BZjVUCtRBgoWsyWQ25KySu5qcSHIplD2jCVmthTlBDo6H00ipj5WmpUpqRgIzr06qKLJZWZtbW+DfSMfWWlFEqhVTjEzLrYVUY3c+1th7Z7ZVloy1bFU8wFg6pa2WtWrY9hIgMy9s4/tLGzvy6HplsPWW3W/clASvs32N6YpNQfsrmmKRGhWp7upn2e1Eq7FGRfAbfaNJZguNsVEdUDU7ObuunQXviVlUiqL2bNVSqUn69eSzKnnYUsoE1fbeD1MNuQhqFm1lF3ZgLqRgm2ZygothZDdKbdvarHQpgzWSpBjjqNOgyHyWhFbBEOud3G8uMDgFh+iVE2pls5tIuYhcbO5LRcprUFyw2vgvAygNUtWVyqqckZySJD5O9nV75aJ7LmXsNOpzlT6Q1j8YWr8VRgMqwxgcV5cbBu8JwXfAqgI5SiVzPi2UaZS9jNoiXxhcEGAFVUdS4CqWkUOM2uzsyLo3c03QhBasY9Qyt7GWwVqCg6EsfPHpR6ScOJ6O2pPgCGFgVpDBmMrNmzdyfrwnDIExaDAUswwYRFSM5By0/SjnKMVFzrUOhq2lkmISwMmq4IH63NN87L7ROCPBa4XZobZeQIVWbTPa5yJKUYa5nFToQRIac+ZPqzG9/7BUGSJLWsgmkQdJqlLWe9bDeLy76Yi5JI46jFKfccmiwFi1eaHNrSql8Mn+Fm8FAMvF9GpK1V4u6eURtSRphE7dbhUjYhKpVfRbeUKBUOvkGTrndMBw6r87uDbxHWKTzoUuRuCsZQhBpKG99O2JfH3BOFWeUwBUKp0SCzSTY50IT6Qs4gMioGB4++pLoUOOI9Y6UhbqrAsynHSJkVljiWrWBvNajexZXbeKgCNLEWqdAEC1gw0pJaxKg5RiFRgSKeOcRSW1Ws/+9g0XvvCTP/8zPvjgA2rMFKu9b0aEg6htPpHrVTjr7NmQaY1rOLO3av8kWap9jl17tZED/Wf1ey1EwtBtjVyCgA61BqoVGvrD0XCXLJ8dEv/nf/VT3vyB5W9//wX/yQ9e8OrNV3z19obD/sDVMXHx9o734sKFgzBYkhUlNovFdqGYijbPQRNo+do2kf++CUq7N03GioCsJS283R95k+Bq95DpYsMwbUSeySpo9w2/vvnJ9OPAo92GZ48uyblwTCf2+zt+/MtPuLGeaZh49OKx8M1jIgTPo8cPWZ48IsWFMQQ2w0Dwq2zwzdtrbm5vePvmLXf7O652O+yjR6SbSVCJZeEqBDbeMY2BKXg2PrDxnqMRqVTjraDniiR/5/ljnl9d8MHTh/zLP/w31LiQnCNRiDlzSpEXj59ydXnBo0eXvLm94XA4cbffU/KMtYIY9zwFxOioMZfKmbmXtYi90M2th5lc23gWMK0nRjbUqj6GGjiZDRMLzMbqvN8qPStNMcIHdpdX/JO/93cpfsJax7ZP+NZyoWAIfcihMav2vdET19SEClp1AGrNOlDOiqSpJhhtyFtHKzQWNNpE2Xt9NNmpxqrMq95aS/J6QiHBftO4lxK+7cFMyavD6OX6hjJImaWj2XJp+tnQqyB9bgnnCITRXrXz96xUwBZ4Bu965atoL0xFOL/t1ZDsWnVKvZGGeIMixKaqOgy9CtRmNdTeH2SEAmDUWOgwKPReqFIGpyVcqqqkG62rz1DBWe07soZcI91An81jWIeO1ZV+VhGlGn0ete0PuXAaBbKtTaNTGUzf/u1nm1EtNJlc9Lnb1cC3fdfvUZ5Zg9VWZFKcfkO1ZI30KfZcRJxir2GacwciFYFGOfBKD3TW9sCgYjR5MErHlA82tGna7TfaVWW6BU66P6oiv22TlFq0OVHWpbX3rrST9vz0lm37LCW66JmRKuUKFLQd3Hj7rbrbEOyeEOteyvq9dVSjJFcdCWkLpd9rFc/2PApSiWsUi1bVoxZqby43PbnriCbr91oPTAsQuohFC6z6c5VAFH2mLjgJWPPaACif1yc7dSHDCj047TMpqgadOXc70zm8aOBU5GzJwD9V+1PbLtX2qs9fKrSKMTB42xOb9amIKEnJkvz0Ab0G2gDhRiOVPdRsouRhSdH9RsOq+txsbX2UUulsjfJWKybBOe0Rk54H2S8CVpTUPqsIBcwasFIJwEgyuixR5Hk1iDaNNkurJq5BnLGraEVu6LkxeNcONmf9f/Jv8ZPmbO/L2jZlu9qSelUEbFRQEXhZw652wpsgTbOPUoms/Tw2KnHzDXKmldjSHqL+qUWeTQtUa3tf82E1dyplUVWqlLPKB4udbf2T9D6S9eyWWnXYdO57oDYjgsFStOepNaarr25HEqPXtu7/9sdpwiKqmO3YrACPyGTLPu9+SjdrSzKKUuVECc9oD6SurYpuxCxBc86FqIkKRpLORgsruXZb1JgpuRRSThJ/tPeV9t+i6yu0zdL2WFXRjCpn+/Rwy4snD5nnE7c3bzlmqZ4bFbbplLLSdojcfikKmrYAX/2XNNU3u9t8WtuqAlKt9Vq1FM1n0/xcezZK8jtzr9UiFcSUcZNhu7skGM/N/ogvha2B51cPBTxxXvqW6gEbZrFPptnQ1n6gvTfOY8MgA8Ha5toEyMK4MFkp8IZ13ku/jdKu/H6+1mxTiztkmVSbxoDz3M0HPr/e84uf/pRx2jIMG1KtXF095Orqit/hm31944nKxnt208CDiw2mwnG+5HA48OPjgcNp4a5UQo3MKXGaZ6z3lPmIK5F4OrCbJuxuRxk3iipb3r59y/Xbt7x9/ZqcF0JaODrIx4DOfGOzeSJNwMEzhsAYPKPzGGZxjM5hijQFlhj51ofP+N77T/mdD9/jp7/4GdZYxk0lDZ4lZczJ88H77/Gt91/w/e9/m0+++JLPPv+SH//0F8RFmiGFL9ry68a1PHveunvX7a0Pve0NtQ4NhehGSDdlp5A0p1WFY7pgiMj8kooMeIyK1uUHG64eP+Ef/O2/Q5hGCRBL6QbXVHS2gtBoQOQevXOaTLBWGxBaGqZSdap04yM749ulqsHut9edVEs05PPXfozzQYw9IeDc2CJzG1gToYbQGdPQanEu54aiBUCmSTjqd4xZg26VUOr3t76MBhsqIayOrSU0hhYUy4T4jpj3QExoaI3uIWulvTOqL1/bg+f8P6vHbRKbLWgyBq0stmDtTC1N1c66TLdpLlfr83X9l8h3um5JixFxhJ589EC6ueJ1feQSlC9t12pg57e2B9+CbJDfrYZ/DQXOcajSf4dT6p44stIDWayVpL45j6bNfZ5kmvWZrA4cff8aKLZgquo9G3VOJa9IJUiAIQhp0gTdYtu+bc2fWuU1ZhWAqKzJXr+0s8C61PW6agMz3nn2vbqFhr8toVq9CpjS95upKxWgKlJJC8J0zXuqUWENw/WptPUxcN67Umvr76KftyZTW0H2t0b9tdaegEZFTWst985qo6+2AEQ383r+epBC/3dP/86i0b7GFUW421q2NVsdsNjg0r/T1mB9Rnrvep9G+zXaHukItyY2zcY0wnulruphXRFH9i8106oN59F0UaU6U+uZTDPnN04bANhY4d1Gtns6i56KPiuxTGJjDUKzrjrbyRrxGaWKf2jTEYyRakbb+9ZpknB2hvvKVq0utPVoPou6BpHIfrNtn9Q1Obfd8HJWKWw+sNmF2j9z/XRVolSf1azRu4mK5BtrA7Maa1Ge0r4Dqc6YewGz3Fg7q1CzCP+0c28UPWwztxpdrfm2DiCyJhFFbcE9iVhq9wntLkvzX1WYG7KPVTCo2YicVrDKtPluep+mXYOKJpzt7bbjBZhr9r124EQWUirRUn1qSYpWrMtqAzrQZ60K2Ai912i1Mus5KzmTlsSiiqzeOVo/SU6lMxMqMtxaqMaRnGu//tLuu6z/TUVjBd33PanPhVQWLncTIXhOxwNHHaNg2z6rpgPAPQltqWbuG/nMfpz94+x3tZ/q55Gz5/pu4vLO/m1vEWy49kZ0g2GYNlg34I4zg6lMpnIxTuzGDUupuGmEJeNUTKcCZ5AOBiMKgl4UDuOSqSwiTz5NLSeVez3bGHJmesS03kHlN/ZRi1FNRYFo/QHrmFPm7WHPJ59/gXMDwQZOKfHs+XOePXv+//+JCkhpbVDloR99/zt8//vf5emjR/zsZz/nF7/4BTubWE43HN+8ZXf1gHocqfsJXzLOD5QIv/zsY65vb7m5vSV4x+MHV3z4/gc8uNzIVFtvudjsGEJgGgJPHz1hO41UV7l6OHJ1NXCxcdjrrFw+Q80GikxHffHiOR9++wO+98Pv8b979JRcLdaPFNsadhMfPn+PF8+f8J3vfsDnX93wpz/5Of/5P/+X/OEf/SE3tzecTrOqMtmuzy2b1X7NujRlKPmTKzgNXNv2FqTZsCiC7YyhaON2TjIsK2FIVoaQmSLl21OKnKLldHfk6d/6A54/e8qP/vY/ZM2Y4b683Lt1wRYcnB/b80PYPqeTVL/mPfB1h/c8QljvdA3JfvPnW0h7/rvePUH3fsHXfO38Or7uWutv+TvNlr3ztWZx2r/1TbV5UHP/A1p/D+ffr/ffc2+PvGM0+tfevfe1sVDGXDXzZd95D2ffa6/z97zLIX33ebz7u8+//u6VvvO1hoj/xv1+/bOmJQHvfmxH+t99Wb5u/97/XZZ1Te1vec96/u5doxEJ1fVt5/fezsHX/FyPqFtEtwbK9vy93cmdfXYPWL/urJ5f9tedhXrvP/c+9zf+/jXn6N39exY4t/X4zc85tyvycvf+ab/+0fX3nCF55vy8tDf9tjPf1uW3eNX/zte7+7ftjYLq/PKbz+BrXveiGv1C/+f52fo6P/CuPXrXVrVfYL/m7++eya/7e7/A/46vmf6v+7b/N31A/dprbv/59z7odz733Xs+W//zPfFb/cO7e+Td17t747e95/x33N/L7V47ak1lbTStX7O0767X16zT1z7j39y/97/y2973rh3/bb7xzE6dP6ezyoH82rOv91/Znker4Nqznyu0ZoV672eq9s/pr2pZQlkr/lIW08SjJVnn11Aq5PPkqw181UvRz7A01kEFEp9//gWvP/uS035PtYOCnEZvcwVC26tUAU2MMi+aCRRKFX1L1LZuDSD495mYe4ng+gQEdJK1EzNvSMUQlxM5RC4uHD4EYrL87KNXHNMdc5lJZsaTsMGKwJTxUB2+KsXSFuyLC6ybSMnwk//8x8zzDN7y3b/5l3j4nSdsnuwgH1fg5N6+gN+w9e+8zLv/anFPSkzTlosnHrfZcXdzy/7mhtdvrvnF22uGTz7jf/q///es1f+A1zeeqHz05VdcXD3k0aMnPHn0AGsq1VlePHtMzZFpCHx5fcMYI9Np1rNv8X5gM45M05ZhmFiWL8i5YL3l2dMnvPfkKe8/e8rd/lpRjsyj9x+yGSeGENhstxgLh5T46POXfPbqDbeHU0cK0zJDKWxGz3azZdpdYIYN0XiePn8P14dAruXFyQVGU4l3t+zfvqWkxIPHT/ju7/wur778kk8/+oiSM4Ys/EBkI3YTcfakzbrzKVRVApKAJpUiU2Qx3TBYi/aUKNJRUUoFYAomu94sFqkca+WmSMOZTQm7zFAzjdwhlDTTy6fyesfIqQNuyP/qt7sC+4pcnQU4DXlon3jfPdYVDWw/0n//OU3mDFGrsHZLNCOxGtR7V63/XtF8WOkk7XrEiJwjeudByf3rbQIJ9Z2g2/TrPkdy7/ve9RpWJ/ebjqSovRdKk3nHIAjKtbrqlapQGp+l/RINXE09Q89Nqwit9LXmdNefzP3SqzqAZrTb86+KtJnmp+/FHvU3Vq4/3tr/Z12rd5CoZsDh/MPrmf+sahfXYIqeVJh756pdyfklnsebq38x3F/oNZHolCMkaDZn32u/RWgXtTu0fj/mfG1XqpNh5Y8brRjdi2maE253dfYxtaH0tT/9vpb3bIppKNdKNTvPO8w76/7uOrX1M2fr2mmnZ4hxn+/QHP9vnHLu/bvcW/t6vozd37WKU7O1/Tm0N9bSxG1Wo9IoZXo2exjdbJRxfX3rb5z1lSLXK3yNeon2H1VkppTRu9Tzvy652qT2eef3rpXc84dcz9a+v/e8CtRRd85sjfx9rWLptfbrL+v7e4BhuqjJ+iSM/v/5Va4/279+ZlvvVZnr2c+adgV6/X1/ub7/5Ful31ffe2eggtVu7PZM23taNaib2PsGmdUKmr6Bz8N6c3Z4ehGrVztrf0+3Jz0xNqwzwvpuotZWqW/+ab2WdT1L/30YJVa2c9g+3azXdGaF5BZ03bpwTDPn7XesG2a9777m969hXZRzA3fmt87s071Xe3btgdR2k/Xs54F6lnzf2yPv2tR3exPe3WPnCc+ZXWjXnTN1nulgT3vKzbZZB9ZhgoywqMaCs/jrW4zzpJSoPvRb6lTzKpdmzq7J6GarRU9FFWpla+ZvVZEeC2H6avbbP3vWufc+NXLWurfkTdIfXaxUQhrlb8mFn335GhMToWYupkJwmeP1Dfb2yHR9y/M4y+gN18RVhOVysRu5uVl4c33i3376Coth8p7xv/0lwVbGYLFXAyZGEfQAVuD4/t3UtgHr2TO7t2+q2kLZT/O8cHd7xx7D5YMr3n/xnPkUOZbKqZzd9zf0+uYTlS9esttdsttdUq1jmEbcENhuJp49e0oYRm5/+nM2S2ReIjGKak4IA5vNBeM4ySRcI4F6GAaePHnMk6ePefzoIde3b4jLgqHifSBoP8sSI0uKHOYTP/7FR/z60y+5uT2IUaqFEheZmjwNPHvyiOniAjNMzNXx6PJSlMG8JTSfbAzz4QQ5crq94fb6mnleGHc7XnzrQwqWl1++5HTYSwDxjmNcA9lzB7ImHblUrNIoclYddLWyjbPbNn2zH/3cI6pBpsiByBZOpvI6Zd7e7blwhnq4gyR699lkik7YLso5bodwvbbVkfe+i8rqF9Xproz/8yC1HVL5ajHrMTBqZLJyzmXPr8nSeWl6bT4+E8R7NzHpF7b+7nP6GLByeVtIVRuVIPeQoZ4lA/eCGmOVq1/OGnhZP62u/PfVqPcf7uvSgqdzGkRPVEtTcNOE6h0Hk5sGve6dWuSZ5NwQtNWIGLGSdGdmpCH1fAZPC5RbyFPqSv2SREUVqfr1rnSA9kwr6602rnf//S1YrO3x1u6c+1qdxXBFe05MPaM4ycKsrteY7hQLdY1+kYCw7aV7+W+7tk4zQnn/Z0GbAWOq/ll7Y3oqXrVic89po/SBvkVoLfHG0HtOaOISulZFk8VGr1vj0NodTvuanHlZwFIttF6yuqKm5/m6XEeT4l3327nv77Q+WZh1P60fsQZyrL1hhnUQJVQJEOrZ7zD0/dP2w7lTTn1/o0MbZSlL1p4ybRSWfVRISQPDngDqurWhrFWfozESFHYbqfupiQ104Y810eq26Z4d1mDCmFVsQ12wrTpIz0BpSZHaIHuWXPW9CFT0+p3t+/5dRciew+jZ0fiWxpG/B1icPadG/WvPx7SAYo3IkYnjZ/RWNIbUtTL6nIsCI00ggqr0Kus6rbMLXhS13fo1eTK1U9eUsC739U6iYlufBqYnR53G1J5BLTQVN+dWJU2hmLVeMFQBTNe8PfOmdtTOTld7pCfB1Zjen9X2lvRYde1EKrqXOLu2qv0//ZpX+Ws4881abeiJiiZL55POTROKObPxPeEzUK1Z+xpL25nrOVxfpsckzrZm03NDYPrb7ofj9792L4hoz017afrnnP9gpzfet73ytRbcrn5n/eG6XqM12idhWJEHfWvrC2u03pSpp4P6s7omRbrlcV76NC2iUGgdxg8kdAB2LlLarSvNbv35lWrZKIqSqLTzXLrqppyVBlifxR/vGuB1C/bPWv3MmXhPe4vuy2qld9QUoe3/6vUNh8PCNgS++3jiwcYwH+/g7Vu21zeUuGCpIiRkmr2BKThexgNf3R342fWejR+4DJXHv/yCp+8/pD57AE92MjC0r8Uaq91/nSUwzdmfVxIbywAAS4qZ03FmbwMPHzzm6bPnBD9wc5q5Oc7vfvh/8OsbT1T+xb/9E/7oz3/Og+2/5Iff+w7PXjzj2bNnPHv6mIdXl1zuLnj+/Dm77Y7HDx5yOBx48PAhV7stMS5YZzGD5cPvf8jN7Q03tzdsLyYOy56ff3LDp19+rkOXEl98dc0YBoYQ+PjTj3jz9i0vX7/lxz/9lP0cmXPmvedP2W0GtpuBp08uePbiGR9++zs8e/6CzWZLKpXbmxtO1nCysFGZxqibdTeOuGGiVsOcC29OM/tUKC5w8fARzhjiMrMsc0fBzqLCNdCtEuzEnLEl45H5BVRRADG28ThNl9sFcH1aRMWps6kqLVoqFFPwm5E9lX/xi4/59OWXbE2lHPbUN68ppwNpOZC13GmrTFSupbAs8czZn6UfVgNFRRzEMaD3tyL8bdM3ZLIilaLagxZtxDNGm/bFWVjndOhdkWZlaPEJtQqlaR3mdj+Qt8bcV0VTnnVTLwPwZu27KOq4MKY3rLYGamkitVBaibmcJTas0oiyQDRuqDsLWCq189jPjVgtuTvfrMoqRYnejbsv08LrWWO5vFI8n16vgaGBIYjTzDl32V+A+Thr86zM+2nSkeM49vvJeZ0s3BIECzLXo1aVq13L8ZvNRu+jMp9EalKef7uGxDiOPVHxduXpH4+iBBRCEElJTR6881QjzcG9iRzT77W2/QZ0Od8qeyrntRm1OUyrA0dbAN2SzBRP7anp+THdn4qkrGUaPY8fP8IYw/X1NcsSqUUGKMaqsx5qwVsI3nFxeckcE8uycHN7yzROWOdISxT5ZSMDTdc+LKPywPJZvfE2twBHRAdag7SFro7UnLhBFWhqk9Ju/Vml34s8F7rtab7UGIP3ru95i8XqkD97JisOqMTpyuOH3n5KrcplV65+CIM06jrLZhr7QNQQHF4Vj/aHY5dGfvDgSmR3reWwv5W97xzjMPb9e7e/k2vynpSTdhurbLHaxJTbEDGjsterrHdKWSSWz/T7Y4w9gZEGegm8p2Egl8oSE0tKMmU+eEytqogVeq+Y0ybWrMqP22nqcrzLLLbTeSMzhKoMxfNukMCX1eY5Z++JGSypKdFVnAuUUpjnhc20UfCgsj/txV5YJ8CCAe+l9xIqS1qYNvL+uETmk0i9Wm1qX7dRSyKkIzEMnocPH1ByJaXEfn9gGEYwRmaA6E82JT9JAEXYxRjYbjeIMh2c5kUSfl1zUVQSaeScZdq2k/Hjeo7bXAzIReZSWWtlcKUVoZB5jtKfUQvBiSpe1oS2JRzBD5RiqFkUxkQtUJrHZR+ULliAkcG4WYfz0n2t7XOdWtUv6NwVa9Z5EOs8N8PxeBJFL+/Zbcce2MbWV6E+xBjACm0btbP+TK2rjRZooEALlk2t2o9p+x7sFXJ9vzO2T6aves5bJbHZAasJkFc72eyvs2vFI3NOtjM9KdNJvZgiycAKOJUubNNZXRojtST0vI/nPOnpTdz6OW3+kLESazW/KPa/9QSJYIfYKrErRW3eOAxcXFwwTCPDbsvt4cT1zQFjfW88TynijNp7697xLQ1Mqmf9QwpmUllSFJp9uy7Oko1uhej3t35lrdL299bS/VM2kKwBZwkmMBiHCZ6Xy4mX84HbX7/kr8YXfO/JFb/7rR8xmM/Yps8py8+paYGSKXr+MZXTqxssnunhA+x3n3OYZ+knLSpLrbOAfiMrqf3i3km8zpOVFrcaOtrVKGTOcvHwGY/9Yz7/9Rd8+urn/NG/+yl/6Xd/wPtPnvKDh8/4pl/feKJix4m5wuv9gflnv2T7+ZdcXO54+ugRD6+ueHh5IZKHSSZY5hSJubDEhHMee9hjbxwpZY7HI6fDkU8//oJaZAjRq69eczzOHE+SHFRtZHtzfcN8OnI6HXlydcVVHjkukUeT54MXz/id73+bmE5cPHzAowcXhOB1YKCFkqgYMiIdWIwe5N6kJ1hHrrDkwikV5izZcHvmtaCHHPrGOP8765ekoiLUhvXr8n+5SqbdEQE1TLnKoCaZ2JrJWGlwrwmnfS9vToXb0y0mLnB7w/jll7jTHpuOOCdywlMIbDcD3smMi6yGvQ2Aa3uzI0GwosRn/GuDOStVt2a1Kk2a57xfdezeNKll0TqXyk7FnJWVSxEKhlX5PWPPGpY1KQo+9EGPokoixjWY0LmnwcnMjlrFOJwHX606YTBd6UmohIrKduqUOJRu1NrD0yBgDa4VGbQym8Jp8iON/q1JuXQJWCgy0GkIBO9XZ7fE7oib4yoVCaacwTvLxWbQXy7qb6LaUslXWSaKewfaEJpNxfsW6NEDURlkqI2ZOTMOkyTQKfXg1FjDZtrQZtTEJerjlOQgVwlyxmHQ6kYlKJpcSyHGcoZIsSYqXhKzmKPMojAistCclCDutjt6DSFEYSbGNTkXCLo7JTR5W/GBSpuRRTUauMn+cU4kuL03PHggUuPDMHUFKWMcsQlPmMroZYhaCIE5JZaYmDa7PqwzxdQTFee8ghMicSwzamSfS4O5NvFrwNSqCihw0IaUuuDxwUsC3Ctj4nSLNkGLLO1KsbFaZaqcJSr6rKsmSr05Hm2g1wQuqlSv2DG1eV04QYK/1lwbwtAlY6cpsCyLAkySGHnvcD5os3bl4mIndt1ZthuZAWGNVNpa0Hex2/UqbMoZZ1b1w4ZqJlXqaQqDzQaBzlA5UwKUQZxr7dfpDB8ZzirPIKu88bquqQeJBrsOPtWhjEOODEPAe88QBmrKWAsuWGKJxJiZ50Twm55EiSoatBkkss8LkyKc1hp8GCmlcjye8LbNigHr5JxZJ4lKAyymQWY7hSRsAgmEHbWI+IRzXmwnQMlnTbBVGArBM00bOVc6iNSHILGIVdENdNaUPndZ4yTnxweMc7hqKOe0TWSApXUW653MvdKkQID0VSlN9oBrJkVmWnlBmWPKmFKwpmKa7HaVRLvFVV6D1rZf+/kBchLJXeudDgCWntRCFl+j10W11CjPR0gXGcKA8zAOgTnDUjNxyWpnDPN8xFlLcg5nMzEnlphZkqqDlYJX1UpjIZ6pRMiMFLnopENxpYjiumiOMyK/39SrRJ7Yy9DWuqpwNQnm0gNxL2CXrk+bRdaqQiA206lASSlndHB9hNaK/DxGBHRSzAxh6MBGVBlqp36uNNuuVtcabXynAZMqo60+uqnj5VL0TIgkedEz3ysyxvS4S5TuOlxJVRtnreHJ06dMux3j5Y5qAzWj4y1aMmpWAPHs1fZMBUwpneVmaABm6UN41wSmxWemI0HNAmHWZK99vYNuNd9TezPOY33QJFrud3COOspIjJu58GdfXvNyv3AYnvK77oLLhy8Iuwdw84aSkiSQRmTij/sTGUuoht9/ekHeO/wSeW8zsLkaYbSQE70aogeuV3u1L8+cL8557CY3Iktq+omTn3EDfrPj/e88ZD7eUOYbPnn1ivj2hqP/mH/4v+IbfX3jiYofJ3KMHOeFN1+8FGUfL/Sqq92Oq4sd291Wp0MbrK3cHU/c3B3YbDdyUKiYKgHSsixcv75hyZF5mbm53XM6ntgfT7y5fitDmOaZJVYsmdFW/voPv4sxlrvjzNV2yw8/fI8/+L0f8dEnvyZc7LjcbQSFac1T/WEgmtcIVakdxvbcSq2SVCWpjERFaUrf2OdJdkOyzniy7WtUnSavX6u1I5dGk5VSJBhtc/KyJjdJ0d5kJB0wpWiiArcFro8LcT5g3t7x4NUN42nPVI5MoyMER50mhsHjvUzmXViwpogyWL2vZGUQw+nV2dVaNOgzeCtbxxip0jTqkHMy5AoEtfddV96zxCjrhej5Vxo3uPYAzjsdvOftOldCnQAYNtPUeb09uDei2tMSmkEDwFpVX6o9FGM6wm+MUQls1ye+Q+2oU9VgHNPkMxFksKzc1XMk31hLzILuOe/UAKjxauieuAY208B2GnrSkHPmcDiKU3AWZ1xXVTnOM95bxhC4upi0FUr2YYziSI0mKZN3mCq6/5m6ymQayxJjR3dlfk5miQtTGCm1yJRgXSNrDdM0ycA0F8htOGbVORdVpCkHH3oANgTX5Z9LMaRcZEKxOrNSKiEESqksOj3aWMOgwVatlZIy3jt19GbtdUDmFKQslcSkajFNEa49q6KIpOxv3bNKYWnJ5qo+V7i8vMA5x3a7W0GkAknPgbeGzTjo7J7EorNHdrtLRLK7klOm8cYl8ZBzPC+RNq+nUvswvxZM1Vpx3vdqWcm5I9jDOBAGmXtUYpbgxUrw3BR5ShZVuValbMlJbU76LFFB16U57hYUNdpYq0bUUnWuQhZZXgUZYkxdgc270J3bEBwxLcQYqUgFxHvHOC49aNpMG5wXFbBSNj1hPM2LUHeDnINUZVp2KpngHEHnqbSkOmri76ylyX43BLehpa3aKINI6SixFc1xkZvNq1LV+d9Tjv3zbJVzEnyQeSiIwpXzUgXdThOuChXDD5Y5JeYlsr+bCWHX5X6lOowML+7XmbrUqzOWYZQkeRoGAW6QipP1MqPI+UCuSRPIzDQGDLDk2IevepexeN1TAae9AiVHlWs3WCd7X57PpOer4tyA0zON9X0uVS5GlZ4yIg0ryZJXu0w1GOuhS7lXfc5KDzKJUmo/zxhwyXf0HONXsCe3PawVd29wFsZpXOlbSDXRAGEYVO65KrCjib91WJux1TIEp4F+o5UVcmMaGe3/SprIWUOumWANk3fsplF6aykyPLEFZ3qvtUCpiZQiS0ycotjwUgpTkBkqthpyihrsGgmK1ZqllLp8QM5Svaq5ELzDOYNzUJIMHA5DZVkWrSpLMlJ6ML0m+3FZur0MwfffZY3pCphWwUKxP815S+xgrcUH8elJBz5utluckyGY8yJ0HmuMJE65qGrXGu1kHQxsrCGmqAOAE9bqbJYiyUfb487YrkhXrVAJjfMCnJQisdaSVhpnS7pK5r1vHdheXjJcXTJtL5iGkYfjlkanpvfyrJWe1vPXznwtIhVvgaZiuNLP1zh9DdzrCsjSwEvxJbQ+K31fp41p3EIDApwjW9v7Np0xbMZApnKaKx+9PfDFfqE+mHj09JL3pwe47SXsb3W/g/OiSnc4LUQjAPQPdxfkmnEenj3ZsrkaMKMVsOK8Z6TpDlP1ttr31AGeSeCrdrTu4UbH1LVxHjNseHz1gtP+DfPtwEef/wRz/Ip6inzTr288UXFVkBU2I9tpAmRDzPPM54cjH3/+hZbwjFII1onsVrl7MtVTUBSnqGUskhh4nXXgnYPgCeOGMG6Z54WnlyPff37J/+E/+7s8evyUYfuQB1cPaQOJvvrqC6wfmfwk02MtVFXOKJogZbPy80upJArJ1T7ZVkqClbgUToeZuzdvoGaC93jl+2PaZHe437zU0Bz5V9b/LVUmjJtqqU6C6XYYam+C0gF3xmKKkw1YK0Z7XQpQjGW72VC9x2bDUwrb+cA23nJ5tWMIXoLJknHWcXG5ITx6ICjhOFFVGtYahJpVMlQJlAByjlAqzli2m62eWYnuhmHAWkOcF4bBdyfREBahhOxVm792mkyclx5w2WZYQBB3NTKneVHKjmO33RGjUFWWeaEoP/xyt+vrXEuWIMuc9agoglC1bi08z/askOqBFSdcqjidGBON7mXa2a6VVOLqmKaxy7HG2GhAhhiX3qPgvScEQWO9t3hrcEbL92rQxtu7jlhNKi+IgXmZCd4zjgND8H29vQ+kKAGStU7eEzyccWxl20iQEDt1Bu4OJ6IGpMMQNIC1LMuadF9cbIW+nAvzMWrS6jFGkHzrZdggaoyDX2lPS5K1Kwi1qyWSIQSxBUsgLo1OJlWaUgqxooMPXR+YJ+sgyFOjgEWtUpRSGYaBNnul9fBYI42Hbf4FrWdFg3VBDZNSZaog+kWSjuPxSFD6RHCGzRCoFO5u9xQRQ2c7bkgpUmphCEHPp/ynaFA1DkM/+taAc7I+c4wUDbY7LcgawrDVakntjlXchqEWozMztLrphJvdEH85m+tMpE6Rcb475j5zyFqC2k9nXa+MgVQeYpLgIisCa62l6OTqqsFtyZmaZYjdMIxCB3IrZeX6+i1tpon3FkuBnCk5EcJACCPeeGKMnPYH/DhqYJIpVlHhailt5kLJnJYo9Lp2rtWGynyj0qmrMgPFMIRBAA9nyTn2QXgpRZ28nRjHqVeZYkr999VSsAa8EZ65MRYbHNah91jYTKNWjzz1OFOywbrS96KAXRooggxhNZKgDEPoe9PaJukMy5Kp1eCKYwybTtVMOXZJV28H2SM5s8wiYTsOI2by+pzXs4/3uBCE8tfQ3mo4HBOt+VCqv7IG02ixKl1fi4FBkViryXUplBRFytkIgt2SFK9JnLWGlCLGJJ2nUsUfWIuZDDEt4lesDJkFOJ4W9R8OY2d8sAyD5+HjK9pMppozeZEA2WC5PZw4LQu1WJwPknSXzGgtI5VxGoVGbiAuC8Moc9mGwQuynyrHw9KT+pITm2FgGiVuCfNAmE9yXvVsheB1TzmcRyqfY8Etaz/S1W5kMwXGoVEIxTQs80LJSncOnmwMicrp9kRJlZoFtAnBEoL44GGcmKaJw35mXiLLLJXLBoCUIoNiQwicTiel7xbZX1ZAYHk+jUbbAm+0MiHy643F4Jyj5NQB0e12J2CC930oZK2SOMWUOC0zKYpNLsqkMEb60mb9usRsgyTfSv11zjONI94L6BGz0AALhpzh9Zsb9ocj1/tbrLfSy2Isx8MsdtNZHr14n3F3Qdjt+jyhuRSJh6zBYYmmySufiSVUoRK2V9VKusPIVPsEwSIVPU1H1mjsfnWGolWJVkbpgOhawZdECfIyQ5LxGFhP0sTcUhQYcbiNp7qBBPx/fvJr8hcTt6Phb5kBh8NjWE8uxGq4uz1xmDPTVLhIM1tb2XzgCFuP2XqNE3XGVbvQ1hPEmngIjUPT53r+tZa4ZYh6cxtLxLDPlddvbjGm4HcXfO/3/wrvffoJLz79jG/69c1Tv8qZskgL7qzBhIB1BVcUvWlItbXSoHeWm5tquwpfNYLiDlUQLhnAhXLUZQNjLMe053Jzyfc/fI/vfus9rh48xg07rh4+5PZw5MtXJ/wwYcOoZcdW7stnszCKOlhzr8k31zYcqRKjTHPPSbjUa9+GZqMtEG7oDev+lQqC681cUfXua60YZ3Sq9tnmN6zNyEr3kMpD1f2mSlBayjEUXC3UIkG09Y5AYLJiyK1xXGymvgH3hwO53GKNYZy2jOOOcRi53G4YvccokiixnTzMok58GsdeHi1FEjUJtOV7zrtuJK0VBAUD45jog60qZOf6NPqWsFQMc4pQUG6t6fMe2kBIqyXylhAK/1mRTKUatMC/6dafN8cLGiiLHFNrgFz1jCr3K2C98brKwCurk7Rsp2uYvgbS3yNBLUaqSkEpRFaNQxNfkCpGlYQBNKBq6yEy3M5KEOisUeQYvLXY4HufgzGNx63m5yxIogrfHD030h8hW7Vz/Y3sp0YDc/68Ybl2O1fR/ggaxU6CaYOg2rlIpSfl0ikIHaBpCLYGwY3O0JArY1fxiKqotl4YQadGl5IxMepUZh1EqWpQkojqkKuidERjVtAIdVjazG6toN3eWZYsVYE2oFQabOV+MRL4pCIBXEFnBaiRaoifdTIIzWi1zenvcw1k0OdSWvJQ11k7BnQqtvL5W2+JWQedOtuOem0CWP33nw9PbMF3Q6N7BbAHq5Js0GQ6FXEVGm2rXsr7KFV7NYzatErTYPI6lNd5SVjbXpqmkTYfwlgJqk0pPHr4iCfvfYun771POR65fvOGr1694ouXX0rw0J4lpqPGuWRyyWob5Cy6szOHkyRNKmrSMyIJje9BisFpVQrGMWjPRdGquj2rgHhJLhAKzxC8zD9RQ26MgHBB77n1uIUwkAsEn7FeaTcWbJa9bmmDQ2sPmlpfwBAC2RWhQQ+WUqTnoNGerAWPpVoIQQCJkjNxsRTjNOCX4LYlpKlN4bYOH/QeWc+hrLPMqWqbqCI2pYOstVlB1vdZiwmhJ/vJ5F5p0e61/t/gpY/JayWw2expcJKwOSv0sqyAkPpjSUTllzpvO+Oh1IL3ovQ0z5JUthkgbeL54B1F7VX/EL32BogMYRD6qKuUohXKdk5sQ/iTVh0dY7AwmH59LXR13jDUSsyVdDOTkwR6wTm8tXhncN4yhoFxGPFOk+QYOaWFWBJLiiSTibVSBLUieMduEzB2VUmzVtaxtAqR07ikNN8ilK2UpVfLWov3lmFwWnFWAMU6rHWdctrWpJ0tA8QINhdcqR0UNmjPFRVqg+5YQXn1o1avbxgc01aqKKUqzcsKlVtYFzLhvhSIKbIcEofjgXmJHI8Lx5PQfLebDclIj+JxlsTUGMMYtqBViRQjwTqqMWQjsUkt4uNaHFX7Jdbuf+RLVu9J/F7OCnzowF/1GGskcObLTP+f9nHtM03vfWliFBiDKRmTFtAqW6qyZ6sxFOcx1apNz3gM47ABGwQYP82YnLFUiilgMtUYlpyIGWI22ENi5yphsIwPd9hNEJByaYN416hGbqU/vHbg1ZnUHh/eswMlSVxuEpRCniOng+U6GapZGHzi954943t3Rz64O/BNv775RIWerK0P1RiMs+Ac91uTzL21qrrzzzcBCP3JYNYyppHFNKo8UrEUlT5+7+ljnj15wsXFFZmBi+2WJUZSSbgwYMOAtZ6V0V3X52iMclmtSv+igVjtnMmkFI1SsgxPNFYEgNvJpUiWsvKnOG84FI64BDgpSzO9MQZTpQxpSpVmdAPGSVdIpzFpglJ7dU4VjpRrKA1UOoCpCPLgrGeyY69YTIMkLblk9sdbDsc7cin4w5HLi0zZ7LgYB8ZBgpCqTl7QX98Vo4SaoXzXLIi5oO4ydLP1fjRnbq2TqsAgc2dyzoJUGUsY7NpAaDXoiQhylKvepzoJRUlMy1G1nyPlhDcOo9S9ogu1qiIpsqSBWx+WV7VBWcvQ5EyhdEd4foZ7ZNiSbCPRfu+hMc0uyedbZ3BOHLS34EzBdKTa0Wk8JROC0wRAAmehy4nDaxdhlG7UmgKdtdhgmMsC2vvTVGo6qqp/T5qoOGfVCNfunOR9muBmQW6tHNf1XKLpuE4jpyra3Ds7NUhKwtuuFS3vrwFUq0J1YYW6csvbutZ2HgsYr1QlZGhYLVZpZVnpj/SEvieIqp7TB6XatRGsO1g9lz3hNXr/VaZ0OxqIAhhJ/oZpwEQBK2qqPfGGKjRgtCdIkyRbVU3KGIJ13dZV51C6PTFFWpN9C1yNFaqjkYMvjaRWk1UDlawMhHVftDWVxM319WgBXOdbn/0pRtbY6rVB7c8nK7XK0JJZd7aGtSe8QuuUJv2cUj8TQ/CUKnaxquMztXB1dcUH3/kO3/tLv085HHj52WcM48gXr14KUm5XAYvea6J/rHPdpvbqpxWphKzDDFOW9wUf1CeLJWi2xVoJ7KSCoYjmOQigIJCzQmWchsA8S9AiBJ6iCeP5waFTW71zHUCzjZJE662TJm1jVuqpQfrkbCkszhEC0iSule1mS8T+OqwTsCOZNn0cfZ/I2Tcb1AJ4H+SaWmLU/A8gdF59vs22ghYfu0PUxvBqhExmtKpqbRdMyTRfXAXZ1n2Pru/gfcfdrINh0Eq7t9LfsUi1qw2SbBLPkuSCUaS31kwbLir7dMW4i1bfjfHd/tFBmnbPpgNBFml0D6kJneR+nlsztQAOAj457zQIN73J3gUFLArc3CaqUSqWMQos6f2Ogd12y+NHT8k5My8LL9+84jgfxUtNA4spLAoaBe/YDEGqWBVJ0g19n3prO4UzV1G6c94xWINNSQGKohS/oQN1MWe8VmGDH7TvSfaY7QBJEZEDtfaWFbyqSnsupXbQvYF5Mn/E4rwhBMe0CQzjFmN03tuZDZaxDDIb5LRI9ea0zNzc3nA8nri7O2FdwIfAZrNjH2epdJ+OxJhxzjMa2/11iVFANWsliFdWTjlLHqSFtoF4us/UcbQkjlK1d1aAlXXgpT0/6s116KveH8jbLOlZzGB0b4tNT5i0YHKiYMnGUKrFaiZlMZgq/nUzTtr3WkmnWVgiplJN6T0uMRdiMaRisTlhNgY/eMLDHWYM7XCcJRzt3tvfzv6nvadoZaXcT1ZMToDDWGnQj8eF403mzlTsUPHB8MHlYz7YXfPBMPJNv/4CBj7es+FnGeiae9ezEWj34kCMOvEzJKeBI6hzaE6d9QOaMU0ZThHsuKPYgeOp4I6L9K+YwBBGbAgEv3K616vUxnpFDooaa1srTg1GzDJ9FdcoJPLLjcolln6/Gkyq82jaES3pyUhQKJROgzdt0rn8O+t9UsURnEvktTTPaCXF6HW2jL9m5WnHhRAsl2Hiw+0Fh3kmxoXXr1/z8PKCy8sLfvd3vsfbm7dc397wq19/xMtXn/PaOm7fXPDwwRXbzYYHVxdsthvGYWCz2YjDtRIELfNCSkn7G7TEWQqn0yJGeT4RghhHKe1bRbUCwanilc8qKiBIfl4WpTkkpTHIfTcaVUv2W/OboZV3jQZ09h4nUxSNlPtvtBcgF+aT8Lmtc9KAmXLfdQ2d7r1HtHhXnm4s4lAlCF33Um7IdslYWxjHwGgD8TizXxZyjDx4+Ijv/OD7fPj97/PZxx/z6uWXvPrqmu1G+rasqVhTetCXUyQXQS6998qz14nSnRqic1FM6Y661iLXqQFaUQdUqwgoUJU7X3KvgkRtuN9tBkavJt1UnDOkVDkt0s8ERhR2FlWKQhKhmMQR53K2judOKiVSTsTlLEBvQVSFQtFeCeWce+mxySXRnIr8kWvztlUzlfeuPHDnvPR/tcSs0RagPyvfQIFciClKBaMKL7zFodKUr5OBayZbCVqtrfjgJRilkINkHs7oMC6kmiL2SxTSrEDpeG+6wIAzDc3UNSjtXsTBybGouifOpIg1WV8TlKoUJak01CKzmc4lqoPzirZHcj3rBbOhV3faH5A+uZxkPX1Lqim6TvJ8xlHpjEXsV1LqmtAe14netlalm1nGzcT24QO4fMju+Qs++L3f47AsfPzRr/ni88/YuYt+zqxBefvu3rO3xuAwuCqJx+A922kiqjKVMYbD8dgTekPVEQ8S5MYYmU8z1qYulBCG0D1Bo9NF3a9Fk62cpc8rBc/xNOO9Z9QekyVmQWJBkNlSevI2DJ4QJjCVnBac95JoOEdOIgSAYtaN+tyRa2NxXqoMzqK9V1ZoR6bJW9eeYFRtwm6+rZYiFc+G7KJiBqVNPnfa51GV9kYHOlqQZTUBEiutdcQWlDsZQttQeWsN47STZKKqkpVWYECCVONEOSqXSCqLJAAFUiqcFuHZC/Vf92XOnE4nPB6Dk1EGSA+WGaRXMSUBEG2nNZqe6Mo6iELY/u6IH8TupxwBowi/7XSf5TSrEAaMbqPiG0qxRKqdyykzL4l5EXtWFcCzthKCYRwcS5xZFs8SNvzoP/prbJ++wO4u+a//n/8P3rz6jOPdW/7gH/8nxFS5vT3xy5/8lLwcMXlmHEfmlMlLZJoGxhBIqbCcZDac1T4u51pFRfro4hIpNTOOA9vdRKM1uiUyTiNOKyqliEhDzlkqVcWSswUEYDydFqqusffSW9jsrrGGwY0M01aq5noNzovi23a7xYdALoV5kT6pZVm4vr7lVhMS6TG+4XQ6cTju5TpCYHdxyYsX7+G857AkPv/kFYfjiZoLu82GEEah9QHoWIdE0h4Xg1MQoKqAiTFCl8p5BSUMolqXc1RAUwD2XJL2qkms3pMNYxUkfPdl7v2tj58p6AZWwRILGysVtXq4w5iX1HGLDQM4qEkZEMOk4G3F+MrpdOJ2OXBcFi6LMH+ckap+zoYYLXOJzBQuDVxeXvDg2QU8eSAyzksSY3T+qmcX3FXQJDmjlA4MUKrMXmnrkDOQwUoF9dUXL/nZz284fOc7/K2//df4u3/99/hrJhN/9mfc/emfMv3GWv2Hvf5CKiryaoizPr17IFTLxc9iStNK+/fXUn7O9H9XDYwEkZUvNneUc+E0RyoOjMPYsxTICB/TtXKm6d/pv1MMtO3ocG+Y1kGJray+xNSDwzWDMGf/7OmEJqy1/46iWWtRFB9UMSSrapItZCN5r6DC6/3RQNSW7QOwKlcI4l36nxbgOApTELUjapLy8/HI6XhkHAYeXl6xvHjB4Xgiq3N+e3PN3f6W69u3PLi8YLvZcHlxwWYaGXwQpAyD9wHvB5q6UUwJm8WZVe1bEMnY2Nc7x8gQQkdGU15UtUnpWhpElSzOc4lZGokRrn9KrbGzyTJaRY+UqpQSTa61qYyAqsUYgyFziguOgkEQx6ZkwtmeXcu/+gzr6sSFgl8xwauCmlmDx1qkB6UkUsw8enAlz6pUdheXPH3vQ55/+3fI88zpsOerV19CTdQiyiZJaUilZmJaOsKZc+5JlXfybKMi69Y6Rcb6Zl43pxF1rRaoD9of1CgAtUo53syz9DYMrleHpLIilKuYEhipgrVyeauC9B6JanCt8tPoPy2g0TJYSYamUlFNm1vTzkmlGEM2cu8NIWyqaY3mU+sqz0s9U3kBnIHBK93HCL++5Ba8Z0kw1RZYa+7RoEopndtecyGpMlBKqTtroxXdrp5S11OPBsqCRspXSy2KDrfrlT+deqQJW9HrW3JL1ItIjCoQ0vo+zjalAjVm/WeVQLdSz2wc+ixUWUxRd1POAICekIvDL5S+53PNPVEarO034OxKY+2ovQWqo/Q5IiLGEaxlv7/j+vVXvP38Cx48foYNHr9xvHjvPd6+ec2nOct7tSkfK0ldqXA6zmCE/hnU9piG9qnvsIps1VrxriWEQNW+KifJUgMOc2oqc1Y5+JoAuwFDJRdt5NUs1xpVsKpor0SheEX3a1aARRWLVFVPehpUodBKIE+VJ2Trup9jTNSq1WCtEAiNSZKWRhFsHqtVA2s7h3oOzofFWrOqwbUNcj6CpXu+XnGTwK+iFN/mw2qluDMKZ/t1pSks0SvhrXpaSqN5amJthQrVqlh2sBQGMIb5lOkdAUq3LI1pgMM4aRD3JmBxxLkISOH0871Uo3M6mzPVATwFDRX865U4VYhqx9dWr7Qog5vgeFyUqiXAmVsk2ZLkNaPTBJR6JdUJZ2G7ndhuJ6ZNgKPs28P+FS9fveHF5TMePLniW9/+HtMYuHmzwbrAg4cPePLtSx4+f8Hbzz/lq88+4vb2LSXLuXNWSWcVihc7apxUDqzOhCoaYLZqfqVqj2XtAFpOkWIzOavNLlnjmSgVO+M7KCogjyjChRC0stAI4EYoS8YJe8JapXoLUFZq5Xg6siwLd/sDS1w4Hk+8vb7h+u0187IwL5HTIjHBdrtl2kyEYWCz3VJq4rg/8NX1LTlFgreEaWL0k4CLXpQiRVnM9HNvkqFaocpiq/pk6TttlfqYcrdZpaA03NKFWtYpO6v7PPejv+3VKtBnP6TvF0BzCA5bqwA4p4MW/jPFQXaSmJhxkvNdC3FZSCXdGxkgH2lJBWKuzKlSc8XXysbDuPWEyxFGJxXP3ESN7qdY56HBWkU5swNFQb9aJVEpFVKVcqktEBdKihQy33nxjO8/f8Z3Hl/Bf/OvKb/+NfnzV791nf6Hvr75ROWsSrGqHUEbCCboqazU/bJa1aBE1/AskWj/XBMVrYGYZlgVfc5VExUJiFYlEd2wVoxR5+SfGXBxcI0fT1eROVd2y1X4knNMxLyiWf0O2mbtcUPjiPdF6MFOruuBaEOGMMisFCqlKzeZ/pkNeW5BVW3mvdnmosG1/tcidBFvwHqvZeCBPM/MpxP7uzsuLi/YThuePXnC3X7P8XTi7nbPcT4K8k7leDyw3W44zicuNlumYeRis2EYRpxWS5o6D1UoaOcSwqUKutgQzhRF7nYIYJ3tkpJGqU7OCu0pZzUgeZaKhpHESNa6irqJooLTOCKOp1Cr7YlK70EyQqnK5vyZ04OHIlmkevG2CRtFQ21ObZKnZ+VwJw6z8YmLUo9E+StRUuXB1SXTOBHCwDBsePL8fR4+/xbx7Ze8/uol3jlRiFGFGrEbEkRl7WNqr5ySSOLWlRbovdNehhYcys6QDSk/fC6FO6j0bWtiBxiMNJQai3xfLbUkKoLgtORtTdiKsg4rbV5HC9JbL4Y4T6WpWGGwZ2vuBUU9oOmyiVBtRkTX5HmkXHT2g9CT6IGbKiXdQ4yLzPVwal8ahU+HnRqriLQ2Bae0nuXW5yEBYwZd/pSi4t3r+2rRQFHPrq46bTAgqhIkD1QqsHKv8v2m5NUH1jUbVBtNLuOtkwoba8PuOeSzGh9NlKrQA1rCJJdWe+BYdb0aYJLeQdwaRdS2pEdBFWtsR2NbEltqow/qumuVUSi+st+sXZv3j8cjd2+vuX31iqsHT2CQgOvhw0cimdve7z3DKP2IpYo89ek46++Q/hNq7RLItOvQgE3QVKV51qoqvUqd8aH7hdNpoQ1LTGdiE3KWCzWtHr3Zmbb6QoUREZTzBtQ2MylGlRTGr3ZZ/VTRnrKMIUUBHmJMWBfUjpceLFYdVFerzrDQPdcosLXBv8aeQbrtPjQxMg0YQINbc5bE6s/XRgvU5677G9Qfdj+qdrAiMxtMo9E4VeuU/qeiku9GNqJwKIyn8cB8cBREFlm2jGSaJpt+FmUmjFxTCJ5gJVHJcVHQTVuWqySuJeceLMo5lP65zj1DZ/A4TVQMneJTq1M6o8d6R4yZZY4S3OdEMgKEJK1Ah16RXMUmnLWM4yhDqIOn1A2n04HDceHt9R1Xp8hDE3jxrQ/wruItzPPC5bMtz7/zXd779nf55Kc70rznqzevBPDSftpqxITY3rdndN9p9T+rMlvNGmdklqXq9xt0Ubo/q7YqJaxAEQDQe+1DMZrUB08YAuMwiux18zFGG9+x+CDr5iwsi8wuOs0zx9OB4/HI9fU1+8OBw+HE25sb9nf7PmPHOMc4jlxdXXL14AFhCHgfePXVS25u73j9+jV+CIxhYLfd4k3AWE9RqppUzHTvFEg1Ua3DubXi3ARLssYhKWWMrd02ZhrFNPVq4jtmtf/tPLbrUe4afpHPfIFmdDQ6b/Aeo0IFOc4CqlJIzpJ926eK81TIy0I2Vaut3ToDllxgSZU5SyIRSmU7Woatw18G8DqvSyska5h6dm/17L8tKXknaamSyUEGkysmFqrJsCxQE94b3nvxnA8eX/FsdJx++ufkjz6ifnXNN/36xhOVnkb0AE9QmXV4UDOyqxFc/6tNvvJB+pLQ0OpDrz3JkEyyUsm1MAZpHjrFSJJTIGVy1kDTONtR1/Mrrj1JMeuuU4chqIxk6bVWTnHmeDqxzIv2ikjJ/t4mQAyLhh7ycWpbWutK236mgCuyybG5T0TuTMJ8lso1tL9DWnSKWjsbMqirkJaMvwhcbke+9fQBr97ecJiT8LS3Mijs7VsxHM45pjHwYLPh0cWO+vQJh+OR42nm7du3HOaZu+ORl1+9kQZN59hOGx4/esTlxY6njx9LYGitSsOuJedlWVQyNPWANOfMaT5xPB3XQE1gEYZxZByGrs5SSsUPs+4puX3vF0Gc69mTrFJVMMZJM29pSi22Gx9nLTUJJWGYAkMIoh0PkAzGKtrcFFVC6I2grnGnjSSWRfn83jp1TDojJDlyyVxdbiEvmJIYhoHvfv+HfO8Hv0sq4EKAu9c8++Db7A9Hbm9u+cmP/5RxGri4vJC+p1KEdpJbgGPP0G/hbDfbIsJwEiR6L02MEmQK2puyGmgNbrC298xtpm1XnjJGnFw1kDLqAKUZz9nKZnBYF1TEoSnzaV+BWdtBjNoBY40aYAOmSMLsDIxO5VQVLV+kWmEQJSCjvQW1zYGwjmHQeQNkyFbz9aLTwE2fJZBzYl6OmLIQnCd4z+l46IPgrHXgPCVZovKBsaY74IrQYlDqjrNiv0pplQpIBWqUwLYNchN4VWhnxlbKku7bklSoqvCUtLJe5iJqcM6JTHNL3TTxKzlhTJX7CFYEBJCgdV1ptBG0dFDE2JY0yHNoXUBiB41WJOULMZeeKBlDn6nUkkAQqgtINWMah953lVSjX36/VgScIJitUpRL7j02xoncrwsOthN4T0mJzz7/jJuba1rMba0lDILkzjGSTjO5ZLXDRoZs6vUaRQBLs7ZVQA+nakbS62B7EuW1h8RYrzLGEgG2ijm0tdN5KjTBDgU+KNSS2Gwm2swfZzxuDAzThrfXt5SyUGthGEQZrEmny0yIJEMNK9gqNNWcJCg2PvemY0ks5RlZW7FFANIlyrUeTwuzzrYYh5FpHDAG5riIYpuzXOy2omaWRZBg1GGd9/fQCjRQVttXSyWV1AEJp8G916ptrSpg0qo2tg2urVTvKEn2o0hPZ6op2GwZy0CogeqkolVSFXU17ynWshiR4A3esZlGob5maXz3w0CwgZwqlCwNytaRVba69YJKcGqwdug0ZRAQaBimfs/Be7JVZcbgtJIqsvWbrfiTGGOX6N3uNhLuV2lobiqVt8F1ZshpOfHm+jUpJ/7h/+Sf8Df+zrd58PR9QnVM40B9/RkX7z1nLidub9/wX/+z/4of/ugtox158P0fMl5ecfn4EfHHSeyu80iFSfzBolUIAXCSqkfZ3reXlRKMno8Uow67zNjQ7LzQ70RdccCqdDqIepsPjs3Fhu12RwiBYRiZxo2usWF/OBJTpsTM4XjUSmLm7k77TG4P3NzdMM8nDoeDzPrKmSVlxnFie7HlwaMrtpsJ5wLOjcSYOe2PvL3+gtdv3xBzZBgsj548YAgTgxkoSWb3JCBGUQjEOnIScCZTYNDE2FRiWcjFYb0jZZnFNC9znyFnjSOWqgkGUIXaWlqjezsffP3LVrE/uWZuT7PIlOfMbhoYgxfJ8QqmGh3QKbHvYCHEmZoj2cB+siw+UGrG2YohU3LUiteJlGcFcQdmAnNM7OfMIRW2sXJRLY8vt0xPJngcZHZKq4S0CgkNUFjjpX6Q+x9NUlTVkVKkVzIDc6bGBWKh3txy6Q0fPnvAj374XR6dDpz+8L9h/uf/JfWT1/jyzXeU/MVVVPp/lKqFaZUwevpwRlnoTvdsg7Sfb0ilYgg0kERjV6FyBJFnPB5PHJfItiidRQGIhlBJVlzPfq9WJe49w9aM3DWIOt81abNpaYhx+5z6boKlv/Ps+y0IFEexvi+XQrFGqBgy6ensY1qme7ZC5Z2j09Aw0M12v79iGEQuMdeiSi1riT4mnS2gaFQYJLi72G6YhoHgHPvDgWWJzPMihz0m5uWWJSVubm847PdstxumcWC32TAOU6dltSBoGFRWs1ZyzLSBUJ1KhdJMdFaFq6rK1Z6t7oBGeSvFKSe+rZEOkjKGMCjvvlThhdZG2Wl7yWGCUY1/S3HivK3Sh0pxfYqxVZWePt/DGJX2lcA5eN/5/lmpHg2pK7lQUuKLL17y4NEznh9PbB89paTEfDzJfVrPk8dP+aVOh845C19eaTltP6JyylU32Trj5YyP3hKI/jPr3mjmdk14ZFvFuNDiVkFEIcWk4ghIz1PKytOX6d1USYgFxZYkPivlxBhl5hp68tnkclvCLo9VrUA1eFfE6TRtItNQVl3zNkRTA58YpTJSqqBysi7rWqWUWGaoPmuylvVZapN8FSpiMF5EPvTc1HOb1K5b/3i7Sv1CIWvgap3tZznn2hFm20Q26oruGiMNsm2dnLN6VoVaZkwLsqSPqzqLt/qzFLxKl5d6//y3HpWWIpaatTldgBmnJZCiCXYuqT+3UrIgraz0s1q0mtuRQemzmVV5ZggB7x3LMneb2voQ1udQOvCTUiQDj5495+rpcy6fv8frzz5hf3fL7ds3fPTLX/Dm9VekuDDPR6yrGFuYZysyqLP0mYEE6VV7ESQB0soUknDKcNUMmZ7Uy8OxxKVSVSI2FZkGD9Kn0yhJ7QxhNFjPGRE8Qe2PULWsEYlu7/09amKrvDjXpKLplC1o4iCmVyLFb5gua756QTk/XqljTdHOeYetsDGyC2tFZ2/INTrhDXeRgxqlsuEshNDOEaR0Tvcz1Go12Vy/ltVRtYnktiluOlmnJQstTQRFbPeV3VmjiR1nylpacVmWKP05SSfG689aY4hJKgN3+4POGqurDwVCCJBbH58o7WWtajdbJ9UzSZh7870mZ12kIZd+3oIPOHEsoEmMneS5iby8V6U3p3LPrd9R5L2TCtjMy8KiDfpvr6958PR9pmnEV4cfAtU53nz+OV9+/ClffPo5T5+9AOCjX/ySf/dnf8rp7i3Hm1dScSuF03xaBzVqwN/AyVJV6dL5PoOpAFhhYlSl0RnbKJOhK9wZ51UgwHcqnLOWnAUYajN3XPMDjR6VC3d3dxxPM4fjiXk5knMkpshhvxdK12lhWWahzDknYCEwlcp2d8m0mbi42kkilQr721v2+xPLEjkcjhhrGf3EMA1sxo1cd7FgRGnRYkiVXqnMQLWy6VwRG5xNUUGLKn2TdRWNyApCFwW5RfQD7dOqZ7HT/UiUegawF+kBLRXwlqfPngrIupm4ubnheDywv72TuUbOSxN8lnEHwzD2qnuajxgnYJXPUSip+hxrFX/sax/hKmpxJbGUTCoiob5xlt3liN8MMIqgS6tEnldLMT3ypjXhdBupSRdqk+7FrQpckJMAvXcHBrZc7iZ2wWC/ekn61U+pL78inhaSC3zTr2++otLBvjW5OK9qoMENnMX0ZzzaRk+o8hFnCc15cqGfo2KIzhidyl04nE6c5oVcKsMopeY246aXrvtrLatJ0LRuzIbRtetc5TK76aWpJ51dkv79DME8Rz+N6YFaS5Ko9IYuuefag5t+37Viin6t1ntroIvWnUAvBbdkBVSq0JNqJiI9HiUXEsKpzkBOER9Ee33wjjEMTINlHEYGPwglzNxxnCNLTRxOJ5Zl5tZZDvs7LrWP5eGDB+w2iTE0hS9BMMdx7NeZTKLRVFJKLEkSIEHpMiSDzUEPZ+ul0IWrFRsQxxgzTdmoJ8TGMGhjbClrCbhRiqgSDrcAp/HTwVCsULZyqbgqTlSoEqz6+c5ClOpDzoUwDDpFe/191iqlIyYJvpbIza0Y990wUlJmPpy4vbullsLDh4+4uLgiprmjuv0s1PO/rz0OqSQZTulXRSa1KTQDdLazexBsVQVG4y5yiZQsxrnz72vGpabMpdTEXPvaYeTk9EDeNmcmv03422f0Eg3eCitqjf4sqiFvNZHvqI8VuscqRS0JksiXFkVZq8hUwtm6qZhEqz7qny6Frr+hliQJa0sg6DfQz15Hi1Ue+P66yrl3KklcNVBtPQHWGnSguASQVgJPvWRdgpXX35LcRlUweGq1uKozTNDJ0hVqa+zszrQpQ2kiHbM0vdsGEMlzb2o20i/RKET0XjhTm3z3ytVutibrcFunNAFDkLkOTTXLDXqmpW8JBU6qJoW1ZHaXV1w+fsLuyTO++Df/mi8+/ojPPvmYzz/9hMN+jzUQY8SeoFZp9o6lyIDSlAFR9smIkIL3nuJk5gq4TtkCHUanTlgmz0tlKC2q4FgLyxIxxmPCOhwOVipuVaohtIqq0ItSzATtiwjBs8RF+vBSWROMs3PZPluW1ojfUrBMijX35dmlN0f2kMzuEIAl5dSHhDpviTlSlObmnFy7bQGbKkK06qvQ9qwqOUrQLvt2/ZkU1wcuCbiRPsqq83CswxlRvCu1wNwSEdvvsdkZY80ZmChB2TnlTJrfpdKbiwwcRhO1UuR7t/sD20HEbxq6J/7MUftQQwH4bKlKZRWKo/euzxlKun+aamYupf/bO4e3nuADtQiwIYmdww2emDI+iMyzMdqTMgSRNF9m6ixU2mqEybAs0qBtnOXNm9c8un7L08MBN100NQRuX77i7ctX3Ly95TsffpuUCq++/JI//rd/SCUSgsjVlyL9sM65Durk1gdVCrks4pMqMqdHbUpTZLMGVeSSwYLjOGhyIvLXqE10XUWvVcZ9lx5vzyPGqKIRkeubG/aHA7d3dxyPB1JaiGkRIFOTGaPiNkKF8xrzGXaXV4zjyLQdhZkSI2+vb7i9PXZa77iZGIaBzW5iGsYuImKdpyBKWUSluJuiQb3pKlmYKv3J2ts3LyKasILEVZPw0mM52Re1iy/04P4sJuzxF8JkWWqlGIsLIy++9S1ePHnM82dP+POf/5LPv/ySw91eKv7eUqyhVHmOhLEnPCVHTJxF1CPOLMZ2MB7ETDgcTuObWCVJiblQM3hjmYJjuhiwU6B615Ntc+b/2mf1eLVXVLR5fnUl916mfVuCM2quFHfAjxs224GhLNgvvyT/5KdwfUuKnpP9plvp/yIGPqp3qy337d6udEeqduse+GLMukbi6OWQtH74qs5aBiCqMfYDXaZzdDgqp8OJu9PMkjOXQdVqqhh+1GF7DdZWBeEq8sDF0KML2q+pYHKfxFqqoVjb0QpM6U7nfhakVrrqxQNNZd4gijWlNsS14FSxp1RLXjJYZJhYS1SQPqb+6T1LpnOxhbYRyXmm1EipmtkqFWTwDu+2eO9JOfPq7TXHRYYoBeXfLmmhHCshJkGShoEHVzsudhOXu4k5RmLKnOaFu9sblmXhcDxwPB4wxvBpCOw2WzbjyNXFpTTgbzcYq7KypVBzwSnf1TvHHMVxLaVwmE/SJ3E8Kg/Y4Yw4E0F9RFmp8eObTrxvjfRGRBWaQTp/hRDwxkGWwYJyhiVoT0WCFzHelawoatXJrtI824JfoQXFJE7Ehua4TpqcZPY5czzekdLM3/+7f4/v/+Xf59kPfkjdn1ju7rh9+5Z/9V/9Fzx/8YLv/uAH/M/+0/+Mn/3sx/zZn/w7jhwl2M5Z9gWKhNJ6ZKSx1/uBUefZOFUvaqivoOxO969lcGsDfQ/IraEgwzPnOXE4JP2sStg5fa9ltkIdqEpTabNBvPN6eqBqgO2dwwUZ4ppKlhGJXgZ8VUUcY8zMeo699YwtsWxKQdbgdG7KqvGvDaCI+lLKlVqkOiIVD1mjbCAPG8ZxIDjL4K3OM2l2Zk3++wwN73Apk2rV5kwnJX1QKVA9RprVuADRlrW6q1TWaRxkkCmGJS7k2Wgj/8Iw6uyd6Gki7XKQm2qS6898WRaaJC5GKiTOFTaDxRttSnZrI3+OWSaGK/JqYK1glUQpsqdNyTJgzAghjFp7pbVQ5bwhSk93SzyjvlYG56Svx1ulMzmleImSmZQIMlAYxo0kO0oJOy0HTvOMH0ec3wAj5ML1m9d8/MtfcLEd+dYPvsvjx0/49a8/5s3r13z25SsePHoA1pBN1QGbIt3rMSRr8SnhgiUEkXy2KQnAZOgUGBH7EMGGkjJzFBqpNZ7BD6gcWPc81opqGVXfPy9iyY1h8HLWSm3D/jwuWEqUfX17dyIW4Q/0YX89IGn9biPer0BBAw6WZZbBjaYlSyvdrkmCj+PIMEgj8bLMXExb8bPOq6S0zN1xqkrZfJ9O9KFNHx+ngbRkSmqN/FGSUOdYUhIwLhXCZiO9UaX1HRo2m6ErOi1zpA0K3O62NOUr5+xa9TcNnJDkYRgHfPCY4DktkXlZOCwLc2lDREXuO5fKm5s7zG6HHQeRaS+VEjOn46mDOK3ftA2hbDZdhHO8rq9UnkqpLEWa4WV9lQaFpcQsioYGnaOSqUV6jlJZOM3iz8dJVKemaWJZEktMamMlxgHDo4cPubjc8urLX/Grn/+Yf/p//7/xH/+n/wt+8KO/zLe//0MeP3jEsz94Svh7fx9zsSOfZuabW5xNfPrrn/Hpx7/kGCwJCaiHMIlCIJZMIlexExJL6XMdRxmErVUk6wxukHJs69HdbHaSzFuryqZZqZmiQ1/y2hvlvJVp91n6pw77I6fTwuF45M31Dcf5xP5woNRVaW8cJzajJBnjOAilNXisRdkbGRc8qSRevj7w5s0dh8OJ29s7nJfkaDtdSD+KF2aH0/NZbaGQiKlyd6gkI1I4xSLCC9VgqiNVkSgfGBhUrMQAWJE3L6VSkKROfKrGTg1s6vGVRujn8Zwqe1RjWAaHefwew9VDLp+/zz/5+3/A3/zBh/yPf/Bt/vDnH/HrL17x8cefSy8QhVNMHE+ZJRUOEW5zYb/MvPzyE+bPPqW8eYldDvjdA+q4ZQpbQqfv6hBWCjGfSIshL4YhWzYXns2lx1yqXP5cRTP7bMij0RhRb2y9n/bfWjEFeianoLoEuTJEs1oR/7Axs3z6FacHgTt2nH76J1z+yb/F//Efk+eRVCzf/BSVvwjql9I9alftWOP3XnjSGF5JxP0NrbHtXomqpXm6wJs28RVD1BkbxhgIAW9FFz0tC1URyhhzfyQtUXJmRbTa5woaXTVzBYulkvVXKz2pCorbZwmdoXD3XmdIJytGLBvC0OUdJZHVv6wTaGil7lqyJiJnuZBebaNN3UN5tcJDrdTcpHsNPshsk1wqeVk6lWmzEUnPNmW73V9GuNKs/aUA0lg3TVQqx+NMcIaofPFSpAcgxUiKC4ecyTFxPB4YxpHbw50MnHKW7bTyXaWMW1gLJpVaBFlFy7DFFoqtWJNxZm1obGpRxhiZuaEL1AfWIcHv+mr8XJnC3YK50VhsSspPlXkAror6lASSDcmXZxmqU5TKigJbzhRDlw8uuWJyFoM9aIBaMnWZqTkxDIEHTx7xo7/8l6m1cnu357sffpvH19c8fvw5r796CQZCGFXxSf4vhIHqKtlmSpXEaxwHSm5SxV4VugrWrvMfmsRwQ9azVk+MNZgiCVBRyoz3ns1mYrvdKjVIyvNZEdBR+3YanaglKtKkTH+ulYqtovFvraCbpkq/QMqFqsGGa98zhupct5PWN3RPqwFF9rwgpXKt8xIFHVTKj7EBay3TNLIZJ7yzBAdWm/7RqkQDS5yVZm7rHXVJMoMIaSRvZ7W/X89eqxJUq8mwsTJgEjRZ9J0GlbEUL3OGwqBJkXMrdbQUSmlIu/YelarDROW3GUWHQ9BEVNfcetcFDJwVeVBrZJ5UMYDNwsPWveOMJRehKdmcdaClZTMNpJxk7pJxDNYJvc+LbHfWifKtorjZbCSh6VXxNUhLmpikFMnaIH57c81pPpBy5NXnn/Lw8XOePHnK4w+/ww9KYRoGfvHTP+fy4orvfPf7PPrWd/j017/i1z/9KYf5oIBSQzfl/DnvetIoyoGq4NZAMge1xBUxdgHrAF/7TAdrLBUvsri5dMWoVmGwxolN0U5moWY5fT6OcZzkWTuZTu98wXlPTsh1qTCIgD2j8Nn19/ajA1KdUBsVwkCbFZJy6slsLXrfTlSWagWbs4peVa3eSQDlJxn+V3UthiFAVel2paF4F3BjoHpByDEi64oxmGWR826KSMobaRaXsyrX6EPAlsI0TVq1cIzD0JPEcQjaw6fUnJLu+SrpFROwJ6c2l0nupYCutbw/F+lvNFiKFQCvtJ6sUllFU3TGkbpCqUZIor1osllpPytViWqM9j4J6GFFg0cr8JKgLSlitBm/qA1qPq6oD7JKHzXGsKTE4STqicMwsXn2gGm84MWL5+y2G+lLSDM3N3ccjgey91zuLrjaXfKDv/43GS4uwMBHn/6KYkRC3wevmLpUVJ31hKF2e98G6zZp5kZhtt70a2t2tVC1atQqCWp3qjR0C45XOC4n5tPMMi+cjifubvYsy8IyRw7HoyhA1ip2Ngg1bpxG9Umj7HGtqlCkEpBy5BQFRD7OkePxxLIs4l9964WZerIlYi1WG9b1GjV3KDkjT07uFa0OSjFXlEazMZ3lIFQD03uJGqjZEpXzNVmZ9VWV79ZozlmL8QF/dYV//gHm8iFHN/DmtPD67sA8z0zDwJNHj9hMO4qR4Y77eeHmGLmbIy/vjiyxkpaFSyr1+o75OFNPM8Yd8FR2YcCkmRiP3JUj0RUmLPlkSYuhJMvWVHbesh0cNSESwzkCbU7gb75W6LZ5M8MqeVW63xEaNB2IEzqurFk5Ja7LWz47ZV5sLI+/eMlwSuwJWul7V53yP/z1F5Ko1HqeoDT5SKMVlEaxkqVUYZFuRNprTQFaIC+vaZCExAK3x1neaxw2eFE4yFm0xEvBey8Bb63dObQkxymv/X7TVHOIkjbkhhYjSUznIde6bgLTf1j/3iopgq40j2SqBIySBCnK1qoiTQpUf1vfOFWHQLImKv2X9ZJdM85niVetvZHKIEG5t55kJRCvRpC3zSTlV1FoySvvvzQFL0MpS+dP++AlgFXlHWe1p8J7YlpIMbK/3ROXSI6Ru9PM4XDAesft4Y4wjgzjCE1dxbSSflFVGTC18cQzCajVCSphpUKXaJUZUZaRpl2hyjRluXcxg77/2t9pDbWCLg1Gmg9r4r5QgVl/ViowYimdEUNgMZyWhTb00nmvXGkZKOfDSPAyXDPOJ5b9Hm88fhwIm4Ef/M4P+fLLl7z86jXT1QOuHj/lyZNnvPzyC5nRMGz0OchpGYdRHm+opCyzPAYNCowxGCc8ZOHRG+2jytoMuwbomt3JPff1ljK69ZbNdsM0ieBCSpkp04PWlqgEI2X2c8PXkDWh4xVcrYRx6MGhU6eyKZWoFIGWNJuWFLaDb9dn572TvoAqwXLIrUyfNJFXypQO/hrGgUH7q7ytUHI/K+IETf9cceieVGdJOo0RBEkdXBsWKEdL7jaXgu+Jijbio4M9NXCASsL0GS6CchuCX/nsorhVz3rG1vkVYqekCjIMgTH4ntCBVYpimwwucsvWWHnuxmCKzD+QoZPyec2J2LxWxbbTyJKjNF0XCUQH77DZyXyZGJln6Y1w3jNtt1LV0cfU5g3lGqlJellijCQd5ndzfUupEWMrr19+zpvPP+buyROe/O5fZjtNPLm64ONf/5rdxRUv3n+fbz97j4urK4iJn/zsx5Qmz62O1wDBh252vTY6C9d+rWCkqNVRVXtsybU5U2sxNhBTocwLWWeSGFRZzEuiIUpfTSFPQBRfIQwjPkjy6XzAhYobCh75vdZ7huD6DCmUbin9HhrYVk1UnJzxjoYbqzRB7e1oQJ+VmR8iEOCw7qz/TH2bVxqSoMRFpciF4upc0LUIQifzVYM12dvWC0ptTSJRGIcRay3JJgG+LAJ6+YAtVZM15dcHT60Z6wzb7YYUtYk/ZXJxOqNC9phgzKJeKLNPmhqm0qCtwdaVdpSyKrNZpTmV0iXHxYYppThJH5+1FpsaEFBEJVHtfZPkzTocNGtlNndQAqVNy39jih2sKDlTUiKykNPSQRTrZMBdAZH6nSVBePboEY8fP+fp0/d47/1vsdntqDlxWvZ8+cUnfPrpx+QCH377u2x+8CM++Et/FeMc8e6GX336ESCCLkOQhFHkzc2alISglEFNvpW+ZXWfG62stL3QaNKFNaFryaBEIVbEYrSH6HB34HQ8cbjbc3ez72sedeaYc46L7Y5hGpimgWEUtbNhHIhx7Q0VYAZiKuxPkSVl5ijVtDZsUxQxR8ZxpM0xEin5orRUrQ7W1cdkAOM0qYVas9BAa5VERa2GiDBpPKaWQ/ondeaYJpytL6Scx2EtwdZ4wjiHCQP+4gH+8XPq7iE3dze8ujvw5Ztrbm5voRS248iDh4/JiLLazWnBHmbMaea1eYudKy5ktqVy2n5Gur7BzEfccsJacOUS4ol5OXAoJ6KrlOpIiyVFS8mwMZVtsGyCE2p2zsgEebGX2s2rYNJZgaCFAP0v5l4UvLp0Q5viaipSxbeGEgu3h2tevrllT6Lc3BFSIVevjJ53EO5v4PUXoPq1UiSMbUG7LIZTvqTplLjW4CwGynVHrHEUaIGg9OByN41CL6tFy/JG6RueFMWA7A8Hovf4Fy8wH/0aaqakBUqC4qEI3YpW6quA0jeMIneSnAglQlSQpFROXSsq1FYu1LsppiNmre9G3lvXe1oBSA2K5Y8o/AiNzLT+mGrX0iWSMa+1grXR39CSqCKbNa/88rQsvP3qK05RUPhhHJUaJZ90sdsyDIHD/kApSKOys2AKFjFGLXifU8ZaT9B+oN1mo/0ngTZRuKTC4e7APMtzOM7CQ725vYXDHmMdX93c8ODqis00SWOuNvJZhDdbVey/ryW1I6tGJXtleGCrqIBPjtZzNA4DbcFro/hYq3LL+irSQ9BWMBU1pjl3NcuqajfOSiBdaxGJ6lI4paR68AsuZxnKlhG1DAMPHz4keEHpPv7oI3LMLMeF3/s7f495f8fdly/55U9/TK2GME4QNlw8eML773+bX//q14zjyMMHj1hS7HKf2+1Wk0e5jranhrFVS0yvqDgvmvgSOC5SKVIEWma8CLJ4PAmvGGynZbQmQ3vOPbcygDAMA95YXBWURRTG1iFzxgga3JTectbsVwjTGGuZpg0pN3pL0USiQV3toLTJ544hOGJSUYYwMG0qx9OJlCIp1m5HlmXRHL5AruTgGAehWjWznVJL6gzDOEoVrCG6RWyQDdrHUj3BabWnyftqEt2q5KkUsi0axLaGSbmXqJWFYVCKQamkeFLQQ38+Z0pW2xeElpjiLD1eITCNge00Sg9eT2ogWJkuLUFr7f1Wwzjg5llpiSKL6b1nt9vJALq4cFyiVFSMYzeNDCl2yo8zwmcXNNEL8aKKWprzQi0sCujMaRG7bAzGyOyqighRTJsNl5cPmaYLnj17xNMnD/n441/x61/8lI9//RH/y4ePmHY7Hn/nu/yP/u7fZxoGDqfIdnfBD/6jv8KHH37I/v/6f+Hly5e8vblh0mnHBsPl7oKmbNQU65y1UuHQPViy603uUgVvU+tFETDlLJUUDfpd0H1TiigiBUcYPcVEMSvVMnihOq7Ah8UYhx8GRuMoJrBENGltUuvSFxJGT5uJge6VlBKiVGgZB8WYitAbnQ0iVV9lro74IlQWv7LExHxaVAyhipoecDjNxBSxznGxu+iqhnKvAhZgPMbJc8WCH70CzhYfsiZ4cq6adLz0BImCkvOCcjewSZIg1+eUDcOI1wGjJWU5BznDMq/4tPpAg2Ect5RloebI/njE+VVavD0ripwTg2U+RuKSdEjvGlgV7VNxzpBim2Avdt05L1L4NbMsQs8VmWIxTbLHvVLnvAbXUrk1GHxr4FMb5p0gzcYW/OA5HBbujnuO855nL57xO7/zI/7jf/w/Z9heYPyAOZ4wIVCs4de//Iif/eRP+OUvfsz28iFg2F485Oo7P+Ly6jHf+u7vcPFn/y2lSKP+drNVCrDpyZl1Kkmvc+FSSh0fb4lwTxS0ryUtURJaHXrYJs3Paem6pcfTicPxyM3NjST7pUo8YWAaBwY/SIXQOvCW7W7CeYtTSmij1katPB3nmf1xIcbCKRaOswznjCnJfvEDzgkoFzTxajFfpc29Er/gnQADBcc+HXVmUcZlTU69WwccWjn/kuQ3kM70OgJV5ssZVXNtyoZdwEYp6ur98M7ipwmqpfiRxQ7cLJnoZuaUORZYNHLbHw68PczEt29IwJILbw+RmzlxM0c+eXvDPglYNZTIOA2Eqwdc8YBjWjjVys3hyPH2hv18xzJmSvKUariNcF0iicqH3rPdBMJuZK7CHLA1Y5YoQIZtASdf/+pHx6yEni43jo4CEfp4nTXFNZlsMsPNnqubmSsKoRhiMdykyk2t7M96v7+p118M9au2eGOlf9Va1TmaM+6TNs8ZnVVv3llRDa6GceprfZqXnukaFzp6UHKUJMkP/NGf/DnZe6aLHc8eXjGmzHh7xzCcCINnHAO52PtVDCMcXG+tBLEFyBos2ZXn7jEiZ1dbsyg9WWl0CIVa+z2A5LerSV0zdao4RynXShjQ1MRsKX0dZeJ1XSsmGni1KdGmap8NrWqjiJ2xDCGQSiWVSrXiXKFCTjoAzTEMQdCWujbmuaoNd/pcSlPQSA6DKA21wM0rrcs7R60bwhAYppHpdCJGQWxbfhZz4XSUfo7NNLGbNsL1zoXjfCTqTJEh+F7KlkMkgXZD95vMaqNKNEQfOLvm0v/ulFpkDHi3aJAtVQNpsFWpwlx60Nkm7zaZyzb4UJKUhAueUYP4nHRQU4xspwk7jIxj4Hg8cjieePXVV5RFELpxs+Xy4ophs2H38BHWOZYYudsf8WEihBHvAxVDNolsRN1FKjlg+jT6ngPQqF0t0DdFhBWMkYGWGOmSao3u4qjkuhvX2pBY5sgyxlU1ZV6kwmCd0jaUInmGxpazfdnom9Y5bUyWB1+tpfGEY4r6bLS83g6T0iFLkoZt2d/CKzfI9RyXJOp+p5Mm854weGKUwXnz8UjJSXtfJoJT2Q1F4xrSHnOWikjrWcuFTMZ4oW6VUnqRp9VQmy1rh9lgNJgTp+6wFCfCG3HRAM06mSNTKsfDospdqruvvXPGicRpLrVXOUsZGAYnA+YsZ3QrpQIZ6c0wpnaZZhBKoFHeObpmzQFLX1JVM5I7FSfnRNaZHQWlTpTW62RV+Sj0JKbWqqp1WpWyHusy1maMNTx/8T4ffPgdkhvY7TZMU+BW1QOtHRSskabbF+9/S5pGncOkjHUj4fIJF1ePuL69o97cMo6TNDhboZ/ZnhjrvjciK9tcyDhKIiwqgTpN3Qho1uiMMWUtPGtfm57vu7sDw+CZ8kCKuTNqp9GxDlps/s7jqooltH7FIuqF3jb3utok5xy5alBp1j3V6I31DKhrfNjSmnyLzKgoObPfH5hPs1CytDJYkYDrNDe0X2hfjV4mSotu9VlaXe8KlrpPWhO3V4CmzaBZq7JG7b/8zlUlScGqUjpboM2wEuChce1rp9m2Bua4ZOZZFKPGcVBVNZUwLwW8WxO5XHoS0kAKEHU5YxIpW0zwEuy2hnRfsEUOc1blO6GSStWhqapV9Rnd19JweBlC0EQ5fBgpSJXiZn/k7iBy/k5V4E6nE8fDERc2jMEhCjBALjx+9ATzOz/i2dPH2GHi6fP3efzkCdYaUc86HQGRXA9hwPuhAzBWZ21JldpqBUmra2eiHgKMlH6NpTE8KkITRNc+Z1KUsxxT5Ob2hjmKD5vGDYMfGP1Aib0+gXehN4nLLDOhTi1z6ueiJ0cpS09iVCoe9/1UG8jYEy8EEGxBpHNSCfUGnA+kYpiX0n1xUSXHft9Wqykp9f6cDn61KEz/nalYI4msUBC1t6pVMvsWqB2UFle1npNcstDFDF3eXkDQSiKzAEuuxCwsiJrFjjvpQMLYig8WMw08dAMXOXNKmWWe8XFmm2d2VsRAjqmw5Ao1421lO20x3pOdwz4YsDuHHRtguyrxrUrk95lAPSKVIFy+ZxrMVvtPGOOp1WOQcQHD80u+bTzWn3h0KvhsWbIoklUK9rzt7xt6/QXJE7dA2ij1oGmZQx+Nq9kbVZM5/bG+lFq5sAY24yRVg5I5nU5KX4Jp3AqSbyolCSfbh4H/75/+mKVULrcbHvyjf4gZpz6EyQdBy0gr6cvS0GZJVGoVkNcZQcqds3grh8Ubw6LP916QZtoxXuWU5TYaVkGzeH2ztwSDKo1KplSwq9oYgK3rIWnNs6a298jP92SrtiSlJS4SUA5DYElZjBaolDPa/2HAWXIIxJSlUa+VdmvFtEQBLW0vkWwLo/eaUBVS0h4IxCkO00AYAlss02mS6kcR1DnlzN3dnjlGTlFkPjdhkNkWOTMfZ07ziWJgmkZVvRFZUhBkrM16kBkfsk4yp0H7Geo62Ko7tNocqzwDQRpF2WaZoyBKxoBxlCzc6bjMvXxuujEsnOLCskRiKlw+uML5QqjarLlElnkWusFGqRE+MM8zX331muPdrSipTRsePHzI7sFDrp4+I6XEYb/n+uYG78U5GSN0llroFMmmXLXuQEE/jSYrfR/2BFODnSpUvl79o3ZELaXMfBKKn3C1o6gvWUHw5nmGKk3TSaVhfZs031C7LOjm+TobY2RWgp6PYovmx0V447Vgncy2MHrmG/0plyyJVbZki5aT5fffHWaOp5njPONdIKjDkwA0czwc9bMyYXCYKs5OANGVAteSZ++9DkyTJsSW/OWchZZjZdpyO3NtL8peMitCiCWZhM2GmAsxymRhXBX5zFIlQS+10+aMItE2Zw0cZA+1pC/nUZPwitVhp22tjG1BiwZripM4J8FDzkJ5y9qHljU4lPknMtsqpURMkSVGGT5M69GDklOnljmdoSEdTW0H0R1/GyBqVRL+yfPn/KXf/33coxdgKjme+PzjX5NTxnuZb9HKSg8fP2E+njidZtJxxo6e7DdMuwvCMIHOvxjCQPC+00OachlIpd5r9aDWSgjgVAGxqeCIrdbAJMvk7mYxc8w9+DgtC0tUNbce/IHzI8EYrXQowI7pVYW2KUqVxuTitK/FSi+SOwPt1kBo3Ust4G4f1HxE1upnNZVcxbYcj0fmecZgGBhpEsCpFOZjEnEBP+OcJ1QBwHILrGrRPSwBeVb6nsjfSrV6WWZqCJIcmkYjWoUlaOe7XVcpoitj5Kw2m9sUKEVhzva+wJwTKVdikkqP2E3545zuNSsqbrWCta6rD7Xz166h2ebcwRsjrAD9vTEtwtioQehter8g9HBjz1TF2uec+er2NIrGuNUYnA+UnIilcr3fc5xn5iXiR1HVvL275eUXX5Cz4UGxjEGHW5bKw4ePefTwCmt/SHaBabNjs72klszxuOftzVtKaTNNAm0wb6l1FY0520dtA8naNOn5lqC0Qa/NcNA/K+dCTIUUi8qAL+zvDtQiFL7L7ZbtZsvF9pI4LwLEJQGMjDPaw6UqbVFEQASwkh66nIsquxUFBkpnN9hKnyLfRA+69O9ZPCW0dctghJYaU+WuLh1IoVP4z5IVChnpa5KkSMAIaL2MkjjLuij1WamNjQbWsKgW44lvUx9aG5WuqcSt+7FLzGp8lZGh7lltCBUGa1l0fzlrCN7hhsDVsMVWw5wyN4cvmGrmKYULJ2IPxzkzZ0m3goFpDFRrWIxhuNrgdgYzCt1Y/IdWlOrah1LXbcDqTMTgr7OVzu4Hq+/xVGdgqAybLd92A4/dQPpkj8mVUxFKPk5k9L/p11+APLHpgwnXMMlo37w4uSw1X61K1Y4S9+WpQsGSgFvlCHMi58hxyTIQ0Vrm/UGqIN7y5OoSnCNWy599/AV//qtP+af/xT/j//izX/Ct9wWxePXmGuc9+3mhzYVAD793jsGLFGSMif3hhB893j8khCdc7XZcThtCiwa1fA/a0OmMogFoIrImHLUnJqVXgCqrLaQqQt5lBXVblUopGnRaizMrUnJvw7UEhlXdiFr7oK+mWlVLAevO0ECLr15ncXjsEjktM/v9G5yX5t1xGHqzp2lSraqUIpfegt2iRiJ2PvDgPdvthqoStD3Ue1o6Tzir9OEyz9SUmYaREAZuDntOJ5E89IqmlSrBn0ha6sHTipJtNBfnBEHX83U6NY57u2lZuGoMJUMphoLt0tMY14OJ129eayNo4eLiktVDwDSOTNOGYD3xFMmnyPMnj7mcdtRaOZ0O7A9HKtL0eDiceP3VNf/lP/1/8f4HH/D+B9/i4uIBOcPLzz7nT//kT/nyi8959fJLHj96RMyZ2/0BSibFSIwLy7JSLUqR/hzn5eS0SzPK984q9SgUl4R1qryyLOR6UnTScDpG7u4OXF/fMm02Mg9nEllUqnL927O3hhwT0RiwUrovpbLEiB38avxLS2FrR+WbglQuIuG5vzsKRc1pSd80KeC6JtHFdQrN6XiS554zt6dIzOJkSpWBkfvDa8Iw4nzg8fOnAio4y+C8BOslK/VFqA8WEWxIOeGTY4lCgbOt65nK8XBHSkl7Bxy1CgVvmWfadPNqLcu8UHLBD5OeCyO9TFptMDQktjINk/SQOMd2t5N5BKeZTz79jM12xziNPH3+HHLGVuHXO0WwnTG9OV72rwAK1ktlpVJZ4tIyKBzSG1BKJtfIvMycloXb44ngBwYfYJ45HA/sjwe+urmRAaYusB03HbW0Bi53Oy52W0LwqvNfuby47NKv+/2dJniiOpVyYn88cvl8A6cjHBN/4+/9IxgC+IA7HGHYUsKGn/7r/zc/+fM/4+c/+zn/4B/+Ay6urgjjyGeffcmSCg8fPWF7cSFV28Yrry1JX21Sm6PRAgdZ/7BSb5FAzqeEtR4fCsfTwu3dkePhgHOWzSaw21zKWs7SCC4AkOFw2HdluykESnQ6p0n49/EUiYmeWFCT0tIE4PLeMQ6BGJPQj02r1GaW09KDtVb5lfM6aw9BBaf+xQj4tNtdIMl75m5/VIGNLbvtJDZBhT2Kk8G3mCo+9HhHsCJjG8nsT0fmeeHudt9VvuKcRHrdOiyw3UyU4qnFYayj1MpxmWnD5OY4Y4wEe9M0Sr+XrrtQQLMkJUoLPcTEvCSVni4qT1+53F6SchLAysHD3ZbtIIMqW0fpZtOG1NqeLOWcdRq8XE/QAYaVSjVuHRStCZetSs1zunecoRbxCfu7O5lNY6WqE0shWcsSE2WWe4pZ5oosKXG9P4o/toHJDpwOM598/Ck//8n/icvLRzx9+h7/6//N/5bNo+fUYcOf/4t/hjWV7W7L7/2Df0wYhI740R//O/7sj/+IP/53/wZvCtZKcjPPs6hMRu2X0cpIqfTAfz6JtH0tMtur1EwpMnuoOQcBKUQ2X2a9yDDgcRBxm9GPfO/D7+K9JXilAjtP8ANHLzL7+TizxJmaSj8XrSp7mqOCUg6XBUis6mNbECyVoKrxiQQsMnBSEtHTaQaKVJAHT3COwXkmZxmnDTHDKXrs/oCoDLanXKiquFerJFBoZampgEKLo+x63S3RqEJbz8JJFhtuHCCiAaVm8umA8xO10eEbf1djNWkp0Ni1VEysjVeo8/cELHY1M1XPgCM4x8FN4GYGb5g2Ew+M4ZFb+P0c+F7c897NR7yJM9dzZp8cT/2Gh86SY+TjL29YbuGv/pW/BqOFADKlEVoFTaNP1vrt+u37fzfdd0hMUaVUXA123CBczYobJkafSSXx8Z/csGPLhd9yrDOD9ez8wDf9+sYTlWNcN49QLZR607JSWieBbp16VlpVNNY7zyYEGsVrTtKjUt3AZuvBWp2rIHr2Q/BY7zjFxN3ppOX1wt0S+ef/6g95/OQxj588kcDPWBm8pAiKqSK96FU73FoZgnc8HtntNjx69JCfvP8xn3x5w6c3B0ZnCM4S1SkKp1I+pzHzWu7atbyMZqstgSsFW5KiHQVrag/8SylCkTH05A4qRnmiDTkB+a8BTGuqL0pzKEX4ijSqjwRPLWFq1a3adm9FEFtrGEPgyZMnzNokfjgeRN3F+T6lHdsazWuzOZqkyKtIVkGqWTnY6xExxuDGwMhIRVDN/d2eOSVBXBThcj7grME5nVWhSZfQYDSRq2tjvcjnFoq14E2vAjV0r91sVnfnQyAlSbAOxxNY9//j7r9+LcvyPD/ss8ze+7jrwpvMSJ+VVVlVWaanzXQ3ByBnKFECRYmUQGkGAvjH6EF6FUDpSSAEUBIFAZJoRbKHxMx0T7UtX1npIyPDm+vvPedss4wefr+1z43saYoUixBGp5CVkRE3ztln77V+62e+BuM82bjxWi9fuTROCE/PzlUNRJKEqhafmNp6VSGLnK87JVMbQsp0Q8C0HeQoBcIwcPDiOdvbW8ThCvtnpxwdHbO/v8/Tp09o25Zh6FgulzjXYY3DajBNMTKk8gysdP6twYaiOKOTFGt0IlGgLNLRLEpUIHK2IYqKV9dG+j4Sorj9dn2v3dq5FCY5k5SvlLM8owD0RqF0WSYyJqlWfc6jyk/WpnmZ8IhaTqDtOvo+jFMMkwO+ssxm0/E9kir64R1JO7FO4QFNZfCVwfiaOGTCIKTd7GX0j/NaHJROKWMrqSjdmE1HQeEJ4oDtvBkJqEMI0PX4oKRk0ths0BtOilEJrKIgNn6UszL5zAV6JElpXWsjx1pCTvSFnJrU9LEXSIXTvZv7ACkRgzRrnDYJutyN+6nKlfJeEr0mzmSJrYXD4KKl7TrarhNTNdZYYzlL0nEOITCtara3d9je3uba5WsYZ0k5cvDiOe1qxdHJMU3lJRHPmbpeYa0HHG0nn2PI2C5x/95D+h5uLRP9akl7fsp8a8HO5UvsXr6MM4ZuteRsdcjdu3d58uwZp8tzPvnk1zTNBOs8BwcHpCSQznW7luWbdAJujRpmCgm6dOBLcV4cvG1JjDTg5SxKV+uuZ+hFcn4ImS4mHBl6i/eM759SUQYSWWyyxeTIkDM5WVnrQD9EVuuOIRSoViT0IqJQeceAKM4NvVOuo8yB5DNkwlj8epx6XMSUGAYRjMGUvEyNAPuBbhDoYEqZVS98MNtFMqJ4OZ01FKGPZOQ8TtaKDLc2w6LJhGGg7zvOl+eYvJFxHVKWbrZztDYTkyNFmZrljMBcw0DxDyoy+Fmy03FqNBYqMW5UqEpDIwoUb4gqxVsgzno+iZqhitQa8a3wk1qKVj2PShwZG4KIv0SJ/a5SSHMWEY+Ue0KSfWVpyNbhq0rO6GzZ3r0k53mKvNh/gfcGbx1NrfAzVDglCWE8DEHw/NYSBhQmGzg7W7I6bzk5POHP//RP2Ll6g2Zrh08/+4QUpAF33A0Y6wlD4OHdzzg6eMH52RnTyhP6SLvqJM6EqNNIPwoCRYU1W6tSwkla9lVVjcl1OfdTLhMXSdwDSafXqrCp8uNOeToZQwxZnmOUieugDbOoIiCMhQrje6VcGgIKpdaE3mS5h2UveivFohHTLY1bmRwjtZffr72ndiLeEnLGxUiMqI+Uwo5jxhqdomSdsGkT7uKEskzRxa+H0WtGxE5KGWMlxm/abJrFaSvdXBiyaXEjN9ZscqALwi0Ffo/G4aQTXovyYzLUxtJbT7ZiPuyqmsY7Ls0aXluecycN0CX6AG2ERKJyMhn8uFszVCIxbyYVxmXhcun3LezmPP5/6WKPd+XCf1/4g7FXJ0IilEmwFipUFr81pbmSidUhXRcxbUs0GVs7mu1/HgqVPmy+czkfyBeUczZF6MWfMch4rPaGiQVTefUHERKWuO9WNJWMCr13GIIQTicNq65j6HqW67V0rayh7+EvfvkRk8mE7Z1tcSfN8jkjfCIrxMw6nK/BQAgdXbdib2uLra1tLl+5QhcgVQ1+to230m0xVuX/oo4BL0BtKEVB+YoFm5NEycfEgBFP1QtouE2JI8mdOm6XoqosLEOJPHAhGYoZ9YNJuJywhgtE15EttYHhlTuvKjHWZFzt2V3scr48Z71ec3J6TF1X2MqPvATM5uBDzefkUJKxtCSZiSFFvBfX5BQjaBe6Uu6JdEIdrWshG/oQqaxX91wrBUGlZME0KExFjOBcLId0HDtJMYtbuzMO+YoXOvw5AxtpY6vqOTkl+rbFVvUYppKOvt+6eYfpZIK1ho8+/pQuJFI21M2Uuqlp6poGMTLsFavc1CI2EGOUjoqSxYe+J4aBs5MT+naNIXN8fMyXd+/y+WefMYSBuq5lLa9W8qwxuDJrNBlPKd7kSsuzICt0UbHLGYhsphg5J3CbSZtAOwb6tqftZIIYItiQsN3AymZWbStEc1CPBil841CgBHlD2hw7VrIOQpRDZzQ4NKJ+1K7FJHTdttK9TJk4BGCgjo66dqRsVdCuyCEWxSynIhqGJksab5oJbR7IocfELD4MVozsvEK9cil4NPoWiIyJqMSyfL+R+G8dVrk9ISZSHgguK08tjY0NLKQsUALxIZBEJerhZZ2V5kIuYgLSMBDPEXH9XnU9bT/QDxFrHDEkMj3JQKXYbEciRfCDgVR8AawqphXhkolOziK9OlTnzKarbTI+VbRtK8XKek0xv3MhYhAs+LXLV7h+8wZXr13nzp3XcXVFIvP5Jx/x1Zd3ebH/nMZaSUgoCmszqmpGO2RSDpACKQ6s1w95+uyQ83XParni7OyU3Z1dXr3zKiYkFrtbnB6f8OLZC+59+SUnZ6cMceCLu5/r4W7AiSxz3VSE2CssQ92ojNGiTUz7Ki/PIEbhJPT9INFuM3bW+xLphsCq64it8Bx9NaHPCRsNuQ9MqiBxx184s3KSxM0KDlOUES0uyn7rBuFNidqeTH9NjhL7ailyrYGus9hsxgRGxC8ywzBsJufOgXLihqGnqNSVfReCyLsOoZPusXGsBuVDxURGrr+Zid+JjcUaGciJmBODnsPZisT80PfSKY+VTJlzpg5Rpp1NDX0kRkOuZOKWs2Hoe7pOHMi9t+O0QmJembAb9WkRWPHESxFq+jQ23VI2DNEw5EQKAWcSfoSi6PumRNRGjK/rUYDFGAMejfEbJqi3VryMgih+Jd3P3aod1y96LgvnpCbr83j1tTdEmrjreLF/gDFOZZ0dxZPGeKTBkAuUSo7YoU8kV34dOF+fcTDs8xd/9iMuXb3KYnePzz//lL5bk2Pg8ZOn8v37wLNnT6gqkQynbrTYyLIWoihxNlUj/CMjVgxlzYRh0Ewrj0bL5e+nxEvSzRkRrBFOhRhiWgD1v4lGoakBok0YE+iHQT3UekYoWdqkeuWeliQ+aUO0aKkUGkBIAq2tnAO8XgP0Q697JlNV4glTe0+ljc4+BswQEP2cpOiqCwWCBUwpjkvFlMYk+yJSoiBhMFyAbllRt0ImCVKkSCNZgojCHo3y4sgU5dWyl+W9BYEBG/i5IFoKBF0KFW0dUxtB8yQ14fRVTVNVXJo0XF9Grg0dZ12kC5k2S+PfOkO0ll/0PYvacbX25MqR0yC5KCKEI/YKm4c0NpYvpH6yIEq3mvG+SPC0F3JayFhVjM3Y6QS348lVRd9Gct+SGzATi9v6jZcVv/lCpb+QBBeyLcC4S3h5BFUmBhm5pzFE+mwIcOEgTkhkFXiUr4T8vZhI5eYS5Oypqyk7C8vJaqkf5KinC0JKvDg8kw5vyqPef7mKkhTmLKQo+a/EwdE5KT0ixMR0OmG+tc3u1RvQTDFkdra2SK2j71pWy7BxA4YLRdpLX33kjij6lpGYm0RtxTq/ITFaWSiCx5TuSFFukoQrqaW2vKx+v1LRz5oJ8/mM6WxGNIYhRqJJgiVNghkOkVH96vRU4D/f/e7b3Hn9DqfnZ/w7/87/gcpXxJiYNFMx/VGFnZw0WbKObEW6ThJVCRjOCRSlyHqWQ8RaQ991pJiYTGaAdLu6GMiDhWHg4PCAxWzCdDpha2tLJIG9ZT5Tl165G/R9LxCeMFDkIuvabtR/8kY3nwz9oMRsa7h8aZut7W2uv3qH1dmS85NTHj99xnIllkW/+4Pvcefd99m9fouf/JP/gs8+v8v9h09o5nMJaCRCJ863y67FusTZqUgzYw07W3N2thZ4a+n6yHrd8erlK1y9fZtX3/smN6/fpO967t27R1VXoy+KGP5JIWZRIqt3iovNDEOi8hvoA9otNEAzmYwKXUkPsxgL0VG6bMdHp6xWK5Zn50ymuwxJJicxBJZDx/l5Tx965XVVctgjXcowSMfeGMNsKsZ+MQS6YcAYtLNduneJUNa+tZIQDQNd19Gtepqq4crlK/zgh99lCB2//vWvWJ6viEn4F8k0eFVak66puD+fr1pJDPvIYr6NxTLkROxaYpvoDltqDI33bE+nTIoZ4jgJlOucNCK/KpDCQc62GLHqKWttkb5VB/uyp1MeGxPWiA9QyonYbQ5KYwX+FwcR+fC+Gj0pVuueddtzeH7GfHuHupmIEzgy3emGJXEQyNH2fMKk9mRvyKkb1dVCRBsmAlsRWJxAUUYic4oSb8zmgBbeUOC1O69z+9Ztrt24zqSqmNQNr776KtXWAjudiLlsXUPluf2tb/FP/pP/mCcPH/HowRMuX73K5atXtKCvBQrUCyYc61i3K/ZPT1mt1/zyk19TVbKOKmepfywmpZOmoW872rbDNxOqpmJre0HsWoa+Z+h7SI6UDCH09H0rDQorksoxZfoYmUxqQgpCCB7UyylG4eQpRt+UolULUlG1MzR+SlU3NNMZ3epcIayBhw8f4izUE5mclmffNJWa2DmiqqrV2cvkMQh8dd2lMQZbm6kqT+UMTs8FkcWVJkkKgZQcpesdY8RaEUQZBp0UxyLfm+j7QI4i7Xp4tiLiqKqGne091m1Hzomt6VS4NymyOj+XorsW35SoSYcxjKp1KcFyeYZ1jh/+4AccH3YcHhzz6w9/wY1rV6jrGQ7I6ltBJTCqnDNd1yKeTYbJpBldzyeTiX434RE4he7Wk4rtnS2s8zx8csi6jwxpYDUkTtc96z6QUk+OPZWD29euYmKibWoWVaWGoX6MLZS9pie5tU473wZj4ijnXXxRYky82N9n7/Ie12/e4o133uPs6IDlySFhWNMPPcZZPvj+D9m68Qo0c5z/v3D04jnnZ6cyQTZiHr3uzlm3IpISo8TfHANnw7lyYStcNWWrnuIMHB8c8tWXX3F6dsrW7g6zpmbSNKxPl1RNQ1PVNNbSrVpWJ6d0i7kWYlanPcpTKoqemlMZhZLHIiajoipjCpIKaT6TkeldjJGQBxF02d5VYYtI13Ucn59jnKOqG7YmE1V6swSFkMo7a0GjPm8l+SjTPVn7m+IlGcOQAkPX07ZrZtMZ125cZUiwbjv2j4+IOYpx6HTCpGmoK5mKR+XLDikydB1DzKyGqJ9RXE50gmGcwPWU8ygmq6LiJ7ckX2heydR785J4WTzYtAJlk9mXVSYbx+WETwM5DoRkNM4qDUAbsMYEMTw2yiXWpqrSgkV22UjjyzhH3TTCX3UVyXrO+paD1Qlnfc9psHTJMnWRoxw5Tpn/e3S81sPbZz0ffHiP7UlNXVkGI82MFJMqjzq9rvFrjHDYkn2POflLUyirsuKRoe1wdY1vKtzEcXYUOdmP0DdSnJnI9Z2K1cLyeBq4w2/29ZsvfS688n/l7399tFKmCuJove7jqP+fidpFk85kHyOrricMgZXvaaoOb8VsJhs7FgbWGt2gm4LJGB07mmq8mlGODSXMaQKSnUBujJUDvu87jg9e4CdTJdhbko5Cy8hRPoRNdaqBtFBPzeilghh2JS0uyDp6FOhW6YiMceDCPTOluLl4/7IRTo9RHwWtlnKWrlwIkZgTxkNV+7GLYAYLRMW/iqLWowcPefOtN7hx7Ro/+P4P+fLePU5Oz2DHi5ywdi6NFnYkg8ubrSxQNyWV6j+SQIQNTCBn7cCJR8ag3eDZbE5TNQKzQBLUtm0ZHcLzpuAxRpWCQCcNIp3ZTKrxiYbReAwJZr0okMUUmTQTdnd2+eZ3v09/dsrZ/gtePH/GtcuX2N7e4drVa2zNGmYVvPXN98B5Klfx8b2v9JlnLk22RrWPyqu5Y11xerZkvWoxOTOdNLRdR4iR69evs72zh/ETDg4POTk9pet7ZtMJwMhHKWoukqQL4dUr9IiciIHR7EvUsBRG5YqUskw2RMZ5GGGEMYoyi3cV0+mMejohdZHYtuArMUn0lXABYiJkgYWQpWmQVN7XWUtQiEFfCkVTOreGIpccul4KrJy1wEZ5KoHdnUt88P3vcev2Tfb3n3N+vpTCGSBB23XYQWQvo/qu9P0gSVwW1au6akgZ1uFcu6OGSTMFNWQLIRL0u5tsSToBTCo96eymey0k6zDGajEVkyllsIzwwhgD6N9DO5IxJULaJAkoFjzGqN0zQzaWMAQl8UujY761hXUVz8/3R5+Mna0dutVa5NYV7iC8MIV6OLfB1ivE0VpJoEozoyiRlKnaxY4eST779q3b3Hrnm3iTqExmMpsJh61AMI1MQo+fPKE2llduv8piupACtq7IKcoU2lakVauqiY7F1kK6s9bQta1AdAxYk9iaT7h06RL1bMHJwRFDt8/QdzK5io6hbSXGFY5BErleg0zAKqfmlgDZ0VRyhMmUWLDpxoKt3CYWg/gzIcWK8BU8NnmM9RgnvBED+LpisZgrnDTQjl5dAq2rK48xNZXTZslFpIDCQQyoF07SSWfhzJlN5zUrNFinJCmrAlkymCSTunwh/qN7ytc11lds48DVWFdRTRo4P8MYw3w+w7mZLE2dNllVhyrtHfR6MAanjZCq8uzs7HD71jVOjk559NWXVNZgUsS7elS8giIYY0SC2AoU1yk/sJgQeuWxlMZGzBlUuCQjZH1jxMzU9BeIxlVD1CZQ2/ac5UzoBlJTM41QNTJpiWYD7Smd643PnE72tVASQ2PG4qapJ+zsXObtb/+Q4ycPOHj8FR9//HO2d3a4fOUa9WRK5St8U/PeD3+LB59+wuO7X/DgwX1pPltLN4goBsZgvJNJVkykHGjXA7lds9ja4c5rd3jj1VeBxMMHD3j08CHvvf8e29vbzOdzjGtwdYOtao6ePeHJwwc8/OoeZ2enGGPED0q5NzkJ+b8UaIpK0nNeY66ajBaRn6xKoBcn3SmLQNFkMmUymbBcYYLXXAABAABJREFULiFFvBH+XkqZtm2pDFTJU5lqo0RqnU5I0ihuUBK3cbpSYmkSpdFVKwqfOUa+8c67XLlylRu3XuXe/fs8e/6crm2ZzqeCKKjqsdAo0t3WGCoLOAMxSWMamY5mSgep8Pc2oieiomp1fWyg6TnrfbtQ5OaURnTCprOsnBf92Y3QE9gsflQmBjWl3GSZBejgjUwJN1xs2e9FJAqkgWGN+AmW5qp1BnzNCs9RtOyHwH7yrHFcdo5zEk9j5lmGa1G4MM1gqGYeX1eY2gpHKCXxu1KI5Obe6Jf4Wgpu+PpLOxpRqk43aXCTBjtxLB8csf/gmGE50OREVcFi0fDMwudt4nf/2nv9t3v9d0Km/696vaSQcPHv6OIpI8OcNvCnlKV7WHuBMQ3awQ1B8OHeWBazhSpPMQZ4aw055M1nGFWHQsZYIJ9XFhYIeR0j2OEcw4VRoSQxZ8eHohNfVzQTwQCTpLo3hVyln1WKoIubBP1jKVTUKTUXJGRWLWzGA23sBlgpaEwGmzamRGXPjUHCWGwpa/TaZeIQiGRxuFYMtKhBWO3cW7yvCCHw4P59+rbj6tUr/M7v/A5Pnj7j+YsD6ulckw4hHWYtjGzOeriM35DNxHBzkMcgkyFvraphycbqlSA/hEBVSaJQVYbVcknfdXRtN+rgj9UsgDOjjKWzktD6yjGZNpQijX5gJDiTMc5jtavvq4rpZMqbb38Dsz7j7MUuP/rRP+Xa5UvcfuVVLl2+xMQb7LDm9ptvyHMeAn/x81/Rhx7nLHuznZFTVFeeiY6rz8/ESyYMIsMbtEN+4+ZNtnZ2icnw6PEjDg4O6LqO2XQqzyoqgVoJ3LF0eKIEZnTkPGRxaS/u0SIzOVxQPop0fSeu4yHIRCFLF8xYT11b6qrGNVOG1CruWDrfi1kDRsbeOURCP4yFbU5JSN2VKGUJR0XG3Rm7SdSMAWuJcaAfpBCdzWZgdH8D27u7fPCDH5Biy9HxIcvVirqegpEpR9fJ1NNaT0pC2u66DmMc1lUCv2sa+hBphx7rPLWtWMzmdKssY/CcR+GFceJIJpiEHSBZScoLxjoqQR2UM5IT0VopdmIYBSqM86Pq1jCIqt0Qk05ODCmFkeQramoiO168H1zl2dveZTpbEHPmQejxVowLL23vcG4d3XrN0K804ZLuoMtOE2GVTVeBC2Ml6bRWVXmMCBOUWCrE2k2jYzadcunSZa6/9hY29zCsieuVfP8h4KeWmHr6MPD8y3vUxvHaG29y4/bA+dkpy/MzUuhxVQ36fJwViN9sOhUD3spT+QqSJEuzxnH92hVee/0NqsUeTx8+JPUDzw/3iTFjBkPoe7yvaCqdGiMTLGcF3lV7r6ajItDinB1lhZ0zSmRPGC9dRGedngdynzBy74z1hC4To/AjwtCr58mExXRHuWLnrNqOlAWbnTWmCm+jEmLwhdwmaxFgjCp8GSmuhEuhKX4uHX40HdcGgioXGRh/D42vxlisy9jkmUwmgMHVU2w1Ua6TFOgGMVtcLGZYY+jbNVmlrQtXcJSG1YLOOU+l0tPTZsJ7773Hatny0z//EaFfj2dbOUML31Gmkl5AJrY0TfzoO1X+Tk4ZExNGG0btqlMD3A5rxUjXmiDnGobZZMZgEV5EHzAxEqyFEMnZMknSEbcKvR4tEIwRyPHYpLSjulfXiaKhyKHLdHM62+K1d77N9nRKTeTnv/grFottbt16BVeJGIBNkbe/9wFp6Dnf3+fgYJ9sRA46kPH1BFfVWKlTyCRMTnRdS98HFtt73LnzOr//B7+Ps4aPf/0hi9mMP/z932fv8mUWOztkV2OqCcbXLI8O+PXPf4pJkY8++hBrLZNJMxrI5pzVTkDVEZWzVLgD5dmWQkV4neifoWpmAhWbzeZMZzMmTcPx6SkmC8yvMlK0d11PpzLtY9FPaeKiTZFNR36cOuTCWUmjuuFyvSKnzHwy4bvvf5sbt15h69JVjk5POTw+Yug7dvd2mOpkSXjNG6GAIkBkMdgQWQ1yBib9PgLvMiXlAt1LBXFQGgSaVOkvDUXSqHBqlIipnBptLBj5qZKflYzGpoSNARsDZCcoGY2tpaZyIL9HsY3YcIpd2UPGjlDiolBmLFA1rGwN2fM0RA6SowNqZ3maMw9T5CwDyTBJhhliDOpnE6pZNSoWmlxkpdFoU2q0r5coeXOP9JWzXmsWQSApUiYw9bTdAQfPTqjXjrqx+NpSzyqOUuTj1T8Hho//3780mUAnJ6XiU+Wb6axhb2vGrJlxerbiYHVCINAjGPOD5TmWjDOZvemMSiFUQ0iKoZf3i2ywurK3ZMN5a2kqx5CEh5AQZR7hQMgVOutwjZgdpr5jFURK0RYliZGwjKq6yUhwxPIXH4tS/ORCtNXOrtGDK16Ez2XtYDtxWMklYS13bbN5ijmbyZvxpTWWxXxBMms6lSH1ygERcyyH9xLIppMJMUa6ruVnP/kJh8fH/P6/8j/g8dPnbM1+yS8++pi8d4n5bIqfNjidIJQJlNHNV0zGxMhOlWxmxY/E4o15yZUWZIo2aCLaNzVbsxlbsxkpRk7Pzuh7UWga3ZqBmJxilUWhDE1Eh6EbE31nNWBHUW+qvMg9xhB58fwF58cn/O6nH7J95TKzvT1+8IMfYI1lOp0xnc0xKTOcL6msZ+ocuztbpKHDkKmrhu2dHdZDYN31TGxk99KMyzu7pGQ4X52zXC15/vwFO9vb3LhxnXe/9z2sMex/9Ql/+k//KWenZ1Te07eddp1hb2+Ptus4X64EVpOkaHBuqnAfkU4doV+lKDSGrheH9RRkZDtOMypDVdcsmgldkOIlamFjjPBUmGuyoZwS4YU5ZpOpdCZjJoZB9ooW6plMPXhIMmnxzpOzTAxiTjo9S3TtiqYWJ+gYBn7/936Ht77xLfZee43/6P/8f+TRV/eYT6d4laMVmBsqmRpp6hnTiWV7WxNB55lUU7JvGOKaLkYmxlFZz85iizydSLHQ96OLutGAW3ZOVdVCyDYGEwROEEKQhgPCVQpZ8dBh2MRwazYGa8YKlyUpgZSgXkVGZYKla+ZdJYR6U7F7eU49mTBv5vQxcb5aM+RIjokqOqZVxeTSHiltszw/IYaelAZMHnRbq3hHShis+lyIqp51leL1hRuFl8ImFcJ9StgEjx8+pG1brt2+wWQ+F/+HoRflMl8zrNd88dlnPLx/n635gtvf+AY33nyTnD2PPv2Ix59+xMN7d8nGKsRwwJhESJa582xN5jSupq0mrFdL+q7ng/e/w7vf/z7vfP/7YGacP3vC4Vdf8H/9v/17WO+Y72xzaWePk+Nj9l+8IERRnpo0gtd3TpsRzo08QVG90+frpInVDp0WTRV11TBKGGuh0nY9Z2crYpdxrqKuJ3I/40DoWxZ723i34PLeHkcnJ/RDL47jSOGRVDhEHNJ1cqzY+7qqoCAB4rCRkN70rkQeX88e8QWJmBSEW2CtwsDkEPGVpapqMJZmktnZ3sVaxxAi5/1ANwRC24uakLU4L+utco7Z1g6CS8+kFPCVdGutMyMR3ACXLu0RYuDDD3/Grduvc+3qLf6X/9a/xX/y7/8/eXD/Ptmci3BIXY3FSDliygQVlPhuRcA6IUXKUMx5QyR1eWxgLWZTSMLzOD9bU6uqzqJy+Ik0HX3lyX0POkkQ6fFWCw/tWquhqbWWMKjSVM5Y58eued8PAj9D+HKPHz3m/GzN3/uXH7A9m9K8802++/QRW1tbzBY7zLd3yDnRL09ozIL5bMLlG9cIOUpCbzLXLl/FVg3JeI4fPR8lja9e3uPw8JC+XROHjmY+Y/f2bVivyDlzdHjI08ePWfc987alX63ZvXaTS7deZX79Na69dsxr+0/4/LNPNtM4p4Eni4IcCIw1atHkvTRLCiSumP6mKCanzliyccyqmqqumU5mbM1n2MqLUurQY3KmcTVNM6GuYTJN1LXXZohIOksxHVUhU2KjTKnGdKNkLRIXFFJ7dnLCm2++xd//N/9NPvjge3z++V3+d//2/5ZVK3DOmzdusJjN1ZE+U9UNfvTtQWOp1QarBTpRtYxRRWIc2apXVBzIWcR4SgM6kzc5VdmHF/vp5bqT8llD2BReY3lRvmSCHCEGGAaMExNNk6KIJOWI039MzpgYMVHEjVzOODJe8xdjDF6nmjkL39l7g68cZrHNcucGq2XP/YePWftE8lIuHebMOsO3XeJ3FxN+d2fKYmuGXTSw8DCfaLM7QwoXvmMaf53JLyOAvjZdKQ90LBBShqqGqoL5FHd5B66c8rRryQtLve35aYa/bC1/vvrngKPy3+Q1rpU8xpTNQsKMkBrpqELXdpgkqkJV7cnWaPVqx6rVkrUKNuNiEFiWLo68mW4Ucy2LSBRPvaPCMcTEeghjx1iuabwqyuKV/+lI3WyKhrHNZl7+/OIRAdoI0HqMsqg0ihc5a3Ph+klg86a6v3jDjClO9nI4yO9LcK/1oF8PMlERZ+6i7FIUWaQjbpXwa92E4+MjmsePOH/xgjfffBNvHV/euy9+H+s1lbd4Mi6rL03awNpK/W7Ga1TugqpEnZ8vGYaeDMy2tsaFUEj+BoEM1HWFryopjJwoowyKmUwjyU1VeUq3JIP4VVrR/UYTO1PECaQrPp/NmE722N7aohh9+XrCm998n2G1JIfA0LXgpRAK6xVNU3P1xg1+//d+hyfPn3F0eko2hiEE1uuORVWBErlnk4lck4Hz8yU7Ozu8+uor1PM5eehxZHZ390bzsr7ruHrlMjdv3mB7d4eHjx5zeHjEZDbX+8aoumYNWFeNXcugfh1yODHehyKPm4GqqanrmmYyIXb9uEZf0q7PYIwQ+ib1Bu9bOZGkDVGKQAv4oqxmDM7WI4+l8DlSztgUaZqaAgOzSGLZ7O7w1vvvc/XaDZ5/dZ/DFy9Yr5ZMJ41AqlBTvWTJToigxbXYOZnUWKQ5UEr6pJvKGJk4eu8xOKITPkFKgtktU85iHijQL5FAJ6KTi7J+xZFYZIHHHUm2jGvGKsTl65PiUiQbI74bTT2h8sLnyF6eyersDHylcKRNwhvDIBC1nGiaBmoPOZLTQDFKK7Kwo9nehXhT/rvyfjTpKwVrUihCInFycsxPfvKXXL1+g73LV7i8d0VgeeenfP7Rxzy4f5/D/QPefeddvVeWs4MD2vMzNW5U+JtRqFKyCo3Te51lErJYbFPtVbzzzW9z/darVM0MKNK3lks7u1y+cZ07b73JbOcqT+7fw9lf8/DhV5icqSvxWHIK+yrnRlnjEvrKJE/V3tjEWSgcEPUNKapb2aicsqx1IW+rQmBK5Bh1eiPTx5yinDEWTeBUgU+nDt57hlBCXtaphVFxECOkWj2nNDjKVCDLmsaaMTEramVFMEOKAK8JmCUPQRtc6lKun2GMwEdNyvjajd14EBJuMawkyYoWnxeZh2eT+erBl3RD5M4b7/DqG28Rhsj9B/fY2dnGNEJwdtZrKbKZZliFzaSUpdA3MkFMbLD7ZBWdyZloRGnT6hTOGmn+GAPOZioHs4knOQMpUan89AjTzqVYzKNXVox5M+VNw3iuZCOytzEltrd2WOzucOnqFeKwpmq2mSx2ePtb38XEiLeGqB5Szhhi27LY2eWVd9/lb/8Lf4cXzx5zenTItGnIriJkO/oUWUS2fnd7i9o5rlzaZT5pMOpfdOX6dd59/332Dw85ODnBNQ1vfeNbDDFyenDAw3s/5fG9z3h070u5D67wMTdVrhmzS5mmlkIiu9K4yDgj6w7vCVEgUM4bqmZCVdU0dSNxFDMq7ErIs+r9JA2byWRbG1aWbiiRdpPhlwYAZbfpZVprBfYVBpbLJXdu3eIb77zDW9/8DvcfPOTTTz/m2YunzBbbTKpGLAkUFYHJNHUtz9qCNwpltkVRsoDQynmftXiQaX4h51OawaVaGXM9RquTEemif5xEdeDCiHQDSbz4zYXTk8f8zZDLGFSaBDZTmcxQ9jJo0VkKe/n8ApW+WFCVSc7gLevFAre7x+XZNglp/gUyW1jh0LnADZvYcRHRS5ICsSSQsm6cPmB9VqVIKUl3eZmX/1P+TuHoXKhEM5At587yqDJ84QwvnOOqtTzrBj4fDCf5pXf6jbx+84XK18ZHX3+Zf8avxkMFvRcledI5gXUyLl+3LTH0ZOOoJ5WoXCEQL2/SSFRnnGxscKzjzS6L8sI1WgRPOPESGNt+ELnNVK6rpN95XFUGI/Kx2I0EnQZag4zdlGnOKJmnCaTUJGZzB/RSEpls7IUDVw+sjAJw9fuoBG3WgGQ2bpm6eSVYV5WXznddU1UdQ464JLhPMmrGFBTDGxkdiKua87NT7DPYv/8Vd958k529PX70x3/C4ckx63ZN01TUJKrsqZ3dqGyAdj0YYQ7GMibVMQZOjo+16+WYb22N9+Li/R66lto7fFMxn83wtmfwgU6lEkOMY6DM473VBxHAGIHwlPcsrxgiMQS2dne4ffs2169fF1lidTi/8/Y7rI8OaE+OGboWYyZYJ9j5ZjpjutjiX/j93+Vnv/wlv/7kUzLC0Vi3Lf1UVMgsMK1FQc5Yw1F9wpXLV3jj9ddwTU1Kkcp7bt++TYqJ5fk5/RDY27vEN7/5LepJw9n5OV3XMV0sRrlI6Y5JV835AgGQrtWoBW822Pny81hDM1HT07rGqxKWoRR7Zd1I4e19xaSuFSYpiUYkExJ0zkKO2MKX0AnPoPvX+eJnkRiCYdKISd90MmG9WlH5it3dPd745nt46/jir37C2fERYejZ2l6Iey/CP8nJkrMFr9LEzuK9VfNEMMPFpgPj3jMxiou6s5imZt2uxd9CFfQkGXIbjo81RK/E0Cg8NwCHo/KlUNk0P1DsfkbckgsHyuhUqdx7AJcslsykmdJMplR1zXnf0nUt3ckZk8VC1qlBSfqCqQ/q8jufzXC2EY5RGkbc+TAM5BggXyhUUGUoIb6NXBLrhEcjZoeZynmW6xXL1Tk//su/4M233+H1N9/mys3X6M9OOD085Be/+BlHh0cM3cDbb75F7Hv65ZL9B/eEXHy+lCmqc2PgLnswlGRH1eC2tre5fPkyb3/rferFNqIM29O14l+ys73DW2++xfd/53dg6zrT6Yzl0T4P73+JQQqugMBevLOqBinhzqnkaVQ4FRo75ZZs1P7kvioMLiZVyCseWFb3mKZACu+LIcj0ZpwQK8RRPYysc3jvxKcogXeb7zw2yfTnCtdS5FBLlwqs8fpeemZZxjhMLmePKHvVVYOxG1iPgbHQks+QpLRMBbOr1ZRP0qNSpIxKkCBFRw7SRKgdX351l2U38M73f5vX3nqH2Ac++eQjFosFhgLVcsQxrG4KlSLW4dj42WQkzhuTSViGwhvJGVfL/akULmkovIKEMzCtLXhRATSF/2XERPaikXJpcIWYtM4UFUajjQvnDOu2ZegDd167zqtvvcGtO6+QkhhB1s2EN959n9XxId35KaHrBFLrPcO6Y769w+LKVf7QGD78+U/57KOPwASScdJcj1GMcJGierq3y+W9Xa5cvc7OfArDQIqJqzdv0izm/PE//M85OTmhD4F3v/e3iAmOX7zgwz/9J+w/f8LR4XMpCL0fmw+yri8W31oEGy22bUlIk/YOtKFhojRTnWexvYNXF/jYd9oYUf6mrtW+E7+Wvu/Y3d3COllfuZijGjM+2zFwjWnMZlJQIMGr1YrvfetbfOub3+LW62/zT//Rf8mHH/6Ks9U527t71E0jMHBtFhhrRAreGllLOpGMauqdCuE9X2xOFgU5g8lWG7bSEij5kggtbIo+Q34pB5RmsMpcj4qqeZyeZr3xRs/KUi9eVPwyOeMNwu2xKP8EChS0FCtjbqd/XryxymeanOkqC4sZTb/LzcUeVX9Kji3PYqaylq1suWJ7rprE3AhfdkwcSyc7yym2geZtvld5YpuuD197lcLmQl4pxCNMNpwaeOjhF8Zy1Vgu4/iq7ThMjpX5/7OJSnldiHmUruX4WzmPcp+VnbA1b0gGBq0LTTbYJCVyji0prNibzamrispXfPHkjNP1iv2zFXu7O9Teq4b35lB3Tsb1XYRFU2MQz4dlF4hJ+SO2XJvOUrIZr/TlK948WyKiupE3nSVsln/KNzcZ46UhMC5kxd5aZGwL4l2Bk8VjkOmKwQj5teDPTSQ7o4abm3vbZ8Gah6AeN0nafjmqEoUmOVY12iFTTxqGOPCjH/0J/+KlXa5cu8bf/1/8z/gP/6P/mLtKrp9Np0yaBm8ryIHorEKJBCOaYhq7YDlnTo9PZHTfduzu7jKfz5hVnpVRxRBB2WMyrLseq/K4k0nDZNZQ55pqEAPD0vUZlLA8rp+sym5DhCGpIZsENWM68WzpOpyFq7/923znb/02NmZODg44/OIu1jm2dnfZvX6LfnlGHwZW6xXz2ZycIt16ybODA85XLWDxJmNMJJqBkKcKj0pqjBfJyfPBt9/l2x98h/c/+C7+/AyModrZ5Q//8A/40z/9Efcf3OONt1/nne9/j7d+92/zF3/0H3NwdChKXDFJ8WicSFZ5CeZ9P1yAtFWjAVpTN2xciZNg0OuGum4Ummi0ePEYL4l6XbVY7+jTwJDkUHWuFnEAaxR2JGs1VQ3iJZLENE6xwhkhYlZVRaYowiQmlcdPPJPpjKOjU67fuMnv/cHfYWEsTx4+4Oc//XNmjaOp5nRDEB8bJf6WBMQ7Ocyc9zRNTcxizNUNHd4Ld0FyZS1yvBfOg8lM6wa/cIQYabuOoesgZyGdViJznkl4vEw7bBq5YHXdMKm8dNtTold4hVeoYQZCyriqwrqKZqJHjjHUk3qM9dZYZhOZCg79QOh6Qh9w0xrjjeDvh4RTlTFDZBhEfME7y3TS4FyFdRPplGJI9SCT0K81AtpeeAkmIwWdFQUyY6XXEaKY63lfMcVwdHhE7gZq67DNnCeffcbdX/2C5/vPmE2n7O5u8fHHH/Ho0SPmszmHh0d0fUeMAzvbMyqcxFIDxsn0oGs7Vl3Pqh/IJK7euMEbb72J3VpwfnLI8dOnPHjwiP2nT9h/8oS2X9Oul6SuI6bnnB884+D5C+p6irEVy16mNFUSbHxjjcRjpxAT5QdZJyphMap8cjLkJBNPCXGW6VS8elLKnByfKjQqgHOkKFPDHAcimXXXYV2FsQ7rnXplOFxViWu4F6hVshmbM/QGZysRFtEQXJ6Lc5ZkIA+DcGgSquooSZbF6zRU4nA1aSi+Kt75UbmnaztCCKzbtRicamKfkigZeuvEXFJNiEOKo2O8d5U2/cQ3CSMNOiKY7JhWM14832d9uuSv/skf8fa3f5ud269x97PPOF8fsW7PyWxLXKI0JYzyQTQB0y6uVbibV0iONOESs9lCvot3xDjQ9QMhRZmcVGKIGbuB9RBo3JrppKGpKryvxoI4hEBKkpB6Z+U8iBtH8ZQhBeEmGmPIEc7Pzun6np3dbd7+9g955zvfh/MnLI+POX7ylMlswmQ+Z3r1Gt2qFW7kes1se49+NdAdnnN4cEIIkem0YdVJI6E0CtbqKRNjx3c/+D7f+e4HbF27TVVVpDhgLMwvX2F28xYfHByy//w552dn3HjlVdrDAw6fPOL1N1/n/e99wNb2Lj/+sz/h6ZPHPH/xVPa9JrwbDvCmSBuCwnuMqIbiJIex2VB5ee513VD7mq7rODs7xFqom4bJbMYQEsnJHt6aNSxXibOzgf2DM6bTwGI2I+Wgqb3kXSLBnbV4F6TIkIp4DhydnZBT5uruLv/6//zvc+XqFb76+Mf85V/+Gc+ev+DtN96kqkShMiQ50zGeWj3TTJLDfCjJfBZ4frSaDw09fduTjSFoMVV5T+0iOvJUuwmLSZCteN3IPtcszhYaAJCgD5EuDHSxVyPIMhPcQPFzaURl2fOGjMnii+dyZOI0vzSACVgb8S4zcRXRWUxyYC0DkWizSFl7i/UiUkCSvDGGQJo2VJe2eevqJar9NWm5YmotPcJRzcayYxwGpxNZ5eIWXX9J9jaJ0cU8WzpuF/LQl5bVhV+YzUXlSE7SSI9VQzud86lv+SoEFqtMrCt8ZZnb8r6/udf/TwqV8Rb8tQmReekHpEDMY/cpJGhbgUUElU4wCQiGdohcv7zFm6+8yuVpxXq15OjohDvX9tiaz5jOVgxJMoevNdnJRhKOdggs7Iy6MizmmXV/NhojCYdEfrgUrpvrK1/EjO83FgoXCgZAIAUpXTAG0qlhzGDVTC7rexk2kBKnPQAjuvPJ6MSpQHYuVsls5BvLIhSVDBnLjx0ZDX7SzbKkmMlWPBy84lz3D57z8Mu75BS59tpbvP7mmwyh56sHj0ixGd1tZYok+GrpJoscpE2JZIx2V9aEfmA2m8mUx3kcWSVW7cbFHBEF6AbhAVR1pVAagfU4NiaSBQIzJqpZDRKT3IvSSZaC1I1TjpOzU44ODzje3+fyjVdYtR3Pnz/j/PycN959l8XutgTgIm1sjHj7AKfnS5arNX034Hcl4GU17TRGJlZtuwaTmU0nvPPuO9y4/Sp+sc3+g/uaKHv2rl7hyrWrvP3O27zzzrvcvHkdhjVPnjzh7OwM5x3l5M12EzgKcVB4RmI8WYiHzhetfwhF5GFk6BlRmYtyoFs11bLWEhHX3Bjj6I+Qc0XTVCORsboA8zEkaiWo9hmsTVr0VIScyYVPp1OfMAzcvHmTG6+8zvb1V3n65ec8uf8Vfb+maTwinRlEDz+XNSxKYVVVMZlMlHdk6dYr+r6nG3qqyQxv7AgNKf8Y3R+l2HEYaucxlawRIQAbTeCli5Zyxhg7Kjp5Z8S4sUBvUsJoLBCIwdhDBIuapSmh1TjV9hdFJIHgqTO6dSTv6XVd5hQxURJ9kVONhCEyROlueu3Ie+tw2oEvIhtZdfLL+rcGEXfQ34xJyLapzAuMeLiUruC0nrCYzdlaLCAPtOslZ+dnoiCo7zmEgZOTY87Pzxn6IH4pJEIK+FQpZGMzATbqG9B1LV0vsrmz2ZSzF0958OWXfPnJJ5ycnNKt1/RtSzaZFy9e8Otf/YLluuPxo0esVksWi20iEJMhZCMWJklw+Ua7rylvUonSRioKSCAwiJyRAsOLal+IkWHoGULEuYzHjR4QWgZSYJtyr4XPFxQWKD5eXlGK+ULULR1e3alleoEZf08aN2UfM141MMqaOldhfDXCySorx3QRzJCkTj28skxGx2l9VOEFlWGUAk2FTspxYKxALPWizCi/AhNtdNz97GNuv/4NtrZ2+eC3f5df/uzPOD05YLleM5nMMM7iq036UI6aksAaPcO88wJjTFB7bWRh6Po1xIhJcZxqYhClMVeDdVjrx3jqNRbmnDHejeeEV4iQNWKamnJBLyQKGTqlKCp1Bk5OTlgeH9KdHTOdbbF8/JyDx4+ppg3X7txhb3uLeL4aFf6Mk9gSc2J//zlHR4ecnZ8SsviChShrMmGIRmJY161ZLldc2d6FMNC1Eq9qoAau3bzJYntbGmbDQOM9u1evMLm8SzPbppluce3mXc7OTolPAqkSrl8iY3NJQktrvkxcFNJnhadWUB9i1CwNkPV6TdvKNFfg1JbKmlGwJaaIq6pRXCEMic4MeNPhqiIoUVTzzAhXkvMV5a5I02DZtlzZ2+MH3/oOe1dvsBo6fv6Ln7PqWqyzNFUlaBNrR+6Y7Dcz+uNknfaklMd4ZMZJR0K4um6zl3ImRy0wjB/jocNIQUmW/C07CsG+qKsGlTUvsPKSa2FkLeeyxst15gJzZ/Tik/Ba4Hl53Ac2m+K+I3LFluKgNxYMRpX5Us7S4ByMeOKFhNUJo7eGBZY+QyATHFQ6cXppE44hpfw6jzFm/LOv597m4m9tzrWs+1jgnJrvWvGwqozDVgbrHa6uqSqHt4JA+E2//jsoVP7mi3ypPjAXf3khcy7lLRd+S4/aPmVYR5LJJJsxzkCAPMBJ2/Hm6zf5wQff5pILPHn0mP7smJs3b3HWR66crvn84VPWXSDEJJ4neh2ZTMiJOMjiqVQv+uB0BQoxGidrFy5ccj89qMqiH7MG/Yov1x0SYKMqVminf8SJqrxoLkWKQYQ59cwdcealak4iXWtVgtDobioeCnpsX7jXMla0Oh3KDnGHTbKBYyxmahbjhEx8dHzEV198igH+1t/9gLfeeZsUWr66/1C69kmctUmGZEWW0Om9EHiCHKZD39OtWwxw+dKe4mTFxM8psT/EMn0S7fVukK7xdDqlqYuajMgh2BIok/IOjBRGkpjGUd1JFJOk62P0cPeV5+z8nBdPnvL0wQP2br/Buu85OjriwYP77F67wq3XXrngR6F47EpG8afLJctVS9cFvBcnekrRp8F3vV4zmdTMZ3O+8d432Lp2E9PMePLkqbjv1jU7N65x+fp13n//23zzu9+GnFgf7fPkyWPOl2fU9QUpSv2OpWNf+BPWivJX4SIYVYGy1mKTYM8VWCfkdMV0y8HmRh5DCc4xBcIwsF53kghU0pmV8bUaSmqCXRtLNJGQEk6lRuuq1j0jyi1RD4+uG3jvW3e49uob1DuX+ereH/HswT1yDhijXhT6zOQsytoxNSO3xqqCU98PtF3PEAOGPMriFmEFScRk3ccY0RyIyjmBcOVEtmrKqMl+zGrahlUYglUojX53LVSsklUjWRMzTfaMUVnWjVJNUjiF914SJl1L3gmxtx16Uo7kHATKhqzp4q4+DKqEFwbV2s/6/YwmcFIsyd+JCkmSKYP8mfgIaT9knPSmTUbJfDJle77F9nyBiR3D0NH2HZVxmCRQyUSiW3eEEGmqCdZKIhxjIvuiVSWJuTQdJK4NoWe1PCfnxGTScPrsKfc++Zif/NVfYnE0k4ZmKtOy58+ecXpyzNGLfUKSZGh7+xLtEDhvOwIigZ6SKFUZi/jiaEIg36/wTIocr+K1s0xCfFNjsyMNg0zXwgB4jcEb2Ap6T7FGBUM81nnxXzJWpHh9hbGKGh+TFMbkKptM5YxOFuxYJNiSmAFFEyUrM118IPxYqDjvaSoxNxTuTyv8pSQO7075MSYrFCZtoK14X0rTzbOXC5NCzyQtnMFo48cB8+mMtmu5d/czPth/yt7WNt//vT/g4cMvODs9YrkUZb6qFthbaS5pHoMdE0vphHvntflg8E4mIzklVsszFAM47o9sZMJjvPijifeDFirWSUc3Q7ab71Z4e9FaYjLy+XnTSIRMNwSaSYOrPAcH+xw+fcTJs+vMvvVtVl3Pwf5zcmWZX73CrhpwlqTUWLDeYZPlxfOnHOy/4PjkGNvUeOsFCZAzGUtWdMPp2SnPnj/j9aompkDf95yenbHImdrApSuXuXTtCmCIqzW190xv3iDVjmQmDNGzs3eZZjIhBck/iuqU+GUp1K5091U2ytiyVp3eTyP7VcvQ1VLQBEM/4LbmVDqNjtq4EiK+yOw3dUM3ZOgDzrRMrcc4bXnkTcOvwCtLQTHERDsIgmNnd5ff+73fY7LY5slXX/Ljn/2UIYlAhrNWJaYF+meKBLlVeCdG87JMgUMVddhspBkZkxRwYxGeMpEoccCAtRU5y3RjLDoobU2rRUsR4BGPr2JdUABfxiITxzF+apPQCLd5tIpA80NT8tfip6Q8lJxkCkPG2rQB1Uj9J5A1Y8XjKUW5thgxgyg2ynTSMsNRZbkvvYVKoX8lv2NTYoyNk1H5ovzM35iiXyxsyqvcqwu5pKIyGmOoK0NTeSZNLY3AUr39hl+/+ULFjP/3N7zy+KeGQoTXxWZKj1L9OYCMhcoWrpIeOpIMxCgk2RgDi/mMV29c44NvvM3xo/vkG7eZ7Vzl7/3h38bXDeddz//qf//v8tGX97n3+Cl7u9tjdyuoh0jta86WS+bzOTs721zei6zWLefLpRCrjciy8tIIVv5d1DbKcyqkrrJ0DIhCB+BSxoVNoSJDGSGCpRAYkniIGMNLh2ApXkbClHbQxkooQ8o9eeixBEGKJehXgTgIftd6L47LBpG8JWmhJAdcjAbvUIJiZD6fc++rByzXPe9+45t849vf4sqt69y79yUv9g9p12c0jWcImZCh73uaSSMdMCwiI5hYr9dUTgLgYr4YA6yriolW1sAU6ULH8fJM1DIw9EPkyt4ei/mc2noZmxJVplI8AKxVmdiQZUqZ5f56b/GIsV/TiKtvzoLjPdh/zscf/pL3vv1t7ty6ztXtGbNZg8uRp/fvcePGTaazqXbqMgdPX3BwdMTyfAkYprM5vm7ASLAPQ4sxkaYR3LyxwvfZvvM6jXMMp4f87Cc/YTabcf3mDd5q5lx74z0u3/kGrA759U9/wo//7E/Zf/6cqm7Y2d4hqKhDGAJmNhPVI+/wlSRAzrmRo+KckMyt2xR/SQNx3w8iRjAMWCsHyzB0pIkUHhusLaScWPct2Exde2rjyTkxpMBGq1+TiGyZeksgCPHce0S8U0zgDpdrnKvYW2xz57u/R1NV3PvJj/jow5/Trpdcu3KJ9XpF34vSSgw6vbKG2WxGXU+YTCYyGUsisz1pGoGApURdVXSDjG/EW0Rgm9kknLdMm9nYZRNpZos1Hudl3YAQcJ0pkwfZbBmZRnjvcd4JD0v3eTIGVzq3SLcVIw0OdDLTD2Ez6TIquWEMpvacLZfCaWpFFci7evPeOdM0FVXXMYRM37biUu8c2WfELVm6biUJNmPMvYjFtuqkLYnwer1iUFNIW3kKHyCHLNCLlMB5bty8Ces1v1q1LFcrzk/PqatKobSeIYixY2Udi/mMyjWUqUU2BuMte9tzbG1xFTTesrM1Zz6dMN++ziuHJxzuH7G//0KkxCcN3nvOT0958vCU3cUWb7zxOq+99SZ/9Vc/pW3XtOuWauKFo1I5hYQmYg7CC8KosqJC+vBgNjK5VV0LTwI4OT1htVpxdnYmRc90IqEwis9DLM0GZ2mMYz6fYa1HEsHCw5C1Ime24OJtdnhTkXweY5nVpgGUPCoTQxbeiDxxLe6cyk175ZNsiLYAXdcSh0DbtljncZUHaygTuvLzgCj99T0hBPxqxWQyVX+TzbVbDN5XKr6RwVjlYCVm8wWuqjg6PuZnf/Gn7D/b5w//R3+f3/rdf4Gre5f50Y/+MdOpmPRGXTuy9+T+bjgwF9MA+UVMgW65lgaWM9TNFJ8SnLZS4CW5lpyFe+WdV2hnhbeeTbqSX0o8ZRKVCF7J4RmBMmkS3fgpvmkYhsDjR0/46ONfk5zj+nvf5rW33uH63h5ffnWX2PUcP3nK7s6lcQLanR3z6PFDHj16wP17n3F4eMz5+ZJ60rA1m1PXDSGkcRrbTCc8f/6E46NjfvDbvy9FQ1Y/GZ3c3vv8Q/phIJHZu3SLxeWrzKoFH//lP+Xzzz/js88+o7aZ0HfMdrYw3o3xOaYkyl9l3YwwHzOeB03TjPkA2dAPPetWDC2ryrO9tWCiDQKZLHusyaPEf6zExqBTE9yYBTorMPZISAPFOFKmYWrynBJ923JyesLf/uEP+O4Pfpv3f//v8tGf/xN+9atf8OW9e+zs7GIby9AFqlo5sc5SWYFMOeyIkgBDlYUTQUbc0K3HVmvarmO5XGOrWhtlGo+VOyg54lLyOuelODBZVPuynotGMrOYpJiVOBjFKwwpACIXk/yyk0sTWW9xSkRJOzAmM3GJmcusjNy3OATa9Yo2RPqcRa3NVvJdB8hRuF0xJ0KOBCRvmFWOLRLeCsTcmcTEGGkQ4uiMofGGykpBJNMlD8YzEuZzKBnpS3vxv/lLq/YyjdXktKaiMg4HhDj8t/uI/4rXb7xQKZOKMnl6eXIiL2uyHrDacdKfLaSfjHTUJWGwSq43+v5Wi0SBQGUMOIsxsrFXZ2fUdc2169u8Mtvh6pXLUo2u1kxrhzeCcQU5ZGSEbMbra/se4xy+rtna2qbyFSlGzgZ1C086yYELxcrf/Bq5ZvodQtuSkyS1Ze0IIq0cPHIIytdSdR+DkjH1enXcLAdPGjvGZBiSdAb686V81hD1XgssSYqUDWglf/16C1FXx7nOOdq24/joiM8+/oh3vv99tncv8Z3vfpuf//yX7O8fMnSt4J+18JMgxujx4JS7UPtKiwXt/pvNrSmqRzkLtyLEQA6CtTdrw0LhYv4CHMogXYZcJixV+W+RDZXOhB2LR2tQCURJ4ubTKdtbW2AS3lumkwk3b96SLkreKIWlnFienfPowQPuP3jA0PV475hNpxg1Zey1CICMr8TvIOfM6nzF47tf0lSe2HVgDG3bsv9in7u//jWT2YKqbrDtGX3XM9vaZm93d5zQxTI5KtOyslC1sy4QEIUlanFSHJqz3idZb0HknZMk8GV6l3RNF2f7Ms4PcWAIjmEIFxLe0qURiWlT5EsuGBRLimzIMbFed1jr2dm9xNvvvc9svsXZyTGff/opXdcK/r6qscOAjQbnoFjHGy9dsZgS664dpwFFyz4pRylXuoJ1MRsjyVLQ7xVjGHsnpfFkzMt79+V9rD4AJrPpU2XlJ2z4VmXxWo1RaIIblfM1duj12jKSpIQgE6sUwiahI49E97LuCl9N9lJS+dNKSqkk6mDZFEEDSdLLejV5M3UrcMgCdRgFJ/T/Qxho25blcsWusWzt7GJevUMKkaPDQ46Pjzk8OtSJjcAavLcipYt2ELPZdLC1AVG4NZcuXeL6jRvMt7ept7bZ2t3j8qUrPHv+FI9wpPquwxrDztY2H/zwbzFbzMAYzs7P6fteJofOjvCgpDCOVEYF+jw3CkZ2bCZZY9WANqufVA9ZlIVCEElfchqFDKImOkJSZ+SHGGMJSWVfU1SYW2lYlfNDJJNtFjiaV2WwEldHWGu+0KxTFQhryvmnsBZ1dg8hSFd9nBajfktB5HvJIkc7wk/kPXIS/xBR/aq0u6x7BKMYeqsqXHJfraqwVc6zs73NydEB1tWcPPmK3Ws3SRhufvkFKYlMcIkfxjC60jt9Vla74tKtT1qIMKrBXXw2ZYq1UWc0Y/FboGRiRLgRjpBHXNa9KkQ5RwgyHS3J+0s5msaNSdOwvbXADD3OCFdjZ3ePuq5Fwc2AcRLXD/b3+eqLz7n7xWfaW5Zrm9SNwJe1CE5DT4hRzPpiou9bnj19zM7eJSbzGbuXLuOto12v+eSjj1muzog58sPfWjDZuQSuplstOTs64PDFE3Z3t2UfNWpMLU16DY92XJMFCJxReKpzOrUS2HPfd+pzJWveqSCJTKcsmTKhZRMrDNoQS+MzjqlAv/KIpEgqWJCSGCufnZ0Rc2Zne4fvfu+HvPPOu5g0cPfLL3j05JFCyjwmG2Ifxwm00e80/pPzxcAp+0qnRDEnQrumX6/o12tsDOReOSHlKNC8PWoc9L6idoihpcn6veUV8wb2n4wKGl34fiXUl/O4NPPKyWBywmMELu8rqqphUk8Ik8xgDWndES3UQ8VgRdbb6LS9KMBYzSeds0yqmtmkwdZTwnrJ+dDTDh0NkdqBK3sny7W6kr2aIqNs9dwxm3NRo9Pm9fWsz1z4ra8n7fmv/zhlreiyzIqEKZObfx4KFa+diFJ0ABeCeZksFBMsxRcqnSKrUQ/ZisO8ZB2q3mAVkmQUvz0IpMEYsnNgMn3Xcnp0xOXdLS5fvc6NV95gMfP0fYszmWntqJy4Lb/8MMwYLLt+kBraOl67fUk6tn3HerVU/GIWBoAmE3JW5pcTn4u5U8n+kO84tEtCt9YCxoxrQB64eL54r2ZuTsbdRq9Hdx+pC9JpJ5G0s6TlDSkFuT/LlrhaE4cwwiCMkQlESIHi+/CysZiQhktgE6Kk6NefnZ3y6w8/5Ppb73Dj1i0++P73eP78BevVivWqwxmRwjX2Ai9ASbwmW+qqYlI3chhogv1SflgOaI0COUmHIadMblvarmfSDAKzUv6NpUCdChTKkXwiEenJEDYdx5IQCmYcKufZ3d3l2vWr0qHWJP769evSfQq9dh9lQ56fn/P44SO++OxzLt28LUHfCs42JlH+ErI1VN4xnTas1x3nZ+d8+asPmUwn4kkyn7NerTk6POKjH/+Y+c42i+1ttmsh/l1/5VViGFguz1mu1nqYp3G5jl1RI9Kw2QhGtOwzUdgpfBQ9VFSVRowW8wYqoBG4eNOUNZyySH06JwprVVWNqj6iNKc8D2NG5ZT8tWgWQ2S96pjO5ly5doNvfPd7VN5zenzMp598Sk5J4RgVvmpIyeJDwcIaTCUHZB8GhiEJrMHqlEAJ/P3QM5vK515cSs5b4iAd1RBk0lPWSYnDL0M4X85mCpYZVYIqARktCNIQLxTZAhErMSQjJmexZM0ymtE4keiHnhgCOYkUqrYnFAK2MScs8qhBBRNi9MpPE/gLSWOlgZylCaHVKpiszYsiVaxdU+WMSYErvx9CYLlccnp6ws2UmG/vMJ9MubS7x/OnT3j29AnnvzynbdeSoFtZ33VVjeo4F4fLmnJiraGpK956801u3LrFfGcHJnPm2zvs7e0Rh4Ho5Zr7rmM2mbK3u8dv/f4fcHR0wL27n3F2dkbGip+RkrYxRqY/L604s4m35SJ0P5QkLKYohUoUeNx0MqXvey1UtOmjXeJS7FqU9+UkgfIK+ctKhHelWFfRUWvEzFbWi4pgjM2bPDakYkqM8J2Sal5o1ADkQU9RGYmOCZtI7wbW6xWzxXyUJh6baEZiYk4y3a4qP8ZGspwh5bMxSaCZF65Bmj+O3e1d7t9/SN8Hnt39iFfe/y0mO1d445Nfc++ru5yfnVJXlchdjwmy03NdVcsostia+IWsHkX5pdgvkyo5A0oTK5eGQUwkJ5OnouiVUhTRCbNpGshzUglqFcChNE016Ywp4bxjZ3eXa1evktolsW0JMbKzu6tFriGGAes8KRsODw54+NV9vvric1597XVWTYtftcwmE6aTCc5XovyX5cwozyKGyIP7X2Gqiu3Ll5hu79GvVpwdHvDZZ59xfPSCEHq++d732YsR4yri0DO0S7rVKXl3jnHCzTTx5aZiUXErYgGFi2NU/cs7rxCoSNu2ElOsYaKIAmsNKQdp9OYKmd0VE1KxKagqR10lCmAjJBHlsHJAvFQ4h5QYhsBytWQ6nXHrxk2+9/2/xbXr1+jPj/j8y8959PwJ0+mUSoso62RNOlMKFTbfBX3OJmNTKYRr4auFwNCuiO2K2K0hi5/LWNQY4ZuFlGhTJCGcnXnl8BZcjqibHc4YhpgZUhLhDyek9MKRufi6+J+lH2CUq1kZ4W9WzuF8Q11NmDaZWGW6HBlITELN0Bf7AEvIQmFw1irPSI1kNU/KTcPy7ITVesl537JlkuTNUWBjhSPpUE6M3sRRnplyxhXg98Xz+f9TJZEv/H/57l+7AeOwQGBoQ1Sm4NfO1t/U6zc/UakqII860SMZ3GzkEQspFwwxlxt7saozWlXLz7kMVSUEr/XylDj09OuW2tcEhAhsrGX30h5vv/M23foc5wypX7Os5vR9Zt1nfuvb7zKkxKOjE03GlaSHwmNij/EVXRdYrg+Y1BWz2Yyr16/Sk1mtV7SrlWj65wxF018XzcvPcrNcssmiuBMGzDCQs3gllK7PZqKQSCFyeXuH+WzK7tYEg0hhVr5mGBLrvudwWBHiOSZHJt5BCrJYraU2mWwS5wzYYUW/PuP4/Jij0yVdP0ASPxWsoWlUIUphXqKz71TxImuymphOp8SY+PLePe787KewWvLK+9/hX/rv13zn4X1++tOf8OzpC9arltpNRkJzSlnkpDVwV15M54ZinmYlWA0hMISBdddTVRU72wu8t7T9wDBEQh+IJNbdmrqWgtU7z3DBAG+UG8VS+0oOPS28CuHYGkOnE62b16/x7vc+4K1vfYvHn3zORx99xNOnT/l7//K/zM6Nmyy2trj705+xt7fH9s4OVV3x5ptvcO36Vd5975t8/OldPvnkLqvVmnXX08dMGyFojksOeGdIyfKnf/Ijbt6+yetvvsF/79/4NzjdP+Dxl/f4D/+j/5Ct7W1eeeUV/tV/8PdppluEmPnJf/rv8/DBfc5Pz1VFR8iGOQVShGh1sKsGUa6QS1MeO/oGnUppEeKdxXiP9Zam9uLIPaQRqiEdNkmYhyhO8sK/sOQIde1pGi9oPhQjHK0WNULFzylCHOhWa5J21r73W7/D1duvM7v6Gh/96Z/w5Wcfc3hwyGt3bjObTbGuYTJ1ODcAa03yMkOOdK3skWr8fpL01Gr8t1XNqOuabogaINNY+nsvPAbvPSkFipa51bF1BoJyXECUwrJJxCGSUvGI0aCbNx5IGz7ExTathK6+F4J2TIkIyt3KGOtUzl6CeVUJLyhrLzQMgb7rxLdhIpKyvvJUsSK0cZzUTWcVWf0yHCVJlqAjhbYavqkqljNC/MZ5ptMZ/dATYiCYTBoC2UZ8Mjx59JjDkxO2L19i7+Zt5nuXqeZb3Lx6i723Wg4OD/jqy7scHB9x9dIeOQTa1YqhdzBb4H093g9jjUIVI2FI7O1dZra9DU0DQwdpAJNol0u69YrQdbz9jW/w9rfe5933v8NkvsWn9+7yi1/9isVigRTUnpTlXiYSuVJ5aasQplxw3YzJm8SeRB8H2qEjW+mSz2YzckwM/cDGb2AjPWy9Z7E1xznHuo+EKLBK7yvBpFuLr+uRi4RFDBmzveBhlEWNUhs3wAhJAuGiFHGEcuyVGFXOgG6ImwlbmRxpV9c5y3wxZ75YSDxdrkSSWBtOk8ls7LLnbMaJXFRVNpCauxQHY4Wp5yBkLJ7ppKEbWv7RH/8Rf2/vCq/eeZs//Ff+Nbb+/I958OXn3Pvic1WQE4hcSaZDziJjWhp0Cusa25UJ2tAJTCfrGYkUac5ZBm2eRMQ0NsRI1/VjM8k6KwmateTAxs+iFDiUaZvkDyknzs9X9MPAdz/4Ad/6W3/A7fc/4Cf/6D/hy7tfcnp6xv/0H/wD5pcvgff88o9/xM3bt7ly7Ro7e1f54e/8Ad/53m/x7nvv8Bd/9iN++ld/SQod3hvqSYOrBX60bjsm0xntasXy7JR/+A//U/5g+Ltcv/0abnePupqx42t+53f/Nne/+ISHjx4wm02pKodhECjkdMJ8scAodC3GRE01CjlFAzkr0dyg0ystEHXyPQy9TlMEGWGMwRsnZ4BWo74SSCtGCl+nfLy6Frn1kDLDAEMQcnxCyvGMFLKlSXh0ekI/DHQh8L3f+iHvvP0uv/c7v8v1O29yfPiCX/zFP+LLR1+xXK3Z29kV7psFN5lquSBRUD5TuKXZJEKKtH1PblucdUxmM6qmFjgc8N6lOcPCU3kzEu3Jkr/0KbPfDjxuB9osk7ad2YzGOXxOBG2GTZqaLkTWfc/68ET2ahGfgU1FcuGVzYYTY0LEu4HK1rgc6fuWL5884+nT55wtl3Q5sgqJNmaO1omT5ZrluuXk8IyenmxhtljQnixxIZHtgqf7z2nbji8Pjzl6+pjJ2TGv1WtuTsTyYDiPYzyJbIrUUpQL0iSP6q0lzx7HqXz9O31tgjLm4bl0nXRoLcVxyUUMokRaJiuSqzv+u3r95jkqVb2Je+ZCbaWdnqIMk0uKkAuXwyjtQtzZyaJY5KzFGyENDkMcHc2Vv1zupbyDBr3VSrCJYbujaq6wansOjk4Y1kt8TmzN5pyuuq89os0YpBwGxyeyCbeBxXwueHVr6dtuHONnfagF8nLxQedyjcZirHyaDmnB+fHvlvmi1cDqvaWpHPNpTVZieBgGIT5mwY8mL8Fnbzah1g6qs4bKiEHe2WRgb9EwnahDr5K8YopjV7CM0Qs52lxI9uWRGfUQEEOtrltzeLDP3v4l7qTE7qVLkkR6xxcff8bzp8949vyFHuyObMRVnSwJjPPSnRwhDBlisqPnQlTY10YVrTwLtznEk1btFyZaUDDaZuz0O+vACWRHRr1ZOqIhCA9gMqVbrnjx6DG/+tWvODo6whhDPVuwPF/y4uCITz79jFfvvIqtKmaXruLm2+z2HU1Tk0JgtVqSnFUH+KxEvHRh83JBiUt4P81sxs5eIixXzBcLAJbLJUfPn+OrE4a2Z//Fc1bL5QYeoYdNiolcJKq16DeYl2KQNJuFj1TuM2bTRbXGqiFfUdWq9DDXRNMId8M4N2rzi3JTxNiMNw6MG7s1snyTJBFaLO9dusJ0Nmext8u1V+4w29oiLE948uQhBwcHVFVDXTVUvlaoWsK5qK7WsjBMLLCcCx2hLJAcWQOSdDlTVL6yXs4GwmMSROUkGaPFrO7TIpBRAkiBUMg91PtmRYO+xCqr+zioitZLbU7dU0UW2qjqjMCU7PhZJVEoPgPihyPd3piFgCl4cXVj9sqjSUn5RTXGiLEiqaibMcI2gLFRYGwhcZeOucJtQZ27HcZ6Vn3P2fkZv/jZz7l1dMK1W7fZu3QZsqFbr1mtVkSFqsUL0+jaVi8fceNUSTrbfS8w1Bj1wMwJ5z2T2Yy9vUtMZ1MuX73Cu9/5LtdfeY1ma49H9+7y7NFjTk5OmdUNOdvRhFP6ViU2qbzv5tMpnlIpF3NHU3ig43MS7xeLa2pylE6mQWGiCI/Q6dqXwteOcaU0layqjZGj8FOUGzA2DBR7UgoVY8AU8+DSBTcXpnx67glUM41wxXK2FehU0sTeRku2mWYYVJZUn0LeTBDkvPVjnC1QFpE0jxTY1Lh2s3BOrFhak1OmrmtijhweHvDs4X1mzZzrr77GK2++zXQ2pW4aHj98yGq5ZLlcMp1PqeoKk2WPSgFYxE7QCac4ig9qeos2k4BxMlP8Q0ZzU6APm6ZLKdrK+UDB6G/qrfK1xjO6NBjqyYTT4wPuf/4xv/z5zxmGwGQ6w9YVB8+fcXR8xKcff0hKA3Xj2b5xi9nla6QYme3MWWzvsLW14Oy0Q4yW0wjR7IZA2w5Y49nZ2uGVN9/j5iuvYIDn9+8ym06ZTxtefeNNqqbi0tWr7OztUTeenAfWfUcfZQqQUgY1ck4m4cYJuHwhOc1lQmVs1gIzERDFSxGW2UyorNU8KyUSCeOF0eBUUVCm1eLdYrT4dC4RBQ8le0AikTjVk4mDxMGd3T1uv3qH7/7W73Dr5i2uXLuGzz396pTDoyNpmJHH9Q3SaCnPCFCETB6nPzJNTHhVB62aGl9VmJyYNRVuVkEVaZzwTgpqx1lLG0VZ6yRmcpTY4dgodTmjzb8LgcEoOqHsuwuXtokv5c/1B2pdiyn2PHl4H3P6gvWTr9g/PGa1ahlyIiAqi6sA67al6wZW5ysCAQzU0xkmqHrXsGJ1dsZqteLxsiWcn3IpdNBYVS+Ta0/j6ZsZL8iUq9ws/pKDb6beJaJonMiZr+2Yl1/5r/9HaQoInN8zrbw01aqNwMXYkfkNvn7zhUrdjE+yGKcZ7f6NvIQCTfm6g6W1Mn2QPx2hHo2x9OuWbtXStT02CcFIP0U+Q2U+wxA4Oz3B5MxqaxtfNQwhsX9wyPnREWno2ZrNOG3VJC+ZUhqNQVFG1xUnp6d0fQfWsLd3RUygrOUkn2qyp+pGWcmPBffPhWdcyP8GOVByhmxHl/asibmM7SSxqCpP01RMpxUpO7pu4Px8DYh8na88pnbMrOGVrQXzSiRVK2NwTvD5J23g8s6cxazGeiua98GSpCWDcFE2bt2i7CT3oIzvrdVCJWdCkInQ0dExhwcH0LfMFwvm2wuuvXKLSdUwm0x49Pix7g2Pc1nVzaBpGkkCvBu7n1lhYjGmCxABgbqEYRC55FGlRtPVlBROZ8fAIY9ug8e3GOl44klGsf9kdU2XMbfzFUcv9jk7PuWnP/85uzs7XLt+HT+Z8fTxIx589RW//vgTsjXMt7d57ZU3mTlPTpHVs/ssl0vOT0+ptuajGluv8oYlsSBLMj2bzai8lwTYOabzOZevXObypUssVytWqzUP797FxEh7fs7DBw8UoiKwRxEAMCPZGuX9WMXiXxT1EMMqhCSrQd9eCOQmGYYwaOICxohzfOEvOmup65pKBRtMMnR9R0oB68D6CVI32gvPRCeExmJrx/Vbr3Dl6jVuvnIbt7NLDJH2eJ+nTx9zdHLMdDrFV7V4gxhLMhFjJEHMWQ5T4TZ5uYdG1MMwss9iiiSDThXMBQU/7aBGgXwZA9GJbEuB8mykEzXcZzMG1pLwF28ERhlULQA0uRNvmZKQljtfyMplglU6uwUIa/SQlI5xkYHGeOFkZZGVLZwzV2Budc0wDFqoBOqqwqLwIS18SgdQEpJSqJS1vknWxgIaRklw3zjaJOvupz/+MUcHR5wdHPL2u++Qc2K9WnFyfEQYBjFeVCU/Z9RR3G4S3g1fRrr4fTfIgd0PI0ysrmoW29vcuH2Ly5cv88qdO3zj+z/ANgtCdnz+6495dP8+q/Nztq/NJOlSqJR81wJxkxIiJ727JgvsQzC0DCFupN5LkZOlMHHO4Ws3FvMxBfV8EjlXXxzBkwhUYMzLDRJryFknb7ouhJQsHJbSpXDWjudeIGy+gzbthFOm12c1h4siTW2tQqKBbAyRi0WGIaZA3dSSWDpZ9yWJTzrN8K4UKoXnpAX+EEYkgVbN41kkXm3CSaibmpAD54cHPL3/JbNmxo133uOVN9/m2vWrbO/uEmPm8cMHLM9P8bV06R2QTdaCVVQajRHD1RCG0VDQW1m7SQURrJXzwVWqKlUU04BuGFSG2KjhZx4LFWOK0lfe7AnDyL/LlDUgXjZPHtzj2aP7/OIXv+DOnde4duMmISUe3rvLF5/8mk8//pCqsSx2tnjjh+9hnYhPxPMDqqZhvpizXB5p1iaqgjEl2j6yXHbszmdcurTLH/ydf5H5YosYex58/Euu3rzF5M4drt26zfbONnfuvMb25Sv4piaHjvPVinXfqyR3kngKZCMqeNbYUcGvPNcS0zUf1aJ+Y35a3O3R2Ja0ELZefk/kix3eqZmnnpFVlfAuEOLm7CBLbibCDDCkiPMVN27e4g//8O/w7d/+PaaTKfQt9CvC6pSz8+WYU4kRbRzPjgv1Jv0wjMaZIv0tRet0IqT/eiKeK44MTc321FNVjqlLeOvHPWWNZR3lOp+0ElcDVqGyaCEkZVJUA8mUExTDVSPN4L9epGjhrC+L6AUaRR98dfcZj2LLL/PA2bKl6wMxoVMr8RlK6nuVBm3qGYGlTScz6qricN9ycnLMct1yhmNhYVFZnJvhSLicRtGMEeI6FiCbpoe5GPQ3x9vmlf+GX7/0G+OqkfhgSrtO/ttZI+amdY2rPE3lpX2X8l//vN/A6zdfqGzvbA5G47XYMzjVpg8mC5EIg8lSIfpSwHhRgXJNxc7Wgth1tGfn7D98TH+2Yli2GLfpSoIcV9bC0K3oWjETTCnw2Rd3+eM/+yl/+LsHVLXgLUW/MWJC0GJIO82bZ8NoauMMs60t+mHgq4ePODsRNbCtnR24LMlD27X0XS8njEoFg8p/cuFAVax7IjOSk5JMCC4+1ZLYOAfWZWLuCSHTh0DbRyorRZD4IFgmzvPKYsHe7pS6dlSVxTpPjInTdcvO7hbz2YzKz9je8sxnCWMzMcpUqh+iOtNH1uu1qE8YkS/2av6YQiDFgMlRxqw2gYlAIp535BjxlePd736fG2++i7WOH//kJzx//oLFfGs8nGXPGFrfg8lUvhJZxkIWBLKJ9GGg63v6IYBCJITEbCFbcjIkW8rBDbSwKPV4YMgJbyzZCfwJ7WbmCN7VZByf373P+fmHdF3LZD4jJsP5Wcu/9+/+nzg8PuZsecZsvuCzew94sn/Emw8fC4woZ7789FNOzpa0cRA1qAw5RNphIGQxYopRlEAScmg7b2kqDzlxfn7Ki+dP6FYrhnVHzJn/4o/+aJQv9BeCZiidYcXIZ2OJGYYYcQ5cdhALBrsQYzfTAWmQGnKAIfQKIwo476gadW+3liRHgEgg1jW4Su5vSqzSQMiR87YVg70IbuIJNpBzQAoBx97lq7zz3rd49b1v0dQ1tutg3ZGHgTQITM+pYllVi1me1AWyJ6yR7pPF4bE4V/xNJEjHmFitV/QxgnE09ZTFdCAngRUWac6q8krmReCMmFFP3yY0Y81iVCgtEXGDDyJL6ceEG/oYMAnqlGicFAkeiUHRqiS2rl/nLFUSEm6BNQB0scdlUVYyWZKQkALD0OJcQwyBNkVsHJjGoNotAn1BZU9DMnStqBPGmCFHcTu2lsl0OiYTwxB0X0ijqDRCYhAoRT8M5DDIBMqCaxqShWY65Wy54te/+iUf/uzn7G0tRgJ7IkrDqGnIKWFrR92IvHjpesvddVgjppzNtMYPLfe+vMulS3u8fusmzLfZ2r3MxNe8eucV/GILv7WDq6a8eHCfh59+zJ/8k38MaWBnsVDZ74xVtcIC7YmxKGKlscUnfi+90tcyQ+j02kTEozifC0Y+sm5XnByfUnnPdNqMnUKSGHrKfwsMC4tyD+RJp6zwF00aRsihHnyiMCheKzmr/4mNepAn6QyLNB8iz70p8gwOGksVVV6+JCY5KwSqU+nqIMWMl0ykV+ERZz31RHZ/nwKh37xHVXnIqqw3HngQipFpZTBZpoiRXgn6hqmpCW1LuzqDYUkcemw14c73fsjO5Wu8eHCfP/4v/4hsArHv8ZNGeAw5Q4pgpZgcQs+6W4qCoXVM6kpJ8oIaiAkisjdCHPAD5OxICnHNUZoIEq1EcdB6+RrZgPUG50WRL6ZMCqLiZDDMtxaEmPjxj3/CMPTknLi8u0c/BB7cu8+//b/5X3N6ekjbnvPqzas8vP8ZR4dPefj4AbP5FlXV8OjLexztP+f05AhjlT9iMpXJDCFxug4s15nrezMu7+xy78u7nJ4ccnTwjOfPHzObLljMdzg7XnHzxi3uvP4me299QGrPOX/0iE8/+Yyz82NmswnajZMmp5PJdkxRhXwUNlqSZ2vVzDlhrSjpoVPYvt8oiJokeUgxjS3IkSIoEYeAt5XEaNcIp8j09EOR+5csZbU+Z4gDfYz8q//Df403332ft7/zQ8zZIeF8nxgH6u1t/GTG9mLBvGnonWW+NcNHMEnOI5xnCJHz1VLVzCyLrTnzeqo8OPVjy5l+veas7Yh9h1+tuOYyU2uZWGmaGGMl1jvhcez0hoXzrG3mPGW6YSAYaRfNZjMMllXbKVrJQDWBKGpz0t8o+dsmObQjlzFA6OmP9mXLx55l2xJDTwzieyV7zjLopLbwb4wxuGaiPGfZI12/ousSMQSc8zKtrCps1+GJOiyURlu2WkQpd0c8XC7kkaVq12e1eZkL/y4FB//s18WRUtLGnWiaiWGlTmdDjnpGaW6rhdE44f0Nvn7jhYqZTMuvkAFfkRAsJ4FUkt45KjXxM0a+22w+oWlq6qZiaNecrlecHhywPjsj94onL13cUirqAmiHwPmq5ej0jBTlobfrNaSBadOwtbvH7VducbAeqB++IMcBEOO00nFBO/Q5J2LINLMpEy8KYH0IxPU5bRzwVTN2d6vKiylgiIRcpIYvPih50OifleLkIlRjLLxUpSIbkWMOMRGDTGzmswneyMZe9R3eWpq6Yr6Ys9ia0UwqqsopxyRj64mM4Y0RTogRaU/nDCk5JcYGejtgjHQzhmEQLDjS1U4GFR4o+NUaUdQKEIJsEMkG8VXDZJrZ29tj2kywxsj9x2oHWha3ONdD5StiXbGYTl7qTltjNNmsNqpuWTufFHlG99IEBaTrWEbiJQjLyFdUYaTSTwoPsWOXvPx813XAmYI9MpOqJsfE+dk5q/MV6+VaO9eZ06MjFXpwSoyWoinGKJ09K92drHKwZcRa9O2HEFiv15p0yKGdxg65HUffo7jAODmS7xz174AEKgppXgnWRkTkNcDIiDupPG+IgaoyY8dqhKGUz9C9OO4HK8TpmKX8jikyhIGulyZBTpGhH5htbbN76QpXXn2NejrDKvfJqlKWMXK8Wj00x3F1vvAktLMskQPIFpzs9iikGrooMEQxsVTi/wi3S0qcjdrAUFXBHDVmMCqTmJyl4McQLvomGMXiohOIEs30ejUtFr6K3ndG8mWBs0r8KHACrEwGs8nEIdD3HX3XjcVlTBI/YpXGZ17uybiOjXTxQwibZ3SBCL5RTkryWcmM96Mo6aUCqdR7YUCgWaraE4aB6XTKbDLj2tWrnJwccXp6jDViOEaBMX3t3oAZycplj08nU4YYOTs74dHDB2xvLXjz29/F1TVmZw9rAtla4jDw5P4D7n/2KXc//jVDv2Y6qYW/pCpqKhOiU0Ux/jWot425QIaPeYT5SHFamiTyd0vxOYTAWoVGnBZaMWdMEo6GcyLW65xM71DRlqJwBYzcE11CFyYAaUxKsp4FRYkpxkgiaNK3Ie0bShzL4/tlsvqQKBQKdJpeEUIQRS/vZb3q3kRjnLOVrhk0Rpuxm56KLkfUo5TShc2MBa4mMUahMjI5U6UwCcaQIm4ILHavEJPh5iu3efzkPqt2hau9kqT1ZpXJxrhPla9iUQEWq/spaa4gzYWiHpnJOl3NYzwcv0/c3LecGCGsZY5ZVKzKRHHcy/q927YVRcQQaJoJk9pT+ZoYAmdnJ3zx2UfU9RTvKk6Pjhj6jhQHVWoy45k9qhAaQx96zs9PePTzH2tTsGMYWp6dnvHV6gHLs46Dg0OOT04Jix1Cu+Ts4BknJyekNIiam04KCy/O6sIwCofla2iUi2IoG2W/fOHXIO7YZa0aXVMFmqcCHmWSayx1VTPUmbpKDBqrkvKNrHFMaoG4LRYLfO3JdS2y0WFzT7q2HddxVYnBs6z+rPFCns+kaXDq6xVTIA9phDoWdaKq8ngSbvA0pqYBaiOcL6Nnh/eOFBN1lfEuisIsiLS5FmjOyFqeVh7jDTYlbBcREIL5+q0d1434wuk+Sf3IOzM5YpCJbHZOOEMXzwNd62izVn6jrEXdH8hZa70TxbkSVORh6aaVBtsF7vzXcs2vvf7GQsSMhc0/+2+bl39ZzsYLP9GGwMm6Y/+spao9s6bC5jQK/PymX7/5QmU6u1C7OVSqYyOhq5uiriumTYMzgh931nD1yh7TumbiLfe/uMv66JjDJ88YVitxn/bVJsHMJRhJotX2kePzFc8ODtlyQcdTMJ1U7OzMWewtaJd3eH66oqnukkMPxkElGP1N3ayHsI7Pm+mEZjbl6bNnrNYrhpMT9hY7YlpUV3hnCUiHOypXxBem4jii1oo3lUQivzRJKaefLDzhdkSsuL6HiMWyM5/hjGPVdhyeiJJRXddCqtxeMJnUY2GSUsY3gcFUZKDrOnzVyMFuRVFMApQbL6OMhPNICE0jN8Z7wbxPJhORxuw7Yteq4owD58cANpvOmE6n1FXN8nwla1x5EUMIo9dF5StiaAhbCw1ICttS1ZK6rsUAMmVSKBV8Frd1JXUV2Fp5bQoXTVJUTSNZ+bMYghpHSWe/mTRjUtG2LcMQ2Lt8icmkIaXE/uEh63VP1/U8+OrR6JexNW+YTGdMZjOiephgrEw/snBkvCu+LkGhTKjBoHS/2vWavpNpineOqvZUVop3CJrU5M04d0y6ssLjNNnW5CslgXzIIrKYAkExSbvQAhuJKTLxjWKQiyRk6eZKaDVW5XmNmDw2tXiWBCXOS0YQIAsULvQDl6/N2d67xO71W5gUSTrKN85rZ1+MSS0C67qY9I/gKv2ORTpVEnJZeyFshBO4EEdiziNssHCbYgxY58k45fjIgVdmH0aTMIy4YYSYNcHR+6BJwUVFvIt4+ZjTeMiWSeGYwY4JlPAxCtzT6D3oh07doTss6nsR4yhBu+G+lRF60vsh8LcQAolMpcTZ4u1R7ktSfpJYGG2KlLGQy3nDmzBGZauT8KtiFDjWK69y+403+fyTj1i2K2K/0gaGHaFehdemLaPxO6eUqLxnNp2QTeb+gwfcv3+PEAZuvfEmzdYOZr4g555htaQ9Oeazn/+Yzz/5hC8++4zpbMpkWjGbTzRmlImafGYclcbESNOqHOcogauh1WmRao1AAY2u75xFvGC9Wku8y+KLFVV6OSaBtojXiGXo0viMy3clAxWj7PGYSxgzxhOKPDjS9a4qbRrpZIQkMsa+ls5t0s6rbAO9v/oda5V0zwbqAo+pOpnYGMQsThPxGCOmqXHOUSWr6k+bRAsyeC2EbOnyavKPOgmVhpvG0Uq5mSWpIicIEVYr/HyP2WXHzdu3ePz8IeftimY+ZVLV4zQ8xaQeIi8rMJbkuHCNUpKOtzOWrGdoKvGmduP5bPVaxcG77JlMKZjH5lVpCKLqYTGppLAK/uQs3jTGcOnqFaZNRe0tQ7ckxJ6+73l+93MpRhABj0lT0dTqMZ9LHiLrZ4iBbKHt1xweL/nlp1+wtb1g79IuVVVxeHjEwwdP6fvE0fEx+/v7nIdA17ecn52yPD+jbjzNpCGoSXGiKFeW2LhpomyOvk3jQXLQNO7RTbFC6QVpY1jiVTE3tFYg1k75bQ4EchUykzqRe5lchyhTtso5qmZC5QUWF4Y1tvaCaoiejIiLnJ2dIVxXh3dODTmTGAUPEke9Fal/ay2kLJxIPedzFmnq6bQW1TLvsLFjMjQ0GGor66V8wbqpyCFTVQlre6wRzl9dVVQqmS0m04Zm4uX9QsSkttyi0k7bNNC4sLfGT4pjg7Xwg531cj/GxuK4o8emmhwpeq5I5SLnNSLoUpqZKV3gmGyS582+YdM8+5vKjX/W6wJYfnPuXrzOC9+wnNESzS4UTUDbB46WLc9O1tR1xdY04knohf3Xvp7/uq/feKFSz3cwimcTjG1C4FSZynvqyjOpK9lQxuCtofaOphIn3sMX+xw8fsRnv/qI2A0Cu/ATmWiVUyKX26ywmGhxvuHJ80P+yx/9JZfmcP3qNb7x/nd5/zsfEGPPi8NnGCq25gtuXrvErx8+Il7E05VCFzmwEpnzs1OqoSeSuXH7Fikl2rbl9PCEdbskLePIlZGxuxAbAwniJikag2faVNGZl5fXWCBlwVA6J7KHoQ+aYEWIgokkJpq6YjZpmM+nTCYNdVPh62Z0SrWuZh2gT5mTkxO5T8Yo1KdMHCwhBGKULq8Qphm7IYK3TpCl+15NKw6PDokpcv+re1x/630m8y3a/cf86hd/wqOHD3j44D5guXXjBoeHx7QKVZBkIBJzpFLinhxOJQhLJzsVaVdjqSpLBfRmYOhFktm2LZmGupLpSh4VyuJIIq6cYKWttYKxpfAGHAy9eBx4h5lMqHzFatWy2Flw5dpV/tX/yf8YkwKr8zP+0//Xf8bZcsW67dj3lj5EQkx0w0A/nLJcrZgu5hTTyXbV0g+BGALzSQNZrrHrOjIG5ytADBpXy5X41RiDTYF1u2awltp59i5tb+RUQ6RAv2TtaCKk6iib1aOdMWDkXGmkSSnSDy3Fedg5aZMMajo2SmhbxvG5XJvFqva9TRkTIkPoBeueo/AwciJkePFin64PnB2e8Oqbb7J9aY+dq1fBz1kf7PPg/kNOTk7ouo7ZYkE/yDjZGXnmomLC2AUXCL/bePDUC8iZS5d2OTg8pO16uq4jhulmSqLrab1e0Q4Bayxb8yneC7yhco4LzVSBbgB9iIKRTnmUp3TOUdc1RpsPF6XIx0/TeJQU+im/3iSGRaY15QiafK5W55yentB3PVuzxaZhYYSPlDQpkoZCVDifJBPGSPERhyyoJyfxJmpxYhCoXiASU1AfI5nuNXWFceAHR9e1eC/QpDpnTk7PCP3Aa6+9xm/99u/wre9+j2rvOtV0irWRTz/8hYpbiKGnVZJ+27Vy8KsTfcwybWvbFUOKpBTYms85Pz3hw4MD4hC4dO0a25cu03cdR/svePHsKY8e3ienyPbOgqr2WIvKITNyvqJO0mKMsi6DIXrwhSQeFGuu6jTCP0rkKFA48Qdx5Cg47+mkJnkPxrJarVm1Lb6qRgEF6yxN40jZEpKRcJ6Lp0SkUs+Mi5O0GMNIqvdNTQiypnKM0qDxHkKQeAhU1jMMelbmjPObM957aQK5qqxZOTGGQWC73lvmsxkJWC9XlMI6pqBFfcZ6kTwvinn9MGADhGAFYq1xa4Qgp0wcR0Zy1ypXs7u9w8H+C7KxfOvZM5rLt/A7E+jO+eyXf8XjB19x97MPaTtRvVr3HbWXxDAR9TlEweYPotzVVMKvsb4C5zHGy15DGpLObiBJpfvsnTQeivfGGFuzFDhSgBiMc9RmIxwyhEGFRIyKvJSCdeDK3mVu3rzFv/4P/j6VgX614k//8T8iWZH+f/L4CSfHJyzPV8xnE+pKTCjbdYs3FpMKtDvRh4GT83MuL3aZzefsXd6jrmqsqZhPL/HmG3u8fuc93nrnPSazCcbCP/zP/nPOz5cMMXD9xlUyA8vzc5xyRwoJXhCrKjVURBPYNG6830yuUxKfuDKlL8VK6MsUzzKpHTlGhk6KAuM93lUsV0tSjKzbHmc8Gct0MiVnnWB6L02amAhd4D/4f/wHbG1vc/3WLb77ve9x7eYNbt5+lc9//SGffvoxn3/xJaY2VM4TuwFn1W/NZsTYE5xx4wQuIdBzrKOqapz1qg6asd7hbMLXju1mwszUNL5AtAAjptu2j0xWgYnvqF3GxUCt8b8ogdocqZ0TVb8hCCVAI8VfS/zLVGHzLwzg7bht/sZXmayUv5WNnrfliB4rTIHtl/MkpozPyovUpnwaz67NZHD0Thpf+cKb/rNeFxvkRd0s/Q0/Wd6rjFT0PZUrGwwEa3HWKAPvYrP4N/v6zfuoOIfVTraJUSEIVhIk76icRZ1RJLhYi02ZsG559PiA42dPOXj8iGHdCfnVSvTOGqwlN9NbqA/N5sSkrmj7gftPX/DYdCwHy+6V29JlThli4trlyxycLLl+7ZpsCu2iloMgm1JDm9KaIPQDy9MzQHDSzjrq6QTng5i2JVHeyFEgWjmWKcqm4zF2eP6Ge2ZKYa3E3rFIQJKd0i0rRRro9zaC/rhQbCvBWs2NsmDlvS/wljJeL5snjQefdP11sVEqfka4x/gRGdq2495X92htQ9VMeHL3U+59eZfjw0O6rqOuBb8+m80wxjKEQaAVmjTVzlHVDXUlCkZlLVy8RyXojl1uK/4EIabRr0T8AkqHVR1sYVQ6GbNS9ZAp30zWaYUzjmgjq+Wa1WrJ0aHh9PiQ3Ut77F67yre//S26IbDuev7sz/+Kw+NT+nUnCW9JAsfnYBlCZNBipqo8fhhEEUYFBQrRWEijG2iEsYbdy5fYWWyxt7VF24qKTtd2m07whWcsSZgU2VHhEjFKsmZVtrXA1EoDNKU4FtPF76AQNMG8RDq11lArjLBynhgyZBWPiFLIo8pHhUDeDz0nx0esVyvOlqfsXLrCzTt3mG5f5uTggK8ePKQfIkqBH6FTmKTvUeBXZrwvFBhTUXvTZL2uPBsTMkPBc1tTYGsyPQtA1zmMqcdOZDm0k8aOrHtLCmTtJmOwVtarL5CXjKgzlusro/xUGhFazOh6LBMMeUshSMcoBmxlr1ljxrUvSaZIggtsTTqQsUxgkyToZXI5pEH8YtQ7SN9lLGQ3ZoSM+166yzoF0W5cDBGymMG999573HjlFaY72xibqb1hUldMJvXYwYsxYQiQVTZaG0ZcWAshSkHbdRe+q7U8ffqE45MTmukjrLWsV0uW52cjsd86q53KpJBJVbSj/Fuuwboy2YFcnr3GqVww1SnrHth0H6UBE7W5IZ+Tje6jmHAuv3S+Fwx/QknKciljQlUw5+bC+5eptUzQRPQghoCxtcJ4NJabQn43L32edJ8Ror4tqm5yLxi7solN9nRhD2tTrBQqBrs5IPTexKKaYTLZWYWkaEc+yz0zY8CRBlJVWc5WLUeHR9y/9yVXqDBVzYNPP+KTX/+SgxfPCMMa5yyNb6Tg0M5w+dzi5/QSmmCcQJWpGJASYegJIVB5gTNLgZLHCZkpcLlU1K4k1icZL43PqYiQWIXklb1fTIhJmdD3LE9PaVdLmr09tuZz3vrGN8nWMOTI8cEpZ5yTQsQap4WfKgmSVchjcy1tNxATorim53FTT3j/O9/DNQvwE65dvYyvGxLw7SfP+OKzz7n35ZfaSLJUZRpldLr7Ug4g8d9bq8aWuubHJq5OOPMmDxmFEnTt2jKFTWnzd/W+hmEgDIOIFhnhAmKqcQ/bnAk5CTk8Z9q2YwiHLFcikb1z6TKXrn7Bkwf32d9/QUZkuJ3zFHEEecxxvBanuZbJMs1MFF+wTWEmJqgGUsJnKeQr5deUs9E6i7eOkDYcsiJdfHEwMU6VLJhYNseFciLnDXxJz9uvzx42f1b+uZDIX3iVqaJMewscVD+yLPoLohFlCm6zwWsed7HUkbhR8oFN82zMbcb8kDGH/evXvdl/epWbv6j/3jTwzVjYG31G46WAwjf1Xo7F3D8HhUplpSMrGziNAaiuqg3ONQ46NRClqth1dMsVX374MUfPn3Ky/4Kre1fVb6AilY6iPq6XEjdkUDdtaobY83h/yenZMQM1N268Kp0Pm7A5c/3KFY6XHdevXpPApvhy0E2MYvrLoUNSmE7L0Pc00ymzrW2a6YTcJBgiuRuEi5BE2SbyMi50nLrmzU6QfEy/xdcBkTD6mhhEM17zAMo4sgTiUu3mzQ8IdtqoHF8QnHXjPWaIiuVXPHPeSJ6mJHKYpciJsRDAoECDyncwxtAPA59/8TnHyxUYy0e/+Dmr1ZKcM7s7e2P3dzqdAgY/eAbtNlrnqL3D+1o7Z278jALbupgtGCMkZefEg3VICaMqSEIO1S2biqqX8kP0/owl14V7D5laifHls1fn53Ttikf3v6KeT7lx7Qo/+MH3wVnWXc/HH3/C8ckpXbumWWzJhKnyykeR9xhi0kIlMq1Et14UYeLY9QNRUptMhI+VcqauK26+8gq3b97g5rVrfPSrXwp2OgxUTUPh6YzFY+mwpE2CEYP4zThXYbyqCeXChUugCaOzkmAapzLD1lPU5MqqtdaqKpencpW4UCuxOCfBoRoMxVskpoQJYkK3Wp5z/+F9dvYucbh/wOWbtzk9OeHzL78ihIyzKsudyvWX5A1NLsvS1icVI8kahtzp3hDFokaTS4wUXHmEsOlhl0Uyuu06qqqiiBxlnTylBMYWPoce6EnSeGsSOctfcLbAh+JY/ErxKA2KZDThTQJbRBOAlLIm9ZmUxF08DAND32MQwYTy3mWlxpjUzFDhL85R6VOJMatsqcIgU8RXHu8jOYviSnkv54o8sRm5ATFnNY6ML8WivusxGOazGd/94AMW165jJg3p/AxCJ0a5s4mQyqNcBymSEzRTp8VegbMq1CwGhn4QDlYIMh1qPPuHhwz9U8IQ2NreVpiJYT6fy33Kia5vSUmf7ZhAbGKDtW5UBZJioBQUTtUDBQIpNYAmtjD2SZNOelIcCDGBcSTLCOXbpADyS+scLmeCuRATrRv3SjnsDUXi1SnJWoVPkjRWnPdajG6+V0k4SlwoBabVpkxZF1l/uBhCjv+dBB5WZMSLhHEMBQ5o8bUo6xlryTEwTvajymZr/V64lU6vqFyXGF1auq6nHY755NNP6F1NxvKP/4t/yFf37tJ1a1577TbbW1PqWiYjRS0NNrDUGDbTxjGWjQ0lNpOfrqPve3ITqaqZTMeNGvwabWBdbNzJQxnXwmYolMfzI6RyLaIY6qyjrh2hHzg5PuL5k8dU8xmXLu3x7vvfBitx/8Of/AKyJQbhvZWp2giXckZiY5a90XUDIWbhL0ZBI0yqKd/7/m8z2bsGsx1MXGNU1IX1im7d89knnynMupZzIYYyJH85qWWj6pdVOELk0I3Wa+W+yH5kbJpmlSE2qtolokGUBqI+hzj0DP1A3/eIU4fIxxvnx4IvRolVSfk563XL/v4+T589x9c19XQueZe3zBdTvJfCSkyhRfwlRoEAW20GjcgNb2WqORZZUScWErNTilQ5K+FfpIljOdu8ON37pHFb19hG2CSPMbJM7kszlFw6T2ryzEXp8w03rTyMzZ8pxNwWVAjjtZvxWVkiaaQIvZzBWuXYlPGM8L8q66i0UCm8TqNV1tjsuPi6sD42SeJff138e2M2bUohdmFPXfgJNP6aC3mt0bVmbMLajDPCo0r8M+u1/9av33ihYolYJex5KxClphKYgXScA66eKhES1of7LA8OOHvxgu7JffbqittvvMq6i4SUCVFUonQfYo3TajeTbcZh8Flk+HzT4G3F5bnl8tQTl8f03RI7n2BnM/7pL37Jrz75gj/78c/IxlE3wk/ZqDlsKs2MwSU7josJMJyu2D85x6jWfmUdLks5FskklQ9Ty5JyxLy0hvTty6/+2v0zIFJ0FGKhlZ2WtOukOy8jyUrXtcxDjakMjWtEHhzpekgnrnxm4TgUj4ES+GUzOcW0i1lbGO954bMYcaTEOkOIgXv3v+LjTz4hpUQ9mbCYzdV1HjFqEnSQqpEYtmZzvBeVKawYtVW+oplMMecrgXggZNGmmdB3HShky6CETid8m0FJ6n7ETkugywqH6vtBJ0E6WbgQiOtG5JrXyzUnx2es24433nid1958jVu3b3Flb4/pZEE+7XCu4eT4mP39Fzgsja+Z1BOMk7F00zRUvhKBAOfodX3HEKhmM4GgWSlYzs/PePT4Md9bH3Pl6i67O7/Fld3LWO+p51O2bt9ifXTE8ePHYva4PCfEyEQnH2mMIUVuOZGGOE5KNhr0liGK5Grlq691enWa4r0kW8bRNFPqeoK1njAIDDCTaJpKpFptRVAZa+sCQwhoE3YzjciJlAbqyjDd22LdRU4OD/hHX35F2yd83bDY3mY2mVE7S4ja4ctSaIhinpDyy5q3Fw6gMk4eu8UGkspWO++wQQ8IPaCdke6aup3I9WWFiY6lqpCqpcslSk1OpxExZ/LQs1wmmNTUlZd7aa3OIy7+7+VNPV5nHMT8kkTft9rtT5AVIqrPUlMPnK83Igv/b+r+69m27ErvxH7TrbW2Oef6ezNvOiABJIhyLJJFirbVZHS39NJ6kCL0ID0p9KQ3/SX6KxQhhZ4UjJAYHWpFkN1N00WyqoDyQKGANNfk9cfsvdda0+lhjLn2volEVZNMRqs3cPIes80y04zxjW983zjJ5KlZuN1B3ZZTZpwipSZFnhOTbhi2NXdn5WOHQKtENaGMSZHq5vKec+b169d85+Pv8PF3v8uNjz7G5kh8+YI/+bf/hk8//SmPn35BmidpVC8GZ2TOroYB749CFa3RlirHKQ7hYJ0/UanyDKuA3VgBT05ASGMtXv15vLqczzGd9KG1QEA9JjwYJ+uIyNIWSgKsNKznWlWyvmCNJOKpZOZ5JkXh23vnSVWAl2lO0sTagj4kZrDGYW3F2rJQDCXP+ApuaBS5R3oy5iTBtlSrK3HWIL2wBJW0sW6bt42qMDnpT2zCGTnr8QBdL+aacY7Lui73upJykmRAm+9TTnSmx6tscpOal3iqofGaOBnpq2tGp6Wgvj6iwjWsBg7TzL/8l/+Sf/4v/iUxJV6+esPNG2ecn59RayHHSDGwWQ2UCkn7bkpKJL3u1omATZuDEug5TFNuasm7ovXC/kps1ivdD8SottFfJAGU9TElUUI0BlItuk/kpdlaABjHPE3EaeLb3/mE7/3qr/Dhxx9z984NvPNMF1d01nP5+jVvXr5gsx7YblYc9h3TvMdXjw+Ozaan74WmGHMmFyhYrvYz4yzqi5v1Cu8s42HPb/+3/wy/XmP7FQ8fvsOtdx6yuXWHP/zRH/D5p59z2O25vrgGNvjOMXTSJ1mUKmhQuWtd5xYDzRZ421YxbnRqlt6flqobexyxp/1Ui1CIKYQQ9HWWMZZlja9qJFxrxYcObCbPMxURHdqeb4mpMM2RyzcX9P2KEHqGYUUpUWM2Q0miOid08AbWWLF2UMCtOpnbAXCqHAuVYjyuODwZkH2qAUetXFKoCyDLEY8RwME5TKnyGjRfr1qJ07oJOjKFjsnbc/wrj4LVqdOEO457oqlIb5cPGGvI80z70HEalYoo+2/jfJY0S+9P5+nXa9gd6HNcEi6MOTb8K3/MKk35ax/1q998XQbxNQnPL3uzBnIsIwrpOy0FW4Vwe7rHfpOPbz5RMWXpcxisZRU8Q99TWinTSgO3LRGXZ27aiCkjc9zx8PY57z64x8OH7/Df/PaPiFMiq4+CVZQxeDGWyVVUqdoFchZWwXE2BM5vBW6drem7ypwmuhwW+VK52fmY8ZqmZiKP5TIbw1vKDOiArMoLzELraKHGW23dJ5lne8/l1+0DvjJmTpPYRl2qtBqKTmgtY8uMkE0mqRP2Kc+41krSBuJalefNEXksCPoTU9RERiaqoNs6aZeJVxWpkiMUhaAqrqjO4xz0/aAKNM3rQzY6alX5Q0foWvVEN2ljUDkQirHyRUvELKELS8k6J+X4l7qoSGk1fLlupRwDDGcMFKmseL2OzclXFi+jwZTw2n0IdP1A6Dou31ySpkxeJ9Zna3zoWG/P+PCDD9jtJ15fXGF0szXeY6xfkKFaxfU2FqEpNLUf33VMMfLy5Qs+/+mfcfvuXbbn59y6c0fP1/Ds55/y6ulTnj96pB4gFufeHkpVu6Rlc3F6T2TTNtbQTrD9VrenZTHFWowXHr5xIie7qBe1xCOLkVfO0sRdjYIAwRO6sJh3CSgrkpiiknTsNSq1kEprFJeFrG0DC51Hv2xDR99CwlkS1CZAIYGw/Nt8dUyRylnR8V6q1YDLEZS73BKVXDKlKslEr4ecsxo0alOmM06RXzWYdYmKIYROE39drPWrGajJwLOUpOpqKcpvS2GeZw1i5fwbl0ymgQSHxolS1xEtq0vwWNvstIJuF++WZtucMjEq2GIEKTXqyeid0wStHq9fLXKPR0FSN9st9995l4cffgtjDOPumusXz3j6+DNev37BeNhjTKt8VSqJKU7UWuiyZRjEC+B0LrbEaJ5nrFbsrKkUW5YAqdR8bNBEKxJG+guaLHL7s6xROqqN0wqOii0sdDyRJzU671HUu9aKcbJemBN0uRkyUrQaqRWVUlEuvCYMVGl6d3ahz7bjbY7xi+iCFb+TUisxZ2muLmU59pbeLMsfx6VQzldpMfW4tslHaHKte4MEWtJoX4zB5NaLIGpKxjkRevGdVE91fWK5LkX3A0noW9Dbrmut0nzeKrGNblaLgEDTHMWnxkr1yOpCJdU+AU+yrhFuqXzIv9LnEFSIpsNYL/voUqUQkRiQROnYaF/0XmtApOBMW+8a/FCLXNjj/TkG9kfVr7YNV61gwcWr1/TrmWG9pju/Rbca2Nw45/6D+7x5/YKXL5arS6mGXFURzggPA62s76fIFBOxFGnUNoZaIj/50z/AhB6/2vDBB+9jSiHtd6w3Kz7++Nus1z27/SWVzDxO+F7vVQGjptipVIyV5nBjTqiHDczh+JDl3sj4oC5zqIKqdjXhnbIkw7XIXGmULPGCMphqySxDWClgkiQ2WnOLbZx3rFaDeHGpHPbxqyVGMreWSvZpRqHPo4h4SCZJs7qzit4X6bULHd4VvK0swisKfods8MELIOcymGb42/r8UCNoWkCgn1856pS3cJyTa3sSu7R1uprFMsMYs4BRGlzKDtTAPKXf3dpuabv5XApZ47CSIptNz2boWG/WXE2TWkhUSpD13SF7RIGT426HrL84lhSX358KwxzzsXr64pNvT9INRZMarf70+VLp1iChHufg16VD/6GPbz5RcXW5VoMNrHxgCB2HosY8HqbDCHHETZfctQlrZ6KJ3P3gXX79B5/wqz/4hP/+d36fy0MmFkcAvLE4HEPw6kMgNYEWqLlaWTnH7VXHh/dXDMPA0FvG+cCQe7puxfnZOduzLf3QIYilUfV/FCVrg1MRBmuOdABFzHrnFmShOUrLib/NCV8y+WVCwHI3F0vs4+cCS4+MLP52+dmBqkGJuoQEcBpUJqU7LNxsUYvKVcuXVZTDZCE1arhYyDVrIGGPmwGysKG0EeEBJ6AlK5aYhJ5ifWDdr/DOScMg0nhfShakQV61oNE++GXiL+dtKtUZipWupVR1C7XQ+U6RnEo0MzVlLFkXLNmsiq4rhmMAVqql2qbeJKF61c1WzPTENCvGvJTMjRXfk3GcuXj2nJtn55QbM/1GFN9u9R3f+953efbyFZ9+8UjUnLynOo/wd50sINQlUZGk0ONDTxgGxvHA/uWOH//o9/noO9/h/Y8/pl+vRGp0PPCnv/2vefL4Mc++/JLhxgavTYsKDMlmq/xro/dM1lbh8TZMKJ8EuYs6iEZ0klxp82ozv7SVYgoZacguGXIspFlcl10zyAuBrhSR6S5ZG7iLUq2setVAzoaoNCXf9dggnGvfUNQqlBS0R3ZRsWk89nqSXJ30VeWcNOguWBvEHDW3ELBqMi4VUu8dXfAYUySpXlS68jJ2WlAoAXjGWEmkne+IVUQMUo6MU1J0lIU/XEuRzn/l3ZcWsNhKruIBEdOsla7CPM1ipqbIvuZTch+NE6TTO1Uw0s1ODlH9O+Q6OKvNwFSiBhYpZdmknQboqLx4heA7vTqFTKaoCd+cEjFNmGr49vsf8u6HH/LwW98ix5ndxQUvn33J8xdPuLq6IM4Tfd/pZlspZSalyMFYNkOH957eh5NAUVT64hwZx4mhd8tcSDVq4C2JcDGN5uSPyGQTPABJvNraqI3yRg1cW4+AUTqxAfVQMMvm2tagZl7bmtaPQZPIazfQIlcBaqwLQksOjpJ0jHtDTZZmumrbatZ6f/S+NlpezDIOqFUlkDVRMdrQbARc0/wS62VQFE28W3K4KIvpoikGpw7jOrz2allENtUYpV54R+g7htV2UdqSeEwSilSSuCIoCFEQSmfOx9iltB9qVcUsNTe2loqULVarXjxhlLZSSiZlQ8yJZnzpTAsxZLYFlZ53nSDu1fiF0lNrxjrHMIiaVKwChGDQyogqUllRTmzVTSXDgSYwprT7LQFWLpCzfMkeKp5Gc56kH/Dqgv3lNTdu3eJGKZzduM1qu6Vb9bxz9ZBHjz5bEkwBNjIxwewcXoaSyiw7dtPEfo7MSRq7xWA282c//kOKCQzbm/yv/jf/W7yxzFdX3L93lwcP7mHtX+df/PN/xssXz3jz5hW+tjVe1yoFaUyweE38HcdeyXRC6Wz0Z2NRWXNVScvak9LW3SqU1hQjrtFE6zL18F5TadNEKMCqRLizFrwnKpCUkprwesfZMCy0ThalKwlom0Fv5716egng2+iSS2xTqwTxVURBBhMI3mBMAVuxIeBcxdmMCDEI3dkCPhhcCJjgwSWKSSqNL5FJqicVeAvGVow7Ag6nQYpBqvdLHrAsTWYBKYxvdGDeeq3EdllpznlROLt/+5bEXyny9OJKfGqSHFvvN5yv15zfvMHh+op0qMyxkHtH9Rqr6nTK9gjGoAB6Sy4kzFSIqx4j29OHxKnLzDn9w3L2TchHZ9NbiZx8zlLv0YTzfyKJytD1iCe4JBYXh8jjy5dcXF+ysoaNMUyvn8N4iZuvMasOU+Hdezf5z/8X/4jvfvvbvPvgAffu3uXFq5/z8tEj+u2KvgsMPnDwTkt2zQehgin01jLuDPsrh3EPWK1hPTleXY6sV4Vb256/+uu/RjesuLza8S9/90+FjoBBxPhkAbagQTRCWzSN3cjyX3NyJ1oA9tWbs/DZjdESej3ZcL7+0T7HeiduuEYNjFoVZzk2yeJD59msB1abFf16wPUBo4ld7xzxcmQfZy6vR1KRSlfoOg0OZJIWBBUWtEajI/2ghnyU0rxUpK+o0c6oRhAfWChYzjqZ2LUyT3Gh5wAL0uWt12RC1M1KEeWlOCdVIcv4t65ogw4kUFHfaGKc0dBHzRBlI/FBuK0UwzRpAKKBao4SmEzTjHOCOr58+Yrt9ozVMHDvvXdZBUcXDIfpmn57ju0GHn3+mMvX11A96+05OIdxlnFOsgEYoQAcpomr6wP51jnWWLoQxIckJ3JJ/OhHP+LnP/+UW7/3Qz786FvcvH2T8/MztjfOWV28wTpLTkmS8ZSZ1UxRFHKOlS5rDHgnBmcGpe1JozBGGo5Bgh60YiANy1rlCVJlxEjFIaZM9pWiaqBR/ToMZaE6i+lfYI4wTunYTwKyDeTKlCLX13sxoMOwHgYpuVd11lWsJqWCs2Iy19An5zSZ1Tx+WYRPxo7F4oOg9ClrEAjEFDFmRQiB1TCQK8wxMSfJ9ErO5CyBS9XrlTV5lYpkpOaMSVnhKvncVDJ1rlxc7xbz4pKkIplLYYoiMY0GieMksqbTFJdAr23IzlhKTlgXFmEO6z2uVLrQs9/N7KeZMSWCl2rgWyBfRTndotYkDfqFw34Uj6QgoiVzEclh78RgtCpFwFpZK2OKpGkm+I5f/7Vf5d6771L7nun5c9ah44MPP+bBe+/wJ3/4+/z0x3/Cy+dP9bPh8vKKzeaM1XpNt5I5IP0zQvvYHyburtesVlCMZb8bJQjxdkHrlsqAzstpmijFE0JQeU+WJM8i4EwujUtvZTzrwKva2CsBjzTHG2dwiBqNt1rNKXKt5mmklKw+GJrkFjHRjakwzomr3YHZG/bjAWMcqMy1NdILRc1HpBSlSFWlkmSl5RhxbpahK2O+6cV5d+ydMRpYfvVhrMNUSaLrkogJXS/FxBwzm81aBQOEoiZKcV7pU7Ie+9DpdarLMZNawnYiN65J5pykEp9L1iZnnX7aF9GHnlwcVqWOGyPBOjEiNSZB7VEVCUACXKd06UbFbcICmAZeKBiGrgPOKnUvL14wxlkV5JF1wuRMzPJ3WSdkPErfofZgpkipbqEl1gJDPxCC483lKy4uXnHn9i3e+egjOuvwxnH56jXD+Tm263j65BkXby6Z5sR2OwjYr5XU5NUc0CABuLPsxolpjpSccaXSDwPb7Q1+42/9J9y6dZebt+5w485dri/ecPnqBe998D7djTvY9Q2++PwzxusdTy4+Y92vWq0caxtIIOu4VEgl6Wgqc8fmeag1LYVDp4CUQfZxqS5J360xhmKq7oXS84Luy50R4Zqi1CjvLKaAcZ79m2sqRmna/aKsJj5uRsd0pdHtWjKlJWaMUYU2c5TNN2qI65ylZqGGjdNENWVhZVgve/i0P/CTV3tsTrLfaWdVNmJfcIiJZ5c7/vzlgcu5QPUM1bHCMJOprlKN+gzByVqiwbyRtLQge3rVsVxq0R4MwxAC60FED2Y9jhain0rZF319iRnnO/ph4Oz2LS53B8ara758/pq764EH5+f85m/8Kj/9sz/j4vIN/+i/+M/4je9/H/fyJe63/wU1GYrGXgu6kds+9RfHlU1Yh1+IP4+79y/+/iTgXMB7o5997D+rTQnq9O3+Izy+8UTFVXVRrXBJZowT43zgLBgebtY83Kyx54Eab0Gc2HaOs82GGzdu8L2PPmS7XrHb7bh9Y8u79+9gjeXGnRsMXccQPPM4660RTXrnHV3nOd+sIM2k6cCrqxFzPRHCNY8ef0nA0mF55+wmthRqyqRxYoriUGytTAbvO1VjAqhSXShQ7UlVxOj9Nm/fHfmxlfqON9dY1fFXRLw965c+BDJnkaFtiAQnSi+14o0jOMfQdwxdoA+dqGgVWdSrc1gfhZvpHTFm4ZDGnaqoGEXm2/hzC2WC4hbFGbMozLQj199TlKojfGnXB5FU9HbpIWlc/EbLcqZtJMJLbtUcOU1Bh3NSPwZTF8Ri4WTqXCscW90aclebCpARmdBGn5MGWw1G89EkrAkDGGNF7/3ykov1wL0H97BekM0UE6FKEnT7zh1u37nNzTeXgl9WiUxiTqTSeiEE2Z9TUoRIjs1rk62zluv9gaFfQSncuXeP7XZDP3Q8/Pa38EPPsFmz3++4vLzizcWFbBYYas4ih2kMtlqtDil65swyZp1SYax1ShmoCwospp3SL3Y0ezwuQpL8F1VuEvdyUfOwLU1cmhBB70XV/j+9xpIQi5O0Q2hYrn0tfSByrK2H4kjJMNrQfuxNaRt0UWTVOqtVBYdJ2kyPUalxGSCtYdQXobHEmClZkqOq1AZja6tYs5TykeqkqS2IPCqOxZhEJQnhWDeVsKz9GZrWyHjLRQq2J+dYilAXWn+IU3Mv3wVCMWpwClNOHGIEI7z9t9RWluCPpTG26HFL5UiqAO06znFuOaDQc/SRZqnwnJ9tuXf/HVb9ANrkjzEY79nefIdb955z++ULnj97TJwjOVfOtme88+573Ll7l+dPv9A5Kfc+ZpV5zo0fblQ+FrAW6xsirpXbqgG0kYC5BTa04Le2nNUsf3POUutRfENUDOsSbFOXvFdXYIWYqlbllIplrATjUv3IFCP87xhbH5ag1LKONB+wBWOkKXfJ1LG6VrX+MUR+3SjWXxS5zXrORaovzqvZsNIefVD6rCIDS46uc04ST3Fvb9WWpQ8Pqf7HOZKTBrFWkhdMM6uTeWetFUACSQbNMpe1Iqbr7iIIpWt+u3fONo68Guk5t7x3o5+2RBRF6dueKYmdCFG0OX96L2Wtygsdk6VawjJeSpVAU1B0pasZYRWIQM4ypY/hlhWQY1ENM1BK4s3r1zwZnnD7wUN8sFSLeF/VinOB+w/f4/mLZ1xcvOHq+rUCPjI+RfAhEaPK7FpLrs2oObPuBu7df8g773/E+3/lN9isNqx78TPrQmC9WQsNThu/t2fnbNYb+tCp0bMEhl8v+aoU31pOgBW5Bo2m/YsJsFLHNULPNR8VNI3F+hMphRbCLC/VCg2y7qRUmKZZvHx03VgQXpZ/jlWSBhZxDJ0aYJqLjOd2Ls2Y1hoBAK2+QVSj6TJH7JwkUamtrmbIpkhMFxPXU2RO0jvkGkhnjdg7nEpX/UKcb8BIUz7G0vvj2G5zXoy+g/B5aiEm6X9cZP51vZIlWzdInUelwsuLC16/ueJ6tycY+Ks/+B4/+PhbfP+T73B19YZHT58zF/jgvYfcvn+HzR/9CMuBNAtF7FgH+eqI4GuSkbdvY22/+IWnffWXvxijtrUY2+LTKhSM4k6qUX9x0vTv+/jmE5ViSbUSS+GiRFIcqWnkk5tn/Nr9O/zqg3tsTX4rALn/4D4PHz7EB8+ri0u++PIpd25s4aOHPHhwn4fv3lczJserl68l83WeuWSGoWe7XfPO/btcXV7y5OkTfud3/4DdbkfJkZ99+ghbKqFW7ty5R9rtOVzvSdPIPCd2h2usLYTQsbaezngNABvXsIIVWVCMZKdfVxhZZCo5XSGt0opya11kGQCnCetb32rmunDaNWA3TS1GghZvLJ11S5LSh0Bw4pVQjaEoQu1cJnSBqWRySlxf7+ic9Pqs1mugBQDCN27qPU0dQ5x/FW2oJ6aAoB4BZfF1cc7ThY5SRkqWjbKWQrMysyeqXEYROuekPlJrVYNE7R3RIK2cXmyt1LS+oNZnUErF5rI0laWkCmPWMi/v2YzblhsmAYaxxBi5vrrkdScbe0UbQadIlzLdyvLBRx/y6s0lb66u+ezlK4o1GI9SocqiyJS0oV4qYoJWBmtJ1hGtF2UuYznbnPHtj7+Dc4aUZu48fMjdB/d59+G7PPniEV98/gXXuwNTHDFVVcOMl/HnpGJUq1H1I8BJNcvWYw9L2xxSQ4KcpevDYgzakN+GuKUWfNdCTRGD9hih6mhogNyWbl2DUxWevzSRS9Oul8my8Ni996r80tzEZWznnI5cZaWZNLfno9yt9MVIs7HTzdFinCyaFaHuCT1F0G5nDVVR/BTFDXyOBVeEk27dcTxaZ7RZvCqo0JBdQYlLrcSYl903xbQECa3yJccuZoJifKi0lHIMoKwRVRuhRXhsCKLqVo0EJ0jf2PU842yHMzKmJK6QeblImes5OCToyilps7cEQtXCNM8iDarBduOIxzlyfnPD3du3uffOQwmYDweMOrHXYlid3eb8zn3u3n/AH/+RoJslVd57+B2++93v8fCD9/hnzx4vQZQkJ5HZitFpa64/HEZikvV+vV2L8aF3ZC0TmVqWZnFgQd2X9bQF60tF0EJ1SxBWFrfo+ta6bGGpGrSkOJekdE9JPGJJzDkxpkhBEvWYEjFGLI6YC75WrK1LL1eL30o97XEU4KCe3mcZYNoXlBZRFAvLc6wVGmrRsnQwQanCrX+q6vaj/lDWaxJhwGZp0BEkYVmrp8NE3CRyV5cqCEAxeYlSJGBrvWLat6Dr6JKk6Pg1WsFre4RrDt8KggQv/WDNILIFpUvjdy3LPK5IIE+t2NaUa4T/1tQDcxF0vpRC6FXVsR1PbYFtXnr7LC1IEhnorJ9lUAlpTSatXnybnaLdMvZevX5FTJWPv/cD3FZUqWySZNtYx7e+/1fY7a7ZX1/xox89wzpDMH6pbuUszIFW3WhN/TEmbm83fPTht/jk13+Ls2/9QILk+UAtM30X6G6cc5gyJUXsvOfs/CY3btzixtkN9inKNfUGStVE0RxjElplJb8F7DRz23afW7Ah9/rYfyIN3plxmqWf0Tl86KjMVKWLNuVMODbuGyOqlTFO7A8j682KprzYYIFaZe7V9hoFMxZfF6Owl7WYqokzMtZLzovJZ3BmqVYZYJ4jNUXqnOgapdGYpfIk40tAm5TKMn+MAlyCZTb1KqRCJGn4ERjW9wxeRHCGU1BPj1XWcc9uGpnmWcBk3maiyP3QakypmuxLgvfo6Ze8enVBnGbu39zyn/7dv8l/+rd/ixs3zvj9P/0JT15f8fLymt/65Dt8/2zg8tYN/MVIGmdw3Uk68JVkon7l+/qVPyxJY/1KXvLVpOQrAe5Jwitrj9J5qdiqFdn6y9Knb+bxjScqr+OE8ZbqYb645pYrvLdd8X/8B7/F3d6zMerMa8XRPFboh4GUM2c3z4nPn/Hloy84PH/CRw8e8J3vfiKNUVQchbNf/Vgk7rDMJZKzqGKcbVaED+9i/+r3+c777/H554/59LPPuH3rJqvVigxMKeO6jgcP7vI3fuuvkkvl/OyMVGYuL6/58tkr5jGJEdrQYYuW2bQk2tCrt7TggZZBWycTb+F6GrNM7q/LUL/6qPqfNM2kzsLQySRTRYzG+6wGdjHy+jDx5M2OK2vx3QFjrlE+HMYJX3ZOmTGKwkbfD4TQQVY5Yl3ISi0S4Br12XCDBD6L/4cHZGPzzuOsx1TLXGdKLSo9HTBGKDkaxS3ndGzJOU4YyedaYCw9NalIyTelRHWiWtTCg7bY5ZRkwbFi7BiM0d6BqputEYlDPV5pJJVqVsGodKvcqznO5Jy4dfsm3/nkEz761kes+4GLN5dcXl1RqZzvRs5vXHLzw094uD9wMe/53Z/+HBM8/WpgCANJqwm+G0hYrsdIrFUSNCMl8k4rFbfv3OHegwfcf+cdbN9RUmSeJt68fo0B1usNv/kP/wtu/eTH+O7f8N//9r/GWst6vabvBnxoZpYSuPuWqGh+u6g6FKUtGajW0HcDw3rDsNrIPVcXcVOcXvvKNGfmVMgVhq4TU0xzEjQZQSWdFfqYmAC2xnpDzkKfMdaLtHHoaIoooiBmF6pIC4aoiDmqGqS2IAPc4tou4gII9dCL6l9GKt85Fg5zYpolIW2Jdbsgzlu8t4vSTK6SqHhj8U62qQbDC2ot5m0NKW9zr2r/DkDM2ovVOHH6KDkxTRNzjAqiSd9Wa8YUekjAexFuCKs1NgRMlveJuXBImdeHg/iXODEkXG7qSbBikvRJ4Cx9HziMYgR5OMx0XSAE1FhQe/mS0mWVy/7gwbt875O/gj0/x9RCmSaefP4F11dX5FT4jfc+xPkO53uur2f6sObWO/f4L/93/3tqnLl+85Jx3LEeNoQwSP9PqWSbeX1xwW48cH04LGBUqZXdbk/XdfRDz2roaBUQhyoRavM0ToL8nKsGngIWNQlTSpH+wWqw1tMkWVPrRStlCVA0rZCkUgVYoFJz5Wo3cjVGrg8zsVa8Zn8iLS3eN7ZjaSQVxoMkfXMWE8FmIteCnJwTReWAuyAO6POc6EMPzuIwzPMkgXkuS+CDZUGXc85CoV4M6nQtNYZV11ONIZRBUXEBjGKqjDFzcRjpr3aUijiHK9XXGhmfRYUeGuou6m8CtsSUVMxBxvMCVmmiZ2olhCDu5MZgERCm9es0WeyY4nKucrXLAjA5azHOSyWx6zCqppdKYZpnDtPENB5IObEqA8E7lTrW2KtWUkqggZ/zIuiiff9SHctZwRAJ8HNpnSy63OSEKbBZD3z8ne/y0be/w8MPP2B/fc3u+pIcI1dv3tD1K97/9V9jc/Mmt+/cYX8YWa061n5gNfSkWDiMIi4gyadhSpnL3cibix2fvPuAG+e32G7OiC+f4foO4y2f/fhPSClijeX9j7+D7zzWGT75W3+X9z/+Dn/9r/0m/9f/+/+Nq+tr0jSzWa9PkncNra2IAh3ji0pT/1v29YIG7DL+52mmJLk+3dBL9T/KmmisCMq4Wsg5krKIjxQVRZEKlsRdIQSmOZPygavdgRA8q/VqAQpFrUwWzEwUtbkl2FUBi5JkVdN9pZTWbG4U1IJgKyY0JTgxJjWl4IaB793o2XqwNWGNrJNGY7X9OPPZ01d0nz7nydWBl+OBWKUdAcBlIx5ivhWjjrFKrZLACDgGxiQ60+GtsEFK1d7F3RW7w0TKshaxrDUa3pi2pWnlz0tCnkvm8vUFD7YrvvX9b/F//j/9H/iNv/E32J6d8U//X/+Yx8+e8eXr1/y//+v/L/HVUx49uMPfDB4fAj47oejL6D9hfrU96CQmbQlh+YuSh2Mie/z5a56/VI8bMOJYdx23V2serjeE0LEKPZi8zPVv+vGNJyo5dJiaYJrZPX7KjU3PcPecW0NgcIaao6BpqleNMUqZkQDJho7Ndss79+9w7+4t7t3c8urVK5mUznC+uYu1ilwUy+46Mu6vyFaa6c+2Z/zKd7/LdrXGO8eHH33I/ds3uXPjnGLh7PyMH3zve5RuDcC678l14svnL/jxT3/OH/7xz0S1I2XechXVG/91fOKWqMhYNQvsZjRYWkCEExbV1xRUlp9rIzxrBQWkWttUK7CVQy5cjDOPL3YMBnwIOBNwbVM1qnzhHOt1r4s1OpnLklW3wEU43LIZNhSuqYSdmpc1JAeaHKdZ1LxqYUHHl/MSIHehdEjgpBr+oHKCdaENpSR9KiWkFsdgjVnUZE7NMItNCxe7mZ5BA+HMEdGx9kRhR3sUjKJRtXDr1i3uPniH2w8eUnYXvH79gsdPnmKs5WK9ZrPZsN5lvnj0mFeXO5ETtI6ln0fvt1OhhTklppiW42zmctTKO++8w8MPPuCdjz5UZFYqd4fdNf0wsFqfi6Fo8G8tGQ3FcV6ckY1tFKfTQFsvedEGaqWkWefp+gHvO03yj4F4SxhKqaRaFzQwlQJZ0F3TVMyUH20MBO8o2SxKXG1TK7WK94m+ZwhBG/fR5vGjDGprSGxjzRpVNClSTm9GpOioac8zVhtBq/RKzSlJgKLnktSPpGhy35DOnCMUQVdtUaGMZjipBoNWqWQK5WGdDKjWTAwyZ1KOb22yzQPiqK5Vj43S6hUEYmDrvfRG2RAkWVcjzVwKsRTGGMXZvRZJvK3SboIkhULZPxpRWqcgSbKkJJQmW8BpIzGAbT0cpdB1HefnN7h9+64ihUJxu3jzkjRHvA+CaHrPZrXh/YcfcvPWHe6/+x5ndx7w4vGnvHj5AhqaVgo1F1HSKUJ7Seon5KyXYJuyIOa55BPZ4bogq1UTKRHxqEtgKcuG0IWM+pk0ioiY5J2sy5pUs6CsRnqV5plxHLVKIxTHaRJZ4ilmUhu7LYA3luCCCMBYS+swOTZusxxvq0ZUI5WXWtWLygdtmhcFOgNHM0hkTC0cfp1bmJbQ2iN9tR6pdEvvI42qJf9mhMUwpcyUEt08s9/t6VIWiqE11CIqZKWkJZhqCVL7SvkoaR+c9As14ZgmJGGMUr6M1XuVyUnPsBqS0cquNTjjtXrkMC7jWtClwetRLKOp5WmFWveCdludl+pUqiA9d+rJURTYqBqkV6lStbWiXatj1ahQagJrGFZr7r77Hu99/D26ruPVfs/L519KhcM4rAtcp5mnX3zGl0+/lPNogXYb4wrotT6GRSo5V653ey4vr7i8umJz7z1SmpguL/nxH/0Bm+05d+4/wPQ98zwzX7xhuHEHayAMa7Fm0HXkON5YKr5Yt9Cr6sl/T2m5VXuQKrJoCPgolT9Zw0TwoflxtWDfaNM7RcbkAgIKcU/oZVYSFhFOOFKp30b7zVJlXI6wHH3c8sn3cNy/rLUqYy00vlwrKU7SW6brgPhDqUKdKVhxxpSqR800g09TxeG9t8JAwVTSaUzXKooaEumKJHLTtVJKIsbGPGgVo6YUiMjYnMQ2baDJeTXWRgWjgEAurLqOv/UbP+Cv/+on/Nr3P+bOZiDNE/v9xNXVJVdXF5zfDngf6LvVyT3VFc2cVI/fwsBPz+uXJB2nz/uFKFRjzgVUbqjFKcAsc23T9Ty4cYPvvuuwTjzxYpk1Fsh8049vPFGp/QpzuKYc9lz97HPmezdwq4BHFvQpzUyI46qtotKE89hcmFLB9wO3793je9/9FufbLbe2A5//+Usqmb73dOFbOOfJuRCy5TqOXL16gS+ZVQgM1vCrn3yPG+fn+OD57ve+y91bN7l5vuH1mzfcvHWDd+6/w9/6O/9Ami1roZqJzx494t/88Pd58ugZX766YD/NrPpeFlM5swV1lXHQVgmdZPZEoUZ7MypHrrvFHCXe3hpcX3cR20A8yso1s0yr3I99TDBOfPH6Gp8yvgt0LtAZFQSohXt3bnE2rLhxdsY4TtRaNcjVZvcYmcZJqFbq2GyMxXtoXfLee6wRs0WrevFN6cwYp/x3qbgUncB6qZDwUouyuulW3XiNqva0wDTlsrjOz3Mkd2GppgitKqtxonhptICmUz8W36+W26GFIF0/zCJ3KmtI0UZO4axT4e6d29x58C437z/k+U+e8fLlUz797Kc41zH0K/puYPzxz3i9H3l9PeK6QVWW7LJISXAhico0J8Z5xmojc06RnGZKybz3/nt88PG3ePjtb1EPB6puxofDgRA6uq6jlJl5HjmMB5pAgSze4vDrvRflk5aoNKhfS9tFUeichR7ivCQqIXQIEtnQVL1nSmGyuRLnxDzNzLGnlIozUrp21hGCUUUiQ+8D2Qq6mXJWaV1JVlPWZk5mNusVho4a/FKC9yr/Kn4Jbf0TB2PxJFA377Y+tnnR5p+1UKSnQKg7SfnIct5zTGrmh9DNvPhj5JooBWxVZ2rtiyiaoIER5KtavZhWzdGqUqtk4c5Z6EHCY3dLovI2x16uWUukG73O2UDwHSH0WB/IVRt+sxx/zJkxzsSctcJY6ZyX3gwjEqVFkfjWpyRNqA7npMdCzNQqwVvFJCoWuyQqfT9wfuMmt+/c1SRFgubXL5+z6ns2qx7IdCFwfnaDH/zg13n3/Q9598OPcKsz3lztePTF57SKUVEjSQlujuptBUPngzZDZ/FjqZqsaLWnVVYNVXn/iVIt1mScCxpoalWhZOnXcTJuihrPyZplf2FTrUbWjnmaGA8Hdrsd69Ug75c1UZkSU8qkDKkqcEDFGUsfelXWYqnstMoMpgUshWxaoGe0/0PGS+2EMinXgGX8W2sX0KUFQPYE9Gg9Xda0TjwFXTgGSqUcj6HUQqaSqIw5M8VEmCK7qx1zVC8eb7TfUFUCdQ86xliNZql+OIjoiRHlCU1wsvT/yeJB553ef1E2qqVSnMFUh6sO64Vi3AJP5yVJCV0nybCRvSS1JCWLqmALnGPKS/DaqVplk0p2XvbUivZyNOlbrR6ZBYxpQTea+GdKTlRrGFYb7j78gIcff0J8/Zz97ooXz55Qc8RYT62Wl3/4B7y5eMPF5QXeeQFJS2WeJ2IsUj1tUs61gpH+uVwNL1+94fzZM7Z3n/Lxh58wvbzg1aOf8wc/+l0++vb3uP3gIabv2F+85uWjz7g9Hohz4nJ/0Aqx3mOOQWpOQgF2tfmqVaCogqLOlZO1SIQ85F7nlKQeY6Qak3IixlnordIlLtfPGWy2NEbm6ZjLWcATYyzdMJD2+yWBomvPV5CmanvGiYH04tvD0by2xSUN5LUqVIOzolCXEnE/knKUtnlr2R+sCi7E5dytM5iaOcwz+3nPFCVO6IC1C6y8o9rKaJqsRQvH61uVRJBqSK0qH1wSrc9TmDVWKqmospk1LKa3RZgbbb1v+GkxEKcRcuH2+Q3+s7/3P+Mf/b2/zvvv3cVOMxdvrphi4erqkuur17z3wXvcvX2Xu7cfiAx/1VjKCtByxNB/WTB5ksycnNfX4uzLk8xXfj5ZT0+ToJI5Hwbeu32HX+vvUqzMi+vpQCyRVNIv+5B/78c3nqg8KJF52jNeX9ERmacdL69eMVbDZrXibLPhcndAAiYHVELwdN5R5iiNUhX+4f/8H7JZrxn6XlCLkumGwLsPH9J1K7zr8NZy5/kztusbvPvgXW7dvcedd95lTImX11dUY5l2M4cwSjYdOl3sC2W8RoI6aWK8fXaTv/Yrv86dW/+UV9d7psPIarXSVCMrEqcn2aon+v3XPdptN61ktkyNX/5YcmAreukOqRqVWslG3GFF2tWw9R23N2d8+O5Dzu/epB8GhtAz9L02MAvCK03qaVGRURANrKHvHBRHSpUpSnBlaqG2qkYWtCr4TrjhxmhQ0tAjaUINGtdJ64E2tjuPrWlBMJtSjwDLAVRNxxm7JBLTOLHf7dhfX3N76JWDLdfXOiOLcy2M455xGkmp4p0EfnduOTonqH+qGW8CVsdXS/yKXmBBWQxDN1Aw/Oznn7M5u8Haw93vfsLf/+AD/vY0Qs0Y1zHNmf/n/+Mf8/zLlzx6/prh1jkYCfDHXIhVFie8cG1jjsQ4U3JmHCcud3sNgAw//9lnfPn0BT/87d+l6zwff+87fO/7n7A9O+fy8pLHjx/x6uUFjx4/4fMvvmDVjDJDJ2idVio6r/0OznKE1iT5jLGIKZp6HDgn8q+5FkHAajOfK9TQUwoYU8l1ZEyVi9HDwdKFjs55yJIglySKW3JLNGDTJNpYMUiVjVpM4qZZDOi6rqNU6NZOA7JKLpGK9rCoTmt1BRMTNgsyZawVZa15xncer1QuEX4qxDQRo9V9UJqsazFI50ZzwS4yl5whBMv1bpQm4WpZWSfX0BsJlrJQoFC5S+nVEvpN3weaIaoYxwWy3t+G/IqsapAxbaDrAlTYXe9kdhtRZUKT9TzOFGM5xCo9T1b6Vw5zWuhswQQmlaE0DkGQS27puwSXqpSXayaWTJwKNkLwK/ogxrTSGyH3POcsAY6zMGxJ168Z91fsri7p/A2cr1BmNrdustqec/eTH+D8AFg+/f3f5md/9EM++/mf01tJ/GMWJC04i/MQVoHBVrLRBlkrlQRnOk22MinNSmW1lKjqSRjmmskkraB7gvV0TkCLqh32tQUGueBLwWQH1R4rWxVSHhXVhMvXl8RpUhEBCYhSgSnDnCSxzRRiSezmiYyTHjk1jgTTgERJ/Eql8172kZIxzmo1zlCzW2SHfXCaDHgWP5Vatdn7qAzUgo3e9zSZVhRQkQTeLOdFUX+sVHB9wCLzoJRIzjOHCS6vRXxjFXqIEzFDGdOSlHhrKElU6SzQ9b30y1DBVY0wzVIZxBSmJM3JMR+V2PouSPW91kWOmwzVgxD6hL6XVMSg73sxx7UwJ0nGc7XSFzRHkq6Zfe8lme+cqjo1S2Wl5uVKyQlTkvSLqFEoFYwqH4pohtDCjGTAAl4h/lOGwovnz/j8T/6QbfB89Ou/yff/9t/nu7/1tyAnsCtihB/903/C7/zOv+HLL58y9CJb3XyjdmPkYj+xmzO5GLxxOI0bI4ZUMp/9/M959uxLPvvic14+f8bL51/yN//eP+CDT36Nhx//gOd/9kP++A9+j9//0e8yanXvMGcuLi9w1jGEQE2yz1YMuRnZ1iQJhUYoVRkprbG9ha8twai1EJwXM1Xn2Y97UsxMScUZjIxJoVGJwSnmaPws06CqEEEWSV+Vrq8VpjHSd70k4whLoiDCCwsYpatWQ+YXHF/HtlSsgCRJ1FiSAjOZHBNjnHA1i/qgScxWAAdvncQHHmpM7MeZNxcTh2km5YQ3MDjH4Bx7UNCqQuvnXGDVFrcdg3NvAtbLX2ubqu2vpv3n5MXI3ggyzwuyXsQ4s16vuXfnNv/r//wfsV4Ffvh7P+S/+if/hL/zt/8T7tx7B9cZPnx4h5w/4ONvfcTtG2cYV3l1+YazlPE2MFWOlDmdv1aD07pUkX55jPnWw371uN/6YXlCNYUmh2uKRJAZS8QyV6k8ui7Qe8vaGZz/i1D4f7/HN56olDcvMeMenxM3b57hPRzGiScvXkG5yc3NitRUsaoO3VywKTJfX7O7vuaw29G/9y5d12GsYY4z1hqCVzQmNPNGR7VisoW6mRqnPHrnlmZuipQLQ/CLcoxtC1u1mBAwMWG0GatUrZ7Q0K5W2ZDHUTHKLD+fKhcdhz1tGfm63PTkUY//NbKwtmDQatXC2GM5Eiqds6w6z9mq48bQ0Q+i+tV3gr56Z8ScK0cN6iVpMUUCHmMNnRcUr2nTK2AsAW1sSLksOq6husvk0GZQRXycKltZRGlLNvGjMZVdSthy7xd6jVYAGmI5zZHDOAv1zhstc9aFrbYoeJVCLmIcl2vkMI6YPmC8XwKUilGushA2ms54LdI0W604tF8fJj5/9JhYCh/kwmboGYIXcz1ZdjHeg3NvNQ2C0LwaXcJr012ulf1hJKXEOI7SI4SgPvtRFlBev8FaOL95g/c//JDt3Xe4uD7w5ZOnfPbZY653e6FOdU2BzSh6bDA2EWrQ8cbSR3X091H1F2eWMbw4lKeom8RxA6qKslZTSDUxxpFVHES9SzeiWgsJQca1jZOk9CThpUoi7qwDX/V77UeLiWmamVQqVVoBjMZtmjrXokU8KZWLkpVWKDDtRWAtMYu6yzjPpNItPgmpVEXFrVbVKtFkzREMXdfjxkSOid1hFNlsK5Wc2o5FaTnUAqL0rPNJjFIbTVVQRhkHVuVmpW+nkpXK1FTmciniAeDE46e0va1UipXjFUNciRGF9qa9WwWikpEdiKFk80PQSo2EBurBUqvS9mCc1YzNV7xTxFwb3F++esXTZ19y89u/wng4cPnmgv1+T/BiuPf68RPW6zP6fk3wjsP1FVeXl/z5n/wxr58/o5YsnHQVO6AhflrxtdbhXZDxpqiNd6HVBHRtYDGzy1rtKdWQyMSaSeNMcIHBJzrnyd6SvcMWWR+dStEWrQjNScZMzEVAlCzVp8M0CepvZOxUwyL4Eksl5rpUJ2LKxJjJTq6xrSwVsaZChCnqgG4oVaVhEdW145ySZLR5AqG/l+BO/XQqi3SrV4Uuq43qR8Wtk721ZkoxSkFrYcSxh0yMJoX+FWJiSpFksgJIGeftQq9MMWolpDBUpQ4H8eipjWLcdiwjKluNIXAazi1FrNooO9LLIPQnoWYmvebBe1HBrE0tUd63Ies5F6kABYs3EIKnVvfW/lgNFGuXcTTFRC1JYolqxJuLiirqvxW0C+1UUHVjLClHHj/5Qpr5u571Zssw9Hijsr1zYT+OqmSXKdUfaXBKT51TZS5ildBUyoTCmbF+IMWJy9cTlz/6PbphxfmtO7z33b/CsFrz5tkjfvrjP+bpky/Y7695c3XNOGfGJMamzkJRyV2n8YZpFOwMvXHLAClZzxulUrbz9Z5TH6qiHiKo+EMqArhVBZxE6lfpjPV0T0HjNanEuyIGilpEpalca7sV1VidMw5nj834rcRQlrt6fMhzrNJqBeyao1C0U4xErUAGLx5OK2dIMWuly2CdktNKZdV1BOdxVqh+LogUfGvZqBidty2RMsu1bNR2s1RKOe61p8erc+S0EsPyOwmmShGlL3Kl6zrOzs744L13cPMl435kd4g8e/mGQzI8efqUw34HCO32er/jRZq5cbgmOxELqo3Lq4CriKyczNVldp4e0DH6rO1c29w9Pb/TGPeYRrb/66k14Fi91fqACYEQPL73BC+Kn9/04xtPVOLzx2DEmObe/bvkw47DNPGTTx8xzZGHd2+rXwKyiBSRgJ1KYpwLV5dv2F1d0uQkU65cXl0y9B3bzUaCC29IGkwcUmQ3HTikiTFNxDiCDYJ6WifO9RVBO5wX1+FgJWDXzYCuoxwmDuMkwU/OgsabY6LSHNvboyUrX/cwX5fSnupNv/VOv/DEBaE2teJsUCnSQkqyCGLEjGkIju3Kc9ZZ+mBwAbwVt9ZgLblmao5cH/aCGqZCmTNY8N5xvllpcC3ceeHXVnKemWIkxqjNnRXvk7iTO+Gce+u0QV0mpDeO3gVNLNOyUVmDonVm2cCbuEDV65i11wAq4zRzfRgZ50xQhEroCCxN66VK6bZaQ8wFU+QcrV0fS7EAFakmVDUrQwLZXMQvwQ/SK7CfMj/52ef8/IsnXOxGHty9x52bN1mvPQnDfp6pPuD6nm41aHJmoFrGGJdEpfOSVORaubzeE9PMYZwopnkbgI2ROM/M08Q8jty5d5/Xry959we/wRefP+bp4y/56Z//nNB1bM62UoEwcu1SalKMlr6zS2AtHPqy8NWFM1wwVbnxRja3mqSB0QUvko3GLiVvSVQqqSYO88QmzXjvKKZfmmkpmRw1oMyz+gxJYFOL0A/cojLlBLUeJ0pK2HGmD7POG+hNa7DUJKUqfYCG2CB9PrVijKM6MaosxjLHwm6KXI+jGAlmCdDmXJhLJRbDrBLUhayyuI5h6NiPiTlVLq92+C5QbRPI0Fmp4IYkz5kSK66o30/Niz+LUXpnkxoWapwkj1YrHPM0kWIklQrOqtqVUiARFLQSKGiiov+bYzNxFZGCmIV6FICSKkUVbZr6irEKDCiLPGZ5vRtnUnL03jAMkljlWrna7fni0SOG9ZaP/9rf5erykhfPnnF1eU1OIkrQ+59w952H3LxzD+cDL58+4skXn/FHP/wdDIXgrZrJKWKue6EIZFTA4m0Qo0nd6Dp3VBXMlBPkxkpQG5MkZjUz18xufyBYzxA6tqsVvno8ld56euekwdU4chVK0iEK4h/VHDanQpwi+2mSnhPvmXKhUEkU5qJjZqHYSKIyz4moSZjzTRBCKmso8uydBnZW5M1zqZzK0udSMFkQZe/Ux0PN0JyX3oqUsybCojLk7BFUqC3+EFh8oWVVpeFmROih1GNYUk6a6p2L7OcJm432wFYCXswSC0xTJKdImiOpGvpaWYXVAhj5ryQqIpBoFm0jkOC8aD9lLWCDXXprsvaK5RgXxTAfvMpAF6YcSRoYSUIuicphjrjO4jqrXkPSSB/jvKxVxVicNu0e5pl5kr0tuEBQoC4XoQQ2qqiE4LJGV2PAFKpJfPb5z3n0+DG76x0P3n3Irdt3WfUDscJhijx78Vz9dI4BX62VkiopVWKCSQ1urTbwp1KYcyb0gTiO7Hc7fvZHP+ZXfvOv86t/7bd4+J0f8OrJZ3z6Rz/kh7/7bxjHPQapSgn1uTCst9J8rUBA1XWGqkwJKp0V4EPufVn6p4yptFSuCz25SGN4nEYMhuqcUjSbjklLVLQqrRTeplZY9LkyHI2oERrxIbEt4K8s4ImVEqrME+uQPnK510WT2CYwcvpoQKbEHZKAzpPOyTRRjaULjrXvuX2+YRMs0xQFADEAmeIjwXkOk2MVDlzNmalkbCf9urkUmrR20fWq1haWC9umBWiVSmn5y1sVoGOsBix9lEsCoGlYKZWS1Z+mVPq+Z7vdcvfubXYvJ+JhTxjOePzsNfnZa/70p3/Gi1cvGQ8jucDzly/JJfHh/oqyFRYROaJZiiQWS8Z3TEaOd+qY4L99odtvviZO/Zqn1tpiV4OpVuMqR9f3bBjAe7y3hN4K0OXsX/a2/86Pb97wse8XdNKbQMaT48x/9S9+j1Xv2awCD995h9Vqw9CtGC9fkuaJnCL37r/Dtz94n0++830225sEJ0HDO3cfsup77ty5w+07DzAuiD524+fnyGazYn3jnOHufV4/ecmXX77kj3/8Y/7ab/wa3d2b9O88YPfkMVdXl+ymg9BijLoaG8M4zozzQSVLrZSiU8I3xRGpr7Gs339J0risa/wPGQ4njyK2k04D0FTSolbVMn1nHK6Cq4WOwsrDEAxdZxYedNf17A+ReZp59vwFhzlqz4FbNPbHaRbVFmOwVIZezPlwThzjs/Yc1ETNqBGl0FdcrThEQ90ANVfmOeKsJY4HZpV/7ocB7wPdsFF0CDovaFkIQdA+RSRdCFxPE1++eYPrAndu32a7XkNOUtpOmTzP0lsT81sQx2EUA6uYC5v1oMcni43VZtuUIyXNxHlmmidRzMmF0K0EzdtHfvdf/54ktM7TdYEpJ6aUeHOIJCzd5lyRKUl+ShLlK28Nvbf0nbxOAl4oMRGVJlWpuOEcO3hWvQQrL1+84Pd/+EPcdsN4fUkXVtw4Pwdn8d5L70QuGJNEJac4ajHMc1KJTkH7l9KWIn4lZ7q+l3OxXsxNPeAcHeCqImKoaZsPjNOEoTB6ee9sBEDY7fYqZWyJ40yaZ+I0sj07o+86cS4vx6UxIXz5QusjyBhmduMo1KSaWZuBDiPUMg1qxpg4TCPzNLPb7/QedGy2Z1Qsc6pcXE3sYmKMRdaWlJlSJJZEqok5Ra4PBw7zDFSGzmNzxrpC14ENHuMD+5i5fvIlXRd4cO/+0txv8oz1ndCiKoxxpkwTF5eXixdJTDO9D3jnGNYbmvTmYb9njlGOYb9TMz1D33Vk6yjOU5wjFgOlEOeEDTCnomplDqvy6KJPn3B2UGSuMsUqcsQuoKLRipAFQhCRhHmG6/3EbtyznybWXcfQdWyKk+QnF7CBn332mEdPnvPTn31OmibSNGHLxOEwc3114A//5M9xoZNA3Tou37xhf3XBug+cbVf0ocM4NUrMhSlGoXjNjsP8hlIk6On6IApzKUsQa0SaGVOYS6Yk8XppPRtTnpdqxxwzkcI4i3ywi0LTW4WO3nsG7zn0qBoXjDExR6ERlZjEGHGeySmBtdKInQAjad2YC4ecpd+vGPE5iUIrmpMRbrq1BP28WKUiOcUJH3qs9XjnOeRETAIkWSdVtZQTeZp1nevAyJyMMUqfXhEa5tKHYgzVaeDXKhaKVEdNfKeY6FfSRF6APEelLEKunlw9JVa8K9QpYq6ukd6firdwvt0SOgHxdnMmxkJJwFxIJmN9pmg1M5eJrM3JOUesD2AsfXAKVsA0ZcbxQC2JoXMYJ2NFaIZlCXC8F8PajKoCmYp1MMeRnKUfL1eRUb8aZ6Ip7HOkesdmWNEFL/O2iGLVPE5EpBfo4nrH9dWOcZyxxnB2foPNes2qC6Ayx3NOy34sku6SHK43g/jmzJF/+2/+FSGIxH5Olf1egMt5nui8o+8Cqy4QrMGWTCxCTyw1i0hBVTNF4zA2YH1HrFmEg4LjwfsPqWQ+/cmf8rM/+WMu37zkzevnIpDjBEjZrG7gXaYPhX2KonBpDH7QJNYJhCN9KIbrqSxhiDNm6WMUJU0JMuN+T0qRlKIkaaVQc2Y/TowxM6uqIghVNY4HYo6y7qnWaq1iMioN5xKsliqVkxCE1p5S4mq3I4TAMAx0rvmtZdIsyU4qAj5EpY/3fcB5kZuXar+wOOI8UmrGkLm6jlLhzOptM3SwXomPnLXgxLm+VSwJkgj1XaIL0uuVMlzuRiYnAFjRKlBEfmiJi3TVHZOWYzXiSA87jeiaSACoWBBItW3JGYSa5qzj3v17rNcrDIVHT5/ymx9/wI1Pvsu//eGf8I//P/8Nv/+nf8ZlvKaYjPM9P3vynJ//9DNuTiMf+QFjpceTnI7HZY5gr+Qu/44CwfWXfH/6ONrda9VJgIl1sNw/c3z/5pnI7AcP3iob6H8CicrFmzdLmbBWMTssOTPFA9YUnKu82k2shzWrbkWZrhk6z6rvuPz8EWNMjDHz9NUbWbRT5vJ6ZpUMyV3z7A9+TLWOaiw1JWl8KxUf4Munr3n0YserFxf80U9+yk8//Zwf/smf8OXlBXefP+Py0RNeX1zy5evXUqo1KIdSEIM5Fa52Bwno3dHHQzjDJ5NBaRqAIGy/kLWc1Aq/MgB+mWoYcFJHPz6kb0RURBoy2WgBrbneGfRLGsedc8Khbgo8sXlVgNQCqiqIGaY4QymiplEF7Ztq0qZ4CWxiqRQrxoWzmbEuLRQstKTfOM7zPBFnQdGdF5S5+Xa0IDrGGe+DnoOqdiFSnzlnDuPIi9evCF3AWcMqeIzgzlCLOIPH5i4t9yamQnQBZx0pZayRTWqaDovKlNNmc7RkWnIkTdJo3ErAtRTmPFPqzPVe5C7nUpiLEd66yqdalciOcaaZpgVVt8q1MKmjtAsBZz1NzlYEnOW4h9AzjSNPHj/G/M6/5eLlay73e4KKOBhjyTkqSibJhGsUQww1izyvqWZxLxeud1LkSFWKipjxtZJ8571QJKugP00lSRSzZB7stX+iGMdhnnRRNuyvd2QNBK1uMKUUvBXPg5yyUCkaElOlyXauM3PwQskpEUwh5Y7FfyKLbOp+v2eaJg7aI7ao6RTx2ZljZD9nEmLQmiMLV9c5oZ6IqWfWuVKpuUkhZ3JS9S7rmKaROWe6yytWw6DGdeLx0NDYeRpJMTJPoyZ9FmchG0EuOxuWDSLlmXE8ME4z+8NBKpVO1YmMpWCIKUtQrB4+uR4b5EFQ66HrGPqeoe8ErFE6S87p6ARsxftF5JwXbE9VkGRexTkxGwEiuiw/xyhzO5eJCuz3P9EKqWHTByZtvn558XqpzBhjKTlCKfhwxpwy8xzx3pCqIcai/iueihE1pCLCG2EIUsEoIhawGM0aaZxPKVJK0koFco9q6wVBm9dhnCNdlb6HsYqC15uS6XpD33eshp44S+NtniX4nOeZcRqlB64FFws6WJlSYVLFOIGMVbQidJjgqOoH49TR21A1aJuJydOkinMRf4RxjEtfCrWq+WxhHMelR8V6R1RFwFrFA6gUwxzFa0uWSUFKjdJrY4zMMbEfR2JFASxYr3qMdXQqQVxrlQqeh9nA9TjhFPkOzuAOEyFmnHeMkwSFOSXMOJNrxXtVuUOosU7XlJIS1USMsQyuX6q203xgnA6ICldHKE58ijILSu19k1MX35GqdOEm9pGLqLa15DGmiC8Gmw0XV1LhG7rAEKz01FXpz5rnxDxnDoeRouMqRqHaGmPpnKNor+XVfrfQ94Lr8MFQqyVHS9WIvqTMYY7UIvfxME6C1odA53qsO9nDilZwk4BYRSsSQvsWgNFayxQTKUamGKk4Li8uOewnSJEYR1Ic6fpO1k0roKCzji44dpOIr6QKyQsDxTR2gh7D9fWBWqWyt16t8V5ajJqvUcyFq8sLFW2olL5bwNmYBOwZJ5V1L5IeNyPbmDLNV8B5T4ri15LbetyKbRo0l5rJWeZ2ykXWi6oUTK3axBS53u/FVylntmVN6ILOLPn7fn+Qar+V5vikaohV99VUhVY3zhFfxRPKOw0DtJd4VuNZEQgSOuhhksRXJXxkrhW0n1DmiNZXTiOyt76TEO3t+Ow0nqsn1wXTVFALPjg+fP9dwjBwfr6V2Ejv488+/4KfP3rCF89e0J31OC90x1dXV3C1p6YZd7NTim89rg/t2ExbOI/34+0j/HdKXb7mcXJ+7SdjyDnKPKlV4pUuqKjIX4Lg/3s+vvFE5enjJzRWaCUsFzLVTEwzMU188ew1fegZup6tN7z3zn3WZzf58Z/+mE+fPOcP/uwzbt04E83vlPjed77DehjoXl3z0y8+I6MI8NU1796/w3e//QE5B54+e8JPfvYpF3Pkz3/+KX/4k5/R/7f/nHt3bnL35jlvnl/w5NlL/uzRE/bjJHxHZ8kpE7qOYb0R7fIKffBImZfjxa8sXEZZNJbwQJ6r18Cc/Pft7/TnX0IZOz6qBs0twKqCBOKWKoANftmEnKk45YsG5/DOEazXKkSCLI10sozKYPfe0XWOq8OOOM+C2lfht+6nURvjjMim5kw2GW+clGSN0DNERcSy3W6xTszIxt2ONE9QK8OwEs5v6ARfr1JKnlPCh4EQlNdsjLj1OpFFneaRZ893DJ0nWFjfvIExBawukqlQojT+t+bsOEeSSyTrSX2kVqGSTYc9fd8xDB1n6xXGaBOgRRKVGKXnxnVY5wl9Lzz3lDkcDkIVU0ShlEQG/GqN0+Rst5ONylTk+DHMObFLM8EafN/T+x5qpuZE1xL4auj7FYdx4s3lI37y859hnUjXbtdrVUxpKlIVrMVWkVo0WlUzBdKUtdldxsI8CnVRRSl14xG0iiwVrb7rMMbhnfYTFaHhiGJs4RATF9d75lzIWPbzpGovhavLS2rOeCxuv18C36EfyCkzHg7Cd3eCoppaqTmLYIOfSNkwRyg10YVASnOrwVOp7K6vGKeZFBPD0GvwKhWHXArjNLFPYELH+sYZc5qlbdcabRYV4YDWyyUJnSCfaY6kIhK63gdSEfPGF68vuHkD+hCUNjHTelPmaSbOE7vrK9H3957NakVcxGp7jJU5mnLkcNix348cpkjoBqz1OBekSbVapimBmk32/UBRznkuzUcE1sPAZrVivVoRjDZta4IulC8NWFSt79gVWagl4a2jcx3zdCDajDVWrv8YmcZZVK6KJBdPn75g3fesh5642RAOE9YZLvc7rvd79ocRY+Bsu2G73RArTDHiKPjOHROVJKo/FkOs4skRSwG7oZoiiHmcaapDzlpR84kz8zzhgiUESRSLzhGZAxJ0TfOEIeCNYUyJ3bjj8vqSVe+5eXbGnVs3YUpL9WacZsZ55HDYM6xXmmRU5iyItDGG/SyBZsoyN0wVBUPXD9hgQEUCchECvqViSiHHmXkKCsZZSjbEWNntR7qh9UfKnJQ+tT3OWELwbNYrGd+5UnFgPAUZh1NKtG5Gk0Vau+976dubZi6vrgmz0ICEWnSPIQSG0Im/Vs3EOBE7SQbmnOmczPNUHDmPOCfXudFos6psxRyx7rjv7edJTBlrhVQZ5xljLHfPbwJisHq12zFHGR82WPrscVmM9SySaHUhYFWKeJ5nPV8rflk5UbHahycCCXOKdMWTcubVmyumQ8eq67h1tsHWAkauyzzO7PYTh/1BvXkGYrxmPEzkXNmsVnJN54lXb94oaODZrs8IxRGKxY2LLiddGJinkSlG5nGUda0W1t0x0cKI0l7JhUMs7OfEfppJ5Sjp3AxAjbEc5pk4TkzjCHS8ubjisBs5W3WsBtmTwIhfUMrkVLFKT5eKq0h8Dz4s4FroOmE5pMKrV5fUKpVK5zsBWK2c0Zwy+yny/OUrjJFkPimztvkVHaI8Z06ZqEbLuYhZYowR46yI1QSv10MSurbmGHP0MKpV7A2MEerWPO2kCb5mCiqKEmd240HAInkyfSkUY4hJwIfXb15zrpX6YHpZC7RaVEyh2MpYhPZboyFPEedVcdBKPDDOiXESlk4pQgfdTzOleAG4QauG0HlPUBNTk6ugI7hfjMjq233I7d+v61NeYCOl6XXe8cl3v43xnj502Ao5Jq6mkX/1O7/Hnz96zKvrHQ9unoG1lGp4dXGF3R/oasXd24CV/eEtqeLWt/SVePIX4034Sn61HP8v8zxp7/H2nxXkcY5xvubi4oJnh9diqzD0zDkKyPS17/gf9vjGE5Xdbg8oC8X4pfnYKHorvhkwTwcuy55dsEwp8/pqx+Nnr9iNE/t51pKzZN43bvxbcXINnteXF5Qqih5pjpxv19y9fc7ZsOX1xQWPnz1jc3YuzYndGf/1f/evpTmLzFl/DkhgMOVC41PahZf4iu16LQZGq0GQzspRJrUVSlhAOXksKDf84je/JCmpv/int9Unjo1ctYq5nQHlgmeC7+iDZ+gcwRtFpaQkm0ulpMS677hzfs63P3xflLuMBLuJzJwTl7s93XqD61eUlJmrlPVkcepFx3s4qulgBBltRn2rMNCFwGbY4p00GmZf6Nfn2ODwXSfUEEWApLHUSgMqogx2fvMGw2oQaluJdL6nD5brywvevH5DiZk0J8qiAQ+u67i13nB+dqYeBbAbD7QS7XyIR58OAikaxpJxOWNDx7AeWG0hqIiAJCaFmCoxS6AfizRhi04hnK16fBew3nEoUiQutYgSlQZeQwgY59mlyqcX13TG0uEo6cBgDWtnuXNzTTesGPqBHssqJTZp4nI8CNKPKAoJRQa224HK0aNE+pWMovHiij7OkeBELnSzPcN5CYps6FTuNlK914ZYMaQcfMH0ThPG5muANLnuM4dpZL0auDkldUYHqmG72dKHju1qo/K3RahgOQtlpesw3knSF3q2ric3+oVTdTBvoECOmanM1KRiA87Sdyu6fo1fDZxtNnJsIZCrKDXRZeJ4IJXKbrfDFKlW2NAxJWmAZWPoNwPOe87WW2lEReZNUQ75rduZi90dduPI64tLpizqVYZKcKKMFAg4H3AhsNpsaWL7JVd2Y6QSuZqiUFOMoeDY3rjF5lz4+30/0HU92+0Z1jkqVpqLNf6ztgNj8NXgu8AwBBgzT168Is2RLzdr7m3PWK0CXefpViuRWzaCNvpegqb9FAm+4jro+zNtEM9cXO+Y55GUZuaacb0Yc9lJaDalFtbrrbiLO4cbhsVYbrt2DMPZkb+uFdv5kChj5mAhdp4wDFQXiAkqnq5fc+/uOYdxYj+NbPo1fi3j+TCOjOPEOE2kkjEh0HUdfjUsYhx9J8FbAeYsYhXznIhpkl6AeRagyAW257cAw1gczy9GvHr+iA5CRzcEhvWWfuil0lMgXx+Yp8g4Re1XSjhT6J0stJfjxB9/+oizoaNzlu1qxVAKhSiccOPZrs9RRXZyhdBJQNVHWVdTTngrohA5JcbxQBcCIXlNSCsuOHzoWQ0DxkBKYhaacybmypwEaPF5luqSC6xu3KEaQ8yZKU+8uj7g9xEyHPYTJVet+jm9j5ZqrSpGNe1Kcbgfeqn+plywthmdOqZYdPcxYtyK0ImmvCfnwuX1RNC1wnSBzXqlVfxKsp4ZizMdPng67+nXK5zvpG8waQN9qZja4TqhdPruCnxPsWImuR8TPqk4h6nUkihph7fS8xN8xzRXwHHrzh1WqxXee9bbLfv9RIyZwxi1b8Nx89a9BWgZYyZWcLmyn2aRgbZiTlmLxbme85srhpyY1WNsroY4ZXZTK/MVrmNixuGGDdZFBaKK9M7kwjwXrqz0KGTbk6uFYcOq23Ln5jl9sARvwLtWq2O/PwhNKyes9coYsBxKZY4FVyDWJscM67NzVZMs7KdJEv9p1ndTefBBwJIQArGqt5ARFUPjEq5Y8iSCMPMYOVyPjIeRw/UEzhICsOo4v3FLkrVqmGaNAQrsDnvM4cA+SkI2TnvM7lL2a61mmK4DI1Sw1bBaKt0JQ5wmLnZ7iXdqwfuelCq1JmI2bNcDnTMMnXhXrbzj3rZnHRydMSRvNBGGgiTT4oEjNgxCuLAkY4loP41t+8/E+Y1zqvG8niv7i5E5JxWQ+Qr8rJWqRvFawrhav5KkoKIKGsfVgneGhw/ucnZ+g1Xfc6PCtDvw5uqST1+8Zg6e4da5qDOqzD+24nwgIL2haPxVG91LgpMlWvyLQs3/oEcr5ZXGXgGs4RATL3d7fvr8ik5puHOZv1Yk4Zt4fPM+KqfZ3RLNVxrLz2LIFmoRhY5cUd5iZoxtITsqMlRj2R1GxikKwhmzcAqNUDqu96OgL+6awzxzSIV6GOl9R++CqMhUQy6GMQlNylq7uJcbY3DierUkBu1Sm6+hbn3do0kjHs/5+O0vfflXLxMsKrNLRao1qcmIZ+H3VGlm7TvP0HUEr0iya8ox0lfThcBmXblrwSLNpJv1hrBZc3048G9/9Ac8ff6KcZq1Gdhztl7z3Y8+Yrs9w4dOSqVVS/VVmohjyrx69ZoXXz5nutixHiZtmPQM6xU3tzcZ1itc55fmd+njsNRSeLO74tmbC758+Yrr3SWPnzzl4vIKZy2hHxhWPWFYsd1sGIYVZliL+EGplJiZ5kl8YTTRMMYw55bKWXFB74Ig+t5RrCxSL6dI3O9IaSI4Qx+8brpSYk5NWUzWMbJ11CD9H8laUozUeeR6jGREqWyaJpHKNEb8Cpwi6K4nV9jnwsX1njqNECduv+5Zrdes1xvurLfijm5O2t6qVHOMLaJIVw0xibdM8+4wVLq+lYM1+LdSHfROjyMV8n5iioLGzpp0Zx1dvXdsBo8PPRdX1xIwO0esTqiapQARY3YEpzKOFRFRIGHtjIuW5qMgnnaizDVXI8FWjYLOaSk+V1Egcs4Q0Cpa6IR6aNSHBgPOYOdCMhPWzFSl6aQsaN9+HpUOYPGmF7TXWsYpcskebwrVy/vt9nFZw2XNbdQfSTSttbiuE6EJDUJSkefVsV3vppKtSlVInxeAKZFxVultjptULpkpH3DTzD6KPDjWYtR8kgqOkYJUCKiFLnhy9lzu9kzTzItXb3i1XrNadQx94PzmllUXFAV0y74xTnKd2/WZNcjaH0bmeSKXSJcNwXbijeGDdpdVoUdUiAWuRqluiapRpkk3OEUcnbEkA814NuaITZCN4XrO1P1IdZdMKvk7zTP7Kema5FRGWakmNS9N1i4InWjKMB0mrQJK9UPQ3kROkeAtQ+fxtjVJezKGKVXGmIQapBUVQY0NzkE3Z6FqWkfKklBiC13XY72jZIchkSqM08SfffbFsjbc3G7YDAM3N2vpTzCimu58o++NzBnGaebqesdhngT5rGZBt42Bvis4F/FuVtlwi3ETzu4QtTGhG6WUFy8hZx2rYVD6oNBqwEiSHmeudqP0aO1HLq52TFFMiqOCcF0nAZu14oxttO+xGEvM6jmU4lLlOjhDk5F3ztBZAWGsqWTjKMZwSIVDmqnARMaHonSkTD9Zgndsh8LQdXShMleHcYViWHoiYspcj5FgDpRcefLyFfsxkothP0VGNcIMQfxmYoLRZK0aW7yTil0uhVAqYxbK8/4wczjMxJhJKhdtMNKUnmVMxTlhkqw31eSlom84yr12IVCMUH1FjU4C0qL9HbkUxiz9U7FKVRoaFfsIKMYqsyxRGWMhRXFst3ZHCLJeS9O5HGdUdVNrA91qA13GpEK14udRY+EwH1SOS+XUtV8yeMeq7zm/fVvkrGlVZQG5Yi4CXGjPZR8jMYvnSEzie+Wd53x7Th8CwUulz1iHtYHDGEUkIAo4VpWuGuOM845333lAUzuoVXrpRGijcrE/cL0/8OriQuaGNRjnOMyz0AFTpgtKb6sw1ghEKgd6s6Vfd7x7tiLTM1jLrb6nswZvDLazOB+0hNeSlMxmnVj1HWFKMCe9ZI0hI3PSW8N66KhGKOZtC+ZEMqI5GP1SvPmrVDD9WqhxynTxRvbcVfBsnGU/Trx4c8Gb3Z4CQnPXgLH1ycg21dJOha5175DjrMdvf/HI3vrnF75/64jr13zfjr8lXe3eArlyfusW77sb/JX3wVdDRyWWSXkG33zG9I0nKtJweiw96PWUcaSqKE6DEWliyuzGiYvra7y6Z/dhWF4PdQnQaq1shg1tODQpu8M4c5VGXBdYn51Tk0giSpP9OSs1+LFFuhEshd4dpf2OR2yOC00RicDWZ3KSL39NHc0c62v19Ob+4uMvpH1pEiWLpyqk6+QyS6IiLMsuyKa9WQ10Wv3AhQUhwhiGvsN7z7DqyDHR9z0P3/+Ae+99yLNXb/jnv/17/NnPPufV5RWb7ZZb5+d8+N6KX/n1v8qt27cIXSfSnbrwxRzpVmvGKfLD3/8j/uCnn/Ho0WNWXih+w2rFdz75PnfO77C9fUt08JWCY430suScuPric3724z/n2dOnbDrL5X7mMGd8CPTrLZsb55zfvCVJWPDq0i7VosNuz8WTR+wu3uAuL9SDxRJ8h3Ee6z2bW7fpN2eE1Qo3dFTV3n/6xWNefvmC61cvWDvo+46uC9ILYRwYd5S/DkEbSAWx35fEuLtm3F1yfb2XBAxxXs+lqFyq00rXitVwzpQi+zzy+PKa1y+ecfHyBWtfONtsuHm25eN3H3Jju+FsvcZ7h6VgSmFGgvBqpAH4sN9zfXXNYdwvFa3Q9+Jz0g+CjhlZFPvgcUbEGPaToNf78SCGiFWTMaAPjs0gjrKHKVIrhNBJUqBIWJ4y43xNsC1RETqft4nL61H8eqwVylUnwZvrgqi05UTOE+OUhA89TYzzSKWoY7UheM96WIlhoRWaSOgHkSA+JGBPyYlp2rM7TBKMJ8hVTMyMtQzdCowEwnulWVxcXkAnilg2IzKsVe6P9xJMrYcg1QDrcaEj5Vk2fvXFiSmx2+8p8yw0BURS2TvHatjQdx3OOkrUnpuqSYoqsMU4kedZenuMxXiP84HVZqMVHoNrKnulUHOiD55SO758/pL9bk+eIxvn6HvPMHQ8eOeuBs49g5fqnjGWlIoYF8bEYZzZzwfmNKsanVQG1+ueTQ+rzhLcsPRrxRTVe0cQ/Tirh1LbAi1shoE+BHrvCUEcsQtQUyaWA1PMvJ4jl3HmxfU16/6NgBuFt+gJXsEQCUrE5M1by8p3xJgZ54nLq0tpqk0ir5tLIRXx7liverasGaxbPCGyghTjPDPOqrI2R1COvbWGLji6EBj6gRAGDA4fLNveKI89YpnYjRPX+wO///xL6Q30njtnZ9zcbrh/6wbbzkv1SelAIkFsuNhN7MeZq/2Ow2En4z9VkVYeem6cnbEa8tJk7r1Xzr30+qQkpqWH/aQKhwVHpQ+BG+fnrFb9YtQrlTlJzl69fM319TWvX76S422JvwZmwyAglnNe5Fk1ayrGMs0zc0rsp0n6NIDm0OetYbMeGLxIjFsjnkzVWA5xkt6LUhjJzeaKlDKdM3TecWu7kWvdBfp9WkiS4hESGWPi4vpAOszMc+Ryf2A/S6JysZvEENjAZrNmihBcQ5UFLBFjXcFujTOUci3JntKlSqoM+5lBA26cWZTF5nFedvtiygJQlpKWRGjd93RdRwiOmM0iMz6pZH/KmkxWkfeNKWtCL8GzgCCWZDwFQwKup5HdYeSwP/D84kJkXLWn0VpZr4N3nG22nJ2tGW5s8KXgc2E/TqIeFkd2V1diJpozzjqlJkbWq4EPzm/w7rc+ZtVpf2pOGOPY7UdeX1zx5eWOi/3IxW6Pd3VJvorqpff9wI3btyg5cdjvFWBKjNPM86fPudgdeH29lzC+FEqKhOB458F9vv/dj4WybCQxGkLAaJL0Rz/9GZ8+esLPHz8lR/FP6lc9L66uSDnjMNzcDMKOKEels2k6cO4q3XDORzfvYqwhGMMGiy9RYrXeCw1bPdSs9fQxk7Jhu75mNSXsftJ1ttLk740x9M6xHVYU45TyJUHYqbbdL8RuLZ/5ZZSpr4DbAjBUyNLr1hk42ww8+vIZT1685tXVDrz4CIpViVYSaUmSUL6Ob9lAf6NqnPpVWmJTj/Fp5e1/T3+syzRoB770qh5/p0+sp8lKwaTMg4cfsPmV97l/fl+sPeJMzZPKZXzzj288UQHeokQdczTz1sU+ZbK5oOj3EsSXt97H+7c5g8dLWfBeyrVN8tYYKE0ezWiTbT0+vxppcrS2qNqV8v0VURHjI9XNt618J8N3Ob5F1eCUowhf57Sjprknl+SXyxovCZHKQVrd4K0iPS1JUZBI0C4czq3xvpe+lXamxtL3jp6KrTO7GVznsL2nX3d0+0DMmTf7Ay+udhyqbHI5Z9bbLavthtB3uJSXcqOvK85vnLM/TCRr+fT5S3786eds+45UK+uzLev3P+K90OHPzjnfDlhbF1SiW60Z58j+8VN+/MVjfvzHf0yohr4fGIYV7zx8j+2dd7nz8F0+/PhjhkH4o7lUSuiItfL5o0c8+umf8/Of/JzpsBdJzOC5d36L9faM9faMu7fvMwwbwvac2juMStg+ds/5/OUbnv/0Z9g0iVpF13P3zh26YSB0PWfbm2xv3WSzWuO7QDSeqRg+e/qYlz//KRdffA5xxnlDCI6H79znbHvGZrMh+A7vDNYkrCl4Z+m7nrPNirhfE3drxssLDrs3vHj5hnGauHW+5fb5lvXQE1zAW49frYjVcYjw5NkrXrx8zpfPnjDNB6gVayy3b91huz1je36TzWatymaVHMUocD/O7A87Drsdu6sL5nFUSWfL7VuijLM929J3HZ0P9F3H1him2GFcx+urvbp5Xx+5uaAovGyCgw9s1xvu3r7DZrPG+Sy0It3Mp5S4uNozjhP73Z75cE0u0pTp+p5hGLh5foNVPxCcI7iC2YnU6xgz+3mWxvr9G8bra616WLoggfut8xuUtaHrOlZ9R01C4XszzexeT0xxZry6Ypqk6ppzoes7hn7g3p3bnG1W9F3HajUoxlDJGV5eH7g+jFy8eUU67CkpCnWx8/Rdz/07d7mxkWTFeNNmJTnD5eWOwzhxcfmGdNhL43VOWPWAenDvLmfrgXXfi+Su0tLWPghVwjlWqx5KJhppEI6KMveX11AhxizKcm2NNJ7L/cj1fuTZ61fsxwPTLM24TmV579+5zbw1zCvYrD2d8XjrSDlxechc7kdeX14yjwfmaZKeJqQf4OG9O5xvNmzXhtmwUIuuxshuisLTr4ar3Z5xv1eXepXN1sS6VNj0PTfPNtw837LdbqA4TDYcxsxhmrg+HPjy8kroYeMkBoBVDP826zXVWsIgp5wtBD39VMQL5eIwM44T0yjS30WN3frg2a4Gbm0zN9ZFetbWgbNuEE+PlDlMGReTqAl1PakUUq3spkxwkXGY8CVRgjT/2mJIpXCIkUcvLrnaj1xc7YnTXj03ssiRrjfgOlU7dPRemqyjSvFeH/YcxonL3TWHwyg9Y7XQWcdmGEjZcJ6L9O8Yaf6tiJT3OEemUomdp6SZUhL7MROsYd0HthsxkPTeY0MQL41SKHHm5fXI9Tjx6vKCMoqnSjSF3nvWQ897t3tCl7G2Ym2l6yRUOMTK693Mbpy42l2R40QtmVREBGI79Hx437IaxPchlssl0CrVcrGbuD5MvHj9UkRXStber4C1hueXo3rsGC4PmfUwELwj50guVek3XvyKqqjNpRRFzEFza4NhPQxs12v6riNVUV3MRVUaVVI5U0QlTit9TcVpvRq4d/sWt89v4H1QaWhJ6qY5Ms3SoSavPfZDihiBmNqaavF2oNqKdQPlMnGYMq92I7tR5lfMSQSBktDGbt28xbe//W2+d+82Z9u1UAjnmSlfMO0iLy8nnr+8kvPVcZJVCe3+7Zs8/GDFg/c+5HzVC1iSEuMUqa8veL1PvLg68Orymte7nVQHa8XWwna1EiDHO27cvo0B0jRTTOIwjly8ueRf/8GP+cmjp/zRF0846xyuVkyO3L11h/MbN/nBtz/kzp27ksxOkVqkkm2r4dmbCx69fM3T/YSZJgZvuWkrh4NIt3vvRFSDyDhXirEqrLKDuzc4Gzq+d/+O7D+asxbbhEWax5HYT5gKxc44u6MzhVCLLMzZqS+YmEYbLJ2ThC5VEZCpCn5/NTp7qyhR345i36pHNIqxRmsNlLNqetkFz3o9cPP+bf7os8c8en7JvJsZ1oagXl7Bi5dR2e8Zr3Zc1kK+1QnwZsX2w1ZhucxKv6vFak+fJilLovKXVDZOT8DwlZNBwfcG4StjpRbqXBnu3KP//q9w8/ZHAsTVSl2oaN/84z9CorIQmd76TVPF+LqnvpUEnD7q8e+/rJp0+tpW1Dhqnp9QPjBgG51MEH4xLmxVFKP3xejgX15FkwWu2iPQSnKnPSVwmoQcD/aoI/HLH79Qn1F0HOQYxQxOjkEmpZaLTRtPIm/orDvqlWPVuqVga5t8RhVbilJaTPuw48BsHEjtKxHlM022amvwziq3i15POeVqzMKHrs3FlsZ5RrOr1symX8vzpUfBBY8PHU57E7y32ArReWnK1umQK4t++1INs1aUxrpO36MjOyNGgSWLWpy1cpzQlPZohoJWKzLGe6p3qhKiykwgCixFqh6m2OWzG+0qeEfwTisNUI0lVCN9Fs4t1bo2vow16nQsNBGnx2+9wxSxtS1aVREjuyyIYqOKWaONlE57clR8wRatG9pFPjbm8tYa1CohwQd88OKZUjO2uMUdW5BGdRfX2VCWRKVQnM4MlcUUWecj4s7iiyLjqvFXTwMKa9vrvFYIDNVWAReiUYWg4/p7PAehdln1bXDGUNWQ1HmHiUKTafe61Lp8yViT8xQkrnmbGKAscwujn6/nI312qlql98l6izfS5VZjlr6ACs2TqDSESQ+8VZJCkMZ8FTyiUrX/5GjWZq3R9YjFfLPzjk6rEoKMydj1ejzVKg9dj2Ex6rMqLe69XjepxggFyQqfyYj6XUPA2/oj11rksp1KqWIE3bfOYdyxJ0Leoyw3us3ztkgYY5YEPvgg/jRF1yDbjuVkHVrWxKYWZvFeZE1d8NQqUtsuuWWctWt2fLHVxEn7mZzQQ4Nvng4y91ol2hhJCoy6YMv8lmpBp/08RhwfBfVWyXZrfVuxj2u1lXsTgiQMoXMELD5JYH2Y7C/ufVXXCA2sOu9EWdG0HUkAB++sml4e99zaXmuMznGpPlldf0Scw+KcqHg1QdZmgCeXUO61zGmryYrQiZ33y3Vs1OSsX0V2G9A57b36dVRRX8rVKLNCbkzbazlhIMifzDLPRHvaCdKsztuq/bE8T/oF3447CrJvighJq+5V9aWqAli28bkcu9BspOG6fXYbl275POwReXxr71YEuh7PZok9hNIlXihG96BlrunalquuFVbGlygZFpwLGONOIho9BxWdkHt3XB+tVZNBIwqIVBblyzavjrvmUcG07adW9xWpVFtaSFMrakQrVHl7EksAi/pZzhlnj/e5WUAUnR2Nyr68LxzvBcsgWJglAs7MAuRW8Zaqrqi3j1UarBNpaKOGl/YYx8la2ih2mkZUyFSu9wemYoiqetYYNMu9rCfxm3k7UTlStlnG8OIRpwCIyaI+OI0zu90B7xzPgufL5694/vIV87gnBEfxAYKMO2MNN89v4rfn3KOyGjzGRFHfoy73XjcGTa7amBTBCTAn11LloNpTjv/Ri9/OXf9zEpeDvp2uDZIcVtJhz/zyJYeyknUZcKYs87lfnfNNPr7xRMW8/Z9fWiI7Xoa/7M3+hz+OvMCv+yy5gFazcEsbxFa/R++R3HysKOkswdFXKiFLAnNaFuMr5/t1+8/Jv2+9l/6yfbQ4sksJ3KKStsZpk7Vbqi2nZlzOSaJSoVUQoR6DllJkoUmq1GRVKalx3p2TTUh45AljRWq0NBSvFmmYG0dKKXQhsB4GhkFK3OuhV98Z5bjnRKlJEDVjcSmpYkhl6Hu2m400kFkn+v4asFuDvDZbii5GWSkqTX6y7wc8BdOJBPJKVZI2qzWbYSD0PS4Ekj1qynfOM/Q96/UaGy1OKyrr1YrVasUwrNis1/R9jwuStFCg2oIPnr7vWa3W6nEingK9D3TOEqyhD0Jt8SFI8IvI3/RBefVUDRINXRc432442645264YXIf3nXgudB1kQ7IwrHvW64H1eoU1sukId71nsxrYrge269WSqMSUCF5UpoxFkPnpoPKLgHNsVyvO12tunZ0tvS7GVKYUNVBpm6oauDVURcd/qY7sHH04yuiuhl4DSC+UFjX97PsOkctM1NKT1cW873pWXc+mH1gPK/FaUGntUqHLmaIxAWmFy0VUaaootQxDzzD0og6jxnDGihLb2lpSLdJLUdY4a8ha5em6js16zc2zM9ZDTxc8fd/kXWGaE6tuJufEPPSMJZGcpeaCD4GhD/SDJ/QdXd8tPgC1Gux+ZAyB3GWmvseWKD1DyD0bup7z1YrzzYbV0IvKmDbokyo+ZbxNizdsCzaNM3TBsxl6zlYrztYrQh+WMChXQ0JAgvVuoOYqkslVqsbByWev+oHVakXXBwU1DK54oeikTN8N1KzmqE7WZ2+1gtV3rFa9BDC6mg1dWALUGGdCCJReEhB0QwOkH7EKyr8eBlE1227Uqd4yjlEAhr5jGAaaWg4U9WMpBB/E0M8Ghr4X9/KgZmrWkEsVZD5lgitY35y4K33f0fc9/TAIEOI8nQ945yURt1Wvh9VxbkX23VY654Rb3gW2Kzk333VU5wW0cJbz9RqqI8WKSZFkHYXM0HXLPF2ve0JwIorgPDlJT9KUpPI1zkHpOtL03Qehja1XA9thoOtkbNOcqa3heo7qxaLAi+4TXgGIPkg/k/iQiLEotVIDYoSX5XPERkCUnOSYO9brXpzsrchxS7woe+hqFtnmeQokK+ItLqPXWGhTq2Gg78QAOCd5fspNKj+wX2mlpORlrAPiHl7ErLHvumV+lyLKUaWIwtxCbjAc1QuVBoOCFV3wcgymedFYCbQaUFcMTc3NI9L4lcqq7+m7IHQ7nQPC6pSksyKUL+cLvjZDxJPPX4JFBXhqUZ8t6SlNRYyI5xwpyVOCVFS6XvyQrAYEDbBoaoPeCYXRWendSTmRraEUoT2VkoW+2ck1nOPMuD9QUqTzVsaDihwEKwqgttpl3Ofm8+O097Dmxd+oCzKWt+s1687hKJjs1eS2cjgc8P6KUmGcE8MgPSdNNbTWKrQ4axdfM+csRVexWiVxdU5k8r0R+X7nPKlUXl1cHalJxuLUXFSAl15UBGsVmrox4gVnLdUZ8alRQEsSZUnKZgovLy+ZstgQtPFdKSeeJCfx3FdC2bf+ronhApbUKip3aWIaO673e+xrz34/8ebVJZ9+9oinT78kHnbEvid0PcZ6SjUEG7j/8D4Pzs54GCw3XnyBO7wmzUmST6oydcTw1liniUo9elcsEaYkKvWrR94C0YYaLrSvdo11fql+hMS5mlq7yu7lc97sCk+2X+KtJWDoLRhvwVtuvvMR3+TjPw7163/Ux9u3ZEEMjDQIGsQ/QpznW0BQj/f1l2RHLVlp716VE/wLo/f0NScZyemzTofQV78PzrLWIKbEmZpaw7QsRhLwSnO8bat1XXBb8aVQ1IlybBAU9SLp42hoGDXjyLj2WhRJrRUVAZfj/epB6oLTUIflvIwENYIeykK4TGfTmhaP1/7EyFkqMAap1uQofF/9qqBcT6NB+BGBM7oxWCtl074LDCGIPnqtOArZOowGwc27whqjsVQlWNHdH7xn6D2+c7jOMawGTDHUWZCMSlU4RmQQnZXmuN46ghHTzb73oo1vRO0slapJ4NGRXC5WZQiWlbesnGXVS3+RcbK4Biyhqv+BM6iIEK3xtQuBVS+B63ro5B7VSjCIP0qp7KeTsX2SZHfOM4TAVjdjQVoqbtVjrGWK+QiuGPNWReUUbWnJTPBHYQLvnfQ1VZFB9bpJYFtOLwuqwxCMZRU8q84pWu8lsCkSqIqaWjv0NiYF4e68Z7teMQSPd1JtsFZkV8tUCKME782zpuEHzhihxnSOda/HbIX2UKVxgM559cQxx80HZDwZI0lq71gNgVXXCcqYC3Qdcx8pOXHZUKzjDMCZyvnQse28NIV7uzhAVwqrzlOKmAvOxrQRp3MGNr1n2zk2XtD8vu9wzokfyDxxMBVvvBjCWkeKWcBXIzTFvgsMqp7YGoijEbQ1dIL2T7NZxrpR4MQHQe+D9suYKlW2YqR6lrSPrlWs2hrXtr1WxXUm0DnDqvOcrXpC6HEu8KZcUk0hqtx464dq6GspYJDPXw+Bdd/hgwiiWGOI3uGM4fV1IMYMRoPfKhurN5VgDZ2zDJ0G8NYRjJgsuurog/QvtaqQlDPBlEywsBk61p3HWkGpQ2/pjGPoPFf7yDQLVa4uaH2759AHy/lmwHnxmhrU8KKz8Obac7CtCrdMUan6e8NqFVj3nj4EWUMUOavA2ntG53BGenWMAgoWCd5XXcdmEGqn8QZMEETayDEcrFsAt9Ys2wLzde91Tllt01NzUUTFyFvBbI9bgMC1JWX2ux0lFzH/Ww0qnW9wLuhX0jW8/lIqtDFo47x8JQ0EjZFG7Lq8doFEZX+uijibirF1qXY7U0nWUGqiGEl6VHf+7b25iterd7Imtf42g1TG27UqMS8O7adORpSMNZUQRHlRKGZwtl4xz5Hd/kCrHbT9oOr+JxWzgq1Ze4Usflgxp8yq71l1nShSKfpvq9Gd+22p2uZpBiwVuaEXmefO+ZMTfhssNgigI+g4BBeIdpb4Qu+TsxbThESMJEcpJfUt0X48K/LVSyXDHqs57UrZ4xXT4SMxjgEoCtDqHitCA1mEKqhY19EVtWEoEHzUJLaSk/R8ibqi9LelnKg16G6g+74x2NBhXYeJ8rxiKtWeXo+/KLr7mr9r1SHnRAXu3N7yvfe+y4fv3uf9h3cJXY93gd4PPHz/XUowsPVi5GwsVxdXGOPwIXDr9g3un225ZyG8CWQsU4VoDNlINWhnoDOFoWZukHHZYGKF3B0XYPJSFWpz1Zwe7zJS9LdNLdVw7M6oIktdS4VgcavAZz//M37v5/+K/+7xhRji9gGvMV218H/5T/7Lv+DK/bs/vnnVr6+poPzlviH/bo+vmuz8RX9vaE0rP2pBZblZJ5XnJaxuzUpvayrIX1rCopHhcaqfDoavP+hf/NVbPx0HTCtXLpQ21DMERMu/ygLsnWfoB5H4DF6VzJSuhaEgKkZFJSGPqhdiALVQGayh5sSCAJmvHNdbCVpLxNtvzLKIWczSzG/tkVIHgpbIRDHL9V3O2hwbCqX3BrxVdSH9bGesSE4v6AG6saovjEpsOqfKMFbeJxtUo/8r9MIWUBnZlFpw2imdosmlJtDg6TjRGxBhgGCdvk5QKm9lE8caapFFxbtjkrbc+wqdtfTu+GWcoOfGSzKZlntxOsZ1A7K6AXVOpFX1T9Y5iq/MvihT9jjAlfiIs5IAtS/JHZTClAvBe6XtmbfO+xcHrXrSGAkGRHLTL8yI3hUdD+bt1+m1sxYJIPV4nJfA11LIqmRmtZF/OfUiwZFzVpqkvQYz6oprMtj5SKU7TWrRWW1NXYLX4PR57dCsXX5n9D41sT2r81Lut4yVzkpFI2tK1HlRyLJ6rU7XFGuk2Xa59l7M/kqR9cTHjDfae6bjRXBuvW8GgoHegfHy+dZJUBKsVeT3tG+uanIrCKUk5JbBSzWFWqneM7ok96wexSWX6jRowtiMA6UyWItQIb1VD4IF4Dgq1rQVsk0aa8xCXwtGjiWoKIiYQlaZ4ycJJst7SaIXnGHwqmznBX22FbJ3BOtwpvHDj+tUS/S8M/TeaeDaTN4MxknyujhcLykiOr5R1TOlXVo5ZoxWcoxSmk76LqsSiZxB5FVbtVATJzFtkfXC2uOaePTzFHAiOIN3EBwEbzAaSZUq18Lb47pa2xqgx9sFT2ctnc4ttDKeqEphs2/tfdS6UN364PBW564mKqVAslV7I4/06LZ3OWOWwFh6PirVGII79lvm2q7ML38s603VBMcaRfnFe8NaabgufH1s0RTXnJV1wYFWZyvFVJH9tQ6bNTBue8FCk6kL/cmao4FsixVkTjTLALPsiW2cNRqwsxpDFPldW4uOMclJHMPJ/FAgweqHed2PrDXLXFjil5N/m3pYo21TpfqcvT9WhYxQEtH3OaUGWXu8HqWURYr3SDM/YXHodW5jMScJzluy1PqS6kmTulXKW4txWpQl1MGq11+veRuXut6HIJX6DBjr3roeRcVO4LhWCuCZpJqzmF2frimtN1nOt6oX2gLGLeufoZ6M1r8slm2+Z30X+PhbH/A3f+2v8PF77/LtD94lVQNYVmFNMZW7d27y3gfvKvhRuXh9QQPGUoW+ZNw0kYGpVg6lMlkpmuQKI3LdqCLsY2sR9kOpVNdqrMfMpK2Fx8dJY8JbICrLPVpeUHWU6OS0teJKoTey7/TOY2lAzV94if69Hv9/XVH5iwxpTp/zy37frnOboO33Vld0vR8L57Q23VDdLQxtHp8kJBwXpbeir2UwwHGXN8u/bSH5usepo2kFqmpWW6VyUbXjwEj6QZUAsO86zrZndOsVLgTh0VbhqxoLEXE7zipbao2ooeUiijjrvmfTix/LQR3qZZ60DRv9tygfdgljNDHTi1Rk8ZfSuNcKgG7syqctbaFDAou2V5dSxQdGA63g9MuCqwVlO+HDIIGwIt1VEVerZpfBq6KTE6pCOAmuiiKW7TYZ5SdL0GqOJfEgwZ93skkFK94LzoiEdQuZ2zChisHmEARZF+MoFglsjFANWgK1VFT0s3vnWDnHWmlkOJFQ7boOly2lUWfaAnAyAltAsOoCvW08Y0MyMp5mrzKQ+vvT1zoNcHpn6YIGPkUT8RI4dGnh9MpLjqO9VYrbe0kQDL23DMHT9wE3C6UypbpQuqSS2SS3jwlO5wyDlUDRB5GzTrWSrW7QuqE1RQpzErz03i2BZwhOe7k0aVUOv7UnvQ5VNjJXC8EWOifBu7VH53KnY8jbt+dqCyCdMaxcYHCO3lqCkWtZjSQe+70mOicJUm0BoDF4A5019E7UqFqjucuVOEVmDYzbFa/t8lvwFDoLgzOEzmMF1qaiQb+1OFo/mlRpQI1CrcjN9taxDl6eVcENlv0spqdV9fq/CvQ4axdj2U6r0ii9rgX4C9OlBdrH2XYcd9YtlUsPdAZ6Z9gO4phdK/TWMRu3zLXjmlHk821l5bVvIwRJBirU4DQ4tMuQPVaGCs7KOrPS5NZZlnvskGpLCyylMnTcGpxF1iNTJJEKjrNBPHAmTS6trstLRaUc58bgpGrqnQRqRhUDjWXx7JFkWe63UzDBWxlTnasEV+m90kl1TAXnluSUNkfQgNfKfOycXOOua5V0WSOGEFRpSIKiNkkEuDGsg5f7aiWRQ5OMlLIkV6bd5fbZFe8MQ3CcrXuu9jNTnIg10TkN2o1hTiJwsAAHJ0jhSTiIrRVyFlqWU/JzESc2Y6xkCaUc9+XTDVTPX4A4C+nYiVORng9nHT4nYjyO1NODsNYQ1OgxxkikILURAfm8tWRNUAtLV5LsQUErYDq+imuGzBJUNmqhNZXjmUty1HvPupfKtuAydQEDJHmRfS/rHtISOqOMBWsMJZWFijZ0HSVlgjFaYTzpsz25ZsZIMrt8bsrS01vrUSBgmZPHxEg5geTcGqmPIO8CjGoFxlqrXj7HZM8YOceUG+jYms8lyBY6HqxWA67zWn22OFuXqlujkwft02vmyiklSaBOqrwtETA6702uoupYZIxYJD54K7b7C0LQZfzpvluyiA+thoG/+Zu/wf/y7/8dvvfhezhfubzeM6fCenXGw4f3qaVgg1sU2nbX1+QK0xz56Wef8fzxY9LzPYnCXpPlaBUSqbCv0JWCUSn5VgWWftzjqF628a/G0idS/e2JS0+j+t7UYo7Pafe7FFZdx90bN/hOfxvfD3R9z6JS9h9B9+t/3ESljYevjItv5K11MQz+OMHah1QQybgliGtLmGTiFtkA3g7KThB5XVxPD/n0qae/bw1cf9npyaCQCTtNkVXwDH0Ar67INuOsbLgGxC+g6airvntNmYo0aeYq5VdxvC3qJi0+JiL3XLh5fsbtmze4PoxcvXwN5m15ZFmcqjb0owuiHKw5qZjINqL8aGsVEZWFwOnNrRqoNu58i2iOogXCxT1brbm13XJzvRZEpGQCYlpWKipT2baGIvfKKOVKg9YhBLpOmsSzrWSlqfnTxlMNeAUNLXgHXXBsux7ng/LBM6laOmPplV6CBjFyraQxeug71quBfi2vdT4Q+hUJy1gq7lJpRJINA0KL651y34ce33lc6LHdgPc9LhkyheC8mlpKv47VQeadp/eSIK2Vh12rKOFgLZNWRpzzmK847Qo/2BCC1dfKNZmnRLaWwXn60DO7aaHHHZNt2Zorci8MELzQcYZejAmdsRiTGFPW/hGvlJqvBq6w6gJnazFsa0iSNYi6VKu+aWKCbmCSOAI103mhM61WA6lWcfF2QkFMueiCK2tA0Q3dWe0pcpa+D2xWa+nfSpmr/UHQogoeqc4V3RgMqr3fBW4Og0qDB6F3lMp1nAhOAlvnpMJTDaScwQgtbtN3bPqO9dDRrXr53FI4TJEYLHGpyBhFsY6Ui/Vq4Hyz5uZmAz4sO70tsO4zh77SuSvZ/Ck6vyrWwrrvOFuvuLGRHi6nweUhRlUySrwwjcNdNKiRmRu8Z9X3bNcr1n23BDrGVaL6U3kra2bCcuyYgIVGpWj7aug53265sVotvUXd2Zo+RJx1vLCO0VpBO+uRntkHz7r3bFaebSeBYB86rLeMManhqme30AyP6K2ACZ5N71l3Mu6993Sha337+KtrrfwpKNVAFOcYusDZemCj9EzrPNs+gLH0vnI29FyFUUa1JkhCw7SsQuDmdsOt9YrgtCHaiALdOCfW/cCuSwTnmTg2NAdg5Szn/z/q/qTZsi3b74R+Yxar2Hufc9xvERGv1hMpIcwSSAPDSEvIDm0adOnzLbD8BpjRhQYNzNIoGmmAQUJiJDKUkkmZKlLKyKdXhSJeRNzSr18vTrGrtdack8YYc651/N739JS6wtC+dq67n733WnPNYpT/8R99x904MHQ63pTXYujd0NFfFAqrs64yRp1LYew8t/uBoYvETmtUchHSAuNT0K716JpVeKdCIz27GFvNRNf3LFn7nzguPJ4mzteFhvMw7dcHdVJ++zc+4f7hyOmilM99rwbw0+nCNE1MV61To+qSD5WhyZsuOKPxdTgJSsRStGE0c4IkSo26flHla1E9VLPdej4di2TjnpBGNb5mKWhBAefV6e06hdUpikFnVyG8gURpRqMTb5HphA+WxbHgVAgBrzkddmPHbj9wnLP1Z6nEHWI6V589JzUEC0reAkrJPMSosMGkXeBT/W7V05aRiTEq+4vp+eCFcejpOt2/pdpbwppFKJqZCCHgUJmlfY9WmPPa7NDgoc1Z2hL01J4yWlum10hWc/bByxYum6NUM0jOmjjjFjKJnBelj6aiIxyeZM8rjVmrZrO9qE7Y9yNjvxD8ZPdRndMwpdPMOOxwveew0/YDS1qUfEdaVPYv/ao6xnlHiIEhDuTrwvXpTL9zlJTIc+L++l5lmwh9ChpEEXh52FOs39Pv/M5vcT0euX7zDd/8+/8+x/vXnJaZMI7NjnJFZbtzBgk1hxCvMLrinNG069gayUg9Y3UlqwOCGFEGFBHtmyfaqNuFaCRDPYSeab7n4f6eb95d6Q+37G5uLYurxCE/9OuHL6b/56TGnn/4gz8/eH03m1IjAdv7ffCdzdurCSzr50oNupjAl6qOa8rKnJkaNt+kg/WiK7pS6YyrH0ljuciFBnfZ3LYJ4D/XL7OHKymRlwUJXRtfrXEw2W7Pk1mWiZCsoZlFzOpz+RAMUlWYUsFFY3ERZQRTDvaKP8XgZBoVclLTqCZE9IHXdSjVQSlghy56x6ELjMHRO60vcEYXVj/ryoqnbfOIRpzH3utPF4hiUB5cY15KFmV0ZvPqdKuQHzrPrgvsOsX4dwarKCGwOK+ZjepcbTaJiKMLqtT3Q2AYIrHXbuT4gGQt+BuCt+aMz/deiM7w/56ht07mPtB1gRmhLGv3enGrsHCikJA+eC22j5HQxdaosjjhmhNdVMpiaSxuuh5j1BqLfadUvdUFX0pmAeKStPGkmNCwfexwrTh433fsB6X2LlnrRlKBPqbWVG97qhpkwAxI55w14bPIb1Ssf43pT0u0omWvBk0L4BWrN3Lsey0SDyGQCyyzOiVLgS4sxugi7afG65wUhiDsB6VW7rpAV9R2vw4d50nJIHJ1EMkKnzRlPvSR0X4OYw9FmJfEPE+6HtajpOo1rdlWA2jfBXZDVPx/NKrUnMmixcnRV0iBWBZImlIdho7dqAXW3dC3gENAyNeZ6brgrYYLi8A6AtF57nYD+7FnGDuyi00m+JwZ+4Whn7Wxn1udYkGj2fux5zD23I49u35Q+QS4CzxdA4P132nntE45whAcY6d7Zjf0rb4Al7kuiXOYqc31agav7keHwm0q5LD279kN0bKvvqZflOwgBusvoVHnZCZg5z37ruPFOHIz9nSho4sdvgv4aSYVhfLV0jlngjIXc1RC4BADuy4So1JFx6j9FyqcrwZZaugqWyaqD1qzMfY6ZheCQb8cPsHYdxZBd23dS0YDKEGzL/uhJ1ZWO7SmKfqFw3Dm6XxlTeDpnvECvXfcDro/h66j63rt6VG02ezQx0bUsWagKoTIMQ6d7hfrDVUd7mUpjH1giJUt0Na6mKPihd0Q2I0DXRfpeqWtn5eEx3P/NHEMU8ueCVByJjgYojbJ7EPgep05ns/ETjuHD523NSmUI8+ybxWWUlzTOtb/xtFHIS+h1TyeU2psjZr5dRv0RdXXumfG2Ok1HbAUpITG7rbuWWfyTVegwq+GGAxa6JCseikl0YaPeWmF286CRBQ10NW51UL+4DSoMqVM3191HcOFZYG51EDfChp0onDYoVNGuyVnJu+1EL/vFO5ojIYVTlrzGMooKISoYcIlBA3s2Tx11rfIme5yWPYCpTrOtfGurUPOq75xXqwI/rn9Xq/VBIZJy1zWa2aDgXknGG9V26ci1T5oFSQWj6oQMlowtq416F5wTq/ZWBqz5VBzNohwRTEUW2/X9H+xyJMGXBWW2eLQz7Te+vfqVLcMzXds3dLec0YL33Ud/TAw9IFpKeQ8ka7aANh7Rz/01Aa6zhnznDhCF3B5wI0jzjvTY+pQtHF9Z6CVlc5RWRwxugL5cLzfY0hXh7U9S/1bPeR1vVztayecrldmd9J60IYe2RT6/ECv/7+Gfn33ZRukbByUDSCu2P+rI1L5zPVw1c2F6QL3bK0akaCI4oBLdT+sIF2gFG8bRp0SKZliUbJCNdrrtzaZnFIdnn9e8khwrlDSDIunLJ5cKqSqbjxnhYmCSGaeLsRlRlzAd705KnqvPg4qNpagsJigxcPRK43m8XzmdLlwXWYtlrUIVheVXrdiYSuMpcK3KKLF/BQciYzh30Pgo93AbQzsvRBdbp8vWeEbzgrfn3sbyrBzO3oOQzBWET3s2UNxheSVIKDCCHC6Zkqx6tntAre7nttxYAyBLgjBF0LsuDhHkaTwjips0BRyETXCbsbIi33PYa/MNbHvERcJWWDJ7LtAF1wzhKpsDr2nGzzDGNlZA8UQIqELTBZY7s3BEnFkq4p3UtgZFGXoOnxtqhcD0keYYUbYdR1d6HASGtDCiXA7RF6MHS92+t1qUF9LIjnHKWdi6HCuRvtyG/O+j9yOHS/2A4dxpKCsOSEoU8o1FcOnG32p1EzaRrAVhUYMnWM/iPbs6VSZd177GxURdk8Xjk6ZhdopFe3P0UfP3Ri52w8Er1HK6SrMi8f5juO8aOdsV5HHJkhLJrjC3eC4O2iNlnitbRg7j5TE4/nKk9OoI5IREi5ngjhijOwPIzf7Xpm09j0igXlJpOnKw3XmNM3GplIfWw2Bzgl3Y+R217Hf9cQYrLllRrxn93TmKVw3Rpyek2CO/G7fK9vbfqe9UOaFnDK7GMhTYromgqvGVEFIeCK9C3x6s+fu0LPbdSQ6y7Y5hpy4zJnzsuC7YI4KkBcwSObdzZ6XNyMf3QyM/U5rWwS8n3m6aqGt3lcQKXhPi/rtO+HQB27Hjv1+j4jmn2NIzEtW1i5ZaUxb/loUxpQNDtB52HWe213HYd8rkYEPQMJLoZTAOHTEU7AoaUZEyUF657ntB350uGG3G9Sxj502Cb5cSaXomXfYfBddezy9jxxi5MXQcWusVLHv8b3CXbwLDCHSiVIHe3MEMpqFHTvP3ajscCFGZSfrOhDHkgr7cWAYzIisDnmx4v8u8NG+5+YwWNBB2Ym0q3fm3enKsToqJmdL0RrEIXo+Oeh+6fuBfhiQJZFS4rxMHMbeZI5vWS5XCkEcQwjc7kZuD6PKF981RyXlhZunwMPJtzouEQ0qBXEM3vNi33Nzc1Aa6S6QF80C7fvE+8crT8cLkmlyh7wQBXbR8/HtAbm7pZTC9XxGvDpXj9OEC2/JCF+/e6IZ283AUy26mEHWd0q0MfTabDLYYUzzlXq65hC0QShpE4FSaTHEwO3QUyTgrxAmhRamCjUqBnExx97Yj4k+GMtbR0kLsTginjIO1v8ksSypBUI8WaFqBZNrgf3QMQxdoz5fcmE3TOyHM2N0zJNwQeGvRUzXWjBtsMxrQbOtaZq59p31lAlWLL/C2c1ywHuhj0IXHd4FoDCdr1Q4VbeBPdasdFAvk2I1HQrxVEKXlKU5ki4IzmCKBazm02D1DogOpfV2IGvGKJeVmCN4z8Vg5CvjqtXcWjDPm5LLTrMCtSHusiy6j0UzmtrItrSMsW5BlTPLPJNnu3/OLCUhRrXspSDVkfE2eBvP+t/WhP+QMWujAj+AyVYzr+rZGD3DYcf+7pZx6BrpyDInXNQi+t3tAWrzUtHGqSllLtcLy/WqtMxg9bsaBCxWa7Xq42Z06mrJ5sdZ0+0aQNoEiIsZwM3xKjRcu5gTZ5uLTLbAtToq+Agucl4WLscj58tEyrPaVf+Cmai/zOtfsaPyfWb5X2yq/1e59PZquialpcPrPqof1w3pKNsFat82uAYKgVXk38Z7rvcz6sxE5XS3CI1tolIPpwnTLYTsz3tyHYpuqJcv7rgbB9y8cM2pjkCjDuZ0xag0nX3faZ+OGHEhaAOpksmpMDPpoVuuzPNVhWkuLapyPJ20a/k0EbuojoqvcCidO+3ZITY0TTdKyYoZp7TxjEPkxe3Ib37ykpf7kX0M4Iwm1UJ2zmvvpV0I9KKUduRE74RDjPz45sAn+4EXQ2SQ3KICxcPktKjRFyGIJ7jAUrR4f+giL29GXt6qYr4ZO7ohEodIN+y4XxamlBisF4L3nskWIwThZux5uRt4uR/YH3Z0fa99WMKAT8B1USy+rBk9ZSUq3OwHbvcDt2NP10c1grpOMyuzCs5d5+mcsaDlFVt7d7Pjxe2BF7cHSugNkqR9UfCeEoWb/cDQeXOCLRvlhJtDz4vbHR/d3YAxoXnUUfExUnzg9f7C09MjwTuuth+9CHe7npeHkZc3I0M/AloUPKZM101khCFqzZA4h8tr5LM63ilr5+zD0PPRoeejmx1DPzB0Skc8pcJ4zbw/TpwvEzEENBCoJ2qMnkOvztLYeULUnhyMSt+5T3BMVy7z1eogVEwuqLN603f85OWNNZoMpAJDCBoF98KbxzOn60QN7hST5d4MgZf7no9u9+zHHTe7A0suTPNCygce5pnTNFmh8pox9U5Zo17e7bm73bMbR/oYSUm7wPcTnKaFJRe6Vz3+cjFgTSI6xxi97tObkcM4qBxyQkmJrvMsSch4huEt4cmQ3kUjn9FpJmK/G9jvB3CdFrNmIRbHYdQs0thFLdylMlVq/c9N57gZIjfjwO1hrxlKMt7tOE2J42UmxrUmSIqz/eL5aD/woxd7Pn15Q5GIWnR6Fi9d4Nx5hiicHGipdC3c1blfrEvb0EXu9iOfvjiwPxxaBK8Ug5uGwO1hx+Pp1AIlxaK9fe+52fd8/GJPNw4KwQraf0dILKnjxc2B02XmIZ65LoWSlJo8SGHXBz653XP34oUae95TZLFeIR0vbw88HK9a0yDqXC05set7Xuz3/PjFLaloc+J+GOn7jlxgmjP7Xc9hN7Abe94+KCPaXBZiDOzHgY9fHBiGXmE5zlk0spCTssDtu0C0xKHaCoUuBm72Az/+5AXj/kazo87ho3Zl71Pk5unC7ngimnNmHWzog+fQ9/z45S23+4EYItJ6vABkHs97jtersndVA79A5x27IfLpi73SOddGzFLIQVkXbw89+2PEBaHMVj9ZMn107IfAy8OId+pE+49ecL2emJeJm7TjcllYpsQvSqKW8m7Z9WogxotmxPd9ZD/2XClEy8wReo4yI6UwWT2kOKfUzaang3Pc7gY+ubshMTNcPZdrYD7PXJekmcCLwjSdODOmjSXOwc3Q8/HNgXm6kLrEMicicL1euUxXpj5YMEPrJDHzwGNEBl4YutjgUn2vtM+HceDQd8xLZkqZ8+WiNZuiMPXd0HF7GOlcan1k4t2Oki6cnhxdKISgDvScZjVypTRdHUVrLnPQYJAvAiUzXc6WnfJaG1frduychiAMfbSeQA5KDRYodXXwqg8CSo+Lbgmtpar1YrJm57RvjMfHjsNhx34/0IWgtoXUOGU1nIvZ1CvBQIW+ppSYp5nz8cR0OusedoHCgjilfW+MZyaj05I5nibO1wvTPK22njmTwTJs4jLTfOWcFDJcUSHe7L9qN374+vNqp8Ugv94r7Pjnv/o1aZr4h3c3vNjvePHRS25ub/jxx5/yxdevePv+Hd++e8fQa7aVUtgfDhwOB37zt3+TRRZmG0ukFrAXktTAt9Vr1sXIWaFejdf/+Tibk7KxZatylLqB18i9LlIuKu/NoYaCzDMvbm75K78/8m//5u+TsmZUj6dHpmlmWubvmbV/ude/Otavjee2vvmdv3wvVOzDTfCcrWnzR6nC3RySsi4gNZVcvUlj1tF/Z6PRLHaNjVdsi1sorZgZhJwKWv+xEC0bINaLoPDcu673LWTLgmyeQ74zK89f7ZDbTz3IpVixuAqSnBbmedYalLRAmnE4clZHhQy5zEChWGdtCzY1YzOn1Jo0OWcFyM5ZOtUcE6nZBxubYAV9pRXvlVIITos2x+jMqLcviC5JZQ4KzgqnReENZRNtHrtAHxy9h06KCWohu6LRS1GmrCCuRXDrLuu9KPyr9+w6TzTjN3phKFrMOngtfq6wP41gaZR37LTIeG+1LSF6xAs9hc5bcb5sYQIKZdl1kV2nEKJgbC9dDPgQ0D4Q2m+iC07rdaz3gndOKSf7jqHvSBKsSFzXoMMxikLaaianGvmUbFTMgXGIFB/xmJLEk4DznOijwjicW8+ioHSpQ6dQli5oI7MMhFRIOTF2CrlQkgMhSc2eGXzNKFkUFuM5DD27LtJ3gd4KHp0rlJLZ9YFd7+mDKAbf7lYhNfuhY+i9sYMpi9NSQBIaTY2uKY/FzlXwGrU89L3CV7wSbHcWgRt7pXQdojLaiTnb6mzoXtnHoLUiNgeSEqWIwcE0kluZeup5caKKaOj02oPhcZMEvEsKyes0GhujX89RNsYuJ+yNbnboPGTRHkVaVkHfJfrO0wWDTZqMc6IFzkMXGWy/FNHva/2k1mUNXaS3PV5Zs5yRCuy7oOerC8SgxoYvkI05btfrGTga5K3VcDnhMPbc2M+c6y7S/jrn6OiDMlNp/VyVC6U5Kg6M/UoNpTHq/KkiNYVqcL8+GitXrR0wERwrJfQYCJ1bmQW9kKPB0rqokJvgmLGAFRBcUSN6pxmI4LVQPBdpPRbGztN3lcGsqhKVuX0XOexG5pRwXoMRXYxKQFEWBoM8Ru+auC9oRFL7LQV6awQbnEImSilkybaPFJbjrKlhoVitndIxD300h0zwRTH6IRfNxga/wmHtzsEV+iDc9JFdF6z3h9a5ab1T0b1fnVqpc5WtID5wGAdC1L5aKvutsNpqX8YuEIKQE0gyZiaTB2OnFNnO6sE8kcWDWxKHLrCPns76ZaSiWZTqpYkY5Fg2Br8XJGjmQpPwnhw0Wn5y6z7bFuY3Wt7oWIpQsscRmVJuyfwYxL5rVNhmxFWYYvTa2DWhhlLqPGRHyc6IOFSP6fxI2+fenMaq87QuznRfED2D1+cNCAumH4NmRBrMWECi03odL5ueZ46lhTCrXq76QyG8SZSWPC1KNOM3untDZ2DjViz++agAAQAASURBVEisuKpUNQiYkzUwFrHvm+4sdezSsiFVTlbZofJDoc1aPyobSPkKpzcJQLXbdLtVshwz33IlCBAKCXw2p8g45Oq6m6NymSbNfFXWMav9KgbXh2K9s4zWOKXmJKtfXm01aWMyo6EhdGrmeH1VKKIwzTM//+Wv+ebrV5qd2w/8+Cc/5sWLF/zWp7/BZ19+yes3b/ji1deMlimjZD7++BNevHjBb797T++E7vSkLI1uPaetBr6Oyf7yoUP2DAGxDpH2ban2r1v/WbOLFIOQFUquMPC69lkzh13Hy3EEUcDs6bJjmibmefnuff8lX/8/gn6VD/62HpJS1k2mb9VPlNUpqU5A+1jFZta04vr9irevnkyx6He9be24XErtHizqiaKXT4ZzTCVb92Y1oCZzCHKa6cYBZ53PrRGCFiMWE3TOabOkgmZf/oVyYdKafnlzWlQgJPoYSCnTx8B0vXI+nTifz0i/w5cCMlktCQiOVLSYjqRN5GrtAEXx+q2drc1bNCxsq+VADaxUpG16bY5lzFaWjkxlIbpC74rCnNBsC6JGbY2aRXEUY9Oq7FjZnIU+qJE4BOhdZpBi/TccszG9ZCfsvfYtCdR6E2W96J2w6xyH0XMzREIf8V3AuUIKjhQDN0bFDIbclEJ0RXHgvULObgatM3EhaM1BLvSSGbxSqho5q6Z2Pdz2Hbdjz+3QkUUZX7oYibHDO43LHMZO+2Y4KDmpwRGc1Sr07PqO2dDxIpWy1CHFs+8DQ+eI3vzMksk5WV1NYD/2FLEuxtBIB05hYgiFzqtxUcS3AMAQHLtOI/RO1ADCwbJkSvacO8duUFhXFMDomb1YV3IziqJT5/LFfsfNoMZb10WWlPEuUzLcjpGnIbDvHCdR5iCXM9EpZv32MND10QooPcEpo43Pmf3g2HXaa+aIEgkUamF11F4cnfV6cB6SRpSL77gZIk99YHAmZ9D+OdGpM/1iiNwOxv/uK90rjGPgMEYOQ2SInidfFVdua76LatSP1m18IZOzYfutzqrvorLfVda+ooxZL3Yd+14NqJyF7L0ankA/zfSdY4hKQ+yrrHMQPOz6yMEaJiYLRmj1r+OyJM7Xhb1X8gdvz+xFDba7seMwdIx9UFKOkhWSFTz7LnAzBm53HU+PWqtSctLGpN7x4jBytx+43XXMs/VpKoXeBy6XK0Mn9EFJ68QpiYahM7WJm0Xm+hAYjKmtrwWfWI2Bc6QMu+joK3ufVEex0HWeYQjsdlHPvaMZQxI9Zeg49LHVyJ2oWQbda2MXuDns2I99qxsoaO1EEZUdYxS6IA3yUJ3ise94cdhznRfEBUI/EqI2CHQlW5G+OphqPJXNugl9dOyiNwfJMaesotcp9HPs9PvilFmqiMLYhk4hRF0fNo6K0iDmUlRmmaPoDQYjAtEVxgC3owYynPOkoo6KF6GLYnUzHUM0BiWDdvQWMLrbDyozcBpdznqeYxFuBj0jXXSkqZDQs6GOgZIdtBBSKcQuUqLDXScOwXETHbvoWBZIJSMuWIG3ytXsijHMweBgdILvtcM8JWsmvijo7FEUTlwZo6rxH73QB6WynlPBdxosOedMXBwhCPcXhz+pNlD5Vo3tpPvG2CSToI0VlwAlqHM6CV1QebCYf+Scs3pEHb83Gem8J4gyx0UvCm+8XA1ut7KPBlEZ1EV1cKvt7oM6bJ13jF3HOc5EPzPVvVZYnQ0LdJG04W3feUrSYIS3ufJGIVsz5PV7ja5aoBa3F6+BweB07zhnMO76PTHSnAr9rEFiC3gG7+hD0LpRr05yhXtVg1icVOWmwV11TfBO7Q+L0TEvyVgSEy6gQcySngXHvWhT6+N14rokZUcTJWHItVcKFXpm5lBJppdXmVKkkvfYcGx/VlvTsfaqWS03wXnVlefzhX/803/K6emJtMz0Q+RHP/4RL+7u+NHdR7z65g1v37/n81dfKaTUSB9+67d+m48/+ZhPPvmY3/r0Jb85dvw7wUg8nAb5FNlS18/mchukb45otYv176sdvRl3DZ7bc9begGXjqOA8OCMnqRkCe97DONINO7p+IKWZeZk1cP4Dv/6VdKb/niRJe7MUjCUDKpSluiaV7m6d3tWI1sNs8CfM093cx7kGTKFIboWvDWdu16vQmdA45AWSYSmt23pnHWRFVOCWgjI5GFPS28cHrkvhmh0BhTXkNHGdDeLnFJku9tDiRLvg1nH/BbMnUlimK0tQ6ltlG9ED3YVA7hR7S1pYponrZSJcLwRjewqi0I2UCnNa9CCnhcenmTjsufv0Jxrh8doheRxGhuvEnJNRzGoEEKdRVykVl6obPToVuJ1FnIJzsBQ6MoMrHIJSrwbDflRxJE759HNSulBxBXGZXBa8L3RRuL2JHEbPrhOGgHrzRsfYR6F3wos+0DmgJEqeCU4jqT95+YKP9yM3g2cfhRAKzltkK3h8ieyjo/M1quToBfa+8PGh58XYcdMHpcrttOt1LlkNIhwvh8AuCt5gL9Er+9PLXcfLMXI3RpILOKO+VAidNoK86zuNItZMkmWvOq8Qq33vmF2nEb2iRXgLYoZ+4DB4hmBKrSgE4tB7Dr1j1wmIV+czZeacOUSHu9vx7V3P+3ceV1Jt20BwhX0v3O0CHx8GCqFFlJRVzLGMjo92gac+GA2na+eQoopiKQt9dNwMHZ/e7tkdBnzscC5wvZwJZGIHd4PjaXDso/DeWXG0wBgdhyHw4tDTxaiOBh5nTbpkSXy861kuA2+GwIPLzMpPhHMLMRTGQZmPvI/gHMusjb98zrwcAtcxcts53jrHRQUKfVAI1I9e7OkHrwqPzBi0HirMCy8Gz2X0HDrPvQcnWivRR9j3no9uBl6MPX0flV0qBErOLKlwO3hOveMQMveSuRhEsmYbX+x7bgelwl6yupeFwpIW5kmYe7jp1NCMtvfUQHG82Ed1XGNoTDkgLDlxM0aWpefFLuheIZGzGhZ9dHx61/FiH9j1Neqv9XudE5ZdoMyBlzvPfee498Lk1ODtPeYswuAL0dVme2rIp9STy45DLzw4eCqaWak4+OI0O7MgpPnC+7ev+fxXif3uwM3tLbd3L9jfHvAOcpr5aB+53wXeDo7zY2YpmZILh87zYtfx8e1O2dxQR96HyLwIQTIfjYGHzrHzhUenvRiKZMZOuBkjHx0GxsGaXZZCEVV/JScOI+wHYYhiuQcLZHh1wvpO8C6CC7hO4VCaJYvc7gI3o2alOtH+Bo6sjm/neXHQ+rNKLRz7TnVbXnix63g/RHZBiNRgg8rX0cO+02Z9LgQt3C7KoJTmhdsh8GKM3HSed16YRO2q3sEYhNtRWfjEBRIacBMBT+LQO257daA6UUiloAQfY3DshgBO9zfikRLNWSncDYHbzrHTBIMy21EYo+N2DHx8OzCnrOxcOJXVxRGj8NGh53iM7DvHZRZSUQa2ZVkoJREc5KSOz2EI/Oh2x8c3eyaEebqyLBNpTnTe07vCU+c4X+BiJq5S7BfGwStD3C5wvQiz9f3xyYEEUumY0sLxdObxKRMt+uJQB2fs9PssQkra2HDs91wunvPZc5nPdFJweUFKatnHIWqG+W430PfOghWw9IGy62DpuV4vvD8KTpL11NEIfifaT2uInmG31xhoSkyXM4Nz7KOnd0YrHwIXrwte0BrPUHWy2ThZhFISnaEGDmPkZtdxM0YejlckZ3PqlDlTssqqEALEwHK9WkBkZm9O8xADl6vSmQcLQnhDf2jDVMvQOw3gztfJggWFodPMUKAQY0BOUwuUeoNWl0LLQqWk59A7iFHhzSllrnNuqJdSVtIXzWJabbBX5945Y718VstcDXpnTpqyw1WYvTiH5Ar6ZRNoNhtujaF/aL6hW1DHFoeRu65XnSmFd8cLbx6O/NnPf43z2k7i5Y9+Y6WN9sL744m3j0/8o//yD3ixG/nt/chv/+4n/FUKtzc3HFMlwoYlJ2tBUO1k/clbtqD6zNUhzqWlqWTzqZqNqcxrLdDgHLjcYMRiUbNpOfP4eObV8cq4v2G/29N1UW3rytr2A75+cEfFG+PN6nypN9ecAtZU0/r3tV7EfqtsMPUrm33iSy3AY/WIpGIVdUEytbOpFdSbo6PdX/XasXVnFmsYpJ707WGvqfqoBcDztDBdrrx8ecvd7YFPPnnJP/7DP+bb+yOP55kw1EZzpZbe892B66t6tN9tWLn1fGtUobRoYmXFqqxZGoVRR6gYv3a26F5NqOYspDSTszKITdMELmr3WDBmmKDFZsvCnBbNllhxpZaaVwYxfa5s8+6kYnul/WjjPjEYiArtZAKz8ftjPU+qwY7iL2u/gLHzLZoaQzCKUWeKAMQMp2gRN426aFH3ru+1S7z3dF4jmc6D5KKwEq8wqgbnKXUsGKOPRZ382s+loIo4FeHQR6Mo1qiGs8LHCr/ovSMZfEn8CiHBoBSdKQOFGVhGpvZuiR5xnpwN1uFV2EeLiHVeCK6mwivdqsJNOoM9Vdlb816IRj3HPhAUY6dGisOcUVUaxXlyKq3/Ssqabdl1QZtQFi38FftyQo3HOS8E7xn7joMZ7c4iLwRPkIKX1GB1fXTGblLhOAr3q0xhen4jUjJLSmQyh6Hnqe8VNiPVeMxG+6nFtn3UgmxxwiyFJSWKwcZ2nVPDU2r2VuFHg8G+nHYVpSqsUgRXPGPUepI+agGvs8ilt2jnboiMMWgzNREK2tXeL1kzLb1n7KwXEGWDWzcoX+35USxgQ8ZLYoyuRfajZRwVWqFOy2DZhs57FmrZJzhX6KNmwHa9Rvb1DOtnvKjxOQT9fnahRSmzE0aj7t0bRC8YVt+Ja00Wu6DjnrNrhc8lJ8Y+cNj13OwG+nhEciHlBQne+rxY/42UyFkjl9ifaVmYp4mcZpwV2x96r8Z5VKiks0xwV2FFMTKJtsGUYk3fvCNHx80ush8U+uWQRm3cBWesfPpeYwkiqhGRYbDzX1nrdFdY81mve9UmW5nVjPKakhkHhX4OMWpUvhTI2SB7jqFXJjgNeonWn1kkdDCIYme1gRXiWI3OISqJh5g8EjOoffHs+siuV7hbzQaIBUJiqFShQY02go254EsNSqmeaxl0k2kxaMPH4rxCDCVYoXmmpNwyQGNwXJ0wU+uoahd0hyxajwhhLTJ2hZ0xoPXRNeY5Lbim6WCRorK+89zuBl7e7DimxBwyy1zIwePnhHMqWzXab3UFpkqDF/pO5yigTsmcEj5nnFOZOcbQ9EENKzpWiOLQRZ334ik5cZ1nSJ6SHLuhp49aS6VO3qqnu+DZ9Z0abibzh+hY+sAydoxDVMIav0b1nWUlvCgMNgSlEdYeShps2PeBmz5wvvq1z5NUA7XCtcuayfQGbRLtgdR3ykapts9VMxCsDWadaEagFut7r6Q9wdOIdmJwXKcKPxLTOaXZK84J2a92Q92PwVfq4JqBMYPYiGWe1asIFlizpr+2JxSqpWPKVkWixfurjSVOtC62Tk4LF9P0p5iiXPMCsg622mgbq6xacmIy5fte7bPVtivG1GqBmow2aUSKsnKK9acKgVLp4J3aoktOLBkeT1fepsTj00gKSlDjcrbdxnfG+Hwgq7+xAoosbNxQTLVkwt4zG6B6PGX7vM2B0Ytq7dDE05IUcVNgWTqjb1/t+x/q9YM7KtH7hvNTTnj98b72kpBnKVrnFZKiTW/UYUCEvh8M76epvCrKfJZ1a7k2c9rPoGSL9lo6sFTM4Vrk5b0jBMV6O6cKbZ4W7RUwjPzGjz9SFhUKy5Q5Pj7y9vjI73z6kt//K7/Dv/lv/g2+/Pob7h+vHJ8e2Y17KuVkFqc0psDWV92my2Dj3W5edka0CZBgEQqPLMoTrwxmRQsGU8ZLtP4aKC2fdWfNSe+U8MZGtJCXxDJNiO+Uus9oWrsYuU4zx9NZjYtSWrFb7QxbG3VVVrRatO2ldsvVH+14rQZeZzUYCvnSTFfOFbeL4eitME/EGhcGDl1kCNb1u+/QolNwKWvaWjK9K+aI2FM6oQ+RQ9ezix1jCNoFOqDR8kUL9XJQAzOGgMNBUgOy81awOUTGMSLB6kx8QJx1enWZu13PvlMnqDKNtLqBoEZ9UaB+S3tXlrSxUycnONEMmWjTxbHvtEaliwieVBS/HrwaeF1WPHMX1GAOWCO3ENjVmoPgmbJ1xRTN3Plc8Nlxu+847CJ9H1QAFy00H/uoNRgB7U3gFVqULVJNVoU4eEdJWVlKgiNIYM4LU1qY5omuUwrTFzd7JGpfiVyEro+kLEwz3OzUYdr1vjXpcqJwgs45M5g8wUdiGGBZmA12dJrgOE7sYlTD3eke0PqcyG4YGENUSI1XZ3RKmTxN7PvIzRDYbeoOKMUaqgV2YzSAotNCY5PYvcsc+8jBHKzgjQTB8Ptd57kZtbYlxshi2qCQST6zt6jlYfD0AaJkZmdU1EZjrc5poNBRSqaUhJeZw+BJc+Cmd/ReWkM07wxWZg5UFwNXAy9VlTznzNBrMXMflc64FN1H3gljQJ2VGEguNkM+58RuiCxL4G7UbGTnNCOghrpC1vrOMw49ZQJIOu6cGIfACxn5+O6W198+4nLmPCeQiO86isCcEpfrRMkrtrnreihwvVyZzgrfGz3cjYHbUZ0mX2g9bXrnGH1gH6PBLkSjt9kCOOL56G7gzb3WPK1kp5kuWh3OEOlFjX68gxIpuZCzsN917HdRe6VAc3KaQx2saMg5JCqZh4h2sz5YMf3B+tM4c1Q8FoAZOpw0oIZ2WadALquTEzztFgU9H94z9j0+BjtblXLV4bxwYw6iZhUrpbwZldHT9UGNZR9I0pFzQUrCFzFnI7Lr+0au4tzqlPZdJEtUJyUEyoyyyDnhMHbc7noOMXAS4WpGdp2nsfcaHMrgJVpGQsd32A3cHnaM0aCwFOakjUYblM+cpnEIvLzd8enLW/z5yNJl0uJgLgxzprvM7IanlcmqrPZU8MKuC9yMA6UTLtPEdZ6ZnGjdSVHoaWeBKZfV2PKiZAS7LnIYOnwpFnTN3N8/ULyQg+PusGf/cKILnmlj3LqS6YPjMPT0Y9cCgaUPUHqEzP35xDAEQhSmWgiPEPAa3XdGj16yOhydcOg9067jk5uRyzTx7mljU1RnhaK9rUT3Dz5oplw0K9z32put2xS+16731VnRBr2i8N0gxCj0nTYG7q0x8dnuWWs8Sk6UvBg0zJFcttZJ1tcl6E+FjzVIu62VNztD68aghntDddxEoaNOBLwQccqgBYiEFt5FkeIGD8sVEFinSJ1BR2PfyjkrrGljg1XHZ6VNhsZYubHVS71yc0yqhWR6uAbWrKbPiSB9T6FDxqExSZqR2mxE7wXnAy8/+pjr+cKUEw/HJ5ZDRDqDnpuTWLMfzYmSdXQatDD3rNLZ2eirbfys9tsCyuunZNOuziBtUvUoxlo48fi0MCcNZnZdxAcjxfmBXz+4o/L6m6/bJGqUWOs3XKNBXOtS9DNu493WyIBi4RWX51Z4WDFBK2IF2JGUE9OccN1AP/TsxgFXKpaxsGyFiBPSkpiuM/NVm4R5xRzgpEfcyDdv7yl5Ic0TwYpgdzcjXR+Z5pkvv3zF63fveTg9kWTiJ5/8PpITb1+/4jhd2oFpbjjrZtJHeF5T8/y1QiqEShFKm5+lKHTGUbgbBz467Pno7kDcDbhgLB1muiwZjf5kZZ5yocd3O7qosIVcEvN8waUroSy4XolEU14oacF5TfsnG7zU6KagzHdSLNIiSMYKcgN9J9agy5o9rmdQC1eL0wK7oEW1fnHchMBd13M3jgwhmqHumhBzUfstiNU2eBPuRYJ1WC+qeMee3Tjio0KwnAsUVxiixxfhLnbsvCO4QpHFenloM7fDbs9uPDCFXiO0ol3AY4FBtFNzHzti6ChFa3Oi99qPoHf0nZC8bw2bQhO6NSqqkf+C7u0uRPaWtdAi/Yg3A977mi1LGm01IY9k6xqt/RX2XWCIWihaz05KaDfeaeLlOHI3DOyiR2TGC4wucjv0HPqePnotNPWaZUxZo56lJO52PYcxMHTCaZLW4LPzjuzVMb0d1CjfWZF1Ao04u4grGnl+kQvH85UX+4HeOS4FUioMQ+Cw73l5u6NmgJzXJoYxKzxp3y/sDd42Rs8UlK1m9IpxP3SeIagQLXEg5kyXFoJLpH3PPO24GXaE8KiOpdMO39HrOdFi4YiT2KAEEgZejBPT/srd4IyNSSktRxEO3jOOI7EPRhEeoGiWIfqkdRzXjo+Hjq9i4NF7ziW3BnS72NEHhcgtNZCCw0sPKZOGiY/vDuwHdc5cWVAy4oIj4H20nhgaiaNkvDh6nxh8daIcMYKUK50LjFEYRm3I2YfA1YWmX2OGsXSUPHC7G+m7TgMgRalLBwfD2DOMPd0QmR2U4iEngjjcpLJ2Fzz76LntAgfv6HpPjFogH4LQdU7hV3c7fvTpHd2wb4GIaboQjDr9Ztdzt+u4GyP7GGFKzHnRbFLniV3kmrTmCh8IFEJZCEm4O+x5ud/x0djxdQSSkktEYPCBQz/gXSRLYXEFT0SUjYCbvmPf90SjuhZxuKL9V4YuMu56cvIUF/FhsGBwxhXHrk8chsBhwAIZSkARLFsao4XWRPf5bBkpj9aJHXY949gr65GDDhicOvDjqLDGLJ65aM+cmlnfD1FrizqVgV5gBqv502ynxGjEC+BDZXJzjPuF/U3H/gAxLni34BNaT9D1jONIKp6MFmaX4LQHSS4c9gN3NwOHfcf9g+MqIF6fXaPuA33J+FzIonKgkMlJ2J0V3rsfI927QlgmzVqLUhAXpw50KI6bYdS6IT8jeVJq6K6jS4lxyey6wLuPbng4XzleJ+ZrIti+PQSt57rdD6RrZug8KQ9cl1nhVPPCy8PAYRcZB6EcFYURneMwKP34i12PK0Iu2jk89ZHeFfa9YyGzHzv6vufkL4p0kDUT1kX9WZasQbHoKYtj8cLt0HM3dtzsOi7vH1HSHY30e1Gd2nk0SIZjCcLSCzc7x49uO86XwNv38BbHXNQuCtlIabpIsIC24JEYKFkJIF7sdzyOJ257hQri0CJ9EsFlXEBttiJM06yOZPGI6+i7aL2nAu89uKRNSTsKIUOeta4356QNblutMXSd0nkPfaewU4Oza0Nf3RveCd4DS2mldxKCta1Tu2gce4o4Lgli0WwoGaZF64Gd90ZJnFjmBUoyV0UDG88RLys7K5YJUraWTKsOrELSSctKJCnNWN9Gm0uz7bCMhWU8ZP2Et8xFMwu3Aexa2N7GqAG5QRx9P+Jc0Yym1IJ5MYfIsoFFyWDUflbw6mZkGxtT1kFt+/LW5EL7fELw60NkbSCZq83cygEyaVHUUc7JHJV/DTIqf+33fqd5pN4FXZiSceLN2KlFPc7o79baEnVQLAVpkXrvNg9uqbOK8R9jz5IS52nm11++Yl4Wno6PGq0sWNOhTRLQ7l2K4hxDUANy7DRmep0nnu7PLMtCXhZ23jop3x5YxDFluEyZ3/2d3yXub9i9fYd3wjwvpMo/jUU2arpNaPS89fXd7OHGU8NtvRqstqleFUQVTnBKRRi9RglqNED9PoVWCV5rTYpGyZw1cqyHyknmYJ2PLxbNU2IBOzEC274sddPrXCp0KrCy1ESLbFVoGGXd+LXQ04kqks6M3SyaBu1ElaQW0WKZBz14GS0I98WtTd0ENfCw70fNhEQF9lMbSBVnmNciDM4K+a1os0IDozGSBFfILtu+Kw0ylB2tvqRGZuozxgZ1Qw+vhTVdpdKUYjAo819F6QSD6DWjlw0t47r3KdooMtpPqJEoUUcteIPIRc+cNpEQQUVy0ih0G3dLryu+ubPMVUkWdXE1Qq3RryFoVD86nXvM2fdWWKkNNa1mKXiFulhEU6M+yuA1hsAYPIPXGqNOVNj3oTbp9KTstHBXU4m4VKA4uojWB0QdR90nnRQ6NNIffUZ8ITnd+xp9kw1jmMcbvMA7/dNZkWxlNdKjVhmolHlqiIHRapqiK/RSfxR6F637dC7OmmFnxDDqCgfUOdJ1z23P9yFoCt8OYousuUAO3nqLOMNsWyZNlMlJDIrhvUaPq0AI2F7wQvTFzkexzKkaj93QaUd2p41TsTPkFIJOsD3eZAk1GCT0Rl0enM55rcMLIiwaZNdndIUuKPy3i1qDNRXIHiRII3A4jAMuqkGUm5xWyJ932mF6Fz2D9yQv+KSkENErnCJ6r2xp3hGk4tQtou+F3sEQCilYjZ0ZkJoV8YgUq2PUYKOQiXYWFWe/SuhgcKYueq6oMe03mHBXtHax81q4XaEqVKYnr5kR3SN6/2xkJpVEpI/apK9FYcHkqccHpQSgZlJELMuUrXhd91sUCKL7TP+uDX/FB4r4jWxQ+RKDNrrtorQgYoUYRifWwXzVu8Vp01afC9HY7nxY6xW9y3ZWFIbtnWs0tjX+LHj7bmjsVNEJEoRrwRqDan1nwNE5rccajVUxWc1o55Q0pmSnxBRBYZZiMULtD6KZsBACLilDXbIgYl4UnlchqcELSVZmvmBzELx+bzFYdwiaRXMuWwBJ95sXNYXb3Dvdp847XNY/c64Gbmlr2zkryZYK6y1W35UbTbgiBTVQF7xmugb7qbJWLCioLGO677BzVeFY0TmGoAQhvQUSzdpQ/eSK2Q7VhqnAUtUtFfa1bbBY58lLtbOrUFph69kyDd4pnFttCqwuQ1bD3J7Xmc2RSmFaFpYcSAZ3qhkVj0CpGWW1sVKxeznWnjFG3FPnqDGarVFkNfQdDb1T56TUC1ebsRr0zTQz7MwHWLCy+VCz+Oq/N47Ipv7/gzFJi+y6ajfYXLY72UDL5gb1vrWIvo1T2v/aWJodLGUzfGnOVX0QqQN2Aklz7K2LvZVUOMs8KWw8qTz94f2UH95R+R//j/5dnTDR2gFsk2w7yK5ZE1X2xVbLe2VlipYWrB1DtXuw4f0MWuO843bcsaTE8Xzh//gf/F/45edf8Pmr19y8+Lg1C6qZmJIrXbFmeHKZ6GLkMI4cbg5k4PF45Fdfv2KeZ1wRXu4GXry4ZfjoBacijFm4ZM//8N/5H3B/OvJnX3zGP/5H/4SHxweuy0Kj5iyVR6RuXGne71/8sk1Qi79KInqBstIE48BbXw0pGSmK+daNU+FWRpPoFdOZUjYYSQHWQrTgC5/e3eAovLteiaVAShSy9ZY0WleLAJq6NGM9a8G0OSqdd3SdVyOqUpWWwpIztat3rc3oHIxBFexizk40qs7ea20Geca7oGxAxlQiTqN2yoplToagrFydZjViELI0UA/FFI8vsHOOQbCiVTW0ghijissEZopblAs9KDStFDTyJAVPaf1TvAn3LggxKHRKtWQBX6wBWMGXQhSdKy+lGZ6RTGdQixgcs2HefRMYulc6gSgGlXM0CFyts+piZDFFWIoSCBQWQi4MFp1ttJ6iRk/0XgkjQqAUPX9FIDitm2DxDE4YvTKwRV+5RnTeNaviCSURyApNy4oanuo+NlqZMTp2QdhJZueFq1e66X3n2BsldCqehGMxOVAsozZEYexh12uBcC+F4mAomd4Y24LL4BLJjDMnEErh3ClkIXqIUgiSyR6cgiIVn95HEK8RQIuipaT1HmPnuel8KyJ3vrB3hdEpBr2PAe8DabFuwijcsHSRax/YBaGTQkT3d2dG6dBpY0Bx6mQrQ6E5i1GhidpV2Ri7zFGKruCiw8WCj4WQlD1OikIxFZbhCF7rpwAkm+EaPONh0IyE0wxrjSi4DNkXLXAVsVkoVnMgDN4xdB19EDqXFPpics0VmI2wgrLgJRMDHIzhJzrdDxJF2aKs0ejtrmeuslkc1wWWlLlMC060zu3QK40txtrUe2VEikGdwYQjeUd0xTKcsp4rEodYICl0rK+1bUHx87UBHqXAkihJs43BKTWsuEoTTKOLHWLgmlXBexazYVQG1dq8sbfAmtO1i87RO08fImnJ5qgEHEnhXQVSgCEo25iXWseHUrrGgI+OnAwvbnvGl0JIWmOxs3qR3hU69broxQIrIUCIJgEqph/EOWPE0iCAGsKRfikMrtB7hf2UbNFacUYNq+Kt6zQg5EOmc5mdy+ALO6+0yMGpHkjNClJHtLhAjJ1m7UTrjkbviH2kzJkpW/0aQhRP7xTeebMfuRa4ZMeSIU7avLV4uOk9u6gZCDEwZ3UYfNC+M25x5sCUFkjyUhqFeReUWVKZK1X/1EABiCIsciHEgA8FHwrD2TN4R+/WOo/OyeqoOIeEaEY1TNNkMKms8tfpdx2614LzBJ8JkoiS8II5ip4QekJQQoXYdwxDz34cmsPgi6icEYzIRUlrtNGh1p1KCAqLDoE+akCxJDVxo9WhOKd1ZyJGtY1myXNWp7g3eGI9PzHovu/MPlNPsVJLe0rJzGlu9SZdpyQ91vrF7HMNBEKtIdFajiVlHs8XTqNjSgOIb4a01jZp0NVHwUXHsii8VJzqy/1+YHy40F9mQtH1FCeWoQFt8mhQKzBokzlQz+w0hfV+x0koNWgrq29hqm+Fg7Gx/KHVa39o8om913yVWrukwb/1vm79qwikFk+2/n+VAaz9Vie06Rhdu3afkrcDWDkD2k2KzZfArBGsYtFmsSRC8Jtas+ZQ/muQUfmf/U//J4rzc+qM6EvUwajeGJhX5pHGi6afM1Pl2b/tCnVF6r/0MAdP9p6//nuf8rf+7n/Gf/Af/sf89FffgnOM40DznEEdFpSBoaSkkBGydmQWgaye/Fxsa04zT+8e+OZ85k9++TljVNjMv/H7vwfieHy68M9++SuO1zPFC/t+UEpNNKvWXrWa8C962ebRNHOi5KKNDRUsbYW5SsW7zDOJTCqJ6/VKdB0uCHlO1nNEcM5znRdKTuS8cDpN+CSkRb+Xja9/XibmRc3LZN7zzbij3x2QEJgVz2Nxkky/P9Cdz9zsb7QQ0zuSF1KGJTn63YHbuwPdOCprCWKRU0c/jCzLwqcv79j1Hd4JiwiXnDgtC4mFbozsbw643S3BmpwlEiEGUioc9gf62BPFG/WuOm+h7+nHkd1hRxhu8N2IC51CwLxnyZnd4R2xU9hNIFAWWOaFacm4IOz2kdJFfBxwYdCCsSVTykIqisMlz1bMD4LjugiJAGFgHPZGAACgdVfLonONJLzL7HrVEMfzmW+ergx3mRHNPIYQG7RMa44WjQA7raOQolzrqTYBdQ4XA2HJ6lh5a4o4O2Yv0F0hanG/iEZWJwnMAsUVfNSsy5Kycp+XRVlz8JyuSnebFjV2c5N9eq69d5ymmcfzlffHC0MXKGgQoMIFAealMCd1opQwQWFHkjJpSkxzwUdnPSYCBXUcplSsKdvM+XRFyNqUTDxOCmlJnC6JMnhcKaR84VoWclq4TFdeP51583ji8XRESqJ3Wps2TwuPxxOv337LsL/F+0jKmRAUt51z4vF64eFy5Xi+0BW4jR15r3U0KReO5zM+eGIs2r3ZcM1zWjieTzwcjzxdJlLWjutDBKQw58zTnBg9BBQytSx63i/TwvH0yP39A1+9fsvpPIE4dn1EpDAtE/fnJ4ZpJHSBeda6DBHtdH6+XjidzxzPZ+alIARi6EkZrteZy1SsEeqolOGWlnTFcb1E5uI4ThNLmnEkozFWPPfD05lPP7ojxIHLfGVJStUuOXO9LMzTzDLNkBLR1rn2VYkZI0JQ92fJjik5jb5pWlNJS5bMdZqYlon3T488PB0priBBIVhL0iajWRy7g9WvIQZVjKTckd+8Z8qJyzwzuEDxSnE6Bi24zhbcCWKBr+KYc+Jyzbx/98TDuwcu798TS6ILsPSO8zJzXhKLOA770Q5BhhgUnuyiZgPcPY+nmWXRLuU7n5AyUSThYsfuECkFpqWQkmbQfY74YST0gzqv1P4SZsRHz37cAdpVfibjckZygeR4vAqXOXM8zXhg7z23IrwYlGr65rDDxRHBKe3+BpvuuGEcLsQS2Ulgdp6+E3Yxs+vg9rAjF51jLYtMKhtS4jT09F1HNvhPMaNqb4G/25d3xGliXhIlZYPIF+Y0cUyJ6/nM9XIlOM8wDErfu6g+2nlhCdCHzFKuCkvte25dYCzWqf20MMUO4kJ/mjUDScGjlNsAu97x8c2On3x8x3z2zFZMfzqdkeBJMXK4FqL/1qrhBe88XefZBYN/HQbIhTRqrcf5emaehOuUtZ9J0Ih9j0LGest6DDFwGBQ+V3Ji6RPX6UyQhC8LQqIPHofXveicQvWsCP8wKtScIsqAVjpIHfMlcu28wq1FO7ZjgYgY9BqD94z9oO85Ic2TBhsJuOCsx5b2I6EUxIIiTgLBRW0sSCZpO2uCSwy9mHPqiT4QSiXVycqoGbX4vwvRdFVutTJ9H0kGyd6PezNi9ew7L7gFymIQLdkUsZdEWmbTc16h6EUDuFEE7zs1kF1hGLTOeRen5lSOXcft48T7a0LKvQWLdJ6mWSnAgYZCaeblxo1oSetmw2GyQ1hQGH4uBSdrWYN3KwtZSolnL8s+bG72zJGR5jSYQ+E0a1TtR5GahXKbeapOk6zfr46MVCdlY2TWv7v63VpVbZ8v3vD9aCTKapq1PGKtP4khMI4DB6fNKJx4kKwOn3/miv0grx/cUTmMgynuOuk2aMMUrN0x6+Rsv71JcMlmy2w8UynbLxQQbZj2u7/5G/zeb/0Gv/XjT/nPf/HKopKsX2yeabu8euQIzqBpynhVGV0KS1G8//W0ENKZk3ecomMpC+CYroXHy5XZikTJbDz20h5vux+/L6uiqTgdZCnaUTZ4/ZFJlVc02NIksBhP9bNLVXxkfdashnKxXikpZaUfdE45+Z2n5MUoH2diPzLlxPvTkT/71Wfc3L0gdj2IFh4qHDQTxyPHy5V37+6ZZhUk4j3H68Sbhyf+7LMveXG60g8jpRg7fxFSEbpuIKWFr1+95ul8Zs5QXOC8FN4fz/z886+4vyb2NyfccDYCBkdm0e7jKfOrL17z8HhkyQXnPEsuHK8zv/zyG+5PE7v9E3E4IaFHfKfPKsKcEr/+4ksenp7IFHwMpFI4XmZ+8eVrnqYrt/dHCI+4qN9dktY/naeFX33xivePj+SiVIm5CMfLzM8/+5p3j0du9zu6YWdKwdy6UlhS5qtv3/P6/oFrsq7xZC5L5p99/g3HaeGbhyeyU8Oyjz25CHNamJaZb94/8c3b91zmRbHqwJQKn796Q3GBh8vCnLR2pfeaL1gMg/3lt+949faeyeg8tTdL4fNv3iBSOE4L0DEvC9P1ak6tdpX/1TdveP14YkEVikZKNOKJE2LX8XSe+eL1e376s18x9mrop1KfX/fk6bTw9v0Db5/OLFkoTimBH04TX7255w9//jmh107huGgGTeZ0nXh7/5637x9493BiSkUj0t5xmjOvH8780S+/Zhg6bfgonmIsd5dl4s3jmXcPZ94+nTQa6hw+RK5z5s3DiT/4+ef04x7vtRjT2z4pJfN0mbh/PPHt/SPzoo6bD57Lknn7eOaPf/4Z+91ICEGzhdYdOeeFx6cn7h+feH3/xGXJFOcIsWNKhfdPZ/7pz3/N2Fu/mKxGa0qZy3XmeD7yeDzy9dt7zlcNHgQfKSVzuib+2a++5t37C7txZE4q+8QKTU/XiePlwpevHzidrwhajCzA6TLxJz//nNe3j+yHHZMFggoaQTwfTzw+Hfnq2/c8ni6kotDCIoXrkvnll69JRc/o8XRhXhSH7krhOi0cLxNv3j9wukxkrB+T1ywWRZVaSPD+8cznr97ibM5rZnxOCvOYppnrfLX9cmLOkJ2n+MjbxzO/+upbDn/6S8ZhNF0hjYozl8xnX77iy9fvuD9emBIUPC50PF0Wvnpzzx/94jNC6PS+TpDiWeaZ8/nEZ6++4YvX73n/dAZ7hgHHw/HC59+85ac/+zXdUA2tAkGpT72LvHn/ns++fs237x7IpRCCZ3CR67zw5v0jf/LLz9mNHaUUzpeZZbHicQqny8TXb95z/3S2fei1keY08+b9Ez//1ReI9GQRkmTrPJ1JS+bt/QNfv37Ht/cP2iMoBkbxpFx4OJ75xWdf4oNGo1NSXVDn/XQ58frtO05PJwYp0Ht6OkouPD6d+cWvv1TZbY7KNE3knHAp8Xi98urdPeeL6kEflIDgMifePRz5xWdfcp2v2kQvYXWWhesy8eXX3/DlN685ns5W16WQcG+GX+8d3ohH3j8+8eU3b6Fkllws6FWYz0eWpTDNiYfHE9frQsmqN/FapD/PifuHJ159+5blembOiWVJnE9ndTVz5u27I6fThbwkbd7sNTK9zDNPj0fevH1nMFbVpcfLmev1wnW68PB45HLRZ/SO1uy3CFyuEw+PT+pUZYU0zvOV4+nM6XzidDoxXS6kJTX4jHOaFb9eZ56eTvRZDdCSCuTE0/HI0/nE6XLhcr0yTZPaME4z7c4pE9PlcuU6aZ+l6zKTrhNlmVjmC8fLldN14jop2ZAiHLROTNsZZLPHi2XQlDSjZRHMaG4OtVjReikWNKgoGW/QUqkN1xTaOWv/BgetiaSYwVLzBY3223utGfNaL3e+zhTJihJxSuXtsgYFg+FgC9a3LSuTX7JeUWpuivkJeRNwqzYXLduxRb6s3GEGY8uZ2PVEH0ghc7xeSDlZ+cIzg+75P5v1p0HkZ93i67tbJ4bnZnFzmMr2N38RQufDoPjG6N3ct7CBtMnq6Ky0APXO1Ya262ZrfhyEjkgqDooGQ5qT9AO/fnBH5f37e9Z0EuZwOPuVeQdUg/27C7wyTOlkunYdm666z+wXepgSH7048JNPPuXf+L3fw/3dP9BNVRkdimYDQIwBo2hQTBydCDInXNCams5FkvV7AGUcy0tBlmz41sKv/uRr5rnA5Blf3BE6YxBLutmKL+2++udquH1nE5uTovu0aGO0Tgs4o3c4KzzrnFIaXmetiak0y96HtZ5HpNXz5KQwtCLWF87+3/lA1/fEGCnLzPV8Yr5e2X30EU/LzK+/ec1//J/8HX706Y/Y7w70w8hs/SkKBbqB83XmT3/+C94/HVlEKDHy9nhi+eIr/ubf+c94+fIj+mFU2rrmqEAIkZwyr15/zRev33BKmdKNPEyZ5e0jf/Pv/xe8fPGS3e4A4dDqBzKzRY7h7bsTv/rya65TxseeSyq8fjjxt//RH7DfHxiGgRAHslgRqaWgl2XhzfsnPvvqaxbJxCEyFfj28czf+id/zN1+z24cAG+wGI22XufEdV54/3Tm/vGo3bPHPVNJfPNw4v/993/KYezZDQMxan8E9ROVKjqXwsN54v545uG64PuBkhJPy8Lf+Sd/ap2nAz4GYtfTx4FE0eZJaeYyF+6PE+/OV0oMpJI4LZl/8Ac/45/+4guG3QglN/jJIpGlOObiePf0yMPxxNPpzKFXo9WXhb//hz/nD3/5BbeHHV0YWOaZy/ms/YSAWRyv7p+4XBOzeD0bpdheVFhc9AOv7088nj/nl1+9ZuyN2UgcIrnBHFJS6M55SlxnSBLJwfPFuyPvTle+fP2e2DmLrntKVqjiZZq5zFemeeF4mhvVKc7x5pS4v77j8zc/1WZ4TlVKWiZyySwZTgvMS+Y8LZSsxBvBw3FK/PLVe169fYe3jJ2r3djtiKaifWVOxwuC8fCL4/154Wl6y5u/9fft3KkMqn/POavTtyTeHyemJZN9RwyO45T59at3/F//5n9KjBrFS9UwKHCdFi7zrLjsZSEXj8PhfWTJifePC3/r7/4RfVAKyMVVKnKxTLAyfz1dZ87zhCsLLw8BXwr3jyf+H3/zH7Df7ei7gexLM0KkiBpSS+LbhxPHy8KcsPqbzNM18Z/+9Gf84Z99zn43cLrOlgXKRNFnXlLi7dORxTj+hxgZJdED5MISOxY38OtX73n1/pH/8hef4UPfHAbEupTnzDRPzMvCMicggkRK8PzZV+/49uHMH//ZF9weDtTGvkuzAQr3j0cen068fzgpKYXz+Njz5dsjb0+/5mdfvGIYxvZ5H6L1ZZh4+/DEw3nm7XEiS1Dq7yi8evPAdLnw9evX7A43ttba80dEMyqPT++5f3rkq2+/BRzDEOlcx8N55k9+/RXT9PfY7zpyThyPJ66zmmZOPPOiNZZvn46U4ui6Hhcc396fyL/8kmu64nwPTgNyZdZi8Hmaef9w5OF45us3j/iuox969rHnaUr88qtv+X/+7X+I9x0gmt0wRSM+cl4WTucz33z9LXspvDgEOt8zTYXPvn7P//1v/QNj1VRH5XQ8sSyz9mSKHed54d3jhR5P7Ee6fuTNw5nrL7/kmv8eS56gZALBmJPgOk28evOWt/dPvH1/Tz/siaGnlIqaLQzBKdsYhV9//S3zdOXn+6HV/WDnvGR19J/OEw8PJ9JS6ILK/ODg8WniZ7/8gnf3j1CS9XVJLNOslOs58eW7J7799oH5OtOFHufV0Do+nfni869I00QIsZosHE8nLtcr1+nKcZ54+/7IZZq0/iIGYhdZCry5f+SXv/6S/Tiw5MyUE5TE+XzmfD5y//TEu3dHrueLsWBpv7frlHj3/pHPvnjFcBigKJtSSpnT+Ymn4z1PD/e8ff/I0/Gk9Rei8FZH4Xq58O3bd+DVCL0uM+VyZZ4uXC9Hvnn7nvcPR86XSRElovWVKWnA4el0YUlqhM7zQira26ZkmFO2c78gkhAjAJiWheuSmEshGVGMc5ngojooXkmALtOVp4cH8jwrAU4MRldcWy+YsWy1t8F79sPA2KkD9+7xiV3q8FoERSeRyuynlMpmQ80qjy7LzPF65bzMEAQJ6uBMy0TBm0NiznuGbS1zs09lw+RVNEPSdR37YcR5z+X1N1yXyUhyvt/JeP4Ly2LJGpBvxFNoIHg7jg/dDfWn1jutzRuLBSHWQv+aPf3+K9Xfr+81so9nYfVtU0sLpqeEZM2AOS/0PrBkbV6cpvR9T/+DvH5wR8UQy9aQrC4EzQmpTobOYUEZClYb3kxbavmdWKq6Fuzou5UwFL2meFgSLmPsSl4j35aSy8VgAxSr9RDFJaMY1ZubPTjPlIwL3ZzIjBZTioff+fQld7uBu8OOn3/7mnePZ968P2lna6dNjJayKNuRqiGeLXqDf2081O281USSg77XYlRXEkMI6oiXwnSdWKZZi/icJ1pH8nrdYp593Z9OHFkKac6keSbLlfePR8aHM2kWfvu3f4+np8yrN+/51cMTEuDx+MCfffn3jfJRhUZNLWaBaUrkpEwm2lBNo+TXvPDm4cT/5+/+Q5xTqtolPcd2pmwHUcD5DnFR09glc54S/+WfvqLwpRZmWSdlzeRMLavjJOKDRuBD8GrEHWf+3k9/vtkbmYwjGRuTK1o/JK5Tir8gjFGQ5Lgm+INfvaaUV1CUjrgy1RWpNM1WPxU6YogE9XyZlsIvv35nQqGC/cTiEOokFooJb3UqvfPKniGRL+8vlPdHSlGGklIcuXhySUqNLFkbVrke55WlCwIU4WevHknpgSVbcz0SviQWQjtr2VlhcwjsgkKuCvCr12dSPlHKG0tVY1FG3T0ihWHX4ZynH0dKKeQlkafJTp5C+k5z5vEy89W7JzvnhlVmWTe12LPHQHRaqFzITEvhaVr45t2ZXK42Z8ospFOe1nS6j9rUEcz5yVyuC28fTi175aRYtZQuWnHWNyI6empPEqXtXpbM+TKRy9Igmq03SCl4Z8W+Ye39YjPDecm8+eZBm9+VQpHU9ID4QC0HrmvtnFF2psTxmnj/xRtaVUvLGquSKPa8LojV22gNShHPtQhfvL8g6awZ0uqolLUktQhgvX6iWN1UCZQi/NlX78jlncrCSh9q0A/n1FByscN7oRMt2i8lkgt8+eaJz799Ty6JRND6EARl1dHh+y5YYa7w5unER0OkG6LWqc2J83XmlITzOVkW8NRkXyWJ0ChtJVSpxCCOgufpOvFwPvLZN/fah6XoeqTNqQ9WICc+gC/4pLU8x2liejgxfTVbLyOTkrLqquKMsc/qB4LRcVwW+PKtZoLE19iq7jGHM/jdgrHBEsKIwzFn4XROnI5PfPbZW9v3rPcT/cnFaGG91j11IeIl8vYy8eb0nj/57HOQTp05Y49ztu61RbgPgR7D9acL07Iwv33iv/j1NwhayL+kvCpYTC6JsPOOT24Gxk4ZCR+eZo5vTvyDP/3CCmcBHClpoCt47fkiTkg+gI/ai0kKb949Mr9+y3/+R7+mWL1M9NY0GYMqaaUfiah1JsuMSND97h2dqz3ACm/fnXl8fyYAUrLq8FIo3uHIVnzuyS7SicJGfUg4Cq/ePPDq9TtKSYgvVjMqdOL1/JXMNSUKgcF7uqjF4Ujh/uHMT+9/yU//5JfKcNRmTBqSxsnCZAZaHwvBLwiZ82nmj/74n/Enf/wzpQcGlqLzmJMyUjnJpKIO4BiDmZeFx+OJn/7hH/Onf/oz6BXulw1zm/NCKjOUwpKUxOJg8smLdkL/oz/9GZ99+TWhr71rCm5Bv7vMnJYr1zlznYoxSQp4zcD/2Wdf8vY/+n9xu781wiPT3ZZNejoeeTxfeHp6IgbwKKHFZS784tdf8H/6v/1HjLudkgSI00ywg0USx/sHHh6PvPn2LUMMDEEb+wbvlVreaaak1s2shf6LBopEkRfXIrAU0jwjJAuAqq4WcQRrUTHPC/ePR75898S70wyhwwVlHJsuC6k2iRTWjFB1EFo2pQGimv0iznGZJpx3fHL7MbvjqKiJZVEZ+i9Ay1vtYF+DNaB11OY0pepsbGL+W4ejUCyTVXRPbov7y/ojOD2L1XGRGjxGg4pY7ffmuuv/NRhTUVAlq+PsarYNZSETq+dyrgryfw0yKurx2cSDCeh18T9Makk1LsymF9SaWj/13eY9RXRRikV8GppMrNDKgWQas5Ma8dKWuTa30SCNINagSLMG633t8ngHN7uBj24PfHp3y5unJ66XmXfOHCMRXF4UhiC17NhG+5datLWQyRuTUwii3qtdwoswZ41Ue7EITowKFQge8dqscHUMnKHPtIfN2PcsInzz+hVfPNzzdDnz6uGJ5CO+G8n5CbJ27z1NidNVI2KSFqJFjMU7rpeJkjLRaWGf9zU6oQ7CZUrUrELtf1PXL2eN6nnv6QdvPOmrYT8lUWWUkzk1db0Xw1hrmndwopSXoho/F8e02HdLopBIaG1MKRlXkmKYo9BZx9pgjkRCmC2aW7L2GMg5a3F6K6eyOoSiGPfqSCvNuOLttZVJphay1Xq2ghYqixli9bv13lq/o1ZLzrWrrbK5OCeELI1JLVjGohRVfqkU6/6sxk8qayYQKZRQ8bc2j8Vo0bMazikXkiRjSlGlK6wZR0VvVgG+Obqlnko1uRdc6zvhK/BLoEa8MurI+XaaM5WaVtesRnZ0HsTmvKD7vt1zk5avxcxYCxm9qrRrOLVDNWKJVVkVUBY7oSLa1/25BgsqA5jU1TIGumzKQZXI+l6FDUiu8sjuac6RmBMrgsLXSg3MSHtshYD4BlGoDQWd09oxdZqFStOiXadrGHET9zJlVINEaowLCU8qyQI2IEWdICV9EKUKFbFOzdZLieoMaE+MlArZqfNeWJ+hMjVVYXWeE0eDrs6lMJdMKln7lxQ7OVIZGEuFS7f71+CW7r2qNRylOJYs5KU0zZHNdXAUlBGyGht6fc1sqiuTitdKXRun+eWU6mSjjrZfT4xBTzXoIcl2min9bD2Rgi/Wh8LhV7fRAmRZAza5HqgmAZRqlMpuqZeutauIZsmmpGdH76zN+8TWVJzDF8GLNgdMNrYpa13YdTJnuqhcqfuiOineaZPac4I0Z/xSOM+LZpEnc+KrbG+RYHVynfVtSVKYyWQpTAWmrDUcYhRcc9UBReFWwSCoLuoZU+dl7Qhu0kx1j+i4FwsEJSNmKVQGxHWfeyfEgu2fQloKy5IUfhZsv4jWNEkNSqC1cd5pU9x6XkEdu5SSwV5XHVajzt6qwZXwospolcfzspCWhewmdUio0G7dG8FrcKAz57gFUkthmhLz+cpyvppMN5PZbAvt/aY1AX2ra4KSEufrxGV+p7aOCXtX9MzlVpcqgPU0MQav4hyXaeb67VvevXuiNl5suKCic7kYNLi2HxAcOcPpPPH5l69wxlbYOdcYXxeXydcr85K114bV9uSczZA25jKbnVYaQIGSTCY6DaJErZ+orU91WyTbKw4Xe9UXfiFMCe87xBUNSOWs8tPkgt7LrXIiP6sqZnUKVtnqnGNOC5dp0kyaD/R9Rz6nBiNbf0we/zn23/OS+irzpdnAQtV3m3GUqq2qPm8Kq8HXpDKVbezl7z6TyW7MsagSq0XLq+6wD9bd3+zpdR5LtW0sG1aDiz/0619BRqWanevDYOrEgIvUOdBXNewbWs8iizWaDqsXghYognkikUaR5vVHi7lM8bn6NcUupuoQFDM+nSr+jCrSaZlpVHSNeUypIG/3Ax/fHvjNly/4/MuveQCEhV2M2hV3Wri6rN3YcdZDxJ6o0ATVnztvRT3Trgv0fVSGjPOk82PsZ3NKWnsjnr4fGcZRi8P7zuAINMEtaOFcTiBEPn7R83C+8k9/9kf8zT/4Y948PfHi7pa7/obsfWOEcsFz24/M08KyzFyvZ/bjqF3Ag+c6TIrptTlErBbRBcR7q7Gw42pUx2u60hRnlQl5MbiQUMQxjHvbP6aYqwHr1iCBcrCbIizGpOMDu/2tYap1byQziSkZR2rCTUQzZr5oNBMH4zhqwTuFgChneDvTqpAcynTmLBqOKfoYxmbArhb6RtiaoHEUXFbhW8VN10UgKlNKFb5mVjtRUxrb/yKih1WMoWvszFCthXUaJVRuMv0vme3oTBHqeVJojjXa0PVpBqFrRZIBNGuWZjWurJB5dVI0CibeE2yfK21qIdl4layiua0007cYlWaj6u31GYoDtCi/MKsSLmV9PtR585W9rIttXwiFxZSXy5phUZ0s2s231DJba8jZRZtPW+PNy2XLh4pFcG0/ihnVfd/bOgm0nVaNGLsGxlRHJmelG3UxEPvRnLqKgq1GU2lsKYt1Kq7MNOI0E9yP4QM5aYo2F2261gza6rCp8ScijPu9KWNlchG85Qz0jFTZ4Sut9rr76YeekIPNgm/wXT0GBsep7kApnJaZcoVLKQQHl5RJZPou2m4u9Gb8Uio1axXhGlxQA1bHlUUZJEPw9NKbbFgDYEhpZ1PtK0ddWimFIUZi1zMiOGM6Ks7AsC3SWM+KyqhMlS2O3g+EsacCUZvitnnWoLvJuSxkMuLUDY7e44ZDC2hqU7XU9GQ2RIG3e5MVPtFHoY89+zFA9k1+avWkSrS6dz1qrGmgwoHzxM4To81VUztt5+BFXaqE8DAlynWBvBBQHfri9rAa18aRX+2POrsJUec3aW92QkcXB2V/NJmmslGj1lqfoLIhW33DkjM5zRRRAhitl0jksrAfI140twX6fNn2vTdZJeRG1qJqW89HdAFnneEl0PaM31goEFqmVZuYmhkfrQ/RM3VdI9erFs+oLB4DVCilcw7f9XRdRyGTzNnQhJY1SaY0CuPilOhlWhLFBfBaS1ryQnXH6xo4H6jNcoOxWdYzmp1r10mlNBZITzQDWI1SZ2NQmWLuQQgsy8L5eGWZj1RhUCyA5tCMn/OC67TGUMkoNLBymRfevX7HvMxoQMrOgrE0jjHSxZ5xf9AGmyIsVr+TbU8o5b+iY6TtmaQBuuCULGfXW0PKSnNcmJZZAy/iiSHSdx0pZ+Kw5/aYeMoP5ON7putsbR2CBvdKsXpklZM5l/bcTXZUOVj3hXNc55l5WRARhmFgt9uxLIuSTdQzXeXs5lrrLnr+qpmvejprkMILSHIIBg/O64Wa07yRWxZx0TOrfMsKF00LG2PGvlv/bWGVUjUQzbZ55iBVp1J0D+I0K4qN3QVaZsg5+bCg4wd5/eCOym4cV4/KPHZdgBotVOegfsZR4UrSuqBD9SYV86jMR8Z7G3RDFCBdEufjI+fHe8ruI0I/MO5vUEDUWkRF0XXzSa+dxIFoAwAXgwqSJZPnmaYcCzjrEj94T+8VzvQ0L5xy4kpulHClaIpWQqDW3hQE2WykGjxV4+PPmbxSKElT3GogdMz5atJRKQK985znxFfv3imf+00kxB3Ba2+MGK1mRbQ2I1sDpFIyzDOfdJkXZeb96czP3z3xGx9/xN1ux1/77U84zTNT0jTx+0U7kL95PLNk7beyu90zeEdysORKwCxEs6c1NZ5b/5r6mOqYV/PJKcWpRVMTW9a3aoCYqyvP56b9dXMUSq4evxZ7g7o5oe2S+j0TynajxYyVUqpzomKpdntdg91VG6iRVigkw9Vun69m7uoIa6z32VJv0hLOdkl96SwUYEHwRhpRIx1KLppsL0up0Y+8Crc2zwvbixY006Kf0etlqieJOvxVWBola0Y0ilmHXNcIaQIN0f40FYZS56PRTtoAarR8LZdcb23lseZMY/CtOoY19W5l0whOiQaqA1uhR1RHzlSLq1cAhwfxWq9EWekeWzSq/tMcUqkNN1XZi3PfWce51MzdZowbp6O+luqEWPCADJKXlimc19nU911ax2LjC861ORXL2mV0XJgzsyypUbxXo6SOjax7sZ5XJ4LPss5dDeXblCx1/QpqaIjKQmV/UpY9X4z1TtRRA8FbkWoRNVgvuXA9pxY0UrjUYntHbH/rrljqOIs6OhVGqN81xyGXpkvUr7LsgGWU1PZY2XBabwUyJa/jZN0xloVhE8nULwoWrSXT1X3NGvXVD69nfXtNTDZkkc2Z02CZ3k6gBRPy+j3dnSoXc6KIs0hzoF2lOcIWMLEgRSk18m6IgmrEsB3jOk7Qhr/177p/lcLWmxxLNVXL1i/V66SiOq++UWVGnjXjj2VdVgmWLeCgjJtSUEgrBoPFutOnhcus2QLRxlTVw1CIm689O0weWB+eYkbtvCRSqQGoancIMTlrElyYJLUu7F50Lylzk57PUgqLwdbq3FTZVoxtsZRCdpoRJhfOVihVxDFLWs9rE7NVF+aW+Z4zyJLJzhzMnNX5KqtM2S5lTaaubQa0v0td5mpbBAma7XEmzzad13Ou9hhN5hczTBEMoWHyznlSkhYcrGe7JDE4qskiG9w4jowYy6qsmJpSFCUiTkh5UT0rAkEZ9eZc8+DK7qdAz0SDBxbPPCfePLxlnAa6TpkLna+LUtEoiWWZKHlCEHqP9rIyWe5RfRWDOob1SJRUNNBT1tOi8qM0eKaJGKBCGeF4PFGK9tbph5Hz5aTZOzHZsaEDbk3ONzbM9lUzy8WyOloniraeoBgxlEqs6ozUjJnF7wlF1gb0zmjJvYM8q/FbM0ZSWA2rigCpp5g1y49QlgXSogQeYnulUue7QPBRdYmd8S4GVq/qh3394I7KNF+bsmweZQEqJaQz48s+39bOUra1p4NgUJiUuVhDxTkVFpmpvt/L3QFJM2W+cnp84HI+k7NCi/T81DFoSqwedkHT/hV6Mi8G9UFWiWBjq3LyPM08na/gPOd5IWWUbci4oxXC4EwJbyak/b1qwvq4W9OnyQpADY95ScZoY/OSM84bu1CByzRxvl65XCdCCdroDQGnEBtnTBsZ7Rir8IHCro/85OUdU4Lr/ZkheKKDnXeaqclCjsJlLlwmTZmmpCn0nFITus0uL2v2TNob8sGhF4sQ25S0tS7NQKxTVT38ej2p1zIFVeuc6nfaLG7+7TZCp45F6iTbh0pVeDXatPl8NTBWs+a5CSqyvbkd8KpNNuteU6K6yeXZGJ+v/vbum2tu5hFozt4mQ/v8lmX75gdO0mYIdT7buCjbqflgbLL9+ua3NetZz+vmWnVCapACNR62I2r7iOdzvH32+nwt3WznNW0zAGB1JAr3Wv3KarRWpVpdnXr9zT1LFd4qL7xb799O5WY+S15XReEiZjSbFin2Rin1mmV99lwhNPrd5mc3a2O7rlXpy3O7GJUB8uw7dnranhQ7B/UDFe5gGeamqb+rPIt9vippNZoENhFhhzWWtHXJrP1VdDQV8lf3A2gIQcxgL5s1KE1Z1x1TKZ9r9s6tCYTNKKXtuLaX6nhB7fosbXrZrsPm/s9FcT0I5lp/56iLKe31o+vhsqylOU51m1jYqo2tyo92JmRdwfZ4WWsAXYNFqpys4lLa3Hz3tT1HmAzSLb7O0zZjXGsCtM+Zfc25VQ472WQSbDw2P7WOxSHqn7QM5Dqp7RxXidbOtO4b54SSktUKYDVTVUbbuM1bkMo8WGgN6zYqW52IUshppYlPSTN7wbMa4ltp1gJI1fBfZVkb42Z21Xlfjdsq+7VmLLW5dZs1rQ5kRim/67MWl1vQrqtQY7GmvzaLDdJqcqMG+EpeRUcd+1ZHbVXbKmZW52a7fysMsjK2Flt3zCldMREoPfZGztTAwooXXi/doIzQCr6Lc208VW06qTV5q+Xgq82IBklSLiwpIcussFUxZlSDCWtX+tzOVzsHZZ0nHatJS9G9V7POUj44Ud+jqLfXXpZFZZarNR/1HOlna3Clfq88v7pepyjEfbtOH74Uplsf4kMtbAfAnk2dSGm6t3lZ1VnaPEcLkJSNPCvbjVH1Qzv8qrfr/jbZUs+ld0qKksv3PcW/3OsHd1Te3r/RSbKIkFLktnZxLSiULUo2W2tjcY4lzZbaBXCcz1eens68evWap+OZp+OZh/OJnNVz/Xf/u/8WP/nkjk9fHnj12RvefvMt5+uFGCIV471RYboxWYVMypmr0c+KCNlvYQ2acksIE/DNwyPHeWZ/ufJ4npgShNBrIVUxaM/GiN4KTvvb5s910zxzWMwYOF8mTtbore6QZVmILraNMc8z06QMPEpu5cgukJzW7mgxrDdWHhuHd+wPe/7GX/09Pvn0zO3rB5bpiuSEW2Z20SNdwMcd1+WJaUp0KPSNrJS3TqqiLs+s9+oUdsGrYLPMCqIQmSbYy0aN1kgCpZ2PvDkUqwVRWoSiTVU9Zpv52/YJkFIdz+cyuUZJUlnjmNurPl+zes7XGpOtqdOu+cHn13V9Psb6d7Fnb+NeP7n+gtWYR2o7wu09NsJoez2pWYWtSbb9rnVoNgGnisQ1BbEaZ1Voq8FZNkavIFovg2tKO9c7bewqt9GUrrjNIFYsuDdYWVXKbY6MBtZBK2hNWeGZkwWDtYmXXsuTrfO8QkiaEqfCt6qc1yxQ9K4ZCB+exVYPaIK3RgWbgkuaVdAxuPYsOadWv4HzbTo8tPvkFi51bW+VvEbTQFZef9tDzS8SqBZcLhUWl/Ht87pPKylClYBFikFS1+CRFSCwGtlb00xf1VZ1GPY/KAS1GJSuOnSYgk9Zo8P1y7LZDMVqRdoeq3IQnuHD/SagVQ1czLgsKZOT5mCzQKmfQZqzqDAyjbwXFIr7bP3riBovJy3yzWZMVdlntrJGj1lmO0/rudU6pmxdtVcohbc6yBY0a9rQPfv+NuiqUJTaplE3Uo2YCgo7rd7DM3liZ6nKAFflQNnMvdTakHX8aizWp6/skeu+aNJAVLavMsq+LEq2kl1hyc9np2ZetxI81OEXlN5UzLEX669h66d7BaMA1wnyghrqbetaPZ9XAGhJ2jyy9rkoOdN5x1A8L8JgmYoPDDAzzuviZssi6DrV53SsGWiTWFJrXzQwQqP4tXxylRlOe32knDmnzJwys/U6AfQsd7oI3jm8wdJy0TYJ6961Gjmj4G06C7Q/nH3OF5vjlJscSdueGvVw2REt5jjVe5QaFd/eu86ZPpztB5VjNRgqsjpl1SYQk1W5Ztirceu90lfnrHvEYbpgdeqV0VT7qOA8GWUak6REMT4M2tgUhQwWc8qT2Xe1Jq/aH9sxawG/J2Qx6v7n8rDud2Tzezs/PkaWZWGeZz0T7bnX6+esznfTa9DO6XNTvj5zldHYPD27bXtVWaTbTzaBp/X3Hxhn7a1SdUBLdT/P6q+jM9niBLLByNrAV3hwJQoT++yzYOkP+PrBHZX/xf/6f2OFxILLmHLJz+Y6oxu78oxXM2WaJxMucL2coSiKzoviqYPz/P7v/67h9xZO717jPjpwd/eS/+X/7v/Mn/7qS37x9Tu8d4Tg15QatAMpQBTBhY55Trx685bXb9+1DbkUhSsEsR4FBeasVIlC7XbukODZ9yNpntXw8k4jDQ3eht6wGdgf7LbvfWm0+DxNnKwTs/daAxMErvPEPE90Dn7rx5/y+7/xKf/1/9rvU8IIxlTkfBUO60HJVpRPyeS0kF1H6J54dX/i/fnIMi8sUUjXBXGOUcDnRO/gbj9wux+1E7cZQTmrEFijzKnhZ6tSQjwZz7IU6xeRaBSwZpg1I3EjMJ0dnHbtenhNCOTNQW/U1c8MUTYnmRb9LrTz2ozHddbX1dkqhFZUuHmnRbY3y+m2/7CDXDac4vqHtC3RhP/GQN6UN2wExkagbbZSNR6bcbnJStVHlxXRo3pltYBaAFGwfW5jaI62KRzQLIQ2CNUzWpmoau0IZuCo6BKKZMQgBk4M4lLXdH38Vo/hEHuudZ7qDNToVzP0ErgFg2jo4wSnxaxDNFgIajgkM+ZLLprer8rArfPtigrWhk+2hUkNY1wXxJgDU60vqtUdtvvbOgYcKyFHjEGpR40golDAYI91e7h2ZvX2WvtVTc1CKmtUNheNwjcgnsFsPEqa0KL/lc3FgkGpZKv70/kJ1TgtFcpn2YzNxihmIlNqTYuNlwoXgc7onfVsOpa0KNVxqqNXo6tYjcKmclE7dttaaVDFzmHRGp1lKThfyRC0hxQGB/OlKLy3wd8MTkR1Uip+X/taqOFSWHJaySYKzcFSk7gq6w2cRuqubLsHnO7ZtDHgagFpU9QpkXNSHVh/KC26LJsxrNkM6qnWUVj77hXnrjes53L9pK53DRwJQpaaSS8rDGmj/xyu7bGt+P1QBm4zUNsssnfeiGpcI/8o0Iq4Y8uOrVerMtyLgXLNSBcEl3WRcoUnOs1qNv4BoEE5BVwGRWgIWZQIQm3whRA6CjAmpetecmJKGsQQl0l50XoYC9jUM+FFrM4Sao+RtrZlm8leMx2Y3GtGHEX7QZX63RXqWqF2TqCLngWl7V2mmeAc0XnrQaLzFJ1v+7ZUG0kq1FzX1W8cgix6NnM1PItB2pyxCSK63+28lDY2W2M9WKvN9KHZUjdQsYewA1tN1qaPm+51to9L+53gW/Z7TRCIUTRrXWGBNUOSjIyiFGs1oPVXqpegZOEyJ4LpG7I5awWmJSmpRKmwUGnZ62K2S/ReyYgSLSBVg8VUkpRt9MCkQLUX1sxo2Zxfm9fC5gzodb8vo1KzZy0A0E7M+hfnPYixbJVMLo52usxRbpkP9PmK1TO7nJ8/Qw0y1yUVNkGrzVpXp7zKv2qrtTFqHdE0J3xEW2k4wblI/EvZuv9irx/cUXl3/9CeuWGkrWAKVPhnUwf1UBUzVhYrBEu5cHw6MvY9+/2en3zyKX2M9DHyN/76X1MM5jzz408+5rDfU8Tz61dv+eVXb/ji23t2h71GnJ69dMLreVPaYmWmWtoigg+uKd96oBRTqmlFcqEfeqIVtTWzxAqzqqG0dgtdN/lfxIYgYgLN6FdrNkI9ckfxvjGDeDK7TrvfHsaB5Hs7yLXvjF4sJ938xYR6KRph7PueoZvoQy1T1KLOnJJin1mPXHDW+TYGnNGCkktrViVmaDRSg/ow7bVJp29YfKqhvH7c5tuiNiLrdbbzJiYA9Mr2/3X5VCC0jxebig+8CxP0z87m89UAtmxENvztoPnwu1K9BmAdg7AxZKqpLu1j7XsVprDxOXSczXgsBmFajYqtIbDO44evDYSlqGDzG6ukOgRSL1Xrb55FYdrpsSJKsbFVgVeVVWlEGG0921pt4+u0CKROWX2H9rzV8NwaUd6pcqkRci/SukN7p858VWJZzBAvtD4rmLG02uOlTu1zK80UMCLfc2Y3Stier9W3ONfWr1DrKtYC4npWapfwUkrDy7d9JLBCT7fRfTOQ82qUqxPsrBCVGtjejFIQpxZ3JWJwYiWU9swKV6n7fA2y5FofIKUxWZm5STH2Ll8ZyqjGnWLoGysYWpxfpEKY6lqu19OglkEnLBO7pKwBowTgbH7WaK1sYIQ1KKbGpDkFTsyI05caKJkVwiKrwK0OyQc2RJMYH8oIWd8vVLnw3PHwzhEtzaUN+bT4WaSZMU1sSdULm3WTdiPbg3WQlBaw2daCueogtbGuZ60ubv1edc4qNKg6P1WWNGx9sTE0Ib3KP1fZfRBqlqPJpVZHVwXOKqdlow/VuDOHf/Ps3luhuFc0Q6Ws2Oayq3MBG31HsUyJ7uEoEAukrJmWdRTW38q+r+JJnTpXZ07W39dayWZwF/meed7KYNOFrC5NMw3tGiq3vPZwy0o53TlrgGifq8EMrQ9b91pdrO1ebLKslJYNr2+UNj9tY636p35mfaDVgdheZvuPev3N5imb79b5W0/odoz1e5WRU9+qNUCG1Hwmk3Mu5FRYskElbb/mWsSYoRTj/jN5movC1qclKXtbWW3x+qy2+qrHNjPw7Nk/PPt/idcqL54LlGfy7s/JOGz15bOLbe2bDz7/573qfltlwGp/1r1d91ENIDdDp621Q1Nemw1Tz4UFFnIuSCXLqOP8C8b1X/X1gzsqn378UjedCUKNshtHh75h+1wak8XWKVDnoXD/7i2ffvSS3/2t3+S//9/5tziMA32M/O7v/o5G3aaJMi/MBY7TwrfHmW+fJt49TewP+9YAqB2sTYSnUNN0W1iSRicr+0Qwqt9s9UY+di3a3/W98tlbM0bQzzjjnG68TqWYYmhHme/f8npPhWktSrknka6LXBcV6ISePCcK2sxtcDB6oXNaZJ1dNSBMqBaDnNjYvBlRWSAET+wiYxc0xZ8cJUSL3EhjwxB0AtRAdGb0aMp5XpRNwjlHjKNGJpxC/ZIVJVZBW7V6q+NyQjHaxDYDZuDqmlWlsr6faw8W1ixZjVqs398YllU3VX1pa7dV8FKeG6LPIyCuXfe5EVA2/99uaWm/Vx0vm/fXqEm9xlYGKcvQytSyvYHUMYg8+3x9j+3ztPvXid++J+2ctRuUspIRSJNB4CxaZ0K/Fsw556hQPrVhFwR1EHSf1dOwmhe1D8D2tTWUFIq5PlNVaEI1PguQkaK0sbs+Widi7QbdmYMSHFqTUWp0XDebdryvNS3u+ShMaYhlNFZBXrMlqxOhuHDbI6IQBJ3mRDObDD5QSq3rUsa04DxdqEw9QnC5CfpmZpkRU0wIVuOmuXNS+91sOf/dRmuvs6y454zHb5zONaOiTs4Khaj7tWK29UKbyHBYi7bX/WdfziurU7H1CrWIoJqDzs523Yf2bNXhXAW1kBJK6JEq65EnOqEkvY73SiNMYe20LjoXpehZ9F7ltw1Bgz5ZEQzWeaoVtzeA1sY+qHvxOx2nWQ3Pdd7YnCPtuB2c1y7lRZ/fi2tduF3R8ahTT7NA1+yt5erqvcta37LxKKg0QDVAtMWFC+qsezPAq1FWz2emWLPATXCpPpPJ7WrkrIabGaCyjq1F3y36rDLOrfLQnJ5UA1xl0/m8FKNSrQ6xw7lCHzxDEKJTuGIxmTjX4v+qJ0y9Sl5huY5Vho9eGziLCFfgOi/MltXMVKcpNL1ASo2tsKarWmCqKhu7vxIdrHJrC50RsL5qYjNtnzNbL9u+csHRFWGxIGKlR1aWQM0k5LJSG6uzUjYUsNtNabArqt2lWZQVytVMkXbWSlrHXF/VKVr30Zp1ef5Zu38rHLN5MPpuzVDVYOMmTKibx8YmbZ9VyKFg9d9UHYHZRArRj71oS4pkzJJF12K2/VcyVieROV2unK4Tl3lhblm/1fYEKMlA0Dmr3GvQuBWu1aBfG/lQn5ftc33Pa5stoU593UPfoUP+nu/bjwatzV6ubQQ2wb3V0Km2z/M/t4X8LUBlfVdku5Y2J/XuAqyZle2zWguJZdGsZw4kcwg33/xBXz+4o/Lv/c//vQb/bJvCNijQ5rOlG13tw7Hi24pRiYaciDnjy0JlhXl3f9TGOAXudiNj1xEOjt/5ySd8/c23/PqLr7hcd0BHH2PbJCsbiokqsUPttHtzPexrl3dTzq6QxCGLGd4UpcsT8Mk6I4tieoNTqMuSUlP4f1kChKYUSiEGTx8jXd9zSROP5wtffP2K/f4WR+Fmt1+hWPOi6Wxr3JC35r3Sz0ApJKNPBKVoDOTWCBEB8dqYj5I5XxYjGLD1yImcF2PSMl6mZtg445o3RpMlafQjQ8nJBKsjBKOKFE1lt94km1eNzNsG2TgnZjRYFF8qvtkiEOsam4Nl425ZiLzCVeomXKEezwawHujq9JhirWtTr1tX7cNsDzx3SErBmKbKapCIfOe+1aCo4BSlkHTPBGItzqzctlKfJZmxXJVGHesHc1vv66r2Ldb8r47TOXOq9B4iZmQ5DTg4USrKxdLxN0OnhnexeS7qbOWNQK7ZU92OrhkpmLNWswGY4SjONWNCh1GZxcwwc47Y2XOIseBAU85QWanq/DiDl6qhtnL2l3bP0sBU9VUdya0RJxRjfMniG91zjak2vS2eXDx5UgKO2ahbx+gZYuA2VJrbQhI1vlVxV6iVQKmwCb32qmat8LhYnVEdnltjgsnmqRrsDaxlUUeHEF1tilqdi6rA1zoGRFan3iAjWWxtTZ9LZaMRR2pVzdKCRK7KCbumc84y7JninBXIZpaaYTI3oPMeuo4uBDrntC+DZA2gWDqwZK2HSK06SpmjcpE14FI0k6MkSMru55qzroZJdQCeGR51vJvgQGUy1L8/zx4/ry8yh9ILJdc5rHkvs3udozZrW+d7G7jZwCRL2Vg4ayErrMZdzTyCiSeDySGBEmttV2K23kk5Z3wX8cETQqDVnFRnGRBCcz7tMduZUNhuDcAIIl4dBxvDeib1lLkSmkNT91YRz3lKXK8Tj5eJ7CFGx673DChLU3YOnMFWLWDnRAhGxau6XNpaDX1QvVN0j+WSNcOFI4o2CU7U+praf0b3Xa3ZyWZwt1xJrhnm53sDO++rM6duSifeHEDrr1XXucKlbK8GEXoRytg1e1NhS7oXkxny+lOaDe2T9lXKrjQEhdbJBYMYqh7Q2pZsenjjUG4CEk2dVZvMSauDUlmebO2b0db2oW0VPoR+iWiQwMsK9681Noude4dmdUud0KIOhnd6Zqpuq/m0pcDpOuGiJyRP8DUjk7hclwbTo5TmqFymSRufGlNbLpvjJes6Bu+JQQjBIXljT3ygP/+5r3Uj/KVe2yL75wHWqtXLc3sE22Fmcyk0aWW9rHpCUB2q/e0cJGnnUDaOZa3hbsNPDRTbVrRY+YOIa04lZD2TWRtrTgmG2ON9JC+L9S7614D163f/yl9/vshtAbYg/I0HWKOCwmoIUrTN73ShXI4c375RxqmcuUxXY8vT74oPeO95eXvDR7c7Xh46bncd3gcqnVsLRMlmL4leQz13NQ7UWJN24Aw1YUJZx6zCco1y1XSzr0wWZd1UsArv7WtrXH9vBB2lF3Ze+arnlHg6nfDdQBc8fReJwbcsSfui/eXZsxp7SIWiVYGqUTfhdJ04XmcIkWjjeDieOF9npqRGj6ZftdlYNmfHWXFxY2+xtVu3aHkm21yF3FSj6MNi71LWiK39sjkY29fGyFfluTnwFfPcmAz0Xq3AeXP/7TC31yplnUPZbJxSKRo3x7saeMUGLPU69fd1Gp4ZG999VYOdamBYpkdtl9VYaspTrcrVcCh1Re1ipki2x1CdgU3tT2nT0668jdTVNWkFfvZ+O5+oMxDEoGT22+TWNYF67GVViHbq6ljbbG5EwrNz1JSKtPXwrdC6rI6H1KsKChNan6w2ey3wzPkBO9+t7Lwu2LoPV0WwGl51G2Wb1/o7h8kPFKI2eYWyLqlYj4OFKUV6V2vvZMNitxoDlX732WLYvGuN3OZXTaGte6Rmq9Z1sOh5WfsVaKVC3shn2t+bhDAjorIHOts/zW1y9lkjpqgF6AoJ29T4lM1aNDY4mztRo6ae8+xUiTon9DESRYjUurdV6RZXE2Xr2gZZV+vZ3ikrvKS49TNYp/l6rts2LHrVCtlTx7mSL5gRJ66te9net54ht+4bKmvPZq86WYMldQHaeZS6P7Wc3DUH8sNmwvpN5ypm3QzIGh01J1UEg2kItcYmeIOkyRpFrwZptjGvEOYVUvShDVeDQxqQVj3TIFi2TzADPOeNbvWBecnMrqIPbB/ZdvZS6ca158riVjhpHWuFb0uVv+Ykl6q0RdqzuSYfbDtuyRRQmaJL1A6groOs1Whim3atsdhAc9scbvSGONtHxeSFWRzNRqgXXXMWtbhwCxlrMoL1OdvhtP/7GmRaZ11PjeRWpP5MN9cHL9vxakZD97g0kgu1c9ph/o4NX09OG5b9drW1StOzNWBUszsKw6u2ldicr8N0Djov7DrPrgvEWBtbG0KkVEKYGlTTcffR8fFhZMmZp9MEFLNdau8QCzqg9kFus7bKv6q31jmzp93qc9m89b2v1an7i16rBNm6C/LB/lhlp0ALnKzv2zdtHtc6o+3+WQOcWz1X9c9W3334HKukrdfUIGmyOvSyJWv4gV8/fMPH/uW/xLcXaNunAwfFz8xzbt5j8J7i1NjIJkjEe3788Qv+ym98zOXpDS8+ueN8hfv7mTkXanGwmLDINbq1UaYqeFbB7kyYVTy4xxk/uSBZOeyLVINSsynLolE3XzHs7bm2RtT3zBkbwxBRbV00w1EQlqQRgn6Z8d4xdB1j39N3HUhEvLfMlNdobVU4OemBFK1MLNZETSMVnlkCr+6fuH868UmCT272lAJffvuGqQSWDOIDKcE8G+e7pVH7PpqAsGhrWTepc5YRYHWkVsi4Sp8iFb5VLOJjEa1aKF1gm4gWyzDU+apTue2c3mbd1noLJ2qiwARkMANkc+5WRW1Bt+pctc9VIbHByIPCf6ofuI2+tYFsVj5VY2fLdCXOmt15+IAdqxliNRpXC4Cb5oSKVVDDqjqmulZ1zldla9E1fZBmZLaMoxXbNUehaCS7PYfT4tcgEIsQizH02M+WkhNKTejZ2HUeW12GXbPk0hRXzbZUsgO1DSpdp37e21drhmCt/7GzJK7RbUJuNSo1BS6At870de21P4Oa70k0Cpra+zo3dUxLskLVZh5WVetaLYj0mkG8+oWny5UlJYV6uSvSRXrvW0QXFDZaISdLixSbUVQziwXEWzSUTE5bo0HsOmLZL6vTEbXkAg5XrJ4FwUlGm6utNYN1LnQ+K7ymsOSlOaNQzPGT1TAqtExuoQZvVrmWUVhGy36YTAYx48JT3QEwA1m0wNhLzUiulKZa31AoHgJr48joN7QWtRCrnTMxg36zryqbWKlj3cBUmnNBTZW1DFQuuoPWJ17hVfrK2kC2jQE7i5oV8G67X0ubo7YXnV/rgspqALpGQaDOYIPOqfdhy1Nae9tkzGG+OLyE9h0RYQiB4LaMVoJ33hiSVlZEHUNuci04sVpJ/Zz3VtMJa20l5gdUnWsBJ83Mqm7onYeo8/qUHWkGlsI8JfpO93g0QzYhZBcsq6V7UovEsaDlxjqqhq6E72TJfFE9nm18msVea5tWkWrkBKiesCNEDYYhMFljTpX50jIzRXKrCxFn+rhkZYOTojUVJvdyqT1pNkrIRrTCaJVUQvckq4/hhJyVHhdnWRVhPclFSTy81/sXp1mIWgNcHSNR6r5m89R9mUshNX+tsjyykuCgcnZ1ZNesZLbzQ91b9mitNYU01wRQYgoNQjglM5BKMZ0YYuBm8PzOyz37273WynptigxGLFIK3jmGTjvTFwopzXSd57M39xyPFxxKKiLEBoueswZhp1xYapC1OQJurdPaznuTzKy67ZlZ99zGUz1q8vxDI3679u13q0Qpba9qXxnDFGxkTW4ZuFq/2i7SRiI8q1NiY+cUGvrBiVt77tQAcVnHKCVvZKJl8ryjLBPLNDO5qTmMwW9smB/o9YM7Kv/Jf/i/J80z8zzz7v6BeV6Ub9r+a128bSmWZcF7R99F/ht/42/Q9z3OeR4eHiEteAo//ugjpSiVQvQRZwWWl8vM8d03vH33nvP9az6+7fjv/bf/Okk8r94ceXp6z3WeKBScrwpGD0SNMFdsZ2mKyLIGS8FJYDUA9PkKkFMGV/A+0HUDBaUPnpeEE0cMYaNE+N6syvYldl1xKtyyqHEwTRc65/jxi5f83scfsaTCdL1yev+GZZ4N0qJZJfEBcWFVtrk0qE0pGXFejdgi4DPZeZYEtb8NRbHlXej4nd/4lDdPE0/nifPlQqV8FXF4rxGzGuWDuvGrs0UzBhVPqYItpYWa4twa3nmVhqaA66RptGQ1oKRNVotil/X4VSdF6oTWVymNNvD5QZb22dVmNiG0KcQVnkeKquHcYg8OSlkNTtl8WOzfW1EUyprKtxhhu/c6fRsHquHBK7ZdjZu1zwGUhqVfsywUwec1ZiulrluT08+MtmdzXE0wvekqGAWGLqpSc9AlWVW6GWXOwsIVauBsnAWewSB1XnWuxFdpQItUNuMcNSi9rJC6TQa7fsHW0qK47fmaGYfgjKihrpFbjQv7dGNosijWMxixEWc8i6SKZu+caMf4IJ7onRn1mV4CS/CMLbqlQY0uBP0c62AVKqpjCbJGP6tBQHVQ7P7aM0YDAUsuGrxBTNnUjEVBDIIh1eDF6nmspowsrUP0NtugRCF5ha3UtaqGp+1fJ/V8rXj2JSXbr+v8PzMn6/nYRAfru847apbdlbJmgDYwm6XKjGJ+vcHlgqwZwWTBE/UpjFmoKuJqaK2bsRneKa91hxoEcarNawa4FCQbu5OxA636rOoJgytS97eANQgVMGphqFBcqM63yhVHaUxT3kmbJ51vq+Mz50zvnKh9XrWQ22AcNZIqAi7Qh9CCJKHWqDhZD6agkfRisDmp0DLVvVX2hbrvypqHEupzKiV+jfCLx9AQFhQsukZBEndDZCeRMMC39yemeVHZZCQU2bHWMuR1rgpCTrV5qLMmlZWkwihhC9Yfo+qlKhTMOROULlfWwvcW7JIquwvBYOCVgKIY/DHk0GSUw1E9+Wyw9dQqYVjPQNGTqWfaPo8WKxee67iS1iBJdSCkGgrmIFGcEUe4xsznRKfKC9o0s4jKJyccLxNLWpjm1KDYUGxtaiZUJyCINEKimhvT6fZtXyPS9rCUVZdLhSZJaXpDdZM2hNYjWYN+pX1H18uCLzmTlpnhEPn0bs9/86/+HsNBa2GVDjogzkOsVWc2t7mQ08J0PfNwuvJ0utJV2F09m2ZAZHSelyWpzOJDn2Oj9Fn/umbrtzbF+rKjuf77w+tS9aMG5NY6mGJLK4go01eVj/UCrd4kVyjlKu9biLAZF/W6m5HWvbZxe7Q/n8ndRo1m+tPkXTMN6u/MUQlRK6HnaYaSjTL6XwNH5W//7b+N9hRRxheVqcW6BNMclbrgOWdCcPR9x+e7SAgRBN6/ew8p4wWuv/lbrZdCHzuLwqkQejo+8ebtW67XI8EV+v3AeS5E79u9i6ywonrf1fFYhUlVRDVD4Py6xepSq+GZLeWc7fAV5iWtMqRuuvWq392p9d1NJEIPkWLLnSuUtODRwszboedyXWCeeVpScwBaulJWT/zZgO1NhTgUrYV2KppzLgxdRxozu6G3qD7cHfacF5gX7YyqhukKV6gKa/MUtJFUZfSBgyFVEdvc1PqPipvUqFYjP1UHg826Sf3f5rHKunrue6a5wg6aAtgYKBu5RYV/rGPWD7VHNAC2SI3GbwytjRxo7k8TZKvhVOr/HEanuYEt2ThWQ71ec3U8ipQ1/FEje/Wzm8+1u0m9SL2x7vlm5De5tdl/7Zll/b7oGRJT6GKQP+/AW91DlkKlwKwYaa2BqMaarUX1rcpaRL6F1+V23AwS0Bo7uhUyIrJmSDaOWDt3271hz1bXoZ305jyuZ1ue/Vufw2+mtDpSdZKachQdX43KVqPHixrd0YGna/u6ANEr+5fGBbcZLX0/uQ0jYi4tMq8NZpP1iNHwdCmCk7UzvQk9KEoyUCOta6PLNRrmRKNt6q+sTd9grTNQSKJbry2COFWSFVeuheLOZCdU8MrqfG6INdr2qjKJlpWB0oqFnWHZaxS5UZba33WyKpRMPxNcA/ThqRj//OyZVcEbRfTmdGhn8tLmSprcWE2AOnhHWQMqIkgryioWwNGN3JxTZGU2EYNySaEUrRWqeqNG9etYqsx07WyxKfCv8Ebd30232WQUE0NuM88VmZGlZt6MHa3UFVv1odTxSM2SrnJfKuytMaU8N5US1REyp8rSYpodtLs4hQ97hEGcEXUILnhtzKhemcE0TdfWPSKClDqhru0HIZOKa5DhKjNaKKLoWS1VAFpRvDqCpcmu7arbMKhQcC1BVgOzmFyrzGPbTIkawjX4gTlI5ujbeps6aNmTSm9dUR1ie8i3oGBpfyr00rU9Ukodz6q3Wu2fva9tAhSGGqouZgtZbrt1I0v1N5k1k1Ih1ohmPiucbatT1ox5PcD17IjR2MoGfaAydZsZrwOqdYjRCZ132i+uVL0hz2SxBlyS1gblbLAkbVT9nMyGjaGwsZqKKcCaJqkTs33JGuB8Ntml7rGtpNh+rzoZtP24hf/Xy1W5UdVvEw7fueAHj1I+/G15Pr4PnqE+6qqD17G077fvlu/as/Z37z3Z9me2nj2yDfD9QK8f3FH5X/1v/w+8uNnxo5cH/u3/1l/ndr9jN/ZMeO0JUIRYMs4FnAT80BGiI0THL37xc6Y0MS8zj+/utVlRgc8++1UrLB5i3/C106wR/+PxyJQKIQRNky5AMkCDKeDtOjYftAoDVqVcHSnd3H6TOShNuNQ0nhicY8nqqMTYrRAVJ8/P6D/nVfeUc0LXeWJw2oixFFwuuCQEMoFUVZFueJFmYLRaiOZJVzYg90y5iwsU8ZAzH90cuNnteHGzg+sJT+bFzR2XKbHMMw5t7Ba8HXQrTntWAFZoMCOV2XYgLSTtRHCN2EAg5WeGZWUZq45Q44JndVTqHMHmoNutnpmdFt2siyrimxFI0WZZCm2oRptddCvDSn0+mnCue6V20GiF+1JHVO8rLe0Nz+eoKUzDUa/RuyokMhWcZxPTnrtsxrQtCC4bg6s6gRpwEVN8VXvovXxT6vVPMyQ3zFGtINjWJVcmECdWm6SCwwdzLEUotddRLQAXnYfao0SMNKNC/TTrtlJAq0Ku5quen7yJ9Fb4SfQO8ZrBWooW7yNY/4KNU1VpU8VvllcaRCZvjAHn9CyIGRcK81SYaZUdCS24Lc1vsJHWebJ9o45KIQoayRPHoYssVtzboPFi/T6k9h5aXxlYqrIlNYIP5zzLAlkSIr491VJcYwVaDH5TgCieznui98rMJpssVTWYEVKWZsRUaemkGF5d5yf9f6n7s19LsizND/utvbeZnXPu4NfdwyMiIyLnsSpr6OrkKJLdItXgjBZJtEBBECFAL4IexP+GT5JADSAEDQRJAWqRECSCFLtbZHezWV1dXZVZVVk5Z4we7n6Hc46Z7b30sNbeZue6R1ZkVZBAWYS733sGG/awxm99q0IyRewORRi6QJciKcbmUGiBuURf2PZUc86Nev5VLH3VPFEtZM2kYDU+XQzLeqnrpBRyiG1PLAxkTqAgbYCb0VHlVRAxpho1aFNggewggSKe7ahro64Vp4Vvujou0Wd1CPJ6R7U6sHYIfax7uf5X6ycWwox6/wHQsMi0dc1kvb/inoggTvzickchePaGQIuKa2WSKisjXGyc1wxEc7a1Y1m3hf2xQnOjr8Uqe5YghzYDaMYyEXUuUmeF3ije2yuTmUleu5LmYrorWsByk4RNgEm11ZYUEaZsUKcUjFlNqAa6OWa1iXQpldDG4cIu33zlN/gWdVXpMtbNNnP8b+t0XolZ2sft/Zrlqk6CMdJZlm2i2P72dIdlVWrc2/+rcESPIBlMUpceKZ6Zou2DpbluTBUKuDhHuGPUeppIYMrW7+I4Tk6oYPJYghBqzSkmj2qWv4EoxRywCt8rLQtQ15H/LXhW3fZOlLo+OVknIZg+TiG0Jo+10EgChBwaIUjsDNEyzTPX1y8gFKttyit90jJZ1udqmqfmpDx/cc319Q2H45HdbudZ0CoXWGSPeFYq5yYvqpPQnvHUPodqP1YHhUWP3neImkMiK0dgJSPWOvykQEddHruesvXpUiZI09N2mcXC1Xpfr2BykhBsrZWVrWg34U9RqlFVCyTszKUgceW8uOyNMbkuisw6WYnB/JLX9Gc+PnNHJZw9oPQdewZeTD0PNg957Y3X+dY3vs7lG69z9uQJhCuorAOSET2Qx2v+4//o3+fps2eMU2HYnltUSZXDMYPaArzVW7uQb0IRQbqBs13nXrptlKEPVCijGV+rKIwL1RqnyrowHlTmI5UKFVgMr3pd0dCEQXFh2qVAiqlFcGrx+smi9eNVr4HdmmRlQ2IriS6Ygp8VjpI5lJmRTN937HZbdmc7us1A7jpKiKgs5o5hV2OTrLXYXQF1gzNFg0sUFCm5KfN5mpphGGMwys0YHeayNBerbDESxNN9LqjaT1Woa4sEmmJZnn8NNypNdS+mfz1Pm/OVxFgUi+H4QzufKZZ6/oViNreIVqqCRnC4jG3UnGuzQ23zX+ezCjWDRbhBEl66LRbA6GrD1vuExgRjRG3SHAykvh/q4NwbR39tdS1TIqWNVcXZBlVnRnEDa8XCIqs/dYzquhURIl7nEASJkbJiH6vZjRgEcVaY0DIulumsjk2qLDu4UAsJDcYeJQ7DDLI0S9N1SD8sjkv0zEG991AHI4QVlrsalh7VXTm4tcZGhNZ8dlgZtYI6jMqMdfEofIrJMfuKaG6EGaLuzCEUXXWgVAiSfL+sjEStafpizp4bL31KS0alubF2310EVaOibA3BMEiWFjFDw9djcWOtqDU1HMeJOWfvgZToU3LccHEDdXEASvHIdoB5hXkOcWnQOs3ZItxuvZuDHxm6asi6o+t1DX20nk4i3gFdBYKQcLarSmcrstSzmaUDmjyzK40IS10pq/On1pVcs3UnylrV6UYrt5rt6QWGUtq41U7odT/aMrHZYFmVhBg8Il17uaxqYXwP6nq/VhuhLcwVfFTMBrbIvO9ld+Br7ZYFB5by3tjklxvHYtm1CnqJUmWvXTN5fUbWvDj/UZglt15cIVggI/q5gBbwMmefVoNl318gJlW2GexpWbNVDsYuMs2z9xGyCKuKGDtlZeBD0WihiowhLnKe3Wmy9ZDzit4XH3c3xmtmX3GiAL8DCabXPI1hY+j7v0auWzuEYgZxnRyRCp1S1J/XqJHV6LH9lFpM1kSHKc5qMLhc7I0SPD9TjdZqU7gOFqk5Kms+Xclear1FCIGgmUp/XB3uqgQsBroEWIFT3ecyquq6PGcOhyNBAkMXGUSIeN+j6OgU7BoxLEGXhT7cgzYaGqW6mQC6jInqCV9Svbe6b9fQtOBz1MXAlBcNv9Bd27cLEek6QtcRUoIQ0RiN+TF1KDDniVr31aeO892ZnT8F9jlyDD1nP39q45szMvQNjYCPWcDW6MKq6QPX7uWe4b0e+NVxEiTxj7mUbs7pJ36H03NW17nKqpP36nivb6mtDzXl5+kqrY2Gqw1mgqydyMaleHbulQ9le8Udw3oNo4qPSM4eaA503Wld2Gd5fOaOSkw9mcB+Kvzog2ccZnhxN6Fx4Mlh4vFceHCV2G23bLdbLi/OCLJlHDv6lLzrbSTGztLD7vl6o15qxE99wdc/XVe75TpEL4YWPYWVR7o2fU/GtBrGLrQqx+bqc9UotnXjhqq6gRwWeMqnmaxXOyseDc+Gj5cobjjQYHPgzkMyVjCJJggbxpDFa28pvdrZtilOQLTBVAJVgNbFXQWGG7EOx4guaer92AcWQ3cxJWm/F1cGdexg/a/9KHX01+Os/vp6jzajfpnDKpq1FRNKgwis7wO0USMq0k5cFRcuqMOqOVioxgyr50QarMgUWz1PVSj1hpdNvZZrBRre2iLwsjJoTYmHVkslTcE2mJ/fRxXm9tHqPOrilK2MueY3VedNV45KNdaDE0lgDkeFjASgcqyLCOM8kxXmIOyS8fJoyQ1C1ASrnzqcODm+DmL0Ilgbp/ZvoPXGAD2Bwqi0mVtgfjHcK7D1ZxZZCgJZYAi2X+3cKVTCWJu7ms0yQoAFGlOvWeWCzdOSdSrFjVpfu7FBXqqcMCfCMO4m7GtfjQq/EB/3mm1RtchszVbVDFopSomChmrs2D2lur7B6wuU0ZfflGeyKimbYWAOi0V9qxFijgeN+ljNKmwzE1iMO4KvD4FuhSPUdv/LvqpZMzNYxK+rPveWqbUI/SIfFriR5x3CEkmsRr2UxVCrBmYb64KPMU3mVdiYTadBR4zFS5pRXldjDVJRjYvmFNdFt2Q16sZe9tpyqCyw1EZsWfeus9VVuuyqkmqgP7jMrTKgZSOocseeeYH93ru+j1PQxdAREYdXeY2Nw29i27cumzyLtba5pEKz1uOhpxksrW3kMVmSnbylQW6EpoBsvQXmYkXpL8aZKVdyBWlOVAiWKQzqmQ2shqH2K7KTae0s0GQjYoG4WkNi62nZv/WeysoW8CXvhqu6LpUlC9iUp8MTa+2QU7dWQhANlZK9zotDeUJd+wtcVX2smn5b3WuFGTftUZ+rnXPRBVWWG/R0gT+ip/T+dQ+LZ3DrHg6h0jQva8eU/CLHYV1XwvJZ6h5w66nKsPXbbV3X8cW70Xs2sBpuYjUvlkWzo9ZE9X2yzFzqPBhkUk+y0DLaYsHl4IHTLnV0qfNa2TXVcnVh3eiuj11fl9XN3zuWZ5K2Jk7gXiu77pVWYH1bVyP0yutVOfrJ5zv1oZaTrPWttg++4vDXa7B9cbTq9ZdrL/OqXu8qnnHVRbfKsmI/6+Mzd1RSSmRVnu1HfvDbv880jpRp4vF5z9uvP+aLb73Od37z23zp8+/w5S++w1/49W/SbbeAQbJSiKQ4UGbLjqQAfde1Xh4SBhu0sBjmFItWGmQgMCkQBZUKpFlSmvVQN7JfMf2ALFhgXwxL9NXLJKVGe6NvWrufug3kxML+k496KwW4O07sh8hZss4lRlEinsmxDEdwBV+NGcPbhoXNafVoiiJFkGC9Gxbwd6si8Iiia1R1PKtqc8BiWCBzxcfvftH56kmaoKr42arHquI7ZeTiZLzqRjiZmZU1IvcdFakGovhYLae2qKytgxqpq0AbXf3dlGiQBiOg0GAnNSom/llZXduHDHwMa2d2M3SWwl8wA6wEY8ghW7S/i6kJ+6LZsq+sWM48WteeWGqEpio7bXCf6sipFzNWWITdjztCPo+nriVVNhKqgvJrBQxa1XUdzz96ytGdlS8+fs2M7XJ0TLxDxmrS2NP56sYprtiDBLK4ci+WuTInIjCXTA1Hixuu1dGokdiazQwxMGeaUx1iHXdhqedbC1vBuXroY2gOWwBr0KiZdQQ0RoFczNFwJWjrv1DrbVTTiaKr/Waqg2lr04IKxQuVE858Vo1T30fFN62xDNmdSWIxEqUWiJ8qg5YB87nqQ+AwJZ4fRm7u9hynGZHAg7MzzjcbOpYoWzO6sARsJRyxDFOhNnyNwZsohkCUSMAYueyeCiXWIKTDcdxILA4TC9GQ/VIsk2jjuTjpNkFVYa62jCzPX7Nw4vLJAik2iUtNhhssOCxSafOBGz0V+jWXZd+EuuKrISN1LFa35/qm1fyIO0zqRdRFG8lFjXebYbhYFCbX/GohrmSIOY91PRZ/5hhiY0W0CPjiWCzGpTE8NplQs5VxgQahEFPypqilOYdRFh8sKgSJLlMsq2MGfGhEBLkafFTHyscrhAYfDSEi3eIcVo0QQnSHQ0ip46PjkY8PR3784hZIbLqeTepISQgRhpiofUSYszeOVCRVitkVi2Kw+SjNcTWnrBYH172L2DMK4gSL9n52BSUihEQz+C1f6kEPVcsetxGwP25ugO+BopXhb3FClv5HFtkvnimp0HLL2tNkXrHUjtfzCki0Xmd1jXoSzdaiuBwIrZ4lF3P+shM/bHfJe8WUVu+TJJBiB/6Mmew1X9rQGc1m9ZlOEpqPrq6z6r23XdtUakUiQA2Smd1lrHYxWDani8lgbFEokxMmlUKZZlJRhhi43G4YdhvoenLYUG+ul609f1HyNDkrRmE6HJmmiWmeyLk6KTS2OMs+FwtMCi07cGJ1rAz11YuLLVj18H241+r4JKO9OhCqS8bPB6g5n8sacxuwXp/FvqvOSsvyri7YAkeIX6vO5fpGqiaon/WPN0d4dcfVYffnTSkRA+Q6HqtrfNbHZ09PPGYkRobQ8/AsIGdq6f0Ueff5nh+8+/v8l7/9Xc53Gx5enPNrv/pN3n7nTd5+63WYJrqh4ywIJU8IeH1EMSu5GZo2+BZEUYv+qRurQehipcc17JwdNdlap66KT6g0nRWvLFVX+/ulfc6ivqceqpwssnrStnllUa41i/vKw9YScylkrWw7VRBYVGmIiRCVCXMxDCKU0CIuYE43zAJBqw9tEZcuJrqUrMlRXd0ekTI2FFfgNVSlBhERalFsU3926qocqOOzXH+pjdFF4Kk0mM7ikKwyOD72lTCgNKdyEZwQFniQR2dW3tGiRkJV3LHtefPRlnMW9TUkEKJBqUTVFJnf59B1VjyqurAOrTdxXSPU2ot6w4sCNyNXEaIbX2VJtbPEIioGuS4YowesUUF7ufaPBS8irEa8z0HN8uKGSY1ighVZr2av3ZuNm60j1QIhNra4GGw3XZ1tfH0G+i7YOOUaNXSITqjzuWTpQKxJm18xFDMUCkqMy75u/YhwYwqLLtYiXsRgC4I5Ep0r2lZr4OurrssQKsSjrp3kz+hpeV8rOVt2JGtq0SFzskNTKjVbNRfQUNfdAhuUlVywFbcUjNaMQ1aaVDphcawOGdDoYJFWZ6QAJbfPtLqkakIo7hgYhn/bR1LXcbYdOM4zx2li6JbeKTWJaPan1lvw3iT2kkhAUiD00mpR8nF0AyQ3eEwQ68Td6qukOqcOB/NASlGrd1IRurCMvQ+wGdPGp2qyY+VISt28WOF/TeZINZbUDGH7rGWstDkMyw5VZIHbKaDRYUlu8FbB72NcsslhCYFQDQs1KIzgzlApFKI14aNCkQqVbWmdDUIgBTeKsfqfZoLoYqCIy/IuBKKC9fnKTX/UMVVfjzFGq4vQudW+1e7zYFny6nhVR8YmfAkALHJQgLJi73HCDJQMS42canMUcH1VF09qGSgXWAhd3zvsD6JGtiExpsJZ1zFlky9F6jqyepnZ62oWYI5S5gxi8zZnGOfMXDIxdRZMC+YQ5iKUbLMegzdzxp068/Asi62lZcmpxr87/Rlt0X5QcyCgGY7qvlC1EVQFLR6Ik0J2+T2Nk30fVqx4QkpuH4hQ8hIA1egGdcl+j3VcvVWi13XUzjrmeFXlZvBaKiGFmCM1SIdLIvJs95DzvNy7sILf1ga0NL0qLE5RzdRVIGaoe77aKytbbQmMFYMHU5tCLsFFo9COSDC+NBVFopCzcrcfee+jj9kdRkLXQ9fbvglGvhCq85QLWmavUSnc3d6xv9szTzMxJsAaIRqBRLV5IsbgasZ5XRfNKK9DWo+VmbFYhy5bXAavTbzFf6sydslyVA5Pyn27zRo/47At1a69U1shlHa+uo1dxliUCJ0nNGeDZ6+ehYI5of4QGgQpVU66EVjXgEArarMCPggJYkSC3XPsAtOkTPPEOE5eKvDZeyqfuaNydb5lzMpUCn3XmaORhEcPL7m9u+X588iHH3xkxV3HmcPf/x4/fvdD3n7rNf7Ct75ATIG+S15TQovkiRferbuZi+pLRkkIQoo4tKNidz1VWiPhK8fCjOk6cTVfsHIotP3lsl1Wry1Oispqgbbc6GJ8fupjFa1HatTn9F5M7gezMtb45Hr51WZoX109TxUmbZUjJ05Vc3Cqd+9RcANMLBujMbjIkk6vsKSlSNUknKyikwtshdOaF1kcFTwabcZu7Wi83ONy+1Vgrs9ff2B5Tuq823PVCGwz9NzQXp+kvY5FYkFNGC4famuiCq4qwBceeT2NtrgxIqZNQbxpWRNbSyO4Vqjny2kxUk8Zi5qi9MssRXCVDtwFma7HZh21UbczFqOlXs/2XmhzMnTuGHiUnWLZllqTEGoBtDu3oab0cWNTzVQM4ntGpGXtghvmYJCLWgfiS8jO7/juBZ4V2zMtvXyWoES0lAX4d9pcVefH7ylI7Z69KBdjDFxUUrW5pM3pko3AFXKNUAU5hZAV33fowi60PmRd7LRazko1hpY6pOWHZaGv3DRErPYMMeVrNShCF6LJxbonV2tecSfF/XlRN7i1MNXF5fK3Bg8qLMkMmJVsFTMAiwhS1nJhWaeNCrUZBfYUMTTQFxSnj63yAnUK5SVQ0CCQeFSU6vwsMJr6CdtnKznhgYB6z4VVAEDcQJHFSmvnRlsNTBX1wf/SWqQKRhldx8Ont0Uq6x6UJaiy/rteK4izwwmo1smpYtCdaLHxEi2oMXU4VHfBnZcgSM1Cra5Y6+gVy1I1B7AtRWm1Emu5V526FjWvuhFOfq9MVqjXxXgqUmYYUuIMON/MvNhPFC0eqLOs16zasgKWnTCWtJwVDbY3M+b854pvVYeKqUHxK8W9qmWMitAK7itTHayKv+sG00WeVpm+7je0rL1Fl9aAgbi+q9m22fdSXXqV0EXdqGyORl231D1f9/9KKPl7NfDXFoyqr93c9lqV7XWN1v0p4o6nWlBU65xSUQAsz7W6ru28RX6FOhRSR2m1QmQtA+vZ7TPV71vWC1QSGhtnz/2L68MCx7mQppmEB9xCtduUykpoGXqnWm+BK7sZqyNz605oOqncqw6swb0T455lny9yeTn/iXrXRd+v7cz6+ynD1y86Fk281Gf6epOKmFhNzNp0UV3WVv2Zmt2yp9YaQKrz5oElCbHJYl2d3u5IKgSAGrQ3BIr15pmdVnxpl/DZHZ+5o/Ktr7zBz5++4OdPXxDp6aKy7eEf/fbnSanjmOFv/p3fpYsDQ7/hv/6d7/KHP36X7e8EvvLO/4iHVzuGIVF7naQQ2PbRDTKl5jm01CiDH9VRERgESycSEI2uYwVCVUN14u7p/BambK/ykjsNvkPr+3XB1BUun2YVnh6LBYRAw24aVtcLOSnkUqxxnEKIHZK6pchJBImLIDJhhC1A1QbFUM1Mc+1tI7bJa5Gw/5ebIrLIoWVfOuq2rgt3nucmJ1Ja2GBKdmGBOx/4czQYVWzPXRX1kiKuCrS4oK41LlVASUs526jbeFdIzyJQtE2dq3EzWqrBKG68t7qV+sdFsRsCVIW7ShXlkpuxEMQhWj53zaRSWiQsRGsOV+t1mikiBq9pcCe/5kxVNIuwbA4VS5Fjladz/d0FWF2doy6UksmlbHBhveDgcY3otV+YYgUhBWHT2/iUrExTYegHK8CMMM0FotClzUoJGozK9mpp9QEGhbDnDkWsOFcsOg62qzuxAj3Vwjg5q40s8wZLpLOmv/uYlkyEj03Wwlx7zsgKW42xhrWooMvTnJUkrcWeN0UrTLM3oK2GNuZcWXTbRUZWh+NI64ze1gZe2xWiM0dZhrI5N02JYOuwQbyqOQxabH20CBq+FuraXt1bneEo0Q3cQh+FFCObrjvJyklYmABrViAQHOZjY3y3PzCOmbsCaYKug4sQyWoMXpZxc5icVpVX16g1iK2LtKmuoJSa5a4Gd7139T0uvu9b0GZtCUAJS33NYgQEYvJqnVIoebI5ak6SW37tPAtjnLAy6LXes63lqhJC842C20VOtNKUhz1jwRqjEUAlmLO2cBk3o1BYlE9lEqwWTOvLova5iAWKQs3wChgHqJ0vuJOlBJ8HG0ur0l6MQdXcaiRM9ojrAZYAsxhhgLHY2w3VZpUms2Lbixn/EktdCWCNCN04DSE0IheCO6j+jOf9wMCWFyT208fcjSP76ci2G0gxMins58w0G9zL9m60uqtSLIgnQq7ZleLj4Ua7OSluLzjskuKwwWJl/LXVQdclgnhWtNbJuZNYs1ciNXtdcxDrOi838ILaWglC0WhZoWy6rFrvntNAKSuHqa4Ru3bJvlZqegla4KZBacEzdpGSZ8iFHJRa3Cy1JswDMJnciqYrDLXKlboGoEK16zPi6fll60SpEEvfm1pXoiyOu5hDkmpdJLXVjDvDUskuzBGp0bYgQiab/Kg6OESIHVW7Rmmq2QvDZZElEghBUQmkLtH1ia7rzZkVYSzFsmIaKLMyE5nrXLi1YfrVZXXdO7ziaMFcaFnK1VFl/EtRKU7ttHtvrE5T506anGsnXtXM1flb/7QE0/y1OsFSa8kE1CHXlFYbajXhiz2zOKz+HXEhVJ366MEDtX5eMZze6md1fOaOSj+kFmnVLiFdIg2R2+tbVOE4zgz9jr7v2PQ9b731mC4IF7uBTd+DJGaF7e4MyRNRZ46HA10/0A87xwLPFCmk4IqpRkWiceWXybGHwScGEyRaFUTVEM2qXVKrjd2pRmIqvSqLsbOUSS4LZDEU/hRHnVn/xzrIegdss4kx5jyplj/VVA1RSCFZt2hxoQeNZKAaIZV5qKjSDT39dkPse+aijFM2x8cF8hA7S9CWQJmLQU40t8WveOTRlQ5NUdoGyZopWDRW1ARjdOwz4FHHZbxq9qasVnhT6bIenkKNyK2/XxX8akBPPmO/KhZ5rDCpune19QNYYGYuQKqhX5RDWFizsjcVo1hNVXTjjqIr9D9ts9vjmaFqKVpzoqIXYqJCacVDBs+pUcCipY1v8VRw7UO0jFUVig6lUx8rXY1RTetikEhVM9CDR10C9Y91sZYQ6KPQRYNmzTOMGe6OoxtPhaHvXXmaAyx1worDBXOB2RVAKQ1WohKXaCHmRFutdSDP5rTleUaztvWSs8Gehr737I0N7LEc294MwZyfjDYqU1+mbZ0lNwxrIXt1dBvgTrU1CzQ6YpcNskCwTuYWJczVkV7+dBK8M7ygcXHeCtqU6gITcOYpx1JXGFNzjliyRbJygqpBa4HFCsEpTFj3vwpbsWyyF64D5IyQW1SzZZJUIZhDKdGCI8eS+fH7H2OMQYlvfv5zrb5DjxOkhKS4ZFrBorTe08CXL0plp6oyt25qWX5UJWPOoYo7T17I3ar/dIk02jIrPi5L4bBbWv6jLJHXklvNg4MqWg2DuhMdqXutmDPme6cILYtSVJnnse3plLq2FuZ59oBSsWZoAhRlnCYqg9PiIMLkTkFsRrHNSfZIO7kwq2dIvAarsoiZLDBZXKlXgxgdbQ1OiS9UVdp6to7sBssziKdnd9VNb8WCJXNphliFRoXIElNhYWxTLaYr/Ji9Ji3MpcmDKn3MCZsoZeaAsB9nZjDGriB0oiSnx+5iAM0cx4MzPtUMtCK5OGzUMkY5ZwukuVNX65dM1loQM0VzHutcJIerWq1OJRF5uaUBgIbgTF8G36qr2Jw+R8kU0zDZN27CnIasWpOSC8GMVmeCVohfdVWuPSkcIlwbOxLcAa0BGy9GD17Pas2dayY6mB2GUiMrdeu5uK1CeJHFantPqtyoQboaVFnrnvU5WenitpNslVTXTNXWkUqFIhYPoFZKdX9OJx0pFNCM5ok8HpHexqslKljpGSyAWZtOGuQ3A7ZGprmwP47s7245P9sRJTCOI/ubG46lMDvEwuIP2ua2iqhyfzH8GY41HD+m1ArZ17ZkESAmki7EFibOba01x2MFldE22mqZkZBMTswzqjO1q7zNUWjO90k9sLhMLSDp1PkqgJZC8v6BIfSIZOuD2BnUblRtNUGf5fGZOyrXd0emrIY1FqFPkT4NfPziwDhO7A+jRUgEQihcXZ3Rd5GLzUBW48EWXapDSp4t0iGBGBPHw50V2afYjHLcgKibOQT1aKmnuqr3d2+xycpZWcAT9T3729bBSgG2XekLm3uBOupGXlvKn+6ohp5iQi9nCxgEtSZw1Sk4gSjdO0PNHtxnoqgCHYROIl3fE2JqRWXZlXd0K6x5+7IopdAyTVYTshQjLvAMRWvgyKB3jXmmGkUeDGiRgyUVGtZCT2l1LKizvbjoW1BkFXqzRKiBZhzV66pL4lrQWA34GvFua6Pt4cpUs45cLbMZYmhOzEnjNMEzGtXJcoXSmK98HHy91UxBUaOWVhYF1KJghZYRlKwtc1TNZFM4li+qzDZ1JXvvc5sTrcXpwQtLTfE4g7exUIVa2BcsS6OFm8NIP3SgVjyXIu7YFLoUG+Sv9kYxxSVQnL6zGCyo1AhSCEiIFqX1fVtZW0IQhxMYNXAdt+y9g2qzxxijj1HxdefzEqpirUacKy3fpxZFtXUWwwJGWJS1z5uvpxjCKkO1QEiQeq1lzdXrVwhbLWqVusZlWW/tqxRqr5oW9ff1HWu3YF8nNdhQF6nNuLY9YAGJasjTrr2qwWzdwtd7ujoR9fmD790uwqbvTIGvHAvrbWKWqgRrwBaj1W80hVtqZiU0SGydP8UT0lWWsfwrVCVu66i44V0dlQYpVKv0CsFqEOoCOGXPW+C8dR2ZYwIVx98a162kv6pBfEojLqizu8C9qkNohtciVyttdX3G6FkGEe/mTq2DqHVYQnA4ba0BC2CGp4/7SsSu1EmVNWuVtsjs6gRXJjwRy+qEnCkqDhGr67qSdsiJ4VlUGuV0CA7tkwXqaOuP1ojZ6HurlbrAVyuVMup1dm2uC5MIkg2KVQM3Q9/Rd4k+WWY5YL1eokw2bhIajA4xw63Sp89SG/sFSqj7Wb1WzLOewQIH6gqnkrAYJElcRi4BghbArBuqGeLrcXdHJXhAIghRlblACUpUNRiaOBRXBIosmdM65jUKoVZTI7iurwEQD9AYClt8fF2fGrOFB/CXSH1DCNUsbt37rqsWmHjtx3ZKCV2vV7elak3quWuji56rq7Hp3vqf1Axila/hdK36CK/NMwFfl+Zwl3mE0iOe6RBddJ3NgYeP/T4MjQPJ57zaBxU8ULNx1Tlbz6iu5ntJZpw6L/cMkU91rG2y1YtVSbCMYJ2o5ZWXvlnfluU0px9aSH3axFepo9Do2l03rb+7zMSSCV4uAhWuGEK0FhfJg2xq9bs5v+I5/4zHZ+6o/NGP3ifGjt1mC6Vw3iXOhoHv//wZz65veHF9y4OLDX1ShgE+/6UvMPSJoUvcHK+ZtaOLyYq9piM6H3h4saPrjRnixfULdtuBR+eXzHM+mfwKR48OAas9VQBqZKnOgW3WZaZVFyejvicClBplssVcr7asr/ZK0+dLXGm1AaStR15+e/WZ4FhpVea5mFOnSi+YYRitIGzdtMoK7sSKndYGVxMGQldrCxQywn7KdKmzAsxc6Io1lozedboaFtF5y9dF8UGE1PX2zG4YOR0Bc5m9SN8MYg/CmCPkwjHACd2lRQDCieAoWlqEdjHN6+QtAxlT9IZnLN91xddwlCshFMuCy63477Wjgju5jRZ1JQAsS2QOWPaoZZRgDfVCaM5M/U7FaNe5aAuwkRS4sqhGXY3irwTlNE8W4RVTerOWBvWq5zW629qc1NPWQelCauesDxGctcnGU+jE4JVdinTJxwPl2d2Bp3cjP3txze7sjIvdltcvtjzoUytUVkqbP83R+3IUJNcamlMJWLtPE6yJVzXE1n1ulshrcFrJwnEcgY4YAn1nNOY2Z+VkbqtRFiSawYAZ1K0PRVnjo+uKEp+OpfLHou71rKcKFTVoiQVK7IXiMNRmxAlmLK3IICphwEJ7bPeTHN62djACNeASlvfUrpO9bqSIRdFb3ZJjs3NeYBe1EL/22YlutK+du2VtWqZAvN/LEOBiN/CQwPsf3xBDYNN3XG4Gbg4wz5nNdsPgRiUlt6LZqLW5oGc7VjK6PadbgeKG7FLnRd0NLbjRdrBHT4/zZM8Ro2Xe3MDuu97Xezbon+/B6HVTMZuDLGJrMUXPhkpknCZysXoIPGhQ8exmuDmZrdo4lTrRCNM0N+cpicH8Qp4bq1mKCfqasfbIpK+9Sm8fhZNGesuALXuiBWRYCs5VK5RzwY0HsbEfS6bvIikmuq4zJEKxOpCpwZtqlsOeMTokc84VqmprqbKNVblhHeOrx6DM85JdKapWyCtKlxJdiK2fRHLnrbDhkAs6ZhIzyeXq2dkFZ0NgE6GbJqqHNuVMS874Ti2sDeiaZ6sGLA2i1Ucj0BAPzJjDI5AWx6mykVltz7peozYgXk2JwpCWa7vLYHouhkaG05oLl+J1NNmbGSa0BEoOrR6juBG9bIAahFJo8LW6X2nBGBHTQdEb3lawgq3TQmisj8upawDQZPgSgWv1XnWN+0YVKctJdeWkVDsD2lqo92YkbObEmU9QR5S2J1IfCXMNptnftc8OYtkGE/OZfDyguYccoHRuf9t/1s7GbA71CRIt7LrEruvoJXBUI7cYzrYWQABi35H6xHHOTHcj4sRBKwOu9bhZzf4rDLnVe5/iWAJ7xs6mcWH4bE5fNZy0zov6mq6haDzrvr62fafBSFvwa9FhspozVBeimRPmMXh5sS22sa0JIcTENiYs2jCB6gnL2md5fOaOymHKlveVI/mwR/OeIOe89viC8wcD0/yQv/CNL/PlL7zBlz//BiH27Pcjd3dH3nh4QZesNuP9Dz4k5wnVmbPdhvff/4g/+OM/YDsEzrc9fYrO/rEY40Fw1mJTql3qoOzNaKYqB1xBnt63YeGXwir1RmhmV4Vm9JwcCjUaqJ+wSGX10U988/5pK/+5LJjvrBDd6JjHkXkypRNCbNS+7lctxr8rFDNWlujJOCnH48Q8zUhIju2OqAq5wFQKk8AcYARG9Qifx+gjeFrVY1alMPl1Z28AFIIZ8PVZplKpJO25pFSjUFtkoGKtC8bmUjfHOuu1LuDNpSDT1Oa/4W21CvVqmHqEya9fndJKt4CycBLUinNx58sFRS65FQILsZKhEaRYBm810ebkLUpcmzJbov2qSplnqhYJqXNjswoOU+hrhjH1MayKsClp/3x1VHAF1oW5LbIlwlYIKzciebO/MFb65ULQwgg8n+HFEW7LyHEOpNBzc3ugaGacDV5U8d0WgVXyXFZdoP2+dcHSi4AGHJYCUddZr3U+sjLC2NjX5mxRZlNwHl2s8DD3O9pct27bIicZT/FBWweR81wHsTrQXhNTFvnSDEHFMworD9bXZUo1VLsYKNUwr05HBUQoFn2tvP/35cOazKLKmKKLbCgUFipsWu+jashVeFB1FEoxI7R16/alvhaEJk8sytwJzGXkMGc+OmZSFxgC6PvPOIwjx2liO6k5uFHQvGCfHehhGS2vB9BK31udD60ZKMvKSLWapT7j0oMj4NkTd4SLU8kGiUzT2OYupckMrFKMNcdXRpKF8a85Su5ECObo52zORtYMkvxeArWVIBiUpH6/wWuoHdPtaiGagzpNk5O7BPpUVs54lT+AE0M055YlvxNXDkvJ2T/jzflcTmlbZ8tatKy0ZxgydPNMDIWU3LTX2hjU5UeoNlF1qJUWAZd6v9oMw/oMZtTHpY4lL8EQEbWGgmIMgylb5jMFz3qpsJ+UuzFzd5y5mzKHDFNRvv/+x3w4GOw0Z2cMDYHdZmPOoxrLlzWuXO696e21U+Gp8xStFiWIrzOZfc/6mmsOwpJRqVZ3lSNNny7FESYHlsn0mTOHtQC5WNPKpTaRVU2ZOUpVX0QVNGvLwAUNbe8grrfKUvNnmcrQ5ENu5ondh4jBW3OVg25g1zVWqi7SCiMEKC3jymquS80e+pC2dSC0K9oeXfRWM2x15YCLomr7nRSRmJA421D756NEVLNBM6ueFhi6aAx4vjZbPlzqfak/lTao8DROzJMZzsnrfc83PfM0AsWc+M2W/Zx5evehyygsa6eVceuem+IPZc1HbQCWXnGf5MC8fNRPympO/qRPN1kBDZ5KXQ8u/8WUje2Hkg2WU+e+psaqL1aUGjZhhaaQ6uQs4QD7U7IhnEqmZCHPkLY7NmLNnM/OdnB3x/7Pg6NiMFU1JoCsHKfM4Xhke7blbAiks4FvfvULfOmt1/n8648oBQ5j4XgsXOw21rsA60avWKHq0CeevziQs0XNYghonk/T0WLwoCAgMdKnRJ+c6tKN48q4ZHJl5T3ed1pWL9hm0CbMFkaNtfXDKasV1YRffNBPOhZc9b1z4srQIxFVdtYIecmZMtfiSIcNtWhlVVyOHa4Gj1qU5ThmpuPoEcfg2P7q8Hm3bwlkhMM0c304cPTFF6V2lA7tnqsys3tTxKP7XZyb0TEXgy1VUFJ7/vqsrgjrtpirFnKja3EAloh0xfHWQW86Q5sL1b5jk6LNsEdrNM0cOQnVm5CWLl/j4nMpLUVvhZPVuNUmLLWuEz3NGC3rwg0xv7viWQUQQpxa9JvKhiUrAgIBijOinDgqNYq4rE3xe1pxIC1p9HoffsrYshD1Dl3NxsDdcWbKylRmAkc+lEDC5jSXyWAkXsRcCJTi1M3VcHBDuBpnFaa3hgNFrTvSI6K+0I08admjpVSjQIhd3fOyRO3rA+HGmlajyVmkqoJtkaLFsKmpaqnrup4ol8VwCFLdWoMirFHsPvZmcPt5q2NejbfgBrePfs38tYZ4q71vBqiunsGzu7VuDsWoak8dFdCl9qeSFPjYmBMSVs6NVv3VrtmgjH6vcymMc+bj40zMSpoz+z3MeWbOmS7TaEa1lDZ3+JjXwvRK5EGL7rlk9PFezzN1JWhpY1aDE21/2JOZgeaEHiIVdlUj4KXtrSgLy2CVkeoGVdshPqeFjKnFxVGpk6yeYVDf33UfrR1zIz8x0pOaOY5halmsWivYBDo1GCNt/9nTLbUAbR3gmbaVo6I4PNRhjhE3tFiosCs0tQ2z0shORJbgFmrYdgm0qGz9LE32ycneak1WS169vtSExG5eMm0tSwglz8zTzHHO7I8Tx6wcS+H961uu74y+OiMG8w7C2WYCD7FMs5E5VFjusstosqbZjGLwtyjupCuw2rvqa6SuQblncLZ5PXFUBKTSBhcoq++s9FBW3xdeMC9+P6Zj8R5E7WsndSmyclRUlnUjYZEVFWpZ6ynr2Fe2UzlxVBYdi686XSbVz+lQWllkr2VWVudQ14uydlSWTHIlqLFst62pWPd8sLYTKQpFku3dVUCpRf1VrJalLNTHKYYGra3jZXt+kSdNbq+KM9vjyQJJr08fROlicPKYBR1Sa3NeYRierJE1XPdVh1a7q43/al2tbMqTk3/iye6Zqs3mWumOtQ2pilNK3DuROOlOddQXPVjHpSpnLZbClBUio+rZkjN5ypQ0ESTSx8huGJjGkeMv4bB92uMzd1RyqZMc0C5yKCB3M7v0IVeX57x+9Zh/5Nu/wpBn5qfP2A4brs6v2L3+kOKFtzNwO0b6zYbd+Q7RkfEovHi253yrJMkcb+/ouo4YIjFKS2cKSux6dkPPbtOvzVVM+RSvtVgdvgKqh96sKF0WvLiAtWXhToCsvl8PWf/wqg+8fCxwiEUsSjDolNUE4HzrC350Gkfm40geR0pMDfd6clSqGjXIRM6ZcTxysz9ye3cLGKtXjMmN1gor6yzCT+TZzZ4Xd0cTtCtscA3DtCfTZSlXg8VaNCzwoJpGlfYDTZg0J0JWafeVsm7zw2JwnkTP2iivN14VzLr6s5ylmhqWTl11DF4V+C5GRB1ecWFdr7lWkzRM6zKTLx+6Mkz1ZBBlEbK6OEonwq6twMWAso8v67GZMBmPgK3ubXWvJ/dWI8VS4SreEdhTTU/3B9778CldhD7CJgnHWa3APnuER2mj2Jo/gY9tMRY+lw11Hi2jVZb7WsrOcFMPxJW2qmXyQjVma/PK5f6phsjK8a447iShQRqmvFA3thls91Y8QBAJcXFUxBdrKZVi1JR7ZXXKDuMRpFF3tjUpy7ahJmSqQdD2vX3OwFdtY7SzNGw3irWiqwaSrPof4MQadtpaFwMs7Et1gJertrVlEVRfXXUP9L0b/8qGpUlgKdeLIw1UyFRbZ/eUePBC2BPl7lvhRAagbeGeOJfUMawwBV/7967Ttkvbw6cxy7UssvfXdYXtKrRJOz37svf9fk90hk3qsudWwkDuz2eb4lVNRNu9p7KtjV+7VNVB9lvNJsdmRDo8rdg6x6G0J1A6ZBksWcu05d7rymvZi3rjVbAsdk3r/m17r2tyS3XJS2kxJqg3O9g5QcnznIz5S4XnH96CO7Y5JEQzgdIMFT2ZEHdg5fS1xSFbj7Us8GXX7bbG16t/PefLd0/ebY4KzSlq7ze9uMBIhdpraTHm6z1UxsO2OtWN2/VabbdnGYv1DK1bNdTrhXadeo/166eOarOHVkteVutyXQdbHRUBWq8fP/+y1ZYHq+yrNBnghAUhMh9u2ETltfOBwwzTbFkWY/aKBApRvf9NyYiYfdf3sTUCJdpcVvgn/uRWQ1YM7RBBUod0idhFynEkl8JYAiou+3NBSjZDXOueW03QernU5/Wgh1He3HcCXn28LJ9eaRXwamsB1oE/28o1S13liy5r0iYMleyLTRuOWasTWS9HXY81mOhspvUzpVgAotgeDIJBlkJkno8cbu84TDBsdgz9hquzHfN05Hjcf6px+WWOz9xRiRXGIIWQAuM0s7+bmG7u+NI7X+Sf/if/SV5/7Q1+8N3v8d3f/gdcDsLrb73Fm5//An26MBaqXDgApQghC+fS8fm33uHJ44fc3X1MGY/o8UDOx0ZFOs4jYNGK87MHXO7ueDAIx8M1hUSMqfUWqIKhKoSWlm/qQZaCb9W2iSsGWGf7NGVGJLmBuNrY/rauaY7dKAqLtAGWRdvYMFRbNDWgrmSsGE+LFypJMjGjmZJHVGzxmIxcDPhQIWFiykJKIZSMlomcR47jEbQQgxJjYcEBYAoOg4tMbjgtuFNrRLYU+IbGmuMPC1gtTG0I1iBeVP1WtV5Ym/nNsFsiP3ULL/CYOtwqcm9ru0FWSnMsT+9pmWeQJmbsGuHkM/ViVZXgy0FEWOgr61dOTD3sqRZBfr9YbxkEPXkmvff26RlPX6eZxK980+59sajauldo0VewNVKNfcXWZ/TmfuYm2LooYhmlr37uitfPNnzufMO7z+549/rAHz29ZnZjKZfcWKYo1lV4MwgX58J+nzmOsD+IU2m7clwJ8goPk6DsDzPTNHI4HBslppHerNba6hmDF4eG6D0UEGYRdtsNXQp0YpS7c56YxswQDB4RExQviNWcW3R41hmNSuoSw9kV4zgzjxOH62vE6ypa3wLcUWsQsZVjH5SFe35hrVn30okeiQerGarZ38Jp3dxy9KeKVJfds3xO23mq0rL5X+04XYxXWIzTUrOYarSelbGoD9Hgny2iV43Xukvx5oDLLdi5gwWI1o5hu/nVR3W19l+ht20N+35avb/UwdQ9Eew+fN1UpJ5K3U/LumsFx2oGn2hYzvSSjLEPFt9PtskyRvtZQDt/KJu9KsDWRqKxUdkfT0Auz1szJcW11CvERj3P8qza6rDQJcMrDg9s3/VtqbX4Bg9u6ELKUSfBc0er8V2M2lrgrcENV3WZEmKb7hpC6ESZNTS4GcA2Jv7i21e8OUDQwt/6+Q37feE2F7bD4BTLFrCUWvmuZkTW7HFTAidjsra6Vy5NFb/NKGNZEC+N7Ktfqvt7kctGFKGrcV18G0GJLYNR7Yy6n5ATkUc185fX9OXbUUVy+9HPWNoI6NpoXvXYONGB6hC0k0zAsobqMC3Z8PufWA2GH7WBrEowUhgU0WyEDdj+yxaioifw9ccdX3ztjN/86ht89yfP+PnTOz7++XNUDAqGzDA7qxRYP8bk2bgUCV2ipIjQYak/l5WC/S4RpaCzsUFG8Wyij2kQQUNyiQRkQWfIOfr8eaPFAqp23bk5vHXiqj1QZfnJZLbjk6BgDeHj91QDjC076d9tCI5mktQ1VKlzKnPj2k5QmEeQHmLC6rHsmSqqxupaWURgEiqpi0UkLPIoq+hEdXztl8A4Z25uD7x7PXJ+qVxcdMTNhvMHV4Rh88rn/rMcn7mjIiuFKCEwz5n94cijBwNPnrzB17/6Nc7OLwipZ5wLz+5u2J6fc3W4ozu/RLFoZUjJF64JqmHYsNl2IDM5dZTQ8ez5yO1x5vZ4YD8eELzBmw5M08QmBS7PBrJ2bIaO4oWXJqflpMjz5Bn8r2XyVzAPpEEMTlXYiRm9yIZXXOPVC7hqbJOoJkfr0jNmrpLtT7uUFjTPaLRGX+Jh1Hr/7R6VhgGt9R01y9JSfmud6EYI6qwxujB6meIWo78rPjYeiV706umzLGnOU4HXTBuX3icjdSJg28BRZeh9Q+XeAC+p2fWVlh3fdIqc3PE60vhyRLNGzXTNulYNlqYt7Z+wfk3uPUe94D0jqM7LS4+zPgfLGH/i41MNopNhX76xisQFN2QrMKzWKFR4kLoktYhS4GK75fHlGZ97cM44B24nCHJLRSRUY0IxI7tLkYtt4u3HA0+fHXlxO7PfZ89S1Klf5qDJD4XzIRKGSH850CcvfI7VKfcmkV5HZvvFoCV9n8gCt4eRH7/31PZCKWSBEAoXu57XP/+Qs35jHddTRKLXaB1ncnGK2VI4jnccp5mnh5kuCNvtwDsPtoTkhBbem6JC8XJunX/ckTcHrxU+V0dXLW3fKEARiyyyKB5bDm213zNwXp790+XVJmT1oqz2nkNkuJ9t8Fmve7ba2iY8bA7UwwuyOCr2HVvzgbUDU/9yGmtfHdVWbm+vjKeX1/epUZXv7UxpS8hlXZWhIktRsiv4+VWj125CaZHm+sYrZPUSTrFP2pq0602TP4OIZWbdYF4HsyxJKUiD/tTAh7YMSSXzWO7r9DgNwsjJGytzp8mmClMRcFEtq++tneFFDq4Lb5tvow6lDeLNqs1QrDT6y7PIib5p7qVYE9nHu4F3LiKRwnefj3THPaqZGDuSKkHNCFZnAC1l3YxT2vMvZqMuFl+bu9UkrYZpmelPkqAng7wazWrZ1ZNIMxQXO3bRKi2jxLKP17ezPvTev5/4GV3/6xpe9ERtrLP0C82M64S6dldZ3Hr/iyOyZKdPltnqHuovLfsZDJZcs3c16KKIE8SAhsI7r7/ON955xK999S1e7DO3h4lQZm8egWdsrFq49oOB2rW+yv1KU7zs1aLVGZHlHlURFUempGYPNRe2Bk5qwKVmJ5wVD13NobIap3ty9ROOPwkatiyeT/zAMtjr7Xq60+pULMt8FYg8ORTWQVVWa+HEJvVxWIE72ufwzx7nwrPDyI9ujlzkyIMS2QyJeVbmz96t+OzPGFhFY0LgOB25u7vm63/hL/Ibv/7r/NZf/Ec4jMprb7zBO1/6Ej/8vd/mOE3MU+bs4pwpA9OEdh2x6+n7gfkwI6UgmlGNqPSUBD98/4afffgRP33/Aw7TSAzQR+GdRx+gc2HTdfza177ElIWchfff/5DDVBgLr14gLnwsUn8asV4vuNqIDrWCP0sjL++fnvrlRf3SwmiXN8EXqnHoEaisSp5Gcyyye/zZsK+1XgW1iHbFrRJrOk8bw0QQY/+qWZ1SDA5muG/DZataFqRmS1KMGImmNXLEo8IhJAiW9bKb1+XB1xFvFaRI61a6bPz1BlzYOl55yCf8/AlHbExbi9H+SadcHLT7J753n/Zbm6P1sYZ3rL7ZBJ2szvPyvFdh8YufSXRR9Ou7fem8qifL7fRq+vJrK9rntdFqDaBMaNffKTD0PdvtlovLc87uZvq70c9sEb7K4ZK1MJVCHzteOx/49juv8cP0gp9xx3sfPndGF4/srO6pYHtqnGa++blzPv/kkt/86tuc7zZ0fU8cdgypI8VI33We2Yie9g+k1HF5cU6OiR/85Of8u//n/4A/fvcp14eRLPBwF/j6F17nf/5v/qs8fvQ6m2FL8uazosJ4e+B2HpnLDDrxgx98n+99/4f8u//3/w9vXF3xhTee8K/9D/4xYh8tATmPjMdDq5W4vrnlOE1owHjlp4mpwGHMjHPm7jAxzpk5F45TZi7CXGCcPNqpxpxSt5DVElTHz38vWDRnvXJlgQ8tOkhWxtPpglBdlOTpCl/svepERqBUaK3jxhejb31ukwHBn6PC7Cxqn9v9tftkJSsXr4ZXwcbW18poq8Hxh1l9Rtz5XmBsUZaVXapTuT7xqk6qmlfN4bkvu9cvOATjcrMlJvO67w63lELra9GeavXQSYPj9hcjsvYv8eTnMq51vu7dRTOET8bvxFqlnullp1dOa2zUC25X7ovgruVKTp8khtVcuuQNVLMae2QtGw9ey9hJgEpzTCEGqx+9HIQ3HmzYpMCb15nN9Z5ye0TChlggqDF0FTEjtNIN13YBpqHvSbq2tl9e79TxaiMuJ6/9SUeLgq8/v/6xBa9ePt/y3Zfv5U9zvDJD/wuOP9Fg/tPcg9soVklkNkFMiShKqpEZhEzgMI+kUDjrlL/0nV/lt772Nr/59df54HbP7fGO735/otOJLidrBqwdohGN7ixoJMaeKMmL7YM3DF4QG+pMnmZg+2Zz9s8hDeTB2NhkUWlYqaln0FlsJetnFdeeG+DXkXrq8mca0/rddY1eKWW1p23fBpcRy34XkFWz8+pgYeQKFkQ4taeqfqhPUh2RdpK5QIw0bKGToNQ6wCpLzQawOqln08QPXtzx//3RB2x3t1xePOfB+TnbrqePfx4cFaljINxeXxNR3nztin/jf/iv8uu/+m1KFm7v7pDYcfX4NT44OyfFDp2zU7CaUTseRwZnxDEoVY1QRQqF/Sz8V3//u3z3+z/iD3/0E84fPKQbEkMf+W4Hl5sNj3Zn6HZnhs84MztHvuJAHxFeUojVa1bD7C1r1dVHwXn9jbJ3nkfn2z+NTLbTefRJylJcfV9INdy5X6zSkM45M82mVlOITtJgWMGUgkez1D1oUxHrjuNOGOLjVxz7a6xcUcwBMSchGu6wmCEUsb4eBmHJrVN1poCGRvNY93tx4VCjZg2aUx2l5UH/FCvqMz4+Y4H9y1/+5fmvt7QuRn21i7H6/j2H5OREv+BY4ih2rOPH7TRFKVKNF0VzNsalXJlZrLdB10VSFGMDWan/aj5nTLCWkpnubinTiJa51YyE1Wd9xQKQS2a/v+XJw9f49a9/jr/2L/4TxD4iqUc2Z0jYICESYjJsc4gQOog9IUajow2RL//F3+Db/8w/x//2f/2/4fd///d5+vEz/u1/+3/Bb/7Gb/Dm575IShOhTMj1DeHyCroNmnuyjtRi7K986fd49ODv8e/8e/8Br3/pC3z7V7/Bv/Q//WvI/hmMe5hnyv4WnUZUCy+uX3A47Nkfb7i92XM4jHz84o7bgxUNf/jsmsOsHOfC85s9hcSU4fn1HsFqAe6OSvafDXJntR9zbU5Iac0hAUKMq3q5FSyxWpcrJ7YugrYOVg7CS666v1CkzmvxLun1+3pyoubwivUhUbUoeDXUTmhS7zsAf8LS1dV3zA6yCG7tHbQ+gaIE1VaEzKr/SaE2e1wZ8FTDscrN8vJgrMan3kvBWA5Tv6HrIwRlfnZNLkpHOjVM/b5VWXpfuJ6pGf4lY6zLt+5v2NU9rJ2LUs/n15KaFfXzV9a8BX64PE2jU9eqi2r9lZ2rvHRhN7LEqGGD1AaF1fjx2jKgzBPj3R2H8cj1OHF+9gDZdFyd73h8ccamC5xtj4ZSyEoqSsLqSCehOdSi4nDD1Y3cX0SfcPxyZv2f7+O/m2d143Ul7ZVCF4Whi5x1HaEYZFhJXB+UvhMePRh4880nXL32Gmwf8ODBa1xevKDveigzWkaMaCA6jrZ4PyFj0dMymNMbZmMzdah6DQQIeL1JhcW5XVRmcp4oWuhSakQV5lDj7HyLPLBGr+YMZC0nsqkyQIYQKd5U+CVmMNfR9d9K+vLLODYmk1b2QIMqmmwycSHtw00Wn4Q5FC/28UyX7+aT6JCzfa37dNVrVsRDzaRQHdTC2eaMJw9f583xjEkCswhP9yPpMFKrhj7L478F6Jc/alGO+ztee3DOF996nW9+8xs8evSIaZo5jhMhRnYX55xdXNClRJmMSaY4eL0uJKFOPM4bHQkRul64ePCIs4vnpOEpt4cZjhMqmdtOGM8LfRiAo1HujplZT5CczdM8jTgsk7/8sIINubNSnEViHUw/raxYX6dO/qcQIYvV2tKRur4HWWBNbYfWMaqbxuk7K8TECsy8A2yFkHk00IrkzQOvBbO5Gi9i8LgKXbZEVG2mJGRZKbFmINmGcNDQal3cc87ujVKdi09KkZ+wZ31qh+eXtIY+4VqnmP5ffI5Xvf8qQQZ1XdQ0+33HY1HKa7Gy/v3kNZFfPC4rg7VCQGzMl8J2Xa3kl9SdGyhRxBl9lsaF7fzAUjRC6wk0zoWb/cT+ODHP2RvIvQw6qiLWWMuK9wJRwOhIpQihZILMNl5FDZYsAqEQE0zzxPsf33CYZrrhjM+9/RUePnzI5cUF8zjyhc9/gTfefIsPnt7QxQPbpLwxbCgxWJ8aFPFIXAiBYejp+w5Rpesim03PxfmOKV8bRaPfQwkwT7PTVRd3yOxZSpmd/ceLExtluBcZezYUz0CUgrO7sZIBFmuwH1YGtq+gKofaZ9cTp9UGrrLik9bTyY5t/yw5HW8I6XPVssiynj/fM1KfoX57pQT94lIVqq7vbb0GX7EE6xCs/tRnrO7HaZG03tsvp/Kl1jxUkecWAicD1cZhNaQr1q36nHUPL6QVp/uofra+K62I3syqts9PHMplky1b+HT+l90rvOqadU2YwSON4rZlbXT5xhpwBrrUm9XfVT2jbsZdihbFncLsXqk9f8mZGIUnV+fEq3Nz4seROQsXQ7Ku8ynSpei1mXadjcCAOT8NQqlVqsiibxfBw5903JeKv2w245N0z6c1PNc65P73/zSZlV+UIXnV2e5/8lXXfElHveJcp/d+7/wuL7sU2Q6R6D2uCh1zSQx94PJ8x9nFOcPuDOKW1O9I/Y6YusYGhxeB1x/xvTVn63HU4IjujNSFfQLmAFr9ShCrY3anQrqI4L2LYrR6zHL6XI1gRdfnvAdNb3bKy/O6Hs+GgPgFc/by2jiVyAuBitIQEOIMlZ7FftlWWgl5twtlNW+vWnbqRVjiWRlTGq50mrNi//YxcrbZ8PgisS/W263oSEIbSuKzPD77HE2lVC2Fw/UzvvrrX+Nf+St/iV/5lW+isxo04nAkpMTlw4e89bk30XFkvrtjf9gj/QZipJfOGwe6GA+BLiUkHNnutjy4Gvhr//q/zu//8Q/58j/4Pf7G3/zbvP/RB3z47Bn64AGbAe5m4dn7H5OLomrc3QHv0n7/tptArovGXld1Q679bhzdVMMAqDjK9t36envl1HR49bj5olda1Gtx1ewcgWiQB6mK387ZisK1oHOl+1tzuBRrClns3+PxwOFwYJoz1OhAgZIVDcqsWIE+wRsAuvIR6/YaEwxdYJ4t9docKH+QsKqBKJV1Zv2gsIoAL5u9vae62kh/8qp/SfBWg0FfvSGX7/2Jp/6lj3WEpQqnJqBOQzMn37knBbk/Ys2Bu+9EAerUs6nrXh6L9XWrM+Rpckstr4Qp1RGtc1SNJDNLKVbonYL3fyjFIBoe8VzuNiBSSNEay704FH704cizmwM3x0xMtT+GPev64QPQBWG36bk+HPn+T9/n//mf/5dGdZp6hu0DdkNnHXGDMOzOiKlDUsfZZscHH1/zn/ytv89P3nvKw9de41//N/4qT2/uKGnL2cUVH374gr/7d3+H//A/+n/w+GLDl99+k//xX/0XODz7kON05Hq843DIkJVNCHz40Uf88OcfsN1umUvh5sVz3v2dv8+HT9/j7vaaw92BaRqZppGbmxdM88w8z1zf7pmzMk2Zp8+uGWfD9T6/3TNrYCpwfXcE6VACd8eJuTYcdOKMNp4iLTuxlgjYrJCzZ359HamqU0AL9zRYcxhO4Pxeg3afKagW5VZwUgBqqXiTbELb30tW2JRboaz6ANV7qY6DZ2zXRgIvRydPjrUj4DKnysy2P8RgQ1lN6dYC1eUzL5NT3Dd8F7l9//rLfdZfJUT2xyNjFpACYaEhNgdAm5PTHq0s1KDGiFXz4T5+jukXsYa7948Tpjh3HKSNn5zoqoXO2fWKv1fE5qj29VkoA50dDHEHghMXqAB9DKQUSQG2Qw9BGOeRcXIqWxGmww277cBf+s3f4ltf+zIPHz5gP878//7Ob/P0vXfJ4x7VCwqB/XFmngtB4bWobEMhoLxfYMyF7D28cll6IpWKzDlxpFbj89/B8UnX+WWgVn9aZ+VPup+T66+s0097pU/zuXUFKIjbaB3nu57EbGtIOzR3bHc9rz16wObyIWl3BfEM0iWSzon9Gf0wEPtAyUcjWikQMq2+byrKsRgMECAVWsahtldQrIYOoIRC6XrmmJhQDuOIoFzsegsmiTD0HbvtlhwMtpuLETNFDasMJEurAR/Kogo5N/r1NUHSL5rPT3IQ185MpcdvyCQcHuaNqENQtJgDZg1/K1xsde5Vf5/mnFQihSo2QoV1hZeFXXVS8OB1ngl59prMBDkzCDzoIl+62nDAgtYSZ4YuMHSBz/r4b8VR2e9vuL274zd+9ev85X/yO/yVv/RPMN7ekEskq7FFpS4x9Ge8+ebrjM9fMN3tGVIgDh0ybOjnRQBbitkay222O/I8czjsuTrv+c1vfZUvfekL/MVf/zV++JOf8L3v/yE//cEfI1NmvL2z6F+0Qqy5mINRFOsW/FIUe5mzqkybN/nSc3pRoW+Qlipfyc36tZr2+0WLWEvzzZnUOpCr4EXrhZJHah+G0HWklKwre4xoDMZaRDVkzCPWimX0mpz7xX25zFTTpULbKgvXNM/keW4sUIowzYWhS2w3PY8eXvKT95968ag0x8hGY2X4tljAMoZ6/wetDt9iqNx3Mprzt1K2r7QmXspevHK4P5VyWAuQtfVyv/CsjifwSsNifb6SK5bWHNz2PP6vGZdr490zaFSj0a/ZIptGKZ1zZpwmyjyvBN7yeT+V486bJbO6N/twdbnF6Uedzr8V29dUcvAO0zjEpEZA66wHoJfMlGee72HKgTxb5/QYlqadrFx6qes7JEK/5b2PR57dfMjv/ehDyGp87WkgpuJjpuakOGViQHhxe+R3f/A+x8OBR5fn5MMdf/8PfsrtYeLh1SV//T/5j5mnib/xt/8OX3nrdSi/Sn92zj/83h/wD7/7+/xf/vpfZ7fdkVKH0KGlcLs/sLu44OPbA7/zBz/k3/nf/984TrfMs403Yvt/HMcaeIJiPYVKMSrkrIG5CMcJss4WhfcCUSTSbwNhzq1R2amDUemSPXNSoGhavJaqQVuUzxVoFG/yKExTVaxKN6SmBKUao6rkaWqvF8c7ixjjW2uF22qalgzc2rSvfkpCiDGxSRYIsR4WVldXVJlDWLJAq0aQzfn+pI2rTi1cH1eXCGNbx4ixM2ppvQDq2l7f+UsR4tV42pZsq745OiK0Zq5BrHZizjO5AGINeC3rFH3O/KZUG/QriUUdo2cWK3zNoLb1RnAfVZosjMkKiVH1Bpt2j9ENCy2F2WulXjV6weUFWMBBXB60DuTFu1prferF0a22DxjUMMSIkC3o55mVKr+L2joPFwPf+Y3f4Nv/+Hd47e3PUUrmxXHiD8vE3e3POMwj0gX288Q0Helk5je++DoPZEbKzB8+O/B8nLmZCk/HwlFMFs3qXHgqxBbu+HSOwX+Xx6dxQv7UTsp9b/reeV7ptPxJkbs/7eH7xmqfIqnbsB3cUcmRaew52ww8vDxjs90Sux5VYZxnq+EbR5MBBWKpVM4B7RJjmfj45sh3f/BThg8/JnQJusSuG7z5aW2pEEyWaqGoEaF8//1n/PzZDe89v0NCR58imWSQURH6LplNjhq1doBAsML7Cp8v2Wvtar4WTMJ+emf0F2bAXpWJWTkpFmzI7jC5nAtCqFjP6lDUvWsnpW5cC0LcQx/g9PdYzzxp8s772DW7rCyCcWWroUqMMAyBB13HuUuxoZvYdsL2z4OjUurAlsyvfPXLfPWLn+eN15+Qx2yQIhVUC0EiqUuUkDgWuDtOnOVMD8SYmKfJYEeOxTZsoNB1CS2Z6ZgJXWK36Rl2Z/T9hqurCy4fnHEmyu2z5+yf37C/uzEn4v4GrQpNtRUyro+TyBT331uwh8gSoXuVCKiRtV+0qO8X/2U1KsdZV8pCXWH5JquMGEsK0N5vWEsJjluu7g+oWAGiNQ2Tdu11HUkzN8wKQERIvu5HgS4GNl3kctvTRQFKuw8f0favoAvH/aoxkf290LQuzaoWRo5mcLRx0faZ+ppI5RFaH+uokaz2rLz8qWav3z9DPf/qtfViWPstpTQnFfAaieiN30xApN6oFCUs/QjWz2IZtKW53Rp7Lc0RsLW2vqkQgtEIC+zv7sgvrsnVUfFiw8ZkIutRcRrqUp0DdxJZ1nXw+1DU65Wsf0bEabNX8yPgnoy0HjPV3Cpq0bCbMRMKhjUXx+izflRZza0pvP2o3B4zx+kIxYyqLhwhzNYnAm0RKAXmnDmOM09fHHn7ySM+98ZjHj96javLZ3TdyKOHVzy4vKKUmS+8/QZvvfGYx48fEjdbPr6548fvfsjvfu+POT8/J3UD0NOnhKqSUsdxynx8c8fv/+DnJC+PSS07qx7ts+dIwbqhhwh9Z2CDXoWueKdnLHuiGNtYpSS37uvzUoi+gjsg1pxynpXrm4lKT7rb7RqJRtF6foOCVuN86Dp/73QfCZYVzcXoYIs7Vysgkquh2j9lobNebxhto2D7KThDWzdsSDHZPBWDnGZVDkgzAFitOwnxJIpf77V+Tt1gqB3oKeqBrNi2uSDEFCglk+eZ+e6uXSO4jKl1M+2u2x42TrK2B1xJm/NWPHCTjOVIIeRCCNWJDMRg+yvFRI1v1P1t5xbCeCBoJmih7we6GNHUOY7cNw2ebVELrsUY6IeeMhsBylwm+r4nRutPMc0TxcdhyjMqkLrkW1+azC+qTNPIMAzEIJS5MKsV1Itm1x/O1QALscKK7rfJDIwhMMSwiiq7vkMQiVxeXHD18IpHjx9ByZyfnTF0vRmUFLIqY86UkknA5652XMWMzBMvxkwK0IWZQ1HybHrRsmgr2eN/LZDa5W+7o5U8PfmhGmD3hfr9D69/lZMzfpro+dqRXg5tzukybPezoNpubfmx6of757t/88srrV7iFRbKL+PenTpeem8wpUX5u65n2HSmB7Iwbnq2m55tvyGF2Bz9oplSZnKeyblAiUQJVHbEIAEtBh1+Ph/owRyV1DENRsxgjoozgAVx1EhhypmPXtzy7GbPfprZbAYrGG/7X4xJrhjxS4WDhaZi1ez0omSvV0Fe4VjYwNgorObz/r/3f341nNAuYteqs6dNHtaRBhoD9bL+1zKsakSTWrSf/Rvr9dUuu3ourXtskYlLDZ8/VxBiEjZmURIInHXKthc23av3xJ/l+MwdlTFnoigPtx1/9S//Jb719W/Q9Rtuxhm8MMnSwx0iHT97vue9D57x0UdP+c2395ynczabxEd3L0hB2MbI4MpaRBlSpIzCUZW7uz1TLoy58PDJm7z26Bv82q9+k6+9+YSf/uCHfP+7f8i7/81/zV3OaL9h15/bQlRdWUrBmLTuCTPh1TCET6pfqPMsp+tl5cQstSWvFm7VaIWpFA6lsJ9KWxoaIponcAVnr5pBnEJAY/Qbj2YUY9jMJa1jik9zYjOMbPqDd5TO1r02mnKxSF+mC1hH5yAMYsbpJNCnwKZPPDrvGCJ2L1IhFosory6HKmT1CKS2VnaUkKjwD8oIZDQl0OCmEauo+z1ls95r9+ZkGWsXXj6oem/IW4VE61C+EgYrpazts6wMm2VcK3NazhktSj8MbHZbhrMd0zgzjjMXjx8Ruh66DrdkFnnhjkRthlixui2dK2YIVOcnBItmpr6ni9YR9vDiOR+9+y7HcWQ8HpEQif3QFuX9ZwdzUsKsxFIQMqqTP1PA+vQo4s85S7C6MFX6AEnwfhTBHXqviVKQDNEL/jIdWa3oueRMUmOQShHE+4+EkwrrZd2ggWMJjCVy0Ni6EpcQyKx67s4mT3LJ3B1nUky889Yl/6t/69/kH/vOX+Q7f+mf4T/89/4P/PTHP6YfLvhX/tr/hMePr/jZd/8OUNjszpCLcz4+HPn47sD28gkldUyxQxmIXWeEEnFP0cI4K8+nntcfPuLy4oxHV5eU6YBoJnV4BiPQxUS3Murrlp+LQlQKmRfP74wFbDKDetN1DF1Hfz4w5pkpZ4r3FKic/eOo3N4d+Qe/+32mcSQG4atfeIthd0bqeo5lImPjcXxxw3R3h04TD66uKKlnRvjog/fZhkAfhLkIoyqTG0LTcbLsC3AcR6Z5IonBfDqxjuFBK4FH3Y/ie8yyJHkaGVJgu93w2muP6WIiSWCaC5MqUyncToXRgzEh1YLWQJG+ZUpiMIUowSBA5sjZNXPO5HkCIIVIH723lDsY281AnicOhwMfHu4oRZEgdMEwQ+YA4lmFQM5zMwarU9N1sfUPKUWZ1Pbd5vwcYiDPE/m4ZxOt+HeeMzlD6jq2Z7sWeJAgpE1vBBASef7uTyiHO2TKPHrykO78gnR2QR4raUUhUJinIze3z0gBNv3A1YMHPH/2grv9nutp4uGjKzbDgAAffPAhJSgPrh7y/PoFiPDg0RUxRLrUsdvtONzecnd3w/sfvMfjh4/ou567F9fcHu6YOMJ4tEyLi6gM9vyyNnXE96gFK3rP6gvRZLcWEG3Zm3E8Um5fwPMt5ViYbvfMc2bX9UQiucAhm1E4BOELr+246hTJE4dx5PIOnh3E5Mhh9gx+sDq5Wrkiq6zKyphcmpGeCsAT/Su0QN3iUNKgl2HVL6wyNDWIoisiywjKssnLYhM0x32l99d1mO023Mhe7m/VT02cYXAd1Fk7Cs2ZedmuODWCl+N+gK9mMl/6/up+T87T/KIlUBS7RL/pOTs74/IsEYPavqJwttmwG87o1OjN7fsTpRzJ455xnMldxyZ11jRcTUZWCOLRF2FS2++TGIpECEwZVC3zUe2Zac7c7kf2R8t2Lt3mA1qEWZW7/UwksJ8yUbIbwwJSIBuMfpotgKPimcRQnUX/7CtsxJYZ/oTg9BoOvgS963uc+BKn06qr79dr+dpymqhaOK8OSyslg7P61VVn3y2NPMNedZuLGidxI0U9YBODp4ANcyGihBjYdh2okBQu+o6hkz8f0K+f//SH/MqXvsBvfeub/NZv/Drbyx3XN3tEBjMo5sxxLuSgHIDnYcvvP93z2//wB/zRuOULX/4SX/qqKa+zLpiRVoRpKkSZ2e4G8tAxjonjNJlRIIHjzQ3HGA2qkgtvvf0WX/zC57l6503+6Ec/5h/+4fe5vb6mi4nddmO2JhaVCzX6rVDx++34hJCDgGdj6ofcG2a9JNYG5y8xiGJ0wGMuFsEWIXSJPE2G3ZRI1w0Mw0Df9YhZSIhDwJo3XhYCx1rMm4EuDHRxoE8DgvHXSwxkGhl+U/gB2KRIFDgcRrqgDEk43w4MUYhSyHkCLLqR1Y1NNedGW9dBscUNBkkrEyF2PHl0xfl5j4jyRz/+eXMwkmvLJmZXUQukRglk2dnr4ZPYlFebLD9Zg+Bx+jVxiaDVCVnJd60RlXqsHMDTyFohpkR/ds6bX/wid7d33F7f0u/OOHtwye7yglm8iFoL8zRR5kzJ2TNkNt7zPDblGVMyJRaCsbiJOXBdKexvbnj/+XMOL15wvL1FstJLNCEz5UZTuPSx8dsXm5+S1ddXsSaJ7kEJAiW7sMsQQ6Mr7tJA1/Wte30XIOnsXkNAJJI8atWa2Sk+Z3b2oIVU+1s0J7DdHXiE/8HD16DfULoNt/s9ec6QM7EyXok0euwQAw+7yGboefLwnNff/jIXjz4HsuWf/uf/Jd7/2Y/4b/7W3+B7v/03eO3J63zta1+FviN0xhb2ta9+nWlSfv7xHT/66Ckv7g7c3c2c9T0dhXzoCCXQSeL86jXOX/8c24sdsyjdZkcfAw/Od+6M4/umI0lAKv2lS4bUd8ylME3v88Gzd3l+c6Afes4fP+bi6gFXDy4o80zOmeNxbs+a+p7D/sjz59ds4o9RDkSE3cUDhssr4mZDHvcklDLPTIfC/uMXHF5ck9KGy8cXnJ2d8eLpc/I0cSwZYke/2bLbbjm/vOLZR0+5fvacLgXmYWbOE7d3e6RkQslsYiS6I18hQytLyeBNyWqY5nHk6YcfkMSyhYXArDCh3M6FWY0ZLjiKLQAznS8BdQdYQYzgozrGuTLUqLrB6vxC1clHuO0ipXgRLcUMjCAVBWZrppI6CE4zT8t8gNFEJ5aordX0GT09MZqcy8mCFLlSvcM8C4fjwWSYr+1QZmfbskyPYI5fnif0sGfSQHZ4Xi6FPgS0ZLoYKXkyp2jOhJgYhg3BnQShkOeZoU/E2HF1eWl9gJzG/uLBJZvNlk0/cLy7IQhcPXjA5cUFKSbmw5H98dDILSrT5qSZ7MX+Vhvl2TlVOs8YhmBzUIoFaqr0MOPa4CF9FwkpoTEy5ol5toDl5eUl5w+uIHXgskRKYNcJu0EIJfLwLBIkMUQ45MDtrNxOyt4mCnHH+ET2uyAJDlmsDsaripvL2hlZoSQEY66s33lVk+Z1IKloXs4bvEGDQueQ3Hl9bhEbqwrjcaEugIbleSoyYqHhNvKCpeZoqc+CxaFcZ2RKpRJ3+fHLsE79Scd9t0aB4zTx4vaWn74381GXvLZCeP7sIx5eXPDw6hEFY2TUEDg7O+P87Jy+HwipQyUaCkTctponzvvI5dk577z5hIvzHV3Xkbqe1G8M8iueRfFsdNXxpSiPP3jBTz96xvQHP7Ss/DwRBkPkFFUO40TfJctsS2DKylRAUmDOxWixJdiezEoeD8zJGC+Hvj/xE5dhXub5fo0YrJzU1b9634ZRnDrZJatF12t809dogEomsKR7PABv9pFqhb169FwzpqMDFcJb715aM1ATuYvtqqtrmGkhpZBCYNtHri7OzFxSpY+Fvot0/Z8DeuJtF3jzyWO+9bWv8OjhFSUJt/NExCYll0LW4oJtpju/pPRbXkzKH/zkXTi75OLNz/Ho0QUlBIMj+MLLeSaEjaWxYwALqBEQM+K1IE5P2m96Ls7O+OY3vk7sem7vjvz0J+9Z1GueaXAYWXnAQIMordJerzo+7ZZfvOVP56lI/VuNXSwbH7LFmcX85lkLh2ni9nBkuN0jXUEcXpGDeFqwLjC/X2f8mo4T17d7bvdHJu/RUO+x+tb2v7S138VAEoOAWcZFGFKiT5E+WoSipkwbpMSNmLA2DKoTA+b5U9j0kYuzrX1XlyJ6kdMRbhGGmgF5xSwsn7n3nq5+r04KyrqDb92MS7962uetNkNXSlFPrnf/ZxRzuDziN48j83EkjxNZDeZQSmEeR7I7KhXeJSjzdHSedqyxYIONKVEic4zMwO31NR9//DH5eETHyegcT6J6955l0WrN0GssbmJPHoLQeUrXsoNCHy2cF7PSxdCyG1Ggi8K2ixwLTm9tjRwr5KRBCGtzNDd4rOuJy1a/t1qYXeGjm6GnO78gXlwRX9wwTSNlnCjzZOd0mABuSHabgWHo2J5tePrilvc+/Ji3nr3g4aMnpCD85LXf58N3f8rd9XOevPaEq9dfo4sJnSaevP46+8PI1778Y+4kUJ69oOgdZ2dbUsmM14Ekkc0w8PC1x3Tn55S+Yz8e0RiRlMhxaOQRQZWJzqmFa9d5NXgCnWWZwsCkibEEurSBYQfDjhIHVDugIN28QFe7AZkDoZtMBuKh75DQmMixI0dnRIsB6TZo6Mkkbu+OpLMRTQMhJKZs6zH0kV3q6LdnbM4u6G4PhLRH80QAkkSnY4eIdRpPmD6sdfL392LreaGFPI0oeLwutmzYNBdmrM9CcEVnYYLietVKzA16WIFgJgdzrpHnutSd8TCuDM0cmtFv0X/xJLrYNPgz2J8Kraxvu4TQCoesgYu6lj1yidepOElJzs7oJjMy0WSriR9nM1JBsjW460JgmkZmCaABdUdlLhlirXWpY6lM09Sok2OMWLNRRxr0HTFa75YUArUZcMkzeRoZsWhzCMJ2a52jaxYYf7wk1vck+BiISqM9LlL1wjJ2Umld29jibExeyxPwTLA7PD5OaKEbelLfU2IyxjOxTOvQBfoOQglse+t/Jhp40MMmBocGFZaM+CKnX4YfL4vkVRCc9WtBVt95xedfipD7WqqOUFMOutb5dv17CZzVfa4WcXtdl3MAGgXN+tJzNCiXLNdcOyqvqo+R1bp+6binCj/doUtQT8Wae++PPJtGk03BovB3L25IITVzpP5JKVmtbayUPXWAcLIpryWJkfNNz4Pdlr7viKkn9r3haoNQKn3+6plV4Wo/c70/suki86QLqY/QetDNzlglIZL6ASGwOz9jmQph8r5X43SwLK4ucO86h5+e0evTHPKKSageXBNSzZF5+XO0/aD33tE6OCcpnOXN+lSy+s5awptTQtP9m85bdSoEJiQGJP45yKh851e/wT/xW7/OP/6P/hahs2jwRoTjWJ2UzKQz85Qp88SXvvoVPnh2w49++j5/73e/x+7BQ975+pG3Lz5P0onpcEvWzJy9WMhTTimZyyneAE3I9F1g2A6cne84jiMfX7/gV7/1K7zz1jt89fNf4r/623+XP/7hj/iDP/5jALp+YLs7q+7jyXOcLAC5/4IdzQz0xWMf09XXpHmmn3admnHnjgrW/E61kHJp+O2b48QP3/+A6+OBy+e31l8iRDNiK9YkWHHa+s5yLhzGkQ8+vuPZ7YGnN7fG1pASlEJUiMXwm3X9xigMfaIXYUhCJwb92fYd55uOy03HSLSnFgFJGAe5RbP2U4FsGzZ5QXCphknJCBMpOHNHAcSK2kpZGHs0LxmNUGtbWkRimaIa4dIyLxvy/vh+0gu6TPPpZywiUYuA7TurmpH1tUMgTzOHm1s++OFPmMaR4+HANE0875JF0quTrOo00aUpnSoUlNmNH68hCbULL01W5WlkmibGceRse2bY+6KrNVgq5fqyIqst5kXNFpE2JqdehAlj9Hm4i7y9i0QxQ7KIOCQls03qxcBCFGXXBd54cMamwPUx8/HNRPQlHNUYmIzLweY+irF6dSwF9YtQNBWWNTPPI9vNwMXDKx68/SXOX7xgPB7JhwPzfHCICY5TNpdw6K0O4+448tf/3/8Z//B3f59dnvnGd77D+fkTfus7/zT/p//j/44P3v8HfPD+R/yzf/mf4c0334AUeeeLb/Pg8SP2N9fM3Ybz9z7g4+fPebzdoMc91+//mLOzDQ9fe8g3f+1b/OzmmueHA/vDns3QMyhc5z2x0GpDooxt7awPg8rAce4Y4xmyiWyuHpG7Hdez8PGHN2a4Os13LhkVJU2KzjPHuRCiNz0Lwn4qHA4TpUTucqYlIjaX9Fczs/T8/N2f8/FhZthsuTg/5+Z4zc31Hf1OGB739OeXTLGjdAPa9Tz98D3rQp8ipGS1aUEZxht6ERIwx7aUl1WmFj8q7oGmLtm9+Fq07k3KbaBx9Jdijp11ozbnxBwWr09s2Afbi/bZdTM0d0aKNM83Fzf6c2GQ2vTRZKElTYQYimcGI2h0qI2dUds+Encu3U0qmTweTVOrQrGMRnYiBCQYI9A8tuJWFaEcPOCWCw9EjdkuBd6/vWXaH6A/ELL1xznOI1OX6LuO7c5w/QLc3t1acKkUQpk57Gf6LnF2dsbZZkPOhZsXT42lR5U8Fj587+eA4f2HriN1Hd3Q8/zFc6bjTD6O5HlCUPoUGUJwp0Mt+6u08QqhOiCWMSEIfd+RQqBPS1k7WuvnEilF7xnjGafZZBuxp4TIjDDmTEDpk3K5i5x1IEU5GwKdBjZSuD0Gdl0kRSWX2p7YHIxWY7kyvhqcy3+vsK1ccpO3MYTWuC/F1KBWgBdqC/M8N4es5OWcIUQ7VymklEyOW1FZq9nJs63f6sioKkUsyKreqDmG6Aagye5Ysy7eWC/G4Huhhfuo9LPN+K3/uJ1RnLGqwtbqe9WBOa3lefl4tR78pKNat8J0N5LLzN08cjtlZhVmDaS8ZzNs2Jxt0FAoZFSSIx+MTMRsQwUJJ5A3UWt2fbh+Tk6Q5x7tesbRGhSGFB16bdmLmJy4g8C8vyUf7iDPzbG2Ww0mI7CszVSU2A882O3oNjve/NznuLo8Z+iMcOl4HBmnmf3xyE9+9lOePX/G82cf08el1hefw9a0sY7lysG8z8BXl+wSyPZMiTt+q9jqiROxErUeyFmmgnu6RoJAWezPNrdLAuU00KTLBx20vQSNW2bGxN8QlLOg5GiVq+N4MJGYfxmn7NMdn7mj8r/8n/1bPHnyGm88ecJxmig4Lhsrooqpo8yBqShZLJL8xutP+LVvf4vf/b3vMu1vuXn2nCSQtCB5QsuIBouqzdnS71ZIeAfQImVaCsf9nqurh9zc3PDxs2fcPH+BZOX1hw/5zm/+Bl945x2++tWv8Iff/yOePX/B8xfXVoQYE10/rBYOVAasumtNQIWX0nltnfwCr7p6o/7Ky9GOumKqolQ/n5jDMhd1A7MwATdTpjvOMM4ENfq6JEoWZ3IIePdjY4XRYjSPY0iUbUcpM5Pg1M1qdQeF1pwUv9+cC9M0muJJkZQSXUr0KbHrIpebhHQboz9WS6F2KRl8IMOHL/bclplclBSEIBHNxkgWCCRgf21N0oIGkOqhz1BMWcQYl4ZJ3iNmSb/7+K3GvglZtyWagX4ieu+JYhfiaywx0Ng9KlzKopucrJMaVJIQmKYj43Tk5ua5X1MtG3NYS50aoVuuHaQKIE9hryJ0TidPlzr3YQuTOzxdSozTkQqZs2iG0YQu+NPTRyUvIxCl0AvsEO5KZhMDj88iX3y8JQXD/xYK45S521tNhGh1ZpWhi7zxYEM/FYQjH7+YSKFDsX0vYpk0y9rYOktu6AbUsjPrccALKbPQzXu4e8bhwx8TxiNDyQQykqrjA0NnDEZdCKQwg0DeBoIqF+kFv/c7f5OrRz2vv/V5rt76PP/sX/krvHj6AVEzedzz8QfvIkG42l5xdvGI7/z3/im+97OPePbhU26Odzy+Okfihh8H6JNSyoH3fvwDfvLhc57fHZjy1OBCoUiDssVkDDSqSsmLYlIFSdJq5HQyrPDhvY/oPnpGDIFZzTlUhFxhJR5yDmWGcU/WyeBzIhxub0zBDNngmsmMoTB0XD15xOWDCy4eXDCNIzlnhvMdj4bE5fQICZHtxRkahamMDLueh689IuUj03gkl8yj199gCDCUif5nN2wpDGKwrVqYXrwbvAgcVJkwqs9eUttTATWWLAI3Rd0R8waSWhu0LcagwUZtnIpDddWdXcvoGcxGsCa0KXiRrmdAQrEO8Du1ukmRwl0MvqdMlsYusdud0XU94zRy2B8comVyWHxfqqo5mKqM+30LSInPqRGaVBqJFazR910J4oW7whAKuwDnMfBC1Ri0hgGZzUGfs9J3ybKDm02bt7lMFoHuI5uu53y3oUvRjF0tGHFR5+yaatHibGQnw7Ah55nZabRLUbqu483Pvcb19TPG21vKhzd0QQ2GFUzPZPBGyVUfeOYzBXbnG7oUTL7Ns8u74HLFqeyD7wjFWOVKtqZ87jRMWjiOmRQDu67jYugYUkFzYbNJDFIYgnJ9nNnEmn21NROcosxkvTn1a7nfoFvVoVXTQc3o00JyspIFulbVg32o76L1HPMaJguuWG1ngEYSEcQf2p0VLVZjVe2H2qusGnsiGFS7ZubCKV27uD7Kc25Bqhr8W0JPC6RsYRalfaYSAtUMZXVkYrTAU0uG1MueqkO/5qlNs7qyy2sLOEQtRBX62HE+bAnTxN04cdyPvPnaa7zz1uf44tuvo3lkGg+Es22rLRxzac24zalWNDhUtBTGeeb27tYC0f1At9mSgzkqEqJTEpscmrIxiM3zzPPra27u7hjzTHEUTomB7BA7CaaDc8lonui6wq4LPL4841e+/A6PH1ywSZHn13fcHUY+vr6jD5GfdQPPn35scuZe8uA+9GtZTvcciGqbAGi1OSrBkHhAUuy9tqDF+3ZrI7uwxb4izVE1x8TXuemg0nrmEdTfU6vDqZMd2oxTe6tVp0hLzSL7ugjWM2x/k3nv7gNKjBATu02i2wRi+nOQUfn2N75GNwz0w8Ds0UQt2ACJeH+QiKoVbE55YrPb8Oabr/PgwSUhCDfXN9Z5WZfYVt1JJRcQY14xeI31EAjRmxZOM91mIKWOECPjcaIL1pzmweU5IQaG7YaSZ97/6CNSep/bw9GUSMkt+mJMEtWb9VXxy6TvfOMv1ID33njV0Tzr9WtWTFZq9sit5BANqzlst4RusALrkJymWFb4a4usaDFvP+nEFK0YreuuOebJhFzt0tMM8EUg5lyLYJUBQCwK2afIkAJdH8mztih339s1pxJ4EQNHV+vBDYwQAsyZIGq40xgY53lRLCwQDttDvm5WkTKo/T5eHstlmk6L6NvmW83BksdYfg4OtQIsYqpeu+NGS1WM99k62udLNjx5MKhCgFYjtMAM/d7r7VQPUUFLbvfWol9VqeiShTEq30DODpEJunJ4Th56GZe1wBQlRIP09WJF0klg1wcebC1SOs6gOnMQRWcTYI1HRK2+7nzTMcnMbRIC1lXaRqQWLBs7UJRi0EGxosjojkmQxcAI4vwrMdCVmS7v6aZros6EoPRJSDERQzSc7NDRu+PcBcdFp4CEQhcjKUzMd8+Ybi8YLq94440nPDjrmO5uiQGmaUQU7l68IE0FtHB3/YLbF88IeeTJ5Y6kyiDCWZfY9YlNhI3OHPNELLNF8xSKF6GLCDksxkNrIu9GRLG6Y0SEjkRCyAc4+HLIRHNUxJRoq22Iwdii5iPRjawAjHe3FBV0nAgSCb0pixDMUJcgDJsNFX5WpJB6i3abbsuMx72TE1g6phsGoBCykLqOSCaosAmwwxrzZakZiEphbTI+Kuw9steJ9eoIYnC/EoTJndUZYdYlw2F7q8oAWrNBcxi0bbM185jFKsQN15rBpiEkBGETrB8UAUKuQSJZGmjiJAgtHe27r17A5y5UIzfPi8EmtcbKn2OlK5x4GMShZwFKXf9BGIIp4CxmyBKVUEJ7lkYm0qLtZjh3XWLTdfSD7dFQDYoAAWsBkAtm5E25jUnO2aiU80zXJbZD4vJixzTewFGYKHRS6CqGXbAeJqLMIs7aWQceQvSsVjW+m4zS5khGJ3bRYnVTFHdv3VgsxaBuBjkNdCmQAiiBvkugmaiZXa/00SFnempbNUN7tR5KDQZqXVouR+9FwKtzvXZ4bM3pcj7R9tkKV83uTAhizobaojPj13ShhFD7HzvbnK6cAtcDXq/UYm7ubDgL9Wm2UoRKSMRJwOz0mZajufycHvZaM4pVT8YQ4RXfgVMo0VqHLq+GGvTVQpitiXeXOjZDz9m2B12gzhbgcHbDRVtQayOM2bGg3p2+lEzWQijFnBoFKULqLKtewOCKWihzOcm0VT203L2AMxQENSRBnwIXfeLx2YY3Hpzz2tUF2y5x3vfc7o1o4sOLM26ut8QaaNKXg84n47Waj1fNk0FFZbUO5cQsaA5Lc1bqel+wOy2wfTK/voZXDowD/Vk+rMtFfDpbMBa3h1xntbSOG0DjNHN9e+Bnd9do1xG7nocPdozjxGZ/fOV4/FmOz9xRefLwAUUiWRIL10BZ6kckErueEGZUM89efEzqEp//wlt8+9d+leeHkZ9/+CG3t3ekrmLlDadKieSpkJKx6ljRuWH+u01PngvzNMOUCBLZ7M6Y50LXJ7bDwH5/R58iX/r823z+nbd59vwFP3vvPb73R3/Mux98wE9+9jPu9ge6LnF+dtY6bJ46w/cW5touvC8TaibllxlAV7Kt2M6vlT0SFYCh63lydcXnXn/Cm2+/TedN71I0Gly79tyiK614HGXOM7fHiQ8+fsHHH9xyt7/jOE9I7JGIS//FwJQYGYuxuT29PSDDwEVR+m5g6BKbLtJH1/gKRGVIVjg6sWUbhaPXV7TIalRy3tOlnq9/9QucnW252x/57d/7gdP7JudEV691KXRdamnWaZrI2cZCVgKjRoiCKwx87AtLfYntt/vWuzGcAd5ROZA62xrjNDGX+aVqj7VoCisng2COjtKZMmep2RGtuOIqePy+UVLfU8kdynhcMkaAEDyj1THnTJ5GUkjNoYvJGoFmgYadX92fntyw/VB8lrsuMoiwBZIcGWLhfBAebKIxojgevNNA6RPF+4HMxRRCDML5YNe/O4hFZH2+KcWZ4wJDl0hYdcYAbKVm/FjBckzzlhAIqWOnI+e651FKxGid4S8vrDB46HrOdjvOd1uGYcN2e8Zuc07fDXTDhrgxCtm5WFHv3bN3Gfcv6PqOy4sd3dUlh+OBec7MU+Znf/R73N4dePrsOf/Ff/6f8oOf/ISvf/lz/PrXv8B57Pjb/6//lLfOznntyWt89Ztf5PVdz/Pn10zjkXHKRo08z8x5bkXcU3ba37mQc2mMTmOZvVizWPdl3z7TCnK5LFZv+O0ZDBElUjjXYtADAncff8T++XMmiQQ12sgYBUnWp0UktiadqoWb6wMpRCv2LoX9nWU0AULNjEQhdpEuCXe31+yPe7rjnrejcBlgF5RjYx/0re+G2zWBOGPkDqpEXxMdUIIyitVCTFprMGgyB4+rnijdqifFmQjrVbVYMb1fV/DiY/9AROhUeRB6QrAMfphHIELoqPjzu/3esrargEFlxKniQmSppVr2kWX/ljstLbjV+BpPnB0BbM+kgDPoWRDIDBfLKBOt18OcM/u7gxnrUTjbbdidnZFS9KCDBS1SjPR9BCI5WWS6qPmch8PIcZy4vbnmOE6AsNvuePzwjLPtlofnA7fPlEwmpcAuBvoo9KpMYnBQUZgxso3WINJ1Cdq1mrMWN1JzxPpoelqwQNl4qLVPxXtYGOOmUapDStGheKAS2Q49Ipk5ZC4OsO2hj0IsRv5Sg3DW8NRNT5f7kUV+FofLVeNroVw2+6T2mDDx41Aa1yc556WXWFkyGKFBbEqrI0Itk1oqZb17ElW3VF+7VAEdHLqq2nRD8T0K7vQUGuFPjJG5LFlHwOXsqYWxMJctxdz3CQHWO6/WEv5CO+XVtjgVVg6gUZmlcCgjBl+eOB73HI9H5mkk6myFbQoiye7PYd1VDFbbJwCUGZwye7cb2G42pK6H1Bn9N+YIdylZcKhoIxw4aODsTDmbhc32BXl/ZzaolpbpNAe/MAThyfmO7W7Howc7vvXkkjfPEue9EkNhd7nhuEkwj7y/S7zYRnZDz34cyblYGUI99BeO4ssD6jD/l4PgJs9qL6uV69EcaoPIrnSGrv+4h1zXh9tRNshhfZnlu3UetVJELZkakZqZMfn1Yn/gR+9/xH/xg3dJmy1nZ+e88eiCME/IPPHf/5Sj8GmPz9xROc7ZkG2iEJ3HHedbd6rJvjMc8zTbZkpBSTHwnW9/nT/48bv84c/e58OnH9FfXfBgN9AdrfhQ1FJ6IUa6EOhTMnabnM1XDIGQkjW9KkoXe/J4MEOwS1w9vOLm9pYPP/iQ1HUEhLdef52HVw94/uIF733wPr//vT/k+Ysbnt/cMgwbF0w+WRb/XZZLFXj14Ve9Qky/LrhoacLx1Tt+XRy3IKR9kbnwVLWI9Fbgarfh4W7Ded81StsoSjEyPZDsjrPBgBqWdx4J40QYJ5izF9oY/3nxdWzGuc1jFwKvX52zicKgECjIeGAcb9j2cHXWM/QJdTaXECzTIiEwSsf7zyPxIFaILeKMMoCvhZgzkkfIR5pFT/HCexuP4jhwQmAYelIy+N3xeDzp4L1ATGKbh2WudGlsdjJnnhJlMbpKLkw6oWLN3KD2o3DjRZbIzzpGozhhQDF/T8VYQ/xtathicRu1akvy7MxQqmaMVWerGMNOCsGaObqzSljXd9haqeKnRvrWGObFvBJKEFCb301QLlLgYYh8sA9sUmS76Xn44IouBI7TBDoxzsp2Em6m3hWmFef2EbbbgTRvuR6Vno+5iAYXGWNgnK3ofhMhqTBoYKPKztdr8GJ+EatpERGmXChl4nITeXK15SvvvEZK0HWJ3dkZ/XZL1/VsNhs2my2p60jd1ppBho6YNuBrcAjG8w5iMCsp4EXC52dXSIpo7PjP/q//Pr/zD36Xv//dP+KPfvwjtpuO3/zmV/jyt38FGWe64w2vXwx85Uvv8M/+y/8ah4/fY767phxH6wNQCqPXKZSSmY4HJmdfmuaRaZzI88x4PHKYRsZ55nA8cDzYe8dp5jhOjPPM/jhZw9WSybNa4XlRigbbm9PEON7Si8Hphk1kCIlJI+N8MJxUUULpWjRu1mWNzmTmKr6yOfJFdXFSXJRVxX5HoptndmXm4jzyIEzsZGb0fVWjyhUWk4rTTksgJiE5i18vBv3qRUgxexF9MfNXDQ9epHaZWRS+ukMcQiAGMTp5h7XUPV8d3UqdLQKEQgmZXafGRCcR9jMqRslNtHz8fjwSfa8EOc3KVBpYWcnntdHWsP94ZNitYFt1uv6oG7OFQWAX4CwVwpGWWYDZCvEDbnQV+lg42+0c4iWIy/UYOq8TM6cnRmsAnHY79uPM3eHI0+fPGQ+j1bSEwNXFGX2f2G4HhgSdGCtQULEaxFi46qAPwiELxwCjIyJml5xTEg6HA8c80vWReB5JaV2LKcBsWdpgdUDiNYvHqZAnpcwKOTOV2Wn4zcnddsLQB8swqhKTIHmGPLMbOrqUCSGTg5CDQXiy0mSsSGW51BOnoqh6Y9UqDD14F2v2ozqJJihLtfZCDTQuTrD1xior+Spo1Lb+ppx9BwXTlW5FThqa5onBHIw8F2vYbGd3Qz1BpDksBYPqqNh3QkxLxqatLrdR6hz4/iVWD5/VovVaS1m/1jba6qXo5/Nz1Ii6VC0iTe8o1mvkfHNGF8TgkTcHhiR8/Qtv8tW3X+fN1x+hIZFDtPlS7+fmdPPF+58U77OXa+1QCmz7jge7HRdnW0LqrO6l65AYCTFRkQdlmq2PVwgMmw3pdiRhwZKjb+g+RGYmk6chEDSQYuDybMM7b7/DwwcP2EYhHw4w9LzzxXeIITAeJ0MBlMzD7Yb33n2f7/74x9wej1x2Z6s9XrV8nZdl3F9KdrVPVyf6FPq1lKkspDeyOtepa1nPhZ2vOinLzfgUa5Npy1Hnsq2mdg9u9ICT66BASnx8u+f7P3+fv/e977Pb7Xj84ByZXmfbRYZ4b119Bsdn7qhkVd9kttHBo20sAryLQpoDFWEsahCSz732iI+eX9O/Lxz2d+TzDV23I4y0RnLZITRgzdZawbUCEghRmKfscBOLQBi+N7M725kxMD6nFCWlRN/39H1i6CJDZ8bgz9//kPyTn3PwDtGGgawbVdrky/2N3hajLo0OV4d4o6ZPZoBYmbAtE6J+WWnKuw+w7S1130XnvRf7XlBv9ladm/V5tVjfkzwbfGFl5NcGWuYbaeXbIYpw1kfOU2DcdIxqTf9KmQkBwzOjjUZR2hZVgmbEIQQR6Kph4XNli78YZllLiyq0dKksArhSDoJ61M16H5S8FLnXNHi7g3YeP9fqd9FTRozmGor15SCbMVt0iWLUCEd5KQKyQGBqgfDaorGUtJ+nsufUNHq9pxU+qK4BK2S1nExAmCtlsJ3AI4PanvPlVeX3sRoG6nP693owOE8XGJIZgsV7EwHWdFSN1roWd9ZWMLVOxVLy5oB1EthGLFq+1P8TA6RCUxyVlCH52g1i3cyrfj1KoY/CpktcnG2IwRyVzXbLsDOayn4YGIYNKXXEbqALHeLwL4JlE0KyQj8fMm98Z0WQKSXSMMBmQ9oMzMDP3v+AFIUnjx/yzW98g0ePHrF/9pyujOwSPNhteOOtd+Cih8MNjOPC4laKESTkzHzcm6NSMvN8ZBrNwTju9+zHA8dp5G5/x/7uwHEc2R+P3B2OHI8Tt/vqzGTybBj+OSulCHdHGxsEBrXx0y4QJBlDlxgFr8mMuqptndX1Hozdwj5Ulv0qpZpb9VsW5FiaKxa2AXZROQ9qvQ1O1qrDYWZljMLB3qE1jPT9Uz1q9YaiTbQ6XXFBjbYYvLO8EpLXYGF0sPalYHEWf7DkssLNVmrXpiFmhtZrgyajqcEbh9MsYK2aSRGaedkMOznZWjUqX1f66V5cWQkuz7OaMzUE5SwafFOx3jKB3Fi9arag6yxbkmLygmCHhTXmPSFFcV1odTJTzoyTdf0Gc2L6LrHd9LaH+miEGLW4WAVRYQgWuOiDbxa1TMOk0IstlaOY8yIKyRk2A1ChTJbpMbifZbu0OSrWZ8bnk4q1sLqdGIQuWv2EeM1l9GCWebQebFgbd+qw8jbGC238ItzVmVkW45qawXD5ZX0n1h7oyuhTIHgQy50U9eCWen+wyrxmDlIBidbvigpdp8Gc1B+n6nddraeWUWDtQGnbu6orOOD9Z/RhEF9raxulsdf5fTS9c89ZqTZGM1TbaXV9leXQGtX3QEc0yHzSQp+EzWbg9SeP+crn3+BzTx4RHAWzGN8Of6t61rNYteksOGQ0BIbU0fWdOSYaDO4VExI9M1O5+6v2D0uTWmMprGyo9bk8GFKUFGHT9Tx+cMmjhw/YDQPJa1/6vqOLhubY9olH52fsLy+43G0IGNX0yVFtGB+19VzJyRguzi0nf2T1iUUOmx3l62yNCNHT79S9YbC2Jd/VoIz3zm+B2kVm1fXoVt0SYNf13ZkzSZkZgrKNsEvC5W7DxW7DdtvfXyl/5uMzd1QULyoU8XSrLZDkAkwKbELHFCPHXJxh2Iby8dUln3t8xYfPrphurikPzumcecEYg4JBX1oDJiu0tmJrbSnagBByIWIRzsNhz3PNXD15jTkrT5++YByNNelwuCPnkRQjr53v+LV//p/jxz9/n7/1t3+b/+K//LvMZeLifLvSUYvxbAbv/edfnANtgqChUz/VUVx5liIu8K0Q7Dibx7YZIue7gd2m90ijKf3shVOIsZIAXiNU2kYJUSg6MZeRSbN3HTdqzNo9vXa1VywKvi0TFxLodh3PZ4hdR4mGWT7O2amOLdIXNNMn69YMcByNXrUPcGalB1wXECIqyagX1RV2iOYEKLVE1p0Do6QsquzvjpztNvRDT38xsN8fOB5HpygNzbDXBm5aYFAaQLWBsU4E95rxxXqGuFto+DK3a1Y0itWVK25M+fzm6vy5lV7Pa5UXKw78lmnRe6l7u2cz1qzBpmDK/ZBHFxYBinc3WDkDtXmiAkVKw3K3Mk2t4tmd/axsVTkLcLERLnYbQPng2Qv+oWT6lHwAjAwhZ3j44HN0wZqzhdhzc9zz9Pkzns7Ci5uJ8z5x1Qv7onw4AsHuUWIhqdKhDKIMAXpR+qgN/tWLNe07YoxS0QHhWZ3ZRUCzmEFdhDArqTMK7E6xtL5mhJFUDRywmpUYiakneUNGu2YBMvSBf+Ff+5f5yre/xbsvrjnvE1/50hf5l/7qX6Mbj/z4hz9iq0c2+UCfD1iXSdBiRe8W2Yv0tgCM0Sc6K5AWis7eB2PisBm4G+84Tkc2Q+S47Rinibu7O+72kcNxYjMkbveR4zQxzUrfZ6ZZgYgmUGaKKOdYJPyYrI5kjj07dy5UlTkv+7/VFQGlxJXBYnuiWvDGbue7xhm4ANI0M2S4SCNXSbmMgYNDeuq5gjuB2wDzpBxUuc2FwkyWgKShGf0zhjcvKGgwFpqiTNbNiVzrO4yl2ObMi+unbBaZBqAszkZtRtqJIF0kE5k0chEL51I3QLTsUimeRREbV9us5Douzg1cmwrazq05ErE1oOCWMtWwqxmVLEuOVmyVMapyq0ovwmWE15ISo8ET7/JIYnYWy0TfD2yHnsvzYQWNTPRDT4pCkOL9DIRh05FSz5wLz55d8+GzFxynGSTw8OEDNn1P30Xm6QjqvYg21kMod8nAS81RKQzRsQO+rwKm5yLKmAsy9KTdhkeXDxg6a3wZg70f1VjZogQPQmSQDDobHfs0U3JmE8UK2YPB8FKI9CEQ+ogU44bre8u0TaXjbobjBPOUiWUkzkqo7ZQ8312DOKbnks1HUcizsc651SWe+WNexHlZFRYb7Ehc5tcooM98dR6AosH3ilqWTpSAO28hkJIHOEtBZgsO1ialgiFAylSXj10ngztCNajlMJzqrFAL+q1flmr9/NKMsuiSj6yF+C/186iGa4smSTOA19ro5VeWV5sJrBX9YfDBs03Pg+0lrz9+wK9946v8+re+wdlui8TogAkzckMwueyVc+70VJp7gASecU0xGWV337EJPcFh7jkEn7tiXeuLPf9YLOQRUYYUkFmqiLN6QmxRT9Nkulng4YML3njymLOzGgjruTncMXQd8zgxjUe6AJsU6JyyX7PJ1xAjrQa7BiF91UgbsxNTv41rc0DuOSu6GhWtgtAFqAQxWcGKjbR+BrM3zMuXk9OexlerE12Jd9b3unymyuFm9s6F1zY9v/rkAXnzdXaXF1w9fMivfOubXD5+xPbBAz7r4zN3VLrUUflb5rks6XkfKAVCMoacVMS44Yt1/9z2Gx4+eMDnnzzhMI9mjEkwnmtzVVrEoJTcFkaMkRSjcV0fR+6mTOo6+u0WwnPGyRZZv9tAUS4vzvn5z3+GqtL1kWmyTRO7jouzHZ//3BtMf+E3eO/Dj3nvg/d5+vwjdrszpyw0hpkarcCjAYtwWAwAWC+MZXMvCYP1qnEvXLUtiFVz0NUR7i1AY+VSCaj3PEAqFZ5HqCVSytyivVOemWajtl2yDmoF+O781V0tofYugMN4REOiC3DRJzZROYgZYlFdlPtmqDhZ4/Up9EEYotGPdljRtZApoTizjBl+dTwzMyrB4rFCczwA7o53jNOBzW5H6gIxDtzc3qAaKCWsMmA+qqtogOH05SSykufc+pa0D6MW/XHtVbLDGatCbB7qoiD9fxtTXSlGdQiAKgbjCx7Ibl84WQfVgRJVYjJHaFR1Y9UFW73XsrDdlNVCUamFou72aF1hxng0Z2tMVyQZwUTKbHSkix2PzjZc7jqCRKbZ9pg6S18sGWYjC5jnTFGsPkqVFGcChW3qICuDzBYdQ9hPkNyh20RhG8153Yg6TEZIkokEUlIOKuzv7vjw447u3WcUhwaG/kM2w4Y+JTb9wHa7pe+61vw0pUQ/DHTdYB3Cd2cWeQsOCgcIQkjWo2GeM9eHO774ta/zzuuP+Rf/8j/F+fk5rz15k+3lm7z/+3+PD3/+U86HRDgeyM+esv/JHzLu9+RxJM/WvT3PmXlasitjHr1wOTNNE9M4GmTrYKxw0zSxvzswjgbz2h+PHKaZacrsDxPzZHUsY84tODOrcrPfMx6OXIrwIAaGIPxkf+SYE3NSgk4tejs7Ntl+X9ZXdtYlBciKam72tvo+1pWazCKEPKNlJKXMZrAIWpmKI0SMBS4Gz6okodOCTMo0mvEuohynA7PAKPD8ZnZ2MIFoRCEUoyRWd5RKkabQR29Has9TGuSrrPZPXqXnCoV5gnwoXF5FHiSDGSbuCCXAbIXoqiydq6tGV0UyyBxO9LyDcywb6kXhZtjafQoecbfN70GWCk+zoEavyqDKFuGqT5yHmRd54m7MRDVnTLNAGCkycwhmTYsEQug5HI5GDxyN0jeIcHOTOB5GxuPM9fXBaji7xNnZBsY7DuMdB6z+DoyNarwzaGSWF9w+f046Hth1iW0U+lhh7UaMEAgUb+54JxmJlknvO2HbJYqz+dlYWaBLg0FMTSsWimb2h1sKE6mD8+0ZZ/2WY5kWiJyY41KDbDFEcthyk+Fv/9FP+PEHI/Oh8BsPey57YZuEEFKV6szzRHTIZ1bPDYhlYkvOTmYCSERVOBwnWy5V51khoQUGPcsUJDRYkmLBUCPsMIe+KOhMgwrmWXl+LHx8nPnRjTknHZmvvbblchg47zaMUw3gLugK0z2h2RJl5YTkbNS9uajRFatBOW+PvjaCkGdnwwwBCcm+k7P3FgmE0LXMIcAhG5x0LmW1vv36phXtX1mc7VMHpf5s/5Y5E1HOhsSbjy4ZhomHl+dsd4mLi0u2m43B9psRaPOcQmSI0QNSyjxn11uBMmd01fgQiWhIaL/FaViazNGobX5wHadESkzsPnpBOB6ZciYXvK7DbBDUbL/z8y2PHl3x+uuv8fjRQ3O+hBZw7LqOt995m/1hYpLIze2tZQelyk1to1HrSsoqiFPfq3mWViVQ90zT+3jQua6J+i1xN6Rm12g2xjITPlPW28FP1r5BJZdoDtLKIWqZRQKs7QsPfsvq+VCb5ycPtrzTCZsHV5w/fMhut6MbdsR+y2d9/LeQUXFdsRp8ufeZCvWwPyYEZlW0EzZ9z8OLc957+hHaIpJ4zZE0xVGboLXithDQuXAcR65vDwzbjTUFEo9ju8EAyrAZDPeZbRJSivS9Yd5TEDbDwOOHV7zz9jtkLTy/fW6YfDHWoROntEUVligF9cnvByIw4SOrxb3UEazOWiN9TUn6+ZvtXRmFLNVdoVqycDa24vU6B/X+1pHV9e3VNN8CqdRVpMbgZSqm5FJUeilsU2AaIpvYMeYaie3oeytgLir0afb0rc23sT6ZcQreW6fkBdLnG6zCB82hWdKoBUWzMYDIONJ1HSGaosn1danRk9WMVKFQMyfVGVQrWq1R6IZ3F1oWx5pJ0caixldt89dSytU58Q1eP1ZWG12giEXg1jCFtT+7cOobo09Wo2g0uSgrR8WvVZfQyuFR8F4v9n6texYsUzMXmFxoB7HsRlcy29hztdvx+GKDKBzHgtVcK+NotTL2SAqaLcK06RmlcEwzAehCYEYbW2fJymEubFQhWh+VISi9GKQkqFWRdChRrCfGLgq348T+Zs8HHz6n5NHWe4CYEikm+q5nM5hz0nWdNwNL9P2GLvV0fc/Z2Zn1HEEsSurjIdGc72mcePbsKfkw0g0bzkTYisDxyI++9z1++nu/x7t//MdsUqQcD9w8/Yg//p3fbgX0eZ44jCPTPDMfj9bQ0yN6xu+fmT17W+aZeZpa343jYbRi/lzMSSmFOatlIb34vmZJa/PCcjgSppHzoFxEpQ+FLs/WDLMoohOoMdkELW2jh7VSdCPOBYXtCcf0274xWuQa3S1BKHmmaPYeVkrfQVfP7zJJ3GgYsJqkPohHODFKbYUZ5ajWPDRhTrfh7a1gM7Y9gAcG3AhsYNSaJRUiwQxh3wcJwUrKYSpK8MzoeUpc9AYNu0omTyr7luLsZa3Ai9aPKFAahWmT785oZykgO4wR3EyJ7K+rLJCT4OefBHoVzoKyDZZZfJCEu2IyqJbkZpSkGZmFee/1lxIJocBRPahUnKYZRuB4d2SeZvIxM2x6EkqaApMbua3PB1hTYAe8TwTm/YEuz2yGwCYaU9sUFjkkwepVpqJ0osxYrVdK0Tp7s0BELLAW3GAOzYJXVcZpBJSYEsN2S0oJkex1Sj7mDssUhxHlkChEXhxGhMJFL3z+InHZWx+aENP/n7o/a7YmS+/7sN+zhszce5/pnWquntCNBghQJCESQYmiJItXdsgOORxBXfrCV/4sDn8IO6yQHVY4HFZQIdLB+hYQAAEAAElEQVQiqSBNAqIAYiLQje6u6qqu8R3PtIfMXJMvnrVy77eqEVSY5QsmcLrOe84+e+ewhmf4DzQyeIjVt8da5hB0yTdSg+RATqluj5ZcDNt9VSez4Dtft93qEYUsYiUpqVJVgQXBIT6rZHYWytKZEWLMPN8HDImXkz53D7y9sTzeOK4Gy346djjlGAxooQ1VuopJKgxKCDlVVdKy8APnrDA9pPI+g07wJlGfsv6smSAqB1Xq50CXhZAzU8ykXOv1ReGl2s0vNIDlEgBzrM+VOsbrAwdd2ums4XzVMawsZ5ueYejofEfnOigVLugceEcrzJbSkqU2v1v8I8sHKum+1ATP1Fmu0b4WrPWstLMBlkzf657gXPWqyQ1+1wKdYwdknmfGcSSEyND3OmdKZophgfGXZTGSJXE9DvqWQJxA9mhxRLt7X424lr/W+ogcf7N0bltRtb3ZydF+I60RcHzrY4jS7tLJe+s3cvJ2pf1/e7LHE6fUazuWr0Bhmd45et/Rd/qMlQemBsff9PGNJypzCNjqNnqsKB+zt3ZH9HJylQhNTDFgsDhneOPhJS9fPafEQJjm5SEmMqYGhrm221oG7Z3nMM1s9wc++vRT1psz3ohRMbzOqwpVTBhjWa1XnF+cMx72zPPEk0ePOD8/48HFhar4jIGSC3/tt36Ly8ePOcTAR7/4GGcSq4uhVrGPx7JXnwSjLRDI+fXh+T/JobQu9EakLpAt6dHFK6VEjEFFA4ouNDq9zYKpPj0ypeLB9W2s87iuVwUNxmNXpW7EzWywZCVwdZ1j6IV57glAbws27njjzPF4dc560EpfjBlwrNY91hmmCK92X7A7zBArmEsEbzRIoGTGeUKsKHwrTjSceDKGVnQ4vYMiGlinAof7HathoO86Vuszdvs98zQRa1v8q89Hn0fFS4e0TPxceUwKJ1TFL2usVrvnQIgqT2ysjuuhkvlLUVyuiDnxScrYej9jykqEjm2B1cV1caCQ42JD/U0RmNLEuusYVj3eWuYY2c8TRvwCw8ikRdrRVGL9YiwogDG1pXxMXuvjhQIxFcakQYfBsjGGLkUuO8933nzMv/PuJSYF9rs7MHCIwu1oeDkOiO2IYumIXAzCWw/O+WyXMLnwBdA7pxwwYwipMOXMnKH3woURBiuspeAl42jmiJr8OmryYi3zGNgd7ri+HjW4LJmQAvsQ1bfD2mV8p5IQKxWq4RDRZ7XqHLY+E5cbyEfvk7WekjP7u1sk/Jf0Xcdb738H4x0pJe5vrtnu7vE58IOVZ9re8uGP/pR/8id/rpU9UcO6/RwIKaqZXd0Is/U1Qa0whxr8+tdEEOr2VSrkQwxFjBom1nPsjMWLBuAd4HPEknl3yFz1Wtm+33dsw55xhIlUq7EtKGlr0tE0NNf/a9XShmW2bW2lsE/6zOYi7DKQIkEyzq/ou8TgY01kjkF8+6y1s0zZMCfD7QF9/mjnNBeFFL3TdSTRoHzOsSZAnpVR40Cpykmnibg+5wxJYVvKz6s8qVO3ehGmVBCX8S7x1jpz1alZ7b970XMbLTOOMZXKqZSTopfOYSnLm2mynY/ralmendRAsf40a2AJ2oXwNNnkJZYjZ8O3XOCRT3QEvrcaeOgML6dEJBKKsC8wooiENM4KzcIg4kk5qB8ICgnW8RVwZM6s4c1VT8mBfJiZt/ck8lECtuL+ixhS0cA7GofJhcHBhTOc24wXTfBsKcSsctmzGKIpDC6xixM5Ovx6zbDyxEnIJVJMTWrFINbhrMfSIUWFWvaHiWI93eqMzdVDCoE5H4gx0hfwYvDo3pel4DpLDtC7wuMrS7dZEbF861wl1DunO56re2VMFlv3+v3+WGjbrDvCrB1k3xlK0aB9awqmcmGGVb8UcoBqBqqQwxhVuQ9pHD1Ryky7pycGd2M0XHjhYSc8OB90vBvhBw8sV73jrHPsAipBn8MyksAsnYOMZUwaQ2Sql1WpUtGo2MgcE+Pga7fEMM5N/al2FIpCJFtwLWKIsc6VIiRrmGuBZJoTsaBKjiike86ZOWuROFf+4WmxVM+zdfN11/YGVg7Oe2FYKbfw6vICZ7Xb2nvH+dmG9fkZbNbMuXCYZvb7LaVcIsZjLLq5I4jziIkUCmGe6VLE5FzzgtplKLohNoi4Clro2aUUyVXqPxXlKefFT0T3bNevSSnx05/+nFW34u5uy8MHD+mqCuc0zeAdYZ757BefExI8fXlD1/VfU1IrUMVUFEplT2DGtPMq+soFLld/3mB7S0m2hXz1ME35S9QnDyN1v8tH08n2B1WAiaXQI68lmMt39d4dK6yiT1VMO4V6zrkWXvW/IpmQCocZdsGRg8FFmEPCxoBJgW/6+MYTlS+fPuPxo0c8evSIEHfHtl07yvI/GNGszIgS37eHic4aVuuBN994wtlqTZwDgyhOP+aAp1vInZrcVkJWrRTkkrndHXhxd8/nz57y3bfe4WK14nytk6brB7quI8XAdnvH9v6eq8tzOu9JMWCc5TAHXtzechct/eaMf/dv/DbjeGB3v+Ww37IehkVFK7bLElVq0Q1fp24dcjqR20Ctv2vFiHacIIlYOii58QCLYv2pFc7awm2QDmudVhmktsEbya00E6gWwOpio7CfVkWh4tgr36FUOcWaGBmjJkurwTCPB3I2YB3JdBQZ9bxDwOSARTe5IWdMNmTxeFEX5lTKItFra7RdgJKEi7NzzjaFq03HbgzMY0CMRySrS05plRNq10jvYM6J3bRjNAcuLy5UvcZ6dtOkjshGCfdtgXDWKryktfGpiaMRrNVF3zpHiIEpzKy6jsvNGucc4zhqcpjSgg1HmvmnJmG5ZExN0imZrlcctjGGOSTmkBY/GOHYUWkblcKEhTNr2DjPmffs7++xccaXSFfqglMy0tWeVIGUYnu8OKsymiXFEyL06ypKIgafki4o+8Dcb9jJJWV9QXA9t2Pg2S7hraWYc8QkZlNIRittVgrOaXAdEYrxhGki7EfS9p4ye1LKHA5btvvCPmsHo/OWdQejFTYuqhGp8QQySbTEXUrSbkKA3S5wF+Eeh7E9uRSmFDnEWPkN1HGuSaGKH2gHZ1GDMkKl02OyMHiDt8LKW0pM9Nbx1oNz3nzrfZw1vHj6XCGrxrBabeguLT2RCzOy3e/Yz4n74JiKMCW4nQIzliStJlzntzQDOe0sddL8ao6VODGWUiFpsXVXRbsOLSyOWZVmLIXBe2IQOmB9Jjw+8/Sd5af7whwVPrSPAcQi4uh8rdGXokFRWwZKqQqMomTUuq4cKVRSk28hZZhCocsFbOGq9zwYDA87g6/3m+oF0Nb2zhvuQianyO0+cSARbEJMRymWgiXkTI7aXZoqvjzhqciDir8+rokLVA1LWDqV4GxN8IslpKhS9qjIACmS00QvPSvr6JxnN0/cTIVdScxNBrYmKNpZSpSGBTdCLtVFPCckJ10/YsJ1HcbYqtrEEUWwQGmiyj+jcVcSFaaIUXh0XnjgYeM9u7vEqzHyfAK8Pvt9jozLnK3reYEcZ6xNqF+oRVC1zK7v6Sr/D0OtvsOMMI1zlbe1dMOAMbYGv5GYC1MCX4RVKVhv8CbSlcQ6FwyGKIZZLCurcCNXIEwzxifOz855crUhjHtKSsyHmXGM7OZIMGtImfP1gFutKV1XlQsVytQPHdM8E/LMfprxvcH2K1ZXb2AMhDiz3R0qjzLyq+89ItsBxOFzUANo0bnhUFgfxS7j+ur8nBhzrcRHVt4gdJo01pl5uVnRMP3WNcf3Wmlu2BwB8R7wdf/Wh62iFfpstACnPIMhq4T6+wV+09TiA4IvqtgoJSm/AQOlX/by1vlou0FKR4ZTWgqj0oY9qRTmzLK+x9zX79U/R2Fpouti3edTlkpUz0RR1/iQPGP0hARzgpDQTkvO7EMmFh1Pc4OiidAAfdqZr/7lOeGd4Wzd89bjCx5ertisV1xag88zcYrcHvZ88cVneO85v7zkn//eH/LjDz4h4BnFMokobagI+yny2e0Wedhzse5YrdfV5NsgqWJD6p6he3cr+uj+qFxRlW83xpKTJi6pdsaQsiBtvDG88cYTLs439N4xjyPDoN50ZczEGNneb/lXf/wn+GHNbo6sViussZwuUqeWAqWUxShb5Ohgf+yOLMPr9cJyQwidJh+iPFGKrkEmZUoWckzKFXYn3NkG621tGqmw2hoDaYxxcgI1qTueRe2k5AKmwcGWms0i3S1SEFsYNh7fGY3V4qzGqPkrAgPfwPGNJyrPX77k7Owc79vgOUlTTipvLXbWB6mt7XwIFWIjnJ2d0Xuval+t8l25AC1Yb5kfIpUjopyKlBUCNjXeiLRKq5Ltu76nH3pCGIhB3X6NkQqxMMwxsT2MbIPBdR1vvPkW7779Di/sM169eHmEbIkgpZx02Vr7rw3Gr1//cvxrGys1WKkJw9fMggQaV0UrBOrUSrsn7XXtw6RGAK0ywnFC6Vf9rDqYF8KhKOdDVTAUt4toNdsaxXM5A7maf3kxeFtJ++Jw1izSn83sT+Fjlmws4zgTQ8Raw+XFGmMnplBUYnYhh1UceH3W1DFjRGV9pRQ2g6cUS8qZkGOdmIneu2VxyDnTOW0FXz14wDiOzJN6lqzWa/puYDceuN9uOYwHLjcrLs42bNYrrDEcxgOHw4FnL25wXY/vPLvdXuFry4TWNrtk2Ayes/XA44eXUFTnXWEKisUPIS5k5GUeGKGUmZUIa4RtVzikyCElujLUoClDb5e1RiGNVSXIKqi3vS6lqkbVtjpRuWNypqTAm5c9w2rFvQxMvWUrnmf7hLsJdM6i4LNIDIlximQ61k5Jy7oRCoe5QBYG53i0WXG56nEp83AduNrP+ARYy0XnOO+EVV9NBK3Ddk3asZBNJscRWwqbwXDlEhIKaVZgTyyFZIzi4qkV9nr/kmoDKL8pJZo+UK7t61J0jAbRKmUqhjhH1r3gzy95/1d/yNA5cghcX99gjOO9b72nYzVOrG4+U6dvl3lgz7jdT8QxEPYz0QgJQ8Isc7zqAGilz2qnJImoIEBN0k3FMbdgQ/FZTT5Ux6wTJSg3xcdY15tiFPZirOUQR/YhsouZLJoIaHWvYvIRhCbPegIJzcCyFhdO4VVzgZhNDW5qh9U0GJqm5rnCahuUQmplMxvDXAr7BFssowjRaNAgYqAYIqkSjh2haHcmxkhuyMpct09hWbfaOEmlqUtmJVXXQGCKrX2dWbVqczFMOGYFYrGdM/cBDkITPFu8mlrF2JpjEUD3bA1IfcPVO082hoQG77WXU/cYq8kzZYFylZLJUlSyuygvp1Thl1AiY4ZDoaqeQZ1Odb8yKgiYwNiC91Khk0bNPa3BeEsxQhLtEKWksvPWwMbV9aBkTYwr7y8XQyyZWDK2tHCdJVByBnwdS6DdQ0QwBWzURGkQYe0syTs2VjhzAk4oWTjzqg4nYSSNe1IMTHv9L6VgnYW5dj2so1ghmJ4X+4SzkGPh+iDc7izbvSO4Dd53WOPw2VOqAZErkU7Uq8e0xEIMznfVv0h9WhSC1/bAdpglHjkiXUodZS2wOwagSxVcV9t6H5ssfmPmOoxxlTebao1cmGepnDVqCVODy7Z+KRjziD8sTea4KGl/KXoKS+IR6vqXajKi3xeF9LZEJbLwW1LRODZlHWcpC8Gq8eicYErCHDUBspqTE7J+Totdi7AoZkopKiaCnpARnc/DMCiP0HaUWLi9u+cQIl/e3PD82StKLqyHFT/62cd8+fIW0w3MuTDFRLAFjyNkuDtMHIJVGKerZr6mdRbqImtrwYXWUWqrb1V3rIlC2wuOjA2d+KUa6p5dnHF2fsZqtVrEcURUGdK0zxOF/jnH15Ex0p7P8ee5qpEZybUgdbKMnRy6/C5VpNfesBW7WqJRcuuuVQ+VmkGU2hmROodbONfEH+Tks5YSelnuxPJZr/38tUKqvq+0cxWqXLytaP2yfP1rQ9v/H45vPFH50U8/5OrBA37YO92Il8hXb0nOqh9eapZnxGCsp+ss+zFSUuAwTZxtNvTW0VmLF8WDq8FUp3CnpPLEdWVinidKyfRdT9/1eO9ZrTreePIIi0LSrq9vGedIwHCYA4hhc7ZRaE/J9M4RYuEwRW63B27HxPnFBY8eP+Rv//t/i1/8/Of8i9/5XfZVAMC6BuXRazmOsa8P4q+MlK8fC4lbGpNxGXSyCGi3MEJhSMZ79aqpSYqx1bq3fcRJN0VhQYKYpH9r1HxzCXyhcoBOTlSWrEU33wqbMuLpvcUNHnGFdefwqa8YeW37us4xuA2r/gZvd1iTWEnBGegxnK9XzMXw6WdPmaeR9Wbgu99+l1D9RPr+qBBkpEpRi0pPG+ewzrEaelIM5BQRYJoD4xT47EXHi1e3HMaZd999l857AL58+pw3H13y/ttP+Lv/6/+UP/3TP+OnH3zAMKz41e9/nzffeIP/z+/+Lr/4/AtevrrmrcePePLoIW88esRf/2t/hfvtlmcvXvB//n/8Pa4ePuHhoyf89IMPuL3fst0fdPKKBpeOyJuXV3z3/bf5n/+dv81bjx/y6OoMyVqhmUPg+vaGaQ6EEPHWLIZn4dUz2O4wuz2D9YScOaSIRMMUEocQmGwbNopvbwGUN6ihXCXExqSyoKUmeMZqoO+Kilnch8CHdwf+5dMtz84HUgp8+HRPeHpTk1RPmvcQRmTa8x/+4Nu852FlADq248j4VJO677615gdvvMm75wNzznx7N/Le5y/ZhkwRx5vDwIU3POoMk3PQb3AXj4mmI8bAvLtl2L/kqoP3H53xg/6C+yny6dNX3O72TCkxURjWK6zT9SXEqjYntkZbhUwiFu26hJQVllXnwXbObEPh2VjYbUfyaoV879f47f/sP+dbTx7w4e/8Y/7l7/0PIML/6j/732CsYXv9gj/8b/9fPDAet9qwfv8H/OTnH/P5sxd0n3zJIQtTLoxBuSc5ZzJJO5QiFByzG5isJ4mvwD9wJRHur0njAXJUr4rSYLEKu/QCw+Dw3jHbQrSKeb81niF6bBI+ud3zIiZGsXzr7W8xh8g0T3x580rhE66j21wsc9m6jnmcCONIOmxVwrMuMSkFSqkdOuMp4mslOJBz5LP7LTlb7oNhohFGdb1QuVyQ4vgkGD4Ojhfrc4I3lA7MOGFjwIZANPDo4oJHF5dc7+54eX/Pq+0Whwo0KA4/LGT0ko4YWtd15JyVFxRnFVDwPXNSUY4InJ+tMbbH2nN+Jh2vUqSfJz7dHbjLFlYDQ99BUQLvPM/adeg7FWDIhVjlfXXqCFebNWdnG66uLvnFixfc73bcbndkcSQxzOJI0msCJ4LEiC+RjcwqJFIKJSXKypB7S3KO0E2EUki2JjRFhSXOVxbvLb7vOBwU/uytZ7NyeCtYMsV5ApZ7PFssoRhCElw4sJbE253wK+++Q+8Mt69e8unTL9iNo6ot1nSKXP1sRGFLoa/GwaZgbY/BsY+enaw4iMfQc7a9oXOwur9l3WdMDvzwcuC9oWNKhSllHqws755l7j/+ETLdM4njo5/8OeP2jt60ThiIsTx89IhY4EX0/N9/58dcrTo6a9huCz9/WXix8+CvWEvkzBZ+5cE5Z2ZiZWbWnedsZek9kOclCEsI2Stg0ry2+bagqikpybI/HoOtWmAQ0Q51ORonnu7txZgjf6FEhIyjJauWXBIlB8gJN6woNdySNEJpTjuv1y+XAmLSwlrjZmjgrCF4LsrtnHOp6AlLyhVqnDK5/TtmomgiE+rVlrpMxqgGwTHBZCFI9c0BpqyBYXaGKYNEtS9tEEK9XsEWhVoltNOfsiHjwHbc7TK7MeA7x5cf/ZQvXrziRz//mE+/fMl4GInTDKZntTnnyRtvc9hvMdOB1Wbg4cUacY5IZj8H9nNkSgVfKjPNWIxzi6Jke345H4Mra2z11/LahTEV7lUL0hQFVKrNgufiwQVvvfcObz55A1uhv8Yarq6uSDHgneM/+A//Nq4f+OL5K/7hv/zDr0sTcxzTOlSMQvdb8WzJsNpQkiVJWSwWcgYxZOvANAGQhElaTYjFcihqmptWPT0JbezU0shSHG8FuvJ6br4EoMexLxzRAMeXVY5tLaCcwsc1KVXjdlrim6HUsc9Sovnmjm88Ufnkiy/59etXxHGvly+q+9S6DVkM1npsjhhSVTfQNLG3CnWIlahbUNJfMQ4pCROCtrEaodGp8oM63yoZcXCeB+s13hseXG44X3eM48zt/oALhX123JUdN/d7vBTOBk9Kkc54hmHN7fWWec50Xc/jVYexlvubGzoyzjkePXrI/sunxKzY/pagWHSALvnraTLyGvzql9+31iSByjmolUQxx1+knEhakARraxfFVrylqVzhWlVqGXlbSE94L0MyDGOsMpd6TtbXid8y8xPJPF20Ld55bAgImmBOIRKnmXGKtGKmAfbzrEpRJjCOM6aAM4W1VyiUS4ZOVOvl/pDZfv5SGz6dY+iVnOW8o/ce76xuzNWJOJqoqk1GOFv11Y3cYK1wvxu52x64P0zc3Vv2B5jGpAZjZPbjhPMdm7Nz9vsdN/dbXlxvGadrkgy82s58+eqO2/sD05x49MbbOOe53o78V//13ycVdRw3CCUGpv1OjeysobeGmDK9Naw6i6Hj+v6e7U8O5Fz47ntv8d333+I777wDRQgx8uJ2p/CHGHVBMgYrcHj+nOnmhnBzw9sPHkLR6viUMiEk5XTN4VgbstpJKwjzNOKdsOodxnkauS0tnTDD1IEphhIcL+eJz3eBp/uJnV2Ti0fKivt5JKcAaWQKiTTPlGnkPyjVQXrQORx3W+53r/jhX/11LjYbvFj29/d0neM3Hr3Bd9+8ZHeYePVqx3rV0XvPynd8sINbM3DnN0R/QZhnDtvMg/maYOAN37M6v8StCyTD5WpLEeg3a1ZrNZ10xmlykDKpRB5s1gydZ9UPHKrBYkoBa7VKvuo6Proe+fBmz9/7+XP6S09E+IMv7/hv/v4/5jffuuJvPOnhe+8qAf7nH7DPkUOYePCdb/HkwZusV2eIH3A58PaDc7739pscpknJ0FZoLtMlU3l1sBPHx/eR52Pm08lhjcJdr/LMr/7gfd4cCmcSiTWYcMZChRiuXeFis2I1dFhRJ/WUEiXNxLkQU+E/ffI+wRpM1/Hd977N59f3PLu+5+dfvmQ2nsl4XgQhVqiZM/A4R9ZE3nSZlS0qbmANTeUliFbG1WNDmUxFhH2e+dIb7juLOK9rUlIFOHVcV6foexEYhHVekyse/HB/y/tnlu9feX74xjkPzs652JxRcuLZ7Q1f3Fwz7yIpacfcWqn8OE+cJ4yoTGnX98xhZn84MM1BEyRn8d3AqzHy+f3IH72aSXT0bsW/nG95xwrfv3T83f/k13EWrC94p7LSxjpSaqRc7RLOc+RwGHlwoU7w1grFWNZnZzx4/ISPP3/K9e09L69vyN2K+1D4bDvxi/vChCV1PS6MPPaZH57BexuLlcKYEu4w0ZXItUn81q+f8VeN0U5KCDVg8IioxWKD21Arxn3faUIZZmLnuY7CH11HXh60gxWs8NB7znvDDx+v+OE7j3iw7ln/6jt8/MUTbu+33Gz3YB1KvBY6VKVtnWY2g3I/nBNWw4a7IPz0F/f8/GC5TwZ8z+Yy87Av/OrlwJuDYbA9b//1XyPVNUg354gtiZcf/ZRnH37AzXbmX/zBz3j89ju88d7brM7PCTGz6hPng/Bl6LhLjv/upzsu0qesZWJ18ZjPp57b1GHKCjls8WHi+tUNVx2ceThfWTaD0Hei8EZp1f64dNIFe6y2GyocVzCnildLJ4VaBdcOmTGvw6dbUt42zuNf1UBTEoLyH5vnCqVQZFoKtgqB1mA5p7xUqk/p1UdYaw3AT+KD1FTISu2D1sQ+0Tpqdf1JylVJWaGlKgikN2GOsRYZtMgSixCyEGIhpMwhZcYkzLkQsvr81NOgMSmWpM4YuqHnervnJ794ys39gZRDvQbD/WHiMM7c7w7MwZAZwHuVK3ceKYHvPbni3Ft6Y7AkNh388O0HXDiHtx039zuidXSrglsZ+irsoQpxNeguzVRcNJmZKufMUPdB7Q5CoIHzu64jlcJPf/EZt2Pm0dUV33vvba4uzxn6DmOEVd8hIhzmyOcff8LHn3/JZ89fkKXQV27TazxfmuKmxiV1VFVYaEXgFI5ICqNR7NFLRiHvkhJRMlMp3AwXmGHFs6Fj7DuK73g8bPDPPsNtX6nYTLYL9K0NJdOK39LODV6TgGzd9XJapD456vlkNM41uSx/r50s7UqGWE3CT4SDvsnj/w/Qr1fc3t0xjQeaQRf15jU1gNaSM5LqQ9MLs1WNpFRI1aI1XZUZpBJEW+Cvz0Dbsm0yWyNcrAaG3vHwbI0VxQre7/f0K4+RgGFktx9ZdwZZdaoU1A+szy5IL3eLrKc1EOPMfjfRGRjHQ1VLEfjawzhVUajJwenqcpq8fLXhsrxfg3i9/oLTelBpGXHrdNSvBUS4iF0vvZ72ISq3iPqgqOJK/fmSTbelckm3tNVrjrAim5NycES9a0LUTpdm1EqaC6ILRxat5lPASU1SrECs63wRxpCYDkq1dYNjFTJ9p1WIoe/onFUyXlVuUgEBJcSVDO7RBavVmqF3zDHTTXHh8+RS2O4PKFQ/M82BaQ7sx5EPPvoFn335nOevbtkfJmz3Jdtx5uZ+xzjO5JQRscwxMY0Tf/bTD5Tv4CwpFw7jRCoqfV0qcdwgeGPwlUA3h8h+OvDBx58yjge2ux3zqP4nISae391oVThFSo50ztE7x/bFC/Y3NxxurrkbMxbd9HYh0DkNxAfnaBATNTVVr5Ncikopz4FSZTBzMVWVTeEy3mVyEuJsOZTIdYAYDSHHitvVADjFRJ4ndnMhhwShYJzFd55+6DV4y4nDfq+qKd4zFeFmu8U5Q3GGIsoJinNgsooXNyWyOwi3Bl64QEyReU7c72fm/YiJmes7z20eCFm4242Mh0nhhF1PHqeaqCQlguZEyBPrTsdKKYUcs27YSd2fvTF0xuAqBCSLhX4gZnix3fLjn/0ce3PGD9z7xJiZQ+QXH3/KLs1EybCyhCKEDNPuwGGeCSmp8lGyeAtD51SJCSBp+z2WgimGfgQbC+QOsR4jBl+Eq3PHGxvhwsQF1uWco0RNVFYmcblZs+o9kgtzSswpc7M3xBgJqXB23mOdw/cdj857toeR+86x6nvlhYjCH8U4rQKjfgeDcZz7xMoVBlvonV3AJxMqyV1SxokjiSMWy367pxQhRO225SqfHGPAmmr4hmGHZXYWZIAKiUs24HrD+cbz+GLFxbpnM3QM3mMdGAf7btLgLRf63tH3nmHwpHnGGS2W+F75DfvDgTnEhnGgH9ZsDoHkDvj7e6DD+A3PDyM+wRM6vn15weDBGlUjNNaqqEjl5eWS2R4ithRKtJytuprQKEHfGl1LnAi9tay8J3vHTMY7h/UGg6V0HdZknM30LjNYs3BLJqMKb7uSuHCWzjkECFbXRBFPc+jOSXlvhUJMGd+2ihrokBuvQMdmBPXwQZjmyG63Y20KDx9dcX52Ri4ajDqnsEHbOTrA5oyZRqwvGAu+E/q+w4nC966TcJsEXxPaYpWXMI0TYg1958lG2WA5Z1IGEkzTRJwm9rsDu7t7nrwN3TDgz8/xY8T5PSVHQvHskvB0mygEspnZmx3XWbgrBpMcTIluDjzKIz4ZiBokxWLoYo0xGhE452ONuAXYpVBqouJqt3KBvJ38V9d+o3ypFoOcvMcSk3DsJp7u8dI4TqWGKxQo8bjfilS/HJ1fS0HxpFqZpHI/Ckdj5vp+en/zEiSWwkJ8TzTECspjoEK/WqJSzzTU/aAUTUJSUfhqzGiHryVnetFVEKndh5NYoXYbnXdMMfHqfs/uMBNyWCDRczufImpcWosDxXrtPpTExarnonM6nsOMNYXLdU9fTFU1i8oPjdUHKEntR8nyZdqzX76O/LMlPqIlhTrXrFPUz839lpCfsduPnK16CoXV0CMU5tWAsYZDTHz27DmffPmU7ThRpMpat/HzFajUEpLVz80tfj2egb6utKC/jRVNBnLMZElM1jFfPSI8fES6ukRWK2zXsRKDGe8p+xtyTsfndZIstVu0fFp9nssJngxd2lhdJo68PjEoLJiy+mOpXUURhTFqF/DfAo7Kz37+cz757Fd48fIl5w/e0pZgSpQcEZTkaazBZN3UGoazFDQYLYoJPE4SWOjndfIuVcsTjF0p6licU+Ktx1cM3nG27nh5d8+LF6/46LOnvPn+GpeFchjZX79CNgNsBi4ePODhw0e89ea7fPTijnRzx+6wJ9zdsdvvubm5JoWZ3W7Li5cvQXRiguL0ciknLu/ldAzWQ054H7/8eE0Wt1VnapWgJRPGWiUNfvUoVIiULP4luugdSf2m3ilVosgL5rZNohgTxupALG4RZ0RE8Fa7G6nvmI3B9T3OekQcJcNhf2AOCsHpO4+1upSlPBNnDSScdVWdRc3e5gJjzuxCxc4i7PeJlze35KSSlU1hheUp6/cpBXJJOOAv/9qv8N1vvc1bT67Y7Ufut3tudiP7OXGYE7effYqRXOk7lo8+/ZSnz5/z3/6j/15hgDHT245Pnr7Ae8+Txw8wSQOVzz79HIxyQD798gsyqvK1Obvi+e29KoJgGLqO3ne66bva+CyGVbdmNThe3G75/NnP+J3f/1Muzs+JSZOm7XhYFoV5PHB5fs6Dqyuux8Buv2O33XImn2hiWOD2fs9v/Op3+Nt/4y/zt/7Kr2LEMM6BLz//nMPhQJon3nnnfeYpcHu35frujt1hZLvbcrfTwG6727INE4c5cDjMfPeNc1ZnVzw6f5P73S0ha4RxboRSAiFPzLMS/3vfcXZ2ycXVQx49eki3+YRy55kF/tmPfsYYI6/u9jz0amJ3PSdeBccYYBwz513ggY98a4jclzX7/gE3V99h787Yx8Cru5e8s/2El0wcfiH86V3hZYSbLNiScWJY+46MypwaVE0ol0Ik8vB8xcp3bPzAbj/Vdnths1ajR0G4nRJ7HLerc+jVF4iS+dmnX3D9ReLFxx8QciCExHY3YWu34bGLnK3OwHU8sz1fvrphux+J1YPJWctqNeBMhf9hKSgH4OYwc0fPQXpC/1ADTyPcM/GT8cAXZsbnULHlqtmvAisFmwO+8r9KyoxR/Q/WFlZJK2ZfigaenbWc/+hDPr/d8mI3cjtmsuvJrietr0hGu5hSEvsceVUinx9e4UQVjrxz9NbhjWHMMKdEKKqKZETwCN/2ECURyGRpSkAKbTDotQcSL8rAM9bcuCti7eiFbPjs+Uh+deDDP7/DWofzA289esJEYpdmxvuAFN2YNpsB5wzO6irmRO/z0VNAjxSCekkBuwjXoTDuI3NJjCYjpnC3D3w03fPs+UvtyJdCCNOyrjrfKbF/mrjZj1WprnDedxVNW5iCQiiNdRwO+7p+qhN8NJ7o15SLt0nOEscbQsl8Nh14dXeNDyO5CBMd7w2RR6vCu5fw+x99wX00HLKns7UCmjPiWERmdDlPVWJ3UTxgLoVRPC/dJaE7w4ihIzBO8PG456d/8AmXPvD48oy//Jd+nTmJjuv7A6kEJaN7z6rAmWTe7xKbcsATcVJ4ieFlFF68NNyGFffZYkiULhEO8E/izFAiJiXGcWQf4RAzL7cHNr3h7Yfn/Od/52/x5NEVFyHya3tPd36J6de4996ny4J9ecfzl6/YmXNyt+bR1SW/9a1v83hV+Kd/9hFTsow5k8MtZyZy1md+8IZlKAVHxjhL70R5kLVDhEBCHcvbIGldkTklwhSgJC5XHYsARoVXNw+ipnLUZP4bMiE3GU9TXnvf9kz0OOXGskDHlL+oXK2SqRLkeQmoT49Qqqz0kpUuNVqOvkh58XiZK/QppaJ+IUXlhamdUOU1HGFjmvBoUSsWhRs1qV4jBk8GozDTuRiSqVDi0qwH9e8KDbWhSc6cIrvdUUlUuaTqc9dVhEST1R5jlQiviqAKG0pLp0ZDQK3Qe6fdVd/ZWlNoHSXIMernuG5JDloiol4rduGxtafU4nVr1Zuv5Jn9fl/9+CK+7+nXG3JSCPE4Tjx9dcPHX3zBp89eEkT9euzy7Nt9OHmWJ8abOsZMhfZWn7tyhN2b0/cQsKkQx0iUwv7sCvtX/xoXv/7rDO99m02/ZihgPv4Jt09/wfaLyOP0umiSSCPU63l8PSaFr/9QZfBbN0iaR1FNUlsMjkAmE0sC4/FdTzesyDkxzxPjePhlH/ZvdHzjicqTh1eUknn24iVXj95Wt+xcMEW7JSLCHBTkYGuLTlVKcoVPCcZZUlQol+SsZEGreMRc8mLGlCo+3Tm3VNopmfOh4+J8w6OHV0w5M332lF989hnBrzk/23B5NnB1ds4bjx7wzrvv4jdr7ncHfvo//j7/w7/8A54+e86zZ88pFQ5gnWU/7tmPB6YU6Wz3WpcDOGl7/LJU5PUB8RclK8ffa4LSpPYk630o5djdcEYnvzWm6lcfqwdCy3TNcU0tZTGQNK31bcxJtt3IaPpzTZpqgOIs3mkA44zBWVVOOl919LJh1XdVpQSMNRWKZXFuxZe7zznMER8mOuOwVugt+JxxSTBZVZ4MBWe9uqFbs4wFacFQC05y0eCSgpTMs6evGLd7Xj68wFWo04X3mIszrjqvCZhpJH7BODX/W/WPlopkZ5WEn0tW12PR+/Py6ReKZS6Fdx4+VLWx2lUpa+XkaDs7Mo5b+tUKAsSAmsmp+KqaYVmHWzv6YcUgwiYXyg2MYSLEwNtvvMFmGOj7ni9f3VESrFZn1YNGOwFD0ntwe39HFnDe4gGxrhKrM/3mDDMkgnWMYkhuz4TF5H1Vn4JuvyIyMac977/5BsOwIZqOD3cjc05kEldDj8mOIB2v9jsdR9bywZdP2R+2fPH0GT//4jkr6/jrf/Uvsx9Hrm/vyXPi1998yH2IXD+95ePbiW2ALI7vGOHdvuM3H8DebfiyDPxBGJkiTDGSQ+A7Fxt+pV/x75wZnsZ7bveR+ynTdx5f8bepaIu7VDWcIlCMZdpGDAEreyJ17ItgZ01sck4UGbDdimHlUGM6Q7GW7Qy7/YHPPv2EZqh2VxKPBsPbveF7Fx1O7rnF8HvXic+uDxymyMqrEIcWBXaNIkaWpjuvUtDD+UP8sKLDQdIgZU/mR89eEHc3upaJjl+pI6eUgi1p2QBTEeYU8SbzHz0ZeLJa0YnjH3zyknssEcNFESLqSxVywviI6RKr9VX1pdLAfB8D99PM4XqLNA0OMfhcsFkDkVkMswhzyZzlwBNb+F/85mPeWBcuu8TMkSNYiqkFpIxxAz++Ff7keuLT3R2z68B2XKbEQxN4LIE//uKO7ZwYI6z8U5IUomRKMktlWWyp1dysXY36POsCB5jKLUhQdC8ozlP8QNw8Iouh5EBvIcfAfn/PB9fXjAlm0YCpiYacrtDFtBpZ4eV+OvlFlYcvpXqHaFU3xYA4cCbhc1T8cglgLKkId7kwHQJTLGxz5Psb4Vsbz2+/seInz+/49L7waSicdQVLRMKe9WZD3/esh14d5cm4rqvnrPBpyQVJQgmo2o4IIkGDa1NYP7ik94nRCn/00aekVKu6yEKkn2NmE2fecJlvvSE8HDJrycxTYcoWHy1d7PDJ4XLBFw2Cb+fEH9/t1MtHCjZHtlNkNwe+uNvz7uMrHvdnfOeHv87F++8QSubXv7zl9378AZ/8+Ge88w/+Kfvre754+or7IIROizESR9598Abffrzhjz6+5YvbTJgCvYG3Ls/43sOe/+VvXTLIjCWR6HDGYqTW1ytvodSqNEXZOKJbIDEmdqNCBru+X/ZjY4+EazW4Y6k5mroftCShlLLYJJTSBDs4STYW3AONgN98ioxUvifHpKP+8fED4ZhMlHJ8n0J1Ya8BeuugF4UEp6xdtzlENYjNpcoLVzWwUpOZnIjJVGI92tHXjKMWGNUzZztrYWSMmTkpIT/mQkB/PybDFAuxaEdvFlv5Kma5A6ZWX+0CkRaNH5whT0njuJCYpolOMqZU1bIT3qy1hvVmxcX5BjcMZKvFgyb2Y3y976JrfDNBVg6bIhagcXyOip+mwsnJymNMsYAxPH35igcPr+h6x/l6YOgc8zzz9NVLrBWc1xhosd/4SpJZa8RAtdOQI9FfP+6Y2LaOXakJQuu/aCowkU2hvzrnyXe+xdu/8it8dJjVg80a/OYMYz2kaszaBsaSPJ8KDLRPbP/DsfsirZR9TJio57CYWb/WIsyafLoeazus91jnmUOgj/GXcnf+TY9vPFF5/PCKofOLolGrKpw+Ss0mKxCs/rJp+htYzLgaykp/1jLS8tpXC6zbJBPRlt16PbBer4gxMY4T+92eaZo43wysOsej4Zzz8wus63n+6oYvnj7npx/8nA8/+pjb21vu7u6xGLz3DKuBwzhWXkAbhNAWpKWvs7T1jseyEP3SjPb117Qs//TnrXWcl9ecKJA00Ojp2bQTFFnuiebDeeHrt1+fyoAfFdra+bfJL/VTK41fmu8FeGcQr2pgC47WQuedmvB1K4bO0VnBhLSoh3VGB55D5Yyt0fvYVXiXVkGOnZSSVeEigzok19lWUiKNM9sw05dM3w843+HIbJyhGzwpO5q5qDOtEit0tlsCHycKKQv1y1TIYhgnKAohON9sFk10ISPOIGLpysB+nDhIxqCC94pBtsrxEcFRNMG0hs4KnXVYY5gODktkJvPk8hxvtGy1KoXBGhVLKHlJDm1c0Qkc7u958fwFXVW2eXV9u4zP7sUrUi7sx4nb7Z79YWQ7zYwhMudCRNXYikTEWDZ9x9B1jMVWToXCybwVrDGY4paqoACfvXzFdnvPU++4v77mvccXvPn4Aa9u7gjzzNpZHm16ZFLS4yHBLgFOOVSdFZ70wt55Dtkih0LMta1f4LLzPFkV3t7AprO4SQmh3lpybS+n2vTPTY5FoFghprnOiUSpGHyKIElV1lJOWJfoc2FdFfMAslE1sJCUYF+KEBHuq/TtOZYBT8kKc3y2nXi5D4yxcFE3IuCkq6pdw2NzU7haF2XTmRYMqfrT7SGw346EkMBkMBbJURMVdGNt9axYDHMKrG3GPBTWxtNbuDlMvMqWQzbcZ5WZVZPLjDEJlxJDqeFa0Q07FVXZ2c6xiuQYLR6ljE36rGdrCMawj4mcZ85d4vEK3jsrPBoKY6vESq23FTWadF64mQofiRpcBhxiwOXAWhIXrrALiZeHmdsx4ZlUbtaAqeNQqc7qJk5OdM4t99PUpAosMWjXzIhu9Lbr8YMwbHStSkU7ulLlhe/2I9tYOIijd3bpZCuURoMi590inpgaib/KHuei4hWlGcuJFizVwV07H6fWBBkIwKEUDjmzTSqaujGFx9ZASowhcxMsyaLE2RihQnmcGOZSi0bOY52pstYKD0RAoizrcwt8jDUMmxXO6ti/PUwoCtfgrSMUVQPcz4EURs58xiXDBlgLmFqg8QU8GVMyJmcl8SeYSuFuDMxezSvPTGGKkTFoshK0XcPm4pyzq0sicPXwATe7PR99/pTf/b0/IUyJm93ImHVNdqLdvpV3bPoe4zowkSIZ42AzdDw+H/jW4w0dDkMklg4jOtcLLWioO0eNM1qiQtHneX8wHKaA+H6JTYw5KoC1vVxqICfLGK+JT62KL/t/3fdfi1cLx9ejnJGGqsjN4PAryclr3hr5+L0GnKV2Lo+JSqocmFQKKSRi0rF5mqikahybsyYUChuzhGRUKTFnYjgmWxrsC3OioinUsNRJIWZRufQ61nOu+3EtbDipY9O2Eo0WRSlV4KV+eSv0ncPFQkks19WurV1XKYVidc91ztbuqiXbI6WgtG4Yx3t4+n1ba2lhAxWR0wqXIqrGmDOHmEgIL27ueHV7h/MWawqUjjkEdvuD+rTFcCxt/JIkZSn9SuuQHK0qdFwdz3FRV23/bn9oRBMIA77rWa/PWK3POLz4RM+796ydQogla5Jy9Epp4w4V8FjeuH3GMbY6jr8Wq9dqdk3YT6/lOLBrkcaoeacxarqaa8Ph34pE5S/98Hu89+5bXJyfMR72WN9hrUpDNgHMhqdrspC2Zt2RrEoZKdWOgVFTr1KwxuK7nhRHnVQ5Y0QrGyJ24b04a7m4umBYrQgZPvz4M168eIW3lodnA+89ecD3v/Mebz18zG4/8skXz/g//V//b3z+7Cm3d7dIc712HevNAKWwO+y5vr+jlKIV/1ZJaQFKyzTh9UyjDYi2AL2WCLx+nCYrTUp5ITEhtXKiLeQUI+N44DAekH4DzqmTL7byVajjrrWVWcZjaZueOf6c0hIVfUYpF3VPr+cWwsw4JaZp1HZyyTqPckZyWtzmqRPT1WA+xRErCW8KSMZJxhthYyz7ooaFvlOCrDVCJ64uHvr31ApQiEfVJmqQUhBCqiILUhhioAQ1TJsLOGfoqipbroou1hpcrhtYLrh63lInV0qJubY/C7ARUSKtCGnUarkBuqJmo9Y7vvvkTUJOjCHw9Okz5ly9RQS8FzpniHP1tCGxScKZH1j3HX4QUtcjZuBbD8+Ytlvub274K1d9FUsw7OdZL9sUzi6vKDGy//QL/v4vPtOgKRde7kd2MbJLkcDvasAlat4lRk3QjPXL+EpiyCmQy0SaDyTnSK6DTjHDUomKXgreeYwzlJjIOfKvfvZzYpyZY+TtdYf3b+PsO1gT8CaxcuDyjE+JNXBlHRSYHXTeMNjCOgVijjpOuoEYDTkbnOlZl4lVDpg80XlNev1scUY7KurLA420K7XIESmIX1fCX0KtHbWCLOIBZZcW0yHeE6S9opCTdrzMsEIePFR4RFHPiBWBzoFfOWaxi4Hr5qyjL9AbXoNuHGOkqFVYUfUd7y3OFYybKUmvFxz96hwpWTc/0cDZ5CZrWteGmqgkhClGNhJ5c5V4fB5xPnOxWZGCoy8W75IKbGCQFLHO4apE7VK8yBlLxBv1lyhW1XAATPHKBcRiTWYgY41hU4RVV9j0lvO+cDUU9rntjjUoQdfkzsxsTMEliPGcZDsET8p7Vp3wxmXPkwfnzG7m4CLnw6oG2qli2VHxj2XhUl6EaAGV3pslDt3v5xrIqDS6WI/4nkkKST3UySEy2MwbZwNfXp5jgvo89V4Wz6sWwGiR1ixr8FLfzJBirF3XQqyJrgGM0w3beVdZA4I1Xd0CBCy4wdN3uUraRg77wN2zHV3JnHVw4QqrwWPFIp2l9712oNHChjGGwWvxTYwwpsSU9gtsx9gWYAjOGXpjOe8stkJpbLdmnKN6qgAmR1yGIj0rb1h3kfM+snHCSgrFZ6wzHJJlHSwmFnJJJJsVuoQhm54xj1gpnHUdnREGa7gPkbPBMTgY97ec36x0/MaZD3/xKb/zR3/GH/7kA9bDBu9XzKs1VrQL3xnD/jDy6s5wGwp5WON7B2SGtWXdFabtK6Y4knMEu6qS3GZJmpe4tQpDUFrgpJCWOdTnOVUeS61+L0kK1P2v/Sstu3bbG/Tpy2uFQjmJB5qK2OsBov5vqYO8iQ1R9/WY0vH9ToPcNidqNTujiUVofmpZOyYa7Os+lgvKc0g1ZqjFB0VnCFqKUc5gyrGig3QupwwpGkqsans5Nc+/2oHR95WQsSVXx3c930gTAtA10doqdFQLhb019N4xDD3bqRr11ufSODe5Ji4xZYYqFU5JxHnWGeerXLMIGLvAI3PJlUyvCZO14XVTRs2CKDV+8UbXxhQLc8pcb0cyo/K8pPDo2RmXZ9rZjDHyi88+59NnL5XYH4MmuHJ8fxGWZBdksW9oqUGLeS0sY025ULI8a7MkNgbjeuWLSYeMmXC95eMf/YSztx5xdXXBQ9fj6zro6vLeqtGlBXss4eAvP07G2/JNW9LL8s3Ji7MKvaDKs92wBmOXjlzOmix/08c3nqj889/9F+RxzxtnK954461qsKQVhYg6YZ8G7UJBTZOUaCVotc9bDRBN3bCbpjXZkUteZDGNkSVQsNZiLdzc3fHsxSt2h4nb+z0PHjzk33vzbb733W9xdbHhcuV59eoFP/rxB/yjf/rP+b0/+mOstzx+8pC+G0gpM0+BVBIhRvb7vS7woiTyry5AcDIQ1Db8a42Jrx/Lavq137RGiRijcnXt51mJd8YY+mFQV/a+14SpqkeUk1Zjwzvqx5n6qYWcIzEGQgivVSDU4fV4VsvwrBm3MSBZtePnUMB6fA/O+VqZ0nCj71WgAPE490onnTjAIsVgMSrhawrWOJxRh3JXZlxRUnrJaeHcFFd9DWoVpMlBB1OzelPwRYOShDAXQVLU2NRoFSiVgpm1amdF6Kw66XoDvRhKUXHJOaeli2XruNIxmZbFhGIWff5w84qzszPevDjj25uBu/2em/2eu8OBzmZ6Z8Da2oJX+dYuz/iQeGOw9MOG1WqNSTMbb3j44AIRQyqqYX9vhDkEQgqYMKtb8srXha+aeLkOHxMmRKJRLobUa5DaiWyQxFJU2rCQIRlW4nBiGI3em86oMooTcCYjucqqZt0EHlxckuLM4XDgqnecd57BSg1uDUUcCXWWLiJI5QhkU1DEc8ZYyCWQ8wwxMXQ9pQh7MtiMOHWlFjKiP8IkwGiS1YQ25KRSpsFJHb1LgHtMIJqaiilV+te0rmRN5lHiom61ta9XhCbc2BkUAhFUvhxrqmP8IihKe3WRssAnlVdr0Vfa2hlMFLTjrBTWGkRUuBjSFpA6n09+Z2Kp76bmdcZkTFK/EO3YVNGSov4rJuszJJdqlmpq+U3nq0PHRilHqU+RQikBUzcqQ+2qGX0YxSgHINe/rQU4MglTCs4OFKM7spGixHVrCWTmbAgBqA7OMavKUHV2UK8wESDRxFgEmFIg50TKkQcXq2q4x8LtVD+KUIuQjjhrx61QSDkiJjMI2FzICeak0p+5BQetcgjYkrUbalTys5QjPl+DMuXQadApxOrybnNWroQx2hlKMzlGcorkpNdWCuyTcBvh2ZzYpsScNLk2obpYJ1FBkhIRmZWzYgqZifv9pD5hIShXTzxpGFRGWkSHTr3m7W6klsuVRF/ngVSITMqFcYbeFFJVTCpZq7mddyCCSwWJBcnqAl93ItShOpJy0AJjNLgieHEIjiKOXNf8kjTQeHK24Te+/T7jIXCXMynryJfegslIjsRoiUVI4sANeLuiK46cEs4VeqvjOuMoRdft0gIopBp+VpGZupGVvLhIVZWo9qDdstedckF0bmgSfuRx1j2wQkqlDrxTLsZiDVAK2KLu80vh8CjtSzXrXDgMNQM3Yk724xZjaGJzjB0r90BE5zXHANmIJvjNFkLXYKo0fUVn1Edoc836jUKtk+QK7co0XxkjuZrltnWpFWX0Q4s1Snyp92vpbFQtAWvUeDUXaifF0Hcdfd8x9APGTJoCllqMEe3KFlFUTVp8mjTmWZ7lHI5WDCKkUO9PKTUxSaSinMzDOJFiqfA9jY2sqQadJdenCSEm9nNgiok5Rm5ub+msXUQnCtX+IEZC9SYry75zHAdGWiG4eiDVNaNkCFPAW8P3v/0++3FiP048ff4C33UY2+ZWabcQKYLL4FImpUAokdXlBRfnl1ysN8z398xxVil+U5aC/9FE5fh+r1lnnIzZ0v7dEp2Tsyjt75Z9shpLWkMRTShDShgM1imkz54kjt/k8Y0nKoftjnF7z7S7I2fduDjeC1p9sB3SvmqiQcm60LdKV32pBhNVji5DqmSq5XfSIFHCdrdjd5i42x6wXcfZasPDhw95dHWxKPN88cUX/OzDD/iTP/szrm/vOL84w1jLejUQQ6JUNas5zEzzpBUQOSqy10s5XsfSGuYkOVGy5VKzK8dxIr+MFA8nFcrayF9yjWOm2yaCseq+3lS/WmJSk1tasNYM5gBKUf+BEEL1oGjP5ytJytIF0mTQGsWV+qw8Fa3yaDdLq58qQZpzU16xFNNq1tV8qQWAgBUN2ovoINQwTnlJpk40WwsS4poXrvo9tDpnEMG5+l4pkorKfDrDMhkz6gqdanLjxOCNsHKiZnqiVfFqF4bN9Z6djE2ocJ266Bex+mxLJs8jxA6bBy43K7wFb1X7vF0jubpTF13QbU6YmLgYOlbrFevVivvba5wRulWPkaq+EjXInIwwzhmkKHzO1c24qDvymVhMyhifCGKP3CbqQBB1sQXdgDp0oZHi6So8KlVynyBLlUjQz/LO18VWFag6u8blcx554cnlBd57NTQsLVBXGBGiSNssukmSq2yjEa3SlaRctK5VthOIqg513iEEVMJTF0o1GJQqVlBnSFlysGVCNnx0K4gcm53H9FvqMyVnxJr6PEt1Jjc12G9BiUIfKDq+Q0pLgYT6SV+vW50seuXkZ+i90dn1Fc2hOsa+Vtuoc1nqM5WiBFUjtaucTzYipCZw5eTzW6ChwYmuB60mrAGAqWaDSLt/qUIYqTO2XcgJRr4JfbRgsc4bxGrn0xZEMlYKtlaotfKr61D7SkvAkFGz3LIELTWUJaWEMzD0ns7IYmLXzCC1yqzwpNKKDTWoKzmrOIfkeis1cK+WBa+NCUDHejOvrOC7hvVvq2IrlpRcA8na/a3h8nGhz3Xs1qq4rgWywMFODSPb8yr12iSrYpKg36ccq2lgJgaFRHHqSo3UTpB+XoiJMkc9eVGDyiJ19GX9jDlV0nUBS4NPV6hO0bXZZE5GixYQiqjoRqmE4JLza2u8jjPdByTpOvvgfMNv/tr3ceszPnn2gi9e3XJ3GDXxLdqxTakQsyEWT7EOUxy2eBWZMInelJok1L3llBP62l6pz6CR5evAPEbqcJJEtDEgy3sct/FTSJcc/7eNeTl5r/ZZ0gj3X/msr46zWlBYfmi0CHO6ei1BQ/t3OxmhRRWvRVMtiWjB/+m6VE6+EDXvLBhs7VCnnI6LqVARGeXYoWrv0u5bu9x6LmppoGdkpcYNAs1OwFpFvPj61fhmJ8tU/QR9bpmy/O515/m2MB0h8K2DJVbvR0yJuXqUNQEKkfY+BiOto8USm6WcCTFjJDAfxjqnWTxYkEp2FeWgvhaXLY+qxqKmiUSddOlyAitcnG2QWrxMOeNLu28nh9Q4qe6buZrG+tVA1w9415FzVAQSeeEftzda9oPXkDqyfP/aUTOS8tVftJMqx5e9dh8rFyyXgskFccfr/6aPbzxR+Y/+yl/hrQdr0v01h+2WbmNwvVkmoQakzQOZRUOaQjXyqeSxrFKqoDjdVtVwzhFTpZvmqsLiLMaIyorOgWcvbxXzOgz86rvv0XcDfddzf/2KMAmzt/y//9E/5k9/8gGffPkFj954E985bu/ueevBQ5V+M8JnL56rDGlMCoExx4VFXktIXl+C2iLTxo5ZFjGWasUvCUeOy0rF06dSlblEYV3WKO8hpsg8zczzTF/KwoBqnQ9OJ3U7o9TwrIn7+y2391s1vUQD/VrK1IXf5UUDXkRYdR3nq441gaEUbN/jrWEbM9MUiHlc+BsxRoauU7iJ8YyTVjl7Y+hEJSGdBWcFlzUjL5LUv0VaGCR01tIblQMtFkKNu7pKfrdGyGSM0Qqhs44gEEVYiyDS1ZBWOzdC5jArVFA9NVj8H+acaelzSMeFE5N1U8yQUqkeNgUqxnZYWeZ94NXtHc9v7nn/7TfYbDrefushjx5esdtu2W3v2W8PpKKQMN8PKucaMm+++zbGGGKKjPPM0PcMnRI8XRFsJwzrNSEGpnniEKcabFfp3ayB4NUgXBkH0rGbYcyFMRe898s4G/dbnLUMnac3lpJ6UlgxOMs+qsRwmtAkwznmaOlqIvXgkeXu/p7725d8680H/MY7j/j3vv8e82HEeUN/PjA/v2cSmLO2fVvlbUL9X1ICbEKScnWs0aB/FwM5ZCRlHBFjM94bLoYeU+6JcWSMCenW+OIwdJhaNc6vraB6LxDUIb5yDgyFIrkGZ/X5LZVxjVStgEQoEXKEYKj1fVFvk5JZlYQXVd0LUvAcOXaniVIL2PWfefkquXL26CjGkkmQJzUoLDU4NnrOCVlc45G8qNWUgla3BZyDzhmcLZisQiKJgktWi0NFK6TF5IrJLloJM03W2pKqGpetCR9ZiKZyBNt9LSf3t6ooSa7vn7IWTJr4BpnGkRCTMT4jJuPMQG88WL2vIVkkgckZU6J2J+rOakVUTWwpVaJwjVz41lsP+UvffoPPvnzKs/uRuypZDRrsl+oKX8qscAqr1X1JByQlhLl20yrx1KiYwmsba9bk+nXgXXuyZSlUKIG/YMhVjEDqqSovSJypjTEhZgdELJmOpGqGTlC/3g4TDCV3iCREqteCaIElogTwUg3qrDFYETadBbcmGc+MrmXaTqrFvnq0PcNYXcdihpQ0kM85M6N8KIAOwbmEtYVUMrZYNYatnUmxcoQRZh1FJWmhCqtd2iz13lUYnrc9EgPeCd/5zjv87/7mb3NIwp/9N3+f/+If/ff8jz/7iGfJM2fdZ0fr2CXPNp/pHTMayRrJbGzhwoEUU6HQRh/88gzbXDyJrjBgLGa5J1aTNaHNtPqq04C/bqmnAWj7xVfm+mtFkiUoLMu4OU0kTIuIS0v55YSIz1cSJ73uo2F2XRPqeC+Nf1NUmaxUmGkRaisxL+tQ6wi2skhLgI6Bp6mp/kkOUo7Jx4LFyCrSYUztERdNKsXUzkutspeaAFiBzjpmEsYKrjN0XugsdIWKWNBx3goruUolR1BVMakIgZZEwxHeXq8gp1iT5YIRr/MwZeXHzYF5nmv3Wt/DNvVUU7AFXCn0Rj2gOi+cb1Z4I5Rc1LTSDyDCOE2k8lVY00lKKy3Jr1YKqdlv6HUuMVIKer4nUeMSIVZEjHJqFZ6eyIgTbG/wq45itJBpjULCxRT1UOFoQN6S1NOZ8NrwbQPjuMx97QWyXJQW7Sg67iSr0mXXOQyGnDIxBZzTYlF+7RO/meObV/26WHE+eJwpjIc9xXUU47VCWvF6zlj1fljaZVqxV+WuWmFqA5eCF3syLrVtZ0zhSKo/aqaXAheXlxjn8P2AOEdOke0u0K833F6/4kef/II/+bM/5+XdPQ8fPaLvPKUU4jTz/NkznNUHPs2RnMAYtzwo5HWYyWmVltLwiZxUQjj+DI4VEeAvyjzbtTSnVVO7TbG+jbV2UayIKaCLr1l+p3C647m8dk45ahtUVII4o5uSKaoIZNENoF2XPhv9QhpqRCnpIUbGaeJwOFTZY5WcHpPCtmJWYzJbeQWuKn64rB4Y1hhKzvhqdKjEPe2meWHxvUgOqA6vK6sYbGstJSvEKFMQZxgkglRCHpaCPldKgAzeeZ1IJROanF9dPOqyzOAaPh228cBuNzKNkc3mit6rGRoxLipifjMwZK0uv7p9xXZv6Lxjs3mAdGuGhyuGq7DwYuYpqKpJKRymqVZbE08ePcSK0SqXwGKmJYL3nZolzp62AaYEKeaq2BKPHTbJ+JiwMWrF3VqstQwMCAVnK9RDajW3aEKcUiFEIdWW9ZgLaZw5pEgsYHzPsLniy/sDl/cHvpwT69U5vvMk7wn9JcGNHKLlRbLsEKIf6H1gozU2VhtPWRueOcMvtiOfzaoqlSWTDYjtuUb4JMG/2jt23QPcZuaKGe80QLP5hCAIRzhK0S6HgqmoFceCLdqJKWIxzurGJ5BSRFwNr2OsEJ0EBpwoRCxnp5AFI3QOXIi4XOiNwRkVRPAck7JTZfCMJrSlCETdxKWkyg3SQgApKui7cb1Mw2kvWjC0bo0spUeFAfXGsXED3lvEvSRX1Z+cNdIx5fglZEqeKdFqoiaFkmZKjmBa/bImvqXyLrJ2fjKFkCciyhPrujXDSlivCkxBTWQX1UEN8Hx/hu1GUjkQAtWgFkwcwa7o1p5u1eOmiEHXBzGlFnVah7jQlUAIhRDgN7/1kL/xw7f5m7/+Pv/lf/ecWyl0RoPNBqvMWWGOpihUosGCSlEYSTDqIF9yhBhqo8GQ5djB1z3kWKE0hmUtzTEdA76aOCj3zWl2l6HEUEO+hEkRFcNQgQCMBhdr4AJ4YGBtEp0ptTuGrgEYlY3NkRizikCIYeg869VK4a85EvHaRU6ZIjp2a3kcUwRvu9pF0o5SSpq85jmi8qLqvyQCTixnmw3n60xvMnmeMVaFZ4Y7TzooL63354hY7SYnhWYWY6qBZFWpI9N5y2roWJ+fY0xiToFnt3ek+w/ZjoEfPX3Jy+xI6wds4hmD9zo/Lyx//uqeT+5nbg4TeytMWMrhHpMdXqx2kosWEETMa13VXJNy/ZlZAi0twpf6QDWYyFWJa0FDcCz2tRCy5Q2nhUg48hBqjbX9+PVv6pxooePS5fxKdHiMAk66v8vPmts4tYLduDQVtlMHaU75JBmReu6asKhxJSc8FJZUPEvj3bSEqSV8VcCmmNOKq0InRbmdtjYaSjY1VmMBhCzBd51XSxxRuyrOabFRREilSYcoYkA5MSp5nrNbYhR9VvqhxjZOkiFX+WFxFeaMBrbeO6w1QJtbNY6pUE29L1KT/7r2llShgvrse2cwaFzamUwT9Wkp6fIAqyJgKVqA01i3KXnpOuG8QuQ//uwLYlIPur7rKxxRTsaCLCgZXTd0HAtCiUmLzgtkWc9DWnxaB/FXE5LSnu1JLHo6+uS1n50kTnU8La86iWlzUiEHsbbC4xSZEULkmz6+8URl1Ts12KuayjYEXJ+QajoGcGwPVey7rRtFzTSWdl99T1lamccbLpVsvgTktSJhjGGz3mCcw3rPFGNtT+tEur67589/9nOev7oh5MLm4hIxQq6umtvtDuss1jrdAIp2euQrD7QdLTk6XVoW3Gr56h9Iu6C/+Aa+ttgdM+JT9QpTM/ZFn72aTy0n087nte9By4WqPmRrgKGTq7QCjmJbTwLBdtZSF/ZcyqKasfy+UAMcTUItefnsur7VFrKqHmmiVKFfxmCl4AzVZ6Ut7lqttZV709q8XpQ4q21jT6rQImMc3lisJFJJxGJJLeHKBkRNGbUQVcUAaiUul1aBqNWQKuvsjWPIKm9snC6y3hpMDYqNGFynnhcxF27uD0pWTJnQhSqVqgaJthRszlD2OKgKVgpToRTOz84gJdIcyHXglFbVMqYq3qXjAHGW5BIhOlKelopN9DpP1IleW/DOCq5TvxBICsORWmVfRpipn6PO6RE1FRvHiVx6rHV0w4a7uOeLfeCnL3dcbgTvE2YfeX4oXM+Gben4chambBhtT9er87lYh1sZRgefhsIns+NFqvBAo5uG8z13YvkiFfwk7PwZrBPnMuOs1ossAlVKOqa4wNRKPla6XH02BsHkQjRS/S80ISvGkdGkHjGkGGnVUeMclASZRRraWkO2niyRLFmTbWuVAFyTeS0mHKOWROvS6ca2yJKmVIPnCumpa5kYgxVN9jNyrItIC5fUgNF5wZpCEMNUHKU4xDtsMbjcxB9qFTTnyl2zlKW7U1q5VN+7FjZMDT60u12dkrWtoyR5LFiYSsehGPYlsy8CufpCGNveFhs77lNkn4WkuRUxKfF2LpmxFIWLWrt4JTUfC5MrDE/AF/VqyBnevFjx/sMzvv3kHG9Vmr33TuFChVpZt1XSvAZorVNjDMlYRkFN5qzgctTCiFHuxRHIURZZd2hre01ipEHv6tqB5gbOdRjna0GrVKUyXXcF5dGlqliZRaVardSijY1Yo+tdC+pUQaf5RLTqmME4h7FeE3JjAK8BUqzn07CyCYXO2U49s4pWQUVCrYrWMdhWPdH3m43nIJlIYlsKlo6DuMV8sDTpqkpc1y/tMqU6oIopy7wKqfD0+h6bRsI08ovnL5lDZruf+POnr7hNhjycM6QzknPgDKk3PN1NmDwxxkzQ3iMSZuXJSOt9lOO+thQIyjFWaAH/UoSq96TGCUVqR76FZKLr7dcgMC0wO/lRbVvwtUNOvqlFpqUb0pIBqSdXCyktDtL/Pfqb6Vu0NMnU9ys1+T75nPoMSPr3RyHQr0Qs0uCb7Wo0GdH/tkutf1NOekLS7kFZEg5pa2Vd+xRKKst8WAB3Lc4T/b6tk1rUEZrwQfpKPLT8qyZ1pz41Utfy5vmiQhIax7Q5CbrvWWurjHCLOeo6XDgOkGV1PUkSshY/DVWJrnrmiDeEpH+b6vw+je/0Mo7zqn2VOqYasf9+u1+ek7XmyO2R166eI0lCagJUFMZWKom/dd3rRqFr02sjVcc1ZeGaaFL+y2726T2vF3OSdB5bbcdYLKVMzElhyPZ4jin/krnxb3h844mK2EzOkTAG9rsdrt+wWld3bbSAKNZScj7i4qUSr5xR07P5GHSYNiirzF6dsVhrq9Z23aUEXJXF7QaF1xymmXmasd5zdr7h088+50/+7Mf8g3/8TynGMXQeZxQeZI2h6zrGMJMmrSY41ykcjVplbNOwLNP4taN87d/lK1J0r4+L1zoebXEQWSocYi05ZULlQqSS6erEyllJmm3ELwtwfp2789pRq36ddQy+Y/CdBuUi4Fy9OuVSlNIW7oojT5nDODMbg/cCxtH3A9YYrs7O6ZzH2naHNKCOWD5/eWC7PdRAooBR3LmVSmx3quRkpVS1ML23maiVcCN0Tv1VxAidJEgBSVllj6v28Cw9XW9wrlDCRJgKIWr1J1sLzlazLb0vnTVacXHVSTllStIq6ZQUDvbg8oK3H655sPH80R9+wBQcMXSc9wMd4I1hsz5jGybup4mHw5lWIDvHy90N+5QZs3B+9oTOW7rq1u67Dt/3HHZ7nOnonOfh5QVxGpkqEEOsJpI5ZdWCjxN9iTRcf9dvKL4joS7hqUr8dk65QmLUFdoh9MZBZ6sZmIpahJyZYoDS46xhWK04cxuiuOq2OzOHkXEcGWxP5zr63rFl4A9fTvyzX/yYIeeq+AbrvtMArFzxwbNQjWsu2Dx+gzNjkc6Q8oFPpj0ff/6SnVG/i24zUHpPUWkkPmHm05j4g0OC9SVmbXiCcNZb9fPpPJRCmAP3d3fLJpVCZBxnEFhtBs42a5xVQ9J9mLWLBUz7UTtRQL/eUBC2uy34rlb8IEx7iAlroV+tMGvPi/6cV/OBnZvo3FRlGQ2uqCKhFYUOSI1kM0rwzqVgHBTfU8Qwh4ni3BKIWD9o0SH0dFYrhRmQquRnTiBQKWVyEXoDH+fE4U4rhLJ5yPmZYyWWlTN4rwlPiokpBOYYydnivMN2vnKGBorRsSFZCf193y10aRJkI2RB1c1Kxlr4s13H0wRnHu5HpxArY1TtJ9eNKgV+dlP4YOfJXpOumAPG9DzbJ/403PBqDCRxrDfndMbVCm6CiErhSqFYT7aJbApXZx3ewW6ciXaFWxnOXVKuXSpMCbAK+yhFNKh1Btt3kOFgMy9IcLamHyIXKbIe/BLYto5aihGpbtM5F6YQMGKUp3XcbRDrKgdN6LueImpyOhcqz0iJpXhB+kAsnfpFiXBwjvvec3u2IvU3yBwwY0SK+ujoemwqIdfhvMda9bIaU5VAdx1+fY7FYMdAv1qDCCnNpCnqSXQdBZVlLjGQ5kwmamBqNVkaigdvucPwB7eFi3st4uyTByNsY+EXIyTj6TujgnJYrIFhdUZxuibdztoRzxj6iyt20fCTz17yf/y//D853N9zOBx4drdjuw9MqRDWA6urhwznb3DGmjElZhI7CjfjSA6JfnVGRLkTviQdF4o9rHPiBHZZC3JlqTKfJHl1P1v27CX4turttmzQcJQIrnszX8Hct6KotQsPoCVBXztk+XgQWwO/rE2SGoY2NHnO1fSQsgS8jcnWTlfjv2MV3VirhcNawdfbkioioCi5aLkZCt2TmkSLkcoFLRip96GUKpBW09hW/xSVKLY1b2pxviYuKEyzEfsrjaMJXh2/pBov6rXnFKvwhcF7gzgLVjtD1ITGydGOAtEkRWpXpnnHFVHp/hY5LImHwNCN9J2lq90bjTl0XStUQYlUYdSgHRapEtDVjNJZQ+8t1hmMddzcz6Q5LrHe8qlyHCcay78eH4ppOYWA62oXPb829k7HjKBjMdc3jCEwjSPzPOG9Y7VaEZ7Pao7NqXhLrQyVlsih8PW/YHi+lvTyS1/GsRNYXyGqXBhjYjeNuCxkNMayqWDjvwWqX/e7O6Qz9IPn9uaWYXOJFYhhBqMV1FRhPG1utyy+teCMUTNHbRPWapeWjJdWtW7gx5unC7lOhpi1pZ1SZOh7EsLucOCf/LN/zk9/+gH7aeby4uLoStoqbyJY51S4qzSsIUsmuhBSS1vr9AIanrVhmNsgWxa4ry5ip624rx1HLLRYy3g4KB9lmlgPPYPtTioTdRGueMeST861tjKPg14hRmGe2O+37PZbQkrsDgf203SshBXYjfeM86QE1M4uybV6WChxCgRnLaZ4VWgzei/jPFfeCAs8rVVOrKkkTWtwJmNNNfoUhddYWGSTsxT63tFZR8mZ53f3HFLmydUFl65j5QukwLr3WOd4uc98ertllyLfeXSFd4kehUMU41na8EWrC65Kf5qsnCknhmIr6byorO1hN/Pg3XN+81vnvPfwV/iTn7zgJz+/4X4e6E1Hbwz3L59je6HvDXjDPAX294HNxRlnVZZ5HkfCKOwyzGZmLYLpPIdphgJWZozAZujZnJ2Rx1GrJzFijXBxec7l2RmDMxwOe+7u73l1PzLnTCzKDEgZ5qiQtpx1Y/BLe71URRkLuRBLUVyw1aKBQjlq1claXOeY56gQQDTAFTGqelQEZzybfo1NSWF0OXJAA3XnLBHlCpgMvQApEsfIdtpCzpjuCoaVdi+srwoqBbCMIYGF3vdcDGscAlNgPwsmgkNYrzeIh96sCElNwzpriLuDKvV5x+QGknMYY4l+JqZMipnceXBZIVuugwK+L5huheREmgembElMUAIjwrO58A8/H5kK7FKHGWqnpFaSNXhVqM4S9hinTtAYTN/jugHxKo2s8IFCxuA2DpKaXZaciCfdYRFRSE3t/NlS6IzHivCjPPPn9yrROroN4tRQzVsVuEAM4gy+yxVLLnT9gOt6igXjO+w8kexMDoGUIqDO3mIg9WDEYcSyqT4VM/APv9zSifppzKmp8hRK5bvkAjllJhwja9ZnFWMu4N0jdnHio/3Idjowo0EDttMAx0ARFVAoZEK3wnaZzTrxwas9t/FL/uSze77cJQ7JEDBEUdfsAph+0CAN7cQa77F9TwiGQ4k8jxF7ecGQMiZOeF9VauyxSGMQHVNG58JhHBfIlHVuWQeleiH5WkxKmqWpcWCtOvqCPteCYjUlYlLm40m4vU18Fvd8FjoOxjP0UV3VDSAGX7uoyjFRdauQaiXXKP8jpMpnMRroGWNqQKTBymwMrtS90gLDgPOO9apHRFWoxiiMWD5PmX/wxaRru0C2HjFKtN9JT147BiN4A8a6GnA50jxBCNzOIxK0UxON4W67426744svn9bYy2iANpzjjMd65fCkORDXtYCVC+xGyhyW7r7U/TXOEzEYcjBYeqQ5DR1rl7qnltY5OcInaQXDQpUd1ijaWHeC5DgmKaXeA1k2z7Ztl5N95ARqUz/ltBKpe257yUmgZ0vlnDWOiX6JUeZuO3LWc84V8kSDtFVoM4VFcEFZebXbJZYkGeXr6fupG72aQWKE4prvWYOkVi6mGBAd+7bKk+uftK4xR24xxwTkaK1Qgat1jzUUnBFS7SBaI3hrtVDa9WrUaXTuFFSZs1QEDLAYPjcenKmFHKxdKvvL/RbtWJSFDyKs1is2U+Ds/Ay/3RGyFlCtNXXPTAtXxFpH66pVkNWSQHZdj++ciodQPe1aJ5/Xg/tFFU1fSfNkEzGqVAtINSddxsZpl6OqCWYxr3XHVGbek1NkGkdG5yoXV5Yz0EJ3G6NyfP+T46s0hCbecPqqZT6cZKXl5JlqMq3jZZoDUZwWrlfHOOubPr7xRCXERHYaPO+2W67GCSmFGEJVBTCvE4lOrup08Ke2SLVkQbR6nppEyekfoS00JUpb5hgVwwf0Xcd2mri5ueWDDz/ky2fPKILCuypHYnkgIoixTb1TYSb1gR3P8uudFOpC0k6nfPXXHHOV0wTmdQ7JyZA/Ud5outRTCPS9qp+0TVXq4iq6qusiW9/fGiU3HjGSuco6qwvsNE1V1SwyhUgfIw0y0UhjR9PN40RoilKL3J+pEn6tZFBf3+AJxjRte4WTWJEK9wBbiaOtKu9KxWhbyEb5IJ0VSjJMMXE7Bvwqc+4dvTckksoPowvo3RR5OU08OC88sIZVLxjJSiA2RqEgdQMQY2qXTBPkUjlPMWc6seRiuD9Ecgw4mfnB9x9ws93z/MUdn72YKA6kE/ouc3bWsTnvcNZyez1zextAhKFzDE7YppkRDfIjtkJNqrFVKsSSuLm7R0RYrQaKWGKamcNM5ywXIpytVzy5OOMwrll3jv38gjAG5jmQBUJUhaAp5KUjrM+sVO6FVOUxdV1vCl3GqPqK5LZR5zqc65zIcnyfJUkFY9XzI2VNVprTgLFaXadkSjpuBCHPhKwQUNttsK6jWKOBah1cOSfmpCRQmzWA9GLISSpWX6UoXaljr1tRQgBEk4AkkCKBwlgMNivEMYgnGSX6FpMWCF1BYWfWd5icVVCigPVB71UKxAL3IfPTWSWJc00eqJtOFmEhtJbqaI0mhxkLxmFsr8G49VjvlzZ8MhV6YhzWeGKYyTkd1woBqPjrOi+M7UAML2edEynCxnUYK9U+RbkaKophEee1kJISYh3GusqVSGSTwQvNgyLl5ishRGuworas3loKjoDh491Or71UDHuuUvELBV03e+cVbtg5W+OJgnUDIcE+J6LpSKUFKJUdIgKS6rUL2XSYLmNz4tkucH24xz/fs0uWBLVrpYk6xiCuSRyYmmg4TRyCYc5CysL52Uo3vegRUi391u6YdWosGWYN1jqP6VfMQbl4znUgVRmwcfLEEsexzo6E891CVrKpaOVUrD7/IpACN7Gwy4WXKZBLR8JgnFAkL92O5gkCDfteg9oaIAiiZpRLKC91jDgwoXJccoWbCEjWsWB19TG1GJcFpghTEm4mJdoXDMY75Q0ZFcNZW6cwGtKSqJicKU79sObJKHa+nn6MgRgz28NI5zuc87Xb12N9vyhEphiJkqrIBUhISK3I5qLJc4PTqV9IAxnVryWJYAn4TnokdR08CcXqf6RCDxsvqVYk6zacaRC84/vUZKMGgVLk5P1O9nRp859jl4F23qcxT6M855oUHc+81H0pl4JpbQ1A5JgklPrUm/yMikPob0qVGzcFDerr/DQFJZybuj43+WWhJkHHoLeR6BsCoc3hJdaRkzgEobp2nT6Z5UuLlLJ0NRRC3Yqb8ZggllKTluUhcQodW+6mvA5RazdE6nnXTFIVxrzDtw52E1RYisnHkWFkiZSOgfYS+yk8tLTftd8vw+Mkhm3LmBEaiX6ZoZVDqfYD+SgN3K6vnHCUTs6toPQD57SrquMpvXaeS/Za2oj7n3gsycppynUytl97o1NKgF5oSEkLqjHW7s8x1v0mj288UemHNd7rjX/69BmXV4+J08xcJky3woqSgEupE2EhMkJzATdVzs6YpgZXPTyMIUVZBrW0xQVw1qmKSZgI84RgWPcD5xcXvPjoY/7wD/+Ijz/9lHmOXF6ca2WiYrZPUYXaziyLHjtNzlHyyRM4Ha3QWmONkteCvNe6Kv+aI7f7YayGstlQYqHve5x19N2AMw3neMx0ly+pwWTJS9LyutqYmmkiMM0Hdvsdu3HUKrkoeVMsgG52OddJX5+HtRaxjpKU6OatIVS8rLEO7xRCh6gppjXqfOtsxW5TOR1i6Z2j6xIzgkwFL4VOoLd2UfQqDta2MLjC6uyCzw6Z/bjnx8/veGv1gMvVwMEaPr49cD2NPLy4ZDId+5T408+u+a33HvLu43OGNBKNJYlFYqHktKikNE8N9QzQsTTPjivnKGK4+Sjy5z/9nJuXH/G//d//LX6LJzzZeP4P/8Ufsll5+s0Z//F//EOeXGy4Wg88uIj8/NMbfvLRDf/09695sLnk/MED3nx8qFVux3YayCaTJLETTyATcuH6eqdEaHF01nO3m7i+vaZ3wpQizlm+986bPHn0AN57h9R9yIeffsmnL74k1m5HSJn9OFWH9EzfN15YJJGqwlQhiVPJ35Cx3qlSShameUdMFjE9zBmZEmYsHOxeYTTW0c2amEQSznjF3OOIudIzba4u4urpEUdVOEkSOb+4wrkBYzfsb27IROKmp/M9OSXGaYdPCbJBDgk7JPrBMzy+ZL+fNcHe33OdZhXL6AZSzCCGbJMmPsWwG0fuD80I0Cjszxh6caSkbulTmNmcqQeQdZZpP0JKDNZzdXbBHDqu7yamEBgTXBcoFYo1OO1uQKMitLWEiqgvUBJdf47xHcl4UgGTE11NPExRhbzWyer6QUUAohp8tqLAHBMk5aE554glYETIxiHdFdYXMgFEVRDzXAixupp3HcZ6xBhCiohMlKIpZRhHQoj4YcB3+mx32zskaeBU/IpkAMnEcEB1fRzebTC1YiugspRJzep85VHg1PcipURJZeFW5FkDT7de028GDoct+909h91O3aydpWvxpxiYJ5woR+azQyGGmRQS68EtAYzF4rzHdT2CqhrOMWDE4kuGkpj3oxJzU6G/KPRdx3oYuLu5IYSJEHd461gNK842Z4SIJn0Z1ptLZBrZT5GpqpxZq52VEBNjnDns9io9Clx4X7lGwrzfEueZmNLiNRViYIywK5k4ZbwNanJrNRiSAhILqVRDuVrD1A6Zw3bdQhjWbo0W19IcEa/u9XG+J4WZTKZbbxQilAvWaVKdImgfGVZAKhNZCnI2YEr1usqeYlvAkmCeFBHR9ajicSJMB6hda9uvSCFAjgiBzhl67+kurvB1P/ClaIfeqprZOAVSKuznflkzPELIgZIDZYZs1+RioViUuGWOKJRlb2vFw5P97iv7a6n7MzlhjMMaSxa/7P/WmONrKTUnOaIjcjkWKFun5WuJDC1A1b1Z2p6MSq5LoXZAil4HGcSeiHDkY8HTsCQWDQQGBWMrLzfXhMmYyiEzkGuftjS+QKq8jRZsWxDlRVqqk3jJOKfRZULPT1KGVDApY4s24xZPtgprbc/AVGVS5eG1mO74JEoptZOiIjONTN8txU0t2OUm4Z3T0qVdnnDRLm2KCUwCk2tcKHXN1SPXz0KqHUBdg2KMjOPINM+crVfLMwcN6Y61suOoUcqB/m4eAznWvdLo+U8p1SSu8oXrWRtjsBV6WzQbV2QKVHVaVUM9TIU5aDfJ1tio8ZVO1dlarGusoe973nznbVarM3pjKNeNC1yqWA/HjUPqg1vS2l9yLFnVsbPytaN89assCVxB1b5ysIjRGABhUWL8Jo9vPFF5dHlJT4A48ZMPf4E/e8Cjt9/jnXceM6XCdn8ghIxzns57hQ/V0Shopi3GMBWgZHKMrax/0u2r9QcR7SrkjHGOGCOHw4iIVTK98/zO7/9L/vxnH/IHf/yneOuxvW2Fh6P2NHJ8z5ayyLFyY8RoAlCOE/Rrj6L1nk8ft5w+41ap+OUPsS1+BVjMqlKhMw7pHWa1Yh73WCpWtbRM/fh5tmmTt8VOTrCbRa/JOcewWjGsJ8QYNqsVXZc5W3slsxths37A7fZON7ucoRKtjREcmtmLMSRrmCNM2317RJScK4FNmLM6aUtV6GmLSCyZuSieO2DVeKyAxdCJGkJKhG3OuFhYSeFgPKXvuXt1w4fXe0IG7MCHN4GX2wNXI8qv6Fa8uL7hg+s9I8K5VY3+VASTj/J5R6rz65tUTgHEk7Llxy8Dv/Zuz3cuB2S349IX7Fsr/u7f+QHn545HD3oeXXm+/Ow5P/vyjl///gVnjy/4a//+d/jsxcwnz2Y++PAZ5w96bcWXgkEDY3GGL2/2y1gNMnB9feDnL+/49ptXnPUd7771BjYnLs83dKuemDIhBETgydUV45Q4jJm7nLjZ79ne73DrNevVwOX5hvVqXTeLzO4wMs6B/WHkk+t7DoeZ6TDz/Slh+symB7nLxAi7acIWAQuu70iovHBOCVc3BqXl14XJCCZlSJl4iBrQW1HfnV6lHb1Za9COEOaJgkpSh5Qo0wxVRal3Wq0tJTNOMyIGN0RsZ+hth7FrmoS1lKyLotGKnooziJKsNTfW2oKpxM8ScVb5CykBOVJinZkpagdIhHXX0XtHSBOH/Y4YIl1RroUR1bZfBC3alC+mbgnViMz3+GGDcZqk5JzIMWnwVVWIyEdXZmsE7x0qepOPlC6hQoIMTZ1IvS8zvbUY0SJBzpGSE6kEhTOhXa+MulXnWWVoJSVKSkzzTEqJbjXotVih73uqNBChLVyVcKsgr6B8MmMwYkEgiwYWVhQqZaxFDFXZruLlafvnrCuhUZlu7ewY9vmWVDl3pTqsi6BdLilEVDHHux7pwVZyawHEOMR1GKeCDzlVTkYpxJxULTCG6rMg7HdbchqQ1ZrN2bni1GMkxYixyvUyVgPAnAvTNCn8o++Wqr2I8n9KKgtGXJonzDxCdhRT+SIlUkxRoQ8DNvfEMpOLejppw6MAVUYahaFa19cYQ7t1GKO8Fe8Q40Ac1uZ6E4QUJygJX4OWUrLe0xDI1taArHZe6JCs+0QpBZeoQeIxTNJ4W9drUzIU5XuFoO9bSq7Q3vqeVrCdFrJyGlH+iMF6lVPN5tj5At0DVKEN0mFmkqB7oEG7VVIoIRHTTC4Gl7MGud4QctTgthRAYattqLaw7PRLd9zambEqSc2JUp20Xb/FBSd7t0jjjdR99mR7b697/Qcn31b1uNe6NgaWTkD9wOM5LgFO3Xfbj0wthtR1pt7GJmyzrHO121Za6C4GpPFUavBqFN5YimBMjXhKXswj2z3T7tRSen0ttlmuRWqcZBTmm0x9fhzd4xbRpHqfbIUz6johVURElQ6zGFXlQxM0SqrqbvW8rSg8tGRMVW9sELZSlMNH7fQXVFUrpKKWuhlK0kKGqXfd1HGRSyGeeLE0XkjDpGyngJkixkfmrF3IVmRv933xSUKL5t45RBwxBEU0oFDLlLJCfZP+QV3t9L7WwnLrVB07RvrznAovvnzO1cMM6xVnxtVnfJrkCov0WuUg/UV5Svv89jnHuVOfc3ubBfFTdJFIic4YBu+Y54AUi+k6Hj26wDu7UMi+yeMbT1TO1isIhWne88nTZ1w9f8l3bu/43nffJ0wKZxnnQIfB+I5Bji6hyFEnvrhITqpyoC27pt4AuSxLC1ATlboAppTpuo6UMvtpxx//6Md8+NEv+OLLZ1ixVa7u+OQWTgnUB90moxwXobL85Jcex8l98tYnWfprZjz88krM8kfCawRBWyFW3hvStOxdx09duiqNRCYn71sTvNOrEsE5v8C1vHeYpQquELp+6NmPO0qsE7CdnamiAqKbkPEeU4Q4zUsnR4yrXgMqdVuqatepLVnIhTkXplyYstBCGaEoOVnKkviIyXQlcJ8KEUPIhWf7QGKiGzzPx8zNlJnMRDcoAf0QM8/2E9FYzrxVEnLWBbrpvCc5Jiqtpa+nESskTvj87sCvvDtwtlkhU8BjuFwb/uqvPuDszHG2cdzcJsb9yPX1Pa+uHe+9dcWjt894+3HHh8+3fPBq5FIsWvEOnHeRrvM473i+m3HeM4gjJBgPM2Hc8d13H/Lg8py3r65I08h61XO22eiCGpVovFmteXyVmELhOs3wynK7P9CvNjx4cMVbbzxm6NYg2kW6ub1mfzhgnCG8umUfIvtRicgDMHiF5xXNN0AUImC8XTZrMhWioWTNCtnVcZE0CUxZgzdrFRbje1nw/Nq5y8RYlc2E2u5PVZzJLBXkWApzjJgQWcWkMsvOINIvmvlqzCd1Pc51A9eKVysuUeENoJu6FYHaGWnQNE1UEuREToIxip9erTbEmIBZyZ8sccSyCQstoJMTLp1FujXWd4sghtSJVKL6XRSqdLAcyZ/WGhBHKbFR5jQJs+bkg+t4zWpsak0zylX+WBHtRgtVBSrldoYKAZGauLRAT6jEanDeH6UvU4tcDc1nQdXBUoVwNv5bDfasqV/q22HbubY1sGTt5tTrMNbifY8U7e4QIMd56ULr8KgYe2qQIrbCcdOx+GM94jrEeYXtZn3Gqqgnag91Ug0PYcZZS/SJ1dAjOIrzhDDTIKsaxOp6mao4ifdeIW51329wLHI1xJPKBUhBAyxzhDiL0cTdCJjoKTZq5bp16aWFBkqobrBaQYE9jbAslUQsRv3CW/EeKryzgK0BnKnQE+UmisK4RINHW8v7pc7nRqw2y17UIKByEmRrEExhEbUxxi78KSOGkm3lQVID30p6rot5EVOfaOtYaLU/x6iOJoImYtZiKHXdTgoqLHVPMEImVbNWUMf1I8/keP6yzP+2lzaI46lBctua2wgpr70PJyT5r/yCk4DutPgox3fLpz9q7yCywGlP33EJFU/CjiUjEKhgMBrgS1+TTl5/LOS2Z9WSq6Oi3FGNq32IMaLPqq7FzaBwkcfluLYez0tq/aLyZmjolnoPj2fEqcqUfnbtHFTVLo3ptAOUSvXAau9SjipmrymRtvNtiVSNgVStq523Jh8xK7R08ZRZmE+nS2mTHK6JSmnBPnXNrmtoKRRTTYCXsXOUK27zxFYKgmCrS5GW1nI+onhyzWxkSSZOYhBYEozS5nidd/M4ERcTyxovnozF5c/re7Tk/Zcdixnl1z775L/t3Jb30zVPkUfCFDLOaux+cb7GYhaDzW/y+MYTlQdnA9fXW17e3/GHP/2QtHnA5bvf4m//rb/JzAHhwO5wIBZBbMd53yPEuvlYnKnqOd4SajUt10W9DXz1OGgbkj50hSc5Oj8wDGs+/vQTfv9P/pj/6r/+e0xzYrM+56JzWtU35hjInFQJlim1jLqGAW7Z87GK+lUhhbIMx9OjEfr+4qT2+Mpj1UXdvHVSK1Qp6X2IQatBpVZdk7r5KmZEW+Ony9iyuQCI8jNyjAvJzTtb7+VJNl4KFiXgtnZgCJkYM84Ic5VsjkW4ePQE6z02C3GcyCljXVXhMMIsni9ebdlvt5gxIahk8DYk7qbEzVTYBlOlozNJIBclUtqsAWiWQigvlonohzWfHAof7fes+qieKmcbXkwTst0hIvih44t94NPtrS46rXpha6JSqNrlQKlYbqkLuBNe3U3c30+chXv+Z7/xLt99/BATPCUETAx89z0DGeYx8eMfX2P7ge//xnd4dT/z4BB5Mt3xvbccv/tR5sPDgdXtJSlrgPitx561UenVn9+PbFZw5Tvubu4YTOHB2Yb/5Ld/m195603evXrA3c0rMpliCtP2UKFOsOnXXLx3xQ+++wP2BH70sw/hcGDz5tu8+e57fPt7v8J0UAM5YzKff/YRu92W8/sVf/rZFyQyc9HqcO8Mq17/O2VLch5ofhBCb3ukaBITUoAScbWq2Ua3OIMkKCWS4kyOkILFGYejw9IxhomUE5EMvRK07YKvF62OG1QRMMyMUYDAuB0VAuktzq/qR2pld06BkNRRWGqFqQXuR9lpTWxiytqxFcGFQJyVwL4opVCY8sQhdvRdz9XFIwqGw37HbneHLQVznCZ1wzqZu4DYDnE9tr8EUyEjbV/OBWJBZ3P1PKoBU0xJYZ/WEmNLEjTYa+uRc3p9BbRqXqunaS6kGCv8qFDEgtVgFmOwpuBdVz06IKDeA1JUUbCzHms9XW8I80QMM4UZKQaTtWtj5ejmrCqAbeXSYFuso1h1E9cJXGEhqKIWKG/LVAnsmMBaT79WtbXDfsdhe0+MkxaBtZVUg00VvZBj9sYCexnOENdRnK/+Do618UzTSDPLc50nU7CV2xRTYrffY6yhq2paq9VQeT6q3pWLilKklDRIPqnahhjrHq5P3VlDsY6CIcaZUApkg/Ue460++5KQlLGuEH2qKn0N3tWqqM0PTJDUwBXKw9OgzoHxFLE1gDM0UraOyUSMI65zOJpoDYqHj4kkyhHorBZOMsqTonY2XDK149yqxkdPqeI65SMag1vgaOg1GjWwpNoA2LDWZ14hqEvVSYXrWwVhqbYvCBVp99OTxTEd9mDrc8/VjbWkpStz3Dzr7p1R3kWNqlvSUUpRhauWltTfWzmyKgqV7VGDNjn5jCWYoxYN2s9b8QEtsC4h9sL9OBLNl1MFrfpTUNNQlqJiM3bNpWDFadDcoGJAVT+pi09GlA2o12I1ASrkurcZFNgca5IIFO1Ci+TFe6gJB5yeYfvELIYsiTbV5aQbk1unpjVtWmxUWJ6xoND9OVMTCF2TshgtYtbupBPDHNKSiqnOqt6TNuemEJjmQC4WaxwpJ4WHGuoekmuhoCyPecYyiWVE4VbWHs2I2y3V+1DHUGnXL0rspyy/KwVKTIipYgOioiX1iS3jyonDZkFiYY4TIQZiTmSpxq25dnJOOh0K7ytLIaecjIOSKrc0adZydXHJajXg/7/U/VmsZll234n99t7nnG+4Y9wbc0ZEzlmZlTVXcVAVR1GmBFJSS62hJ6kb8INlGLDhB8MPBuwH+8Uvgo0GjEY33G13u9GQ3HKDsjU2KZLiUGSRxZqHHCrnzJgj7vgN55w9+GGtvc+5EVksUko96CtERca933e+c/Zee43/9V9VRYhRiKMUQjhsoe7gj3I68308Ip+PhzwajGqQQgp03rJoDYcry86kZjqZcnF/h2k9x9L8Cb74T/f6yAOV2ia87zldtqz6xJ2HR7z5znucLpYE76lNYqbMWr7v6HxF7YRByqdM2Sb9KbUTiEEMcRgkZKxmVM5GbbmqUjc1GBno1q5XwpTjLNNpI9lUA+P4swx7GglryYCogI5fudxYsiNnbmL4XPnnKCr9E/WsjFJ2w6BG6fNVsi1NRohjFSMyuE7vPWXDQs4y+BKIpKjBjVeWIe/JZVNJgElmTLt2Za2VKjlqQCMG0oCtaKYzptMZ06qhX3eaSTd6f4ZYNcxnM2pXlQy4+F1CYxmNZCjI8xuKYUFKvWpIUgz0ISrVa0VVeTFuVoKmaDS4haJ0BQsrxlAyGUkbOCWTWBlptDXKJJczNs4ZXrrs2HtyyueubPPTL5/jqSuNNJEnC1Tg1xwvWh4eRt6+vcTVhslMjqe3u6StXRbpgD5NqKnZmBp6D30P82bKtLJK9ZgIvqdrl+zNLJ96+jo//tJz7M03eOfd9/ijr32N525cZ3tjztZshmtq2q5jsV5z84M7zDc22Ns7x4WtLa7s7vC5F54j7u4z3TmHcw0pLUVRhpaT5Yp12+FjYlpZdqYVcxybE8OkMngjyj5XLbMBTWi5XFmkhICiIiWrSaekGSLBj7gqQKcBdogslkuqqqNpJtmuyfTxnEx2BqMwotIrZizWiCLuQ2AdPCk4amOonaGuxMCZaCS4xdP2QaFCmsXTPR+GXGlaQqMGoZeFFKsClUkx6n54SJZJM2VrY4umrkjR069XAvlBsN82szOpZYxVhW0m2LrBWm00V90izbtoNlJzekNKHBBiA2MMdZNK1cPYYWZ20gANGKojKcnk9pQBcUpgkZuoNdvsnFQjTFKmPeQcxCCVUFsLlW+uMPah1+ynEF8Aw7MQFeqkzqAxOFtJD0N2no3VyfCDvktQGHx8kAGzlbFMpxtSfXMVJydH0t+iUJ9ypKMtDmQEeT5XUTdCUiAEB6EMH3PJ62BQUxi5AlpRs0ZIH/oem5RMIyXRsTp7RnSUDDQbnNdMCpKg80jvpCEnEA1SrUbj3kw4AVGz/hbXNNQpkbwV1qYz9ig7zHm6u9o7W2Fsjaln2EqglMn3ox7EEYzGVUgVMRK9HrJsC1QHWuu0mmY0wQcyKFf2xJJy7FNkB3TonpWqtUo8JE0CdJqdB2rn8Elmxohc67yqDKnXTS1/jzO26BmxiWRF96RoCMnQB+g9mGizNMqqlYxwKvZ6qHYOusxkIRz5/imvelnLsRHK+zqy9SMbbnMAoNeJ5ZCWT31osJI/YNQhlxk1CnFKqgcTcnYxiiiRYDZmXwIku68lh6QPasp9ZZ0x+BFDhcyg7CmP3VvpFSHPPcnwxDhsGFl2rDbxyz2b0jxuJLFsc8VGzuDpao1vA5VrqU9WHC9XdD7IqIkkzGQmJQr/g3GQZIDg0dEJPlqcWxFTTcrTJq2h1uStjxkUKzru7smae8dL3vngFstO9JlzlY6MkDMivUCaKDMq09n/Q5F6eg5S9g8j2CpDcRXOlbSab4U5NfrAar0Wf0krprbI0RBEWGMHCOXINSwma8SBbQxUjbCc2kIEMUqTlc+r7BvENox8zrNU25z5zuHTekSyQzUWEWOgqnh4dMxb751w/7gnNhWTZc9vfOXb2ndk+I+++Bcev/C/xusjD1SckTL0qvV4HMeLFbfuPmCxXFIrvWHtHIEoTa1dh53U1FVF9EHo8BAbbq0seaZlHs7U4PRn/ZLPkDQxieVoqopJXWGDDBMsnx3fcJLvSMM/GHbPYMxY+Y2//0M2HXgMynX21+U9f3zAkoqCKbIySI5gqMuziwHF5lK3QjJSLiYnNQDqwKmjIIMNKUouppEj98h967FWI6OteWoU66Zh0kyxCG7bWKnWGGtJtULMtHqRElrCl+BktMy61nrECge5juOKBcWJMTJYL2NnM3GBG993UtiSKlqZvitG2uj3Vkjm3TqrU9q1SpcS13anvHip5hc+OeXZSw07m5bVIhBaCfQ2J9pI2/WSXY4y0G7iLKs28uAk8MFx4rQTB66WHlCShbqqqRwYbb4NMRB8x+as5qnL5/nCi89xenjMwdEhP3j3Ha5eucQ8ztT3s3Qxcdz2vP/wgHnb0jrYnU7YmEy4cfEipxtbxMlMM3HiHHQ+aF+JZGcaa5k3Mpdm4iTr1ecSYdI1UoGNMQk7lDEKvbBZa8teaTBjoxOH3yoe13tIvQ5N9VLFyGxGGS+erUBOBhVDqA6azlrqQ8CGSDJRs9Jah7EO62JhIkujg1pYerLgjRwTES2LQWBKAxzDkPD4GHFaOWwaCTra6ZLkA11sC/FFYUaTiAvjakxdYyqhaUxQ8B8mn1MNVMp9Du6WVIutw1WpnGVjKMmCrA+MPlOZvzQaBGqMUyY3O17OAiUySe7DKFQ0aEAHUrEROFzA+qrAz4zJQWvWQ0O2UQysQnwytEastugd68oxjynpGgjbYowQbcS5CWYyxVjDuuvo25Y+tkVFFAczO7VW6DCtDlo01glLmOpUY41MOY+aEdWAKqWg9LRowikQ4zCrIa+nqWXtBnrQYQ8HSMjI282OhwYB+ftszuyPnefKUWkA2/t++GzxGpTtySjMxzisa7QPp5HKVQKD9P5lQE8eCms0qBCRMKPqwmAkBVon0CCbbSZgbBzmERb7Kg6pJHKiQjZVF6gMSWCm92tVj+fEkZ5ludb4HCa122Y4u2aAQSYynEv2JSTwEXzIgmCGM2AYLfLIej0WH6SRLsiCPax9Mf1p+HDOczxurbO9ym8fn+Th/3/4a/i+cj5iXpyRQ/Poe1NeM0PuQRnPc8nr/IgbU65R2MrGazL+1+ifZvgUBUr3YWdCfzGm5s3La2125hNt54XExkRcH+i8DGu1xmhRW9IDBVRlso3RSmYf6ENPH1NxEI2z9HrmQiE0kd7Ho8WCw5NTjk9P8TFRV3pGdDyG3P9Zvy4LdN7X4Xfq/GdfSp9x0Mvys4EYKuG9p0Rd+Qome2X6/UrBPBbaomcfkUtjDc2koW5qbOUogf2jrhScRfyUQP6sf3omET96f9GPo2uPjhdYy2rd8vDgkMOThJ1OqecrDk8PBM7MR//66AMVEn0fWbQBO9nk4HTND95+j9t37nHp3DZb04Zl17FYeZbrNSb22N1t5vMZQR0/Y2HayBCwoMO/IlJJ9j6WA50ddafYWXG4I23bsbEx52MvPM+lixc4ODrF9x5b2cLwUARxdO9jRZOV9CAwI2Wa/zzyufErlf83RQHnazwepKgSL0pb8NwpjVrls1K3TuBWTYOrG6omM8E4AqbwgYM67ykRqqCY5UQIE3bNhFWomc1uw/GKGAMpVaQk1KYFG5wCyuUl92FN6SUQB0UUTO8DnTJsxBCpXYWzCSPjcguGO3NxT4ylJlElycLn6+fJwXl5YhInykeBSNRWKI1DMjJ1XhlRwEj5Vzc1AfioTXGxGM9igAGLZFxNNDhSmfq6Xhzx5EtP83OfeZIv/rlLuJO7+If3+N7bC+4/XLBqW/7Cn3+K+abncmr5+c/XRGdIznB4Ynn7jfv85u+/yz9/fcXh0jGZT7Fdh/GCma+aBumDaRFUWqDtIhv721w8t8O1C+f5yrvv0gbPbGeHvQsX2agbko/0MXCybrl7fMpBH7h/cMCtowN2bcXe9jYXLpwnBjgNkdOTU6bzDVJl6Ixn//IVjg4OOV3epqkaqpljVjkmJhB9TxtqckNpJs7M0IPkPdZJ86+xudnRDk4CSN8HSaoqmt0mBlKQQXreC8zKWAtVo9l5KfRnp8iqw2VTApcI0eBTYtV7ou2pUpL+piDDH6eTRmiOcVSup9fSeh7YB1LFS2FAEYcQSvUsZoOhjndxsI1ABHvvmVQNzaTi3LkLONewXq9YrpcK+4iEpMGBq6lmG7jJVPtSklYBYnFihlOfqSgVXKdBdvahbFWLPGsTphRPY8Fmy81rNpvhfBkMzjWFdSakVKqJBeOdZFAcaqy9D/jgqWPAThpqM8E4i0dYtqL30kOkOigmrTqkiLECw7BVjXUNOYkhHgpZQZfnIzcII0Y305H6IDIzrRt2TMVicYw/OaDtVkpnWsluRe3Xm8xxkxn1ZA5OMOIxBdkTDaKtdYQkbEK5aosxdL5HmIgstZuQkEys8dprYQVCJNeEHHillOi7YShkjAK1SzqLgRy8Mmx01GpDUjbLZIVCeeKsVItCV5r1xSkPRd/77KThmMw2cc0UO5nI7JQ8D4OYGXAhDvSw2RaSn0FlztkMadKqW0rEFLAFoqhKUj+c5yqJPCvbn/faEG1prJPJ3Qj62BjpMRPykqj9NVZ1icpDDj7I8pHXS4MiPQ8Wo0yeYje6BAsfWfSh4PpTigXulHsqXHbI1K5kL344e0lNspHgepzQYFyVH8DhZegqZx29DKuW4GHw5IbmY72qdY9/fuQCZPj1GG5mYhqqwgw6wmhPTlRmr1xxcU57IILaOCNwNBQiRJC5M9n3cE4CVUkyyXcGpYbX3RiCS/1JImnHhT5H1ARg1m+a+QwhEhxK5e4I2ntmcUxnM+q6EcrqNhIVzRBHvSMhCm27MZaqssxmE/b39pjNt4m2YtlDVTutQLvhfmSB5R5MYmkcywhV5bQCKb1zAlsLAjPWtY/R5xCh/ClB6LArKu85eAqlrpd1BGkg56mqSiFkecMzQRNStdXkabYNWR8WyHKi7JdBKpvnL1zATiZYhZKnKCQ0hVEujuyEoSSMfuTrUWcYM+izvAo5gjIW73vWy1NufnDIg9Mltw9PaRrD1tSxPfnIw4qPPlCJXmZzrDuPqytWXce9hw9565332Zo/z+XLF7j58IC2bVm1ntl0IlR7EXUuI32EysaSeczOvXXixMQUtMl+yC5kOFZVVZwulzjnOLe7y/m9fdZt4P7BEU01K1F6ZFAw48pCiV5Hz/RoXGE+bPNVyZ8NXrK0/OhXySAhWUcj/HtD5E+OgA3LPnC6bpmu1tSpoup6KWnWNSmt9YLDvQiuOuCj/P1wsebe4QnrXhzHylVl/RMQkpRPox7MpmmYTSaYfkm3lna3qqpwrpLstmuok8E6YXKqq0aqFZWhrmucdQieW7LptauorExpHte38vTgfGhi1EFVkUJ9KEFVybkU5ZZXKWdOS3WGJM1fmgUcn8eUP52EMQoLoZnw1TfvcffwmAdHt/j0M1vc2N/hzt27HC56ggEbN3BTj3MV3vYcLwKrFTx9/TzL9jZvvvuA9+63uMk2W9vbuHbBOgnkbqIEBH3s1Wm0NE3Nw5MV33/3Jhe/8ypPXX+SSxcvs1yumNmK6CNdjCQsW7M5Ny7WnNu7wGK9YrFc0kdD2wd852UWTTSkYDg6OhDDYhLNZIatlvQ9HJ202BioZjXGVArlkAqLtDKNYBV5HRNlNlHJoCeFWlmrDb5g1DEUSkYJEmIM+D5Pu4GAVLAgURlo8uC1lEpxxVgjAwFJ9DFQxQhacQ0x4KsKkshYItFMZ6S2U+NBOchmZMCKM6aGKKkjm+mFpTqmuHEDre9JrU6etw0bG7s0kw2q6Yrge4G7BQmMjDqhMQFKhZv7XkxZx3yGBydIHC7AqFMNELURu3i9KpwaeAHimBZ4hw6F0z9G8dOkoH5Ydo7kOglfsp8G2e8+BBqt8jnnqJsJRvt6CL0mWwS7TU6YTKZYpR+XoaG56jpgtmP+/qIvhwp1HlwrQaO86smUDQt1U3FyfKTPSWkiN85SbWxiq4n0psReHdbc15MrWYbcQyKFEKH/Fby4EDU4hUBFElXdyCwua2mjyJlPSWFQAm30MQpNaggEZYlLMRRdmyGHZcsKwYlWECP0ITKta5qpxTmDPzokdT0x+Owma/VXGLOa2RbNbAtTVQIRiip3xKEalsBVjcAzcUjvgzy/KeezKlXcFIbAvDhYKqkC71VORLU/vfdDdSnGAnHqEWc/zxuLQWcVIbZVWOuGJF3paNOKZ6kUlsRfJk02mphy9EFYk9Yx0oZImxumyxKfta9p7AyWa+V+L3X+shOeeyG0yiZsm8N7hsuYclaLo1AyntLncRZdEdXJdPpRtVHpUShYTqCls2ydSRYvRdmPcaIzqn6yWFI0sqpJgpDssKJUyEKYELV6rBUHZIactJap3ojCkIXuj0Ydgw3Qe89nRdYKKaBpL6lASuUak6YRCupkOV33RAxNU7O9OWN3c4tJM6FpGg7Xa9JKmCytqSV5oQQpEfWnjC0DoefTCltPmdtGESGi55KSX0jwFFS/Rp3nZblz4YQ79+4KxDvoQNnimqkdCENV+tG/kz5/ioHZZEZTVRjrODo9ofe9MgKmoktzNdVaJ3piVNGQUya6eSyzxe0xOVCXZFOmcLZNQ6wq3nj9FaZbW2xMGi434mclKDDQM17pSKbKto5/N/53GnliY1ksHtpgM9N6xZXLl/jC5hX4bMPB8TFHR4e89s77rE4d992/BYFKhmq0PkhmLgZOlwtu3bnHc8/cYDKbE0Og9z1dnwc6GTk44lMSkKYomWeCKgbFO5qszOOZMmhKykJSGW2ut8xnc3Z2drh/cCRluLJV2YVNw7/0u872l2RIgDzbowFLYdbiQwRAnZ0SoP+xr9Eb1HsoZdSU70Ni3Jhg3XsW647Zak0dHY0PuKoWSEGMZzIxKUmGY9V5Oh9Y9577pysenCxY9zLk0VknWarcR5KFU7/faiZd2J9yoCC/jDHJlA6N7pMVGZDaoR0FWgN8K09r1SUu+YvxeuWMa0yDE5Ox1wVHpWv0oeol25kcfMpFiyYuCjkNn7MGbF3zweGaOwcnXK7XXJo/yY29TSyRurZCO5iEjz4YS+thsUqcLBJPVo6tecO5rSkxdFTGUVcNya8gRULwVFbYsAi1Gi4rE7D7wPv3DvjWD97mycuX2Nvd4+Ku4eT4kIA041lTMZs4ppMpu9WE48WKg+oYnBVoRBBOdqfPvG6lamNqh6MmJUuIhnUXcMnj62FqrtA9GjJVapbFYoATakRUPiwMTc1Oh6ehDd4Ulh6cwLWS8SR1rmLshWaZgaNf5imhfSZo4C4yGWLAB3GeBphDpHMyD2AY7ifvicGXM1kcA22Qti5XX9VRyj0f5awnAgETDT4GrDdC0+xq6maKrRqisfS+K2ctwy2jfpf4zVHL4KkEBPkcnHEAdHFjipgQpK/CDrCjfGbysDegPI+xw5nINMClegFDUENuTTXqgJjyXkOubARCDIXP37mK5BzJ2lHjvF7DWmEKq2olQHC6N8LUk9T5E70cy7OWe4dSDc/3FlXPGWupmwlVJaQCwmalRAk6ldpOpoVdUOITCQpLUKqscIOx5YwcZ0ihj0Fx3GbIYlpD8EKw0Qedy5A0QNG+K5loLUFKyWjq86QYh+fT/7DYEvynEKExWFdLVWeyFt3XUuZPkBKmqrD1hGo6EyihtcTQyXeqY1qy2TGPTMjZ3jGkwxQdY5Lo9xCjOML6v0EaZYESuaKqPQv598Zoq0IkWiNVE6XlRs9TVrwjP3BkHIeFyddOJEoTlLpFRu2qM9oDkaRpuIuJLuTA3py9br5oyq7V8PtyzjRgNqN1AYVO2XLHg5yfqfjkhxmgg8XOmNFnSsggibizLJyPvsxwDmIszfSo3oh6pbHjYVLuO5J5b+XaqgOSFVmQpm2Z60Huu1J0Xt7jjL11ZDj2WEuZEpONPlH2aMyOZvQ5oo8YnAymNtLftVj3QsDgHLPZhPm0oWlqmqamrrT/JeVqoOrPoiOj2iaDM9A4S9VUpHpS1jYZme+WfcAUQyEM2PWw7iK7mxs8eGgJXoLwM7KZn2/s5D3i4Gc8ZIiCTKmrislkyunpqcy4Gu1R7utM5qztfLzBPcuK9PaU9TVDEnYM788EUAdHR2xZiyNpVcyMrje+7tmfnk1WPXJbw8dGv/mw/9Rn6Ht2d/bg0gXsxj63br7Pzffe5oOb73GwWHPa/kiH90/9+sgDFR/FKT5e9YUDO8bA9974AS889yQkwSv2nadreyYTwYD3vqdyFT4EfAj0PigDGAUXP8hQUtrQvO5S2hdWoIk21jsm0ylPXL7Kw4Nj3nz7vceVxchYGsZlTikHhmKhM/yA4tDkj5+93Ah7qBufxqfhj3uND71+jwhPmRqBdSKsR8ue2w+O8R62tgyTqaeqHZO+UaaXIQsYY6LrA8u2Z933HC9X3Dw44XDRcrxY4qwTAoLg9dCI4nZaxicGlus1J1VkvZZhZU2EznuWp0vWq5Zu3dN3MlUbza7nXpKjoyP6vmNW5cbSpLzlEtD2nIUn5NKzi4aY1MAbJ5m6JFGLYUhoFUdnbHSVoaiov1FGSrKEBmm6s8UI54Gek6pmGWsOW8/vvX3Ap599wE89XfEzn71ItJU08KYT7t5bc+v+mm++cUTbWUgV3eKYZz72BH/jr/8kX7n5Vd49sDxYtDSzBr9e4OMKS2TaNEzrChNkkJQPFWky4wc37/H2O+9Tp8Ann32Gl595mmAhGEeqLLtuJjMNYs8qgdmcU0/ndGGNMdAbQ20cDYbGQF1VdCHQtT3rZctq1WNcQzJWzmDfa3JQ+nVKP59zGN/rUsp7yzR34wqrjVUHKA9tRYPNYZiykUDFxpKt7rxnsYocLI+pnON8PZGqhEUH31V6zCKOXhjvvKc1BhdqaldTWZlA7mOka4UpJc/ZcC4S2iW5bcNhykAxq7pDMO95DkM+r2OPQ6AIPnoJhLDqsDmRKVthKoFs2MoVognftuX62UHPGeWc+ZbnlAy7NNFq5dD3Qg5htWlIab3JsCFVB0LLqkmaIAYZNXaZmTDEQK+DLSvtE8uOsinR+wDJijHie09nZQaL9LAZTFNjTaJLQx+LcxW2abBNjXUO9ZEISaB+pjCPDY2/YmiNZPLVkGMUmmqdgD5SJHr5feVq6mrOhfObsu4h0KeoLESGtgS8nuR7XY9ITW52hz4OMKocCSUl0pBm24DXCoyJgWXb0qREYydCjd0H2q5Xljhxzn0v8MXoR4FKCNhqGEBpMhNFcb2yDpJNTEQ6H6iqirqasbVb0fuedrUurFGkSDWZSE9KPaVXkgffrwHtaymsTiKrRnsPBzdl0IXGOpGB4IlJegOsNaVfyFh3JklHkpatGEL5WQ5gjXUFwZdcKhljm9AMtwKotMH5TIXT5C5p+XyIEty40j+VCmW2MRKoVNbhjJzVVR847WRwbaaZfzQSGmy8BE1DIjtDc9RRNU5mAWEQml0lUEggNFZpCAi0MhYH80RJ6KQolWiy/deAHaM2KjuwSuiSfzLSPflgjgOVBFgbR2hJoz1hDTnNF5MkywxCOJMEl60QoKD9ZhUyQEyhTtGQjKUzQarfSVisciO4M5okKX0yWZUr3XHuM9ICZoyDgx1CxFU1u5tbrFLidLHk3v37XNzbEbr3qsIRMKEl9BGCx8SMrMhxQ+6FiaToAZmpU1lDZRKV1OPVyGQyA7HnGCHDsUaY6bamhvUssD2bURlHq3bfljMSGPdhSTI2V+QGn23s+nfeM2kaLp7fY71aQooyK85KEqWPcr6NTUoYMt7ncTBcIiSxFeNgdFR9Qf0o33V06xWz6ZStzS02N+b4uyeSNNHAaHCQUWjyODAafW02KOXpRj8f3Vr57+yK5o+FwMb2LtMrz7J75Qk+/vRF1g8ussGa3/zGG/z+997lo3595IFKh2ftA8tWMMXOOLDw4OCAw8NDVqenzGcztvpESi3OJTABH6VEmB3Org+C/a+kUapg8JCNNC5nckAcXIFCVFagRcLKY9jZ2mI+mxcjLgItO5Kzm4OfbMgKTpwam5MwqkukjF4gMPljiLts9NDkKdWUb3k8qHmsqSlLSgSXjDhI2qMjmQZZG5l82lDVE+pmymS2wWxT6OpqNxgCY4RUIMZI13u2ksCouuDZPLfg7sEJx8t3WHVC79pUQhOsLcZUyRRHv/ORk1XH/YfH9KZiyzU4nYGA9xB6cflHmfHSsJsF3WogaGSfTL7HDBNhBK00ohgMOo8BI0ZZD31p4B0vatah5dyZM2dv3PSXBScSBfI28lGDh/ViyXq14plnNzm3twGzGRMWWvyLrNeBe/cW3L615Cc/8wzHJ2sODxfEdkG0CTc1XDtneLgI3DppqaYzrBUK2JPVmqap2ZrN2Zg02ugvDkCyjmgcyz7Qk7C1o2oqFqsVB0cLvn//lNlkwtbmnN4khUHBxXNbNCZhYqAj0UXoA0IXmwzRR6bNlHXdydBOl3DGMp01oI5tSC3BQ0iOZGqhJmWAZ4hoypyHpIxPmkrCkueRqKOoDZQ+INOECVh6fBCY2bnNbXYaQ9f3LFZLrJsQjRj4SCZeSFjjtCcpEKIETrWtSUmokVOw6gcrxEib0FOuvIZI7KWvIKUoLSMlsM3BiVOjKLIjlTw987lpE02MVApzqAzGa4ChDkgEXF1pk3iU7J1KGYjj79RIZqfJkJ2CpPIfR2xRqheikJMITXkqVRClACJFyfoLO4/FVQ6vDfEDNl0DJlO2rGSQkz4HJhJCVEpaPa+ukl4B4woLmbUVVE6qR8rSkxJCtZskxqqQa2aGMckjjb287OuIbvSqT60mFQSKJokrjIHKCaFGEjiR08AjxgiCvCJPpc6tq7mh2CJwq2y4RwUnrSSpTgme0Bu8uoHWOiqt0GX60HzgbIg6U0H0EqDBVlZe8ifDiPKohKyHQt+Rgtx43TQCobV12V9nZV5UIBH6nohkgmM+d3mdlDBDeqScJgMgBW3utaPkUGb/cZaEK05N6UtRNi/rKmJ2wLVynkkBsFo1NLIvEoDF4sRkZ91ZU5KUslVqQK2iJHQdrLXaI6hzXMjBq0hIMkZosyuDNQt8gNZnayv/GzLkZ61sIipKYHh/LM9iiv7PKS5Ig3OeotIcJ5J11FF8/eSG0Chl7LiJWNV9JEmuZWMSjEbxWSyy/SnflwprF/ls67nvg8IZY5ThjmQ4FFq5HJLAMQbVcWnQPxrge89IdnoZUupl4GZM2osaGfk0uc+L4ZkY3BlbHmGYPZL7uZzJM3XkrIUkfZWo/mlcRW1tSYZIrw34lOM2pf0dVV2jwtXbdce67WlwmOSwVQ3GUaTPaEXJKKOoNSSb9OzFwirWBxlI7XI1JkuNZj5zLFYCTD3A1giL6OlqSTKwsbXB9etX2Dqe86033mQ2mSktPnjVfZEzKm+k+fJ19dRk+u6UqytGnyPbXIHfuhS5cP4iO+f2mNeVolhkV0KCSgPxnNQSox2L0i+6Pz1+P8Mvf8grUgJ3rMGHnna94OjwFNsHrJ3z45/8OEeLnoOjkx9+nX/F17+RikobIm0vlj83kp0sFpycnEiT76RhPpUp2ILEiGLwcYWlRDDtThiu0BJwDlQ0A8AoYMzBgbALVcX5nEwmNHVdsodqhYf9eqwkO+xkYTuJj7yjBDr5u+VfI9H+kGuS0RCPXWsMIQNGGeqxUEugghGMaV1V1HVN1TTUzYS6ctrsnLMD4oDFlHC1R+d/CSe3bfDR0lQVi3WLj4FqlNUwiZHBl/+KGDqf8E5m2zjnzvYVWCsGx1Y4ZSWToWSa+ThzHsYMISWUQIKQMSwvD34UCtBBYZ4NE035tAjEUIMa/ntwEMdbkoozkTcoxsjUBqaTwPNXNtnbmgrcRCsOycB6HVmtPItFz97upqD+1ysCDufA2MD21NI4qQaIAyKNxyfLFTubmzSTCRvzGeveS9ZMg2CsVEFCShhnqeuacLrg8GTBK+99wNbmJhcvnqee1uK0YWmspdYMn4/ScO4DRFOJcu4Ds7opEmqNUEBaZwvbSjReMM8ZhpmD51Tsljb+CfQuTw2SBL/BJluqEtbZYpRjyiFjoguRpnLsbsy4fGmbk8WC77x9U5rgkzg9TmkfSWLcnLXYkA2rOHcxSktnNIbsmo73NbdlpiTsY0kdD5A8NCrrIpsiHyUjZa3O3SnCRkIbPJPAvKxidJLCroofphVPk79j1Ow+JuBIunCP6p+SfRv3WmjUlJ2QTHk7PqsZvmcyfE9vOsODhPLTDOrPGEluqxXNDlOKSfDt2fWzucHcCmRJmZ2S9s8pj6nuc86MaoKC4b5HuYjydxzJVW6eRfVKrgYHzeCj2e7hwVQuE6OfD3sFEqjIAtmyhrm6UzR1rjwn6cURAuOeuqpFZ1inGeOcjVcdHrNWgTLTQx9T4j8DUX4ux2l4eFk2CTpDsDTIUNAKK0kprW72fa8wM0/K1eSsr4DczyexkRn+FMU92Ck5o7nXx+gpyG+iBC2lGp6QKmf+n0KK5GyprGuwlEe0JrJ/nvIJGK6t9zDYvxxaCBJiXHWyxsrzIntrrSPPOxV468jmM6qqpKF6Ik3Kul96HbmfkZ01RpMSGkF8iENpDOCMBsdJhmPmJ8wwKqODXoVSUkhGTP7OUM5oZujKxz2LozinlLMi6JH8uxyU5KUckg1GnzHb9aSObl53MzyGHhmtvSWGKk1WIiXrL8GbdrKUt2TmvCLDSXdYqaXyOSrsbtk2qP7Jp9SRmThz9Vf0RfGxNCCQgVyytoJsifRB/g5RR1gUgTvbl5H0uhJQm1Ggom0FMYLTZITKYtEhKfsQY3nI2sLgLCz8iqqXnr3t7U0hfMoQRvRcjHzB4RqPbMojPuX4Jccok6tkihLV42ZYw3IONOAbWRJyf1y5DTO69vhto3ss3tXo2cd7n88SGO07bVmt1lQx0FBx/fIlnri4x6VzGz/84f4VXx95oNJ2ieU6cLIWnHhVCcf70ckxN+/c5u333uX69WtketNaqeV8UMfUWmHXWS1JiIFt6oENw7lKMv9GWEhEvwo8JbOBTSZTcRIsBXJirR3vwA9/jUp1VSVUkHmo5JkqyPgjf5KF+RFvSqTiFAzY1tykN3YoAjWBee3YqB21gTxROziDDeI8OWLBqFd2UCjC4GOUTSc3ecZSxg3oRFc9S87Azs4ml7enbNSGkz7QzOdYC01dS7O9OhMYi6srKnWmAobJdIJzlr7viFV9ZsidUFgOEA3L2XXNcwuK8xgiPngEhqQBrM2ZgmKlhgUvPk0QpzYHmGdSy/LqvOCgp3XPT70w4zNXtvgPv3iV7Y2GsPR0sRGmMpeobWK+MWOyA7/7jZu0yyWpX/Pn/sw1NncdafGQYKd0KdKGFZthQWUiTdXw3ge32drc5Pr16zxx7Snu3r/P/YOH9D5S2Yp6UnHSLln7TpThfIv7h6ccnyz42huvsrO3z1MOPv7MM2w1DdvWMU0RaxNpYlite05D4mSV8C6yWC44PDwkhS0WywV92+KD4PMX657WS5YzOm0BiJKBG2+ENRligmTxEYc9JYEWkhLGVeKQGUvU6ofFCuNKciRqDo9OOT93vLCzwf/6b/1lPrj/kP/jf/n3ee3usQRTFWxtbNA0QsHIpIJgsL3UWax+Z9cF6VkLkIfSOVcR+l7kyjnBDsfB+GcxqpQuMro8PyV7BHmSsyFmOEXSjK1WF6sSdFEc3hhzr0AWv1iqPDlDm5tDh4BanUddU/FjBh0XdCbNmZcGSPn89MELDlqDW1wFVSXDCmXTsLVgt+V7ZIaItQ5cDiySNnwK85fR32fWtKQVCGtlsjqa6ZWkUJRMvpGTWFUSnOThhSl4Miwmv3IPQw6CM82zOFiJANg0rIPQeyZhNEwl7y2zNVQ/uMqJUY9DgsProMPsZFjrigORg0aRJa3KYDA62T1k59FaknMYqx6Oz8E7hU0tO7vDYRGoTknam8FZGCoqjCod0HadJIOs0+pOznSLZEh10o3WbpRs0d6OFKUfwCZtRi/6TWxi3tesYU1pqsnCNzrsmmhwBkyB1xiiddrPk4i+lx6lyZzKaBIoJkKUpExH0PMkFeHcyxVj8e5FIo0QfVgUdkMOwG0JyayzUs2wDh+lOhbJwwK1qZxcPR8Z2VR2f5TgSsToqa1ARc1srn1GgRw8JSB5mdPlrMVtTKlJuBQJpsck6T1z0QkUEUO0AsOLGPo+aA9TVCY6CTQG2GksvwftmYPSl2MV8jnRylgKAYfHOIutnFDspgQh0CeFXqVM8CCMdAmhcu59wpkWr8N5o2kIVcJXkcqrbYzQk+gTeLOiNx1Rg+BYGMCGNS2RVxr/MMu42IIQgQA2KXNbyux+gRSt6O5s/60mdFIsAYLT8QW51y+fUWGg03lNuS/SViOKX9WP5cDlqpusU4ap5bMb1D+I2cfLCaHxM+cF0MesKxnE+c77H3DpwnlcNWFrY7NEdBPnmE8aMIZVu85uyGNxsNFbPEMjXH5jz/zbGCElihi+/q1vcuXqVS7unePZ2YxlVdGfCTaGc/Qh0fcf8xrdZfnP9MjvhuvlfsS+awm+JcaO3c0Zs9kWW5s7f4rv/ZO9PvqKik+su8Ci7cBqQ5wxnC4WfHDnLq+//Q7PPvssbevx/ZrT08DG1iaz+QbtuqPrPD4EqmYiA9nSoGRSjAIlU2U8pvodaOZEuUdtULJOyozlpRvwWCFl/NJIMzfSDxmDgbFjLHzZQOajMf4ykyUy/2TsLJ95J2fek7PJORMMCqdwMHWwtzVnb2cLtzGHSgY0OufE4Jag54y3ScaHV9aM5ozkLG927CVQCSk38wVS9NgUmDcWT6RyBkYZuoGjPxH6oLSWOhhMFUi+n1zu100rayy3+PjBiikRvDaxpjQkIpI62GVfPixFYXj0koMSk+MsFRUpL/c+sDMxfPq5y/zSZy+xe81gV0v88pR1L+jw2liavQ02dz27y563Pzji/N6UKxf22dz21NayXlluH7actL0Y49BqYG5Z9x2Hx0fcv3+Pp5+8QYyeu3dvcXLwkM3phNl8TkgT7h91vP7+PZ44v8/Gzjk+/uJLdFiapmF7e4erOztMnWNiDCl1LLuO05M1KzshGUczdzijvV91Rec9666TBvtkSclKMBrBoOV4pDE4jfdMoWGDlJcN0C3X7LA6tCSD92rRUqKqcjUz0vglcxL7G4b5Vs3Hdp/gf/k3/yJf/f5bPDg44ujogNsHR6z6ln7V4aYTLUdYpYXMlI4qqzFDB8UQ5nkQqe8Fk50zUBqo2wz9GmWJijioHGZZys5NzG9IAqMS6mR1/Iywm3kfNJExKPMxc1rS85Uz7vnaxbzoWsf8VQnO3KAZdIIMrBRWGKNVTafNpJI1lEbrZK1mvfUcWKvBpf4bizEZ1if33ceAiwGbnPY7DDoj61xbVaXp2/hQbtiMYBRRiQ8wo/XOVzGyCDm5nYlP8jpE0gDxzfSxUc++6ouQHjHD+ZpQmkNjGuClQ0p60OsxRhrXlLVPUWlBlejFOCdJF+tIUVm+8rR1Y5U0QuTQaiXD4ArcKSfd8rkxJmeo5SzoQpBp3nPghcmxg/TZkUbkJNZlgZSctaIKolaCBcJpCklEGtm5EIWMO6+RsZTAt9QVU8ImR2Ery5/V5zXW0JDw/ZIUIt5BM9mQJEUSYhxBRyQyvWzum8kPNj4LhbHLmtLHMoR2mXZaAnrrHAHoYqLPLKFRkV0MDfKZ6S0RiApjtNlup0RloV+vWbWJcNoV+S33BDJAUDP5JxioKoxzJCVsMAkqTIFjBePIIwVc7KgNNBZqm+9FQyDdjKpyQ+A0KrEEP8z3kB6hSAwJlwI9hg6HNzWQsCkOznXUBJ72/MSUaHvPuu1xvpO+U6IMx1XHPPeDxZjwSeDhIVpsqkqlUlF2Sn6Tm8YFIpf9EqN2NCaFqSdhezRZnlSnBSVEEGigysXoAFvrStASdY2jZkqtdUwmE1wzwdUNsZIhr8a5rNTLOksoLAF96dsywz5gLEHXO/8wByeqhBiPisivrDfqusYAt+7coa4qmmbC7tY2JyenxBCorGVnYwNXOe4fHw/XHiWf8/6Wwk358kEXZLke3591lnN7e0znc+kP9LoHJp8ttSpZp515gJEP+iH/dfZZf9hPVXtlwibtR5SevyRQuqrC1v8WTKb3faTrhV0KxU47E+m6noPDY96/fZeE0Qa0SLteMZvNqVxFT0cbAuu2YzZtEM1VwhRkE+R7zjr2QzCRA4pSsDvDZvHI65Eg8tEtGgcp8u8/Jro586tspIsKVWHN9/th92MeEZuhnJ8FNWUlaQ2zacN8NsE0Nd5aUJrhXOpU33B8RwMCQzOi+e7GzjtJm4/HzcYpQgrSzGYRggOyfyOO5LAOQ+UpV4OyEcml4ZJpHLwyfb997JAktCFTs+OPny3NkjzivJTmVoZM9pnVPROspIL3JxlmTcP25gap6UkdYCQj1a4hecuFC7vMNibsnuuY312xv11x9dKcZu7xbWRxmrh31LHqpIk8pQ6SwwiuhuVyyYOHD7h+9Ro7Wxtsb8wIfc+0qdmcz8FOeHja8tp7t8E5NjZm7Ozu8vFnnsEAtauYN3UJMvvoWPjEwWlHmDSExlE1E8U3iwHolDa87z25+hWSzD+wyB4a4rCnejiyo5tyUEeOScf7liFQ8r48tsSkiK2kr8WQuLIz49reFtcu7jKdVexs7/BzP/YZGgx37z/k4dEOr71/h7tHJ7x/cCgQGcQ5d5kpLvcLkM/mSDckcQZjjJgYxGCVYJki3zmoHs782cRFYW5JA3QBBHKQoFRnjUEhb6NmSIWSRG24GrLEgyEdgALwqG4q/QwaPJ1NrpkSVOQqsTVC21voQ+NAvWnM4CTK/JsMJxufHgotq8/YdnU0sw7L/5EY4GAGMFarseh3FZ9rmFWTP56Ew7RAe7Nxzb0MWZazk1LiJ73hgZglFWjfozqz9FukrKsHedVdPuuUDLcn36F9LN4jA9VMlAGLOVMdAhmOmuE95QJZxsLwfWa4+LDmRj+sWin/OA/DzGxK5VHO2CBxxEvQW9Z2WJ+xHSxWLWlAqAuaEmWNK9Xfxqpjl5KyjschUjHqACbDtK6YTTYxKXLaaxeWOrb5gQddkQVRYE/GZlKKcmLLGgx/zJk1y+81VisWQaoFLh95tfdkx6+cc4ozncrl5L2+72h9T0tXGtOzzUsGNqYzQoh0neetByesjKOz0nyfexislXUMGEK0OCKVCezPYLO2bDaWae2GPc52McFsPil2cNz03LWt7qHMkgtR2E9rAydd5KCN3FnJ4gjPRixBd9A5KSSB30vfSs+52lCRsCnQhUEH+aCfTej8Ke2PoyJXIfJE9UdfhZCmHHj9K/tJeh9ZAvTxBKo2TpA+8gcGOc1n1SCELVXTCGmFq7Sqok69yTBTPd8xEY1KYRpQJZisPm1JRA2VR7UJRReb4aEeeTmdf3KyWHC6WLKRYD6ZsDg9lWSAtcynE6pMsDFelzRIYl4gSbxR4IEj6zas9yhQ2d7ZYTafU9cNcXVyRrofU+4f9hoOyR/3mOMPlDeN1LHIizK9knIVXxLmZjQ36KN6feSBymq5YrFes+h6sBPF0UNtKx4cnfDdN9/m7uEx09qxs7vFzdv3aduWvu2ZTye0fc9y3dJ2LZuzKdubs0Hpg2blKZHdUC0RwYwxSIlQsykig6nAxGDkCHzYywyO9fhN48P0w16DkJVPDX/9kI+eFV49rKX5LT9bFvgIOIFWAbl5prIykbiqHNGKEIUg8BixUtIMHGKk8x3LxSnLxakwdY34vDMFcYyRvvf44JlOhEY3+IBfrQAn++nESbIKVyr0oAmqWian5qkYMaWBPtNYhZ3JH3V/eFxFmNGRFezsYOvHWZI0omE9+8oB6xCIndmV0d+GjUnFtHY8PF3z3/3aa/zOH77B//zfeZHnrjdcvXCOdP+A79zseOtW5Od2DFvnN7hwfcbHn7uI8R3EHnZ2ee/NJd997Zhvv7cg1TPOn5vTrQ7IaKr9nR2WiwXfe+X7XNg9x8X9PZ7+C7/I0dEBG9MZW/NNHh57vnPzA371q1/j6ev73LhyieduXOfFa08wsRaXIg+PT1jHyDolJrtbHMXEvWWPa9fMthxbGxt0J0u6dctqvSY6w6LvWHWBqq6R8Q+RgDiYfUikEdlEFC+AlJJMgzYw8KcyOkTqcKXBYQoihJgYaE+PqZxho6n5X/2tv8rHn36CZ66eZzpxmHrK3jPXeeLdt3jqwhYff+4XWDVb/NGrb/B3/6v/hjfu3GcdIs10DlH2OijsrBg2NewxBKL1wx5rVt86dOBf7oIwo1M6/FfpqSDpvAEBJUprZskbFkcukgOZwVEvvRUxIH34IwOsa5SdbUhUlUJ3YOhTMkYbz1G5jgI/UocnauxindH+DW0o1YqCszLAcAjc5c5d6TVDG9H1PhLF+U9eZgPZEHCuVsMuzc6ZoQzN5KaodMoloFEnOCaBoMQgA+RAKgXOIpTiZ89oQhgAM1vXcM+S4DIgNMm6hiE7UbnRGHWqbSImW4on+dpBHYGsWAbGZpkJY5K6/CmR8oyUFIjekLyjHZW/nA6OLdA61TEUXQSlPKHBAeS/S0iCfFx7JMIAJ0PpRmUGjhHyE22ml2vn+Va5KjdUhwptez6bY7OCyGxyon8h6VDfhM39IEo2I0FY1sKhOKPrVUfjHBfPbfPv/dIvsLu9yX//T36VN+8ecLJaMi09cEacSFuRKVUz9Kw0/5PKe6PaJwp8h8HOBtUpJKgq+mhY+0TrYYIMl1bAoDh5Ke8JWsGyJZjJ7FAmWkK7pmvXRKI4v9bh207kwRpmG+ehajiJ8C9++yt8884hbx2u2ZjvKQsg9FVXIJ1h2XFhWnFta8pf+YkXubo7ZWOrIcwGuB0kfN/LwMw4p6prXFURpdudFCPtaqVBmaEmCPlYhM2dbd5/cMhXXv+Av/eVt+mSkTlH+cRkOKA6jNH3XNvb4ONX9/jSi9dwKdIve+4/PMUrk2lrPAFp/l+cLqltxeZ0yvZ0CjbS+15kLcnc2RSHADgU+RsCS2ONBLtGbUGOx5E41Wq/Zd000lurbIROSSCK2MYIyiYYQsRNJlR1Q9VMEEpyW5rUiw8UVI8BoWRnAyfHJ5ycnNCuBdFgbcXYGbPGUleOPg09jSll6fzwIC3LZlXXLFdLYvA0WtkOVlgJJ5OJzEtTBjaTdedwIB9JjOm5NHlNI5LYNOQ5TiTp37t4+QIbm9tMrKG7f1NIXuLwHh75ng95gA//+VgxP/qWlDcn9w0bUvD4do23CypnqJzF1pVQ9/8Qf+xf5/WRByo5wW4c0Gc2F8tk0rBuA7fuPuStd9/n2qXz7O1scm53l7qZStbcJOqqYr6xwcnxISsj08g3N+clMi/woRGcKxv+vPkZN2yRTEmZ9jlev5HD9diy6iEYymf5wqakuv7YkGW852olTRoHJT9qDQccd8n5q4MkiTWFnRiHs46gi5NikO9Wg2QUSyJ7YrFKYTidTZlO11TO6iFSuFzMh1WhK0mybJPZlPnmjNZ3+JAb6aHvO9quo21lYFnGmVodgIepWK1WpBipq0poWY1QWmYjXsqW6VEXMp87dbgybvWxpTalX5Yfur45a8M4SfjYmlub2K43OFyvObrb8d/8s9f5q1+8wvkvXKS+9iR333qfr39wi3d//VV+7OV9PvOxXbZdwBDx0fDad0/4ve8c8vvfPSS4TSZNzcQaetsQ0UbAECQD3kx5/c23uXh+jwsX9mkmNcuuZ7F6yDvv3YEUOb+/R2Mn3Ln9gLs373HzmQfsn9vl/O4uNhhCsngMcR3pfBS6UOsJydN3Hf26FeMYAqdtx8lixWLdUbtKFHoMhKBMI8aBTSU4NjBA+h6N7BjtyygblRJKiZkgRWz0wuDUJU7alrBuMVgm5/Y5unuL919/l6985x/xwTvvsr+9QSQw37vA6vQhO7OZzLAIII5I/l6FNqLK3Qr+Y6igqUxokJpL7OQKh5FgJMaBTz/3Z6Uo8zIye5xAWFRBZyzC6GzmzHZm7hKayOxoa46AHNTLupbZEeqgi9gazahbdeKyA0JxLEHK69ZKECWOg1EIT1UCkvzK5jrDfVJU8oFEGRSYPxE0+GhspY3lgc63ys6jw9RiIiWRl7z3TqEmKUHSXg6TM21asRXdbAEZLhfjI7TQebW08v0o/FOcHdn1kCTwCFErwplRCWk09THgkjBHCW5dG3bNQDvrMqsbykhnswFWvZ4QeF+KxC4oNFLw8SH7AUnYJccQi/zzrLMi8UzAmZ9LqkcaoAXpKyk9FsYIY12KBD/AeDIVrwy2VFtX9iThg8e5GXVdaU9AN7BJZQc9BwKoElRdGkMYoHd67wnE8UeHABqhMncxstFUXL9xgwv757i8/WVeffcmRycL5peuCGUi2ndhhFksFehXwimkMMZI5z3Kf3MG3kxhd9RbzWfCWqKBkAx9TDQlItWrq3Mk6msg8EB1gNhzITKonWU+meIaq7bMMm3qcgY35w11PWc+M1y8cIHZEsLqmDiZSQyWGaawmGSJlWW6tcHexR2uXjnPxbllu0m4emA2MAZ6B30nsDBnkvyxOeCEeVMVuJI1wugUk2F/Y8K5jSk7G3NMNSFGQ6gmIuc5UChnI2Fsxd6587z07FM8f22f1K44eQjdqqcPgWgic+uIWGKy2JgDkIjX8xAMg78xfuVSXzmmo0SAnueqqqiiVB/yENukOknoxx2bGxtMmgmVa0tFKOg5Hr9yv1buQTYYhX1psioOEEuTUNmDGKSHdtLUTKdTrMvVraF5PqkuyYQZQxBTtOYjj54fUqG6Onh1Np0pFCvio+hz1RqQlJnL2UcW0wyXN2N7OtzHOPGdR3QsFkuScYTKsa29d6H4N8VIqp/Ih76GWGZonTjzc4YgsxwcvRuTP5Miqe/o4yneGLxN3GxPuXf3LgeHBx/+xf8ar48+ULFalbOGAWxkqKua3gcOj065eeceu1sbXLpwjtlsJpFyTKADdZqmwQfBWa66jg3m2fSTsycZglDK3CnjWSnNsznLm1QYY8p873qtD4tQSsAz/H7M8jUIQ46MxxARzgrHD3GKz3yjGfpeHrsV/dukwfEoHBD59rKjjzoAGepmrDSiZrxxFAPpUqRpaiaThqoM2lKpHgl3Mb4G6rqhaSbEZkrV9ZoBMXjt61guV8qnH5R+XpWIdfS9GE2Z06HOo1Jz/rDnLwHK+Cwbefbxug9MSoY82yM+upY5QEF7FXThHlVDWbXUTc2i9Ryte77yygEvPrHFx2/ssrF7nlsrwxsP13z/5iH1pGJnY8aFbY9Jia5LfPPVNV9//ZRvv7vCzTeFBpGEjuCSZ4pB5bPmweGh4MQrx865HUIfaNdr7j+4x/lzu1w6f4n9+YTDwwPuPrxHunWHkz7QmoqdZkOgCMZivUAEQopURtykFGPJ4AWFU667jrb3GrRadbKzc6UsKcpekx23LBIpB8MjeM2YVSg75kmbgY3CBU0y+v0tDx485OR0gW2mHJ0s+eCDm3zz618nUuEqx8HJMcsQODo4EH59a7E2qdOUpXLkxAtvpzRnpgGqIsGrHQIo/XSGGGU5caMgucw5GNGnZCOZs125qmCy46i3lCEUBWmp8vaoXSp1Qw3qxECq/BtISQnBTSSTjQxu3vCduYqYTNDp34p5N/m3wxnOX55UQWZ9mNcpn6V8L0IXGrE6NFOMlPYGhUjyocC3cv9OyhWDKNnNErxkY5siJg36OipMJffdkAzSYzvAdFWK1XFJgy7PukGtcUqJTH+cYWjJDoojw9QwDJA4hgAiEnWYqjrr1si07RyEhSQGDVtgeWd6Fh+xF1k35xkyWa8UgyQHZ1h3rejkfg2jZyzGUAgEysyQUYJM+gKGZmODPIOzw7UNag8Y9GRWfClfI58zYxjN9Rx9i7zXdy2xqtmaNZzb3+XCxfM8sb/LrKlA98pmSvqcuR7pZ0MCJ/1HY/nMdqzYm8duQQNO7WPxSTLtMaNLHvGbH4fX6L5kuxaj+BhG5ofZUsXK6sLSVI7ppKKqHFubm0xmC2zTYZsJ1kWsCUI1nhwxGkwVaWZzNrY22d6aMW8iE+vVadbnN2CihWCkUZ+kvRx6rk2Shnlry+ckXjZMG8e8qZg1NdZJz59xTUY/6XOjTfYSAG1sbHJpf5/9rS16mwiNIAashWAMZAKA5Fg1MqIgxkjUuUzxjH808qhFSM9sVl77TBVtndXxCkPvaCYKctZRuYqmnqhPIA581hmDXR5sS4a0SjVZfJusu4zKB0kSFBKQJEhC5FJVso8giY4+hHJGSInQe7rMzMlZ1MxZeTx7Z2Pf01WuwIGD9vvkBOwgeMM+yX+MBLfo/zScUUbv12RIiJHjoxMCFiYNu0pGcHYzHg+w/iSvdGa/y2k6sxaSbNc1T1KNjkreEFOgP11wdHTE6eL0T/39P+r10c+6R2jomqTGw0CwQkrTrVpWC8/rb7/Phf1dnr1xGWcTxhlcpRWEmLAxkpxlHSN+3bIdkkwlHTVd5qx9DkJAMJ0+RlzlqIw4L1XyRO9p246uF9hI/QiEbhyARCw+ePq+o6kbafwyudnv8SBlzGhh3XCA8ivjXv/YaOXMzZgShA3uidylreSZ+9Cz6jtWXcd00muDrSU6J1nNbIyNGNc8yyAhlZD5LLExa5loBiemSIhilowBnANXi+PhPTJMrqauJ8Iw5Sy9MdJ030fSuiUqTMBZWXtjlc8rlyWtZNmScn6TJJtYGUNn0KyaUV9Ts94pO2WxKKecrUTlyxmjlRq5n5w5H3Ik0qeRMfBnFFHi7PoacNGzN6vZrCsODuf84+8u+Obt1zh36QHv3jrmvQeBk6Xj3d8+4B/+0ZInLjcE37Jad3znZo9xc5rJOa5u1Xjfs1p19EEYvOqqgrCWPXKWyeYmyz7wzvt3iG9/QF05YVKz8NSVi/zU5z7Nlz79cR4eH/L2B+/zR6+8waoLvPX+HZ64fIWN6ZTNiaPCEbvA6cmS3b0Zdd0wnU55mO7S9kv69RrbR/AynyKWzK1AenyMdL3QhaPQPFl/AZnkeCA3bspqKW1tSkQkg25MBklJ03kdoXINCwP3/Cl/75//GvcePuQLL3+Kd954m9PjQz730lP88l/+q+xsb7E8OuA3/sd/wXdffZPv/eANzHyP+ayiN5F1lP2uqXHVQLxQ2IIMkAbuUjMewjeKGJTYmD567XsBySVm+MzgiAYv7EUhCZLFaGWnDZ7KGg10ZNBZSAmsERimEac5KB4/5jNpoHaOSEVISHYzw7uM3F3WZcZUCl/JqQkzgnwm8F6oMe3ZKk8OJrOhlGDWETDg1+A7TATraqyrmCjVs+Tl0KbYxNoHKuR5KhwxQOy10d1ZorUyMJEAeGwI2ICe9yjBgnOkPhYlG8d9cdlLLede96pUKATGK8xplkhFUgIBQ9I5NXKPLg7zUzC6m8ErI1yCpiYY6FLEaYWk9C3pH+vc4IcFCVQkWNa9c6KXc6CVKbKtdTK4DoFsJVsN+5ACGIOtbHHIjA8aGOh3aQ9ZpjnO9PK9T0IgQtLWKwNhqMzYlPARYpAAMvad0EbX1QC7SeQxImfOishXbtw2pU8jUxcLzjIMfU3Bsj54yGzW8MLTT7A5t+xsVfzSz/8ZjpPla6+/w7du3mRnNmXSNEBDTIFS4dNmmpTAp1Cokl1hbKT0FQg7nZ7VNMR2la3oUuA0JLpuTWoCxgmKIM/Vwpxl75IOEoVxetX0tTLCRehao3A7SL0yyRkhA+m7jj4AqaOxlnk9oZlYDS4sLorEJWdIk4kEAKFjuThm5g2ugqYeZApj6DuP90HPpMEYT/R5/knCe198m9xrSkqsuyl9HzAhMbEQrMXVVknfNHlipLhsrExwdy4Ru5b1oaVdLTldrmh9RxcyGUUquqXvQ4G9MepdyU30cZSIkWOb+2YFFprxYZ3vqRSmmVHCOTk0qWt2NjbZ39llUjeYZEtPnNVEUBa9YVCsE1IBEwkmlGSkiQKxlVlPAgC01uAynbjCwZytsMayXC5Y+45l13LaLtmZzWkqgSYeHR6w6nshaECCyDzNL+ut/FdJSCCy60Og9Z4OqGvHJFg63/PmndtYY+m8yN44eVBeZQ+yMtT3lOAgkqIhOgO1pQueo5NTvv3NV7l64ypXz+/x9HzCqR2NCmDodyqvP0nc8ujvx0l33fQh5WIgeCrrmExmNPUOoWuJ7ZLTB/c4PnrI0b8NgUrvO4VPDGCEhGKqjTCS3L53n8PjE7w2cUWdNlo1NdahDo6Vikrbs16tsZOGqq7kQFpbKHDHGd5MgehUeGNM7O2dY+/cDpsbM2AU0eqruK35tJOj/4FCMn3YBxlFlsYUmkFA4V6PJyR+dI8LozSTGHFR5DkrlasD45sX5paMB5ZnkFOfqUGNVlrEGFmcC1g3sIJllVUMS8qBjoEY6fuerusIoRcjI113Qp1pLQ7BbBpnaapaTJ81JGdpmkrmarR6GDMWMzHg5IGcKR8a8KUCJL/WDCdCZzlesZT/f+Rg5r3IMpCszAGw2vCbRUYYmNRRVIPdYfAEvInMZok7J2tuH3dMP+jFqXBzdvckJ3acLEe3ZDp6u+7pfKKZOYwTKkHpV2gheiwCowlMhYUlRpksXjvqusY1DZX2GQVvuXXnDl/+/S9zZWfCuf1zvPTiC9TTTd6+eZvX37/Fg+ND+rAhMWWwtCHQ+cDJ6SlVVbGxsUHKZ6VyuJA06LZEI06IM7WsU4qE4CFVRQZDyswe2iienYY4hM9nxhIko06BJY8CiyCDt1Iiti3N7pzaGaJf8cKLz3N1+QQHh6d8+Q++SfKeLZd44bNfYOP6s9yKFb//2nucLlfMNmdn99pU2pOhsKjC+GYKgcejjYxFYjL1q0JNLWhTKiRjhIY304sGL5lHAynk3jg5Z0Ezw7bAMeX6Ue8nEErffkCMp0Wbl60pNL5ogCT36/TIjS54RjsMPxs3zduhtZrMdmXJLGAJTKSuZF4H0eDXC1JVS1Oqq0hOAidrNPCISahpbYTgdYZGxFSKV0cGx6GVu1ylKZnanH7T5tJyz6NKnNH7HM58VnupyFPpFkeeUaVOGzjzT6PqGjBeWZkA65oSDIWg1WZrSq9YHkpqzNDvkYdmih5NoyZXNdNRKzwKyckbkFMohjAawZMGIgdNBkmvhAzVHIZdekjC4gYGEyMYJSNQNq+s3zLrW9bTeUVihtt5/VNY0zRfH0Xp5Vk3tujYnEGWdTUm016gjIHSYO1i5POfeJHnr1/hz/7MFzm/u0NlLecvXWFjvkHlKulLs7XAcpI05RemqBz4B0lm2MoII5ZSWEdVOlH3fOiRyaIvhsCbSBug1wTAWSdsBMc2+awjAWdpHBqc4NyonRNbRB2MapU1jVzZkvdnZAKlxjk6jgZ9Pu0XiIYBpafW1briCw1EE2YgQEBlP2fqi2csI/8KOUF+5uwH5Ig0KxttYhMYqwyCDI+w5hksXhMTRncpJjnuNmlSNtvOlKRHrsA6DHl2Uw6SAK1+S29J27WEaAneS5XPie2z1uJDwBgvl9PD6MqcMsNAOiDyYKwEbnVTU9XiS4Soc+GCBLPiTxuiFRhkPg99kF7brutEpyE6KWPajIFGkxirdeZrHpZz2GZNoo9/ZiRQcT6QiYzqKgjvnVZAdblKCELeY0Y2dCRGeV9zAhVVgdYkLJ7GJp5+8hr7F/c5tzWnOz1URs7xKzHsDmf9ojH7LSN/9EOCGTPccpHVcdUXY6CqqTc3mKYZzs+ZuxXbN+/RzG/zUb8+8kAlhEDmfD9rbAel+ODwkOOTU9q2V5yqGHZsg8VRJeGr7voO7z1t29JYQ6rldo0ZKO7GLCcF1uCsNulFdra32dnZZnNjTheV2UUfOz26O9nI6fVLj8rI2XlsTzVTn3n5x9dN5UA/HrQ+GrQUN2SkSDEf8jn5SqWyzDjpXAMe3aeBjG8vzoIZBSCj7y3OZtaDafTLKAZGONBHSlWfwRodiGUttqpo6kb32kKdMcC5TJq/fzAi2UEc31M2oHlNcoA7YJdNcZ7zJ7LDBBS5AMFgR63elMVTo1/Yg5ItjbF90sZWk7i6X/PgqOX+ceDO/RPO7W6yuztlttHQ9oZVC0cna2w0VKni4hakyhBtpNe5LBkGlRtVo6sx0UP00pCMwVUVjZWmQmctPvQcHh/RHT/g4PCAc/vnOL+/h+8SR8en+LblIIqRn09qZtOJNq1C267p+m6AdBR6blPkLu+DMaMmxry2RbEN3PbZfSmwDf2/7GCbAqkzSGOUXsqA13Wfu4pLe+fY29kimZ69vV3qyZTTZeLr3/4DuuWSZy7s8Kmf/jmm5y/z9Cuv8uXX3mbVrphtTrXpWa+f+VWzIGWZyHSkNj9XGj1XNgv685DnOIwPlwYqinqKun+S7o3lPCWVRzkIYzS8BnQM/QUolI7sLOYAywhJSkpJq6By/wmLMaGcZ1m+VJzqUoTIh6M8Yzrz+9zbUVyiUqU1pNDjYwBbESbz0sdHCLJ++WzFSAo5mFd/0YpeTdHr/SWFSSVyoFWW80OSO8NSP1p7zjKlEIwkMES5lazbNDiO+p0hEZNW87A4za5LwKGUsWGsN1R4s67MmdyzKyUBjXzb4JTl5FGiOPOl/zA/dEokE/R+MzxZZamcsaGTKBmGRI3ansFx1T3IzqWBzK4oIcDgmwLKwhNl3lSGL1oz6NgUdVL3CAZW7r0sQtl/ayzJC+XtvKr59Isv8OmXnuNjzz1L9J6jBw/pe50TQpZHB6YqDvDQ8RzL3ha6WGPkTOcMeDIYM0pGUC5a1jAPs5VZPmPvImWDlJdy+HHOroyc/JRyoiWWPrxcTRWnfUwtPpyvLEJSwR3JttqqqHKZKxLlc6P4Ive1jdRt0b+DY5l/L1D1vOdnfKrx14/3L991ShqgaEVEv3vsfOZcwCDaI5heylWUNLw/X2P077IuJg8hTAQvVMdRZSPTVGOMzvtRUpKkesDk5FJedPldIQQxZymNkyZpcuU6+yIpgg86oybmSu7QJmCNAedwRp1/A5OmJhnD8Xqg6zsTKGc9+yGvGHVQrOpvay2VdXkFBxWt8jmGJabRCg77yHBmiq7S3U+JxhmuXLrA1rlt5k2FP7w3SvSa0f+P9MLYBo7274e2HDx6Q4+9JZU1SsZgm5rKQJMqmrTLdGOTajL946/7r/D66OmJQyIkBF6iou8weB+FWaRueOeD93nn/evcuv2Ay+f3ScnIwDFrBVJhHfs7OzhjiH3PcrHAJmmErBvB5TsnUIgUI12Q8qkNHdE7gpWSePCBJy5f5qlr13jq2lVeeetdcZyahiyV433Im2yNwdW1Kp+zDrA1UkUY90PkTJTARwbDM77qD5H1sy9VbBknb9BDmYwYAb2mcxXNdMJk2ohBRgUyDv6bXC4WRQCD4uzajvW6pev6s4xZmu2lXE+m0EcDxlmqusGjzZdGlF9Ikc731N4I/3xtsE4gZZkDXZjENIi0cbhBRkQBMCSHNCMtvQmjCdFlvYeYwzpRRAKzkWtUVvlgUqJPXhrYgarMMiC7EuIcoMnbBEvfU4cV5yaR/91f+Qx3H57y5geH/Be/dovK6eDD6MEnKh/Zd6f8xEv7/PgLezyxs+Krrz7gK698wKsPzlFNKqbTKWbhwQRwUJt5YbipnBNct5HsklOM/r0HD9huKnbPbXHh0lXqesLB/YfErmVxdMid997jsG05f36f1LZcOLcnjZZ7u9y9dw9CoKpqmsmcat2BrViuT1i3LSF44esPnph64uZUJwYPBBWR3ENkVNE7bIqa2xtMdq5cDMGtOJKZYSpZOFyesjud8LMvv8T/4q//eZ599grVOcsPvvMW3/v+2/z/fvUP+Mprr3J+d4MLP/1ZQpLp9ee3NkkEfBQIz0RlJRq5j1QwLbnqaAViY2Q9vfdk9rz8ClF47lNK0PdEpKpoajdoAw3ucv9FTPpdNgnEx4gDZmxV6F5zd0quIhMtXSsJlhgTs+m0kEkk7Z2RYWfqKxcLLRTWGQZjioOX7z+RO5CrkoW00h9mZFAlCM1wCX6cw1aOqnFEnysxjuPTU1ZtSzObs+oD6xDwpmF7Z5fNzRlTwEYZWhd6X5IDyTViHDOpYEn+gDGpBKqD7/7hxrD8PnttJklDPoOdllyTZHsLp4KBrousl2tWiyWGvsjAdL7BfD5nc7qBCz0heHqk+muiNv+rXojJ4qpx/4NVxjIv9zJyJIrjzaB3nHMkI30d0dSQoqbb5Bw568qQP8kcGyU9GJ4dEk7nDGXa1KzLc6941kvjL48k+iRzMZJWELVhhQpGTEHZ7RyYwUzpQRvP0DbFtliNoK1x+G5FbeD5G+f5j//GX+Jzn3oJ2674lX/wD3nj9TcItubNe8e0J0tqJXcIueKQRhUO/a8xJW1UCuvcO2qy45ntqhoESTygleaedZ9Y+UREnd941uaadNYBy0EJeQ91ToxcPxZ4usiaEmkUW2OKXnisB/WRSCMHhDEH0Cbl3RsCAT0rMQSik1lWcr6FxKP0FX3YeRlEZvzXI6+zIV5IqUBdMyWvsOZFArG0msSgnzOisx+9XyWWKidiCMJywiEVo2q0gpInxGefI5ONBAd1UzGZzQUJUs4HxcE3GmAD+D7Qdz193+N7j4kWH4PaTiuMuNaWnhvbyFo5Y5i6Cd5NuHzlCd64/YB137O1MWOKBEohRbZ3tlj7wMFiLTB5BI5enJFH98GMdsOKTTk6PKJbtRhj2N7aUnZVT4x9ea7hrH14kPLhm24hGXwbMTia6Ywnrm8xnTVUMbDyvfYF2XEIK/t/JjAaztbYF/xhCJ8zsZk2pliVU4MFKwFnFzzrdkGfpMq5Od3E1nOg/tHP9qd8/RsJVGIypeEyK1evfQbWVRwdHXPvwQG37j3k+hPX6H1Pv1rRd50OiLLUdcXGbAYhkLq1QAu8F0pFKxttcgO1YhZdsMTgqZjovcBsVrOztcHlC/t8/413CFri5ZFNLK9HNjO/MtxsMpnQti25PDnOKuRr/ahINQdwH/47vQ5iNGxpJDZ6SvTeMszNUBhdMiPa0EA53NOYKtM6K01mzpXkorVWG6BzFC7fmTPyyZhCbVhY1Ywl2QjWSmah99hKBu0ZayCaIdtgJJAzMUBSliIzQNlkT8zoCA8ZpGzAJemc94ZSKUgMPPjySTWMw5aWzMM4p1H2DIoiJSTaznASLSenC556cpunX9jnt1494L3jxJ2Tlh2ziWtXTOOaf+cL5/nMx/d46YVd5lv77F/e5WPXjvgvf+MOt5cdD49gu8rD2yJ1asVgO0fTNIVv3WDw3tN1LVWKPH39Gl/87CfZ2ztHUztC8CwWp0zriqeuXObmwwPWx8d8/5v32d/Y4InLl3jp6Wc5uHuPwwcHrLqET4FV27Luo5bRHc2kodC89h3WOVwl7HHZFAmbViWNvWlYJaewnjT6H5r9HVPxuiSsdMlaUlgwb2qeunaFS08/yc6VS5h6yt2D73CyaLm0e47/zd/5T7h06QI3rl3F+ZZ33vmAP/rWa6RYMZ9s6rRyDWgz65RVFisku+Pc0Afggx/6IYwpLFd6GORaMaghkCqW0feEkD9HmZlgkCBbaI4z+CNXOTRwQTJ0ft0Sug5WK85vbtA0NSSl9+47lsuVwK6qmvnmJsbW4hgnGaBlCFQm95vIecXkCuNQ5UpZL4hwCzwkzynR58zNuU6ZpGLf0a9XdMsFT17Y59L5PV5+6TlWbcvJcsUr79zl1sEJBwcPMdsbWNdQVTUxiGNnokCUughdzkob1REpA1RGGkxLPINzOtKLSc6pdbYYzTyAMD+TAN2l94OYaFct61XL1sTy/NVzPHXlBXamMxaLJQ8fHvD23fv0sadbnYq+SdLnUtkJKcn8jaTyEhGYi9gpW6qLWe0YDbpNioUp0GnWN6PCoxEIWGUtvo+slmv6KOQjG1ub6nzLGSoTbUpGWs5NVTLF0huRg6CgDRol8M++kypLY4zev/S7CR10T0qBDBEOWsUz1uBMJcGQ6l3nXFGOAxxqCOqNlenttZWzdXD/NrfendDExNVrN5ht7nK6WjLbecju/QPuLRYso2fZtUxcJVlz1SUmy6N1KhLSjzGeA5InijvnlGwhFueZnKwyDg+sgzCmpQjBxxLkWJttr4HRs4z1PgXHnyRQ0Ax2mYw+MCZo4KByas46gvnopRyoUGLFAu06q3MoOuws1HFkk1LSSk0q/46FYCPfwCgI4+w9ZXs6/ED+T5IYEs6nlApJQ7GCek4loM2Jw1QonfM7M0QyO8FlrYsFH768VHm1LyqGwHq14jQlVquWo5NTVsslQXu2kuowYhpYtpXRyzknDGIhYFIvyYui5qwwWKrPURjsiITQ0/ctq9VKSWV03owBjDjf0XthvjOUPrdIPqdnnfmUSr4GJQ4GDF3baa+NYd11BYGCys5QwRzZljg04+cKUf72ZITqOESBTleuwUfD8emaP/r+W1x94hL7W3N2mwlL54hGbbYZ+d2PyMWHvcbB5pn3jwWsBMajyqkG28kH5tZK71xMnJ6sWC7XdJ3no3595IGKZEggZVyoynFmlbHWsVyuOTg85u6DAxngE6U5MXgvGUArzUpNXZGmU1aKMZSJmJJ5Gxx9zUjEfMiiMpiIYXROBvCc393BQDmk+dPjisP4NVxdNinDwSpX0dKWKsDwnpHD/ehV9K+SpP4Ra1jCEZPLqbmd9tE3Gs3OW8Vy2kJjV2ATHxI0OVdRV8Jjbs7c9aCk84+MGnKg0KkKxlwPhZXsSYjSKOr6XibPG0Me8CWZMXF2hkY59D0omHd4OqMZv6EsPxAE5Dkv2aFOyOdDLteb4eBpuFaM8QBIHGBf+Y9wxsu99cGwjImDkyXPv3SeJ27s8fTFhgfrNR8ce5pmxo7x7M8CX3r5HM8/t8WVqxMOguHJq9tcaSZ8+dUHdO+vuX/S4zdm6OxwSD2YCmNrxe7mDCR4H/Bdy87GjKeuXeVTL3+c+WxKTAEfEr3vmc+m3Lh6mWY64f0PbvLu7dvcvnWTS3u7XD5/nnkz5e7RKbcenlBNanxKMuxRmU1E6YvTHUYZTjKeXbWxMVazWmeD9TzIsDg3oIFpNQSe0er+VTgjAX7dVCxj5LiNTIG7B0sOTpckY/ixT73MlSeuYCeb3HzjFd54801+8O5NTKqY1TUmJcV7G0i2GPPkckiby/tiPELuJUAw5yFjrc+WG8kSoeHw4KwV8Uzl59JLkr1FhmcfGYZIwsRATWJ3e86VSxfZ3JjTdy2rlcyzuR861lrtja2H2gkpnFJZkoTee1yyH5lKvWeUylPOlpZ/JFCxINzwhtynJlCuSN91tOsVDYlnrl7iUy89z0/++Kdo12uOTk45t/km33j1LV5dLelDR0wOTI2xtTTgAw6L1+F9fd+LljcZvjE45ll/jc90IaiJEjiVnpBRMCMGV+B9+X9RIUImJKqQuLK7wctPX+ULn3yB8xvbHB0ecevmHZra8OBkwcFiTeiF7jSZpE5OlGKPJlnSSK+mwjZmhkCAhDW5vwFxfBV6okAf3RFTzkJtRJM4UXQYZ9UPtiXwHUMss64a/oiMW2MJGX+YFFtutNeJkcwPRowUPSGY0qgOmuDJe3NmCJv2VGYnKQ1Xzc+VbYtzjumkoWuXLE+PCMmyu3+BemOH1Xtvc/nCOSZNzTv3H/L60Zpl11FPJelVnHWTz1MWgDQkw0Z2FIY+HFkm1T9qSzCWYBJ9yBA5qQZkptExRCtDf2RbXfnOoQcC7d3Jti6Ve80O/BnIYPZQy+YNr3yrOSEWkykViTzfaHjmUaAxkoXx78ZXPxNvjbJ6w1pmDTa+xXydsZxTpLYEUpRYRgOtVNY16aZlCGl5vseefvi+UR61yFSuuMcY6bqOtTFYI9Vs72WkwcCg9cN9o6TJi0y6M16TIThN2Aw/TREfPd730jOjkLAYE9GmEpRkSnrGe/2Ij/jDXtmnycM2I7DuOpWBePZc52fIfscZV0t2KOU1LGcDUjI4VxMjLFc9b7z9Hq6pmTrD+apS/5CR0zjsiDzDj36SD62uZFks90Gxi+LIBVIINNmHs4aTdce67em6/kes3J/+9dE304egcGwHyauMiyMpLDaOrovcunOfb7/6Kj//c19iUjnmsykpSJbTWkjeY2OkskZxf+gQoojT+SEpDREqDHtlsmKrLL7zTJuKJy7tM5k0rDovDBdkUz5g2mOKA8TeoIdcoGyNnuakAv+oE3HWpUOU66ADh1+OYoLHXmPH0WTlk4+U1Z4GS+0cs+mc2XQD20xLUzwkZY8Zc8dn41VEjOl0ymw+o5k08nwKnRuMCWeCldAHYSyJQclpDE6zWykBtmbdtwQfWPsFzggFZDWZCmGCOr8pGWGyUIzWcE/qIBoZ1ImRxuUsN6ELGOdkBsJI4RujPSi5mqIGufQoaJ9Gbq7z3lNV9eBwa5uiJnIICZUr6fN45Z1Tnnmp46kJfO7JipNjz+nDJXW34KdfOsfPffIqX/qFa3Cy5uEbD/g//1ff5idevsTPfv4q//u//TL/719/h//2V9/hva6haQzzxhbO9piiNAJGyewYDH3b07Ydf+Uv/jyfe/lFXnzmSR7cvUlVO6azKfPNLZ7Z2uHFF15gZ3+f773yGr/7e1/h69/+Jrtbcz7/qZf5xMuf4He++k1+77d+CxzY2uGahrqR/qFp3Sh22FI5GebpY6BPntBLBkey34hRKE677Iuz4JVJLxuZSjPNxY5aLxl/A3s7eyzajl/5nS/zO9/6Nk9dvcaXPvtjvPreu7z+3rv81te/zr3uhGt7e+xv7PIvv/FNbh6fcMcHtmf7yq5ySq/Ba52cQg9EPK1mUjFOBgPm5kJ1NtEEQ2asNcosg9VqRYQqKXQjajogjs91KnqClCAPBLSiYypTkawlJlivWq5ubfD0xT3+9p//Is88eYOdrS3adsXpYsnx6YI33n6Xb7/yFm+8d5s/+N4P6CdTmEzZ3N7GJVN6MHITdTZq2YHMDDm974lJiv61rUrGV2I5K+xTyY6c5MT9Bw85vX+Xf/9nPsff/Gu/yM/+/E9hmka9lMgv/fmOP/jDb/D7X/0m//d//BuEpafzPfPNXTJUqDKJCQIdvHd8xGIdaPvE9u4Ws9mEpqlLtTcnimDcCyGVcKNYboFAihNaKnkqTN1qxbpd07Ut287wzIU9nv/ks/z7v/Rz3HjmCa48fQWTgvRS9J4HNw/41rdf47d/92v8f3779+lsYro7x5lENIYKS7JGYMnGaEO7CEYJlnKyRpV2VUlFLM96iAnVQ04d08jxg3tc2tnks594jsYE7hwt+Pq7d5lu7YguSmCrQf+m4llQKgpDIkbXKWn1GWHBSkbhFlECGIvDBu0NTnleWMDHXm2oxYTscOesLoXoxRiHsWhAJBVB5wyxb5WsQCpE9WzGkzee4vmPPc9zT13BHy554+6aN27d4+/+Z/8P/s5f+4t8/qXneekTn+bv/oN/zNd+8A5bk8moP6nkYkl5xTV5IX2Hsi8kYTlLVgJY4yx4LwkoA1VVk2JNsgafdC5OhmhFdcYjJKXXLX5byk6h1Gh8SBIHqxce8wImhVpq8ksqCmZkFyUZYlH4nM7jyUGDVCOiQN+DQJxiCGLPsg1Kg+2KUZg2y0tlqQSVRVBypSudSYqotJQgBSTmUioIqZrn/pQc1JFKoFGeMcqIxKh2NcRcN8nLkoOabHs1Aar6sFRCVG7PNGhnXyZJf6Nk3qGeVDTTGdPpKWsfWK9bIEMg87mQy3jvadctJ6enTGcbNJVlUk1xdQ3WEa1T+J88lNPkrhDXeDBRSYASqu51PhY4nUeXkL1IiRFpAqO1Hr1G0ViZyab6KqbE8XKBqyqdPzWccRSyTMrVVVNsZobHZ8KjZBK1AWsTjRPG25QSne95uFyw6nu8yk4qe+AG/zMmcnPTELIOD/NhocsPh4Ll5Ij+nXJ6Ryi2pybRTCc4M+XWwQGLvue06z7kOv96r4++opIjRBMlI2XExIVoBP5CYDqbsmw73r19j/dv3+Xy/i47syl1ZcuG1UayYCkObC8GM/RvKJbcmFxmUjx10AgZQ2UN6/Uaaxx7+/vs7+5w/+iYdSvUvO6MID2+eSpO8r16iHvfFyNs8gHN2Y1HsyIl6TEo7UcrOMXpHn5y5h6GLFEuE4KzFc7JZNuB7Ss3msqzF+rYGEuwkNmd1n0o5dCk3pvsTFJmIulLwAw0nEl/h9gwEommmdBUE2pj2Yg9IUXpd7AS/NXNhA/evysY8CBMY8lIb3IojcwaAKZE0CFYYlA501eWtAdF4CNWYW5OSrpRjFxV1VRGeNrFMEnlJzsiBTqhdGJG5wzLz6WPZOl71r6lSWueuTjlnPVUpyf82FN7XN/d4c9/NrHC88z1XZ65tkP/sOfbr97lW9+7hQ+J2gamVcf88jbXn9zlk0+veOP7xzhbUU1rMa7qDKUYpH/A1SyOjtiYTbhx+Qk+/8mPc3lvh255wnxjzmLVcu/2A373d3+f/Z0dnn7ySc5fvsilyxd46RMf49vf/y6LZcud+wdcv36NF46OefGdd/j+m2/R9RFnDF3f01UeP4mytylCDESS8A0ZMG44DzlzL3FjdsqkP0eoR9XZUYNUZoAotSYkTPKAoydxHBzNOnD73gO+9c2v8odvvs2D0xPqZoKroKoNk42Kybxh2jfMu4QzAyebLY5tjlKSFCC0Ty1J2KxnzBKTlt5TDrKGoyU+jgSvJinkRCWtzASBwo6UM1xW5TVpsJlSJDhhcQLog2d3d4cbN67xic9/im0HNYk4mbG9PedCPM+FG1f42IvPc+/eAS99/Tt89dUf8PbdhxwvFzKErqpA1xcUkmmH6mj+42xVmMNKU7Ua6GjzQFij+sFwfHzI9Qs7XHryAn/9l/8cH3vyKqZbszw+KZnMiTE8+9QNNnbPcRIT3/reG/zgnVus3QoqB9bQLld84sZlXrrxApfO73Hnzn1u3rrLK+/cYtX1rNueycZMoWkSEUrAKOcWrOD3fS96IWmwl4T2t2+XmpBJ7Mxn3Lh4jgvntnnp6Se4cfUiT9+4yrPXrjCZVHQPD4j4Ekxv7+3w8mdf5tyVy7x3/JA3b97m/YeHbE2k37GpHG1KBGOI1uLMoFutqYqjYFIvxtjkYWpCfCB6yuCTw8dE165Ynxzy8o1LfPqlF/iLv/izuNDynR+8zYN/+tvcXIjunDY6z9xIoBnSiP5UJTJp8ibLVRKPRtnbdGBxjKVilQphTUKqBKH83Bgn8F5jaIMnRkky1bbSB7GUORlWCVdI2GQIOpMn+sjGVCDUv/+Nb3Pt+j4niwWffeZp/uVv/jP+8JvfYzrd5PIzz3H1hY/x1nu3ZG6Fk0HE2SYK3Ag5szEVmLL08EjfaZZtUqL3gaoSBihbuYH6WwM5MLQhEqKy8amMRYXolfgo2xZDscsCrcqEBGN7n+9V3xsy893w+5ysGEKDTDGS8lcUpzDbeWlzEB+mck12EQhBEn5OgxPRX4oWMdnO576YIbgQOR9V4Moz5OBTbmKAqY2eO6+NyrA4zYN9zA5Lho6WH+kdDP+df676cuQ0lWq0sIRIz0dUwgUjCJnJRGa4TacT6TPJMHWb+x3Fr7LGIBGlJjOspTI6oiI/oDoKmdggJ3XLPcZI9MLIKS0DpsAog77Hpby/Rq819GGaERIki1MRnFEfMfrZ0bKUM1U2rvh4aeQ7ihQxtrcmy5JCfZEAqHKW6aThwrkdNjfn1JOauE5FJkoTUdkfudFBhhO5+vRhrQ2PtiwMCWvO/q03aXVP4mSCrWvZtwjJC931R/36NxCo5IhaM2dmyNAapQOdTBpa77nz4JA79x6yPZtyYWuDqnK6MaZExlmF5FJkjDmqt2XgHTAc7iCUx0LDa1n3PcZatrZ32N3eZrFaszw+pmkc4/AAFY78/7KvaqQ0WiYGCI/t2Q99PRJy/NC3ipCMZLwcNYFB5PJgaeo3whBlnS30r/k6hX8zIYovCJ4QKJSFXdvStS193xelk5XiwMChlZmc2TWU6oRRZeCqispWTJyjT56EDnZT3HXT1FRNLQck6iRwo9kbU47S8MSliZVyAG1uCM0KF6l6SJDqKBsSDRZbuNNTgaCYshE585EZQ0wSxyl/q5RrJYux6RLX9idsOY9rlzx7cc7TF2uCqbmzXLN1bpPN7U0e3jnknXePefX9I/b3NtjeaqhriJVhvtFw4dwck44Ea44t+Fh59jyozRD6np0L53juqSd46omrTGzCr5e46ZTjxYo3373Jq6+9zpPXrnHl0kWMgY3NGRcu7WOMpe16jk9XfHx/lyeuXuKp61d49e23ZfhUFEy4tIlV1I0oR5MGd8nkNcmyoMKYFWrSYM9rBtLmLG3WZzkQJAeYSfo+jDB/LaNAwVIMtMtDbt++Qwtcu3qJi+f3OH/+HPt7e1y9egFfVRzdO0YlhaSVNjEW0qeRYjYuRrLkMWkiZCRPCR10as+c0xx02TiCxhgxkT6G4dlLH4gmSMpYBKUttdlNkrMTYmQyadja2uTylUvYxSG0a5JzTOsp1DXn5hOeunyJ1cmCza0ZXezwwfPtm0eEZqLBdT6VAxxqXFUhoYGK/OOMgaF06Cvbns6X6lqeun6Rzz59lR//3CeZzWfE9Zr2eFnOoasr9s/tsnvpIj93+IDF4QkfvHub464jJUd0cHx6QuOe4MaFC/zcT32eWx/c4s233qVbrXn//jF3j5fE+TS7a6rDJWcrM2W0ChCCVK6slf1N8gsTPJVJNNZwfX+bG1cu8uyNJ/jcJ57j6pXzXLl8npSgX63pThZ4E8iMOxu7W1x+4hIXr13lU7/7FKv1irc+uFMcJecMyY8cv6zoywpolpMhI59SPhvi04cIIRghIvGemYl88tkb/MSnPsaXvvBpiC22qfntP/g2Hxzfo4uJ+bRWvz0n3Mo2UkAmWe0lYTLLnpHRyl9mAxtkWD6n9VmxTTE7rHL3ecaLZNWj6E1ytjyW81uyyAYoujMxmTQE73n9vQ/46ndeA2N4+emnuH37Jg/u3eGpJ5/k4rVrbJzf5/jVHxBIEmjnfp9iS3PVQglM1MZkIhhjLCEFDVbleawmy1JEBSbrFp3fVXS2ZngNSu2cT4Ep/500WMgnJJ1xIPPP8o/Uoy9vV4eyBAeJTFJgVNdlhZGTtINc5e8aR09qU6OgC3JQOk5ClB6RnPRMAxRokNPsNTP8bQZZNfosJUhRGSvBCkmDlAE6ZfJ66c6Ve8syo9+b0vg7zbCWWRqTKZWcMvjUGKq6otE/k7oqc3TOBpfZJ8gBiFby9c5Myu579on0NOeH1j8RrZL7KPOw9LpOT3c0sq7jIYapBD2Dr1bO6plgRfVzGtmbkY9RTE22r8U/G4KIs75PlkN5srLVerZjSljrmDYNe7tbzGaS0Eqj6xp9lmEvciCbQWX5If4Yh3X0SuW9ZrRB+k89D9ZaTF1j6kp0vNrVmMs9H+Hrow9U9G9rRxhqDCFCbWFaJbY3J5wuez64/YDvv/omO9MJNy7uC548acsCMg+jaiqwSRlyLCGkAi2ztiqUdVJhj/TeE2PAWkftoA09pq7Z27/A0zeeYNWuuHn3Dlsbc2miHeyU3r8GAyhLiQqoDx4TzfB8o8zMWKmMjRAwCMmPeJXbMBLQZYdoJMql8uKsUXpi+az4YfkTThUpQhMYhujWGkNT1QR/QrtesW5b+U6FVEWCOu8UpSaDoHSgkZnKQM2mwVYSCFojwVKVyxXGCJe+c9imJs+hwEi/ANYQgvSxOCyVs/jkSCk3LOoXqzGwxlDXNX3wEGXAWtNMBcJlJCNkcTgTaOqGuq5l3YxQzdZVLc9nkgZN6nwaQ263b/uWtluSQsfHrmxzabbPta3ES9dm7G1ETFiwse1Zt4n1sucHbz7geHXIoq04PbrL+fMzfumLz/JTP/sSde+JJ2u+/eUHfPOVe3zv9gOu7GxgiFjfscZgjaMyjkahFovVmv3dTb7wqY/xF37+z1ATcMZQzaa88f5dfvPLf8A/+/Xf5vOfeIFnn3uWT33qk5gUOTk54s7dO5yervF9oqoarI2cPzfnE8/d4De+8ge0QShbm6qmbhrqSaOOhJXSeZKz6UfGLjvp2dh5n4eAjZRhMfB6Aoyo95gSMQi5m4ngbUfXB1bLnudeuMFPfeIZ/tYv/jjNf/r3aKYb/M2/8st87ONXmW9ugNvg53/6Nl/+2nf4P/xn/x2ta0nWYa2SaiSPtz3eS3hQGYV75B6NMPSgxJgDVZVrg7B5RSVWiAKtsVbkpIpSyRCeKFUIRidkKOY8JpHh3Exfzq4a47py3Ll3j7ffqli+/S6TjRprDatVS1p6NZCRSeWom4Yv/vzPcP3Gdb73yg/43/6n/zUr37LyPTNlNhRICeSKTkoy0M5YQ21qgvb2RR0sWCCj6o24qmKxWtN7z7P7O/zNX/pZ/tLP/BjO1rSLFe3pGmshaoJg4T3To4dMGsdP/9gneHj/mMPDNb/52luEtiOmyOGt+3zXvkbjO/6Dv/VXePalj/GTPvKlz7zMP/zNr/CPfvtr3FkuMFVNVQvdvHUJbGBxfMp61bNee0yVEyeROkY2JzXn5lNefvYGN65e5Jnrl/nS5z7F3oU9ds6fw8SAb9esjo9o+4BUVWsMkqkOPnF09x7TnW1m+3v80s/8GKHv+Op3XqPDS/Wm8thocckQA1Q2aZAZCUFIASpbYWtZwxQiNkbRS87gqgmh7VktTlk/vMvHblzml3/5l/iP/oO/zP7uJqwOYHPO/vld/synPsYfvnGLru1hZz7y5Ur3pvZty1BLW1r01f5YdahKU67q8CyPGGH90vtPGqgIOKkg8HG1ynXw5djLPJV8QwNRRQBwtSTCUqByHm+h7yf8g9/8A/7o9Xf5+Asv8nf+Z/8xO1sb1Ht7sG55552b/D//h1/j5vGSejoHqxVXPSJOEyCOIfkYlZwGY/BJKlpSeZP5RqSIcTI53qbIWklGjIPoHD4KBXxIEUOUvkglxhDo7yiBmWJhqxW4lzyvNXnOT1L7IjAci5NKVs6aG1MY54qRxpSZOrl6EtSkiP2WuR7izGZWL91B3bcYc15ftisqC1mMQqmXdWssz5Ed09x3Nkrs5e/OKjxFyPODgEykkNcjB1pjQIiI0ij5hAYbOU40BqMQ9NznEnOwnCKVM/QxcHKyZOll9lpVGarKUVcVdV1TV47aWSpHGQERA/R9T5Ws8EWNYrtIIAZPt25pFwtiSDCBair+oOhkSawKImAUvEUkcepqLYeJsUiqV2OKmBClz4nhmfPrQ136ODj7kaxutf2g+DCy/mNyiuE1eGqM7rYQGRm0qlUpHD3RhkBdN2xvbHLj6iU25rMsaGTEks2BlDUyxJRxNWVsrX70K6/BuHaYA1igJCItCeoJpnbYFKAL0MchCPgIX/9GmumTqqWMSZUDFnDWManEOVqnlmXXcuv2be7duMzpupXsGjqRFsCAq2ucqyUI6QcqypzhL3+MLYdPaAZVWYSANZbKGfb3z7F1e7M4uOh3DBHtSDgfiTzH5dbx74pCHkLqIYLmRwvI2ZKbKQmd/KMhuqaU42KKBN8TfU+yDblKYBUHYjSzXNUVrnZ6PS0tp0AzmTCZTArTCqnkaR4/nGkgEqhdhTFBZ6PIAY1oU3saVYVSwESI0ZYqiDhpsk+1daVihn7GGmW30cx80qwwBmpbY6vcdOsK9SdISdSZilQLLjTfV16zqqmwyZ7ZY42nkInqCR9alqsFhI6PX3+Wzz4z56UnGs5vLfC958GDwKS2vHPrlPfvtPg0o/drfHvKize2uXxth72Lm/zul1/ng7unfHBvwZu3eu4tE/fXjsrJ0K02RHzVCHw0BHofsDFRG8tPfv4zvPzCc5zf3cX0Hes2sm57fvVf/g5vvXeT+cacL/zY53jqyetgDat1z+1bD/j+d1/HWsd8Y8bWzhzfrzEpsTnfoK4nsJZBkFNn0SG3DChTDcZHQXoChoGJqWQs83uj0ZRKinq+KYdGhnLGLDYCybOWRGZrEQry+fYOf/2Xf4HlqmV9/IB3vnvE7vnzPPHCy7z+1ju8/u57LGLANbXitSPS75aN/QB/yK+okMfyo5z9LLdnBmhFFrri6A3vGzLfAg3MgcGZ5lKV2wztyFjzuqq5//CAt23itfdv88wLT7E13yCe3lVZlhAnhEhqe9KDe+zt7vDsC8/xM599mT/6/hvcun8Ikx0GNqQ8E0gcG6udw4lAijJDBJOhE0OvEMaQqIj9kknq+bOf+RRPXruKm2/SHRzL8D1rhqRISqToMdSS9Y4OU9WY2YTo4KlLV3nq4gWqTwVODh+wXJzw6//kX/Dypz/O0889zeVnX+CTD5Y8PO34+7/xW9haIDzRWHzvSannxsV9tmdzNiZTHty/j0Foli/ubnFpf5erF87x8WefYvvcNtvntrm0tUFVWfzpsQY1iegNJlVkwcsUzjmrbo0jMeHtm/f54N5DjlcLGt9hosH3PSGIvrTWCrLEarhtgsp7JDkx8jZBpYF+So7Tfk3s1tT9Cb/4pc/yyZc/xk//zE+yPa2hXbFaL5hMGxpn2dvZYmNSsep7hW2hjq0yDBVnSWXTjHxFlcfSYJz7XJLAc4sSywZCPbt8NoqroXBg7VTS92g+Og2e7dh0WSVnCSFI0tAaNucTYoocn674f/0P/5Q/9+Of4MmrF6g3b/GD197lzXducfP+gr6uqCYVyXTa56UoB6N+ohmeiTNnN5GrzJUVUomoz5QrYSXbbwylOV4DiRzMxzzrKCaMjTqYbkDFpAQ2Db0iQzWBIRmgNM6SABAIaZ6ZJFVbhvPCECjEJL2efe8JTU2qc8UXlOGi2GFKqKq6QO199gViPDsotcQR+sazGis7jgysY1ZHRFAerYw5SHqvjKrPufJh8u/yGkH5zPhlVK7GvYIpCWNb52G9XkvglxIbs6kMNC50wprgzEQyxgpLlhLiOPJc+FRkI2jPW1LJNkAMHpMkUDHJSRASgsiGgWQCbduyatcsV0v6vte1HvyA3N9o7PCMuQLxoUHK2UUQmVU/tKxpJG+mrH15uwa3suDkYdxDoGmGv0a+rMHo9SNt33Hn9m32k8FtCzFOuffsyOVNOZO0+lGPMjztmaotGf6oZ1E3WshtIj4Gog9ECyZ6FusV676jf2wI5b/+6yMPVMpj6sbI2ZJNrGzFtK6IqZcGx+C5//AhB0fHnC7XTCeTkkWUngKDcxWuqgi+L5ndHKxYO8JqGpuZa+Wgx6i44gRGMkjb21tszOeU4YzjUtgoWzH+exwonHnOUTCSBSqXebMKSJwVgh/++nBBeVTIciUuRilnRh8wLgh8xZrHDoetrF5dKVpjIAZpEK3qujR65ghjaCTLikwrOEYzVRGcSZohQxW49EDInhlcUovKuL8IolGgkxGHOTuEQRkyxmuXFRJ6B9YaXHKa/cwwmKTNzxn3bMthDQrfSSBYZ/LcG50HXXSKZNtD8vS+B+/ZntQ8eXmLl5/dYLJYcfdBy8Pjjv1zG9w/6nj/3oInLu8wrdYE13Fxd4cr5zfYOT/nV3/zNb733hGv31nw1n1LqOaYZs7ORJ7PJ2QecBKIQ9d55nXF1nzKJ158nutXrjCtG7q+Z9X23Ht4zNe+9T26ENnd2+WFF57j/O42kDg5XXP79j3eeP0dppMJW1sbbGxOid5DTNRVI05bkiFYxskMoEr3QYF4Z2iF847nSlYRvzRIaMFeq3wmBidiLLO5ApEx4SZ6qRLVFdVsg49/7Flu377Lt7/zPfqdKSkkdi8f891XX+PVN9+mjYG5nUnTdQxQWj6H78uqHNKgZ/QeDci5GJ2wMctOPq9DNVSE0hhTZiLkSu6ZaoXKFeMzoCfeWcdiueLuQ/jBB7e5+NQNturJyHUcnIHkPRwfMrt4hYsXL/CZ55/mrXductvfR/SmnoI0nIgybyJlIJX83tgBBjcEcWK3KxLbTcXnX3yai/vnSMbRd71kVY069/rZaNHZLI7FScuy9axTIlrDxXPn+MTTT/Pk1fO89vorvPXmG7z67e+xs7PBhUv7zM9d5MqVKzx37Sqx95o1Eeei7z0x9Dx56QI3Ll/kyv4e77/1FtYYJpOG61cucuXSPtcuneeZ61dwsylMGlgu8V1Hv2zVoZeAwWYAk9GqPQIzdlUNybBedrx98x73Do41eBl0qFU9kBKkymkgAMaMm51rdayTpNtiwqdEu26Z4Dm/NeFnPv8JXv7ES7z00vNwfB/frum7jiYEaufY3txg1lTUTuGyyWjy7GyfYs56ZghRdkiz35FS0sZcBo+7PM8gz2NLkUYH1xRPUoOEmEg2d6blSwyOWQ6grIU+GJK1TJxh6kUv/e4ffZNLOzMWywXeJL7+zdd599YDjtcdpmlwlYPQM76jEnAZowHIWee3UImr7OYKAgrZk/2RSpJoAXvGNObjm9cuZduQ4wRGCbNyrsRxLwnL0b3GQgah56zIRV7+AdJT3OcowU0oVYzhukVP5euoK5wYKr+ks/fwx3sNafT8A5Qt69x8zeJjwsD0lYaZMMVfKrpzVCHX55fPjHX7eF+H/5BzJFDs3vfEIImKWe5FsZmYYNBThfgn5fsyMscl30XKQVY+s3mtkiZphnXMvqbT4CGaQN8L49eqbWUQZAlQ1WcbBw96jeHvH+Hgl4wQ2Zk5O5PuQ64wqPKhAiJIltH1SkLclDsx2m8cvOfk5ISN7V3CfFZozcttjxftkUdJo38Oj/C47J/9wQA1Lg9Q1l8DyOCJHoiBZbem9T19/OhLKh95oALoYjuwoRxOZ2A+qTi3NSMeBZrGUTU1N+/c5d0PbvHuzVtsbm0ym06oK8dq3ZaTMJlN6VpD37alBwWGkh8MzGDGGPquI2GpXY3T0m70PZf397mwt8d8PhNnNkBdVWcCgg8LLB7fwNFh1b9LOX/0Ry44rMmPWDLOxPWPCZFeLMlQstB3+K7FGoFXCQuJLZ93ziJQZ1EIlUEYUwKk4GWI25iWD1Fc1mbHT57CKk10UznovQRHPkgpWzGdFqtMLJoVS7k5WZWnUlb3QcaBmXpCu1hy2nYcLHqCFUPtrPzHuLJz5gyCGMKR8c1vKp8wAh/MBkFYhyjKxKTMX5QDlUSfDPV0k9R7/v4//wO6gz3s4R4/8RPXefv7R7zynQP+7E9cZrsOPHUx8vnnGpb9eY6W5/j2q3epm4bduuYT1+c8fbnhpLvAb75m+Ob7a753e01yE6qUcEQqL6QPXQgcHiy48eLzfPELn+YnP/dpUr/m4N499s5f4Obbt/itr3yN777xLi+++Dw/8RM/zpUrl5lUjm614hvf+hZf/vLv8zu//WX+9n/yH/Lix55jf28XZyEmS+cji8WS1WpNchV2NqXS8ns0Nd6Ajy1CuSrNvpGhF4gwOLHJudL0qdIJZuRspLN6W2TJYZuKVIHpOujXPHt1nxtPPAHbV/nNX/sVvvIHf8Sv/KN/yn/+f/k/YTe2+Ee/8v/l//qf/Re8f3DC9vVnqd2uJCn6QFUh/PnJDlUAdfpK/KEzR7B20K1kEAjFoJdgKmhmqA8YIzATlwwEMeauvDfp8w6OonXCUuNMJEbJHrra0c/nLGPiH/7G73Ht2jUubm3RTGfChjg2ZEYrx+0pUww/8eLTfPO7r3Pr/iHrpJm+EoTJursMdWXQSbnZvjg+yCBRgIf37/PS1T0+/exVfuZLX8CFSP/gPh0e8BgijW1oJjOZJjzfhKpm3Qb+ya/8Or/+te/y1dffIdqKiTOcm1X80i/9T/jL/BSrk/v89//tP+Q73/gOr3z/B/ylv/HXODp4wPLkkNmsIdS1EB0QBFbZrvjlL36eT3zyEzz73HOkWz+Qw13VmO1NZQXydKcndMcr1S/quGfhylUJIZ9HBvZ5kT3nmF29yt1bd/nBH32d3/zKV1kuW372M59hMpkQDXREbt074N7JgltHp2zuX6JpJkxcRU0ne+sNpgdnhD/Au8SqW3N02jJZnfDpTzzP//Tf/Qv82M/+NFMH7e338F1LSmBtA51jaqdc2r/A9vYmh20n7E9GEi0Wynye7M7mgDMnY1OCmNkSQZmvBrhK3ueo7FwGXRft0cTpwFvtT0kxEvtAtDKvpGoanc+T0Qlib1y+F9X7lgrJrve4qsEYmcD02ls3ef2dO/za175PNa2ZzBound8jmI4UDDY4ZZ+S75Bbk3vLM7hiUqayEOi9l+8zRkgY1JkOsRd4EFBXlraNrPvA6Rq6uTqp+ezLoSTpN5uUz2wG96Wi23IgUrkqd77hrJMMsZLPhKgQtOy4p6G6/KgbVgKZmJTwZahuZFC1SVGfN1JFSEHuLYZ05hricCvsDBGUMcvoEHgMzdd2FIxEog40lXXPRDMhxjJLpLgSWTfmwGY4ZngSQYetlu+NKovEEhxKwscWHZVZy+a19FRsbWxgiXjf0bZr2lpW3NpKzjjoWAVXqkgJQ2YoU3iFDPAOARs89D0uOamaWad2SeRKXKCEjz3r1YrVai39ZEjGIqlsZKijc7HI+58opzx65apIjJl5NOm/Y7nWGbSMQoUsBpOswAtJuUBPrn1mr2cIcNE1M2xvbrI1nzFvauK6K4VRaQPTkC2dcev+9V5J/i/rKaP9ZiF4+r4TP917bPAcHB9xslrShn8L6IkLV7XSCiak3FpZx7SumM2mmONTnKuomobDk1MODo84PDrGMkwzzfMaMtd+hoW1XUcznZKbeWxuyAIwoux670mmB9czaWpC6Am+Z76xwdbWFltb25yengJQ58FX+jqTzVAlOYZn5f8ey3R67D/G/xy98098EkTSpE9Aqw2GUm3q+56ua/F9R1MPTYIxMjgyMZEnZ8e+1xhHMhFRqVhjzI36yPfpwKSqroYhkgrXEliWOmVBmWFiJCDViL7vhMUKg6u87E1V0XsZsGQzFCfpDAbvWbZrFquW6CTQqhga/LIJNxgJTnIw5tOIDW4wshYzGEFKQVUzZ5p5HmFzh+y4lnqtJbmKh6cdy84TfGJxCCcLOPGJrc2a43UFqeKodTw8WXH3cEGXekLssGnN01c2CVVF7xouXjFc+NZ9TGp5617LtHY0E0tIvShKk0hGBm/OJg31rKaaSQb28HTJe7fv8spb7+EmM5yriH1LVVU0jcwVqSrL5csX+fznPsVnPvMSTz11lY1pTfRw9+ERX//O9zhdLYHEbNpgKitN7Z3HE0mhJSkbUGVjqTwVFhI1QpUyuGR5tirSiTQYUzQIIO9xGvj7k1QaNqcTblzY49LuBqQ13/n+q7zxznvMN3fY2txiZ3uL/d1t/r1/9y9z5+iEg1XPq7ePWK1WMsyxHB9b4Domyy0a5DJkyrKhNqMjmOFsSa9VxGzkkJh85iMSyKsnIBle+Wew0ogvdKVGST0k0J/M5qTg+d7bH/C1b3yXGYlPffJ5wnpF9B02JUgKlVQjaw1sTR2TicNWhrXvmTgkuTBSKtbmlU5l/gXI+oqjIvvjo3zKxY7nrp7nx196VmB0XQ/WMJ824CZ6/zUnpyuOH9zjg4dv8ODolLsHx/za732D9x+e4lPDvLZ8cO8BX/nOt/nFd7/AuQs7zLZ2+OLP/iTf/Ob3+e6rb/J/+8//a05OlhwdnTKZbRC1/y85qYrHqmFxuqRvF1iWeKM4dw/p5DSrPEKwmsgbnc9iLBMYHWiYxP2s6go7ncF0gzd+8B5/+NVv8Ku/9i85XrQ8fe0qX3j5RZ544hLWQO877h0e8ub7t/nGq2/y9bfuEWIi2A2qSqlNMRhpgSFiWXZrfNcxCWv+6i98ic9+8kVe/MwnsX5Nv+7xfV+cTVKEaUO3XPPw+ISTxZp155nMG5VVIJnCrETKyIEk5BCaSTUmEcwAoRxQBpGcgY0qxMYo4Yg0vIhON0oSgSnY95LC0gROyQKnpLDpfEtGk92WKsmgWG9qlotDpnXFFz/3Ij/3kz+BT4avvfEua2uhkoG0Obg2sSoQUBngqWQKmUVJq5Y5qVDXdenXEF3scKA09tmxlmqKj9B2HkGX5HkVQ/AeC0GJ1fMvSbKUITEM8OoMczIwJEAfc/BGWW5j1QsUqllrhop+dvyzbU1K+pORAiazeqVUvj/bpvwqsYgmSJIG4xn9MexRGnTxh76yryK3L7C0QYcnVRYpN+Cegf7kCqUpwXFJyyvk68N94KxMJXnsSNgkf9AkbJ7plNm3CmQ/ky+o3ciee4oGnAYueftU+PWbyncXX9Pme0jiYzqnhB25Ujf4DMIMmR/oR/lmo5SpLkCWZWNt0celIn9GcyPBauZ6SAljBarubE0XQyHyEXkphgmSMqcZIbd4/rnn2NjeZl5V9KdHaoPt2X0s8pMD9kceJZVLUx4mnf318MTDL8pqq9OYksH3nmgFSbNuO9q+owv/Fgx8lMMYS+ZHfgjWJKrKMaklE2mdOLKL1Yrj01OOj09KWU7WWaPTzBwGoEFIbhC3xpbgJhKL4ETv8VaivKpypBTwMTCbTdnc3GR7e5vj4+MfGnbqPpbXo3Cwx4KUkg3R32a6vFHG50+1humsmBu91qAMZThm8IFB6yGHRWEf5TylVNZLAkBfZo8UWElW5FqhckobODz36Aw8ghdNKRGiVxpCZa0IYiCtEW6WAeqQuyOG0nQyA5QoFIiEzjhIyOEN8hxGUz45gyGwiNx0PMBfombTstIo1QA1SsMzqTJwQtmZjKFPYCtHU9ccPggcLwLrFJltOqojRwiW+8eBB8cdh6drpnNH3USM6djfnrJ2NZ1r+PH9htPTJffu1bxxc4G3iWRrTJTGbqxRhhzwvmfdr5nXE9xkyp13b/LB3fvcuveAyWyOc5bVYsFyuS69PfP5nGvXn2AynfDsMzc4t7tDSpGT05Zbd+7xyhtv0XmPdY6mqcAk+hBp1x0+JUzqcanHh4B14oFbkyk3B5xubn61xgrWXD2uQgdKNm75MFCMc87oWWPZmc+4sneO/a050S85PDqk7z3XnrjK5nzG5nzKhfPn+HM//zPcPzrhu6+8xlu3DjhpW6r5TPYTQHn8s0OXN/NMBdLo+7IqzvKgz5WDou+elgABAABJREFU1LOKOBv3XNFLEqjoTIMUBQYm50+YAqwaFDvqDaknE/rO8N7NW7z2xltc2Z7z2c9/AtO34gDHoh4EFpfAkpg2FVUlDaFd52V4YMZmjJ4vT9COSkcLBjfi0I8JzVQmZrXhyUt7vPTUE8KwZDwYQ2UhYPHJsl52vH/7AR/cuc9333yP9+7c54P7D/n6Wx9g6jlVs0Hjau4fHtMtHvLem2/h6me4uHWZj338Jd6/dZ/2W6/wP/7LP8TWU5rZJm4yxSW1A4B1FbjEvQcHnBwfEfpTAqnM/kidzP4AS1TK8DJrgKyPVVeZpANFwZj/P3X/GazZkeb3gb/MPO4119/yvgoFV/Ae3Y220+PYzRlyhxrN0CgkcUmKUmyEYvfbxoak2Ig1+rAKLSVuSPuBy6UockKc4cxoZrpn2g3Q3egGGg1vCigUypvrzWuPycz9kJnnnFtA99CAH/YgAFTd+77H5Hnysf/n/0iiJEGrmNxKzp+/yE9efYfnX3qDYyeOkaUpxw7t49GH7qWTJUTA9miXC5evM9PNuHL7R2xPK6qyJFUWpKhJUsCx1U2LisRa9s1kfOHpR7jv3rMcPHyQ8fptqnzqHGzjAlyUwgjBKM+5ubLGcJJTVIZUiBo7XjuKQX96XejMhqiTbY7JLnzOJ5xsyyoEx8Q2vX7hMHcYHYFtBsP5/VAH8LbesdRsXUGuw2dQVEVJkkY8fv8Znnz4PkZ5STeLqazCSFcZkL4ntR4bXq9nywH1e6We0SQd5WxV2Xqmh/JBgbQWaxztuPCBh7FQaYMxbVi5f25jvKPqbYr/fdOT0rI7hEBB1t9tMvOf4NyJWmG0ljrIpA++uPN6jXmWtRNKfd9NYHKHs1gHM0E+9l6xLQLc8fdWyFF/z+ms1vXCNdqXDP+1Qd5kLRe2tt3s/UbbUaqdfVv/uObU9DcWbK5LPockaLuGUGvh5r5b77D98IENNGiGcAETaI6t62VV0vVxhODeQYcb29CWkU9a1Y+xnLWf3c/SCnPb6s/jA1VEbReMMXW9xMX2gki5ZJXwAbK94/TukcNsG4hixaFDBx1JidZuALdtx5ktCWjds22/p/Yj3umc2k/+XZsd9M7PmRa6qagqCq3//yNQ0dimn8dnTaRSFEWOKSuUNcgoAeVmH0yKKaubG1y8epXdwcBBjVJH56g9nW69eYTYUw0A6ipAWZZum/jyntGGsiiJJB4bHzOfdTl0YB9nTp3k6tWrTgA6nU9+kOAY+aPGA/rffQwOdufX2Sva7fP+RZUVo12J2EhPxep/HnSy9BtQtTMRvuwsrMV4Ra9NA+0KAUZVlUwnU/LptKHtC0rd13mTJCGKFFXhlLnWLhBJpAtirHSzALIsI4pSx7/vWbkiobDKVcDiJKLbc7TTWEMkXKVG5yWLc7PEc0vMRzPsTCZMigKMccPYfEQWIUBrtjZXKcocow2dJEKlCZGFqig8llxA7KZ5G2v94EavQIxpZYFC6y1gKp8Ndw8/LR317l3H5nj03iM8dO8R/vhPLnFld5uRzLGHKvS6ZrhT8Op7H3L8cMbp4z0ee/IIsZ5APmZtq8Pzb97glQvr/Ke/dg+PH+xw31dP8sJ7r7ChJWtFyv40QwiLMLA4P8/Wzi4v/vhluhEc2H+AuflF/uRb3+Hq7TWIBCeOHUagOf/ee/zBH/4Jx44d4cTxI9z74AM8+tRTZFnGcLzB9vY2H350hR+8+DrvXrzEGx98yOziAiCwxjCaTMlLzbh0TXCRMHQimM73ECpGK2rDYVvwv1JX4H8eSQflsXV2UdfyZbQLKtuUxdoYhuMRs52Ue0+d4p4zZzgwv8D09iq/+cu/wLQoyeKY/b0OXal46N67Ye4AN1bW2FjfQFQlejpBdDu1kwKWeoREyGiFzLJ0vQtGe8oxQYu9xzlLMpA0+Kyo8Fj9sM9cFclVA7TP6HprTd18rALUw4CKgpvnssBSooVkWJRcu3GTK4szhIpoKyXl9y3ez1FknR5ISWm022/SNaIHxxVwUJ49/P3OTBvjAiorXZA+mjpChc/ffYLH7jvF/WePI6xkWlqmk4piOOLa9RWu31zlB2+8zfmrN7m0ss6VwRStJEQRy8vz9GJFphTKCnYry8Yk57/9vW/xG1/9PL/amyNd3s/J0/fwzNM5//yFt1EyZkZ1kKZEGYM0rvVbqQSTxPzud3+IjASnD+5jed88xXRCNRoTAhIEdcglrEVo90akkFgUbpifm+OTJBlZtw/9Dhfe/5AfvvgK/+wPvs1wXLK8/yi3r9/kT65d4oVv/xH/yd/+Gzzy+GM88sxTLNsFlk6c4PHPfgYhMn74xnm++/p5ssMLRNLJuU4FRWWYTAvKnRGP3nOK//jrX+RzX/kcqRKMb1z1cD/HeSSlIe51yfYfYOvGNd7+6Rv8o3/xB2wNcfLh+wMFjQztdczc0TBJOtIQKW0NmTK1BguwRpekqYMJL1NKKXSrmugq7ALXoN6Sm9q5Nl4G/Z72zpEBIum2UVla5vs9zh7Zz1/90jNsb69x8cIlLt24wuzSUXrdWWIbM8mnVNZV1ZNIEtkmsK4DirBva/n1/8qmx1D4TLuylsp4iJtniVJWUBma3kZrcRhn7xbbsFd0K0HWBAaVtwcSHzy6i/sBjIH8B19x8A3DdSUkVJolop4MHW7b6Rijbe2jaO3uzVqDUSFQEGjtqNSDnq2/HmRCuOuHdGD79wE94FJr7jCt+wgra4ybSeP8J+OdZV0HsSGo0tbpS2MtePpti/t/CG4MLlhpk9QEZ7ru9wJqGupwn95uOEieIC8qbE8glHI9spa6Murmojm7r+v+IEGpK0odSEOok4t1kOou5ufqRR726O5FxX7WHK7XKPSC1MlcHYgEmsrWJ7lmdZK2pXe1rkji1PX7qogyL8BYh+AR3tcyuJlAAkxVkEhIlGRhto9SEdrA6s7Ara9fo5CaMZWmqEqmCEppPSpFEktfVQ2QzyAhDTexv1EbtOrP9kXbx56ItZER4W2fwMEykQoihYwUKlYkcUS32yXzozLysmIyzv+iq/1rH59+oGId9KCqAuuGLyFaQSwF3UjWClZYSxxHjPKca6tr3FxZxVjL4vwsaRpTVBXToiRAJVwG09QlU6ka1oYaZ6sUkd/kuircFFIpiKOENI6Y73c4tLxIliTkReWSpr6pNGyAOttEO8lh9/x/z++AJqNr90bHtE6250/tw3/HX1jUVQKPube1HvRZNXefxliq0tEvh4yxqDeTbf3XX9kKj0d1CiWUzIV3SrUVbuZCVdVVE/fMPlMrBZU1WK0xlat+KKmIhaISAmuNm/aqHDORihVKOco+lzVx1RJblSwtLDHXmydVM5jhBIoKmabYyFU2dKkRusQWBWksifMxpiiopjlpt0OSpkRCMNzdYTqdoLQAJRAqotObddOqdYmejJBSuYAq7nr+dDAUSK3BaKQByhKM4ehCh9mZCJlYjB6z3Is41F9AFpb9cxny7AKLi4blQ7PsOzTHdKdE2wqpLaPCMpoaxhMDekrSNchIsH8hY7xj2MoNRK6MXRo3PHRsK3SZ852XXiftdIiShA/Ov09eFGhtsVVJrCQDJXj+1XfoX7jK3Pwcc3MzLqCMI3a2Ntja3mF9Y5OVzQHjaU4ZJaB9VruqqKqK0lgqYTHCGaii9FltAF8ix4pacYckogyDxHB0iQBWSN/Q7TJIDpXk5FLWpXbLdDJh/0yXc2dOEUfSTQnWJTOdFGkM49E2L/3kFkv7lnni6Sd44/XXeevCJf7o+68w0Zqkk2CpPOUqSCsx1g0q1d5ZC3JutWdx8zMZXOasnSUO0A2wujFOEllXN3zEVTtxYSBaqDUBCKuR1jPPWYEN9MciQleOnWqmk3H2zCnuufeso6o0oTIoQDjDnCQpqjtHoeHC1Y9Y2xoxnVakcYRUbtOIwCjjHYp2L1aAEthaPzjdYbQhwnJi/zKzi/NUacLbb77L+x9e49rNVYrplNX1Tda2driysspuXjIRkm6/j1UKoRSJdBBDY3IqIUmSiCju88HKJt96+U02twfcc/cprly9wfsXr9CdmUNFkkRqtC3dciunk6IIjISb27u89v5lDi69ya//2peJswxRlRRFw+aogx4WgqguKRi0UB7yYch6XVScoYXiW9/5ET9+7W2ef+mnzMzM8MRDJ3nigfu4ffMyk8mQPJ+gC7jy4SWK8Ygzd91Db36BpD/LzExG1okx1lBqiZKCSLl7LauSyWDAl87dzbOP3c8DTz5IXE4wU+tosIWDIColibsdyspy6/JNfv9PX+D19z/i2iBHpX0iKdGl66Nx9OxhbpOH9XgNLHD4/3A0zrGfVk7TEB10ubDBedQOYhOkuZXdD1GR9YxELknjBEYEW+O9UeOvVWdxhXPsh4Mhp/fPc+bYIfr7DiCThOOTgq88+TCXVwYMJ0OmpouUmkxCFgsKXVFpELJxvwj3ZGl+YpveHGyognskhQWJcrrEBiICS24jSusG/WI1xsPelPAsfdbt3RqA421luF5DpNNMD68rCNY6HRDYuULjv3Wy5yr+4WG8TbV+lpdtMYYZsDZ0atbt9+GLzX20olYbenpo4GFB//jYyX++ley0TZ+REXib7pwA59A2AVL93HgYNaGv1MMMhUCLJggIAYgLJcL8oRC82Ba81/r96yoV7voOri2k65eyRlOVBWVVoo12g4FxlWHj6fiV8FPmg5y47YIQ1hMVOOZIJQJNBziAZgsHoLX/s09J+qBEIdA4m6FC8ongT3qfaI/r79+Nhab2ZGt/zFiNihRREnk2Sa/aZeOvCUlNYmONcqgiJZlNE0pjmWhNUZZoqbw9lSjrpEXJilgaEilJhMCWmnw0ZXWwi00SJLDgIbJCSIz0OhfrowuPrvGBe13z8cGhC0LuCF9EK7BpyV5LZN31ItfPNZ1O2B2OkDIiTyK0lSQqZjbO+LSPfwesX97Z1aa1PZ0Ix1LSiZWHkzhVFccxeVGwurHJ2sYW3Syj1+2QdTOEsVjKPcq8rh4Yg4qkD1Y8Pr0uKzrMoNYlWkOSxMRxTKIk/U7GvsU5OmmG1hO0sQjlhDIEpYEn2u2/VmByx4t1Yh6eu04I7fn8J0WynxSsBKhNmCjdHuhU47T3pF3c39tUzKEU2txM62p7bsQ7aCFQafYf2uJn0bQwl/7+DA2MylVfRA0VC+hgQeR4vJXLnATO93a2B2PpdjowM8Ou7RKbCJVaktlZSCKsFI5OcDJGTyYkuoBpiplO2B2uuqGFaYdut8O4yNF5DsbR9ckoJuvPUE7GlBM3Z0LFESqOifuzNVbVkEOeY8sSW2qnxqxguZ/SzRTEhk5qmOumzMz3sBM3/2J5KWNxYYZ0cYZopseNd1fpJZpe5rJ8USTpZ4oo1sjYzaXpdxLiQYEuDdYI3yhqHTtKBRNruLVx2VUjsejpmE4c080S8umIXCqMUHx4ewtkRBQnzMxmPgNlmY6mDIZDtnd3yGVEJ8uY6fXQHndtfRNlBWgfybp5Ij4z6TZPKyj2tNNeLkIStN4ftp1lC2LWbmyVWCvRWMqiIBKCA0vzCOmcMSElqZJM0YxHA65cvUWuDTaK+ODCB7z2xnlefucis/N94jT2q+KdkDrnZOuEaI3htt4FrKFoHnLSusfG8jY7V4T/1lsnPLR3FC114yTgcf8Gl0Dxn8PpH11W2Eqzb36W06dPcPr0CayuED5b6wxXKP9LCiPYmlS8d+kmGzsjSm2J08hNTRcO1219c38YXNiw1di6cbLWkYGeVVj2z83S7fUopeLNt9/jR699wPlLN9FGszMaMhxPmOgKlWWoNKMbpW7vSkkkPFGoLdHWzTISMmZte8BrFy6xvr7BxvYGt9d3uLaySafbdWQRwlDpyjsqbh6MlKCkYbeo+PDmKi+9+QFf+oVnmc8ikjR1ATkuqHRVIS9LwtSOWF0hEII4Sykqy87ugBd+9BovvvEuP37rQ7723FPce9dJvvalZ1hbO87OcMjW7pCbN1cZ7Qy5tLNJP+4xM65Il2BalRhr/CBbB7UyynqGxIrYap68/yyPnbuboyePUqzcpio01rpkjFQKFUl0lLCzs8OH5y/xnR+9wYe319mtBIv9yFVoqtIFKKE/ZU+VodHzNWQrZO+ty8wKFeg/Gl1uaz5ji/VZ++D4upkZtiGXqL/m7Yl3QptfNftehD4oH0BUxlBMxhxaOM7Jw/tI+jOgNfuWlvncw+cY/OA1drcHjLRg33xGP3N2dnVYUlYapVx/Y21+/B5tp9MaZzrcS+NcizDLyJR1oFJZRWUdaQqevQsjMErUcMw9lte2grZw0T3Xu8Mi10FEs862OVHrg63kZPh1YNe0gK9+CRF8gaBAg8Nv95zKitYZQ3HCNv//2LH3661kaRCNEKrZ5tGDrZfCP5v178QTNND0CNcBC76yZ53ObT7vrmybyK15q7XRCHrKBxuhqiM93YJ1wUqoFFnaXiOtCr31Mm5q3RyCitpGYWo6XVnvDU8KUwf7PjDx9xfea3t5bes52vA5d0/N80qlkEpSatcDLAKGzSkqp7s8PExo1zcjhSJSrnIeqnhWKg+vcyVMKSBLFWkRMasUiZSYqmI6nbK5vQOdjFgp5gj9bi3BuVMmg70MIuD/8kk+6F7Zbp+vOZcFUIq8LNmdDlmVW0wLTZYm5JUhjRIW+/1POvu/1fGpBypSuTJbXpUgU7dhtJtD0e9mzM/2EXYTrKO9TbodirJiZW2dW2vrdLpd0l4fmWUOAxgn2FI7NgtTYsrKc2JrYj87QynlOaWlj6ADB5cbNpQkCZ1OhtEVnU7GsaOHOXhgPzdXVtna2WWmnyGF+uQHclrG41+bht0g5DUj+h0vOQQptcIIf/lECakv1rhh1qCNzwgHI93CQwrp+nyiKHKDv+oUjKix7Y5FxeuiptSCkK50J2WY9+oeJFIOWDCd5hSF4x2Xqaob9I3RzlmyAiUj992go0VrCazE0284Ng+/tr4WRJx22NodsrMz5dXbO+jePKI3w0ISUxUCrSRqrs9gbY18e5uZbhcVxRiVMihXmQ5GGGtIDy8T2WXSOKVa2yZRXbIkI1GSoioppxPQAhspkAlZfw7RyRBxhLFTiu1tyt0BxkyRVqCMoN/pkyQxaSb5xS8eQkXOq7x1fcx7N4bc3Mr57V89w41b21x49UP+l29c4DMPHuLzjx5m/7Lm60/N8LUne8zdvcBg3XL7SsHqWkk+gVQlaOmhOlazPRjULECjSV5PNf9Lv/QVumkCRvP2+fPcvL3KzVsrrGzvYqIM2elzd3cfVTFlMhzx+KOP0csSpK34l9/5AcPRiLzSpN2YSEoi4Yde4a4rlERZiTIGqw26qjBlQaXB4LKMzQRrJxxB94YkANb6ygmtgWAuyi89v5GxgiiJmRQTzn/4Pl954ixRfz/Z0jLm5ovkox3yQvP4o4+wb98SopzywfVVLtzepLCg4pQojihNSHq4jKNLhEqUVK4JNgTs3vg4x8YbU9VsY4QLlEIgUzfkB7ENClnUaRFCYsSplMZjMLrCWkvkJtE6R1QohpurdKTg3/ulz/Hc557mntPH0SvXSdOErJ8heh0wEl0Y1lfWefW9N3j7w8v88298l4lMiDodB4tA+50Z4Gq4AXIeHhSeQXrYg4NkOviAtA42OdefI5EJo90R//R3/iUX16ds5ILl/fMkScJMGtOPE0prqayhMpVzXrTACIv0exzc8FghBEuzPbanY25c3uR777xDL02YzVIWZuYpKsGkgOEgp5OldDux68vymvDA4WNsDId8+0evcvf/PMfTTz3Ko088SmdBOi5lrR38bTKhGI39YE93C9bkJFlKtzuDRfHyq6/xe3/8Xf7gR+9QqIyDZx/k0o0VPrp+g9XtLY6ce5xjosJOd7FZyvqtW1w5/z5/+I3vcGtnzMqk4vyVa0y1YWm+RxRrlHK9OxurKxyen+PJpx/iN//9r7F/YYZyc5Np6QMHKrL+DFHWR2bzfP8b3+ZHr7zK73zzT1klJcp6HDp0CFPmtd0IjEZGV7UPhwjVyyBVbqCnEhJjqpYj29iWehArzi1sz9YKMlE7lARfUTj9WTkWsErrmjQiEMYEfyT486mUlAYwgsRqnr7vFJ87d5ZqZ8T66gamLPnbv/oV3nv/Bu9fvMWtzQ/5jWe+zgNnjvP2tds8//Z5drZ3iaPIJRSlm83S2EWXUGjyBT44U0HqfdAlnTxb7ZMOUqIFfuCjP58GhMHgIXLCpRADXLxN9yqFdGQDdSDiHXETUAZ+aK2xbj5E8DxFeA9tx61+KbVzqrVxBA0thr/a7Q2QdYFjFwzOt9dE7b7Q8Hk3UkDXUHf3eecTmJb+anpeWgHRnrjMDdCWWAKFsbAWYYSvpHvYtHY9V9q4NdDWw8Pqp/ZrWgcsLQIC2w4QXaUPHHNbEkm6SUw3ikmVD+ClpBIusa2rys/bEUTKwdarskJGgiiKSbs9ojhFqRiJJIm8vydDgsb3xCgfqGpDVZSURQ5aI7RBGNfcr7yItK2A9e/pzk4c/5bqn1gvX1EUIxAYbciLAhlJpFCUgJWu2pogmpaBOAEJpYAbu0PK0lIZS9bpY5VDIFRaE0lBr5Pw0LkTdIYDZrVhfyei1Dlr4wE70wndJCaJIsokxqgIhCQ2obdNglV777f1TD/X/bzzqCHKfnWsS4whFTdvrPPT67t8b/NdkjShm0aUWjM/O8tnnnjkX+cq/0rHpx6oKNk49kI1ZcRYwkwvY3lxHqVuAnjGG/eA+bRkazBgUlbIOGE4ndbVzUg4+ruGS9vW/RSuMd8509ZaVw2wQYl7WEjITAHdLGXf4jxLi/Ns7eywul4ArVJVKzhtN9F/UiN9yCx8rF/lE7Mu4Xd74/efPWfF1pUS/7f654FqEbzj2GrmqpVT635DVQQBURyTZhlpkjtGlnD/7WoNezM+gc7RQU1ait+VJurhaYTshW+UUwIPT8DDcpxTVynBcDphYBRz83MMiFwT1njCcDSiwrCUHiGuCoQ1xFjKIqecjJFWY8op+aRisLoOBjpxQtnroaIIYy3D7W2KyQTr+5uEjJBxCkmKSDOII/LhmLI0VJWDq0WJGwR3eW3I1Rs9bi91WMpiZFRhqSjKmDcubvL999Y4c3yW2Uiwr99jYTaj343IUshSg9ERZSl5//0J718Z8+bFIStTS24hjgxK+ob+SFKWBoOjl62soRNF9Pt9Pvv04ywuLRBlCY8+co5rN25x8dIVXn/7fa6srHF9bZOzJx/jrmNHuOvoYUpb0e91mZvp0+3O8NaFS7x6/kOM9mpKijqgdoPfnDCEAYHWOy/GB7RhinGwzS4I8OkiLyYN1tmlkoLBcnKjfVAhybKMvDS89dFVfvDGBxy4uY5KIpZiQRUljEvL8r59LC0vgIDBuGCca0eXKyOEcBArI7R3qNw8GvBQCA9dkbVceidINJhm60XVomuEv9u4opZ/Q5tFjjpYCcZfhGyzzxBajKPrrAogQhtLUVYs9lKOL87yi0+f4+BMgizH2CiiMIJ8mHPz6k2u31hnbWOby9dX+ODGTW5ubLFjLEoJIik8o5i7VnAcQ7W41hcW52xKhYoTrFQY6R5UWkuERQk3oC6OYs6ePsFQrTPdHHnn1L8vn6CUCKRpZ7tDVt36dfBZUWtRUpBlETKaJ1ORI0WpLKYoodLcfeww07JkXOQUVY5RrqcOBFXiAqM/+ek7XN4e8c6VW5w8eoh+J6OTJox2d+kkEbPdlPmFGW9LKtI4Jk4SNIpvfOdFXnztXX58/gpJr08SZ8g0YrKreeODj/gn//JP+A9/u8PS8jydXgbllLnZWU7c9wiHL65xZfM9fvLmeUySICOH+46Emzc0mpTMJh3uO3GUr3/5GWb7CkxONcmxGqI4Iem6IcQrN1Z5491X+L1vfIuLN2+xJWL6HedQiaqsdW8DT/SVDBkEzNbeQ+gRcf6uwBo/qb6VgJLCwVf22ohwGm+jREh3+XkZQfGH/e4d2Np59fpB4BqUQ21LKcWkKBAWTh/az1333s3C4UO88KOfcPnadbIk5je//osszXU5tX+WB04f4OnHz3Fw3xJ/9up58lK37IvbK3VxszY1bg2sZ3ESgSI2PIcNznoAHfmMv5AOxhOc8xBkGae/apvsk2feD3fJNt3Q/Qqt/fPLlitKndUIZjxk5Otb2+OQEzKBPmEj6ubxduCg/PmMd/ZCFalGXYgm2BCi+Z0L4JyhbRMjW3BVg71Gm7pCUjOP2dqWG9sEsa5i7siIAnyrXblxe741u6ReCB80thKxzZf8gxNk0E2dT9OUpNOjN7sASUaJZDAtyMvK9Qz5/iKBqMliQh+ktlAYwbSCEulk1FiovI6UDSQXXGUGC5WuGBYF47Ki0A7WbnEJAwcrtA46LLx9lO1EdajtNLKFX4+g/7EQC0kkIwqE6weyFocjp/aRrPfhLI6opxJQGANGuj3e2hQCQ+QTxlYatDBUwg397c/PsXToIOWcG6+RSkl07QqlhbIy3v+qBbgtgHtkZA+RRvAtfYD+yYetiSnqT2g3w6/MNaPcMjUluTY+XydR8mec6t/i+NQDlciX2ISHBoXSY6wE/U7KwuyMzy65lyiFQBtNXhTsDkfkZYlQirwoHLZQCmQU1wEK4JwnvwFDNlEKgbauv8IGrKrwm81H7JGSpEnMQpwwPzdDJ0vd51u0FO14WvhqinunAlov847QZO8hgpCI9t7132uCj5/59fofXwi1TjnW3wrBmg8M6kCEO2S1VdIOBlNEEXGcECdJsznrQMXWRrMtxM2/4cQhQ+TIDnSlHU2d0TiaYQHKIirRGmjVlKCthGlZkJuI7nyPcWHAWKpKMx0OKcsCvW8WWeREVQVViZ5OqaYTpLBUpkLnFePNLbKsSxQliCx1mSCtGU8HoCsPHZRIFaOiBOLYZTbiyPXjeMdL4iiZEXB7UHH5Vs5H8zndU9CJBVIJysry0e0xPzq/zsvvbfDYiXlOLXY5dmSOpcWMLAUwjHLB1q7lzatDXrk04JXLA3Yr17aTSfc+pYQISYF3WkLpV7iNvrQwx/5D++nOz3Jy/zKnjh/l5LEjdNKM7N3zDMcDFmb7PHTv3fzyZ5/h7YvvkWYpc3MLlBNDqS2vnf/QQz88lNA7Ja787YWiNSQ07Kcm6yJaitr/LsjZHqtO7Xg0ORzH7yoEJGlKWRVcXdng5fcuMX/1FrYc8/Qj9yMR7IymGCSVsWzvjtgd50xLTZSkdYVU+kDI+nJ/LY/44aNCOKRRvXu9E17r609OKATYlKOIDT9sc9A0+GtrvVPnlXYginV03S6zNi1zjiz0ufvoAR659xRpJ8YUOZOiYnM0YnM44v2Ll3jn/UtcvbnKh7fWuD0YMCxL0pk+HSF9k2+rT6b2lpyz1Lo1Z6R9T4kNJAHCNeoqYV0ztHBEIvfdfRerOWwWmgoc9afAw8R8NjIEmmHfE5ykEAD6PjQJWRSTZB0iJNLCeJKTCctsFnHX0UPc3NhkuDqhMtoZML+uMo7RwGuXb7K6O+LajVUevuc0i/NzzPZ7DNbWOHJgkTMnD7G0bwFrNaa0xFmCsYLhcMrzP36D1y5c4aPVHQ4ePoyKYxAwRHDp1irb25t84ckHMOYES0cOkeZjkqTP8qGDzC0sopFcvb3K8pEjZJHwtOUWXRkmk5JjC7Pcc/woTz16P2lsMcUUXVZIESNVhEhidjZHfHTxKi/8+Q95/qdvsVMWqLkuc2lGJJXThT7ovXO70FbNweaIMDvHv9oQXAdHFvyEavbIdth8e2dZ7zFVexzNoNrbiaj6WyHI8bKmq4pECs4cPcTR48fJ5uZ56bU/4cr1W25mU7fL4f2L3HfyEKdPHeeu00cRKuLWxhZlZVAq8tcPur/xeGrosN+xbRIO/1QtWxy8JKd/DH4OS/tX4KGfopZht06BRt3Lrwl9GwZtqKsJ4UqhqhJeXHv/1U6raN15XZnxzym81Raiee6WOx8ChrZNDW+40TXhWd3TtnZlI0mtd9f8yDYvu2XS28FKHbDQoEGaSsJeKW3nL5uqQ3MnovWZPY5s7Sh7yZIRQsWIOKUwgrKowIyZlgVau0AlyG9IODld5gLSQltGhaZXGozQRKZAaekgkVLV1w1JF2sthS4ZTnNGeUmhrQ9wBQiFFY4xUVvjHGBflaZt38KTiL1+UL1KxpAoRRLFFFFCmZeu6uz7c4WXV+EDMeur4mENla3BrrX9xBrPVAaVLkFXpH4UQ6IUvTRhWSVkSUpkKqbTCZTFHhhz++bFnmClkbPmTX1CANP6ROM+tnxN/+xWO+KI0kCpLaYyLtHW9tM/xeNTD1R6cUpPRXSkZGrxpVBNv9djfq7P0uJ87SQGhSk8l/b1G7c5efQoVCVKuN4CGbnBQCBI4pTK5s4V8oxVSkqSOGaqJJXWVJVGxhGhN6IoKkoKBJr5mT5JlhClCUcO7uPWyioqimp1EALB4Py3j5BR+XlH+/WEhsZg5n9mwPoJh2NYkkTS1n16ulYn7iraN0gbz5QVSvghk1QXu1tBnbNoYVO2AZX+/o0BoYhURKQi1zRvSh8kKRzjThOMj8cj9GBIOR5RaYf3VlY66IpSyDhiZ2OTcprTjRNXlhWQYumnCaVWXN3dQXdmift9sv37mZeC6e42t979ADUtEFVFZQti4Zrg4izC+qzKeG2LIp0QJSmd2R6VzqmKnGo6dQGuVERpRtrvk8703UC/NEF0O8zJfUyNIdeacjglUgqlJKPZZf7w/QEvvHeJ/+y5lAeeOs6xswfYfeMiueoySvfz//jGR/y9XzjD2S8v8/f+7udR003sYJMPrgp+90er/P7La9welWilsHHE/ExaV6UKHfmsiadWVgqlIpYWZtnd3ub1V6/yt/7+f86hfcscO3yQzz/1OOfuvYfPPvEEzz3zDBcuX+aVN9/k//r//H9TjaecOniIta0BH159j3cvXOZXv/AlZmfnmJ/pM56OgcqV/K0zS3VlJUDCpELKCKViUA5Hb8D3p3i8e2CuaazWJ0ktgfPfsX+5IElGMUbFFFHG777wE/LRiMnuDvd8/yWWel32ZX3eeO99sm6XtDfL25dusZsb+p2OU+MWhKdGDs2k2tMySukTFTh4SBzFHrphKG3hKdIdnXWtZ1oG2WUVW06KD+iMaB6x3rdGe6yA01U1zNTgaBmrku3dDZ567lG+8tQjdI8dhUKzs7nDN59/md/95p/zzsWrlJ05xnmOtob+XJ94fonFKHKsUEWJqUrHjAdu7/tkTghSQjjpEGdOI1RaUPmakIP6QaoEM92YJIH+TMrf/Zv/Hunv/gnT8Yu8eekWKkmJ49QFsP4ZlXYhpsVlY4PejZRAysjTwYdKtUGi0JWlzCtWr1/iV599hL/02cfozizwjZde45ULF+nOdoiEQeJho1Igs5hMHmRtNGblnUt87/V3fQ+C4dRsj1//hed4+NzdxFGMrsBYRTS3wDtvX+D7L7zCH/7wTQoVs3T0JErlKDtFGs3C/DyjyYTL2wP+q//m/8W5s6f4zBOP8fSTjzPT10TxiHc/usjGZMT+E0fpZjFo45wMGVHkFWY45bd+8y/z5OP3sXT8MINb16DQRERkMzMMJmMunr/MP/iH/5QLH13l+soaiyePMiNgazRmNKqIY0nWTRFUdVba2Ka/KDh2zsnzED4lfKba62GvL7Qxdd8QUta9C/UWFEFOG3Y46ys2ynradayHPAbZaZrt3e+c0xT5uU4IKI2mLAqWF+f467/2Kxw5eJSVrR1+789/yExvlvtn56GT8b/9G7+GrTRq6RgvvfhdfvrGG1y4cpXuwgL9fg+MDgUHH0B5CBza9XRbiayjL/c57YakEIsIJQVKSqpKUFmXgZ5WltJ4CnuPPPJ+bY02CL024b/Ol3ODAGsyHk9UIVvJuLqaQujJxCcy5Z7Azp2tnTUI//drboQnJ6A+nzsnYK23B60kSqBbru9ZOJ0Q5pr4d+wCq71XrY/65yGR2EC4rJclbV1duQ62vGduaeCC1geCNvQ6eUZEB4nzFxI0aIkmEm7QJxakVKRpl93RhMFkysbObsNCJwRbo5yi0EQyIo5i4kihpEC7SdUID/vdmZZ8eH2FrcHEQb4ERCpCRRFRmhFHUXNe4+RnWubc2h2yNpgwyitHAyyVB1e6XpBQYdrLIHfnon58ka02jAdDeseOsbi4yGKpOf/++wzGY3q9Xr1eWuB9W4uQTRALuASOddTbNWubBZHFoBS3VwfEoym5tgyjW6w8/wLFO++xk+cuoKoqymtXSW5comNKRNZxQZL18OhP8Fbbtq8ds/ws17QeHOmUhYf9uy9KAZGUKOHgZlZKSqCstC9SfLrHpx+opClpFNe0oMV4QjmdkJ5aQOuSre0NBqOhm0brMy6RikjSjM3NLXY2N5ns7rCwNOtKx1JRVlXwJFwVwDsjYfOG3g3RgkY0GQuNEG4itxBQlQVFkbO0uMjiwiJplrmGekzNHlYnUfwbDEq9rqq0qizt6HFvFMqeTIcNKYifezipMLYGojTfaWNejZvoq6uKsqxq5hYX6XtlJ0BqURvJmuzQ+sm72uy5sgjaPrAjhWuFQKd26FyfA8JRQFalpphMPROTszSmzBFKknS64CF3LlvhHM8inzIztx8V91kdaMZWMK00GRI5M0MaK9eQq6bYPMeMK/LpCKNzEhRxd4Ys6yK63TrraPKpo2+tSuIW576KFDaKMFIyGQ3odjJSm1FOC8ppQVVoVJJite/1mZ0hp2JSVOybnaUXRVR5wVu3B2xqRTK3wKBIePHShPj7V/iPuoa5eYVYWOa9l67zwUbB1bElyrpEShIpifJ9PVjlAulIoIRT5NZXAZUu2b+4wJkjhzh+5DBz/S7zMz2W5ufodTKksMQRHNy3zEP3n2NxcZ6LN27wj37/D1lcXOTSleu8/vZ7bGy7BmKLJU5cj4pj2XNGR1rnsCtvYLSfWkw7DLYhy+NzacJjkn1g6zKuITfk2OCc/CiMlY1T3YZLxJIikiRzfY4cXOZrn3uY4/uXObK4zOWbt7h8e50X3jjPVKTISOGmjzvcr4wiKhuaMU1N3hUqnkbg6YRNfe12L0dwLxwdpsYGDs7WfnKzdHwjfu35hIyUXw/b4HSt9JkxvzYSQRrBUj9jX78DeYmtHFfZ0uI887N9Op2U1eGAKE2Jk4w0TdyG1SXggpPSWCaTsdu/UpKkiRtaRit4BErrMNcCiw00thgqY0njmIVeyv7leTrKwnRE3M04uLyPMwcP89ZHN90zSYtQsuW0eg0kGqhXkzE2ddLFCoGQiiIvKUYTbJHzy88+xBefeogH7r2L/+UbL3Lt9gbEKSJO3LuwwtNKOx2bKANZDLKHtBnj8YByOuLs6TMcP3GSuf0HKIoCKRVx1mfjxm3eO/8RL7z2HiQZSaSIpSZw/LhgVRNHin6/x43BGpMPrnB7e8LllSFplmBFxSsXrrAymDDT76G0RgsoZcz2zoD5Xoe7zxzhkUfOcuzwEnpnB0rl8ryxZDQdsXJ7hfNvvsvyfJ+lJx5gYWmRfQeWGOduHs0P37jI9mTKOJ+QJKpm3WnbpaDU60F3OApi6ZnnjDGgw2R65y20IWDWesc7CplrWzsSlk+IYmoHsvY5aqe50tpNfxcuQaGNS4kV1g3Es7pgOtxhe+Umm5u7bI5zNgerRJHizZdf58TRAyRJzPtvv8mf//h13jx/kaw36zD81jm9IREZdEf7Oaw1yDqZhu+lbHpKwjMoqbBGUBlHv11UjvUrBDkC37vmbU2oee5dCtFaLq+/bAMFa35m9gQS7ZXcY8Pb/pgQzdqGAKQFEZN18mOvs7i3Zyckh1oIidp+f/IRgKiffNia+MZa0TTEB3ivoSbpaFeVbOsfgh9yx/M3a9gEdgQ/xz+jgy5WxEoSJzEz/T5pkhLFMUmaUdxcZXcwIp/k9fW1cb1GDtZnPLzXBSRpt0uWxEQijB9QqCQhiqJ6cKTyuiutEgYGxlqQJWPGeensgw2hO3UiQJumNaBO3f4Mfy0kCqRSjCcT4t2BmwmFRarQFE/rTN5m7qmAeRnww0Nla5KMGwQZAwlCWtAl1fY607eHjCPFpMqprKfcH0yI7YRIWYzvc6nhgN4mfjzyuuOhfobo2D1/CjLj7llIiYpi4jhB6xIrHWTEzVaLEOaTz/lvc3zqgUo3Sf00azeYyVYVSlcszs0SKcFwOGA8nlBWGumdAxVFxEKys7PLzs4Ow8EuB/YvOCdTCI8v9A5BoO4NL95v7DBEqFbIQQn4TJZSyvGFV4aiKllaWGBhfp5OllFVlac6jVwQ0gpW6iAlHKL+T725aH2mVjCt7+4pyf7co8nVBCVQ+0q1chPBdnmDZRzdHqJRWl5jtvt5jAhlXz+jRdu9txRuuK2ibIig3WaTdXm+VUo2Gl2WWMLwSYFGI5SAJGn6bILjB5RlQSdNUf0ZOrqAiRtepI1BZSkyVnSmU4xKMNEEoQvKfERRlkgpyOIO2cwC2bGDlGVJmU+Z3Lzl329FLGSNxbWh0VkK8rIk9Z3fVVGhtcUgSbu9Zlhmv4uuckpZESd9ikKwsTXhnfWCLRLShT6D3YR3N3LG72zy5fv6HFJLpEt9PlgvuTE0DGzEviwllpJYCKTJsdYVerXWaOkqZkoqSl1RVSWxgMMH9nPf2TOcPnGcWAqU1fS6XbTRbG1vk2QJ2kC/P0u33+fGyhof3bzNM488wa1ba9xaWePy6gpZljHT6zt6aBEIJgTCCj8p2A2Zqod32rbUir0y0RqqiBU1hXY9yC1QrIasvHRjrWqDZ8FK6yYMR4o0Szly6ACff/IR7j15jMMHD/NnL7zIta0hb12+ybHjx8nSGLQNKt4RZSh3PWfMm/0Q5N1lAd0+cHTDTmcE2EcdfhvjsrxtVRwcFO/FhG8EzH/La/CDUYOD4dbEVWokiRT005h+EkOpMVWFsIYD+xY5cewQG8MRKx/dQCURUZI4SJsJjV6i3t6V9lOKjcZEfi6GcExcsg6g3HwH4dNeYa3LqmQ2jVn01etUCUw+QXbm2be4wKlDh4h85cgZHf9shsbICqibdttrZI0PYhTWSop8AuWUrjB86emHeeieMyzOz/PG+YvcHo5RSYpQkXs/GgLEVlhQwqJiiYw6iEii0aAL7j51iiNHjtCdn2ewcos4SYizDqsfXuLipWu8dfEqUW8epQSKiiIE2FYSW0OkFFEUcXPbsrO6xfWVLbaGoCIoTM7KqASl6GQZZjLGGumGNI4nHJ7v8/Bdx7jrzGEWeh3K3R2EVo7BMILpeMzu7i5bK+ucOHaYA4f2c+6Be1jqdRgMJ1y+scattW0u3lrj+taAKOrUVY5Gj3u9KqCmEg5Bht9rIVAB6uqHFz/avYrBDbLhl/Wes37r2mAuoCXL1np6V28fAlmDxXoGNqi8rje6YnVtjaTT4fb2kKk26OmUjc1N3nj1LYSUZL0Or7z2Gj9560MuXl8l7c8jQ9AQdH9tM5u9ZU0Yshj2k3fqCdDn5rkcXNzZr2lRUFYuyRJsnbC4HisF9dC9+pz1nezxy9pw8vafjYeLN8xX/gt15vIOZy/oI9Fy8uv+t/qt1OeyoRJBu4oR/ht0dWOHa3sePiOap7gzSPFnqP9ujKuCmPrazQebe2rO0nymHXg0vlYdnNS/27OgrYDa6QtjK+IooZOmzM/26WZd0jSj25/h1vaI8bTwFW+/HsZNPAkBpMIhTNI0odvt0EkTYp/Jl0IgohgVeXZBIYmVE7xSa2a0ZVxBJ91FDsbekW61y9vQf9v2EyVKSgfdrGW1edEh6SxVxKSsENNpve7On238nBBw16HLxxesFp+QJHQBfYQgBuH6ksxwC716C51P0aagtKCtQJkUMZcgZ1Osau2x2iZCozE+Ieqq72Dv/dn64y1f033A9bAG2krhSIssklhKXyVywcqnfXzqZ8yyDhYYTCdslVNOHFzivhMH+dt/9Rep8im319bJyxyjQUYRVijcnB7L2vo6l1ZWeP/6dc7dc5ZYKYqqglRR5RW6MMRSuERSmyddSFTshgBqC8r3tDg+c4kxMM1LdqY5SRzT7Wbcc/I425tbHFma58PrK1TSTf50zrlACuVniTRZYyk+/rL3ZsqgFg/bKBnHrS3ANJ//+OEDLukcM+XL/O43NNkwISCOyWZm6czOkmSZZ0HyCkQFbniLiJzwa+2H0VlviITAINFWo62bo+EquhVWO8YMS+U58CFLY7q9Dh06GCnQQiIqQyIiVBxRpRFV4VINqVIYqUD6xjjpIDoW42gqhUQQMRgXFDJnfmmJyWBEnJfYnVUqj7nvLswT719GSUFcFezeusFwbZW1y1codUEqLQvHj7pse1lwfTikGO6iy5I4yRyEQUomo5ykp0lUzNKBQ8gsw0iIZvtknZTUWmZmZ9FWUFmoVEkep4wnM/yPF3I657ew5ZTvDPZR7ptn9nifZFgwzqe8VU74P31vi5OvrnOgP+DHN2IG0SynjqRUw223YUVEaR1NsxKSUvvmPiCJOpSTguFoyJm7T/G1r/0if+tv/hYiiRjcXmHt0mW+8/z3ef6ln7C+M6Azt8jmzoBbq+tcvLnJ9taA0WCXX3muw13HHuYLzz7CP/gn/5yq0q4R3VQOo60a3LYFKusYlmRZ1v6LqekwA3a2ZZcJrZzuDEI4x6/O7GrnNEifEKA2BdZRN2qL0C6E0EXJ7sYKB3sZhxYXSRcOYExCUQgmJVhb1lUUkJ6lqEQI18RtPI2XsZpSlyTKlf2lck6/I4rSDgrlg9VATRlYz6ytJZ6AOrbGgQKwvpUyKGrpGVRafKEaW/fDaCuwKnYrVsIkLxlWFXS7jG/fpppOOXfuLu679zSbW7v8r3/2Pb75g1d49/INbu3EzM7NkqUxZT6gl6Ys9bocO3WEoigYjcecv3SJQV5SIVnYd5QkjZ1usBarHNmAEgYpFcZYdna3OXf2KI/ec5Rjp0+gp2PGw5x+nHP36UMkCv7F955npygodEkauUnwQgrcEBEH/nLsOIIIBaGfRThdNi01kzxnvHqDLz94lq8+8SC/9dt/kzdfe51/+vt/ysuXr5DMzDC3tAimwmjtmKaIXHM/TscYrCNJ0IrZNKGTLvLUudMcP7Dg+tIwRLFEp4oXfvoer31wjdXhlCNLAiXBVhZpfL8jnqkMi7SG2V4PIRVJkrFdVpS5ZlqVyDRzlXXtqi8VgtJoOkpy3/HD/PVf+jwzvRRtKqZ5hRKOKMRUFltUnDhyiLO/dYrOocNuXFQxQkynLCwucuzcIyzPzvL8T97gv/vdb5BrB/lIKBEirvt0Kp07uZSKyGcqrXRVKl2UTHeGRMKgYkXU71GhcPTcqoZvSYl36DSyCtn74NNqr+srTHCcfEpfBOfM2xIlRc3GJf3gQ2sNKMNMv0+uLf/wX3yHcVyiJRzcN8tz9z5NP075x3/wLf7B732LkdZsTAb0ZhbJ+vMkUYIxBdYYpw9s41CHe6xtmsAlMuogRdVMiOAqjBpLhXU6y2hyEnLjghVlPEWGkAhTImTkmpRDkCJwkDAPfxKUNXTTUJc56r4Xtz4NNMvUQYklsv7eas/DnVwJ7e2vwYhmLkwgAcBatHUOuQkkHP7fNkrG+RDaM7gJrBEIE4hqBFhZM3A1vKaNjg6JeutnsRijqaymRFNY42C+Xo/pUnsGtECS4p5Hu8dwMt+yGdbS9EeZkAT0N2JwhHVWgtetwrren6q0zPUzFudnOX5gP5lw89WiTJFF0kOuEyoFBRpdFb4nUQAKZTQdAUuJZClVdDoJcZa5QY5CgYz8mwj+kwtzM2s4JB3pxfX1bVa3tygq5+/IsOYGLAqDm6be6aZ0pKKjEgaDkR927G2HsEjjk+8AaYfduQOMun3M7jagSH06zIbg5o6cXziagDmk4jzkGE1ZlhSFIsk62NJQlA52Otfvsn8mpV/5MQMWqtKSRpLI+Ip1LZWyDiLFniv/rKMtSXsP3zXkP9asxc5oxPXVNW7eHqCSlDRNKHThZfdf4ZL/msenHqjEvT6zc7McWV7gkaPHeOie0zx67xnuPnmCWysr3N7caRwInwkR3hGwRjMYDbm5tk5eOjpMjCHJOlBVVDZgLr3L1GL+wuM3lVKkaeKdKAdxstZSlhVp1iFJYlScgDX0uxnHDh/k4o2Vmv7POW5NVNzKa/i/71UO4Qi0hiEz0P75zzsagoAmQ9HgZWVNDOPmLjj60cEk5/bGJtoYur0+eC4YKZTzIBEu+vXZEt1ihNDGsjEYs7q9y3AycthpKVoYYuqeFGENhoqt3SErsaOzHU/GRGnKglJgFdIIIqW8MwzIZginteHC1q+Pu4csy9geDdgcTlgVmwzzwBoRu+ZgKanSxJ9LkkmBnoyJBMSJosrHDDdXWX/vPVQcY7Wh2NyEskQpiVUGGUcopahMBcUEM9pBZDHVaAeDa26PgpEa6DoJJNHEfu7IW6s5lBWmMlRJhJ1qjJ4wHY0pygJdlVw2KdujnL4dsltBmVfIsnLsJNY4t1a4Jjkpfa+I1ZjKgrREKiZLu+xOct565z3+6A/+iHN3nyaVkjRN2H/wIGNtWd0d8/0f/YRhXjCtNBXuXQsV0e+mnD19nDMnj/PN57/PrfVthsMRvTRGKFmzdgV5MNZl7Bzm2TmfzaybpqG3znzWwm7qwEb4Cp3AU3765LsJFYsakhkmBVtsUVJhmUpDYRSb2zusXXmR9955h/HOJs+cO8l2mTOtCrKsS5hhoKvKBRcGlId/hAyYbe2XkO0KMKiwC4MhcEQCxgUdjQmuOfVDLtI1dzp6UjeUz9YG2gqDlsZh6wEVHB9hmIiIt6/cYHZhnkeefpK02yFSkA93iOOU2V7GZz//DDMLc7x34TL/8vnXGZQFO0UOsaSLZKHf5d//5edQSjLNC3769nt8eO0WN9e3ubE5YlxMEFFE1utgpXNe63eCY1c8un+Ru08eQSkXfBttoChJlWKm26HXSRkUJWVZkaXtTLfXpwaEUM5BMtox2cgIKyTD0lCMJlCW/PJTj/KFZx7is08+SJbAeDxmdX3HZ/cMtio9BWrI6pk63tOVG5JpJeRVRVfCbKfL8tIcvSzGFlNiKRFaUw3H3NrYYZgXxFlKyFhbEZpVg54NmV4PcbQ+T6lcUBALkFGABFqQMUUxZTwecfexg9xz+gTHTp6AvELrylNOu2q0NJY0drj4pJNSDXepjIFi6npwfHb/8JH9nNk8wX0nT/Dm7TWKqiSO/awIHEjN1yIdEYly2WChJOOdbRIpOLp/kSxLmZYlt3a2UWkP2pWVoKd9pbSWYzzWPlQ061dra1tZ2xpC1l8gfKOHK6x4cgUriGWEtTCKJKubN0kiw4PnzvLZZ59k3+ISndk+f/D8K9xeXSHuSAQaSYmQsTtf+KdtA0OyGV+VVXgYt6wb7MODhkAj7EslXbXUUWkLqnrGiR/v5yFbCP9+w2WNY/uihQ4Ii2O83DdN8+390Nh/AbQY/n3i3J3LzSNzwZ7292Bdm1G9N8OsJWMcHNQYNy/ImOY9Bv3lZnOKRkX5+wkBg3+FNcNZ2xOxXg/UcHMp65toIOhB3/uZYiZArNhzsaA3fay1p/LivO1WcIxt7UP/k/BuPMmNrkq0FEgZo0iJpINAW2sZjUdoBZG1zM0uoC1MR1PKosBUEb0so5OmZGmKiBLiNPVQK9dTFWxWsDXGGLJMkOUFSZq4SjXGs4z55Fz9hM7fq6oKQ+USq95GaKsxpqKTJtx19hSjwYDd0ZQLGzvohSWi+WWUjDCbq4jJiLiW9aaaVye9CF0iYR1dj1V98xK01ZRVRVHkRLrywb7rATHCuh5jL4tG6qa4t6fK569j6zdDewvuOe5IsNfvtn7HUG/D8PnSIT0OHDrIfclBkiSjm6YoX3Gx/w6wX5/+HJW0w8xsn8P7F3nk/jM8ev+9PHLfXexf6LA1GKJxlHN1iTAYE99zMh5PWF3fYFIURMr1XsRRRKUUCEmlC6IartKEDQEHK4QkjmMAjFEUhWs611rTS1OX4RGANXQ7CYf2LyOFi5SxYbP5h/Gbsd6w/gibYc/R1sU1zePeYMZ97ZOp4Gzr922FQvifaGgux0XBxu4AIQT9yqUznMOo/LwMF6gECkStXZQNDgO6NRiwMxiSl4VrKL6jVBnIAo2f5jAYTVhXYIqCoirp9g1I5YYYYRtImGzu10EdQhbaZZ60dYosTRMmWyO2hgW3J9rLg5vNIqSD8FVJXPfplGlCBAhdEcWKosopd0u2L11CqQgBDqZhKlQksdIiIzzdq4Fygh5ZTCQdY5jRyE5a41qrcSjFO2dU+qDqytaYMi8xxrC4YDHlFM0EMx0irEZZy1qRsjnJiaYD5me6yKpE+CDbwY9ceso9l/UZTOHpni2xiiBT7I6mvHf+AsXuLrN8kYMH9jO/sMChI4cZlprrGzucv3CRqTYkvR5zi/sRKkLKiDRWHN6/zGMPn+PMscOMJwUbN9fpxBHSp49qJ964wZzSNkF5zbJCS97u0FvtYWRt6IH7vBvqF+YEWF2651Wxy3oZp/gTIehKyUzWhShlMJry0Xtvs7m6QiIMT587zXfefI9hnhN3ugRzYnUoKYPQglBqbFczwxwE9x5tTZ8cICPNg3nVbcNP3UKI2iFyjpvABXA2ZDP9Ry1+RoKvNiqrEbipwCKKuXBjjW73MptbO/RTRZImjIbbCGuJ0g733HsXizNdThzax3sfXued62sMBjlGdKi0JYsjPvPwPczNzmCAQ4tzvHr+Q96/fIPx6+fZmebkeYnpdnDdyAGC5xzzbqw4vG+Bk4cPuBs2xqffKiIpSOOYNEmcjGtTw0yC7qvfsglOv3ZBLgZrJZNcExnDbCL58pMP89STD3PfQ3ejp1OGwwGbOwOkb3g1ukT5zKrAOevYMLzS1LCkIs/pdxK6WcrsbI8sUdgqJ3KKmaos2BoOmVSaOE3dY3ndIKze4wwH3ewCGPdsMtAB+34tB3sSWBTaQl5MOXPsbk4fP8zS/n1Mt9ebQMWzLhljSZMIqSKkFKzduInVhixWzM50UD5omV/ax+HD+zlz9BBv31qhKgpI4rr3SeJgK8H2mVrjCorJmF63w+nDByBO2BgMuLK2SpZ0GxawkPih1bjcMiIOSOgdodAYUQehQY6b+qoxAoPr+5I+cSGFIEYQIamUpIhjisLQkYL7jh7i3D1n2X/gILvDHb7z0/dQQnJwcQErQQgH3dnj7Pi9WicOhK9aSuMiVUEzB6l1m8Z/OAThSnrn2uIJeUS9Jx300yK9XAVa7RD41I3SwdFvvFp3rZCorL3GoCmaz+x1Bfc+Wxgkpk0gLnA2rZ30bGmcvXbe2+bgEoXThTJGuHX2nMV/tu2XBMe0Fcw0ur1FqmOdjXWQydDMvSdSoXE/gh5ogpc9Q3TDGrYW5E73xvjgTesKbdycFIkTT+nvuyhKVASRVKRJQmXA2CmlZxON48jN5FERyAgVxa6XUUQN0gr29JsoBUpFztEXLiitLLU8GeECcuMJUirtWch8wGBx71LokihKOXH0EDtbKfHWLu9u7mC7M0Rzi6TjMUZFCCyJP7dLBBgX/dvWDbZl4Q7n0Pp9oLWrrEjt7kF6+LYROKKMEGQL3Sz/nn2+V1aaoOVnHF7oPv6J5iftkSqi0sz2+hw5ssxDB2ZJ45RektKJlBuern7Otf4Nj089UJkUBYv7ljj3YIxJBC++/SY/evN1/rPf/Mts7gzY2Nxmmhu0iIiixGcaXEal2+0xmeRc+ugaKxubmIU5OnGMqjRSRSTdLlsbI6xSJGXVUmpuBkFZusZkhHA0b0oQx6WDhVgHIRkMdhkMdjhz8gQLCwucOHGcNI7c9OCW7ITsQO3m/LwXHT7jN7CTxxaGs6Ugf9YRJl8bY6i0bk0sdc8YZigI6Taf8IxRUZqRJBGRUiQyqqecOqMh2zdXV5nS+RnSnQE3t3bZmW6gy8ozJt2hZARgFYWG0aRgZ32D0mrmjMVGMbqo3FClvHJZbiwCjdQWYSVRpBwbmZS4hKNzFox0EAZdlVTDca0AIxkh676yyrOKCEZ1z4MAJfxMBku5tYEOzqUEG0k3td6lrFy53ZaU4xw93sZurxOy6VMR2FCcgg6vyBiFRqOtRlnpYUCC6dYqxXSKLqacXoBOEqNkzKs3Coo4RqUJvXLiJiNLgUy7fhENCuMyvGjHkW4lpc9wZklCFikuX7nEzvo6qzdv8Vd/8YtkacJsv8vTv/AVFi58hI07LPzZ84zzgrjTQUYWrMboit3tXSZFjupmfOaJxxjnhvcu38DYHrQa9YIRq9+zbd63tbhZN0LiyuHWsw+5vrC2YNhgjHVzMgcj8M3o0mKFdpSQSCpdMRkM+Py5szx272l+/UvPcPru+5nsbnPg6mX+3l//daI0RQvFT14/z621LayFbncWFWZQhAFknizCoVmEH4bm1lIp9fMrmN5wSz+vQgRHwgfSeMPdOEfh9zZsoWZbGIMWAi3AVAakZHZxmQ9vb3FtdZvhzn/Nf/TXfpXHHrib2YNHGGzvMNrZJdreYn5pgccee4D/9sgR/rt/8rt856U3eHMz59ZkhDIVL7/6Co8+8TCHjxzm2cfP8fRTDzMpNO++fZ4/ef77vPz2eV6+vEJ/YR+d/qzLwuU50mjuPXaU+0+d4O7jR2F7E3zlAuEyuA4a6yoDSlVOR/iqkcty4xnWKrR1NaMkSihHE8rxDmKi+YVnH+WXPvc4X/val8hSMNNdbr1/lY8ufsQHN2/TSzsIKTBl4elDnV7URVknL1SkXEBZGUajIXPpHJ1uSq/bQUWCQk+JRIqtLHaqmRZTDIYkTT2sxLjApxZv70i1soiub9GTOwRHVkoPD4OpjZFSMZfE/MKT53jknuMgDUXlEXASF6hYg7CGZGE/ZV6xsbbDf/lf//fM9Lt8/atf5NnnniKJFdOdbWJl6fcT7jqySPaKZmI0IuohKl3bATe7wcF7TdSlKEoGW+sc7sY8eNdR/vqv/xK/++0Xub66gWOZs4B2CIHwbDi2PiGDs2JaG9q3C9e2SNSybfz6hOGQSngqZesCjEjGKNHM16iMZjQd8cDZ0zx86hj/6d/8LW5s7/Djly7yrW/9gOfuPsb/5tmHeO7ZR/lnf/oCP33/Mh9tjOkkgiRy3WrhHWjT9ETZsKdDIqudEW5VSr3Wd86fL2mUxpIbyD3bnTZubpKJ/EyQ1p6t4yXfh6ONC6bAjVLAXyckOpANhsISqrP+z+Jj2pQgbSbch/V6SvuKVe2cCgJOyoayiVe87k8Ooi58ndZaN+gR7ap79UT2evV+9lFfTQjXi6qpEw/csdxCCFQcObrZcC8+ggh5RuP/bbmtjSyJ1s9aAZ2V0g3v9BhiB8vyqALpgn1hDVZX6CpndmaOmTQmk5KqrCj8sFehFKWxbGztECcpWWWIUkusdY2+CAlco4Ncu+Tr1mjKxvYu2zsDqtIlWgyKykuJwWHvtHY+QFlqirLCqAa65cyBwlrY3dkhkpLZfo/l5f2sjQqGeovO9pCescQyuNONw9fUoNqdQ60XFTDWPtALvTb4hLYUCuGn1SvpitshCSdDokLcIe0fi4Ga39nWpff8IDgG/o+B8kvUSTrt2gIAJpozx89w6ugDfOH4g8jKoipNFAGpcP9+ysenHqgYU5EXBTvjnLW1IdJaZrOErDdDZWFje5fheIIVMRbHGS19FkdGCdO8Yn1jkxu3b9PtpCwvzGONo0e10vcRGDegzobZIjY02TtHP5/m9aaY5lO01n4Tuga+tNMl63TJJlPSJCKJI/LC4eEjGdDnBtfZ4Q5hW/JEKytCUFR2rxQEJfWvGly25EzUMxHav3YDL2Mh6aUp8zN9FmZn6M30SLOESCqHJ1eRo3gUlRNyREj2EPp2RBExrSqSOKqj7TZsRgAGN+hQScP8TIcDc13mYsXUaLJ+33/W5+688gFLJFyAKJRExjFIgfYKydoIYa2bgG6cE6ui2LOOgJHS99sAOJiUazxs8MTWiobsRulGgUrpeouMYwAShCyKU5BCgFSynqirhMTIUJkTdQbMKuEdcUtUhYnSTukdnoETR3v8xrOH6HVShFT8+INtzt8a8uHqhN2xcrLV79HppI4VTWvIp6ArbOUY2qxwsCKNY6ASGpb6Hc7dfRfPPPoQp0+dZHZ2Bo3k9Vde4+Wfvs53n/8h1kKSpERRRJ5PwZR0EsmRQwdY6PdgMmFhdoaZfo84Tvx6NbCG2vAH59Q2lKkhSWZtWx4aiFUwfsaGyoVpKbYQlDunpBKqTkBoU6J1iTAVj549weP3neXo8ZNc/PACG6trXF/Z4uR99zK/OI9RCb/1K1/g9Q8+4qX3r6LLCiMVKpIueyTBCFEPF8VYn5l1+7ox+rSexz+HL0uH7J5rgg+N8IHxLFTA3CYWH3s+d0RGY3F9WJVMyIsSY0oiZUmSFGsNP37nAvMzL3D9+gp/5etfRciEOLboyZjp7giZlMwvzPKFx8/RiSTX/uRFBqOC7e0JH1y+zem7znBoOacY7CKVIpGS02eO8ivqc5w5fYKd3/0OGxPNeHeH/tyM6zPQFfO9jH43I8tiyunIVSulBKUoteutGk8mrmfEPz8+SHHP6HLyQmqMiNFGMdzYoS9gfyflV77wJE88dj8PPnAXUTkCEaOt5e1L1/jw9iq3h0PSbNbNURK+L806HSmVAuucaBF6JqSfPJ1mdLs9olCNMZbK9zhE3Yy5fpc02qGa5sgsqfcsQS84Ya+DWOGNtzG+molA0RClWAvD3R06ynLk8D7uP3OSg4vzlMMBWO3l3cE0pVSOyjnusLqywksvv8UH11Y5eewQcafrmSgVRrhqtsASUflsuCMfwISqtwuKg2xOhwPK6QRGO3z1K1/mruNH0PmYq9euc3tlnSTNfAKlnd135zDGQ858X1EwUsEf1dpXu71tqgf4Efa0x/SH4EVrkM4p08JJQq5LysmQ+x+6i8fvPslMt8d3/vDPePnt81y5vclv/9LnefCuk6ArxnnOKC/csFXfTe8qcS5IDsE/AucYh4Z1qJklXYa9vfecjdFW13u51Ia8sq4HKJJe19g6EN+TfAFCc31QDqE6YI1xszhCxcHYZhK8NRgT9oaXJ2tbrE57HUMQrb+2bS7Oyxdh/ZvPQNDNjf1t0AhOx5qa/Y1Wj6yoz/Dxo3FIg/w3Qx6bnhjrmR4RsqbpDYGKi6Gc7Nv6+WoAXK3r9xyttTXheXGVLSkccUzk7bB3OlwoLFxCLEtTso7rMx7ujpmWGm0gjiNUpNDGUFQVoqzQqsL6wbhIRRQ5DAi4Pi/3KiyRHxKbJKlP1Lje0KaaSV1pCdWv4Hs1SV5DJ0uJo5S19W0mgwHjUmNl1yWEhas61zD3Onj7i5w/sed/ISSvkUHS0xrXQUjIxzTnDPJV/7YOipur12yud7ynT3p3zZ01gfre6/odrJRrS9IWW3lor3X9chiB1ZJP+/jUAxVhNXlZsjOacPH6Dou9Dv39GVmWUWrL5s7Al9cc44fb426RlYqZ5iXT8Zjbq2scObifrJsxGU1rJaGFm0jrFJyoHc921iifFq4hPVIUhSvnuaFurnkr7fRIkoQ4jonjmCSOHP2hDYq0cVCwLYVggxlqouX6hf48AQib82ccTVnOO0+yoXMMBsgpYtdr0E1i5np95mb6ZP0uSZo4RWAV1mcqNSWSyEfc3kGzFqMjkIpOmhKrMJjIb4jgpArt6YYdXnOmm7E0P4tNU8ZViUgzp3T9xlBJAlYhhCWRChU7libhKz9OYWrwMBCXeXJKUkWRZyCzjuZW+gZ8Iqx1TqT0jYXWv2uJy/xq5Sa6G+uUoWO1ClmpdqAiEJF0ttP3Z0TCZ3T92jvMsHsLrtFRIEyT3aiqisMLHZ65Z4bf+NxxsixGIzi6lPL82wKhc16/LUCliGyGpJegtYbSsYs5UjRTy5eRDnJhKg3asG9+hsceuJev/+JXOHz4AJU27I6n/ORHL/P9l17h+z96ibg7h4pcc2oxnRIJS2+2x7HDLlCx0wmdNCHLElfN2iNb1stvUDy0hq7tdcrbdNTtc9SsLy3oVXgn7c8gFM4kaGcodYU1mrNHDnDm2GH68wu89+3vcvvmbSajHNKUpN+nQPGVpx9mvtvh3Y9us1NqjAEVu74r17wp3WwBr6EDpMT4/9c2wu8dNwk6ZEkDk0+4X1HvOePP7xD+Yq+zax3GWgqXGY6FC2S1gRzh3q8xKKGJs4xSGy5eucH3Xnqd7a1dPv/ZZ5nrRsRJTDUW5OMpsijpzczw8L2n6USS3/vzlxgPNIPhhI+ur7GzPUBPcorRECXcGiwdOsLi/Bwnjx3lxVc/4KcfXmd3cxfm+i7rWlX0ksRReEYRE6MxVtWBSmU0eTFlMpnWlecGPuQdJ/D6RmOsm1+Rj6ccnOtzev8iv/bFZzhx9ij7Di9Tba1gyKis5Pzl61xd22JnWnCoGzn9LvBN/h725Fke28pSGOmmvScpaZrVQw+xrmonVUwUK/YtzNK7uUFV5Fjbo1bT9alawaTwcmgDpMg5AHsy5QYmoyELC33uPnqQE0cPszDbp5qMCaQnYVUi35Q/zjXXbm/ww9feYW13zGEr6fb77txWOLw8oR9Ke9sksKYZxyilCxwdxbwhHw2QVcFCKvjck49xcHmBa5evcHvlNhtbA+YPH3JkJ9a2gkqaZIMxiIYJw/0TgkMTnCZqO9l2pGrHjBAEOAc2wMe0cBO+TTHlyNIspw4tkyQpb7x7gT//8WsUSYbKUmbmZ1hZW2drMGJY5C7ZJO8IFmn64PBzsNy4GH/PgVq5XvXWyw1Ouze0pbGU2lJqfKDiAjBtHeokJNuCs+z94trJC382xjiWQg8NNI6vt26mDzTDQab2HpYG4B3kLiQ7Gimvr+sr+GGeDu3PGO/SWxFelJfdhjqZ+l39HEfiDuxc0F0hodgQ/LSTV540IEhPCLrC6n8sHrF7/2Y//hl3XltfX/heU8cI2bBu1blYa/3sthhpDNO8IK8qjIwdc2VwjI119PTWoILvaPFjJXwFwg//BkOcQJIkpGmKqJlA60jR0a37IA5jaxl1Y2akt5eWJMlQKmZrZ8TGyhrTSmMOnXBBqxSEimsLdNl6H239+rEXRrPce79X62XR/qSt1639Dhq7vrdqE067J7b++Attv7Tmi+2gtfU94ZWYtm5mSpkXzjaWOVaVUACxIP2Ep/23OT59euJOSqktK1sj3j9/kV947F6eu+cocrTFxuptrtxe5bEH7yaO3MAxrUvyImea5wwnFdIacgSXrl7h+OH9GH3W0c1K6zJHkXQ1MBHwn4AXMKUUURwzGU+IoogkTVyZUTkBznpdb7AEo/EYow1zs24mhxrnDlZiRV1SuxNX+zEF03Lu7zwao/hzFMveL9QXanjnoSHuFhhTgZX0spiluTkW5+exWYpVQTkplIgRQGybrJ32zr2jwbYIbdy/xmF6pffQQ+ARC1edqawBWxEpSZa4oUwqH2MjiS2nJHGKyjKybNE1PGtDLBQyiZGxIk4iupeueYYOQyQMAo3WpX8W11golMQAhXUZSKUFUsUYqdEYKlN54+sUsVIe0mEkGKiCIvcLmZsSa6UvarkGTGWb5nkrBLp+i+5wrFYgMcQWpFVMY8VwWlEWFXcvx/zGM8f57S8cpdcpWL21xsbGmCfOHeXhu2b5W185zv/wh5f5yW3DOzvbxN19JElMN4sp0JTWUJYFqYBICjIkpjLk04KqLHnumcd58MH7ufvsCfLxmItXr/Pq2+/zX/zf/xsGhSbq9JkXgvF4wmA0ohzs8NiD9/OLX/4cTz36EMuzfXQ+ZWuwy+5wRJ4XiH63LouDcx6s8RkX6wLAsAwNEsFnVv2KCoEfBCqcw3tnUC18NaqqvNGzCBG5bJkpKXG44VHp1r2cTli9cpl/+P/9faaTCV9/7ik2N7dZ39jkp6+/zdnjx1FJwoH9S2zdXiPXhhh3f8qC8b0wmFYjP40B9paLJufogRnG4jlym4A8PLevcunWdpRCoKKYaV4wGudsbG8xNztDJ82Io5RpoZlMx2xuXOHRe05ydP8+9i0v8fpHV1ndGXPszGku3Vxn7ZX3OfWP/yf+2tc/zz1njjFRAmUlwlh2bq4yt28/98zM8xu/8Ay/880fcf6jG/z4tXd56oG7OLG8wPxsl2o6pZxMGV74iP7yPpZnZvg//u3f5h/8iz/mGz9+jd3hgMl4TGSN47U3gJWOMUj4bKO1SG2RhWZna5exBRMnzoHwiZ/KurUzCMYTzWhnC53nfPmJh/m1X3iOrz73FMdO7qcc7TK8fZX+wgLVqGR3dYvv/PBVbg1y5voLnlhBIIQiimIqrTG4qraKHEzVaOdYWmNJU4UUCVWhqaoKYWNiEbNrDUhNpxvxS88+xXCi+cm7F1nZ3qbTSeh3s+Bh4ZJV3qE1zeBRhCNjCM9lhaQylkJbKCec3HeEX//808zuO4jFMB2MSZwLgxGKOEpQaQJJxj/+//wOP3jtHb75ozd4+P6zPPjw/Zw6to+kmGCtdAMWjUEKS5IoVJwicokgJREagUELyKOI6bRgZ3OH2WrMQ3cd4+/85l/iM1/4Ajtb27z045eZakMlHSsZnsnIWlCeejtAwkRgzPKUuhYXCAUPRSI9y1GYl9QEL9ZrPukrTpF1NsJWmkpXiFgiMWRRl8u3Vzlw4zrPdT7Do488wGZR8cc/fZP/4Q+/xe986wesrm+yrQUmUhw5MIsttW8clw7n7x1DaWXtuLWbyIPDhWiqR46sI7AMuoSA0ZYK12tQWRyhhBb182mJH25LzUxlhCeUwJL4jJy1+CqP04PGU/a7AMGxwpXaIzkCnOJjBtu6eVLeD7W4wczaWjcf1utNZ1ZFUzXyQxut9tf1VQ+lJGGuiQ4yDHW1uH3dTzoad7hJyrhEkUGbyleMcP11vqrnTq3rIMZYlyE32tahWKjAWUPtS3x8LVr3IFzlXWsHYzfa2fkkilBYoijy7JAO5qZkxHA4QhdTlAGpIiIhPVOg66dJ0pg0S8k6GVGnQxzHvt/M+X1hll4UxQ5aKQwkDiI4Pz9HHCm3/7TGBCp48MM+dR1MNgjEyjvsBm0rNIJIKowUlAimhUZX1iUgjfXJCUsTyrkThRlFd4yt2/O2mv8aKmtQxiNFjEXoUFXx9+v9lLbvC3eIZ4hXw2sxLfm1d3zmEw5r8TpGENhqqROUPjiVbrbUtBiydXuFndu3GE22kMrt1S+fe+qTT/5veHzqgcqt1TW2dnaZFgX9uR792Q5pJvng6nWu3lpldzDls597nJm5ebK0x6XLl9ne3WF3MCBNK3pZSj4tyPOc8WTCeJLTkW5wXRzFjtkqZDFbETl+Myml6sAhiiK6Kqrfh8QNKSy1ZlfnTPMCVES32yEejsjHE2zszr93K7azPM2PRD24R3g9G7IUjajWGYefIRQQsn/hO3X008o9AL5ygHDCHylHLWlCjsIrfGMqBI5Noz5/yFZZ41h08pxyOqEsSq/MRY1dxgqKysGztA/3tbFUlVOWRhs/HTdkX1vRf7tBL/CTG2eklIxcs7xSqMoQCd+6F2YzIFDC+orIHRkCg98k7kvat/9J6xtjvcGQPsGhjWd98tUTz43kkh8+O9DMaG/w2uHFWt//NtYVRTUhtiV/6dEjnLt7lngp5q03V3n3g1Wu3xzwd04fQYmSVOb8ytPLzH80pn9pwstr63R6XWb7XafYhcWZWNdIGAuJFtZh+JVhc3uHnd0h07wk7s8Sd7rEcczy8jLRaIKREUkkyZIOy7Nd7nryIR578H4+/+wTzM/NYKVkJ89598Ilbq2s1QqynWdpJZO8DrJ1tRHhJkBLa936BsUWSgvC0SubMOhRNLJeVyKRvhrmFJxFIoQr3Scdww/efI/3r9xAEzGwgvmlJWYWl/jWD37C6uY2r773EceP36Aylq3xkDiSCOmrccYr6pAlrodMuodpOOwBJRq2KQv1dGALCN1UgnDObGDACXMnQm7M6IokVnTm+5w4sMDuzg7T6ZTN8Zg4SVnoxTx28ixffe4ZlhYXefmdjygrTV7kdDsZUZpgreXCpWtsbmxTHN5PpKRfc7cv0CWpsJw+fIiDy4tsDyY8++iDHDtwgCzNKCpHVWqEy/wWkxHGVCwdWOTMsYPcfe0AL7x7kcrgkjR5SVnk2LJEKDfvxFiBzkvSNGZhaY6zJw7z/s1V1gZD9MIyRkQYJSnLkklRUpQltiw5fXCJMweW+Ou//kvce/YUy0sz5IMdbFU4eGfc4dKtFd56831ubY+YGkWapPW6CmjBbj3sRAdd7SBHEpeEGU4n3FpfZ2tnQJYk9Po9qMaYsqQaG44cPcyTD59jYzDhB2+/y3iaszOZEkUJKjTaBll1oSkKSYRC+YnUlTEoIzCVpsxLTh1Y5t4TR7n/rhOIMncwTRp4j7UW1e+xOxhz9cJVvvuT1/ng6m2IE/YtzLJ/3sEsTekTLz4La7SlKBwcWEiLUm7XW+vuYWd9iDCafZ2YX37qMzxy/xkefOwheh3FxuqE9d0RWihEFMyzbGQ7VDOld448+1mI1zCORMRKgVV+qJ8PAoLMh/6TYDNqBIEIL6npK8GT0+xOCjZHOcQxRw/u4+ThA4jXYm6sD9iKpyQSDi8vEKcxg8kA5UIkn532Otc2zru2gnaCT3jItXOcfXu31+lNMhKXbUG692nBmsLpIGOxklZ1U9RUwXibKoRLmtRsoV4pWm9bgzqRfh2McbbEmlYip7YSjU4N1QoT1tiG2LmxkY0bYAnVk7Anaj8wOKcywGtt7TS6pFvwCJo+nL1H83cXiHkfSQgcILo5AhQ+nKv9HGHtbVgQIfyauZs0ge3rjjXxO7uR19ZthbURPskopKrfi8VSVppIQCBn83fhmDiFII4i0jQhTRKiJPWzU5zcO/3u1ltXJUZKtwe8jJmq8mspsNZ4v03U7yXoexfD12kvwCUuhU9+lHiIf11tdXZOhURw/U5CpUQSqmxhIULw2a5+tWVKeHxeLW/Cy0zjnkGr5aGddAj/Cr+AIdSEZq81vumdwWZz1Ofe83a9HAhcBVJoqmrCxY/Os37jBlu3bhEpU8PVPu3jUw9Urt9eZWN7SJEX9Gd6xKliqnPe/egqV26tM5oUnDx2mH37DtDpzjDY3XZOuDFIVZAmEXmaMJ5MGYzGDEYTOrMJSkqSQHdqhaOGDCvq37mUjioX2wQtSRS7+QoBd6orysJNKS1983Cn62iL9XDYKAza7FztzSf2iFa4thW2YfsS3umhjmF+5tEeXun2jq0xw+ADEesYM2omIyEQ0jnnju3H0RYbZyUdHruVSa+jYeMYlKoip8inFGVBZVxmU4dSrbZoDaWn27RCYrTnD/czEYTP8CFcdq/Zhm7TY41r+grN6tZ6el6Fm/uADx5awZywhJDStzXToOcJ0ZpfE2dcwkRjtyaO3cdXYv3mtn4SLQ1W2290c4ciDW854IuNsEzLEiUK5jPNlx5c4vSxDnQs71za4afvb3Pt1oD/YArCFuT5iCfvXUZ6drTnL26BNXTT2E9Ed2/IOQoum6SFRSiFtJaNjU1W1zZY3dji0MlZ0k6HuZk+95w9w8b2LuNpTpzE9DoZCzM9vvjsU5w7e4aH7jtLHCsGkym3Nnd4/6OrrK5vusFXtILIYIi8+grZI+OrIOAaa6V0TnQwUAFPH2BPoqXcg7EyAUImPHTPGL+HJELGqEiSdDSvnP8QtGV7UKC6GQfm5iBNee21d/jo+i1evXCD2etbdHsdFmbcRHapBFUVepGad1i/K/fy614iF2g6Z0VIXDbZ72OJgipw9MMes2qDP+QMi7GGoiyY76Ys9nucO32CCx98wO3VdcbTMbOdiMP75vnqU/fyK889QZz2eOHNDykqTVm5TGwUR6A1t9Y2GQxGVNOSSMW4WWL+n7IgspYj+5fZtzjP5mDCg/fcxYF9y3SyjHE+9c8uUZGkKqYYUzF/8BBH9y9x8sASf/qTN1FZFxHFjKY5+TSnKnOkisAIjBFURUWSxMzPz3Du7hNsjkZsbO9SaYtRLlOoLZ5GVDObxDxw6ijPPXwPX//ys8RZgsGyu75BFCniJGFawcUbq7z4xnm2xiVxGtGNYowt6q2l62Fuoq64WdxgxrDnhBKM8ym3N0Zsbu8yPz/LTJIgRy5QKXXF4tIBHrznDCC4uXKL66sbrG0P0T4rbjzBhmNsa4LnSEiEcL8zwiUtrDZURcmpY/s5e+wQJ44eYprnDg6HY9cJIiKzjO2VTd546wNePX+R9cGEtDfH0kyXhZkuWTdjulO4Ko7/jtFQFL6vQmikcjqpMm4uQjmcMJvGnD20yK984Snuu+8uTtx1Cj3OGY8GrG4P0UIho5iWKWirKiw+qdP4MIRARXrYq/S9WzboPX+iT4I3E/JjXjNKP1QPaVFxxDivGE5LRByxvDDLgYU5pJVs7o6ZJDH3HT3AyYPLRJHkJ+fXSRMHLb7T+DWQIGjPfqnJZOzexFHwKa3XL1I4aJsGKixh8rqxzsnT/lnrRDCNzZQINyTS/916O4Jp7gMfEOD1mm5QdXccAeYVwg//p1oxOt0qqDFw1JPfrPE6pnH43XetCzD9qwq9PdbD8/behNeAbf8hvE+Ckx5yTIJm+rnzdq0JTnAjV7U+Df8Nvw9OdQggQgDWvhfReg7PHhb6oNrPWJOZ1JNmbZ0wK4WoHf7AWAou8RVHkWP+SmKiKEEq0bwr74i7UQwOKYKIPDrAoIuirtKJ2uFov8NWoB/uCZ/sqv81VNrLkhQtb9ChUoQNzn/z/sL59/rtdTq7lrewuV2Cj9q4tv2q8Hy132Kbs+8JWW37/TgF0QwfvUNO2r7bngCqCeLrdx7eIwKhQOuC6XiXq1dus3bjBrtrK8z2uk0P6Kd8fOqByp++9A7jEkaVQKkOb31wjSvXblIVJXleIqOUb3z7BXr9PlnWZXV9g7J0/NbGGvJ8ymQy4tr1IXMzs5w8fpKDTyy5RqyiIpGJG8Y1zX2jpKhftpSSOHZ0dVo7LupeHLmhhmXhBbfCliWDSY5GUiGZm59lfWuLYjqFbsc3eoZ5Le1gZe8LvzOn0d6+DeafAFX8+UdLQBzvksNGj6c5k3zCYLRLN+1gs8QNcqrcHA+EHzYnAle/Eybtqw3GeZJunozWmCpnOh0znowZTydsbG8zLjTL+2KUcEPCtnd2kVFE6un/ghI1eUFVVSgVEyVdhHTQEZ+2qh1iJfzkafwEdiFdM5zWvr/EBZyuygLaNzpLE2YNuN3q4D6CGOVJS/xG1e6dayDwiidKoXy2X9hAxgxS+tKpgAoaJU37xVS1knHDxQyF0UTTXb54dp4v37vAM08tkJqK8dVVXv9oTNaf49kn9jO7L+WNtzZ4++01fuUpxel+xvIjB/hHL24yHE/ZNgPm0wiptWOZsQ4qFaA2Ko6IY8XVGzf54z/7Lh9euMhv/5WvceL4EX75i5/lq1/4DNu7u2xsbiGShNl+n4X5eZJul3I8ZrK9zRuXLvPKW+/x7R/9hJfeOI8QkqWFeUKOUIrIKSzP7iOlk6/YV+UAPwwrcvIuRU2JaIX0TcG23gGN4+mk3v1CgmdZskwdZA9HwyyFpZtJrq2uoivQZJTjnK2dEWs3VvgPfuNXefTRnNkXnufHH64w2S3p9g/S88FoZQWVcDIeiQphAkhLNjhh750YXNBdByECrAwsX+79h2yVVA5WgLVYb4SkBKsUVWHY3trmyRP388zD5/hP/v5/yOW33+H2zVt8cOMGJw4tcfDgfu59/CluXrzE6++c55s/eBmVZPRn5tBWMdrdIjEVy2fvoze7RJzNYIabXv+7ddfjIQLLkf1L7N+/zLWtER+t3OZxcS/Z3CzZSDIY7jLVFSbqgg2ZdkMvTVjodDBFRXcmJuukXLm9ypXbK9zcOMzx0yeIJwVMSyoNIrb0Zzv87//ub3HPt3/In//4Nb7/1kVs5Fjr9vciDhw7zpH9S3z9uSe59967OHHiMHI0ZLSzxbQoiGJFMreISHt88/e/xR8+/2O+/cqbzB087ljXJMhKOAIUbZz8SOWpZRWVtVTaYHROJB0MMkoUw0nOzmjAe5eu01teZP9dXaKtdbQ2FEZidjc4sG+Go8ee5dEzx/ng0lVef/8Cb35whVubW9xc32Jza5soieh0U0Kvn0umKAf9VQKpS/LJBD0d8tmHvsi5e84g57rkN9awvg/J4GZWJWmEHg65eukaf/zCT9BJn7gXoaucfbM95mf6EGeUYugayIUFGaGNZDIqGE9HTLWligQ7mwPy8ZB8uMNXH36EZx++n7/xV77CwsF54iyBsuDDtz/klVfe5ls/eQe6PWbSjneSA1TJUzwLl+mx2jg2MeMsh4O5uuA8ZFMr2wxzJI6879IOBoSH2LitnCiJkhFRlDomLVNhKB1kB8CUjEYjhtu7VOvbiLTi0PJB/s9/+zfdINobt/nuYEyymBJFCtuGkUpRW8k6a+7vNVR1XaXUVewNlacgDrbRZdErYZlimPrILJwP38uohXBuvYdNSw+p0rhAViqXdHH5DE+LXOsRwLpB0doISh8wyDYrWW2pvfPdKqNYbdBaoI1wTrN0UE9XvXLMYNJaB8/zdrGZT+L7U6UkwmAqQYVE1wnBtiv98aPxQ30gKiXSVzYxkuAHh+9bAomBdEkEnE2S/uW03RaDg9B90oWDz+EgtAJrtYeZOxi9vXPtROhZwZMtWs+opLAaSlMRBgcK3Gy8OHKkKm5Qp5d9ASgfEPn+nRCHVNrB/aoiZ7C1SVFUPqmBr8772pa0e0PA9hoCpjQkUUKWpJRaO7Y9q4ms81ekrhD1AOEGBVP7FpY73lr4m2lWNwQrhqaiEnq3GvH3wS71D6QPVuqHtu23S53FcMyFf5ED2pbl8PWQ1ARXGlUuyIwlq7ducOmDW9zeKFBSsLS45PzUyYTBZPwXXutf9/jUA5XtUlBp3zBNwdawZHMESlckUhArxfXVLdTGAKmkzz4GxeWgS1VlGI6n3Fpd48LFj3jywftRnQwV+axiDqWunBPkNzZaO+FXoYnYVyF8AGSs8SVeJ1ChBB1Fim636yALQd/siT5srUhasWbr917obVM2rYc3BYURsto/76gjmrDxAGOIlcQmCdZ03ZRk6xoctXaYXMeS4h1SKeumsKZ82rq+48UkSRI6WUaWpqRxTGlACYmSLts/000pjcffWkuklIPdGU1Vn98FNUJLpHa8447S1mVwo0gSi8ohCQK1clgPpVwDnGf+CdjOuN4UAmeA3HooKX11xVJpu2e71wbChjL/3j1ZM8EYiKREG7d2pXaYYOWVeXiPJVCUGonlLz18F597YJ4n7p7BTC1XVsZcuz4gHxmOHOlw/8k+drKDzqcYI0jjjm8GLpnvZugiobARpaeXdGvmpwv7uQp4Ba+SDuu7Q0bvvY+IIo4fOcyxo4dZXl5sIAuiweLmpWY42GV7c4N3P/yIyzdW+ODKDQeFUWG1bDg9AZplrCFSEiVFK1BxmSh3X/hMS1C0jVxrn1lyt91SwsHQ+2FPxgc4QliUdZSPu8Mxz953Dwfm51ianeWf/dH3mA7GyNkud585zMJMxv5ZmPvR+1xf22V9OKEwPmMopIMyCrzhc3Tj2lcKrQ7P93G5qPeW/78JWP46/eeyssY4+VE1771rQD+wtMSR/UukUnNw/zwzHcXy4UXm+h3SJGX35m2++e3nefHVt9jZGdDpukpKpSsWugmHFpb54rNPcHBpDmkrqqr0VUWJRvmGXpjpZXRn+pgo5nuvvEOapNy+vc5XnzhH0u+hbEY+rVAoIuUG6g2mJRujgjhNSSKBEhXrgwGXb29w8eYGx++/lygvsKZAi8RRdBpBpuDhe07S73U4eOQoRghkpJif6XJgeYkDSwvcdfwQMzNdR+09LbBGkyhJOr/M5s6Im7dv8L++8EMu3FhFZW54m8ATpBjt15hWIinIlU8eBKY/a8G6pIWNEj64epNjJ4/xYGVIkpiyLJ2N0CWmmFJZWFzoc09ygoWDC9x/9iQrG9tcX1vnoys3WN/YYHVtjdvbA6pOD5l1HdxD41qUIoFMIrq9jANLC8z1u6A1oUKMUFhbgopQWYcLF67ywZXrXF3foNPpYIRgNCwDVSXgn8VYjy02dNKII4cWmYkFo9GE4co6i52U5X0LnD78MF999gnuOn6IhYU+ylhsXiGM4qU3zvPyOx+yPa3od9z0eWg1OtdVe2cbbLBpxtYITSVlTZzSDNpsubiicXZqVj8P11RKelZCn6WXEoSbAF5aKI3r4rO6QpiS2Y7i8599lMcfuJv7zpzgzQ8u8f6VW/TSnkssBscb6TPpvgJhfc49BF86WFdHPS/9/q2CchFhC3tnNI7QoqQwbkp3ZZy/EVilnEvvERFCgKezrpPR1iXeUE3CwAT6SNGslQ2V4XYFoYV+cOo1fD44yQ1kCx/kBP+mZjlTojmv9UGaBZTXRcJVwmo4dusQbb32CUfjRog9P6x9oDs/7IO1UOlqrtIEgG1/qOmNoL43+wk/ay7h4HuRUo6dVFikaqBT9bDusH4i+AUCdJi1JHwSzDXWyygiinySSQbfygUrxkNNhbFIZUmSiE6nU/dqhspcSERL65NYzVwE9wgeGW5xtPdSKUxVNrauXhCx5+8/28trSm21CIl6RVt+pvdvRJOyFe1/gizeUdUK+tYJpf/cnb7snUdtF6kf1go+wVf1WiToOSOoipLpSLM7HDuUTaCLBzrJp91K/+9ijoqNCHRtVpeMSsu4smQYZrIIqSTbO2OHXTaaNEvqGSFOaTqhz0vN+uY2l65cZTLJydKUSDnWrkI4FqagXOoXLqizetY3TmnTUMfV9Ix+Bwrp4GGdrEOSJHVg2jrpHiXlBGjv89r6P62f7Yls/xWClD1HI/jWaCLlspGRFBS5g1TUDXjGNoGKwGfBbes8IRhuaHmFkCRpSpplZElKliZU1ve9CIOIFGmvw2CStzLwrklNWU1elb4XxTEhuYFwrm/E9aY4JWOsBFk1mbIQrAjXZOuYOpxKFN7GR4G2U0CgwW3YL9zG1abaYyvwmX5jbA0T2GOQ8Bl2Y4mt8NTWFdPKENuIOLLEyr0ri6ut6MoSCcHTp4/y0JkZThxLGKyscunahPMfjbGVZf9czNkjHYqhC1QkkjTroPUUrQtmsoQRKaWJKW3u8CDWBXLa8X35pk+XB1VJxmA44ObaGmtbu+xfXubIof2cPH6Efr9Hr9vFWJjmhYNF7g7ZHQ7Y2t7i/YuXGE5yJrlhcXEZJZ2hqSVKBGpLByWIlSBCkNgmo+VoRJvgMLj9TrR89gkcpKrOYLVKvLVTZTCh0iE0SmhMVbC7O+bcXad46PRx7j16gOf//EVWy4LZfocTR5Y4dWSZu/b3GE0Ur75/je+98R6FddAvIs8WI5xDpQk1N1tj6h3Tj3dqWuaiUdTWO9CmzrQ64xAcPm/kFTXMDKVYnJ9jeX4OdM5MP6XfURxK9oGQ5NOS6xdv8MpPX+el194hFhALi7IGURUcO7SP+04e5bOPP8jyXA90WVeB3XOoWoGkmSDJUrSQ/PT8FaSFrY1tHj17ktmlHkmaossRsYyJotjN89idsro7JUkz4kiibMVgMuXq6iYfXl/jOeno32M0lXVybbQmFSWnjx3gyOEDHDpy1LEwCliem2FpcZ65uRmstIzHBZPhCKtLkkiQJBEkPW6u3ODV19/j+dfeQquEpDvjgn1ckNKG7twJfQ3MT9brC/dRS6RiRNLh4vUV7l9ZZzock6Spe8/aDTbReY4uNP1+l8Nz+zh88jD2zDG2tne5tb7FOx9e5sIHF3mzmHDz9iq5VMRWIzFIbUEbjIqQUUSv12FhYYZeJ4OqcjMnXCcb1hqXcY9jLl69xcXrt1gZDJhdPogRMBoPPcucD1Q864+1zonP4oijR5Y4NNujGOXkkyknj+zjntNH+eJTD/G5px9gtt9xMyQKgy4r9KTip+9c4I0LV5ho6OIq000vgodd1pSlwTY13kiYsxV6NlwSyA+K85u62Q5hj9jaMXPDkL3jbg1CxD6hFFFWhmlZUZYVsZLMdDNOHl7iV597imcePcf8XJ8b61t8eG2FbtYlki5hKKVqZoAJP8vGuuSUDcka7e5HhEAl2C1D635s3Y8powhNSWlcMKPr5w1MTX7FpLcbIScUbL/vZwkBXL2W/rvGs+TUUC1vHTwgqFEse+x6+88tJ9E2566DmJCaC38PZDa2QUCEGTO1f1EbN28za/328zxRUT+jafs+4VeWWh/u7V2wrXWh/nP9jKIlN63nvfPKYZmkcFD0KIqQVu+RB9E+556gxSe+wrWFQEgXMCilSJLY2YYAQ8claquq8vAvlwBPk5iskyE9DLEBSwkCuYo7vdj7Ousld+eVylXIQvLP0d0Lb+can60NnrOtdWjO7f1c/6EAeeSO77X/Dd8L8ORPfOe1sDWnE3f86M7Ph3to/fATPt8EKVbYYBxdn1+RMx6PKMoSTEWaJvS6XbqdLp/28akHKrP9HuPJlPFkikA46t9EIXWFtobhtCDLUi98tpkgDCAERrj+gc7sHJOy4qOr17ixcpskiTiwtESSpEzzAm2mVFrX2eGq0nXgkaSJE9iq8nzhLqLXUqBthbGVm3DqBwZlWUaaJL4ac8drct40jg/c/yw0k4eXLYLeaoKbPYe943w/56irMD5XE0cKpSJk1GFjfbs+l5RuSqsQinATQgBhwBrCDT7EuEnswtGUKikorKPty9KYffMLdPMSKyMkbmhPv9dDr2+RT/wQK/8INV2esPVMEqvdvIPKOlpLhXuHWkBeaUfjCthKo2OJQhDHLciNMb73QZII4eeLONaUelPWQOywiyyhoUx466u1bulz0WgIXIMm1lBgKLWh1NI7iQKrJUkUXHGIrEClMRLBv/zRR3z/9ZzFbsHxIynDqWIyVZw9nnLXkYzDCwlvv3WNrfWSWAriOagGFWU5xqARsUKpDlpPnJNoXObUp3A8XaNwMDBtiTszLPRnyYuSS+vbvHf1FvqHP3GhjBTOIGuHu1WRRCqFiKSrCPZm6c9GjcIKgmeDw2K906FIoxihK2xZoT3cTqoIH+E7KRQQ4CPO//fUjZ6CtS5th2ycqbA+PDLE/iMChIMc6sGQpCzYN9fnkacf4//yf/iPWd/YYlwaZkyB3dmhIyLOLs2zMbuG2d3CzMxhReonebsgw8mZMxCibugPRr/yhkPRUHn6ScXWI5Gt/xfHhmOUi7Ci2D2/JBj10kFesoiom0Ias7OxQz4cEpmYJMmwVtJJY37za1/mi595lO1JQWWdLM9kKQ/efZoj+5c5uNBntLPDYHcKqougcrJPiUoSlBJs7G6xubnJ7u6A5UPHeP/WBpdurXB15TZ/+cvP8dTD57j/3lOILGNaVrz8wkt8/6XXePntD1hYWCASBZiS3twcb128xnB3yC995mH2HVyic/Ag5tZ2zf40nI4QUYxMUh59+AG/0QxyOqUqcqZbm0wEeP4MFjoCNTtPFWd875sv8Hvf/QF/+uOfYuKMLOsSJxmjakosnEGRxnpInmuadb6Xe2/CG/7Kwzu0MUiZ0Mm6yLTLaxcuuyryNOev/Y3fopOVxGKTydjBq6zQ7I7HMB4jEWTKMjfbYWHfPPc+9ijDrR3Wr13nP/8v/29cXF1jdeU6x0/NYJCUZUEhNL00Ynl+ibmZPp1IQV54P8ndXxIplLHonTEv/vRd3vroJmXWQ6YpMZD1ekxKzbSowDMaWeH01mRnl24S8fhjD/Ff/P2YzY1thttDnnz6URb3LdNdXoStdYrtXUpj6Bw8xs0bK/zZH/0Z3331DVZ2hxzYvwCR9LGE9EQRQQfL2lkSgWGCPfkZT6RhqbR37qyHPamGr8l6hqsQEQghXL9crTMdGYFSipkZxe3NLZIL8MbLb/H4E0/wxS99gf/d3/mbJHPL3N4a8F/9j/+I758/z0o+4PDi4bqfLfLvG1yCTSnnyumqcrS4FoQflCfA9xk6/RK3BrgWVYHAw36soiRnYqB0i4JQTofXlWopfR9MO4Ptm699ZUMKkIG+XgqsblVDCImxNr2vv1bbXltoOjHCD12yLvQlCW+vXTZfEphHXexsfXAlCNB+4W2YAXQVGLlCf0Jt9WgBjfYcIbAKDGLBNxFSNY5ok6tx90TTceMtQCNY/yrZeX9Nl1zEN80HSmpBWZXs7GzTiSM6WYc4ShpiJONmLKlIUVXW20pTy6FBIOIUq5Sfo6UpCgtCYqVsAlshvB1zs9yklCRpTJzEexx8S5PQ/VmP5ERIknYzN5zWWsaTiZMf6XuCg7+6t0TSvAHru0hEw0zmkoXaw6nDAvsHUMYXaY1DYVSaqXET7VyFM1zGV4HayUgV4M3WKe7W0wX3qf6Zbf86yF9zK3vWpY5UWwIgHWlOJA3C5uxbmmdpcYlTJ4+zOD/HXL//M2Xk3/T41AOVBE0eok3rWBOkD+/c9lJ7lGrw/oNCCr9Tnh1nNJ6wvbPLeHmCxZfh/PR116gZeWNoEdaVruM4wRpLqUt0VSEEvjwu6uFDQmhCdNvpZHQ6rqpSR7z+zdXO7ydJtH/RtnX/nxyk/AU7fM/HnfVwwZvF0U66hLxfKBy7kp/x0Tq7q7A0MLWwEdrGzVo81MU11wuMZ4nwDq4bSx3SGIRKhiuUhGy0K0snaYZSEYlSFJWrnkgZESmDUpI4zkg7XZSKGJclZSxBaWQqauVibchuEdzi5hAhXHOyZNp7xivFZnmtL9+GILK1Xv7xyqqqWVxCRtHi4DAC14RnKsiNMxoDNeHM/g73H1vkoXvm0Dai0pIZnXN4X4oQhjhKWJyR9LoCGRWUVjMqFINCUypLnEhMlWCnEdo6UysQrioVmMwQfn84pZIIEJFCdFK0jutA3mhNURQUpgLhqLjTLHOMR55LHl8V2VMZ8cxqgA8QqZVogMxZvxZBhhvKUG8ePeTMzb9xVAfWaj9ssSU/LmWJ9b04+TSnk2U8/eC9LGUxqS5hPOLs8UPsn+2wvrlJLC35NGe0O2Fxbpb7zpzka198lh+/f4XtaUGlDQonq7a+1+C4BWEJ/D7WORPBobDBbIdn8lPYwwbxe11K6SiwtXbVPVyF7+q1W1xcXOC5zzxGR6WouGI6miKzDkWpuXj1OsLC4QP7eOjEMcw0B21IVczSTJduIpmOh1RGe0ica2wVvidLZimVFHx4Y41bq5vs7OySxR2iXhdrSs5fXyH6/st8cPk6n7n5ECpLmBYlL3z/FS7evI0Rlm4SYSuNsZp+FlPmBTc3dvjdP/1zvvS5J3ng/rvpLMyiJ2P0dOLk0HcbV9Np/Z6pSg8pdYuapjFREqMixeXrq1y4vsLvfPM7vHvtFjmCmaxHHEU0HcTucMFe6B7wWi1kj0M1TgRshfRYa+dgVlJx8dYqf/riTzlw4hRnTxzm9KElEukCjbIs6wSRFVBqiywqxwand8hixf7jx/nSs4+zfPEyb129QRIp37OXoqxj/NquthlNphTGQhpjRnkNNs3ShLLUbGxuc3Njm51JTtbtOj2lBHGSsLE7/P9R92fPtmXZeR/2G3Outfbep7193mwru+oL1QEEQFCkJBCURYsRsmWatmwr9KLwkxUO/w/2u8IPCofD6hxBynJYVEeRBEkQKBRQqAaoviorK/v25u3vPd3ee6015/DDGHOudW5mASCZfNC6ce45Z5+9VzOb0X7jGzw4OoZtTxMjghfuomhKaFA+8ezTPP7E4wzbgcuX92ibTH9yBEMixJbuYJcb797gxz/5Of/oW99jnRPdypADyY0wkQIxMzhQMcgq5EWKcvLsYM5GJuHGojp8pkSxTb8Vixjvc2VBLlUlz2I8JVDRxkAfI/dP1/zd3/lDfnMz8OyT1znc6/j2N7/NT157m9/7zg847geWOzvghp1gmRAp2U4cZoTXF1bHFVQnM7zoLynMYwptaBlzydoXI9AbthRwXA1iFLnnz+HXLENVdEbOXpM2iYJzwmXSLXMLzu+uLMBHLLv5eZI7Q4J63xj7SimbHeJ7ocDERacMg7ocntXmm0FZ3/NRLsosRufZmVQzRZ5RUHO8glu9wXO7dnqH/PmAKOdNAcp8UuoTZ3bbo56MTtm+4v4Ed1pjtK8Qo8O1ZnU6MhtDv96YEpt+YBxH2pxpGjfWg7idaUFSzdkZNgU0E1Iij6MV6JeAs/f0kdm9Pwrbr3pDLMM33cdoc1DoRR0qmt3xLHNWTY9QzuvU2h6Ut8U3h2oVciJjuMya6E+UMI5ElHTQUDJKpKmipgRli+tagrbndXFxRB41YsXXU9GP5QhVJ5qeL3ahQSc1JyQNxBjY2dvls5+7zrXHHuf69etcuXK5NlD/uI+P31HRbMVY4PvZHBUtfP54J9yyvx/x4IpXGEMg58RmveH+/Qecna1RtQZNwXGvyXGcUhpcYQu4bVrSOHqzx7EK6BgjMWqlbrWaisxyuWK5WrqjQj0X0zTVY+4zn/v+Z4Ybqmn1Z7zNxyYU+l6nZ51cGOQRBqb5DU5RFqkytSzT8kZrZjXhydGElL4rWZ0jsJzRDbjZoi30w8uuo1ss2V0s2A6DR0cbQkjEICxXuyyWS0JsLMOVGuIsgxbqHWMRpPnQVIiIK9fZXBSBMBV++VP7mFCw2TPNpx69zS4Ng4hT2FKhCGAhvnHMDFlZtMrT1y7xpU9e5UsvHlgGCyGcnkKwppg7qyVtk9CQCbJlTMqmjxxvE/0ys4hK1IbkbHXiULopJqYUesXijXXBGvw1TcToB2wEWhHGNNAPPdsx0TTWzKow96iOvj583lxjz+d+Zp+bM2Eq7JGV/ojjIXUZVcMmT3Q8tg4L5edsQSrC2bbn4qVDfvULn+axC/ssRdk+fMjVwz32WujymoCy7XtOT87Y39vj2ac78qLjp+/e4sHZxjOCVqysNevjd1oskuqZS83El/UxX1ZFOczMAV9u9jyOwieKGUdvv/cBV/Z2Ob1/wlJamsUO/WZLbBvGfsNLr7/N5Qt7PPb4VX7plz6HrM9gGGAUxvUx43bD6dkpmUgOXtDqEcwGoG3Z5MzP3r7JB3fuc3pyyuUrS7puyZhbPrh1i4c/+Ak/fuV17p+c0i5aNsPAH37vJQaNhNjQxsCQBDSy03acbAbunaz5+7//ba5du8pTTzzO5etXIPfkHojWSR0N9OuNrftCxKGBLK31Amk7mq7ldDvys1ff5mvf+j7/4Bt/TGpamp0dloslBTZYlHuJMNedXaOYk4xUV842b7ky66CKtA037h9x6/ZdPvH1b5KGr3Dt2iVWyxVRhHHMdUeARazJI6Ef4GxDd3CR/UtX+I1f/iKr5YJNP3IzBTYqxkC3VcbtlvubUx48POGsH6DrHAtvcrZZ7HK6PeXm3Qfcun/E6XZgsVqRg6JRaLoFd46OuffgIf3pmWXjEGTcWEFyUkYSV69cJjYthMBwdo+h37Jen9FKR7PoaHZ2eeO1H/HDH/2Mb/30FcLePsvVotbvFViJzNd8gagUWQeYS+jGuhtAKngQAUowNviYpzwF4kxset8hnXo0WBbT9keUQGhajrcjv/PtH3K4t8/ZyQnXH7vIH3zzO3zvpVf42etvc/X6Y+wd7NagSC5zqurU8EYbXeIaU/AEcg48Wiw+1R5AGxtUR3KFb5oGmQJZhTq2lg5V+aUu/6sNV68xFXqXRrDM3qP138xIkbKu53c7/X2Cd3mkXQsT5dTwMadsKLVSF2F29cwGmuk7J5rxGAvnnKY/5Sj7bXouqU/DnJ303P1PxvN5e9eM9nPQsaJYH7V/Kc9vJ5i4oiCG6A5KqPWhBfI/NRmeIG9FpKec6fuBYUi0Y6Jt/bq+F4ozNREo2IBqTuRxCrSJFHIXD+SVaz7qZE0jUNlTc7ZSgkAh5xGvU3P7qHxuNjWhjJnXf9b+fNW3Noe7nC+EUkukbPoBhpFOIO3vWWAiBEjjpLUqwqW6KXY4zHzuqFQPsO57OTffddWUlGo5b5n/wrKbraSjbVfsHe7ymac/xxNPPc3j1x+nW3ZGvpGGP3Vt/vMcH7ujEsEclRJNKKPnkREwAorgAzYZoswWdbZGYdsNRyen/OjHP+Fwf5fnPvGMNQxrLLWXk3Oiq9RUYUrJoGVOLzqOyVgj2sjOakXKmRh6zs42JvRUODw44PDwArt7uxwdHxOysIjtzIxR3ILx41H35aOOXyRMfoGzMoWGmfc3rd3MZ+8LFYOmXntAXcg1ApB1YjHJqUYQ1B09qpMzW9A5u3cfsaVhys/6tjREWuskHwJ5NFY1RFg00ZjVMErOkBJZhc5J4gOmDEMoRWmGHyUY7eDoinaeyK7J9KLMxCJOKZXomLDsGk/bw5BhHI3drBFou5YYI9u+Z8yDO6RGmdl4Z2hRJYpyaW9B44DO3SFwdnZMJz3/13/vKzx3fZfDncjv/qOf0nbKwW7Dr7y4T1gEpBWe/cIF2CZ0OxL6Ht0G8rbh6PYJ/R4so3KhibQZVFtgmCgPQ4E6eA2JC68YA6ebLevTDXePN6TNGXHc8Nf/jb/KV7/6Jb76lS/yn/7t/5KXXnqFn//sZWS1R9u1LBYdFw73PXrK5DwEwSC6iubEGBoXUIY/DyESAnRN8LyF/00sI5ocwqeqDt0wmETyPWefb9wZTHXtNkQ2m57dbsFf/MKn+a3f+ivENPLaSz9lvT5jtbvDU8+8wL3791ksO577pU/x7lsfcHTnAT975XVSVrquZYsSjWeYROPeUK7rorCRpHFwRZyrwhKoMEUS05r3Z0S91weWpQKrU9Km5fDSFV567yY379xlJSP/27/5N/jkp57n8hNXkRHe/vnb/Kf/w9dYb854/unrfOkLn2fnwgHNYgfWR2z7xHZUhtB59lJZBTMWQtuwd/Ux7t26xytvvMP/67/5be6dJha7O2QGr/0Vnrh2mfU48nAc+du//x2yGt3u7t4Oe4uGZRvpt2vSmM3fyD27O7uk3X1+dvMW/8V/84/4k+/9kP/w3/+bXHvyOvtPPcnu2do3TGbrETqRQNutkG4H6RbQwt0PPuC9V1/n//F3/ke+/fIbvPTOTQ4uXWR/ZbVtieRrBBalZ4FC6aA+1c9ZYCDhCPESJHKxE8Ss6azKameHYbFiGDL/xf/4O/zRD37M177+Df6D/92/w7UnrnP4zDU4PWPYbOg3G/IM5qBZ0c0pcqR86VPPcnF/n6tXn+D/+dtf4+zsjDOFg3aHYb3hwdGa3/nGH5MivPCFT7JsA6oDOvbI7lPcv7vhR6++y/u3H3AyJvb39hgYkCay3N3n1Xdvc9C1/NOnvsu/8tf+dVZRaG6dUbJGQQPb+ycmx0To6QkCOyGyuP4Ep6envPwn3+P//p/9bV5+5ybsHLC7uyKEhkFLW7eylmdVCVIMeBAPNsFkCKPGbJnF6gZzaRYYrRml+nsnh93zlL6/29jQxGD05mJsRjkLzXIHxBrn/u4ff4/f/eY3uf3BLb7yla/y4vOf4m9ducLr793m/vGa4eEZocXbSASyTtn/8gxMW9hliGD1QVMmbhxHWglO9GJICmsxkj2mI6SxrLvC3mUXmDigfG0UYzblGniR0Ni1xmz0+25MZq+1SqV3yGTin7NTqH/BIa9Gxz2qMGRo3LvQrNYM1CFhRgNuMi2ITK0B3CiX4DLYGfMMIlecPHNc/mz7YxrsTGHSmo1DHiv7ZoGu+d2WOvJzUdlCajdNoH03R1irPVydvFwcFqMiX61WXLx0CdJA07TmxMVgkCUxW24c3QYo60PdFneH/Wy9IeXMet2zWC6JTUNsW7rlkqZpWLSt980SQ90MW842CWo2qTxOrg6Y5Bl0a3749WMT67wkz7YbIqIBLx8ojqnWbJc5gU3T1oabeRjIZcFXH6+MozH5jWlygiYr0WfHs6XZ5QtidY7B/9fgjUlVGU+SsdymgUbKbpKqD8tdZp0CpSW6V2ifEcyZNo8aGQZoIyxawnbLlcc/wf7jn0Y++SuIWLsQQ7RZprP7c67OP+/xsTsq4+gdXrPpfXHvzZx6ncUs50d1B84JgRAi0racnB1zcnrMZntGExe0TTRBOqU+KptPSKMXXHkNR4m6KAzD4EXoyQxjxVmQohniTcM4JuuEOh/q6omWH6d7rCk1957PP9K5eEV9wl/orPgFanSRKao0pZmNbat0fI0N1YEqAtPwxh7V9GhKLn1UNHtGJtQoRMYVhSuvnHU2tEoae8Zhax2sk6s3Lalcx/hSvO/ilASH2UmNLBR4EyoMWdkkizSUKJjEyWcqUARRrfdrVmeosIFlG2v0PARBUyaL4aBbJyDIFngjA10UumivawhYzxlrvmjGEjD0XFpGruzv8Mz1FWPf8+atDe/ca2nbnsOh56s7S/oxcXY0sjk+Y7eJ7MVA7nt2O+GJa5G/+ukDXj4aePvhHfrlIXlITkIQqtNuNM7iGRbXY2p43jYGLh3s8pkXX2TZtay6huefeZJPPHGdTzx+jX/zr/wGn7h+naevP87y8CJHxyfcuXOXu3fvITGyWC6gpqTV4TjWb8B57xDSjMjACh7j7P4MRhUc/42zp7lqdhhKmWvyFEULXqgagN2dPc76kT/4wUs8/8IzXNpZoCg/e+0tDg8PePqZp9nZ36dpIuMw8q3v/ogf/OxNvv6j19ksdmgWC6N/VDxDFEyGlN4HebbnpMBKy/0XSFcRyLZWVYL1R8B+1oJDFHXiJlsLoQk0yyVnmvi9H/yU3YuX+MzbN/jEi09y59Zdfv7Gu9xbr1n3A3LnAf/Z3/0HfOlzn+Kp61d48nCf2LWs2kjoN7i2Y9z2LHaWhKbl/sNTfu87P+Q7P3qZWw9OCe2CxbLxve/7N1hQppOG1U7jjkqga5uq4EmpFk/nJrhVISz39rm7HvjxWzf5r/7+7/HpF5/j6Scf48qqY3e5YmexYrW/Z5m1PLJZbzl5eMbJZuCN27d47fU3ee31d/jWz9/gzumGxe4uy0VHt1zRLpcWOXMIqU2DpYFLhltKhguTAbGZjFUZR7y7n1H7YuMvavtT2oDu7HP7pOebL73Jzt//XV589mk+9dzTfOLKZXYWLYtuge4scQ8NzRC7Jdrt8NaNn/PTV9/iOz991Zwxp9nuhx4JgZ2DA376zgdcfPkNPv3jV3n+qcdpdwXywMmDY95+8z2++YOXOM3JxlSz1d6g5CBou+T9B6f89je/x9VnnuHpx69y6dIVwmaLJosqihqbWBOEuNw1JrG25f13PuDVN9/mn/z+H/DmvYecISxXqxpw01DmX6Y6Cw/lFDkYPFJLCWR504ucPOgjWJ2cG+6F5RKYDB6w5nclAo7NRcbowC2LCTk0xsCVE+14xmc//wKPXTyg3w68+ImnuHC4T47w6ju3eeO92/z2N/+YmK0pX3A9Xbq7h0olnqvjJKE8q3qszIR6VmUUuyd1ulo8uJNdHpXGkapK0OhO3UR3LK7fSra+qOhab6kmeEtWpkTAM1L7S8ns/ROQycZLiuYtU1AIYWZuDQ5PevSztdGkW/h238EcJDnf70lRkmDw65pB+/Ax2VAe7CusY2JGZy3sD6UqRUBLBMdOYKZG8MzVufLzem57OsuCqZocltIMmIxIrJ8r4zbmxLgdGMZMlsZQGJqR0qwXPw9UmF5WC4gN41iD0uUuygjkbGgJxpGc7H6bRhm3A6frDXcfPGQ7WA2l3e/0+TDN4Myqm34JwVg6U1KHXpoNq90Kx6AhY+8Me0VmY71htMx/6Rszc1TO/+DOszHvIYEh23XCI2+3peLzVoPnimhCx8RIYLt/mdwuobEs5PQ5Q5CYjVmXPiG2Tos9g/iLI5WwpsEyDpB6YEA1kkMLbTdLX2ayByOm5hAf3/GxOyrDmElJK482Ii5D1TtDl6XwUUZ8+W6OTgyRJgqb7Zr1+pSzszP2D1c0TaQpzaRUPf2XPeKeWCwWhBitf4RfxRyVvi78wihhGZZYnR+LCAePDE7esRbLx++vGJZmAE6p1PPp0emoIkd1lrL/BUc10CcRUbK+ds+jMZol4zwv2YeS/hZcIeTpfjVrhXvZDVkkzZMeDrm0ZyysR/bJTBp7a5rknY6RAiWQmlItct9ObdCFmuqsMIIyFuao9NkiWaEpkfFp+ksauAjeer0YnULXOP9FpnT2ECxS1cRgPRoEmgAaTVG1wb6aUC9DcIfBbG/rFbN/oeHJiyuuHLa8/eYJb7z1gFunC5ZdQtuE7i45vbfh9r0td89OefLiDqtLK3SbWHWBx68E/toXDpGX7/LBaw/ZpkWdz+wU09by0dzoWMW/3VM/jhzsrLhy4ZDf+NWvsn+wz3K1Ig9bHr98iSt7u/xrv/4XePrxx3n88cdZ7u3z/o2bvPzyazy4e5dxHEgpEmI3G3Nfs0UhF1Ht+zS6Myg43ffMsCFKrWtKpTC94q89okOuSqREnQRld3eX0+3I1773E37tl57jxSeucXG54p0btznd9GjO7O7toijHxyd878cv8+0fvsIf/+xdnvvi51nt7xEJjL3WZm7oVIMy32vi2cQCowtYx/pE8qpdd1yKY0iwLwmUgK853AXKlGl3VgzbLd977R1i+Davvvkev/bgC7z6xpu8+f5NztLAVoSbJ2v+9t/7He49OOJLn3qO9rMvcOFw31hnWnM+8pA4OuppFh3jkHj79k1+9zs/4g+++2NOtonDRWDRNozDUCODGSGE1hzsxbKqLtGE5GS455QodXWpOHIi7OztcXp2ytGdY/77f/ptvvzeHT797JM8f+2Qa1eucPnSRR5fLklpYBy2nJxsuHX3ITfuPuAbP/kZP/75G7zy1vu8f7xmtbvH3sULLNpIu1wSlitko2QdKiNTKZRHxBRiNczsb00wQynnhKSJccei4ZM+iIjt4f1DTs7OuPneHR7+3h/x+Wff4daNF0hf/DyPXbnE1SsXiYulITAw3H8OC7a54Sevv8t3X/o53/zhT9nsXQSJRDLjMCIxsNrf5/Wbdzl45W0++f2fcfXxJ9lbrUATN996k1dfe4s/eelVtuDFtJmYlWwBRmK34M7Jhq99/yW+9PlPo5rZ/+IX6FTQYUtSM4wiJnNStyDHll4aXnnlDb79/Z/w3/7utzhBie2CncWScdiSNfn69IatlGa8Tg8eqGuz4LrKvjZ/LbuhYeNfsfnJaG+LfsnOYBSMJmxSPZJJgORAdIc3B4ysJiVC2vBLn3yGL37qBXaWu+zExKqNXLhymReu3+UHh2/x937va15Ds7AMhZrhVurARHCDKbsTU1oKuH5UN4CzWlZIjPJeotWkBDeyrVlxiZZnRBs0i7NGpko5O3cQ8iRCzh8exc5udFvtYp77Gp7JeOSDHmgrVkFhgirR7Xruyi44waom8sEpyFPgWlbDOGXSzAmSmZPyEUZGuSUKTkWqTLZXTU6bw1cgvLPrP3JWfeQa5Uy5mPxaXqXaYWWJyeyfjbs5G33fIxIZJbIdB8bsRC5+vqk+GHe2LUs/Dl4fQvAi/FDvIWWF0YI145CrHbbtB87WG+4fHXsN7fRcWgJ2buNNOlGL3Q0ehM3ZrmFOm9dJtQvLqAiQBnNUtIyzOcmpmIzFBqIYSVLXX7WZ/H0hNpT65CCj97SZoOyl9vuRskBER29q2dBfug6HV5GdPchDtblzTjAqhbVB/fmtgWb0/Zkr3DAQyDSoRCT16NlD2Byhm1NSaNHQoDlZrx5J0+Q/ukc+huNjd1TOhp5BIQdh5ih7EdiU+ocqAzj/i5mlOWeWbWRvuSQG4eT4mHfffYfPHF5Goktrt1hjjF7TYh3olw41gLK57F8aRwhC0zS03YJxM9CvtzShYXe54vLFi9y6fZthTPT9QNe1ddGfP2pydFrcFKFT3jNzwXRS2L9wEn1/zL3fgsG030sRsBCbDjxNrh6BKr6AZsdacT7jBJYeH11Y9P12xpQ1OVpW5BdNUIoLDixF3DTBlHaMFV9MSgxna3fwlBhbcx5SYAxb0jiQ80h5EJ8xsjsrx9ut0QTnYAaop9vTTEyKGOY7hEDbdRRozzi6kaRKn4QRkNgQQ/DGW9lgA+3CZmpM1lg0CEMy4zUAXdf7+Ubunq3Z39mxxoRHG47Xmbs5cnhR+OTVfV683tCsOt66ecwf//EDXnn3iP/Zr0Weu7pP3g6kvCW2gf/V/+I617+/y/VvXuA/+d1b0AmrvVCVcFkv89VSUszr01N+8zd+jf/D3/pf8ulnnuAnP/0pf/Stb/PlX/k1LhzucXp0xLNPP82lw8s8+cTT/O7v/y5feO5x/u2/+pf47X/6HN/90Ut847s/ZHfvAImtGSPBHZSkFGx3KW5EpO6dkq2qjdpEDDrlWN3R098Rw85njM0seyQsSiCOgSyZIQws9zpO79/nnVde5mc//xRXLl3g1/7KX+NL790mjhvO7t/m6sUnuX33AV/7nW/x5GPX+K2/cpmv/PLA1376Og8fHLO8cNEKhDURSZR+AKFpyG6kgzH7IUayER1SEGP0KLNnACWYwfZomIrGWKo002CG3Ngn2qajWSxpnvoEL713lx+8+i5/57e/hjZC07VcunDAbmhIWXn11hH/8d/9HZZN4BMXVvzVX/sSX/rUc/zVX/sii50VuWm522e+9s0f8crb7/MPv/V93rt3wmmfefzKk4xqmdJizEExCibcaSjRT1VCntVpuRIjBIgBIoy6pV0aJPCkH/j9n7zJ733/5wxHd7h0uM/Fi4e8+NkvkEkM48Cdew+5c++Euw9PuPXwId1qxWK5y/XHL5KWO+TlDu1qBWnLOGxJw2DFnapW01B1sUcyEFOOagZvbJoKsxhyARgaxKcENGKMBFECCZHM/t6S3f1djvoNv//T1/nd7/2U5//JN3ni8kWeeewKz3/icS4f7nHlwh6HByvu3n/Im+/e4D//7/4Rtx4eczYkrj9zSNt1dF1DlpFMZhQl7O7w0vs3+I/+y/+an7z1Fod7+7Sx5Y/++Pu8ffcub5w8YP/iFdoYGYYNq9DSqKI6IkulD8JRH/iP/s7f58Unv8tv/oUv86/98ue4dvGAC/u7xK5Bs7IdRt56/X3eevcG3/7Bj/jHX/8Wt4/POGk69g4PCBIYtr0butGMkFIQL+6AFFkeSuApWVbTx1Nn7FQ2rh5CkGgrSBOlOzvOxFbfW3pMaLY+FNlaPDbRM+YpM5ydsNNGPv/JF/jKV7/IFz/7ArLu+b2v/T737j3gL/zKV7hx6w53HzxEmqU1BY7R18VkwVoA02RFCMayOWlQ11QFouY60IJniiSHo4rBpfqstpcLSk6zBQ3VDHrJpX7Vn7MENO2EpDE5CYnJ4pzFyWi8ED3rlF19pLb2nOCeGevFBrCEkVrwDysbSA6XDe545VAMTvuQ4p8hozrRfJeApQBSCq8/4hChdkhXVVJOVT+W4H4d62K0q3r/LM8UFjZOdXdIpucq3d3N0Lfnnp9rbnVr/efZ+JTptz0pO5xwIwybgTSM1fkpsqHW1ajpm2EcjQIXCzSFxhAwwZnd8mBOSC4sCiKWvRktY9M0ZubmUnRfHAW3lz6qvjiTa8Ak5UQak9uCVkBf4KwRobBI2lesg1CDxTNH8NyyeXTyyvzGSMilCbVWJ7repweyNWaIHrQ7VsbHHiM98RSLv/HvIgdXYLmLrNcWuFJlSKNndiANlvHFny171kfalmaxJHYd6g25NYBGIZwew8P7bL73LeTgEtJ2IBMJRokC/GIX+p//+NgdFYnBU7qTG1LcEgvyTI9xbrLmhoMIqgkKS5Jkjk+OePvdd3nmhc9U9qbkvUQ02wI2Rg3z7IylSMwTj9CErjJ8IEITIyEYTWjTBBZdy+5qRQyBUSavfM4IYbdnkCEXB9PjzBwUkRJtOC+CCwzuo48p3T83IMt2L4YgYNC62alzifwU/FQ2PCu5QCKSF9Ab48gwDIzDWB0jipNDCSZMEYZMJjbGW77oIpu+J3uTzX67ZdhuOd1O+EtTPtb9d7t7wHazsQI2NyLNUfVhqJAcDKoWLGJit5XP3dSIWkQvzrrXzzz40dP1FskLVbiCCdvS+6MUrtt1XTBixeGJQOhaTobMrZMtKXVETlmFnnUzcOHCHlcfa+Gs5+HRmptHG65e3mV3t4WYIbaECLIINDuBvb2Wi/tLRh2RbE5KkJJunhR0yQj50iSIcPvOHX70459wsLPk+GyDNT1UdldLLl6+xM9ef4sf/ORn/OF3vssbb77Or//Kl/mlz3ySf/Uv/gpZ4aXX3+ZsvWVAyU0geXReHZaDGyoFQ5uS13UQJqOo3Fua+JtKdqxAJOr914hEYAwFrx3YnJ6yXLR89cu/xJc+/wWuHhzyyo++z/MvfoI8DNw9PiHcuEdKmU996kVoO5IE1glev3uX/sY9Tk7XLFrP0M3gGMqkxO3SnscpG92NnKnvS7EizMAR5s5LeVohS4PKFLIS1HoZLTvD/m8Fie4YOaYkqLCzXDJmZVDlnaMt33jpLd69d8LNozNWOysQ4fa9B7z85nu8d/seN4/OyE3Hsm3mvDt1TRfcs85kxvmY1Uy2iD13ZdVCPMvgQNsmViW4WXfc22w5uXOP01ffrEGJs83Iuk+sY0fcu0izu0uzWhKioMGinmkYkGFAx8Ez5CZAypqy2JEHPWCSoUAerA/UXOHmc9nWWVTbZRAui0MTiMsFxMj9IbO9e8St4zWvfHCTvdWCg90lu8uW09NT7ty9z4PTHkLHzq719UrDlsxAE4vKyzSLjpQCD8eer//wZRaxoZHI7YdHnI3Kam/fYGgl8m/FdtWgJAQWqx2G7cC7dx/wO9/+Hrfu3uHKhX2uXjqw3jdZOVtveP3dD7h55x6vvf0ud4fE2C1YdgvLiGshi4iVscp9UR+HXAL3Lsxm1vCsZw1qukAaWw+xMiB6hL3Y/SHQimfUc559PFAYwaxbkWVLTUc2SDQ2w1feusGy7Xjx6mUeHK1588ZdbvzBd3nzxj1u3HlIt3tQm8k2MVCgNlXuzON1hX2xGvmWeSmFzzLXGeUunfUzY2QKNoauX+v557pW6hh6uYKZlS7nglKZCxVHH8gMAq1FX3yU7p6tX5kg6JrLde3BNU5R9PlGPlePSrEqilKmBiip6+GcCfXhu5nFYMoeqlmc8rq/ZuyDoU7D5IYw1W3Ua05/q4fO4E6z+yvPPT9PybaKt4SITWuQcZcfBZVhjY39HCK1nsp64mWSZjqxcSlmT67ZihnpRC7IkkBsGmovNinzLrPHmNt4/r5sfZG6rmMYMmOYgrpF5pn+8JpsSialrMO5xV7WR9Hx54PfItPsVzhetGAxeSbry32eY5uz8RnySNrbQ689RnvpcWiXKMIoWL82MYdDmljZ9PKwJY+DUX+rOUkBQTqs5jS0SMgEUTS0hMUB7DXo7kVY7hAc+lY2idlVMtVGf4zHvxxHJSkWE49VQAL+MNMknd/4s4WDCQ4rOrYIxPHpCW+/9z4nZ+v6zlQMcMXTgWminxOjvxs32wpPCqE109vrUozRwYrFu7ZltVy64WJGz1yIl/uVGkGZFloRxPYXrTbSuajD7BMT28ajR4k0Se3aXgzKOWRsHFNNRVo0PPkG8S7rAcOteyFf7XXhiiDn5JENPuQ42cy5cHT7M8ZA0za0baRpG5KzjvX9lrEf2B4dT5sQUJKNfZ/YbrdGmxyn3hYmTCcsaikqdyt9MtpnAjY7rjqkRCPGymQpdq+1ycl1uNRZmGB4YnCN4qgAhRpYxXDO9hUIi46TceDm0ZbTPtCIcLBUxmHD4YVdLlxpOXuw5f6DNXeON/z65y9y4bCFoJ4OFQzXqZ69i6SQKDVqoSq8YpQVmOS0PkII3Llzh+//8Mc8/+yzrIfMcv+ANgiLRcdyd5cfv/It/tHX/oC/+z/8fdqm4anHr9OGwJe/8Fneu3WXw8MDjo9vMKLkbMa/RZFm8+0KWrNOzq9MDnFRUAYnmYx+M0hnTcKqPWDjPoaSHQpsTk65cPkCv/zlz/HpFz5Fm3t+/N1v81f+53+doU98/62bbDZbLhzu8+lPfYqdC3uEJpJQ/n//6Gu8f+c+t4/PaMOOQT4qf6qtjLkMsUDAua1Z95s5yXpuHxRcrjGZ2euikInOUjhh0AOZbrnw4s3OjFfUamXcaN1drhgV+pR5uF7zw7dv8eoHd3n1xn12d6xfynqz5t1bd3l4ukG6FcudFU3XMaTkeUa7Zi4OyuxrZnZNUqUaSR4gEftrUIsAhwIWi0LbLQChH07YnJ1ycrrmwfu3CG1LaBo0dkjTITs7rPYa2uWSZtF5/59MTJm02RpWOY00VRa61Cv1AjDtz9la0aHAAzxW+BGG3xyGYjLAi5FjILZL2In025GTsy393YeM/SlNgEUTWXhgqu+3VkezWLJYLRHNjGPPqEpodv1eM03bMoTAJsP3XnsbHRONCvuXLrNYLtjdaWEcK/nFrCLBmbMCi9WKQYX7p2ve++Amb7z/Poe7O1y9dMBqZ8WYMsenZ7z53g2OT9ccbzZcuHSFbtkZk1WyYFkIk6IXVUZMFmctsspGTSiW8wTOnVuuirMLuRydeghVdx7D8EerAWGs417nRIzgQPxeJAhN20KI3D3t+eHLb5A2PU/86i6n65EP7p3wo5fe5MbdE876zN6FizR5S8Ay2gYxclau4knUfeoGmnLOLqgwwvr7ZCEU6FcSGFKmpQR/CmZjkgcFvp1LEX7dMwbNKXig6oyUNag6g2bNh7ho+JkYKj8LDpENlV2yFJQjk6ll1yp71YuggVorM+PDnAdLi6P3UXtmfm6ZDVZtrHrOuzGZnoMBDIuxMp3+kZ/00Vft9Lk8dzHuy7oshrtSIeviuqPUD3eLztpEuKNX5rw6ZTXYWwIDqTYJt7nxBspYFsjqWKelZU5EoUOeGpnqNMvUh6rHNG4la992HTkPzhRWfIRJHgs66YLZPBY9Wca1nL+IvLkdPJ+asrIkxPN2ok7jX55Pcpm3zKhK3t1BL10m7l0wwiJnvS1F/tWRKmWoKZHHgdRv7PaxGtW8WHqdVnKWVgUaRDpoA2m5R+gWSLQG7qTkgZTzDtnHeXzsjsqiadn2CUkj0VNuk3DA5eqfXqchqmaMkmlE2T844HQ7cOO1t/jCm29z/eoVLl84tEZy7mmH2MKYGMatwQqCdWB/8OAho8NY9vZ2Xcskll3HMCZiExh19KKuYOxVOdMwLYpy6HzVTHf7yO/+Dj23PP98g1cEzCOOjL1kmzGlzPHxMQ+OjtjdWXF59xBmAs2MXqf984LnEBtCUIsSa8v+/gGbBLs7u4QHZzNBpB6lcoiUL2wlk9NIP4ykoSeHpm4i26hqBaSayX0GEk3bEA8ta6HiCleMVSrlEc0jQTOrtrP6CC3OiD2x1o1uQessJvTO+q0Vp4qQNdR6mqKARZWzvq8sJWNWxCEMg5qDE0TYJncKAaWfBIoE7pwqtx5u+a+/+Sq/8etP8Zu/8Qx64x3iwZJt1/IP/vG7fP3Hd3jlxm3+z/+bZ3nsWktaCK+/s+CdD4754O4Zjz0d+MbLd/jdn9wk7kIn0YxHn9AJrpcZRwWCNc5MSrtccPHiBT7xxHU+/8LTHF77CzSHF9neeJdXX3+d3/+jb/HDV97kyrXL/F/+T/8Bf/FXvsQLzz/Li8+/wHe/+xNee/M97j88MqXQWnfp1tlLhmSOaBShaTuLNnnTQ+si3VgaOAI1OlgawhXOf50pa6mCM6tFvGgVSYr0mVWIXN7Z44VrT/C3/5t/wsOH97h7931OaLl3tOb/+w//iE8//wxf+dyL/HvPPEPa9jy8d8LLr77Gg/v30NSzEwNRE5Ktj0tyJ/wchE5hGAcb2xiQXGCT5oRMdSf2gbo/iwPmZxtzZrSKXcskFOhSTjRq/VxURkZGMjCwsEiVZDq2tChtI6wOOpK0jBp46fYxpJ6gI6s2E5Y77F3ZteLfnNFxY4iBEh3GCipT8dnDJIfO9Tyaq12vCZFsEfhMqV+zPShkGldQjQ50bSA2S9r9fZrFgtC0bM4GpFsQlkuadonKiKYN6XRtM+1BgYBCULQfqryy8cw27gRycuPFZddE1Wn3V3WDTsyFipJTghCtHiELxVosfXREEhITix1Bd3YI7Hgwxog+WoE9UdL6hBCsV03TLMgpMQw9aYv3cWictU5oFx2XHruKqKnq1WLPAgrjFh0Hm4DYWTNPNTx2SsUs7ll0QtftsDrc52TI3D/d8srNt6usCbEhNgsW+yt2LjdmPOREHrdEtxqSQAjmHIQk9N6TpXA+Vn05s5prvl1LNFeIsaFtWlSEYdi4TDPY3Xztlxqz4JDpclhAyev73LhUAu2yY1T42c0H/ODlf8gzVw65euECB1ev88Q28x//49/j0rUn2dvbp9EtqqPDbMzgihKwprBU2E1OeWJ/ckN1Tk1boIAxWKS39NvIIowqbNV621lTwWBBH/EdkQEpxB72c9WRUiL+Si1Oc0vQnEPrJ1McCjPZzuWNZ5q5OBRMjk05nZS6BTMKa3YAJeY8QZVqoNPea6QCxoJVkBCFvA2ZXM5Hj0KoUYL5hT3KXiyNlauZa39xXVSCDObYzk86ffuIl+08Mo1dCTSIU/eCUYqPyR4giOminZ1dFt2CxnvulCyWnbIU6dtzp1TGV9Exk4bRWgpEhdBMmUJxhke3TZoQ6WJL620FSlCuBFXKGit9VuYmaaFQDsH6vOQ09Z5RCRCNOTOPCcYR8oiq9fULyOTAlnUtxU60VXTOeSxrxofynA9vJ5k5RsWeFDKRQZKxxwXQMcFmYFyfGFPnmGjajlo16gQWeUyMZ1s0KTEuuHztgmcYTV8mCay3GyQGA4ooBEY0CHkceOfkITvxAnt7kavdijT0DGljUGAe3SMfz/Hx91FpO5owGJTWI7GPLvIgH/Uo9o6UjCf90uEhO11kdxG5e/8BD0/W3D/e8NY777GzXPLkY1fZnp1Vj78whaiYIQMunEVIObMdBpqhN+WB9Qjo2kTbtmy2o1FnNlas91EZj7pwHvXA/ZtUwSczRVKM6H+WQx65BvWcOWeIgW7RsbOzYrlcWhrPo681E2NhoSrQDN6TnPHMMkpWGJ0qf3mNxLlDhEzCMwTjPg8zCTZFuYpXb3+L0SjzmugRjtq/xGogpNI+WlFcFwJZE2nMaJycjeJ04fPrZhBWROmc6RQ+fd/APu5jLlBuUzg2dvY3+5YZlMpc1uQyx96Mi4BKw++9dJfl4ZL9Tnj+sOPBg5EPjjf85O1Trl6+yIufuMLlZ/ZZLgLjoHz7tTv84LX7/Py9Yy6/Ce8/OOPWSWbZtGaQgENzHAYgOlNSPtbFUY0NNB2vv3OD5f1jmtWKZy9fcENC2G56Ll26wLPPPsPVq9fY9iM//unL/JOv/QE//OnPOFtvjL6xaZyC0iOwqkCs+6Y6eGLeYFHUUiJHiEVuoBZIo6ZUpIDYnAse9TkYbaCDKG3b8uD0jK/94CfcvfuANGwJact//4ff52w7cHt9ht64wWkeGLTnwv4+m23PO+/f5MbDLYO0rJaRwLwY1aN/OSMzQ6NG47PNYUBq0XAhAJiv1bkymIpcs0fmpCpfELLDclTE6mUylu1l9CyPvQeMLEECRDHK1NyoFUhraxCm0E5EH061HArOHs8SukFSgiMqNv5ajE1KRrLIm5nyLdFx9c4gHlGL2fdxu0MUz5JQKQVYrBbkIJBGkB6w5mOqyWJtqmgeUElYwf4cTkcd09KNoxpD1bGaZKFBN5n6Qc0cMCnRfDeSUTfYnd8husNvtN6RkpJUHBaqmUEmuvOI1yuVNasRsrMSeUCsiy4ccjmXsyt5fU3Awdo5QypQCUFDtDH2TFaMQBOQReP9Q6LBXDylahHhZI6zWu1DQhhQC6pghkGN/ldnYVqrdfxm4f6yXUvX83KoaoW+lp2SazYdp+O1o0SeRTzD7Q0V7RImcRddZFgteTBm/tuvf4tLBxc4Xm84uHSJxaIlio1huW5WdSSIOQhmEOVziLUppDwxIOL7u0ADpdSzqD2TVQRIJRowNVR0p42Jb3cKX0CNcjPzT+pozup7XO6ZMekycGbHVLjTtGTrq6HUkPi2zHVvTnUv+FKrxjdSvQsbt1SL3O212T7S6Z4/ZCi4EJ582plMfMQ4LhTH57I1fg6tlvPckK6CEs6tr4mcJyBTTU79tGdVszVMjPMO6uU6btvkUCCCjumqcGjXUeWaKSMx17rnrNkam5KJhns0eyEraRydFGGS+VKGL8OkDebDqcQYDe7o9uQ4jp4BKvtS6r4zUTZ3tEuAyO95Fgg+FyTj/IX13NxOTk75Y3Gyp7WoRIUmWUbRwmimp0K09bQ5O7NAdWxZdC15O5L7Lf3JKbFtabqO0O3YmOepllNEyam3cwYjImk8qHayHgg7sNKG0C7sMzmRNKODNVn/uI9/CY5KSxOiGc+FIupRDnVmEaJzf7CIWhpHDg8O2Vs2LFu4e/cGd4/OuHfS8/a77/PEY9do2o4t6yq4wmxSx2S9U0JjBbIpjeRxIG63dE1gESNd27DoWtq2JW8GG+y2sVoJF2hSsHa+UWtExl8rty0qbridh7Wd39Kzw6Tm+ZfOD08VvuU3caOLGFgsFuysViyXC1c2AUQtDUfZ7NNmULXurpqTOQ7JnJSU0sz4m4Tco/mciW44179UgYzOapKUEIRGAm2cNRHz7MyYM5IyqcV7e0Qagd6xpxqKoWVKqpqg4gacAgSn/TsvSwu0Co+4VeX1yNiWfiCjXyeqQb/KqdKYaUJEiPzRa0dc2mu5KInLv3yFt2+uefndE15+f81f/uIT/OtfeZzlpcSwTZwc93zz1Qf80cv3+eFbx+wdBLpW6brAcuWNRMmAMYUU92pCQcwNBHPGzvrED3/2OhYNU678G/8aITbs7x8SEbqmY29vnyEpd27c4p133uOf/sE3ePfWXTbbnv2DpRcni+FMS9jPswzn8cOCjlRDorJB12gQVTCfE/Y6rTUzEkEr5zXE0HD/9Iw3f/gThjGzaCKXd5b85HsvoQi7uyvW9+5x88EDXn79DS4dXiJn4f7JFhYdoelYtIE0bG2NUAfsQ4f7pNVIUuxx1Z89lsLGuRFQd9j0uvg6N31ZHMlQqRuR1ucvEXTwdWjObfYIckijqY2gNK3DyQiItNUYy+btUBqPKmHCW9c0yoeVms7u6kPyRaHQhEKt5QSEqIJoNEeFAUmj1QDmhGikWy69F9HgQaaSY7W2oEGVnAYfg8kCLM7TZCExrXFVJiKQhsncK8q92lc+9r6OyISaR3FjWcThbJXzh9LE0Dq34jDXkeT3bDagOTMxmCFv8E/LHNQ6Him1eckLz7UWtIPVd0XECrTH0YzvGFFpSKXwgUwrStMKrXTWHsHx+KpepD5a5HUy+DzqPNMt7dwwLMECTCYadfHkiOLkI9O75iumGODFMZwyCbX+I5bLePFvZXEMQGMzkc1BRWC1aEhhn+048g++9T0++cwnWC4XXLp2BRmVkPO0OlX9ni3jUfRSRmt2AX+t3PNcj6uaPaDizIg1mOBOEAbfqkiH6jgUw8/sjzjTtQUu/WgoUqkia3LO6jDOA3dzoSGTkerjW5v3MsF6wTIrpbC9yCmcOphz4zBzGuYG7fyNcI48dWLMK8HJyfDNft4qG8+dhamYXH2tSzmTnn9vkaucP8rzmO4KhJLJLnPhvxTWyEJnW+yO8owWRDV9qF60H2othj+fv784HiX4piUYhfdlKetvNFsyl15RlD0y7ZOPrENWY/qL0UoXxnFkHEeDIqp6sGq6Jytdm6Brc+dn7uDyEeM3P+Y7WWf3WvUVZndpIWHAKNObEpgt/e+CBYklw/r0hNgtaDtltXRI18YclcXePrKI0HSW4WUkpZEYrL8cOjCKkCSSdSToCKlns0ksB0jaIE1r0jENyGjtP3T4n0DDx7YNTlmfiNoZTMcjGkmdW/ojMyoARgU3jpnV7oq93YbdNrM+ErZdw7gMvPbW61x/7DKf+fSLLF3da+5p25Y2RZrYMvZbQmtdu7tlR95CP4xsNxvioqPpOlbLBSrCwXbLkDLr3V0u7h/StUv6PjFqYiGtLRbHIJr/Mpk25f9HX/uIx5qOX/j8ZWlOQrQ2CPKTFKUuWLS2IRleXFzT/im7oGkaVCOimfVw6k4LWH2NOzgqzh4zQsoGpwiW3sz9CGJUztIY77ambP1BUgYdUbVC4tB1xl4zZiThBlKpsIYYAqsY2YnC7byh12TpcIeslTGblXCfE5gWsZqY3YrHkl3YOuEQqjLb9kXnC6gYLMYNrrEILrWYbNeYuDjJe/z9Hx3xuz+5xye/cYfb90+493DNYxcvc/HWSHjljN2XjnnvwZrX75zx9354n0EWXHnqgEaERtyBygkkeYF247aF+rSJRzsDsbE5jgI/e+XnfPu732c9COSRLgrr7cCv/cZf5N/6W/8uBOF3fu8P+U/+3/8f4nKXpJlx3JLSQNstuHTh0K+TLSouRayLx7uVLIoyEkh0UVDxrtFZkNLlPljxXc6ulGYp7JwyH7X0czHwxaCUNIGd/V2DcKgypMz+pcuIQNMoYP0PHmThwb1TYogslysWbUMQSMNosgMYyRN+V1pTQhayM7YUgRTcgFGcmSVU6FfB4NtCMqiIGdVW02Gkef6cMvVU8QXlKyWANG6zjFZHURa3mPFZHGvJWp3PSoU5jm54u2oqy9h1qPggWgZB69/MLnJZBBDMgM7JeyO5QZj9PIF5FinTpy2j9pZFaITQWETN7iuRN2fTnpHRMqiitM4EBNmhQpYVyA5MKjrePucKvBp3haUMVMdpRxenRHHIjEevi2LP1u9KJJqDI8WYFEbLedJQaEOtqFwqC5aNQ3DMtWTBU1zuuNv8iWavRRJSEMiJkZGhXxNioGkCtEu/98GNOpNKyY1dc5omI0ryRPmeo82fMZjZtSUIpOishAkNVrZeZlZUGXCZLMXYNGrWgEGGAuKJOHOslMHhsQ4XS2ON5kbx7GkuRrDWRVac+ULrjQJDtix92xCaFkRIY18zADCyiJEYIoO0/Pj9m4jA7u6C4AXrRk5iszXmRMjuJAnmCCFU+hWxaLAWGV7IcHy8Sh3qmZZnEvC1l0To20iXByJposoPZjBWcuJsWfasgrRK43tIs8H/EkyF84KzYLnj6rVDEQhpkgt+t+b06dQPZVSDjqZgSI5iHM+6ivh+P1+DoY5yKPV0BM9kZ7Ga35xBEwZhm9sc80PKRkNUiZrd+bSi6uT7JwvkUOivhRHPvAI5h1qPVWR+8TeK2CxrRXB0JpOJU7N5xQnJmajWL0xCYEgJGUbacaTmXZRawyRYPy/UxhVxBrTR6kTHIRDayKARzUKQ0XVUnM0LWEAzMWom+dqJIdAo9fkGIPm4Fz9QXC6HGAhNQJMyDgPjOABWeT0CowiaMkFhV1qW7YLASMq9ObpBSgzB70nrDBXez2o7uhwsMHq0yHsLqjRqgVN1eV7iUFmMypwQTQ/FTOxgsdin367Z9Gtu336Li1cus9i5RAi79NsN/ckJ26P7NJ2gtGxlhKhoTjx8+xW22xOQxAtf/kucnA2cnm548PAO1w73ubBcsh8XLEJjtMQ6ImkgpES7sN4t7Kw+Ym3+ix0ff8PHYQAyTRO9GWCwLvI5GX3z5GrOFjfVs5YQCLHl5PSElpZ2Fbh0eAiyps9rrOP8wGazZWd3zxRPEIahd9rdntBFaDJRoG1ahiG5opn2T8rZvO2xZ9m1HOyuuHzhgNVywWazNvraWO6u+LrVV5/u+xf9Ntfef85jXuiLgjSCpinCIsGUV0ojQ98z9D1N6CBGy+o84gQV4V+9/ay1KC1VzGyJTLryQ5hqiFxYlYJrkkHICgMGJmCGlBhzqin9UXt6VWTbWwajVG/NRq8qeCmGlBs6M0XqMqwOYjGRzw3rPBJybkE9MvSKB4ClmAFVdUyFbeKur9crDBsGhTUNr95ODH3LgHC0SfzgtZu88d4t2uGMh2PkwdBAXNFIdIiBNZkTMWgIaoXNEXMQsxQjumCsZwWzaj2E2rYzFFUSVEe+/q0/pl2tePLxx/jsL32VeycD73xwj2/8yQ/IQLda0CwWThE9jZ9hnqVGuIpQLkXOItD4Xg1zKF0Z3zppxTkskIJs5oZSKU7t3guKxoRqUGgpSFlzFlrXfFJPbfh6iUaHHBsQMQinQUgC2R2Lef8es7jyVJgtFhipWOtMsYSR2aJQn/d59FbBC3jLM5+Pu3o23Wqu/FpomBxqp4A9By0Dm+zqHKXp9L7UpyGeQaYqoURRcufPWudHpEYRS+bTMj+KpooVo+zrAoG0MXVHrPZcemSAwnkjXLMg3kSwAInKdrVnKoaYTFBcr1WZb9wScS3XmEdqz0nYmUE4n4s6HjPlPo/QGuTKWacKlFfEHFk3ynPOJIczIWqxFrHsR8lYoB7BxAwu8EJeryGyvWR6xk9aqVULhLVcK/j7J0PUWSqx7MDUeM6epcigqQCdadC0LJpHoJC+p8VrbySrM+HNxlh9JMu6monPYpAqRX/ZeULjDVJnkecAtK7ji6wRr+GZOnA7lJRMLbaqkXuDl5hjo7O1NG2ILOoRZM8iijvCntAzx6C4C+ZcBC275DyioYxlib0DlbZcyrV9zRUbQXVG7avUGTo/YrMv9cyAGv2wLQwfazU9WrIKpVh/ynhOpmxwBEpl35zL4HJdrac+J6MsOPPIa+X5/XlSdZ/KUWR6ObXJn+KkzHdnuYaUdUj5plVOoHxIrvrsVyer1NFZwDFU9IpqHWgLQIgSoreUaBq6pqFtG6uvjNF1RWv1MCUg5JkqaZSubVguF9YjBNvGoTjNvkaZ6YFyD8UpHvrBivg1O4TSiZk0IWnt/YBGk7fimY0iD7PWe7Lgqu3y6LT+ZU1qnmV8fCzVYWtjtgBwIVZRzdP7PKhjMkRNJAUrn7h79z4P799lZ++AnAOnJ2uibFFVQteyvHTI8tIlmv1Dbn9wp+7H0DboSc+4OWFz9JBhCGifQBskLAjdkp1Vy6KBSCJttwybDcN6bfa+Ko+2c/84jo/dUemHHsi0rY1aDNad3BYdH2m4CwXLaQW9TSscnRzTaMuClscvHZI0crw2Q2BMifV2S9g7IAZbrMN6Q7/Zst1u6eLSDROhLX01PGLnUDzGMTEOA2noWS532XdHZWe14Pgksu2HmRArimuagEmYQ4mqlPh9MXz1Q0/54eNRvKKWBY4ZTcmJACaz2h2V7Zah74mdN7Yq4aCqtGYOThHw4pTOKdWalSKVY52caZMWo6EIWYONJXJ01eCbZ1Rl8IK/rArjyAB042jMKsF3UDFVi1M6010fEsTlDTofu0cqfj70wfNjrLPr1GiWC+TgwlQe+ZxlGgrUIzNKYJCGD45gp12w7JYcb9d8cPce6xMrkh7affLigCevXAAtrGojFvMNjMFqLMTptgv9YlCj4jTYWlEUNg9d07G327JQ6/8zDFu++b0fsr+3w6eefpxf/62/wRfOBt6/cZM//OPvuaOyQ9t4Rimfxypnj/RWtao6Uf2KBxSCEN2hmfcMKFNgGRZnw8qWkTFIQ67nmddMuJ6xppp+T1QB63kdt82DCE0TaJrWjSs36MUEfC5F8aKViMBoFj0SXxwlbE2J+PUKTEDN9NO68EBm/4rFHWPw3iwGw7On9X1eFYM9mGp5zTWTARwpcfaaxi8Woo9mXcVFmZcrlHGvoMeZmeUGKbO1XP5e9vf05efM9cyTHPPJzL7UUjIa2hqmKwGFYmwHDMutZf58XVUjZTJexazOaXyDeF2NUOqxzInB2orX1fjI89gKc5tVQRNC9GeHUhidPbtQx2eyMB3ONcF+SkG/uINggbNUC3iTZ75i01gG1HHv0kSPwHpUu3hapeYsZ4MLF+OrRuOkOjuaMzlOQRGzKLJHTcvYOUEIkDT5esf3CV53VDZwnvpvkGerxGEw4veZp/4258ldZkOPBZLKXyuxgXpGK1pdk2DzbzVLJsu6EKFrbI15f6WAQh4duTgZttS1Oy39um+03J+tj1JXRrb9GEMghwIFlnrv5mi7sVeCB/hSLpk5YdoPOulFVcucTKD0aQ1Wo744Z2WoUKa9V/btJCcn3et6sOgvoQYF58HI7Pcwfbqsj6lOpH6urKgZPaSi9VltnM/rw7Lny9fUU+URW6SoWd/nUudMzo0Z06Wn9xUnZ/b63KSZ/1yYs1CqoV6euWZgfY/NRUkIwRyVtvWvhqZtrTliEJrOGnyrSM2M5aSEJtN1LavFghBDNeqrpa95kplh2if1nhTGfqi2kjQB1KR71JEmbTxj3dfscvDUd92ZYlZUcYQCVqiPzmCAZR9UvYRBWPPEclbMMzU8KUV7lYBgceRBScOW+/fvc+f2XT757GOcnp1x+vCUGLd0Eml3d1jttXQXLiHdLg9+9ga5CcQu8tjuDs19GNcb1g/uMcoOqh1NsyJ0K2SxZLWMNK0SGUl9z7jZ0p+tXaxlQs583DmVj7/h49kGgNWiw0hhMmTrU1EGtUQ9zm8wfykIITQ8PDqFoSGmjievXSXEDehoaeDNlrsPjjlYLIlRWS4im+2WYehRNSYvBMZxoG2MNUSzkqOwHRN6esagllWITcOya9GcWK8aLh/uc3pyytHJWYUSlbubs2HMnZGpaM1xktVDnzsrsw//KYfgkR/NgOEkzVEQg2t5QewUNilGz0edvyxeqYX0xYEThDz2xmqTvUw9uFAoTCuewQlNILbRogV9X5XYYmfFYrXDameX7WjwHJGIxEwTA/t7h7x79yHp7l2GnJz+tHGBSdnaZmw+ogTs9ovzJJOR+ZEj9ucYW6myiRL1sdc9Op9NcPQ50cXM4Sry73zpWV7/4D6v3XjI68ce0YuRk+3Iv/rVF/mNT18nyym//8P3+PqPPuC99wcu7Tdc2m/IjKy3G456YffwwGVLYKDBO5r4WjdlXJR16S5r5cOJTgSWC5arJe/fus03vvdTbnxwl9/86evcunuHn/78FfYOdskYlTKlJoOaWEfV6oMKZXAxWAPWT0jEYAqaMprdiM3ZEQjFcJa6jopojf7Zc8Ms4kJWJ2cYZhkQJiWspbFbgpC914fDibAmuijOWJeqcpfkSyONBucQMarEcg3JBkPxSQ4BL1b3KEWFZNiaiBKIjRXBk5Irzel5ivFUAgLWSM72Xy2qLsaDWyoStDphEmaZklo3MRs3nfIIk6qSafkzLfFQ5IuWSJyvYcnVgSNbI6/ifNnnbR6yh6IleCfinA1aUkLU5XxYBqX2JSpBjRDdKZhgG6bZdbpv1bqWSqDFDKGErbpYX5vgbefx+lNENtfoq0hAgjcRdKdgPrK5PHN51pzph552mVzONAgNQkKCNXi19RE9A2PrIGarVRuGHqXzOw5Y41o1ZydZg8YQhNEzdtn3TFEaMjPi1GstCstW9ro8yhSGUqxfIu3ZZRMWdHCnRN1AD85EZ+NVyHltzKKzLRlhyliNzbmc9Bycr7Pkfmfw/kJq1KVpNEe8iTbvfgizCHQaq+NjrGyT012Xcpwt5OLgaaL0YQLM6GRytlWVYRhQtSbDbWxs3eXJGSjOR3YHT3K2+6xrx6GB0ZxDg6QbYQpZaNrJ+S3LxkSE1Uuk7Nmz4m08qqW0GPLTmhWsb0zO5mTUGoWi89TJXrISg9/LbDzLGrLC+2KsqkOyJydL5+P7EYditYWFyKZs1LmmFMx5KFDCuUtW3zHXldPJ6xHc4dRHPl3IAHK2ALUha5rqdMTYYCygngUUiN4HLqexMq/Z3Fp/vDyO5HGEITGyReJIaK14PiRzk0e/3+D6IaRkMDjs/Bog+YItYuujhjCWIEdx7nwlpKxIUh5vhG5hQeNb6wcMY0/WTAwdIpEQGxY7C1vjOZGGeRDpke0RI6oemMiGVtndCSzbhqsqdF0iiNW21YC4CGiw+sJsjLVj8Prdux9weXfB/uIJxrjgJ++8zXs3b/Nbv/UC169fZ29vlwfvv8E7t+9zdvYBzz77SVIr5BYuX93jwt6K/r13ePj+m3TXn+fw2jUuHF5m2YKkDTthJDLSMhIkIt4Ac7s+48bbb3Hznbf5t371r370wvznPD7+jMroOG2fZM1Y6vajFvz8kPm3iSFjzF5MSYGAwDBm1tuevh8ZRzNgLHMTnAYRU5QxGQtVKNCe4J9PLFVo25aua1HvCxJQFm1r2NgCjyosJNUS8W/6yMMUo0AeFQUmVYqw+jCJwHSu6tn7Jk8peRp4Bk0Sp2x0Z8KiwRnNoTJuiEvfc9eqgYSp+3zXNCzaxotHZ29kElo1KoYZVxIM451zplu0xKZld2eXPiVneIkQMrEJ7O/s0y2sFmgz9AxdS9RmJmyVQkc8DaErynMyc4oMf7Rg/gXSej41VdnMn3JmB4rNnWAZjDwkPvfsAS88vuBLz+/zn3/9XU565eFpZHO85uz4hHF7wl/+tavstluutj2v3s48c3XFc9dWNE3grZsbXvtgzZsPDeMtjTvuYvUKo4IxbU1CXdV6KhSlNEHjlCYGTs7OeO2d9xm/9nX6ceTo9JS27QAH46hWB2Uy4QrulwrxKUZ6aXiodZ7dkK1+sLu1Ot1nEbVTPcL58f+oAsWp4N5kwxT9zmUCTKDnMMHLPNJvPW4KzMXXYbGRnVkwBodJCiAZHcepLsVrCyR7LUN52jK2Wta6D0pdbx9+LpSqcPBIYGHZslP6/tHSNDZQ2biKsVDGy59j8rXLeBVjr+ZyqiE6mXznLRYN0WoUnDCjbvh67+Unz24XZp1y8QKoLnK73G9+RKZptgyBO7tTNDLUsZwqBKbP2dgWWZpnvo1PZK2l8dmRCaY2yVHHypTGbjrJhTpybslbkClZ9Hjo7eONdWoXxAMyzRTAcZ0jTjuMz2keRxv5UgQMmMNQIr+hruWcsxMlTOuhOgn+rJOBrTVgUGbcgGDzAfMx1hmsphqP8x0+vSaazeALtu5SFsqmL+tctRjcvvfLvgqlKLcQFEwPoSXgMPt/SrW5k+AOrFZ0Ab5HbH2YDrfXK6SrzvF5OVLkRVZFfI4Kfp/p22xdSi2GFxUK51uJOifPKEfwwsGykybHx293llWaMiAfpTtMzdo5RCYHrhijpaGkQKWAt2cqd1cyWXPbKJPy7EI1uDO3E/zav1Dt+XPN7v/8WKlfUmqd0kcdNVs0Q2pQxIav40K7e948mpAKJiYNUZEd0UKGkDJDyoyVLrgY4KHObSVE0QLVnOq/qtusXrvjsiiGaX21UWi60q8FkzFRzj3vXG4U+V/o+IvdaO9x0osx0bXK4wf7XLx4SL/dcGvbUwCPJfg4937na7zUiJYlJVXeUUkCmig8fu0Sl1vlGonFwyPImZRGtwe9iaqqnwMMWO4BtZMHLFNmkTNna2Hn7CH7/ZrF5hhOFgxpw+bObbb37zNsNrSXL9MSyAn627fIR0dov6GVgSatiZtjg3RGGNNAQ1PlaBYIi5aF7BC7yN7BPuvDg1+0MP+5j38JjooJ6xCq9n1ks5zHjpZjEmwz5Ys14RuSUTdaREIYUjJHZUyMzsVu3PhW5JdTNnhSTkaTW4x/pmgxIrRtx3LZcbbeVAXaNub1j6NT0jUWeayFl486KNNjYhv23AvTcz/6ufkp3DioP/uY5aQGK1Cq0i4QhiaEqmTcYjODSGLdAOWYouCO73dFvewWLNvWUBgz/VeZwJQKzVK16EYIwTpgZ+uFsFit2FnsMHpxfnFUQhT2dvZo3VHZDgNDGmlKFNiFW417e+SpZrZLOLko9nOj+qcJ6UcnB0okEu/Qas9anLApGl4Mz6Ef6VGeubbi8UsXUBK//f23ef3OwMlpgrMtp0dHnBx3fOVTz3N9cYkXdnq+81bPp5/Y43NP7rG7u+BPXj3iD3/6gLe+d4tBAxIbGslYfMeiP5q9eDOl6qi0hVve7s7mIyvLtmG96Xl4fMZb77/PcrVib3+P/Z2diQ7cVWA1htWzVsEc+LmYFkygG0XpI9HButambAqVyW/mOD5ynHNSdGZ8lPVUPKSiSLNlMASD40g2al5UPfjqbDnl2USoAONal2C6qmzGTPZGfXiWyQgFJJeSUWVixirZARuZoFrH0D3F8w4XSg3DBR9fNSiPVC2ORcZDeX0yUmBSiPXbTDbWa/gYzwMUxYCqc1gMSNd6BkMbq9F0/iie5+QEkbN1IJ5HBfTcW2cv2PlK49XSs0G8QFxCNMhchUc9IuXFDMjZMJxbM2XtT7Ufc+OxyEdT/DNgv0cYz/tSZb2AoCGRx76cyKg6pXSsjjBCGvqabc3qvTfUYGVpsKxCaGJd82Z/FAicnl/zddjmD0hdp5nkJSZFbvuqTdlri6i49nKxUJ6vGjzqzoCdIKgZ4gXqGKNliTUHr0Mr/qfdY9ZcnUy0QEe8VkSKm+JOeMkI+HiGWS1B2Sfm0Kb6GiX7CHU+CeaolHUZYrAms5KqIVf9ImaHj3VWK1wu23YyIKexmg0pKZuULfZizlrrJRUmRs/ZGpyMa1tvBmX2a8h5A5d67Qm1UII6Zf1n3z9h9tym8zIlgm76Z5KnArXGSHEj/9GHg3rND+tBz27UcZqP52QH4ZkOZe6pTOu7BCsUKuR1us8acpluSc/fnLjUK7AuVWFIGfE+XjokhjF7LyOguJkz56+IHsUh66qVkMl8zSL/iu3jhCISCCESpSG2HTE2dR2Fc3JnmvtpPu334A6H9XeZHOwxJTqF6wf7PHnxAuvTE7697aFxuwiL7YRQ9HZ2e3MaZq1ytawbz4BqJkimaeD6tUs8tdfyGInF2QlsDHYvsqA4KvNgkxLNwtOMHN+jSwNhHBhG5cL6IZrW7BzdBjb0bUv//rvk4wcwDsjmcZpkrsD6/m3y0T309CFdMxDPHiDSoMMtUtOQxNhaJTSIRHKAuGiJXaBLCy5cvgTD5tFF+S98fOyOyoClsEUDEaM5a4Kx9QSHlUQXztU3wcbbiq3M0NAQSRpY94l3btzi4ckJd46Oubg6ZDskzs42bDa90T1STY6a/pdsELPYNrSxdVYIg011EdIwMIZA7hq2w8gwZpSGfkz0w0A/9Jz0QpsjbdNY8a9OsLUiH8yWEmePmf9lOorR92ceOnNIXNidy0SJi7ucGPst49AT2uzsEK7crROZKYYicFzAZDU4w8nJKdvNlosXDjkdE/F0zcPTM29wVGajMBlRm2AShZSsWNBYa0bGsWerBi1SoJXW8JpBiGqZqRCFndXKePqrgaoUakSjmizI/KKtcxmSjx4q/ejs1EcfUiMkJSKjinWRFxx3rTVVf9w33Dnt+Tu/813+5t/4PL/+y5/gL75wkZWc8BYDX/6lp3nqElzdHRjeeJOndoSnfuWQv/wXG2IaiWmLpEz3yQtcv/gY3357zXtHAw+3mcWy8TiawZNKpHSzHZwMYmBnd8cY6xYdw3ZLExtWi45rFw852255cHLGB3fukDOcnqw5O+2JUWhiYHd3SSOBBmuKVpyyuX09X08xWLZFS68cTKCTi6Mws1fzLPsQ5tFGf58rHc35Q8ZHmU2ta9ujj3hWQRUlM44DIkIj0SApQCqFyBo8kubOS3JHB4U8kMcBVWVUjBZWgkOVTJllzGFJeSSlRNt2team77fkrHRNe37l+H2mlB5ZjDP1b56hvSpFedharyt0vlRdPulcAPqJqqlbLY3pd4kljujXDu4tFSM/lbqeycmcK8VCPmAK3mZDHMokEo2NrMxLvV89d/NaDYsy/waZy+NocxSNTato5gqRzTMDNoSp0LysF5dTUuorirfkiriao+7cTlmw+qZzY60OkQtBSHmw4MN2zd7Kuqw3zmYnIRNK/MLX4TCMBKAJDUHM0BjXAzTRCCUweGyVlLMgU3UGUnZ5Z0d2+VgoToM7IHOj2yiRxTttu2Wj6oUYpRZFfdTyOStUiiWkmWEc0JAZimNeh1KrM5KDmTcyG/9C0JaD1xNYgxgzTNzQ0zGVq6PBnQFVGIeJPKNACkswjRL9nQxcX+42P3p+e4ijI9q2q3Zc0zTG1KhKvx2MjUkzY5sN2hWsQWhKbj9QnAJzZmugM3r9QzJHNM8unM2aZUiJlKes78wEP/fTtE7LnrE6CfX6Jo1KEaKlaaBm79Ok7gQ94p2Va0nZX/VzRdbO3Z7zhxnW5++xvHPeb8ZkhN+7i5rsWcgcbD5NBWRqiLOk2Eu0qTjpj1yvjpImBKtjWp+uuc19ck6E0NAtluweHrAZElmFKNP6IkzZJlCHvtllt/2W2ARSE0mhtQbKAdLojmEepvuNptuONxt6rAVBzaiR6sBPDu98ftWJiyxIniWQQzAHi0QMmYPFggY1B93vNxCsOaIHhgfv+P4LjRif6eysl6ojTRNpm8D65AG3jzN5GHlxPZCzmMNQMifYPAV3CTUsDHaW4eytnzPc+4BmfcLFa0+we3LKcHKK/vffJ0nDKJELY+ByJ0grPHj9WzSrfZpuRT45RfpTpF8TNqcMG+Vsmxkf3CY+9Qmap5+j+fyXkbYhhNZJQkzn9MPA6mCPVfPEL3rgf+7jY3dUauo+a43MmGFYxKJt7Ap7mD442U9aOhlntsPI3QcnnJytWW9HLrp3m1RZ91v6YawCxUJHvsHUGFg6seaD1pnbNn+QGbSr2ATi1JXBjKKsBieTELxmZO5gyeSO2x0/krbmXBT2zz92ucKwSqG3MMeqexTLsdriYyQFUsGUppYa9Zx2imYTesb8NXqHZMeAq1qWJsaaPp+iVyboBm98pF5gaxF2oVBpFuOjwImsGNmiGKUWAhfQpU7lXPFaWQjz73JOH58fr0fG+EP1EkxKESkp5iKipvcWph67t0BKShoyp9vAuB5Z9Bt+5bkVV1eB+8fKVz77GId7ysFOst4MWWCEB3dOaCWxiEq7gNffv8MfvLTl7vHIkIWuaayYTrEBdAhMbCJ/6Yu/RNs2qGa+9+OXODlbc+/+GUPfs7dasVoc8lt/+S8R24az7YY//M6f8PDhCWdnG9rFkpQTw9iz3faQLX1cnnIa2/K7DW/KmSEpbS26VrceBErEz52R83VYHz6KIWY2u0DQKeBTDe9iS7nhXYw1NxBKYbIlVSeIHKFkJXTar+qZEIc6aXLMPl4nVf5pMY3s/ROJRDUz6v3lrIxDT9O1hBBnz50druHvLR90hV9Hd8LcTWNU57oQStj7TVRVgWIR8HovZc6kzgHz7+fO7RMq5S3F0Dd5ci4a5K+WIJH6vIUikz903+de8fPbLIuEwkgxyTulWPtVTmr5jBuqkxyb5h11zRBmEXx/rIKjKVkVqfeg0+fc+Sry3+woZxOKhofPqsSs5LR1Gt/GKVnV6iN0KlYfc6GdLbVIMmM28rVXHU2Xs5R6BFujRixQYI2z9Z+Vgp8pa1/L/qjrw2oYyrq2SOsjczPXeQhl8WW1XlXqOOnaPM+NCft8geTY/UpwZ7O8V7XWyNgU5TJNRkLgwaXgwrnA7cr4TzTBoY5dpUIWMEqRcn5rVTeX8UZyAAYOcNjpDA8VpKzX6mqBGnAuzoz4c3unyMBpKs4tbZ39p1Cj97MtPTukfqgmZoul47Kl3Fe1OSIzm9Xuu1Con7d9Hr13nbKYOmV9qgB69L7ELbCyvwFVQbL4HGpdByUrU+6rLism53saIJ1/yOb9IzWBzXXZJ2AOZcYpf8Wh3WmkNJpVtNaOmo7JdSySKv2QONqs2T3r6FXoaGjHSAjWM6TtBgRhyJlxsMaDA0rOIydna27dvU+fs/U9gg/ddZEpUxhtsqeMdSvXtSMuq0MXGUj0afQgq1SntI7XhIysV5qGcWbt+LyWjHnOmbOzgWZMLFMyBjl3hhSdCDjq/+5U5wRpJGbr4RVQdDvQSCAuFmxPAzr2qCqL0NKoIEkYpSHoQJAWWXYQLNgdhi2xTTQ5MzYJ1R5NW5P7atciZfcpzamSlM9nzj+m41+CoxKqAZmllARPTbvKURRMNT5mywSsmClnZZsHtpsNm75n0zvjgdgC3my39MMwKxK3BWBRU2N3CRJpY2TRRtaDe+sipDE5R7vtzCDBunjH4gCoRXFi8FSt3WFhrijwlGq3lIWn87EoD/tnT1zFCRs+Z4o2FwMiTOodnDc8mMdQwDnqKdAqKItSLDdTFKwbXn2/9e70XhvhtS8h28YLnurIDk/q08AwDh6WcEmotkHrthPDc4cYKl4UP/ekKIy3Pc1NqZmkrkZMGTvR+hh1hdTxPi9QyxaWSfP4xp7hTRXmBbzVl1OMujGrKfu8RNeJ5uSMX35uxWeuLklj5Jc++xiyyGgY6e8+JCXIo/D+G0fsLOBgN7J3teXV927zte/f4u7xAWHRsFjGiQtKnX9fBImRv/Lrv8LVK5foFgtu3LrF62+9y4P7D0jjSBcDi7bhr/2r/woXLx6SdCRo4r33b3L7zn1W+3ts+p6j02PeefcDxpStuaYX1VYkSVFQXs+RUmYY/b3kmUNchK7DFzRXp7JCDooR7XORSt1B7Z4nTNSzWnSoKzhbg6GcT82w0pyMPlawQnGZOrQXo9cgPV7UrhnNI3ivBet/EgitR+3tRBSzIatHJ5MSChyraGZ/zjENNF1DCJBzoVW3AMKHVJxQM5fihdEyW8cF/SQ+F8XwPre+ffdKLAXrvt9l+j6vDyjO9nQvOrObivFe4FMl6zjfK2Vf4Xsxe7TOHQGZGZ8eKS5Y6HrbMsGC6nn9XPVNYaa0y5CUMSjGmN9PkZ8hGlgno+dFpk5OSpmsyUwqr5oBJnWtyRTQaRoaVStoTz2JhGpLFsuqGDQk1y+pBfzJMy+gWarzjFpAw3SXyVgtz+MBuFJXYkbYpCfwaGshvChrz4x/ocBmotdljGmsTUAtG+NGUy4O0bQc1Ot6pDhOpVanaI4ypvkR/VKcQXdgai2L2F7TUndKgf6V9TjV55DK+Js8KwZdgc2UJryxOH55sgBsTZW1KVUnxUJxrQJj9mwfFVJUgqLFfkjMslR1TficFB8sq2WttECrfInNIJT4jCbNVOJYX7gmU6bFOWWrzVGxbKLD3UqxPcYhWT/DRC5U3jNZsPafFgdeqTq7WEjFuXj0qIG4yY/yjCXek2WWEZ8FWPTcl+/lykY3s03KXpy9vxxFH1T96l85Z6OZjoHVaknIEJtAI9CIEmSCfU7xh8kazFnpU+Jku+VoMzBIwyL0xEEcJdPQtsYGO+TEZrNhGBPbNLId1pysN9x+8JAhl4y0163V++b8+CPEYMQOqpkxGYutlLkvWfouMmhmm0eHorlD7j18BPGgxEfoDAJFZthLJvejp9rGUTk7G4ljZieb3hHXxzqbqRLQtiH3xr1pNCRT0xK7JVkjYdEh7RLpN7A5IQwbupitqSPCXugsK9lGZNGi24jGFhm3SJtgMZLGFf2yYYi2p0QTjAOaRowEJKPDiA4JGRMf9/GxOyoApWIqI/TZIBt5nAyW5O1wgyvW+UaByQzKmhk1EZoWtcpja/42ZpIatCWpWr2EZwMkuoEkMKo13Vu2DQc7C84enJISjBoNr9iPbM7WCMYI0cRYlXvXtEa/KEJfFtUjUcdpo36U2JgNB/Pyyo8+RIz9yqIhxoLRSGPRJf8Xo0MHkIIGsCNNjprSumA2ik6QGh0JBNqmpWs7mhhJozX1iyFiLYWsQVoMLvBzJueBbb9lvVmT85bNsDGDsIlMFBpK9q6kQxZjWYpCyIl+s2boe/IwQtdiQtjYPpKYcilNpXF2pAlFZ6I0FSSJFqfQ042PRn0eHdM6/t7xI4eaOB+LgUTpYBIsfZk37O4lruwHrqwaVv1AOD7h2SdWHN055fT+CUfvv8m9jXBvA7k/4qknLnL9sUN2Dndp1KIRe4cdv/nrz/Lk08/xf/uv3uT94y33z84Iu0tagaCGKT3dbniw3jKcHfPUU1/mC7/86zx8eMzXv/FHfP0b3+LClcs8/tg1nn/mKVaLht1W2F2t+A///f81Y1b6UTk6eUjbNnSLBf/463/C17/9Pf7B7/0hu4sFi9hazQtT5igEyEEgRKxfp9JIdnKGYLCVprDslLUPEo0hq+4DN8wUCG3rSkpNgWi2/i8l0qol0lJqkcQiQF4vZs4bk4NpxTvOxtSQ1ZhgxuTpboGAdRHXnKzpYduakdS2pixrlNcWTpBA1y7ICtvthlob4UVahalv7Dfk1BCbhRsIBUxS8jQ6FaGKGWzWVLBaQ2RK7Y0bPmmEHIht5zUdYh2GmTkSHuHOyZvXBcNaG6eABTCKsaE+BpWRy43ESTeq7zWdzJpyqblRVBnOiiz2TJZSm8Xl0efOHbM56UexTBSoYf9aT4efZ+a0VAes3GgknIN7eTF6CSrUS7jDORO+09/tRoxR0hvMeu+NnK22IUigCVZzknImDYluuVON3pSsppGcaIJWK2/M1ugxeV1HIHiwKp+7kXnhsgCNQCkQjhRYjkOv1DP5hd/CjZyp94zCYG0fowjSNNWBDBoqrbhd3ddOyBhszhjLCCaHY7BAWyr4Gb+/4LVrlhnzsUzWNFXEZeIsu1X+l7ax7vNqMOugUok2JAQzBoN/SbCmSqVbeMrEpjNij5S8/iezaBvqbItF/lNWtmlLkyNRAg0R1WSsRiHW2kbFCBKiKL0UQ9uDGlJ0oBnMKSnaxqqPc1mWqqSkRO9DhM6dnNkinG7RoTc4Ha1BKGMwmDvqKMw4y+4Eo3NPmOxz/7Ya9sVIl2BsUwPmTAkFvlacWWpwrwJBfT/XoBvTekzZnddEDTYhhSfOkQ0U2TM1AwZqe6UK1bZNbmPA5BAV5TxJMmpt46iZ1d4OV65d4pPPPcNClLZtWeysuHn0kKOTEwu8xR1CiAavqpTnRt+/WK649NhjPPXMs+zt7bNc7RBDyUx7D5ZAlVsZ668jeeTo5JTlG+/ywcnLnLrMr845ZRy0joUCbWyJEgmqpLE3mVKceSISWlgsjBkvJzQNlI7wyfeSZVSFabAedSR9oTiQUgSHppujsu0Du2LQyaAbRBymm81isb4todql4lByzZntOBKuPEmzd0h44lMMYreSCKSXf0x+/eekl37AohHaNpJlTTzcIjsn3D86QYdMGGFn0ZC2W9J2SziCvN8hzQ6STZ+lcQvj1lgTFRqdEqsf9/GxOyol1qIeOy5R1PmarmnJmRw4Z/wX79QX67LrIGfGvp+lWqlda3NW75eSPB1tnnhJmUowhi+LtniaESp9ZWg6NwpCvdcmRkoH0RLRrVF8ZgKh/jwp1mIg4M9yTsKV59SizGfvRWoxWIFAuGXhETgzpkKIxMa/aqdle6sZBSV6WwbYhUxWRIWmXdI0W1TNOWtjY7AvF+GmyfwrW2FZEyNds6DLijSddQDvt6RhYHtmtQUl2h287mFcLNicbRiHsToWH6otyVO0rxpDjxyTACzGzKPj9lFHGT2pvwamlPh8tsAbh2VYysAXn7/A5x7f57mdwEGbOD0+oVkkWlH29xvarmGRhGUPYdnSdUJoM1cudoSciJK4f++Ek/UeOexy7fIeD4fEnbMNCeubEgVyPzJsNmw2a27dusXJw/vE4YwXnn4SfvWXeeLqZfYuHHJ4sM/lSxdpu5akme2YeHh8wmY7sO1Hrl+/jKqy3qy5e/s2x0dHZtSUIr1sTq7BLgqiVqeUbTJD39jgAlGEYG2kKjzE1qqx5ol6t3WZYD8FXjYxWoFRVbsBnCcHpxpMrgnVaWJrJNrnWe1i6DBQIDUle2jLesqtq5jBF4p1nJzOOGvRrbXpnu1PM3yDy4beGZfSaA4dosY2xDzTOy3OEuGqGRlwuFgxWHNdn0a/7fCWnOo9FOeouBKVaz94ij9nM2bdUAjB3ytUGSZ1W5TzwSSn7MyT9HVZNBNJxVCanJjygs91icIGh/Lk8hyF2WlynGbbrmzTuu+nq+u0DvzuMjP4nBZoynSTxTBUrPcQ5/4+aUbJE7rdwVugyWpFvKmcapiK/pN1mxZRGC0zp3msskaCG5WPZsTrGE3fJ0p6fyqdssX1aaWMp33Ogvguz4LVNLlFinr9UXFYxcemOKrnnU+pMJPiGEoMvqFm2eUi2sWzM8ZHb3OrIFGs1nJ2wwazKgaR/+f3qslw+aK4cy3m2LqUMV1lqAS7j2zOgAflztHESqiyOcbG7IOcvF4GnycfXa2P45WUOqs1mWUbfDyKSLAsiX0FzRYsmjaQ2yTecyprSX595DH1Z3lkWZiQnXR32QczKmOVOpWzLMLcBnK54Ot+tsnrlP95jjnJQ/KBqHu27hvx6xfHbx7A03qP05hO8rY+80fck2UXXB9kJY+Jse8tip8zEqLByDVXWnmb80laFX88YKQoESxbgNLG4PposgdKBhiXqSEHcjew00YaEQ9+5Mn+kFBhifNnCVF8bq3mSZllgstHJVjwrMLGH7E35vuT85+dVsd89cwFsE7PVG3J4l67Bldch03BsBoQl4As92D/CnrhMdshojR7S+K9G+itHfLthwwhkNsWWVqmKY4burMzdD3CNhOahenmcSCebUnDaAEGTVWOVx1Rr/6oZfXxHB+7o5IqY8VshlRptO7h6kzOFdg5BkwpEUv77HLRommk90Y55TNjyowpkXJmsWgJgyNU/dwpGV4REZqm9WJ92wwB816HYWDRdhSmiLKeosOZ1CW0ZWpkVud9fjqq2tLzr80NgT9TwIggEqtBlXPpQuqL2CPSpSNriKFmWKoN75tVELKPowRjlFAvopWmQ0Jn8MLQ0DTGmmbFitnSl9VRMU8/xGhOjTsqIjBs1oxjYujPGJMVUyINjZgDte06Nmdrd1Qcv83UZMkGaG64PDKYZVjqVpwbXHzIWZlS4zr7LNUBqg2nqiqdLp0yjEk56Eb+0icv82//8tOc3rrJXrfh+OSE1RaWy5bV/gJtFuzmQM7QNiOLLpAYuXRoBX6a4efvHHFz23B7s+LwYJfl/TM0J4tqANFNr5ASYei5dfsOD+7eZjy+yxNXL3Ht0gG//tUvWrf5piE0DQ/uP2TImdTD2+/d4vj4hLP1miefeoLNZs3t2/d46623uHfvbm1up3jGJJqIC2VfeYQGtaxGHrMVA0qgjdS+D4j1EyjrszDmmS3rSi+r49FtvLOHi61xo7rxOZvnytQkkKV2UC+OSsGgZ9eSKY01ElgiW+CY+vJLCE7RGyAnJA12XeK0hyUCo49JopWWEAJta3jdQn/pFgtooYst0Tu//eoUOLlGdbyij49/tjrlWp8759KgdbaqBXfK3DBsLNtZIK1GPFHW9qTe3GSgOlHzzIUWs2O653OK0RVx2TIV3uIWlHiNk84VsD939meWWdToEbLDaZx0MoqmP0+wsWk8H7l1mVT+ZD650TBTiKpuj6Oe8Siap2S3oAkBDS3mfAXQgZx6c1Q0A417qMmgDKUfjzsIIng/oWIMzO7La4KCB7qqk6JaDbxiRjBzMFQNTluya7GJZKfaV1VnjDOYiXiBc8X95/MZJ9ygDf68MQZoIrVDfK5mOEbhGurers8qIISafS8wKwmBEJ1S3q8YYmPrIOYpMOBwD/OZ3FAU+2zwekoJ1nchIETJjJTbKyxOZhg0TkKwHSYISSGIKFCk8lyWEShrLLhxPK2L+QqyupNMUghqhc91fiTUupTRg58FsjdZ4zKpYc7bntWUnMSTiUhkFqv0lalqhDT+LGU/WV2u1PVfnLLizE5m8PlVODnIzDKVRb2WVg9Fbpd9Pd11ifTXD/k5yxrOKrN3an1fybp9lF1T65KCkFNm7Ac2Z2sylq0fkjJsB1IhnfBnyAUJ4mK1hLwbMpIHJA0Gb2o8kFAIQzwwV5e1B9z6KCxEiKIed3Wj2h3BKlPL3kKNNc9tizFlywpKCW5Rxy+PmXHMEwGSzuu2oDI+zuWb0feVX+pcfYgYqIxfvWB5dxkRh6nWPxSpaMQosthF9i6S9y4ZPFoyzZU94sV92F1wcvchozaktiNeaJAwQG5ZpJF8ukVPB0SXRHfq49hbD708sk3JZe4Eu1QtmSE9V6rzcR0fu6Ny+/Y9aifyGW9813S0TaBrAgdtUbgybWZmvr4qMTbV6Om3Ri+5Wq0QzOCMTWQ7jJxtBk43PXt7q0olbAoERs0M40iIkZ3dFavFgm3fs91s2N1Z0HgdxZgMB7hYLNjZ2aVtF7VRWRGOQSM4rvSckOBD+rl+bv7zn+mkzBSb4fUhpTwFX4NFyrLCg9NT3r3xAWdnpyxWuzSxMYXSGNtaEWip4KBDYMyJccxsNiP3Hp5y7+ExNx88gHbBqMooMIw9Mgpt7BBtiNKS85Zbtx8QxwH6nthFdg8OuPyMcHa2pl9vCKk3nSqgJDRENLeErqtOSSTShkgTG7YuVJrY0DaNFa/OfYw6WEoxEj3eWKF+Jaf/izIrEqwkTjXTNubY7bUd/XbL0Pfsdp1nHCCNI+owgYP2gOurFc/tRzbNhj6NjAQOnrrOuMmcnCZ+9uZDnri84IlnOh7cbnj51TPevf2AZy7u8OQTDdeudiz2LvOjn97iv/vmT/nJ7Uxc7nPx8AqqmXG9pk89X/rsp/nkJ57mxU88ybA54XBvh+12wze//z1ijBzs7XJpb0kTG2KIbLY9+wcX2L90heVyh3FIZpjlxKJpuXh4kScef5z7J1tuPTzj7PQM0UgbAos2mAAu6qZgxLOtlRiEBmidvSSJOfmF272avT43GYuiIubEWl27EzW4UWtYdY+Q54x40zZS74osoBIY44jkRKO4kjA0U4imuLLDcsTXMlm9yL6kSgrsszGDK49uIEwK294WXfh7HDZbnVqfRmu8phCaZgpI2KdMaehMSU9btmxw6sjGaNFdNzptD1vthQgGdxvEu765AgSmgpaAtNGaEwY1yBhu0BY6ciZ5III5ekVDl/nxmh+/Pbt2eb95VQheQ1CMlkLMUQzYYqSpSemMQDPJ6exOWTH0xKmu0QkDb86Kr6MZY5j1GwhOo1sWlEcnq+wMPuZe/FNsJLV9H0SI/pmcM00RITmTxsGY7EQYt1tCo8SmgxCJjReL54E0jAzbtWXQxWjfB9yYTIm2iTRBIAaDh02zX6PvIrZGJUHjkd4QokdbSyF0ckPGWBSLkRe7zms5QHUENQjSGNpZIMDGTkqtUjGU/bmTd7AOTUPbRhaLDokNWx2drc4WQGhbN+ZihRQL5lhUreZ4opwzTWwmGVkyOUFom5boncELqkFSrusijRbkSKHUKSrBjf6cc11zTdMRojFRjtnmObrhGQh0TUcTvfFezlYoHyywMaTEJo8MigUnAkgCNBjNszsDNVCCyQgjUhCiOhTWZzRnj7j7MhuTGn1uyubcipwzwKRsGSbHRTCHIGmoxn3KxuwosdToOnTKA0lpTLMASKhQq+IkIMKYE0MaGdJIEK2kPr/IppgCm6VZIRADquO5QGqRa2bsTk5ZcXDMuSvrozx1cbQ/0uqZ/i6WWbNecGKZeqwJd1aDGNplrSZpyIMHaaU6KeWMQZVIJmqiQVk20TIqpVXC7L1Jbb2HCJ3Yl+lIf7BQWOgAzaRZrxT14EvXiJMxFadWXTxOTtXt+w/oj445unuXtumIQTyY4fNWGQVKXjX8GfPlY+51xWNKbBW2mtDg9SjFSla3EXFZruYQFUcl05r5HUcGOSFmgyjGk4Hcj1bDvdch2QIJbdeCBtKg5HZF2ulIMSP9aPWVGUIyhaws2GwCIULTKC2gmsh5RJwX7aNWxr/o8bE7Kr/x+WcYU2JMltZzX5PtdmRM1m3abIKitJzXvEQpfc9EA2aTJTCkTPK+JlaobVmFlJV+HFhvNuR8YFeS+Ra2Td5GK5hsm0jfi9FPhp1KxzuMGSQSmkhoGzQG6zbsmNUG8agmHnk6755U2EuNoMqUyv0FEuVPo9atsVbFccvTaVK2ZpcPT9c0TWSXhqbJ1kcmN2hh6xIqXEzFnDErnraIUXIFut6sGbMaA4lH3prgMTHB6JxXS5a7e4SdBFFoVztI09GudkEahtOHjEOPaiI2LW3TVNYp23w+p2J9oefQmBADjRtgAWbR1WK4+VfF8xZDW4leeF2uIz5Q2X+2j5b6h8l4KrUDBVOeHMYSgIdnI7dON3ywWXPt2opw2rM9Tfz41WNu3Om5dXfL7fsP+dXPXeDShQuGYU+ZkAPtMhK7iDSBCwfKVz59Abpdtt864tZJ5uFmze5CGIct/dDzxOPX+dxnPslXP/cpfvrST2nalm2/ZWdnxaLrODjYp2sMoy0SCEnZDgP3799jf7Vgd9kiXOT05Ij1esuDo2Oef/4FjvvMmx/c5ujhccXHz3tRlPSxqu2lJka6tkG3yRSTRKuN0ICSEA/VzuEtFlI6v4bnBlTJDlhk0/ZK9FtIGXcGzACUpjHGyNqsUDwDgGcNO8ZhmGEBvE4ixsmhcIO4sHwVJ0YIjme2iPOYRuu4rZkQLeszptFoTVVpmpbS77xAMMDjLkxKre7hooeKIyPR1p02XgSvtidDkQsFupOrhTPBPG3d65iLzVD/PimpmVbWyWCY7IYas68TUvwQqdEAf7/4vRWVVy4qLgyK1SZi8lpL9tbXkIRzn5NiiZfrVBYHh11RnBgFD8bYQxS89mwRQXGpQefrbvLHSkimPno1OrTKipwzeRhMBiW1IMq5wmTcQDWHMsToxfSeKRSjIzboXvKssTizoTvkVWQp45gIwaKyMVq/g1HVQi3iiTop61cmyun53MzOKXAOIyQy1QLUTJtIrW8REZrYIk3DMBolNxKITclimTNcrFJ1+uAiZ4M7TTDWPWDxiTLwYYLqhZIXLtlKdSa/4uwK1iDYMyGiFPrr+qy+jiaYpNfNYFmPKWsnXt9h9OOx7WiloVmMiBR9ItN2rKbb+X0xhUSlGuXTGrb7m+rqJv1ZC7DdoJ9mCx/34m0wM/Z55Jg/t1+77mMzhHOBwHmQtwYFtLQUtM8EiiE8P7QuI7emzl0ru+Ny3iSZ7ntOmlGlnNj6s/3ufyvBhGLvzGUSswyS30yIgeiy1sgPxbrTuxzP4AEShytSAj+gLqvJI1FMbo5jb2VQlMB0roNZWR4T5GCOyzCOnkmz7Ie4PjCDKtX6m0IWE+MU0JkcMtdhsUFCZL3Zsjlbs95siXFC8qBlrOZj8ugaeGTW6nBqXSLJCXEGMnjwLgieHS3jM82y/eYtJfzhLOCtDApoJm9HpM+QA3L5kNAtCIulnb+LsIiwt2tBMgTdbpH1Bs7W6DtbmxGHx2o2+KwU3VcgwRJQiR96xn/R42N3VP76r36K9WbNer1G0+DwE+HWnYc8PBu5f5Z4/+GaUiJeFHiuerU0CvIKEQmMKTOMiX4cIVJhT3lI9MPI2XpN8v4pQSbYmYgZIbFpWESL5oN4liX4ohNSv0Gic+O3DRqFQdUZYaz4bsyDK/VJiVRDwhez1OhkMT7+2XzLKkCm/yjGd3FcsmY2w8DZdstq09EsEhmLVrQhV0+bOrYmbMfBNymmQGMTkRhZn57Qp0zbLT2SBaWJkgCxbdk7OODilcu0TWRII223JLQrVgdL2mXP0bCh36zJ48BSzDBsmlAdAa3Op0XHSiMkNDs8YNrkNY1f62xcYLlcLpTMdezL4Og0ZkU0C+JZKBNG4oJojofVbFEz8SLZuydb3n5wyqv3T3jsMzssYkPebPnOD+/xo7fXvH5zzUpOeOxyx2ef3WfMI20U9pcd+4cN7cKaIB3uJX7ji1f40ucv8cq99/jWqx/w7tu32OsWpLFnux147LFrfOqF5/nyFz7HzVsf0HQtm77n0sULLBcL9vb2kGE05qIQGVTYbNY8ePCAx69dY3d3h9VqyetvvMq9+w+5++CIZ579NHeOz9jf+xk5JZIzsBVj2ua1oeTmYxDLdLYNujbMbULpFh2FuSqEki4PNapYGs7V+S17NwRKa2UJgnUTNSfBgTHUCQ0BaVprxCgCo0EvilEkMnUQR73gWfOE24/RGJG0NLGb+kZQ61FMSQYUGazXSum3EqIZpmNK1iFZhW7RWpDF7poCiwkzRVQgKyVyN2Vb1O1AcaK6sRo7UjMzrmKK4yCTrHIVi44T7C54V2VThAX66taIK7biT9SlH8reKBABai2YeK+Fqkg1V7y9FSEXo7hIjmksxe+zCCSRQOmHJPW6Wr+0GA9uudhYumnruIaJBlVm38vny6gKMjOuq3vicLjqQAfMQHGIhqKQM2kYkDFDGAldh2JZjSh+XvGalRCQJhKSR/7JbjgLokJWo/ZEqZml0hvK7lcY+95pjX1PqZJziXa64+5WR2jElbx688OZrKsy340lL+iUmX1a2JJCCOTiDKoZUyG2hDTYugvq9VOTcyB1hEpGTzwrWRynXINGMp/HEGp8QiUYvNjrl8SZs0Jw+Ic7ecENw3FMRhAkOIsaKKVRnq9TJ7AR8EL9ZEQSQWo9QMrQLZYsukDTbpFx8IJmJp2DG3/lSXUKYBUEh842TzHggzsMdh53UnxO6v4qR90K04TJ7E2lGL6auo+YA2Xci/OTc4HOzBlSxcutC7zGDdUqN5iCFfPbKnpOXaYwUSXPVwCE8/JjLqNlMofLg9hYWEBgaupZIMFMRjIlCCJOdGRBsZQFaYS2dUcl+PorP7sjgYImDzw4yYWh0TNDv7WIvrRm+fgDKFqzYtm4/RjTSD8OFpzNmeR7utAkp5Kx97EJhX3rnI3n60YUcZ2x6QfWm57NdjgfvPOxMoKJuVNiAYNp7qe/CY+uDdN1Q0rWf3BhTkqQ+acKNn+qDUENum8ZbCAJmmDQTMoGtWs2mTiCXL1IuLBP3NuF9QhNA11jDsxyBW2Lbs/g/kP03gPyBx/Yukgj6GiC1nX1FHwTVKL1D/qYj4/dUfk//vVfZn16xNnpEeNmTWw6QrPgzv0HvHF7zcs3Tvjbv/8zgkQWy9ZrTLzbKJMiTCkZVlSVgwv7nJ2tWR+PHugzwZ1Tpu8HTk83bDd9NcJTpg7eMIzExvqFLBedZV/UaIolBtoY6YeBBlgsl7Rdg0RhmwanO7RNENTgMcWDLwurqE5wBWm7bvLEPZX5z3IEz+RI0HN42CElFk3DxYsX+eynP831q5fZ3TmgRDFCtIWC2L0UdqzSGVZNbzOkxN37Dzk+3XJ89g79sK6GkHi6UhjoOnjsymV+5de+zOc++SwxRo5PNowa2Dm4AhIYhp57h3t88OabnD18YOxaxVh0A8OavDkMwnsUjKM5mZvtQNd2FpWoQdzZgJVxngnTGp32N2i9ngssNw7N0BNyoeIdvI4mBDZprJEz9XUXopBi4Os/ucnNO3e4vHiep67uszjcY33/HS7vtVy+do3//V/7NXbzKXF9yuPXr3P9CROMsn3I+/e2vPz2yOULO2zWR9w7OuXOvTX9mGhXDSMrNGRCzLz91tvc+8yLhBD59Gc+U5Xj1YMDbty8yUs/+Qkxdjz11NM8+9xzvHPzJnfv3uXB/Xvs7R/QLJZ0Iix39kj3j7l59wH/4A/+Dm+++z6vvfUOq9WKrm1qsy9Vc8pGDIGkYyYlMZ72DE0jaJ842w5sxkxwwgZCg2bD6xaMeNY062eAQQ8x5Ig4NEuDN110qF4XGzTaezfjaNK3iURZQIoQIXtH+dIoLqswZAhdVzHcoRQAR6s/SSmRtmvLOgVrDjcVwprSSWOiPztlHLaoZrrVDlmFcVSahVQqZ4gGOVOl9LEvWbhcjTep3yF4/UAmS4ZQuhFbtBqPBnolA9LECWIiVKcrzmogiIKEpgZ51GFpMZToLmRJfh8QYiSNBkNSmQM11NjI3BCLGgg5WrY42a05qmUi/8r+evT7Fak1NZTCVXCnxtaOjoKKGf5FduWUydtMCqnKzRgjaDS4B7li8+dGkkik4K8nQpXJtCp7NWcbZ+skL8SmMwinZ8LbxcrXuzXHtUsJoW+gadC2q+QLoWmtGFy88WmIxJTcD3KnWAJtl528JZu+CoG2aWoNlaAsd3aMVngYwYMMoVt6lNEcChVzgkYd0FGRjGdYWlSVMSdz3lUhFfp5k3GlKaFFlWy8RAI6GO1qHhPbs1NC2wJKExt3KOI01iLkbJm/Kh/UpH5szFHIbVMzpqJCEywDFNqINC2IBfDm8DRxdq8mNMRFB8D29IztZms1V8VIFohYzWOMgd3VPtGUFv1mY8GEZEW8TddaxteJEQSlXbUc7LQcdEI7GHX4kJMtWsNOoWK1gNkd5OTsfirBgp1BSlLAgjPJg1jBCqhTpq6PmjmdHeLjaBmFXH/WorPO1ZSJ19N6UCxEK9LWVFY9IoExjcZtUESXy7B5crOquo84zKGu3gSC2QHFvtLqhBS7ojhiZtN8yCHRYkA7uQDl9WnH2p+1Psdk2mv9v96bj3nOmc2wMccpqzNIDYxEJl5OP7s7wVY/bM16zZ7p6hWqYzODgVrPt8ym7yvhQr1LCfVep7/4XOmE2CjZ0/mIZ5/rC/sHdMOI9BvGcbAspgeVipCsDvMvmK9ffLhVWXSrE8IoTiDlelGkQSSBZDIjOUIKgXR8Rjg+RboT4uEG0RHVkbbbko9uk+/fQpcRvXABvXyFflvQT8qiXaCna3R9D7lzEzk+JRydEo6PGTZrhjTQ7C6IOx1x0dSKwexysm0WFhz5mI+Pn/XL2VOCjkgegRYRYdFElhE6j6iZhz8poOBhgGr0U/C3mcsXL9G1J8Y6oLYhmiZaFErFC7pHyxKIIK6sVZVxNKWRUqLrIk3r9Is5odpYxiQnNFm0cn+1ZHe5pGmiQYJGEDVlUe8xP7od/Yn8l1p0VaOQf46Bm70nOywrepTG2Epwhguhi8KyEZYBoqoVvrogyJ46bZz9q0RARGyli6fsckrnjAArYpuikyJWgLbqAm0ba3pTYkvUQNM2ZIQmLDi4cpWzkxMAjm/fpOsbkODKMtMEJQf1aJo/qFgdUxZLWAbVSTg9eriwnKJDNl7T6DOrKcCCFzMHT924HpP1A0munKZa4EnA7ixa7h1veGnd8/1XTmgXC154quOrX7rKjfuJh1vh5PiU1U6iWzbcu3tKaCF2cLCK3Hgw8N2fn/DpFw6JWVhvBt5+/wbHW2XRLSA0NG0LdLz97vu89PPXeO6pJ7lwYZfYtgiBo4f3eXB8wt2Hx1y9eg1FScOWw/092iAc7O7Qtg3bfsNwr6eJLdeuXaVZLHj57Rsgwtlmy/7ugqk+yhRVQZJL3XmeBcyZBZGFwDYoSQckJ6Iarj1LYaKehGiMxYRy6IyCqLGyZDWKTtutdr3GDTrVRMeIZKHpca8p1/OCTil8Vet70hiBtoQGxelyXYGLJmNSw5R8VJ2Y8Ip3rtmYAZc75DSQho0pc8VoyL3AuBHf91gGMrrDYErIFX2VU0JTghJq0BTEoCy5XNc7XNdlD1M3X6hNvopGC4Lj2RVyQmoavcBqimNtckbVIDIqdg0N01qOnq0UzDiIXsvWOD27xXuyb0WpvTCMXscVtOBsiHbDpcjexlZqQKAyDIrVHmRJ9hWtj08IRiNLJQaIiNSzNAEAAQAASURBVHgjzcL2J9A0PovORleOEjEEn1tViA2Sk7MMOlV9ENCGRdegKTEOW9C+YvUDbqQ21gxSxOiMh2GokJCuiSSPuLpPTAhC13VWGOxQkhg8C69aMe0xTHU6xaiMxtcOWO1CEmeEK+8p9n50pszcmBGrCiFX2VjhggIqpu/Us2wiDUEaq5HJAzoYyUyz3EFCsO7aOs1R8MxF27SIs6ApmEMi0GSbU9vT2Q1IX315JJMYk1OiumFXGPsygby1zPpFYLEyKOmQkrFLihARzvqe7TBwdnQKmulEeG5/Qeu2w2Y7cDYOjL2yH0Zar1HotGGxPWExKjGfQkpkDY46nGXTiq6oczE57UnV4KbVSbNoerFJdGbEChPVf92LRbcIs6L7kv0o+kq9h1xdwTaLWsa1LO5JJ1aaYNdLASniq2YowbdbTWhMr3kUgUlf+h3Psi5aPjMLNFGexZ+tfFDPPS3VKSl/rI9QhllBPXtQSA0mZ6iAlqzVY/H9WjkP48xFzqJlw0LszMkUC1BJNJRBqakTxGv6LHiTHTUj3sS75NGsFk3rOBkdtzLk/MhzuZySEsCa7g+BVdcxRusHU3rfTTbJBNGbzJkiT+WcrVdhiOevAKpuc3ofNBWyBlQSoqHSYpdVWlt9BKE9OKQdB+KD2zRdS3Ko1mIRGY7uMo49ulgRms4cwBbyaFkryUoeR/K2J5yskSEjsSVdvAKXrxAvXaJV048haF0PgjmTBvX8n4CjcnxyRr85o18bHCikQMytRfyGER23IDa4oxfqCtSGOcWNEbygKSWuXr7MomnpT9eUbtZt25C9z0IalaH3wt5a1G3HMIyMY8M4JtquMUclwOiGujk8iSwBzZnD3V0OdnZYtJbtIWdaNaaKyi9fnJK6vtzo0+LRP4Lnp2xkPffa3N+u6WNKUbIzqkixtSa/v5FMk0dCGsj9lth1XuxpQTARiM5gVgxzD4WTkjVF2mw3jGMFsTiFrfgis8hGEzLL1oyGYRxhhHFUtNAJqkVz9y9dYXN6iqbM3fffZdu3IA1NSFb8F9XqHIQaySnUmKV3hHqWa+Z6UKMe7mhUJ6WY3uc4Wusoz/z5SVhnYEilMRuzCJnMjEhld9Fx6+GG2yc93331lGee3uWzL674S7/+BC///IjX3zjmjbdusXx2n2sXVrz22i1iJ6x2IwfP7nLj/sh3XzmhO2y5vKM0mKPSLw9YXriCEOi6jrZR3n77Bt//4Usc7K74N3/zN1guOmJsOT454+j0jNN+4InVDiEG0nbNpcMDLh0egMIwbjg5PePo6ITrVx/j+rXrPPf8s3z9j3/E4q336EczYqujLMLEvW5FQ4a4cwM0ZRY5syOQO2FIybITkswgQhiTevDQ1olFX03J931vtRWjFT6nrPTZqCeLOyN5cMWVnfsM4rCdoJOezdaMcdSrrYsxD0RpCcEMy1SUZfZsTc40ml39YY11K4IlWbQ8Z2LbIF0kjwObk9Ei2QqtBEITLUuSBak1XJmGWPdyCuZAWI8OW19NNWxASy2FKGMTkdHNSzHzpeCIg8S6f0pjwKx+z2KysBYpl5oPVaff1dquJLmjImKMfVrm2Q16o5o29pvsGcPShVyDR1uTBTpEwOtQzZCNTpFcAya2kYLM8Ndq75PGgw5OTtAFIxRI0bq+F6Mg5kiWRHJDptLmFo0u0DVudKgwFHa4Eimu9xMrtCWn0em+xUk57G/LxQJNA4Nmc0wdxhOhQlOljTg4CcpY5kQbWhonGzDHSIliDYCTp30lm/MSPeOUkwWTonmiiDSMvSn+WNY2TnnreWdyori/ErP1ppJIkwMpl3tKE0wwi0GmfLNI0xi0LSsiLUEaKzJOPXm0rHXbLpyYxgJ4uNOVfFzbKDCW2gUlaiKC7yeH9OWJECJJYsTo3NPQ115FUuB/atmIISe6GLh2+QKPX9hnZ9mx7rcs286CaJp4786W29tTHt65T0gjyy7ymetPcBATDZkHZ4m376052g5caQZ2g7IUpdWAbnrIo+krzxoVuUbRF8XiVt+bvpWymu2hWUooz3WE2SLe/tYhhL5WvW+HCdPJlJ4Yx0yOpmLkwixT5evCoZVj6R1VatSKjA4lgDHTg4plghyaaht1btzOHIdZvKA8Z326ekKZ6pKKHp3+VLQmNetSWMjwwF6VL/Mrl0xScfQc5lTPN2XHpzo31wACXbQeRyEYNMyWkbs2IlbEHTqz0YLJ6uC1ItVRKQE5gTxaQFJCrE2sxXd6E6LNmmYSStN677xx9MG2QEhyW644KnZuDwQL7HQd21Bc95ltUwuZZw6gj5HMfiuvmOQr77U1LFruw+WLn1xn7w6ooYrUG2p6YEtV6S5epjl6SHhwi2bYIskcla4T9Pi+BYd29gntwoJcoch0tUx78uz8oEhoYbVk2DkkPP4k8epVpN+iq9FQMuXpRGy8HSHwcR8ff8NHaZHQIWGBsvVF5uw2YpsnYJR1g/ZEpy4M843ngiZn6yS9t9ohj4md3RV56IlBWHYd2yHRNJHOmVMsI0BNBRZBkLPBfparFYtuwXKxJA0j4zBYka7CMCZOTtdcPLzA1UuXuXJ4gXEYCUDTtFR8RHnM4gz55hXw4kmLGJ+j39Spm+8jg3X+V9VqnJWCNa0c1Xat8iybvmfbjywaM8ZQoxUuGGNjqPEoukIp9hOxzrDWh8XrVXxhFbhceZ/VCEi9NoplYzDYRXAxPw4DTWzY3d3h2vXH6BYtTduxs3PA/o2bnDx4wFnKNI0ZuKMWmkitmVV1AzT5s4tMmGIoWNtpiZR18uHhtM1saWWH4JQomxcPq+qjI19Pu1FFlw2LZodPPn6ZS4sGtmtIhvnWoec7r9/m4LDlxecvcemgNQx4K5w9EC4s9/nsM5F2c8wzzxzw7NNX+dW/8Awvv5d4927PpQMIbUTjiiFt+eZ3v8f3v/cdnrp2yCdffJEnn3ySTzz9FNcfv86XhpHbt++ws1iw6Ba8/NqbNDGwt7vihWee5IMbN/n9b/0Jzz/3Sa5dusilg11++5/8E96//YCdnV3mlMFGTiGkkMiMqCZySIRmpJGeLp0iD0aeffw6v/TFz3Hlwj5Zlc22r3SkAIPXkSQ3kCzTIrzyxpt88MFN3nr/HXa6hjEl+vWGzTiYc10oeUWQYDCzgBCn2j8kGguSCgyVmtt6wHS6QEfYniVOtwMpg8TIyempMxRFU4eePaxMW2Qj4HCj3QJRmTCuYUzkQThNa6Rt6n4rDEZdCIzZ+3wEb7pXjBhffEMJIniUtolmKOvoGF6FmTlTHS1Vgdja2lTcaafCnTQZsYBIgyYzjJZtYzhlgawDY7JyoArPcnhaoTVedItisZCGvsqVGE3BI1iQxoMAJovL33I1dKLX3KDQtpGxHxjHkd2dXX9voO1a1qennJ2d0a6WSBO807w5MJozXbtAVbwJnVE/Z6cNVRQVpceKsYNMjWrPFezimV+kvm6yStFZIOI0tlYzMQ4MeXTBZ1DBvA38/2n7s27bkiu/D/vNiFhr7eZ0t8u82QAJFIACqlCdVCSLIkVKpMwyTZnS0PCgHu0HPcqfwU/+Ch5+tIf1YI+hYct0R1KUREqqoiiyqlisQgEoAAkgE8juZt7uNLtZKyKmH2ZErHVu3qwCVcmFcRP37rPP3mtFzJjtf/5n3vkyRbokMpquUMbgC0zFkmWWrQVZBK1d+cWYDF4MFsSlUJ1NtUoFMF2LOVZFx2YWlUIpA3ZdRp0j4xHt8MVm5BQLPXhdJ5NfTVPpybIXnSbyNPL8ybFUOk3O4v6aNnxRql5vypJrK9W3z08oay98Zdtx4WEoDfE3u8xuSjzajxymxDFlo0qvBBjFIKqWSeK7Sy62K371G3+dv/VXfpEvv/4Kjx89Ytuv8CI8uX7Of/nPr/ndp5f83rvfJ6TI6nTg13/jDg9PO3rf8ccfRY6Pb8j7K062HWugd+BSiehdBzkZc5ZLhda4ehJFNpb6vdqZalPrOAItbXWqha3d/I6UFk4YFR5arHFNArFEIVjvrIjluWMq9RhxuGLPcsr11toeVMj40pW1RujKOlbrOlCRCC+7lkQfipDUiGJyIwKaz1ENTO15ZtKjdgPU56uBz4x2Wb5J5rfXOy/m2Rz2Wvmd4sT1bs90OOCCY1DH4XgE4OLsnPNTg0w+u7oxH6ZUTrTAuK5uduwOp4gPDG5AZcS51NbeFXhpSqkldWO2hvSalK6PV/3CGpCRgZRYe0/fee6dn/H4+SXHlOYZL1r6IIEuBC7OL7h89JH1tzD7TfWSxV+0fZsWls1SOanEAULpSQQo1OE+lAplgcFqRmWuFqqD7I6IeDyeVbdm9+FPmQ43jH/urzOeXSDnF/jDDpEAGjg6kDe/DF/8ORAx25aVLBbGiThLDtUq0i8EJmesY+N6gzvu8Ptr+h//gPDW13DnD4jiWh+ZqCUqX+7r/tmufw2BSo33zLFvsXeJRGt2t/J9m1AvQTz1Y+ygxmmyUnRwDH3Hsc5HKLMXvPesV4MNoCubXqsbjRNeK5WmBRN9F4DZkRVqABBZ9QPb1YrN0PP8OJbkxczzXUSLFlDNLzY90GabvPBMP8PiLf5ehf/FlamKbH5Vy7qLm7MLs11fKOviNJUtaArY3coAmGPvvacLt5uI2y22l0oFqVbFvGe93uA7T9f3bDYb+qEnBHPeaiZ4ro7MmZ6WpYX59VIbqY7Upxbh1spJ2wctQfGc97Z3zLZh6fjcvrKaY7zqhC/eX7EW2D0dubw+0jnhS2+esfeZ184HZJrohw4fMr6D66Nwc1D2x0iOI84Lq+2KN++tee+TG1I8IqwpdBEcjkdW3nN+uuHBKw/w3vH48Sc8u7yi71cMqzXT8YhuN3R9z+Gwx3tHFxxdv2JK8PjZJfKT91hv1nztq1/mjdcecn1IXH38jKG32RFViWvNUNf/NuVYSrlpZOvg4dmGNx9coKrc7PbNSGaFGC1AibnMG8CRnOPjoefSCxJHnM+4lCAdySVQUe8o9C4WOKiVtL3O92FUmAmc4MVkzzkICIOkEnRHXBoN9pk9Oh6talICdPsoM+YF9GQOp1BoTIuc59ToXtNxD8m3zH0rGIj1WliW1AT4tjNRIZmLal+ZvVGm+c3yXMTOYKeWaRUfiw5RY1DSWWLrQErBhmxZs3pn/RA5kTWS1PSscwahnJ1Fqw4kyjjqbFS7uTQs18nY5qQtZqy7mVa1JgoAg4IVeIvLgelwNL3c+zIjwxvpQzzg0hGfhTzCpKXRuzTcxzjVuKmsb8k85/qsasG0WMY/1WC1HeLZsM+QCVMgYoqlaUstFRuXjS1JBesBVVeq91IIXRrfA7VRXkM5MzVolMJgV3RrDQRyUuKUmSajzq6DeBET9Vz7TMo6gD18/d7arI0DFzIxG7wjZpuBkotzVJ2gvHB60MUsKAUprDspR3J0TcWlaaqC15JCUs2XLmFI9uyJTN85o+oHVgqaHdOUGacMUyKPufUIVUxSa7CHYlcTaKJzyuCUlcsMkhi89VZNxyP73Y79bm9yJeBF8RqNZjiLnVG0ISRy3Sut9YASeZSfJ4rFKNUKXZ4nKIQIunC850y5airV4lrBLyaisFEJc+Wdxe+JgqQSsDDb5Waj5fa/c5XnGiYsfBSBklSR9v3WrFyO36KjfxlwVve1pPSpidNma5sfsTDl1WlvL873OQcfcrt4017n9oufcZmfYYnbVAiRYs64BK6wuGbN+GD9SlEN8eFrYluZewLLXrjQ0Q0rm4vnyr6UpIL1x5W+RQHnzI/xFf4lFYa8UCeG3UNjZLMaONmsuHt+xuX1TZOfunIp2731oaPvegxOnl7wJQrQWYssVgRy3R9jWZl1qyuSIPPvIreRJcv9Kq9QG/9Fre9vJJGGHk5OCNtz8J19fOia7lYvSNchPtg8r5RwaqemQras18z0uvV7G8yVYWXzZHLGdQMUKGkVLSkVnZQiuRBbfJ7Xv5ZApRanqgZpWXqKc+zEIBYNT13hPzS2GzCDngrvtnPGyJNH49+epgnNmRA8m826NWqBYcBTKe9BcSiKU+K9BTzT8WgNUzmX7zIay6HvWA8Dm77naUomW0PXZNGynHbbDZpUBKc93zJQmBdmEQyUayGA2t6yeF+RAqU2drEImEoXbGmwrcO15l8th1JMWVTnCJ2dghfvuVaJMrauXedaL0A7eQ3fSdvbOmvDidCvBnzwdH3HarOm73t8CCULaiHskrZ6/qBF1aQ6UVLutL6/OigCt5tSXlzTukZ1E+Z/z2wpJTu23CgVokIflPMVfPmVFRs9cvlo5J0P97z5hTt842tnvPnahs5n8u4APjAMmfUAn3wiXO4jz2+OvHZucAE/9LxxseJsdUNKB5ATqld+GA88ePUeX/vqW3zpy1/msN/xwXvv8eHHT7l/7z6vPXzIdDiAGgvXNB5JzjGueny3Jmbh6eUNz2/e5Utf+iJvvPUWv/zNX+ByN/HDnz5isx5AQhtGl1vm1LXla0GdJkKOrL1yd93z8GKLauY6YPTVJbsXk7NAJWZzqMSRfcdJH1h5h9eEUxCNSGEHMSVtzp05Rc6gM1JAhq4MpkzJemNKk7IXw+J26hicnYEoGZ/rROBs8Mfi6FbohuAqAoTZ/JpcVIPlxTVcb8oJIgU7X9WP4apTwfrHhTHxTa+ZM54Xx1uLjC7GEjQRrGxPKdpZ9D6WO7S7rqQHFSYExvRCITFwSRkPe+I0WtbKB3Ae8fOE5tq/oWAsVfXstpsAkmVZs9ZennLzpXctJ2NWy+UwStCGw8/ZE49HpnHCpS1BFC8ZjZmgI51LDJI4TBNpnKyKQYGgTiNVoznf2e2o6fjqeLpgzd1RLRM6BypLF6l57HMuuO2Z/dv6T4VQK0dYtbZmCxWDJ6USbFa96xBcKuskC91RqpOWNbPXcsxMY2SazOX1PkDqmtTZTAeDJlZqXdFMbaGGMvPDm18Rp0xOMCZnELMqwfU+KkMSRRUXmXLF2WIZdBY9l1OqvivLqnrO1fkrra9aG6aVlBx9UlaSWakSVfBRkdS+psjDcuDcYn98qdp7D5pI04HpuGccdwSv5Cx88vSax8+ueX61x/tALxC6QIyR4yGTxFAOilUzU9HN1bH2NSqgnjtrmMeXhuxiI2qQWoObrEUHVUe92YGSNacGBSU6oFRKxMOCGrr6KFLkbLZkhUpYlRZmS03CLAKA9v5qQwHNeHwhr5gJe5LO9ru5AM72vrZ32V5qPR1NfqsO0he/e5EENburLSg3AZvhXMXZuWVNb7s3+sILtWpQZC0ZqUWrDmVljNGo4stskkphnXNu0G3r0602yiosPnQMqzWd76x/Y0HLbdtSz6uQ80ToJ0LXGcNjg6PVZFTpUM9Kmia25yfcOT/j7p1zfvrRoxbkVfmJKbHxnr7rDAaalakOOqX2IRrETRXE3Yb6V9mtyd26ZY3NS7Vkc6XJ4JzkKvIm0hJRXl2Z7xc45iPpZAsPXqU7e8Bchd5QK+nqPc4P1uc5HXClgypR5duRciHR8ULvk8FXYyaGYIm9rMjJOXR963OukE9NkTwdmaYjn/f1+QcqYA6aX/C2q5QMRgWhM3uki46CpgSAOI4MXcf27l0ef/wIzQmfIl//+a9xdnbO0ydP2AwrHMLQD+QcScVh984ey3pF5inIuQQrwfvyXmmGWsv7h36g7wPiDAO+HNNjfN4z9rK8atWYGAsveP3zqbP7koV6+UvBeTN6lbqoGuWcAU8XAl0f8F0HwRqYtGVTF3uwaADOYkPBYjLHIE6FqaYdduZYSmCcjhZMskUaJlcWyrbESSULYGtgM22GYUDEE2MySsqcGYahUD3P8L/qiJIpeMca/Le2zX/lq0FszO3BVEiC9ro2JapIMdq5OTn7q4m37gjffGPFl35xw09/dOSHPzjw40dKuA+vbxwn644PP4r89P2Jf/C7P+Sv/OpD/uqvPeTe7oq7a8fd7YqvvHHK3XseWY3cWW9ZdZfGdCSBFEdSOnDv7jl/9S//Rf7Ov/8/58GXf463//i7vPPBR/zhH/0xv/6rv8Ivf/MXuXv3z5E08XR3w9PrG+7eueD+/VfIAs+eX/LuOz/mbHvCbn+F2wT+0m/8eZ5e7vndP/xeGZRoQb730ubtJUvSoxGmCaYekorxzpM5xImbyVjRbqbKGjPDEGJMHMeJ8RARH3ADpGzMH9l5gjPGoI7IWATKO4ekiGCY/Q5vWHigcx0qDh+Eq/FogRBqQyrL2Q21ukZp1sWcTK0wJu/nA7VMjFCqt9VKtN0veqekvaoYehXrpyqfI4U208nsXNRGWKVktarT0+TL3jRXDmjVS1HBdcWYljfUzF3NBjtXHCVVQknEe4XejSgTaMQFV3qOrJdtyomcgNBhmtY8o9r/Y3q4ct2XVFLNshfFYUbHejKsDbguQ8mcJyPF6Dpjd0lxxyqs2XQDU5wIATYEuk5hHDked4TtCqNXcDiN5IJ/Dr4svhMIDnEB5zqGoWeKkX2cyExlp15QlFqrxNIKZMu8haKEujdqyfnSps7gbG6Tdx6J0QYNFg9QoFT6XPUXZp3IPLEarOJnUNsqY2ZHnK+2BrxY5R5XaLVRvASr8hQ/2Hulc8LaOaTLOAdTybJq+dxFIv22DMocSxkNcV2Lcg+qdJVEpQYqxS65XPR2DTIUShshoXME8bZOWNCoJbUuXnBZcWoVJcUOQ5VdBZxm+uxZZceKgCSDeieEhCOq8Hg38cnVgafXeyAiYv1YyW+YnJbzPTGpMpUj7cjWn1n9iGbb5kAhL/bSciOLngptfqn9J8yJhTkCwAgP8txjQglUgqQmX3W2iqglP5zYHeWcSa7AhHxv+5wN6irF4a5fXxvmzZDaebWqmBI1NlvVgsNFZYSy3lLup7FqVSW/EI6MEDMs+01aMlhpkPyk1nNXz9ang5z5e6uO/WwbXaoR2cZB5GSEJ33fl57GI3EqgYpIoYhP7XeXleucE8fxyG6/x4dAomOztlljm+2qOOUlyClJOfHmB44xGRVymZlH9WMWAYSWpPawWtGv1uwnZX+cOB4nS6i0NVC6rmPoe1CYYmZKuVV26vm0ak/AByHFsZCCFMigE0Lf25BkKZT7aaIONHYUv3SxhrgZbqxYcO0ATY40eKIXpnEi9Rfo+Rfp33yTLke6lHChYyQyaSQLjIeRHBPnD14zPxNnLKCFzTB0PTc3V1zvr5nGyJ3zh5yf3mWTbtgfbzjsrtg9+dD6Asc9pAktENUYRzRFyHPv8+d1fe6BSoUsUJo1yzhHnCswgZ+l0aYYzL7v2KwGDrsbcorkOLHdrOhCYBxHTlab0rxThFq1COvczG4CWra98bx/uidD1fo6Nic9682Gk7NT+PDRDMfQ5eHJNNjMS6ORquCkvb4sRNTvfuGhZ2UkFXdZmFrqfZbIVUTwIRSYgWvvb9WU2980/6nGWCqP+BygLO9+OZDLQXuvvvCJ87vKwxVqUvv8mf3GlGA5aiLzumsNXWVurG1fMkO1VGYFU295mcH79GXatyrcYkJKr2J92PpEVXaKYRonvnDnlH/j587pHmx5/vYz3vnkyKMd7LyD7Yr8LPH2T3f81h8+47/9zhVnF2d86fWJB+drvvzVjv7OKW89DJxvPXoz8ujJjqubiZyVaTqS0kiMR+5dXHB+csKDu3fQ/Z5PPvqEH/zoJ5ydnnJ+54LtxSmSEu++/wHfefttfucPv82v/MI3+JVf/Ca+97zy6l1+7Zd+kYvTU77wxmsAjMcj0zi22RZ1mZx3uFwGbFnuoBioQvOaFfNpLHN0PFr2OybLapqx1EZ1magVDAtfRbRwvZcm41rSrntV7XEJjOt7rbnZoEsNv1/2Las1LSdZYLsXZ8Xe1YBs814KQIVelbPxonyQLeOpGPPcnL60eT8OxDtiTja1uv5q+Ro7A7cPTnV0q7TeyjK3O11cMjtR5ie1A9yOFJUkQGbXTGq2t3iWueiGakzrJ9bQfK7M2n9rMqAJ/uIZKtSiYqjr++vBS7V5uujLWkndrtaFTTCTiHTOqN+Xmdv6PeIrvMzgqo0VywljHIm1qtPWZbFti3tl+bMXft50GwVeVWFvVJhIhRyWNSoB4Xy3c5a2VWmoM75gTtFUSvfq5M7wytu/XfdkdlbN4YV6GEQX99H0322ZWcrhUg/XYKblBss9tDR83dsacLv581pFcLHepr+1BDcChUkziFUzxJkT2r6p6JMmt1LeJIHWSA3FjmZjrewCfdeh4gujU8Cp8UFZplebg1ZbaSo9eeuwkHkNhIKQqLa3BWbS7E3WKhs1O72Y3l7lpTKZLcxRWxgz7O2MzXK4hNLWM0b7nFuBD/P+3xbm+XuqbJbbvhWsLIcJVrNJlTVZflRRulrvaT6H0vZcFl+8vJ/ZL2rfW/e12Wid1cvyjKMorgVdzjm6rmO73aBxNKpojN4bVQ7jSO8KgVCprrR7LP5Q6ILNByo+ZE1AL304gzHmVu1TUetDLqRBLeCX+S61yLd4z2Ecuby+5hgj+2L/pOzHvK62YjmXKlFObe20VE670BH6AecgTiMpGoQxO4dzgWG7xa/XSAjkmNg/f8q035FjtD5n1BgLNRErQ6Bb7ozpkCwZ0YhXwacAdGRvrJhjjsQ00jm1ynEhZxp3O47HIyebNbvrG6bjyGq7KWra7OJ0PHDc79kd9my2I1uv5OjwrmPoeiZvZzomReKRUAKnOqfn077tn/36/AOVYuBEbNZCHWrmXGgD1m6r2Bd+X+sQK2HVd5xsN+xvbkhxNIq1rsN7IcZYeNh9c6x1eaKZJ4zWSbd1UrRraThtg4pUjUt9tVpxcnrCxZ0LGygXrfLgmtMzBxmyOFBuEYDprYM8P2PJkX3WwjXHoBoZV7L8smQyUXse7+3g4uZAxS0HRRWlaiudaUNKiiPpSrVl6bhX98Wexyg/xVUlbEt763arcitBXB3O5xqxQTEEOVmZ188NvzXwcqX6JEsv4bZAlO+TZkz/xKsugGpzxlqjoxNEa1aifGYJ/FIxJhon3rq/5c99/SFyZ8Mnk/LDjw5cIVwijKuBw9U1//IHV/y//ulH/POf3PDKvR1ffX3HX/u3X+ErDwJfFQd5T95Hbp4c+NH7lzy+PNoMm3HPFI3EoesCQ9fRe8/1o0/4yY/f5Vvfe5vf/Kt/mbsP7tGdbsg3ez74+GN++5/9Lv/4f/w9Tk7P6foe6eDNL7zGX/u3/y3unJ7y8K0vMI4TH3/8mMvnl6QYccz0xD54YwcqDB9ZaMkEGxyXW8Ypxon97gBi2TARY0bRrEU5GxFCFnMoJKcSqFgFwLtqAMqk3OIOVZSRL4GKL35Z8BDRdtYMt+8M1qNq0JlcCSpmatd6rmd5nM9Z/bdbSGqtLppsKLVxMQOxKGrN1kBs/TGeUUowtpRLYWarmxtaWtA9n/QK35B2d7d0+LLaQfNRLcgsMsri77PjbLAjOoPBaiqdZ1KqZmUh8vK0VKcCYYl1bzHIollWqhdDbjoHLKiYcqHLVQtibY6J42xrUMGcI9c3N/QhsOo7xtK4XIksqr7KOq9x8IWmXIT9bkdKSqVi//SldbmhnXAWVOOzE1bDaNr/12pq0U2UfVxigZghMCpz9DJXbMSgi0W6KjNYy9bn1LRqrQZmme80I825zpTvqVF7NgVnY40Kzl3nQGApK8vwZ+ms6+I5pPysvlK7WsyBzS8K4+zfS9XLZnvEVYhwpivnXMQqsLOTSrvP5tA6By5YpbX8TAo09LR3nK46tquB7ALZKYgnaMZrQjSVQMX6UqJq6Z8S00cLV9/2uvbamM7JrgynLYGJFlrs5DBoWPEBjLBgwdQklsKocq9a13dOlC2DlKZ3StBtciWLHiN7hpjMv0hah1JX0VrsgUiD/tTBrBS922BIy+VeioS+7GXX9FaFEdWg9PYv1/ioIl9u67u8/O5ZXF7qws3vqpUjxfvAMPScnmwZd8oUJ3KZo6MKN/s9nTdHOpRAxfa1VHlFGPqerusIobO+k0J4YWMm5u8vs4Yb6c90PLb5aZVIxeSn+IOG3cOHwM3+wH4cSfqsBSqOF/ao6AeDQUeDpwptf7JmfNfRDytElP3VFXGK1t6hioTAcHLC+uIO3bAix0gcDxzLwGy0zDtyxlg4FlKTJh9qZzw7jAyHTFDBpw4RT3aOHK2anaYjQ5rIU4KkrELg+PyS690N9+6c8/iTj3n+7DmvvPpK6e8RSCvG3TXjzohRjnd2xLRnikrAMbiOawlEjBRFxgM+dC1wbImQz/n63AMVwVMnUGtSEwwSw8qEtQsDUY3+06vN6lCEJDa5PI8TeRr5wpe/RNd3eO94/uwp43EkTpG33/4RD197yOtvvmHVjyHQi4Ns/SRZBJ9zqaaU0nnLCDhytoFOZhCUKMnwjFijMEnZ9CsePnjAuhs4FErWjEEySnK+HVIpBnweVkmD2CxP8c+yeRWuNMaJg7M5KTTFJy1LA1iZtzj+rlSNXAjt57VMbIpNjHrU1CdjjoxpJKcyKyOrDbmrTgCZ8+0J696CwCQGxQFB8qzalnFFSpHjceT5zZ7OH+m6wJgzN8c9Y0qMUZi8L5hKLc3GqbAUl36mNJXGyU87KFIX8U+NVJYrbvSSxSenE18wyAZtaZ8tfemniMSw592rS373R0/o/kvHb/3ux/w3P3zGk53jmXzAv3z7yPe+/w5/+JMj372KuFe/yH//04kf/93v891PrnjtDO6uM9cHx7tPlB9+nPknHx05bjZ88etn9BVqpI5jnvivf+93+O5P3+V0u+Gd99/j7XffxZ0OvPP4Md/69o/4/g/f4ds/+D6//0d/xONnN/zXv/3P2O12/PV/+9e5e36H1x++RoyJb/3hd/h//r//Hn/37/1DPn5yyWa7xnXBZEOMwUq8Y/JF1gs95KrvWQ8926FnfVDiMfLBBx9z+eQ5ruCUQ+jJWRnHVJyGzKSplO6VmOH9x0+4utmz6jtEElkyUWbYjWNB76W1p92apqd0RMWggJv1yqorUjPgNcCgGUvnlOAFCYHDOFGHHFZg4uzTmRsZCkUyhQLbKhntLTiYqZqDtX54Bx2ZfTFk5Mq/r7eya15nsXyZ1LbXlo5EC6brf2aTWN/kaoBU/lhAF8qcDkfUQgdLBdPVmxBaBWXhuL/UwWn3cxvr3oJFEQq2aQ4IcMyDHWw2SvCBrneQHTla9nO9WoEELo/7NgOq/r8FLILTMlck1R22iQDUvV/GDz/DVXtVpfzDKJIzPs3V1YTiK8Zm9unL75U+hvra/OMSEEqh8rQqXwvglqK9WOhUM+NUfWzfUdcYMpqdeeI+EVGigkZZ9G/Wz3shuHzZ879E3uqnNGvQXp8/penWojLFKY7IKjgGLxwmxXnBq6cTxUvCibGh5eL+urJgGYi4AosTfJeBRM6RKSpxZb0e5AlJE5InWyeX8S7hpVBJq0PU4xU61UbhnZQWvFguW2anWqGS0+dsBUcnlEqx7b3LoOoATyzBiznii3MDRoXbzvk8v6gxbqmdS6+ZsWRdfHB0xcnPOKY866IkFmzFlOk8GC7NtcSsKg0u7wRiLFToxfZGzYWtjPlQlDEISA1Ipcl1/RyTtfIGtG0zwly5aGU4Syjk8nw1y16DGJbZ8iLnFd5qHzH3K9jsHY93Du9tmOXTZ0843lwzxsQ+Zm4OB+tlS8I0GRzUYE1uATEvSYFsQaiQEI1Mhz1JxCiCvUE5u763QaFin7PZbMl4TjanNvD3cDRY/zKyqb2T3tv4gmhDJVEjxwAWyIQAWO/eFA+kbDDcgJYElUFZY5qQaW/7Kw4XesiT2RkFyY4YIXuTaylrlDQj6tEMx+OEppFrSaT1GsTjytDsGkG7enYRssvkDnIPKqnt/dPnz7h8/JTpcOQXvvELZW6MtxlInTBsAq6XNv8p5sh6u2azXXPnmBn6Nel4JHaOkMHFDu8c2gd0FXjyyVNOuo7TVc/2/n0iwpQX6/s5XZ97oFIZpOqQwaY6ncFP6jwSmJV3zQgBJQPsSiO9ZeJ3uz3TFMkps9vtSTHR9z2bzZq+78y4ZKXa66XH0Jr3ldIQnMgx451VYxApg4EcSiKmhPee87MzhmFgmiZSyoX6EGSpFYsFF2WGtP0pzvSLTV9tHYqlm7PEc0WgnP3mrNWBkKp1ENX8G7eSZEsr71w5oAVTW4KbT91qZWMrmZx6fw16RrvV2YDXior3dMNAcDbh2PXBKAadtx6I5oQV2mMRVBO54vyr4V/cf8ueL27xTzsGQtXLs1J98Tlr5k8xYgYfHCenG77yjV/j7MHAh6Hjt97d87g7597X16yjJ95d8U7suLzzBqdr+Pm3BLc+ZcXEhpEf5cDjm8TmEDnmwJXv2d3r+Mq/+ToaAtJ1DSsPQk4TnQ+4EDgG4e5XX2P75Qe4qPzgJz/lu3/4Np9cXvP08jljzGxWa55d3fA7f/gdDscDF2dnnJ6cMI2Rj5885acffMTHT6/Ke1dGslD6K4Iz58FmTtTmYi1D6xzBWe9WFzxd6BjKZOuYC/40ZWK0QCWpVUvjeDRIQ3KkWDKTzekr8BGsITIUY+i0IJbKe7wrU9mLk5OkuqxNFG9VElKez11L/xadY1W5YpAXvzvLUxVYblVjwO5Jq9wwv6+G7wYIW0pgNRG3BfJlsikv/cnsuNq/lvpkdkoFtfkpTuhd4ChjcZyKW33bh33J99aflQMmn/H2ptbKqSg9CQ2xUz/P2f1Z036GnCDHxsJosJ7QfsTBPqsmYaTct5SBg0YlWnvxcvve1uvzqQeq6/4ZWmDxnvmEV2U1w746By4Wx11nvT5nkku1vS5NheFkS3CJkwa5k7YNy52+pYhbkCBN0emt9ywTXVVv3dJ5txX7/Lc/LYP5Ult0O0jR5d/K/nceNr1n8MJ1VnxpJ/JSe5tKtUVLgNTWzxajEhmEkigxIoEqUwb1kzpzQY3EIogQyhDZXN5vmH0aY+TiwT9dRXvJGtbHvbWiigUoi6WoTrn9X4UU2bm0qnOaoXPtu2u1kKqCytwLWjXFnkYW72k1vfa9ury/+m/VFx5hhgJWP6DtWXtkbRWg+ZzPsq9N9maYrQXOs23XxdrVuvOCmWSx/gsxkuqtFFv9gg9U0R7eO0LoyOIIFSVSksC5VMzayVWDIIvqPLuroDyCCL03EpHZl7EKTWV1qzNUwNA3ucwYWerrlgAremH2S6vrJHNQU+S80gjHaWpUyAtLAGDkIALO9SCujIxYUImXvjFNmTSVHhad2xXEOYNDprnq2/ZRZ6HRek9I+fz5XnzxMZx4Wx8vRI3EaH80Kat+hUcYQhnvgQUsKZkfnEoVqiX9y/NnTYS+ozvZsnKwu3rO1eOPeSDQb7Z0qw2f9/X5BypSsnMOHH42Tg7Ee0LX33LSm7fbHHhjrzqOI2M0R3a/P5CiGbHjwaYMD0PPdmMNVUA7bK0EVQ77TNnrSMk2KadEF4LR5jqDxTiXyKJM04TzjvOLC9brNfv9gTiNjZLy9lUlvhyworhYCHpVQC9i1F8GHxPz7poD1sroS+VVFEulVp7vZBbeek/tKgegDmr03hPCYtp8+exlvTfGyEQm59Ay2RUCU/HTpW5WBtMZDnW92eJdYVfbbPC9sUykbMOcpPQveGelxlyt/wJ6stB/n7nkn319ukT9aefT5DSXfTgeD5wMWy7unvE/+1t/jef7Sz65fMq3PnifO3df46tfvYfvei6vdzze71k9/CJf2XSsNh2h96QI8ah89N7HvHc4kg4R3wdO7p1ydn7KX3j1wtiPSnXMhpZaGvZwOLLbHThMI/cfPuDBa6/yh//49/gX//if87v/9f9Id3LO9nTD6dkJw3bg+uaGP3j0A/747R8zBM/Qd8Q4cRwT+zFxdnHBuu8NdhMnCwSc0HkHyRy0MVmWTkvzoTFg2XuGzmilz7YDOWcOx5FxnAqEUyFRsmXZGucSOO3nrJMqXq0p3ePxkvFAX7JkAvgiRzWA6l39iTAWAZ5bMGpNwc5ASvMk86bEq4JfFOprY/gteNhnyE7THQuhq45LpWCsVLq3XFFdStsMV2jvUJoZeelXV1bC8pQqFZYjWE9F0Q3Z1nTlA3upcKAa/Mv8YCXr2chtirzf8hvmG1tqo/bQsnj/HC+V9S6/45zHoxaJpITGSJ5iQc5k1l2H/TjRsGilb82cAJsrolp6j7QCa+ybZXFzt2zFrev268tm+nmxqxsy/6v07tM5h2Vnb+9NdULt3hJt/kiVq/KnQnr0hXusTzCDaGtCpnzGi4Kg9UyYk+uKJ/UZseetb/ns1bgVynzGe26/XqW7wkyG4NiuAoMXhpgJUzb6YKkkNMXNk2q75qRXZcIyh7KgDcq6zAP/AlKH9mEBUOesaghW+wct1c6S9Gylq5IYK7vSPltmiNziFN6GztR4LGmDybUeljyf85wtKVIpopNkQglSqoxI8bRbok5qAD8Pq132OlVI1+yMF1la7qxSoF5ll3WWhip783uLFc4lqChne35cQXThd8jyc7TZIc1195cUNjqLyIsGlXndBJp/MMvT7fuVQl4xdB2yUlzMEIrDztzD6rL9rhGIKOMYkcL26L3HO09wnt57hr43/8XbvKbq49WZPr4woOacOB6PpNLQXuWnJk/qTVZoOGhj8budUC/9TcWeTNFgX3mGzxRfSkjThKqW4eLmz6KxsG5K683JKTEdjuQpQi7zobwv56KzimOVjnbrVYDtdCSMu0u1Doqs+23r0Xc9q2GFR5lyZIwj0zhCVtb9ms2wtl7nIi/BB3Zxx/E4MWWlU2XlPL4UQlUgpcl8j+0pY9/xk48f8eG775JI3H/lIXfvd3ze178W1i/FsILWIGsOEl5QCfiuf6GZu6h1zZZp6QLSBX707rus+o7zky3/1l/4DQ6HI0+ePrfMTTF66xDwzspVFCXvsINuQubKxHWjShyPxkrgBQtwHMQpmZAGTxgCh3gkOzg9P2d7dsLV7ob9fseq8wi+nrz2rLMTctuk1CFdL5IHVMzlZ61bLuF8K+nmRbkVOwzGDR4Iwf40quKl9yEWgNnchtyUYQiBkDJevGUzBePXrjVyTFleXt9w8HDvzqo5fc1ca66UJa3a4pzQ9R0Xd+7ggxBCx+n5OevNCc53RkfYecgQk2uZCO9KxkEgj43X4lNrMyu/6kwt1vul+/HiltRA2Og8FYMkZVWO44E7mwvuPLzgK7/0FSQY9rWilQTIOhWd5ojSgyaEyFBOr6qQf/lXyFIY2FLCa8arojlZ6R/Al7K4mol1RSFejUfi4JlQTu6dc++1V3j4xTfw/QbnKxNUYr3q6bp7xpZWooOh79hsHQ+cJ7i+UWw6MYajzglOE0Fg1QeOJMaopDyh04TkQB86hiCsPKxEWZV19d4RvDCWe80ekhr0yCePZkHouBgH4rHjuoOTriOIcC0jBzIB6DGYlwVNgSAGyVoFz7YzONnlGAsUQ8DVmdGf3suY1cr0U2J/c03Omb7rkb5HxBjBmu+NEQDUfWzS1AISbe8zOy8lk1u+dHn2ZJ5IPX/+fIOfzq3p8jjeepbm9mr9bs8yNWuI4IzI1ProVi6xco7oPYeYqC5gYj6H4lyrBPyJufYWjSxucOmmWOnAztZc5DUnvAwKkxQxSlUlMJEjpKiMGtkfI7vDyHQcUfHgbT6KFnx4mgxMaoersClVJ+LPct3aF6vgGduSnfWgMIhnGwJXkpgWMLO6WbUnAYzBqgawlj0Xg615KTpQX4jqlvdSdDnmbDcHsgZjOMQZcK9X6BAmgVtl8j/revwrXoo5TGfrntPOMYiyDcreQ/JwPYGXSpIzUwpUqgGrmJZKbbCstvVoWHO8YI7/5c01jy+f8+TykpQSYbD5FJ0PaJpKw2Cy/hhXA5XK3rZAYM+LClIpvrU4n7NwGxIBag+GVZu5VdFw5XuMTje3RmnNStJE8nUoawkAKv10VHM0i/2tAXiq/aMUMoBcJ6K7QhogMxS5kJr4wlpVz6b1uqRCerIIIhZXO8Y1UekoMDmTP4PEz895a7+1BjQVoXE76NaX/N2CodkeW7Blfby3gy/7rTRNaIyIwvHmhpQV71ecrFbc7I88ni65TJEuONbDhs47NCWmw56ud2gebE1zRHO0502JKWWiFnZCkTlJLobuOOyV58+vuLq+st4xeclzVb1ZVF2l8H8xjWO+WSZ0gWEY6EuCPGlucFAoldGsEBPJTSVoL15NCXJjztaeAOg0QkwQcwswao+mcw6nc6BfwqUX7OKL/mHdc3ug1TAg2xNS3xFKlUmCVU2ePn3Gfrfn4Zuv03UdzgmHNJIRuqFHcsYVSNrTR0/ZdivWCP544JO3f8zhJ5/wc3/7f4UGR7/q+O5v//f8yDuGoedv/tJf4fO8Pv9AxRnVpIQe8T3iO8R3uCD4oEbLVpe5CNXsKpiB1FIxOd1uuHtxzsl2wzRFa4oqBqcLoWHPc2kThDmabBWIbBN/QQy6kmb0o2odNmZ9EiF46lTNrghkF8J8+lpddb7aveuMEL7FfFA1IS+K/2dfS6dqZvPSwnDm2n3HZEN7tARvwmKas3M2HZuiCJM1Tadp4ng4MpapsK15r2abWDwu1RBUx95erD4yMGcfdVa4TgtzhcJcmuRWBrL5JO17bysGad/NrcCu5J4NRvAy3+DFhVw4Lg2L60DSMkcKzgsSHFM6cm91yll/xvnmjJgtcxJiUQBOOIoYXjYnhiprQPahYRQ05doVS0qVv0YtK7hwab3zBPE8mw48S0cex70Zq+BwnZWzjR5XqRl4V4Yz2ePkAsmwHo8mOzrnvSyQ9OCNOtEnwfs6idx6Xu0sxQbVktpkn5PBMcpZTYg1tidF/Zxo6L2y8rAOjpPBIG6+BmUIQcyBsX4Z6MQcnpAzK9eRcEx9QPc2dV5rhaSUFWuVVBbTh0MInJ9uy31SZDDfwonYka2CsvRG51J7ZdqrSj+g9CJ0IpbN1UUIIi8JAJoc2uGo3/JZZ11v/dJtp3T+pll/GJU3zeENpSevdd/f6vSvuu1lDu7itVaurU7OS99V/jWjoZtmKPrOO0fnA50PTCXzrGrr6sVZQkQq4FEW2dfq4H/GIn3G9acxyjQHpNyu6O3XvWpLIMx1D2nv/VRl5qWbKE0v1+JXffOst2c9V5tMG8yGuRfBSSKIsnKOfS5bKqZgb9fgl2vw8qee3XJp8vyzXmY7ZiYGL7DyjpVX1h7WQZiysA4wJDiIWn9pSdJUSlV7Oi1Vc5MPc/Lm6kROmXGcmCabpVH1VyjOZq62ttqFto4zbDhrqXxZRsaev5BuGO3zTFe+dNBrkCLls6ufYP9ybc8q5EuLnFqGvfwOL4iGFohX/d1mP6XZwaU+qntVCROWjn3VNZUZDqXMUJk/kbost3a/yFyxqdVnmJmYmBEZaHsWZH6e+qzzmZTF5+ut16iBjxQ7uujLnU/V/F6ctD1JMXI87qyfpNB2O18TsGaTxDn6viN4GntotWXVRwSzU3V91VViJSPwscJMbnq+HdjWkDev220yJG3rq+2R7bu993RdRxesalAHidc/TZeUzV5Wh+v+x2y42NkslX1fyMZynqBds99KlWetOmL24VTEKki7HTqOrM/PYehJzogKUGa2MqGNpkg532opAEvykDLxOPL4w0fo+R2G7ZbBB376/ke8++wddm/9POcnKx68/jrXb36ByyePub56xud9ff6sX94jDAbvCEdcGHBhIHSC74wBoh6Y2sEywzZo+Li75+c8uHPGw3t36bxjmkYur65wQyBpZtX1BGfMJJajKMjtUlquVMWqIM4O6hRjKQEW5zprw7w7J4QQmMrwsRA8q2GgK1j99nzNzXihhNsqJUXNldkc/yrGAm77HKZLpDScS2uk1axMU2QcI/hoeF/JJQut7XNy1LbWZINijMcj+5sbDvt9IeCp1ZT6RKXN3DnLzDTVuDCaOh+f+n1ZC13fNKFY5mma4oLBx5xdlVrKX8QnOn+ovug1NeeQT78mFUt8+/0OixFmYzd/ZsUIp8rIpNWwgzrl6uY5b662fLE/4QsXr3PIE8cc2Ry7xrZx8GNxeIQu+7bGkyREEiIZzUIikLUzQ06yYYjEGQKGVRe8CzwZ97x38wy9/NgUs1AoCQWH9XHkPFGz7s55xJeGP6U5QXXkm73LHjCXQEXEEZLiowUqXUgG/XKOzgt1Xo4TK5mnlEixDMxyAe9tiNmUTM6ymyGAnWQGr2yD52zVIVjTaA1UehGSZOPSF2VwgteMi5E1AQ2eFAK6G+1MutvZvXnPHbHMc+m7jrOLM1SVy6sbrnY2g8WJX8Qq82dU5V4dn/bJi+/JOdMBKxH64AhpwinzUEAWYaZC6aa5pSFk/mAWL8/3YtF93eCSnTVCEZXqkEgJpoxkxBS1QSiC95AjNjSX+bgI3D47t68XXI1Pr61a5aFWF9onZbEElAgUuJQAFOM3dB19t0KZiDohMeA9dJ1RdUas96hmkHWxRjUDuLyxPyu95fK3a/W0OmJOLVgJObfs/G2HYnbLWixX9bgs11CK42zDhZf3X5/NtTWrak4sy18YzZwTPJHOwTZ4bqZMqOtRHK7lw9yyQtXeLNfqhe+vsLYXV/OFE8GsjLVl2L3AqnNsPGyCsAkQs7DthNUk7CUTZHafZv4zcGS8g+ClQaYrhNLYkhLjaLSxVkWQ+Y/MMtIcwHKvrlRBWp+HcCtBWFmYFIwRs/y+6cW596056Lqw3eV/jsXcNeqg5TootlmRZrzqWbDA07XlXLAxkxfluiaLTS6X8vnCn/IZ1iOjzZwJNIRD2/MqZ64yD5YASHNh2TQCDFVjfPSVwKbdx0IWWEAU6xrBDE2tsiXQiC9aMkPBzYFBlX7nSn+yc8SUuLreMY5Hcoo4YOi6wuoVqAmQ1XpFlyPBOZpOxHzE4Axu7sQqR7Vy4QoJgsHRS3+md216fdufWxkJC5IqjMtQODM0sPkpqPVxlnsFjKGx+n1SP5z2e63eWAmfyuBkqb/3gm9TZQJKVUShNtALduZbb1wJaisxjTgPzrHf7zleXaHjyOndu7iuIzspsEpstp3aTBhBLPmnRgmvar6mA1xWdIpMMfHxex/Q47gYBs66jqePHvFH3/oe3+9P+Yt/+Tf4c7/2S2x+5dd4+zvf4vr5Ez7v6/OvqKzPkHTETR39WsEHfN/TDTAMyno1QsnWIolO/OKXhTRFpuORt77+Ve6dnXC+XvGTd3/M+4+e8PHTp1w8uIvvek5PT1mFgHOlouKM9lizIqE4c2IUajV7M45WRXDBcYyjHSRxBOfJKnR1LoEzzui7d+7w7OkzPgIqalbEz4YaaGpF62G3A9Ei9GZ0foaraM6K3++8sTOoGqVi8MaiMTvYMGc7pZU8pWjKyoEvztk06hjRNLFZrxmnRDcMNiyyqYDclJLgWvaqasemlOu9tns2bLEMPfS2Jz6EMtgoYMPQjPvcO8HlQhEpDs2RrGk2qK7phMX6zvJhS1qVsrRMzsudG2m/b3viqROCkWwZAxUk1/USLs5O2K43dK5Hd8Z+4/NYlJhDVFi5iQpAGEVIKaIpEgqDmX2PNRZnGZlNB5ALaKGw5ki279DphtBFtncGzs43rIceF5UQTD69OKJTm+uhkSKooK4ZSsSGAFqGTxlzZEqeKTl2YyQrHBbDrMbjVObxmAEZvAfNXN7csC+0IZoT7nhsBgvnSwN9Zoq16hIZ9zt8nLg7BO6uBxxqGVnnGMRx0nVMAJpx6Ugvjk6EEODECck59iWYzczwvmpQUrJMaZwskRG85+Jsy5e/8Dqo8tOfvs/N/kCK0QgcFvIyBxLFDFj24jOPYS+ZjRe2Q+BpEo45M+ZEzmW4ZKN21XpqeFEj+Bc+Uz/1r2XY0Mx5cRy0ne/gEjaZxHF21jNNcDgAsi/BjAeJVHJkGx/+GWdB6krc8gALLrrccenhg+oozZa0OqSIBapmtHv6YeBknQ237B3XxwOOgMNxsu45pMwxQXJ+dgzbiJUXnO0/IdD69Ip+tl5VZtKGmvVNGCSpK7LuiyzMs7DtmjumaMkfrRnPuu9aHDRZahlu3dMSllQBG0v9mVLEBaX3nm3X4Q47NCkQmkS8bD1m1agvtS3KZwcpL125RbLHFRalEHzrG9n2gcOUSUl5TmQThJHAUQHNTJlWFVFRZMr0IbBeDazWaxBlShNTjIxxIuXMqh84XW85XW3pph3BlYb94PDJGq9drRBrhebUyo3BschKV3oAxDlCPxCjfc/+cGToAn2wpAVSKq4l+MgJu1csMROTwXgkZ1RD8w1w5rgmVVLtDyihdtZsMJ+k1vOSFMT6EvzCETYoehWF2dm36k7d59JfYabSIEXlT4WMNWddaXOvqhhokbeZGXSuQtXq3YuXBXuVFbUGNtwiKVjEKzQ/o/2+3noWYCZGUjXb5ixIteB05Mmzp+z2ew5TQon0nePO2Snbtcn8OCmpDDhkcf8eq/p7KZTsNrXTbiSXd3tfqKYBZ70UKY02JqP4H8ugFezevAjDsLJeT83EGG2UxgvPrUBXaJKPhwPT7kA8HEs1bQ4say+aapotf6kkO29sZLIaUAeH47Wx43lHGqsfWeC8bQFKEIbp31w208lMpqSqBO9Q77l8/pybx0/Q45F7r77K88ePOexuePPLX+L05ITgA9uTE/zZmZ2nvuPJ48dcXV1xsj3BaWkZ0AiuJ3Q9b731ZU4vzpBND05ZrXu22xX/7Pd+j2dPPuHH3/k2/4t/96/w1jd/kdffeuPTwvZnvD73QGWKk/HsO4/veiv7K6SY7LBVKS+nQt3CcNrOUHGi43HkBiUnm1wbghk1J0IfOmPrWtBE2kfqLbuXNS2GJVWHtQostKylWGNvlNo34Fj3gzWAlXL0TFM3A83mS1/4f372AOX2bxUYT6UhqPdeKZet36bOpOm60MrEjaIQ1+aftEqJVOYNb/Cf0OFLOlZzRr1rwVbD8bbApFSpBHxwZepqKH0mBulTIE6R435P31vWYQxH4jRZv0dROFLXTmYjb42p1vg8J59mbPiLDkmF97UfNaVa0dJlReviUbWIvvApJSQrTnmaEofrkXFIpELzp2XA3UgdvFdKz8VZS1glSwjE494+2TnCemXrl23eSK7BnoCqa85ZloondVw9v+G9xx/w0bsfcfP8xmbSNOfSskXeWTDumAc6OlezgRSlXZyOkpGZYuL59Q1ZYZwShzFaz1AdgIoWuIY5KN1gzfi2fLnhlzUp4kzeMtBPweCEUbk67vF55LgTNp3nOFlvjPWiKMGZ4RJR+k7YBsfgHWsfWAXhSCbHcqqqBZYXd365/0b4cDgekWII4YUjJ1UidCFHUq16e63a5Sod5nQpQWITr+qeFMkqicfyU4WlbNmrS0X3gqC2O9F2bueExlJWlSxa1tCcuM6bo13vszrR9euW37JkS7N1nVdvNoLSCEdo93JrscuTF3l1imRr4cQp3ild0RmCwapcikjKaDJYYnWEtTj3s66fV3R2zF/inC9V6uJ52msv6Fl94c1z0Kv0vdiwwbCoiStG9rJYw6phlrvYnDItAXT5ojlQvb1wlYHIIQTnF2swZ/MdVo08KRCrPoOm3M7ArWbdsu+2jbK4X6mGyf4l811XLXd7gWbMPMt7L43IItIIUYKHzgtD51jlzMoLg4O+OL9Vjq0yT+vrqwgAS6zZfJ9cHGxDZzqCiPXP1TuQAkVxRfpzzRjPu65C68FTLUGlgO8CF/cu6LoBEB49esR0PBQGprDISlcHneYUvghPzsw3JIt9nm2K/V2bDNeAR5vOXVZKDPJYPrR8rsXni53RCl2dn23+naobFtv1kkuYgwwp8lIdfUUWQVGRYXlRMqT9v7bgXdu6LXVkJR1oQVL9b3uxVja0oWSmnNmen+OGFbrbEy/3xGxw5OBcgQZONuBCDDpKYWCLMRXofiRlgy45FbQkOUVkUd0ogaPMTJSVo8jcgXlnNKvlegrZzC37UJ91jgTN7woBKL2/eQn5n5dQrHxI9q74JE0LWxLbWxAsnTeinQKRdIvVr+fYUXXRrIdpP6/e0CwzvuvoV4PZ6ZxLm4DpkdB1rNSgkapqrQ850/c92+2WzWbNdBw5Hg/EOOKHNV2pIrnS86xqej0Ez+B6rq+ueOfHP+a7b7/Ow4tT7p6dvVxA/wzX5x6oHA97umAKyvW9NZXlTBxH0hQtO1APrs7C39SsM17+/WEPKbLfObyDoQ+s150ZQxH6LpSqRWqapZVTiwLJqqRsbAuaAK0lwBIra3H6nGFyg6umyUKETd8zdL1lkTGl5XV2LMx1LcXkhbFsmPf695dmOF9+CXOgsnBXSDkaPM0LXRfK0KNA13UoNLrZVmGpSh9mz8qVifbZSuOuWIQKk2tXZTuBUm1wgCd7TIn4QOg6plLC7ETIKXPYH3ny6DEnJ2vWqxWSA+PxQEyRmf6v9JjI3ErQMpaUY9eEoUYgbnZam/O6dBLtIW9nd+xPY4CDkpWaAxT7eyZ0DnJm2o88+fCSm/4+40bJfua4H0WtibQ012YxJzKjNt+CwM2zZ4b9dMLJyQkuKWgiS6Iuo+BrQaXB4LIT8J7HHz/j23/wXb7/nR/y9NFTuq7H5Rm04Er3p4gaxpXK3258LVIqILZIrpR6M8cxMY5XRWkpCSFGox6m/F7QTHBC33dsT084Pd3a2uVMLuwmuZAwiHdI8MQ02fmOmUM8cpUjcvmEbXAcgrdAxeWSBEj4lAkOtkPgJHjWIXA+DOQ0EWMij4pogVi42XmpCQYp58w5M16Hw4GnT58jwP5QqqW3IBpLV6FakBcgm63Zan7NpF1xOi0ycFJ6wRZvvuU1zO6zfOpnc1BS5c/2zl6zViYzXCrm2JFK460YVK4TcEHMafQyB/oLv16KoFd642VS4MUgoMZE+MCLjr7U09QSIMXbd0qShJMEElEPTjIdiZQ9pIzPCTdN6Jhs0FiFnORc9LMrz8it8/sna8iFcf7UKy+/2vtKEkKyOb7r4Nh0jk036xrXnDhtzl7DtJdPczWJovZI2ddTWVH/NHdXS+CgaufTSSjD7ZQUI1EqZNXhdGIQuOgyp0G4TFatdAXuUvWyyOzQN+XZ7m7WqbOnBG1GRFWaRdcv105quUEpxBhlZo8TQucIQeiCY9VnJp2hX73McxwsmCjBVani21Dh2k8CKVUHXIoj7QpteWE7Klkr325HmxPoRObKORVPX2apFOruMHS89uZD7t57lX5Y8b3vfIeP3n+P588OJO2aCa7Z7ybbFDteSlAVylYHqKKunKcXzz4s3UYbdmtrUoMNlsFJcUwEmROLOuu3JewoNQtWIW62KBlpt9GGIjLrxiaDNUB2zma/SQM5zvZTrQdn7k2VskHlc12531sHbZb16rvXV3NdHqUlc1FX9isRc2Ikc+/hQ45jRJ4+J37whCkrwXdVOKmN7a703Kqaz3gcR8ZpZIwdEhJeYgmEksGfnTPbVwMVNUCmptJiUKpxs3Yr967ZzqF3LJaoPVmtrlZCIReCDTikJLuzGglU1fpSghQFybmAHoo+qHbIuZoNw/cdBF9g1NL2z5dzWCuIlRhi7qearwodrmxx6/WWkBXGY9HfUgiLjJnVGM48x+ORKUYGEVarNdvNlq4LPB0fs9/vGNPEcHJqKB2/yORoRsRIqu7ducNud8NP3nuPf/q7v8O/+Uu/wJ07X+Pzvj73QCVliKNh5dX13OyuuLm55u524JPnN7z74ceMk7HyeOdYJiyUUnoOwaApkzHeDHrkME0EUS5ONpyfbNisBjtXBYYSwpxJiqloCVGcm5VDhVHlZExJKSXGOJJGo6HsgmuzPoxfuqMPwSLe0jQo+HLPs6J7mdmcFcfsuvzJ12wYq7FUzaXkrKSc2G7WrIeAamR3s+N6dY3v1pbJcoL40AJAgFya6Q0XaZCOcTxyHBO7w5HxcGy4xEyBqyhWzi7pAe88wzCwWq1IOfL4E9u/4zERhjXOeXQ68PjDD3ny8cd88sEjzk42rNYrTi5Oub56zjSNppx1ftTa/eIFJmp2Z5nDBJoyLim2qgWdghRMZT07iyyJaA1Gc+tZAkGym+O4ktUS79icbri52fPDP/4x/+cf/mf8nX//b/Lgr29564038PsDqUxlVSw46VRm500zfefpnee9H/4YBfxmxZ0vfcnYbmJi2HYNvnW42hP3R9J0tCqWs3kzuhfe+c67/Lf/xT/m3Q8+YbVecX56Sp5GKs0l1OqLh8VzVcMuaKHQtEnfUjO/IoDHecX5jGRnVS4iqkY7OhQH+OL0hLfe+iL3H9xDUY6HY1l6LeV2+6OiaJrwztN3K3zveV8i1z/5ISFHupzoEQbJDA5WLrIePL0Ttr0waKZLR/zuQL92aN9x328IuxvzaorH0hyMZlDBiSepsh8zHz1+DiiHcTLeoZfRiM/+ZpGN8jztaYoMqQ2v9OJYecdZl23fC22mL2ucCz6xrkurVLzUe17qh/lGFBsaWG8gS8Bl47+PElAmO3846yfqhBPJaBBy59g4IaoRDtnJKE5VhXvW8/KpBXBWnvnMa3H+SpSjlAA5YRTnapTWMiVcVoIom3RAsOnyU1DSlBk1s3ZC9p6YnZEj1c+tkeitHai3ULy3P+UO/7RgpUiqEVGUCqRPiT4ra8kGP63vqkW8bHpQtfTqZZu51Ye+VURyzsSYF4HKnPqwLy6Uqs7PQ/Wo/ZSGB69TD7w4Np3n1W3g0ag8SYlEhBTpQ+D8/JxhGNCs7Pf75irWZ6sP2tiLkDZ1/RYbkMz20YISK32IN92gKiSXydPR+lN6x3rds+k9Zw528RrUBtwN4liJx5GK01+CG7Q1qgfvCMHgWznBFJVxUoagbX1EI47JfAUxRwoxnZShPYeoNebXtYyauTomDpMSnfDWwzNeef0eb37xAffu3GOz3vLKnS3/8l/2/OD78NGHT0t1qDIoVadyDsRj0vIdrgVAKWM2o+gMLb6Ew5iQKPKeC1zLW/exyU4q8lN0Q+cDmhOqiaipQEMFyRQCnBqhyYw9LFFTZfBKZfaLgZBfcFYpAffSCc8wZYPopvzy85JRc6RTCRQW76oBYf382tBfRyXXIZlVzLLMkK2UEi7AajXwta+9xcNX7vPgwV3Ozy7YnJxxdvcVnqS/y/e//0N+/PaPeHA20PfBxlcUanYnc1Bn1LoT4zTi3BFf2FydLwFDMvRDKAyigCEdnI3EUKT1GYqrEBtPpTMOfWAcpfkhTS3JIjCo6trZPBjf9UgXyElnpI5YMtwBXdeRekcSq1yEbAMfc55MrsTh8c1HTChey+gCtDG+OnXFRiwYv4qLVnNnTsT6s1Li/qsP0eMBHQ/ElLj/6qsItHUQl3Au0PcO31kvT0qRKdqMLhHohx6fO4JfBPnJqKUlGXTfO0fMiWG1wg0dP/zROxx2e37045/yv/nzf/sl0vY//frcA5Vhc9EYoBAh4smuY9gM6NMjh6jWRKc1qyHFgWBOPpQDEVzAhY4BmFTRKTEMA0Pf0QWP5spXXpwoL0VwwaLqAmOqmzrHtOacV8iI83gvrZHLsokLOETO4Ou/ZzOp7V6Z36tKbfIWuAWleFm4MhuTBeSq/W82LK44njlnpmlimibiNBHjZFWiMllUyxeae7TQTmoQr5wS4zQxjiNTLBShJZo3wbeNyGo0sMecOU4T0zQSyBwun3F9cyBHwfdrRBxp3HP99DHjzTUeJceJNApx6skptSxeO/syZ4HmhaA53IuYjarA2wTfHAt9o7Qga4a+1GyKK/jj8nlljbOW+Q5ifU31fhyOKUamNDFe3XC4ORidoZtvpBV3BJKz7zLH0gwcDm4+fkTYbNhsV/h+g8YJjUeO7z8ljhEfM2mzNlnqipxWmVLIMRMLRW/NpLXzsZS5skA146JiVRab3GsQDHGukUkoMwxMdab9zTLvilCyqN6aWpvMCjT4iOitv1OUc/C+DI00Z8wVViWvatkaJ2y8Z5Whk0yXlcF7AhA0M3iPOqE3yWPOT2vJNhZijCYotqVTTMTJaKNjmQVgFZOlgz6fryZ8Wp5pGVno/M5QyAVWZV6Iq/jwkiGvbRXtWz7jfLdP1wUEbSnWKpgNMgfFWqW0OS5SggSRQobgg1k6V2kPioPasuvSnm+WmSI3dcqyLDb2pZcu/lYcl8KSk0uglzGq4YgWgKZDpZCHuKKrnMmIcx5JNlGadkylBEBFdzY/belg34Zd3V5feeH5bl/tk+sat+90Nt07W8YyyAxwua3ZZ2dgebnaH7hYm89q/DemtmJHkGanUssY1+coujYZPCOWSrZTg2ecnp5az1tKhkyIkwVKKd1aP63sR7TFnO+tGrxb9osmxDOMZwHRy9YQ33WOVe4Bg2CTM0EcvRd6Z033CdpslUotIRX65R254P5jjMTczUG0GqugNRbT9G2zq8XuGW0ws513wi4mLo8JusB6u+bV+xfcvThj1Tk8ie16KAMArZonpQppA+ssCPFu7gdry7Zw1Q0e9YIA6vL/S1JsqQhKAqzKs9Zlrk5IrWgV/yLnWpObP7YuT3WOc01Wai46ot7Gi2nQqjfq/eeF/VvqOm3P2Z7/1lXYwuq/WlmbhfzPflp7xurfKyURJoTg6DpP3wdW64H1umfoPUImJvM/1usVw2ATz2MyGLoUX0DE7KsRdgS64AmuDK12ocwAqbZtXlcp1TwfQquWND1QlIcTSOUpfWEME6TkAGuVdd56oMHnffAFnTOvw/J9FNutZQSEBTJm3443VxAPBv+abESAU2MUc8HmC2WsKmRVoq7YtYVvJ4DMe1htJQh93xdKa4PcVZlLKXF9fc1+f+D+g876iENAUeJkfmXnXIO7my9VEzPRKnBLMZEyXkIsiDkeJz5+8pzDmPi8r889UFmfv1Kwe5ax8etTVqcjm8ETHu+I6omTMVXNJ2o2FKbQjVpu1fes12sGWTEqpN2RvnBYd8EzHaZyGI3dImDc09VBAyCbsKSaQRJKOdpYqqaU2yChru9bKdSm5tZAJVnDKRRnrSqTfOvQ16tmWF9uwj7jUpo3nNSUfyhOh5XiPZqUNEXGow0VsgGWE+IFp2V+h918yf/XQ1hhCoAqcRwtUEmxcHb7piCrYxwVNGWuxpHLmxuur6+403v2T5/w/Nkl+92I+B5V4bi7Yry5IceJdR/wkq1km2439to9lDIssmwxnw9cjQ1eoB6q8LSUYslUlmnoi0BRyu8vFb/Rn5mCT7l+ZGH9om6foAk0gsZc5lBUt3jOX9bXkoDPQpdlZhpxytWH77N99VVO/Kv4sCEdnpMvr9l/+3vI00vk+kD/q1/DP7iLv3dBOsbZX1TFB0+/WrHerBuryNJ8VUpmLY522WpwloVxYqxGZXqcUTBXnVNPmBotxEyYXBWs0nsxytEcGafRKgxxstuoszOoBilDNm785CLWnZobRMWpccWvxLF1jtMuEKYJTyTkyKrfEMThNbPprEm9yxkkmoGiDAQERLVQPDMHvWq45Wkc7f2N2vJl7muThhe83tnhbThkMbaiwTnWYgpSFOoAOimLvgyAZ9ewkYy2c8TyfS/cm2iBEInACNEr2al19ortcSpVXCce7QayzyQnBh8qJ2qJPc9iMrm4C/vvsnT/p1zLIL+dj3qfGbLaJ5uhd2QCyZXQyeUGbVCnOB9wcVpQPJf7Kf9SyqAybqmKT21X+/uf9gzFH5dy7+3kCuCFKc/zVIKAc0pOJWApXuncFLtYV81GGFIqQappdkBZyNBCv4WFjUvV4GvG+UpKYNXPKcPNMXKYElOqwZ9h98/Oz4zGN0YGzeghk6fcCA+qEzLTimIZWOZ7a0vaqipFpwiIpZktuVjY9LL9A+eUEISV9KDW/K8qBCcM3jF4m5EUofV1VkvjRRo8OefMmDNjjEwplepobgERak3BrjqIShlCaA3jrnBz52zTsoPz3EyRJ8eJDuH0dMObr97l3sU54/7ItL8h9GtSTEzjhJAQMccyUzLrlRxlsc8t+VADtio9C1lsxT6pHHbVdayAzrbYVB+g+ieVollVLKAvDFgtsWqnijpRo57hVGiXY05zIX3+v7bP836bbjBndyEDJqTtve3eqHa/9KzqzJja2LFqogtpT7UIZZq1bP/OCcHRdUZnryj9EOg7j+bI82ePub6+IuXIxcUFpyvL6h+v93Tl3Ci1F8KxXvWsS+9kKBAm52vfhD1WSqlUUYxUyDsheEvkzqlfac9U83HVv2qz66yItggE5zVczq9rrJSLrJXCXPnLuZA2lO9xAMlYsYJBbiUlmCJOrQLj+x4NwXpsKE5JE9L6faVBQaQFK7kFS5Zwz9GbjchKnEZLvAJPHj/h6bNnbE9O2Jyc0HV9gXYna88IwWxtMl2VkvnJx3FkU5hs6+5ntBQMFEjEpDy9vOHZzZHP+/r8oV+a8cHTuY7xuDfmjaEjxSPHnNnFyHFM1hfQHNH5gFnFIBK85/7dO7z5+hs8uDjhX/zRH/G9H/+0DGxU+uAZF25WHMeSUaY5H068OWSa2qwFdaYEY5pMccaEuoBLuWT/IxlP1sR2u2G9WTc4ye3jWB3kFwxsuRY642e7FsrQaBYdnYQSWXkcdpDpHGenJ5yfn3K2PWHoelznSsbVk/N8r3NTsrFHORdwskLVE5NwdnpGfvKM4zRCCDjnSSnz9OraYElJ+c6777H/z/8Lvnj/nH/3176JxsS26+hXPUmtEjGOe1KazOh4bc5qrU3W7Eh1/ysMaqaflVtKV1VxvjjmpZmOYrD8usc7gwnIZHNxss6q3b4rQZaCic6oRITM1VEaC1nS2LKdpkQ8nTfnq/NhDqKqiFaZUsiTVe5c7xkenCMhkHZ7+u9/jPzwEw7feZef/I/fJr79PvG778C7b3Mdr7n2I/2/99d5+B/+TV7/D36T/MmzGdVGpaF1BdBtjr9z0krAXXCQrbfk2bMr8nRE48jZ3XNWq4FhWJFish4ksSGc1iunBTQ9G9SF9rOAm0wIofWXNUrIUPqYfNnPVPuXBHXmtHQls1qrD6ETQu8IwSoog4Otz2x6YXCBrXc2R8UJoevpOyAmXKq9DPX8zrNiaqLA+hANc+27zqpjrYlyef70tm5vQYUZKw9zFbSuRjFUDjMcYbKMngaYckGjVQP9ggdddUNu3zHriVuJbJnJI9Qbw5CqQ4MFLq60GAUmvEYkQZTIiMIwoCGS3URyHVnrjBJrcldJJatdsO3hRe6xP/3K1cGR4iYJrWJnj2NBmqhRDyfvuHGwHQSfSjUvgSHXBOmFPIlRFEcbgqe+nVbAo5JAXqJEbynPl/38M65FXDo/l8FngvesvOfUO3qXcChRMyG7W79eL+fmisg0TdQeqZoY+ZO+uuu61gB/OBygON59Z5Tl06TGjqaKxGz9aEVJSnCMceKjRx+VIXQmn3Uidkzp9uqUWxG53YBf7+pFCvdmJ0tFNqtVdMkmQ+vNii4EBGUcj9w5P8GHFfrkwHQ1sk8TK6B3QqyOX10z5hkqiCNh1YBJlTEleu+5d/eCr7z1Jsk53v32T/BV0TY8P6SkLfBsQFe1QHnMgWO23rrTlXBn43h++Zxvvf1TPnp8xW/86q9yTKnYg8qgpdZfV4LEXKsECKlUdWoSxJrAta2WNabX4KbopaKnIsmYvrzHOUeiBH1lzptiyI2Ua0XNnGVVCtQsU8dx5OI5l9YqBBizMmZl0jn9oGghaKkIEa1juwxVWWRUa38hi77TKijL3y2BWc7VPsyEQ5kSTy7kx/zi2/K/TAxYwNCBW/G9t9/lk6fPuN5d8aU33qALPcdJOT8/5eZmz08+fofT/qQE0mXERDlIio2VePb8OXfOBjQlVitBumi5F00s5vtaUJSAUfHquLk6cP38mnQYYYqQg0G/RJlyIsXIehj4wutvcLjZcR0TBu8zW5/ac9k3dL2xHMZcfI80e4N2xnKDt+aULYoXsx01jRV3V80GVz+oyqQhfIQ7d094GDq+4Ea64w1M1l86DwmlMIBKS2zY+imH3TXT7oZpv+N4PLLf7Yhxou87bm6uePrkMdN4ZH8D4/GA957NasXF2RnBB8b9gf3+wD5O9KsN3WplZEelQqVZSyvBRN8ZXNJl4eLijFde/wKvvv4FPu/r8w9UpiOaymC4OJpnIZ6bmxv2+yPTFIHqJs0QqaqRck7EHFmvB062Wy7Oz/jCG6/z0eOnPLj3gO16zdB3hCDNqbUsjCmXXDbags36nqWw1XJdURbM9HyVBtBYSjKr1Yr1amWltGgH/nYFZRms3DJvLI91c1mKklpebeDcvCgt61XvK+XMcZwYLAXYDEidZmvOfIYsLd8xu2A2JdcwnPX9uQV14zhyOByQvqcf1oiYYnDS2eTe0oSap8R4s0NE8F2J5p1Nt6f6wcyMLBluNZnVtatqsCxIW09YNiAuFJ5m9seRk7M1J+dbvvzzXyRLJhWWKIN/aYsY7dkzmr05gJroPKCJ93/ymOdPrtjdHOj6YFOPi/Np9zvLZQucyutK4z6jDx40oePE5Y+ekp9fEz98wsk7j0nTNYcust9scB9dEj54Rvf0OdIn5MwznJ/SrVZW6auPv8DBeuZMT723KjspJUQsm/nVL75h79XE88OOWGTEqzQjK6WSZqXcEngs172cPSnsPF4sy5OSUXkLkKaxyGiR32Kwsiiakk2JV0eOE1L6dYoUIFjWuhNlEGXd2UyG88FDqnKf6F2gdxVjTVPilVZzhmFa+dw5qxi2huKWKZ6zZu04ldfnhMLyZMzHLhddlFTpvLDphLPO0d8knFTIRYURlT8lAz9XUpYfujyJupAqQUoVIesMv1sOMA1qgZQ1VKZGTdl7I9GQ4KjDvTKGkc/1ZBWjKLduZdY5t/oW6n+bnC0CWa3eobzQTLz4zNKjJSkZZllMLwSsMudELYhFrapJdbQoTsiLu7D8ihoGaPvJC7HHn3AVD6fAN8zBnaF7ncDKCcFhgWgJvKTuaQvKFpq+2BELUgLeeVIWYiyhaV2eelaKsz33qNjnealapDSCo3QONp1jFZR+qvh5RbMxX1bYoxMxmu50OxB5WaLsT75mL1BlAe+r6+3EqOWDt4SMF1Z9R0zCupsK61epwFL7rk2+S4/wLUKYXNa+KJtiwzybVc/JaqAvDn3VR00Wlvy7bobDlmkniMIYI0+uDjx6vuf+a/dYn1ywTR37KbE7RvbHiDRYzyzhdRVeXMfao7C08lQHuvgUM2y5njlp90a9/yoHs9dhS66WBDD4mTaCgWVyo/VHlc+ZciYm66OZuUChAtmbTsrMtlAsuKrPsTz3MzvobXjTbTmqSmTpPzWxubV+c/V4frWOJMgKVzc7ut6zP4wNUqY5c//uXQ77kZ/KO4zj0WB+3gL0rJkxR1we8Slwveq4ORzxXY/rMz5aSsVBqb5BDSBV1ViusrKbEocpcoj2JzAZBTWZmBP379zlzvk5wTnG0fp2vfPMO7yAB4qxrro2dNj8RQsQ2nI13dbUaoH45mqLlpqsfG77ZzbCnvWq42TlOBGPjDdtD5sNmqWz+QrO2X5eX19zuLwk7m/wfc8UJ9I0FbicK8kXSNNETolus+Hm5obLy0v6ridpZn1yQj7sCGW2zenpKX0/FDkxmciq3Oz2nG63nJ6d88Wf+wYXD17l/O4DPu/rcw9U4rhrDrGIggsojidPn3F1dc3xGBfMW0u3Aep8lZitmnF2esLF2Rlf/uKXeHa15533P+bO+Zbtek3wrrFrSDl4mg33WNRec67s7EoLFLx3RM1FaVqLbKXRsxItSMps1ls22xPW6w3Xl5cN/lGp/WaBayqG5SCh6rgsI/LPumTxP1c4v3NxZmJKXO/3+LMN4j1d5wvsaySkCVJtuMozg0pz/jM5RSv/JTOCaRpJcSLnyH6/52a3I2TlZFiVDH5EssGrhm7NvfM73Ds/wU2RqayCIHgXCvuNM0cOs/GSxdjClgFXLsMEMaeBghXX4gApRnKA6oI90JT51fUVFw/OePWNV/gb/8G/xy7vOaYjmmetaQreni8gaO5BPaKZ080AOfEP/95v8e3f/x6XHzzmzsU5EjB6bE1td5bzDua9XTrEMPSOuD8wXl3x6Pd+n8O3f0T8zrs8+OMPuNx9wLPpIy6d44SBMwZcOGO42MDr59z/1W+yeeUBOlrmp/ZO1m+yyfBz1rYqPVVlmhJ959muBv7Kr/8qp9stIQR+63f+OR8+fsKjp5esupWZT02NdtaMbK02zmdNswU+vjQHdtIjYsNV97sba8ZPxqpSsettWrwIOY4lgxcZjwfQzHroi9AbKKgDBoGVy2wCnK6Ee9vA8ahMMXEYRwbn6F2wgWmlQmAOkyuxSC6ZaQtUvPdkmYODJctelZvlULhqMPTWvtZtXRhkTAcMwXO6CjxYBdaXe9yxZi9dO6n1Q80JrgkM3xxWKY6+DfhrDA6WPKl7naVUQjIhCsmgyPRp7m0INjaUDmHtjI7cdwZriJR+KwGjvHZkyc1BnIOPlzlm82rcXhMB/Ky8BLzO0FGprlKRW4kZP054HQhqLTRDUoIq3mWCt4BLUybrApRWAwQWFbQX7q/d58Kxmr2p5dPcCsvqrhRdXANBE32vRq279mKU2VK71ere3HYAKv7ciFtsj8FgWaQEMllBcnHbBtoolOtoCU7KM4pv/X8pZ5wmBue4WPWcHmEVFTRaL1BWpnEi1WSM5pfazdnPkRc2c5b3T0EiP+WUFpdXQJyjG3rD9weh6wODWkP2pnOsQ5lQr0Y/7hS0NKIrSigV2Ypfh1Ip8BakuNITOgTPqgsMUioPOveQCjMxhpYFlvId4ozaOAA3Y+Sdjy+5894zXv3SL/LwjQ2beyNXz694dnPgcndg8J35HMxByovedjWZWgPceXVNj5YmbUFAy3BLZ5l/cRVWWc62lLXQhdV3DoNp2hdlChx9cSvWmzQ7o+ZKOMaYGWMmRtMlc7BSIJhNIup5N/1Rg+TqB7Uvq5vSnN6FWOjyx+XnNbhg/pz5/uxfS7+nVh0R8132xz2rVU/KalX7LhCj8sbDV0lT4o/7wHF/MCd6WLM/7Binif04ITrB1HG17rg6HPHDynRLtCAhKG1od+1nyQqHyfy4m5g5pMw+J/Y50WtCynyaKSVef/NN7t25QxpHdtc37HY3rLYns8lfbhBl0LJzRpWcU/EplyD2GoxgdkjrHpiPBNYPU99bA13rZ4moGmRuO3ScrDu2MiFPi2zmosDqfsq81iJq/dlOuHz2nOunj5l2O+69+ooNbi6zx7quox96S3pMxmoZTk549OQJH3/yCZvNhnv373N+/z7+8hnrtSXq7927a/edYisQ5Kw8eXbJdnvG3XsP+fd+828R+qH1Q36e1+ceqIzHfVM2OWdCB+IC15c3xCnTd4M98ALyUl1BLcqpC54PPnzEnZNzeEP56i98nbDZggs8v3zC6eaE3W5f5nOYIjHGKoNviRejkEwGI7MBVoGTk00ZmigcLm+sT0UzZHMaUnbM/PWR7cmas7MtJydbri8vqXNgXgw6ls1ULZCp1qtlhf6UhauSrqV5OBkWPatRE4/TkZQHo7T1nVU5knHH5JjN4XapNP2bUpy1r0GbHAIlYNBsDGCnJ1s0BKRwmTuBNx/e5+Z6T3CeL735Or/+81/kwdqze+9tdBjoXAc4ptKYP011Yroj6VzdOsbc8NVoK5rb40qZ6yIeTybnxHF/TYrG9GbTZK3faHfzFHjAsPac3j1BD5CP9vzeGWTNOaOKVlVjtaDHSUcfPK/cuYMXx8mdDeQjh2eP2SOos3XznQ0L86HD5UXGrFaAxDJEzgnkxAff+wGXP/oR1z/6Mfm77+A/eEL48Bnj1QesvvQmD7/xV3nzb/wlwmZl9NHB0905p7t3QffaQ5LC9PSquVQOCiGCGB7bzWeiQk8Anl1e8ZUvvM6f+6Wv85/+p/8JZ3dfITNw7//2f+Ef/fe/zQ9+8I/pHrxmHOmI9asU56XYUXuWOk1Ka3NgoAsDjoCqWBa3ON+ac3MibI5KaSIMDp1GUGVECoNcYhg6Bu8ZnGcdPKs+cNrB1sGWzCorkhJD19N5TxDPqnMcxBXGFqFGqilbo7yTTJrMrU0xIxqrvjbDnpv7a3pESku+zE4iAqTcAhgW8IL6/4pBVwfJnAXl1XXPiezpcy5MV1YtMIhFcd3V5oWIFobBEjx70bmfgXIcAfEgacbA99Gcb5dHRINlsxnJ4wR5ZOtGtsFzlpXT62fEGBBZ8TEjgY6jGptWJJNFGZCWvf6MUOSW/rrlqhRHTFTbUFanAsSCRBScS0i0QXdrzYTkcTpwN2Tk6Iij4ONInxJDUuJ4QKejVebcQIsYUm27dmTypwZkzve8DELmJ/jsS6kOwNxrUpz8nBi8Y9t5LlYdHTtj2VEjxrCxDQtnv5yRZaZZS2/jWPvj3Py+FtwBiLA/HtrjQiW0UBtaqjZA0OfMxjsennf8JCa2k0BKaPDFnYWGB4P5tfY9P+u63L5ceWuWuj72AE6tzSgncCEQescAHI87hMTg4XTdMeHoxoTLRlHvyoDIBg6oDc8+EHqrsrpjwneDBUDxQFClU6XzoVTgBCdWo1GFPJUARWbdrk4ZusD5xnPIwoefjPz//ul3+a1v/YTn45qv/NwX2G5W/L2//1/x6MMP2V9f83MPX8OV5uIKE1akOXsZWsVAEVIqSbRksmSBVcCLzJXwxdmyqpO394kQ1WZU+TBT4ioFPtXoNW3vUmXmrDtY9IUhE7Qwdgr7KTNGFhUde4Zl7b9RWIv1/ElhVa0O7Rw4lf82+7BIvCzkqb7biTSGwiZhi4TBHANpW0eD20dII33nC2w54pwSpwOffPwJn1xnQljxH//Hf4f/9h/+fT76+BHPHn/CL/3yL3N+fsFqteXm6imdRh6sHKf3Thk2a/z2jLzaMrnAaAq/+ROxBFdZM+IDJznzjVcfcPIrv8IhKX0YSMmqN+vVhjdffcjVs2f83f/8/87zmxtihVneOljVGtNkQZwvvlqioqKbPbm1o7zkcxrlBJaqmb+rwqivn1/zyVWml4TogPMJL0ZK4sT0TpAOZyNdyIVJTsTGV5yensJqYDUYXC76UAafW2+zr2RUKRM6z+Gw58mTJxwOBy4uLtisV6CniAuGurnZs9muCZ0neOHm5oYPHz1G3vgGX/zKL/Hn//xfYLu94PLqGc+fPeXB1775kuf/n359/hWVaSqOo/U7+E4IwbNZDfRdsNJcPSjLTNBCmTvnuN4f2I/R8KiHHZpG+iDcOTtnNQwGIVM7WN4thgNl8MGz6IcuDp9VUhCjjK2YVZizVJrNmU5ZiTnSdT3D0LMeBnPaSl1vNp0LyWx/XUC5WCi0FxJaL2/6Lb8h3KLz9U7YrHvztWLicBwXGRKDfCmmmCjPRLO3dr++TNmtukkx5pgueFZ9Z81dZc2CD4UBCrrgGYKnD54dtGqPYjzsmWzrWkra4BFvgyF9zTQVnm+hwprMiUhYxsV5x8lmxTe/9GZbKCfGPqWqPL+54o2fe5PX33qDrQTwK/og4LIZCHElUCkGVxJOAk48fQicig23/MprbzD+wte512042Z6ZY+kgO+GT51c8vTIsa9bc6EoXEmqVwqTo0NPfu8MZie7+Q3j3Efqj93n2zttcvHaHi3/zl8i//kvWO4QSTu8S1iv8erCJw+Nk1QxX1WFrZwQtRrpkUJwIuc4sqPilrJx0gfN1Twora3jLCrIgRSjVn+Z8imVdlpkfy+LY/jQmGe8Y+p6u70CtwtBq/770PdX2shDwZV7Lar3m0PfMPPilp8MpwUFXBseF0gfkgumH5DLBZ4JmugCqYrSgeKvo2GEhFeGNqq2KgEjDfaNF0ovhyuU+aiVESqqwhYalYtlOnQhlSmqpABZIV+F/zMmRnAXaiZmYghSt/VXM4aWwAPma/ZYZj47UoZyxVBhBS1kt5MKqJNC5ZD1fGukkskU4IbMhkzWBJi5UkWRUrkGE7DvUhYXDVaVW6oFvrzYpEAv00CIv2L33WEsvOUJWe+Kk1oLmBLIaS40TVl7ZOlgFTxotc9cLeDKOxOB7AmpDIiWVHrppdshqA7uTNhxt1q31EBa4HLWKvbAfL1awkU/ZGCnimzJ0Qek7GDrbv6yQs5Bq30yBbDWnrNmQWZ6SqvXAYZC7CnttlXxMjrOVuhDNlmGvMqtqkMmkuAKDWnUCmkiaiDhCweqnQl5wy0msVmVh39rPGoUaFTE1r84CmpQWv2z6QkmFxCaXimld+dlZt2p+8InglcEbxKs2wlsLnf2ulASiOHPqBAgh4sOA8/ZcxnSW7F5akCzl/C4DRCkOvhQ2NWXdO87WHefrnue7kavrPb/3rT/mo8dP2K56PvzwEcTEyWq92BXTq8ZKN1dNWi9WXeMmV1J0mbQseO1xtYWrHR+1+i1omVlSm+ZrFn25R80J1lt5kgabpuyHFO83UqnIyx1XKn9ZCOhtySi2RBcqYIZwtvMly3uZA4+ls6LtN5a1xsUP67Pd8nnK+tXb9VIY3ex7nPOs1iue/vR9xPWs1xtef+N1hs0a9/gp3ckJJ3fv8tYXvkgnCZcn3Lhjve7pQkff9bhugHKmapXNyFRM5wZs5slKYJ3hPCtZHMEFpsloePthxd2LOzx7cspbX/0Kjz75hP3haEGqk/m41Kv0yTon1L6nWxHmiwsDLIzwvFaL4PLTiRiBDNOYGJ0SnZH12KgYwedKyKDt11VKgGgKqaCGPGgghI6+66zqifXYrDdrYy0joMns4MnZGQ9fe43VMNAFz+HmhjhNhL4w6RYETFY12+Qcw3rLV772C7zyymuEbuC9n7zL9dVzrq8v+UU+3+vzr6hM0ZppnWdK0Iuj7zvu3T1j+8kzpGxwbd6q2YbWLFcClavDyG6MTAk+/vA9nj/+hOlwxf37D9ms1oxjmQGB0dX13ltjUYbQd+QESR1ujNRhP84ZM8TxMBYWoYw4azp2YMOB1IFGpjRyul2zHno2qzWV9SgvFNitS2bPVkQXSra8VpXZZ11VZotS0ebgJ/pgvQ3TMRLHiasrg9c5AfI8Y6NyfdE+yu5phoMVA+UsIxxTpvOBVQfqhWm0cqkNhLTsfia3oZk+eMR3eBfMaccCnq4rKSIVlIB0EDpP570NCCy763SuHmRM8R6myKrruXt+wn/0m3+VYVjjvU29r1j7SSeGsxOGkw1bDWzdhtyvWwA6Q3HM2ii6MJ6OYXI4PH/hq1/n507vc/lrlwQXGLwjOGEXI7/9+3/A7337j3ny+KlBAJf+HTRq6JwS4e5dNg8uWHXfYPPGW0x//A673/kjvvcP/h+cfvEed//yv8HlL/8c+bhDdju2r30dUFI6cHz0vlUmGjyvMjxQlLsr/P02QydIyWordCGQYuL5s0sOn3zCNPToyQkffvSIq+s93bAqeq465UXumPteqoIz+Zzhk4pRNXrv2G42lolRayBWnaP+6gSmnBHt6EPHerXl6eUlh8tntxp/7XsTnRP6IHRlgJz3FNaUiXhMBB/pEPpgCjhlgRyARJ3DlSk0inkiiQ3JFHGWmS6UpXXDpFRZRIxGV9zcM2Yy65BCmGHGXBEp/PvOFydKmTSSxYZ2JXVMJaCLlH6FDH0acd7Ol6fA9lTx2aClikOzlLkZZXCjWpLFY1lTFIYUOeZEJjP4xJQTSKYPmROEO67jzMGKyCqPPFLI00iMmS44kvPGBtYCXmnP2hyG4rfkRstqAUeFHyDCCmHAZmLENJHSRFA1PZMV78saO/BdzyZk7vjMphvYS+SQjgwegsuIJLa9Z+WFoJGoruhQbX1sWbEJ051RVN9CUd2COeWmP2xo5Ow4Va2aqx4QvUUa6DD2tCnD0CmrXhk6LdVq7GfFAa4Gfcal075jTjxbD1wGUi4sUix6rNReo8mdyUV1UKLY7KhDSnjf0wdPH4SYRsaYmCTQ1fkKpY9h4eVijntxknXZp2D6pEHfcqsdsAz86rvsnFY4XiaSCOJJ4vAhNB2VC2Sn76DrE85FnMusu4D3DkmJ4KB3JYAXDLbpjVJbXIcT6DsldCvEGTnFGKNV5DWTsZkrkl0bXKdFJ9qaW2XZ7HhmO3jE9bw5bunE83w38k9+9w/oxO7j/trx5v273Ds7wRUKYJMHscSF803WqurNbYdKP18ZPuuds54kNYSDSi49Na7JhR2hkiHXUj1RJSmFiY+WDJmrbMUOtOio9Hdqbv2QDiXhmMhMgGUTpYwh+owKiCv/ypl6aIrXYkG7zBTwUoKH9gk1UKqSU+D4L7vq6WyjGGbDYsyAJQlWqzumfJSu77hz9w6fPPs2u/3I8XjkG1/5OV5Pkf4n75H7FeH0lK/+4tf58uv3QRMff/QhcSo2eIotuKUyfHlPCF2pJllSWpzDBU8/rFitDMkjKlZVyInsYLM95c6dC/78X/5LfO/7b/Pk6XNLRjqtxm7WMwXx4DwkjQ1qLrUXVwUkI1TkjQWtc3+UfmoNK/WJfb7p6pyUaVJSMN3kOk/N+XbRM2UjECoi2GJmLcbc5rkIOKHrejTlEsx5NtutIQ36QOcd5MyUM/dfeYVXXn2Vznmunz3j8vFjsgS2Z64wkFqyLafENB3ohoE7D17lm3/xL3N+dsY0Rr71+/+C43FHyuNL5eXPcn3ugcqdO/c4HkeOx5GckjUvdh0XF+ecX5xxenpSpqmbEm4De2QOVhzCnTvn3Bxu+N0/+n2+9d1/ynaz4eL8Dl/+ytfYrFZF8VjmIsZIV/D4PgSmKZFjZjpG6zdRa0i/vr4pVGsJ5y0b3InjZNUb+4Iqu70d8GmK5TmOHI6HBuX6tKi9/JKFo7jMUPyJV6vaWCOqEyGnEnI4T84TcUqM40jMmZQz4zQROtcm+laVpKXaUT62KJvirGUzpsoLg6SKco0ptch6Go/c3DznlJ7NqmeSORjIKZFjNOq7UtmBjE6RrB7ZZIIX+uDYC7jgcJ0H9UwZDlNiP470Q+Bks+Fv/PW/xubBq3TrDXqzt4Ndsex5xpW26sLtFb+1jlIcFuuFMSXy8698iew92QvohHRrVDxPfvoTfvL4Mb/3R39EnGzaujU3l54JFUaUbtWx6tecxpGf/pPf4e1/+R2+9Lf/Jt1HT8mfPGGTFa+Jadzx5J/9Mz7+//53PP37/4Qv/a2/xelf+BU2v/5Ntm/cYbw5cLzcAdJYXqQIV22Yk4LlFgySIl3g9HTL06sr/off/wP+D//Z/5VXXrnP9uSEf/iP/hHPrvdcXFxQudVqBr/KonPBYCtliFfNumw2G1arlc1BUYPQoVa5U51pUFsciLSKH5hzGJNlfbz4AhNzjW0sOIcPQtdJYci1++u6RAgAnvW65zgFm7cSR9aTJRB6ZwFzEA/H2kmghDwVi+7pvGW/XJlWqqUnq858cZqtZ4oCrRPBeKj3LcAQ8YU6VulJbF1H763/ahDhBOXUJzYuGVsZ5nA7nznxMGUzNz4AsTTdMpGTnUMvE0qHAIEbcjKa23XIHDWQEJwbCeLIOIbuyFkSehx3NhnZ75huRu77IzeuwzvPWx3IaMmIw+k51hlk7Hap1TMAnTCnS8uwO6jOhRYnlBKkOSJDUoak9G5kAiY8IUwWOGaH6ycub/bsdiOvn56zIuN8ZuCGrJFIZpKJlWQ2Ais30Uuiw4LvLkAKDt9BSp6UHKQbUlam7EqlKVuPFRHEW5ZaCkSmnMsKV5JSmbJeEKoHiKjRvBprz0w6IhpwKeCmHq8dThLiIqoRIsa8VQKmVI9QqWKKd6V66/EpFtjhRKiUTa44MwiusHOIzMmUyuqmORstcLZ18XhgILgVnRzodccmrejU4RYzTvLCoTQn1RJEWasTVHqHSqb3tobU9h77eyrEB6FAbIVjOdEnTtn2weBSyYIY8R7XCSnviNlmTk0qNgTRO8QHg6mqBWUVkisiNhzPO5OrvgPNPD8eeXxzzeObK5JoLWaS01SSYIoL84gAR4UOOzp1bAS6IISLEx6ebBhT4nCMZa6T43w7MDhjF8w6kQoLZKiMjgoFvVN869myt3kyi9eqeS2g6vaLlZFRRJo+qYiSjFpcQTa9StVRllCVCoB44apJJEpVRtGW0f4TL51tfb3/GvDVClUN7ecqe9EFrdFKbn/g4pJPvfLZlxRbkTP0fc9mu+XO3bvUattms+X+vQd87+0f8//5+/+A937pG1zcucP69Jwfvf0j3n3nJ/z0/ff5D3/zr/Lma6/wyoN7Fnir4rLiy57lhuQwv6Y+e6rVumlivL7hoJZcm0ZLEjnn8H3gneu3ef/DR/yj/+a/49nTp1aJeIGNxJgoE04cXTfgfcdxHG0eYEpIkFlA/gzXp0hPMjhXk67SRkNSf0YZj6AgMuuH1WbNqBmdhNXpKavVGk3WG/7WF99CEcbjjpvrK8bDgbuvrTke9ozjRBeCPZc4DuPIOmeroms0qFgWnh/h4Ze/wZ1v3uXVr3+Dw801148/IafEJ08/4eMnj/5sC/GS6/OHfkXLvktR6FmtIfDq8tIo0obemmEXtd0lftKawIyt6ermimk8oumKN19/nfuvPrShjK5G8XXjKPSC0hg14pSYYiTFDOIJYmxGtTGxNiEZlatBUgLCMHSMqjBFpmniOI7Wg1GurLll1m4zfS1TXtUYtNDA/qv6Egd78WvQsvaaDdbU6CMLk5N66PuOYRjohwEXOkLoCkOLN6ej5k/KDWhpLq5KqmYgapN0atnfUnrWjO86YxcrQ8amJGy7jphdKZNX5VmzChbBN7xo2ZiWiaxwgKIgMzYvpsqBqA0cXHlHHxyTcQ/Oa5OSlTbrFNiaHWtLV9e1po+ZZ6qUmwjeQ/BGRaWZMARUOp6IyU8suHlRKTC4mipzlsEKDqeZ3W/9C67/ye9w9cffx/8vfxOOI+nympUqjBPj/sD29S/w3K3g8RXX/8Nvk59/QvzgQ8Jv/gay3dKtOuIxUldJlverOtMKtyxVyZQ4x6jKH3zvB9z/+BHnp6c2lb2s+zIDVBscDU5lxiilOt3YDFkdXuWdR3IJrC2NaGXkxhyziIOx10VL5nT5pzG92QM5CgzMgfeWkfedKw2ADmQgiwFtN5L52pnjlbUjDJ6uzjHCOOm1rtXQWQCqytj7FngV6UbpmuGV0rxs9xwQcmF+Kpm+8v+qNgxwd8y8OsBpB4NT7nfCG71DvOO8EwYn9CocY0JVWPnAkZ4kDjpBykA7Jx0udjgVui5C9KBKF8BNPU49fUhMeSDhcd3ERLCG2v6SFZ5ehNXqQH4+sVJH2HZ0O6HvYHXS8erQs1GDwMyaJ3PMRhnrutLwrYlQoIALU2jnHSmZYsFrJGSPV2HoHTka3XnYRJI6knoII88ue652B05Pe05XnrMgBMn0YskR0czGCbH3nJ0EDoeBaa8cnSdKT3I9bqWQHDI5RCNZHFEsa20Q7BKWlix1Ks6lBZzVicvNeJfOwuYIoaGc/Uxwjl10PJ8gKGjMxGliG4R7nTA64ax3dAq+zBVRKZlwqfAfR4rRvsvBOljWPWlndqagBEKwO3JZm97zlRK3qjIcMSn73nPuMj5P7I4jGy+8tg78ynnPaR8IvoDJpPrF2ipwZkt8fWpzYsUCJVrFTnEuLJzRcjZFEKLNqHAWqKhCPPGkmHll45BxR4wdU+l5VK2TyqvNpmV5Zw1s/+/rDLKij5rud65VdFerFRcXF9zbHRg+OiBiU9uLBrRnrRar2g1TZk3NO1XW3ujRU/Z2r850S1/XrtimuUF9rjG1StSn3G8znK1puFQVpAT8rjiK9VaWFr2iF0SErIXqVvjU99QAqU2ll0UgsbDVUl+rsC/a23+GSxZ/aGubVQ2W3Z7f3lthuy8NSX7WCAXaPVsiJBsF/TCwWq3t2UoFpu96gg9MKfPJk6fsjyP982t2VzdI1/HRR49477338WkiX5wxHUYjd0mlIT7XGTO2PymmxsY1pcyYbUjqNFnlLqbEOE4GqxTBBcdHTy/56PFTfvrOu0zjaOfXvWx1pdkKxBFTNF+tVlRksc6NxONn3qjl1zQdZsmY8pFKq/pVXVApDVUWlTUBXxrmsxgD2P7qing88vC1h6TinzuczUoZY3ktN19QRPB9T9D5zDZroY5JesL6jHDnPn3fcbyBFCdiPHLY77m6vvlXfOg//frcA5Wbmxub1+Fs0qjmzO7mhvc/eJ/dzZHVMBBcIGpasDvZn1yywN4F4nTk2WFnlKtu5N7DVzm9e4ELln7OuTbfSfFjbUhaVdrTFDmOkxGzeMfKeWO6UqD0NFCCFE+mE6EPnpPNmojw/DByOB44HPaMYylliWVIW7W2XfrSg6yL/38R39lmODRtNyvHnJKRAoQO5wxGMEWDg6gE1psNJycnbLZbsnSErrcgxQlIKEJrgtVYOhrmFbq+o+t7QujI2Soo3ruFcrGhWtbkCClGYvL4zQDjPGCzKnIBcILgIBme11du41LVqftkzlJtIjNHSRU0JW6uLlmvVvjpyM1uX9/cFrGVzBdKYR5iVt82K3Rl7vMREeJxB8fq+CfWm4jzHc+ePef6Zs9hssFgTgWXFoGns0nyzguy2/Po//Rf8PTb32J/9Zj1ds2UE/HJMzaqyP7I4fmeB7/4a4xf/T77e/e5+We/xfQHf8jx/ht028DJr/4i65//OW7Ga2YTXPa/rL9Ng01lUJ45Id45XNfjfeBbP3ibs82Ke+dndP2KXiO742LQkoKS0coeF80RSAW+mKtS8obtDT5YY6yAeoHgDfrAXOUrruN8x0LDBtc9995TIU/1ffZxQvBK1wnd0BWaRyH0HYfJAvQzF/mNV3sUYb3qcVgfy24/cRizFcm9Z931CGrGJ849AmA6oes7K+2XjOQUjW9efCAnM1Tnw1AcA3NzvQ+krFzvlLsb4azPnAThrUHoY+BVDby6thkwfc5cHZVjVugHjmFD9B1T7wmysqxuf2A19Qw4VttE3oPERD+s6OOKkAP4iZy2qOtx54ksgSyZcXjMJgQ6L4z5mvw44o+C3FkTbia6faK7P/CFbkPnOo7HEe8dvkBYr8fEISnbky3ECXJk6GZVr6mSkAjqAscpM8ZEyEJihbqBfjPSaUegw91V9uLYiyNr5PLyhsurHc9l4l7X8aB3WFIxE0hIyuQghD7w4O6aQTpO3cBNCEyTZ4oeOYMuCt1kQSMJSFpgVAmRaJU5HFkc0zKJ0PrRhK5Q23qBnKfiqAY0BZwkvJvoB+HpKLy/F1ZpQseJ4yFypwec4yILr28HOgEpZ69mxsUZTHHoeq6vrsnZ2OzunnpjngRu9kfGmDlOmdAPNlsImylkVX7fznj1A6cM11HZ76/o4pFn11fcCY7upOP+ENiuvAU4zQEREF8csQJ3xM4aClNJwDkniE44Ep1kum5VqvEQJwuu8b6ssTkszlkw4rznsD/QBSVfP2fcnhHCQAgd++NInFJj2fSt30yK7a4nSehcTbAt2LNKoBKjNQPfOT3nrS98Ad+tOPnxE/x0TU7TIollAYI2HU+zjzVBVvuzuhqpdp7qfI95AsT6bZwUWVJSy95RapyfvqqbWZ36nDJZLEgVVdDCVNdyYtLySc67lhRMORcfxS0QGXPyZe5JMVmuKBELcigB+6KXRhdexMt9adO5LT6RW/axBUcmOSX20U9/2LxELP+r8z9Z/lWFuV2n/kQxIoCs9H3Par1mtdlY0qEEmcEHVsOa7ekZz69vePr8kv1h5M69V+g3xl717g9/xPT8KdenWy6fPCUejzCOqJpzPUULPmKyxHJlyZtUOeZkQwunxP54bDOI+tIzpSnxwZPnXO6OPNtH+tXaEuEvznRq6zkn4WbWL1vN5qY0t+FfLUKZ58dZkO9d6YbUCpXVciZmn9Gm3pc+yoqRFiF0gU7WJCf89INHfPTee+xvrrn/4D43NzccD0deuX8fzRCnyHg4ok5Kg73axHrnkGC+RoqZLI0An+Q3MJzg1qc2hDVOxHFkOu45HPbs9vt/pWf/Wa7PPVB59PEn3L1zjzt3z+hDYJqOHI47nl1dMU6OLnR03rdMfDsoZV9jzKQp8s03vkxMmaubPR98/D6Ip+97c4i9sw1NqTTtym0WsaIkI4shSFob3Gbn1rvZ6NWeGcM5jsQpcn1zze5mZ5m0RQ/Kp4/2IgOxiIDrj2pm7U+6Uoz4EDg9PeH+vbusvGfcH2+VoWsp9XAcGafJshWrAM4tnl2pkCXDFSlILjAiLcw9vtG9xjJ51NHZdG9nqlGyseQEv+LO/Ve4c74h7m7YTTdkmdioCXkaIznVsrSW53UlwCqKta5zzuQYwXvDznoLApzY5O3adEnNeVkKDFUabKU2ryoW/FTlWTNBJWylNUMuaXlu8YgaBA114DwifoaLCESnINYnICjnJ2dcffe7PPoX/5Kf/NP/hpOLh3zjz/07DG98gf0f/JCbn7zPkDPu6kj86Bq0586/85cIm4H3/7f/O1Y3T1i//8f84H//f+Te//o/4uF/cpdtf1Jg7FofleRK9Sxm4lTatsXMb5RibFU5PTvjdL1iO6x5dn1V5jksoroqldnYoHTxqmHrrVJ2PB6J0wpE6HxAEKbxSM6ROrul/aZY/8VSKatLMCWO44GMstqsyrbame46Z030YsQMXXCNNSUDOVpmuPOZtY8MPjPiGLGG7KiWGXNdB1kYp0zXWVU1e1f6GGqWyWiM+6EnFGrTlGB/ODAlG6rWdR3BO/wmtJkU45QYQjDnYop4nxm8svXCdnBsM4za0XWKSGKfJ1KecDnTO4WUcOoIQ8LT40UYQmYFdEDwEyH0BD+wuuNIz5V0SIxuIu93xHTgSvasktWDrs5HxinQKYxnO1yCoI7u+pLnx8guZRJrnkyOKWd2+9EIEEJH33l2WRhzJmZHpRhy0ZzZlHJrJq7ECBaoZJw6XDpAvuGwz6xSpkeJqccRcNJxPN9wzM54up7fkE6P5FXP3U7Za+bmmFj3VlEYkjJd7hmvRsbrkeQ8nfSsXc95OCkzdmBd4LrjmAl9T98N9J3jcIzEZNlR32+MeckHLi+vDIYRQiE6yWW6cqBSzsej0UxvVx7vMusDHKKySg7nMlEiK++56wJ33cBrvaMLlow4jmPxex0xGVlIH4Q7p2uEjHPK+YkFxZodeXPKcVJudhMxC+KFrhdynpohyGVEteBwGkkInQTUd3iXyUysseCnkx4NoLWi2HQZJBHUO6QLHKdYWKwKaQPS+kmcWDBiJHTaeqsSNlML74qjrcTpCCIMfUfM0XSieEIY6Po1OE/WkYzS9Z7NuieKYxOVwGhT3vOMUrBKi9nYOpayWsgsxQFPmRXCxgk9Wuyxx3U9KtYnlqJNzLaApZB4OCF7iGr9QcFJqzJBTfVAlrmpXLHfsfmRCcGgQ1oa/2fLUapg3oPE4hTOwyKdVO1pn9Ia6LNriTitD7uo2JpuX6BGqs0Cam+rAillKq2wMsPMDNK08ClKYPTyOMt+UANPTXN1Znml1rewYAlVbSQDs4J/2Tdoc5ZnH658R52ULga7HONE11nD/MnJCYwTU0zEfCBjrJuKsBpW1sfUJ7wT0vHAYb+ji8q99ZZffOvLPNmeMh0P5PHYvidhvlNx7Nqz3gK7FF+nQqAFOyObkw3/w+/9Id/+wY/4r377n9vsIByfvmokDDhvvmWB0n+a1LWk8lTnAOdnvHI2XePEEn5G6W4VkhCUIBk/CmnEoGjB4TuH94pS5xOqwdGqwKSEF6ELoVSdIjFOtu7FRTzEifOLC7abE8bjkXE8ME0T/aoHFcYxcUyRTU54Z5O9Qr8ibLaM45EPP3yPd3/wHQ6HK4bec+/unZ/9oX/G63MPVLLaHJQpTqZYsw1QTMkE0vl5Euets6bNPUWBPnS40ty3GjYM/Yq+60smRdvQGvvVGuwYPjjXoU0lS1Gzx0vhdTW15erAR8vmpYo5xao0trGxZXZeSDe0S5f/uZV1WIjwMvOvn9YAdT1cUfhLFV/UT1FoRgs8ThOEaKwat2Y86KwISxQu5GbQYyxTVes9Fca01ldTlK5TcN7TrVa4fuDZoyfc7EckhNa8rNAgflbKNiNRyFtaL0PNJVn2055kfqoaUMzsU2XB7Oeqt0r2LXAr8KPymE15zc9eglZKgKq5Ro1zYFfuy3uh7wo73WBDjihGKovN7khXNxze/5Dj7przn79g+6tfxw0bclTibs+hGLOVg0gkvHKH7S//PNt/69fJP/guuw9/YveZi+WpMriQlTagtK3PLFIWqNnDnmw2nK7XbFYrcnxKToq4QKY6RC/I5vLvxZBSIJQ2Oygjzpi+4jgSxwpBm8kTFW1Qm7oPTjzJR47jkZSjMa+gxRGeSQ3cQvat2TC07OTgheSUPYHvPNvxfAKC9V3Z0LtocbeKUZwf7XPrzCNta2dO+LrTFqjkDMcS1KdMoWMWhjFbpjQrU0p0e1vbq/2IiKPzBnV6PMb/P3V/Fqvblt33Yb/ZrOZr9t6nu13dpu6tYjVsVMUSKUqiaEkOldgGFCF24CCI4sBIAMeAX/ISJM8B8mLEeXSAPBgIYDiALSeOksgWFYlqSFGkKImNRBarr9ufe5rdfs1asxl5GHOutfa5594i5RsgXIVb55y9v281c8055mj+4//nvUPmwzhy0kBDguMehqB4/ABjTkTrSYPFSsBYR9MdWaUGj8G2I2bUTdDtArJPyJhJPpGPnpwMx92AR8AK17tMnxxeYLw8cEcaTnxHg+FJEB4fEu8cKMkZwzAKzZhxLuK9VkeSCF3cgySMqHRzrHBC40pPgK68WIgbjDG0KeJSIEqiJePJHPOgFzOOcDwiISFBMctDFPKoMDPjVFdEWcg0oTCOkcMxcLkfuBFwdsS5hmubaMTSJEPnAkFgyOCTpQ0aNIxj0kRKFnwu+Q0L18fSX+GhzdoQmpJqGojJiEnkMdF6Qx8tlszTQXh40Eb6VCpJNxGukzCQGFLSCoGzhKhy0s5WkdWEc3GxbIQu6j0Y0f6eEDOHYyKUHhcXLJIrY16FcRYB09LEvy/+Vd9aVl3LozHw+Jj5/l4wna2blCZryirMpaRhbGRMseRe7KQcniVPzHpq72pjL4Qkk522xQ4iQsza/+NdQELk3rrly+1KK7VNSxCwvsH5jHOBrvH0CVqbZ2HHCfpZaIkrucVkyRbVEIpdWPw37wFL6OjCcpWEYxKZGvbVFJopkGOym9NX5gSW6J5jpfQ0mXm/m69RA8PZBi8uv3DKK/sc87nKPVdmpFsw7yUsqJ613pcpvsDiWaV+R3THlOXPFxvk83Of1VVfVFKqS3J7OOdvyJyImnbm5dg/e2+LfyyrPBUtUa9Q92vr7CSUaAxUZXPjwDh9364kN/3Ua6jJ0r5pOD054ZXXX+P05IQ0DuRYES7qaEuFj5cEtanjNA2UnfwcWxJbzjes7t7lg6fXPL68UShXGagZyLF8WlPyv7putIdzng+fdHxSnPJJievpXecqZA2u8fjG0JjMkLQn0AHWerwXrM3kUHsQFeZNSkhSIqZ13yvaXbKSoHhNzhtncW2DKz3jsRJ0lDsxxW9KSVR0u2nBaaXXNR7rPRcXF5xfPOX88pxxPOKcYbtafeJ4/Msen3mg4r0npsD+uGO0CvHAWrJYjFEOalsZIJaLqZ7AaBZQE9qCicLp9ozt+oRV05FiRJxTZ7lkKdLkBM/GZ2I+obC7pBJxljJyXVQTH3YJUkLUPhZbKgA1KNCcjlnEKbf7TaZynNTn+vj0XRqvpXEofwG0xyeliBSDT5k8ply7NrsfhoH94UAyDudLPwsOUoFm5YyrWEwE5TVPxBg4jhrkqHPqcLYyvMzvopadnXO4ridZzwePL0k50q8U3qJc+Y6mbYhBN9/K2DcJfJkC7SpQPe8crbelvJonJhRbmtZVadsUfv86TbSEX4Oeqalw2s9uRYbMyYwyboIGHQhVi0i/oYxbFqFxllXn6U83bNcr+q4t4kZF5tMa0m5HePSEbC3uS6/R/cWfBtcjUQjDyLm1+L7h7KRl5Ehzb8N6/WOc/Tt/hSe/dMKTvzuy/sKb9A/u4S0kSfrs066rE6iavroV1o2mzDAMcHd7wp3Nim3XFUIDMK4pnyisR/MI3soIGDTra72bcK8pZ9VGESEejsRxvD2uFAy+9cASlqEVsePhQIxRWVGgNK6DLT0hriABJUsRo1QjSMxsvRCS5Tw3/NI7I+/cJGigNZkKSLRGkwUZsHLQ9e5UYLH29iBqXCvttD5t/YuOq62blsyzXXuuBmLO3IRAYzpa2/HGScv3dnt++2LkOwdD5wytRFbHJ6xDxIkQvdeAyRhC00FWDRvjIqusBjbZTMragD8Q6HLS/gHTFAdKneKxi0SbOQwqmGetYUwjX7p7ymv3HJ1veT8kvncd+JsfDWzahnVTdCdyggLnqQQUOV6XpvTieIkj48g1mDRZK2SlwmqcZ5UjqxxoY8Q6AZu5ebJnNJlgMmIaGufpGsfdM88b0ZKOntyuyU1G7Ii3TpnSDBzGyPV+5MObA+chFjYay+H8Eo+yW3mTGJuWsem1j8nouKmfr8kL18wO7XEMJcdkcSZMulNY1c/JZJwIqlTtMQkOSdgl4d4LQrQefMdHw8D7Q+JhiKxsYRk0ZhKvzZhSCRGErMkzO0ON9b25iRCmwnM1yFkk0qTON63iY4SQMrsx8voaTjcNdzYr/uB84PeuA//1h4mu6xQpwJygmsmXBGyVlARkQUsOJZlgMBmU/LfYFGeqKcSX+a/PWmC8KeISvHXP8Iv9Gd1qzapvCEOkaVtSEhof6Bqt1vUu0liHM1nJabxThEPpa5n39uK8Z303BimUtSjrZumhtNgSdJTvl32oJrCSZCXGmfbOut86pK6Bkpiyxa4aNJCxYnCibHaeW1ImH3Mac6qQHr1I7VOaOZOf6Y5c+BM1GKu9rJ/kwgpMFPgyBbJzImnqe8i1b2c+13TteYJ9wlUW459rzx7z8zD3xEIRaZzGfHGfzz2zmWhx9bwlmC5rqOqCVeYtYxWCrJYnE1LEeDfNGWv0nSQDVVLaW8N2veL+/Xt8/ktfgmHQEnkK813VwQfd42X5ZnJ59vmNKYGlYJoWf/9Ffvjeh7z74Uea6JizXsvhm/5uJ+FPwziOU3Lkk8ORxUlqNc3M/372I5VwIUvWXm8yYg1N19K1js4Kh5hwWQocvcPbhJUwByplLuUQkDCy7jrkZEvoW8gJ5y2tadRGek/br+hWa1Jp0fDGTXNRWTGdim7vD5w1LVIEO33bYr3ng/c/4KOPHvL04gk+H3FNy8n6j0GgAkBO5DAgjYGmxTgPVjOHOSWCBJJJ4AyVns2KbgzeWGyTef/hE7Ioq9Vqu8H7FnzHYdRslyk3L0ih6rWlqSiXRluUZtE5vHOlRFzKf74IBNbP5aoJolAoayzrfs1uPeCarpRkTXF+KghrPqpD9zzeDExNxHxy1A2Ung7hcDhyeXVD7nv6ptWSumjmqm87AN59uuPXf+dbnG5WbLYn9N2Ktm1YrXucb0s5l3kxCIjoogpJeHK14/x6x3sfPSXkjG28Zmdzmu4zOMfgHT2Zd374Liddw3rTIdLQtA2H4Ui3XnFyt+fe3TuEMRKjwjSsg6bx3L17n6fXI1dXVzweBmSjFIFd0+CNw2R1BBKJWJTGdS6YKbtTMzxLR9tOG7gsrGhxyo3OPzX4glJFL8ehBsclOiXjjWXVtGz7NY6Os27N1nXKFpXB5sTh4pLuzTd45d/6yzz46W+w+uIb9D/2Jofrh7Q/9Tov/nv/Q+zPfZk7X/kSm5/6cexBy6eDwMl/90/Tf+1LvPg/+7dpNxvs6QZrGsZjoGtUbbw2Z2YBFr15tjCxiQh43ZCNNZz2DS+cbrh3pqwecSyUjWUjzUZoskfFDy1YzSY6yeRCN5Ojjp/F4ksEZ4zBO68MVmVYU45INkpzCFrdcgaiMvy0vqHvWtLRsxNDv+pZrxJd2+PDgcZC1xi8t/jG0rQO63X9Ga99J+Iso3ccTceBBDTEHKj9ObVZmClbCzXjSBZSjGz6lr5rOT3bsD8cCCEwFniMFEeiOi+mVuWYceDJKMtVRoVG0zgySsNgLHuiQmBwJH9KNEcdS6fXz8DRNsyqbjCijCxHGg24LATbcEwRI5loPD4lrAhZLP4ARjJBVCDPEBnHkUu346R33Lt/xu9/P3EeA67f4DtVqZeUZlfGgsmajZwIRBfDpb1hdloxzlKoQzWbHSIEAfErPANORkJ7iiHiJDJGw5gSeQw82HQc13C+SnxeCqvf2rErFJnOOJ4eb7hOIwFhtA0RSxTH0DQoDMqRgGA8QTxpyCVJUq28pjhNyNNSrwroIpklsEWmZ7RKZi2GVPaXkA1RrDrjGVqBAeEyZz6MiZPSb1EDo4VlLmPrCsuarpG+XWtQI5lxP1KZK6U0uJs0J5cMBmqixhicU1aeSwZekYTNwionsms4OMtTIlvl48KQZwdq4eNIAlsptZkrLtXOVZNpzLRLQtZnM8aqUJ5aCoxpyCKMydHZhHhP1zYY57XHLev1cjaaxBNLYwwnK0vTOMwYAVHFcAweR2NUPR5RiBZGRQs1CM14Atchch2EMVt8SUmkHDASlbPOAtaXl1vIgwUVX8UoI5qAQrOUgMbYIszqynOL0uA7o/OmMWYxt2ZGrSQyNcInQ0mMVU2UkmhbJH8qkYFeYw6cambfWaVXFxFiVoaxW9HkAjKU0YCxIPImJ7vO+FwCtcJeP2kDMRXlC6y9ilFO22LtJzRo+6hMPkr1SypnzNRvahY2Y0r4zffK4vsAptCVTwmj+vOs8F/rHI1vkJS5Oj/npG+LdpCntZmVh7NVy+l6TZLMcXejq1cUjTMMkfEwIrsd+8OBXJi2pCgBTf6BlL7ZRQg5DXcZEA3SdaNtmoZ73hH2B8KYi06OJiTmXpTyzKUNxLaqVZWwxEHZQUUorBL1Td4eH/JtUiUhz3do5vk0XU8MOQlpDESb1Z6I+s94wDtssopjdB4p8OVGtEhA43n09Cm7xx+RD3u++KUvYa0hjiMYQzgODMPA5vQE17b01tE7x3F/YDgOrNYrclYmV2cNJgsuC+FmT1h3ZNPRrtdgPONu5Pd+97c5P/+A/f6Czhry7jCJmH6Wx2cP/cqFCjJrJs8aA85qk6RR6sDGO0KKswNag2NqtcNwGFWURyTTlIZfY33pJVn6rVLoGBVqYtDGtdpzYs3s2OSFMaIszDw5LIYJEmSqomyBI90KMp4fcMgiMJg/YT7h0x/P4tw6V/1P5rNpZUCzht4rrex2u2a92dC1HU3j6btOA5XyzJOopcyGyGboukR7VJgOEzzBzDt9oTaNoorxYRjIVrizXimTiXOawUQhUd2qx7qIjxmXtW+o8Q3r1Ya2bedGfd05i6NopvtarlUDpWneTOt4HqtFBqecQ0SmBvv6uSgwNcQV8YjbSZKSoyw13pQK80VKdJURrULpRE+Rxohdr2k/9wrt3bvY7ZbsG/LxiD3dsvrKF7h/dkp37w7cP4PdoaSADbLucC89wJye4Uv2NVesRjn/PKG1AlaHZHotdSwoZXLMRCYhJatUoRNCLvDHOqzC/K8Zg6ssNvp3a8xcnrcWyn1CZXSrG5jukrZsnsv7sKYqNFcISPk5zBCwkmWrt6MJAM24qR6SoXWQPTSaY9X3V99h3UGlNNEX2IdzVpsIW4/3XqF6OWNSLgxucmvu1bGtG72pO7eoUGnjHY0tm0zZfVNRQ8mmIZuMNbpZ2gLBGo3T4RWt1NUG4wGPKcp7CUuwYERI2WoJ32Sy2CKeJ0hSJiyfLTZDMwrtMdHsEluE0xbcwU5VzYVw+TSn9T25xaQvQTsUUg0dt6qcXY9kDUksJjowXvPx1oOJQCRJwmUNFAKVWsGqtoxT/Y18BLFWsVqmAZfIPpPEEHEE64jOg2hfWDSeXNbKxyrsxShMDHaLVVxm563Mdc3qVtgJCwcqI6XfxKkGSHl0ddZ01Yl5NlBZXE+m25nGeQoeYFqHU1XULG3YfA8GpibvGpRVUUH1edIc5MjC+TPLeGXyaFnCbSYNr/lHVDtW7cfsIC2tgkEr21oJyAUqrdVBh3Uea+O0L007XRWRrR5yuUYV4a0VdaWLVQX7DFztdjx88pT3Hz1iP4xsnM6ZJKm46HrD8z7I5FyLFLtjVWMiFXbPqm9iUE2wmLTHKZbqLwZaM3937WpyppiVOh630AXl4ov9CDO/jKU3cgt2ZlCHtzjGWmmpQ6T+hjKbTe4xS7ivVo90hksRAV6uirrvVb21eRYu5msZwXovYmb4u5R7F6nPIs9cw3zsfMtrfGx91p/KnMhV112IIRDGkTAG7HqF945UtMMmJMrydAvUScraV5ez+iIppxKo5OkWpTxQHU+YdvhpwUwMbhp1KtInV+hkfV9lvJntUH0mg5lIJwSjvbZSn9MsRpzJ/kx6TtXNnSjcmBa23BLvnN9NynkiHbXWl94Ymfd6s/QtZfqeujVmYgid145eIITI8XDUvuICbTcCkrQp3tCTYmKIAzIObNoNXdNxdnJC3/eY0q93td/x5GrkvQ8+JMRrrCRSssX3/ySv91/++MwDFSkQIymN7rbg+lLOWGdZ9R3rvlOxp5SKfLUeuv71pYUQlcrUGy01ea9sLjWbXoxWLSmLKY6INRPmPoti1W35cK7KXKY0ehdau6lU6ebJadBz54/xly8X8PN/tDSsPPvVTxw4yqSszcb2Vl+NMUadBOM53a546/Ov8sLdO/TrbaEatjTOYW2jZXOr1QqReg7dMGKGtt/QtCsePrrgeHFOSBGnOSoMEMUQcsYkSCkgKeJpeXC2JWR113IWbfYqWSxbghFXNl7nPU3T4b0rECM7scCQ5wCqvsuKBqzKxKZiv5g/Q6EunYxvsZBSqEBtgVVMmY2SFdOuRFP+vdjBjUWMYxyOjMcD4/HAtj8t1Tm1EgarAVGMmK7HnZ1gT1vSzUi4GWAM+O0W/+IDTr/x0wzDgfFwA+89gZwx1hBfugu+gbMVMY7IMELIGONnOOFiirjJsBXIh5kdMtUo0MxvjJlhjJVXTTOsZZtPBqVyLsF5FmXiylhENANqqhEum5V3Hu+VPU6smef+VMpXfK8RPZNUh6RQWxujAlOVmdRS17NaUOfUd1VtGpk8P+MavDf0PnPSCKcdhE4V0p01k4CVQNm4mDJPVdnc0bDqGrrG6/yzFu8cjUuliVav5epcstWZnwffijrxXeNZtY5Va/GAFW2gTlkhoEdxWNNiJYFE7YcxlojRKrFkSJmxvNGQPdkbhXpEtGwvgovTxNb1qSzNeAEbDC4ZOuPYjnByk/EPb3hBAq9twF8pVMKWd2gr1GTypk3pv5OFEZp2dSokzlS2oeoUGUjO0YyG5BqwDite4Ws2kcyAzdqncQTIlj55RgPGWbxvkWQR7xDvaZsNtrXkTp3VYB2jb0imQSgVKtPhTaI1kQJSn43obQ/mtrH8lGOqxiyePSahaxrWXcPpuqFzyhjlTankF/tQXSc7fXNxXqNBRWO03y0jiNdq/VTVMHOvJaYEI67m8LXiZhEai4pMIosss9AheKPVSmPALfH2wNSTUYdlcX+a4V042Mvh47ZDXqtwCsZRqI1H320YR2JSlIHzDb7JuKCBSqI4kJKm+VX7zap3VfVMrDETzXpMma5V6vDHT8/5zg9+yPff/5DL/YF224FzytJUe+bM3D9aNXHnZ9RrrNc94zAQjSAxFHISw243cHM4cgyBKg5qgNb50lzs6KoIYBnn6jjbAjur/TT6GufKRB1IrXSZ6X3fnpbFmTQgJFKSegGYgpRi35lASlMAU1lRLTPibIaXV6eb0gu4CEClJqwWUR1LW6f3katPUCd1tR0locP0yWdXwGKuPftnvUehjLm+y/1+x2G/Io6pzKUWSVoUSEkphWOImvgqvU5170mpan/NvT+yuMfpvus7qrT0GG41My3vug7FQr+n/k4WYcf003J+592kbZaiJniXCef61zK05AJ7/vg9mGfmyuIfJcmRU0KK3IR1Xnt5bFHGMwqdz0gJXvSr2psi9G2P3Z6QvWMMsTCUKZxuHEYOuwM5JBXOTBpw5ZzIWcXRQxjZ7fYchyPdCz1376559XMv0zcGa4XewbsfPeZ7D2/4/rvvst1Y7p54Ykw0xuHb5rnz5b/N8dlDv2xDEhhiokMdQcFxfnXNSy+f8fIrb/D6Sy8Tw3t88PgxzUk7vexshIQO2Ga9wlldKiebNdu1qsTn8UB0mq1sC6yLgnGti1H1OdRZ8NZiDdosZWoPuCEMY1H3BVf1RGJiOB4JURdDDEEZsQosa5oRn7hPPvPDmsU18GkVlE/6vgBTU4UxhWo5c9rAyycdL91Z06w32gRtXXHUFaqQU0CpitXxr/6KoFoORiKbrtWALGmPS8341MfzxrDyDXe3G+6erulbg4ueiCH6Bu9UqiyXhTCxfAmQMyGMpXIgYCokJlMJ+OtnjZQQaTLss2Op8ciCicNIYbEqrDtGVHQMzbKocddqhckGrMzQCebNWgC8RZzj4uqGh4+f8MGjx5y8flJK5M98AasNavtEOu6LYwLiLTEE5CbhOk/jW2yz4Xf/T/9HDr/3bdLjc/7E/+X/wOqNL9DceREOjwgpEobqUOplapOryAwxiFiCjFQl7zY3CBFjhcfHgaOzPA6Ri/2OkATbdIw5Tg3mrTPF4UmFX8GS8aXyqHTeYqSwFLUMBUuszpiWsxPMPTSFzrRujolcPlcqW1aZg/rG0LYe48Bmi23Atx7nFbeu/PN6TmsMfdewspa+T6z7ltOU8KsVrVGxKe8crvHaGD+OXB0Cx5A45kzj1JFq+5Z+1YEI59fX7A9HpZK1dgrB54J+6XVZzLepgge0Dta9486dFV0XsVY3STsMCit0LUEsiDalh4xmsk0N/AxOmpIlNWRRFiPNpmqzjkHIpjgmGKDDhIyVTBNA8hEkcRISrbO4PLLaP8KMjpit9iNNTlMucC/mOWXU/Sz1gufYmuqGmDI3NMi3CZrCPkbWZwQmXRDLCpcDTiInwdM4R17DxjSMObOP6ujlDDJmsoVjjFzvRvbJkpwnG4s4U+Z1grRTbSNvFb5AccRSfubOP/4c5tN+M3ufKKlAxBnovGfTGxqrWiOzQ2PKN58526Kiviw+z5+rf9623+4Zm69WROd/zJkxRkwLvmhHkRIUB+hTHvm5z/+jfv8jTvPMdwy+0YSXZENMqegYGXzbMoSRbKSQSup8b1xTEmZGm+4br3O0JCUki7KNlcSJ957WN3S+pfVxsiPGzvTmOacyaGrH6wrNGK4PIzEnTpzly1/8MV55+SWazpFTJI6Bx09uuN4fOQ6j9sWUBE/XdbRFD+vp+++xL3SttvTMOFOIbGpAJ5XNrLBmTruTJnPU7hXmLGP0T0LpEa3Bwu3xV2HIj495fe7ZJiyChXJuM0GH6ouVstbnoKRWpNT2KMJFK+cWqDpyz5kjdeOvgcAi0Pm0+TOlWmQGINa4SMjc3Oz5SB4jw5E/+P0/wDcdq80pF2PiGFCfsbJowYRiEEpvbQk+biUSprzFzOtZKx+37qs0zQplvlqDstqZuiCLwKNZvL9bozJBZr1zuNKDGcfqPz47lrPuWC7XdCyPctGy94Lcfp/F9iWxU/LDeqsMX9r8Oc8PayefVFIq1Olw5+QEaT15PLIfVT8mBxVDXW82uhaciu26bG8HPKZUXfYHpXrOiWiF85tr7m57uq6B60t++Aff5ld/7we8e3PDC2zwjWUVBj7/hR/jy2994VNmy7/c8ZkHKo8vb1j3Heu+xxwDXizZDLz93od0qzu8/IrVHoUp26dHHaRcBHxOT7YgiRRG2sbrJCmUt9PikQInKRWFWaBJpiyEtYtyeJndpmwWtbld0Mg+xEAMsfSy2MKOVRSRKc6zLBf2c5ZvyW4873fLRfSxZvrF96e/WKP8e/Vz5dzeGFX8NnMfh5mMfHEAWUBsMKXUVwxB7d2YzG5pfmfhLBuLK1oq3nm8dSXDmBGxCwM+s7jVINAKE8PHZG6nuiRTBWtmNqsQvDLOS6FHs8hIlJ9XelVv3XTa+aiN3tURtlPjtsgC+mcovRGOkDKH48DN9Q3nl1fsDkdlwnEOY1OhizRlfDQAnggAnKqfE0Yuf/N3wXlyEsL1DeF4II1HvED66DHju08w+QqzXmHXa3XW6yCZGpxpQIEYJINLYeooaGyDR+hMIsfAODjIwsZbos3glE52MnBl/HRrq4KJs+Na14RWxMoaQhn60hiQInQ2sQ/VeVvuNyWdR04Uuy5F6FU1Pez0+qxVWJb3s3pzffNzyzElyaBOHDFhrZTmx+rwy7Qmc16AJSSTciKEgCDEnKcgoUI2aj/TszCa26uSYhMEZ6H1DueU6evOuCMSiFaznVA0GpibbWvlSB+spoBr5F2d4Fkw1ZTMd8aCeHAJEVvu32ljvrV4EVZZuOMdrTW35rup9lD0hdbXU9dCHaP6z/lp6890Lk/ORtkGXbllMcXJtJog0DE0JGOUPats8NJoRSh7AVcqctbgTYOxjogofMFasinkGOVujH0GPgRz4ukP6WLfeqpnvffFa1EdrIy3letj2eXyzIc/LQy4nWe4Pablr9MzWO3vwtRGc48tTe7FP8VZU8hP7HNs2jPP+pzbena/eTYr/PGvPBNk3Rp7hfSqgnouWW3t4xBRezH9V+Z+zYTXMbWuChCbaU9e3kXVW2mtVjisKITRSoVmGp47/kahvbsxsguRg93z1fUJD159g9P7p4TjkfF4ZH13T8yUe056T0YTMt4aUhg4XJ6z3+8JIeBdN4epUtbMsqvczKOoTuj88wozrFCqubJQKgB1UGX+0jT607DXmk899/zsk3aGVHs6V7f1HMt5J9N2W+e1PPuZ8hAViq17+mI6mNufv/XNRQBz25II1ZpXqmZKsqH1LW3b0zY9Hz38kJQE314T2p7D4UjbtgpVJ08DO/kC5VrWzAQNs12Y54iBArWc167YAo/72FotA+k9TdfSNA2V6XReD/VzdS5QAsXyuYkvWuZ7KWNuqpaOdRCLKGS9pqnv5OMLfLlE5ve9IIOpFZwa+E+vxEzrTCQXMhML1rJarWidUx01yl7sZxHYXPSXYvF/c9UoKmijXEiIdP2qz5PHI8fdFVdX5xzEsxsiu/3IgztbXnzpJd74wh+DQOXb7z7iwd073L/XsMt7jDsyhJHf+b1v0a7u8Prnf6zoLCiefgq9Ka9PlGnr/r175Diwu7miaxvluDdzSb02Mlq0p0DV7jMhhKlMmEuWd5rWdi6LVmYDfWHKtnU8HhmDgPM43xDiqJzTtzJq8rGNYi4P61Po52594A+1306BwxTdL563BCPWWJzxuomIVjOMc1iUdlU/LOpcForWqqWhMLlIyIGQAkFSqUMwZSWq42et6t20rsFjNcsvSiuYxCCuLRtSEfyrFIHW4kSx4DVuMsIEz9LixLyRubrAcp6uD9TSlz65MVOFwwBNgfV0bTePc114OTNKVVMtDmR5uGmhG31g6z3JeRIwHAdurq541z3k4uqScRyRroWUJvsy+Ztiqf8TZzBZkP3IB//X/5c67K2n2a5Jn3+V9OJ92r7h+pvf4ulvfhO/bTj5xk9w8jM/hQwKH6ktj7XKFHFYsbgEfRxRuL82uLdG6I3gY4BRA4TPbTvFY0vWhsqsUK+n2ajegFgMkQqYrb09uXTuG6Mlbau4LGLMHA4DSFZ/u/ycMr5iSvUzlcDEZG2wLo2Dzi4DFWVAapuGprWFqnjG7qoMSVbqXIRhDOyOAbKhs5rscsZgShU1xMQQlEpcTGmgTJk4REIY1K5Yh/UeSaKVAFm4EtOmNTeUL5doDeSMEa3WWENH4o39Uz7adNx4xziGUhVUhi+x2tRc1dRNwe3bzMRCXdSJsFiF8pmMkYI7Lp9IjQGbEZfZDA4JnrFxtMCZwCubLevrEWNUNK8GXywIFzSoqGuiPNXS9tzi81bHvYr2GbRCaWzCW1vgXtrjI1ZIDmzKCivEsm8gObVJobPETpBOYFR64tQYenqc35O9weFJ1urvjI6JE93Ya3Eolwq2KT0OUz/XH/JQB2kZ4Nw2vEnU4lkD3s6q4TOq/uOG+vnV8MkqM1uHW0NbEjL6HDEpDMR7D74lhwBHQ6U28NaU3qpaZXs26PzkY7k//UgK/NlgTjF0dZJFcnHITAlUFK4Vo1ZUNFgBrMV6j3Vx2r9tWefamyY45/FNU6prKlBZtbsQrdC1xtE5jxPdX2zWHkqjC0Shi4uxqJWsEIWLIfFkP8Bh5BfaE+6/+havfPF1DtfXDLsdL4fA+uSEru+1UlWP0vh82F3zg3/xuzx5/IRhHPF9N73CJLVHBg0yDTPjJIUNrr7fafyKz1FhzRQmr+LMGuOm9ThVSxbVCkWRlUBFin0yuj4nuFNJtFGYtGKsGld1Lc9B0pyGVFhiqmQkUxBY50AVzL09V6qPJfXEP+JQ18eUQKUULgRSzGzXJ9y/c4+XHtzl7e+/zcXlJYch4c7OsNazXq9oJCrqJSoTYfX9a1qtzi+xjmyrTtp05Tl6XwYkNeCszycyQekwFtqObrWh71fzQ5fxs8tTU6ajqZV5U04ydcLpexVdQ75RIgrXeGLakyWUXsvS81w+P+9Jaj+yKGKhmpM5Da3+URZNmqY6zyojbNXrkVlOIJdk3tn9uzijCc2nTx+BUWFHjCJpQowImRADx2EgJqWdNyVJKQUFY63DWq++53ggDnsOw56hucP1MdCR+Zkvv8Xrb77JF7/61R85X/6ox2ceqPz1X/mn3NluuLNZk8aBpmuw3vL24ytOfvAO/eZ3wSScN1NjnaHirQHf4I3lm3/wTTZ9w9mm441XXuHuyRlxjGjm3hTHQB3R2meSii5CKs5l1/kCA9L/jOt0otcgpiz64zAQYyCEgHGtOv7WcDgc2O337Pd71X+x7lOffXlMi/wTEkMf/0LZZESxhrGo2lYjFZEJXpUBnGYnNRtSFIdlsbJFwMQp8DOLAqS3jqZpaZoeYzRzZgQ8apRHhOF4xEuCk/V0gxmLbVQbIjpDjIH9fs+jRx8xjmG6v8Yq08duP3B1dcU4jnS+VmUUStA1LWcnJ7wsDS/dO+Vzr7zCqu8wxhY8b82e2LKBFwjfGIgxMhyPPHx8oerkSbl9fNPgG1WR9k7F0zrntWfCCsZkclLnMSSL3R1w3vHFz7/Kn/uFP0NuG3bnV5zdOeEQjgz7a/JxJIaxOJUa8DlradqGtuuVcCDAmBIf/f3fZLy6xm1X/On/9D/C330ByQ2P/8bf4OqXf5nrX/lV5IW3MG3L9ud/BpPGEquLiruVoGUX9pzahhdXjn/rJ77IWWNoDUSrjWydh3NzCug8fWN9D7Kq8krOJCxDdvxnv/Mub18OfLCLrLpG15hkyEapv0W504cQOBwPhM7SNZ7t/Xus7t5RI1XgUyIaFJhFv1ZGs8DeevzlYw4XcLi6JIZMDFmVb8fAOCSGYaRpe91wEKq6c00aZAHxDfuUuR4TQSK9ldJgbibWL2Nc2fSVPtH5QpNtDCkkgmSNEGTO2iqva4FD1M2nbATT05Q1I8VhkFqJKtBRFwY2OxTO0jiGXKg0rT6LQalPc6FKVay0OsJONAusG25p7i8ia048Bku24JLBJEeTwZiI2IwPQmgth84jxuMceBuRMWrfl19kAg1TNXJyoD7Rx1gaJZn+bUW1iZJRqlcnlmQyPllcNnjXEce9NlquV7StwZ1auhhxJmNaYfSqrZFw2G1D3zlaMQQUruvaVoUAyzvwi+71ikcnpRI4M23Cz7vf5x8yEQbUXrPqICYUVgFteVeJTEC7MzSbL+YTB03PLlq1tWIXgcHH7yeLYIv9nvVFbAnuLY2xuFLvrOsro3DLmmX/ox+z07p0QCuxQw2apyBlirEWCSJjERzONUoqIQqnjgnwHolCJk0BZOnkKz01przD0qhrTKF0zeQhTFuTknfofzidtwlhyHMCTZ3GrLTDXtd7FMpbE7ID6w1jihz2R/a7PfvdkeN+IA8HgmS64ah9YeX5VJBSOO6vuT7sGcagWj1Re2gxRqGJNatmSsLPmcleCWhyoKyvVFAgczZakGxK/62gzG0Kyc2o8nd1eGOKVO8+T/S4CsWpxABVQ2yK1spcUrjFPO/MEgJfHO76Z6b025Y1p4xkWjsVWQBE7acEJ4t5UtdknVOZOl5S5p7ehzNWHeIhMOyOCg3uVyQTCcOA8Yl+tcJlh0ghK5Ei4olWtRvnQDIxhaIGX54to+vczfO5vpNc9pjpvqd9Syt3eYzsnl7z6OETnjy51Dlv6tovz7gIjmvgRhYkJmIY1e96puqmQZDD+gbT9CQ7KrzVJGVVNWUvqsGINQvSBIiiFO7GeBpnaaxBciSGRECRFJJ1H44hkomIJGXtbFuS97z74QfYMOAlk6xjf33DOAw8uH+/VK9s6S2dW8RT1qBlDAMiWYNCI2WlRfqmpXEtxjgaI0pJTmaMMBoQPF/5yld58LnPwR8HeuKL6yOHw8j5+RW9t6zWPV3f0vYrhhh5/PRJoQzVlwSzL692QBfhdr2mbzRbv16vaBtfmnjr0jRTFK2Ts2L7pOBpFfurC0oNrSsd20vmsFsbTd0QSyBzOBw5Ho/EGGl9NwXtwjyJ5yd4/qYyZdxM3Sp/VNSyOJfUDE7psyjnSYVnO6aEdaJOUU6Fcr2urHoOzTjP6YE8BXsKvSp3WJmRpDiDpd9jhmTVzFnRiSiZLlU7DeQUVUBPRGFIoj0+OSV15KrDUCphTO/a41yD880CqlaCV1tJASLjGBlD5Mn5JRfXN9zsD1xf35TNXe+v6VratmXT90UF3auDXiAJkPHWY9Hm/s47vFPs6Ve//GO0mw3Xj8/5wpufp2s7xpud9t+EiPcdGBUq896z391w/vgxOM96vaZdbzj7xk8Q9jvsumP1+uex0hAeXbL7R7/B8M0/IF9c0H/jBfy9E1WGzlKqReWd16BUNKO/cvDFu2vOGqFJgWNOdK2j7xu6QZ/bWcurpw02CWGMUIK2I5aTBryFmGWRv9H3UKsiU5k36TwxxtL2fWH9UhXr+q5FysYgkynXaolvGMKeuLvhJqWyGcrUFJlLmVoKJG3pPGYRjHdYU8gysKQSFFcAn5QeKyOo/ktZ81lUYbpaEN2IF5vxIkmg62hepXo/xQ6Yxb+lzG6jBBGvuQOXbs+HzhCMEJWOAFt6pZTZRSZM9eQoLla0mHyrhF/L9zO/qFDwPwqryo7BJawkDtFy0/bcrDY0jcM77duRnJHEnLqcn2rONn6qnzul7SZ7NpkmM0Nia0IoTUFQcQAkAUo325YN3Ir2tbVANFo5S5JxRpTqsg5PBmvLBYvzMwmywSR2Zm5Vsp+998X9fuyY38P0EBUekYQYM8cxaDOzqbZsccrZsD/3zLcusbiVuSqz+HzNcpa5mMtziTA5cs4avDfaBL+ED37KvvKx4ZjMvUyOpj5yheXOPZy1elt3JItV2JUD79G+T0pO3qBVcudVYLNpCWNxkCsUpw4xBQZmpl0FEcE7g2qo6X5uRSmDDyGwH7UHT0lPzNRdobZwAVNdrK7pGpNTrsFMjnn6TtUHSTHeClSkoA5yygpxLfYpF/tS7Zpqei3He+5n0ykyA7XqdiuTDXj2tSiktQYEbvGB6XxS57hM80bKzJwAR6Y48FmhrsbMo3M74KyTQW3D9L8pETNP7wmaRgkynplfk4+00Hn52NJ4TsVR3355PzmTQuB4PGAwtE2D8y27kBCj/cOVqdVIte56lpiFYwhc3Oy4vLpAcmbVtqVaN8P2Y04q7Fu+q0kCHVjJqoHkCmGF96oV8vCDh3zvez/gnffeVxKYgr4xxRjW/bKOhbLH6tyKMaLUw2YxKLIcNCqcw5RKTCovWkTZ76xz+Fah4mDYnmw5HI8MJbkXo87fHEPxc5LSM5c9W9LMkCe14mQM+8MenyINGX84cHlxwfFw4MGD+9PYYIwyslpL0zSklNjv9xwOB0SgbTuaSbQ9kWIqFRZPQpEaUTKBrH2v1rHdbmnbZg4QP8PjMw9UklieXu4IxwOff/UlOuNwvuPBiy9inePx+RNu9gMx5kKzqkd1JLTJ1fLFtz5PDAPHw46u72har5j1gmAxUoOMkj3IqQQpwjEqdKH3mrfIaMnaG51+sTZpGnV6fC1zZ0/UTnwwmevrG3a7HSEGWkrTv5mdvkWIs9jAllnMHxWUMGcKq5F8Zg/OMGViJlXUFDkOyofdN31plhOUss8t/bMp6yG5lr/1QhaDt6VMi4Epi2EwtqGxmcYqnC5hyWXBaYOoJVS2oGJOazN83TgQhafY6i+W6ogC89XQppQJZbPQDVZvqAqB+UY32KubA0/PL3hyccXvfueHfPe9hzx8esHx6oKub/Ftg1hL1/W0bcfZqqNtPI33dOsVjXOacTCZ09WGTbdi5Q0uJ7yBB6++xp/8+tf483/+Fxhu9uRxRELg8PRSIXPW0HlHYxRiuFr1vPP97/G9b32b7eYOb37lK7z2hS/whf/Vv0uWgGks/u5LDL/7bXa/8utc/PX/Ctkf8Ost9//Nf5XtT39ZORJCRHBE71X3QlSuLmV9JytneP205dQE5BjZDQc617LpHMfjFVkcDs/WbXAEst0jcQeuZXRrtl5oDeSsPS9qS632FxhDLgQHkpVBRvXSHG3f4/tOnawYp3k9T1omR6vxqotzPO45Xl4SUgSUHrt1GnQICpOKgt6H80iuYpoZ33Y0ucE7g6hcMc44bGH7RdsomGoH5XuabS1bs9VgRo1+wliLGFtomkvmU6AanCpYORkfUTYjNeJa5vbe8Sf9JXf9U36j8xwsHEwGIphmyj4apRW7VV2pDpGA4tvQBMEUm1SH3yatpmFIbYs4R6RBSqYqB8/j9Rn3T8/o+4a2SXhbyEIyFBwWmCr+Ny/+57m4cuuh6wfLIq3BEyXILNugBaLNRCfYujlaIZiMz7COSktpBVqx9EBACEYYQ8BJxnmDSerw5JCgMxhRB1ltW8nwOa2yT6w6y3uWRQD1CYegDrrc+mIdC6sCvkPkZr8vAorKlnc7QFgEb/WnzzhjS4S+5raXO8Ls6NTkgzXq+MaUCh21hgjeQds42s5gffUgZYKbLvH4yyVYqaanHxaza3LFkyuBmreuUAU7jLOIVYpoV5hTNIiyZKCJib6Btmk08VUSdlijLI5iWfVrjseIMQlj/eyQkUsAYVVAmNKjJYLzqqnSjJ62U+G5QxbO9weeXt8o7FOxeCVaKIHHwvHLuSzdWomxBl/2La3ORkyWgnjW/igjqACyLN5Y7YERbTVMWVkuM+XnWe1Mhqknpzr3U++IUEhaKloDJig2ZTkVuLEpwVqqyRozJwcpgWCtEOSpalyHTi9sKU6ytSRRFs4ctId0bvA306tQBtQyEydmNh3DJX3HYjYtxufj3RNLgNvtRSDlgmXuT9WFGhzr+yJlUhjZ3ygLad+1bFYbLo6B3TBweXOt+5SoAlIJNTEGjiFwudvz7keP+ejhB3hreOPFFzg5O1XRbzEc9kcOw4GL66uJakDQSjYCOUbOties+k4RF13Hbn/g29/8Fr/+j/8Jv//d79OvVli7YPqriYVFuKI2UYhZ9a1EYPJgl3bViM4PdHyMLT5ZeRc5RxrX0nYdm9MtxyFgneOtL3+RDz94yNMnFzy9PudgDUcHYRhIXsgmafI3RiQJkgLZJpLNBSlpwBqO44BPkSQZe7Pj4ulTdrsdX/zKlxStE7Va3q/XSuvf9Yxj4OL8gk2/ZrvesFpvGHNQ1tIQOR4GQr9CmoZDdhwyHLMwmkQ2DdY3dH2Pt0Ac+KyP/x8o00PTqejg3bunnGw29H3H9flHZFbgMg+fXnMYg0Z0zOY9GYgpYFPm85/7HDf7HR88elRKseq8plKmTTHjWt0MchasK+JbOTOUMq4XZRxLIoxZ6LJSuaZUlWsBERrvMUYdm2F/KCU6y/6wZxzHW1jUmiug/Ft4zgKmrt36+U/bWuuZKsZdCgPJwpRYdfJlLNG0ZJx3hZnFl+qIwzetSieYsmFXozo5o4pFlFDOYSvaVisuqeYjqh6EE5IXkKheLMo2ZLEQCmbTGxrvcaLvoTa0Oe852azp2gZnnWKdk6ioVavNKwk4ijBmDVhmSICl9Z7dzY6b/Y7vvP0B73z4Ee8/Pue3f/AuT3ZHxih88YUXWPcalMQCtUlieHhxKBuGQew1x+NAGAPOGO6ebjnb9NxrEnc2G9Z9x++++5Dt6QknZ1teefkuTlSA7JU7Z4iFJJHf//63uLM5Y9ut+ed/9+/xd//W3+G3fvOf8B/8+/9LXv7CW5iuo33zDVzjcAjv/Bf/BY/+m1/i6d/622z9htO//K9z9m/893jx3/rLpCYS9lc0UdV5C+gOKxmfculBsgwJHl1ek3yiTQNXAbq2JecNd9sbrCi9aR6VnS5FR04anCdr0M4ldQ5bS6HpNoxSxb8SvvQhtb4lNq0GFFGQYdSAoGDr5xmfy5+6G2fJJIkMMZOMpV2vWZ30HEPEN57RWMYsJYOdNemw2uK8VtokZRIwhsiw0/K4bv6RHOs8rnugfMxpjMOo91Y/VDYnpTQVsqskG3nSrlGHobgdwgLSmckpavYoZZwTtm3LaddjmwN9glWCRoTscg3PCxGFgis1G6zjNbPV2IlaUz+pNkQErOrXagXioEFdypYxWXL2rNwJ2TUYC41D4VWoMtzU0JxrxXThgMwp2ufaGr0PWTiUVE9Q770EVq4EtE4cJupH2qal9Yb1/siaxGYFp2MiHTPjERrjsMZh8ZwnwYpjbVsuB7R/xgKxBItZcKZU74SJat02OndFBGuFEMMnWM7nP5+UaVLnTX3xvW/pW0/bFplPAbKdTHWJpZ9z0qVTNo+hMxqUPTu2GhxXDHkV5FP76iSrnbQNzgUab+g6M09rqeQitWqgMystey24ve+kmLDWsVpvefVzr9K3Djlcsh8CgqXr1+z2Ow4hcDHEKbllssL8kgghZsS50ktjiSkyBCFQCMliJo6R8TgyDIExKuRJKIGoA2NVD8Zbj8NPmmoajCdSjpAzvluxPbnD6dkRc3Whs1EMNhvtK8sFrjRl+UuVs0RwgkXEY6sCYtnvclayiyQRkWYxTvW96Uueei4p4JaC7XfGTIQ+qcBjaz/b9ObnRUZNymVJhJwYo5kodb0rltM6sqnVNBQ+ZChslWZxd4ur5Lk5Gjv7EEpTazEOvfPyHKo4pfc2K88Li9GbkhEzve8UzUz/1SrFDJbVw5gqyv2xO6XanqW5sSXwTyL0fcN2s+J01fP06gJnLA9OVDR3TMIxRKx35T16NKmjJ7vaHfjo8pp3Hl1w8fiKbdfAC0Ljne4vMdF4R5aW7XoDThvFK7Wz7gWZvm21P8waXNfiQyTnzDCODDEW3vw4vYi8sAE12esbT5TEMY3shoP6nSVUqdU0zStESBZToM55Kn2VClBMdG3DyemWey++xPXNgW7V8xf/0r/K7/yzf8G3v/09vvfuRwzeMGaPpAoITRN5qlYhi30okhwpJowIr732Gml/jYxHVt2W7nVlw+v6tiRaV2DgycUFh8OeB/cfQMqs+zWNb1mt1mw2a1xrWa+2tL7n3j3LetUBmYshcD0kdmOGteUYRi5vbri4vOGlMWoQ8Bkfn/kZQxzVGHvtOskCMWXWbcOdzYZ7Z2f8zg8eMxZdFeDWhmrQSd56R9e29H1P23UY6wiFQYFS5qrMF7rwbMlcJLUl5TO1wa02z1cnZuZO1/PVEr13joQpLEIjMcVC+1uci7K4n7eXldPPf5+ClU8/Jq2DycCY6eezkV4YLopDvxgHW7RMqsNmJjA+aCNEnkvlJZCpZXKZ/Luam9ENVgqNn3PqJFkceYqEFvhkQ1k0JZdiS2NlwUIaWx2zAq0pEKBc3ldOWsq0oNhO33C42vPw8VMePb3gBx98xIdPLnh0ec3NMDLGhGBp2k41Z4w6HbonZkJCmYWAGAOHo4pNbfqe4xiwBroVnJ4YbNtw/vicy+FAt7vCrNQgO4HhuGd7sqFfdzRtx0ePHvPtJxf8vV/5Nd595z1c23L37l36riWnoCxiMTEeDlx85zsMN9f4+3c4+6lvcPpn/zTbn/064+4GXAQzaLO+s1PzYPGZqFtrFs32GWNovSHEhutD5sNhx2tbR1cyi7WKp1PcY6zHWa+QN6P5wSnbVtcYhqn2VuZc1cMxBXJHNosgvXxGnmVJql/XzJFrWoXxOV/ecTGqWaiq7bpcHUZKg2lJP5qs4q6ttyRnaQylKrcIlGSuaGIoPTP6VHZhTkx5Hm9t8WNMGdsyfU0t86t+jAAuZNpmLGNgML40GOdMZw2ujsetrChU8dJbBBBYTOmVqWM1Mb/oXZbPaRZvUsCxmvNMpQp1zC2pwgecLSyG9b0Ve2HqNWeH5pOszq2fm1t/zB+Qet7lZ8u9l6z1pI8hmlVUhihNVrjGka321ISQCFJYwmqGXpgz1VT7p3/aYpttIWPQuPg5T/NJBphqd+fUUnXChIyznsY71n2DM0eMVLiQmwOVyX183onrGNWV9JwbqQFNsf/LKlbOBpMTKWtVrPauuLq5Vxtfg1pTbf8zl5AFAYoU6JIxmKajX6856VuaJhPOrxhjYfaJSt2bgzo9iGDFkkuFRzUtSi+atbimwbUOE1MF30+Z/1zoULXqJbfXxQKWVft5yEqaMQ4q5LzqO+7fPeNwHOg+3KEq8wUeVanf695eXyGmBJF1Dsk0NSaHuv5XS1L1h9PnzHw+mXe9GR4FLMafxX3U5N88s2Ry/OeG9/mSy4RmdZ6XzzShQhbfQ2qNZA5gbn3HqH121mkQWCPsZT50YR9mlfX6gfJ3YTHfn3Msn38xuHNVe2nLFuM83a/eR52fBoNvHM5bHEqGM0ME68mXtlGPGCPDOLI/HLQP1uvz2GITEXDG0roGejCu7mq1oqmBii/72jQCpiRFnLsFOV8M+hTY1VlT53NKSeFqyO2hrVctEGRlPV48Y/lczjIRzGzWa2ISVus1r77yMu/98H0+2Gwm6Yw6RnXOLckV5nVWr6/j1rYtITRIjooWaltydjB9Xm3rcDxwc3XFyWZL17Xcu3uH1WqF8ypxoULM+l/bd0UgvELPdM4aDCklhjESE+ofuj8GOiq7wzXetbRNzxgzZhhJknhwesobL7/MSy+8xN/4zd8jAp1vZ2VQ1OlwGOXmTzrIJ9sTTranONdqyRmDcU6b9AsEIqcENOrYBXVEvbO4xjEWQaGpx4M6ifTVV1X7mCLDMND2PSkLh2EkjEdSCipmWDjOWQQA9YzPHstN5ZbxenZh12ORqZscDqE8V4EyUJuOZaL2VVE7My02Y4sBL/XnKR8is+01E1BBWZtynlem2vZiGrNFsjYut42lay3Otsg0ZYbpvT27i5riyEgxxNpE6vTMBbJSHesQAylF5QA3Ftf2SNvy+Pwdvvndd/jhBw959/ySmzFwCBHjPX2rWequbTCSiVGxqSlps7wUhXRjDHEYlGXOW164c6q84CmTXEd/esLp3VMO77zL1cU14UIwZx0mBySOpKsDX3zzLd564w1efvFVfvm3/jZ/5//zt/l//NLf5+s//iV+/k/9LF/5ia9y53RL3t9gMAxPzzl88JAn3/8e6xfu88pP/hVe/Xf/p/QP7uH6lrf/+t9kdWfLyasvIq+cYJLDjQmDqoIP3uj7Ea9lbNfRdolTL/wwNfzg8Z7vPHrKv/a117njG1be0Jpa5QBrW7xrsW2rlS5jMKIZKmPVQWxS7RVRV0fzNaLsS95pVaixpYE9Tn0p+r7ViKVcYR4aDFjncL7RhnnvVbxtmv+qDuDIyiaSEmLbIm5ace7ae7FuGzadIdiG3itNsMJX9Po5zz03xpoJ0qg9wHZaf5X9xNvSfC9Q2pTBFMhjCaa9bxDRqs4YE23rcK3Fdo4xjsTxyNY4rdraytJmMWJR7R5TEgMyBytGN9Pq99Td0SxsgjHF2TS69kKTSB6yrCE35AyXqSFYXd+uiN4aW7J/9ahshlKdyT8iRnhhlqoP7o3CHGoHWLaQvWCGXH4Oo4UkBqJlEE8iqJ5l3yHGEcRyPBiOyXIABkqQms0Ed7Mi+l6KDcmmMAJWW2nRdhgmX+BHPkz1ZZcfVkY0hSv1nefOdkVjL7DEOVCpjDtUW/lJ4d4zDl5xQmc37tn7XDjbIkiMpUKhWlfOe3zTg7kpTeiLTPjkhdyuyFVab30XJQtuHLnrcG3Hqmu5057w4fklh3HgGBM319eMYyBnM0lJiFGIX8qqIxZdVhE4a+nXa1adJ+73iGSSlYlpL5f+tSlxVjsppnVVEliFzAUDISTiGHFWONuueP2Vl2ic57d++BjSoTBKoolCrCIb8twHLWaujSjsMyvEcoI6SUngWbKreizVwXz23WngWu3T7fckUwCmTnciJ11vtqA7BKgaCFKgy3X5TzCc5bmmeSXFUVXoYw0287R2a2BbklXG1MvM42wc3nnSwgZMjfPIHAAtKH3LABanZbEulmNinu3LYZEsfeYwc51JJn+9zFUpMG60ByzEREwJY1W82xaIdy5BrNIt68CJKCypCnjHlAjDyGG/U/FpaSnYcL1eFryxquPRtROhQ0apBmpPz1TRFrQXU6DtWrqupW0aZChwpWqnq42GKdesukK16q5U+LUgbSrUELQckyv87ZkgEl2z1jnatuV0syHFxHqz5rWXXuZ79+5ysl2jbIwWb920R2qQkybYsiaCC3LGwJysoijTuylYzIVuOKWCFrCOYX/g5vKS4e5dzk5OeHD3LlCS9ONATEpqIUXI11nBjBFHQrFKSiueY2Y0kUyLuB5pVj/aTP8Rj888UPnGm29wPURuxkj2ShPaNg0nd05Y3XuAv3OHru8UrpIFTwVCUCoalq71jGPAOE/f96zWG5z15KACjr5RZ6ouSGUaEUKIjENQtoTyGcmZmEUjvpAm7cBUskHaj6KGrGlb+q7j4uqK9997j91ur4YdFpvHnJGZEheYxSaySGxwO0D/pGPKy5UPpqiOgcNhCv7QLCd8CWJSivocVrHeElOJlistcTXJ85W0MdIpscDisM7qxlOCJGM1Mz+BaHPChQMheZ2mJaujyr6VfLVcpWQFtbl+pmvULIguHg2yLL4YKesc/XrL+fklV4c93/zgQ373B2/zg3fe5+luoN9usG0LWLabLau2ZbValXFISAoKOBYtBasznTjcXHL/7h3u3Tnl9Zde4t33H/LoyTnHVcNxyAxjBusV/5kzN9d7hqtzxt01D07u8u73f8j5ex/y5suvselW/Jk/9XO89PJr/Mmv/wl+5qd/ivV2gwChlJClsfSvvcjP/e/+t1i3wroVtCMf/tqv8uHf/1Ue/dM/oDs94+TVV/jyX/03cS+/CKenmKtCfZjtFARnUUfQNQ3rteH6XHj7OvE7H+742a9Y3r7Y8c6jC16/t+XH7nl+8sWWsDtinAYhjXM03tF6hzV5ciasVf2Y7JbZeXVKY4wMhyN2WOxnqcx9qVPQoNXSkWSEYJXeeRwDIQnZeJRNxmCsx3tL369pnc7PECLe94WBj7LxWladOoc5J5JtqOybxjBjj0vEbRBMqtlCdQS8KZsJBbYggro9ZY4ZT0wBRPUsvPelEmlUs8Y5mqbBdS2263CrFdt2S+/3XJkRI4ZODA2W0VRRUKdOt8zreHKE5pJBNRS3F/0U/xmMCbTZY6MluBFJESn9QbNac1ax0BhKZaVuYEv3Yl5vf6SjbNBVBDObwiaYFdKHgE2UTV+DlXXnaLoVrLaQn2KxON+SrMLXQrTs2EPbcLJa83R/QygOoi8VN7EgafIEwBS9nJQUhlOqMNnMM+9f6pgSU1oR6hujVWIjM7nHYih+5JFF8UN1zJTE7dNuANB5kVMqUNiItQ3Oe1zf0rTaF1U+OG0aU7YepkqTMTpuNTjwXvub9iHwwcOHHDpP6oUn5+dcHo4437HuWtquxQ1BG49l0XBfgmVnlKDDt00JiIvDWRmtgG69YuMcBzfSNHvMIAUCps9ZKyzc3mJ0n06JHBORSBpHcgx4q3uVQbTyhjJfSqXKk9L7kaVUyXMJCkyBQmnmwTjHMI5c39yQ4og/aXFdQxzDNKSuzKNphZTgca4UMFX9atA/sWUtkpOTg2/mdW+o+7S59Tup92/QAHH6X3Wm9XwxSWEl85oPLTDv+l1dG1krclGDP1Oo4AFMKsGjKQ3fKZUeMG7DGaW+mzmpolNa5gTBIoD7dB9mRoHYshbmCVxQLSlqoCeZrvGYbMgxMgZlCrVW/ZGJpKvM95hkohJumo5Bbgpdtop3J2OJpsK0CiNlcfAqdPLWi17Mw5pArVBTpuEojv4iEWBqwCcQj0fImRRHTdd8LPk8b962IhOsvaUNVIOMxjk2qxVDCKxXPeumZd219G2L9qtKmQfKWGooFdjpmUuAWtdeDYqXJTAoUEYlBYpjIMWEsy1375yxWXWcbLfT/mWdw2TVyPLl3mOhRm6cwp5XrWOz6tis1uQw8uDeXb7yuZf40pe+zL2TO7Af4DMm/vrMA5Wf/NKXuBgCF0PQJlkDvTM8ePkl1qeniGtovGILc65dstU5Ln0mIXJ9c8Pm5JT1ZjsZZ0GKMfcluNCJ6Zw2SdaMlXfKpGKtKVjTygldMKfV4pQXW7MZzjlu9gfOL6959OScMUadVKVUNlUbapAyxy23jprBuPXrsu7Lmv7EY3Jyqoe2PG859wR7Kxt52S9vlRlNcT4XNvcT77OevZahrSScE5wHsZ7gO8amJzSOGDM5R/CNZodSYjgeyXE26NYJLkZ8o+Va5XsvN1ECLnU4Vb33ZLtluz3h0dOnvPfkMY8vr3hys1do1f17ZL8D78nG0PmGznsa6xgOx4lgwDeqaJ2NYcyJIURlzwgjwAStSDlrRSUp8ULMyss/jvqd6ycXdGROuhVd2/HRex9w+egJ+zfOefmVl/jqV77Ea6+/xmufe4Wzk1NiFmxW7nerHgMYj21amvUG32+4+t7vs/vu97n61re59ye+Sri4Yf/+h1x95wfYtqN98AI1K1tZrDQLoro1mAaajstxz5iFvnG8sO2IY+ByH7Bd5O5pS2zX5GOaxdamObMIhnkmT2wohFMFPpci4+FYRPjM5BBVr3oSvzQWkVCcElEDWLRUZkHGxZwW5fO3wkTHiJSOlyLKOTlENUtpZzhf7dmSkl6cYU5z43Gx1vMzl59rdlc3dBFbgufSUyUqMCkZxqgUjTGJZnV9R24bUuM5yMhIrcnMm8681gy1VRU+OROpr3d2BuYcfC7vQp+nsYKxwmgWlsfM8Mn5oZ85/yJI+Tit77OfLWeuduP2RNFnsQZT1IsRKT0xhbnK6LNbSp+VyViXMd5jS+N8MoJxZX2a2TrZmimuI3bLkaLYCH3WGRf/hwkhbqeJTBlv/bOw0IkGYbN43Gx3b700Y6YzPW9854/N2dTq2n3SnWrtsH5uEdlUKIedHb/pelOwO9+XUJXhmZwMBCQmhcpI5EZE91mBxjqlf0cYQpi87anubub7VuV4VaYHUzzdmmwyJQHS4L1mfet9agbZqlNVp5KhiPndXr/I7CjWsTLTg0yDUrYMM6+nxVhM0Bdr5ipOoSqPM3/Ysy+gFGCkmKDKepiUFtdAjhpQxRg1+SmRkViSAwUWbQRJEVIkhMAQLGN0xGgnRk5lvBRdB7Y258tUURCh0D4LofgpmjiRKVAxKRJLcieEyDgmcKKU3nbe89XXKYygSSsRKSUlv8jzOqoWqk6d5ZCW13Jrrqndmf8xzf9nzU9NeJU5zsIxd8YU3bOWdd9DVsKGmiRTym4zJ3fMNBsme2mrBg9apdG5o/2sOnULjLbMJ7uMrMy80gRwXac6PkXnZ2HymIzPbdeoPJUhh6BVhkoy84yPpq6kUchUobuW+rFpnZZ3YDVZ1rSaQGidVsqcK3DliWVxDhXNVH0qc3eyw/P1rbXTu7LO0nYt3qlvN1VVComGonG0KhJTVjFx72l8hw0RU/QJc4H3AsriB4VMIvHCvTO+8sU3uXPnDl3TIDH+oSz1H+X4zAOVv/jn/hyXIXMxJq6PO8b9jjwOfOGLXySnxM31DX3TMQyBIQV9mVAmo2M8Bg7DwMOPHvHaas2Ld+8CFaKVWa16mlYxcDkLzjm898R0LBuvLYGKZiHV8YiTc6IOuZRBLxFnUtFE7zw/eO8D3n/4EW9/8BFDyAhl8hiZmt1BHS9jZIZ1wMeMorn1s0/IR0wB18LbmnFak5UwxSmo2S6l83WzTSnjVxeUXm4qLFODQUk1YyQzDryMiy2wMCeBtm3wXYO4lkN3ys16S99Dvric+jFSSlq1GG5KuRNCiniPih1lw2FfCAkocCPUwOYUSGGkNZaXX3iJF198id/55jf5rW99mw+fnvPS517jcy+9zJtvfoH3Hz7i0ZOnXN3s8GunOb4snD96TL/Z0K9X9Kse7z0pRg5XV1xdXXGzPyDAGCNjyFxc3XA4jsSc5iAlw/6YONyM7I8HHt085cuff403XnmVkOEff/tX+cf/4Fd570s/xv/of/Jv83M/9w22mw3nTy+4eHqBW60wvqE1lrb1hawhc/Evvs321ZfYvPICV7/521z97u8zfPgR/8r/+T/mvV/6u3z3P/sv+fDXfhO7PePkJ7+GoE68z1DVqVMU0ngkiSe1HR/trwDDm3dXfP3VU3xO/BaWDw6ZF1LLZXsX4yMr51h5r5nv0jRroWCki0MteZrN1qojaVB2luPNDRM+j2onZRbdwpT1E0smVohDJoVIzsI4joQYi7Op63QMatgbC401GFF6x2wcFM72VDI/OSWwqbCQlWpKmile51L8bXOocC9DYTqdN8oCMVPa1UzMhpSqZkcmlCblEDO7w8BxjAwRBttx6Fv2fcMuGW7I7E1Rki8N40VdCEozq9SVP224y/VfH2Bes8vkB16gMdgMa6eEDk9HPW/tzdNqB5OtWLIGwgyTueXYfsqRqTnzGbYCJZi0BrEOMzpEsuqpNBYbwScYUPvno8W2PWIz1kZ823BIGUyEfVLa29YrxE0Kc2AV/SzUvfVu6wZa2b0q1Uc1prfiiE96qMmOLj5ltAKVkxBDYgxRqa5dUYM39Q39qKBoYafr2zaLSfkJdn7pNS37vnS+R4hBRQ/Noj9nug+9s4liGAX+TWcUAG1aNzEQo+eI5WkYidngXMtmveH0ZIXkxPnV1e3bMvM/NLCw+LbXPjMjun2IZpm9U4rXpuDsp5i7jIMGDMyJAlPEI8tzVC0mYxy+6ZQWltKkPe3JZv7DLB2zRWCLmZxEZ632PnhH1zbEriWnoYyvQLnCLd9TNGjKMZNCIoaiZ2KUHj4MA8MwcjhG9r5hSF7JAjBlvmQkBiQGhv2REy/sWzg4R4qREBIq2qVBfbRzdRDnFTHhDCFCyJkxqR2ytUJiLaSISZFgnN7HIXCzDxjf0iRR2FGB9HjflAFXDachRCWQiVEpblPWpI+pMLQ5EJ6TAQXCZp4PenzG9781R6VGkVLXg5lcj8Z5Vl3H2ckJKQ5IEnq3wtlrnTNTFWqGtk8rxigKxNSEdqmcVXveOAcLP8gV1XXDbNemWFtXH367wTvParWaNMKmE5SpV4vgt+2NIY2jvvcwTja+Wn1Bg1FnHabxuKYpJApLLjK5tX+5xtN1PX2/ovUt3im8d7bvBeKo+hFaobIyNc+LKcHvlJTS6+u7zfi2oW88BhgkISkX1rCWGBNj0AT/GFSHzUvHnc2G7XZLGIPuhSHWDCoGFdyWnBjGAeMMb73xMj//s1/j7r1TJQr548D69Q/+2W9zPWZuonD/3gkSjkgYePf9NffP7nD39A53tluG48DhOCheA5gayKwD57nY7XlJhM12w3q9UhaQRvHj3pemUq/R3nE4KkRLUDYs32KtLwxhAYwo44F3INrLoAVmtcCr1Ybr3Q0fvvce//Xf/Nvsh0S7PtUm7Ki4WT/HrCwxgSwmaf3Xrazbs1WRj5UKy1lLqdKUiNZ5h6QCUbOakTCFJ3uMqgisPQErZczQxpyS7aTsXhoEKq61XN9a1tZzXCWaYtwq8reyF4mz2AxEeBIa3m3usDp5gZ95+S6v8X221xeIDDU2IQRt0JyMXFn4ZlUy44uUgkhmCEeQxNl2zU/83J9ive65HEZ+6R/+BtE6sml5773HpDFz984ZL73wAr7p2Ox23BwOHHZ7jvsDxxCJhz1DigwS1KnNmavdEdf23FltWG02SBYenl/y5OmVlprbnmDg4cUVl/sD5xc39KuO+3fO+Nxpx3bdcnG94z//a3+NrWv4hX/lz/E//6v/Yx68eJ+r83PCzTW744GQB1zuMbbFthvaM8/lL/9jnv7SP+S9//df4+zP/mnu/6X/Dmff+JPszi+5fu8DfuN//x8RHj1FQuLln/5JTl59QM47ooXgDNEWDKvV4kxrBxIrrpLl+pA4XTV87oWeYBukWbHenvH9iyv+zu+9zz/61oe85nb87FsP+As/+Rpt32P9sWTXpDSbZ21WFcVKm7KBjsWp6bPQeV9K22UTS0rEYDE6v4p7biZdGcvgMq0zRO+xecTkgJVEjiMpWmJKNE2DGFXp9ilq/7LzxTErGcDidGSj0BxV7HbMVoLZoSlU19PaqtnosjlADdVLtjHHMhcdxpcenAJRhMLO4jxiVGdHvGeMnmG0ClXJLYkGsZ6M14CFGhxkVIzITpXdGjUs0RC2Ol2TG16eA/CpxdJgcsSWDc0aDfRCTBwOA1kMzjVk4ryRS4Xm/ejgZJk8WTobeq7igBmj0BI8Fo/YSIOlEYej7FlZ6LPFuwa6jpwecjwODDeRlT8QxUKCTGAYj9zcHLWybbOyiOUK66gB5cIpqDdlwRQmqPyjH+0TjkWqaIoV1eGpQZAUu1f81E+JgG6fdSoM/hHvxyzmbMpRe+xCYZcsSYqaOTUlgjQy91ksk1PGgKNg6o2ARCRFRjFcxoHjGHC+Yb1aYY1hiJHDYY/xrVZdZTkPdJxTYYeErgi6Wo5Rezj3+wMxGVLMjAVOLSnTNY32qpVzpaxJLOs9bbfCGkvbHvHWIymxP97w3ocP+fCjR6SsmHnvHSlHJZUA7Zkoy8ihCbZU90nAipBiJGZIeFzb06632qsao1Z7Sq9abTq21im23ncksYj1GN/Rrrb0jaf1ju26Jx0j6Rh4vY8c/YrQ9FPvlMGC1YqKpEQcRl7Ytry8bXlp45TJMGatLJVqVEKrHTkLvXd4o65PEBXdDQXSVCM8tbdKLhEE1sdItxtZ70aM9/iuBatIkhhCgfeobtGq9dw92XCy3TJeZ0zQqtpw3DOWxO3J9gTvG82opyJvMEFF5qPOjcm/ec7aqLD4CpGHIktQzuW9QvhPT05UKDELne/p+ie4g0JaFWGe52saJYqJMXI8HrnZ7zkeB1pr2N8cOO4OpCYyHAcNEIqoZCXsyFn7pyoELmZNhKmot2UcA48fPiGkhG/8BAnVACdPfV/F1GmQbrV2bLNWVIzkORgqn00ZVtst69NTmpMth6trYrHlUy9TYbUzaON7E5UhUytPuv9VpsBcpRyk/AekUv2IQYq+FQvEgVZM2rYlSuLtd95hPBwwkvnCl36Mw2HPzdUNm82qwO8LdN86jBO6rufx4ye88867OGs5u3OfzckdgghVPN3U/rSYaHvH/bMTXn3lBR23HEgxLuTFP5vjMw9Uvvv2e5i2h6bn3bcvaU2itUIMmfTSiLl/n7ZRTPqc8SqRJhXv67i42XEcR5z3rPsVJmfiGEqprqZrKpYxqRGQwk9fMIdVaMs7LXFVisiYEt5WxqtcmorVMHgj9I1ls245bHpyitzsdtOEdVPCR6asnxr7uot8fCXrV3707jd9zpSs9UShWjIVJXOhzWm5OJrqVE3wDShiVHM6YL7PCufRK00xcq3mlE03lmtZYxkxvJ8drWn5qbN7mCcPcYNqjWBnp0wqe44xmvIVmamnayasZN+hZFmanvt3z3j49Jynlxd89OG7+LbDOk8OwsXFOdv1mvsPHnFzGDgOI4dxYDwOjOPAfnfQzdxZfOOxpZ/45mZP0ypT1ziMDMNAGAJSHWFnubhwPCqb69PzG15+6QHN6Ya2abi+vuH6+pLtasVX33qTn/rSl/jiF95CjDLnHIoxsEaZqqz32Lbn+O67jP/i98m/8RvI975P+NxrHD94zP1fvM/2C29x9ye+ysXDx3jv2fzYW5y89Qbt6RYZj5PDMB9qGKyzXI+Rq6c3hGzom4a2b/in7zzlnScHLoZI71XQsnMVTqDN7nVWpYxmVk1tEKUYc9UXyszZzxqET2a6GPApQK+wi1pMn7y08v4l4Z2hcYbGz+uwBquq/muLwJtmxshFlLRUOFLORHKRCDFImputdS7VObtgQIFJsAvDxJqisIg85xXKKCcqI5HqKoEhplwgqcUZcg0xGsIIUSwqQmn1vgrsYoIp19tbsgsy/x0KjG7yMucMVf2LSFbmMyxOqi1YbJiFLtXOHZyFnS3Na+zW2ef1r8t//mmFzplF5SdjmCu4ZW1nFXWc2JYmWw3GmdII3upstYZoDMkqTMBQyAzQ81ir73+OqW6PwS3AlKn5z+VP/zBRxDxHl+NQXSlr52wsk+26fVmZElHPObuZzytl/5hRL/Kpt3jrnVCJvqne0ZT1vRX4mDn4VruqZzL1d5Q5jjr2dXBzFsaC8bdljQwhax9d+U69Zf1znmtZhBi0f0RM0eoo2iaKnbckNHiu7EOqVVXRChpo1ERWyhmxpvQ9apUh1/u1Bued9uaVcZFCD6w9CjWNVpvK1em3Be41pMAP3vuQ9T//Ax5eHTjc3BDHI6/cPeH+/Z6260khTM50EKWwH2i4+8ob5HbD2W7P2Z07tI2n9Z5V37GNmbtjpt9FgmvJxam3lfLdFsc6Z1KMnHWOs95zv7NTckdZhfVdpWmuCU3VDDKFOGCiQ05zEqEohxvURt8Mictj4PIYwRWWuNK3FmOhpy+w5tYZ7q47Xt6uOO53HA5HbvYHXrzZcxw1QXy9O0zXvTX/F/Nvmp/L3y8WwGTfbi+5ZWpgCoAUds+kWWScm9dSBpl0R6SyTWPK2MTyn1htzH/05CkYpSgOYdQALWUNWkrjfCw08xp0a/9pyplhUPHEGCOH/Z5hPBafpEbs5WGWA1EzGAoPKJo6+fY6LfbOVobTLDrvAOPcZB+MyEQeYK3BNh7fNrRdw7rv6dqW1lfbVJgUYySryldZT0JOUkg09b6k7tkiSNb+Pucc4xjYH/aQUtmnZArgUulzXvbrOO85Ho48ffoEaxyr9Ql3vC9B9GR+qILhxzFyfrXjo0dP+cLrb+pnnulN+yyOzzxQ+b1vfZfPvfY6L7284R//43/G3XXLC2cbnu6+y8Wbb3B88w3axpSmQcMMNQAngliL8Z73Hj/h8zc7rDWcnZ5Aygz7I5Xho24UisnUiDnkAuMwamxDSOosWX1pMWgDY4yBpis432IQnfPcOdny1S++rtzc3YpNa3jPwfnFuYqDWYrzPbN4TJvsM4v5tqNQN7ja3/L8YEZPVJ7N6PNNCs5JUN0Kw3EIjMdACInOOhIUilTNTFdnc2oSFatMSyKQEzkrl3eMUUv7pdRsRMvDY9QAyDmHmMz7o+CCw9+9R7vd0B2uOcaDUgPDpBNBYZeyeKyoIJct9yImY2zGuYw3nk23wvgNfd/wzR98n9//7vcYb26wJbtjrCfEoFhfZKIStOVd1t6UWErbIYRFydewXq/pux7nHMMwMIagjHAFw5wMUxXo7t279L3lhRdOCTHw/R/8kA8/eJ9f/IVf4M//2Z/jT37tp8hj4PrqmuubxD5lHNA6i8lRKXn7NR/9vX9E/Dt/G/urf5s7AMfAeHGgOb3Lg298ndWdNX/wn/8/OX39VR785I9z9lM/DhbS9R6flP7WFqztJJrZdjy8OvLDywtiPkNcx940/PVf+QP2owbZP/XqGa/c6Xn1rGO4ctzb9gxBN8uUMyFDKKe0RrNFVScgZDV+1qsoprFKKU6BWs5x7JxQUGrZ4nCaSjMdySmQ40jfdmz6lnXbclk3owqktVbpC32H8TrHcgjkEDEpE4KWmgfny/0KEGZWHaAKLZblcvsojkFlYZqDljpvSjA+CaAyQUvGmNjvj7ouMFi/IgTDccgEaUg4sjEEk9VJtwoXM0ndPmUoypMNKCt+8l1rsqDeV22pNQLiIOYRJLGxK9UskEX/htExtNniioCnLVSluTzL1FM0lQ6WhuXj42VLgkWbNg0iOjhGUO2jnMg50rcNyQrRaE+aQ7PFuXX4rmPVrTnYFbnXiSZdpwFuynRtT+MHrBOa1kGeHc7JLk6lFZl3QvO8IOUPE6bI5DTMdhSU4SkVx8DRNm3RlqrwOVEByhqi13JJPe/SZhsz4f1l8vTn4TbC8/JV0yds2cBy7UtyBuO9anoUqFI2iz3AueJgMPlT/pkRmXW31NHKqPq7ElUKh+HAESGEEZyfI65yv8paV0RSRRgOe+LRk8QjOWDQxIz3ljFoMmSIARFliOudpXWUcDBrkGINY87sh7HMVVd+K2A9q82G7TDQ9+eE46gQFkzR+0oMMZYKSgniSjIjZiV/aRrL+XXkH/z6b/Frv/0tVtstN1dXtM7w7/3bf4XTu/fZ3rnD9dW1IiNy5hghZUOg5a2f/Xk+X9ZO3/bTHqM9sLoWUu1lKlT7KlJdFuTUg62w8Jrvq9ZJk3M1ebKo2FGd/JoUAGTuo9W1UYgyJme+kBlMQX65cnE+Y4yz8xkjVWz5GNRpj2FkPB7YHY6cX97wS3/3H3B+ecnxcKBad3trtVX9j6lj9mO2dnqC5VyvP5C5T2lMCrUMw4hEnZshF5UWESSp/dPvV4lZHd4QM2MSkrHYtuUYRr71/bf5wbvvlimsVZIUI8NxVE7KLISo+0iKOpeSQMyZwzCq002m9XDYXWJE5zdGESbZ1JVlFhUTDQDUsa+8qfO4WLQaqsFTQHY7GDRw8k2jgXjpxXFl33PO47qW1mRWmxV3T884Wa/p2w7EkLMpibKRZLXSmDGkqEQD6nLp8+YyHY0IxFi0+JwGe6kw+YkijlzjiFEr3eMw6LqzilRqmobj8cjTJ09JWXjhxZdp24ZDilPiQWQmnjm/PPDN77zNr9395/zs179O45XW/LM+PvNAZbvq+VM//TV+4c/9Ak048uThe1ydP+bqmHj45Cm+9RzHqGw/hdJtShjBxGZz8eSKp48f8/DDD/mZr30NITLkDN6RsUSxDMMwcb+HJIwhKVuYpGnPq+y7Wvo8FqdFcM0aALGJ88tzhv0Nx5sL/tKf/9NcXDzlu9/5Nl/+xld4cv0Gr37uJf7mL/8aISbO7pyBUXasaWEvF6osflQ2yUzpC/m0ow4CkGIkFayvtRpdV3o54z39ak2/WtG1LYaMM1Ybog1lkau3UUv7VUNGdWZyad5L06TLJStksgoG+WKMLYYewTx9gnQtdggqIuicqp5O2XXNnAqQiKoavNg4DYYsFmMbrG0wMdP4hrbxhDRy2F1hU+Cv/OJf5EtvvM69sxNVmc15as5OiyzAZKyNmej2UorTAGaqUZdJw2NqlBV9IwkBsYxj5Nf+6W/xnW9/i48evsf/4Bf/Aj//cz/Di3d/ka/9xFfpvOPq8orjbk/KWSEjIYIYxDX0r93D5B3ynX/B4//wPyG//31oGtpf/De486/9Be78pX+FcP2EbKF76y2+/r/+96fKxW63p7WO1lhceUfRSSn7W4w0jJwR5UAOgac3NySJrJoNf/Xnf5zzY+DdyyPWwmsvbvmZN+9ir1paq5ttxUQbI8WQTqmqOUtbHPr6e0GIOc2bbcmcaUA648Uro6xklG5WHCHDzRA4ppZRDNl5kqjqtdIxNjRdo819trCoxKgOcNbg1BaGlZqxqRACDdgpwVG97U8O+KuDUIOD6v/WBeqdX/StMV/TKKOdOIdbr9j6no1pOeZLjGnx4jWIsJaMZpFT0uCu8UD5OzZPzo6KpS6cm4Up0GdRO+hNC3gyCVMgZDmrAKh3DmchhpFhGKfm0hkGNCXtPhUBtkwULlylyRGvDq7Juj4QxyEWRp0sWJfY3ey5OQ68ef9FXO85rITxcMR5x3q7ZcgjGM/KNay9o7eOFqdCmRQxUlersQYh3nbcJq/ITPPv1o3/yKPYpTK2+iOrTf/JkJMSJ0yV6BIjTR/9w16mjJsp/YrziH7aGebf5Sx45/GuxbiGEKP2dgE18ylUfL4gMc1CjXbRgVgSO84p/El1Dgptd2FljClDSsS4bID/eOA3zYMQGfdHXHAcRnUwHY7GZBoSnTXcOz1h2x84xKEYAr1X5wx929E3PSkJ57srhaoYj6SIB17arnhw9nlefvE+33z3MRfHG1JQ6mStACuxRS4NSgbN1elaNljn8a1lszE8uT5w+fiC6/2Rw801277l5r//l4hAsJbfeftD9seRMWZc24HRIH97eofe+0mTRM2a7hMODeR9rWyUpWtLr6okoepMuSlbSY2xNbc4DXJZXzIHMB+fSrqH11Mp7ayeT0D7Y6rG1fQ/pvNJnkNXSiIgSyZZN5mdrvU8Ob/kB2+/T5JEiFpdsMaxnL3TLcGkN5Vl3kNnyuzbM/1WMGM0zZCLU+u8o2ksnVeG1prVr35RLVjos9upoygFZYlzxtCvWlxnsdGx8ZbGqI9UGbAMKkZb+zVCiFp9QB36LMW2GU0y9V74R7/1z/nm99/mh++9D0a1n5J1ODK2JF6LEVKmrqYpOnG+hDF5qj7XxN7+5krXpVF2SVcq31VcuF9tOBwjH3zwmJtf+Q1s4zk7O+U//b/9db77w7d57+FT2vWp9s8kSEnpmLGCIWGs2uMsC4BVwa2pdyMcjkeIgVdfeYkXH9wt5DaGk7M7rLcnGGPoM7imV0a14YbD4YDzlpPNmtc+9wo3hyNN0xDGwKS5R+1pUjmFIJn3nzzh9773fS6ub7hzuqFr/hgIPnqSRoje8uYrL+PCnni44cnxRpvduo6YbtTpA+bFZQpOUSPX7XqNMYbrmxuGYaAWFmr5KqdIjholeqv6Bt5pI30lKK1Y9lwynamUYxvvMNZP5eCbmyv211ccrs4ZXn3AMIzc3Ox48UXBWxU7ZMkiUjN2pprQ55qej6/8TzmmRKsxE5zKLHpL5pPpQo+lIuJiBF/l+2aYwLRlGljiXo21ZaPTxaO2v2QVZW7MSsXQddbQxEAajhwPo5aK6zVEF39laspZiDlqVcBYxhhJohWRShcoYghjYLU+pT05Zb1eF3aTxFfe+jxf+8mf4KUXHnB99XSCZVR6vRq0LAOVnHMxQtUZrLCmtBD6nLxRKil9toBp2B0Gvvnd73FxfcHV1TUP7t3lzdde5bWXX+RksyaOI+MwlrJ8edshEK3DugYrhsPb77D//e9xeP8Dmu0Jq6++xfYXf57V176Kf+GekglYi3Ge9mStc3eMxHFQVW5XaFoXDbkV84vAadfy5r0t3zq/1syPZD53tiIJDHHPzRDoveG0NXxxDX1jaZxdVPKYPbGFk6+JPNHxX2bOzIKlZzHvBDM1NldKXsr+m0X7VrJZ/IdRaFmZS3miFmaaazkL0ZZMsjFTwHAr40sNPPT+U8nG1888b4mZxe9m91H/NofQi6hhuuZM+pByJjtDLskRyvoSW5mbZBLorCCcySLUNVeftQYSS6OwuPGPBxez02FMZS0rTyE1kJlhS1Pf3KdEKbOvNF94+rSI9krkiBRNo0oxm0twr7u1ZhwzGWm1kdVmyxgyjVga62DMGJ9VWwftofCmar9onnKq4kyjdjuAmgfotm1dxGWffHzsl8WxM1Z1eEqWtY7FslryyZWQZ45p2tweyz/s1+fvFpjIGGfmxOVlRJ73OMzTX50oFWk0rDYbxuNACiM55GlsZ+HjilWcTnXrgSo80DlfqFsd1nlMUvuUpTb1Gvq2oXFWHfWsPU0T0sAYtJxjCTEzjEErkVomxeLpvCM2Dd77ydnTvXreD0tsMt3z/P4Fh9C4SnNvy3OqLTKF8fMwBB5e3GhPnfWsjLIqOWdp2pVqTVlb4JO68q1UFZDCfEwROWUed3G1v8xMmmy3vH0zwypt2XerwztVPGvVsH69fL5aoTlKMdN1Z/Yrpl6nW2ui+CRS37dVSLQzhlXf8ejJOR88fMj1zQ1jCCriJ8/xYep7lI+H3Usphls3sJhLtSoioI59gVuuOtW7E99ohXuqHNU1ahbvWuHE3hrOtmt6GkwcyYdEY0zx82BKRBmIWRmnchZCYXtNUjTWRIkSTPEZG+MLFNRPwdf0ZJOdzNN41ERejV2gSkEsvit5TowiGLz2M2lpU0/lHOMYSXnPLnyIazyX55f88t//Fa5udpxfX7Nadays0JXip7DYn6fHvv1yZPL/SmO95EkvrH6+9kJ752nbXte2ccU3o9BLS4F5LvbG51g2EbDWM4TI5c2O3fHIdtPTd38MKipN3LN7/JBHb3+fr7z+Cl0eMOHIw92eO2enfO7VV3n73cfEGqjIrWWm4n8p8sarr7FZb7i8uOL84oJ115UJDyKJOCRyCPginOMMODyepmQjZqrQVCBhOWuT0Xa9wrpGe1ty4umTJ1yfP2F3+RRxhsurK37wziO67X2u9gc++ugjjFcF1FuZPxZ9Hs/xOm5Pej59JxNB4RyzUZpUR9EsgzJUCIfjwG53w27T4boeyVqyzrbRxuOKFV4MrzWlSd5ZcIJrm0Lpq4taHdZyL84QUiTGyFnjWEvmEAJPr3YcQyKjmEbthSh0tKXkfBgHgkuEmHHtXgUdS8Ag2ZKTYb8/cOfVM1afe43Vyy+pSFMMfP3LX+Tr3/gGn3vtVdg/fWahLMaviuEsB9Ms/31r9T7zl/KuGgeu5/xqxy//yj/km98ZOQ4HfuLLX+GLr73Mg7MtHz78UPn9RTG12oueSccDseuhbbl7feTR3/sNHv9X/w3ZBLY/92e4/2/8Inf/nX+NjCMeMsM+4HKmAY67Q2FuKs68N0QPoyZ7NYiiUFLahI1H3npxw0t3TvlnD/cYC63NnHjYH458850nPLwZ+ecm8utN5n/x597giy+ccLaGptHM0eTQlDVR91NrjTYdlrVYmymtdSTrCmWnFJ7+EqRIYWVpHKagp5JoDSAZh/gWrNem+azNryFnxhgJ0eKioY1emW8EQowYmwnRgimN9cYyQV3Krd9SmmbpoD9nn1z87Fnxw6mPq25E9QRTPKtjkEUYjgM7B/vOIdaX/hrIXtW8ExCt4J1uy7mWKDEw6RnpOrTlcs/SSdY/g2QglY3CTNcCJrY13zg0QVo2nLJuNUh5jkfxscNMj1wdoNqPITmz3+8pUnt0XQdeA2iiEE0mOVH2rtbhxLFf6zvrjy0fHhIra2is4I4JVobUGEzBS3vriGStpGPQ0VNn1lj7zL0rmIY6Bnn5ePMaf5aK+dMfXQP3GDPjmDgegzq0mHnMn5kSz+sr1ClSnZBlVvsTgorbo3/rflVjQnsvx+sbUozTWqwnrUmgeT/Qs1TpBymO7hgTtjWc3rnL7vqSYS8M+xneWPHoKScqZmmuOs5zR0pWuF/1dOs1XeMUJnyzJ6fMkAKC3vuqcTRWe99yihhp9NzCAlLniBmGmDimiDcG6y0pjiRjSWGc6faz0wx4BhGtmgjqaLoy4tV+Gcm4nGgsnG1WdP2Kfr3louvp2oau6xmHyMXFNR88uuLs/n3unN7hbLtSenvvNCNvTCEE8RqQ1IEojGaVz68GL9bWUa89RnN1Y4J1ycLtL4HK7YkyzwH9y+2FW930OXSoorjzSRQGlOb3WOawmb4BPqvNtsbgHbim4eHjJ/zKr/06H3z4Ib5puHf3bnGa6zXLAywq0s/Nfcj0f5NLvrTGdSVkTKHhVX28tVurPk/b0XU9zvlFdqBUtI1FJJMkYCSyahyvvXifNYF83HH9aM9xHAkxc4yJkLTRvPpzKWWFjMXSZB8DY1DK6BCV4c1by/3TEx5d3HAYE8432ndIxkm6/TQ1yWtMkVrQIFAT1qUTt5SERKTsuXVeFHRHztS0gbGewzCQdnuGMZCNQpF/89d+nc3JCf1mzem9O9z1wh2XsKhmS0pF3FXmZPbUTyfFghkNhKx3SDYcDweOw0DKidVqxeFwZAyJ+w8e0FlHW/oxrXU0jadrW8Zx4PLygjFrItg5h4nzHK7FAkRom46U4eY4cHmz5+xky3bz2TepfOaByhdfe5G7a0/aXfDw3Xe5ePKYMYzcv3OXlW8Z90fOL684jkEboKe1VxrDRZk8Hrz4EtvtlpiEp+eXjOsVTeNoj5m+bdisOrrt3YmK+HgYCLFh7FpCimWhWIglU5ITJ6tqxBoOx6AsJrsbvvYnfpymNDD9h//xf8J7Dx9zDJG3zweOw5GPzs+xbUdfyqgT6Ou2itJzHIUfsXk+56hiaktHDDNPjpgSN/ukky9GLMqwUvJgSOUudXPAM/UHFOPirMOXbJn2F2ifQtMoLV7OUTtdnOOk7zgxHnGWq5gZrCVaS4yJ7vQE6xq8deQQlW0iDhgMznlWJ6e4rgOvxickNSrNasX9F19g+9KLnIdRs+jWc3N1Rbx5Sr7puH7yhMn8aUqhGMSaPalZbG4NlG4YtwOV2XQWg4PFOrDtSgUSUWfcWUcOI8PxyL6xC2fWgEhpBhauwwVN7Gj3e977J79HPA70f/YbfOF/8x/Qf/Et2tdfJewhjwMpxJLVyJODIyV4VciJBtUOgxPtU5HcEKVhMC2uSfTNwEkrvP5gxfUgjCnxz37wiI8u97zcZ37xq6/QGMHkwB0fIRy42aHNfFnL17MfLnNPLgZnnKoti+J6ewP9ekPjT3SziLEEz9XB16ZGzaQXgTgH4fpACANhHJHYYrIoY1DjaVvo+l6Z+dKRNES6tsE1Ht/39J0jjGB3TBTF4tzEmiXGqAbzFKjO2Owp/KwVlJqNm/Dc+dbvqnOr4nElO1ZOrBDCBNaTXcuVOD6KwuMoiC+RZDYQLKYt/TOx6CMU6I9MmNM5eFBnIddJWoKVaUTLm/AgDsRO2Pc6vWuWfXO65exO5uzGkT86lkolisumNq5+omn5xCNFhVb2rS+bayYbS2sdzlv24rASsSSceGzb0TnD6ZDxeU/y59wRaDE0xil8EXDZksdEYyybVY95etRN1hqMtHNmcGojn5ZsjaOqp6DOyzOhyh/2qC6TkPCtMr4FMYQopFxgj4vP/2GHcBZi/KRw+RO+V9+XUW2hlIUQi5Cd5AL5tdN8VVIYhUKKFHHdElzWO88pEMeR42FfeoxKsJ+rSGIsg2qL7ZyhRfXczpUEl6D9gQaSs8SQoIhSdnmNRNX+2O+K6KAxrLp+YpFUU6zBdjLak2ZchjQQY2AUg7E9bd/qPOt7jLOlQVgboJUcZyb9yM4UR6+wokku89EUJjrBZoV9a3RtSQWe9epLL3NydsZ2s6Y3EW8Tzgiplty0AAEAAElEQVRSNDfM4p3UVTrto+XN5lplyZo8TLYkdwylP1Q/aM2iP1XUBDxb97DTxsxiT9DP3C7OVLtVPlcqReUsE65dyn1UBsRbVYmit5JFOBwGjkMkiqVpO4VfUiqbFX57K+AvfkOlEv/YLDfTXcriR7eeSARJKlCpfUIRZwyNU6giWEIIEwJAKMF5BvA0/ZbrY+Tv/do/5Z3v/wG7y3MO1+d8dH7F7jiwO4z6Dpyj7bopfqraOFKY0KYqXb1BSnLJKJNqt9kU3ZuMnzaa2wmItm0B7QcKRfBR9b/mxvolC9jtNEZJwJWfOmdw1tF6/aQAm1WHIDgrnG0MD04aHvhM/uiakBJOhGhaJCsqhhyneWGdxXqPcV77L3OefGpTWAMVOq89vUgmhpEYE33fs91ssKenNI1jvTnh5OwOYjxN0ypT2+LN52L3rGS2/ZrDfuAHb7/HL/+DX+XP/5mf48GD+3zWx2ceqKz7njiOnD99zNXVJYfjQBQhxszuZs/Tx08ZS9ldX1zZpEy1ow7nGm5udpptCrE0Q2lWJcZI8qp6XbVSrClc7aK4PYUtlXelCSK8s/SNNgwhQhhHcoy03vHy515mOA588OEj3vnwEQ+fnmN8Q5aiExIyfaMO3RwrPrNdLldwXXHmD5Hp47Zh0XPJfJrFeXNOJbOmPQiuMGfYQmNpl8avIt8WWbkJ3mVM6ZWuG61M2XRTmJNyYdJwRpnQrBEGUSE8MUY1bHxD069ofKPMFCnR5ahaCc5xenrKerul7TpgFgJcbYruSevZXe2QLFjrtXE+R8hxUhCvI11Hp0Ju6vhMn1jYBFOch/lH1cGpGVSmTTvHcXIEvHNYTKH4K+wJFStcNhcD2KSMOCEeMK1j/ebn6VdfYfMzX8ffu4PZbjHXB2yjDXR2GIvPqpNRcfkq1GlFs3VGak7KzCq2xoAVoigb1SublpNGCGLpu4YXT3p6m/kTL6yxJpGCZeUGjKRJG2TC2E4jeTuIqzCBlBJSKifOe5quUWNWBdlEN2QhF7YeWxwizdY1TVB9BWdxaGJAUlKYhddANMURJNMYQ4rqMynXe48XgzFKHyx16M0yW7h44Wb5VudjUhiGgh+pb33x5/TuwYqZGfKozpoG4oOxDOK4Aq6MkKwloKQECaM0xk6FsoxhUSUxE8pOHQgpsL7boy/leeqWaDElQZFn+1HfoJSfk6kK4tNvrZlMaN1U5zH6lGMxlBV33Ld+cpBM1oAp1wDLGpSNUPHSYrSimnMu9NWL65saWJTKiFhMbdSfB4b6FmtiQZ55zR+7X4Fbaetbh3z8r0vDoe6mqn4jhJBJeb7f2437zznncwZv6ZA9+12z+OGtDDvmY4mUiRihwGBubQXVNj/zODWYmyrmGJDMcNjjig273YydJ/tXKylGmFAd1XeuwWGMqTTh5gmWaQvBCtSEWtCqa4GTKXGKKm57r1X+eo9qbg0mq17UMAZuTGI/HBlDnH6f67lLtbD2GeZFEK6pHUOlB6+Z7JkAwdwKwFarjtY7nJ3fsykbpCkvqgYpt3PB8rE/Jhe2LOipNWmaljIx2906T12W5naianH6aa5MvnS52qyVVLP49bg1UeYFxAxfrSe3xjLGgRACIcSpcl17T+TWiZ4lA6pQott7KYuxQxZnMXVgzARXm66n/NfYXAQHp+TRcxZ9WRPHIfDO+x/yze/+kJurCySN7IdRhXmzYUyRlAPjxY1SLluFyeYUqfDY+Xnm8cuijJ3OObq+m9gTza13YKbnahuFq6UqpnkrBL3tw+k5lvvV/Mnq76pZndMkySuKwVmwkpScZfLdmNnRhIU/NzuJ1Y9MKZFjgJhY9xuEIhxdrq0K91oFDeOg8Me+w3lPzsJqvebe/QdgHF2neisTJIAKt9dAyDvLGIX9GPjO93/IT375x5CYn/c2/1sdn32Pim+5uLjg4uISiYl9TAQs55c7jofAxdML7U+ppUUplKnKr0jjW6xv+dZ3v8eq7bh3dqYleucx1hIy+CjaPB8zXlB2CpisrnMN1DJgzlhjaJuWXsNXQgjsdzvaxnHvzpbX3nyD3/v9b/P3fuUf8faHH7IbBrZnW57ejDjf0q5O1KhnhX/V5q1PVH2+tUHe/vsnBS7mmc/NRkonhPalRKx39P2K9XrLql9NQZh1fqqQaBYDai4nZ+bJpa4mMSh9n0aMJUoulHkeSwyB8ThAjDiXsJI4SiYZ3SBiyrimZbXZsmo6PT+q7mBRUbA7p6f84NEjHp+fIyLEEEit5/Tei7Trjkzm8aPHxJDxTafZt5ItT8UBq5u6nUepOEG37cCtN3Gr2lJ+a/Qstjh9pjIXoU131li6pqUpTXLqvzgmd8RqA6vJhj5HdtfX7I+RV7/2czx486vcfe0tRnbaNxUSzcmmXDrBB48JOSm8p2SvENWjcFmwabakYgxOdGE2FpKFXRTOd5kfP+2IxhG9w27P8DnRxSMvrgzkgXEMPNnpZhhKBUiDXZkc/lsEtiU4yjkzhEBuFRDrnFf6y1paLk3nSnxR35FWYVD0D41z9E3Dyaov1Z1EGgcaq0wo1lrGwuhmWyBFctTEQ9u2dNiJXlpK9tJWaIar/SGFsU0UkqakCbORnnQOpGimIEwwQbPYokx1AxYGHoOxQt9lDt5w5WAUz2MHj7wwessewx6IhYEmG6fzPWmwiRVcEg1ETe1qQ8tOefaxc9nUTIFy6kf0uUQS0MzGwJaOu5QJxz3jeGAMAzWwUhXirK9zKTYit56Q5x5LOyawXXWMNjKSaI8NgwmMEjHiEK+6MkSLiEUy3FgYkiUPntEXBzOlkqW0Ch+k1Qz5OGqQVZySPE1DDdjFLOhQy9qexOhEPvYInxKmzO95WlMapEDGOV3/w3EkxUyNC1VNvQRWz5zzkwKY2e7UebT47LNBkjzz3brvlSx441ta3+BdeuZplm6kTOfKuTqU+jul+8/sri6VNYis7FVTT19G+xgrDr24swJMvZB5gh6Px4FwHGkEDcbRYKop+5812o84xJExlGRPoc7u25626/BdUyr2Crt2xtI4jydzeXPDk6cHrnc3XFxfk7LQez/1waRUexJLRaVIEZCl5OEckdovVVTlBUQqWCvjHLSto+scxmRSGkm22BYBk2PBctnpjeqTyjN9KVNoM0VzDhYB5+3ZaFjEDM/8HGZ7PE0aqecwz1xNiVD0O+VjmeLAV8fYPGeiFtCR1HeqPYvXo6IFjodDYWEzcx+nyO25+5zj2Vk57cfMa3fOiemaNdnSNC1t29E0DYfhqHZuVFpc52qyuTIJ1F44fYqMsDseefLkCd/54bscjwdOTk948d6LnGw33Dk74/z6mvOLC773vR+ybju6rqVfdSQZ5yCojJ8G1Wrzja2iv4KkXHwKQzazbpfufRpV9n1P23YlOZOo7UJzC8D86LOvshxMmc9ZfBgx4EWoIbQGWRDHkd01XNmMZDslO6Tow9z2PRWqXPVUxjAyHo6YGHnw4BW6VU+KofQeanLRGYhh4HjY0TQtznusUwa1k9M73HvwAgDDMTCOI/TtlMhIURPKQtLt1Tliyvz2N7/Jn/oTP4EcDv//H6jc3Fyx3+8ZDgdee/llGus4WTX8/M9+HWc8KQo/+PXfwFjLqu+ZLLqgkYCo07xqO7y3BAmkMOAls216doUm7Ri0wdmUVJCKTakj0xTNlJhHnNV/976qdQICnXdsNxvu3b/P3/pbf59/9Jv/jP/73/hb6jSte9q2xeJKxFup355vgJbHs6bLUNesvuVPyB0sP13Kdb78W41uRkjWqKKtFYVn5co+5lEASJ6D9WmjXxoPdTpTGglxZIyK065lyRRzoe2NnDSOrnF4D2sMezFchkzyDa5raYxmLMYYsMaRozpZ0SacWHJqOIRR1cXFYsVOejfb0zMGMRz2A5fXN6QUaYxh4h4xYLO6Ac8AvMiSiqJxR9+sGYZrxnAgZkG3D4spYni1ucwUJzsbIRuDMb5kJgySIzEMIOBdO4kiqtCm0/JqTuQwkNtWN4h4wNqM85abb/6Q9vEB98N3aV48I17uGJ9c8uTb39GMQ9vy0i/8DLJZw2qFHeZKkcBMQ2qYdQWMoSXTpxEijIfAzXjkbtezuneP9sF9/stf/R6Pznfc7Af+9W/8GE4ix5vA2iR6LM4HvGQVqWo9nW9Kr4kQEGz22NaRJSCSyjrxWKOUz21yalDjjHOvhlzXkAZ7ZEOOamRNqa50LtM5oW0MQ4jsDpGr3ZHeWhpvaLqyrozDjJCuD8TkyAib9Yo70ZIaR+9MCXQ0SyboxnIcYsk0adhNWSHWlWBGHPhGN8JSmlectqpXW2vAUfDpBm89rjAjPb3ac7JdQddy3nvOo3A+JM5Be8DweHHkPIAxNDXiLIZlcsBtDRy0IXTCEtd1bkrKoPzYmkjnGl1LoAh0w9SYKUbIUZuuYwiIVcCXYqW1gdRYg6RbQL9PP8ptO+exjeGQVJ9Je46OCKKJIJswKSjT0QAmjjgi2wjGC4eNYEaHSUrBMyZHxpGiJXQtgxs5SCaNmWgy0Sl7oQEQ1eS4db9m/k9y/XPOElsqnO/Z5yzOuwGb3RSgJAzRWCKWBsMay5n3GIRkhGAgFQCYEVfeoTLsfJK1lvKuK/iqdn7JJHU201E8WxpX21MMddL3uo9mZjaMFJryikevGHmLtRXOwkTYgDE0vkEE4hjIvtHkE4r1l9JQXKGOem+VHEbHURuOR0YMIbRYcTTo/D7EAVOa5r1vMN4jNuHsUZtxncW6kkDIBkyLdw3eNOQYGMaB43EgYvGScRIZw54nDz/k6fkFVxfnNCbhG0dIQsyGiLbLGxMwJk/OsEH9A5VrrqJ45bHKmsoSyUmKg+5wHnD6rrN1pRoDjkIZZcwk9megomnK9WbSXltp0Z+3iZuP/7Pay1sx66esS2Oe//vpvmBBQ337A9Ufn39bBK2zYGgwpmF/DOwPA4fjgUrQsQw2pgAHqBWS+vf629tAL7P46UJXRAST7bRXhCwkLM1qo96MFBISBziDLzD1vHDwDf9f6v4s1rIsve/EfmvYwxnvfG9EZEw5Z01ZE1ksipRIqkU11Gy5W4bcahlCw20/tKcXP9nvfnC/GDBg9INhwGjAlmAZgoC21BrcIimKIlUqVZE1ZmblGBmRMd2445n2sCY/rLX3OTcyq0qQ6oU7ERk3zj1nn73XXutb3/D//v+I4rB4cgmDsmQwKCE4tBT8tf/ot/nSFz7H577wOpfHJzx98pTv/sn3+B/+8F/z5OSMVV2TadnvGz70aaO1ExhidVMmeOQVeJvYuJfUqWR8oG2ignvfwSO6kbnq+62Laj/F40vBCSHZEBE9OEG0dasKVm2gFiSkQ9ed1SVSPJGcpCOiiL03whi2J1u4PMebmuXiMqFDYDAcMprkye/QKRwXif0ywo+kEBhrIzU9xDHSqRqeEsdKShxQOUdFS6EzBkXOg6fP+KPvfY/BsOBv/s//15++53+P4xceqDRtg3cWJWF/Z4uLqqFeNdy8cR0pM5o6ZvFDwmVtsvNEI5FgCFmOUHHTadvIR50phVSpPB5IDFDRADul0VKSJ6hKh+2NWeX4HV2p3/vI/BWC53K24E++9yN+/M77nFzMGG9PUYkJRAnVu8ldmbzLJDy397A5Idc5sI03pSj+s47N6Dg6X+uG5/ha2rD680BIwnjOh6RymoKUDlIhO8hIqpakexckBqbUdLbJHORTxsr5gFaKTCuUEuReoCHy2udx4fTsEKHrBUiaBKIzcKHPHHV0mN3CzvKClqjI29mMDd+ELq951fjG75MpQGqcp5o1SB0dVKUFOEnwMavnN7IdMVBJxlTIFGyq/vmEsNG/IunhNUJKgvU402BWqwgNyjOaek5AofMCnlzQPDpl5t5ieu0Ie7nEnF1i771L6x1+UDB9/Q55fh09nRAaSxeA9XOkmxaiS5LFi5ek7EdEkFGHWIEQq4ZH50senq04X7a8eFqT0eBWDS9PPLlTCO/6wF1KGQWgRIKcCYFUCdfa/ZGq2ynpPdj1sMcfRXfN/ZWvPyI2xi9tXEKENEcjA4/MItuOkio2VKbGW+dj4IGImR4lIod/F0jIjWuKdiPNGRH7jUJyF0VaY30fEnHcut9JlXD4UiQdlDg3ddJHCMTihw2C1kuszzFeYULcVaVQKCFRDkSqCqsQGfQQ4N16qwohOj8hiDUFu1gPZ+iedfpd6K696y3onMp+14yrIt6X5Iq/0n/tBtxx8/l91hF6S7aGDPjQswQKurEMvd6I9x7hPNI7tPCRidGHlHFXMfCUEXceQuzdyYsCIVcY21XBuqn1PC4/Dsa6GrK5wYu+EtM5Bld/f3UgYmAXA9jYBC1iDsynHg+pEpFIB7lM3xpg7Q53o5MeTn8l6Ru6hxbWgcpaLFLQC6L2d+T75xRECjxTBsWH2HfWOVPrRtyO2W0drGwe3XOLU6TrSfEpgdc13MY5+GkHOAXW3VxIZA6JfJc1eCPQ70ip2uqDBBGrUZuZ+C5ADqKrScS1bayhMS2Ng4yAxpMFhzMWZyJkOOg4pmvWr01bk86clkSnYdP1aHXraf0QN9xuKfq13T2Pjm0u9Itw/WzFxqdj5Wb9Ov0zXgd4m/Puiv1Mo9bP097Z7xzZdF9h4/2bVY2NO5EbX3H1/FdfWcON0p7W62BFu2JM1DOx1vZ2sseHI/q72rzOzk70a++5ddn9va4qbNgtIRBKsqprLuYLnpyek/k27jdFgQlRJqDbV0K3rvp1Se+riBBQSjKejLhz6xavvfwir9y9xc2jAw6KjP1RSY7nBz9+h7OzM87OLplOx4hM9wLgm49JpPESQfR339vmK6O/9ttiM76JyJYIr9h8KOtn1wUpPed59/ca1rnmT+hmFlcgoTaJtfo+lrx6VX1bVPdd/Qtx0UdRSYlpDc7GhPZIKqRaE1LoPGfgB4l1T6SgNvWFOZ/6KAUp60YHgw9EyumiyNGsWfdcEHzy5Jjv/PBH/E1+sccvPlCpagZlznR3ypuff50fvfchnxw/486dm2T5iFVl0Fpjne0ZBTY3HE/kgB8MBhEfLQPL5QJjWnSWoYxEEzOt1jqsd5iEyS91VBrHxsVovUvCklFFt3N4Q4CyKJivlnxw/wH/4J/+Hk/PziEvyPKyb0Tssikdm0I3jT5771+/enWy/1seYj1hO1ywSt56oAs4kjETHcwiCuT5EDNaqG5b7FZiXKA+rGl9laSniu2gcS6V2EUymj5AlmeUgwKdKUoryENg1bSYLDagyfU3rf8vEhVjx+QjZO/cdRhpKQVZltOKqF6dZbFKEX/fnSoKH67HsTskWa6Zzy6Yz+Z8fO8Zt+7e5vDogMFAYVcBZ0PSenF4FY2mSEpFSli88gShgDxec+/QxYylUETVWBGZihpraJYL6rMztFZkRcbl5VMG013G4zHZ8VNW//J7zL/7Y9T2NUJtsFXNgKcsaDkb5kz//DfY254yuXuTer6MBqjzxwSExEjUjacXWWxY14oiF4wGionWfLRSzI4XnH9yyfunc57OLKdV4Pc+PGEoWoZ+yfWyZFg4hHc90URk0RLJuY/Bj5dRzyLPs6hvojWrvmdp4znIBIMjGmzXbYL4OAdEHK/YkNm9v8WHCPeIzlfEq2c6EjZoVUDCr3sPBoftgg2TqJuRCSLqcSJy3HgfonJ8iLSWEQOfnBghwa9F0mSqQnoXRVMFEFziPUuwQi0VEo/BIpAY65itVlw0E+Y1iOUQH3KCzBgIT6s0AUHWWjwKJcA4h5aRltV4nySok5uaSCRIAXsXsPhOoT2Nc/ejT1AO0VFdhRCbd7vsuszQKqdQFi0CSmysP886UAlXN7W1ZeHKv3qLFSJsBy8gFwityVYCoQNoj3YeQ8Ak7SQdoEAQpIfaIS4dAR11ktBo18TRV46d6Rb50zl1ZTAiZg+jM7+uFMkumAsb90Lf4ZISw5vBxKYTu+kcxswjIuCFQREi4YPXWBftgEHjdI4YlHQUsrmXaB8Q0uMSlahA9kmf2Od11erLFDh03G4+3UPoniHySoZWbASsBocjhQXJsayaBhcsQoTUKxer0IHQZ/27vSuktSiTdpVN7Hxdcs6a6Ih6t6Zg7sas6y3og4p0hXFfiYk9ZMzVWjxOSIROtlgIVK5wbUqStRZ8pzURITRdQONDbGJunaE2LcumZl4ZcgEDJdgdSoZ5TlPkaK0JROYp66JyfIBEiOF7B7aDesaQymOFI0r3XT3i6oljJkV0pFwQscLZ4QyF6HtSRDcS6RFL0ft7KXSLr3l/tal8HRyl1zYcza460gcQYd2D2AUTa4K3sPFnHdqGdKLezRViDe/s2Ay71L1Yf7o/p0gEulIhpaZuGuqmoTU27nU9LFauz9ePx8aNhC5Q/Fn+TPrU5pyXAplnHJ9f0BhDVS3ZHuaMxiN2DvZYWUvrSVWukCrJa+Y1SdSUs8rgW4dQgsP9Q/6jv/KXeePVV9jbmlKdnlDiuL4z5oVf/WX+6e/+cz7++B7Hn3xMfucOo/EYnefr55XuqdMqC7hEzb95rIlPoPNpBE3bxB7GtkHJNbnHp4diY1L0EcnVyXIlIBVXXwshqs8H2adQ+jnU73es/aOOfS4GJ9BUK4S3EdroPca0sadYyh5yRvCMx2PkZJx8Q5G0VtIFiLWVjQY4XUSqYA4HA/Z3d5jagtB6aB3D0Yj7jx7z6NHDzx6Xf4/jFx6oVPMFN6/d4Qufe4Uvf/4Vzi4v+PG7H/Dok0dIXVA3Nk7gvkTORgQaBXKQktPTU2SmKEYFnlgKbvuGwBQNJ8dIIxK2UCQVVBMxsUlkx4VITyxFEkAEikHGqq65/+AB57MZ1gXGky06rmxBSM3rXSY6HlfwpT/juDIR+bcPWXyCg6y/r/c7Ih5dCFobqBtD3bSowuACyCCjVkG3USbImuj1F+IVKSURGsrCkmd5b6xCNzFD3HRsx0NuHbm35MFw3rYYNDY5TCJIcB4rkv5CcFgfs5jOQVbVkTHCO4pcUeYZhVbUTQM+KlXvTCZIIWhMmxZQum+xmW3qAiGBUCUf37/Pxx+9w/ziQ+YXN3iye5MvfvU3GU5GlNOMYGG5XFAv66gtMByQ5RlNVUPwSB+Q0kKQiVkmja8ArRTOeqpVjXeKYAzKOdzZObYsMQpWl6dkowJV7pLvjWHoCeEMP5uD1wg0hoLBtRe49tJtdl95ET0ZUS1XPI9A72dId9/JL7Ei0CYu87Io2R4POHn4hO/eP+Xb987Yv3mHl26O+eZkyMdPn1EqOBxN2ZkUDMsYQFhjYy+SMVHcS0YH0Xpomoa2qjFtfI91hiA1znlaEwWeRGeY0gBJ0eG00783ntV8XlOvKmzraH2LaRqsMSgRKDLJeFRSKIfOMiiGoBWCgLIGNSiRRiK17/UeQgjYlOGXMq7fKFbqyXKFeB7+KBXWRWdACntls19Po7gVdutTyqjr0dE8ttZxsnB85QzGY8kEx1aj2ao0pl6QtZ48BGzd4JXES0FBQCWmO2fbqLLcPU4lo+ZKABFiQkZI18UUKVWaEjUSPHkqMglER8iqHBZD7QNtXRG8QQpPa1q00GRCbKyTFJCJq1nQtMcle9DRYMcRUoG49oLn1Tu34vV6h12dIduAMoHQLjAWrA1kxD6jLEhe8IqxzyBkjLOUELAK37TIUlNIifU1zlbUdYUyAScdCItwyc4FgRPxOmSyV4h4Dz1tcWr8TEagXzL9D30EI9KmL5B+vb/49Cy0kJzWDSeV4KKOysqZEuA9IShEAOl9egaR/FUKkZidnlu1KWEUUPhEwOQV9LTLfRBJfw+dQyKDRHuBDgErAk5ARkbuNNo7wGJlRlAxIWB9g3ACHyIKoAvgRALNeSzB2f4hW9usoXFX5oLs/aUQVL8wunGXIvbnSanIRyXZsETnCuWibhchgAbTNjRNjbUmUWd3Gl7x5C74qOSuFEJpjI/09otVxUhrtBa00mDNEucaCKkGG6Jr35HYdE30PsQ+JpdstUnifZ0rFQO0KCoc0ISQRdhfIuSQic0iBGJgJbuKVbz/kGyA60tQ68cskeuFs3F0WfpNmGXvB3P1vYjE4kaSH+gqCCL5MWwkiDpn1Pv+fZ/yN56fi88FS512WIBejFJKyWq1irD8tqEoy42AlXV0ItZ7bQd3EClv8tOP7v4lUiZFehGv01nH9u4eu1vbbO/t0FYrmqXlvD2JfctN7LfzwRBY9wZ5RELAxGcugbqqMdYxGm9hkKxaizQ1xXSCB+YXF/zGr/0KL9y6wRuff4NHT46ZLZZczGcIFaHAHujL0d19bQZjV4cToO+RK8sifiSxQ0r9qWnx3HN5/pfrs/80fzCQ4OBEP1PFfG9E8oUNxEqI4rk+iEQYFXpEgQ+BYC04g5ZZXJ9dn15qgo/fE31mf+ViujXVJSBSMKvi7zxwenrB9aND/uL1u7hZy7vvvM/9Dz5mZ3cPvIpESL/g4xceqMjgmQwLDve3mUwG5FmGCII8KxAqozGuh2xtQkk+a5JorRiUA3SWEYDWriEikCAsQiaxq3X1wCaauc0sdSxDatrWUNcVo2KCS0GNtdHgq+Q8rcudcYMKnzEbP51d+Kwpvv5d3Es7o/DpMn7vSaTfR5sa1llGEfqNwLooWGYTs9NVHvZkJToITPdHqu7UfXamp3Kli9DjTz5sRO0+kBHISZoYSGyCyngfErVpS3AWHxw2eESQKOnIlI7sas5FddoEwzMuURRqTVnkIGIw2V//lRTD82Mq8T5e10jXZO6MsJKcPHrI9rVDBtMRi9k57XKJqWusdQy3tihHEwbFBJwlrfp1RiKsHXGtNaY11MZA0GS2QbQty2fPKLemDHYnONti6pq2rhntTNHXDvA3X4hlbF0SshI5njK8cxP92kvkB7sEnWGaluez3puzp39JdBkOcF7hfDQ+W4OSQpcYn7NoLNujQJ5pamMZCmIPiAxR/GzN+/3p2Zg25F4UzK+b89bzpdvK/dreCtGvpc7I95sSEBJLn8UljHjsD4uVnX7iIXQGSiISX71MOFsvHcY7WmdojEao0AtW2Y3KX7A2ThMfsC7CB6VMwmUhgPC9NgYiKcV3a3pz3Lv5nwKV4D0j1zAKjpFwlLRsE9hBUBFYmag5MwiOxrrYL6YkoY1OYr7xPR4RVZURBKX65S3ZZBsirfW4phss1kssKfHrQ9SbCIqAQgkNPmUZ2xYrPCaortQan7VfJzr6jClrGKYQdOoLPYzFWkunPFyQGqVVwLctwRqCaXA2kgZkWiSIm2CgBKWCXMQewY5etm/ow6FkhgieYC1KBBQ+Eh246CL7ni6to3nzPcWrSo/T++icQtq0175h7xA9n90Mfk2iAA4busqyxNhAY9J8wtMGRx0kyqfKVeh6IkLfoSCeW0ZxBwogPbhOq6sLb9Kz7rLdz807EWJQba2PVTQJmY79m6b1kSTGWlQQyNARz0S7aFNAIgXI5JAa7xIMa9NZXjstdMOVklcI0SfQQ/Bo6OFnTQDjib0nXTUWmXaHCDPuH0AHr00JQ5GoXn0veCfoKFlJyQQhI7FGPtBkRYHUFca0KBlSH1JgLUyXxngjeRG6/amLKZIj29EYW+dRyvWOlkrQLxIL3dVApDtPt2KTw9eNorj6d4SSpZ82A+bP2PY3zyEEvYBqh0To12hfBOwnCp3ydx8A9EED/TmjQflsf6MPcMIGW5qAtmlp2xZnDVCm5x960xE6u95/9eak/2mudX/D3UpZ7xPJNy6ynOFgwGQ0weY5zjvalGCyLtLiIywBj0m09j4IWg9Na9FSoYm33LaGZ6ennF1cEmwLTYWpa7y1nDw7xhM4PDzkV391m+/8yfd48MlDnp2ekJURlio2L3jz7j7Tn7t6KNlZgwSVDPLnRCqb37Pea+Azgs/eF1tbsjVqZQO9kjaSzj/r/b3u3AHyosAlRIFSGRlrGCjduunj0Agt7dbx+nol6+i0Q0ysry1Yh6OJCRJ8yoFEkh3knwFl+lGh2N0acnQ4ReeJIYiMWzfv4gWcXVzQ1HVsph+UvUHr1oUPsRw/Go2YbE3YOdiN6uUiCgVK4dFSIXSkkw0+NoAC8QGG2IORWvGQ+IjRVxkiL5hXNU9OTpgOMzw+YpVTykB1VLR8OmnRHR1V3xVHvzd+IS3Y9Wrv7djGCT+zKpMmjIjpF4KIzkvWLw7R069Gpd9I2yyVXCsIRwqGfgIL2QlFEWEyITaju5QR6DaC7vK7TcIBQUbV6eBgmAmGSuAQNEJT49EJKuOaFkeLT5odLjgIMcvmraFarTBJmFOkxrbGOqZSk+UlZd4gZIif+8w1f9VYBmAy3eXa0S127BmFqPH+mPe+88fsv/45hof73H/vWwyDJfeWk9MZg50bTPZe4Ktf+404Btb399tl6SA6xGVRMDu/4OzklEwP2JGWQbvgybs/YXSwy8FLLxC8o76cMxPn7N98HfHVryPLfYwwiOkIsT2hePVFxi/dZnz3JjaJj5mlIes3sM++P/AoWoTXBAvGZawaz0IuefPWNVZs8dju8r2H92NVSkpOly1D78lGbWxWpQQ56OdFz4ilZDp/iIFjoiPsAlOSw5HnOUVSl/VdMJx+31989NR6/YVlbamFoKkqLMlxzzLKIifXKrLwhVhNEFncMKT1KAvSCoKTGAKVa1m0NasWWh0bLaVWvS8enKdq294BM8b2mikxaxoIROiLFBKp8h4yGRm1Og9XXtmcPDCWgS9kluvDlr2RYSQXvJBZTBZoleRpZXDOMy0VlybSY05zzWpe4a1nmJdkmUVIMOQsVwZjA6oYYHEEAaUQ6BCrtEoJQoIBLVtLJRUrHCsiexjOU9UVZmcMsmRcTMDPaeoWU62orSZkOjnTycFxbVr/MTO+kRvp4/5OH14E0ERHIQjPbLZgPxdMtEfkjtliwfJyjgJ8gtKKwSAKqBHIh0eMi8BW5jBCY0Mk19CloFUWhyPTIzQB5VoKJVMiyWLqmNELQUCQOKlpdUYgIF0kPshCghD5QG0i3l6K1NjZBfwbjlW/jaa54ARYFZDYqB9gPNqNEFbQNLAyhqVtmQdH6yVZUGQuyXQKj5ehd/7lc8YpBiKgnI3MVAlO2801QieUunFt3cPwGcYHVtZiJYgcyiJjWRsulw2LyhJEDNSk9xRFEWEbMrCqTCT66CpOIqH+0vfEImjcDzt9pI2dJ1276PtLAj7W7oJnZRt8VrCqEwbfh7S2YoVPEnrIZJbpKECa9hcto61xpKSCC0ksF5RQ5DpnOMrJgSzX7F3fwQdYGM9i8RGDQhOyeE2bzfKduF1MbnYpdrd2sEmICW8jzMw2eBFZiZQgNdNnIFR0tkzTJxMC9L2yngiL7ioenewBrOFhspt/G6O56QN0fl7vD4jIZtUxW21O1y5Y6X7uYIGwzuB317ZewGL9fn7+4VO/UkebUNU1TV1jjElows6BXdv/NXvXGgbkN8br6rH5SndVaY6FlPr0Ieoo5SUHO9tMRgM8sGga3n9yifMzllVFISMio7EOLTQ+CFYe5vMFwnsGwyGZzlguV/ybf/NdtgYl+9tTaFb4esViNuOjex+xfXSNF27f5T/+H/0VrI9z43s/+iHTLEcrvfHgkmeWnPVP3dnG8+hor2WSbhAy7iXh+YD1yoe7sUg+nfjMr/nUaHZ+SRegdKxzm/1oG7QAdEyYQpCY9wLT7V3q5RxTV2iZU6Q57TtnNF2y3yildGye8ZwJWOblOiASMvb9CRgPB5x98IAfPTzhA3KqqmYyHYL30c9UG2ipX9Dxixd83N3i2jBjIizn56ecz5ecrww/+PAe4FktZmR5fmVR9FNcREfEO8/+tX1G0xGT8YRMF4gQBZxkLggyYlRVWDfJadHxuKeIPsRy8bDIo5Ck1BzPFtx/+Jjv//httkcFl5eXnJycRXS8jFCLTvIpbhRyA8N6NQpeBxvPzb7NRdB9cjPt/NOOzpEISYAtUfWqVKpWMvZ7QKC1gdY4GhNFK5WLE0R5jRSxuiTUZvYsltM7I2986m1xfhOa2l+zC1Bbx6oxrJYVaqwpQoTiVM5TicBYKVSmkXlGcB6VGvq7yo3SisnWhPF4GLm4jaPVntY5BlIxGo3IJxOOL+ZETHmHGJYxU8Gnx1YKyWg0Zm/vCGFazn7yLV56ccTWds7s8jHnHx7z9APJ3rbDmRYXHJ+/vcfZ6YcsP/yQj0YjDm/cYWv3ANuucMQ56FJGXQhJoTTL5ZLHx0+Zbu0xyQWlD0wHRdThkYKD6RgTFMEZwt1bbL32BqO/lhNyjVAKlMQphxeCVZCIRYP0nrLPkwnCc2N+5T5DRL57IfGhRTrInKM2NdbXaNnwxuEI5x3nF8d87c4hb+xpvnIo8MtTWuMpdGTL0p2+kHMIQoQji07/wlGWBUUeHaFecE4pdBK3clauLaxgDRVMWU+lVOxzKRvyPEcrhRLR0VFSEbzHtp5qVREKicpTxcE2OGtwtkaZAu8VIyyf3xsw1YpGDRgWGp2a3om9fChEXw+LtJIuRZohqktLgVAhMtr5QLAyBskCILFjiah63TsNIao2D3HcbS758sGAW1uao2nG1w+3uLmqGZYZLmQEIckKS50VWAHezmkvAsIGdqaQ52OC1Jz4OaEqIWj0FAo1REpFLS4JSw0m4PWSMitRSrFULR+ft5xVHqlyVKYJAs7nS17cKXh5mnN6ecFABl7eHvLX39iKMJYQq5pd9kvrrroftUI6o9Q7WCIJB3pHSNgKL6M9LnTDXlaylZX4Ei4DLHRBOQz41oP17BxkfPfBOe89W7CdQZ4FWuFo2wuCVaigWYUK7xSCjELV7JRwYzJgF8UCyVJI8onEW4lrJcE3WCExUmFCTM7kSkc1e+8xzuNUB1USaw8P0cNzhYj6Pz2PfPDRaRYK7QWNkVQSJrmmVAqFZCozjnJBFTxlkYgSuortc1ntjoVr7VV2RBWpUp2CEy1kX1Hyfu1w9A29gLeO2lguGzjMNIWHk8WKMhfc2C75uiwoi5hkw1m2JuNINSwU82UVK2C+K6Gkudz5S54+o+6dT841ZGrNbNU5pTHwc7GhOAQqbxnKjNu7W5RSIXVByBShlCiZxEB9YHlhMcZj2phRFd7HAMk6nPA4MnyK8EblkK3hmKa2vHf/Y54+eUzbVPz4aJtb+wcMiil3Xn6VZn6GpsabmqpaMZsvOVt5lq2lsXGNB2eRBLQf0UDsm/KC4ALKeXLXMAw1BRm6aWKgpnOenJ8zryNE+o27tyJ1ehLL6+HjsiPXWGexufJ3V+mI+h+E9e7UOZb9dEmBqRAh8aKsg5mrrr3Y+EifH4/QJ6WSPxSe2x3W37v5+mdl6rs1IVWE5i3mC+bLFVVjmKTfC5Ha6sIG/Owzjk2g3Gcfaze7GxsfAq03GG9pTM1ycYGvz9BaU5YD9gc5bE8YuwO2BpGR0UnN8nKF8R4rBV/60ue4de2IN27fxonfQWnNaDRkf2cL4R2zi1OePVwgBOztHfCt7/4p/+wP/oj/z9//B8znM6qqYmu6hdJZmvupFzakat8VN21z7Na3FXs/0qe965O867H5rCDuuXHZ8FU/5QmKn/KLpJtDCvh7W0KXPPERlRDi33HJSaQuKEYSnQ8jA2Z6boHQV9+FXNNl+CBROrL3+SQGKRAU5Tj2ojmH8S0yNCCgKDRYTz2vqXMFQlOWMjJ4EvD84o9feKCiAOEcrm2pVhVNa6ld4O333kMIj2ubiFOPHsPGJzeQnSHEzG6WMRwMKPIcpTQ9J7agp2bs2Li6MrtPrEACsWb8ShWKZydnPHl2wvHJGScXMy4vZjw7u0DISL0ouqwI8dr669n8eeO4iitNPz73ns/+5GagkwzGptEK60pMIPRNmv27AolrPmLV8xTUSB/wMpbnpfD9GCVYYpr4qUk3BNRGlL75BwTGOurWUDUtDB0yaSS0PtDI1PibxjcuGtEbvugYJcroVHaPzZVxIgspybKMPM8Rm5iKTeuQrqRjrOn6c0zbUq/mVKtLlPJkmWBYSA62BWplWJnASEvOFhH/qvfGTApDFgKXZw+Z7O4zEQfrMQ9saHHEqkrTNlzM56BzbCji90iRxsCgZMCFGNyKokRsbSFHI4TOouPsLAiHNw7fOrTz0ZiIsO5P2JgXz88QScoihghjFEKRZ5pHq5pFXSN9w53dCbO64WRZx6Zh0hroHChEnxHss2b9n26Ohb7qFkKXPU1ZoJQeFML30AHRZeE2Ta5gjfnuHMYsj8JbQuKsw8rECJccIm8NeEtIFIi1aXEoxlLw5VsH3DkMBF1QFBlCRKiXSAU3hYwVAIjVxNSs7qyJmUsl0ZmiaqPqrm0cWukIAdEhsn4lZ3fTCZFSUQTLYeW5vT9ib3dIPsrZ2pviKsOtUU4x2UfnGsUlThU4KbGywc8VwsF03KL9kIDmTFZIM0SikMOWghKBoFJbhIWEFlyxovAaGQRLag4mhnnjyVSGyDO8EFxcrtgtHHu542J+Ti41N7aG/PrBHqZpI9TO2j4XUhTRTnofMK3pYTharasr0BFTJoein5OBUV5EXaRsTLPjaRtPPhHgPMIFionhDEkdYLozZDTIKRQ0y0jZKTXQuti7oGG6XXLz2jbNImCKkpUXVF5S7Cl8A34VkGEZ57oXfYO5RkUaTJ/6k+yaoXDTVnaZzvhHI2RIc9YRUDihycIQ4wONF9zNYawCq1XFtVFOPii4jmAwLJKIrsYZQ2+BO5iND4hEetHFShFDnnqJQsx+FlpH51RGmu841iJVtGPCwDqLDdAiuJs5DrTl7GLGziDj9cGEya0dVJdGcY7xaBQFjZGs6jYiCEJYCy32Gcz43HXaK40xsSojRQxUUmZYCAGpwqq1SL2ygZaAtoHtskB7G+FUQqHyMt5nAJ80U7xzayY2UvY+JBFGERNrSiq8d5xfXPD06TEnJ6dY75FKc7Fq2WosKi+59sJNqlmJthV6MmRiFLaoKVpBZWOgKkJAEdBSsDUZYUSsDDofm+99gNYYqqomzzWHBwfkeRn7LL3HGoMN3WpPUMhk84WUfbb8px3djtTBJdeWe71/xfXVVSAioqPzHTpfofus+Az3tvcJRNoDuv05wd0/1ScFPzcB2rEmhgDL1Yq6rvGpIhU//tludth8ta8Q0VvMuHWG1N8V3xNEFIk21vQioUJqhrlmOsjZGZcMskCmNcVgyK2DKZMMViNFmRHXDIr8eobOc/LRkJdevM3h3i4vX79OPixj0CUEwse9uFTRia2rmv265WS54smzU56dz7lYrFhVFSGIKEobQrQPrBNunf/y3KCuR6HL0aV9Lu5jG6745tClYCK5FXQQ3w5M2JEVIUXv1wm6img3xl0Pk+hP1PmBIV1vV0GPVbE1RDJ5SgSpETrWQKXQBJ+qvc7RtTELsUYFqU6XB5C5wliDsZa6qsm1RisdCWls7L+LsXekj86VxEkIQuJNSob+vNLRv8PxCw9ULlcrLhdLZpdzCl/SWkcb4J/+/u+ihGCQZ+wfXge5Vrjc2D/jIaBparTcZmc6ZTIZkymJd5augBqxcBE7q3yEeVgfe04gGh+tI9+z94E2BH787gfce/CQZ6cXfPDomLOzM9578CgFTusMinjOkfypRx+gJIx7+tjzU7+LgD/98ecgYAKCjM1UiOhUxRxASM50DKR0ajJ1zlLXNVpnqKDpmhI7YyniiXrT2F2ICjHDVmQZyNhc67vxFwIlNXUbG6HPV5rhdByVUtuGlR+yFAIrI9ZdBlAeCIkwsmu89j5WxxK0yEkSq0fM8ug8Q+c6lrmD6Bl2Ilm3i3968S6Z8M2Cs5On3P/gh5w+fpc3bkAhDdoJXrm7BUWJRXHv4zMePDjmyfEp13dK7hzuMB6O+L33P2a6vMnE3KBMKskdDEKQMidCsqxqTs7PMCFwK4wRZUaOA9NgqiWtWSGKgmwwQgWJrRsWxpL5gFsu8dWKbGubkEQ4lej6FohQj+TYQGe81vNEBnpDZEKsmkldMJ6Oeev+GY/Pl2R2xVdv3+HRvKF5csHTszkDK9hB8cp2FjVTiM5lSDSHLpAYeqKuRK9DEnxk6LKJ32azsy6s513HlNNTXnfTBfrKRvCBIBTFcEhrPUoq2rbFCAFSxaY+77HNMvUfBIyQNPUKJTV75YT/7JtfpChLBoWEIsO0hvnJOSqxKAUfWM6WCCEYjkeMxkMIgdVinkS4JPlgwKppaRvDarZCJdHJ4aSgKDMIIRItbKxKZx3YlqJRFLcP0Pu7sDdG3b3OeDLhc96y/8aXKKYD7OU7aENs0DzaRbsyPk85gxMLDbjpGCmjSFZw51BZgguYQqErh3ABN5WIkxVu1nC5qlBJ60YBXmkcgsVFy3J5TLU45uH9t5ns3eaNw0N+88U3mM8XVKuoIaS0RGnJaFym5+YxbRtFVp2nLMuUHbO0TcOgLCmLgkCkCbfOEUSgzRRGK8gGDMsJZTkkTCVSC5Ce0+VTpoc/4bV37nPtlWvsywn7VrGqAnIIaqjQxiMzTzYK3H7lGke7h7x52yCO9vEVuBWI2xksGsRlzVDMEXWNqFqEVhGaatcUu5ENKiQ2RJ/0LGL1O9MarVQfiEVBM8AbAhohCoosCnSKPOfxvY84fvSUh/ef8LW7LzGdDNidFIx2D8jKIVk5pK0v474iNUro2HtnTcw6dsE/kT1OSknw68RMWRQRZiklbVsTgkfKgJYaay3VaoUVgXwwYnv/Bk8++phn9+/x/p98m5c+93m++cIN7nzuFdxqlVTfo84NQmJ9ckSSI+MSNXw0v4khyzvKoiSEwHK5jGLAQiAlOGsi3E8pZF6is4xiMIifEwKvNfXFnGq14sn5Ja0ZQlFSjsapX8rQ1kts2xBMSybifQYhaa0DpfFKIdCUeUmRZSyrOd/70Q95+72PmNvA1778JY4O9jk5P6UKAe0cX/3ym9imQtiWUeZ4+W60j3le4ERkzlNCMCxyiixjMhzQdRkHT2K1WgsHKiXZ3o37QVW1DLIck/uYpXcW4R14T5ZYETuIXq9D1pen1g7gxv/W9voKVDzaRRsiJXsgxDXTf2rdt9OdfE0ItT5v9AkS7EyECEEkZcHTezfTeeu86tVr62ILHUNHCHB6ccl8uSQQcNZGaLDO1ptQWHdIhI2r7sOWEB3SjW/FWZtsvwOd0RrHrKpoTUuRZeyOx7ywM+HVF/Z587U7jMs8EiYBg0yyqirapmW+WtEYw6q1/Mov/xIvvHCDmzdvUhuDCIFCQpbgyNYY5heXiJAxvnYD/YUvADGJ+Zu//Zc4Pr/kj7//Y/7vf/vv8vjDe/iqodSWTEmKPOlopUOlhGsPB+wSIVf25Y49Tkc6bZ8Ss+k90XcSvae1PtT6GYU1m9m6UpvG2vlU1Ypi5ZG+X8bWhc1cSfSEUiC7fjI+EXIkrkK8yEBI0JKsyLDG4Y3F1xZVKGQeKeRF8k/yDFzd4NuWfDhmtVhwXq14+OQhL+zvc313F5WXyOAgKLxxKAXlULE7GLAyLhYklEP4yAr5iz5+4YHKk8azV3mOVp67B2OkLvBCsDOdRidCZXFSP8cL37E7y0Rru2pqlqsVq8UKaxq0yIiyXJ0Qo06Gid4RDCFuxGWexc1MwtI6Vq3hYmX44JOnnF/O0Znm3Y8+4XJ2ybPZImo79DCvdab15x2hy64I1miE5w/RTcmUwf5Z5w4Jnxo7iNP6iffmiIFJrhXT8YDDo12O9rcZjkeUxSAKbKmMkLC4olOn7CJ0l8ZIOrxzZI1JTYaCgF8rtgIg+wCmIqDbmrauaJuGKghWSkccsIvBSYbAa4UPIsLzlIyCbjJmEZ1zLI1hrDMIgjyLIKjGWhoTBRA1KmlekGxiDFKU1JTjIQ8fPuDp04e8++N/w7Vxy4sHnrtHe+SlxgkFeNpFzWJZ8W/+9H1Wi5Y8ZFGRtRwipntQP4PaElpDGKQMs4+GQoiAVLEZU6ucUTmmKEuqVcXTsxPef/t99I2b7Lz6IiY0ZDKKn5Uh4q9Vpqje/5jT995j9sknvPk/+Wv4TEd4Aj6ZkKiQnFJQ/eQQSQtHBnrjFELAGYfwkstG8f6l4MPHc8YDza+8dsSPHj7m/QvPO2cBv5pjfcGt3QmT8YRcaxovIz1pYo9BqpRN8qmvRK4DibYlOBdhAl1Pc8oGxibZtEJD3Jz7jB8xc6qlRKvoPK4ay8JkVC7E4CQvyEpFORghfWRdCwGEVzFL6hoG4wIbBKfzit9/6zssTECWA6SQtG3L5fksNt6KaIrrxSoyAeWK7YNtymERWfyWi4jf14o8H+Baz8XTCxaXS0KA0WREEB5nLdVySZ7lEbojoa5baGvG9Tl//iuf584rt9m/fsi9t9/i4bsP+PGTY/Ynf8xgWJBtN7CMlJ/F7RHyUhNasEVFWUWY6mxkGDQK4WGRrWDl8S7QTAR5LZFO0BQSYSQezeVguzcDBtsZA+zcU4gVY1Xzy9fu8GQpef/jE96596e9kyVV1AQhzeGQvNfgidlT1ll2H0Jk/SmKHqpnTNQGUEqjQ4sMllbCntZsacViDHXV0tYWJppQGYrBhPp0wXJcsigyRuOU6WsCJRIZBJmFZrHi2YNLHv/kjLr4kFKVDHTJYDVEthZZNajSYJyndqBUHqnljYkCollOluU0iVHQOocisl95ZymlRgaPsAFjTQzGfcBiI6RH1SgVKbjzImdW11TG4IOnbWuWrSQYwcVyhW49unG09TwmPtEUMsfYlmW9oDYNIgg0sleyRqx7CrrAKpVmMb5FK8GgyBkWQ4IP1HUFeQa6Qj1rELMTMA2HR7tcrAwXj874yL5HMLFiblysQHhEbNb3EZosdZbGw1M3bXKaPAJHnsQ0rVmThjiSDg6JySykBtnU5xmAkGuqywWFFLx+84AxgVx4XNOCD7i2oTo/A9uSKcloOkEUl2RkvP7mm+wMxjgv+eHTS9R4i1Mb+NF3v89333qPZ6cXvPmNX2a4u8twb4/f+vqb3NjfZlQWzC7nLKsRVd3w/slThLPI4Mlzn4LFGIRkK4OWAinmSe+KbpInRzNVd4Ln/PyM0WTCdGubz3/5azTWURtD21RomcRflUxO4HPwque26M7ZjJnklPzb0NDoahIBYn9OiMnFPFEAx87AcPVsPZw2/dwFIH3CNP4YG8tjn2AQYkNONP1JVfKut+b52xAh0NY1dWP54ptf5trNm/zKn/sm/+x3f5+L2YzZqqYcDJB0HHLP3VR/+H6/gnVfa3F0Cys1SxOwiznFKPD6jYzb1/a5vr/Ha3dvc+PoiLwsObGC95/OuFxWPD295MnFjPlywdnZGcI23D7a5z/85i/z6he+SFkUPHr4lP/fP/9DrHe8/vrLXNufMixySqnJipzWNHz83vsMJlOUVgRvOdzeZZjnbO8f8Bv/6V/njfNzFieP+eDtt7g8PeH87AJtAgpHpiOUqQ8E+wph8p36+lGnXqXWY+C7Pb0jDuve7/tnoyAmaBMNuvJrCKlN2lSxoxKEVIzHE1zd4q3HORC5QiuBltFXUz4hlpIdT/SE4CHzqp//QQek0GDh8uFjBtMRmVJ88vb3cYtLNPDyb/1FgnH4xjC/9yHH9+8xOz/j5V/6Jm44RCO5eP999r1BjHPy/Rv4hcEvBNIJMiEY5IKdTFCEnNplXGRgncVt9rX+go5feKDSBkFlPPPGcjZbMV81tCbSkmqpyDpseAc9SZ/rKBc7pdm6rmmaJirtuqScuS4K0DF6CBFb5qu27ZueVMq4GRdoHMyrmuOzS+bL6OCMxiOWVcWyqnBJSPKzS4Dr43kM6GY57ue9N774cwauz+KE/j46QbHuw91brPdUTcOyqiPcKCi08mTKEWSWgpNu0cUPReiEx0mPMzZiVesmbbJrGtBukDsmFesi/liGyDbUhEBLwmwm1eOYsY9aFx1fvfAxs9SxSrmwppRUStG2Bl9VsQIW6JsNu9mwppSJEB/nLU1TMZ+dcmuaszMpGBQ554uGVVMxGWhU8OAj08VoqFFA0xpOZzWVaCiGW+R52cOFNiFRQNQDCVBVNZezBeOdLZTKkFke8e5BYH28NpEaJU3bkgM6z7AnZ9QfPmD5wYdgLYIyZWvSc+jEpTb2qc07Ft2c2Zg2mRIsq5ZF46hby+HWgBf2Jvz4+Cl1Y6lrT3COWet4unQ8mdVMBwVZXkRoXlfB2fiORJRJrCbFLGJkNEmVOhtF2CKkyl4JVKRYG2KQiCCxIjqQ3qfMrOj42qPD1kc/aUNASITQ4B1KBLQSWCdZWc+9sxWntcMXsVRvjWW5atBZSIQRCtcGnHeYRcO2LhgHxcF0i6rwWG8JIjAqBjgROJEVZ2aFNZ6hTNU9F2gbgbYpKyoFbStRRrJXBZpsjMvH2Krl8bNT3n/4mHcePWOiLskzjdqXyCqyyKjLArnQYMDkhqFNgcqgokyByjJrCHWsLtYDyIxEekGjM2TQBJlzMTY9HK/FEUVfPH4Z2CsdN0eCv3Rtm/uLFU8WDd86qcjzPF5PB4tNon09OUIQrBuru1RQwFqD1lmExKnUm+QdRVEykJY84eyOg6UMjpk2NJXBNBY5KSjRDKVmtFNSW7Bakg1KvFF4I8hkRpCSgKKuA8cXKz58fMKZbyhUzjAryedDlLOo1jAqAo3U1CJDyiw1Acd+Ip1lZHlOayLLYUwkKEKICZc8N33u17qoG4ALGOET3bhAyFjl0FpRzFco4xmXBU+WLa0RmFVAD6Ld0CqnNasU9yl0UHjhMLTROQ0C6cWawEGEjfVA37Aqkh6JAGSokX4RaU2tgSzDSUUbzjgUFQey5dXpmCeXhpPlJY9Pq0iJH2ITOVIRQufcdHAvjUuBStOux0DiI+sfsfrYCSJ71s3ngrWie8wGxwqA0wK3atkfDXjl1nWUkmRSUjuPtzbSb1sbs7xSYL1BKEExHHDt1h0OBkO8FxxTcqxzzlvDx5c1VdDofECWFzRBUPvAeDJmb2+HSVnijENqj8oKFqsVplphTYupLYTYS+KdTVj8EBOdqT5P8FF8NeHqkQLnHMdPHrOzu8fB0TW+/EvfSPDvCFFEqj4QoEs20iVorla5f9rR1R3oMvAkf6Af786nD8ngs2HX06c3/YSNDaFvzP9p1/FcBeYz3sBaZCEy0lnfcnjtiK3dHW7UN3j7nZ/gg2e5fBZhUc8p3m8CfENKWvWeVwfhBazWiMGEyXDCwLRMteDGSPPq7etsTyfsTCdcLCtWsyUXDp7OV1wua56dz7hcNSxXSy7Oz3njhT229w+4ffdFMiTnz8759p/8kO/88G10nrF9dECeC9o8YyAUuwd7tNbw+PEj/LNTdJ4xnYwQrWW2rPng/Q+Rgy32r13j4GiXVknKJ0958vEnhLpFGAM2Ms555wimo/0WoLpEKeuEepocwYceNXJloxahmw4bLXQbwtUpoOjotoVUqDwnH5TkwyE6z5A6Y3kxo63q2I+cgmgSTF1I0TP9Qey2SXEjMiTyCUnUTzEWt6q4ePAJfmdKniuWTx7iZjMUgebxJwTjsKuGxcf3WB0/pVkuaU+PMecaYxzy+Bg/HdBuDfFlHmn4vcGLgNYZg3zAuCyif+EcSyX6APYXffzCAxWBpLGB80XD8U8+4KOHT5gtV4hBkdi3Yj+IT8rqIDZwdxEO1poIT1gupzRthC74lL2N88WDt2Q64oq1kiyqmuCTkRaRGWtRGxpRcHKx4P0P71HXK0ajAdevH/H+++/hnY1q91zNZsT7EN0Pn3l02bTPmLLr94SNpS7W5/yZOiwJRuOtw0ndLxIJZCpCpc5mS9754D7Pno3Y3dljPByR6yxSQessYY/XJVrvA23dYL3D4qjqltm84unJaYKNZKRKM+D7UqaxYGpDKTXoDNsaVtayCiqWb0OIbDo24cg7aywCylnKdhCZwZxfS1iEiKmezeZUi4rFcoULAamztLEKoqWIVRKCx7mGLFcMxwO2tkbs72bs78QS6U/ef8pHj0750uevc2N7xGQ84Iuff42mamnqmmdnH/Pk3ceQ17z+xb/M9u4Rg6LA+Ihd7ZqyY6ZR4gk8fPKYH73zNjdu32S8vcdBfsT01m3EeIuVF0gxRIsCheT84oJsd5vxYID96BPcD97Hv/VezEJOgEwjE6+4FwlXGtZU7n3iRoheMd0LGalcpWBcSM4uLnnv0Tm6GLE/GXD3cIfdDy/YFjVbbg5lRmU8P3y8wM5OefXalC/cPkRlCqUFCo/CJ7KJKCYnOn5MH7GsuY6VSmcdq+Uq8e/HPocOshD7kBKi1hPPpQSNEixXKxprUUWGyjOkjlngkPqTjGnRwoHQCF0ilEY4gwrRuXJeMXMFD9yIx8bRygHBtECGHIxxPj6fTGUU2wXGGc7n50zDgL18m+27byAwKBz4lqwYIxoHxTMafUy7MvhsQO9WykDtfL8RKKUZuJaj5SO2v/INhrevYS4e8eNHJ/zpw2e8P2tomwbrwT6UZBqCkCw+yMh1rO56CaWLELVKml7DwIZA8JGowIS1k+uzAZmTEBQn2UlvV5yQeCw+WFxteX13wFePJuz/0ou0Tyz3lwt+/4NTdJ6TZcmE+y4j6HBJ8Tnapeei4h6zvrnhRsdza2uL8TRjPMrYJWe+XDBbXrK4OE+Ot8C0Hu0E4zxn+uo+u67gcDVgsL2LWRka6yiKMbWGlZa4peLdkxV/+OAJH148iyr2DkxWooNDB0cQOW05pi0ngEKpxIiWMv2IjvI2Ok29M9klG7qU0QZ1sQWEsIhg8RQ0NtAYx1+9NuDruznfPNrlH70z563Vip+0mi1Vo0JXjYlitMGDbWPFb/vaFruH20ghsK2LUMo0bp1X6X1IECSBVoHRaEJTtTx7dMqje4/wxpFnWZx71nG+bPmVwyF/4daUX/3GdX73wWO+9XjJ3/+4YjSKGi+RznmTxWu993S9hx1j/2aOo0/8pc+K5xJBa0fap/ngaVzLWBd87voB/8lwi6IcUGSaxlusqbBtHed0pmmC4/zyBCED0+k2L33xTa4XsUdvNtzhnYdPeetyxbGfMr3xEodtRdu2PLuc0yrN5xcLVosBAxHYmoyYyhzvYWdU8uz4GZcXl5ycXLBaLairmKAyddTlsm2DszXeGURwKEGiu0/EGyFweXJGc/M2OnisM7Q+6lLJzv51rH/9Bi5SXqwbwSuRRf9Kn9ALm6+HrvWTRKYWf+09Xsp1c3EImx9bvxbWUg1dANURYkQGU9Lz7xzTznll7URvPNv+fkLAIVKgErh562a0U97xq9+4R5nnHD89xtgWqTRS637udDYjIkbinpwwL/2acyGwaip29vd45c3P8YWjIw4zxTUsd1844Hx2yZ+89Q5/+P2f8Hi24lHjOLMh9gqFmMjwxmCrJf/FX/vL/PmvfomvfeNX+fhb3+Jb3/lT/uu/8/c5W825c/sFvvBLX2WyqmnrBlU3THd3aJqajz78CR8+PScvh3z5zTf5+PJd7t1/yP/rH/4z3vzt/5Bbb7zBF77xVfZfe4NnZxd8/3s/Zv7slObigurRR8yeHWPaJbpyDEJAKbBDiU909yIQWwxUDHRt6jFbR7UkaF0fukZ4nADw6EQCE4KIpCA+PtNyMmIw3eba3bvcfvkOo+mYjx4/5PGDT5idX4IDv1zQmoaQdX3AUQRcpJyUhUjvHiTSQ1ASNKhqiTk5YXX8jAff+R5bo5JhIVk8+JhgIgvf8R/8Ln61wK5WLGtgOmW0NcWcPGb+8QMWj56yJXOCMFzUM+zDB2wfbDEd5dgskA+G7Ewk8+kEtVgRWFBYA8LFxMEv+PiFByqFgskgY2cy4L2Hl6yaFnxswjHW0TYGJWJWCCXROus54JWU/cIUCIaDkt3dHYoyR2uFwKPEWjTJWIMxbWy4TGqrusg4m8+pjWPVOppgOH52wuNPHvD5119CSIXxgdliyWpVp7pdnGRRj6WrmPys+gppIoqNjeGnRZIpC/HzgpQE+ZIdNrHzYFVs1vR+XZi1HryXUWPDKZzTOJ2BKhLLh0SqbnMSqABK6kjjGCxBFtRWIrMCRA3EbHXwUegvCsIpvIeqsUjryJ0ls4bKOhZeI7MS4QXSx56aIOjAl7FK4xxt0+JcDEZ1luND5E2XSnO+mHPRWM7OznDOkWXxumMlyBBoAXBBsFwEdrcPmI62aWYNZxc/ZHH+mF96bQ9pGgYhMB0VlNMhqsjRZxeIoiVTFiF3uX+mWLQlL7z0OfIslow7mFk312SC0SyXC5SErckAGSwyU+TTETdfe5nJ0QF6MCKb3iUbbKMHeyxdpMXEGfjoY/KHnzA6O6Y9v0RvTVHTMb6pU/Yy9Jm/9XwJPUNOTxCBRQtJLgUtmv39Xfb29iin2+TB8PjhMXcGgle/dJO/8Re2eOvhCfePz7j38BlLLWhtfBCZVuRKkYk4B2SidDWhC6IFOosaJqY1WJEyuN5Rr1aRbjo1rvcbYuJNj5trhlKKLFd465BSUY5G6MR+FvsfLMYJ2hAY6CxWV2zT5XgJxZD5osZKzeH1a/zvfvuvI6e7eF3gmzpep+wqUTI19qmooWLaxFCmKceDhN2PVQVJgCDwTmBMJxqXRr0LEjcyY4vLS9xigTp5yq0vvcFoUuDOJ5zJLY5dAaMRWebAwyrXOBGDPq9zOnlJL8E5A8FjpOqAAlgyRIJzBSFjT0AQeFFiQ6xubZeD3hTIkIGIejSnxpKPNDrLuLw4pXYVIRMU0y3KTFMotbYuAWIjeZ9D741SCk96R6ezXD7pdCil2NvfhVzhlOBZZWnRGF3giilKeLSIvTC2amkcOKtZ5obzYsXO7QPc43NW83OWuUKWQ/JixEVTQDFh53AfWdukuwQMi0izbjxO5NisxKmCSOna2dN1siX0Im2Reaqbjn4jWEGm+/IdVYBFiBYbChoRqKRnVGhyLWm9oJKaSkCDYFZHwhAZYg9IlIHxrOZzpte2+fyvfZ2v/oWvIZTg8nKGFrJnmew1e0gN9xKkDlw7uM7J0zO++0ff45OPHjBfLMkmU4RIiu+jKeXWNnJQsmzAoAlZSTHJKQaaTIoNsnk6jyfOEbHOpnb49W581n9tZHk3d6fusyTnJ8SAJmsbtrOM6bBEJCID6yw4S3AG76ItsM5gmwa/qtgdHiB2DrnMB5SjHJxlKTTz2rKoLG0+ZP/wgD3puba/xe7+NXZ3djjaPURIxbJpMcaCMAQkWmuO9nc53Jrw0s1reB8rZ6ZdxUZ+ZyIVvmnxto3BE7HRXomACLGCP58vIR+RT7cxTY1XWWSkFAlWGRLL5EZwF8fR9wx5XSDQ1UuuHutnTpp/npBEK+MYOx81akgq5p6QhJU/7QNcrYyIPvb4qV7Ip+OoT/2i44cKMiaL5vM5Qgi0gv/gN36do/09JPAvvvVt2tYwnEz6cei8li72d+tZSNu0EeJjHV94acDRSHCzesrhMiCD5P6y5h//3j/j0fEzPvzkIU/OltTWYYIArREqXkN9Oefw4JBvfvPX+I9/7dd58WiXyw9/xP/tb/9t/vWPfsKHjx4y3p6wamt+9PaP2f7K62TjIdCSec92PuALd17ij777Dzm+uOTR02OuTcacnJzy4NE9jv+7v8voX+xy63dfY+vmbfR4isoHjI8OmBwdkr/xKrvn51SzGctPHlM9fEA1u6CenZMVGqUUWiT5Cikio2e3cafgo192oRt9iS5i039oaqhc7E1UCjcZE4o8Jtx93ApHheb60SHjvT3ePzmnySZURUAj8K0B1xCUwNmoP+WESiRGktjLK+PzVQGRKYSSNOfnHP/obWYPHnLzxTuoEBM2tz//JqPbd8j39lh9/A6rkxNCVXPnta8jd7aRoyGlXXDeNpwcP+HON36JnevXGEynfPTD9xhlJUFnPFoZ3j2/4PtPzjEhULuAERqV5WRYpLU/bdb+Ox+/8EClVAJNAO+wXQDSZXu0RmrQif3Ipf6F0EGcQiDTGYOiIHhLkedonZrkUvlCbgQq1sU+iU74MDYYwrJuaV3Aebi4vGS1XCIEHO7tsawbPnl6jDFug0e6s1abq/9qrWRTHLGHwlx5608veHWlv02Wr54FZCMS71ggZApYokgVCVoVy/5aQJ5ptqZTdnembG9tMxgMyLKMssxQOkufj45dvNJYqfIhYLwlKwIezWA4JJxeYG10jLvb8d7H7DrQhoQXDoEyxGxIGwRC50gT2cUiwwSR8s5LvEiMTFpFRhoVHYeu7ImQtKalqhuaponY6T4zlAYr0QiGIHHeMRyOKfMR0/E+ZxcFVR2x9zvTAQTJeFBgrKMxNauqpq2iCNRwWDIeKPBFrMzpyPkvEi3nlWcQIHjPdDzk2sEeuRR4ZyPzmdbooqAcDBltv0CWj8iGWxgdMd6uXhGenSPnC7I2buI4lxz257LBaZ5t/qvbB/rZkFg5jIdBkbE9LChHA0wdqFpLrgS5glLBqwdDJtIwCS2HRWB7VKaGxbVzt+Hu9DM1hI7SV8ZGZRHJEATEql5i9wFSu5Mkahh01KhpftqQ/P+O4ab/2pQVjK/1mjUhNnsjBUFqXFROpCwL7tx5gXLvGkHmuLaJtKQdMlFEooeuGTK4RK1KhDeEDbXoEGIztlIpOOorC1dSof2FLi8mtIsFtsgj5rmUUI5plaZCElSOLTw2CJwucKlaZLM8UicTcLKjLnV44fprtmQRM0xkUUpfSiAjJEIHrVVvV7SPm6NCoZGJqUxS1waXglCVaZSOYppiIyCR6ftDWI/Fuh+wg/+s7VzXSB0rASp2OQRS1UDiVY7IAiFYHFGMUeiADIF5Y6iLQJAyQlBTRdK5CO1TeUGQGeV4i+3DI3h03mvpBJ3hRcxtGJGD0qxV6dO1bWhWXHHA+9KBQOD7nxEJN65iljEiurMIGcSjgifKZglMELFzTHhyGRhkGhVABAlSxWDOB3yTMRyUbO9scXC4j1AClWsysdao6hgERXeBMiAV7Oxt441nd3eL0WiAbR3FYIiSLiYLnEyIAB0hzKkhXKuo/6GlXAcqXTItkQmUWYZSEu89TdP2wUfY1AfahKOscV/91BdE5h4V4nmsd+l7RZ/9DwR8Cr5jYl0STFrHKqcYbcFkm7kNlC5CbytC3F+NJZdQZgWDQrG9u8f21jbj0YjGOhobL8hbl7bguAfplGxTIu8MFcGVkQ7eO4SzBGOitk9bIX2kaFUpAPHeMR6MqFGQl+n8OgUga1hkPxw/LXm4ESyk1XMlBFiv43Ujtg+hZ9DbZFrsTnS1H6Z7GJ+utIj0+s9wK55zV66eoycFEoJgA8b5WPFO/bh721vcunGd1199hW//6fdZVE3sL01Q4eersIIYeDkb2ehGZcFoOORgNGRLCfJqgZ0VrGrDJ8fnfP8n73FyccH5bAEiMn9pqRE9ENGhguHGuOTXv/Aat44O0cLxwXs/4QfvvscHDx8RElPVcr7gw/c/5O7eGHF0wM39PXRRQgajyRaj6RYsKx48fszyvGS1XDIalVTLSy6bFbZu2b1cUG7tkO3sIgYFuigQkynZYEiQCh8kWa4xswuypzm0dRQz9B5IAYrsZsFmr/FGhjbNFJma4a0QkWZaCmw5INveQQ4HSB8QywXWWWbnZzx59JjhqmY1X9K2Bufi3u9DByFM/4lu2gp6nVwBkXShj5QirGwwpNjaZnrtCIIF79C6YHD9BnpnB98u8fkQU9WU166jtqZQ5phZQBwcUb74EtOX7lJu7aDzktHhnGw8JCjFeWN5uqz5ZLFEjRsIsQda+thji/wzoKMyLhTCNixnFwg5iOrjWhJEYDwepmZfxbKqmS2XnJ1fABFz671nZ2uX64cHVKsF4+EAZyI8pLv1bhIgRVRZdbHpUGU5xnvq1nCxrFFKURYDPrn/EXXdcLS/z/WjI96//4D3793DmripKRGpLREQ5HpxXg1TuPJ650yuM+NXuaPFZ35i49yfiStdH1rpqAlAp8jtoi5Eaxjlmt2tMZ97/S4vHB0y2dpJar+gNCAyIEbs63A/sjn5JIylspKt2ZJHz2Z8/6OPWSzmMBpT5pFdxluLCyFmFDHo4ChEYJocxgYBxRAZDNp7VAbKqbiJOvAyQ2WKyWRMMShQmab1FgPY1NxrjKNuDG1r+tK32AgYI6NKxNoKQKoMqQpGwwl1OcG6MVlR8sbrt+L96sB795/x8PiS2dxxebrAt45vfO0Otw+HWDXi0UcfcO3my+zuHxFCi0sYboJPqtqBLNPcufUCeSqxVvMFj2czTs4v2EWyu72PufMVfMJvqWKEtC3Vs2N4cIy8XKDx+MWKYCKGezOTJtPm0zljnbXpIQPRr0xtsYKVdRRacGuaYWlxZcDogo/nho+envHsgyf8rV97iW/eeIHpV27x7GKGA6yKwYd1sb7gQ5cBTg4Psa+oKGIVzjqPFZG2UkuZeNkjrWGctAIpUyW0dyATFtpGAVARIiOLMxG+qDra4hSB1cYjlGcY6Ck3nVRkWYHIYqbJO4NpG2yqypEqA6mVEyksuojOuXOOnCha2dQtITHE0fOrQBBtCvpCf719YqHPhMfnofMCXWRI14KJQY7V0OqAQbAsS1qZYRjREkXpkBqtOnelRYkMEcBhk12JTrOTPRI+0uim5y+dRPkAmLTpxIoaxApYFlLV0gUWq4BvQFmB7KpGXaArN9yn6LFyxaG6YnI2MywyMvN5z3LVEPJkBxcNPpeEbBR7RFxL61tQjtFwwFBK7l3MuFNEvSu3iNoaLRKxDIiBQBSSQg3Yu3GTerCHe+sjjDd4oSLLjdSEPMOSk0lHrmy6KsHVbPeG1RXE+CNsbNTJsYo4bp+o6mM/iQgZToIOjswbcilAapqgEN4xEI79DK4Nx2ipkWicWM/52VhztLvNWICYrQhSoJYNntDHS5vByuZwz9tj7OWS3Vxz+9Z1VtOaYTEh05ZFXfHg9IIyWHIBZVmS5ZpcNZShJSdW5OTmzhJi/5jKMnYmY4ZlgTENT58+JctiNapNfSuhnwPxg2HzwgCIopEqgArRUVNCIbsAzUeqURk8vqnQgFAxMPdViyeD6SHZwU387hGPL5a0LkPimDmHaw1Z2zIQLaOsYDgYsnN4FNnnZODD42NuHm6zMxqQuxAZhYSLkD0f+07iSu7dv0iiIyVaxr6ukDm0ziNE1CeKbgLKe4YohPU4JfHGIlWR6ODCekQ6CNXGNtlRuv/bEOr070iJx85O9Ymv1LO3ljGI/+tt2aZP0P0d1kyggdBD9zbfJDYfbfzQc1eWLI2QsTIWHMu6wQQYiBgYY1sO9rb55jd+mX/ye/8Cc3xC21qKXKeWmniVa3yLwBnLYjFjZzzizo0DvvaVr1Av53hrmJ/PWS4tn5yc8a9/9A4Pz0+RWrG9vcWdGy+wNRyylResLs5YVRWX9YrlaMzXvvA6/7Pf+UtMt6Z8+P57/IN/9Hv88ONPOKsqDvb2WS1XnMxmHH/4AdlywVe/9AW+8Ne+RL5/gLOOMHrGm9/8c+Qf3eMP/uD3ePcn71Fmmq99+Ys8ffqQ2WzBsycPmR+fJnuj0KMh+XjM9o2bbB1eJ9/aYnT3Jvtf/RzaGBbvvMfJ22+xPDlmNjsjdIlWIow+9M3i6xC260Pq2MBCEBgEZlTg8xK5vcv29RsMh0PsomL16D6r81N+/P0/4Ydvv40shkwPDmlMZM80UmKtiWGdd2luyhgUpP61eFWu29XwrQXjGezv88Kv7CCsI0iBznOkVlA7TPCY1jB57UsMlhV2VRO1gRzeNNw/m1O8+kVe/eLXOTjYwRqHc4FXfud1WJzSHD/kybzh3qzi/dkSXdaMPIycZyADIZN/NgQfW+dwSITMOT+/pKpqpAgEDK++dItf/tovc21vj6ppmC+XXFxcRgpXrTk/P4/ChVmk6ZRErY/IEpZUcFViqgrErKEQCK1Y1k1UYfWeG4f7gMT52ByVZRk6L/nDf/0djs/OWC0rgoj8+yExc8SmyD6ffcVMda1pPzu8+NlHl9X6mf0pm+8PIQUolsa2rKoFGZJcgLdgW4ttDK51oKKwlPOdDylitSA5x4jII++dxwRHqBoWlwuaaolJrE+1rMn0CIRgtawiPaxWWBwyOAo8WyJmZmoPohjgVi2YFjKNtQZnLdgQeyOUiPsCIX6vtdhC4fOM8dYOqnoWM/PJWYzVJJ96JxSEjCACQgnyLOPp8SfMzs74+Id/xLXpnGsHilZARosKAVpYXtTMzww3bu4z0IK2adjfn3A5t8zrJZVe4bxFKEGwXbMcqUEuZuW2t3d4/4P3ee/ex+xt7/DCyy9x68Z1iv09sr09Tlcr7j99jBKBIs84urONWq6oT85xTy4RS4cMOXY+I2+aRH8o6USbYtNbVyGIE62jj+z0L5xTtE6wqj1tvaJaOmZZRTaYMBjkTCdbrD5y/OTZim99dMZkVPDidsbtieZwlJFnmgyFtS2NNVTOU4rI/CO9i5nqEDeyxhhcCGRlgYrE7FjryEU0umqTjjJA1KeIgZdMmaZI60wMbKwlWA/eIEXAOEdrBK0NBOERrWO5MgwKiQaKLLCqV3ivEWSYkOGDjArraUOQKmoqtW3L8ckxQSiUUozKAd6u0FIxHA1pbUPwNlI4+i4QjBn3uKY3M/QbAUsAaTzStmSZQ2sZOfPtgm2t2StKnsVlhrSxMdVJiRcC4R1W2JixFz7Rpgq0zfrvDRsPXAqJ8AHw0UkUPiYYiOX8qHGxNhq5iayGQgZQAh8cwRmkB+nTGhOdc9+5P53s1tpirfVvUoWlt0mOQRHJF4TymNrgWktbNwgTmft8ypTLlK1zwWGkY7sVDHOF3tKIZoE2gZyCNhfgICxaGBtOn5zy/vuPWS1bTAigJTidrtuhQtP3bK2tpX/u35tHp/0k+rUD60q0UJGVSQaFChlKGBCxL8sQq0a5dNjVjOlwi+t3XuZ/81/8TbZH42hXMRBiyOscZIOc4faA4WQMCOyux4kIZ46ObgqUevsenRqZScKuw19/kb/6xV8meNAyp5yOePuDe/y3f++/w957h2ppGRYHsSKe6wiTFD6S+gRPn8dPTJZBBhw2VqFchDoifPydf36sPjspvxlkBZkaowEfaTTJlCQ4gzUWZw1ZFitT1gUynWPw/Oh8yaWckYkxX78jGOVDilwzv1HwhXzA/tkZJ+/8gIfv3+NRY8nyglU1w5gK7z3jX/sGe9PtRKFtCN6TS4UWKWAIYV1dc3Heyq5iIWLgpEUeKf19rCSmsgXKG0SwgIjN+kUi2bnS1/T8XvzZQUrnD3xW0lLAusLMRkgdrqYoP8uD+Gn+RAghJsI2KjH/tkyk6yOSd0jVkevAw/v32R6PGd04IhQSgUdLyLOc4AOXs0v2drcixKnvSREEKTi7OKdQipuH+/yl3/pNnDF88O475LlkPJmwf3jI7//Rt3lyesnlsuJgazcmarznhb19XnrhBd58+WVctWRerXh0fslgPOGVV19lcusW5x+/y/vf+w5/8O3vUeYlR8MJw50dBtMdmrpidnbCt7/3Yz588IT7Fw1f/caXKEcDzi4WDPcOefWrX+bOay/z//1//z18XfH1L36Jz/+P/1POzi74f/ydv8eDp8c0pmGgSobSIZo5yw9/xOr99wiqxG3twle+xLXrR3z1y1/mnml5oiXnZ8fIJF/RkVB0rG6yZ11QdE1KPhgaVxKyDPZ3ETrZdGdZ3L9P7T12tcTbhuAcxWAcfYO2Jjx7jEpVnCWCSsBKAUX0VZWUyBBbF2yyyQjwCoyO9k8Jjc7HLM2cul1RrxZMt3cYDEZcLOeczi5YVBXjwZRMRMhk5RqUij05H33ymNZG9M2k1AzLIYPBkJ3ZnG3pyBpLaAVDq9gzGnkx44sDxedLyWAy4Ae14wf1nwHWryYovNSILKNpmsRaElmbfIJqCSHItWZUlugdUCo6Hrn01CYp0SZ4V6ZVUmUXvcproGsSjBuFDwHrY1NdkWvGkwmLVcOz8xkBEcW+moZHT58xXy6BZDjE+nydKerz+OKqaVjDWULCcHZbfTo2k5Q/4+irBxsBy2aFpS8VbzazdW6I6O4XXK8rEKNtkZo/JRuilUHEkmDH/tIZaR95zyPHv0xCaes+mhgIerwX2CRUmKnASATOncf4QFCaqJviCBHst5HF7gZijTJvrYVRiS4HFMNBhISl61lDcrozrJ8FIgYq88szjh9/TLt8QnlQMN0qcdYjReyZ0DLvxa1WyxVaC8qiZLA1YFYtMcb2Wa9uF+mhXxvfKomB2unZBVuTKdlwyPjwkMo5QlGwrCsWF8fkmUKMRmSZxi+WmNML/KJCtBalwSxXeGN6/Po693JlVl3JhnXQgV4c04dUgYnVsJNFjWo8MnecLFouG8fKCR4tIs3zo3PLV69vcbQ1YH+a9w3xsbnapWzPhvPafb2UyFwj2vg77xxeps08hC5Z1EPjYqAiiM6kxMuOCSxBHbxPyQWH8wHjI7mFEB4loG0Nuc6QAlzrIhOSsqlHDaQP6+8JAW9ib5oxJlZiq4o8y8mPCmaLBUJIdpUgzyJZRyx1dKj9dSUjtbsk5yIOQDcHJB4pfIQ+JH0mYVsKFfn+CyR10vu5ks5QKThIxRPR2Sotrszt0Afj/dV0S613bvuJ2FVfrpiXgFRRkyM6Lutcc99zkpjoXB+kdDZyPQrdd66zvJ5BUTAaj2lMizcW45OYX9K4Ci4khzmuGeeiJoVWUbQ1L4te0DRuqBqUIKQ517YN88WsnzdCpqxgV1XCkSRKP8OZ27jujdfjM3ze2RT9PKTPcG9Ab5A0Lvb4CZJIqJRsjSd87vOfY39riq0qbGKaEimYD5DoaEU/j3wvFR3hkCS7LVNgHwDfMY+NIDvIIsWp1OTb2zRBsjPd4plzkRq6UxBP/QS9nermmtiAGEE/1kKKNctbtwa7ce7n6ebfa2f8iiUSaT9M55SpYzcEiVRpDnXq8CIGYk8ul5zLOQM9p61XnJy0SC1Z+AgczvEsLk5ZLefY1nN2ds7x8QPqasHW9jamjX2lLkTNKO89GtEv0tDplFwxk4nPSrBm55KRPHY9pX10tqUn+Ci8qUPHEhr3p809vxudDmm1mUvsYD5XRjFEp7Dfo6/GFBufpQc6yS5y2Th/L2Cd3r32CTbn7MZZk8vxKSmEvgrEei8NxG/vWP+kAg+mbllczontRBYhPNPxiOl4RGMadArmrI29OkGAczGg2d2e8PrdO2RKUy2XXM5nvHDjEB8Cj46PefzslLPZgsoGyiwnqGiLdJZRDoZsb23jyoJsMMDqgtt3bnHz9m10mfPowX0++vBD7j89QYwmaK3xwP7hYdwzDna5985bXC5WfP/H79Aoz2g6wQrJa4Mxe3t73L5+jf2DAxanpzRNy/bWDqPRhC9/6Qts7+1yuVywXFU4H5PAGJf6JR22dSzuP2BmGlZaYNq6p4Xu/AJJ9LF8IKFvEq9aUGncIxFRUIqgc8hLhLdIaxB1hW3b2PNZ17FgLARSqNj75R3eNXRsj23rqLWmzjRhnG3M09Az9vVkECF6WkLKxGBpWNU1i6qiqSvEKvZCLpua1lqsc5imwSbmvIWtGWQFmdSMByPO53NWq4rVwjIY1AyHDQ6BHhdMEQgPOyFwV3hGtLwkNNelYukMwXpM+2egmX5Oic2HZMMBpqmjEnleUFcXfHDvPqtV4HB/myzhq3emo8hpnozIbLHk9HLO5bLhYG+POzdvUJaR3ct7DyqWIH1ryPWAJngab3DBMRmUHG1NmWxt85N7n/D+Rx/TIplVDc/Oz3h8doEIgUGeU5mKgAMVt8luU3o+cRFIzeHpkKHfrrppSk/rC+s2i41DfGpb+NlHR08shUArgRQZuZoQnCfLdKTJdRFT7LxFJadFBEVHOysSRTOhIwmIMDcRFEIp8kKjc8FwOGJsIMtVbPoLgaIsIUTdFpvUTItMsCsCJ8axaj0hywgiYk3jItFxQ1MgVfQIg3c9+cGyNqjrY4Z7ewy3J2SPI7wo+JCyEbGi0S+8EPH8UmRk+ZDTp494+OGPuD5YsLu/w861bRYPT2iFQaqA3p6ytV2ymC/57vd/wmsvX+PG3SOG17ax5y0Layi1SoGm6TcqiSQogQjRwaznCy5Ozjh98ow37t6hnEwYHB4xQnE5v2R2ecLy6Vv4yRZFdp1sUFJ/8pTmkye42QzR1mglqM8uGNZ16hWR6f4CvnfGut2ty3RHpiHnPG2wZELgpWSgcwblAD0s+O475zxbWk4ry7MLQ+UEN69PqfMx3z4+4+17j/jPv+z5869oXrq2x7hU5DpE9igMKkh0B7kNID2AQmiNGhRI0yCSaFzj183YHSON9z7idhGJIS1Wp5wQ2CBiCVkJgrcEZwk+su0oG0kZAiYyPgmPyzTBCaqVwbUNKrfkGqR3SBcrbT7BEM2qxlU1tWlZtS3v3PuIclBycP2Qe6cntMZwsLrkC3deZFSUVLXBeZNCXYntHJOkLdS7HaF7h0DqOBdQKmGRPbJqyLVnUEp2QkYlFTUShcK1afaM8tgYSUBiyXxa6ZnD2RDFiILrVcH73OhGSnvTJwkEcBFoEHzss/PpOovMoHOBzHTCK4sUjnVuvkSio1bMhr25iqhf2zVCQLrAzmTK0dERJ2dneO9obU2hM5zyWGWR1uNkYvUTEmssIVjYmlBOpkyHY3CCUAZC6Sm1wgzADHykKhaeSlToUhKCwqsMp+J1qfQ85JWr2/z5qt3s7mUzQx1SoBfhgiFmKIGkXQ7B0zpovWZee6rC4zy0iVpdq4xyZ5vh9hSWOpIN9s+LJHbooigoXcKIJDSocKaNgZwERKK+TerxQoBQApnEIoVQMBiiipJCqIj7DwKRDUF1fT5JKFdC3znYbzFx11FArnUU1UVE9p+I51w/4f5hXw1S40vRY4+sRl3unJ61rKMFlkJQlAVN6zDGUC/nCJnjvePewydczBWjWnLy8mP+5OHHLOqKye4NAC7Pz/net7/NdOeA4WjK4+OnvPeDH1LPL/mVP/9rCeIVq9nGexye3HeK7hF3H0Ks5HVD0M37XiHed+McxzZ0TKJag/R4D3VVUUwnKC0SWU4cL49ApRnVBS9dteV5KB/0YX9yXHkO1hXtuRIJLiXivus9+I0ApGOrWydIr4pGdraW7v7WGdJ+3m0+05/uV3TJjtirl2U5+7uHNLMZn3xwj0zeQGpJCI7bNw4pMsnRbMqzszNm8xXzyxXDosAFR21rrl/b48ufe5Xf+c3f5L/9u/8dZxfnSBW4e/clPnn0iH/wD/4JKy9pnKdqLa5p0HmGGg1YBM/cOc6XNaapMc6h8ow333iFw+tHgOWPv/Nd/uV3/pSPn51zmMXeZD8P/Llf/VVu3bjO9Z0J//i//0d88P6HvPfWT/j40WMG0zGH1w8Y5gUDIbj2ysvcvn6dDxcL/vg732X/6JAX79zhv/xbf4vz5YwHT57yj//gX/LOB5+wqhrGW7sMBznCe6rTS85/8D0ufyx4cjAleItt29hQLxWZkCiX2M99iOV1PHHRZ3HfxMcE32AAwxEA+mKGWC0Q7QxL1DXSPkkDIPBSYOoGby0+U0gd4f7Li0tmSjMrCtz+USLjcZgQe7+t70Sco+C2crHiggycnT7j9PKC+XIBEmpzRq7nSAHjYsDuaAIOLlcLZnXLwhgGesjWYMrrt17h/Y8/4sMHD7h/es5F3SJnc+raMLx1xGg6QHnPqxheUw2vjjOaDGZ4/uis5l6bMTf5T5mT/+7HLzxQWQVJE2IT8HxZU9UW5wTDfIRpDI+fPOb9B/eiYQ+BTHcQnBAFmFImrzGB27duUhY5Lnjy1JztO/xtKlFLD8oHpqMBW5MJk50d/vTt93jng495+4OPEFpzMZtxenJKUeS9I9ZRhIqEIY+RSlz8PmWFo7bExiYfPQz6uouIIkmhCwY2suebBua5uOWzj/S+TiDRO4/KNCJEOIPWGttGETMBaK3QOjJTdN+qZIKWiHWQcgUfG3obmaiiVfoTz+981GDQeYZMNKr1sul7OUoRcN5QectCDZkIFfVVmsi81lWDTGtQomUuNauqwViHHgwYb20zGk04efIEjGWQF6jUXNwJW6bBiM5LiPzcbdVw+8XXGI0GfPSD3+eTB3Ncbbn+0m0++tFPePbJY4rxBUcv7PPFX3qVW9e3GO1PKCYDZg+ecvGsZVmX3L15h3xQ0LQVWUqrdxAAD9gQs3FH+7u8/spdikLjnaWtVlhrKTONGAxwl8dY6TDbE0zuaTNPqxwNMzxzQDEY5IRcR2rDziht8Kr7QNIaiTSNMgS09AwyGJUFpVLsDgoGWjCWgqlUPJs73jqueP+k4qXr25QEdHC8fmMf11redk9pQ4FxEm9bRplmpyw5GAwZFTkaUN5jhCA4gdOCItdkWiVYjwClEHlOx4HYKYQDEcKmYuCphKJnOJKCtomMWLZ1eBXT1lp02iwxQ5cNNMUgo5wMkGWJVopCCOplbKqvV6sIMUqbvcClak5gUdVUbYv1AScFlTU8ePqIWTUDH2jajLYxtKogKB0DUu8/BYXpHI31q/EnFUB5h7QrhDgAGWGKTQX1wtPIgHYwQKTelIAXniw4mtUS7x15WaaNi6ijk5wSGaIzGYiAilhN+FROhA1vlBBS5TS4vr9oOh4zXDTkhcHIJops6tSpIqOCt+u0NuiqLJ/tyPRVHKU4Pb9gVTc4wBiPEDlGVCAkSmhCEcisRLtALnMWtqZtDYOVBA+V9uilQXgoMoWnRVlNqBVyR1LkkkEQFESb7XSEFHZwNeXXme2rkdTPOTY+duU1xJW0c9JrJnhPJiM9foxpEnGA94TVCpcp2tWyp5q9Ut25kjVPgaQLYDwUmiAF3gu0Dz0Ve5DJAfYeYX1vd8tmRWirqA1C7BVbVRXOOPDR2V07ys8PRDTkPkBrHMamXoIQ1pTjz6XuN8lb1qfpqtnr/orN33nX4kyNkxrvok1vGkPVtMjhkOnhdf6r//JNHtqc40XDH/7zP6SqLvHOUOT3mV3MmF1ecvn4Cb/yy9/k1c9/EV0OmJ18wv0PF8wXcy5mMy4XC1TomCzp4WtdL1KEQxLV5DvWvph1iInFyMtKF/GHjvs9zSnvPYvFksFOSxFCdOZCx9SW9h3RJSqfrzSt1+PmdPvMJSXT2LvwWQv7yhz6uejv8Nzf/WNJVZfnn+WnPrpe99PRkHuPnvEnb33Eew+ecTAu+fyNHR689z6T7Qn7N67z2qt3KQcF/h7cuXEd5wzLaslHj56xXK6ol5L/4BvfxIbA3/mH/4j37n3IC4f7/Oavfp1/8a++zeOTc0Q55euvvcLe7i77B3vcufUCk8mUyfY2o8kWmdZkUnF+OaMMnjLXTI6uEULg0Z/+G/7gX32b7733AeXWEHCY1ZJlc87lyVOu725xdPASL969y2pV8c67HzBQMPAWd37O9//oW3z4gx/zw29/l3vvfcDlxQXL+Yz/59/9+0ynE166fYe/8pd+izdfe40/941v8A/+2R/wg7d+wh/80beZXVoyBTuDHGeiTtPZ2UXkX0kleCU7QqcQ2T1di0qkcXGh13FV6gI1HcfkxXLOs08+IfOOQkkOd6Y0dY0Qgpu3XqBuG+qm4smzY6Y7U4qipDEWHwJllvErb36NvbbmumkQ5iJVXGzskenWebITEUkSSSmCdRSDgluD6zGZ4z2mbfHWUZZlL/LrjGEyLjHeIfOMHBGDsdBy99Y1btw4oKmjnlUIUcYjVx7fLKhdw7xdEao5ZZjy3qzme1XL01HJtso40H8GelSk1mityVQWWZYSfCBTOiniOhbLZSy9hY3AIIRYWRGCDAgyozV2zc4losNuTMQPi8QvK0RACRikpuDGeT548Ih7j55wenFJMSipmhrnLCorCEnd16eMWbcVPO/ArBOgVxkeuqbc7jNR+8PjSUYwbZS9KQmh3zs3j5/dUH/185AMdncNUqBkgsR1nxCkrBJpXDaZxeg3pj4gCCTV8c5jClfK6yKJQIT0fAiBQXL+WudZCUkZBMpGnRMb4pg67/G2jc8xy1hVFY2xjKfT6MgJwfz8gmAduVKpv0F0N9APVBfsCe+xrWE02UJKOH/6Mo17xrOziukLLRcry8nMEVYNoz3Y3svY3RkT8hxjA08eL2jsmHy0x3i6jVIy0iGnADnqaKSZIOK/B3nG1niUAufYdyFJsA4lEa5GuAasoakqvBLIrQni5hFhXhJySXm4jx5GNWqJiBTOvnuy61xaSC1xCCi0ZjIs2J8MKaRkq8xROm7UyjuGWaz6LA2YFP5455kvVwjvOBoXHI0Lhpmgbhq0lAzynK3hkLLMUQSk9zQidiMHb5NafegV7PseMR1pdGMWeWPDTgG5lDEX2YnqGWcivCBOmD4a6wgSghBIHat5XsamXySxmb/ROClTNrT3BukqkZHNr2tej3SbjkiTWWYZmVRMRyOq1mDcgspatkYlmZK949avnY011i8x1pCagI3PKDEEdervPcNTiM3GMkF/ogidQ3iXamUJGtovpk162c9a6Z8yDJ3Z6dcf6b6LokBnHqUcPvjYa9QxnaWALnRe9nP3uL7X575VShrTYr1HZlm0y4QU+HQaHSJ+T/AIoXr61h7zEgLexvuM0LsIZVDOxdhWEvsOiBXpEERqRhd9NWT9HELvkF5xGcNVEM5mP2H3702wU/e8O2vd2cBMxr6eQGyM7aYq1hGcxXuLd90U7hz9LrBbj6KzBle32HlFebCLkDolI2IFBa3SUvB4b2PSpbOz3vWwuoTDw1rbB9U9i1jof90/zY790lpHk6h9xQbcbPPR9zFfgoh01f7NILnfxzY/LFIwFhw4gTWOKgkE101DNtTkk22+/Pmvcr0VfHJ8zr133mYr3yYEz6pqeXR+xuX5BVvTLQ72DznYP6AylsFgSFGUVKuK5WrFoqoY5gpjU/Ym22DT7MahH5NubqTfdV6/ICUIfNIJITHGxTGp6yZWAX2CM22Oi3h+JNY/r630Grrbfd0myuJK/NQd3ZzZgGVd+f2/TcDSD8M6qHruKz7rzem98fdaKax1nM7m/OSTpzSHW7x4NKVeVBTDIUVWcu3okNPzObNFRVnmZLlma3vKTm3Ymk4okOxt7/DJ02PeevdDxtMJ23s76KJgVtXkgxFf+dqrfP7Vl9jZ2WJnZ4uj/T2KoiTPS3wiBapMQ2VaBkXO4cE+xWBAdXnGh++8y8ePn3I6X1IMysRmB0oq5vMFp6dnPD4+ZlGtcMExHJUIPN4afKtYXM5pqwbTGKpqicCjtWKxWFHVLW1tuXntEGtafuVXf4U3P/caZV7w9PExH338HvVqyUqU+AR/9NYmuxpiH2IH5wUIrq/arU2VBVVAliHyEqxFWcN+maF0iVJRsFWEyLimlAbREAQMB0NeuHWb0XjMux/eIyAoRmM+/5WvcNTWHC4u0T/+NriQ0CeiN7u9v7c5qQixJxuB8iB09BW8colFN7J8iuAZyDwmO8s8Nji7gPeWIs8ohyVioHCuTbTkAWcrVpXHEEl2RAhkHrSDzMH1PCF6PoVN/Pc/fuGByvZkyO5kwu54Eh09AeCRSjIalYxHQ1rTpoGOnCYdXllAjBqtYbK1y2S6RZZHWtngA6iIb1dKkucZQTiEDORaMh6PaF3g/vEJ3/re2zx5dspsuSKrFhACeVnEBeMsxphIiUu3CT2XBQlrR/9KVvJK1h9C8Fhrcak6JLpJINdBQmesfi70K2VLpFQoqRBCxfvuLE4IKZoOUbtCa7RU6+9J5/j0eUmZnNQ/EMD5JMJIet0nmmg6vyMkLHz8bpt6BvakR1jDylhOgqQwgVAbbL2icRbrPY2zKBdpLn3wnJydMV8tuXP3DkVZUtcNzx49Qo+2GOhIsSm6P0KtdwKiEGDw0DQN5WjIeLrN/tFtvv+v/gkf3fs+7Q/f4tmF40JMeXamUPdr2vqM3ZFned4wXzne+nDBjZde5YW7X2Rr+4C6WmDaCpHL9Z6Xgj+RFnCmYJBF2F3csD2l0rGRGU+uYyZdNYazT44ZFSXjz72G/J3foTk5x1nL0S9/jezogNA4pIqZ5y7T3d1j9OVjsCKFYDIZcvPaYaRKFYJBpvADjREW21q+fH3I0goeLgSVtbTGUlUNv/evf8jhuOAvvLLHX35tykhbnl2cI4VgOhxxY3+ILOM8Fz4yM9VNQ7XKIFicqQlmgFQZOs/IBwMm4xEQsMb0c6zLQvaBnQetJEWmCGJJu1jGuYsBFwkcBGlOZxkql3gFs6bG1TXjwZDxZIrUGegoVgopwyuiiJsXMSgh04lKNfa/EQK5UFw/fIHpcMTh/h7vfHyf44sLHp2c8Otvfon9rS2UltEpvLJOUu/WhnPrIBJsCE8mIgWnMA2TUcbWVkm1jEvJhoD1lhBiUGZDhAdIqZBK4m2CLyqJSN/rUzuJYL3J9EtTfMr0pDFOzlHkGUdKyWA4JMstQjYEaxG5XjupweOCB2PitX+muem8qejydt6XcY7WRR2RECLTWlEMqG2DsS2ZUzgVcEXsH1K5ppAljTII7ylbaGyEOCoNwkqEc0hRI33UX4kN7iIOtA84aaPIXOpLIo1/pMeOSYHnHe11SLnxU7qfHuraEXYlRwI6Rr048IUWZDI+B2tj5fp5q9knqa68luaPjMFhvWhozi5YPnjKzZ1tVBEFTn0mINcwKCPrTmPwcxeTBJAi0G6/6UgoAs6YGHymfVGE5KRvinIG0EIhgmBV1TRtG/cDnSGQvY2HRNwhBd6vcfbPe9TrGHHj9bTdZVqgJYgQNZWePHnCYlkhpWCy9xK7u9f50je/CVJxcXZJMZ+ztbeHBb771rs8fvKU88Wcb/zqr3F44yZBZDy8f48yG7C/c8Dics7p6TknZxfs7W5hmxjMBZ2uQcWL63dOGUkoxMb1xwyOihAyPAhFCFGLK8KdLSF4lqsVbdMSrENLFREL3VgJcWWebbK5XVmZG3v41ekRz9H1FYWwfk1snBuR7Gc/PzdPfXWxxuD0eSd0fY0/n5An3kAnYu4Q1EHyvfuPmDUrbh1OGAfNXjZiPNrm1ZcK3v3oId956x3yYcnh4R6vvHybGy/c4s61Q7726it890fvcP/hU3784w/4P/zv/7eoTPOdj+4zvXaDL37xi/xP//O/gRbQ1Csuzk95enzM00cnPH10QiY1IlMw0NS14e4LN3n17h2KQnP/2Qn/5H/4F3z85Iyl8RzuD8jRCJUzyIY8ObvkbPk2P3zvXU6efIIzDbdeus7jh09pK0OWl4zGo+gPes/O1hDFANyULN9isWp4+90P+D//X/6v3Li+x//yf/W/4G/8Z3+L3/jmN/na6y/xf/yv/0/86Q8f8tG5Z3/viGFeUiYSF0fAAIhI3Q6kfjRHkJGTLw6yhcEEUYwQZLSLE0YK/uKvfwOT58xWFd/+4+9Q+ihk++w09kqHAHfuvMhv/NZvM93d43v/zX9DyAumu4f89l/9T3hdBXZPn/D43e8hmhrvfBTGtgHn1wkwsX7qCCHJy5LV+SXtMsL3iqJAD/KkN2h6GypDZBILtaXrB3XORVmFWqABGxw2xJ5x7yzGB9og0DpjWBTk1vGazjmaFGztjXm3lvyk+jMQqBxuDRhrgW4Ng1yTaQFtoHUWj0fpSAdsnMN7m0SYUma/c6iFiFWZLKMocvIiYt7apkX6BLlygSBjo9YgL1jWnvfufcx3fvAjfvLRPVrrUDojI2JuJdDalEXzEVKSCLLWe0eyI11jedePEo+1ael4WIQUbG9vk+WxqXSxWNK2DXVdJx2Urmn+KgPPTztiBm7N19OJR3Vbsxep0drEYMs4S54i2+ATU4hPWg4qTUIJkakp7UMilsxlpOSK1SWftGw6Q+yJ5wwuBTUxi7wnPXlwzL3nMigOhKQIsFouMT5SGgcVgyfnHatqxWg04lAXKF1yfP8jLqoFr7x8l0wlgtXg105HfwnRUe2q+EqK2IQWAkJmbB+8inMDTp6+x/hwh4NXt/na7k1Wz55yOTtnWVWgMsS04Ou/cYvtgyPG0y2qxVnSiFmPaxzr5FA6z2K1oK0rhLPsjMcIY5g9e0ZwIGjxzYKhCiCjaNy9dz/m2tER1w4PuPFf/XV8cDhnOfOe5uEjjPHs7u9QaEWRKVpr017VbcTQVbtWq4bj0ws++OQxIsAw11zcvMU8k6wyuLYteb3RnFcZP3oyw6MYl0N+60vXuT6UHOUeuzijyRVZmdGYmvPZkvuP5+SjrF8HPmTUbcOqWtDaQ5QUTMuCeR3xF9a0BFvE69qoqPT6AAi8SM3ieFRizBNKUhQFWeZos9jrIbMMIaMqr5dxPjoC82WN97BvTFpzMulJkGaDQAuN856qaXj//j1scGzt7SKUIFOaQTmgrltUUJipZ24Mz5Zz3vn4Q772ysswmUT70gcH4QqEv1v4kgj9FCKgpetFX72r8NYgnGOQBQZWYr3ESUUDOAmgo8/vAyFRS17RSOqc8I1A6QoU5zksyJXMa1j/Pgio25qmbTCmRfnY1NjTkPv47GTPvP9zjkTBGzacZgJR70VAayqkkBS6wHqTsNARXqqzjEKBmtVoEcimGeKkwVuBdxk1EJwj+CjoK4MGA21tsVJH9WQ0UZgx9SRAH7WtV0bvkW4guQQB/3zyuz86WylDVyWLZ4v6W7GykyvJINdoJXAiQvPW36Uiw1o39s8dUkqyIufidMby8TNmDx+jfuvXKXe3Kbyjnl1gzs9pPrhgWAzIigI1HhE64dR0SikEhdbgYjKgqauYyQ2ROEKLtDl3mlpprvgkduldR7kdz6V1hD8JIaL2kQCpBB7Zk3Osx2dtartkndzQFYl6RUmfx///afvPYNvS9L4P+71hpZ1OPufmznFCT8AMCAIgQIgESZsSCduULJN0KJdT6aNT+ZNtFmlXufxBqrJdNC27LLtEiWW7SrJImgQpcSAiYwbTPdPT0/nmc9NJO670Bn9437X2vrcbwBhor67b99x9dlh7rTc8z//5P/+/wzZ1FLcAlKJpKmYXZ9z64CMGqUQj+MVvvcUnj0+5++SMs8WSl77yJa689hKT8R6ffPAJ1nwEbUPaGCYy4XF5wXI2YzqdsbO3i/WhomQJlUIf92cf98MNvb71+BDd3+t5JiPo6Tt1UNYCC8FvMKwpzlq8lOt9xz/z3j/BsR6C8RM8UZI4PrpRUekSb6HEenY+k3DIuC64HjD44x7duPAI63EOGiFhNOJJa/ntT+5w+vCU64eP+Pjxgn/1r/xZfvHP/wKDyZC//5+/w9IJbrHNW8MJstim0gniYJe3fvZP8+ZbP8OlF6/ycFVxscp49YVrDLe3+fU7j/jw1j3uP3jIxx99QvngFu1qSVuVfPXV1zna3eHa/jZff/M1nnv+eca7Bzz54Ed8+Pu/z2/+6AOG4y3yCQwSjdApIisQ23sMRhP2trd48/nnmPiGoYLdPOU//73v8/Gde7zz/ic4A/t7u7zy4ou89fJ1tkcFSnmybEBV1ty6+Tq/+lu/zYMnJ/zdf/cf8P4HD/nm17/KX/83/wr/y//Z/5Tf/d7b/O1/+39PuaowjeVwUGC976viHevEOmiNpzUOg0eK6BOnB5BlOOFoTx9TJJpLR4f84l/6i3zw6U0+vnmL+WoZvpMQ1OWCsixx1nP33jHf/f7b7F++zE/99E9TOahaw9/5O/9rvpxLXsXy51rDSCsymVITWh2cA2OD4FHYc2Q/l330FmxMS56lQajCBoA6sGhkTGABG4vlcT9vrA9aFsLjcJjIZFBKkqBRJBxKxdJpbJtw5mCkPWMluDUzvOtzfkPkf4Kx+/nHF56oDIoMLYKrZigEybh4dmoFnkCr6LTe/bqEC/2maW0IkKSSaCWDwqt1gdvswRqL055ESNIk4+HpKbfvPeTdDz7ibHqBVJrhQCGE7pEj722POnVl8I4c0C3TgrhfdlBnB6/57j18t6dD3CBSrcmSlEqWmC4I6ZOUP3zRW1duwtEtVNY7ZL/IBgS4W3CttcEZ1pq+xLu+duHcZJQh6jae9c8BvVdRYYb4Fbtz9oRkTgoBSkZUzuGtpcCR+LAvND6g3UTUzhoT2uqljMEm1E3NYFCgc0lVB2Sums97pLhzdl6ffndT1kGGIPY2e4dpLYv5KavVHOM86eCI7f0rbB/uM9455FwPmWfnlMtTWtsiUOyP9ylG2+TFgHJxHu/nuh+oqzL1AWW8XlpIUqXBWJrVCu88SlvwDanyOBVoHvP5gtFoTNW2iL0JUnqsNbizFfVixvJiTpoq1GREMRrGVihPp8zckb8gOMovyoazRYPEYY3GGYdzEusliYD9QvL6fsKszFm0QW71uZ2Cw9yxI2qa0mCdII0oX2Mty7rGqChfSNjIq6alaproRO9Cs7eLKjGiHxQbwVp33br/ZM+J7yhbIt6svjEVerNS4yzIBKVDXxSLhk7VTSoVZcd78k8YDfFUlFKsmorGGvK2RfgwPmWiObmYMl1V5INh6GGxLpqN6hAkx/scKlq+/yYb0wWB7+eI9xu/8Q5jQvUxkQLlg6SwFtASwdE4nkRs/O2vmVt/xjrc9f0j68efibQ3X7WR0Hi6AKZrHg6t833FNyYem0n45tGvchvJ5ia/LCDVgdpFDG6FiOsA3RoN+KDkpaTEm6AeCPT+QF1luAOgEAkOgbUdxZeNdbFLItYnKWWXvK+Tux5Reur6dNecfg3xHbrhg7iBEyKqVIsIcIVXShnkd7USG4Wl7jpvZkDxp+5HGZq0VTbAVS1mtqA+OcUslhgE5mJGde8ezekZzf1jXD4muXJI/rXXIUkCrSTSNwQCJULVUBIq1i5SwmQM0qXomtvjOu1skNTvRkRHFYMoI06gRUbwR8lANwkJjvvcgvuaWhVX23gPn3pqZBYoGRJPTI1ZzZmfPOG0bfHWoUm4eec+d56cMpsHmVul96hXjtXpGdWqYlJkjBONylPOnKcua1arsheLcD4EU2EKqj+QQiKe+t8fPIu6NZ5+nffBhLg3ho1jcINiFv4pNqrtst+iurih26fC8wXdYt4zMwSfmX+bhtF/EIogpQiVFEKFdJPqtVYKXT8mN5K1jVUzzu5ujZE0rWOxqqicgVbweNWyQKGXFe/de8DPzRaMxmN+6lvf4LeOlzycllResrt3iBoWHNfwyEmG4y1evrKPz1OE05T5mHk6om7h7vETPnlywePzJXdWBluDbTxtbTlcVQzGhkGWc+3KZY4O9tHCcfvTT/n001s8WixIsoJMqaBcLsJ3cLbFe0eiE3a2d7g2TNhKJHup4tGTU5qm4ccffkpT16yqiqppEFKT5wVbowwtBU0isUd7XL50xLxu+OjjW3z3e9+nqUu+9VNvcv3KFbCeb7/1Fd779CbLVYlxWX+/A/BLn/SGNU2F+6FDUkWahaTUWXxdorMJUilmq4qL2Zz5bB4osTIk4qapkUoEpb9EsljNGVYTvvbWW5xOZzx49Jjf/Je/hsokIlX84jDGQVIGCqkUEUzxMTQVG3MijmwZ3p+oTue68RRDbUugm1rjyJNkvW9vAANdhTe8r0QRVPkmChrvaazHKU2SKoZaMq8MyzylKrY+f4D/CY4vPFEZjoYIoFqu8E4QTAE03llM46lrAzLpm88CCkEvtikjJ3C5XFLXNXiP1opEhxIvXtIaQ9O0AORItM5578ObfPcHP+Z3v/8uUkoGwxFZmpPoAULE4N6FHgofKyr9wkyH4XYb9zNLXveczdUwBjatMSE7NTbQZJwPWfYfnp98Trm3W8g8rbHB2E6qoBjSPTVuUsZa6roOZonduUiBVFFEL6qXdUCTiIlJt8QlSpGmLWmaRpdv31PrvA8JYZoUKAVV2WCMwVQ1uTVkWqCFokUiYjM+SkbvjIDoKq3x3rNcLjm49gIiyXn33feZX1xQz2d0vRBCbLqGEznZPqiJxSDEedlLsjbVird/658zvXgMAv70n/krHF1/gfHWDvPzE5579U1EkvHxD37A8f2Pmc1OSE4fkQ0GFIMRqVYYa2Pjf5eodPS6cE6DwYBBMWCQ5WgLvm5olyW1rRkMJKluGSRgU4FJJNWyZLqakp1pig8NddvQWMvlL32DdmWY1Wcc376NfOl5tq8eoZc1bdXgm0DRkcjoMyRoDMxKz3mtyCQUiSd1TXCO9ppq5biSa156QfPK5QN+/HDJD+9P2UkahhhEW+GUBqlRPpioIjVWalqvkK5TpBEYB40L0pO2bbFliWkcOEsSdePDwHxmvMZARnoXKF392AQvPNZbatNS2zYYsLahklo3CqWHFIMBw+GYuoY8TcjyHC8MVumgYuctHRfdWYtCMtneIh0OqFdLFsslvjEIlWCShO/du01dN5yUK7wQpDrljZdeYe/gkMF4AqsSI8N9r5pmPV/62RAntUrAJVgTg1oJwkmq1lC1hizLkS44/EppUT5Qbay3RLknIAhU+i4E2gxYNsz3uvXjD1oiwqazQeWJG0xXXdRKoXTS/wkN2zHgMp2SHk+tQZ/5rKceiEGOs4FyJECqBOsN1jUoD1Y6rPDY1iKswwmohaOtW+yiDuID0mGdAS1xBHUvJ3Mar1g6i9eCTujTEUATFcVBBB4hIdMpntDX0cdp/bXqAjPVdXb1SZn3awERfEj+HR4b12nnPCY2ZisR2Fl5omiUQkVjzi68889cl/5QGpEN0ZNDZGuw5xesbt1h8fYPWC5bLn7nPeq338M/OEbevcWFHjH6xW/z4t/+t9Av3kBIjVlU69DaO9JUkaYKrRTeWpyzUZ3Xx/MMgbX3HhNBBA+xFzAkiV2vYq8YBfi+KgLCBRUxGzfcTTrz5qgM0yLsBcZZEFlA5Qk2AZnPSAYjfD2H2UNWJ8f8+o/ucfP+CY/u3OLuxRmlMxxc2udnvvUNDnb2uP3xAxweowSXJjltZpllnsdPNPVqxWw6jUBRRHTbljwN46QLwsVmdN9NLMJe6SPQ2e+fHd3ShaqTjXPB2gA6DAcJrY3KglIHum/cP7ueO0RHc+0S4pgr+87+sEt441n4WKmGpyomIt4TKSVSBUNkZ0z8nVgDBXQqY7IXyFk5h43AqhRdQ3eXkBPR/ph8f4YK5vr39SJhtqq4ff8ejy9OGA0n7OlDXvjaK9SLKe88vMdv/Prv8tUvv87Xv/01fum05vbxE+4+esLXv/w6D6uW//TOIz56sOT5keXSpGGSjZCpYSk0v/rj21TW0njPZGtMfnSJ527cQJQN5XTK6YP7nNZzrg/HvPbyy7z4pa+xNUxh9oB/9p1/ye+99yFTpdhLNImUeOcp25q2LqnPz9FHLU2WgXPkg5wslTjX8PrL15DS8P6HH3DnfMGD0yesfhSk7p+/dMCXn79CszgLwTiKy4d7WCFZNI6Pb37Cp59+wA9/+Pv823/7b/HVN1/n3/mf/0/4H/2tv8PvvvMu0zolVypQYZsKQQBgvRDIJENnOUWbooYDRDrAJmNYnSHrioSKRE6YzZf8n//v/4Dp2QltVbK/PcHYFmtaXF2zvb/LaHuL7cND8kHO9lbO3/g3foX3fvgub7/9A/7hasl06XiSKtp0jJUOpEdG8Rop5VNTQnYDNx5FERI/uTGHlAjQlvTQOMt8OaMqKw63d1GJDs2EMlDdhQN8kI2XhL7EEMk7jjLBXBjOTE0+GpINQi/t6cVj8v0JL19/hS/6+MITFW8NdeOZC0FLyLxqG2Rqa2OZr+pQmvahyXhd1o5v4GLiotYbuWvDL6UHG2ULER4tNYvFkovzJTuTIT/zU2/x4gvXePfDj1hVTSzRqeAN0BiksSgbpCml6L56h46EG0Qs0XrWQJ7naef5QBMBvGO1KsOzY8M/EQXrlFSeRg/jV/0cnmnfD+NY06E2YkUJtM5FQy5CP0zU3tdSB448oue096WWDiHeSAydd30p38VTDycRRMKNb3E+CwGbczQeGgS5hIGtyUzFHE8tJEYE6d2QRElM3QS52USzc3BEaz2z2RkfvfcetA1bo4K2qkmcDecviRQG35tVBl1yFUvnYUNXKpiCZnnK1W2QdsZH7/wq1vwcl5/7EsO9yzy4c4snx7d5+OGvszW27Awd57du8fGTT7i3fY2vfeOnkcLgbYuSYSyJmJhpKciShCzPsK5lvpqzZQ+QAnIpaM9m4HN8Ecryyhpka9EiBPVGOJT16KrBVRVFZTgaTpg8d4Mn9Sm2nPP43R9S5DuIwQBdFEFPPY4TKxzIrj9GoiVIJXuFKCdD6bn2Fuct43zI0Vgz3crQVuEkGJ0GkYUklKSDOVwYBlrGRj4CZ1nKUKlsW0NjLA2QJhotBbZpaKQODut2E9kTBCymi4NtKAlrRduE8rJWCUroYDQmNcZYpAiOGlIoEp1QDAcUgwItwDQVtinxOgT5YbuOCKuzCCkZ5wOOJjso5zmdTjEIGi84uVhQNzWJUhwdHPDg5DHWW7YnW8yXC9qqYnp2hiwy0ixlPx8HihYuOGD3OKrAGxMcrC14GehcRhokITFPdBLQ70j8dj5KAOs1Yms7ekxczzab9EWHSkkZ5t96MfnsIip837fXU0a8p3UieABYizE1bWNRqN73Be/6JLxfU8Xno81PfVyPyAYpa3ysVrhgPubiZqcRKEJ11cQkmzTDDQpIo5qSD1xmpAaVYZVD54rhKCeRkjaupqGnJ/SWyK5CJEWsertYpetOvK8hEK6iiD0c8bv5NdpNfEYXKspYue88to0LyL3EI2wbkjPWCZQETNdz6EDrBJVodJbQNivak4c8fu8Dqv/0t0l/9BGX3n6Xe+/+COMMZrZCL5fIJtBLkxeukT5/BTkZ9DK8sgu6I0iCDZXb3d0d8uECNW17g0Ip41g1Lq7bT9/HsL9EcMsG0CpUSH1P8wy0QUmQae6u41qUAIipdfemcZ+wsT9MglWQ5gkqFQy3tzk7P6MtF1DOuTg/4/b9+/zO7/wmX/3yS7x65YDtw0OuHewxGk14lD+knJ1Tns84koIs80xSxcFkRFvXnDw54869B2znBcM06fsznVS97HeXQIW1QSHo1qQNek43x+Le18EG4CCR1HXNcrZgMhiSK43OJW1TIr0KlUkfeuCCBqMKyQ/hggcuv6db+7pqivIpUiRI1+KFx6hw3RPCWpslCdJbaFt+/MMfMZsvWa0qtrZ2QrVLQusEy7plVjbce/iQvd1trl++zLe++gZZkgSRjtgX5YXAVMEY03kQyqNVQpKkaBXAQWtdaIB2Bmdb2rZkZ2vEN77yZT5uDI2VOKmpbMPKO+Yi4Ve/+xHLGm7s7fLzL13h1XHCB37Jv/jV/w/vnyz43ZOSSy9cYo7lg3t3OT/5MQsv2E7yAIBlKePRkCSDRd1wfO8c6WE7T/jSl1/j567t89qVS/z0G68zpOHxRzd557d+i0/un3JRwyAfIQg0c0dY87QPfVvTB8dU52ec3rvF1jBHS8A14BxVVVNai9ZhDW9NzQcPHnL3/ILv37zJ+YN71GWJMQKd5IFK31Ts7E1om4ZP7zzgf/G/+t/wra+8yf/wv/ff5L/0S3+Gq7s7/Hv/73/G1uXrZKMRg/QAlRfYJGW2nFOuVrS1AT3EyDTMnHqGqFfQNiiVUJUldWMxiUZ6F+jQSqKsxqiERW0Y7+xz+dpV3vjym6zqisnWFsM8QwqHczVSQS5TijRBCRBKRl8hgXcmCFWxToS9kIHhgkI5cK0N+1mi15Mj7lHGB1p/nmYkUY7fxeoRbu23p2TSKxB6qXE0WG8Yy5pr2jBQnvPScLw0VF7wxptfZqUL7q1O/pDd5o93fOGJijWG4JgQmmCtD6aEUmus9zQmGDt1gbSM6gr+GVqGjypS3q2byMNyG19H2KCapmG+qEnThKODPfb2d3BSMlusWCwr5ssVy8WStm5omxrbBMdrESXUuv7C8NnrXf0pUeHPQR/jNhH6O2KzudRBCenzzBx/AtZ4j8R2H+q7x3qKjcfHpm+pFVLpnqqx/qyIKuJ6lMp33010VQQf1Whc31QYXrJuxuwUcfC+V1zSArQ1SNtSe7BS4ZUOnym69w/le5QnG464WNRMpwtm0xlj5dE66ZXbAjKweXFFv1F2V9oTHcF1hkaSJCljIUmM5Xj2iIvHdxBqwL6A80e3mD36lGE6Z5h4cuGYtnPKqadqWmaz18jygiRJgbZHXzuDMKVkH3QiIBsUgeLSNtRn5yR6QpqmKBUGnye6eidJ4BdH5EIaw+mHH5ONhmTDIZO9A8qHx5wcHzMczRhdu8ZwewtT1/19d8KBCGpSWgZKCEL2fUodrcAjsAhyLdjKFZcmCanqqk4hQZEySgcL+s1XE6gmHZ1QCUgibcHaoOTmI6JljQkBjydwuX1XcYxJtFg3MgdHaEdrQqVKdhUyOnEC1vPMhcQwKGkphLeYJjSGI2wfYHSmii6epxKSvckW3od+lbJtQyBvHTuDIVmSMMozMq0wFrJEcz6bIpxnNpuRmJyhHbCTj9Ax6H66PBrGQUAnVPdNgfDZSkisiL1dkeIVlIUi8ioDwCC6+dWN5WeOzwCf8bHPqPp0z4vvH52RMA7ayD/23oZziI7dT32P7g2e/mvjMzc+gG7dWScr8cb2YEs3twWE/p3AC9g4yUCxRcbSuCUAPkqGCoEUZLF621FqRee8+Zlrs7EehX+uzy3eFk90fvcdxLSxYPRo+9OheHc/g+cIeOv6YFR85ip1FbFwX23dYKol5eOHlI/OmH18D/ejj1C3jhleVDQ4RCpJ8xQ9KiIdZETx1a8wfOMlRJ4HbxzvQt9jBNoCJdrhoqStkAKpQqCmIu3W46M8PCFx3dxGxHqN7JJkG0ViOlDK998cNl/aXczNZDo0cEdQLQrY+MhBSxIdfJikDnCFaalmFyynZ9TlnK3JkFefv8xzNy7RqpTJaECWB+U9ZxpM25LnBTJ1+DZUilpjqaqK6XTGQCqGSRJNBjdFJ8L59WLW/fDunxD/LfpvtP6y4Z7KROGcxdQ1q9k8psoW5VdIKxFSIYWOK2twV+lUnsK461ajqFSHoHGSVatwVpIqMCokdAYZqI5IylVJJkB5w3I+ZbUoKcuGqmpp24q6qWidohWaRmgens+orMdJzRvl8+RaIkzDsqwpG8OyNQyKUU+VFAqU1iRJihIaayxt29C2NUUqmRQJ1sxxtmU0KLh+eMCiMjgjWc7mlGVJ2zjuTE85HOW8994HfOPrX+LK9hh77Yjf+r13mJ2fcv7wghee2yfxjrJqePjoCUlecOPGmGujHfJiwNZ4SEvD2aIkN44iSTjcGvHl6wd8+/plLm9PGOQpxzc/4vjWbW7eecDKCpxKUELhMf3MC721QabbNDWrpqZcTHmiVaAtuZZERyERF/YI4QFjWKxKytYwKxWL0tDUlqpxDEnRSiK0JpFDvE4wlePdj28iheD48SmHBwc8f+M6OtG44Ri/tUsyGoJpgsqkMUGdMkmDoa0UAVBparBBWETIoCrqXY21Bq07cMqHNVEqZJLihQ5eTnVQtq2blrPTcxbLFU0bhEaUVOgOcOjmqBNBPt2tZ65Yj87wJwI33XNEZ1nhu7g6gEA6xjydnYWP+3M/deLrpBR9ZRo8ibcUUjJIEm6WNYs2gP8vJAm+rpktZ3zRxxeeqDR1RevTQFuKF8ViSYQKqjQ2GHB1F0NpFRFGu7EJOawxtKbFmHaDAkDwbXChBOaMpaob5mXFYDBgVOQUw4JrN56jbizLVcm7733Inbv3+KSseXxxjDc1qXSkuoiBYESsCQi+jChNv8113EQ2F8X4g4/VE+Gh84OBNRpIF3f/JEnKRnwSZY59XIxdDD6M9yQ+SD2nSUqSpggZS8oIFCCE7Zfs7nrCZsLi+zJ407Yh0Ypn6Nya2+xMQJ2d97SRMqcBZVswLUskNssReYFDYvFYATpRNLXDekk63ub0+FOOHz2hbR1eKRCKuq4QBARfRSO03mXaB2Uq6V0UihUokZCOdtFSkudDtmzK0AUPjzuffp8PfvQeB9evIuvHDPSKn/tzX+bxzWPOjk/Y3hb4xWNWy3Pe++EWL7/2Fleuv4Cpp3S8/6DGFeh6q+UKkAxHY668+DxyOmP15AmP338f6Z9jODqiKDRtCiZ1HI72SLOMXCU0MkPpFunnfOfv/l2uvfVVXvr5P83ln/8FPvr0Lh/9xm+DVrz2r/w5Dt58jflyhZM+GhKGMadwKG/DgmEVzkhwobk2UYDUSJ2SasHRlmZYZBQREfY+QQiJVkEGWEoRExKPJiz80WSaTjtBx/u+bFpqLdEmjA3TBsM3Y9p+YQvc6eB7bvG954mWkqoKPUTSx3vo/ZqmJALP17YNtmmwrQFrcbahWZYkOITMQjDn6HwZ+6bUxDmev3adg4MDhuMx3797E+cFO3nOn3rlNRKlGEnJwWhIbcOoef/2Leq2Ic8ykiphu645GG0xyvJQpTDrOeoISYjQGjEYhMqqMQirKaQmU4pzb/FKIbXHNAZsCCwVSVStA1yQT18nHF29Zh1QW283F5EN7nkMtUQ4I0cAKCTR80EIytpSVsHLog/XA9D71HvyOf989rM+Xx59Q87X2hCkKokwITFwAnSiUThSBx6HcA7dAn6EExVWtdAkCKUQqaCpSyRQ5AVCS5RVCKmxskt2u8pu559D3BDlOlCNg7VLHjr9ANOd9kZQuvnlff89fa8u6TwY42hqQ2eRGbIhR9cjhXfRZ0pilhXLJ485/eQjTn7reyxvP2D+0T0u3T1hm5St0S7Zz34TfWWP4tIO5dYYMxlgD7c5euMl1CCnlhK/aBDWh7lJAGlSrWmbhuWq5Xw6jYm+okhT0iRBSmhbQyckJ2KC9sxuEastvr+nXVpmrA1Iq1vvQD3gwNPP9fEaSqmCgXDd4JsGCJXXNM+wVtC2DQiJbQ3Hn37E6b2bZMbx3/2bf41f+lNvsDMZ8C++/x5bWxOkHjBQKgR0RcbRl96knp/jz8/A3cQ7h20MZ2fn7A6GiNEw0Ka9wMV1YN3DF5M1AoAmOlDu2TvfAQcEFUmpEtIsRUuPq1fc+fAUQUmiaq4f0G2TYWy5Gu9aHB3YE/svvQEcSiqkSvEy5XSVcfxkxZPzkhePdimGA9KiYEVCa6FuHfeOj9mfDDjaGpJpSb67jUfz+z94l1u3b3Ln/m0g4dLzL3P9lTe48corlKsV90/O+PjuHTLh8VXFOz/8iE+PH/PpkzN+6hd/gWI4CEi4dzGJF7jWUZUly/kcU1e8+cJlfu6rrzI/fcKjaclqXvGVGzdYlBXT8ynvfP9tmsYiVMbjsxN+c37Cw7sf8rf2/wdce/453vrZF3nnkzvMnOHD49u8kDp2U02uc9qq5fLWmL/06nW+8Y23GI9HpIni0WzK+XLFg+mSq9tb7G9vce3yJSBhNb3gwUfv8h/9x/+Ik/MFVg9JdvYYIPEXZzgRe7NkoBlJBD5zoUfWGJq6ZrGyEblUqDQCXkAS95y2qfF1jVAJg/EOV557CS8lp6sltTW0TUN1cQFVg/aew73rPLl/nw/PSv79f/JrfPOrb7B39Tmuv/A806svYLcPUQeXsbc/gcWM1grcZAs/iWJM0xm+DP1a0ts4r2SoUHqLsBbrYpAvRTDFlorBcMxsvmJZ3eXuvYcMtsbsHezznV/7DS6mUy5mNToboFyA+wUyUlc9rfWxid7365t3FucUXQ9NsLII61hHrAl9VxEQiX1QUq/D/9DzHPscY++xl3LdLBf3ICEkwnqEzmmLCb96cU7RthwA9uExjy5W/Oh08Tl7y5/s+MITlV5831tsE2WAYzYXGghloNzEpxtjWHOLCQCdlFgCamhsi5KhxyJkc1FtQYAVkjSFLBdMVzXzqiFdLLh86YhJlrI73GX7m1/h0XNXefG56/z6b2ecnDzm4uwx86oK6ipSoZI0lo0DytuVmruekPVG2G0XT0cBT1VQ+qd6uia9n+TonhUyW9e/r4uUBiFFz3kPxt1BqgDA4NaDzxNLhETQKSDmLurHO2fRRFM4v96kfI/EikjBCNWwptOfhyCb2wY60KKxuCQl395i64UXab2NTqkKLyVCK7KiIE3TIKWcaIQUWOe4OL/g0HuKomBnewcVzSalipKMIqCOwRROYbzjzsc/ZjY95fzh++wfNEx2hoz2MsZbnunKUZpPuXx9m8noiHe+9xG//92POb53wi/9/Gs8d/2QYjTi9967zdneEcV4l8kg1ud84LI7AoLYGsvB0WV2dne5/NwLTD/8kPPlimY+pS0XtPWY5aLFTyRCZ0FG0xpsaWmLluWqpF7UvP6nvkF2uEfZTPnRf/IPwRpe/plfZHr6gPmjJ/zgP/lHXH31VQaTEUmexQA/SLx240F6H3itTuG9Dpx7r3AupSodbVvTNitWtUeJIOogqHGZxucaYVsSHLkWaB0rKpHWkktPkWrGaUKqFNZCIyWF1CRZTjHMQ6LSdP1WIqrSuHi9uvkcEhWhDa6uuGgbVKZQ0UdCiEA7G6QpWiVIlSB1SmssrmkojUHnuvfX8D4ExCiJd1BVFU+ePA7BjpIUWY72grY1tFXFcDzCOssnD+9yY/8Sk9GY8dYWi/J7rOqKG1eucDTaptBJYGkZE+iT/XyLvHQfIn4tDUKBt+BsQxtpYjpyg4WUCOkQdCiVjeqAkapGf7liZeizCUH4vejn+GYCEU7K97x8KYKEtbGC1gikTEiTDCnL2Ismn15h4s7Urzs/2fLz9Ln1AXGogHjh1nQr70L1yEsykSC9wjqPkg3WOtpK0hiDFw4nLKYpqcuS5aKibVxYq4TD21gn2eDpG+PRUa7YdetnRPHWcu/hvLqg1cfXdoOtv/7xbV1MENtIabDOYIynaUCISJ1VHuEtHosXQYXMI2ikoDENaMXW4SE7f+mXwTpc43j4v/0/YaZL5js7XP63/iuk1w5BOAaDA3yS4BOBa5eYxqIbQy0FItKZu4bpoCCWkKQCqdPQZ+Q8UthAj3aht8ZGsMqLDQKy7xLb7rp0e43E+VCdtFFquq+YiG4PWwf5/U4cq2bWWYxpaaoKVyeION6c1rRWUhlwUuF8S1styZxht8h567WX2d/eQyoQIqVeLJGiZeAkO3t7+EHNjy4ek9QGkFx54SUeTs9ZVitW0yn13i5NO8T4nMR5kC4KDYg+YUF0PSlunVz0o3Y9jrwH4yWNl7RIEhX6H7R3nD+8i5ZLBkXL7o1dnGkxbYsyNa5d4ExFolKE0qFS6CzeB8VJmRRIhsAQt2pYTS+YnS0wuylUQWkuybepLZSN48HxExK7w8Ew52hvF+thVTZ8+NH7fHL7Fvce3CfVKRfLBWfTM/7MX/jL7F0+IkkyGgvnF1POT86YyQH15ABHwT0j8dPg8F6vllRVxaosWczngXZdt2hvscLx2gs3aGt458cf8Q/+2XcYjMaMioKt4YCkqcLcdp5inLKoV/z+7WP+3j/4f/Gtt77Ev/ILP8uf/+Vf5ts//S3++r/6Z9F6RJoWFIMx7i//eQZFzu72hLFoEM5gVhVbSIq8YF9p7HzG/OQxv/v2O3x4fML9x6f8+NZdLkRCUozZ39lnVd6n8o6qbUmSKEkuQoUe71Hx1gopKdIsgsZh70kSvVaxNC3OeZQDUy2p6oZ2vkSuavSgQOVJBHwUSZIjZYoHmkSTHOwx3tnm2muv89Vvf4u97Qlf//bX+Q9/7yPevvWAtz94n8H8lMxUiAZIUxSwXCxRqxUiirtsLDn9GtXTigkVEJzFiSAIVbeL3ndOPHnC8e273P7w0+g7E/qItWhRMvQ8e28i7ZcedEbEirsM/oMb+qlBTjkmImvAJq4TKggkWbdWluuplILgpaZCwoXYWCliHOqygt9f1nzn/mO+Y+BrV69w5dIRv/bkCT9eOc6bz9tZ/mTHF56o6OiU7qPZYxewQ7h1UnTSpr5H0ruj39Q3N9pOLzr2L4SWhfjb+B5SKcq6QQhwLiwuiYQ8VWQ7E7RWSK15eHLCYFigU8Xi4jxQTpwLnGqhopoCG+ezPsTG/z/zy+6hp17wh0cIf6ge+h/00jhoWuto2pa2jVlwB5OzTjiefYtNo0ch18HRU2jchqlk92E2OqIJIOkMJl2k8CUSKTPGkwkmIu3Oa0RUm3AyNkynSWjQEkG6uFytsMYgEAwHg0Cvcq5HjiHw87UKJmrnF1Me3rvJ9PQ+iV+QZWmgZSlNZRoaY5jNL2jrlFoLnhyfUJUtKkkZjbYo8gytoa1WtE0w/0KkdAEP8bqAR0pFPp6EaoRKYwAaxogxoUxbGUkiU3RaBE1+02K9Y+9IY5MUkWaMD/eR2yNINNPje+SjMYPJGJlkgYJwcoJ/5SW6wd3T++LQ6ap6LjbCGgdLE1BkazzeGmzb0jaG5dKgtabIQEqDFSB18B2Q+FA+lv0AQTgXkCgtSaVERw505+kiIpqM97hYGl6Pl43G0Qg8aCXRet2bFbyE5FMLpCTSCRHIJA/lb9viRNBo71CbvpYZh6DzjrpuIrof+OnO2MjTdsEDpG2Zl0GZLZEqoPciJL2DLGd3OCZXCatyQRfICERUw401hH7CbEzinvYY1jAfz1MmCmFEL/7QrUVsbAYdqrBW4fnsxO4rKZ9JVLrHQ99WQMc9dd1G7nCkp22+rvvsPyJB+cONZp++BmLjqaJbYuKG5iH2E8RkLII6LtJTOxqt8EHx0RjTn1QAY9Zv2m2SgZYgu86C/jr2krt9fN2RHvxT1N0u7Bbx3LuxFNYl1q+JYxHCe3fKZt13g1h5cR6VpUhToOsRDAXJoCDf2uZ0NMKULbbISJ67jNseMrt9h0GrSYcj0mKLhiQkda6NLvVi8wxBBEaB0gKECtfOBbU1NtbrTpnQxe+73k3D7zsAS4jN7/309+nHxFM0wXgtu5u7sR8EpcdI/0Ki0gFeaFTr8dNpPFdLqhUqy0jTDBPd4NN8jLce6xq0UuSDAdI5Pjm+z9ArCiHZynOYCaxpWC0WLBcLVuMh1o5B04s6xEkUgbj1HezmbQ8qPvud4j20HrI4TsHRVAtEUiJSS64txjUIaqQvsW6JdCVKpHiCJ4uCKN/vUCh0MgStES7EONZ0wjw+xBLAqiqDgeJ0SrM1QBCMbau6pmkqlssFxhh0ElzCm6bm4vSExcU5WZIxLAacnZ4yO7/g/GxGmU1okxSX5ZwvV9i2pSlLZhfnwTRzuWA5nwVBG+vJpOBstmRetWihma0q7t67z1aRsTMeoXZ2ECpHRbGeREtMI6mN5+6jJ+zcvM3l/V1uvPFV9idjro5eYFVKhEpJsgHZVoFDUDeGs4szhHcolZBnOakO7Ir3jh/y4NETbt5/xK3TOQ+mSz56dEpx9TlGg4xUJiy9p/YuKoBGoYK4jooI0HbiSgKxlo33HqW6AD0kpUFONyQD3nva1rKcnZM0JW6YYwk0LdE26ylhw94ohGexWjGdzRkNMq5cOmQn/YSirWhPH+HsCutbKuNQdhBG36qEtgniKqwB3x5o9RtLcD88XQR+iCp/gTnkWnArOD89pRiM0EmKUoJUKTK5EadFWWIfF+TNtX+dtId/u9ivKGXHVnl67fe+iy3cmrLs6edJaNfuujjFU+9fOs88zZhtbTEY7KCOLlHt7nDv7CGPrMDpL77+8cXLE6cpyhhM24ZNKC6iLjpaK637npPP2zS7jURuNP9G9n/ItgkmNNYYaudpTbjg8/mCPEsYFSPA4WyDbTxKS7bHGaPRFUbjMccnZ3xy9z4fvf8eF6cnXJw8YXZ2ggTyJEHmeaAIxEBgbbj4k1+DNd+7W1o//+VPJSsbgYrsfGXYTDAcXgoMjkVZcno+ZZhnZIMhRVFE5Re35ihHvWwRaRTQSUMrsjQhMxaVJHECxObRTjki3is6MzkXFpBECTI82lvKtsWkArQizVKS2ACM1IFOEM97ZzxgMR7g2gqZFUghWCwWLBYLirpmMh6joyKKFkFhIoS1kjzPcc7y6Ufv8+n7v0M1vctf+Jnn2DsYk48zbFWyKmtOT+bcvXPGndsXCIKM709/7UWuX7/K0dERN+98wie37+LNDpqEVKZroSaxTpCFlAwmYwZFhpRw8eScqqyRUgVE0QmqBhZ+wFa+RzY+YvZwSb1cIqzhK9/6adx4TDWeML93m2Jrl+Jwnwfv32d6csbJwxOwS7Z3J+zt76CKHK8Vtg8ugmqSFALpHcIFmmRjPYsG7iygMgZrW6iCgZlvbSgVpy2DUUNSwI5PQzDtfejv2QgurbMRrfIUUpGIYNqo0xScxvtA+3N2zevv+6yiDHEfSNIp38QqUKSddf0y1gmMdbTO0bQNy6WgGG+hh9sM9ypMOUfX54jEBV6bFhvmiGHR1EozGAxAK8qm4vjBA5ZliVAaozWPzi9omgZrCY323tOmmkW5pGkamrJCboGWAp2EPrkuqFvPTd+bSxorSCzgBAqFtZH6iMZIgUkEySDHLhqkcYH2FQY8znYb1dPJwmeWuT7q33hS97j3sVISNx8dKgxta7k4n9LU4pnXf97xh4Mkn3l2v/bEAN77NSXKB8pnCJK7gNnhhEdmYUNVONAFXjmsapE6w0uF1yGwE1LjvSNJE7wLTZ/O2Ui1lZsnEpygRVSskvRrmLH26TVUrGPuzce7GKQL5p0Q4DsNsMjiluG6dpX8zu29AwqskAG9rCz7ly/DYklVW27d/ITB/h7Xnr8OpUPMDckA3MWCkx9/yPf+d/8uhwPN7muvcf2/8F+k+Kk3EIOc1kyjjHOQNUd0SbwjSRU6kTgLpglgiOi/4voLeja/r4heXxtbk+hn6zP71TOJ6x+wlz3VHyXAyXCfrIOVsWTbE/JiQuIFJyenNHaBUorxZEKlBtx9eIaVCcVwyO6lF2iXC9p6RToqKMYD7HLOd/7Fv2Bva4e9rS2+9Pw1KtPQNi2rRw+5nyXgDNePDpCZDNRx1/TNvGFNCDd9c3T3PTVdPBEDruDXFKTRhQ7qkt4asA3ZQDAcBPla5x3CteDb4CehdAwgWzyOLBtgfUhAdJIy2NpHDy+hHy1IU0ORQzYYo9IMrxIq4bjz8B7vf/Ax1ckF7eEWOlaXp7MZ94/vk+qEG9du8MKLrwCO+WLBfL7kB7/9e1y9cYOrN57jzkefYJwLPaCXBpTC0gjD7ObHiNYgGsODBw9ZrVZU9RJPQNETmeK0pqpqLqqGw61tivEWk/EIv5pTTlvO25r08vWgYicFqVVk+ZC9JGf/4JBbx4/57v/x/8q3v/ENXnvhOt/88isU432cs8xn5xw/+JCL6YzjR6ecXqzY2trh5Vde5ssvPk8iPMuq5D/41V/juz/+mHdu3uPwpdeR+ZC62GU7H+NkgluVnK4qjPWMRkN0vQBnsa7t+5GUEH0vW1A87ISOLNaHWqlOEoQMjADbWHQPKMHZxXEwSfQCLZMAoKlOSTUAbplpqKoZ//yf/GNu/fht9ne22T/Y4/0PbrJ48Jiti3voBIRwlHWL8gukVyR4pLQxRBJYF/s8npq5njV4EkHgCIooGUS2Uq37/aI1iqataE1NMh4yHhZsJQJoYgXEYX2Ij6QUYVw6h7Wid60XhESurhvasiQfFL2n39Pz3dG2DcYE9dxAdVWAom0avHNkRY6SSejf8jGK9J5H0wVbz13j21/6Bt/+2s/y8PGU2/ce8d1PP6YZCIYq+ewC8yc8vvBEJZEK4VpMa4JcruxkBsGYlqryiD4H/ezhrKU1Bq0VWgiGeYEkUExkoqnrFqEUaZ5jrUVjES0kWUqaBz7qcFSQKhUQQWtRMlQDjsYZg2SP3fGQyzvbPDk94/jBA47v3mUxu2B2cc5itUR0zYM6WVd95DMn+uxGEB98apMR/U8/QeiwRl1D0+5nk5WQ8HlWTcPFcslksWS8KiNikzIs0uD9EZEHa2zkMsbE0HlMG5xHV6uKsixjshQTkq7856FpWqyzVMYEKo4U4IKijMOyqlpMIbEqoKXOx8Ajl8ExGc9wMAwJVNQeN17S+uBxcXF+gU0fYHcO8b7jbne7qAcMpq3xDrb3Drl29TJu23H12iVOT864d/cxg8zy+OGc+bRmb3+Luq2RSvGnvvFNFtMLbn9yk//Lf/CfMdq/yu6l6/zML/xFxlu7pLkKXOROytL6GBQr0kQzn55zcXHGxaphq1xSKBUkgkVCmxQMLr9ENr6MVlvsjkHu7pDlkmp+is4GZAc7DLZ2QkXIOurpXVIs25lm4Q15vk22vY0sctAa70G7IBYRlKWDNGkiPWme4ZOMmUv5hz/8FJCM84KhtIHKJQST8YQawVnjuf/wjBcPPIOiQOuUTDekUtEK2QfBVgbVGOMNpm1wxhB6gYLHjugS1QA7rRNYAkv+6TEeR23821pL01SYpgUfG4NlEClvm5bWeHw6Yv/6K5jVlPbxx8jyLBjiGRMaEmOwgYc0Tdk/PKD2lnYGi7bm8s4eaZoxSFNGecYgSbk02WE+nzErl/zeB+9ivGd7ssW1/UO8hMp2vSMdUivoSH8QEjrhOxUhCxLccMTCeOalIRumCBzSeVztQSVI5ZHSUTcGZz2J3qjQCeglcztFwHid4ln0DaF9tapfC+La4T1OWITSaK0o0gRdmaBU9UwlpX/lhkzlH9Yb93mqg+HxddIsCNSyYMYXJOS0DBSt2lp0ksEgpx1muEWJ0yDzAu+CY7o3Ep2GpKs1Bi0FRgisAFAbYMiGuZ2Ssalc9p5ZndBKPwYF8PTV6oGhLsGL+gbhPoehjydQRtJEkWdA7IJTJAjfiZKEe6ayqAD45IxHv/7b/Pjv/XuMXnuV7Ke+gn7zZfLFGdXqgtJM0ONtJsCN115h+k//CWfvfID8F+8y/pv/GvmXX2b49dcQKxu+ZhzXwgsUARkGqKqWxgTlI4Rd92h1VSXox+3nHc51/PLPAl+b16n7wYe4pldM85FeJqRAakVepHjb0NQtrVWMijHpZJe29WidIrynKUuc03id0cqc2w8vSLKKgxsvspXliK2W4WjCaWN4fDFFtw2uWrIQjvdvlgyLATrVrKYrLs7O0UJw++NPEdcukexOGIzTYDgbq+2dUM0fVBTsd0nvEdahYpIdxnfHHAhU1DxR6MThW4sTLXVd4n3ox2uNRMgMoVKU3EImGiklF43i3XcfcO/JLb77wRlPzpZUteeV119lMNwmHw1IG8vVw31y7xl9KeHypQN2dndItGL/UsZg+4DLz72CiIIJVrhAY20M1nTArmdHv0AxGDCaTCh1yvfe/4DbP/qIe/ceoYVimOU8f7hHku6hlGK+XLAoa6aritlsSVnXWOOYbI24fLjLq9cu05SjUMlE4ZpguG1Sxaqs2SlSbhzscGV/n3v3Wz45PuVR/T1++5Pb/Nond0iSnLpumM0XNN5SLZfMT8+xTc3u3i4v37lPYyXXDnc4mgz49rd+CpuPuDUrGWyP8GmBtZLT08dMFxmTnW0YTBjlBdcPdzm//SGrxYJF2aKjwpX3kW7rQeFJVZBnV1LT2qjEahyDPMcDddIwW9a00Vm+SAN92Xd8KREmoELElrQw/5xpuXn7Nrdu30GKINjj4/wpZGgPAKgFvUlo8PLqliQZhIjoEhLfDcjNMgddD27/SDQ2VRFbUEqSCkIcpTxahT3F1cEiwtmYqPSV6DDPhYiKuIQ9BwFlVbKaz0jzFHzoA7Z2vW90qp/CB+n+4O3mQCrauqZpG5xUFHlGLhM8Ft82uLqCwYA3X/ky337z6/DyW/z4k1t8NM755tVf4YPTCz46m37+BP0THP9/SFTCRuT8xjYZIR8Ba+OwZ45NDl1QBQpO1WmS9OhqnxmKQPfKtMZ4Q2qgyDOyJOjRJ52CUyxdS+/RwjNMFErmJEloQs+KAi81xkFaDPFKMzsLtJoQwNoQSMiOsx0OETfLdalsszrykwcHTz3eA1qfn9h0aFm4lOskxvmgAqSNAZ/0AeYmf3tzI3IucO5tVHN69h50n2t9cD61rjMKCuiq8CCco47Sz74zGguzF4/AxvdNtI5iA2C8wPig5ppoTVWV+OkMmY2DwaRSbCK7dOfoBFtb21TjMa0vkEJyMV1x8uSCS3sJ1ji0Umzt7XB6fkZrWoaDjKaUCGFYreboxmJ8zmj7kKLI0FquUUofKCfdmEq15rxccXryhFljyfEMiRrkWiPSnGzrErrYQaqCPLekA0k+UNhmhkqCpGmaDbFlQ72aosSSYS7ZHmvcUpIWCTLNEVITIuKQHErfBbKeThVIqVBPrK3nyaxEqQStUtLUI5REJ5rBMKUynkVpmDeOyoRQM1Whea+jQXRGc5YQJHX3tE9QI4Swxiy7BffpQPHzx3h4v1CeDlQJKQVaSRIZVH4EwSDQGkOSFcgkwUkVJJAxuNgIH29M/5FSStqqwthAcdvb2kUpTW0DnShJNEe7ewhnmFVL7j15yP54i9FgwLgYhr6Ezf6Rz5y5ByTr5KyLJjuhjdAn0vXQ2KANGjYLGXt2vA+KLq6rXMaT92vE+ymKV1zn6AKw7nNjUOr7ZCqgikEGWqOk7ZtOVa+n7z4zl+nu4zNfuK+ObVZzn31Vp+oWz7lj8AKBIhg3x6C7H9YA41xoGE01VFUE9m2sioTP64JNkCDcUyykPgGJWYaUsYLu1n0sYvN5rMekF37DHLCjCK1vdvdMj4s0xdBD1fU8hDyoG/khepdSoBNF+cltZj94j7PvfZ/tl15CI/BVhWpLZFvjmkDHS7cn7H3ldZa/+s9xj59Q33sb//wBxpQkzx+iikFYt5t19OK6e0F3DhuJWJ+odI9vfsd1Euq7jejZw69f110Lz1P/fPqpQE83i4eLVSzhOpDKBnNHIaPnhSWovcnQl1FWUBrkzpLDccowz9nNMrZPzpiMBqQR7LJtw7LyFMUAqRXOhr6Yuq44PT1jlCcIbxDJNqlSJDKqE8X9YLP642PyIgjzc3PtEgQaXb8v+26NErTWc7Fs8LXHmQTDMKjWCfAyQeg8VAnTLUSaIlVIqD669ynf+9Ft3r17wWLZIkXCeWUZyYThYEgmag72dtnOU8ZFzmAQ1M+EkBQ6IxuMOTi8HKjFEoyI9DrrKVc1dV1RNSVbg4zhaMR4ssV5WfORAnNxzvL8PPTbDAa8+o032NndZTgZc356xvl8yZPpnAePTzncmTDINEWeMCoytoY5C1djHFg0uHXiVrctYpSxPRkEeXrnWNYti4spC++ZidA7WdUt8/kSrzW2qminF2jbMK9qKql55YVX0FpwZe8KVy4dcvTwMVmqUUriZQg228YgXGgCTLQmF5KxUqySlFopvG821r41pUlJQaJEqIwrGXqUnce6UEURSqJURl1bvDM0rUVlaU8Xs5ES1rNz4vhRErz11HVNWYbkLojpDMiyJEgGx7OQQuIE9JyCuLx2ilubE+qZpY3NjUBAaH/oRmm0SRAiVI08keXiXFh7ozorG+vFJiNJ9HNgE9z4A/a6uO73a7HvXi8jqBypdrGaaq3DqGCd4CLNPR0U7B4ccHjjBmdZwuFkSHu0h8s1D6zE1O5zPvlPdnzhiUqRKspGYgWY1uJtoBEIglpVnqU0xq2dMuPRXfg0TUnTNLzXYBAQ5agapKVEyUBFcs6zvbNFVlhUWtLWNeDJhADTEVOgW/i18Ggt0BISoRB7E1SWYNMUUQzZXa44nC94dOtjpqdPOH10TLVaobUkL/J4kmH3CJvvJq/cf5Ym+xMcnxco9L4ivU5cd33A2sDBHw8G7G1vs7O9RZomkavf0jahRIdcz6AOmfZx4Ftvw/0QgkQngOj5iiIGIV31yAoIQm0W6wzOt6ReojGsLLSkeBUSD+UCzcIIhZBBrneQD4IxH4LSOlJj0UoyKnLKVcXKnYMaBOfvDsWInioSTdM6kJIr16+zePwjzi48Dx485ubtE05OZhwODtmabLG7n3Pt+ef5/vd/wN1Hd/novXc5urLDq29c4b9zZcz9U820ajg/eYI+3KfIx1FW1/fy2Ygg9ZgXOeVywaPje7h8iE1TtPekiSQdFGTb21izRaIHKJ2TuxlZYslUg6vOQUwRdkYzGHNx+oiLh/fZ2W85ONrh4NI++pHFZxOEypE2EN0CPSuGqx6aGChaKUiFQ5iG1rRsp4pBnnJlJ2c780yKlK1hwVjB2bLCtyXXthSXRpLtBNosQSrF3ProRSRC0EGY+Fq42CDu8L5FkMW+BBWDKN/77cCabtItmp0UoiVsGNaFkjx4lPSkiWBQJIwU7A4KFCXa1zRnD3BJhm8rXFXTlHVA49s6SLiK0BciZJA7n82n3H/8COsd1w6OePn685RNw/c+fI+yLrFNDVefZzQaoecX3Hl8zHP7RxxOdhilA6bLGTZ6OW0iXF3QLBBBlthHqoUPzdW6aRgUmmKUUJuG1itaoHIOTSjZt4kDHZoZldQbk47Yq9H1f63Xi37zFeoZ4Fv0f7k4CyTB8E8lkjTNSBJHoj1ZIoJZoBa4to1J/Sbh9Jn3/ImOdbVJdBlGLHg4Gf6INMVbg7DQZGGT10tPVStUIlGZQq48eIOIgZ8ElPd4ERA8hcLQ0gkvh0ofdA05ot88w4v7AF2EwLOTm3Drs2Y9SmOy31E7IZy4twgXDGuzNEFlGQ5J4z2lczgR/DsExCDSoWzNw3//P+bie98lrefc+IVvMXrxBarHU7AliamQ84r6/JTszRe49t/+a9TfeYfWf5fk47c5+3/+fRaf/Ag3LLj2r/0ycjikqhch2UNQt57GuOAxlCrSJCVThgTTCc7TX5D4Vw9ZfQbJiqFSP6CezVA/fyh04yVUlgh9F62lXFUYIdFIMgV2/oSqWVI3kGEZ5RnTpSBJJK3yTGcLFlVNZSwfnb/NN954nheuHPLGjavMYx/FeDgEPFrBaLxFmg+QSLw3pIkiUZKHjx9xfv6E0SDnzS+/wvPXrjHcGTFIFKauME2DsYFjKWSnYhjG65pwE6qBQZ2QKMvuo2G0ZVF5mvOWi3eXjAdjRsUBO5O9PoHN81GkMuZ4MpLhEJ2mzFef8hvv/5D/8B9+j9IbEqXZGo/58cMzksMjxvmEXVmzdXDAZJBSNhV1baLCXGCIhObnLv90aCRCh/MeFhlCbSGVCJ5WOqzfd28/YOAd9WyObR3C1Vhf8a//0k/z2pfe5PLzz3Fx/IDz6YzH51Nu3rnH1njM9Us7TAYJg0SQC8eT5RKvc9LhGGnX+31tGqSGnZ0hJ+dnTJdzdKFJhxlewuOLKcs2gI3WS1KVkCSCYuLI2pqybPj+2+8ymmzTmBXfeO06hzsD9kYJia1gtUJknjxJ2N0JiVsxTPGrisw02DqwQhShmm+JVYPYNyAh0M51GCOJlmROYK2jbCzeBv+S8dYY4QTzRcmj+QypEoSWwcwXGXxCBCgCrdSJ0POltGQ0HDIqhghC072L/zWmDWqPMsitY9sQFOHxUSm2t4WI85A/YArSJRRdUtFlE7FvJZY3wUNbO0pRs2rBq0CFD58QElsXBQdC75aMfcdRCVLAcDgijXSujhX0bNXeGkfbGFSiSdOMNAmULa00tnCUxlG3DbVpKQahwopt2dnZYbh7AIMdfued73M0GPGVK0f8y4+OuXmy5O1p9dmF5k94fOGJimhrcCYsEp0XB8Qgx+NsUC/oDrfhEr523RScn12wXK2wHvJhkLas64Y8yWhES+Vq5vM5KMko19y4fBAyPmcxTUPb+B7l00rRuMC7b9vglr30UFY11jWsmprWe/RgwPXX3uBwdYMr0xe5d/MjFvMLFvMpWZL21BjoMtO4+vtN7Cr8tIlBd8dm1ehzrlx4DvQmjGtxojBpg/t0oNEkAjRBDE9nGVprvAzKQ7goRRcnemgcfdo3ILRNx5wmQLQbE06us3QfsuqmtVTGkraGXNSsbMPMD5laKMsVddOEhrUhVMsVWItuG85OT5jOZsF4UITPk9GcyCOwNgbQIkrhxc3Z+2Bc6PA8PL6N9iXbA8GTiwtOpktmteXGqzf46OYx9+/e4707J0wyeOWFq7xw7TLpIMELQdV4hlmDlhfce/87SPMNUv0ag4FGyDYGNBFuNI62bUNPgtAMZI4xjpltkYf7pLu75ONdEjUMyZ811LNHSFpyb9nbSsGv8G5GfW4ZUJPtVyRH+yidUXnP6Og6YngVObxM04YNTGqJ0etKpIyys62Fi5VhZzjkaG/C3/izOwSVKUeWpD31ybYNW6Oag8kAnWcUmSLJBffPLnhUOlbGIXRL15ycus5E0KG1ItGKRIGrG5qmZrmqQIUyuTc26NrH0dkZtIbKQkD3lZKUpaVpmkAdkV2TqyV4lIPyFiUtNEvqx7dpowKS9B6pNDJNUXka1o1IQXFt6G2pqoqDnR2SJKCWi/mc6WpJ27Rc3b/E7ngL5zyf3LnL/ZNHXN7eI1carKOtq9gwqaM63jqQ3/BE74NiFWUkvfW0Nogn2NahEoFsLMKAdAqXgJeetgYpFEIJWlyoznniprPmi643qDCHpQhUu46D3bNLRQiupHdIFzZocLTWMF82VJUN52RbbAxy6aojkkg8WPfhPLtbbm5azz7erVsdTUZF+V4jNBDMHIOZYND3z51AeYP3DTk29OqYUMGzkXI6TILam0CHplERLosk7de2+C1CTcNFeocPn+1ipCJlTGjwPeoYqj2+rwSv08AQhHTBjxcyVKJkaMpfVi1PBNRWYIAGE2+ZQFmBKTTGGtzpOQ/f+R7NnYfsjV5g+OU3kNsTFh/f4bFtsL4msysOW4s0oMjY/2/8ZRYvHHDxfysxTx6h5QClw0qNX3siWO+prGexqllKSW3b0BfmQXpJ9LDr0eUOApa+J7k9k47Gb++6RZ1nhAaePjqhhLCl9GgWSgRn9DQvEAl44WnrEjl7gkwzsBphqmCEmxdsqxSB5OTkBDUc4XTC6XTGydmU/dGQrdGAyahgMioYD8dUdYkUisl4i7wY4J2jcU1A2JVkb3ef8/MzHp1PkR/e4uxsxu5kzOX9HbaGQ4pUY71jWOTkafDGcNbgncW3JniY+Ghgp3UM4iStbbDOc+nFl0mKFJUnGCHIBxOyYowabCNUCDxt3Ie6vRij0M5z5dINXn31Nb785bv86MMPOy9ifnjzDpNLRxxeu8oQR11XXNg69M/6ADgIR6xU2sA4ECFQlXH+9nPWhHFd1YZBAXkm+fjOPW4eP+TRxRTjPDvjAc8f7nB0cEAhJdXpCcq27I0G7E6GPH/tSmhw92E9euPlF/mb/+a/wa/9xu9y58Fjbh0/walQOfIuMAYmSrOVFizqaaTta4okI0lzVFbgJFQuWBu0zQJvW6RpkE5jvMZ6wWI55eL8hCcPHvLwzh3MfMErV66wf/0l0qJAJQrlKpq6YnZ2zM2bt0mEYLy3h0ahVRKUsXzSL1tSiFBN0YGWnUSDYSmDZK9KNLOypq0srV+yvTVmHJU0TxYlrTWB2SEUXgXk1eK7osMGUBIpohEA6frXEOsYtVM77OmSfYAWK3dszLfPi/EEfRAU+kfX1hMBg/Bd3oK1YFpPK8BrGdsBQEiPcD6skzE+6youAdAPlU9nLa51uCRW+2MhYM0ACupeOgmG1dY6Ggwq+rAlOhi8BtVRE3o7rUUYy/bOHqiEaVWhhebjm5/yg7MTjg6P+Jmrb3CQ5J+/6PwJji88UTFt2/NlbWfaCKFXBaKBo+s37t6ZnhBkO+cwJjQVeucDVzkJp9m0LWmao5RGaUtjTTCEU4phkUZ/EIM1LcZaWmvxMjRGGusxJtCk6tZgkyBCqYRYo8ZSkg0m6DxH5RmT5RwnJWVV4aIai1SxetKNKLo9pMuSny6fd5WiP0xt56nfbRZSNga792up5ECPCTKNbAw+G3XzgajY0CXonVSE75hzcVJ12X98MGbz/e8istklksY6Ug85HusNK+9YOEHdGuq6CfLEOqWuarCWWkuqqqJpmj5weuq+Sxle03/dbncO56pUQEFmF+ckriZLoFw1SCnIs5Th1pg01wjhqMsVo909jg63GA1TDFBWhrv3L9jZyhkXGefnD1gtTpnP5wzHhyDrDr4Nm4ULxkteKHRWkOgcISxeKwaXLpFt7aCSHGODgZPzwWDNmRYnWxKV4l2DMRXCNqTKIROHVxJjPGXjSMZjVD5CFTlmsaITa4hOQtgeUQ59PQ8Whqxo0UVQMTPGUTeOFkftLSvXUDdNcJhvHKNUUtae47Llx48XPJiXWOeRPvQrOeOQaJz0eCX76y28w/tQFTHW0Jo4DkwYUyGAdb2/AASHdCfAOxnna+DAdoomzgS6lRSdcaNAeItrSrwMvgQqyaOZVFiMN0DjfmFVSlEMCtIkJU9TFhdT6rom05pJMaRIM5arJYvVCu/h+cPL5EmKMYaL1Zw8z5BxLPVSkhvAV7f+CCEQUnWMuODy7EKhPxh6ut53QqiQeTsTSuUhhnf9lO3RK7/+93o6h/nWV2U3KaNCxNQpmEsqqREicOfL2oQ+Bhvoit4Hg84ewOupVRsf0/3wOcfTycoadOloh6IHCkX/x3fIfjxPvMd3MrhOEGthBGNFCUIDal0C6F/bCTDQJ29d9L1JhuuKrN1zRH8vYpC9IU22RtQ3v/FaiEVIFfprWsdSWRydckO8q5tVCe/BWBjkpEcHbG1fQe3vQp7ipcTt7+JUCnt7iESDB9s68tdewC2WlO/eYnB8j+zl50h3d3CO8H4xmolxD9Y4jPVrqnRMWJ9qieyvyx999KGT2NiiPnfr6X4Rbqjwm4FW9FiQIbAOSUBN0P/KgimtEmRJQuYUiQ2c+OFojEw0zjuapqVpWjKdkCfxT5rSNsHkNk0z0izDWrOmTgrBeDJhOptSLw1n5zMAmrpGC2jrhjzVtHXJdjNgWARDSW8jpbRpsdZgjOVsUXHROmqh2PICpEZlitF4hM4zRJJSO0GWDdBpgc9GONE1axvw0VRVONpIIR+PxxwdHHD16iXe//jjcBWl5MGTE56cXTCdr7i2leNd6DsxdoNIG8e3ECJaL8QRG/sfnAsBcTfmkTYm+4KL2YLZIvadOEmRZ1w62GM8GqGloF2u8M4F88c0ZZDm2DY0UzfOsjOZMHzjNU7P5jivuHt8QuNMSKBwZEqRa02qNU0d9hIhZKD4CUkqFJogw96t5YkMVZ9MFAilKSKtEmuplyWz8ynNqmSUZkxSTaolSjicqRDNiqRa4FdzjJDUw2Fc07ovvx6hAX+JoE5nmBj7K5yEBImsHa0x1Mua/d1t0ixFpilnt46xbU1CElgwvvM4iYBAB1B2nyY6OC7GPoK+V6V7TjdrxDOzsZ9mz0xS8exnPHX0GpfdP5/6ORier6vcG4shHdgVQN3u3dc0WclGbP0Mc6nvU1EKHR9DhORexo1RiGA7ECjRwfC4Y5/lxYBpazk/nbKYLlkslizKJbt7juFkyJXJPl/08YUnKqtV3aNprbdBttZ7tNKhhT5yI4UP6Gye52itY4P1OVVVRUfPhCzPyfMCITRN27BYlaTFEJUkFFkK5TImNi1JGsp5UgUETRB6TNrWYa2lNQ2NsSA8UsN4MgwqHSZQwWpnab3DWxMoTFnO4YuvkW/vQVJweucmzrTozluFzcCDjQH8kx9PZ7jrwbTJWgi/XD/gCfr4rWlpuwar1uBtdAZXERGL9LmeQhbLhEqojff3z0yiOIBD/yLeeJAyiCIIiWs9EzTbUiJcw4U3PPGCG63FNG1UhRI0ZTB0lHLY84+7pv2OB6nSFJ9nOBX7Rbxf89KFANGSqhzr4fzxE3bVkoFuGWF56WgMOkdmKZcu7TAsQKDYv3SZ8WRMc37McuZ4+Ljk7/9H3+Ov/vJX+dPf2KcuT1ktH3Hr/hZHz99AVHXoDem50y2zxQqVFewcXka1isEgZzTMGI5SZDbEiZRHx7d6PxBvE5wvMVSYqkIoh5CetMiiK7zh5PQBVZ3RGM+WTsgzibRuXXmAXlPdOE9iZZAoTAu+c7di+KhknD1CyxjEOUXrwQhPIz2OcG9c60iEorSWWdNy68EJCEWWFThvacqSajpH5EOyIsOlBU0LbWNxjQkVO28QWLyVfcLqvI3lZh+NuWKPFr4fR5JA2UoU1FVNtSypyjIGNYokUSg0WiWoRCMVJFoxSDNMtQwmVo1BeokUKnoFSdIkJ98dIFWo+JVNy6Ja4Zzh6vYu20WBtYZPH91CacFzly/x6vUXeO/2TaarBWfHN3nzuRcZZwWqIfrIEBbeOLWcFWitgARLhjLhXGwNRoDRkAqB1WDwGO9JdR4SbVf3tJMQ7AUTNqU1pjW4aB4oVExKXPxcIXAqKtkIEfsB1ttfEIeSpFKhYsC4rGpq4zE+Aj8bNJ8eBOjm8sZ68nnVk88CJ/GVsSqjpca4sM4IRKAf9BLEDuMNTbwW3npqT0DerMVJhfGaFk3VJrRNGJ9dxQckRkVZVxnU1YIUsyBQa0NPTlgLw7rU0b02qRNdIP55cbjcAIwELlauEhY1zJVjKX0AvFRQ8BHegnCB3tZYlJek+Yjr/9V/HSkkw6uXqbdHSOcZXj1i55f/As60DK4doQ92sM5RX5xR7O2z/Wd+lsnrX6I+P0MUKenlA9rWQbMKlRLvUMKT6eAHJpFBCn3znm7kjevj8+URBM/26WzuR+Izr+oTmPizRISkTwmMC0yEIKASnyE1ziuk12idkWXh9yPryFceVVuMNqhUkg4Stpd56OWxnkQkFCpjlOQM05SSAO4opciLPPZz6dCn5j2HhwdMLwKbYrpYrP2YgFt37tLWFcvFjN3JkMkgVlUiKNc2TZDubVuOn1xgk4JkvMXe5etMdnbYHg852NmOVdtwfYxpsMZg7DyqL3Rc/5B8A9HbRjIZFly/esBrL93gn33HInWKynLu3bnD7ZtHPH95n29+62tIZ7BNHah03bWWAVBVSmFrQyDMOnRW4L1EWHDdvrmZ5MuE5bKkqmpsa2iNZWs44LWXXmJra4ISkvliFjKI1uCrBiFWPdLucRSjIUc7+/zlX/5FhoMBH358izvn51jpkVnoxyiKHKUEF4spy9USGauL0hJ6g1aroIyqNVujIQOtmSSaLMkxzrFsai4fHrE1nEAL5ycXXJyeY1ZL5o/vIQQ09YqmnIGQ6HzA9tYWxjim8wVNXdOaFqXTPrhf7y+sswAvECIkd1JIEiUpsgTjSk5OH3PlmmN7a8SNS1f45PiM2ayCNLJThIjM3JAgyEjz6NIF2+8IawA3ACRdTBKzly6peWpZXSMCm7Lzn3esXeW7133OnO6xm6eTjM1T7F4tRPDP6/oo8YIsy0hl54Xy9HrfWQgkKgESvPd9z3IwGo6iMs6ilUInGoPCCI0TkmQ44sGTM35064JP7xxz5coer77yGu/ef8BMFJR6+3O/05/k+MITFWsFq8YwqxqM7wE6pPNkeUaRZ/gyNMY6ayNCK/ubFwaR4MaNG+zu7YNQXExnBJ1swaqqSTNPmiZBTYogl2ltbG6SglSnaO1J0pTWCJpI97JVg5chURFAnmgOJhN2J1NYLGnjZJQiaIa3wrO7f5mrR1e4NSo4e/yAJ/fvBV142YX7IsYFXTb+hx9/oHdKPLqxuPGKeF3WnsQ2NiTbtg38dCVBq8iTD4mAi3xM7z02Vqe8J2r5B3Q8bIQuam4Hio/wgtbaYESWJCStDI2NriVPJDvk7MocnGPlPXMEjYVMp0jvaHxAW5RUDIuCQTEgz/K4aAZOqBQglcRFWeKuX0lK1QfH/SaBAOe5KCtq2fL6l97AupK2rfngg085O11iG8c3v/I8v/e9m9y6+4TXnhtw+fIBl64O+Ru/8nVeevkK+c6Ik3cfIXagGAclom4RcMYi0tAzkKQJHo8xDaNiwnh/h63dLUpTopC4tub88SfodEhWTMh0wmBQsDtSpDseIWJtJM2p5yXL6YrWX0cNdxkW+6Q7lyDJaNsmIjuC4M7tw72RilqGJvNESR43Db4y4Exwb49N3AHx832Vw0f5QuOCb8BQp/z8W28xL1c8OD3ldLbg8s4Or775JueLOavFkvPZHC+TEIg4i7FBrlOprrztcM6EUrMI3F26OeqJ/NdY2YsBmDWWuqyoO8BBClItSbUkSzKSpAvOguZ/U1dBlUX4PlgJAE93d3zfWOhFaKwfj8fgHYXolOIEg8mYvTyjSDK0g6PJNlLA+4/ucOf0EfvNFte2dmlFCKZ7TioBWfK2xjQlbjaFfISTsLRVFCGQ1M4EHwkVNvCmXeFENIyVQcffW7BxcxPC45Xo1zYhVWhSVFH1qzM329jUuoqi9JZOvUWgcK4Oevs2yNiG94sNkXIdxPvPSU4+b73ZBEg+k7RElK5VgFQorzDeIqRHYpE2VN4UoWeQRNFkmoo6EEa9pnUGh0YIWCymeGkZbA3h9ASHwYnQa4gQa+SvAwyViMCI6H15gEg/jIIPG4adzskwRvBrxSsCJazbHXqZdaFxwtNaQdVaFIpEaUZpipRrNJI2CCTUeI7+4s+BUHidUC0rsJ60GHDjv/5fDspEWiKyDGUtY8Cuwphpd8ek2wXeBzdpYcJbGx2uX6IEO8OCyShnMAh+KsHHKyb98Xt0VUg8AYCL8ZD39GWXDgEOIhwbKnI9taS7KjH62QCoupin6xdygHGO2raopKBIFDIbBKqukD1bQglJrhMS6VAiyJpqIdEe3GrJfJ4yXY7weUKSp6RZQpImoII0tXU2UpIhywt8bN7Ns5zLly6RJpoPPvyQkyenzKczkutXybOEYpSRFANS6TECVnUbVgAffSGswxiPFYrZcoVoHW3TkuUZ460Jq6rE9ZJqQcHSextBpdBNK5XECYVHBcoW4VyrZcV4MObGtesMhoPwPngeP3nC/eMH3L//APnTP4XCYYOsVLzuwdh6Ma+oypqdrTFpGkyQH9y7G9YVnbKzswPeYWxL1//nkVRtS90GlkiWJuzv7fDSizfQKgASUolQ4e3HewhaXVwd23rF7KRGpUNGo4L9g23eu3ObynhkXnJ5dwvtDNLbQOH2njTP0YkIlElXszdMETpBZTnjTAXauTOU5ZSyaViuVqQ3DsiFI1Gei/mMh6en3H5wzG5VkmYJaSLZ2tohywvywRiRnHMxnfLgwcM+N1hTiz1E1USHp7WWzOuwRwqJECFuzLQEbUiyBKG3mF0smM1rPr71hLKseqPp+KYbUNDGuuhjs32XvG+sIwgVgTmB5Vm+zMZbfA5j5unH1onMs8fmCu3j/3oD7qczNbr9NzBAoptZ3Bd9TPCcNbFE57GRkmshyg/HUeIigBbXie6698B5lyR6H0rXMqw9UgS/tWVZ8+S84d7FA9586wW+/e1vsnj7U/7l43N+950fwl/++c/9rn/c4wtPVFrrKVvLom4jradTEur6T4IGtHTR+MY7oppcl8TiBYzGo2AiZS3LsiRNNFJIjLVIYwPS4nxYmGIjqRAiIpfrjLvj0GunUcqERCVyFbXQ6FSxPRxgfagAqSwNLt21YdU0JHnG9s4OWzu7rOYzGmPIfVyDukHkN/9+9sHPHn9UskIM1jo08dmaoHXhO4cGWhdK81YgtIqvDRmyiLzurlm+G/uOSLPrBA16alpETPHRZClQ7zplsdpamtbQylDJMQjaDkOOQYe3FimCMoeOJVoVA47NILSjqXQSweG6rPdRWHNDB6MRyyphWYeFezTOcV5y884F5xcWaxSt1Vycr3j08JQru4rLV2A4ynjpxj5ZljBftpQ2Y6QLimIA1vYlYO98POdQVvbWBorCwKMzTTIoWK1MNEAzVIsnJHmDkIo83QUhMA7O5mXY6r3HJY756ZLl2YpifINicJl8+xIyL8IC3LvC+jXmGSlQToS1wQKNjbRF26GAHoRFxIZbJQSpkjHA8FTGotKEcZbzlZdusKgrJtsDHj464/rBPl975QU+PL7P3eNHPHp8ihUSL4I0a2eKtykUEahSMZSJ5eGOUy19TCy7IDEueqY1MTl2cd4HH5NEqdCwKgLlwDuHsQ3BiTj82VQg60f9Bi0GKcjSFOk9GYHW6aQkzzOGRUEqgw/CIM8YmuAvNF0sEA5283EExGRIKCPdRXTUH4LiX/C5kIGrjUALiXGh1B7kmz3OtaFlN1VxP4ndX10gybpvZL0udNF4xE039qE1DYxw80Nk+tS8l1IgO3+V+Jabz9iop7D5w1PrTTz/p5yKN5IV0SGMQq3f365VOUSkB2jZ9dAF34KAiwRlHO9caBiWkqapwTuSRBHgTNEHDOvvsf4iQsbGULlOVPprufkdI/Us0MB833PRJ3tSrlmdG2MpBDohT+2SrUwphIz3P2YBQcUN8sNdvFQ0xiHOpwjrEUIxeO46JCrsG/dPqc9PaR8+Qh3sIbe3kIcHaAWuaTHzZTeF6HzipQhAWaYVWj0Ncgnhe4VLJYOaQRcgSUSUFf4sMNaPCbFJAfyjoDOCCV0co11gaKMRn9IJiZIYL2LfaZwpPoiPqEyinMSaKPurFINU452hbZvwXbVEx8BcSInvKZJhHOjYSxLMZAXDosCMxxRpRlWXlKXh7OycwaAgy1LSRGFFuH8iMjWECP1uzoTexyTLUDaAPyoqvUktqUoTxRXCXPIigETGWWQ071NOhzUY8K1FGINyjnN/QlVVSKkZDodUdYtzlroqWSwWTGfT7gZ0q0kPRLRtGygy8wVbky2ETBBCMp8v8EiSNGNvfzfSTjfQSu+DfLGxWA9FmpKkCVJrZoslSkpqY9Fx3AgfQFsvJE5otAoUVm8NRVqQJorRsECL0P+WpAmjPCNPdOgIEwKhNYmQIQEiGH8mCiQK7R3KBI8vb5sgcFA3mHpFgieRAi9cP4Zaa2iMCXGZUniV4FUaG+ZDZOj6eUyPT24UDfprKqRCKIVUGiGDoqgUkGmP0AmGgumiplo2rNo51jm07uIn0b9v97Pz66DcexdG41OLZ6SMCrF+fb8R+Z98jn1euPeZJObzft995gawsAkw+A1dtI3cynm3sW+v+2DkBkD17Gk/LQ719GetlTjXvwvxkkAmgqLI2B1PuHF0icPSML5Y/MHX4o95fOGJyqIynK9anixbWhe4yIkEKQNKvaosxoQAJtGacrWk8wlRKlQDrA9a7dY5FsvgGDoZjxgNhwBY21KXhqZqaBpD3ba0Iui/J4lGR/UY1014GZCzNAlccqkEtC1Se1ItuXG0x+72iINyjBOa2XzF48dn3Dy+Q1UUjBIRFDh0irH0XL6n5IifCSr+2Id46q+4h4cNRBL4/3XbUjd12Ai8C8Z/AErStA1A3xS1OfgCQh6oGm3b0tRNz09EiN6oEREaWmN6SWU9F3XLp+czfnR2zkdiSJ0dYZ0AqUEpXNvijGFVNQyylEwpsDag7fgYzHT9SfH+WItxbdDJ9yDXcwvhJU3dglS88qUv8/47Ux7fWfD93/khr3/1CjuHY4TPWdSa6Urxzsfn5MOcL79+hUv7Q8ajIWla4NoVH/74CafTFrZeY//KS1x/7jl8tcI1TVTPgEQl5FmQImzqmtVizjJPqe1uSNwIlSVcRbN8hLcGrQvUzmXO53MePXzE3bsfIQjBxXyx5PSiYlF6/upf+xaT7ZfYvXqN6cXj4A3QIUhPJWcx4RNtCM5tJ+2bgdTMFwbvDMIaDAadZgyKAZPhEOMsdVOj2obL4wFfPdzlr/7sl8i2tlkkOSf3H7OdaC6Phvzjt9+hLEt+950FKw9GKVSWxthYRmqGRngVVLz6njL6ip8n9ESFBr/gUq5UgpQa21qcCU303puwBujgwaGlJFEaZx3OmnVFRQfqmHeBb77pir7O1UOgnEbjLxzIRJMJQSIA4zCuYYEnz1P25JgX9q/wyfE9Tk/PqUrL1aMjxkVBoVSf6OOaIJcsweUZMkmDyencUgjFOEmxPqHC0+CgNiHQlgInHVKl4d7ZUDnuZk6XbLkNqlLMBOGpTaHrj4mPSU9sP8N7ixAerSTjIqdwLUlj+ibyDlz4zFbXB/7iqeB9YzFY/8hG4hJfKF0a/HaERxiLw/ZJao5goCQCi7KOpBbIKkckElKFbCt0ptBpiqkbZGOQ1vcS3MTA+CkJ5i4AkDJILysVeOiRWiZVFO0RrK8lXXD29BcPZsExiXYdfcdhvUfJBK0hTRyJ8KRAqlQfXDoX6Q+EAH55eoGVglZoRlaijAPb0E5L1HBMNt6jfvg+9//5f8bb/87f5fX/1l/n4Of+NFdffh3pS1qxol5BIwMwoQX9epeo0DQvPVEJs5M6cSRahX4p6/G+DRUivYE4P2WAKQgV4vDf+jmxiTYGzL53lnkW/Ir3hNB3F5QfJUgFUuGtQCZpCAydwy7KsIdnQ7KDIWklWd2ZkuuE/fGIwfM3WC7naGcw1RKpHEmhSQc5Smuk9aRao4SM91QjZfB6aOuGVAi28oJXblzn5OyU84tzfvjO28E/LUu4cuWIqwd77O9ss7e/R5YlwXvDOkzT0DQNqlgwrFrQCfs7E6QSlHVN42Q0rwviPUH4QVCuamzT4I0hUzr02VnLaj5F2BZMy8l0yYNFw/1pyeXDyzx+8oTz8wsk0FQl04sLWmPwCpzs+sfCf6t5xfn5jLOLGTde+RKtzqi9Y1q2QfJVrdDqeZyTtN2scAZMS1nV1K3BIRmNR9Rtyye37zAZDxmPJxTDIaM8Q3mHdC3z+ZQkzSmGE9R4GNYpH6SBpfdsDTKuXzpAZgU7R1fYzTQHk4xUCorRmELmeCMRdok1DW1dU5n16KFtUN6icYgswXqPbA3jNCHTQRhisjVhf2+Po4uSYmuCF9A0Decrh1ssqeoLqnqOx7Kzv4drWpq6ZrlYIvr5GPddKUmzjDQvyLOMIstA6LjuGVKlYnIpmS8Ds6BtLWnI3nDO0in6AcELJcaHPoJjvlsTPVF8sKvqqvVSKYgiRXGt/NyF9484Nl/jN9KnZ8HrCHYFULkDMrvfRTCFCDqLwCrqQtCnBDJYq5I573vrj34dEPTMpO5YV1XC/70HaWNPqjVI6TnYH/Da7jaMBKMkZfH4CX/mtStcvbLPz83e+P/xovzRxxeeqJzMl1w0hnlj8F7irMUaRyUMuRCoRKHVGlEHH103gymPlJJEJ9y/fw/vDIM8ZTQeoZKERVmRKkWWaHSekiYZAoX3gtYY2jYE8VoFOoaOpWpvg5mc9Z4k0RRZhnV1QPy15IXrR8wWK5KHD/mtd37AgyenPHhyxqPjY7bGIwoN87NzquUqmEB2I6YfdBtbZy9dt0Yof5KjH4NRKc35zSbZruRmYnArSJOENEn7qpHA05pQMhYyKmP0p+Mj9avzhiEEaDHQidsbYXoGmUpT1TETlzyeVizLmpvHj/m0VZyM9qivvY41Hi8UKlV4E3oZWlzv74EM3iRKKTyhEtQ1DIZxEQJuDwglAwraXQcCWim9Z7S9xWT3OstZyfT+PVYLyyCznM4Uz73xDYqtyzz45LfY2fVsjyZceeMaF/dOufeje3xwnDE+fI2D60dcvvIS49E2WgXt/rVC05peJzzsjLdoj64iM4VAYusWWVm8a7FNjakr8kIyyIds712iWgbH89KdBbqMyhheKth/acJossNzr75CkQ+w5ZLEq6h85PqSsqdDQePhQsDmRIoWktVqyao85xe+/gYv3rjKCzcu86MPPuLOg8fcvP+I4yczhEpJdEa9rMj2d7jy0nX2bjzHaHsPn4548cWX0HWNXsxJ3nEoLFLDxWrJxTJlWWq0niCkom4anAlIuLOWgFyHRsYu6BXRMyeMzbA4OhuUwgLy3zVBil69rjUt1rUY06JlV+nzeB8a8a1tQ4lZqvCmNnYabEwh0aPJPshnexdoUt0skqGhuzYt4Lm6s4fUirPFgk8fPWQ6m3EwmfDWKy8SaI8eW9Y4oZBY0kQhjcEsl1QnTxCLhqRx5EnDoNUYC2NpaWUaHNaFRzoX+wOC/GlIqAKBx8UAXEYaifW2pzpbIbHrjvWgqgWYmKU456lbgygEeZGysz0kbed4Gupo3hWghI1VxPt+TfIxCA4UMRC233qeDlM3YLpOvUbbFkxYmzGr6PUAyCasECJjWyZkPsVbTSoahEugTRCtAxWQWF1IrGlYzmYoG4xMiSFIR/vcACxRNgQSsegUPlf4oMgjwpUKGmSbiGZ/+iHocA4nVRRakSQChBPB8NYahIOBggyH9EF0pfO+kWoDMHEepEO4QIHxQuFyjchS6gf3aU4vWB0/QdVL6kcPUdJTTAYkwtLc+5ST776NTDTjl1/EDQYBFXaGUL301KaltlBZqFpH43xgIQgd1BC9pbVRwEHIXhEPItrfIZ4COrd71/0bgZOh0ut9V/0K88laF3Nl0Z+LB2z0urJeImUa5F2Fom1anDOgFCLRJHkOSYYb7vD44Yo785LWO5yzFFnKa6++jPSWYaLxqyXaO1KtgvypA2ccWiiUVKEnSkrSNCFL0tDr2DbYtiGVgq1BQSJACRfAOdNy9viEk4ePEcAgT8mShERrEqVwzmNMy93Hj9nZP+DKtetMtrcCz962SMKa1hjLRVnSGBuqFdaQiqBO+PjkDr6ukM5w/coRW9vDYAS8mHJyfIuPbx7z3KVDfFOznM5IdXDznk6nrKoVoyIo3dVtEISRUmJIaNSApWr5p7/7DvcfPuL4+CHPH+3y4rVLvHLjMsIKhBNIpxEyrCPOtCzmM9q2QaeaPC94dHrOd377e7zz40/Y3t5ib3ePUZFytLvNjUsHHIwHVMuS2cWMdDBgNByxvbVF2axwbcswS3jtxedppcanOe1qTrlsmauWB8fHPFnULFrF0SQnVQKtEpypMZE+nkpFqlMmecpoeyvsfXXD1mQL5+DW3Xvcf/iAs+k53rfMV2VY6xBUBLo/SQouw7U1ZVkibKTkim4/jlth7B2umpDYh77j0EfcM0eiXG9jLMtyhQP29ie0VU3bGpZNhUyiyigyeLZJGSu2oZLv2jaAz93eEoEUKSUe168rvRkx63W2m4NPeVR16/HnhX8b1Yk+hPTreSs64Cg+T3YoTXTdCBRx0b9GeI8VEpQO11XpUG4MvOUADoh1daiTVFYRHNvsCVrvI8TqTFxVtAwoiwSEwdqUxgjMqsEaz7K1/B/+H/+IT05X3J3W/KW3/sef88X/+McXnqjMqoalcVQ2lCAlnkQGioqUkXOrZaTQ+Z6LLAhNdiIGP6vVkrJc0TQ1SZohhKCpG2xjwPsoq5qgvCdxGhXNCVvraK1HSxUyar9uEnKx6VUrjQ52CTTG4ldLprMZJ6en3L9/zMl0zqKsY2besJxPWS1mNE0VBjn0N3Zt4NaV4jZv+Hrwbh5/mAJY9/u1UtjmcyMNgtADojrTN9WhsQGp3eS7d7FLPOEemd50u+/Cl7BGBIQyUMMCRWFWNsyXhrZe8oiEpdWh3OuhFRIDAbE0hqZtaUxL3Uqquo6u9WuqR0cb8t7hvMV2Dgib1Jd4Nn1zl5QUwwmjrQPmDwdM5x4wWDUJiNCl57l4fItESWSyxAjF+aLl0WmNz68x2HuevavX2d3bR6Lov3k3OT1rWVwBaZYxHA6xMkxmZ1rq2QKoaZsVbdMAAp1kqDQl82NGzrB7xVLXLcY6svGYvcNDDo+OqFsDlNimpW1MvIshCEy0COctZF8BEz4kpmGDCIlCLuGbr9/gzVdv8PKLV9jOKw4miky1/ODuBavaUpYVdVmhlGKyv8dgZ4/BaAtkjsglqqlAQpboUOHQgtoaamNojUOlYUwBGBcUFVx0hQ4pa1i4A9UiEtZESHJ7dZQ4n1Xs3Vg7Sq/Htm0bZCIhJj+hwTwm9jIk2iHJDdSfTc5wuD6B/+0Q/f3rxn4YO4G2qIB0kGEShUozTmaLkAx4H6ijIrr5Ko1wDoFD6qAlj7OIaoVqDYn1pLlnYAPN0WrNsoXWh8TeuVAhk2I9o6QIDfvOi0ijiZF3DBJllE3vZl+gTUVU3wcKhyAYkiVKkCaKIk+CAWicT4GKJteJykaS0mFqMkIQPQTQzb9+U4xrRn/9w9OUAmWDl0CnQBQU6UJ/ivSWgVakQiCdR0fww1kT1cLCHFdahWCjroMUdUw4uqZN4pzr92UH3ut4FUX/XVxcD0JyGShCiFgB8T4E8B3wIgT4gDR6Ed7f+rWyEggSIUC4SE9x+EgrUTpsiYF+4/p1qeulFEmCGKTY83MWH33M4+++zeGrL5OORux/8xsUl48QpmXxe9/j/Nd/h+xgn/HVKyTb2yAVoqkQKsEJReMstfU0FqwLTAJLBKoi7dUaGxO6LrkN9zH4FYWfJYLQ59YFLpFW6zu/hW7uhN91ZakusRMuJMXWOIwKsq9ShOqoiA25LnL4lUjRWQpeYoohS1cyb1wvF2utI0k1o2zAKE3CNVUyysrqnma4lpQOFehEa7QOtM1O/VMJSLWGLMOOx5SVpqorbF2zrCrqpmE1JzT8KkWWZuA9rTHcvfcAkoz9S4Y0yxDS42yLt1GCvmkpy4rWhrGt43kqD+V8RjOf4tuKg0lOLh1kCav5lMX5GcvzE452dkiViPNEYI0JCpdtg8s0SRSGwIdrbIRk3joezmtuHh9z5+497t8/Zrl4jjzLuH7pUly1uvWfXj1stSpp2zYg/UIyXzXMpgvuPDxlPByxs7XFIBVcu3xEVVVc+vpXSXBY01Aulygkgyy4t7ex1yVJNE1rWcxniHpFITKM0VRlSbksKY1EbA0i6AvahmoMCHKlSKVCak2SZCRSIHVGlmZ4PLP5nNkyWBYkSlC1BiMUTodKlUL0okfOQ920KGdiX223F3RreSc0Y/seJCdt71GFj2qDPohygEAqKAZ56NGw61iHrlKoQq8UWoW9JAJNwrugfmltH2eJuIZv0viE9xtmrLCW1uv+Xv9LdBONNdDS5zibz+l3gXW8J6AXrgkv8xGU6KiaRCouwQdKaVA6UO2lDMBCpJF25sL923sf+05C7Nj1nfbxou9opvGeaLV+vggVusZ4ymVJYww1gt/8+C6fPrzg8dmKL/r4whOVB6sK4wWNg7YuKTLNaJSi0kFPE0FnrKqWsmyCUpBWJEnKoqqxBPWqXHRNog6dBlWQxlgW5zMGRY6xlt3dbXSi0TIuyE1AUqerKiiKpZpMEwezB5EHpR0v2N67xPl8xu379/jN3/8O9x884e79R8xXK0bbu1x+7kVGOweIekk1nzK7OKGuKtI0iRvsukmTeJ7eu41h9vnH53kYdBMpjEHRS8R2A6ibrBGHjOpdQUEpSQUy0wihgSQkLd3A7jYj1wuaRO52CH6RYcA7H/xttOoCAIlQDkVoSH1yvqCqGgSWWhlcvqJZzVnhWUjFWdmQLUt8ueJ8taRcLcm0ZnYx5eTsnNWqDBuRDM4M1lqct0EEoS9ZxoRVEBCMiByAZzWfMpkM0NevMjt7lffvP6JpFrz41i+wfekye5d3eetbv8xH7/4WP775LvLjd5jXGpJd/vyv/ArjrV2SNGX65BGtaxBAPsz7Cd8hM8ZZUB6hQGpFkQ9ItMI1K+5++AEy9XjVsFiuGFuP1AnLas7OZMKVq9f4yi/9Cjc//JBbH7yPxbOzc8j2ZJd/9k//MZcOD7lx/TrL5QoVF/mLiwuKLGUyLNi9coUszUiURqApkpTtQc79hw/ZHSW8+OIN/vv/tb/A3q4EOeUrz7/EbPoCj598m7/3D3+f3/nBx/z6994PtDIh2L18mcHeIcrB8nzK2aOS8Shjf3fC9v4221sjhpnCeYFxCudTtNSkOiHLM4TKIooU+MNSKbTWIdiI4wXpkUKhREppGkxdorUkSzNcmqKjfn1IwoISCT44U3slkSohkwNM5XEqiYp1GqklaJAyQRJ6nWRHRBexOUJsLvWEwLgLvoMgfpiTwnIl2ebyEbx+/fkgnQ3Be0iE17l8hF/MgmpONkDkOSpVbPmagWkovA3jJU+YCMVuPuaTeyeYqmaYDKhskGTPpQqIvFSoVONl8M8IqakGJMaFTUMpRZZnfUMjBCTfO8/KO2Rshqxz2ElbRoknyWIWYT0TrRjmKYMkCcIHUaI1JEkyIuxRwUUIVGy87frEuvUgS/SaKuRiX5sQuEIiyxLVtLHXxNG0gYCKsWS0jAaKoTYUtgSVUZU1dT1Ha4WXHk+D1klY02wTKEAy9Lc0+Fi98SihomKYQQiNlZpGQ6FUl9XQGhF8RmIfQSfrXDuH8R7j/P+Xuj/rtTRL7zux3xreaU9nnzHmiBwrk1VZI6uKLM4URUkE1d2yuiHBcBswun3j72BfGY2GbcBfwIBvDLQho2G3DLPVktyURLElFotkVWVNOVQOkTGfeU/vtCZfrPXuczJVbE3li96oiIqMOOfsvd+93rWe5//8h+1qiGCj3GrKoq20IpBhChBCk+mcLmnvNjYgqhF6MkHrjOBUan5s+pkClZolUVSoasr62SmXf/pnvPN/+6+4+1/+F9z6m/8BX/gv/480T97j4h/+IR/97/4PNCdP2fmVXyL88jeZvPZ5ZJFDvYDRDjYfsXGWZWeZi/jabHD0LtJ6cxn3v9ZY+gQKiWSYEk8Bts0TxLwD8AgJ2qWGwKcppwAlMzI5rD1NH8B4R2d7go2GK3W9hqLC2AqpKzKdkWnQOn5tFMdoykmG1zltuYcRLX0ITEcBazxnZwv+/Ptvc/fGAbduHvHgC69RPvmESkVtGUphRaDtWnI7QilNVWQUuSbPFVISP8+kkdExeIsy02SiYlrk3JpO6G2PtSb9shCgKEqCDzRtx8dPnjMqR0wmE6ROZiNO0LeGzXpD18SQwarIyYucnfkupQwI03LxgeFiccr56Snrywu0juGuD5+8YH2xYCf0bI4fYdtVFJx3EmcsbR0zQkKZRU1M0sH1PtAgeO/ZOX/45z/mRz/5HjJYMjz/73/4AafPj1HW8tU37iN9oOt6lFIY51i3hvPLFeu6xrqe5aZDyIzgcxaXJ9hHL/BNC/2CgxsHvPr66/wHf/V3OdwdY+2GH//opzSrNaedodqdclmveHx2xpOnx7w4v+DR8Skv37tNdvcWxa0jMgGZ9BTKc7Q7i9Mi01FVGVpLqiyn0JpN0/HiYolZrKmqEdOdXVQWE+dN27JpHM5L9mYjNhdddJTUGiUDYLApoNs5x6ZukMGh5OC+GIsWQYiTExEBy0xLqlxT5EWklkpBJiN1DyRITY+jdZ48G9HlxLDaTY0TUcMrVEbISoJUcSoR0YvI/hnOEdPinb82FYnnjpICnzICxRVaDYitsQLXmBHBDdNOPjUlij/2CjC43sxs81B01FZlw3T52ve5IdbBOaS1MYctK5C6QGU5hRSEXCee6SADuDIp2E5+rjFYrk+nB9CwcIKBr9sXeQT0gkSpEtsINuuWJy+e8nL7CnWW8+Fa8vxkw+bZMT/vx/9fJiqdCxgPBztj3ri7y+fu7GJ7QxcUG6f45z94SGd8EuTFA3RwJxm4dVmWMR6Pmc93AbYdX5ZnBOGp25qqzSnyjDzT0HUE4XDBYIKPXPEk8NNCkmvFeDynd57HJwv+9Ic/4cXZGQ+fP+PpxYoeRXF4mzKtn8V6hWlqfL0mLM6pNyu881t74qFvTj5I29eY3sS/1WMQhg6cwW1L+9mpRyrGYpERR3lqKO5UTHzeih62nXdEMXUQW+cvjcY4R1UW0eGJhKiJaEGqpaLUGeDZtBtkrsiEJreBWV5gy4rjLKcLcGEd515QrDtYbajrNUZJukyROUdTN/Rdl1K4h6Is0YhkpFYlaI90EZM9nmdoVU3vyHTGzs4Or775NQ7vbnAeXn39FyirErvpqCZjXn/ra9y6e58ffPePuXlzl8n8kKIc0bcNXb2ChMHHSyy2ALQQVxS1LC94+OKn/Ojd97hz8xa/8NJ9Dm8csX/rBnW/ZNN2MRzRtWzWl1x+ElhMpkxHE5p3P+bF82NOT06Z7835cL3h4YcfkeuSvrM8e3rM86ePme/usn9wQL2pmYxKdnbnWGexNoozZaZprMUuFuxPc37zG7/A3/qdbzDJW/qzF7SLj8k05NkOtw/3+c//9tf5ta8+4Le++jp//x99G20N7/zwPX7ty19kUkqMWeHqJatW0l5kvP3Ox3z45IzGamyIKdmOQNe3FHiq8YTd3RkCUj7KVe6RGODv1ExKodAyIzc9pqlZ1TV2uaLf1PQmNvMq2RNLTBw764reWYRzFKqLVtjOI+o1qw9/RHtxQjbdoVnX2N4kb3+DC9GKufcDXY7txGkrdE+TBp2co2LBTETdXGr6icWQSYfROCsobc24UNx99RZkY4SQyNu36fJ3MThuTybcmx+STyYUhxO++nlBZwO67FkvJK4PjPM+OnMBLrMoPUaqDJ15gtfpuVt8B1iH7musdSnbyaRA2WjP3PWW3nk6obk9gVtVYO02HOyM+FI2Irs5heAQeLTUlEVBpjW272i7NiKwhGhgoCR5JrdUQ5+mz8EHREouFql5Gq5Pb+zWqc+WHtNYTG1ZdAs+enzKxWXNblaQKzC0SNGhhYti3BycjE2AZs3+WPHyzUOK6ZhWFBhdghJpiiAQocMai+kNyA6pcjKVsTupUsEdWOYKGeJ0XkuJC4E+eHoXqaOkfWugwQYX52oKKAoZ9xXvuW03KDxP14b9vT2y+ZzDPOPypx/jpxO8jUYQcU+42o9DmiwKnaOKCjubMfvKV3gjBNy9Q1a6oz/+kKf/n/+Wzb/4Dt16wejN18lfvkttVnQP3yFIiWkbVDWmff6E20VBezDnIIs7/F5V8dKeohrPOJiWSKloXWDZdCm8WFLmBQToepv0HYIiGyYVjt72lEW+tb12Ln6GKlm5KinJtcaLKGJ23jDK4hmaj0vWixUTLVF9jekFrRe0bYvxgMoZj2KgJ1JRFhmv3r2BHs346NkJXuV0QtPWNe9/8oTTyyW3Dw/x3ZreBabVmCrP2EgZzVh6AxpG1YjpeMJkNI6Bi2k6710fbbq1Ig8aKwMRSxJooQjC05tuO0QMyfEq04obu3OOdufsz2bkStO7aO+7Wa0RMmo9ptNxnKIoSZblCG/wRjCa7UA5ZRNWPHt0sqUo9taDLil3R5gso+w8o86x2Cxp25bFYkHT9ci8YLS7g79cEpTACYE57bi4vODZo4eUKbywUJJuvGFnNmZ3d46aTtHWMg6ecjZn3fQsV5d88OwFm6bjxs4ur7/2Mj5A2/Xkd/eIsJZkWV+yv7vDSw/uYkNklWS64N79e3RtR982tH3PYrXh+HSBSvEPVZlTliVFWZGXFUoXZJmlKBSj0QjT95xfLKjGJWU+Ync2JfMB0/bUmw1N3TDbcUzme+ik88yznLwckTuP1h7vanyIbqBVVeKMZbFZYvoO7yxFURBMzwD2DuO+ZHSK1prpqGR3MmFUROdYmWlkalRiLRSbkMtmycZYVJlxsQGDQBYjRK5RmSarRlHQHyTOBEzfEDzIYgyZjKB2rcghAXJJKSIi9aw3LlWpQ/aQZ0iND0JGE4dE17F1gw8uTboHs5UYpBtkMpNKYLFI7I4hn82n+udTk/AQYvRHfLLINJYKtKT0ge6ThzQu0D56QgguaUuvpsxXTJ5ACNdYN9cfA9UWUF4iRWQa9FKh1kvUasnq4ozvPlnz3z+v+aBzPMne5h8+XbC6uGCsFTsHe/92BfC/wePn3qh0ztMYR29hZYHjlAABAABJREFUdmPO/Ru7fPHlGywuzln0kpNW0hmLsZG/uaX4pGJoGFFba5FSMhrFZF+fjM+FjJtv03XUdZMmWMn6M3WzafIfSUUD6iQEbddxvtrw6PSUjx9+xLJes6hrvFCorCKrZoQQXTw2qwXaWnzfY7sOawwASuptZ3xdxPmvsyf+y7QqPzvTYGh4riYqn/LBHqgQIjppyCRA1dfQ5uva/phYH2LRFqLwOMtzsizfWn0Ok4WQEAI5NBBE8wGNYCQVs/EYPxmzVhIbPI33dFLhjYO2j/kTWeTuOxsTUqMj29Vg1IcrqsfweQ3IxNX7T1496WsjLSNnvndEOYvI7mQyYbNesby4QOvYdBWTGfOjV5nO95nuxCbX2Q5nDdfxg89c6ZjtomLjt64bnp2dMR5P6DuDCoJqMsa1hp4NZR6F4QRD2zRoocAHnjw54XK5pm46Do8O6ZqGelMzHY8QIvKnu65js9mQ5TneOVSeU82mrJs2ubD5dFg7sPDKSzd56/V7fPXzD1D2BWZzilufoYoCLXLKyvLG7Tmz4gY7VcHzp8cEkWPqDZfn5/hxhvQN2IZNa1ivWz745BnPz1f0QcUU53QNjI0iba0VVVkihMCYmI9znX8bl2akXkkp0TKL9FWpMMYhexN53+melokH671Nn6pOiFVIobAenEN1Df3JU3zX4us9lmcXdE0bm11rsC7QuUBjRaLCiOjSlSiKKk1hpSA2RgmNTcRahI8Wqy4EamPobBxrj8uKiXLszSpu3ZgiR7sgBWJnhihzZKbQhWZ3Z8JkvkN5UDEdVdEsZNRQjzJ8D5Oyw9s4pXKFRakJUmXkmcX7KOBEtvg2EDqDWkHXGXpjabrkoiQVOYpNa2isp0ZxeyQ5rDzWL6gKzZHOEWKOdT3BOzKVMaoq8jyjb1vqOqPvO5SMlLEsNSpaRce1wTHQOceAGwYEKsvi3hICxkZXPysETeFoa0NXdITGkp8s8AR0rqO7V3BoJfA6Cq/RUTgeREAJw2SUcWNvh1DkNCKnkyVZqXFORHMSu8Z0BtManAhINArBQRZNPQSSsdVoKSh1NEYxwdNai3ExmVRISZnp7bvx1pNJSaEk80keHY4E2BOPqxsuNzU39nbJZ1NmMnD8/k9ZjSoQgXazRkhBlinKskgUnD7SLJRG5SVy1eFyRfHqXZamZvPiMapd8+LHP8Q8e0yoNPLGHFFpTp4/geUKJyTWRoH35fklY2+5vTtlR0WzglmZo7Kc/Sxnf1wilaT3klXbRR2NJ+o8AvSdiVoTRGpEs3Ru9nHqL0XMQ0kUsuG+UKmhi4GlAcjZGVWMxxW7R/ucvHhB6DqU67Empw8i5pOkrBtIQFkAGTyH8wlGVjxbbHBC0XvIc8Xp5ZLlasM77/yU/d0RJsCoLMnUld3rsJfkWUZZlpRlmagnsR4w1oBLeWjObiMNrHNRk2otbaKCC8CLSDt0zlNkijLTVFkWRfspDNo6R5WerxqVV9SaVDQIKZnMdtk7aKiNgOw8Pq/3CJ2hsxyd5TitkKfn+OyM52dr+r5nvVpzenbO3nzGeDJi3dQ4ITEIzi8XLBeX1KsFxUiTZxFAyDIdKa4EFqsNyjtc00FuuFxteHZ2wfHFBVpJXrt7l69/6RfwIbCpayaZolAZhcq4bNbMJiNuHe2jZKTuKikYTyZpSuFYbxqatmexbphORmRZRlWVW4e5bT2hMrTSiKT5adueosxRUjEZjcitoy87dsoMR5p2SZkoeDrSpYmmDCpNVLcD8TRZcM7FSZh3KClxA1XuWgU1mFpIkcJFM02ZK6pcI5ILrJZDeLQAoRiVeUygz1Sy3HcpbFwkLWPYFiBxWCCiJEBpUIlSJWWyWieeWQNfK1YKDI3UVQGY6iYhkTpH5nHKbbsO7JWj5Kdrj3D152GgsqVehasvuf4d4bqrfroXpYxRBoA9P4/A1/kZBLudSm1fZQif+ln/SqOSAOOYvQI2CBRRl2OEQJoeYXqa9YbVWcfl0tKODni07Hn89JSCwHhcMJ38TyGZXkXnr7qz3Dza5wsv3+GX3rzDu+80fHDa8rjepBsiotiBgLUuXlitU/MiefHiBQ/u3WVnOmU2nbIJa/AO4wKmN9HdozGMpxNm811GZUmuBZWytDpOB4TU6PGM4CybuuaH3/9z3n/yjB9+8oiqzLlz+xZf/Oov4kPOojG8uNjw6MVjLi7OOD9+wr3dXaQ32BBTw+V2IcX3Gqd/YdsU/WUpwP9mgvqhcybdUCLyKQfLVg+D4N0SkQIrot2fEzrRtZJAMf0gcW3c50Wk8XggyxV5CJSpGA0DTzwuy6jN6VI+hpQoGdBSsDeqePP+HcT+Dc6lw/Ydtcnx4xF9CAhrKZWiyHPyXJMpTZbFMbhPh2ak8FmwDqs8QRERkWvhh6SDdUuJEzLegECuK3Z2Z0id8ezZYz54522Onz1E06KKCZOdA37rr/8tZFHgCBw//gg9TL5CwdUoN24ew6EI0blKDnQdDyFI2lXN+uSCLC/YHe8znedc7owZTysmkwrvR4yqEZnOef/DT/AhIoRvvP4Gz5895ZP6IUppdmZzDg72kASOj5/z3js/4fU33mS8O2d06ybrjx8mTQ60faThjcY5/9nf+T2+8Ooeu1PD5t0fInzLKM8Q2ZxgFN35OaV4zq3ZnFu/dIO3XvmP+ejxBT/66Qs+/vijOLEZl8zHGafHz/nTP3+bf/EXP+C0MfSqoB/4/UJgjcGmxqTrI1Lp7JDXcq1RiacHAZBBEXxydIuLPVKehIoWsElYH5ylaWuCB6UcOYaApQ8Gr8roqNYa1JOPsOcn2PGU008e0Wyitgel6a3jfF1zWSusj7oBqSAIj3M9irRmseS5SjSXnKoak6kMJTPavqd3jlVn6J3ECkmrNbt7M24fzHlwMGEyPUSWGrk3Y2d/h9l6Q5s5srEiHwnW3SXd+QJnJeJIU6kSXWqyUlH4DK0y9O6EmBwP3jZbZFvnGboQyF6jwoiNbOm0xGhFlpcorcD0rHxgE9LUCU+GQ7qeXEtGueCwGCGoUvEZQ1kRAp+VkdLnxpRlFifKMmohyzwjUwqTnAONs7SdpTcxzTsgIrdZCKpK0qJpg2DVLLj0hnPZsyoUdpRTTUtWkwwnFUUvkcUUrT2mhMZv0CKglQMtONib4X3FaFXTWY0hY340xXaOru6pG4VtOkzd0QQHxiONYc8a8kQ3XGQduVaMSslOWdAbS9366OIkouZnUkTaiPOePkjGmWK/1Lxya8bBfMrB3pw/+VPJex894oePz/iNX/4aWudsVjXf/vv/NShBPio4+eRjhPdUec6Dl+7jvGO5uqSta7TSjKoJQhfk44LR3oj6j36IWdf0l2uUaaKz3S++SjevMItndP/N/xPZJmv+ImfVNAidMd7Z4a2XjiiEoW8W3N2ZUFZj9o/20VoQkBgkrXF0xlLX0Qo2OId0DilFpK5tavbmJVVRMClLuhCo+54Xl5eIIBl0SNb0eGdwzYZcxnszLwSHSjGvKu4dTXhhV9Rrj3WWrmsxPXRNQ1aNyaRMphcKhyWsF9zaf5nx7ogXPRyfLujaji+8dJsPnzzn6eNnvP39H/G3/+bvcP/2TXanEwqlUCFEmqvOYvOcF0zGEybTaQQ0RKD3nstN1Nz1fc+m3+BcnDj73tAahzGOru3QSiQ3wWR36zztZoXvoyBeSokxhrpp0EXGaDJmPKoI3iQaT9zLtJDkxYiXXnmdl1/9HCTefxARGOy9oLcW6z3j8ZiffPAx3//RO/zkw/8rm9WS467ln/zRH3NxdsLrr9zn46fPIthgAu98/JiHn3yA9BtmoyMcAmMsSknWmw0fP3rMH//TP6bIM5RUFKrk0dkZP/7kMQ8fPeTXvvIl/tP/8Pf52//L/wQhAvVyQRaijbBGIrI8nWeOxeUZxnR0PRQ6GttMZhNONw2btuf0Yk1RjSjKMUcHir43bOqGum1AxEZFSM2mM1FzaQPCQaULDnd2GeM4mlTcn1eEvKT1krURVDrWHk3Xcb5Y0BnDdLJHNRpFYw6gaZo4pSegtSY48H13xSK5KgHi+ZJ+aQEKF3+JcKV5JonsQ2DTbqgKjcoVPs/wXY3Z1AgU3kqc6Og26+3nmhUjVBknMw5P6AxYh+hNDH5Nr8T4mHnmLEjvk5bomum5CNuXL7IClZdAQHY1LniC9Qgfvy6a0IRkQQ8EuQXZwzb76ar+GQB8Ed1p0veks1gJjFIYramkRJ+8oHz2hNq04GNws0yvbcvI2QLeia8irhetgusaRiMEKnhUCJRSkEuJ0orVaM7Nwwe89dp9ZrNXuPCStfHcCjk3JoqDcfaXl7n/jo+fe6PiE70n05IH+1OKYLk4PsV5RZZVTMY5ZVnRdD0ueJSIqKdIyG4sTAV7u3tMxmOEANN1MQQpeC4vIwUrAtqO9abn2cmCN157hUIpdkcVRVnQWFiZwHd/8CMuLi44Pz/l/GKFLireeuNNbhwdMhqPGY0nXK5rmn7D5eaMZn3JTq546fVXOJhULM7O+PD0OCbFXmtxt61HQmSEIHKo+TTfDz49DfnLHtf7bKS4FswYmxSu+ddb7zk9vySXktZ16CyKCUuZxbA0mZqc9P0RhYoOR97Hecymafnok2e0XR857KlAic2Xx4vorWOMYX80ptCC0homVYYoFZVw5MGirYn0uK5Bmg6yiBoKApQxGDIi8n77Xru+J3Q9TigYyRTUNkxdPt3lD5sFg7YnL1kbS7Nc8vZ3/jGjcMmDWcfBbMTx+QnL4+f88R84bjx4jd2j2+yM53Rdjem7aPubqDVCDLz8dE1EnNa1zYbd6ZQ3X36Fz738CiPnWJ6d46qKYqzIVUbXtIh6g18teXR2zuHhDfZ296I2g0CWK+pmjdKS/YNdbt44YjKeMKpK9vZ36fsW03eUVYUi4OsaEQKT0ZgbB0e8/8EnzOc5b96p+MKbh9woLO75Q7y3yTxBEYLCiwwrc3qpEE0P3VOm+S6v3xtz88br1HWB1COyfEJVaF5+uWIy3uFP3n/MTx4+5cMXZyh5H61ztM7B9JEe5Xx0+RLgcGmZJ48+GXfwkD4rKRVKamzi8wOxMVVRV+JtjzUO2+c4T3Ll6SgHHbkT6CrDK81Gav67t3/C6cZSh5wiOKpMsj8ZIUV0bFo1LY8XgVXn2RjL7uGM8XTM7o2IJIpEActlRt/2HD87oTs+JYRoh268wwewQuBCDJnrrOFu09L3lp/c3OPB7Dl5rnjx6DEXqyWbvqVoK37yk59iQ+Ay9NBppMwYHY+QtkR6hdAG4aKg0+oeHTIIAmN7ehttI/KJQgeFQOFCnsS8Hu9Big4QdLbG9QFjA5e94+C84U7l+DsPZjxetny4uuAPz1ZURU6Zgm+tNTG0NY4fIy00AR1ARHCTRqF3CXwJAYLYuvFZzxYwENKhfWyUTjvDpm9obU+HoF3VSClYLTZs8gntqCLvwBqPNRYroiucBITU9H3H6nLF+588p3PggyY7LvDW4juDMytyoECQVRZrPKb3GD3BekkwgbM6FgtyuaHKa5wH4z0MnHYC2brdorZOxOyex1rwqK2ZjS7ZmZyyOj+n8ZbpdMqPPnhEMZ4wGk9586tfoahKdK5Zv/oato8aiL3dHRBwZPutvklpnRrAmMHy8KJHjkt257cpD2boMicrSxYfPMK0LS5zTL/8ErosUQhCyDi+WPLd9z/g2eKco3HOl28f8ORyw5P1Od99cY4XiTKExASBcZ6uN/RNG80biOi/856u7RgdLymzjGk1igYZxnCx2eCsQ6TX7F20PVdiENvHSdG4vCDPNcX3P8Q0HXtVwe9+8eXYBAeXtIUCgsP1HYZAHwS1a9H5IW5S8OD+TdbrNXXTk2U5RTFC5RUXy5rOAUKRqyHoM56bSki0VDjpYriw1lhjePLkGcfHL9isluikbxNqAPCiPUQuApkOTGcVhYpTw0KrCJh7x0JMOZhPmU3HWGPoekNnLTvTMTKLBgFRJxyRdaHi93XOYboaJWKRJ3RF21ta49gYuwVklosM09VMJxW78x2Cc3RNzT/79ncwpkcSyKXANx3dpuXGuGD/rTf4+ude5rs/fBepJNXBjM//yteYFhkjLWlWF4SipChKnl1c8PaHH/OnP36XPC8o0rTpwx+9g/MuNl3Ea6hkvCZKa/IiZzQdIVO+zBVrQbLa1NRdj5WKs8WKLI9xDt51mL6nbtqUXxTAdVTCcP/OPr/+1qvsjjJKLai0x14uyZTkwc1DJjdv8mKx4Xvvf4JO9vKrtmGxjoB0XhSUZYnrDI2PDALQ6CyLEz+iMYQkfKZqGmrBhIulGAafzCUSATE2AGnMoGQEsxprwcFOWSCsY7HYILSKNZWLbrQoicVSjeZIpejqBreqY2wFIWlnY6tUzqbovCBTivrkFNs2kRY6dA4hRO2Niq/aOBtp0TrHW0dwPmqX0qeR6Sydr0mFnbhfYnjTPrk1buufa1dGplowxNy/oHLIC5hWaNMhDehQJYOAoaC8Vl0Oo5sthfuzj1iLBULMeQyD/Xt6fUIgsxnZ3h2yG69yvoC+B23ia+qBRv2MH/vv+fj5Nyo+JlgXWnA0ragk9E1DkZeMqsCoMwz2mNcnE7FWver4dudzRqMKAGP6lGIvY5HrwtZ1ou17Vm1P23WU45LpqEAZR9dHe76PP3nMxXLBar3Ce8F8PGO+M2f/4BCldETfjIliRGGZlJq9quCVoz0K4aHZpKkGKfnzmpYE0mK+mob8ZY+t08l2gvGXTVmuLspgUXedkhWIBcZiXZMrhZM+pv4qTSkzULHxk8m9yYeQRt5268oCnqbtuFyusdal4m7Y1NJIUYT0vY5pMWFSaEJb47zFmw5sj7IWZS00LaHvcdbgVHRuIcTCcrC+HILbAiEGdFqLt0Po4Wdbu4HPmRZJuLLHVXnB4vKS8/Pn1GcP2dsX7I0Vwm0YqQavLBcnP0WpgO17qlfeQAQZJyXJROBKpzI0kWGrv+j7jkxJZqOKnemUfLPB9yY6ffh4C/e9QfQG0fd0naVro4hyNKrQuWY0rnDBkhWanfmMvb1dsmQRWBQ50+kEaw2j8QglJb7vED6Q64xJNWGUZxztlLx2c8zB2FHaBrtZXdn2DrSJwdFIaIRziL4nz3pmpWY6LblUcSxMVqCzHLzDT8e8fPuQxWbDyeWSQR8Wks135MGmINGBeviZDS3A1oUopNyJODEL2+yiq3YzbN3Dor1xsoQILlmVCrSHoCRWZ7zoPU9qy9oKDsc5O6pgWo5RRAMGqXOC8zht6boON5sh93cY37uDUiKFyioycuSmwTeBbhELNpNnyS0JhI7idhkChTWUOzvk0ylG5nFa3xkuzxZsup4+8gE4uViybFrObY8OBVpnlK5FuDIK+GVPsCpu2GGNJkMEGUPPnMOLQDbWSKERIqMv5tfuD+JUKUBtG4SLYuhF79nIDqwjBMmmdZwsO77/fMm4KqnyaFFuTJ9ybULKs0n3f6LtZTpL0y0Rk+PT/a5kFI4HH/nP0XUNBIbCGbQznHc9xvYYZ3BSg/VUSrFue1rnsTJeR+s91gWCurLCROYYu2HTtDy/uKS3IYI+ax3fkzUI11ApyURrKimwNmD6QFYJvIt2zSddNBgJ3lOoOP1xCGSepesXDQikEEgJTibrZhF4WreUWc2oyNhrN+A8ZVnw8ck5Rec5KiZ885VXmEwn0Tig6zF9T9fVVGWxbd6MsQxOhJkA5QPaBhZdzHvYmc6obh8itUI4i/n4mN73IASHN29S7M7Jqwopx5hHT1j+9GOOTxfQV2T377DqLnm2qvnocoNTCoeIonckNoC10T3Nex+zIERca85a8k1PrjWTosX4OLVeNVEDBaAzTfBuS6PxAazzMVFcdfGaYchQPNif8dtCI4SLTY0QBO9iY+lMtJZ30BqLaFooDDvTOeMqwzuDEBKtM5TStMZhh0m+Sk2HvNrthRDkeaQgO+dYLC65XFyyXC2jm1we9Ry60HFaGhxeGazpCN5SaEmhNbmSlFoh0l4kbMd0VDEqouWxdRGgyIt8S7X6DDx4VccJUqMd91gffBTt92aL9HcuOlrNd6bs7s6p65p6s+Hh0+e8ev8uq03Na/duobMWKRRHRUY1KtFK88mHD8lzzd7+nG999QsIa+g2a3xwFFlBnpe4Rc/lesOT5y+Y7+xweLDP3v4e/brGehcto6WI97SUiCDQLgchKBHbMz2OjGKSe9101F2P8Z5N21GSo5KZRiCubwQxiLfvUMKzN61448Et9iuNcD22WbNcRf0DpsdbQ/AW8JFiFwJ119L0XcziEjIFKbvUJAz1TZwGDlN8TdiaLV3l04VtbXB9mJBcd7d1UQy4jM1YbxxtbwgmWs1XecYqdQBimFCEpCuxEGxHCJrQdwjTEYyNtujBJoaAphyNKScTlJA05+cRENqmvItEsbpaN56oM0EIjPfRdpmh3o2udDLpEYVS+ESNzrI4YYrFid+eo//qI2yrpPg1Iu65ITWug5mMv76g09W8NjwZaqtP/9yBEhquepoQ/0uEgENgg6ILGRsKVn2NMKCNx3jLprOw6n7mq/73efz8qV9OUKicaan53P6Io0pQScut+3coLlvW/pLFYoEPklFVEoLfBjF7QkqzDrz66sscHR5ACKzXa4SQFFUZee/BI6Xg1o0DTi8XXGxWLFfn7I4PuXVwg+PTBe88ecIf/tGf8OHZBdP5nNv3XmK+uxc5l6bnYr3Be+i6nnWzQYjA3cM5N+/f5NZswmuHuzx6+AHmXFMAnXXxblHXLpkY8k4+3YR89vFZ6sy/jgoWC7+QAunYCqyGxdY7z4vziyjg61uq8Zgiy6l0EXMahIgUElKj4hxdFwsZ7yHTcZNobBQnx87eI4NPTVigw0YXGtNzWE04nI5ZFhlPjo+5PL/kws+oVi25yBCnK9ymixoOGxGJXClyLZKTj4gIYfBYbyMc71xyKoqbzVDUDm1EHLAmjmWIzm95UZJPp3zvz7/Nx+9+n7d2DXfu7aILxf/9//Un/OrX3uAbX37A6fKMt9/7Nu//+Nt4+59w8+59Zrt7bDaL7WRGpM1rCHwSKWSu79utDaW1HeNRyXhcgcip7Yblas26aRBjQ4ng6PCIEDzn56fcv3ubm3ducnjrkM16RaZHFEXO0f4BbVOz2awJwXLj5hH3X36JoCOP2m5qgrMooaiKMW+9/iq/+GrF73x5jn7+NkYoeq/IR3uE0NHbGuE3KDq0yLFqBroEnWFqS6gvQZwzL8a4fAdTZiA150+e89O/+Da//Noddqdjqtmc7nzBcrmm6S0oTUDQ94a6aWP4qhuaybD9fbCERYQ0USkiX7ztML2hbxtc30Fw5FrF8DohKMvJNnl8tbjAWQdekbUtIoCazXj1G7/BoRrjsin7hWKsYZpFO1whJTIveKnx1May6jp2Dufs7O5w595d8jxl8UiFEhntpuPpR0/YLNc451CZIqSR/mC1nCnNzqhk92DOpMg4sI7y5k3Wl+csn6xYm0Cb5WTTHRYXDce+49wHRl6Bk5wfr9D0KWAwkLlYtLvME1wPITpuWUkMxF7aaEErwVdmayEbfe0jdaI3LgX1CRoyMjViLR2n9ZrLumfReI57ReYtWRcLhKvzSEDfb9GvbdPfOoRU0TRCXkMqhyBH0jQqRJRSoBFeEVxO22xwIhCEBjS50pApToxl00t8X7JxHkvAKUEuFCrTqCLHizkbt+RZU/P48oLGBayI47TBijYLjlJISqnJWoEMUQb/uBL03tP2lrO1i7qm4Mnot2vRin5rjT3QRASBPpAOe5+MKsBZ+KsHgtuV5qgs+NF7T5G1597uDf7zb3yNw709nHEgRwlSMTjTx3WnM7KsjHqJrkVpQbAe3zluZdFRKC8yiumM/viE5V98j/Nlgz1bIaXiptph5/4bTH/pK8CI+u0fwvd/xHtv/zBqElzg2XLNT15c8p1HF+RVnM7WxlC7pAdL/P9Ir5T0yRmrKHJkG+1js7CK05MQqLse56PAXGkHyYZ3Ns3pky35sg+oEPdhazrmRUE5Cmxay40qI1ex6GnrGqF7xtUIjEEY8BYuLld4UXBrPubejTmb6QhrApnSFFlGbyO10DlHVWTRGUpFHVQI0fBgZ76DdY6T01Pe/t53kQTGVcEXXnuVUVak8MsEWHtPv6lZri5o2w1KeEqtKJSiShol5x259BzsTJiNKurVGm+iIct0PN7qs6TMiIbQDpKVdiYzZvNqq6kIIiNvLVVnmCazk+Cjmc/e3pijm5rPvfEa6/Wap0+f0RrogqQcz/i1v/pXCL2lXW8osxh6a6zh7b/4PuPxiHu3b/Lb3/o6uRL4vqd2AWcDxnjKu2veeXGC6Xt+45tf4Xd/69f4G7/3OyyfvMCnCZWqFELHRiWXmuAisLjoarbxjDKZ7AjN2fmC8/MFy/WGUVUQpERpx/5kh7IcxbBK72jbhrOLS7x/iVwJdkvFnZ2KXBQIm/PU9Hz46Dn/9Dtvc+Ys2XTO7u1XEPmI3nScLpZsuo4iiyDpwDgJwdJ28fwwxrJcLumaGtM2jIssur/mGTHvMXEr0rRFS51CtzOCEFjnUSHa+NdtRxASlZdsNnGS2NmeyWRCWZVkRXElUFc+MTjA9T3182MizJDcJTOFw4NJTBYpObx5n+nBAc2m4fiTJ3TWk2Xq2ok4NA5p/0lurcu+Y7Vc4XvD0Xxne55eXl5sNS06j8YAOs8YTyYRiDA9wZg0O0yZZdtsrTjbkAIKKcl6j9wYfN0hVMqhCdmAfBGETXXOULNegcLX8IJrdau/AqvjLDbtry5aSgfB5WrDew+f82cnBRfliFx48uDo+iXPny/wi9X/aH377/L4uTcqdJZJLjjIA4+fPOVYeoJ3TE4MTy5W/PT5RZwEECsGnyTOgxWxT8FRxvTkWcb+7pwiy+MNp3NefukOpm0IXcvRwT47u7vsHx6xWJyyODvjqe9ZXK7RIvC5N1/jfl7GDIDe8vDd9xF5Trm3S/PsBUN5PC00Ek8w8XlP1kuaF89YrS+4XK2I7oQDiheLga2lnL/e98PP6kE+5Zj0Mx6fbXBCSnCX1+lYIjqhKCkYlwVfevM17h7uc3i0S1GO0DoGZm2zVxKKFT3IPU3bxkkGgcloRG8tP330jCcXKy7XkbepItsruuUMOhklOV+vUNJzsDtmtbmEtmZ/ec6OiDqX02LG3s4ek1xjZI8OkkwqVFXRtxc0pk83zZXjkghX4Urb6yMlSEcQbosECCEQStJbz6a+4Ml3vwOnP+Xl2YqXvvEGn3z4iEc/es6T5xtWjaETjvPVip2Jp1CSFx9/j/GoYDyZI6TmylVEMjh/eSK3lxCYTXdYLNa8+857CDSv7u9zZ2eGkYLG1aybc9aNpXAKqUcc7t2EYBEYjg7vM55OKbMSRjaGjmrFYnEBgM4ydvfnDCVV9IdwOOkjUi0UuZT89V96g7denfHFN6aI5gnWRjepvkvUPj0F1xOCI9gWJcoojpUapyK3HQTO1pEmYlpU0TIue27eOyCvHR8fn3L+/AWis5idMVkW6F08UaxXMXlaBJzto9hdRJScoBJ31oHwKOkRKqYeEwLVZEq+Kuj7Bm8tQkTkt3dQOB9HyRaCs/HQx9NZj9SaUin+ym/+FurgHqGak9sWFTyaYXoUdwoDWGJAnU76qSwT6QCKvDQhBGEM9/cOolMKIVnvJhQqpM5fQJAC6T0ZMBEgqoqszRnf2qP7CdQmUOwesLvxWD1ivWlpe4kNAnKFCxk+RC1XSECKC9GCGQRBqFhlyTg5cggQKnHqI4oVG5W4F6pkLewJeBPIRDysjYvfG5SkzAV5JsmU2L4PSIxPL9PIa7vBpIlwJNeqq90q5rkIeW1/usq3GACYvhgT3W08OBH/HCRaaIIKmMygA2SAHvgGUuBlRhM8nRA4rTAiw+CxQeCVIoYpepwUtD5gQkAnlFfpDGkCQUpkVqLzmIEhgCyBDD4hxi7dw6RXORi5ywA6gNeWrBDkSGTWR1F4cBRlhhqNKEYzhC7wUmMIeNOmTd3jyRHWItolTXeO1DlZNaXvDEFL5G6JrhuEcQgToITVkxPe/YP/nptf/BK6zPE+8Oh7P2RZt3zhK18GHQv0LMvJq4IgA5fLBX1n0FKxtzsl1xoH5NahjIt2pFJeKyICWRJ/Z5lOPH7BKAnrnfMoPANM7aXCG4uSUEhBLiQFmqB9AlcDvdDMyoxpodFq2Kvj98ssI0iFM/E+V8lw41JB03d88PyEnari5nRCnuc8mlQUZY5zLupM2pa8yCKNLMjtGlRSMBuPWV6csVksyKXk1ZcecHRwwKQsCMZEK3SbrKJDZARIJVBKofpYkznvMZo4vbUOLSQ6y5F5Tm1drDsDbFqDlgIlEp0NRUi0NG8dTdfy8YdPIyUzxIY9pP06qIEWExkHFTkqV9w6usnOzi5K5/Tdmrd//CNsX/ONr77J3mRKoRSr3pBpTQiBajyiKktyrVhdbFBK4Fw0IOlR1E7ynXc+4P0PPmL54hld9zk+fvSYf/Yv/wy/6fEuApkrs9nWDU1rmE0nHO3v8blX7iAFWBv1hi7E/JGLTUfde7SKugxjLYt1g7Mhhml2K452Z0zGY44OblFVE86WK/7k+28z++YvcvPWDfZv3kLuv6CePmRnYfjOn/8FE6+5+XpFVRX0puNy2bLperyQ9D4K1jOhyHXBqmuRUjDfqXj9wZfw1nNxluIfuoa2aajrDuccxhlGmUKMKrrZBFIjUxV5zPgRUfSeCQFKkVXRjrp1jtXZCpPHpiYrMprO4DwpJywBywG2efUiGruQJqYQGw6fDAWccRjTEkKcHslhWBG3ovhTfIihk20NSnHj1m1+6atf5cZ8zis3D1ECnDW8ODtlUddsmo7zi1UEFBCM93d58eIFm7NzFqfPuagyFqMMUZUoXNRiep200HHiJ0XU74ikgQyClAkWrr2w1L+QpjCpDh3Ab66/DxFPgLjFDsk+8R+GSagNsLy85PhSsfPGK4yUoBSC0c4+l13D5XnLz/vxc29Upiqwl0kOClgsLjHGseksYum4qDtO1i1lntMnJFGK7VJh0CcEYL1ZY6xJ7lQxj0EHOJjvYPoC13WoPEMZT5bndHVDHQx1JnDWUFUFd27fwo+ntE3L8mLBR11LphWTUYWz0c1AEtgrZcr3EHSbDcu24axe05uWxXKFDy5FpohtU7LtK4ZJyvVP/Lod2PBX/5opyrUvjAvuGlUsPVFMkxeSTCn25jNuHu5x62gvisJ0Rp5liS4WdQYxVSFuak3XRkpPgNl4TNv3nC5WaBVtLT36GieSLb8VKahNT90rimwWDw8XKKscrSReSbrJhLGfM+80fehQIWamVJOCs6ZBKBlfe/qUPcmYIF2/4X1vr5C4rvURqEyxWm5YXl7w6KMfc1Ss2Js4RJ7x/GzFh5+ckOcFiOgod365YlIUTHdzPn5xSt9ssH3Kpdke9cNVJV3vWMQVZUkIgc2m5fz0nBs6o880LZ6Olr7rsGQIXZLlI8ajKUL0SGHY3Zmg82grmmdZTGcXkt50qJRDUhQa78C7yJFWGoQWiZLkKbXn8y/f5JW7U/Z3K9r2GIQFRTyw0SgR7QGG1y6CIwQThbPpfgoicq6Da8E7kJois+we7qDWhr2dEdNSJ/TeYW0HFOmqD0rCAcnxEEQs6K835ANFIu7SsclNlEyRUn99ohS5ANbYyHsfnkXExt84h3KePAhu3bjB6O49RLVLaDbxtftAkBFZwgeEig2VlxphDThLcG38Up+sFwkIJVGzAqHUtQ05nTBhKPigDx5Xtwjn0FriRVyleREPOi8EeTUmq0ao3uN7SWtjwR2yHOF1on5FUAbvsN4jUhJREIoUo0JQ8e+iLkxw/aQYEC4dxNagQ6cJJSHQ24BNmUhaRcebwS596FWu02rSTURslsLVetk+a8QShYhidHltjxJBIIRPxicFMRozZg6Q6AZaqKjNE5FSFKQgyLi2hzBPmz57L1T6laarUiPwSBnwUhKSjs6pqJfK8hyQsaCUUUM3HKAyjYNEalbiXhkBiKFNQUQqhPRXIJESEikdQkQKkVKR1690Hj+rkMADl5x+BJBpfN/hLy5pFmvy6Q7FeI4hNu8+OMzHj6IRhNSoyQzTdKxPLrj1hTcpphOcD7SrDcViHU95GZsDKaN5DMLT9h3BRf3IqMzJlYp0L6XphMWG7ckT9/SUDSakIlNxmqelINdRq+GEiNMQFTN1nFBY79AiWrqGIBEypoxHW9j4ORRaUWhFll1N2kPkAm4Fv95FFsQQDmqd53yxZnJUUVYFO+OK8agkz3OcD4neY9E6hcASaS9bQbQUmLajbRqm4zH7u3sc7O3jrcX4ECfvaUIWBpfABGzFkL5ECYK4V/gQn0NppM4xPr5G5z1N0zIqC7IsuwIriI6Pzli6zvDkxRm9Dzgh0DJD6Tyi+ckGWkiByBXCCzIP+7v7TKdT8qqkLKI9+flyyenpOaWQFJNxDIJMVO5Ma7JMo7Si723MjnEmTqXJWDjJB4+fcnp5iQiOpm35+PFTTBBkIUtAUeB8dZ4KbsHlqubmjUPeeO1l3nz9PpkUeBupVtY52rbjctPQ9BatokOcDwFrLJe2QYSMSVlwtDNn7CRFEemR1htOFmtO1y2jHnbyEWqyg57MUOMxshij84oiz4kB6p6m6XHW413AulT9irgvSKWZjiteunPEK/fvI4Lg9HTJs6efsF5GZ7TlqqHtO5q2jmHhWoGS2yDgYRosQrrP08RGypiLU2YanE81TIRcIv3dp3rHb9fxANggrxy1AlFrExB44XEuOpiavotaQGdxLp4NCMCnWis4fNch84rRdMqbr7/Gl157lbtHB9zf30UQwebTxQUXdc2qbnjx/IzVpqVzHjGdILMMrTXd81OkBidlNI5xAay/Co2ET+/7ww0ghgo6bN/99hwI4do3Dht9amHCFdg1fIlIgphUsQ1HCT4E+q6jt2tGmWCaKcZSMCszXK7ZCMfP+/Fzb1S+fliyX8F+JagvLni+6Hly2fHBxUfs3brFjbt3uHlkOFsuOVssGBWjdDEj7UjJjBAUP3r3p0znc17//Bu8UpXkCISxTCcTstENssmEt99/l08ePebhRw/ZAbIb++j9HY7uHjELGbtGcV53mKrixnRMv7pkurvHg9c/RxUc9BtCfY7GYVF0Luf7737AyfkFH330EW3f0JuepmvIdUFEPj8T3DM8xM/847/1YzutYRjHJYuBELY6Hmc9fdfRtQ2mbfA2OmhQ5FsO/hYtTj9HKYGSGrwl9A39pmZ9eY41LVuhe9q3PeEKR1KKzllq02NNzxdeus9oZw6vfIl/Mqo4C5a7L93gc27MAxc3KCs0Umt2dmeQv03Tx9CyoKPloYOtReV2o7l27UQQyJRQI4SkGk94570P+ein73H+7B3uf/GIvaMxf/rff5dvf+8djs8u+V/8z/4qB+OS5cmGd370mG9+9XPcu32DF8sWY3pWqzXjWR6buOGOY2hSov4hBEeW5+zvH3Lv3j0KpcE5+qahNh0ujwhvtXeX2cE9dvdvkxdFtJnUCqEDIlnD5TpL+gBPVVXbFHEhRbTolIpCZFBIvIZnp8coGvarDV9544CdUuJXPXJ8FyEsWhj686eIroU2QDkn6IqgMwwr8D3CrRnlMwY77i7oVGAYTPuCqpwxP7iDR6OmY3ymePvPfkLpHU+fPWI8vw9BMCoyqiJOJkwQRGs2CSKP96cAj0WIEK1RdYZPn+d6s6FQCpnnSK2pV0sKNN6VrJsVAk8hNdWkxGdQ1x1d14N02N6yOjvF6jFq1BK6NmplpMTJ+Gkp51Cp1zByCKFUjHIdUUHr4j2QJng09XZNiWGNp4/fQVx/KkM6gxYBJ8HXG/zFOeKipsgl40nJPKtos4xzqbiwitaCQyCkJiOLactYdELqDCoGVsp47azyOBmA6CynhUhr5YoW6tOI3seOIxWf8XwxzrNYWtatp7dDXNJwaqULImJWzKdxkmG/iut9y/VO/++Sfa0PIQV0XjPxFjJ+7LIgCJ9mPB3aBDIkpVAUHnLrkTbDhpSc3jmkVmih0I1HGIEL8VqITBGkjs45QkQ6nBME6fDCUlRjVDZCZlUieBmU7+PEm/CppOY4fYLBLY8EQ0Tz8oAMgyX0oEDtk44p5RhYwAakT6/BQbABkSbPVkryUUl/ccbqBz9h8eSY2Wuvsvfmm4RsilstsR9/wvv/2/8T9vyS6uYhn/s//+/JZxOOvvpVnnzn7UiBzDKm9x+w+/IrYB2oLvLQgkp08IDzoKUikwotLbnOkAi0cGgnr1HJhwJERqG8kEiiC5f1PmUDyeiw6NP5ISLBKXgLSpJpgTHpZ/pYpMUJHgilyIqc8WRMpkE6E8+RtL5A0LUdnfPUrYCjI0Dx7Lxmp2yYFBW/cPOIg4MXTE7OU6Ni8cZSFjmZVGRSkitFkWkyJalXK7q2RUnJG2++yais6LuevjdRFCwUWoMzHda6mJ3j41RKKo2UPmkbUjMl4hRT6hKVj/BCYo2laxvOmobs6IDJboHzPSTqs9aS2kca+LPzJaIoyUbR0VEWBaKIYXpaR4pwXlVxjXjPSy8/4PaHH3B464g333iVO0eH3DnY52zZMJ907M9mBAQ2UbtEEOhMkVc5qGiXbj00vWUVAie95+133mHdN9x9/QHPLi95+8NPeHp8xmy6i85ylFKsLo6RWqPzisXJKW++8Rq/UX+L3/+dXyXLFabrQAlW6w1PX7zgw0ePuVguGZUVPnSRfifhxfEpRbbP7tF9bs5nNJsO21+yO6mQeobjgD/9+DkfXba8frEm9x2Pn79gsVnxV37jtynzgnERTTM2Tc1mVVN4QRYk1kbDi75tOb244PVXXuWtz3+O/+hv/BY3bx8hpaKpHU+ffsJiseD89JSTk0suLhc8ff6E5dkxwlkmWYZQGmsD63UbQQYhiEPppH8kMMskrsw5FYJ5OcF6eNFEuUHvHPlohHfR4CcCf8nxc6gJ0n7qnMULCZmi7TqyrmO9ilrnerNBenAy0b9CvO9sALtp+ea3fpWvfPmL/K//zn/IwWRMoSTtahlDSkPgfv5yAs8Etu2oO0djLKdty8X5Baenp3z77h306Qt2Vgsu6w35pkN2PcxynAzR+l1GhzwvfGq3BwgqurxuT4BrANTPNnYa2rVr/xY+/ROHGjThBWgBVaY5mE3YLUtmUqG9YZVn6PzfpwL+2Y+fe6MyEgHhAm0PKivI8oqdWcFtUVDkOaHrqdsW6yxaKbh+4YarIqIF8Wq54vTFGfmX3mJWlWQEPvjkmIcPH/PB06ecLM6xxiC94xvf/CY35lN2xzkfHj/jfNVzujCUkx2M7WiaNXdu7DLbnbM/zpjogtJrSpPx5MVTVm1H0/bsjMcsJ2OyTLLY9PTGELZswWR/yLVm4FOPTxcecLVI/k2cv64uwxUKeJVbkRAk2Oo7vI9c24DZaga2BPQwLLM0mRluQh9SoJZP2pD0ztKBOYijlYooLN5RZBWjLEd6z9HBIfnOPt9edrzX1WzGgm/u7+PXy+h7bwWOloBG+IpCa0ZFEZE0Ea+hd4Y8z8lHI/o8j9fUD3DA8CvOg+JacNw4ukHwjo9++if8+Y+PefcDQb/u2Ckn7D+Y8Or9Q86fH3N6csat/TGzcYnWGovAy+TPmnQvEXBNgsPUGEoZm4eurTk63OXLX/w8pcrYyxQzJWGxotUerxz3X32L/aMHjKY7WOdjo+M9ve3xUqOlvrr+KTm67w191/H89EUMowuCsdQ4KekFnJw+J++O+dJ9TdY9IagpIZsi5QgfeoJryCe3wNZga3pTI7zFhwqyMW3Xs17U+OaMssqY7lSM5iOQkoBC2Jh10y7OEZni1mHJ3/hrv8g333iJy5MLTp4cc77wWNtg2hXe76TVI67WifCx0RXRFUXgEUHhUUnU6Gj6jtbZOD7XWRSxuohmJ1M8vCRNWeK0pe262Az1FoFESY1EYlMhi3AMRA0pFTIp+UWuuVyv6XuDMYaj3X1yrQjO469N5WSaGmyHKek+GywgXddHhx8lUDpHihZhPZvVmllQZFlGkUtC4zELQ7uoCVkZvfd7uz0olHBYogWlDNGcIBaLUWsWmyWP8PHqtcKTqWGyMmh/PN4JsizqbUJqeFvnuGx7OitxQ0hSuMY/EFd7zPXGZPv7p8CAq38L6aJ8es9K81QBCBGdxHxqAnwU7oYARShi46okMjikCTgTraqtEwQrMdpjrMe0Nh3m4mo/krExkwklDwGkDQQcLvRbByIp5XYvi5S2sN0nRNobZQIghrnDYMkbv83HbB2REYTBEikajrguh0Ym8uEjFc0RJz+FkphNzer9j2nPlowOb6KqitA3tB98yPHf+/vw03fAGtrcYeo15eERL/+1v8JDbemXS4TW3PnVX6G6eYO6bSizSCLWyQ59mExURc7Yw8j52HR4j+kt1oWUfB0BvYEWCHGNKKWSlixs37cPIlIq1QBYRYv2XEkmVcWGHuuSU9y1Ik0kaFpIhVBE4XEgUkGVIMsyWkHU6pgeGRSZzMm0ZVV3nCxWnK3XMcdDbFcYQkryokBptf1YxuMxVVmyXizxwZPnOfO9XYLzBBd1ibhAsAHbRaqox12tBw+9N+hck+WKMs+wvsdKyWjvkGq+TzGdYa2l3qzZLC7BGHanY9TBHiYMEyqHMVGjMp3PeetrX8eqDKs0bd9ivaPznqbvCY0FH9H6y8Uly+WSqii5cesGv/d7v8ed20fcv3GDuweHhHaBlZqT5ZqiUIlA5tFZ1Ftorbfns/XQojnbNDy+XHI4qvj6N7/BF+7f5L/7oz/Bmsecnm+YTmcoXYBU+GCQeUE2GmOrEdObN5nv7KT7NbpWZVnFuj3j/UdPOb24pOsN1aik72PtgHNxaiGjG2aRZRyvT/jeD9/mp48jnQ2VcXZ5wnxc8vrtQ/7T3/sb5Lqg6S2fvP8uB/M93nr9dQqZk+scXeYxY62PIZi1t9SdQWnBL3/z67z2ykugcr7z3R9gjaGUmtGkYjoZM5/NePl+rFF6a9kszrFti2sbvLM4E7PLTNcnPfPVlBcks33FfLPB+sBoMsE4jyOQlwWNtaii2Ar8R2VB1zUY09PWDdsw4+CSZb8mK+fMy4JcBHLvOZzvYosyMkviEsS5mGujs4zPv/UFfv/3f5fPv/k5psHQnJ+wcRZj+wj9SoV0EXSWBLQPjAkUGopJxv3xDcKdQ77x8h36xQKx3nDnck335CHdi6ec/fB7BGsR3iOjZRrBxmsgpPyU4VP4S5g9n6pFw/Um5YrVcv0kuf51hEgp9M4hZGBajtiZTJhlGd16AVLjxc/f9uvn3qgED52NRYjyIfrcK824jG+7b2JCqhs0GPG7tkh3TJf1FHlElEzbI4TCuEDTtzw+PeODJ0/58YcfkZWaSZkz35lydHTA7qikUIGuN6w3GxaLBqQmYJHBsjubMBkVjHWg0pB7SRE0q9WKi3XLooVMlRRFTlZkwytLXfMVkgf8jB4l/Mx/+zdtUMJ2TBdSUXHVqGybFfi0CDwh9t57EA7nJVJdW2xDIRNgmI9vAyRJxTqDYIvUMW/JE9vXpaSIYU4yhiwyHvHkyZKTSYbTRUy0DlH8j5cEEQszfLSf1kPoJlcFWaRB5XgdUf/B2pnhPW6dJ2LzlGcZo6pAK0Xb9wjnGWea20e7TCc582nO4oXD2Y6D3TFlHkMFQ3LWkPozN891WHZAp4nhZuNRxc2bhxQyo7QG3fdRbKc1ZSnZ05pqNI2ot3DbBs+FaEgQhEdsk5liARCSOcJyuaJPeQiVj64+rfP03Ql7xYYbRwXSXuL7gBUZshgBOYiAzHU8oGRA2J4QYpKylGO8FVijWa4adOupe8eBFpRlngqEDOfA2RaJZFSN2TmYcacacbI7IdcK//iCqlLg42RMiDhB3PK80qEel1XyhB8oiumaeqD3cQztB5E319eziIYxbqCFJQrLltoit5/FYNEtiAdv3N1VGvNH/Y8PgVXb8Pj5CXleMp9MKLSOlBFCms4x/JQBSrhCigJE8jLxuWMwSwya6wxZgCAlmZTxM7XDfZcK5TT1HJC1tINdFWnDPeiTm1YgUo+I3v06hZGJLeUzviiRpgdKSDxRD9MnPca/sqN8Zi/67L9/Fi+7QsnSexYDoHL9X9J9IZIjYFrjMogt2qaEQg5Q9vZahm1zm8z/cN5jbbxGiZmanMWGpxnCXQPCJyqjd5G+I0lave2Ht10T1xuuoS+5QkWHZRuLUYlMrkQC6wM2XAdG5LDiYuEq4icQrcwhtC3d8xN83UPXxwb82WPaDz5i+e0/Q6wW6OkYcTiP9MiqZPzgLpPXXsKsliipGD+4i55MMMZQ+JyhqRDX7q04nVQUWhOcjettMDhJ73r7GQcSlS1RYuJ4EJWmtYioBVRh+OmeTIgYKJplNJ0DYT+zVsK1PyXwyCcB77XEap/oVcGHBGAkIxJrWTcti3WNEIJycNgKcW8cFXlsVCRx0lyUjEcjzk9OEAjyLKcqS7o2NgdSiMQ6TQ18uDZVS5+YCw5kFOkrqbBCghJMD48oZjNkUdL3JhnJeLzp03mZPuN05nkfjUGyTKNzaG1g0xou12varqXrO2zTRKGztQhnOD454eLinJdeepnp3gE3792nKnMOj25weHDI6jS6pG16Q5ZHanVkRiTQTigIHh8icNN6WPeWddNx9+iQL712n1/+wuv8xY/e5/GLs0RfjDQ1ofJIWdQatEaUJXk1YjIaXe1r6XNcNx1Pj8+pmy7S/zKNtJGaqzxoHae3fW8pshwpBOumZtE5hNJolfH07BmjXLJZnvMbX/4qTW/YdD2L1YrJeBKDJbMsWnfnCi883vXUbU3jHEFIdmYz7t2/y2x3zovzS9774BOCNdzcmWHdnLIsGZUlO+NJNISQErszxZse2zY4ZzE25uG0dUOwLtJih3XqPFle0LZtNA3JFdZ5dvd22b/Yp7XRHtlfK869jwYC1iYnM2Kj4j0gFVm5w96NI5TWTKTh1rggmJ5Sa7bmWl6wXq8pioJf+soX+cU3XuHB3Zt0iwuavsEYE2sDlcf7xcX9zQdPrmLwZyEEhVSM8oJcZ+ibB7SbBtv2VLVlfXOP9cMZJz/+ftRpuUjH3m6oWwr98NvV/vg/VoNuAyEFP0OxcFWDDfDPVWaMB++iwYWLIQZt22KsuRZK+fN7/NwblRd1FLnaAM5tEEoitSTPNZvNitW5YalzUBo1TFSGelqACwbvO77wypu8dPMWO8WYpva8/+Jj3n73x/zZe+/jEBRlxW9+85e5s7fDrdkIv1mydB1VnlHlI6rSo0rD+eaMw/mM1+7dJe96Ch0ozJJ1DZd19Pf/R//8T1lt1gQkn//S18lyxWx3n+WmgU3NZlNHhFbIa+KKz3YqXPv7z2z//wbNytWiuvoxnxrZfeYpvHN4Z/HBo6597ad64uGiQpzCpJ+iZMxdyXSWBLzX6GbbHe6qInI+ciNn0xnVbMJKw/fffZvla19jMtlBeQ0hjrA9NrrkJLcY53wS8UcPL5euT1HkjKoRPisQiGSbnF5vuPY6iBkAFyfPOX3yAV94acr9mxUH84JSlVRlTp5JvF2yM5HoW3NmszHeBhbn5+TZjNEoZzwusX20zZNyaACHezxsOat9b8gyzWw2YVyM6E6OqVdL1ssl09lN9m4eUjcbNo3h7OyY3b1dZLSD2xYOwDZEUshYmGd5js4ydqZznl0+5vnjJ7SXKzabDW1dc++G4dU3D/niqzfYnPyUrltiswuKvTfI8hm6PMB1G7yOtJUqE5h6Sbd+gesrcjVnf/8Gi6bl4+cv+PgvPuD12yNefnCDN998CTkbI70jtC3Beex6gbs8o5zMuXV7wq0Hv8iLpyd0Jgogu9YjpIgWkynFOrrjRNpJJlXimatYqMhAnueMp1P6zRm2j6nROs/RuSYAUmm8s/TW0dXRMML2lqKo0KMJxSjSQIOLuhif0GOI7jEIiSo0elzFgDcf2J3vcbyu+YM/+zM23vO5e3f52udep1+vsemA8D7+FCfBpdtB+6H5j5lPahBSuoA3Hoxn7AK972iFZywKyhHkO1C6kq5Ln3GZIa2IUx4CysVi1wtL8IKQgr2EU0lDBIOeZ9gbBi2aSIVT/L/ockWI94wVGpFVEUlL+joEkbP92T3m+mZxvSMYgAKIDQEkdFdv7TZDspIemjukoMwVbR/zXjRXfatL2QSCgFM5jjbq+XRsMFRwqERbssqhtEb6EK2DtU6lpo/TMjMg1RYlohubUFGD85mXn77vOi3h04+rrxcILRAutr8KQe8DPR4bLIKoCRkseLcVXmpCg1I432NXC+zDx+jJBOU8hIzTP/jHnP/hP+HiT/4H9m7dZvKtb7L3v/lfoe7coVcK1zXc/pu/SyYlmQ0sL1e0posaCqfAJ3AniFiohrhuMimYlBnaKaR1dEisjdIWhIxi8RDovYu6ia0NdUBLyagcIaTGRxVNcgmL+gBV5GRZzpDfEC+RiGdauHZxia5M6zZatvbGptwRT7NZ0/UdzgWyMiPIgBKOQkucd2zajo+fvmA0mXDnzi2m0wmt6Vhv1hzduUlZZGgZwydn0wnz+ZwP33+PUVEynozRWtNfYyE4Z3HWXlvrEhV0asYkNkQ3oizL8ICRmlAUvPb1b6B25nR5zmKxpBiVHIxyTFujypzOWJxJExUhUFlOcNC1Lf/ff/xP+PDZC56dX7DerGm7hr7vCH0fLbCDR5qei+UFbdfyd//u/5wbt+/x4P5L/OgnP0F7ibSBWRHd1xprGLmQRrhxwuicAC8x1mKcoLWBs9qw6R1Sav6j3/td7u9NuDXJuXv7iPc+fkhTr7g8D1SjHarxnL5u6NYb+vNLjPFw+w7z8Rwpc0SaRC7Xa568OOXHHzyi85ESZF3HkJ2mtGA8rjDW8ejxU37ri29w/9593vjCkp88fI43UX9588YeXdfz8HTJf/F/+a8YT0bsHM7Z29nnzr17vP75N9HSo5aKqlAgDcZ5Nn2D7SwHhzd46ytfY3Y45/HijP/2H/0hm7MNt3bn3PzyHj94+yc0bYPrez7/2iuoTHO82nBjf5+dyZiDvRmHt2+SV0W0JO96VIBK6Qj+hLg+VdJVOW+wvifgkUEmnEuSqZzLyyUvjk/44z/9M1556SWOjo545bWX6eo6xmAI8EN+mNT4RPf3vo8FegjRVCKFlmd5hbMOJSVH+zOEt7jmks5YRnkBZYF3LgZKE9krm77HeIfORlSFRmsVwXtvEb0FIyhRyOmU+RceMHv1gOUHcz74e/8PlHFIZwkqu7qHtxu/+Fkl6NXRcH1y/tl/46rmu6IgbGHt7VmitEZ0nmBaNpcnrJ+19Ms1bbNhtT6n7/8nIKYPOeCjxaTKFEJE9yDt4+g9y7JtEerx6CC2YjhnQ/SR9pIgcy6alveePuHh3/9vIrKmJL/0pS+jy4q8rJgUORkeReRESyGwIRCkYjwecz8rMH3NSEtUvYxZEyJH5dAtan78k3f4J//sn1M3Sx7cv8c3vvF1To2mXnScXS7pO4O3EY0LeLwYpFlRDjx8qlcTj6Et/VSlcPUn8bOO1X/lCqb1Mdh3pmR6IT7L9NhuNlrJyNlUanuID+LWONjwODFQeCIyhogFewyXJAn9QmqQZKKteGxKkg9ScuvBg/gcfcedKmOVgZCehYOl8YyNR/gerEK7QFZE3/bWWLxUGAIqWLYDEyJaOtCwfPIOj81KbAq9CKyXK8z6BNWdcO9AsbhY8uypod9YXn/lgNs3ZozGmtneLqPpDCV6mrXBt57Vck3TNBjbUxY5xpjURES0MqRAyojYBWQAlRfoomQ8qjh7/10e/+TH9F4zurFPoTN+8OMf4oREFSP2j/aimNpJlMjJZIZWGuuv5lJDqKRE8vKDlzna2+fB/Xt89y++Szh+gXQ1X3xtn9uHIxCg914BZ1C2w569i9clLp+iJ0dIpUHt0G0WICRZVaLEDC80njX378F4OmEyeZmP3nvI0+cf8hdvP+Rr33yDgxtz9o7mBBtdTKxX9F2PsBbkmp2xxoUMGzI2LlpNt63HoeIEQw3yOosLAZmKzEzm1D7Q9gbnA94GvIvrSMoosoiBVzbZZQuapiMAmdJpShPzIJwzhOBQMiBkLMhVEOis4HK95ofvvEOeZ1R5zsF0TCtznl8s6GXBo7Nz8iLnwb07kc4VQrQ3JYaKOdtxFSx2XWgYm0wFCNsDnpAp3O6Y1fuetWvZ+IaR0OzKnCr0WBEbuXFR0PY13hiEcAiRCnDPdsLCMIVI0FW4Ph3Y/hpG8tGKNoK+IVE1A0YEjIvGAnKYfAa22T7bacKwiyTjDXxyghkOnoHe8Nk9KQzTrfSaudKODbubhJhsb/poO9s7DLFhEb4DLFIEwBK8wfkMW3pULqnynLIocC5CFVoOtXFMKkdJQojJ5945nLCoEKLpik/JzukaXm2jV1OG68fv8JqjPUVASIlCodFY50F6cgVVrqK41jsGMw0vRKRUJBG66RrsaoU4vWR6cIhuay6++20++vv/APvimMkvf4sbf+v3qb7wJsUvfIHeGkLfo7ylv6yxSIyLE1AVQhSmB9L+FkEHR2w8nIuvQyuoVOTkd0FihMclcbj3sWEU3jG4Bw7UzOFzj1RUS1JRMczNrQ30vaPvI8AVr1vYXr/reUhiG0gXQ3+DJBoemBWmt7F59hatAtNScXdUsVrVWGM5u1yxM4vny+c//3kODvYpygISgKW0ItcKaw1NXVPXNfu7u+zu7uK8SxPT+H5MmkRrGXWLQbDNMxFKoouYHWKNJbhAsbNPtX/E+PCA2gXquqHrenbmE3YnIzIlybIs2eYOsznorUEgyTPJL7x2n/39CZfrFcHFfSl4B87GoE8hcNZRNxuMM3z1S29RzKasVksu6oZRWbDXbpjnJU4IvFQ4F0XtrjecLTfovMQ4QWctrQ8sreO43uCUZHdvzu2DOdp3nJ6c8K2vfYmDg32++Pk3o1FQOWIynhC8iZ+gEEiZc/fWDX7h1ZfougXBxQlT265ZrDecXG6icxxxQuquofBaa3pjeH58irGOvMw5ONjHfPQE5x1FlqG8JZcFYaQpd3eZzabcOtyluVyzPD3h8cMPWaxOWZ5fkNULfudrX2PV9ZwsVtTCMJvPuPfSPV4cn/Ls5IxNbTg42OPB7Rv8wmv32bRLTs8dF22LznO8d5yeHmPrms1sRobgo48fYYFsPOLm4T5VkVEgKLMcLRW5EhQ6TUGDRyqFFpos/Z1SmqwcoSW4vmVnXLC3M+Zgf8bBrQP8eoPte1pjkLmKVODkDuoJeBfz+npj6ZSgrAqyPGdUTVPtFPDKE5zCSVBa4kyPBHan0wTIOhaLBabrooOsD7jO4HuDM+ZqwupFdLYzHasn73H+7rtc/uRdbG1QIWqztjt+qpniFPi60uQa3BuuTViGvx2m4X6QAVydCWI4rrbl7NVfOGtxPsOLgCoUy0XD5fkp3pmoK/usocvP4fHztyeWabSZwmcARHAMeD+kwj5V3dfnABFVjBaoq6YjLJY0PqBwHO7vcvfmDR7cvYvMy2i32Ky2TYJW0frPOo+1FiUC0zJDF2MwLbZep+fxUTnlHF294fTkGZkWZEqwO5/x5Okl66ZmuV5j+hgwJpFbvt+nmo1ryP9A3Rj+Pv7dv9slHDrboUkZqDWRthUbDpuaCGc9UvmIoISwdX5goN2EaCXr0gRBBB8pOVs+eyycojjx2msIYUvNQQqyomB+cBBpQW3Hfp5TZZJewcp5Vp1lUndo3xKkRimLUhmbuqFpuygYxGNCRK9dKkg+BYumdbGto9KCb9sWTEMeWkrlebyseX6yQRjHnVtTrHcs1wZQCKEo8hylQSkLvqOtl6yX54wObl0VbOn361Q4ROTqitTUOe9pm4bNaoUqd2LDYS3nL54iy4rRTnLEIupAJCrRVeSW8hBCokykenU2nlBVJZPZhIfPniJ9Rxc23DocMRvn0bu83EPaFuQKuznHuxpra2RRIfUYoQpC0AiZofIKQZkoOZbZCKTKUHKHJ58UnJ1f8uTFmvneNFLmMsm4jAGFES1yYA0IR57PyETAiUiRIEAfQhSoI/FSIkWkNjki+iOJVLSeGEi3dZ1L9zXEzITe9AgZR+rWCYyJXHOVpSA3At7ZSGkcDCQSgiEQ6Cyjt44PHj1CK8nOdEyV3aXB0nQ9QuXUXc9is+FscYnZdMgA07JkWlZRRE26Rz814RTpfyJSsoIF4aN7VaEwgHFRk6OkIJcSRfJcE1zpdpxBJgpF7DeuP0/Y/hr+afjr7Rr5FC1TbL8uAnhDiFjMANBDklsQn34fXHu64eenxiyk9/hpiurVfhyCj/dj+u/t3iWufalINCNiIRBdBIdm3BFdvLatFoSYPSUGK1kV730VUpgekd4nuW4tTZrqxDMj6l3c9jVEhqC4Rg/9zHv61LWI11OJOE1RImqGfOLk52nyMxiWXH1CSdkkFL5vCE2LqBu09/jViuXHH9EslmSTCTvf+AqT3/w18tu3CNMdwulZtNIVAdeaiMaGEJtYIFw/xFNR4RNQ5NPriI7CEg1o5aO8LqRgv/R9itTcMri+xZ9r3XAvuXT3XVHMnI/3ctP1KQDxim47LJvr63BwqZJSbgOATd9H1geStm2obEcmHPs7Y7xx1D7Q9z1934OQHB0eMpmMyPPiU5TNPMvpu277eVdVxWQySc1a7EbFZ17c4EQ5vG4hJTqLqLJ3HucFo/GU8f4B2WiEX27o0nvVSlOVFUWeRa2Ld1ttGCKCckrEBvr20R7TSU7T7ZAJNTwpcnCKk5Lexj3NesetW7eoheLCxDDFzhrqrsWHLAn7I9sA77HG0PXRgcoH6LylcVA7x9oYAoLCO7w10V64N9w63KesKm4eHVFvNhRZxqgsyTOR8n8FSpZMJiN2diY412OFJlcFfW9oO0Pd9QSSu9/WgDde2CFIe9NsaLoOISXTUYlP7oUhGTZIEfPZqvmc3cN97t+9zbP+Q4I1nLx4ymJxQug69grNm698jvN1w3ff/SmdvURqRTmqWCxX1JuGUVkxn43Y3Rkzn40irVtremuTW5zDWcNmvSZXGu8Cz58dU/c9ejyOVPCyIHQtmdRkSlFqSZHHPJRMxTWmpEDLeEILJZFNS7euWW82SCkxxlDXNafn51DXiBQsrpComJaAINEXfY+sG6SxCGORwaGdJRNXe2Lveqx1UW9oo37EIVgv16kOCFuHN+McF9ZSFTmZUrFhGFZ9UOSFInjP5cePOP/hj7l854P4epQEFRLNNt3710DnkLbFuEUmwFQMJff16ctnH5+RN1xHxa99uXMWaw0m9Fjb0/cdXdehEkgvxfVK8ufz+Lk3KjqdrgEJwcUPRwiCiqnf67rH6AydaZTU+BAtXGWyRTRG07U9f/b9HzCbz7hx64i//ft/g7dee5nPv/ISqy7w7PyShy+OEcGilWRf54yyHNO2tOslF2dPkQFGWcGDu3c4O6v54OkTivEOPYqWJV/63Kv88je/zr1bB/zTf/ltagP/6H/4Lmcm8OLknOMXx2RCoaTY5ot8GskLP/Ojvv4I25b03+YhtiFwCnVFIUp8+ECgd3CxqRkv1hRlRVk5siyjKuPNLmWk5AQRDyPbm2Qumo4uAX1rkxA8EckZsk1ioWEJGG/p2o7Z7B43bt7i6PYdnv7kh1yennF7POW9asS5znnSWfafn7E5e84kNFFcqzMuJlM+efyUZy+O2XQtWo/xAlxrqFY1Pt8gyxkQN9B4kHuQLqHTGT4I6nZJVWqKScnZ0wsefnzJyaLnV796xNHdXbL5hH/4D/4CZy1VmfG7v/llxtMReWa4s3zG2ZMfcvz8Bb/22/8xyEh9G5oRnzoIKWQ8zEYjLhYLjs/PscFjfGDv/n0m0wOkVpwdP6PfnDDODijVLs26I8viRrMtsAGtsuTiFBOzhwJguVqQFTnFZMIv/sq3qJ8f0j0dc7h7QdCaTcgJoURmJSqfMdYa11xg6nPqs3fReo+sOKIs9vFMcGzobRRkayEI7YJZJtm/l3P71lf48JMl33v7Of/4D39AWUru3Jnwm7/9JY4O9tnf2U9LLuCFo23WQIPSa6ZFRakySlVwvrBsGsPluovcX61ReYY1LZE6lWMQuK5FIQhKE2R0HrIu0AbHqgUZbGqcFZnWFHnObDrGdtFty5ou2hGnwvz6plpUI6yQvPPwMQLPq/fu8td/49d5+uKUy9Wa+bhktxohesvb3/sex6dLWmNwKvArX/gidw4OuLkzpfN9TGDnuhk3BOniL2UIyuKVxdqealIgvWSkR3QqsJIWpxTKSoILrOpT6D3KS6pyRNv2OGfTFCOuMz9MN9IG7hNyLqSO9DCR7nmXQAmdvjTEvBjtImlSKaiUYiwlKrgB3vnMpPYqlyjhHde2oOGKDhx5sd1fthTI9E02hORUl0AYFdFsA8hcJSPrPk4KuhgAKBGIDJwdaF0uZpcIgVM+mUJ4gpc4XAwLTdKx4ALBOcizmHtjDEHFXTYEF6mkSUgv5dV7lp5/paka3q8KoIQnFzoleAf6PmCDJKiMTLoo2CcmLkdrYqKDnVRonSNOzpHrGhU66kefYPG0Vcnd/+zvsvvqS9z65a+z9pq+Mbinl2jp43VFoEIsPJwIMGiBJAypmtFa16fGRCGVRHqHcNEGeOhUg3eJhi8I+EixDdfPn2RTHTyrJjrl2S0NJl0nAd47mt7x4txsmz71qW4grsPBharrDNp7dnd3afqOro9Ftsw01liePHzIQbXPTFfc+9znUUiWyzXr9Zpg49S1KDSj8YTRuEIJT6EjD393Z5fzk1OsNeyMp9zYP+Bwb5+T42epsYoZGVpnMSOia9jaY4vYbIYgKXSJcD3OOkI5pTw4ZHb7NhJN13SsVysCMaQxGM+qXUUdSqZQsfjYFnWDhf79mwdoeYiWMZtGpqZpMLtwwdM5Efe8EAGaojOItmcyLuiD5Xiz4M5uTKJXUmJCoO8M3aajyhQ6V7gMzoylcZKVFfRB8viTT3j68GPEszf4/Et3+IWX7nBy+ozD6YRX790mWBfpcGnKNWi7+jaySlRwWGLGkZCatnP01uIV5FkG3iFc3I9c8Hgb73tjPava8OzZC6bjinkukK4B54AKLzJMMHR9x/7te7z1pS/yN3/9V/nxv/wjTp5+wkfv/oCj6Yhb+/u8+crLvPX1X+XJyQUCyR/8i3/J5XLB89NzbG/ZqUr+2rd+kYvjxxTScLG6RElQeOrlgp35nCzX3Dw9ZrPcUJYFt27f5r2PPqJrY+5IvblFven46IMPODs5wRlDmWdkMlAVBTf39xkXOQTHar2i7Tq6vmOxXrNpelSWc+PmXR7/xQ9TwOUFSgkOd6b87lfeYq+5JO9bbN9TyAKFJIQeY2M4qibHKnAy0EsXp8FB4ryK546WqHu3GN+6zyZI/uCP/gEiE8x2pvzmr36Lzarn/PSC73/ve7z28kvcODpkd75D3/VYF9DFiHkxRXct7/+9/5rln/4A8/iYw6NDOi3phUMHS9CCkAvCJGXEBfepTV84QERTGqN8pCW61HyLtA99ZvsczoOrv5WAAxHP9d531JuWZb3h8UcP0dYxKjImo4q22dDU/7Y177/+8XNvVEQY0PqI3A/8Pmd6dudTju7M+HhzJYhqjEWKaOf6la98OXI6u47dk1OmswlHh4cc7O3jfODx8+eE0ZQOhy4ydqopVVnQtYYXmwXKGJTp2dM6ojqbBZ88NHzy7Dlvv/set++/gi4qZJbzo/ff42A+4403f4Hz2vLR02PeffSCZdexWa4RzmHwBCWTO8eAT8FgpXy904wg0DAeu46aXcMufhbl4l/zGKgzgmjpGwgY72l6R907WgfKg/SJGoJCyoAVDqEGXDuiQIIYuNpZT2Ms3cDhJ57QIlHnvYr+/J5A3/VMpzN2duZsNjXr9Zqm3iBlFSlDzqMzRVnmjKuCkXEELRA6+vvPpmP2dmfMJiN2pjOKvMCNJkxmO5RlRS9SMUJgcMiKIscoKBBCUE0rlpeC1ni0HjGtlhDg9QdzdkYVXS348x8+4vb+mAe3diN6rgKZkrz61g38+ytenBzz8PEjDo+OmM9nsfgSiR7iE4YqJSJTOO/o6oblpub2jZvcePNNghHU3YrN5oKD3RHlZMSorGJ+RrrpRQZBxsMMf4XRAldItAjYEPC9o5KCYqIIhxqcxlOAGIHwCW33eLWDqEryfBfd15jesVk9p3U3yMsRebVPnm8ItsXZGqFG0YrUQB4a7h8pZt+6wa2jisUmsOwUl+0ReTNiNMnQdAgiAhwzHQAstm8AQ6ksB/OMaQXrQrNae6wz2I0BHZ3oApAJSSYiEkWegcvRpqC/WNCrgBOaLAgCDusds0lFWeQUuYSQTAJI0wQhonOIT+tABFxyZrlYbbh744CdnR2yrGB3NqVzjvs39xg5yU415quv3+dsUXO52fDw7JhlW1OsFhzuzsDH5sGR6kUGAbXY6i2EDATvWK3WhLZHq5ysglB3uMua0JiY0q4kOmR4EfUObdvgYsg1zltkFvVfPhCpOiFs78No3D/EEw7Tjoi+yyHcUgpEllEIT0kg+BqfXnGZF8kVSxCk3NIX08IjhKsCLG04cY2SRnvbUeY1s45BJyO221oa0EYthxQyalAiDEUwPQKHzED7FhEEEA0OfBw0IXSM9hM9uJ7UjEWjBp+MFGRqmAbjgWFvjE5gcbKrrvWVUsnta/XBpedN7zFcvfZCK2ZlTiYyHJ7eW7CKPnhWnafrLJnzCKUIUoGIFEef6GEogWt7QtsjO4NfLJm8NeH+X/9tiv0j5Kik9iBkIK8yVD7HtjXO9Ni2TchiSJ2U3NYG2zfiLVpEOl1ZVqjWIFxAusFEYphkkTIbwhYtZWuTH9L0KjWYafLlh0nK4GsohmlOoHf+yksknWHDtF7INBHWGSgVi/x0iiidMd/fp25aWhv1Si8ePeK0tnQHdyjGFXvzCZMyx3jHuumol5cc4wnNiN1782jNjuRiscLbjlwrXn/5VSbliGBjnLILQFojgivHQJGaZiHjurTeE4xBeIvU0ekrn+4g8xLTW/o+Ir4q08i8QFYjcq8guIjYy5TgnfJohqLfG8sw2bQkc4UQrYhdoiIa6+mdw/iAKgpUpplnI+bjEcY5Wh8T6iUx2LXtGjIhqUZjfv1Xvo4oMkRVcNlDYzyb1vPiyVPe+/7b/PA73+HJ937I7/76N5lUvx71P9ayWS7p2zbqU72PjlwpW6RrGvIsoxSBIh8hhUIKjbUeYy3OtnipUnacSPo/v80LEVKiipKL1YYi18ynU7TS9DZszy0hQMnApu54drrgBw+fcffBq9y5fYv+859jJCSzUcXN3V3OliuW9Yb5zhQtBX3T8ezZCffv3WJvZ8LN3SlTcUCuM2yQ7M938b1lsXtGMqpjNh4jrKMsMoTwHOzNonuaUtzam5FnmnkOi9sH2N6kLBFHrjV7O9MIHnrHdDqm7QydMUw2Dat1jQ+BQgfKScG4ysirMfmsZC+XjM5e0P/zP2H9/DlPpcWrDCElIyGwziJCoBDRst3j8dJivcJ7QWYEWdNQTkYc/bXfoLr7AHb30JMZmYJxOaHKRvipQpBz7+WXObh1xGw2Iy8rkJEKO5rNmRQ5whjK1tN7j5IOKbpI+PQeaaOkQiGvmu1YekenUxEzy4YyxGMS/BcgxT8M+6XYbgbDD0nGzXHbiWwbEzO9Dg8P+dbdQ8ajA6Y3b5IJiQ4e27WIsL+tkn+ej5+/RoWrDTTtnRFVspa9UcXhrRtcHi/x1tH6OiYQC4HWmr29PfIix4fAZDphNBqzt7tLXpR01nJ6uWCkcwJQ5hk7o4pCges76tWS3DlGBISxmKZhuV5Ryw2nZxdcbmoOon0Jwlne+ekjXrp7m7u3b3Hv3n2WXcB89IxmvcH1PWWucSkUK4RtKXF18ovhwL/23sMQ0HgN2vtLPrO/rFG5Xtxe++JP/WekCYjkaDWgo5GvHOkE4qphhnRgDgVSwAWXNl2/pc/HOcpg1zi80XjwV1VFUZasViu6rsM5GxPJk72hkCK6fWQZ2kXXFWQsxEZVwe7OjNs3DpmOp+RZgbGW/b1dimrEaSKc+W0TN4yu0mkkoagKvNB0XpIJze58xGxHc3A4o7eBs/M1z08W3NodMx2XCOHo+jheVbMCqQL4OI53Pnquf/aqD8i0kAlVdA5nHNV0yt6d2zSrBnthaFvBbFySlUUKdZRXn+V29Hrl3vSpz1JcjWaD8+S+JRM9onCEVoPIkCK7sr8OEGSBkDlSj1BIrK2xvqHvA07nEKboIZ08GBAq0nKcIxeWaSWZzkbobMzJQvDkXKKLXYLM6UOO92njw6KzYV7scS5yuJUQVDlkMjlQGUnbe9reMtieeC9TARJdvURyIhJS4XwUsIeE8scgwUCeabSOBbZzHpcEj5+6YiGVWiIGdnV9x2ZTMx5VjEYjautoug7nLbvjin4ZsxhuHh6S5WvKUUlHIFfJhDTEn5nie6/WGwlZlfH+iRu+o+86QrJhFJLIze1NLNTlUMDIKOz1HmcdPomjt/TWYT14iAGK8ekGjGPr6pc2F5HuwWEqIpREBRVDIH0yGAiBTGexkUkhph4YqtgwnDDbZXfN8Ut8+t+21K2Qpprp3wf6z7AQY990NYEB8DbmEEQ3MxvphGlyEOs/gVAaQZw+Xd0XV88dJzhXVNTrL3RoVOKv4boMW8SVnP7qz1czI4ihmGWWoZDRiS5EvYoPgdbGPVAF4jVMjeoWPSROb7yzcQ34QGhaNILpwR765h1scDT1JcqZqBsKIrlhxeyf7VvZVgKf/VwiBS06youtdcSwVw/rYHiPYdtVxHtoeILPIqExCDFcA86urtl2isxwNgw7fjozxHA2ye05YlMAppQSXZRs2pjBoZXi+OKSvg2ETx5x5/4dZrMZRVXRWENvLcJZNnVNIQOE+Vb8f3J2xqTMGJVTjg4PybMMn5wGhxcdPvsZD9dCDnbjAW8HqqikGMfAXZTGDFPL1LCt2g65XLEzztJ+B711sXmP/XV8ppA0KanZF2KgXQb6pN+JQYmG3jqM88moAdCKKs8JfQQAXYhTVKkUXdJZKSG4deuQjXMsjGXdWoxXeC9p1jWLs3OOnzxlcXrJqw9uc7FccedwBx+gaVps3yUjnUBWqAiMSYGzsZDF+RiQ6TxeutikpGsRfDpr46aEAJSMlEAho6HAsm7YnU25WY0oi5zeRjCBtD0qqag3NafnF3z49Dm3XrrNaDpnPK0og6DKMkRZ8vT0jLPLRdIxKVrrOD0545WX7zIelczHBYXdSVooxWw8JuxaNjePyBIQMRuPyYDxaITAM///UfdfT5ZkeX4n9jnC5ZWhU4vSXa27p7tnphsYDAASu7QlVtB2jWuk8ZH7tE/8l2g0ijVbI3fNaAZgdoABMJhBq2pRuiqzUkZkhrzK1VF8OH5vRFZ3kwCt9gFellkZysP9uJ9zfuIrxkOKXjluVKRkacIw3WVnMoxePTb69WglGZZ5XK+CpxwUkU9nHeO2Y1U1Pe8pwnkDgspKGKYMfUdy+IT24VPqh484Tx1Vbzg5kjruiwQKkW4SlQ5H4yXBSwYmMK5r5GSEmn87duWKDJ3nFFpR5CWJTMgSsEVgZ3+f0WRKURZ9SBnf+DRLoiJkEJG3LSUk8Xlv5q7n8t3rVbiE94RwWfAN/Roggo/UgD7mW2thvrJ+fAlCe3X9j1j4KIs8nu7z5o07DA7uQpqTJppUShaz88iZlpKv+vjKE5U1+KVHRm8UGZq6Y1SOuHf3HofdF7R1TbNUvH7vdbSOlaxES+7cvMH9u/c4q5aRSyEVp/MLpHckAq4XI4o0Br97ZYKtF1SzU/zFKU4pujTlk8fPeHlywsvjYw52D1B5xttvvcPbb71Fay1Hp+f8X/77/5Fb169xer7kP/lf/jneez7/7HPODp9QKs2N2zfxOme+XPDixRE6WXdV/uc/4vj9bobj+spZIgTjcsD2eMz2eESeRsiX0mqjUx9cxHkTBEKJqDTSG4AF4QjKRayjVCAllgjzWEO2Y7VZUZZDBoMBUgoefvEZhe8oiozUC+gMvmkxCDqtabUm9R4VFMJ56mbOtMjZGY/42uv3ESHybuZVzc0bNxFJyl/86n1C8JGwKQAkIuio1BHpZozKIS/1hCZMWHaP+eaP3uTW7SmkI/7mn/6a937+Gdp1fOOdm/zdP3mHYM74/ME5Tw4rvMhp5QBR7nL91k3yvMB1hlD0FYX+b9FXjBFig33e394hSRNq07ByLSgos4yt4RiRD1BlRl4kfVgTECKNVTjvYqAAV5LZWLX3PexGEjBnn+Obp4T2mEF5DSmzGDj0kJHQw5PWOvtZOiKVY1wqeLnI8MsE2Xi2tqYMsgFlMcJUJ3hjCN7iKMF0hLZmf5JybX/Ad4otrLtGZTPmjcaGbbRfkvtzhqJF6xBN+YQk+Fhg8HaJ1gk7owGTckzVes6XFWcXK0wHzieoMsVZQds6hInGZp3tMbcCJA4lTQz6E41Uks44zs5WzJYLRJZTHoyjGMaVFUQRpbEr65jXNWenp1zfnjIeDfjZo8f89pe/BmN58/5tnldLfBIlShftHK0F/+B738OaCA0xjekD3authj5JlarvDiV4QzQt7Gqc9vhEYBpBjadNA3mao7oE46Gi693TFUiPt6bvbIi+QRg7CGtuRawUr4Ot3piPGABIFRO9S55ZnIzrEVlXkY3z6CTZBGyRKyJidw9eUXFadxtiEf6yYxJvfZ0QxzFYy7ZeCaUvVyLfw9KsA+8iL8l5oqqnpLUCLQJKObTKQCiEUghVElSESQi99mzqr6kPPDecBBklUzdj13dffPC0BrQUMYjpr9lv2gt9ehfWHYvL6/cImp4j50XsssoeY+2l2HBGRB/UXi7Aka/kpMMrgUpyWFV0D5/w4i//ivFPfkKQGnNygX/4Md35CcvjI7a++0ekN26Q3r2Drero9fDlbSN4pBSkWUGaZeBbllXNqm5orACZbMTahIidXukFiMgpW9tbXj3vOjEWQpAnCUHrOHf7TpvcFIBicrLhgPQdLNELmfhe/dCYyM+0xrKqV6RFiVQJ9apjMa+o6oZ8WDI7Oebo+IJPm7/ku9/7Drfv3ObGnfukSjNMM/anWyzrFfO2pvMCtKZ1lp//6qf82Z/+MQfXrrN37YDFbE5d12idRnEFYpHEaYV3EvSl6aVWmlRZRBRPQwmFTlOKYoBMMqxQVK4jyxKmgyEXVce/+Lc/5/jign/8Z3/KjZ0tpmXOy/lZXIulJFWSRMaASDgfFcsDSB1N/dZwbOfX/7aofpU+O7tgHiwLHCKbUiYS4XphIKFRSYYTc5p6Gcn24xHHq5ajeU0VNJPxFuNxlOcdbW+ze/sW7XKBdYbZYsVbd29TG8NFvWJSjnDG4NoWr1Osd3StYZznpDomvdXsHJuk2LSgWkX1Q6VTlEjjeuMipy7TiuFwzMvzOVoJyjzh2emSyXSHr2/tcHtvj0N5zqwylEn0/Amp5uTZI5pqQV2tWD49YFxmDHPNjekWZZZRpBnvffBrLmbnLJdz8rKgay2ffPIR3/vuN8hUSqFTrt24Dj0kTpUZ13a2ePet15mvljjreP3mTQZFgRDRh+z+jZubhL1uVviuYzQacOvgAK1UhMPZmJR5b5C9uWuS6B7WJ0iSlDRJ45wiQKLwAarK8uDsBfXpCZzP8OkIr4ekiWORQtcLE7kkAQErAbovFqyMYiUAJVAjycSkJNMx6fYWVnqMbRimCVujEdPRGGEFvjUIZ9nf22U6GpJKycnxcVSYJVCORrRa44zhuU5phhNCZ0m0jjwa75HakChIpUNUK3ocH0LmiJDglcYrifSxS5s7FY11pcELhwy63zN+N9a8mqSs49HQtXjr2N3ZZevdd/nmu9/FOUdZFGRZxvzijLaLBttf9fE/S6Ky7hfFhdD3PhgpJycn/PpXv2JWt9y+tssfffNrVK2jKAuKQUnTtRy/OOT05QuO53MGkwnbe3sc7O6SaUkmJVt5TiIgcS0DKfGJJC0ylrajah3zFXz48CGLVYWzju/euUtelgSlaKuW5ydnfPTFI7a3t9jb32MwHPJP/uKvODo65MXjh4wSwXA6Yf/mLYqtPR49ecyDBw8YjUc9nlr87sbzSoWy/8ymctm3176crV6BW/zuEQMW79fE3P6EIW7k1jmapqGta2zX4VRfDpLRYVdrRSJEb7oQ8AFUZ7DW0jQtSNBCkqoEFUTEMfqYnYT+n9Z3SCnY29lhd2ub6XDE4sVZb8blsJ1Dmg6sZWkdtVKYNI3KNCHeQ5Zm/YIAiYxJkCUQvCFJFDpPEVJsxif0FW+xiRdioNLWLTv7NyiynM9/84LDZy0XJ0eswgm//vgZT8/m/OSPv83+3haLquWDz844W5VUYpfheJ+97W2GW9tMhwOED5EoXpSX5fu+qipVhBqsliuOj0+ZDEYY0xGCQ4lYWTRdgzcGlfbk2HV1t+9qxcJthODE+vJ6g+3FDERKcA3OLqB6hgoVOi1xfdVfBhAh27xDPkSiu5QGY1f4IFAqYTwc0LmU1ibM5542FTRFxjC9jtYG6Rva9ryvsKaIoHBNjauXdOEFnhGZ2EElu4Qwpg0JwS5QriExNVnGlWBagw90XUXAkSSa3S1Fng1oWlhVaxOoLibHzmJdrFgLqVAqyhzrnmTtEdSdxTtorWBZGaTXZL4nkfcRlCBeQ5KkzOfnLJsamSRkWUFVd/z8o19ybbLNVlEwSnKmZcGoyLGk/Ozjh7RNg2kFt/d3yZIEa9re9f1Lc5NAa1zESWuJVwEjPavGkKBAKTrpYyVMZNjW0rqAE5I0TbDGYoMDEwPDAEgZN8C+HgviUt2O3phrrWy06Rr0LSUpYxXN4zFYjGlxwlCWOV0nkF0kgSqtkFL07vL9XL9kovVzqMdMhfAK/16s38lXlq/1Ofp5KORlTrceruAJLsKxTAhYIXBKIYq+a+IhAuuiHqNVEKREiGSzjMXmlbzsBPmYUIkQux3xiq/6MfUwMFT/TorN5bLuXK1XznWxpf8G5zydcVGxUQrWSmyylxbVWpMkSZ8TRg6E64fMh4DKC2RZ4IqE0VmH+OwBzf/9v8e89xu8UNhFC8++oF3MmM0vsC+WTH70R1z72jss2/ayY7ZZ9+N1KwRZklwOfiAaiAawvet67Hj0JrW82uu+/H9fEBSXVfLQD0SSJLTraxBXBGuudNgIm7+ufCyQOkUYTRDRiyJ0UWSi7SymNZG8HkLk2zlHU9U8+fwBy/MZ57OK8c42KklQWjFbrYigT8VgNGI8HVFVCxarFReLJYfHx1EFydgIfQxh001yxuBs9EEJ3vVwSY9CgFI4naAViCSjQbCqa8R8wcE4IU8SslJwvmw5u5jz5PkhRy9P2C4L9KCkSDO00lGqX4IMAdu2/PRv/pbVbEZX1SRZsuHtdDbyOo3ztN7gTMCbgE1zBtd2GVzbZTLRjPKC0SCjSAJ5KskSzWJZ89v3PuCDX/8GPRhSC00tE6bXbrK/W7O306IHA27ev49ONLZa8MZbbzEZjnn++Bk///hj/uWvfs0Pf/gTqsWS48PnPD89pmkarOn40bvv8N1vvsuf/uD7qJ4Xo5SIoiAiJuxt0/Q8huhTNxkM2J9OETJhWdcsVhWn8yWnsyVV1XLn2j5dZ3j28jHZeIhUGikUpmtp5uecPhOE3QmpTBlkmuXFKUeLJYcvXvLRFw8RAva3x0yGBa1bcXz8nPd/+z6qq7k7+QZJ1ndxVZS21lIxGg/pTENlDau6pizzyL3pZ4QUsYjYmBjQmxANiKUU6CzB9+cyJhqmihD5l/SdYOc9xjrEWmxIxQKH6UB1kOsB47feYfxfK9zsgr3gcCKu16EXjXEhID3kiY4ecVJjjI3GkcsFtC3ZoGDwRz8gFFPsyrJcLNGJIhtkpKOUZnHGbDnHeMcwSynKkuFwGOFfwKDIMV3HSVXxF89OaSqPpORWOmQgFIWQbBceBimrQnOjlJShIw0G7U1MZpwjhCii4BRI14tb+XVysl6bvhyLxn1RvtIJjn1mK0CVOQ2e1XLJ2fk5RV5QFAXOdX3n9j+AjsqmChdgTeyJm52ga1sWizk6y9nZmnDvzi2+eHLIeDxkZ3eH8/mM+WzBxfkZZxcXeAHD8ZBBllKkmlxLJnmKcB2hbZFWIYJFAYvlks5ZPIq6ixreUimSvEQmKa0xtG0T8bWt5fbtWxzs7YKAjz7+lIuzU5rVEp1o8kQzHAwYTibkx0Ws9n8p0YjHl57k5nNcfl5cdkf+3Xgpl+36K+9QvxfHEMR7jzUdxnTRsCj0hCghWLUNwkAqJcMsYlWtNbjg8MH1qpuxPaeQfYDA5QvbEz9jh0AyKAuGg5Iiz1msW8re462PRDvnqH2gQdAS28i2N+dLErUxcnQ2Xp/3js60Eet5BUby5RsOm08FrLGUgzFZkjHcukW7ekm1XHDhDLVNSQZT7t27h04LLpaBo5lC5HsUwwPGW9eZ7k4YTUYkWsVuSix1bc6/Rt7I/vm0XcdytSJLMqyN0A/fdri2xXZd9PRwPhau+3GXPWyIHiYQw4rL4GINg5QCgqvx3RnSzpEqoFSOlb38dAhEjaI+4RGB3kkDaytAInGUmUMaR/CW1giaIHC9v0Amk4jPVasYmYZIAAyuI9gKH+Yga7T0oEucTLCiiHAu65BmxVQKEh16meCYNHvvCKJFSU+a5EihyRJQIrCsA4kKaBVoesWatVrTpuq9TuiCpO0czoFxYPvqpQ+XueMlhj5i45dNzbKu44ZrLKGqOT494/Xrt5kMR+C7aJalEhZ1y9PjM7qmYXW3wYcokb52NL+ctZf/jt1GwRrf70KEdWgZDWs75xC9Z4y3BhcETkLaV7+9IBZl1vcrxEY16XIErtzY5p2/8u5v4E+yJ0vH63DO4aWLcIAAwgac7RXzkJfqgK/Moyu/YDO/xaufvxL6xjfVX/nSOuTdhL5XYupexjaEjUiHTnT/nq1HNf6sJ0LkhFwHyvQkfbFm+vXDtQ6gX/1d6810rVyzfid+J8Duzy023xbHM/RBZtyH4uckvfqRjIGPkurKyFwxpvSBLM+RwwFhOkY8eYE/PsO0Fc3hIV4ofO0RZy9pe1PA7u0T3GKF0up3n/X6ivvno9ZdDXqOgFII73Eu/AHztVeTkyt3vimaBMIf2Ku+dFw9Rbj6yb7bIiVSaryQMRG2loDEGBuDmL4rnCSaJJVgHcvzC2xnMTJj13vywSCaQFY1ITiazlKWJdPJGO89y6ribDbj6Pglap2YhdjdkfSJsGnxxuBNhGHGDpUjOEtwETZqY0WHxnmatiPUNVulYKhT0t7vqW0a5vNlrFg7R6I0WZJGI2OlSKSIZr2d4emTp5wcHbGYXZAXWYR6+Zjwdr1aU+M9pvNYG8jGW9xJJOX+NtJHT5lBnqIVENxG6evo5Qnvf/Q5DQJfDBDDEbdl2sNFA154ssGA3WvX8M2IwWhM8IGmbTg8esF7H37M4PobNMsVx8+P+NWHv2G1XODajnGWcuf2LbK8AB/3eSn6Dux6rvbrsZKCNNGxOi8kgyJH6+jUfnw6p+k65osV2+MRo7KIHjJh0L8hAbzDdS3tasEgT9mejDjYmdCeX7C4OOfp82c8fvaMwaDgYHvMIM9IlzV1VfHs6VMOxsMIoS2z+B7110kvLLEWLwjBY70DL6JhopQbRV3Re6E5H6Ikrvfofl3YQOP7dc85v0lUvIsCL1EVNSZyIcTgPUGikoxkt0AUCcJEU+YkxPXBSsuiiz5gtnXkaUKqNWWWkmuJNYZHT55xsaoIRU5y5x6d17jZMgoaORsLSTomPb7nCMW1KdIf1p39NE1omoZFZ/hkZWhIkVlGnY8Z64yh0iyGnipPOM00TSKZyo4hHQOzJOsqtG9R3vZoZ0kQsTASTYrdlyf/l1YaNh3XzXIh+n0uUTigNYa6aTaJvJABnSi0+urTiq/8jAoZg2Jr6eoVRVGQFwXPz4954+Yt3v3Wt/DjCWjJRVPz+fMn3EsUN+7e4QdvvcVsPufl8Qn7J8eURcF0MmZ/kFIoSa7g9d0h1XzG6WLF4nRJawzLquLfvPceZTnizs07/PCb32FR1RzPZ3z2+CnH56c8PnrK97/7PSbTXX586z472zlnxy948OnHPHn6CAXs7Wzz8OlTvM4Y7C5Z+GPOL+Y9pyFsQs9XF/gvJSbrL4Xw+/ap/59H3IRFVANaUynCJtTr+Q3QGYOxkRyVZSlpmqFkyl/85me8nJ2BD/zZH/0xk+GIk9k57XJJJiW39/YgCDobK3frgAg8QXlIJFon4KNHi9CQZwlFmqBdxARHB3oIncEbSy0UZ50lX9XI03OsjFn1SiVoLZFKgIqYcec9L8/PSLJnpMUQ56KcnZZqQ26GECtB/bUJ51CpIp9s8YO/959x+MUTTo9PwCz487f+jESBOTnk2dmStrOUN37CW1/7Jjfv3ENLTVvN6eoVy2qGRqKl3oxlxMG7zSB7Y7GdpesstTHYtsOvGk4+foCnwYeGZd2SJIass+ie6BurxAK34QfITbgWsXQR8qXo8N0xfvEQJUwUJZCDy0q2DL2rvSfgkMJB6MCt8M0ZCk2iCmSiKHLNKE+o6hssm5T5uebw5QVlCdOx5trWXZSvCd0M184QMkNnAyQNzlXY7hOkfQbZHpT3OBEps6Xi7Kjlzn7KeCiZjiVpEmIQFRKs60087QKtEoZZyrgsqF1GmnTMZgmfPDmjWixwnaPtLB3QtJZCg9QadMZ8tsKYSOQsRkN0lkd/Fxui43XcqeKulKe8OD/l+clL5nXDzz/6hIPdHd65dYOb0zFSSr44vGA6mEDQ/Jv3f8OytkwHE964dx+VWJrQYoWLZnGI3mU7bIooch2cJSk0llC1ECRZkSPylHpeUXlPrRTOazAgZOwkJUkaeTBWYYztzUvjfbDuqvVvtg+hN2uMdfK12aBYrzAhEFBRHS9E/5cQogNzkeckzqFah7VdX1T4Mt+qX3vWG4y4msBc+R5x9ft9lF8P65BXXFnOLrsuUf1LE2xHIHLThA2I1iHDEEKDDwYfZJzv2tKZFuEtQgVSLQlWYPuex++ADsRlQg9szCddcF+SvFw/L3DY3ykVbWagiJA+JZO+mONIpCCVilyAFi76Aq0LJiKagmoLoXMI05HubJO9+TrZn/6QF588Qp2dU9YV/sURAYEQCeQpSVmydXCT/R//iPLdN2mbuu+s/oGLI/JfAJSSFFlKagzSG0zjYkIc2ECNLnOJK92k9bm+FGtYF5MJa23/I787Qr/nxzYcvXXHJckyfLD4AF3bgZRkeUGikijdDhSVJw8dQ5eRSIltOz5/+JgnswXJoGQwLDg6PUeGwBfPDtnd2eJrb73OcDLm6PSUlTGcz2dsjccM8pxEaJzpNtygWOz0yNB/7D1C+I1mn2lbEgVJnjPeX2KTHKlTuiZDTVSvRpSQhoCuO1IPZZoxGpV4GTZKX6lK0FKBE6xWLcfnM05PThgMS6yPtgdd/3/rPR2CurV0LrCXD9ne2uFbr79FEDAYDBiWJaHtOJ2fU1U1IUiSrCQpBvzmg4/IxmPGe3ukRUazmDN7+RKR6l6VyxHamifiiMx0/OO/8wPefOMN3nzygkfLjvF4h9vXb/PrR0+wtcFKTz7eohxPKYdDjKnQSpGmCRfLJfPVisZYtErIUk1RaFKtmM8XPHz4mHt3b/LG/dt84923+It/9VNc2/Hbjz/mrdsHbI1KFBGuKgnIYCNsUWvGRcYPvvNNvvHOm7zzxj2oG3753m94dnrKb794iFaKW/u7KC2ZL1PSNOXZs0P2xyPm8wWTMiPRsWPnXMDWDXX7AmMtUim2d7ZZVCuMNTjvGA1HJEpjTUcQCqTGecnz5y/wJvLEiuGAJE3Js5SEuC8rIQiulwkHHI5AlE53Oq4TGZqtMsOFlDp0zPUYJxX5cCua+TqH7Wq+OHzByXLO0YvIx0gTxd7WgB//4FsMy4yPLs74bF6RdvC97QPs2QXWWUqdMk0KJjKjqVZMJiOGwyHeOrI0wTnHYrHAEzuhe3tTvIO6FZzkN1hMMnyWshqXZCpBC4m1NQGBdpK7ouB2EThIHXfzM96oXnKTcw4WDUIHgvLRXsDLvpjT4a9UQ/6/hapXyimwEQUCkWj2b93YFOGs6dBa9+JTX+3xlZ+xrlYkiSZLNHk6pigKirLk7v3XaXzgs8ePuPmN7+BtNJIqx9vIfEDl4bOjFygB2XDAG+MB47JgUg5ozk6obYsJFjMpWc3OOTl+wfliSdW2LOsGK1Oy4Zjhzi7GWto6Vmv2dzN2t7eYbI2YDEqGWcZ4UKCTjHI4Zm9/j1s39lnMF1ysKmyQtMazWCypFy2z2TxmulcW+8s8JWx2/N+XlKzjrH+/I1z+F672bNYgkoALnjzNGBYl48EwqlSZjlQLTlcrvjg+5dnLU54fLxjkGSjY35pwsL3F7vUDMiEJXeQftKah84Z8MqIYJwgNTdNx/85rZEnG8dNnGBeJzJcVYRk32bVZohA4EUnTbv0yKwU6QSQqEoKTKFPqXW+K10NhpNiEaJtKyiYplFGiUnnB8yePmC8WVKZmZ+eAnXu3uTnM6RYLVrMZH5w9JE0Kyu0R73z3J2SpZrVYYTsTK2fJCN05RHBXKs5hI20hVOT3KKkjTElryvEQLSRu1eLmS0QeUKlA6BzjBa7tyJ1F6WhiFtnggo2qUv9PSd8OFRJXHSOaM6SboZMcIZMo0R2i/KuXHuh6dZaADAbfNbh2hbIB2RdqnVmAiN4QuRTIrCTRA8LSYw2cnFvyPCFbQwGlRrgOb9oISlMFaZ7iTYe3C9ziM4owglKhr21hguB8aVgsKrbHnjzXFIVAyxQfJN7HqNK7juAMaTJgb0fz7W/fYasMHD054tP3P+F4PiNLJX44RaQR/FW3Udvf+0gKD0JgnaOqVj2uPkSiOD18VKU8enbI06OXJInm3Tfe4J3X73Pv3h3sfM7hyRmfn56QzJeM8py7exO+cf8Wgyzj6ekh17fG5EqT+ZTQuwiEVwLc2JUQIsI/lIjtnYvKILOMIskZTcaooAlNVARDRTJ7MBbvBaIfDyFl3BiDj69DbFBukhHRd0EQxBaSjAvFVb7GOolaN1elkigV8K3FtQZjYjfFh+jGvNEy5lWy+qYrxRqSu2mY9mVJwSVPhTVV5UvcBzbnBrAb+mZAyTSS02VAit5/Jlxetw8C7wyECNWxLhZHnPCIoFh7w1zlcUGfoDh/SfoWcVy8j94t0l8RPVgnN5tuVBxW1Q+22ngaXd6Pcx5D5JEpAdlaGr0fAyfXUu2Wtu2Qe7vs/cf/EKUU5vAl7viUYB0ikagyI9vZJtnZIbtzl/yPvoWcjukWFVjXVy+v7B19u0YKyBNFpiTKBzoTobnr93C932wSR76UXFx5SCKWmNcn33TQrgoffPn4Qz0X2QcidV0jXEPoaqyzNE0HQpEkGWmWEoKgbRusdZjO4LH4XjVtPN0iDEeQJjRtQyIlvuv4tz/7BT/6/re4fuMG3//ud/jiyTOOT04IIjBbLhnkOZM0jwgAF9UB1wBB6X3vt7RWtosPy9voZ5FmGYW1ZElKUQ6RKDpj6RTcvX2Tr927i1vWzE5OaZo6miEH1xcfBSZ4lEog0Zwtlzx6ccyT58/Y2tnp3+UI5g1C4pF4BFXb0VpL3sa9cZzlZGWKQ1A3HYuTOYv5nMVixqqpMV3LrZvXWNYrTIg8l+rlC1RVI6sKXUQCuArRkPelc+AMp/WKvMh5/fZt/qfnF7g0ZbK7y/7+DUK14uzsBVmakGQJMultIUJUTztfLJivVrSd5WB3ymRYMp0MePjsOV5IysmU8/mMp88lWQJaK1bLjqPnz3jnzjW2pxNeu3uL5arFOkMqI3pAJyl5OYz7Sb1ErC5ASdJcMh0PUVKTJgnb4yGruu4D/TbOLx+oO4vUCTpNcMSCoHMOTyBNkwjN8jA7m9FZQ5pnjEoRYWBSxX2x79J3bUe9XLGYzxiMRhR5zng8pEiTniwfuyoCgU7Ty7XEOFahxQWPNp60LGMhTcDJ8SnGB6b7cT0yxjCfnXH48ozFqsb5CKNvRCBzHbPzOYQRSZoxLgrSJMF1NZWpOF/N+OyLzxAJZMMSIVOW56dUVY3Ukp3JhEQr2rbrkUAdi8UCYw1plvD2N95mlSQ4LZkIw1hqcinxyTZexgLpdV1wbVww1PD5J7/l2ckjdo5P+a93C3RwSB96EYWe8yh7LuBl//lyAVzvu31BaVNu69W9qsWK1XzJfL5AqEhH8NZxcnraG5Ar3vjBT/7g2vP/z/GVJypSCNI0oSwLijzrA0DNrTu3OTw94+z4JLoNBzAWlM4IUtO6QF3NyRPFME/Z39piWpZM8pynhzVmNce3NfP9XS7Ozzk9v+Dl2Tmtc3QedJoj0xwnJSvTsWpburZlZ2tCmuegZVSE0IpEK4RKSbKc0XjMYFCwXFbMqwbjA3l/L75vNa+P359zXG6mm4/C73z53+MIV/6IK5+JrULP2hYsJgwCSd20eNGS6ijBt2wNT07POXtxQZEmbO9NEakkGeacVAsmSRodlHs3ZE9AZwlpkYHwrFYrBsMBZV7w4onvuzc2TvLGxkq/p8fqxK6M1Jo0TUmzHJGoaPCUpFEoQUl0GlGmxlqyJCfPcpIsZVMoXZdtN2Md73/tkrq4OOPo8Cmz+py8zNk+2GP/xg1OnzxleXbBfDFjMpmgE0WZlzT1nEW9oF4tmUx2GJRjlIxciwiKX1dvw+a9VeqyOi2EIMuzKOXYRrdpmcZ7QetI+u66GGitW9HeI5C/Kwi3MT71+PYCYZeo0CHVCFBxs+xleAMRU6v678dW+G6Ja1fouFUihN8Y7AlAizOkbtHaU3cptZHUJtAYQRBJdOZVAUm9cUwX68TQLcBbvD0n0waZlCTjMdVSYVpP04hoAmkdUhh0ovoW/FqVKXLQEt0yyDRFOUSLu2RpwvnxKecvjtHBRWy3jYojnfOsFfKkkBFn7D3Ommg62IsJyJ787azn8PiM2WLJ9f1dXrtzmzfu3uXujescO8vpxQVLYzB1NGD7WrbH9b0pUgqOL04ZaAX5gKEqMKE3I/x9sy7ifaLCkw90xiOzqGhXDoeRr+P6QGkt5eQ9wXn4EilRyrWSVbgMOtcclSvQhle6HFcTaNbv5pp4H6GWvv8ThNqY3f+uHKRgDXO7crrN7BKb2HedrFz+xt8dl8vgFwJexDUnIJEyARHJxpfEkCvqTP09xZVK9h3MdefosoN0WbHr/+qfw3o8pIjQj0hmFii/0ardrI1fVg271HSLIiERCtITYtfwVAJaQN7z6NbJWrgy/tZYVFlQvv1GNDZ7cULz7AWhc8hMo8cZxc4e6c42xe3bsDONUKFV9eqgf2lUpQhkSpFJERXd1mOxSbLW9yJ+70m+3BGJjfi4Bq3PdZnosamavQKv2/zgWv7+Ev7adR3adQhjiOaecUTX8zaI3jzTx68F+g6iECRFjssyglYoY9galthG8fz5Y2bz18iLAe+89SbnFzNmizlnFxcYY6iLAp8XUT3PObp+vYsFm5630u+EG3GH4PGmJTWW285Rqmj4KwhRgtgLdkYDbl8/oJkv0TK+MW69dvXTeK2AiZSIROOkokNihe5TI49HRVlyoQgi4FWUCZZKkyZphJ5qxaxqmS1rXh6fsZjPWMwvmM0vME3DqCy4d/May7pm1TRcLFd0AeoA2jRxH0LgvUR6Q6ID58sVPsB0OESGC5SMnd7r+/v42TH2NIuKWEW2ma8++B5e11DV0f9jMCgYjwaMBgO6zmJ9IMlzqvkpJ2fncWzSIXXbcnR6iveeYVlw+/o+73/6CN9L/woXYYppphFmia/P8cvI5dI0DNPo65MqxaAoqJsmFvGci2IxQtBYByoqogkZ5aBd8FjrSNPexNN7qlVNZ2JS08/mTfK+7po672lNx3yxxPedRJ0opIhy8NY7XM9LyZXaFEJMa1iaOiJTWsNACNI8I1OK1WJJaxzZYErwnq7rODu94OLsnKrpCImmaVbIEGhVQtsaTBfLOEWiKVIN3uK8xXhDY9oo9C0FQii61lJXNTrT0dxW6Ghh4OMTdC7+LMKzNy4YyOjHlLcdQ2/IkUiVEbREacF2JtnZHpJnKe8/GvC8chydVdjdARqQwW/WXsTapWxdVA1c/vOyG/9qSBb3YyWIfoVVRbVaEfq4xxnH8fHp78RRX9XxlScq9167w3gyZro1ZffgGl88ecKjJ0/pCGwd7FEe7HPerpAyQ2jNfL5iMGrw1mOaiouXFzSLOVvf+xZZW6CThNDVnJ+e8uLZIedVx6ppOJtdYOqW3b09Xrt7G3F4xKKu+en7H/Di6CU5gr1Byf/+v/ovaK3j44ePef+jD6NrrLeMVUaSDSgHQ05XFc/PZzw5viCTnr1rGa/dv0s22uajjz/mw/ffYzQoXnHHegUHLC6DX8GaqxA3gD/Y/r9yni+35sO6asRacSR6V3jRJysSji4uyBPNuCy4MBWt7TCmpVCaG9NtHiTHPH/6lCLPuP326xQH2yy14//5V/+Et/dvMtIlWIkW0SjQe0c9q2jbmsdPHpCJlLIYcHJ0zPlswc54xPT6NS6ePcY3NUUQKOcj9Ktr2dna4v4o536Z9XAvGVvZfTCtpOzbto40KF6/dxed57x/dAR9xeMysAqoEDYVLKQkmAVh9Rw9/5izzzuoZly7dZ+TkxOePPoYf/ZzUrVFEFP+6f/tI5JUIZVntnjB3v5r7B7c492v/yB6mPQEvLi5xm6HUgqtFZ3taJqapq7IEg0uYNouVsoTjc4ijrQzHZ1fIBQ9SVdcCQgDaxaMEKDQ0UTCVKjlUxRLlE5ARiU5seGhREUkh4BgCbahPf2UYFfgO2SxTVAKq2zEnFoQxuE4QumMMrvg7vZt2lBQ+5QmGOpasQiSPB1QpgXD4RaJv8B1DV1Tk6gRWhm0bkjcnMCCoM7Ymu7T2JJlc50XL84R5w2lXnJzv6IYJGTDHCNSghdgwdZVVPRKBdfv3WT/5h5vv/06v/7rn/Ly8RNefPIp1dEZiYKyzNibbuFRLGtPs6wQKlCWul9E4zuTZinOeU6PXvLRp4/xwP/pf/df8r3vfpdEKR5/9BGTyYS97V1e2zvgwbMXjHTO3/n6dxlNBpycnfGLf/oBZy8XXNvZ5U++9S3cao63BtS6ABB5FDGYpl+HPKENjJTiAk+rJYPdG4T8V5iki7jqykRhqCS6Wcf4R1A3Dc5Hg8qgrniDyLWE+Lq7xmZTWuPH18RrIa4UK4LCBYlDkoqofCVVhIUGJXrSU//7ET0WOc6hPs2B/ts2ksevrDcxUQ59cCN4dS360sLEmg0fkHiZxgGwGi9j5zYog5ZZD3MMaDRaRMKyUhHeua7sQRwXRdygY40vSlsjYoIY+kBYuLhGWOeQoU8EhcT4cEVMoMdQ94lV6hzOevCGEGI3qAmgPWgbIDhKDfuDBL1hSVwVcg+EpsUqic9Spn/245ike/DWILRCFTk4cG1Ht6xwq6j01Q/77xzrdyARgnEqmWhFqRKKwYC0DSS+I7cGJ2OnKUD0xFi/q4F1iIFcw/quRBS91fKXlfP7dalXEFPRpDBCymKgIkKIildS4YWka0zEuDuDkhEutO7NLeoFnfMsu+jALVFx35MSL6CzBoSnzHO+dnCdu7tbuK7j//o/POOv/vYXjKdb/Of/q3+AxvH+Bxn/5r3fYLqGVZ1TZyXC+1jsUT0sL/Q+OuurDWzC1URC3bRoG6hMwwgX708SgygCq/kFX3/7Nb7+5musmorhsGCxWG2CtFikcBjXgQz88I9/wP61Gxy9PKUYltRtQ9U0rGqLDVEwxYuOuq7pOsPrd+5x5+Z1puMhJy9f8sWjp3z6+BnPX57Q1Q1d03B6ekKuJeM840fvvkPnOuarBX/90/cxztHWFYvlaexQGENWTkn39sj1hAePjlitViznM/7eO68x3d1h52DM3R++y4sbE47u3+UnP/oBd64fsJzPezEMT9s2XMwq5suO1kC6NcYnCeerlovzOT4EikGJ8YrD0yVfPDvh+rXrLKsVZ3XD+aphezzij999l/c++ITWOsrhEEyHCpZCdxTNh+jzl1TqkGI0Jj17zrZ5xEi0DFJFORpgzhd4JKWSDNIEKSWz1vRdecBadJLgArR1h6gqVD+/69pgrKMw6501UHVNFKSWEaWhsgSVZ6g8xwDK9mR6G/AyYJyn6wxSKbJYVSSIHgFiBF0nqDvQJqB1IEllFCxqDV3dRdd4G2hWhtPjMxarZfxdnSFLNMmOJksztNBU53NKEZgUUcyhSHK2Jjv8yd/9u9zc22NnMkYrj8gThM1jQZK4rl+7fqPnegimZcb5+Yzl2SHmg78iqS2iNTw9P6HqWmwIjCcTBoOCYZnjd/fY/87XGd+6yfWDA95TA46rQC1WaKFJUJfdcbE2hbw81mgdpED40O8na/nJvjAl4r+6asVqNuM8P6N2vfBHgNlFRehFib7q4ytPVFyI0moHt25x5+497rz+BsY6mrZF5zlJWWB0zrxqOLtY8vT5M7wz1Ms5wli2yyHleMI4KxlkBXmi+OTBQw6fH3J2csrWnTuMt7YYb21z+vIlQmlOLi749cefkpcFe/v7vPvmFFfXuOWCf/1X/4o2wIt5xap1YA3VyRlNFwimwizPKPOM8WjAeNRQakiVYHZxil3WXMwvSPIsVqsQyLDeMsQlAT2sLT/EptS1/lr4fTvGl45Xkp6r2WyIC3bUyI6a3zKAsY7WGSrXsnINWmnyrGCQDzgzNR7FKNN0WxOEEBy/PCEpY4Xh5YMXPH14TjkYcu3+G5jJkMQ7FrMZZZGitOTuvXtIrViulrw4Oebo5Jid6ZDrd27w8LMPOZudkpVThIyv96zzzHVg6T3GtBgTg3fpErTuuS5BYbzHdJamranrCt1XxgSRZO37HoEXxOqDi8F7ubPHcPcW02bJwfAIxBx/+jF/+T/8P+jaOc6ccf0g5+71AVuTgkE6J0s1aSKxezkvL444ejhnONxla2+X0XTEmqMSK7V9tRERyaJER2TvPFZYOuupXYcSKUonGGtoWk+LJ7qPRxL7ZXgpkJj+nYkVaExFaF4gWSKEQ8o0QpzEWkUubGJTiUOYitDNcV2Ndw2EltRXCAfSKkJI8K7DmgaZaggSbwRBHaNlxkCVaD/BktGFAmcktVcYIyj0GCUKdFmCW+CdAGtRcrgJWL0/IxFLJvmAcJDStTldrXh+WpEtDMNxYDCGRAsS6QgyRFiEU3TnxyAV2UDx9k++zs2z2xy/eYcXH35Kc3ZGe3rGalljkcxchChkSlNkBVpGaWoRorrI8fEJf/HXP2Myyrm2t8fX3/k6ifE0i4p50zGrX3KyXLHqWrwWzLqav/7tbxkXOVoI3r33OkrDoCyo3BInTORi9RX29YSLalwKm2RYAVYGGOZ0jUWuDJ2pSYOi8IqzeoEPGUhFKgPWxK5KokCoaLjqg41hVYyCopiB8NE00bnN/JZIgg8Yay+hkCJ2UEQQaCF7+FAgSRNSC6mTSNl3xERfY1wvM+s1Y9OeiIeA35OkvHq8oqbFZWfhar8lhLjYeR8r6h3QSAGmRXmHCoLgO4LUhCDxoQMix0SoeO/Gub6zuQb3ub76L3uSLNEnIlEbDTMv3Eb04vJa1iICfQD7pVsLgahC16/LgohXTxCkQoK9hNNeCp7Iy04xxAwPCMbSzRabTo4QIJxHnJ73qUG/K/SqYuEPjnOA3pvDeodxUTEu8pku78OHaAy75im5wCbAuoSx9eINGyk34nsmwwaCtx6HzfMMASlVVLAUAdvT84K4hH1JIciLHN21EMA6R14OkVLRtF3ssDuH92vvld7Liz6skXEtd97TmQ4lJZPphD//Oz/mo88fMVss+dkvfsZ0PORP/uj73Ny7xtlsxrKquKiqKGDiA0oJhIw+a1LKXoY7vjfexQRGiEDrPHXdsKgatnrX9YBBS02qFN662BEKkKc6AhedZQNt6QfIdhYh4I++9z2++fVvYoxDisgH7UxHa+NziEp1rlcig+l0SmZajn/7Po8+/YSTVc1qWfHRBx/FOaw0xhm0SACF61YM8ozhzhY3b+3z4mLByWyBPD9iqBXTwYA/+Tt/zJ27t7l16wbTLMKKvfPIwYQkS2PB7NY25lvv0LWGg/0tslRRVUtSIXFB0BjHorJ0PiCLhF/OOmQwiKaOhRNrqJeraB6pNEVRgAClFWVR8vmz53iu89bdO+yOR8yWVfQqcQGCROkocpQkCUGmhGRMVlZc291hZ1wyLFKE1AyHY65dC3z7WwKZFowGA1aLBcvlAmxKV9fILENpRZJmSH25FmVFjjJuY3zt+/069LDzICWjsmSQ5exvbZMmGVorUi1jAakveERhl/CKaqAPA/b2LtUHgzMIPHkieefebTrr0TpHSYn3OduF5v6NHYy1pFlKkRXkacpokDMaljhv2d/eQikVOUoevA1447BtR+iVY2xrGA0GZHmBdg4hoW5bFlWH6LlFajrm7MUJTz/8BPvb33I/T9lNNatg+ZjAYxv47dMXaBmLQEV+yE8fPmY8KWltys7xIa+PEnItUf0epDBxFQjRxlWGiMpQYV1qkNEochPHtv3i0cNzpcKjmV/MOc7POBRDWiFoVhVdVTMcjdAqClR81cdXnqg0bYux/aaiFFvjCXlR8uzZc7JByWAygbxEn8+oWoPH05mWqq4YJNHEcX88JF07XSvN8ekZp7MZy7YhLweUZVSgODs/o/OWarXi5ekZe3qf0WjE9emU1dk5x6uKhw+/oPZw1jqCUkidItMOHyTaN9DUJFqRpQlpoikzDSFwfnbKKsyYL+ckWRrhO+uK4peOwBoJIjZJyiW2+9/3uBLc0FcL11WlIKJ4xdpZWEbVCuccWIUPCu+iDr7wsaIViD4Cp6fn4D3n5ytWZkk2tojXPSaLuNx2VZFqQZoW7O7ts6pb6qaJHYauoXOWYjhi1ra8WMyZJDnOt8hgcNZipI8qLcH2kqICpUAKfVkNRPTteB/brUZt9M3Xf6KyRG/hFfrMXiWgc2RasK1yTNNSNcc8/XjJaJoyHAh2tkt2t3K2Rgnt6oIssaSpRmjNycmM2dmM+WLBaHsrYpFFXzHtq9ib4Kyv1mqtI6xBiOj0LiOPRUiNsZauc7TiUpZ4Xe0JfZAi+9pmLEy42BVpzxChRUqF6CEzgrDRMl+HgyIYgmsJNpIwe5IDPhikswhsrMb7Du9bFLEtHlzAM0eSkkiDQGBliQxQ2QxnE6zTEDLSRMd2urAx8AoRUoZ3iNAhqNHCIpRnPJhQa4n3CfVc0bmAxSOVJWSgEnvZJQjgmhVCK5JBwc6NLUZbIwaDWCmdPR1wbhzeGlrrWLYO5Tw69F4iROdq2Xc6Fk3Np4+/YH9nymu3b7C3tUV7foFvO1AK07YYFwMMnSiQcLaYUy0WjIuCN27eAmHRiaSzbawmfRk3s5l6Aic1Tkq8EnitCMHhnadrW4T1KC+i2p0QkYslYsXfu77bIdYQvjUc7LKgseFa9AFjDGjjnHfOo9dKUeuObP/PfmagVeQbKSVAuMsOyZU+iAiiJ8Zffjaie64kZFx+fFU+d319lytX2MzMzeRgc+lxLvfB9No7KDad1x3hdaew7xr3Joh+7ezZL3feh/U/N79n7aweG0aXiUZYd47C5XxZ3+Q64fd9d3OddK9PLEJAEavzaw5LoLd3DFeuIax/5+XngnO42m2MIZM0wa0qupcniCxDFQXpaBRnsbhyc/AHxjfCz9bGu9Hzai2mEJP3tZqO8xEqLWS8t0vRhb4b0BvyrT1zXjERXXdbXimgrZNW4Msd/77Dn6Qa5WLgIkTkJAgh6ZYVpjMY70H1XZbNXIinkL2cKyJCfX2IXLT7d24zX6wIzvH88AX3b99me3vKKC04fPGCs/Nz5NkpnbE473tltstOZCRVR0O7NY/FB7fxp/Lr96sv+kghSKTsryGuoZlWcVX2HpTcFIfie+hRUrK/t4dSffHJOby3EYrmXEwcCdEnJcT5Vw5Kjj78kMMvHrF69ASRZ4zThGBanBcE5bH9uxgI2K4lLXOGg4Kt7RGnqxV1tWK3qdkbj7gzHvLDd9/kxt3b7F/bw64WKBH9pLJi1L/jDq0GSJWgVIKxDcZGJdA8y7EuUBtP1XaRf5NqjuqAcxZZNdwUvRyzMRHuJiVKyU3Cmicpz4+PmY6G5HnO3nSCd45V1+Fs5J9JnaHzETofQzqCbEQyqJlMd5mMRxRlGfc6nVAORty8qaiNJUsTmqqmaRpSGREjSvRCDmv1TBG5F0miN6/wBqYtJd73PArvoxCP0qhcUWQxsQCPCDZSEbJs4ydkbS8C0v8urVKkipDuarnAW4MWsDuNJpvGWNZQs3GZsrc9JhC9fAZl2Zs+BzrT0TSO7fEQnaQUWRaLMsbQth2z2Zx2MsXaIc5FBbNURhqCt12EPtY1qieiBwGzixknhy/oXrxksj3k1qiAJGFmBSchsFrV/TIrsMw5OXvBIJNs52PuF4LXhwlJ78EkPKi+JBOX217Zld7oO/R/1rJqXFmiQ9x/1vO8aTtWq5pZvqKTkuXFBfViQVYUkasb/gNIVJ48esrx8SkffvgR12/cJO9dzbe3thlMpxTTKXWacbGqObmY8fzsjFHT4oXi2+98jZs7U+5MBxw9foj2BiXGOBeYTre4cesm3/veD3n+4ohf/PpXfPbFA5IsZTCeMBgMuLV/ja+//hbDTPLcGA6dA5UyXy757OkRn3z6OaPJhDt37/HGazApBKMkYkFd11CvVmwVW8znMx48fcqFk4gkoRiPIln2yrZ9Jazc3Lu/UvG7PNYr4e87NqXPL1U64xZkcayaChFgkOVoqbHBYoNndzLm5u4ON7Z3+Bfvvcfz4zNO5i3WdVRtw/OTY7bGOwwGJePJmJcvXtB1HZnIGd7aJ93ZwkxHLD57xHK+wFQ1YliSpSl7N/bxJ6c46bnz+h12DvaYbm+xvbvNs2XLL54ew9mc5r4kLzRb3YxRolHS02pIiDKuCIGQESolZa/AgyQrS2QSycjrjQziou/7lqwFBmmKEpLDJ1/w4PNPOT18wMEdx9YkYWsCVXXI/vaY6XTAML+B1mBtRy6jjHLXODotuagsswpGkz10WsZkT8dRjoFWj9kUgixNGZQFg0EZ4R25JslzpteuoTKJ8Z5la1i1DiNVTMSEgiCiZKwm+kYEiQwJAg3NCVSHsHqCyhyIKPsp44O/fD9C7xMQKpyLEKJich9ClBQ2ZgXGIpslzi6RCegsQTOFIPB0OFsTnAHrUKpGyhQtCmSyj/EDWjdm0QqkiVC3cX6NPLGkWYupXiJsiwyQqxQXDF1YUYY5RZoz3Zsym+6yqgLzWc3qcUeeOkZjx9ZOVAdLlO6TKoep5rj5BTrJ2b+2xf4//nOq+YqTh4/55K9/weGjQ5bPHxOEp7OOfLjCOZAyIckKjp494uT5CzKd8B//vZ9wc3+P+vwEApSDnHcmt0lHA45nM87ahkTD9mjEP/zRDzh89DjKkOawP9pCCcG8WuH6ZECG9Xp8Oe/WQZwqMkgzqnnFcDygmOQsTufMVytWtkPkJYnNcAiWrICYoAiRI0UM0oPgcsH36wDfv7IaiPXzF9FNPvRBX+i5MBtPFqIylFJJ3GjW1dX1hr4mel3pzF6S9y/Xl9+BmIbfXZeuBtOXa9SVrwNCCYQSdDSEriWpLHQiamhoEEKhBUhhMB40UfSBfoOMNuB+c/6r8ugBsVkvLjsma4f6+PObGDyEKynR5mzxo5hzR9np9RQLAeUdEosINnqEoOl8L7CwKVh8icfx6qARhGCUF1w8OeSLf/KXDO7dZnzvDsMb12jm86hOtT7f73m/Qoh7ReugC4LWBbq2w9vI1fL0ngWADYHOO2wAGRVce/lVvznX+rkho3nhGkYovnQfPgSCC9CZ+PHmia53qcCax5KkCcolIDISvY33MUC5uFhGiKAS6EESYR6qL0QFED6gpUKlGWmaYUPHxWxO6DqQgu9/42t84+03+Wd/80s++Pwp3jm+/c59rt3c5+bNXV5b3cT6KLqwqlqstVhrWVQ1Td3QdobWWlZtQ921VKuawXSL4dYWt998g6QcUNUdW2nUw9NCEJRCZCUiyaBZAh7hHSh9dQdG61hU++LxI2bLimXTkmlNqiRKCtouFkWsd1in6FwM2G9e32H2ySfMPvmUW0XJ9W99na2vvcXrr7/G54+f8+DpEQ8OX+KlpkWzrC0748A0S9melPCw5fzoiP/1u/f4/mv3+d47b3P3W2/TJpJ5fU7XGZY9eXk8GJPqBK1TqrqlNR2d6bh9a5/RIPpI5VJFieFVzcXyjNZUZGlCToYLBoTCOQvBxw5mXzjx/TsihaRICz58+IgsS/jRd77JD77xNT7+/AH/6me/oBUF5fYEN9pGXvsB6toByXgLOVIksmRws+PmvTOSNCUrc14+OKTqPPlwhF2tCAHmyyXGOVSaMJkM6azH1h1N26ATTZYmDLI87iXeY0yHkPG9LGSyEZ4Ax+xixmq54vzklOFwSJallHlGmWcx+eJS2U8nyWalCCLgehXTrosQL60kRZpSljlKKRLBpovjez6i84550/HJ55/SmY7pcMjB7i7DouDu3g5KR77Jqq05nl3wxfNn/NXf/BsSJcnLnC25w8vjE5qmZm80ilYCIQpqqJ6juVjOODo758nZnFk6oClKGBTs5wO2Fy17oePH+wXSx73johVsq44d5fhWueRHB1u8MxmQhI6N0lGP+5FCkegymj8KR+0sKkRvp5RA8HEdCldik1hQjeuj0ikBhbGBVth4VqWYL+c0JoptfNXHV56olEWBQNCtap58/nCzYWdpQjYakwwnPF111NbSWEvVdSzVjNnxOVtpSVItyNoRF/Mz0IJyNOS1t95iNptR1RU/f/99jo5PePD0kGt717h16yZ3792lrv45xhk++vQj7u7vMpsvaDvL7sF1lv4lVfMY6yMUR0kZK8c+ekUMiow8S5Fao7LYukoLT+H6eqCLDxjBxoyOwJegBpcL/pUYhQ3848rxqglY2BBv4wbscd5SjAqu3b1NVuSsFku++OTzPrCJeuGNM9TOEXTC3vYe89bxs6cfkCYZIUCaDdA9mT22QCXj4ZhvvfF1XJazcJZPf/Uxq5MZvgsMRlOcdcxncx49iXyAJE24decWz4+O6KoVW2XO7Xtv0+kh/+xv/zVFeUThHBOR8sLUtM4wk5bJcESZ5QyLnESqCLdQEqUTrPccz+YMpxPSIkdlWdxkw9rBOYYaidIY51g1Sz775FecP/sAMz/E3UhJs4IiS7h7kKETR2iWPH1xzs7elMGwAJUTrIEAW8OC/R1HB9TdAmtLQsiBaEzpg8fRyzSHWGFom5blYsl0e4JKNOmgpGtjxapaVRwez2nR6EFBXpRIFYMDYXtvBq0INkIMlOtw1TOkOUPKDikLNgRkYO29ITZVdocPEqFLtCqIHIIUSJFyEg1pbIfzF/E8QfWVUkvAI6WOyREiRmq+BWFIRECJkjRdovwI4xSmEZw3ilQTvYqSKSJpEb7GtjUEQUrsEHgCwa0YqZa81Ax1TtNsYwKcO0c7WzBMPNtpgx4NCCFguwYdBMJazHKG0ysEgt27e6TJD7hxdMb2ncc8+M0HtHXL+fkFjTcYEatfGsW17V3+0Y//lBs7O3hr+Oj5c6TQaJ1QFCWjuo6b3rIhd4pSZpR5yp0715E+kKcZqneARySX8TFXOFGvHIIgFQbBy2XLTl6ivEIk0TQTK/FCRmMxAZhY8RVKYKWLkK8QvXA2HdY152RTqV+H5EBwXPXcifH0OvTulZtiRsuiaplXHYvG9STUNYwhrlHrwD7OoleTlj+8/rz69Q1nrg90Y7pzFRwV31UZPNKCCI4gOrToeg8MhRcCE9ss4D3SgbQSsd4wQ9TzXicnTvT32//OdUcqonuuqlfF6+y86f1P1l4J/XhulK/YdJN8//d6fmdakYWACp6mMyybjvNV3ZOp+3D9VVfMV8dKRgIwTYM9esHql79hUOao/T1UmvTV/XUeJn6nciUAIRXWw7JuqZ0nCSEapBqDtZ7OCazspYn9ZefkaifqakfMud5UtIdpuN6b4bLNduXZE6FcG8GDjdBHTKiDj4HbalUzJKCExHnDfLGkaQ1JEoMwoSRBJRt+lZOeECIRXPWdDfr7aowlkV004rMO6wI7owkozaxa8te//jXKGTQwyQY0fTLS9sGo956mayOvpofLWu/x1tLWLeOdXXb2D8gGQ4JSGOewISZtSmlOZzMOD09YtIa3b91gp0hJU0W3TpL7sYkiFbC/t8fuTkxyvfU9+i9EU9vgIhTPBToHLggGwwy5v4O6fZ3pZIvhtX2GWxP+9AffY7K9g8xLHh6f0rrAvPW8mNWkyRKlIkTrzt27THeu8Y9+/G32y5w0y7hYzAlJNG4c5SXDrGB/Zxctk8iR67tN6z1MqdiB6qwlSUusN1GVql1huwbhNXvVRVxvfI3xLtbSRSwwiB5eJ0LM8J01CKFYVA2fPnrM/mjIvdu3WbaWo5UlGY9orKNTGUZldEGjO9AyZ7q7z43bt6jalhfncz59ckjVWYbjMc5ZiiInL3O8TnAIqrrCB4mxMelyLioyjkYjTs/PmC8W5HnKjRv7OOuo6jqasWrFYDjAhTnGeWzweBG71EHGdVoKFWHovcGSUFf9jQKEKOEttUZpHYngKum5SDFQD0LiCLTO4a3rpaqh9WC8wAZJUBorBYvFjDzLSJOEJM0pk4ydyRbf/da3uXPzFlvjCdJ7Mq0RaUaS6JhMBcF4PKHIEpJEYdqGl7MZD84v+LTx+MrxhbQc1Eue1pbKeX48LrmeCiYKbJBsZSPGiWCrCOxoycgZvPUEK/AGmrru7WQkcqgIW0PCuMAXGm86XNfCxbJ3svegr/bqiXDJ4Nja22F/7zqrrZs8O3sZPYgGBePpmMFwSFmWfNXHV56opEmCdw5rHct6iXXRzVUKjy6GyHLEJydLDIEgYTSZUAdYhhlHe88ZK8tO5nDe9UEkDCZTVm1HM5/zxbNDFqsVDsH1g2vcv32HN157nfHo5yyrFS9PT9gbDei6XupNR7nAqon4P600SiqCsyiiOkOaJpG4KfrEREpkErWq8T5WH9bC7f3xBwOBTeXv6vf3L/wVWEUI62Lqul3PZQVRBHSmmexO2T3YZXYx4/mzp4jOgw0kWrHsWs7rFedVhUpSVJKyNA2F0igkWmexOhsCBE+SaIo8Z2s8xgmBX1pWp+e4IJBZHmViTY0xhsV8TprnyEyRpikvnh5yfnrKte1tpjs3uK9zxL/9W9xsjrMWaRUv5xecW0u7NeLa/i7T0YhANPKTRKhFkqbYEDhdLNhrWoZJitZJPwZrVZc4WlpqmrZmVa24OPkCaU4Y6RWCBJ0o8iJlZ5rSmUDbOqqqYdga8jxDCIVU8VxKChKtSRNo2grrDOutacPHCGwqqiGsHeg7CFHNTGcpMkuxpqVuOuaVwSeKAoXOMmTwONvhnei7KD30wRmEraE7RfpVNE8UOgoEXK1ab8jTPnZVACFTpNREh6sEQRJbt7bBixX4LH6NlOBdr0rjEHLIWgo5eEfAAHH+Kd0iRBfhHD7Bek1jEqyTBDRK52gVE3lvPBKFChqPj14YoSGTLanOyHWCUorKJVRGUlmPNyvCYsZEaXSiUCIS+IL32K7B2YBKU4rRhPzedQZbW6hyRD2bcfbilPmyxgSHDQ7vHUppxoMRewf7KOmZL5fMFksQCq1TrIuAwqZu0AhynZJJRWdasiyNhpwO6nX1TSmEu0wCLn28LwPK9dx0PtDY3uddSEJPMnbIWPDQEi8EwcoI41tDBDeQJ7lZIzZrRV/c2Hw2xE9E4N8VAuJVvkJf5Q4IqtZQtYam80iZbEwUL4PXV9ficOWT/25ms1xJUq4ud5c+91f7ytLHAY5SzzbecxD4EKVFw5osu24RXOYjgCSIGFz7K/H85omIqLQUNt2Wyxu1PqAVSNTmuuKths051nCN2MxaQ/ECiZQkKJTXdDZQt5aqMf2zC32yIq7+usux7aGeSmt8VWFOT2kfPEZ+/S1k1yKU2hSmrtYir56sp8HjAzTGxm5KiBAwvzYw9DKu0T0MbD0Gkf8ivnRdgRB89E4hyh6vO3iXv6//XrEe/8iNWl/eVfCgDzFRMZ1FZgolA41d0TYNXRex+VJIgpRYGanAMZkMGwXHtbKTIF5LdHN3EdLlHN5DojVZnqNMx6PDF9A1JMCNyQ7LuqbpDFZEcYcQAsaa9QuKVjrys3yURU3TlHI4ROc5Rkpc6IUh+kTF+MCTF8c8Pb1gXA4Y7G0zLXKs6za2d+s2nSDCfp2LcshuLeUNKBWQQaKCj8m1CNj+nc6HQ7h+QD6ewnCAQTCZTNje3mZ794Ikz2najrozXHjIU4XUgSY4dnZ3uf/6Nm9/7zto29KtVrTWkihFmmjW4oBBCFBJTwQPPUxLkKDROr4HsbChcCHQNW0M/K1DIhmaCokHOmablSpsBALXUMDgI9xNq4S67nj07Bk3v/l1tre2uHPbEmYVRic9DE7iQj/vbUCKhMFwzM7uDu7snJdnFxxfzGmMw8q4J7ngWTVt9KcJ4I2JHFXvkL0nWSyPCNquo20bpOzvL3jato1wwhAh+UJGpakkS0nXf9IUrWMSIPuOBUSp902ne/05KVBS9LGhRKq4R4cgereBXi2QCF8PxO/J8wKto3osm+JD0yt7CRINWirKPOfWjRtsTaeUeQEukCiFyJIIbevnt1SKPM9JE8lyecG8qjhdrXgRIDWBi8axLwytDWQIrivF1zPJzUyQaskoTyhSBYmHzhA6izMB14LrPMu56flFgowWhgOC0KiixKvIhXQx82Xtj3y5gl0W29AatEb0Y5ANS/JEM9kaMxwMKAf/ASQqa2Ky0prBaBiNYYBEAUmBTwq2fYoNPY1RBJquoWob3v/41+Tide7uFrx2/x46L+mE4uMnz3j09AnPD5/zjW+U3L97m7//Zz/hzs6UsizQStEah0eRlQPGW1s0dYcL8LNfvMejl6ccvjxhe2eLydaYPFVU8xnpeIc37t3hi6dPcM6zWDVwegpK44XGO9kHEvLVh/XvegQun/aV8RFCoJMkJnXe03ZdJHuFSA7MhzkqV1zUF+wUe0zLLb7xJ9/h2Sdf0Mwrsq7gk6NnPDg55IPnj9gb7dBZy/5kjPMiQh60Yja/oG4UxUCyvb2LM46//Iu/IM9TGA7ZeuMeDEe41rD86BMKJ8gkDMuS5arh/PycLz55wvJijneeBw8P+W//j/8HvvX2bf7Rj7/Pv/ybX/H0wQOq7Cnz2QUAd1+7Tw1cl5ANSuhNIZvVijTPsT7w+dNDDq7fJBtNSdOIY42D5XqlIEmqJC8Xx5yfH7MzWPHW3T12B3scn1+g8wRRpgz8CNlKRC64Pd0mtC3VYkYiFOXWFJllfPjJQz57WHN0odHbc/b3XVTc6pMU20tr+l49yAeHklHiMukrV2hJOiiZL5fUrUFmU0RWoMoJOs8QpsG3Hu8swgsUSeQ4dOfY+imieYpKJDorYhD35fciBEKwsbrTV9gVGikKfJYgtUAmElm1WLuiMxlZMUJai7QtbfsCRNyYtc4RoseIBk/whhAMSltwLYSKoTIUqmRQllx0A1qrmK0MyxUkqSYvE7ZGQ1RoCN0C38xAxmpZJBE5pD9jnJ8zSrbZLe8zq/Z5/OAz/t//4p/z7TdH3Lq1z5tff4embntlIEi8IzQddXMEaUE6HfH2vR9w4+5Njh485ef/8udIZ7GrJcG2JEXZJ1sN1ghSlfL6rddYNKsoFqo0rWlBwP17dzmvF1jT8Tc//Tk6G4CQdNZS5jnTYclbN2+gpMH7KGl+qWpyObsh4LoaaTr2hxPsNGc2UsyMYZ44FoVj0QUKUQKaVjVoElQQiGAuIaJKRpnVdTdgg3TqiZt9ch58VPHTROWUNSRNCYlQvle4UgQpuWiWLBpL1YHUMb3xPSldEDdc4b8M3WLD53g1+fjDx7razqazs27qRGhmjEg9IrTgO4I30eh07bYcok8KQeFEiQ8V3huECITgouymWhuihn4TEiBjKrTGkMdPxyrpZYd63fUIa8775aoc1ryWmKiLK8F4TAodqVJkQpMiae0S2UHVuZ6H1mcYryQqr7YjlFRkecHyweesHj7Ef/IpycUP0E0bHdKlihgt7y7PIeCS8B4jQhegspZF06FDhzWWNTfJ2BhsrmHFMY34PfvO1YSyT1heZZysRd4vk69N8hyilHqsMkdFH0yUJe46g1Ypk1GBtC2HT57gXTSmm04nkYfqAyhNmmboFEyz5qlFLoUQsbsiRRRV74KgI4okdMby7OQlZ3XDoqoZpCMEKco7atNxUa2omhal4x6pVUw4IteJqLQkFcEHaq3QUkVYcZ5hvcS7yP8JQqCSlMHWDg+Ofs6/+Pl7PH78jP/yz3/Cte98nRRHFxy2ny95nqOk4re/eZ/ffvgRD548ZXvvIJpcJhmmazYyyV4E6tbQGcetg+u8duc6d777Pdq248mq5uLDBxweH2OQdEJz/e4tjp4/5/ToBUoqLuoZH59IRvmA73/3Bn/y/e8gt7fpmoZWphzs7jMejSjLAf/Tv/xXfPLwIZ9+8Zg3vvEdkqIgKMXDjz5FGMNAS/6r//Q/YjwuSfOEJFU4a5hfzFlWEus0eabIRcXa7T1NItfSGEPTtjGwVopElARv8N4wLkpWiyX/6m/+lu+8/hqDwYhru/u4Hc/SeSrrcU2Nb2p0PsT0EsBbwxG3r9/gfL7kF795n9qASkt0XjI7PaZpIoTv+GJOliaMNDgTuZvX9vbI0wwXAsum4eD6NbZ2pqSJjEqeQJ7l1HWD7yztasmozBmXObev71HmeY8ikdCrGGqt+uQ14P1ayCRCndaUGCmil5fzAefpeS5gXDQllkJQ5BmEHCUkZZYyeP1+LNbVHbP5nNWyoukEaRq92BLrMNZgnY2Je89lbY0hSRIylZHlKYv5kuWq4sXxOXdvHTAZldTLitVyRdM0TLdGLCSsjOMZHVtJxo7SfHq+5L5IGSSarYSInmjBWg0mmlw2nadbNLTLjhdncY5qKTmwZwizRM4y0oMddAhI5wjLVVybdURqyKsF+SzFh8CvPviQn6cv+Hx8jX/wH/0D7t++yc1r+wyLDPGlbv1XdXzliUpYYysEkZzTV6p8EDRdR9062j4+2ECr+yX5+sEe16/ts7u7zZMXR3Re0nmJ8nD3xk3u3bnFa/dfY3syZVQO+PzRk6iykySUwyG582RpwtnFnPPFisY6fF1hTEOmPZNRyXg0ZDAsuXewzcHeGJnkWBsrP1oKMp1Gkq6HbgOl8Fcv9kuVsr7axebLm7/7L16ppUnwkbymtGK0PcQ5S3fekCYJRVmwf32fxrS0xvDk0y8wVc1wNGA4HMXKkrPUqwrnHVmhGWQjXp6eU3ctwgt0ogmpQGtIpCNJFBQJlW1xxkGWYBDoAFtSs5gt6FYrutUicnUEeBPl/Kx1JAi2t7dwzrNaVPz0vV8zXy74R//g71OvLB8kn3F8doG+eYtyOOSdr73BjemYMtE8enKIFpGo7U3HbppSliXf/No77O/vkWQpp8fHOGsieb2vyIYQsM6QFTnFcMLLBxY7EuhCMh5OePR0weHFCx48OOT69oRr2yPefXuPp6dnnJ/N2C5z1HAQVUzC2t/Es79/nTwf4GwA1Xe+Ahs5PtG/lFJrVJL2XiWRIOycQ+cZ5dYWk/1r1J0luIAzBukj2d5WNToryJQEs4LumFA9RSsXq1woLiFH6xLWGnjeqzUhkDIlaI1NQAdP8/iE+vER+ShD7xSkB0O8G0HXAjVBWIQ3CB8rJgKL0AKoiCZ8gExjxdsL8Euk7Eh1yygz5ElKm2YsK03bCtpOkelBdGsWmqxIwbV4W0eImxJoJQihxdkZYfkxA7nL3rjmzdfuc3TyCCeO2TnYYTAco3VU3kGoCJNCR2hM09CdHZGUkt171/le8mck+wckaU7X2l7Zx206D0JIijwjzWIiFiGTkXa9LRQ33TSSF1cVrRNUxrCaz3h2/ILTc4X0Hbd2dynSFBWimtJ61ooQq6UaqLuOuW1ZJp5RliC14mS5QCeKYZkzsw1eGAKulzGgD4bBa7mZ86HnmwR8rx7Vb1Zr0nPPNBAhEEQMIAKQCbVxI/ei7/CF6NacakEeAsH08J21ElQfrl+G/32RWGxC2cuVaR3gvlqcZx0Sx8PFhGpdVdu8s0ToT5CkqUInHqE7hDOs4W6xuxSvXZYJLtXYIOlMg/Umdi1kHzyvE40AoX/GQUi8VH2nkC8F3/3VBaJssZBXAvlwKTCgJEIFEI7gZZx2PY/MiDjnhFKIRCPSyE2QISqomfXDDGxUv9aJgpQSnaaYkxn+bEbiWnzd4NsO6WLhLcgQJcbXW+FmDPsnEDyICOkLoi9caY1SHuHA4zbyuz441oLdUairVy8KEHohD616s1jnCN5ePtR1lfBL6nZCKjadOO8uO2H0PmhaMZ4OUUn0T2qNRaoUlKZpDVXdRDfxLKcyhsZYfNCbd1AIETssbg28E/ggIrJCR2hgbS2z5Yr5coUxjozY/RYi7sNrYYoofSpYdx6jE0DA93GG1ilpMSAbjsiLIe2qoTMtJo2S+3hLniTkSYaWmsOXJ5wtFlTWUOg+Ie7HK00j7PvRo0f84pfv8cvffkCxf5N0ELs1bb0iGAPOokSgW60IXce3vv9HTLeGvDt+i7BYIFqDIXC6WpLmRXSk1xprDPPFHFmUuNbjFo5a1/z21x9QL5a4v/NDrm1N2R2OefzkGUlRkBYF773/Pu/95n3e++BjviAnHW9DWvDxv/w5OZb9ScF/8Z/8L1BCIkPsLhhruZjNuLg4pTEGFQbMbRd9PZyNxVcpIzS2V+PzzkVhnM7Qdg2DfIy1lmUbOD4523iRfPDRp+jxhNfeeRcpNMEL1i5vSkGSZojgqVYVjw9PKKbXKMqMItGI6RZd17FcVRyfXbA9HnH37g2a1QLTRUJ523Ux3pIK2fNA111YoSRppvCC3ssGuiaajjbLmqLMSRNNlsoIN1cxMF/3OJ3zsXAmBFmi4v7hfVSaWyfzvXiEFCr2n6zpeUkOY1wvDqExzzsEgdFggFAaoeN1IWPB2RNojGFR18zOz2ivHeAYbDqLUkCpBFoEskRTjoYkeU6QkrPTc+azBdWqRqZJRKQIwZ4uSAMo5zlzlqVXNE7iLKB17Pz7ELvdLuA6izGezoALPXdYSpJERLEq51FtFSFyAaxQkYvS0x02pTwhCCY+48nuNgM9QaUZDx4/QslAIiE92I08L/kfgDxxJJLGhWVD5gshYhD7LNwSMd3qS/W98XDIdDxmNBrx4PlzGhtDgfFgwGA0YLI1YjSZkOoM5zwvTy+wBESSkKRZrwAhqOqWVd1QdR0qT0gzxfZ0wGhQMCgLirJgPBkhleZiXrGqOqzxJFqR6Nj2uxrEXF7munb3alry5WMN69r87NWNo/+UkIK8zHBeklQSKTTlqGT3YJej42Oqi5qzlycE0zGZTtC3FU3TUrfxT6ZU9CggYbmqaEyHzjLIk1j5lA5Cik4UIVF0bYcLLnJCfOTF5M6zmM3xiyWhbXF9I7zq+k0vBJQQZHmOC4H5fMnnXzxCa8Wf/70f884b9/HOUX32BfVwTDYZMd7fJUfi25Ynz4/Qvda5DI7ReMxWnrO3d528LOisZbVa4p3rKxhiM4DOm+g2XI4wNqVuGurGUoy2ODk74aPPX/KrT0/49n1JmaYkMjpOV8YysrYP+gJ5mpAlklQLsixF9Uo16/cS31exuQrLENFvxfcBDVHhSCUp+XBEmhdU3YKuafDWRnSWkFGswLnob2CWhO4CunNUKghC4YNcxz19haV/WcIaXx6N8YRICDohJJIwqzFPX7J671PEa3ugdlDbBUqVBCUhEaA8uAZsvUn0hDfgm3hXoif1I3rvjhYhHDJ4ci1IlEWrQNtkdE5hjaA1UUVOS0GSKIRo+oCngbVLjO0QvkPYFWkWmBaCO7d2+c3FE5rWUq0qhsMxUgqs8NEvQ0S/ChECWIOzM2QxopwOuT26zoIJXqVY28Pggr8M+PqALpP6FXqJkKI3BItmXyudsuosSduw7BoWizlNazifz9ibTsnSCA8UYcMK2cxnQTSkbKyjEwGdaLRWVHWFlJIsTdA0uOBA+N6jPfTJSXyRgmBDhF/HvJvLvUJqD5cReowZvYs/rOK1hBAV8Ky3uGARQZEqSR4gtLHqvl5W1hynDeBsnWGES+niTcmk7+qKIGInrk9A6EFoYV1yvNL125Ri+o6A6HlnWoFSjugFdFmw8SIGqDKRBBlJ4c4bQtiAbfp3Mw5YH+JuoBZruEVMlsTm+zfXE2KBSKsrQfiVORyvM0QJdRsTK4HAehMV63oisVCx+7WGOohwOVKbM6+HJ/TvmlK48wV+vkTjCG2Hb02/ub9KwxdXru3yjGGzjUQ9hHjOCPH70g6zliCmXzOurBXxPuVGwUhsMEKXoxF/1TpJ6avHUl12mTZGjv17JARKK/I8w/uaztpepjcgXYDOxiKW9zid0lkXDVz7exWEnrfiQXnW6L/4ql/edJQutrSdiQWJHvKzNp1UUq5Le3HUrsD6Yq4SP06TFJ1mqCTDWhcD0XCZyAbvyZKMMssokoyzk2Pm1YradpRpNDhe+9IoHaVeZ7MZz54957PPH5BWjnQ4QuU5dbUkdC0YQyKgW8yha9m7c5u268jznLauUVohlKC1FhkCqRIE5zBd9F7JlMK6GBzb0GC7jtn5Ga/du82kKBkc7PPkl7+l8QErJR9//oBPHz7is4dPEV87Je0k5I6PvnjOWDu8mYCM/EhCJMNba5kvl6xWFxgbKLTGdzXWW6y3pColSSLkXWYZ1ka4c4SfR5ymUgqV5IhsxOmqIskSxsMBZ2fnDHXKaDjsFTTjquNZCykkCO/p2o6ziyV39xR5lpBqjSxKQDBfzFmsKprOkGU5rmmwwsUxMR1KafKiJPh1cuFxPmz4aL2gIkHG7mRnPas6WoSa1OG8jFLUPYxyLThymahEOPra9Lptm174R/bqnlH6GCEiB8s5OmNoe0W6xlgW8xl4h5KQl8PNOEgRRfCCEHTO0XQdXdv0kvWhVz21UXnQRw6UVoI0vzTBns0XMa5rO7I8IROQC8GWTvHGIn3k3Ual1RCTxRD9TmJxj7jXW4e3sUvk14UoIZBKoyUkgFxTG9brZugnUM/rWW8HUVY/sHV9l4Nil+N0wtGLF6QioGzHIBUMB0Oy4j8A6BfQB+S9r8R6ExJxQ1BCIrteR/9yB0UE8NajVEJeDFmsGgbDCdev3eLde68hFXS24a9+/h6tDUiZkulY7RRB0rYtOIeTMNnZprOGw5cvuPfGD7g3vkeapzx8fExRDhhPtzk6PuXD4xc8efiAs7MZVWcpyxEaFTXXnUWItcnVZcVS/IFbvrx3LjOVTTS1xq1HWTskWGtQCtI8ZW9/imkCaSJpqhXtqqNZddTnFYkXNPOaw6dHHJ9cEDyMyiH7023yJOXs6BiFYDwaM76+RyUtnbE058tYjVLQeouXApmmZCqhVAkSQffsBfXREV3bUmQanUYifrds4kYOoATVqiIIwXQ85dnzExbziq3J/4t/+Gd/lz//s5/wP/7Nv+Evnx7zfL7kp0+esltVhOWSX3/+kGo+x3YdWaL5327vcOv1N9i5dsCjJ495eXISJ5YQfaATC43CebwxDIsJWVIwuvYNHpz8kufHL/m7f3pAtZqxOn/J/du3ePvNPd64NYKm4+71a9y6fgtJgwvQLOe8+cYN6pAhntc8+OJ9BqOcg4M91pj69dYn+tasC3CxmHP48iX726PNImmsI8lyhlnB6YtDDo9e0nRdxEjnBSLVzNtzMmNQrqG7+BzZvESGDp0McWhcUJcFTiB4G9VnNuRXCVLjdYYsCpIiZfXPfkn7i0+wv/oUf/BDqmeGxfFL9t5+h2Q8Qm5t46uMYGqCWIEKeNdgzQJXL0iSgrwYQl/xDMLiRS8Y7Q2ym6FkQiorisEQE3JahjTCsDICYwVVNqRMh0zLbVJ3hrVL2nYGIkOJlFJ5bDdnmgp23sg42P0m3kW4RkBgg6ULDSlZX0iXwKVMcL1cIRJJOtgj1QOsSGPy2ifOl2yNvsJuekjSJrgG0Xbx/wgGacK0zJFqzNfu3eairqiahvlshkRijEXJWNm9GtRHXkTA2hTXZaSVZJKXZGXO8WFFsJEwLLAkncYHSZ0YtPNILyBYJKHH+rpeahOEZZMLSQVrly/rXHznAzEpUyC02BDyAz6q0lmDExaNYKAlQylg0Qessk90+9+7qdj3Y7GRSb6y3LL+nf34x2A5jmM0bI8pQmyiXNmp1jfRV/VL7xkgGYgEKcv4e5DYAAqFkgq8w9sG3y1QIaDpvUE6C0JGs8AgN895sw7QvyJh/VGfeAjfw93itageLhbnj9i8D1GcIyB7LF2vTksrPTmBEtAiIIn8siiuEpP3mK+FzTu3bj8FwMsIH7HPjwgnZ2QAqxVhVUFn0E4ifbzvVwQIApfyzf1+J31ABxEJ60gqY6id7SWBI8tJEIVQepFnvFgbn4Bfr18erKPvlq6TtX4AL5/4xo9EJ2mEdwSPpcXbPseCnlCcYAlczGaszs9Yrmqq8wVCSLa3pr3Es8IRRROMi/K3UgiCd1RVhdcSLVJaQUxEdHQJl4io/JgmDIYlFjDV6gpsTRH6Dg/C9/cYNt4yoQ8wjY2do8nWNkmWUXctP/vpz7h26w7buzt0wtA6j7WG6WjKrZ0Jd7anfPTez3n58gXn8zl7o2t91yd2MoMPIGFQluRFSZqX7E3HyKKAJKVMVITbeoci4SIb0nQN29vbTIqCoZCgAl0iaLKErXIYzTOrmqOnz5idnWNaw8JFywOVJJyenXF4+ITQtbz59pvcuXmDyd4+/+yv/pZf/vZDPv7iC27sb2FR7N26T5GNSbIRlCPEMGc8SLl7+wZbkzFZmtJWK4ILVFXNy5OXLGcnWAtpELEb13f82p6PaqxlZ28PWUhCcNSrJZmEJJUIp9je3+fmd+7yeTjDovjRzjXeeesd0smE0XDAYDQkyTNscKgQPcXQCRC5vVXTkipFmaYM0oSqsWgRzZ+NNayqivPTC5pVNKBM8oxmtSIIh9KKqqm5uJjT1BX7+7uEANVqxaqqSNKUg2sHMVkVmjIpKIq14bTvoYfRJkH0y5o1bj0dCCrGel568BLVJ24qSdmoXHlPnkbIk04SSin7QopmUA6Q3jMp+4TdtEgfKJKEQZZhgLYf48lgxCDLKJIEQuRyKxFhaW0bxQuUjPLKWsCLswtOlzWLzrKjNXtSMhaCwkvmFvBwvcgYKokWAElcd6wkiOhD5PuEw4fIr7HeI2RclzqhSWTsAqGTzfsfQkCu9Vt8wPcAgIDANi0+eL7zg+/z5rf+lD/bv89/+9/8N3z4b/8G0dX8b/6zf8ybX/sad157ja/6+Oo5Km5dFYob5DrTxrue2LguT/XdBSXJsoxEaZ4dHfHh50OKLKMzgb1ywMHeLjpPCcERnGBRd3ROkKYpe7tbWGdY1SsIkGcZk1HJwcEO1WrJwf4eN29GieRAYDSoSLMMrQQ//+0HzM7PqJYL8qxACUtwDWmeYb2jI7pTX1Zb43G11rYxfGS9T67rZv3/+yRN9FVuh43YcyEhSC7OZ5SDnMl0yml1zmq+YH4xJ8iUVGlu3L6J9xZjLU1T89Zbb5GmGaaz1LMFTV1TJJp8VKKLnBA89WJB07S4VUuoeuJ4W6GTDCk0lTXkW1voREcCpxaIoBlMJyRliTOW6uIJOvQGYFqTjcqohpbmJIsZ1rT8xb/+W5o2cP/OXb5x5zVcucPz8xlnn3/GeJRAlnPfBlbzBVoKvvn2O7xx/3Wccfyf/7v/LurkK8V0+yAKGbieqrauuqFw1hKAgzv3edE+pZ3Ncd2Kr799g73dMb/+aEahI9dk2Ric7whCMZpM+fzzZxwen3NwsMWzE0Pdprx5/T55NqBrO7K8ByX6Nan5MiX1IWC8ZdnUtP01eB+wbYuxnsl0ikf00plRlz1LUtq2pZqdsAwXqOYQGaoIxQty3athozEuIkE9dlMcMUqVBKlhkCCMhbOK83/+azSw88Ovk3zvdWxd0x6eMfu3H0KSwCBn9O3XUWUBwxK7inK5wjtUFhBC4TwI0fVvqUPoWAUTPgaGuA5ch/QNqSxQ2iCUR8kUIVNa63BO4DpJqcdImSPLAdJUCNfibI2QPXzJGfIsdm4EDttcgFIkOgPn+6qSR8qMEBQWQVKMME5z8vIYXwrScsJoaxdruyiTyGWFWUqBl/286wPsNWDpKnApyL4RYw2ZVuiyZJDmJKgeMrVB9WzWI601STEgLXKyPGWYgD1ZImtPGQT2fEZ3viQzDu8NPkBqaqTVSARJ4q7w2SzOyp6MT1/pAhG6aMwZ3/AeuiSjKo0PYDxNiDwaFwIGEf0hlKYTYITEAp11+BAJxmINkenL/i5EeEL8sB+ZvguyjsE33iRiTV7t5cF/RxI4EOhVhoTEANp5chko8pw0SVEyQQkXuXFWYPqqp1CBVGpUkEhHJHf2Hhw6hWgIKUkT3SfSqk9UbP/++E0xwffqPDEZcvH9DdGZPhoO6ph4hhiwi+AIWkYfByV6uWdH3TkyCYVSSJUgpCZIjZUaJ+Rm3HoK0eZpxgcWYS6maWlmF/jVkjwEMIZguiiosRbLIBDEJR5+/c4FQeSfSIUn7gXGWy6qlou6Y+E8nVLIoNbhc4Sc+Phzon9+PtDD52LCans4SZwWvUpbcJvdKPTruRQCZUNU7SJ2IIWLErDeOgIRdme9pG0tTdPhrCWREp0mFHlKlib4APNVQ9u2dK1B6sjb8H0SFrtjl/LIQqz1aPpEOoSNad/6AtfeMLyS4m023s3eux7TEAKt7SjKgoP9PbZv3sFJFeFK3tDYQOcFplnx9v3bJHnBIFe8ducWwdmolhbC5llH9TLBdDplOBqQ5gltXSG9R2iDdQ7Zk+wJhm61xLd1fBhSRLht3w3FeVzd4ZTESqiaFYmW7O9s8e4bb3J08pKnR4fcvHOH4XDIeDKm2Nqmc57zkzOcCJjgaLqWZdPEpBBJszhFpoJUOlQwDMsh1/Z2SJIockBf2KiqitOLizgX1nw4yaZL1Zfz6bqW89PT2D2Rkp29HSbjIdPtCT/921/RecM405z7Each5+nS8NabrxO0olnNMabrTVWTuIZErBQ729vs7++xu7sdOwgmqnCqEOIfYD6bs1yukL3Ro3WOznvKcoBSCqkURTGg7SLsKhYyJINyACF2EV1nccZENS5jybMYz8Qtou8eSNXPB997bsXzRO5bhOHrJO19eQI4i14bvfbxgAuBIOKe70MgSI9QIHTsGHfeRVUwIbEITAgYPKtqxWKxAB96tISga7vYudHR0LaznqbtWKxamskIrSSzuqYzFuGhtAqZQCsCZ82KEZJtJbmfJgyl75UBBdITBSBUjLld8P1aEaGXXvQ1K9X77+GxHpIeQrsu2sWx2myMl/WpnqNYNw0XFxdcZBf80fe+h+y+RiE8eap59OBzHjx4yHf/9O/zVR5fPUfFc5mc0Cu30JNGEZsOy/qQUsQai5DMVytenJzxxfMj6mrF3p5FqR73F7+Z1nhaC0440jxHGIFoKlKdUOQZ4+GQ8WTI1vaU/f09BoMhOtF0xvD/oe4/fmzL8v1O7LPcdseFvxHXpM8sb15VPVPPVL1H23SQ0N0Uuxs9E9ATjTTTSND/oImAbggSNBKEFlsQRN98JB/JIl+xvEufN6+/4Y/bbjkN1j4nIkkNWmBO+iAjM2/ciBMnzt5rrd/v+/uaskze2MFZXp6eslqtEDFSjjQipNcs1SbpOQlGicP9voXG4KZ5+feamE1xIG7+arNpp6+OW7qwCIL1ukEqwb7cJUboWstytaQa71CNKvb29rm8vMS3LVJpvvCFL1AUJU+ePOPjswt812EmozSqFIKubfHWIgb+ow2JdxrXFjKBlBEtMoRUSewbkx0jSqCzjKyqcH2fdAgD7C+lxOQFuipQRYkPHetFx0cPn1CYMYt5zb2TI+7PdhmZgodnF4yER3iHykrqek1uDN/8+tcpM83V9Zwf/PDfsXewz97ePrtHd7c2qyLeNH0JVUv2idVkhs4rnMwItuPkaMbuzpRPP5mjRUguc8Lh0mkO4oizy5qPHp5ho2DdZwg1Ymeyj1FZyjshOYGE26jn5r8y3Zeb4LE4HI5uoCookzEej7djYcEQNhg9tqlpo2XMHKni4DiSboRUQKgtWnvTpMSt3gChELkmLta4R+fUH79g+sYJ4y+/RnzlEJ5f4p9cUr/7KAUTTkqqN04QZgomB+kQMiJ1CpxMkIFA4kkOTR6RQmRS4RDSqD9Eh6BDipQiHlAIWSKkYO0C1itWVhCyHKMNWW7ItEzvYwiImNKgQ2gxZugSvKfvaoTKMDKBDcSQEB9yAgIfFXle0q0956dnmJ2MsTDsHxlCcGkCzWCV+xmMY2hKtvaqt5oUElUPYroPlUIphTYl3iaPeE8YqE+3WpwotrQnRaSQkbhoiA7Ge2O0tai+Z5JpnE88/GwTfB4juRy0LqTJibVpgo4WgwOWQCifQuCiQCqJkGa714ioCSgamX5jFUGgyJUgUwEvEhomEORK4ELaczaUGYFIwaRhCDpkqGhjciHbyMu3mpYtxSb9zslZh2HyvwkWHO5dIREifV4KgRIMQmeNRKJiTBbJLs3B0r4SyYfAPhkHC2XnwXtMlizZQ4hkQib3PZ8MBHDJfUtuxg+bQNRU5SNkGIIt0/el/VptSnJu0moEUpphQpKCaJ0DC1iZ7p2U2TKgwNoglN3Wmmn/GcrrCCiTip4IwfZJq8B2hpMKQaWSdoSbAnzTqKQGKJKScAe9lpQED6vOUltPFyNR6WGKkzj2UvhEUxEJwBnagO1zQqJLpc478e659do3Rf224PBDMzA0TlqJwcI7uWJKqfBRYl3ADuvFZMlJKc8z8izDhoCbr3BuaJAG9HW764jtjxsAhU2zfHNWbj7EpsHcfH5z/3DrObaPG20hMU1WtNGMx2Me3LvL2XzB9WqFtS4F0wZwfcfh3oxiPMbbnoNpiRz27tvCXzfY4u7u7nJyfIdX7t/FyQxpCoTO0pR0WE8xRAocoVdMxxVZltwRw+ASJoXAKE0cJgtNU0MMTKqSL739FllhWLU1dx88YGf/gNn+HohA2/eslyumswkHB7sczffZm00IpFyd3VIxKiRlIXlwtMcrJ4c8ODlOer3hng/e03Ydi9V6W9xLQdobht0OwWAg42nW66R10oqTeyfMdna5d/8eP/zRz3GhJ9iWXhnWXnLeWL7x6jGOwOliSfAOHwZXRZkmENHBZDJmd2fG7mw6aE6TWZAkbg0J6rqmbVukVkit03KxgSzLkjsXoDODzgyoxNCRQmBMhjV+SzH0Lk0krO3x3uBVTFqMQNIIqtSohJCstBP1MRGhlE61k84yfNum5tlv9JTDMRYTXcuHiO1t2lt1RMjh3hVbQ0OEUsP3DA56Ib3ObLA+lojklKrkZtCdVnMURO8I1uK8ZF3XBO8wQBYEfjBBWPqefZ2xrxSHSlKwsV4XfKbSvFXbfOZDbOi1G+34hkoabwXGbnZPPvM/mzXtnGO5WnKZXTCdTjgYHXI4qbi+POXpi1Oen579B6v2P/bx+Tcqvh/sXhn4qTeHho8BRxrnbobARhk639NZy507h6iyZN51/NN/8k/56JMUvPT7f/RdpqMKkxdIk7NeL6jnS+4d7jAel9w5OmBSlRgpKDONMRl3jo/55rcLnr98ST90/bu7B9T1mmePn3L/3hFdO6PvOup1je1bvGtZLR0RiQ+3jB2HzRNxcyOkh7j1m4ctn3hr/bj9m9SuoYYU+cEb3hhYrWo+ffSMKHNEOSaTCtf3GDPmrS+8yU9+kqyYj+/e47/6r/8LQoj8d//d/5VVs8Z2HXsHO6zamm415/x6zte+9RVmOzNkFJy+OKOpa7quZXG9xhjB/Vdfx2QK23dcXVzSrxsC0CzXoBIalTanQKYMk+mM2DtsqKmXa2y9JDrLg7sPeP7kCY8//pg/+/N/yff+9n/JW1/+Kn/4vT+mqudI29IRQSWUcrlY8qf/+s/48KOPuJgvuP/aqxwcHaapzvB+SiEIUuCFwKpIliUdwfzsKVmoKcoku3Au4vpALnpCV2NbweR+QVtb+j7Zyq66wKqPmKLk3sEBxegA26/xbnT7bmVLk9nkIxCYjEYcHRygVSpihNRbh6m26/jo6VNGVcnB3l4qCvBoEdgfK1S3JtSXmIlFKZnIqjeWT9v/F4O166DyBRRCGYTJyINh/psnXPz9PyceTpFfe4D6vbfoQ0A3HrWMzH/2KXZWEd885vIXHyGLHGlyDn/rS0msKab0TZ1cv+jxfknwPcG1ZDEl8mqV0bsuCSyjRZVjBB7Rr8hFRykz0AVjNaYmZ25LHl+BjIFSBI4OCsqsoKh28M2c6BqCS40tzuL7a+z8aaLNdHNUdYI0OSYriE6mSZMsUGbMuj7jFz/5CXdebTi6Zzk6ukvf1IPtqUxvY4I9sSFZaxJTg7A5fKVIBb4XJBvqGJKEJ9MIIemiBOsTaBJdcshjuAWGQvDy9CWnn3zE8tljqq7DqMiolLzxyte4uFozHRvyOzt0ZxbfeWLlEFaDi4R+Rd91xOApqxzndfLi1wJrFTEKsizRBpASk0mUSsCBiyFpZ6Ri3XWDmFjgZYbsa3LboN0FxjkmQvLduwfowYM/IWep2PNCpgJfkEAH5wghooQeCnqBwGOMHoSP5mbkr25Qbhc2oYVgQ8CGiPWRRWvp2hYZPJmCzHtMZxG9JIQ0cYkIvE4O2k4DuUCPJDELFBGqqJlMC3TUqKCQ2rBqOla2IY85Pgb64JAuCWqjSFlHcrAODYihcNiEXt4k0UBEqtQk6DyFtSofcBascEhZYr1l3vY4a6kQjPKS0WSH0WwCRZXoICGh7VoODVCEoFKejswLJseHxJ0pl0Kws7dPdXjAaG8HVdtEIYo5IjqIkeDDDdBFQOYZKteUhaIoNALJ0nn6mH6/ndGYvMjwEZTpKEYxUaCESVki8SakdtO0EKq0i8qBakWyeI8hae1sbwfLYIFGpv5eRLzwjHSBQNB2ltlkxGw83hYlcbhnRuMR1XhMORrTNg1Nb1FKkZkMo0XKLlGpmTWZHjQiEZUZpEoCWymTYF7LYWYuJEolx64okh1zmrdufqs0oZG3O57hkWhmyfii7TqctUzKiqv1Ck9C5vsYsRF629N1NTFEfvsbX0dhUTjavv9MI7Ra1Ugh+MpXvsT9V+7xX/zn/0suruep9ZJqsHYdPkKPcxYfAsd3Dtnf3WGxmmOjQmYl45ni618f8ez8jE+ePuHs7CXCB/YmU77y5S/xtW9/i78SPGdXCz598pSPHz9CtGvuz8b0b73Of/2f/U2W9Z+wWK3JjdqgZ5jRCJkVyKxA/S/+MtM8Y7fMsW2DE6CUoguRVddzuVwhYGtz7FXaL2WIaZJGTEBxBGct6/WaF89fEIUkH0/JZyNW8wWf/vgHVK9+Bbcz49QoylwxHk85PDhExEDftvRaJTG+lKAVk9GIg91dTo4OmbeODQSpRHKSCn3PalXTtD1SJXaH94mW1XcpHFRIQe8snbOsmjUhhG1z3vWOKCBXGictNkbWTYPQkDtDaYrB1Utum96kc0lTQyEi0VlcPzQXPjU7yegigjREmTQfnfN0fTKR6PuOCIzGY7p2jZIwOtinzHPyrKBre4xU27ri6OgO1XiGijAajW9Ndzb0LBhPdxiNdzg87JmMxiyWS06fPCXvOw5yhdVw0bXY0HPPKN7KFe9oRe46yAVeSmz0IAVKDmtIDJvBphEXCZh2MeCAoJLFddIADmfoUKonAFCkvWuoWjYwkBCSLMuYz6/5zdmC/9P/+b/ld7/6Vf74d3+Xv/aX/gKffPKQ9z/8kM/78bk3Kn/zu++QPPIlQZvtZloVFZ+eL3n/xTX/5N1HGJMxKQvWy3orEFdGsz9YCL/95lvkRcnDJ89543JOZz2Fkrx88YJV0yKU5ujOPmWRkNdgezKlKIuMpu15+vwlv/rVB5xfng+ZDPDqqy6FRHUd09GIRgjmXUuRGaxzaXqgTToIfUyc9Nu/3AaZgs9IUDZe9iEMHbaE6AZhI0nAqQvNbG8X1znadcf1xZJX3nyNvMrpQ2B05wFRStp6ybN332VZr/j0+RMur+coqSmLET/58Y9ZrVe8996vKKqc2c6E6cFu4rqvG3RYsTi7xvc+iZO/8BYheJ49fpT8sb3A+56+ha7raKxHKIMCXNehgqMsNaMvvcHixSW26fFdS4wOF1KzcXTngHK2A0Jw1jSsRGRZTfl3733EB6dXHLueqW/I8Mgi345Lz87OWSwWFNWY3/vOm3zhC2+zu7vDi9Pr5DgSw1ZgLgTImBAY5z2LsxfsKktZaX798GVKWzcZX/udtyhERHjPh5+cczAbM64q5n3Nqnc0Fopck2mLZM1qecl0Zxet9VDciFuoQxrxut4yGVXcPz5mOhlRVSXWO5QxSOsQUjCpMnanI452pimAMQqQhnXfUYRAoQzl9C7edzjXIYNnw98Pw2RFRj+g3gPiJQUy04giw773BPurT3HvPeXw+18nu79P51vCZU//ySndzx6idsdUX3ud6o++hn/6lOb5SxbnS4rSkB1M0XtjTD4eCvIGSK5MMppBgOgSghP7xPuWGh1LEEOeUGgJsUPFGiN7KpmDKVGUOGfwLmOxCjQmUuZQ6RJlDJkuCLGB6EAaqtn9hCoKCHZN8DXeBhAFMptRTu7i+0g9r7l48pL22jJ/8gx3cUbvAtYHeuvRevC6F7f23tvrMtxYTHcuBdMpOSD9IqCkoMo0hZBIErWv72MKbnNhMJmRZEXO6ukT7Nk5M50zzTSlDHD2nHsyMJuMKA+OUPslSmcUuxmh1+Ajys/pG0/wAVM6nEt0JpUJepumKkUOvRWEIJA6pummkESZcmuIkd7W6LpGO4vKRrjW4BpF/fSUiVbsGMNX7k5RRida05BV4UJMtNihCWHrWpimEnGAqo2JKC2RQtK2YTvlFpqE4EsBQQwHe2DdW1atZdn0vJg3nHtL3fXYekU/UthCgGvxIUt7PwJ8QPQW7BrpLTpKpoUhG0+YVhMO7+QIp4mdBtHTdIF15xGyJ0RNiIayVChdorMKjE/TJzI8zeDAE6i7daJVBIGwTXIHVgIGi9JM6iQYlTmoMf78ilh7Yu9442DKdLfixEQ+/emPeJll2KYjbKgyMRD6PtH6tAaVMraCFNSXZ/SZon/9FZ5ngsvz57z4V/8cYcE7T9s5RPRImQ72jQonxpQldHl1zau5Qr56Qj2/pl1cU+UFKi8YjSdk2WAOkedpUiMVxmSDG6PD2kQbTe7pYphKRNzQmEghKIpkOhN8oHdpOhlCJLjBvEFAJx15TFQzqgpTZOznGTLGBCWK9CFEyn5pes9iuabtO4JMmWRGxxR+yoY2O9i+h+RwuLGbFoBWiqBTWGNd16xWa/wwmRJbM4E4gIJiq5PaTDq3S374PaPWSJXCHUNvkSJZ/4emw7uAdQE5uEAJH6kX1xgVMQqyUZkMNcJm6pU+rHMYo5nNpozHo2EiIbdFnBwmd37I4Mq0RMvE4Xc+ErxHSsFsf5en56dcXFzQtz2u6wl94Bfvf8DenTtk4xH/4p/9C56/eMnV1RVvv3aCBqpcg1OosqJSKbQ5UTUT8r9hUITgyZyFTkCut/TOdZPMdYKU7O3sooRkVBa0IiBj0kUJH/FErAh0nU33uIDVcoU+O8fkBaIPmCAIIvL9b3+JO3eP2dvbYawCvrXUXYPam6E2NKkBoLZETJZRlmUqvLs5gpjyhwbXSKEV61XN/HrO9fU1fdcQIyidAi030zVtDOWo5JB9pFYpL8iTJrMyvQejMkdVBXf299JaGG6VDdtBas1GN5zpbBAKCqI2WJemaq53gxW8xKjEbogxCfV9FMmRVCRQRUpJWRRMqyqlzRvNYt3Q9RZnLZQaLRXegbcO11tUngAYHz15UWBURMlUZ66bGus8o1zSWUvTdpyfXzMWglfGJRMT2XUCieKro4oHQjCJgd5DDBIx6MGdcHiZ3CtFEOC5yWJiA5PGLcspTcnF0KDcmrhuJii3vg8GUDAEmlXD0f19vn38Kn/rb/1NXjx8xP/77/8j6tWK+/dOeOcL7/xP6hX+/3l87o3KF+7vDmMzRcwKNk44u5MdsvyMy7qjtxYQhDwnhHTQbgJvJpMxx8d3WL76GpfXc569OOXFxSVCwG5Vslot6KynHI+ZTUdkmaJrG3yWkRtDVRRcr5dcXs35+JNPWdVLlEoF68H+HsSI7XuU1mlM6V2iagzaka3dpbwxxfxsWNqADQxtutiG9cXt4QIJTYobo38BOtOMp2Ncl7iaXC6YTqfkVc51XVPuzBAmQ1c50iT0/uz6is57Cpk0Bb957z3m8yvOz15yeHjEeDLBlAWh7ZBKY5ShWTepsx7ljPdmCCE4vzhFG51yQ7yli5HO9lgXUqhlDNi2JZMwHZWMdw555iOrywXtsiXG5Hrh1msKfcx0NCYqWFcFPRFfjHh0dok6u+J0dclMOAolyMYJnbS95eL8ktF4zGw6497JCcdHh4xGI54/v0iH5yCUZDicJOBccuNol5cUu5GRMvz0N+fkpmI2m/DV33lAv1izvFzy6dM1ZTZiNsmSE5cArTXjKkfKQPANbbsiDDavt2d9Nx/pkKmKgoO9XaaTMUqr1AjKZHkqlWRUGEZFRpWZraYmCsW6S4hMaSRCT5GyHkS03daRI5IKmE0ibvpNVTp8VErRbT54Sv/Rc+KLS0azEWQKV69h6XGXK5qzOdnJDuXrx0y/+Ar16TN62xHmc9oXLwixJ5ces1eAlgiVQygRGCKeGDtCdKnBH0TfSkmSOW+i7vjokqFCHOjMoqeSPcJEOlHSxIzOpvBxH0BXklxptBKEPrmPCZltm6Xoa0LfEa3D2x6hA8JUZJlicdVQX6+or1c01w3N9TWqW+NQWBdYNy1aJcvSTEvUQK0QQm7pIz4EnAspCbvvqMoyoeERnG1RMjItDNMsQ0tBHxxdH3Eu0lsPMqKUohqV1Fdz3LplmmXsl5pMC9z1BbPoqHJDkWVk1RRTlpS7BdEaRIRc5PhGEHwk5h1h26hE+j4hwFke6FrwLjlSbQ7NIH1KbQ+JV6yVQ3WgjaaTmgbNMxHJlKTMFK9NDUonlDXG1GxZF2hdJDeKzCiUzBJiKgUhbITykG2yQiMshSXEpCdAJ4c3ozWKdN8771m2imshyEKk1T21SNbtwXVY29H3BuksSWOy0XcEhI/g2qSXQjLKMybVmIOdffb3BPSG2GpCXNMVgmkPliXEDEHJaCQx2RiTTYmFQ2AgGIJYpxBBF1iuBTiP9hHjAkaBMZJoDMFFQu8xAkyhMVXO9XJJ10EfHbvTiskoZ1cFXn74HkRo6n6gmSSNh12vUUJQZhnIVJza4FGLS2QuUQ9OaKSHy1PUz35Cjsa7QN1ZYvBoranKKjV/3CDyznn2tUQe7HIpPA+vzsmMJDOGqTEYqQZvgIg2yYI4ywydjqTaNFHelBQYtbEyTtqlGAVaSarR4IQVAtYp7OCgZG2aJtoYaaRAu0TH0doglKQQJPrLlhYVB/pOwDU9ddvSW4sapSJaqYHiHNny+X2Mn0l93zQhaToqCT7pFvq+T0j5f3DOApt76d+jgQkYMq8CWZGjjUEqiXcu0Xk2VJ8YtxNZQiQGT1vXxEyhikH8PzxhHGoAJQTeO6RQZJkiH0wCEv9j2HcYCtnh+23X4myfTC98OveFFJg8o7OWy8srggvJ2ta3PHz8hA6Y2j3effddri6u6NuWV4/3iCG5QRkpUkB1pobzKr3GdF+kRqUPDmFTk2iKm4bNtjXWWUKMlGWBJInXe2GTBXtMe6kfoLqAxORpKt01Det1zfnZObFPmjuTGd55/YQHDx6wszPjxScP6eouaS2I26nmbRpUpjV5ljEuSwTzBJhsuLsy5ezVTc1iuWSxXKKVGChZNzTAJMtKDXpWFAlI9B7pRaKyCYghoJVJtV9ZJR3kYDfsB4bLRnvHMDmISbCF0prOeaxLdZGREqMlUQ92yAM9LoTBACTeTBiFFGRZTqYVSqaJVNe2KUstpiaEEGibhnVdDyGiaS2m8zYBDN576iblyuSqoOs76qblar4mi5FJnnFgwPYSg+btTDN2njyEFJYZB/fGmCy7hYwop5L+NN5QeW/XOZ+lu9+suc1nN3TfzcLbrOM0dYk06zV5lnHv5Jjf++53+dPFmvd+9T7/8t/8kO9/7/d5453/GYjpf/qL3yBlSreWOkcoidKSk8NDLk6XtItrpmWefPV94I0330ISkHi+98d/wne++RW+9fUv8vfyf8w//bN/zU9/+BMmRwf8wXe+wRe+/XUmo5wqCqY7u2QEcqnRRc4ITZVXjKsxde9pW8uLs5ccHM2YTSr2Z2NmVcFq3bBa1rz7+FOCs2gBWmV0XhCiYdG5YfRFygDhxjvl5tINf47J7k5JQZ5lvP3Om/joeXl+St9b4oBmmWxEURWMRxViLKhGFXmVEyRcL1Y8e/aC03WPKUuqUUk+mqKjoxeSB194m+gCj0+f88njJQTPncNDDg4OEVJxcX7JcrWCCNOjHZSBqMDZnk/f/RDXW06fPWZ1tUAIhRmPEXmRAn28w3mH6zvmV+d8+2tf4JU3XqO6f4AuM14+fcHDX31A13UIITl5/YiYBRpfU5Vjxvs7UI1oQ4GdjNI4//qCKFJ6d9v2dItlcvCqJngXmV+v+M2776GNZG9/n6ZPbk1aKTbWukQosowXp+dcXpwT+guq6YTc7PDPf/KYL37hVd452CfayLsfXfH+R5f88mGOLg1lpbl3d8Q339rl/o7i62/f4+MnFzw7bwjTwdDhNgK04RwPHN4oYDxOk5Q8y2mamqZtaPoepSWT6ZjpqKRva05Pn/Olr3ydLM9BaE6vejLbsVItVX7Nzm7FZOeY2Np0mPU1sE4hhiEiRPI9R2W4Yop0FnF9zpP/4c8QH70gv1zi/+G/RX3phOxr97AHu4hpgf7afcpvvorYG9O8eIo8GLF/8kXu/PG3ePnue6w+/ZDLdzuqB69R3b3D5LX7xPEBwQVc68DPk/GA7/ChQQmJFgrpLVG4Qdc/CPGQEHoILdJbptkZIR9jywPW7SG9U3St47K9Ipc1I7VOidMqQ472cZREAoqOMr/AdWtWC4sKAcQCO3+Xhz+95OknFyinaQX4tufJ+SVCaJzzNHWD7WpESFSushyjtEEZTReSx30b7KAwBkTA1Dptwlawni/xfYfyPXu7E7I8wyuBHzwuhdL0ticSMXnGSGVMpOT1/ZK9gwpB5PTJGUF6aic4f7QkhDF9gDP/kkkYMzI5u0cl2pUQJE2oCS7RHm1scU6mMLFY420k+JikCuREFJ3vBi2NpCwVMhREp7hanibdT+x5oyqwQXHlIv/gwxeJ262SPNY6j/OBPqRJrkSQZzl5ngo5ITciZIEgJZk756iboVGJEITHZPngSKO2X9P7QOMCjQ1crjuWTcpkyrMc6wLXqzX7EVQuEJmk7KGXAifBdSnE1OQiobF6QqVKPnn+KWUwjEMBuiM6geolVndIPDI6uqWlCwsI51za5UADkhjlkYMYPs8FmYBcCI5nGaWEEoEXirqvWa7mtM5iRiMqtUuIniZ41t5xMBoxyQ1T1/DyNz+nbnqWdYcWkhAsrm9wbYvWKb+nbVr6rqOtW47v3WG6O2X25td4+PAx/Ycv4YNfsjOaYbIMZXJa75CD0YbSeoteaiFQWYEez5iYEmcKxkKwdJa+qVnFmGy/iUipMJtARtJkxHmP7exN2LEUtG2Ds8lK2JiUeO26lt65tCyExFqbCi8fWfSe1ntq16FDKsPRS3Rm8KFLlOG+o7M9dVNDVkLvWLSWTEnyvGBvb59RA3PfsGrjtlnZ6E6kgDBQMDdtRvAR7yHKZHSgpAKlETFRkcTtqmpT1xKHM3ggeXqP9x1CKt566x32j+5gyorWWxAp9TsoECqiVKLyPD095fRyzmz3hHFRMR0XCOeSpkgnem6mNFoounYIEwU6CwQLIWBIFsBSSpAhAZEhGQgFIQjaYL0lqqS5Pbu85uGnj3n//Q/ROkOODUopnj15zHIxJytLuqajKFJtcH5xwenZGZdXl1TGYG3PsunQygwiNEFVFhRKkGs9aA+TSYQxWTIlygzrdY3vk6C+bjoEyWW0Fw4ZBTZKcmO2AM/J8Qn7R4ccP7jPL3/6MxbX11y9fI4IKeh47+QBOpN4W7M+73n3Nx8hBdy5s7dljSip0HmGkkm/ZrKMqio52Jvx3pPndM7Rh6QnkRHGecbj0zOqUcHZfMVX33gVrSUX6xV1syICmSmQWtOuaj54+BgtJIezGZPZDt5kSeBOYD5f4oZJxLSapEw2kQwPtJKIssJ2XQq3bFqyLMfkOdV0xmq1Yrles1qtGZcFZW5gXFJV43QuOJ/O/7ZjsVolp04hWDRrEJBnGa/fOaJzlt73Cbkbuqx13fL+hx/x8vycL33xbfamFUorTi8umFUFpTEI6WiaNV3f02aRtml5eXrO4+s5933PsYz8hSIDZcAFMmfpbZqeI3SyHfYBvRGcDTbsG8Bok2nlQpqgqaFR9BK8jHgFFEVaci4QQ3tT4IrkPLjxRpVKI6Tg2eNHrA/fw44mfP073+Hk3mv8/vf+Ev+H//3/DkYGqyPf+pO//h/RRfyHj8+9Ubnzxe/gXRpPS4bxLBFzdMK9XcHotciD7yjOFzXnixVSKwoZqVSkPn1Ke3WcNsSmpfMRleUczqYczqYczCa8+cp9IpLZdIedUQVasbY9v/rofaL1aBRPTk+5vrrknTdfZX9vTKYlmUqoWNtafBRcr1aURrO/v48WmkXbcz1f44ewKUMSrPbB43wqZOWtHTSBTYPIk8R/rOsVKNC5RGg9OKmEAY1yNOsOk+nBT33Ni6eW4CJ0ATtfpoJ5Z8ro+Jh2vebqxRN0n5J+c6NQXkOUKKG5urhOGyWpuM/KjL27+xweHxBC4OmnT1ieLdN0wQt0MdAKDg9o2hbXdti2ZVQWZEpi3Zi267g8v+SsXvDw44cs5gtGsym6TenfelKgckNW5ZzcPSJERxevUS/OQXnIcsJ0miZc3mG6FLYVtU65JDGhzRfzBU9entE4j48Dh3TLoxtoJwLyPGNUlVznGZ88uyIGy9e++SfMpjl9VPzgR6d0HDB75U2+/+VXCdef8JunL2i6NblW3D3Z5cmLS15cdswbw2tv3cVkOX3fo/Vg1xsjxBuantQaNYyUNym2gkSDUTKJX5s+0LUWrTaWmonKpYTGFDNMucva19Sn14gXzzg5PEqJ78WMflmnKUBwKBWS+4ZOm7x9fkX78SP8/VfJj14nR7N6/DHivQvExxeYN08ImUJkEj0qUEXKWnFKY5uOeL1CrTqyLtnl5t7B1ZzaecJ0jCpKTFUi5AQfLE72KHKE8HjpCbFLr80H5BC+J5AEXxNj0nbgJFK1ZPECYQRWJfRXBZnE325NO3+JNAXZ6AiRlwhZICiTbkSXVLM9lLY06wWPf/UzHv265vLSYfKM35xecG0d7fMLdEgzKAXJLjxGjJT0cY7zgca2nLx6n8nejJ27x4iB8pJlitYG6mXNk4+esrqqic6TZ5pyCbIO2Cjo+nZLOdzw4ftY80qpeKUyvHoyHmg0EQo4fTbn2arhiff4UOIRdLqliHO00IhHER0yJIKoLCrlzdPj8F4MTbK7EeQihimWxIqYMFuhkFlKk7ZecWoFmo5d4/nC3YzOSeYd/KMXC6RWicKFTEL1GAfL5bRPCVGn0DxxI7QdcH02urtNYbmhtCrVDMLcZDUbYiIKhCGxufUe11nyGDHFmPGkZFZpdLdKmp/WsW4FQUdirtBmRt1ecfbykkfPLzBqTqUNizjHRJloRzoMVAVBi03TOC8IItHhJIYel9ZnlEhhkwGH1Ejh0EKQCcF5LtBZicqqtI94i3COHolf9YT1BdQNykdUXvLe6TmjznIQA9/46pfJi4IgJMKl4MTgHLrQqUYMkZdPXyKEoBxXTHYmuNayOL3mi9/8DrrMMOOC5x8/Q2vN/uEe0/0dJALX9FuqaRSSqiy4uJ7z419/wJMPPyQ2NdOixHaWtvPMrUWZ5NTTuUQtjQOJvHduSM+OGJsSxQNg+47gAzGA1hGlPKaNdNbe5FAMlr5KKqwQ+BhTCj2KEB1NrBkVOa4woPVWyCwGgX0UMk0/MoPJC0aTKVJfJ9GwH2iDQqVsCBhyPcJnIN2k6Ev7vVIaY0wyf/HJ8VENq+IGEhzUKgmgJnpP4zqKqqAYVYS+5/TZM9Z9x/HJHYigpaIyGZWR6aOsuFrV/PrRUy4+POV3vvg6X3/9HnfHFW0IdD4QfUeHR6HQMWJtj3UWoTS51hil8NZiXSBEj/UO7wLRR4q8TDavKr2nnoj1nvPzC67n86E4zuhsjwuOo90ps+kMk+dAMsPItOR6teBsvuDl9ZLfeusNTNti4/Im9wYIeFrb0tuevncpSHFU0jnPqlvRW4f2ES01oywfdB2pYDVhM62ItL5P2jQXWC2XCK3wWtLbHimHFHapiVKyXCy4vlwigkSEyL/5dz9kNCr5Tvk1gkrOoAkjGqwUhtooM4bdyQjrHC5C5xy5SI1ppmSaRiiNFYbGOrSX2D7gfLruQTgUyeghSoUPSTscgYv1Chcjs6pCqmQOE4QjikSlVSq5FBol0VIjTLrvxTAhMiblqx3sTanKDDWELuZGk2cGo9N0CiGQo5Iy0ygZto2qMoa+sxipKXTGqCgwQ3ioVjqZpQjFnaNjymrMycE+ZVEkC+KsINN5opNK2JlNQMDh7pTTlxfUdcOqafEqopVkFMNAGwtYH3FCENQAtorktoeQKBQiDHs3N9rfRAFOYbSbDmYz+fIxDfIjCeAWgzZlI+wZtp2Uc5RliOh5+OhTnmUV897znWCwrUfnGf/JX/+rPDg+4vj45D+uifj/8fjcG5W773yNvmvp25boO5xNjhDj42Nm+YgHpuIboz0+fXHGR4+f8+T5U3ZyyV5leHF6RTO/Znk9Z75ukCbj6M4x9w4POZhOGeUZx0f7CDSzySwlasdA7zyPXzynnq/wbc/51SXVqOKNVx9QFYLgLLbrCD5inad1jra3FMO4UAtF65P7UUSnkaOQGDGM1thcu82FH/4TN+Pq1JCtVytknhKRjU5CRqc8bd0R+ghRUoZUKHddS912iCgw0uC7DnyJKUtEqeitY325ooyaosjJixyh9MDf0KwWl8QQGY1G5GVGMa4Y7Y7Yu7NP3/U8/PAhq/mC6AJlVaB0hi4KslFF0/cp6Mg69CjlXZSjirrruLy8orm0nJ9d0HU9h7v7yTlDBESmwShkpqlGJVll0GuJtjWyMamwKSp89IgeShcQg06p713i4yOou5brxRJpDKPRlFRUpfdUDEGhIUSMMVRVSVFNuL6u6Xr4wpd+G+drbL/i05ePOLh/zO6d13nlza/y/k8sLz65pDhfcng4phrnPD1dse4MQU3Y2T1AmyxZJQ7OV5uibdOASqlQSiShqXdb+kMMt8eoiiAUfkgQJ4Y0FRQClVXoqiJmmtX1kmZ+RZFXTKYjRrpECpPQHpnsCsPg/COGSUI3r9FvvUM22SMfT1n/g47w6VPixy8pVoFwOIK7E9RQxEcBNgp82+OvFmQ2YEjXSBMJyzXt5RJ/sEe+O8VojSwyotRImQ1bQE+gJfkhuaS7wSQEWEHwHRurU0IgGWX6VCiLHGKODBLpAzJYbHdN8AUqK1FmQwUtiGKE1JGiMMAly+sLnn/8mPMnllVrkOWUWiquYuC6B+UsRqRcFCkTz19LwaJziSu/bhllJeXOPuUrr6d8AwlFntF3lu5izurpNXUxgLqjCptlICS9g9anALQ4INcBQe0Ck+jYixGHx1qbUMLKsKxbXp7N+aRuCORpGlYIdOghChq6JBCXAp17MmmQQtETGQYdCMVQjEEIN25VTgz5EULipaJ3gi4IzsgopKcuQMgCj2TtA7++Spo+rQZr4jAYfShx4+gyuBqlWjF8pvSTw32ntRzu7YASEkQPiCFXIySW8q1skyAEwnomEuRAySjLDO87fAeu93R90sOkMMURnRUsljUXV2sSch3ppU0p2oDSg8NZFLQxTRtjYAhmkyihEHrwLYsSQXqNQihC6FBCYIRgriIxHxGL5NRXKBiZiFdp6le3LVV0VALGxvDkekEVwU/GHL72Ont7uylLqu/SwR4hr3IIHtd15LMDTGbYPdgnyzTz00v6xUe88uYblHtT8oMpbfglEjg4OeDk/jFSSPp1n5oFkaymp9Mp/cNPefmjX/Duk+dUwfGNe3fwTU/nHTUeJTNcECybiPWpqBAy0g+BhhGRjCFITYtziaqlhERYn5zRurBNwXbOQoxD8aZBD9EBfcqb8DEwtw27MTKzNgE2eU7Ic0yWJ/fCwZ1RaY02GVmRp0ndAEJtadMhDrStz9LdNtSwZAGdXO+U0kOu07D/i625P8Ott22qb/R8ktFkzGg6oW8b2suAjw41zBgEgrE2lEqRK0meZbTO83Kx4mfPFtw53OG1u0fcn2ms61l3Ftet6btA9HA4rpgv5ixXK6TJGJUlZZ4E69YlEX076ISCi9w5PGQ8rih0QRDgfKDtPWfnFywWy9QMak3veoL37IxH7IxHSfc4nH1KCepVy3y54uxqQd32LFY151fXSKlvdAMx2Sr7ITn84GCXfFxyfX45BF33PDjYRwrNpCi3713Sfd5Qquxmqh8CbV0TBLTR0/cdQqQ91MpEvbVNi+08bWNp+5YPP/6E2c6YN95+NVmRD4d33P47/VkrzWSUoiGsDzgfKDbX1/vkOOkjnYu0zpPJSHCkqcCw5yghMFpRlNU2XDLEwLrr8BGqoqJQGqUFOgsoldy1hA4pp0RKlNQIzRD6mPY8pZPgfVSVaGPo+x4RQ/r6wapZyrSvCGGQSmB9npy7pEJrQy/6xEaQikxphElUXqFSnSOFYndnl6IasTubkpmkbynyPNm6K0XEUeQZSitmsylnp5e0XUfTWUKRQCYzuIOGGLBE/NZKONWkcXhPZUx6FTcYbcRb12Lzp43WadP4JpCdpLsX3Kw9bmzAN1dWqNTonV085yP1Cc/6yP7BK5SmxAjJ7/z2t5mWBdOq+A/6gv/Yx+feqPzJX/vLMNhQts1qSIqN5OMROi9RRQXjOxx/8gl7k1/x5L1fcPjaPb71lXd479ETlstr/uH/+Kc8e3HBV7/ydf72f/qf87UH+2QysLxaMB1NyUzBznSHVW05vbrkk+dPWSyWnJ+95OL0OUoK7p98me9951t88Otfc9U0zOcrnl2fcr5Y8vLyinI0oSxzgnXoTGJIId+RNJVJhk2aIFJyZ4hAuEEr2Qq/00bdW8fT52eYXFPNCg72DxLnM/Q8PXuBc448LxlNxslVp4/MilFCXK1DjkdMDvZ55a03+PAX77E4u6K/WHK5aimrkr3DfTIF3kdW9Yq+7SnKguOTEw7uHSBzycLWfPDBB9iuT8FVsxmuT9aIUili5+kuFoimRfUu8ff7iCgU4919nl9fIeZXFEXOaDSlGAnWzuM2RfraIWRO3fa8/8GHeAXZuGLv/j7dyyv65RXd/TvogxmlMkzna66W13R9Gl/nozFKadp2lbJTIgktHGxWlRgm3AFs05NnGXm+jxTfZWe5xMfIl7/yVRbza1bLJZfrhjtHR+xOZ2QC3vzil5kdHvHx+z/nchlRNUSOOH7nVQ4O7nJwdJfOtti+g1gORdygjxnWtNYKCYQgty4hYSjSu97Se8/9+68kkazJcNanFPVCJIqAzJHFiDe//m3Onn/Ik09+wQ9/8SN28pyjyYR33nkdPYFgAiw9Ika0DcirF+TjCfK3/oijL/4RajJFljnmD36L9b/5Get//APO/96fIn/5BG0CB6MK9fYdwut7uPkCV/f4IKGaoicl+d4YUTvckzPq958gX72D3xnR7Z8xfuMB2XTKeLJLW6/wtkmTPZEhQke0K3rRoJTB3BiYAMPmFgejCX+ekDqpMdkk4aB+SqUNPli67orGzhGqxOSH5NmDxIPPPc31nPOzBb/5DawWBiclHstf+Wt/lfGdY3bvHNKs1uB9ck8bDnQpBC5InI/0tufuK3eZ7s7Y2d9LAssYQXiQkr7pOf/DM7q6I0YoipRIH0lZH947NjkKenB2U8WI/tl72Ocfc/XDf0y7EFRlyb133kB8ck5/tYLWMK4mCG1YSkfbpcI+Gp2oqFJAkcSOKeZC4qRMIm0ZkqMNAu1Fak4AG8AqgROCNko0EhkDh/4cXU0Z5xVdH2l6T+ciO6MyWS4rmQxrk33LkNicDASIN4G1m6MqTU822QqJypJsgpOjjpRq4OEzZKqEAZFL192Sfh9JxLqezhrWHZytI/iY8lKCxmWaMM0ZB4nLNe1ugbqqcN7TxEgT49CopJ+vURihIE/oYCTZGXsnUh6qGgqXGJHobRCkMBmRhAwurSXYGr/quCx2mRQZR8aQS4lT0JuA74ZMhAiny5ad8S4nO3d45evfYW82xfcNLnqiNpDlrD96hO8bZJR86S98P5XBy4a8D0z1LuNin/HOGF3liEnBN/74+/R1S3d5xfy0pppNOHjz7YTEk4q60c4uYyfJxzOuvaVzfcozUBmZjDRKEnWGc5E6dqysw8WktdjEQEY5TOiG6xpUykjJjKGpa4ILaJXAsRCgdZbRbBdlUnhd1yZrWSmS4XFqSQfBsDKU4zFVFrCFYT2fY13SXe5NxmTVEEZre2wIg8VxuifEELS5mfogBzc675ObE0l7KCJpahuTQ58Ig/mAUpv4i+1dGwBrPVU1YjIZ886brzGZTYhEfvAv/iUPTk54Ldvnjf093r9aclm3vFaOOMxzxlqjomFndsDh8T2uX1xz5RxXvWXhPE8urnh+fs7y5Qvee/8DTk/P+Gvf/x4/+Okv+NEvf0NUmp3pjHE1oqnX9H2HdRaEobYtHs9f/wt/wPe+9U1++0tfpJ/3LNs1L+cLfvTTn/Lo8dPUqBi9BRRynaOEIDpLptPIWMkAAQAASURBVMXQhEq0zLi6XvLzd9/nf/xn/4qPHj3hg4ePkvZCbCafnt46+t5ycrTHb//W1/neH/wu/59/9Ke4IBhNdvk7f+Nv4GXGg7v3+OV7HyZdR9gS50AINCrlgChB33cs6xXNsyfMJlPGo4rxdMry8oqIoCwL3nzjVYrM8PTpE6zruViseffZBb+9WDMejTkoygQyRglSQ0jTgMl4wrgaITqLQGCDZd0sefr8KS9fXCARPHv2mNfv75DpgixAlU/QRpJlgstFzd5kwre/8fU0xSXSu56qKNKeax3Z4Lh1sLeHDoO2zFuIKjXuUiGiQKqAIZ3rbWu5XKwYT3fIsoyTk/ucn51hbU/jIRMaIRV951h0faJcorC1RUrHzrRg7+AAoxRd21J3Db2zmLwgmRWmNZoXOTLTlFW1rRVH4zGFVggi88WK5apGiJSx01ub6gxrCUUBUtGGMOSypLUQSAYoySFPbJuPIEhrL8aNK/3N5JzkqudDmn6mUBCBjhDbFjkYNCRq8AachSDThFDjEaRGEVXwycPn/OD9lzQNvPnqA956cI/vffXL5FqgNkj+5/j43BsV6XyiPA2CJuc93ke66yVStSizYmID69OnXL54xhffeJ17RzuMcsW4yFnbZD97ODYczwpOdiuEksNJ7LHOcTG/4KMnp2RScHF9xdPTF+xMxkxfyXjtZB/brhlniocffsDzp084u57z4vqK8z7SdGl0rmHrqx18yv01UiT0MyZRrh6cPuTALR5Aje3/JKevdMBrk6WcFiMQIrJeNYlyEWEynhJDRJsMow0Qk7it6wk+4EVAdT3rF+d88Gf/luViiXKW+198E0HAW8vl/Jrslrd3URQoKTk7O6WjpdoZs3d3n/XLBV3XEKInrwqy3CCUx/XpMIi2YVRqdMy5ziU2dkgpuXN8xKpbEYiUkzEnD15Bm4wXz1+wOLugrxuwPc31gk5KbFmwt7fDqCyJe4FKDRaHJlJOc8pqxOxkB3VW0K8bVJCs1jVN09DWDepYUxZlKlwFQ+DEkP4sAl5udByCajQlL8bECF3doIViXE3I8gmZ1MmaMXhyYzg6OGJU/u4wHUsC6TIfkWUFtm+I3g0GCOmxobzEmPJYQgru+AwdBpJ4s+l6mq7H+02Kx0akHLffR/TgOrqmpaz2uffab1EWOzTXL7men/HBxw8ZjTPGk5Lp7M5QKHp8fUXQOaKcEpQgWgvekx2doL5rqO7f5fruAe7Dj4gffczi336I+fQF5tVd5J0R2ahC7O3io0CUOZQF9cPH+BdzOFshd2dkOxPyvRnN6UvaF2fImDF64z46L4l5lqaO6ERflB0RT9ev8X5jRVoMW0aiZji3SpRIlYEqiRiiKIhVhQCy4FF2TfAWu3gGeY3PCkwsE43qac3Ts36wnTUYDG89eIXDN15n99X7+FWdzC5Euj4bMChGNTiyRPI8CWlTAnEys4gk68pQFsxeubctzJWUgwvKUN4Nl1cMYlkhFbKcsFJL5v0V501D03g6FzjODKNyxKQcEVuwOqVV98rjIsQg0LlKjkciptwakQ6rGFUKE0SkvM/NvRVv7qP090NAZFAEb4nOIwJMQ8dhhDLbR9qk+UgTrs1elPacze8Fm+ffgGe3aJW3x8GkQvbmdZDE/FtcLW6/L96i8GxoPT5EOutoVdL5SCWQERokmJRwHoxCFYaiyHAxaWiCgKgzUsQrSKGwCDwCaQbh8JDjIkT6CDKlyAcCUhTppfiYMkciECJWmQHdFYkqGCQqpiRoOYhnfdOk51AJbRUR+t5tE9YT8NCjM8hVzuMnz+mbBoxgx3wBv1px8e6HLE5PySYTZq+/wrMPPsTbHmU09//wuxSyYnF6wXs//QXjvR2qnRkyT5O8ECLYHrwnDNQaD/S2g5AmBkiJEgEtI5kWqGGwe2vwQGCg9ACImJy5IBX7qQtIk+HBbVUhqIoCk2dYZ+mbCD4kauBw9fVAewudpa1bzJDbo7Sk7S0+RPKsACGwzlFfXSeKt0yi/pTnk87FLYjHQEKJA6a7nV6n5sVZm6aWImynBsMi3q77GCXaGEbjMdOdXaZ7e6Aktu/Z2z/g1bt3eevePXaLnJFaUUo4GBdkOoVpdm3DwXTMl197wB/2jtcP96iU4LpecblYcHG1wLaWy8WSlxfnzBdz2nqF7Wrmdctyfk1mzJbGjhApPNn3oAX5ZExejtC6wFkAjTYFi9WKdV3T9xZjTNqjpEApwbgqKcqCcTWi7lq8c5RZxfV8zc9/8z7L1YrLxfLGejZu3xk6H6itIxuNsVFwen7NLz/4hNnuAV88epVl29E6i8pEQsrDZv1s0HWxnXAJAUJJjEgW0nhP27SEAPPFktFoxM7uDrPpBO8sq+WCPC+IWU4XBauup+3tdnqWJjbp+Y1UzMYjppMRLq7p2pbT02csViuerxvc8Qn+7j0YT8iVoVCSmIP1Da4XuJCaBed6Xpy+pNKaUZ5xOBsjpEfGkJps7+j7lEGTDfufjx6FRsskQrfOpgnzMGV23rNaNVgbMCajKHL6rsN7T6ckjbFIlSY38+WSputpu56+7RJY5gJN11IWGbtVRWctdVNThEAcjUAols2aF+dn9NZyuFMRoyXGpBfZGY3ItEr1Z0hIoO0dTdtRt+0Qa8DWwjg1HoOj7HB+bN7rAUPfQlI3ayzeogwOnxHpa0Ng0FjFbQbZ1vwibp9p+9w3xlCSQmlCW1MvOq7nc/Z2v8I3vvZF7h7s4buGvqn5vB+fe6Oyni8Gh4RA09SpEA+Rpk0uR0pKShWoL19ydX7KtCqpMoMMnjI3OMBFwcGkYH+cMS1SgE7vPbHvqbuW08trnp3NGRnNYrng7PKC/Z0ps0nJON/B1XPWi5rHDx9ydnrG+XLJ2XzOIipcGBB8sRlFJ9RQxIiWEjuMzVwIQ5L2Zuic/r056uOAZoWQUCClFUVZIiS40NE2SYCutaYsq9TBSp1clkQKS+v6DidComtYT9vOuX72knxUUE7HHDw4wbueerlitVzSDQeLNhpj0qWr12uC8UQdOc5OIEaCc8l9IgOpJYXI6YeCRQSL0QpyiSkkymiqacGdu4f482TtqkcFu3f2yYuSpm+xdU10Fm+7IfAI2gBMAtpI8ionykhwlthZxqOccmdMNS4Aj8sNdIG2b6H1xCFXQA4OMLcLqQ3nMqUcJ/FfkY8pRUq+bbslUmoyk1HkGucG28eQkJViVLK7d4jzjhA9RpsUCGU9tmuIhBQmJW5ZYcIWVd6MVja06g2FwftA03Qs13Va5INrEsO9EGIYLDgDBEffdWRZxc7+lDybcKo+4LRuObt+Qt8ZsJ5qcoRSGpQiCJ1EpZnG2y5NJaMkn4wxr48Rr93HGon9ySG2MLQ/+jF+uSZczOFrd1HHEj2a0lcVIjdEoemuVsSLFWLeIq1PzcaoZPH8KX7dI1pBcXSA1iNklg9ZcmIoEiTeNVjXkkrXpAmIYeDtMghlBQlBG/gFQWSIrEQKhYxJU+D8Attf4cMafE5kxtmLFS9f1lwtLeVEk6MxUXK4M+Pe0RE7J3eJdZqoxJBwpO1jCLITQmG7FuscnesxYjAOjSlbRCpFsTO+ZXkZh4yJm6loep4ND1chqwn6aoItywQkdB6V5zgl0/1VVsS1xeqMoDKsCngtIKa1ZJ2F6FGI7esMQuFJE5U4oGopc8lvUc4wOPsNcZFE3HbfqYJlGgUmy5CtZ+NIdUPI2vImQSS0bfsrSjE0d2L7JTdUGrYGBDe9eyooN+FfGxRQDI1DamoYnHQGt7UQEEoPiBz4rc2xIkpQWiUDgxhvUEA5WIQLAdzY2GtptmsqDsJ/oVNApxrQQzFkv4To8Rv7MhGxangvJODSni4G6hsM9/Rw2RVJdK1k+n4/OJxZH/B9D9YhG0t9PafrWkRh6JZr3PWS9fkFLx8/YXxyxOyLr3N9doZdrci1gq5DIVHeszg9w/Y9i/MLqt0ZUptUgFgLwaO1SUgmw1RhSPeOw7837k9apTMrNSo3OoOhR71F2QCiR4jhLrp1eyiZph5KyQS0xKFIkTfTCyVFouM4R9/1OJXAEoHYUuG0Vlgi1jmWQzjwpgAfKP34Dc9xczdtmpSbW4wY03tufaKmRbWh/266r836TPecNpq8KCiriqwoWXctjbWMJxN2ZzvszWYUSlBJyUhJZmWGVune7LqOcZFx/2CX3+odx+OSQgjqrmNZNyzXDdJ6mrZjNeSOEQNGCtaLa1YkqqTSOtFd1ZDLFFwK5x00FEGoZBeLRgpF0zR0XU9wKaBUCrEt6MuiYHdnh1FV0bskBM9NwbpuedQ1dLZP+iSVfLlu1gS44HHBM50l44b1uuH5+SWynJFVY9ZtS2d7hNoI/4fw1uH9jdxsp1EME2Wl0FIlFoEPQ2HeMRqPmUymlGXJetmzWMwpyhKKCp3nW/Q/Do3P5syMMaCUZFJVjMuSxbpmtV5xfn7BvOu4loLs4BC7f0ivM0RMk2ExGAHFmCZ4qAwfAvPFHJ/lyFjB3mxLIdy8Kd47OueJg4lDJCRdBRIfSKGUMdVFEplyU6yn8TW97ok+BZsmc76IC4nt0DtH1/d0bUvb9vRNi5SSru2GvdZzMJkMdukWJdU2lyqFbibqX/B+AMYDnfO4Ik8OmUO9sakx2q6n6bqbRmWgVW7e2zis/7DpMtkstZsG/3a/vwV/SU3NZ8+g9PypSRFbZ75tVXSDU21/goiQS0kWIqr3ZDFyMB3zyskRpVA0bU3sLZ/343NvVP7BP/jHSC2RRjGejDHaIKXm+cuLZA3oOv7GX/wuy4vnvHj2kJ/9/Od89e3X+b1vfoWd/buUhaHxikm5z2gyRrqaGri6vuTlyxe8/8kjLq4XXC3WvPP2m+yO9shnOR98+gm7peTBbsVb+7u8v1zw4x//nKAMQQiqvKBZteACwYMw6QDXRiexqEiBYlEmYZj3sK6bAf3b5F8INtE3cZs6mjZlFy11VwMR5+yWa9sLQW7ygaahODu/QAiYzsaMxiVCKVSWsb5Y0zQdzdUVh3feYLY/Y3d3hggWdie8dv+A04tr2qbDNg7b9milOJzuE3QkMxlt0zI1FUpFTudnvLw+xZQZdx8cc/LqCSLC6npJvVzQtS35Tsbv/+Ef8ODVV7l3/xX++//n3+Xy0SN82/Pz+b8jywsm49ng3APFZMThXkl0gWdPz/n4Nx+jMsXB60c4FRL9QGnu7O0z3d1lfXWF9GlcuejWnBzdIT82XF0sqJdLHjU1b7z5hVSsKEUQEk8KIRMiImJKvba2IcR6GFvr1Ew6j/EtQaaQSKcNhIBvW0TTDsIxsGzyIyDJOG8OzG2JF4cmbnNiD/8vCGgtAUPdtTx/ecrp+RWvvfZ6cqsZDh9iwAeXsji0QJr0ub7tCK4DbTh45R12H7zG/PlH2PNPub54RN/8mPHuLpODQ8Y7x3jb0bdP6J61iHIXMdpLG4wyRKXZ+/734He+Tfw7f4uL/8f/i/W//QnX//qHjN/9GXpWoe7uMf2v/iJ9JVjZFe7FnHi5RNYt6nAHioz2Ykn78AXRR0xWcfXu++jpCLMzpjo+RuYVTCrCag2MUGGKkivA0fRdEs6LiIgu4f+iQKtdECMQOtElY4FDEIVHZTsoPWJW7hKWP6ddX3H+8oyf/rTmybM1PY4sClxw2L6lXq9Yz6/Jzy9oVushPTpsN2UBRJmuowoxUbkGYXAcOLQSiXPpcO76G3QnDHQEwca6MWxRpkQNUBgbWc4XLBcrurbnYHfGdGdG33jaSU57UGFrS0eaAnQolDYIJB0e7RUqCJIKKjUdVifecBjuQyk2WSWpAE+HuyIYRZQCbCSTGZkXFK6lUAIjMsJsH+wlsnFD0OVm9kEq6D97ZA0H0HAQDp/bHHa318D2G6IYmm1xUzRCKsRisrB1wiHwyQ1GkACDssQ7QWctnXWYOpIGThpd92QeSpNhpMINegsXQyroMFhucjKsjVsAIx2iMtkrR0FAbcXYQUKQgugHK2ERSPjq8LJLjdcC6wLexu1kqZCaQjgK6ZlVmt2dkntHUzR9ag4zg1z0PP/wQz748x/xxu98m/HBAdEF/uz/+N+yd+eAr3//9yhfPcH2nsuPnzOZ7FLeOWb35ID3//mfI4Rid3+Xb/7JH7JaLvnlD/6c+2++zuzOIfuvPQAZqIzk1b0djssC19c424JO9qzBWrqgCVEiydAIEGGYJw37U2qF2RYiQyEUtwhpBN+DkEgFeZkxvzodpr9+0OJpHIEo08TDB09Ugigj3lqaZk1sltgBRZZGgkz2/p0LdD4SrUWGmByzlCRKQdu3SGvBmCF4jrR+5WCnLQKN62h8R+dtSkyXiYaY5rXxVuM8jFFRhCiwznM9n/P87IzFYsnYFDxf1OjzS16fLzgyip3dKeNME52l6T2ruKYLjozIH7x2F9d1ONtjhcK5QGc9WkqkyciLksnOiNcenIC3/ObnPwGVofMSqVMGVZRDMS0FOsv5+U9+yfF0n5Pju2SjMVxd087XLBYrnPVkJkMO0zTrHXXbkBcFd0/ucXjnkHXfcjm/pjQjIoHGOTpnaZqGet2QyzT1DCHQWkfoO3RwfOdLb7O/s5umZaMpo/GE8bji/OXjgVUBo9EI0TSpTtngF5vB1q0CFB8QPpBXFbosMaMxa+sZTXY42D9EK8liseD999/n+M4xeyfHvPNbXyW6jrZep+cZss8EEhcimTHcOzxmZ5Tz6MmaX//6PbTMCbNdJq+9SrN7h6tqzK9Or/n2cQ2jHOsjUehEM7UOJRVKRqpCYUhYGgEuF3Oc96jJhIkZJ0t1FyiQyRpYAeLGsWpUjoGIbztkSCDIZLzDYrlI+i3fc7S/S17kgEh20wPYW+xOcNMJLgAqabQmozF0NuXeoCmUweqMLE9Ot4EEGE/LEaIUTLIS7wJeBnIdybRBDFqTsqrItAEhWK3rpN9VA3MhMEw8FWLIxQpD4y8Gcx9kAjKQ6UyQm2YmQCTVrlEmG+u4mfKLm6V1g2eIlE2z1TWlRShDMn2RISLoKF3PW9MJfnqHv/07v8MDU1D/+gN+2SZXtb5tefV7fK6Pz71RMaOKzBjyPGPnYI+iKJMP9mhGV9d425NNZqhqgqzGHNx/jf37rzM7fg1VTJhkFSYr6Ps1UUnqtufaWc4uFzy9WPDBoydkxnDncJ933rhPs1pw9mxNURnGBmYxcPbiBVeXVzgf8Bs/cq24MyuShacNBBEwWqWFrwaP+ZgwzihVsv4MyfrPh4F2AiDYTlmUEhRFmSYcWdJcCCR5niEA26e0V+9SFy8QRC3IipxyOqGtF0TvwMLB4S5+Z8ZkPCK6yMXTMx4/fMI7X3qDo+N97r/6BvZXv+Hi7Ip23dC2dRKrjSskiugi84sr+nVHvW5YrVuqvR2muzNOju/TLhesl0ueP36ekjuUZLqziylL6rbjz//8x5w+v6BbWQpZsF4vWcs1Xdkl6kOIqCJjPl/Rdz1t3yfUKShEH5nMRkQFp/UV15dXtKuGq8fPWS9XdE2H7XrUbmRcjsjLAhssgZiSvGPynQ+bxQOoIEk8GUUQ/YAaxgFx9lux3eClMyDFkk143YbmItigwWxFf5tluW1gRPr5ahDBMaCAQkgybVAqcHl5xXy+oK4bjMkGWkLcbvYiRoxWCZXc0nDAEWib5RZRnB2+iat26Gd3WDz+MfbimnY9xx12ZEWBznOM6Ij2injdYKsWkY8RxZiwGjae0S6jv/gn6NcekH/lTfyf/TvsizO6j8+x/8O/Qt7bQbyyy2w6Aq2JR3vkb94lyEh/dcl4b4YqS/TODvXLS7rFnOaJJ64azO4Ms7+LKkfILCBNj7CKEC0Oiw893rUEu0DpCqVylCpwA3deSoncomubQjeC9PQY6gBXvmAdLF5qxkVOpbJU6PuOHp+KJwJReCL+FlzMcNimTwSRBIs+BFZtC0KipGKcl2wE4FGAD4kyum5aqrzAaEMmBs/+zWh8QKblgPgjBcJosskUs7uHnU5xaoQNLU1s6Ul0LqLEi4CIHuE8PmF5mKjSTETcTAciCezf3J6RoQETKUSQwe0qBflFhIwQPR6FFYE2dCyc49pG4iAMHUZaN/ft1uvl9psGGzOXzfra9ia3/itl+sIUHCe3E5SbCofEQSe9RmKif1nnCVEP+RkBIwI6SrJgIFhyYCIydIzIITPD3Hr5grT2AwkNFcOYQAzwYNzAtMM130xCUwrE5v3cfuEw4oTGRs58pFSglcBIRa4FBVCIwCRT7I0Kjvdm6CE4lsEhsZjNGB8f0Tc9vrbQWXYO7zA9PkJNdxCNJyslO/slp11LKAxiNGK6u0dX11yenuFNcgscj8fMdvcoR5NtIKMgUijYyQ1dnmGMohMMiHa6jj4mOpoYmkKpJDakKxxiHLREcXiv2GbmDLp5fAgok+7z5MQl2aqihjHMtkAZHlKq7ZRHDmtYa413niAESitGJqOIAuUjZ7Ul+P4mdHEzgROD3lDe2mtJqLHzAVPkTHZmRJOxvDgHbwnBg7ghKKWhSirGvIjUbUOcR1xbc3p5xapuaMY7dM4x7xq+cf119nd22RtXSZc5fH/tOqzz+AiZGuhbSjKbjCmyDAI8O00Bs9PJjL39PY6P7vDFt9/m6uqK3oVknCETKBKIrLuWy+sl8+WaX/7sV5RZgY2Bv/HHf0jWZiAiTdsQgkdrRXAeiaDIMu4+uMfJ/fscHh+jTTa8L34LftromY5H3Ds8ZFJW2yItxiQ8z4xiMir463/p+9TLNR+8/zHeOdqmZr2Y87tff5MQHBfzOT9QPxmmjyE1ksMU2Qs5CLHjdn/Y7gNKkRcF050ddvf22NvfS5PB+ZzTl6f0XrN7dMDJ/i67ZUZV5FjnBw0VQHKoElJQljl4j+t62qZhvL+Dykuci/inz1gbxZPzius3j9mp9hnlRXrfCESVzmQlJCoKXN/hlEZGKPMc51LoqfMJvuid32r1fHQopTBaMcqSuUoMybEwk8NzykhhknmJkCCiJzibgBSfHMyyrOLq+oy67nAIZJEjtWLedUyyjDIzaNcRVQoazXTK1HLOs2oaPKkukFrTuQYbfAJlYyD6NO2TQqf9at2wqhvqtkMZg1ZpCmq0gZjAYi/CsMZugDu5uX6brfqWmD4OjKFNc3N7UpIW/wDQDojV5muCiCAHAG/4KVGkvXukJMd5RhMN57/4Oefv/gonBc9sYj457/kr/83/hs/z8bk3KtPdXXJjKPKc3b39lMKZ5eiiSghzb9HlBFlU6HLMnQevc3D3VSYHJ3gn0qY+mXB2FVnUNVeLOS9XPfN1zapNI9KqyDnam3B3f8KKFqcC00JiRCTzjsdn5yyWSxACL29CHMd54jb3JmBxQKSzKVuj88mrPUA6sbVBGIdwbDcZ2AzF0oadFRl5mSWLUKXo2j4JGgehuBMphyCEhDREH9GjCp1n6DwjrlJ6r9aavb2dtDBMxsXZBcvrOU9fPOOtN+9RlRlHJweMHhcslwpkKuBiFHjnUzEWA320BBsS5zpE8rJiNJpS5SMWpxcsr1ZcvrykrFJey+5ojA+R6+WK37z7AYurFb6LCCdwjcWFgG98amykIKjIet3Qdd1WAIiURBsopEFoCUJSL1a0ccX505fU6wZnPRrJSq2JHnZ3dsnzHAQ47wbEXN5aPwIZBTFuqDNDsTsUTOmzn51xyrhBj9MzfPbx731eiP/wb25ghVt/J4fXFbm+nrNeJ74xw+g1laQ3ZV+yQhRDQ5WQCRc8TV9DTNS/2c4JyhREXdA+eg/btLhmgdIFo+mMkd5BmpZoLdE2g3WuQ8iIdzFx+7Oc7IvvoO7sYV65w7JxuJ+9S3+6oPnZQ7LLHYrQU1YTxM6MUGXIvQn9aolfLBjNJuidKepwn+bhc/xiju1r+tGI6AMIjTrZR0qDMEmI6KPFx54Qe0LocXZNlU2QKkMIw42biBzQ/vS2BBFJGLilR1OjWcYxLXOiUBTGkElDINIFiyXgRUSIge4lEs8uXe9bjkC3fp6PnrZP96vRhsJkibM/FMI+eqyzrJs1Qqb7LCWz37oPxK2ZRKr6EEqjxjPUdI84nuGyEVbWdKQwyoAadGgWQUCFVAzJTfOx0aKE4Ulva6OIn7GLvLkZB0HycE/GAUBxMdLHwMoHlj410YNaZLMahsctTuLQfInNkw3F32c6Fdg2a5uZcRSp4N1oaW76hM2xOFzbAbXbZE6kKxZBpSLaxORqY4AChQ7D7xYjMiRa2EY2cwMhiKFRYUsl21APh9buFg3i9nodbGw3v3gI9CTzkcSYSsiskZALKEWkFJJxbpiNqrS/h5gMAbKMbDJhfHREtOB6S2xbxvt7VPt7UJQgFdoYqt0pejpCao3IS/KqwDY16/klTgtMnjMaz6gmM7JylKzuB7qdkVBpjTIKrdPPjwzXXEZcADvYTqfbRA4I6IaiurllNhOj9DUIMTinxWH+v2lH0jraFKdx+35vnkekQMZBkxkDEJI9vh1S5qVS5FkJMiGsSs2Jsb99O7FJSN+EI26uVUJ5U5OljaGqRnghqefXEGyyVx7uO0FaLptGJRBpujZpAbznarVKzkhBs7YdVgTWbcOx2mWSG+plMtQQQuCjTwWUi8jYgggoJaiqkjJPAbCnZxdY56mqiul0yt2jO5RZzpMnz2i6LhWuIjXGIcKya/nk8XM+efyMTz96yC/ffR+RZ/zFP/jdISg10X9DCCilUm6SEBhtmEynFKMKabJN2ziAAAkYdd6xNz3gtXv3ePP+fQh+u8Z9EJSjkt3dKd/+2ld4+PARDz96iCASrKVv1tw/PkQKGFUVRiU3FO88Qg1VjBC3suHi9nNiEJpvcnDKasR4MmFnZ0rfd6xWK67nC6yTtHVNJgTjqiDPM5x3aHK2gQ3DPZllGnzEW4e1FmFMco/qesTFJZbIxSJjWa/owoxdM6JtU5aH2HAJh/fH9pbeWBCC0hjscM+HEHACrHND4GbAuT4FcMdkimH7Hu8cvneYTIKKRG/RkiS4VyJpXUIY9rHN3grXVwvmiyVRaorZBJVn+C6gZhMkkjZYokhnilGppA4hYIegaJU6jrSPB4fSavse+RCQMm2kTd2wWjes2w6tFEpFlEwOZSGkZiM59KX1IIaNe+gp2ACsWwre7cewj2/287iBzTZH6fb7b4FXIg707TSF2ZwjhZRMlWLHR64efsJVXXPRtjwKEksCkz7vx+feqPzRH/3hYIfokjDRe5x1KCESFcwYginAlOTVhG9866vc2d9jNpuwPHtJpgVFli7SBw8/5Z/98Ge8++kFX/vyO/zxd7/Nt988gm5FaBao04+pFgvuhjVe1Cw7x0Xn+fXHn9J7mIwKroRm3nVcXtfsVxMKbSi0pqxG9N5RNw11Uw+cv5SYm7rXZJ1IhOAGr4UQ6L1jMp1wcLTP62/d5/T8OevVmsViSdd6gg8srIeQaAhaaIRKR2wgMipLFJLrlxcs5ksmszH3X3+FBw9eYb1cc/70BaG3KGBcFZwc7jHONY/e/w25jOztjsBZ7hzu41rP4nLF2ZMLooDZ/g67hxMms4KsukNVjnDrlp/8yx9yfXpOvVqzWqwJs4ASCi1y3n3/Ia11zC+XaFmQlRWonPGsIARPu17je4u1jvnZBeV4zGg8Iytygku8zlXdoudLylHOO3dPuL6es1rWRBGQUlIWyYHk+vqKy8tLrq/mfOd3vsPR8R0ePXmWEJ/g0CTtCiFNtUL0sBENbzkEfTpyhSAMnG0ZtxmO3Dq+txjzhhd8C3TYFjib3sb5VMyGYJEqCQvrPtLM5yzmc549ekLvQKmMp8+ekecp0GpbLMZIletkazjwPZ3raJuaaCHPc4qiZHF9xuL6mvnlFYy/gBYtgjWXVx+zmD/CvPiQwwf3qMojqvExbb/CLhf0q8eo6gGeEkuOKw26Kim+/E3Ua2/QfvKI9c9/zfn/5e/SPHrE6v/+b9Anx5TffJ38j7/M/OPHxOUSc31NfvcIURbJAODlnDIT7L3+AL03oVlccfbrd9n5wttku3uYvUPUqBrgVYcUSTtDCGAOiCrHC59c3IQhxBIlBvetEFNGhu+I7TnzXnMZCq7zI6x4hoseQiTHk9jEGTFIYhiSFKJI+RrcFFQIkcKtEIPmIKGQve+o2wYtJJmMTEdjpFDJucSlgjXGSNO3uJDuqcJkqOFo3YiRCQGjJTrTOFPQHb1Nde91Jod36e/1LKxk/bgmxCT0zHKJtg4RHCGrUT2oEPDCIqJCbmY0ke1kD5HG+UZm2JDElBJBLx1eRMxQdYqQfj/nJTYoYjFlrWrmIqKUHIw1UrJ0yoO7jY3Hoam/TWm8fYDdNE6b4j+tB5F6w4EfstFDbJuc4eu8iHQ+gsnJRjO8t2gRcNHj8gI5NuRlJCqBFJZATVLq+LRclBlsuQV+06yEVGTETaHLLfBC3Frbg3UyIqBIh/am4JIIRBQJACHgCDiVKBQ+aCSBiRHcGxnmaxAihSh6oQYjA4s1GjmasXvyKqbt8K6j6xta1+GNoHceaQJOrLmsG+5/9YtokRN7wUdPf0B39Yysv2J/ekjMIq3KkGWRdGDWIvLUQVqRfr4kJLc0KWCwRUVupkUpgysKMNIM74kA3LCX3a5KRNJzBdiK6AYsJTl7BQK3C5WhThnwAMJmuiJw3iZRb9eBMigx5EfoLBm5mIxcGUx5jVtbrruaEVlCsPMRQhu0lHiSa2LYmjakwlCJoSFiAxhEIunrRAQVRSpqh3Dirk16Idd7yqxImpVKc7VccDI+YGc6YWdvhgMWdYMKGoQjCs+OVjxf9lzMaz4+e8TR3oQ7BzPu5Yaj3SmL/Sn//fvvsrc7Y+/eCWUxZlxWHO7s8L/9b/7XSRPiXBKoi7RTCW34wa9+w5/97Bf83/7u3+PJ6SVP//6f8ubdB5Sjgt739HXSWog8I1pLFnNyJXj3o494eXlJWY45vbjCO8GoGKNkilGoe8fvffPr/KXvfZe//P3fp1+vEmgmDRkSodOHcoFCK3b3JxzvTZiOMyodefvV+5S55mp+zWRc8fLykuv1mjybJjBNSHxI09/hrknUviFc0XYdTb2i3D9hPB5xfLRHs16xWq7o+sDzJ49x3lGOZ/yXf+dvooxm1bWovESi0/0mEmCTkP/EdHAxEPsatYrkqzWqnkMM2LXm5ekVO5MZ4/GE1luc80ThwQfq1tJ1sGgcQTs6AaWW5CL5S0WZqGZ916aiXUhMlpFlKuWiaMl6vsb2fXKo1CUxBE5fvmA0GVGUOdVkzJNnL1jXHULmjCcjfPQ8ffqEn//058znC3Z2dnjni1/g4PCQyc5ect7zgVxp6gDRJZMmQaod9/cOcbZLWjilk6bPe1QIaCKZVuzvHlBmGSJEzl6e8uTlBY9eXqG0RqmAVKDN4Ms32DeHmHIlBQHhI8nNJeXRhY3v1LAnyFtAVdy4KYbEGth8mRQeRBy0jQPkFOPWmU9FiWVo/JXERIntGubNkphpeinQZcGhCwS50UJ9vo/PvVFZrutB6ERCiKIAadBGDcnLGqLaFiRaKaoiZ2c6RtQLXNfw/Nk1Hzx+xPVyQTWdcnAY2JtWjA3siQ5Ei/Vrnn7wgnZd069qfLumtoHrPqCHcKooDdHFIc9PDh70FusdS9tvEcDW+S2dKwgBHmLo05g0pJCfMCB8ye0msFquePzoKcvVNULAeDQm046m7pivFpih2FUKPBaBxBiJ7Vr6AK53SJnyIWwX+fC9j1leL3j29Bk604x2Rzx4+x5Zrum6Bhsa8lwTqWhax85oF9v0tHXD/sEMhCCvSrpVM4iyHAuxQAiRnGNywViP2T06SOPE3GBby7pt6KwltBa6ZHzQdmuMSeP/aB22t3jnsTYwksmnPAVGppAxpSVnzdk2ud0P/FLfb9xKInVTJ4GaFBidMZlMme3skJ9dJBGX32A8aWXdILm3HIluPT4jKEXcOqzjZ75m4zyT/hxvviTclncOmqPBhloOI2zrLPPrORfnZ4yqEdoFXBBcz+eMx2OM0VsRfgyBzJjtM7oh9DSElOAdQ2C9WnJ1eUnXNklsLzWWnIhEj+5jY40Pay6eX9IUHe1oQTk9wJgcrTP69hwfNQGDMkfEXmNFgQ8F2fED8smMTBd0735I99Nfs3zvA7rn51Q//jlilorCECT1qkEJhfIQpMLs7FC98Ra+XpBFzyh4ln/+a7I7dxh/TZMdvpKEiXWDZITWhkxXCJET0cSgkWQIFFE4LEmAq6TEhBbvG2pnmTNhTsnCpg1PKEHnPb0HgSKgt0LEeAuJ3UA+t4cBYrjAIaYwQkiCUClEQs6cG7QgasCS0wh9Iw63zpKbxAsW2x+UCmUpFUJorA04F+hDZI1AyRGlnpKVJdYnnYyWgEo7iQoyTYKkGJDgYbq21YkMwm6R7t2Nv5YEiB4ZEjwm01iGSGr0rYBORKySoDOUyqCfI4syHYB+2JsEiac8wNfRhxuEfAgjiwy2scOSEjI1nSnYUt0YXAjS4bdpWLaIXkzW3QTqrsXFJHQ2SqQJrA8MCAIQEYaU6YHDGIEKEH0SKiMFUSX74Q29adtUhc2MJt4ctsPvtZ2mDtQnmV7illaXSu3BWpmA6y3K9ShZo0tDYTTjUhPrlt5H6j658Wzvg+CRMmIyhc4nZHLCSAUun32C9HP66w9R9hohArGWxMzQecF62ZDpS0Z7jt3xhJCNcHpGrg+JUuDCxhhCDmGOnnXbEazDVBVGJvvltLnJYWq1MXRJ504cOrYNjQvE1hgG2BYT6V4T28HjZ3ZGefsPm31xAHLixvXSYogp4E5pityAUuiiwOQp06vforQkaphOuRhq0IyFkCzHNhODEPxgqxy2Ta8ckOUbX6J0BnspkJmi6Vp8K1Cm5ODkPuVkwuzwkOmooDSa0PU8ODng/p19ZmWF8hHX9wlpB6IQaJWB6LDe8+z8lEW95GK+oMrHSCJHJwf84R9+G6MMs/EU5wTrdUfGnFbpVNSHRElVIgUQ+iioMsObDx7wu9/6Fp8+fMTL56f8ix/+G4qiSCGNaJQm2QDHCCElAP34p78mz1Po4HydnjvPc1KOVfratmno1yvcckFTrwhREoXGkdYNShD6BJDcv7PP/+pv/VWKouTO4SHetXiTMxqN+PZXvoy1jucvX2KZDJQnjQrJ6TSIZMrhY6IKRiXpnaNezDHjGZkSHOztcXl2xnJd40JgurOL85Ff/upXvPfBF5Gvv8beK6+kdRojmzGugOH+kUm3rJOduhFJJyVEus/auuX68pLrgz26kyOcTBMPoyTOOzINR/sz7h7tY7TCN2uMFAiVIbQZ9qvIeDwamu10FuQ6BT4KKcnzPAU2i4FmKiLKZEiliUici+R5gVKGPB9RVEWi4XUHfPUrX6brOqpqxJ07x4wmY7JRhYspOy0xTiRRpglFMhhxrNcrtBAYkQJ5jdKILKfKS/CO1vas6pZReYDJFMv1mucvX/D02TNi8IMgR9J2FucsNnj6AF1IRgODqR+b02Wz90Wx2RkGs6jNX2z3i81ZwFavNGynCezaGqekkXfaW4Yprr+ZigYx5M4BeQAnLJ7/mTQqTTsU+EIOh2e6UTZUC6FSKE16EwaZkBRkWiIltM2Ky6sLnr54RuMkO/t7dEGyOyko6Sj6Jb5dEJoFp08fJe5g75HR0/pI7RjCFiUWSQip+BRR4gIpVTakxN7k1mXovd9WP1JK0vTkpiwapmPbvw/es17XtH2D9z1lVTCdTlGix1uXHFoGxw2t5WBJKDEmZ7Va4qzD2UCeVQQvWC5rLl6epQTYqzmzwyk74x3eeOcN0D5t1rGjzCZkmUAaQ14lZyWTKfJimg54Kbm+WNO1PX3v6YNFGUm2N6EY52QmZ+/gmHZd462jW7c06xV9n14zvce7QBN6MpOs/VQYCr8QUXmByjKkVDSrNX2TRttZkdM2a0Lw9HVPVhQJEfRh63TSdi0xRrTSFHlBnqfXo7XeFo+37+/bk5H0EDd/3qK8w2X7n7AwblsN3+5p4q2/j/HWsh8K3rZtaNZrJpMxuvPUveNqXSO1oqrK7ffFGDDGDFzjuG1S4sAlb9qW9XrN+dnLwV1EILIKj8BiKLJ98BUxFvRXl3T5FV235iCTZGKK1pJgF2nNCI1wI2KncT4DpTHjHYqTI7KdKe2rr7DaOeDyek5wV4hHzyiOC0RVEssJfd2iAujGQpahplOyw2Oah9dIa8l7x/zDF8ReMnrrTWKmk9i17lGiQOoMqUb0tktIHxqiGS6EwxPSuhYC5Rq8b2lDZBErFj5n1YdkBSwl1gdsMmghoNhYL4Y4qI+2aOvGvWq4cGJT66QrmNZayipI9uhD06H04EqkyE2OHyygNpaQt5H6zXOnEEaF7T3Oeaz3LGMAmWF0maaJNoWmSkLKLJEBGTY340YEDkSxFb7fbrCA5LgzvIg0dUlEkIR7Dfe7FDigJwUXCm1Q0hBtjygKpFIQB9GoEKkoGrhYm6Y7NSobytZAWdwU+lImWXbcIOYqGUVsGqzhNAvCJ9BGQPQJKbU+WQFIrVFeoJXGKIPbvMcMWhsRkCIZU0grEr1qEDEECcLfOFhtztNt8XybGrfZB8SmwbtpiGRkW7inf4YRQQwEa4l4pAzIYoaQBmEybGxpnGfZ9Fu9WTqTk8WvyTXSVJhMkxeK5vox0S2xi0skHUnjrPF1gbOBdjGnzFaM8sDh0Yi1r+jlBG0OEm0oJHKxEJIQoekd684ibUgIKiCH+3bz24RbzQDbon7T3Kb3Ity6u+QgsBUxbCLgb9/k2/Vy4/Cz2QeH339o/n0IZCLpYoRWqMwgjEZmGcoYkIrQ92x48AmsSfeLEGmyE0IAdVMEpZ9y0xRtXsFtU4hNnRukwBPpfJqy7O1NObz/gJ07dzh4cI/9yYhJkVF5x6t39jjamVBqhbMWbz1Cqa3uychNgF9KXr9eONrW8vDpGXcOJkymFd/6ra9iO48Ikq4PrFY1wvUY2E5tg0wWzpI0VYs+sDed8vYbrxN9xPaODx5+gpIKIzV62AOEFIghiNW5yMtHzxIwIQWz/TsYpRLo5W8IWXVTU69WNPMFq2aFj4KIptvsWUIMtYZjfzbhT37/t1FKk2cZznU4J8mLkq994R1enp7zo5/9DBs8OkYyIZEbMEOE5NooJFFrIgnEqZs1+86Sa8VsOuPxp49Yr5ukuZpOaXvHo0eP+fjhIw6mM/Sbbw0XLwDJPn5rUDN8CJXy6bSIQwGdDBz6tmaxmCc9bwQvJFINjnQhYJQgn46ZTaYQPKvrc7IsT2smL/AhZbToXG8bFSUFRiYqNoA2WaIQxogfmmdlMoTSRKFwPpBnOUUuKMsRymh8COzMZpRFQQwBY3LKqkIbA1qh/EDpH3KBNiCLC4lqWDcNpcnItE4TIlJhnxtD13Z0Xcu6TmYvSimW9Zrzy0vOL84RRQGkvb2zCVx3IdBH6Ae6rU67yWY32AItMs1abtU3N/++7eC1Bee4OYc2e22ild3su4KIuKWPCwKiTECgjkkt4WWSIUR5832f1+Nzb1TK0YwNdzx1cjcFR5JGR0AiVA5mhNeG0/k1i8U5Tz/5ENtZrPPUTnJ455gv3X+FJ+//mj3RkV18wCdPPuH6esH59YLLZU/XOfrece9gl0opsihorpb0nWfV9qwbT28DhCEga1P4SJVCqfp++9o3LF4xHKLeh23onxIbkSl455JfektKfSfD25BGjxJmhzu0jUUYQTHJee2NB0ynUybjKf/4H/4T6qahMBVN3XJ1Pefd999lXFZkyjCppiido/KS/HCfpy8eEXzPrCoIK8dqWfPk46d83HyCUYqdyZRyNCIIwappaYIEVXB0dw9ZgcogK2Ay22E63eH+yRv86F/9OS+ePE/i+65PPFqhMcNIvsxkQnXdwO3NNMX+jLd/+zssTk9ZXVwyv54PhY1BlUXKU/GR0DQsr2tijGR5xmg8QmnFel1TjSrKomQ62WE+XyTrvy6hmXIojmBzFqfSdQu93XpsC77/mMfmoB78wSUSJTQCmRCR4dqPRxX65A537sDFfM3Z5YKPT88TbcOopMEYkIiqGrFer+n7Hm97tEy89cePHnN6+pKLs5dJ/qR1srpU9YD1i22ug1Y7VMU3WLkrxOU5T85+wmQ8Zm9vnzv3vowxOVJkLBcPibqAbEI2fo2wzlk3GjkeU/zuNxl/97eo/uAd2g9+TffLn2BfPEwjZ1Gj51fUnzacP73m8Lu/jTnaYd3MWb84xX/6kvib54wm+4xee8Dut96ha3y6RqIglDnedfhugadHqITwRwwxeKJwMBByNCtoT5Pdpdzh4VJxVvesVg251mhtaK0j1ymh2Qu/3TvSdd7K/9I84jZUMxRXUgpMZpjISRJXhoAKgwAwQgyBMs8p8pwylKzqNcH7NPHceLPGTfH22cNmuVrR9Q217zgPPadZy3L0/6Xuz54ty/L7Puyzhj2d4c45Z2VmdU09AugmGiBBGhBAUEFRDIohhULhIey/xHbYEX5x2O8KP9EORvjBEbREcRBNmSRIDGoAPXd1dY1ZlePNO555T2vww2/tc28VAJohlR54OrIrx3vP2XvttX6/7+879OS7FXZT4tuepj0jc2LDjI5pcmEICK8cJaCF+NUnZrAW6qIhIebpUxpRH2MyMDh0cETj6UKg8RkqK9CFQZcgGjUAQ14aBksxpZS4OKVGLOokoFUMTsSJD3D1DGiTBNRDs6eFAhu82G8ORYbWhkxriA7tI9Vkgi0Lgla0TU+MiszkaBXwSrPuA+WqQaEoxhXGZBjtsMqToudl/afb6gfK2XAzhknaUGTH63uDrIqhst1SoJSg+Gq4HgMAktyuNv2aF7VnPVc8n23I1SXt7ktciLIHKYd3Pdoopgc7NGqEV4oNgdv3b9Bcrjh/+gvGu1PKasRoPGFVf4RBcWvHQFYQYsfCLaF4DVsdUE7v0+Lx0aO1ByPTlJdnl1ysGsYhiilLW6OjXJvo1TW6azJ9iKTw2eH6XO2MLspjowsrOSqA70WHGYIAJ/9O2yJC2cmynNIGbDD4VhOMBmNEm2JyAoq2E2vwEANWi3WxTTS70HvQjqyUFO4sy+hsuzXbMFqaMuVDsqsfqH4KZS0xBC7OLrhx9wFH9+7zrd/8LYrJDllRMspyRlYxyTVvHe5wOMoZG8Xi8hITLSqztGmy60NAO8XBaMK0mLA/mfJqtuBsueK9zz7ldDbh1v4u3/nl77JaLFnM5hy/esVyaRgXGdNRhfeSB9f2HSrIxHLZOpZdz7Ltia3j5sERRVYyGY04fvGUs1cv2J1W5GYMWZW0nB2ojqOtvS5E14lbnbagjUxjo+f04pLjs0uOLy5ZrxaEqORZT/qGECOhd+S5paxyHt0+lOc2RDabJW7jaXrH3/xrf4VMwdMXT/n9935OVfSMDsfb+qZxPeO9KaPJLjt7h3z6+GN8s6av19zZn3LnYI/96ZTz03MuLy7BR6qiwoeGtu342fsfc+Pwhugu+0Y0jsiUQkroQNuK5XMIMQE8AR0iGTJ58M2G5eySul5TTsbUfUfXeuq2ZVTkWC0mN03booMn02mKrCHTGteJ66ZXbPcvFaTBVFFyimT/guB7WcvaUEx3xFgrTSbKsgQibbvGbaRZ73tPbm3ShynWqxXOebrgKHKZ0iz7Lk2kRZfa+Z6m79m4hmggOM3xYkZb12gFRVmwrls2mw2z2ZzNjQ0xeF6cnnJ+OWO1WrOT56ggYa1diHQ+0IdIhzQqPka0jvTR4LcBKMMmiQAVQazqByOXCFuL+AGTlWMg/XlITUuqdYXirZIeJibKbZQcPa0IRmFVSoSOgd3RCGPFiOrLfn3pjUrfO7YcNyW+7dbI2G9wHDE6A2Rx9cGz3HQsmgWfPn3KZLrL/uEtxkGhnKc5e8WNPFLUazazU16dXXCxXHOxrLGmpCgtVRHZKy0eqJ3c1NoFau8lOTeKKCkS0nQlbs0dB6RKm6RJQQ5Ln6gOw4Yy9K1KqzRC1NsbXNcNTbOhrGTSsX9zh5PTM7q2ZbGe4+JtggpJWHwlNJzsjJmoMXtqh+CEb13onPn6gs18Rr+Y891vfgul4PTVS9arlWg+ipLl+YImRFQwrFuPzjJUnuO0Jsst+3duUkwMUXvaZk6WFTRNz09/8lOOX75is95QFSXWWNERdW5LbTNaDgqfBGGjyS67Nw65/eg+0ff0jSArxlqyImd6sEtAJhB18GjvCc7herFpLvKCqhqn0aqhbXuWy5UgskkvsMVGB8oXQ3F6hQJeian/3V/XJyl/zh9uBc/aaLIsw5iMpulYbTb4EKhGI0ZVQV13dNHQq4y9Gwsm44rd/R2q0RitDb73VNVYpmVdT9c01K1juWl4+uIY1/cUox2KwmxRNq1zrLYinNPiWGWNIS8MhD2iu4XqDiFzdCHSzM+gHJGVY8mlwOPdijB7gsrGqHIHn+2CA7SmfPQmdnef4v4jNj/5Af35C9rzZ+THF8S6ZxwjBT2q3eAuPOHpmvCiwy9h8ltfJf/6Q/oyQ616KfQUhNgS4wbCGp0NiGEkRnFgiSGQG4PBYVhxvp6ziQWrasqid6zbDt829E2H771MQvIscXLtVk8UhwnH1WL44k+kLk3ULeccMU3w8jxDZ2ZL+/NeJoKdc2jEXjK3WSpg00g7FX5aG5x39MmeEiJVVXD/q6+zoMOFwKc/f0KPI6perBulRwE/2PqyHaeDujap4wrwGI6OmFZ64uyjwEQvxVwQq16bplPRN5QKxsaSEcm1ITdZajbS99ZpohQDGMldUgP1K9Hq9HAYpffnvRR0IQRUoib5yHb/U9duQkzv1RhDXhSCVBqbDnu5b6YoyMqCrCqwMVBpzdSK65eJcZtIPnx2uV4B4lVbSkz+ZQlhHyYtV1Cguv4bWzH59rlWwq/WWpBPozRWifkBGEKQ6z3OLbdHFUaneUwEyVYWMXvQ4v4j06qcqAx9ENqGyUu0LrA6ojXkmaHpMpoOlq2lzMdkqpIJVVpLgxhEabA2R2cl9KJDkWkLMqEyFrQiC9CF4d+yNYCI18xHQFzNtBExb69kLzfGXE1LYtzuhdc1S9efqmHvVShsbsl1iXGKZlOn6RvkWSqoUahksaqQ76W3oxOZrpnhGUOE1cZaYTt0iqaumc/mLJbrLSKtlTRD3arHtY6bN+/z6Jvf4uajh6hqJO+yd2gMRimsFwc33fWSR5bCM4WGKVPbqCw2GrwKRO2ZVBavJhRVhh1l+NZxfrniD//wB1S5pcg0QcNF3XGyrLFxTt+39H1P61p00tCs+o5N39P0jk0baPsr0O3W3h53Rzm3dke8vFjw7PyS3hhsjOJ8N7j9Gc2kyFPjEfDpupVFycV8ybOXr/jwk8+IrhGQRlkmI3EZtZmhLEpMVmDzCte7q+dIWSlwe0c+sbx2/zZ/9bvf4U8/+BCclyyRzBAxeCfwrEGRRfjNb/4yBk8MLXcePeTBvTvQd1yen7OazzHBcffGEauuYxMCjQvMVzUXsyW3xlaykyCBTUJPevuN15nVLc8vl5SFIdeaTGs2a4c1hqooODl+yWefTvn0k8eMJlMwVqZWfcCoiFEaFxLYnbJVVAjEriOkyYY1WrRU6npmjdQQmc2IWJkga2k8rjG1BTRRkeBF9N+0nTQkvUy+AFwvmSo+Rtn7jAXEuXQ6GVMUBbbICUClNV/9yleQdyx7rMoLrFJYpcjzHIAjmzEejYgx8OrinE3fSp0YRbeJMmJagjQMIZ1pEbZBkIOZCYkiGgfwK+2J25BHJbPMIUxXdtirfSSq69OVtN+rYeuJCdjSLENgHiIXIdL0cuYapRhboV6rEPiyX196oyKopowkh/E+WoGVgVRUEWwlPErXb/niXb1hNp+TVxPy0Zhx2xN9Rz+/4NA6XLtmeX7KxXzFxaZl3vQcTMcU1lIZzTjX9D7iXBBhVQi0QX4eldDLhhGz3nIMBnFrTEVi4qPGIIc36ZDUKS05fcaBx6212Mx1fU/TbNBml9HEsrO/k8a1PatFTdu3NF2LaZsEfEoxsb83pRpXlDslZ6fn+M6TBcvZ5Uvq1ZJ6NuPhrV9HG8Pi7JwVUpDs7Ey5PLmgqVs264ZQ99iyYHpUoqxFFznZuGC0UwGOEFqIok346P3H1JdLVIiMxjuYTBw7NnEj4z6l0UqLRWw63PKioBpVZHmGyQR5jSGSWUFzRrsTOufpuw5tLdpogr9y9DLasDPdw2QZMUY26xmbupFrm6gr10joW07/VY9xDVLd/k4qs65YDVd/d9vX/Fvami06myYqqfjSxtB0HfPFCrRiXGaUeYUPK8qgqKJmsrfLqCgoypFQb9LmkQ1++d6z2Ww4ny15dT7jxckZZVEwGY9R1qK0WM9qk/i12sgPZcS60BbEWBDMBJTFqA1tWHFxdk41WjGaTqj2b0LURN9B20A+BeUJNiPqnKgyyv2b2L0jsruPaL3BPX6fdlMT50ts7ymswfY1caNwriE8WxEueqIqqb72EP3wFr1R2LQbBhOJoSGGBmKDVuPkrBUg9ttraQmY2BHdnIv1krVSdEXF2i1oe4fqO/q6xXc9JqH4JrOEpCH5wq1Oa+G6jeIWONpOToIXYb5K4avXHWPEEtXTdd2W2pRZm4rfK26+7MWiBRgofEpFisJy994tbp6dcnZ+icXjVYdWDqvUle9WUEOle61RSQXgdk3qodzfrmuV6Dlbf6Y4nD4RqxUmpvSm0JMpRZl4wZnWkk0SvKTCaxFURiUTHqWv0DGZEqdGRSXROQNKL9/Le9HJKBU/dwhu3+/wrCkttFObS3OZpjbyvaNMWYsSW5bYZkOhDZWxqUm5umdf/CEN3bWDMxEbpFm5BlIMbzxe3b/h94c/GpDCrTeaGqblRr5HFA1RmVkOR0XKQ0p25uqKdkXwct2UwaPwSG6TFAIapQtslv6dho6MJlpqbzFqjFaFDEY+t56FQmdthrYF+H7bqAiFMUNbobEYL3uFSjkYepgEqzRhTNfBWtm7DBqXvpcxhki4Nkr7C17Xe7508Yy15JmAKs6LY5RBpfstxZe2ElKKkinhwDggNUnWiAg4vd1kF5sJaNA0rBdLVss15nqSvRJr1xDg5p373P3KGxw+esCq6QkuEF0AbVDeYEIgi0gYcQyJ2iONmVWgBBZFaOgepTx5rtgxBUWZoaqcs9MZ54sZP//FT7l1Y4+bR3vsHu2z9p513eHrmq5t6Po2TVQEfl+5hs71dL2ThhZS/prjxnTKndEhb93Y5WfxUxanF6xQZEpRILqvXimihp1JRdf3bBqh0WpjyXNYLNcyVXl1yrhIxWXUGAV5zFGmwGQZJi/QWUHfuzRVjKDFdTS4gNKBG4f7/Mo3v87BZMp609K7Dp1bVDDpWVZiIVw3vPPOVznYnTCe5PhRyd7+HsH1zC4vaTcbdqqCe7eOmLc9J+sNLsC66ZgtV9we70pRr67IfFpHXrt/j+PZioOPnmJih1VQWENbbzDGUBYFFxdnPHtS8cH7H/Dao9fJyxIXoTBSBGdEvJdYhdyKXTUhEvse40MS78uudmUgkn7EpCFRUlNok4BmrbdT2ug9KsoUfBC9uxRG6r1Qhbu2pe170T3lmew3ieZY5AWjqiIaLfkuSnOwd4BzMpW5nM+xmVDRDIosy1DaYIqKPM9pmpqL+ZzO9UnjuIVwUqMy0LyEQihlTrrOMVHnUz0TP7fZbK1QPiegH1qS7bT62r8SwEZtmV+SaSd05qgM6xCZB8/MB3oSwKoNPu3R6svvU778RsXHBkIHrqNdr9nMLljNLmjmcxQBbRXjw7scPzmjOzvnxuhXKfMK9ipYrcBafLvi9rQitgG/XtNcnPLqxTHPPzvmPFQ4Kmxe0vdBRsBVhaXFRU8MHo+iDZG190SdywarwORJ4Kqk0Fap2ZAxqBQyLo3xApE+SJE+nezg2p6+7+iaOh2ocrBmRYk2lqraYTFvcG6GyjR7kx0m5YhxWXH26pyTFxf0vcI1keAjpxfH/OZf/w3e+cbbfPVX3uEf/jf/lKePn/Pq03OMKmg3jvd//gEaQUwfP33GaL9i/8Y+3/2dX+Xh269z+uKM937wPpenF2RFwdHeAfeODqm7hj/+oz/gtYcPODzY5/6d23z0i484P7lgdnLBdDQSMX2I5OMRVitiYenXG3rn6fouTcQU46rCzRa8uJzxkz/6Y/KiEC61D9za32PvcB87Lnj64gWrxZLMR1AyoeidY7Va4p2nLEdkQTaGvpVDJwQZX169tqXdFyYhnz/pBzecAZf+Yjvy7zp12WqolJGNPYjQeLGuObm4xGYGxQRrR/ggqbGruqaNiuXFJacnp9zZn/LG6w+5d+c2Tz76iNOzM85OX2Fsxk/f/5if/uJjxnuHZFmWtFOO6WTEzs6Y6XTKfLHg8uKCoihli40arS0Oh4sd1oy4c3TEa0f3+NH3/pCxuuDWpOWv/+VfY+fwFuXeTbLdMa67pLs8xq+foopDGN3Bn0+JJiNmGUd/7bfof+Xb1K9+m8Uf/nP880/Qzz7AvXhMUY6pqn0WP/wUbh4y/p2/RPH1B8Qyp71YUCNS99w7XHMGoQcUKpSAJSqH90s5JHSBzRz96ozLZz/j3dOGOsspbKRJNVPeRebnF4RVTVkUogWwhmgsUYXt87U9aNB/Roc09LVDg2FQSbwOXddBDibpU4ZGpHc9JrPbnIhtQ5uQI5m+CCZrtGVUjsW5yPcslpfMlpes6hX5JCMkwa6uDMoFogcnpOHt2g3bwnewlR2OHvl/Y/MU4gU+KhxiT2pil9CuIC4/3qFdpFQVWejQnhTClaa6weGdxmnJRjBaEOfh2RgunU4c5EETFrdFqeRDdM7jwmABpbZ0sEHrMdACtFJpWiFNhQsBWxQErYnGo7ICshLyikxH7HKFjqI7Gn4QUiaF3vZk6RW5/qxvXwm8uHq4hwrjaqlsZ0SpEYsx4PGYtFb6GOmipkVjlSJojTWGcS5uYBqHocVGJ8W4KXChwwdN7w0vTi5QvWf35n0Od8fkxQRT7mNDw2a95vjknHk7Jh/d5PabX4NMrnWIa1QUWinRQPQSYjcq0VlB6Gq6rseWljLLmRQTtI50IdKqQBN7dAzYTG2ng71PhUYA3/fSeMdIVzcEl9ZwZiUIEsD/xcDN9d01pma9KAvGlSF2Ghc8VmVoq8nzHJWSxPMQU3CpT4YOUrSgNV0IOOfwVm2blDzLsHmGDh7X93RNTVfXjIs8NYdBssWKjNHhPt/8D36HbDKhayOxD4laGkGZFGCn6IOTDJzteg9oIraquGw869YzMprCagwG0zlyFzFRke3sEjrPfDHnH/3jf8B0NOHWrdv8nf/8P+f2rSNeuzummc1w3ondcN+xXq7YLDfkSwm8bPGsY4MpcrCGl6tTbhw+5NffeYv/5W//BhePP+XJe+/x42dPWa56FhvHzy7nPG2WnPQ1rz+8w+V8wfNXZzS9QVlNpi0Xl5f0vWO6s8O33riP95FN0zEaj5PJg8FkFVFnOJVhQsCQrLij1AxKR85nZ1Tjkl//1e/wn/3N/5gfvvsuP/r5z9jZP8AYy954j7IouZxd8vP33uX2SPHO6w/5xuFbLNsGX2/wdc2Tx58wLjL+o//s73D/weu89+Q5P/3sKSov8WiW6zWKKSZRIwIyZTTWsj+dcLi3x/7eAbsT2fO6pma+WGF9ZJJZlssl7/70p/zkxz9hsrfPjTv3+NZ3f42/8qvfYXdS4ZqaupHQ57LIMHkOCpquY2rEYc5giD6kzJyA1ZZMa/I8aURioO36BKBD1ND3PlFWs5R3krO7f8BkR54hay2u90kCEASYTI58w1lxsLtDlgxIgndS20THcjaXvJhB72zkh2OwulbUdc1iuWS9XnJ6cUFAMRpP2JlMyHXSQAJxGPwjk2JgC8IQ4zZZntR8Daym6MXUwsfPtyLb/LBUa13lz8n/BSXTm4EFpRNDKijDuYfjpud543h08wYORethdrkhL8aU1ejP3Wf+x7y+/MDHvpXws+gxJtL6Fr+ec/LJL0QUVWScn5zz4nTF5cUG1c/xQdHXNZPJLllmqEpLEXoW6xXzyxNOTl+xmK/oo4zdg83RWSV0q97j+g4zLXHRMXM157Vn7eTjZZnFagn+wSShbojkVZnsMTXrzZrO9fS9IDMRaWF1NBidYYpCRo1OJa6zwlpNVuWYwpJlGUVe0NQNyiA+4FHS4m8d3uDV6Qld09G0gcM7NyXk0ERevjrGKcer+RnHLyRzRFnF+HAf73tm85pXF3N0ltFqS7NoacOcqnxOXztc22MKy3h/ilaKzXxOuTvGGMPRnTugDevNhhcvX7BZrQjeUWU5pKItBnG/UNqgQ8IiEn1noO5FoJiOmVQF+4/u061ruvWG5aqhbmqKpuC16iazLMNpTd3VCXkzVLrA5jlkljaI4YFKiEBIIlCFurIXVUNh9WcgSK7whev/PzQr10aW27/9Zw9l9YX/fu7r6FR4Rc+4Kjg82BPfd63p+p6T80uenFzy/GzBWeN49vQzLs9e8ZW7N7hz5zbGWj757DOeP3vK2fkpDx88lHA3Ip3rxTJRaRnpek/0Ht+LDXWV52RWxuaSGJ3ho8F5TVCatms5nV9id+7j1R7zoubDyzUH7iV76zn7h/fJiwnF7g5Z8ES9JvpXGBtAjUCN0DFHVRP0vYrsN/8W4fgzePwu8YOfsDk5p3vvI+KRpfzGEdPfeBOdC/c0N0ocVkLAuEZCCHUGWSnFnFKgAtZKIJqyGa9efMDZ+Ss+fTnDHbwN+RHLVqYaOgYKdSW2NVqjfRDzhjIjT+N7FT9/n3yIV/cujdEEKRfwoShL+rZNuSOBrWtYFA1GrjRjkiOL68n0YIt6hVAL1VAOFaXAGqEuiLTekBuDVVDPN7gk0DYximlC8BBS4NjwFgeq1TZINK225MQSrh8QWsMgzozDWF4mO1n6Y0XYUpiGZkh40Sp9ryA6maTxCd4nCoQYlTAMIdJ7CIlbN0wWZagQcN4luoMg9iH4hFKKdgcv6H5RljIlTW5r4mblicagjE502gKnLZugaZQ0CT1I8rIxoqHxV85QglJ+7nJtf39AMKXxFJOCgboZr1PUomi+hPOQKGwyW6CNgQopTIw2WGvJ8lzQWR9TTyap0j4Emr5PX9VwcrqkXs9xm0v2p2usvUTpU4zR1HXD2fmC3Zv7HO3sMtk7oG4WhGFaYAThVwnN9Yma412PjYHcWtpocEHRBYcBep/CNINPKK+ibbtkpS7NpNJCr277RiaLThp9pSLRqKtm/lqTMhjcSAHkpZhJ0zOjdXLnNASlQVvKyQ4mzySc0GQipkejXE/vA87DzmRMVeSYzNIOSCxgY6QwhsKaJIwW2o8yAwSRmh2j8EFRb1pGN+4wvXOXfG8HFxCQ0HtMCua1ShG9ZIMYzTaEcXC7S6sZaxRlpsi1PMeD1WpMznxWw8goprnl5t074KWAM13D/PiY1QlMqwpZRJ71bIbRiv2dipv7E3RMLm0osklFzAxmvebNG0fcGo343vd/yvHTpxw/e8pbN3cZHZTgDe/+/h8xyQzl/iHfeeMRv3j8lGfPX7Gqe3AO4xzKOS4uZ3zw2TO+9pWHjMY540mFDwLIaMQVToUA2l17toEYthRaH6LQ5ULHN7/2Jptmw7OXz1GZYTIZc7C3z/HpGRCpJlPee/qUV/NLPnjyGWWRc/vWTZazC3zfEq1ms6n5+fu/4OMXr1jOZuSTKX1Ts+l7XDTEKPt51DHZ6EbK3FBlhjwGQrKJ77xP1NIAznOwu4vJMrKyYLVpKDPD4ajCBs/s9JSf/+zH/NLXv8H+7i5FWbGoG1xwKB1wxpArgzE5io4YxV1Pkq7kemg1TNpSUxvlOTfJgc5GzeAPKWtIzE3ETf1qDqEJEPV2Ait7rmhhhom41jKR0AqMlgk1KjVuSr5epgM2h3E5pa5rXp1e8PTFMd57xlUpzIzoRU8ybIaRZDB+7XWdZfKF6ch2R4zDv0WmwlGcFkm6MK1M2iqvKUKvBVwNXyuNngBFaTN2C4uymlXdMmt69vdvcPPoNkcHN/myX196o2LaGkVAxYCOHhscxrXUF68IRmPKgrP+kotZw3ztCP0S32u6TUNVjigzxSiLkpXSLFnNzzm/uJBkUW1kYzWaYHN6t6HWjqZTdGrEOgQuWph3gSYotLbo1CkXuZWDP8gGl+f5dsG6pKfw3iUdiSw0k24ixmypDZJfF1G5Jq9ydK4pykxE14Wm74XfHpxHjxXV3j7Ki7jQdz27B3t472jaNafnZ8yWcx4/f0Zbd/heNtBiMqZrW5aXNYu6I0MT84L1YkHbOGzvKfOCruvRVjPZnaBCpG9qbJVhq5K9w0O6uqZpWpr1nKauiT5Q5LkcfMlKNNTiQpPZHBUS/WQYIyo54IvxiMnBHgf3bnPx7CVLFCtjqJuGfLMmI1IZQ60NS+dQShzDMpOh8xydWdrgyILDoESvA5+jxAxOPlcPyYDuye/J688irVeTlyt+9dUfDl/7L56yXOdtyyg4UFYFe+ywXm8wGpwLzFcrTi5mvDibUauMz14e89mnH3F2OaPpZG2enF9wcnHJ5WzB3XsRm+dMd3fQecUoKxjlGYqc0ahkVJQUWYZV8tAP1t3GGoy1qaD2dEHsPlvXsXPjAV619GrD880xG7egqedEO2aylzOdHKK7NTHW+LajVxZwUig1XpqL8ZTi7W8RbtzA70xoTi6pX6xZPr2geOMG+q0b2Hfu4BTJrF10S5Ka3BGiQpkMnVVECQgSnQdGkE5jOD0/5fnZBZ/M4e6DB+hsh81CJgcasAkiCgkmMkCuFVWepQbi+q1ObNpto5IcsoZfpTRum2X0XUuIQYTt8WrdCE0TlC7YbDYEF/A2CO1QXf9mVweCQg4ZoxCLSZ2RW4tVinbZMHgt2SDF/SBeJI3MjVZXzdWWCjE0IWwpV0NjEwf94TAlSAdrHCyLpSsTapDSXLnkKRGh69RwR1LwqVDY0CmNZNvMyLGzTSqOMTmrsZ20hCgONdvART+kTksgnIpSMBZ5gU0Bbtokp5+gicaA0an5zwjK0kZFi6HH4FBYbeVE13yOmrR9Trcjs88/r0OjIm9ZbwvtmD7PkKk5ZLRwTUgalMJFoUBok6yYjcHmuXwNL/cPhNLrul50B0Hu7cXFmsvZmsVsyd5E9jiFuCv1fWSxDoxuTlD5VKzi+3V6b6RiBYagTqkfPdE7VGpUYlAS8hhkCtL5SD/oh1LR1HWdTCpcSG6aQh9pu47gA8rDYH00NB6fn1YljaSWvAsXQ2qK5U910soJSKVR2lKMJwKiWIvSFpW0ZFEbXGpyRlVFbg1YTZMmd1oprBKKYm4MXjmsVls9jVai7VLbZgO6zrM7nbJ38wamKmnXDX3vxEnO6q2LnTSWYUvplr0lxSKk9Z1p0FZoQyrtBzrK+8JI4GapoTKa/Rs3qVcSCGt9x3x2wXq95uGD+xilCN5zenzM7s6E/b0ddqYTKpNRGcs4q7CTipBrnt4+4rW9A26MR3zvBz/hk+fPeHV2wldv/TL39nfZKyb0bUM2ztnfnfLmrVtcns3IUagY5DzIDEbnrNcb3v/0Keu2ZzodsTspWCybNIFUYhiR3AYH37fBL25o2mNQeALedzy8f5dXZ2fcPDpisV4yLnMOD3Z4cXyMUprJdIdnZ+e8OD3ho8eaOwe7LOYzNMnxD0VTdzw+fsmz03Oa9Zp+taKrN2y6Fp/wdzUAAzHifKAqcsZlzigzdC7gUjDu1lreeyaTPcaTCZP9Pc7OLzja3+X+0QE5cHl5wU9//EN+5e03mRQ5RhvO6xYXHdVYnMq8AtJETyGO8VbJXmm0wprUPMQrX8WoYmo0xWbeaNmzAnG7/+gE4Og0RdFqOJP0drMyIOYQ4g8v6zmCUYZgBDjwqXHRSollshIa/3i8wyeLJWcXM07OL4kmpywLOfPkkU/Tj+GcGvZEdW0Mmv4S1+uhq1dMYEVQSn6kSayAfQKcoK7tnQlCkH0kpiZHY6LsLRoojWWsxCRr4xyztuF2NWJvb59bN279mffwP/b1pTcq60/e23aAWaaZRM/0cJ/yjdeJXUP0Pet5CwTWrme5qZnmBaXWKN3RrTa8Ws6ZvXrGYn7JbD5LI2URuR0cTFh4w0XnuFjWzExkUWs+Pl+x6AJnm8DaQ54XTEYjfFpzSikqm6ONCJQWyyVt19F0LXXbblGnGKMYx6CwNiOGyHyxInQ1ynmsMUIxS71tUWUoC3W/FtRcG7Qqmc1mLM5XvHp6IpOLGMEHousZjSve+OpbfPyLD2jPZ5iUX2CMJc9y1psVQSkmR/tkR7vko4oiKNysZnV2wY9+8gG7+xOyIkeXOfcePCDPMvrFhvlmQ72qMSGN5F1Pu9nQLWtUgLIYU+xMgch6uabdSHK8i22ieiiyIiMmjr73gdFkwu7+PtVoTFO3rFZrsqJg3bTUpy3+Bz9iMt5hlFUoltRtiyIyrUbiKV/kXCwuac2aLPGIXS8TLHHaGYo5sa0eHix5fX5Ocg03+sKfDa/4F/z+F15qgAqGh1+KQtdL7onNS0bjHbp6Tb1ZMd3Z5dZtSyh3ebHYYKsxIS/xozF11Kxqx/23fonD+1+h7zb4esV37t7nr/72X4e8IleKAkVV2ST2g+CDILqZXO+tlaNJViReUYeA61r6vsWOC+btmtP1JadPf8G6XXC8XvLD988Zj3r2djpu7e3gXUvTrmj8MSobYYspRT6WRGAt3HI7yskP94nf/DZttc+m3Gf3u2+yurPP2VLRb9rthmgRG0nXK6IXr3nbZMRcDvDQBnQ0Mk63HS/jLbrD+zx8dI/9249Y1i2vFk+YjkqCd7h2Q9e1eNdTWM3BzpjxeEQ2GmFAQv8+d5/jlYYk5Rgp4tYpzodA4zrqvkWhmJRCxxT72kjfdVvv90Gv4UNIWha2bibD9xu+f14YyiKnykuqfMK4mFJlI7q6xSa3Km+8iCq1xXuSvTlE78jyTNZiDGlaB33rt1OD0Dl8EEtHEwEj98YEJVa6GHT0wsFHYatddBbBbCRHAemNvHcC2Wtx2vEePOJ0qBRbrYpwm6815qm88Wm6IoLyoeTh85qDRJPMNJg8p8oM5agiryrysiI6j46WoANkmejUoqdzUVx3rKU2OZ2V9+FtLhc+CLdetE7SWAzvTaESMiv28VpJg2G0TJR8DOLClFDSAZGQayCM7MEARSGTOpvlBKNYx5Y+iM4kszlhsyEYjS4z7GQfGxWm9ei24+Lkgs8+/ozTVysW657FOqOsDhkVY6rRlL29A/YPj7j38BERaYqXizllPqbtOuazBcbKvYnBU03GgMH7SG41hbLkZY5fi+NlHyLOQ+sCbeuSNa1MS9xgQBIjVVlKsN2olPPIR6wyuK4TO93gt/lf16eT8doWObiIyR3XaaorGLIyBmM0xWQnPXsaskyAwiANn9LSvAQfkuZQABplJW/LaDGykfA/L9oco7Fao2MQhFYJ8u49kBXs7B2yf3iDtutxMeK0Ag95llHlGSFEiixjUmSUmZGJphd6SkDWsmpaRtZgtaZ3Pc7LdEFrKa6CilRVTqEN1it6b+hdwBjPtFK8/95j3n3vI5brX0IBTd3wL37v97hxeMDNm0cU++OtHfftvRt0vqN3HQ+rEQ9fP+CX3vgK/+C//f/wJx9+wI8/fczF8pK//au/zm9969t8utkQXcPNMsOuPQ+yit+4fQtnLG+88zbvfO1r/OhHP+bf/OCH/MN/8k/5zV/7JTL7Jjf37qPotxaw26b9GhlaHoCYJsSp6IwQo6csMl67d4e//N3v8gd/8IesZ3M+2axwoacqS/bLCXHdEKMXQ57bt3FG8d4H7zOajDk4PGLv4JAXP/oR57MFk8yyOnnF+fMdTl4d477xVXGGCy7tS57OdTx67S4hKj57+op/+f0f0/Q9u/u7WKvxWgCEpm5Q2pCNRvzNv/G7fPOdt/nrf/U3+OMf/JjH78/4xU9+yu7/5n/NwXjMR4+fsT4/Y2d3zLd/6Zd4dnxO09SctI7X791mZzRimueoIAYvOkbyTKNVxPe9UE+VaMEkQiBASpGPkKyE0xOhrzRzWokhk8QPSEMo69liMwFGWhe29WpRZuk5S0Wo2BqmSXcAa1H7d5i9/4SnL89xUVONx+jM8vzpc+5UBTG3SZ8iBiFb2kkAPzTmV4KWVCHJ55NbP4QmKbySvdgDzgdiMNsGftgbhjkn2/lQ3K6tmNaaDR4dDMFrTlctS6/os4LnZ6dczle8/+FH/B/53/25Zdf/0NeX3qjo2MuF04OXhKRe5lVB0BHfg9aePCsYV5ZRlqN9T7ta0Lct69WSxXwOzRp8oMxyGtdJymhZ4cZTLs7XvDw+p2k8tVFsvCCsfVS02lJVItozxog3eTpkQxD+Yu9blqtV4p5+3u5R1sJw1xNNw/VioZjsv0wKY2u6hjKWpNkLm8UK13r6LqRQNU0whhDEhaXIC169OCYvc6qdsQjUrcV1Dt8Lb9d3Pb7ryKqKncN9dJmLZ3rb49YbQtOSWYPVFoNBOVicSzPXb2oCgqKqCF3bQgwUWUYfW4L3tG1H1CTuvkoBnKLRYRit57mkzntPCJGTZy+4PDvH5Bmb+QLXdJgkCo8EFvM1XRu3HuFaSaPhYmSz2aC6lr6uWdGgEaB+PJnKgWUMg9ZkK/b6/9tnfCGxbHvnrl7x2v8PX3/4kyiCFIYpjKCPQnHJ8oyzyxknF3MJirKazCjGoxGjjSPTGz777DGda9k52OXxs6eoGPj0s8+4vFwT+gZ8x8HIUnc9eiVBpJnW5FqLJkfmznK4aqHIqDAg7REfZaqkoghjY/QQPSvVcVbPebE4Yz0/RYVeHKKKDOIK5V9y7+iIEBxttxHLUmOxWYExSaiukGY6N/LvFmv0ukYfTlCzJWw2xCcvic4ncH8oAgMhOFznk2BVs3uwR/A96+VSCnej0blltVyAyrEFTM7WFEXBaFzhGkcfejbNCqUgT5POyXRMVRZ0xK2AceDQAldWikphrCH4eDVuU4Kqt23HpmnRSlFkJXkcEOxhSiBFnqDJQ+FEyn5I30k65C2iVlYVZVnR954/+d4P+KOf/JiPHz9JNo7yHgXAFkqjNQmJVhBiwAy/jimXKdGABrQupCJNaFViDQ5gtBe6WRTr6sHow1i9XaspjpUQxR421Spom8meNUxFt334AJelKVOq6EMM6K0N7qDhG0Sacj10lm0bFdDo5CLdtR3eCc3uuuBTo0QoajNwkldlswytLUoP4m51rTEJqRFNo6F0fgwTIMVVw8QwCdoii7I+jTHSsMW0h+tBWCuUOq1EzFxlhkJrtFe45AI3KkZokxECtKuWdtMk9oeirKaYvKCYTlBVRUZgWuTs7B8xnkwY7e4wyidkxRjvI69OXrFaLVnMLnjttfvkWb6lG/Z9R9us2btzF7Jc7h+A1tg8x7YBHYI4QNp0L7SsAZ+AlKH4HBr22Hf0K0fXJ/qPuqLukgr3gb9+JTC+ssrm2lRbaxEaG2vEWSrPMERMlqXwRr3VLW2PSOEk0veOzORYZE/3Wl3tZ8ELWyE1WCpGdLKL9r6XLI2uw/tAVlWUO1PKyVS0Bt4LO0PL+0NFfHBkJmOUWzKtUj4aYq9vhnJLo1K0gAqBwfDch4genCYDoA0+y3B5Rj6dsFsajg732JmOqUY5B/s7hCBaBWUtfYBN63Drjq7f0LmeZy/O6eoNvm0wrz1k+fAhWab5O3/7P+Sb3/w6T5++4Nb+hN1qxOPZOZfNGh0yRk1Lbi1fe/NN3nz0kNnlJTsH++xWBW/fu8eT5895f3eHqijEWdJDTAXo55vPtCbU9d/5PGSntKbrOvIs487tW7gQWbc9yjv2jo7oO89qNqdtW8aTitv3b/M7v/vX2SwX/PzHP8avV9g84+DwQJgYzpMZw7quaeo1q+UCH4SoJOe3GFcoZWViUua889Yjvv/+h/SLJV3fb99zjLCpGwFplGE6HrMzmVAWmdD/V2tiNPz43V9wMVtB0Ny/e4ubN/a5dbAPbeTZ8Ql/8MMf8NN3c0Zlyb39QyaZJreijcoLS5Fn7I7H6JQS37QdWZ4LsNHL86k0jMeT7TnUNA1lWWKs1Emrei2OkE4MG4zW5Fkm8E6UoOvZfMamrpnXLSYbQnSNgGVDuG4apTtd8rN33+PxZ08pq5HQQp3fGgMMszKhbcVE0RrqmZCYPmq7r29v/PZIG/7t8NuRIdx8aLrSeD/9qfxaXftan4d+5dzoY6T2gVprvBY3xdY7fNhQdy1f9uvLb1SGZGYtaaHDhzd5DtGn3IAea3NGJZRG45qGzfyCer1itVqxWi0ZG40hUliLVh06s+SFpc5Lun7F+fkCnZW0QbOJans4GWsp81wOdmNSsJv8udjNOTZdyyZZ7IoAyaQmVVQTAzAhbkagvBS2A21DW51SQ0kLRBODol43dHVH3wfycYXNc/Iyp16tIErnvZjNMbnF4amKgiLL6WzHernGd57Qi82qUYpqPBYUtnO41YZuvSF0HXmepUbMEj0sLxeEEHB9T1Xl2MxC19Iu12it2buxT1/0dLGj63siQQ4kJaN07FA0JbGsMWl8Czo4ZidnEjjkHKOyIs9y8jxHK0sInmbT0HdrrLWMx1NBSnygd462rqWg88L5jiHSeYgxpHuUPJNiEocOBepf2Kx88Q++0LCo66Kw4ViO2zXwuX+5/aeSlhxiIMtzLudLPvn0M2yWc7i/w/7OhKIosXpF7DtePH9CFx2T6ZiT8zNc23D88gXR5/hug3It+et3iXVDF+D56TlWawpjcaGXtRSuikspVkk89IAPMja2arDtVWgDx+2M49U5z5ZnRLykyxvLaG+HerNhOZvz2qoGAl3fCi1AK4z5/CcvUtEXlEIXFXlRMtod0yzXuLbDNQ06PbceoX8N05628fTJivP+/bt43zOfXZAZjbWGrMjp+4jCkKmWycUZt28c8a2332FWz+hcx6atMUaRZZYit4yqkizPaOt2a5WbxqDbVvOqAmW7KccB9YlCo2l6EUo675NZxtUKkUZ0aB4GWtM1f5Rhw4btdDXLCrI8p+8dP/3xz/nB93/C8+OT1MANImXNoK+y+or7z5ZCk6YUQ/DskBAf5aBQSRAPV+J4oZ2K25eKaS1ooQWC1PMq2X9eP2yEkqVFp5B8/bc++tdplumSXonPB02QuN/p5Jg26Ih0KpZ1agwJAtR0XS+0HOcld2igX6UiRRoTl4J1rThDCYGbwb502G63AMK1UzZseXFxa5QwNJ2pCt4CS1EhjkzpZDVpuqQIqCCNmdAsxR5VeRG+KhSFLVDW4iN0TcesWRPTfp2X0qhU0ynFdApFzhiY7h8wmowY7e5gY0ZQhtWy5tnT55ycnPDi2TO61rO3t8tkMqWu17RtzWazwKPB2gRKyBo0mTjfae+IScsnE6QoyE244qYPjcqQ8eXbRFlT4iSlBvpgunbbQkMq/Wt745aQKE+TutKobLOeFOgs2wr0lUk6m4HWmBrbQVisEz1xeHZjjMRwNQW67rypGGqkQN/1OO8Z7x+Qj8dko5HoGFLTZQ2SD6Ok8bEaCqux6moft4PTn4IQxS4/+nQt07ahY0B7QT5UalTIM3yZMy0NB9OKw/19ptMxVSU0XZ+0QjbLCQk1j3XPst6w3GzYrFva1Qqalnu24vj0jNlqwXd+5Zt848Ej6tMFZIH3nz7lhx9+yKoX56umdWQ249H9+xwd7PPuT39CFyPtfMGdgz3u3TjkztEhVV5gUu5bvDblHKYmQ9P/+UYlQtrFdWpsnOsxxnCwvyvunDbDFhkHNw6ZX8w5fvKSvu/Iil1u3rnFd3/913j59Bm/+PkH+LhEG8NkOtkW3NZaguvp25bNeiVTPAagZ3DWsvi+ocwtX3l4j73dCcumpu06WclJB9t1PV3fE0KQsEwj9MtX52ecXc5QOuejT5/Se3j9/gPu3b3J7ZuH7I5HdFXLC+f5+Xs/53SxIrcZb9y+z61d0dZOxiO8ipRlwf2bt8nznBACl8sl49EYrTVt21DXG4zW3Lx5Q4yTuo7FYsF0Z4csy3A+sNqscd6LvX2i+4bEDolB6tUXL59zenHBRy/PsJnUoVpbfBjiLiLKi1a1azpeXcxY1jV5UeKIeBdSBIbcz6018XCWpXMwxuEp/nwzMTz+w3Mx3JMhsX4rq49xe3ZElc6H7a/TVqquvu715eViFDMJGwlKGjEXEvD/74PrlzImqYnEIUAhfGXyAucCmxi4rAMhwG6usctXnDx7yvvvf0Ax3md3OuLhvRtkfctyuWY2r6WbTZvJpy8XnM4aiBnj8S5oTVCKzEjvoBXo3Mohk2VkmaVuGpbLFU3TSMigGyYC5kqECtdq4HTExSgHXZrYRBXpiOyWY3b2phzeOWS5WdJsGpaLNb6PoA2m1Ozc3OHw5hEPX3/ET37wQ5azBU1b88Y33sZ5z8nLl2QRRpMJNx/e59knT2hXG2h6cVtQhtnTYxrv6HtHs1nTr9cooKwKyskYqzSb9YZ6uUre3jk7uxPyIsNHz8VlQ2lL3njzEY7AfL7g3Z+8R9f2qCi8/q37T/rYEWl48FLsKKDMc4qYoVxI101E58EJJaMqJqAiWZ5xtL+Pdz1d13M+n9N1kl5fFgXBmsQRd2SjMdV0KpMqRQqo8wzkk4GW8m9Zadd+/mf/3uDcqbd388/5p9s/SDilVlSjMYvVio8++ZS2dzy4d4f7d29zdHTEyekp73/wARevnqGqjMnelDcf3uOtBw+4c3SD3/833+P9xx/y/Mln3D/6jymrEc57/vF/9V8l5LYEC9YYsSDVWmhGYaAGySamrWF3MuVo94BHjx6QmWRprFpUpTDZmP0bU8aZYpIpdvduslg1nJwvGE8q8sxQ5oqqyNB6EACmjStApzw6Sg4BWLyC3sBo14o97VaQng4dDSDC/roNrNY1/nIGU0NuLIf7txiPCso8Z1QUfPDklFXT0biGh+MxZqwZVwXPTo9Znp1RRM9+VVLkkBeGqLyIi32fxNFs0fCIZCB4DT46lk2LxmCVpjRS7CqVRvRpHO59+Nza0VpjorgEwbXpwp+3qhLC53ygbjrxzq9rPv7oCR/+4lPOLmc8vH1v2+hIuyQAR4xaUDmgyAtCmmyIqFImh30MuJRqn2VFKsZTuaikGDUkhCsAPorvPppclYSg6XwUtFKkkOTWEjIDyRo8KiOaxxTgJXbrMnkiRgmNi/Hzz36iJIRUcIqNsrz8gLAp0Xho15GZSNt1XFzOadcbdFUmSqNQmWwElCGvRth8BcrQ9Y5oIrbIMLYguBbvHUZlwoogmW3ESHQ9IYn25cC2+ER7yotiO5AZsnKUIqGeMkmyyTREBUcWLTo4XHDkNk9CcVBREbzQBpXRYDWdjkRfoHKL3SnRhaUwmsObR3x7OsUTcEbRdC2+i9QrRVSOerFk9vSCH330Pc7Oz7g4vuTk5Jy79+7wtXe+htKRssy4e/cumU2mGkqxaWpyG8iqgjEZK9UQFo2kwGstpgA+CBN0mJylqiSmhj4zNjWuwyTMbydCSg9r/lqPnwqSLcVvaHJBTGKsmHooLc1lVlbEvhfQ1cqEP0Rp1HWyFy+KgjIvsVlBH2K6d1fZLoXNiLmjMBqMZmcy4ujGISov6Ags50u6rufG7h5mPCEUBa2LMg2LgdxYMnVFQzXRkxNSyrlcTmNSDIESKlmWNDPCppB9wXU9NoVM2k6AvenhHtnRhLvTHb5+4wYPb99jdySZWL947z2ch6aRz992PWG5gmUHCnIFZVmgqgqAX8xP+C//6T/hv/79f8Vvv/NNvvXoEd94+IBb1ZjfP37Bv/j+n5KN9mU/ahxFZXFdx8unx/wv/vf/Jy4Wc8oy5//2f/jf8tqNI/7K17+ODoq2D2wG8DAmqqi+fpj9mY1sONVSwyCTyxAcfdfxy1//Ooe3bvC1X/kG33/6Pj/+wY85+ZNTKgqmkwkPHj5gujPlOM9Z9YG2D6w3NRfnZ0l7J0IMTcQ7x3qzoXUyHbPDM6tkd6xXG6y1vP3wHt/+xtug4Hs//Ck2TZ1RGpOJac3zZ094dfyS3emE0c4uf///9V/z4UefUEx2mR7d4LU33uC3/9pvcjQyWBOZz1d8/OQzPvjkY54+e8LPP3hM1znePbjBL7/zJjcO9tjd3eH3/vh7zOYLbu4dMp2UZLkFkxERXfFyuYIYyKxhf2dKV9eiBfMebS0hBObLBd/+znd4+513+Bt/43f55PFjPvjgA/7+3/t7nLw8ZlxV/M//i/+C6B3z+Zo//OHPWS7nwmxReruly74bUgMRGJcVo7LkcH8fjSELgUJlGFEXEgCHok9nY0DWuEf2Y3+9MRi6loEpkHAJL9sBQYneWsLME2NoCwxefYlhkvLF19WJN4jvEw07BqwOopX8t5Vt/wNf/xNMVPQWxWObNh7pW0/X9vRdTyTSece6D5yeXdD2PZPdCTdu3yRXEeN7Ql+T6chkXDJrNCermpcvLnm56Ni0kWo0Ig3DiCSql0o2xEUhE5IQ2Gw2rOuaVb3BJ1qHSkXhFonYbtgDtkeyQZSxuRk4wiiUES7rZtNgzmesNyv6tqNtui2C6qLHoLEYCm3J00ZtghJRvXPgEwrcNsxnM+r1hr5uoPOp0fPoxqUJSCS3irtvPaAajyjHE9yypVltaM9bvBc74KosmUwmGKs5v5wRXCSYwHq9YfdwBx/H5GWeHL/kQB866utIqnM9DPQa0nQsXR9BkeW62yHdO2qcd6je4XrRpygV6KMTWoO25HlFvjNGZRlF78mqStqSRHkanDE+/3iobSH1b8tEuUIar9DwoYgMqGTnN3yd6/8wFWrqSrDddQ15ZtndnXI+W7GpG87OzslsxvHxK54+e06W5bR9z2a5Yq8a8fDea7z9xlucvnhJu57h2w2b9ZrJZMze3j6v3b2D6xxWJVvJRN3TWonYNgSyLNtuKgrY293lxuEhj167R1FkGA12WWKbS0J7yXR3TK4hU2CzSJZHygrKUUaRaYpMk6UQNvGYv+rOrJbQvSxIoesV9CpiU3cXQ8AlWEQNRVFa/zHrcSZQxBHFqMAaRYyGfFRQ5DnjomJvf4xpLFnvONiZkBnDq7NzXl0s6Nctd0wOqgaVrHGjBE/Juhe6lPJsnb+UUvgYaLxj3bVkOqMwltLYbVNTZBnjUQVBUGESUktkSw3K0p4g2isJm9yiUGltaK1SHkKk731ybVJURcWoHFHlbRLwysRYJ9RQqSRMHFwDlUqWklJZhjCI5wchO6mREYRLRxEHyxoeONJJiKkMQWuqcQVRAsYGyppQawYIjS21IAQJjAwEcOLsN0wsui69xzgIQNM18Fe0KkXYTp7CkHKPHJhZFBpQURTkeYHNLJ2TNWyyPH0vCMkCHq2JKV+BdMhGjfxeIBkliMD7c1S54eAcEL7h1+KFK5BGut7xC1tHCFcEiS0dRSkCHqUMRcpTwVhMOcKMJ7LeVx0ecXBTbc8sLFkv15wen3B4cJOm63l1cUGIgaqo2J8ecrFYc/bqgk8++AUn5zPmixWX6wV7qx3K8zlPnjzFWLhz5ybf+MabWBWJ3oGSJjAqsHmOcU4KN2LKQDFoHdIELQqnXrstoq20TF1MAgYHwGWgM5tkGBAZNDt6O40ZJlMqXKd+SVF/ZelNmgJafOjFnpVIbrOUSRHSe7naRwfgJ4ZA9AqF5KlkmQXyrftXVRZMdndolWG2XkHK7xqPJyhjaIOn7hwFkUwr8symLCHJ4sm0FlFyosOJCYBFawG6ND5luwgN2iu5zpkxxCzgjZJci77DtA2m7XC6Zmnm/MkPfsKHj59wcn7J5WKFUgaioqyKRB2NRK9JCERy5EvwmimY+cDmcsXmp+/xo2fPuffuTzkaj3j3+QteLhtGoxG+q2n7mrPZDBMiNsK3vvYOu3t7vPmV13nnV36Z+kc/ofnJu3z65AmTnTFfeeMhXeeSWUZkGBkPaoLtawDf1FXVqNUQABrpuo5f/tpXuXHvNg+++gZ/NP+ETanoSk3RK4qq5OjoiGZTs5gtuZyvRdeB2GOLfZWWZ1gpQvC0bUvX9zjnKW2q+xRgjFCZiVjteXT/LmcXc36k35XKWWuyvMD7XgyE5pe4vuP84oJ/8Xt/yPFnL2gXa6a3xzy4f4dH92+zP8ko84zL2Yw/+uGP+OCDDzg9O+Ph3TucX6xYNx17+7tMJxMm4zHTyQRTVDhVc7HYcHp5htKKfDylrMbEqFhvGvqmQUXP5eWMvm3EnCLp9nyMtF3LB598RjQ53/7uDFuNuPfwEf/R3/7b/NEf/BGb9RpQHB0eMh5PmO5+jNZK9JiplpKzx4m+BIgqkGvRgvV9j0402KiC0PyiSkGMV03CoNfcGrNw1ZugrpzBYmSrt0wGiAwB5tcXTByWy/U1FK/9V8F2Ar6dwqgr5CMi+4iWc0ElneaX+frSGxWpatKPpFSNUUlid+/wzqHS+LbuHIvVBqU0O3s73Ly5T7das75cE7qOGBU2s/jWcLac88HTc1ZBk2cl5ajC+z7V0oLq5MZIJojN8Clder1Zs2lamrYV8RIwBBYKGjvgDsN7B7ZYUxx+N7EV5Cb0PhA3jfCOu5rgxUErK3OiiigvxUHsPP2mRXuw2mBzg2s7vPdYK4hZ7xztxSXtpsa3DuUjShTF+C7iuhadKaqq4v7Du0wP9smqMS8+fEK93tB1EpqptSbLLHmeE4G27pJGSNNsGnYOpttwPa+8FDBXH3EbYhmJ+N5duUIkAbZUleIAJIdSwOQFRltcJweWc56ubchsKjaQsEejM2xWMNrZw45HqLbHFEUSA8ctIno9jkje29V/v/BsXfvVVak5FJtfrFoGOsrn7qjaAovb7xFCoGkaMmvZ29ml7gWFmy8WWGM5fnXCq5NTsiyjbSW0cHc04s6Nmzx68JAH925zfnrMYnbBZrNGxcDudMy9O7epVzW+95TjclsQmESviSFSFIUUzmnj39/b5ebRAXdu36QqcqyGtoTYGEIbKcal7Bs+kllNWWgmI8u4ysgzS26VOJ4k5xNrpFCMSuE1GDRZUBil8UQcMYnPBblNxCZMlMI9qrSxZi1YjVOR8ajCagBPXuVUWcGkqDjcm1J2JWvXczjdJfOGlydnnC/WmNZhbJ6uexRb47S8tDHbScFVuEZMSH6g855N31FaSXjf9p9RYa1lVJRiOTkI2kPcou5KKTIth8FQzF+3bf3ifC5sG4CIVooyL6mKijLfSAGU/qetJIgrBgcjdQ1RituCMGzpV3FLbxy4x1vNVUiASAjyxRDdVNCKoKCoJMXadd32wBjs1gmCivvBzS8EASLSxE6Zq+dhoGAO13+bdj58Ta6uuxSkV7/vlcYi13SggGY2o+k6mSantPLrYWJCS7mi5Wyf04GJtC2mdNKmqO3fuc5iGhZKTE3M8N6Gxu/qPqrtlHw7l702fdGITktAGIstCnRREl0gRkk3j8nWtesC5+cXfPrpp2hTslrVPP7sKVlmODw45GDnkOWy5vRyxvOTY1ZtS9M5Gt9RN475coN99Yo8U+ztTzk4OpJclyGJPulCbJZhTNwe8lqL7nErjNYaa3K87qSISeLfq6uirjVvXH2NIZ0+OK6tWjFxiFfn3AAIDGGgDG2eUqlRSXk5aeI75PQM622w3N42KjEkTY0UYZk1qGjJtCHqQJFnVKOKMkRUXaMSfWQ0GhO1ofOBtu/JhvMniAWsifJoWK2xWgpvcWwkNVnS7OsEOmwdwhDAxmqNtwJkZJlGux7WG9S6xjnFKije/eBDnrw45mK2JASHtRl5llNOp/K5YiBGQ0xTOBItDhTGFjR1x7xteXrxnOr5U8YmMskzuiD23MXehMY39F3HyfkluVbsjEf8+q9+h7ffeJNf/aVf4vD+Dd774CPauuXFq1c8+soDiiJnbZS4jm7vnbp6xra7zuerTqER6pSkDt71fPUrb3F49wa7h7u4PBIqTblbYRZQViX7e3vU6w2L+ZLFYk2Rzg+ZsCfwIVHFQ2p++t6JSNvYBFam/UMNBjmO+7du8vLWGaMyp677rWOjDx7nHMv5HOccs/mCn73/KbPTc0LfMapKHty7xf3bR4xy+XBnswX/6nvf5+XzJxgVeXDnDp+9OMOua8bjismoZDoasTMek5djdLamaxyz2QIfHWXn2EPiABof2NQ1vutYRokOiDFgbSYAd7rez49fYYuSJ8+fM57uMNrZ4dd/4zc4Pjnn+MULtDHs7OxQjbxoTog41+OC3wKpfdfhFYQEkOoQ0FHMB0KiYIXPNSfDMXeNupWmK8O+fK1UuipsEjAWU9M4THB8HDbfL7zUNTRo+GLDGXttM76i6SegPyDrMUShNal/DxqV1onPssAYPURP8B2d61HKUeaBUa6w1hC14vbD18lUj6vn+MWcZy9O+fj5CUd7+6zqjvPFJe9ftlzWjk0omEyn5LlYhW7qtRzGWnFweMhoVFGVJR98/DHL5YL1akXTNoDCZBm9d8Cfg0BcfykY1NyaQbya8gOUEoFojLR9x3q5oCqyLWJkjREhcBe5PD7n4uUZP//Bz7DGMJlU3L5zyPnqgmo64Vvf/ToqRs5Pz/jZD3/K7nQfW1VC5cgK+q5nfjGn2TTkxjKdHHIw2ceQ8+zxcx5/9An1QjiVWQqwWyyWxKeyYC4v59y5fZednSlVMeJnP/gZq/US14eEMOt0gLE9CK9oAWm5Jku+6OU3pX/yKAXjskpNkWKzqpOAGM4u5xS5RVvNqKwEOlWaOkaxDHSBxWrDzmSHMk80r6hRGNnQ0ltQ21DNdFuuFZXyumr5rz9ew6Ds6kG8ajmHVmVAuRmQVtS2MHh1eoHzsL+/z2t3bvPq7JwXJyf8P//JP+P45IxlsyEzU6bVlJ3piDfuv8Y007SXr3BdCrJ0gRcvj7FZRtCKvZ0xrmlZzZdokwGOGIPcNzW4GYkLibWWru3o2g7X9ZgYiV1H63umkxFfu7XDt6Zv4vtA5zVdUATV4L2Elfa9x1pDXhSMbEFuM4osE+ODGBL9R+hFGRCNofeRxnmiV1sgjvQERAxdMsTQOrLxntZ5ms6R+0ZqT5tRmpzSWCY24/XDSDQGk2eY2vH402f8sx/8ESvTsauFJ+76lqgNZVlSjiYYm+GyKDoMNTBcrorM3jlciNiylOmpNgy0phgCofdyR/Wgc/rifZf/FnkOpGZAqe2fx2tLKsaAMoqdnSlFVdJlhtbJPVM6XnMKG/7+kJeTePrqyilm2Ps1KiHjCQFHiWA6JiQ2t4LcAvS9iP9DpIuBSnuMdeKQowNBp9bS9cS+RxtF531y/yLZ7EZQojHg+tQkXjUGEaGy5JlYuG+d1bjiu8ujpLd/XymNSZ8jRI8xhqIs8TojauicE8SbXKbPYh8lgtZMY4IkPhfB4EKgS/qLLRUpsJ0WaW2FYZKa6CiCHbE+ViqJzBUqOfeo1BCJ/ey15tFq4UcEKLVkFmGk4dFKUrL9ak3rHYtuSRM1xuRkowrlPV30wjl/8S9YNx2Ldc3u/g1uBg+7I3768YfgA29995c5vjxhNV8wfXVIG1sWzlF0jlFuccZAPsJJp8K4P+fuTs5BlbMzKnm5avBRJuo+RNy1iYU2lul0DC7Qtg2+jdLUAb0PDD7XQ9q20gaVlQyjEZmeh7TeB6e39G+2Ra5JeSrJoMBm0uh0bTIEEGcxlUwXPIree1rXk3UW3wVstgVZhe/gxSDAEGWCpqUI672jcx193wodKxPHy9F4RFSK1jm8VvSuZ7PpuHj5gq8+esDhjUNCKaBEmVfyXpRHqYAPknmTvs22mJclmGENZFERXcRHT5Fn1OcXnHzwIfN3f8GN1x8x2p0w3p2irKFznqPDA3EQNBqXKDvESJ5VBCNOpE2opXFSmqzzaG0px4bp3gjfe9q+58XlQqZRSrMf16gsoGPOH//pTzn6T/4Wf+Pv/l1+dTxFXV4Sjo/5V//0n/DRp8+wB/uocoSxGTmR0oJXEFPumRSwg4ZLAGJDOtt1AJV0ikoli/ySwhZUkzFnZ8f85P3/nvH5J/zqrYLv/Cf/M77/B4+5dfOQ/b0pl/M5JxfnnM8W3DvaETMPo7eT6BCC1ENKU7c9ddfTOU/MQQ9gAvK89sEzmzW8ce827abma29+he/9+Cc0TctOkdFrKMqKG7fu02x6opsTVjNwC3Z3xvz6d7/Br3z1bV6/cwfajh9+9An/+nt/wn/59/7vfOdr7/CV+/e5c3ib0P+Q0+PnvP/eOW8c7pId7DIqc3TXkEfP7Qf3GY1zNvWattmQI6L4Ho2NFq0CRWHRVZmeAbt1xgpaYcucl6ev+L/8n/+vFFXJdDrlrTfe5tnzY/CRUVVwPl/w6nzG93/+c472DxiVJTpK7RSDPHcKxYAdKSXPWWE0676j846AIUSNj5o6ery6YpeIZfHV2aViJKQBn/SoV6CsU0njksAmF8GRtsOYSMs6VUPDZD5tnBoEAEvfVRpOQ4fCp2liRKdpdSQqMRxg6Nu/xNeXr1EZkLPBQSZqdDTkeQZKJg6ur9HaMB4X7FUZdD3r3uO84nzd896rJTsrLROXuuUiaKItmO6MKPKE4hXFNnfCZhm+dyzmCy4uLzm7uKBtW1wvOHEEQWSG97h9r9cOcGDLc0k/VUmgiFEQE/ql0s1VGpXcDgYnIedETORDEGEfCqOtiE67HkLPaKekmpbY3PDo3mvsVCM+fPcD4fvpSFZl4vRiDNm05Gh8BEQ2m5pf/OR9IpIC69ZdClbUVx9KQb1ptgVH7zrarqFurAj00djc0kVJbvVpMxnQLAlKSkZ0CQ3ZQqAIXSazEp45Kit65ySQjMSzV2KvGpVkKmRG6BUBQcSFUyMTm77r6YqePCGdOkomwRdbyCuUaGhW+Nzf2RaYX6CGDfd2QGTjNqflytFieNhBUWTiX75cLpnPZqzmS7755lc4n805Ob/kvN6gxgV71SEvn53yxoP7fOOtN/jKgweMq4pNXV9NAzy0rWO5rpktloxGBdYqeicuSQnqpgthSzeSGlWOVR+8FAC9o9409FoRYo9Xilm95vJFLdQ+SK5eyQzA++RKKIXmTjba8vD7vqUqC/amU7LMiOXxZsnu2DAqLTvjnPVSBJERKepCVDjhSxCQpui8gbqPbJpIVTrQcnAWMSdDnM08CltYRtOK9azms6cvOT65oLgrqcpGQZFbCi2BrMZmGJuRxaEmHgJBr9pRNaClMWkpUEQj1y4iVM6ma6XIysstzWnoumJaDNsCfFgv19B4EIqMNpo8zxhNx2R5Rp+aorTEkyD+CskM19BpaaJkIiT5M6JdUYjQWQpotV2XVyDW4M4RCIMff9pLsywjzzO6fo2kmssExoee6FvRAmqzpbTK+0tIm7oqHIeNTcSuCR1DQJjoEx0uTfrk0lyfZCaUNgSZIGtSoOnwF8T1zGYGlUnmRkyZOwOdy/WdCJyTA6NK+orgkjMjkj2jtGQfbGmfJFRWxe0eMFy4KA+QfJb0voMS8CPhhwSfbErlbMWiREzvPL5z+MZJA4bBOMSyfbNhvr4k9D0XF+f4GFgtlmAMN2/sU03GTMcFpTU09RKjNeVoj1FdYmJgpBWvXr3EaCjKjJtHe+zujOk6sY4PbUPsxA0pzzNmXc9stmSz2KC8p/WBLmo6J/RjYqRpGvrgiEp0I9ulo5IZglLb8wml0TYj+D6BS+l6xbRuEuIaZEmmzz/ko5B+6GSMI2twcC9K/zSZJSQwL0RAXJ6GsM2YBP9xEB0Hh4tS8CstDIhcJ62DluDKmOi/CkWZF/jVir5pCd6RG80os6z7lhgcRE+WV8S+BT94Rkrjn2XZ1jijc448k+l/ltd4J7EDVTXBxci62WCDY1wYdqei8ZPQ2QhRMWQ1ibeO6Ap71aNNJjoem2/PE3zPFmaRLp0sL3nja69xuL/HwXTK80/fZ7VY0roNTy/O+fl7v+Dmv/g3bLTm+ZPP+Oyjj1h1Nd5kjPb3k67AYLKMajxKhpVKJrBKdjczTAij6OGGdEEf3BUkL5YYaGOZrxd0/SWhPeedPejHlmYCL26OOdivqCrLyfEZl5dz6vWGeDCW58dacmvItKbzoq30ETZtx6bp6PqrSZ/scUJL75xjtajZPThiMh1zY3+Xuu7YrGsmmaFrG5q2o2k6fvHBx9y7dYNvvvkI3F9mPB3z3W9+ndzmzNY155cX/PM/+CP+5Ic/om9qcd3SmuPzS1Yb0ZYUecaq3nBycc6q7dgs5vLMEYSVUpecHjes1ivK0YTbDx/SdR1dveby+Bl4AaZCDMJy0Rqbl+SlnC3zyxn1Zs1qPmcxW+P6jt1xRd/XPH9+yYvTC0bjMTazcj38cHaACon2m3Y3af0106pCWUXda1abgAvQqchGh62GTCdzKNGJCXVY1oF8tcFUlHTto7pycIyEYdkgytU0+R4OgoHWlfZXnc4IeQ68bApoCemFNOVM1ZiO2/W3DQf7El9fvkZFy4dhEHBF4anmuSDJPnnrK6WpqpxJrnE91C7Q9YrztePx5YZqbeh9oHGBWI0YFQWTosAAWZaTFYKsinNQzsXFBeu6ZrnZMF8stm41W3efuPUI+jNFLbCFVT83UE2bv4yW038HBH+YSlz7Wr1zQrtI6L84oFiapqXve/q+JZ9UZGVGJHK4t4/f9OQmZ4CC8lEmQWBAPi7ZmVS4ruP0+IRPPvyM0MuhM5qMsNZsv70U4+KeMVBe+r6lbpRYNoZIZuR6BdcIUud8Ek0OXPQrtHWgaQCJhiNofFaIFqHIcqE/dT1DGaSUbIJDo2qR5GkFQqtwnth7Qu9lHOocuTXb66kGymDk2sN19UqPwnYKMry37R3b1p4xXZdrbc61ezs8wEByUVFkNqPMC5qmYbPZ0DQNezu79L3j+OyUVkWqnRF5Znn8wWcc7uzwzbfe4u6tm4QY2GzWV3SNKBqHdd0wX67YGeUURYY1Q2CZvLcQZVMXioK42mhkqiAuLZ7lYoUxwq33QXOymPP45IwnJy9QGooiYzSaEKOMjotSrES980x1hWsd9aZms9mwv7PD/du3KUc5zWbF8vKUe3uaOwcl+3em2NkFuA7ne6Lz+OTQllUVLhrqznCxMaxaxbLWjPYN0UT66Mj7HB2TI02IFGXGzv6Yi4s1T1+ccrlYcu/BhKLIyIGyKCiUkTVsJETORlKS+iDUS0sxiu5ERw0uJOdAD5lML4KSjbHrRYxfmOxqHQ+rc5gixOsr6vOvGNnuGzbPqCYjbJ5tef5CZxjW2lWjcn1KYYfJatdv7Vm2m//238lmM6zTAQkVl/vEL95OtYTWZrOM3slBK7oSsWkNvpfGxthkgSmp0LLn+dTgD0X8oEAZDhIZ4bsYk1A9YNWwh1+bvETZrxXS9OI9Xqstsqe0pH1rY8jyHF3YpLEgBQtqodK5Hu880dir62wsnUqTOSUic9lzDc73A4Ik3yddwoEUMTjRDTPV4TMShcIlDVmQRpIhGVrJlCUogo/4ztPXXfp8AeUi9WrD2tXUfoNve9bLDT4E2rphNJ1w88Yh2uaMygyjAn27hizD5poyt+S6QlcZs8sTcqsZjUuOjvbZ2anouw3RK1zbEjpHlWfYzLLsHat1Q71uCL3DuUhLFJqxEi1b2zb0QSytjc1TbXA1/dIk63xlEtCk8d5da/YHjvy17JTha6Ak3Djt+1eaILmmNpmoGC26sBgixtg0ideJ964FrFEkxCGljcVhmpsCl6NMyIzS2ETrErBGS5OJlNSFzdjEiPNegI3MUljDpvV439H7DmMyTHQEXLJ4V9ucjBjlXqe8zi0IYpK7Xu8im7Zl1WzIjWZc5kzHBTYBktcD8AagJKav51QvaeZKgBa1fd5EZgyR0Dt0XpKNxrz25lu8+fAhD+/c4t8sLnnZeZp1zel6wS8++AjbB+bNhp9+/BE/+uADvvq1t7n72gPu3r/JcrGh99AF6IczOopxAAwuYElvp6Jk72rR0waVdHEumYxEodiu6hXBL8jUmvu7ls4pLq3j6GDE3m5FVWbM5gtm8zltXUtRqiTOIDNGXKkcokcDmr6nbns6565KolT/Wmtomsh8sSYoRVkW3NjfxTtH03S43qe9Qdyznr86YTKueO3bX2cyzZlMJ3z9K6+jteZyteLDl8f8/vd/wHs/fw8VI6OqxGYZp5dz6rohhMCoKlms13B6hjq9YL1c4p3Hh57J7h55VXJ5ccpmU4PNObx3hyzPqVdLVvMz3HolxiJBo7zYW2tjyJKw3vWO6Ds23vP85Tk3DvaZVjne9zx/+ZKnr84Yj8dYa7cgsk41joBXSZ+4PT+gKnKiCaBhue7wMdLHSBMjlmQWFbclUhLms6XmKhW3INhQk8XtzUhnlRr6VnXVxHBN43f90B2Oq2tf70rRnbRgUTPsyEnZtnUE/DJfX34yvbHbz2uskeIzRLQSGzOPpYsmhXV1FNGjdYayY3704lM+uqyZeyPOPnnBpLI4lZFpS4wWjxNXnHTIr1YrXm02nJ6cJHpISLQyLTSsf0th8ue+toW6bLMDp9ckJMl3bQrukSAh3/uUihokXJLk8KMAAiE6yqrAhcAnj08Zz0ZMpg1hZfiH7/63LGYLLk4X3Lx7g3FVMp4UfPz0MyKaGwd3eePNt+mblqZO9DjjyfM8LaChAEpXPAmJlRHhXF03rJYrXnQtk0nFeDRmb/+AGBeouqbv1sn+9qowEd2s5YrzGvF9hwamo4LpdIoxlsWmZtO0kkWQRJtDsrtL4lsfDNbmcpj5wPrykqg0TdsTbx6hjZFtXUnHbvEyf4mSwSK3YejY0+354u3aCgr53H9DCoK7+h22fyPG4fNyRTtJh8zNvQmjomC+avnHv/8n/NN/9ft87wd/wm/8rd9i3XbMFyse3L3FX/5L3+Zv/s5v0zQ1IcoUpKwKiqrAFhmlq9is1zx/uuHmt77Om69/hUd3X8M70VAYK8jckFtgUmNrjKbIxzSdY1XX/NGf/hAFIkbNFGduzYtuzrroMdpQkGPHJU3TstgsySgkjbiL/Pyzj5mfzrl4dYFSlrLImY5GkqvjPHXbcljWfP1uyW9+fZdff2MXqxo2m3Mu55dCd/JQZhW0keXSgx7ThopTt8Nys4O24jCmo9x/nRuOXx4TQqAoC3RvaGtHMSrYn+5ze2/C61WF6Qq089g8T9pMRZ5bsjwT+teWriK3MDMWB+BcamauqH1ay/UprAAAZVFsCyufbHr/zDLgC02LGrZgEZ7brKDc2ccWFVpbci2WwTpNUmyeMbjpQCQEWae5FetwbzLq1Zq+l2wBlebrwSv8kKQeSZ72kUiL10GalbYGm8lUyXuCsmBLULs4ldEpCf8KvSeGjlCZNAEWF0NBsb1oVvDJcsRcO9DCAHcChuBJkxdFFwOdC1gkLG8Y2MYoWoS295joKK1lPJky2d1lMh6zCXOCUvQ+MrH5ttm5PpQN6VANUfRsJk3EBkBoMDLY7mfbaZhUh5LQ7pJIWr5wCCrlcThx7kpHb0p3QSkHzmEBrzW+C/QZRK3Ii5KoYL6c0W0a2q5lPr/k8ZNPudwsWHRLMkpC5+nWHTE4RqXl9q0DLs/nzC/POZ2d4ZYLitGE2PXsTzMIhtBH7t7bpSpHPHrtEXdeP2S6O2GznpMr2KxmXG7mOAxVVlCOR1STKWHT8+z8mP1sQjCazne41KwpbfBB7mPX9djU1Eci0cs0pcjt1fVRQwhiOo/ThKHvUu0UIz6KNbLSGq8UKjMSDLudvnjReDZCoS6rEcRI8BGDITPSmA9NicfTy7gFrSUVPSiZeqr0/OgQ8X1Lt97QLDdisKMUOrMEq8mNRSuDqxvG4xHl3oQ3D95iX2t8lCT2s/mcpmvZ3z9EmwKKEucUfYC66/nJpx+zfnVGXG1459Ytnhw/5+TylCrLqIoKrTOeXVzw9NlTXp2ccOv+ffYPDynLSjJR0pQvz2wKhpWmL0QvegofBBxA6D6ubenbXuByD8YporMcvnafozce0WQZu7du8PWvfZ29zZp/+a//NU8fP6G5fZs/fPwZ/93P3iUATfD4LOPNr32do/1DqmrCZ8/P+dknT1HF9/nRD/6Urm1QRL7y9jsUxQitCzZ1g9IRayOb9RKcR/nI3sEeO5MJu9Md5vMVLoLNC7xbMKp6do92KHPFq9NLnr98wXR/wt7RHlU15eVnLzh9fozrhAGjtSVEfUXRDmL6oG2GyixN39H2nZiIqCs0fzwZs16vefb8Mw73pmit+Su//E3+4a3f48NNx4vTJY/u7HP71gFvvf0Grtyh94Hf+/BDfvfb3+H+0REH+RTnHS9eHfPP/rt/zrs//iHnZ+fs7e7w1utfYX9vj08+e4HrI4qM8WTKux99inMCuuVlSV4UXFxc8PbdO+xX4jj37g9/TF13VFnOd//qX5EAx6bmg5/+mPnlhfw6ZdcE79ks18QQyG2GziWPBd3z2p3bPLh3m6ODI9rmp8wvL7HljkwS0/M3rioyo3F1Q9xsoO9ReaR1LV1UtKpklFtyrXnl5jij6ZUWVgMmTZ0dPg6mkEp+HiLRBcTD+2q/3WpZhp9f7azSUMfrQNq1AzKdu15xZdihBKiLrids1lhyyjwnZpqu6WnaXqauaV/5sl//E1C/5AMP/z8s6GEMGBX00Yl9cFXhTc6L5YIff/qCd5+ecr7qKPJKborRZLnF6Iw8E6cHowtiEJ7uZrNhs9mwXK3oE3KkzRU//M97X3/Rr4GtG8rnsPcYPj9pEDhJCGUDKp/mLFuQFZVG4UNhIF20DxrXBBrVslTnrBYNbdMJulxaisKQ54ad8YiuD3R1zbOnT/Gto2skvJEQaLpavqsScWCWrCyFNz68zZi42uKJH4LYiS7mK6HFOb+9BlIs+StRqtIkyyJC8EzHY4o8Y1zmtL2jaaVJ2br6cMWXDNtuWhAccIKoJiOFgCIEjU28dZ2Sqa9oHqThiBRSgyiP1JMNhatKKMDV3+cKFdhOV77YvnD1pCZXqTTMxDmxgT66dRs9XzFvTvmXf/Q9Pnn6jD6CyQ30EaUjf+lXfok3Hr7G7mRM362JiIhZzAwyyrKQqUpwoCIuBEqbUWYZFnM1RUmNiTYmZdqIfqEaT5gtlqzbNZvNCoUizzNiG/HWURQZ03v7ZLmlyDJ2difUdUtWGibjKc26Y3G2YjNfEdqeSTFG2QytkefE+y0CuvIFTxeK7z/esJPl3N4x3J4ecXS4nz4X9O2G9XrDTj7n5njESzcmLisuR3voImc8suTaoq1BF4ZiUkiBHmH5aolrI7kx3Nrd5+bulB2j8WUJXY/JEqldi0ZnKKaG/ITr93lAWiUR2m4FvUQpwqq8EAQvFVps14fa/vu/CLgYnuSBHqZMhqnGBJMJl9e5Ab5Kz0XSqwS1FecbJRMHT6KCaU3QFuc6aQ7kKdsiYWIFLCtQGY1RBpTF2CioLn5LLdE2x2klid9J4ClNlcZmJdFYQcuG4NZESbu+l22Pr9QYDJPPq0cjXl2z9L20FX/84H0KDQvbQ0+nrA2TZZgsSxNVaQ5DkAI1xFKQeCuZQDrEbVMy7JfaZkDAc3WjoxoaLpkACQthSASQwnf7qQb6nx5QPeTPIygMKhqUFiqe12CynDIf0/soGhqTgzHoFEB6MKkoS82B2sE1LTEoODS8oGZcWozroFkRe+nwxpkhw1NfnnPv3i1BXV0gtAeyL/uO1fmMzAUO8jGjo13JCjEF54s1PiqMHrNuejZNC0Ft92JtDLFzSYvl0NpKC+Y9TiVr9xggir4k9h7RbKR7OhgnDHaocbDJkOc/KEHetdL0AbSR+6mtFGGD1bNN+7qxaWoHSaBtsFZvQYUQBjtrOX9Uoj+GNOmwyOLv6oZ6vaZZrQkuOZilyapQnyW93m+WtOuOVVezd7BHPqqY7u6wWSw5fXXOP/rwn2HKApPn5MWYcrKDKgqerzsWlyvc5ZwJGT97/2M+ffoZNyZjqnKMMpaPTo7ZrFc0TU3tHOv1LfrebZFnlGjaVDKZiVsDDjEjUclwQZsMJbZ+EuKrDCY3mNISgmNxfsaLl8eM1muy9YrfeOsRD5/c58Z7B0K7NAY7GsvST1Phyagis4a+7/jw8WNenZ/w5OUzTl48p8ozdidjXn3/J3hb4E1JrzOUAhMDs1fP8esloV5y/8FrPHrwgK+99baYq9iMKitQusWqDoW6yq4C9vcPKYsxq0XHyek5y9WKLDf44FltNhyfntH0XYpuYDvt1VlG771QwRO6P2y11gqlsOlbHj97xsHhEY/e/ir3793i7OKCT58t+Uvf+WW+8bU3+eVf+QYfPT/n5ekF7z9ueXE+Z7Vp+eDpM3bv3uLk/JwXT46JToKsy0LcXl3vuJhfEjTYoiAvKnEc815oXErqnMX8ks1qxXg85ptf+yqrkxMuLy754Ec/ZGQVVVlSL+bkmWU8qnBejIWGnDUTkvMcCQyIYuleFjmjqkIpye9xfU9eJGpWVCijkjlLkOk1EgZutIPQ413k/HJNqa0cQzrRuxBzm8F+XBlNhzQquYtb+pcesgQTGHS9KQnXdu3t7w9/b3seSmE1ZFKBTMz1UFSl0YpSkcxaKpszzUpyJbldofeUg1nVvw/Ur8jQBFwVEUOegBwq8mttxTVm2Qc+PV/yw09f8vGrGR2GsqgwKmAzQ1GI33WeC33GKE1d12xWG+bzOev1htVmTV4UkoydUNTrBclf1KT8eb8/UMVCKlqGlOehTVVbITayoclPhq9wdUBcVc3XimaL7yNdbFn2PZt1RwDKMifLNDZT2EwxHY3Z1B2bVcPx+gWhF//3NOElpgMKkgVrQkOHtOphEQ5cb6VyYgrVWi6WIooMIVkLD5+Rayjr0I1LYzQeVUxGI/Lcsjo7Z13XtL2TIjuhDdvPHCNX/HehGURCSrmXqVNUOVan/Ifeb6+R1lKwaaOxRm+LwgF1ldPx+lqL1+5h+tzD+GVA0dXwmUQBrUjuQuleDTpjn5zbpvsHXNYdi6bmj3/0YxbLBSol2aIieZHx7W99k9fu3aHILO2m324E1pjUUOdoxCY0JCRaZZBnhnExGu4SeW4x2si6VVroTVozmY5o+watA73r0j4hLmrKaKoy5+DmIUWZU2aWoioomwaTG/Z39pmfLanP1vSbBuVhOp6gsxzne7q+EStpLZznTmecbDz9s56DoqG9O+Zob5cHtyeUhaDq89lL1ssLpnlNnE4p1iVPW4vZ28GOK6Y7BYXNsZnBFIZiMqLpetqmp5t39LUjM5r9yZSDyZSR9zQ2IwauNSpieKG2dM1hPQ17ZNy6n1pttlbgw2lotKYcGhVttmtEJdRZhp5XuofhmfkzrxhBaZSxmNFYJhsuTWeD2B3HgNDNoozzh8mtVnpb0Mv615CC2iRdLj1rJHAjXL0XyYASB67MRmzs0dGDskKnNJY+8VeMEeBBmcEh1QppLHppVEyiz0X/hYZ9wFakSVGpwFfp2Q/xGhVNqZQtYghemm0/TB5TUWaMvmpUbJYsUCWzQnKRYrI2lvesrU2ZVGq71yolurYQHDH26bmVZy0k50AR0weug0gqNTUDtUEZvc2hSf1Walb1Fa1LSfaAtpaqHNP7gIvSuMh1FYry0d4EpyZQFMwvTlAYbDamWZ5Q5BnG9RjXkLlApnKYjmXptBsORhVlVRF8wG326H0PoaOeOSpliEeBbFSRVSOMzpgtNiiVoSjYNMLR10lzJXQ1Q8TJ3okj0zLtHva67ZQsbY9+CDNMJcpVwz5QvkKifwxntORYoIQ6GpUSIY8WbaFWKpmmyPcxJrmypfWilWiTVFo7gbg1KRhs0SOJfrXt8yNd19LVNV1diy230Wh7pbXSRmihq/Oabj5nYRVhVFHs7pAXFevZksuzGX/4e/8GO67IxiOqnQMO7txlcnhIP65YtI5+03FyueDJ81d8/OlT3M4uWVERtOHDkxdYHTEqMl+vWW82OOe2Gi2l2LpoOueu2TBLo6Ijsp69F5aFl8mWysRIxJYlPvQsTs84+eBDsqbB+I7/8Nd+icMbhxwc7nNycYm2hlFVoWPEbhp83zMqC4xRbJqGz549wxP48ElBTuTO4SFVXvH+xx+xwlBnFWbnUGj2vefi8cd081Pc4pSvzOZ0Hm7dusuN3V2MkYT26DM0lojGR4lAUEYznexiTcl8tuH07IL1Zk2eZ/TBs9rUnF5cSqBuqo9slkmjojWdE+pXuH5Mx7gNL3TB8+TFS1Qx4rsPX+fu7Zs8efaMJ89f8s1vfI1f/9Vf5jt/6VtkP/g5Wls+e3XB6WLFyeWM+XrBjc2a5WzByYtTVFQC8BaSLN/3PbPVAmUMeVlSlBW5HslTERxNs6FpWtbLBZvFAnV0xDtfeZ1Xjz+GvuXxz39GHhzjyYTNeklmDePxiK6uqds+GU8kjdxQD6bN23sn536RQwItnfPkQfR4Yr2dp4lwqjWUImpDpEtbnmK+7EWPohUxywkqmWmYpE9Xiqg1bZqEliSr4Sh73VWUwJU+8bqPaiCKZnXbpFwD7tIZMDgjxqGe2jY3V86pQ50zKgqKCM46vHFUydTpc8Dwl/T68huV7X1UgjAEoRM5L5QerSQg6XzVc3JxzMt/9K94crrg45eXZMWEIpcueWeSy8/zjGq8TwiBzvXM5isuLi54+fI4jfqhHI0koXcgo/550xKl/gz3+nrDskUYh40/hO0tusLprn1O+ZdDXZ++SSrSr/4CA6FEabCZpnc9rg80G7GktUYTDCw3G5zx2LGlyEp8q5gt10wnY3Sl8VVOXdaUoxEP33jI4cEBrne8ePKC50+e0W4aFIKMifHC8M4SdS1ZvrZNJ3+irv0Ymsh0wIfgUASMQiwkywx05OxyxmK9oet7sjxLBT9XTwJXQnVSDem3SJzGRkEV2q7DqkhhJK1V2xyjIvu3bzO+dYOyqihGk6uvNSQlpeJk+/gNhWoYcFb5xlsr2Ks3tl2c0rNo1O4u2XhMUcgGkldjyp0DPn12wv/7n/wz/vE//xeslpeUWUE5GvP46QmvP7zHt7/+Gr/1a79OpQ3nF2dkiSccQ5QEcaPJMmlKtTOEoNA2p+k6ms2a6qgAhDePGoICBXUyWowK2k4TgiPLNKOyEC2RgjzXqNISigwfxfEopCJfG4M1GW3nubxY8uzTY4yuINOgsytrwxgIashXcWQmp/WWJ0vF3/vvzzioTnl0YPhP//LrfO3RLb719j2yPc3h3i437h/ygw8jP37vgr//3zzmt/9X+9wY5agKsR0PYJyF4FHRY0ykrHJc6+hqR9vVbDaaJqq0HyiMEre3MEwn03MoDeXQWKQU7jQNcn2PjUIlxRiGNJRxWRFJdr2pkCLVvSQvf43a+tL/mVeU8DK0wY5GTO/cwo7HxFVP5/qkxzDE9H5iylGRJiZiM50miiGZVwAx0IZBYBoJicOtTZp6EInREZqQgl5BRdGeqOCxKtA2LZvlkosXL6kXl/h+g4kB37f0zrNuaxE4ao22BXj5OmZb9ANk24ZN+pC4/cwMTmleoxAHJVwgND2xSX2kS9qylDUQY6CyGZNRwc4k52ymyaxM+LwKdG1L17XUbSu5TVuHKZ1oJEPycnqvJsNg8W6NROooQEw5pGE12+de2WHPiSg9oPvpcE2odnD+qphOltF1F1j3HtP3BNeCjVSTjL2bU7q+JjqxjX/t0YMk0Ne8t1oSfWRsDHdvHZJnhv1JQcUtyrLi8PAIO5Kwv+CC0ESIgrR2JZ0zBKPY3z3k4OCQm3fvYFWGazouLi9Ydy150zC7nOFbEazazEoB73rIDFku+3eM+dY4wGqTKFuyrkMwaasLaQrpib4jupga4rDN/wkq4Pu0rapI03d417GZzzjVLXujjFMXuL1XMc4t1XrFOC+Ewm1g46H2Pa/On7FuVigFt27cQMeMkKzXMy0gh8UTw5AZJs9Q5z1o0S5kmcG00oAPGoDCZuQ2pxiXvDg95eLxY4rJGP3oAdPxhCb05NFDs+KTn/0EqgJVFPRKcXD7Fjfu3+N3/87f5cE33kL1js2nn/HWV9/gwd0jHmI4ni14uVizc3gT3y7w3YqoekxmyIqSZrUmIra5o6qi7zpC34sltAKTQCVrNMYo+sGaN0RsMSKbjCkmFXmhaecr3HLDd7/762RFjus8/49/8A84OzmhtxAtGBXlOiHrWVmYTCdE5+k2a7xzLNqaRbfh2++8w5tvfIVvvvEVThczMg875Yg7r99HR0WoW5oRtKub1KsZk/0dDo8Ome5MmY7HaWLt6Zwh2goIVHsNoxCoZhvaRnF5uuDFs5qnL45Zrmt2pmMWyyXlaExAM51McF3H+WLJwZ375GVFs645Pz1nsb8LSVOpokJ7BS5iTMZof4/v//A9QiHPyxv3j2g3j9jZGdOHnidPn6DaNUfjXcrX7lJlI55dnDPb1KxWIz56+oqL42NOzk7JRyWVqchzQzFkN6G4decWRlumRTr7gBgcTb2hXm/QAV49f0FpM/Z/93f4D37rr/Lagzs8fvoxH332IVoZcpNz98Y+h5MJxXSHD5+/YNW1FFrs+rf1zdAUeEeWGYoiS9MpAXbqpiYicoid3WIoVUBbwBF8YFVH7rz+DcbTQ05P5px1DRsF5e1DFk8+ZjQ7x++Pt8BBFwPzGHEhMgoh4cJaKMkxne8EvIpigcwQ+hC39V2ENLG9OgVlO72ql+T8vSpph5o+Ks06KjZdTxsa7u0dkHtP4TpyIWdfrwK/tNeX3qgI3UCKZW3EiUIKelEbmKgYlyOa2YwnlyvOW8+qcRhTUOSWsswZVSWT6YjMiOAutyLsOj07Y7Zcsl5vrsShkW2oDfA5lHUrMkyH4ucmKdcoatfL2WG8O3Sc6VOx7RLTAb/1kU51gFIx1c0i/nP94B6Ub6cwkSAPVNAyZdIanVmqqoBCTAc2m55u42jWLV3XbxdZ3df0NrB/MObr3/4G0+mU+eWC58fHkrOA8BXN1XP0uesgBYpKDRjpuqRaH4SykuzpjFKURYlNk43lak2IkbaXhWitRaO315OrS87Av5KFn4rP7Y9IVCLMrNcbZufn+K6XAkjDn/7oJ+zs7VEUBaHtkvBcpQCytH602l7rAX1XqO3PhxyA7b3WA5yeUB4lFINpgIuLC2arFXk1oouRk9mMf/jP/7/88Y9/xvPTU3anI7xX9L1jXXfsTnd547VHFJnduk/F9AgJEGm2IkwVItEHnIeu92gkqKz34ggn2pQ8ef8Lomm0TlaYuSDQye5PpQZI7Dw9vdeMkOLsusBbKUXf9vRNh+vctkALBELbcnSww4O7r1OvhUvcdK2s7P8fdf/xbEuWpXdivy1cHXXlu09HvBCZkZGisjKzRCcabIhqNNAcsEkzWg844YBm/Hc4Iic9a7M2woxGGmm0btC6CQ2iClUokaIyIjNDv3jq6qNdbMHB2u7nvMgC0CQCgz6Wke+Kc4+7b9++9/rW+tb3KaEdnd35FqPCMMngg/Nzvrh9wZ98fME3H1Y8PCl4cvc+n7x4yu064/6DN7h/csyoKmk7h4653J+9JH5Q4kJejkuIGlNmBA1N3aGC3CdSgN33hRRFSZaJp0w0JhkFavIsl+9tJgZwWiiN0hibZllqKO2lmOX+6562KyCFPrskP+yX1NA/7wnFK22ppofYaoJt1zR1zXa7YbNdYzJL1DKXNXrwNQk+4JISTsL/xCRFqbxH+to8WfJQis5Jv0oQ4pMkGhS50ZJaUKKZl0dF5iNutYLWY6JOvGlRViozm2hZDGBMZJBJ3jRqeBZBoUx/3TsgKGgEFFLJ9In62a95MQRMjOhcpKgno5LbxYK73Skqq8hjoLCWajTCd62IMWihl+rEY29ckjBF41MVUSXVp7R4ELo2MdK0qM6kisBAY+urPj1tIfTrOfjQJU1/cV5We+thjNIbdL1Y4lwk+ETZ6zxuVbO+vBLp3/kGfSBrpOs61GoDzuNNw1hZSpMx0Rmuu5WNfCsCByGAazxZKcIooQtM8glUmqyqxKAwGlzdyCW1gUJnzIqCcZYDGpOL15ZtLAEnpruIWhlR1uh+qMRcVNZjWbdl/ZNANKCUVGOC7h/I3h0FohLwhDKiWGUiMZQcZBmPzu5w//iEDA11R3QO3Zv/qghB0TUN9XZLU3fgBZxV1QgfNF5ZSp0Sk4DPNE2ItCFitQUXiK0ji33yQe5rb9iY5QVWG3SI1OsNxaji+N4dHp+dUlQFXdPQ+Y6iqjh78JA/+Ht/j2gt0Yrcta0KysmESotxbOs8X1xe4Ncb8qA4Oz5i3Xgu143Qb/OcTFfYzUYqhFrjUgDIXsywz6xQQtgnqJSqNAZtCiySKIh5jlcGWxS4vEVZ6eXsQiBsay4vXtFu1zSbDa5xmMxidS87i8jg5hnOR4ILTCZTqsNDxocTTg6P6DrHp19+ydVmw2R2xMMHD/n+N79JrhWha6B+SPAd3jlMkXF4cMDRdJL2TlEvLcqc9XbNs1cXbMIly03N9bzmeKbYbre8unrJtq7xQYQMlDKMypI7xyd8+eknsi9by6iqiFqzmM9ZzBdsNlupxPVLMiJQYq3l5PiIxWbD5eUlNy++5L2332JcFcyOnvP8/JzFcsF6seSv/+AHHE0rTpuOrY2wXLNyDtV2xKbBR4dVuUj6ZoXQgLOM6WRCXo0k4RcVTXB0vqOuW0kcGcPhwQE3N3Nurq/59NNP+N63v8W0qviXT97m82cvqVvHeDSibRwu9Z5cr1ao1Yp62xCVF1DQR/HIXpNZMTZtmpa2FvGBN996E+8CXdcxv12Q5YXExMaifAcxsLEV7Z1HjB+8yYM7C5qrG7q2o7j/BsV6g3Utm64hS1LhXVS0UQRQ+mrJXji7e0V69n5K2OynbCUeH4oK7OK0gf4fE+3rtd/L3zUh0BLwOjLLC1y9pVORrJc2+58CUOldNeUCEwUjXaxGjIdGxYg2zHm53DLqwChLkVeUiXNYVIU4z4dEGXKB9XLNq5fnLJPDPH2JKiZ6gaCF4XCDiVgfwOo9ztDeAjScc7prce+/r1zZ69+q1/9VkpjER+nN6LxHI1KYunf8jl5oWFqqFlFrTJ4xHo9wKuJjZLPu2C43dLVwVYMCpSSbrErL+GjM2++9I/KfVtMlukPvY9IHZT1Q6fHxLnDfBQZDEB9TJjJIUGWtoSoKsky4qfPFkqZ10u9irKiNxFQK7MdhL0HbAxVSwRDY6QwpRZZnbNdrbkLANQ2u69Ba8Yd/8meMRyOyLMN7adQzRpPpXQ+ONXpA+8akBu5kNKeVcN8Lk36mNcqq4dkxKTAy1nK8WPLls+ecX91QjkY0zvHi/II//uxXfPnyJeu24e7JActVS107iqg4mh7y+P4DtGKgtgyNaErmdq98QTLaCyGyaVoM4iXQdg7yjEyJjodOY+q9l7Kb0qDElTpZ/6agM8O3jdBV0tzq+2vop75WuG2H7xzBJ/UVJfOuazccTe/xO997n5vzOYvVmpvlksa15NYwKUt+8MPfIs8rOhf5R//oH3B1+Zzl/II/+NE3+f679zk+vseLm+c4Jnzz3Te4f3JCqOBFO6ewhVRIYh8MyT3XmaUYKYq8TGp3irptKYhJ913GThlLlhVkmTTCD9WQBC6ssWAMKpMGYYsEwMMKvLc2ahgqNP0dUf3/xd2E7Wl/cqj42lqgtKYYzzD5iCzrUNGjUra6n0/i5ZFUsmJMczSBVtP7kggdSqUKicoURVFIQOQafKeInpT5l6pamUsFw/iAUR2H4zHTosR4T2ks47xiUlU4ZYjGYkdjXOi54eL5IDTCnTKTVJnSGmDVUIUSTf+ebucHCqhrO+nNQxF1wDuhMNrMMs4th6OC9WZL6yKYgixECqOpikK46sbibJCeB5thC6HQ+BDogpic9VTHfaBi0s+N0glQJVUp3weKRhKSQ/Yj9RQpjfOD9AlOd7KWaU1lI8Z7dNfh0tocgqMqSgqTQxdp5guiA7dsMZkVdcpmS+FFjlm5lmlVUhUF06JiQ8Sk4MkHh3eRdusY6bHQKzaB0WREXlWMZjO2qyV0nu18QdZVhLpllJccj8U9O8syRpOSie+YRo0zMoc9lmBkj/NtqhKihN6oZa76oMSDz2iyLEfpIAIT2hKjlzGKCnr6nI+gDEpbbF5hrLitWyJv3Dvj0b07jLIc00lDtk2qbgA+KLquo2kbuk5M7KzRFEVB40VxrNDCSCBGXJ7RxEgbIxNjwTWErsNERfRhoE1KEkqsBozS0otZ14wmYw4Kw+M3HlJWJW1T03UdeVlxer/ib/ydU+HxI9XQbdfQhYD2QlVsm5YvLy+pnOfYZhzPZpzPl2RmJ/2tLbJfpP2mG56lPuEQUx9aHGi6fezhYxAKtC3QNica2d8dCpMVmKxAZVvqeksXIo33vHz2jIxIZTW5lSy97iuHShF0b8zcEX1gPJkwPjri7qP7zKKnbWs+f/6c27rh8KTg0Z0zvvPoIWWmUaEhM7KWaJOJF48PRO/wXQvJELOoKq5vPZ9+esVHzz+hCwqbjRm/A+v1lvNXz+m6VnbyRO+ryoqTwyOs0mgUJs8oypzGe9bzBavlUlS3hrQiKYkZkkHqEXXTcHNzzcWzL3j7jcccHx1iyoJ/8C/+kOfO413gr//gh0yqkoNJxa3W1CiK6wW6c8S2S1UDWaPLLE/qrzmzyYTxbIZRmli3xHpN13rq7VboiCimkwnX17csVys++eQT/uaPf5/7J8e8/867nF8t2DYrinJEW6/pjOFoOuXkYIYLntvLG5TN5dkzr8eaNlEVm7al3dbo6HnzyZt451ktV7x89gKlNLkWsQqNPB9tNqE+uou7/wZvPmyYPzvHrVvye28zXl5SuQ3rl59RKulj9RFcTE30e8n24bWnnEqqmgw9KkoNYKM/+Z5ePfxo4O2lJFC/bQ5LrsKFgCPifKDUhpFSNIgfjZzP/wSAiikskqmTrGAILbGrhcagpToyHTnGZUmVl4wPpxTKkKNExz1qXN1RbzsWyxVX19fMFyvhtLYtvRPqPpjodbshBQ9f+X7/VvbqVD2oCT1dLAX1vXTj63//ldeQwY1J5UB+7JqIspZqNqEqc7quZX27JG9FJSzEjqqSRl9HwFSWYlQwnYx4+eqSTd2wbRtMCBRVycO3HuBiTZUZvvXgDH045uDuHTb1lk+ePuXZl895dXFBbDrykK5bvQ6pBjzV93x4yQBI0J8lxZwAzjGpSuFaZhkhRNqmY7XdSsOpteLfMNQvAR1T7kTt3YMo8pD9tE6D41xMzbmWUTXm9uaWy5evcM2GIrPURP6r//rvJ6d6Bb1ssu4rJ33FRFGvNnT1FnwD1oI2QIFKT1Y+KZmODqmKikhDT940ZLKAKlDWJvOlyMGo4umnn/P5J59RHhc8+t5bfP/siF/+i79k4wLeGP7a7/4+33jzHWb5hM16RW40mRF+f9+oFrQEEr6Dpm5ReUZe5vz8lx/TdQJW1He/TWkzesJSZgyZ1YOLslIak+dsm5rlei2eBEBUkaKa4AqoTcTrOAQPrXN0REJm0Hh0AB0USe1WMic+MslK3ji+Q1YrqiynqgqWmw2ltZyMR/zO228xns7wKucvf/EBL67W/Ozzj7nzpGB07y7v+e/w3e/f5/tlwezslC/cJc/X19S3DZNpCcbgVOLfRoUSZzKqMuPs4IhJnsO24WY+5wwvzbNaobMCm1eU1YTNck3tAnq1SRlAldYTdomIKLKNHXFQ2PMxpPFLW2S/iA8PgwCfIStt1J4jO6n6JEmGdrMmOI8yI7yHqiz4uz/+IT/89jepnaeoRqJAnxIgIYFWoTXJvbQG6VHyHue9ZGuVYrwndK9iwHst5ltakeUVeZ4xqcTPI0NzcliRKVmoc6NYbBvm25ofvDinUxqsZXx4SAhamr5V7FsOxDE7rZFRgUoSxpkRPwWUoih1UpGJIh2e6FLex10CJDg6F/A+UhYGgsfEwOOjEZOqpNtuh/6cpl7TbmuKPGM0GZNXGY0xzJThR9/5Ni8Xa27rlsLEPt03VLv65/vw4ICT4yNQiT6CJB6steJTkweRhVUZ1UgMTYsskypM8orwocMaRZEZct9C1xKahklVUYzHlNMD5i9vOLl3j7e+923a5VpUnYLHliPhYVuDzW0CcUrotVqRlTl33noTQsTqnMX8hq5uaOuG2awixsimaCU1EcWJ+ur6ms18webymsmJgLnvfPs97j04oSxLHj96zNvvvYlXilYZnM1wStMl0BZcoF5tMbmhl8kXkCfPms0LjJXEh05yqsZq6alJQbmOWpS+vE/JEAGqVgmFKcs1k/GYUVlwNBtj6iU2OMrcCr2p7Vhu1pjNVvqNMk2el7hgaQKorCDTllYrlPNJNMKkRuRINIrGBzatp3WdrE9e0bVbQmHR3rNsAqOmJlOQdy0PT445GRc8uX9GrBt82+FioCjG5FVF+XiS/Lyc9E5utzTrNT//5SfY7Ra/WXPz6ory8JDxbMzp4ZTxS4MNHVWeE5UleEPTQZ7lzCYVH3+2pnMOrQ0+KlyIuL0CY79ouLYlBjF/NGWFGk+pGwe+Q7nAvAtgMlQx4sXnn+EIeK1oXct4VHE6HfP+4wdc3Sx4cXFJzKVCXBlFGSO1d6y6jnIy4ck77/DD3/kRn//yF6xur2hczfHxKcHmfH51yz/+i59Q5prcRLT3BNfhG6GsHUwm3D094e7ZHYwV9dKz0xMWiyWrdeR/+O9/xuTkDr/1u/8Rq05zs1jz4ssXlJmhM9BFRa6SoSUIzTnLGB8f4ejYrpfMX77kdrFgVTeECDaFll5FuuAos4x37t5jVhTc3sz57//ln/Bf/pf/K+6fnHJ1cc7BZMxy29BE2LhI5kRz9eXlgvP5gnW9ZbO+pdksiQ7W3RYVYXp6Ql4VlFXF3ZNjqYKGjmIEry6uuLqe8/zlLdNxSZ5n2Crn6O5dCPDzP/0pr/7Wj3nnrTf4L/7e3+LzL1/R1F+AggbDyivm2xX3T6aUmeKXn70in+WYTA/xDQlc5taSactyvaVtG6xRvPWNJxwfHXN7dcM/+e/+AUaJEIwxQtM0xnBw8ojzG8/2xZI/+Gtv88Z3vsfalPz0yvG7b9/n7OIp/+j/+H9g5BpGtmFWjrBDLSUlK9P6LVVxjfYaHSI6kNZzldRVpUHeR6FHhxTLxdh7rYB08cnCH5OXWc+yURF0CMzyHNV4VtsNn3/2MZVWHClDp3bn83W/vn4fFeyA6lTKLAcCZZkTvWfjAi+u52w2NaVSPD46FIQeIkU5Zrndcrta8erigvVqnbL5rTTIw6AE079eAxL71K7h313TZv8zlaorvbLQoC6zD372Pnf/EP2RU7JafhYj0cN2WzM9PuTJu094/O4jbi6v+fM//FNspZOhsqJeiVqWMYp227DoPN26ZrXeiLqD1uJeri3BB6pRzsOzY/7G93+L882cedPwx3/0r8DmKK9448EjXtx8SrPdoFC9dcNrL5OcnIWHHoeSrI6glMZazSjPpTFNKdq2pXM+NdAm/XTVkwd26hE92u6b0/sR6mtXqkfwUehaNgEVUaLxxOilOTP1DJgiT2BeAvb9qlV/y32MHD44pRgXZMWuTF/mY7JMqDOLxYrNvOZ2vcT2CjhKoZIKFz1NKAVGNre0dYMLgfun97jz4Iyju0fM13/CeHbI6Z37PHn0hLIYsV5vmaTQCnp55b5ipOg6z2Zbs1gvyeOITCvarqPMM6ajCt91NM4PJm5GS9ZX6x09z2Si6qSU4s7ZKTomfwRruNYNna5x3tMFTZlCsz7z3P83+NEkxz9tLau65vOnz7m8uJXzzSVITtYYXF7d4oJmND2kKkuyPMdjqEYTxrNjpsf3sHosAdCo5IvbS9HmT7QhKQDFAcz6VBG0mWU2GtO0HV3dUASfOOkSgNLTmIh41+K2kVBvpUk3AY+BmoVk6HpWkBmoTTF93U+b/Ye2L2fHnWKR2YEgkGx0fxyiA+3pXCTZtfCtNx/yVhDOr9Ya3TdX7ldm+/VFiVnWICLSrylARhgAWoxRGpPRxKR4pLXGKo/2Uo8eVxkmkqiDntJHZs4zPT6mSz1K1uYoI4DdpOecmLLaxD2QJ0+mji7trwqbmV3/Ugg708Swa7oMdAlTSLU1egfecWDFDyeGQD6ukhiCBauJRg9KO9ZmTCZTvv3+N3jcepoAVWESpJA9wiDu2UpbyqKkqiowQdaoKC7p1kjfg1IOhUYrS1ZY6RXQIpHbZ3I9UnW1BvLYDpN8VGQCRKoJ43xMOR7j+/1FgbLiP+XbSJcky9PThesko541GT4gNF6ryUcVNs8oJiI4EmOEIsiHaWkSnxwfY4uCLMsYTzNQMLsTuds+JLOG2XRK1zYEpYl5SbAi1t4FJT1BIeCPvThlK1mHpedEERDKqEoVYxW85E1TH8UuyUMq9gZC1ElaJGJ1oglqqdRkWhGDVJ1ccDROaHMOZJ5mFpPnFEVFXuS0QdbToXFXaXFFT4FciFLdMCYjhjXOt7jOibls2l+I4uPVbjuyspXqorFUo4rptGJUlURj6GzD5YuXIgZiLK5pWK62bJoWZyHYHFVGzm9uaC/O8YslB+Mxp7MZdw8OOZvOGGc5Fk1eVmybNXUjlNoYGari1lpppI/SHC3AZVeC7edZJEr1OnihyqS9IIZAs2nIIpisRGUFZXBkKnJ/POad+3d5741HfO+9b/CvP/iQl5fnbH0LQKlF5jWEQOMc6/WKi1cv+fTjj7i9uaHSmjfO7jI7CCzawMV8xdx5rFEYHQnNFr9e45Zz1je3PH5wn+9959scnZ6So6SnM0q/XV6WlNMp08MjTu6ccn51yfXlBevNBptl4LU4pYeAD47OO2yWkxclDmialu22pmtbNlupHDnnKKxQV4MSYKO0JjOG48NDnLvi+YsXdKs5hdWoGPjtb79PF2FUVujQUW/XUjmJkbppePXqnNv5nM12IxXWtiP6mNaKgrzIMEq8tKLviC6wXm/YbuukMCh9kLUP6NEBIcDi8pJPPv2Cg1HJb337m7z91kOuVkuuNw1VNYLc8vTyhrcenHBwMONwOhLWgg8YowYTRmvNQOdt6uRRF2GzbTg+MVTTCY+/8TY+KJx3mGBE5lppYjEm5GNqVfDxq1sOsxl6kmGMp5kesQiBzb130TefYptbfBkHYQqpkEpPbgjJv0R9hQ3UJ6qGDWovho27GLZPLfd/otJquiu27MXDw3cx9cjtfTg7Qamv8/UfAKj0fSmIag2iqmGsZeM887rl2dWc9aam0opHR0doxCyxHM/ogqO+bri5vaXeNtR1MzTYolSS9Pw3VDr2XrvKihoW6uF39CWvmILm1wOK/j396zdYYPTlsDQJgig51E3LUW55461H/Piv/YBnn3/JRz/7OboQOdUiy3mxfo4PXgzc6pba19x2Dq3Fm6GajtEqQxlL13ZMpwUnhzO+/71v8YvPPmL52Rf8+b/+U9565z0moyn379zl0j6lTpNUVDm/WmFKfg9JZlkNC63I4VqtGZU5xhg671m2HY1zEizrvXHsx0J9dSwSUEljsiv76mH2Cw1Fyus+OMCj0rzogU85maR+lJQl6MeflAkPEYfn/juPOHvzPtPjKW3TELxnMpkyKks0ik8//JSPf/Epy8UKm+2ExUUhIxVCo5csuhbjKpckF4+ODzk6PWZ6fMBys+He/Se8++57PLr/iDJTbLc1k6qkJ9mFFMoEZLN1TnwHFus1lVJU2hCcY3ww497ZGSo4XKpiKdip4wxCDyS5V4vJhNdrE8VIZRrv1ty2ntZ7smAISpEpg1bJL0QnstNrZTWFspZNXfP0+XPm1xvyKmd6NMO7gEO8M84vb4jKYsuxGDPmGRjDeDxmOp0yPTii0iVETzQhmYhFklslfXmxxyouSvBnjGFcVsyvrohNLdUIvddUPdyfKFKSwdO2Hd4Iz1wrKTfvZM77xmyVTE9lfu6+Fo34YYkOff9JyuwqBiUambZJGrVPZmSgiHS+Q8VIbjPu3TslyysxUfNOQG8UCYfh3u0N+hCApYW7T4aEELBFIX5Tqc6ulCbYPOG7iG+2QzLBkjYUIiq0lMoyVZqj0xNckP4E3zl0nqEzi1U2qWUJRW63ySSwFwLB1UNVdKgu99UrLfTDiNDFRBygk/elRmnvHNE5MtfKvfaBrCpFsckYsGYAKd6LxHJVVXzj3bcJyqBsTjXKsSkBopzHAlYpUEn4QSkRHIiggkjkGi1gJna1rHFKGrB7utqOnBDxg79SINOt+Hegya1C2wKVj7BKPL/q9Up6KhRoGyXY6Fpi29A0dep1USgtvWNZbiHPsZmAQ51ZTC7VKpWU4YoClE50NxUYHczIypJiVFFZqXaozGKsHnqR6tWKiEZVI1FbiwrXKaJv5P4rjdY7oGKTG7SQSntKh0bHjn4lHsKMBJ5Bbr0LqW/JKNHbULKPxeQ74VrQbQvB0fm4U21Eo6w08ud5Ib5HyXNE5I9l4u6UxUiBWxAFsxjwvsM5n4w4w7DuBQ9t3ZE3HTZzFMWUoiypRhXZnnBAs62xeYE2klue3yxZbmv0wQg7GkNWcLtccfvqHD+f8/1vvc/J7ICT2YxxUYkHhtLkRcF6u2Jb1zgnTf99/6o1ljwTXyaXqqL7ioSoHb0peIcO0oMm4yBzv9026CwX2fWiYBwsRxqeVGN+6803+MH73+Q73/set8sl/+Jnf0Hd1eTakptC1ARDoO5a1uslL18+l3XNe56cnfLw9Ix7KuPXF9d8/vQlq+023fFAt1rgFrd0V+dcPX/OfLXi5O5dvhUiJkFb7wIoTVFVHJyccHR6zOHhAR9++RnXV1ds65p8VMqz6DpC8Pg0DllZknvZg+qmFruDThrWBah0qLQWD6Kbaa05OjpksVpxcXFOfXuFHVVo4LvvvYfOMlmzuo5ms8JrURPzznNxecl8saCuBXgEL0nmsiwpywKbyXqqkTU+eE/dtLRdJ4klI/e18VCUI7qguI03fPrFcx6cHPB3/+Zf5+0nD/ji/Jynv/yc8fQQrOXL6wveevM+05Hl5GjKzWpL6x3WZP00kF5Ja4XtUddSoQaWyw0uQDme8M53v8OLL56xWiwJrhXxJ6MJeQXFmE4X/Pr5NU8Oz5iVgUwFVkWFm57QPPomeX1Fu70W2lXcAyrotK7vtS8MK+Hrr/2f9Roroha2JwoV5Ze7GDIOppT9TjIwAlTqQ4+9X6HafcbX/PragYpQDxI4iJCXE3wo+Ne//oyPnr7gk+fnXKspTTBMJzPeevCY9WbL+dUNn37xlFfX17y6umJbd4AMhAs+NczLZH8NRNBnKxOuizvOMn32M/3Xg5He98B7L7KDPd1rr/LyV79ei/7kJ315jYgqLeW44Oyg5PsPzzjVkZ+8/xZtAVlRMB3PuFmt6a7n+LZBqQIljxbVqOTo5JC333ubq5s5i9WSq8srLm+33NxeEFzNtm25vFmwvlpyk79iqa9ZLzYsVmu86iUq42vISoK5TErV0aUmazGFRCuyTKSCfYzMb29puo6GOJQR1VevuFe5SrLIw+R8bdjUkMHt5WFBgiTXtgTfgXe7/oq9z1d73/eVGXl2hA/c0vHG+2/xO//J7/Ef//C3KDqPcp5bWmJhqDvHv/4nf8rN9S3PPv+SfDROWTKN76U4U6+B/E+BkuykRhF8w7ZeEFce7xvOzk749vvf4q03H+O2C9x6nviewv50oZN8q1aYlH1rvKMJgdXVNe78gtbDm7/1kP/Zj3+Pz3/5C25v5yyXa6qyFD5+mp8CCsVPxKfPwntsZilzSzQB1TbUmyVtOyIvLdoYcp0Rg6ONHU30OOXFkZiYymZgtPRkKMD7luCB0Ap9TnkIFu9qYnBk1lBYS2YUhA5cQ3Q1wa1ptmupSGQZSolMsEmeGDodDq3pFCy8+IdooxllBevFEuqaWWaxIcdo6dNxnUcbJ+prRvi/KrSASxUVQ67VIF0twfUOFMs8jwhAIc1PN8yuvu0wksZAyU/79mIFUlJCqF+hFqWoUbo/AIubywFQCy0qBSp9EgUSlUwNwFoeA8nOvvaImC1aRyY0RJUTlKFLhl6ypgSsEhPHuttA58B7FB1KZ6AMXUpAyAVZXC0VENdtReQhBnINWlmUkA4REYowZOIBOu9TdTMgxS35/DaIqlpUCqOciDtoQ+289GSEwDgv0TGgUgCb4A3Rg/MdvqtxSwjGELOM+8czej8NF72MeQiSdZaniKglIMRospCCc2WIbY2EgA7l3ZBJ7HwYkli5NQIWlMGrTqSNVcCHdlB+WzS1VIi1oWsCXkFnI75V+OgJUWRodQiYEAe6caYtRZGDUsQNspZEyaraUs7dBOiahhg90XhCtPiAVA90htGiina7uQQFeTEiM5bcKEoLwSBjc9vRBTfMKau8fL6yNK6VakeURGAMiuBtqmDJOJiYvKmUGWjSJHCjooZo8Frer6yW/qshjSpzvygytHeoKOp8IQWrXQoAvQ/kZY4tCnTnaH0roNZElBLPJqIStUkfiS6gVEjnZKV3Iim0dUHmgnctN5srzLRgZKa8//AxhYn4LvDqZk7YNoTOcXD3Lle3C57fvKAcTdm4ljYG9HaECS2t7ygmRxzciZhRw8OjN5meTGknOf/th7/is8WKZTkiy6BtalaLJZlNlBw0dd3QdZ3sV97Ruk56+fI8FYn6GEPEXYxWlNaSZTl1aFPSRuPrlo0PrK2myTW/fXqPv/XgMf/b3/8x41mFGeeYNx/x8NP7PL57lxcf/go9yRjPZtiqxMXIarWma7a8fLbg5fOneBfJvvcdfuvxQ47vHDMPgdFiId5KXUfY1my8gEI7mVLODiDPWTc1PgWXRmtWmw2dD5SjCd/4xjfAZFyeX/D82XM2yyUhxQBaazKb4TqH8xFlLGcP7sP1DcuX52zXNU3dYZTh5uaW69tbltsN0zxPYkpCOYox4NqGd548pt5u+OUHv+AXH33BG48ecO+NN9FZKdWrpmFb37JtOuYOHpw9oHaepmmYLxaEest0MmWx2mCN5eTsDsoq2nbLenHDt997j9nsgCzPeX67YVV/yXozJ0QBfx2GVuW4qsS/8Ra/eH7J4eRz8C0//O67rNsN//QnH7J2nlYZVk4Rqhmz4yk/+F7LP/tXf87NzYLq5EQoU0mlL8uEqr5YLnEhEpRhvlyRlSMev/GY/93//i3+5T/953z487/kT//ojyisQo2ndKOMYBXOOf7y8oby4S35QcGjLONldKwyy/Hf/hvAnPaDmnl9zTYTXfrWBzrUTg4/JWyiIu3/YWDqB3aSUBFJAEnyJoHtlGQIIQwAc4dV+p3vdQQSI2meyC66S9R9/SWVrx2obLom9RdYqrJk07WsNh2f32xZxJzs8C5TO4Zty7buuFqsuFkseXZ+ybNX56zqDZ0T4BDT4PVoreeU7w9Y39DdV0nikHnSAy1kBz6UlNC9ZAd6wPJVythXXz21RAKglKdN/zrvKcuSw5MjyAyz2YiXL58zv7llvVnTBY/Rokjx5M0nPP3kBdZmbC6u8U6hrSEfl8wOK8pxwWqzoHZrQnSURY5Xms4rfvn5c5S2NHVLYXKWV7cQoN62MrmM3qN9CcLuG9D7qhExYK0hL3Ix59OGxnXUUUQL2lRFiamqofqUQULvopT0bxur/TJjb/rUZ/GCIO/+617cIISdgioMG+bwnKhdU55CQGHTNNTbDarrsEEoMbGt6WIqU0fhWe4crOViBs2nPYCVQkOprgC+6Vhdzam3G3SEy4sLPvjlLygnluPZiMNxwWg2JYsBHTxd2wptwhpUJY36ISrW21pkOm1yNkaCmMl0zHq9kawT5dBXEYIfGipj6gUSv4qU6iQSgyhGTcZjNoV4tTRNSxFaXPA419EGR9N2bDYNzaaWe6E1ytXU24a2cWzrmqAiRdPSNC3KB1qb431PnhHw4BsHtaNrOryTza93/8Yogoq46KnbhqariBE6Feg6h/KRicrIRxnjoqT1HY3rpFm6KMhULtl/JfQ909OUesCdTAtR/XO/A3JDF3w/N4bpFxPtKQy/U4mSMvRDqP72x6+sDQI+NBrlRc0L3wNZRXIDQnxQ9hXC2GVaU5ZVqI4M7/Pep3PpjxUgQEsE5YQLrMTHQChwYRDGANLPQcWQzA13mTOiwvt2yJ6LkahFEcl0QClR7PHJ4FUpA7GjT3sbxWCYqLQcVCnZGAYqT4wpOBZaZ1RyL1SUdTT6ADpL7+7HvtdYkz6Z6DwhNinnm25hWttVZLgXgjelwT/KFkxAE72AUdHxcAkk6OR5kTZl7wlBKkJDMkEFYnSv0SN1qkxo64iIbp82CoNUgghSQbFaU7pyMIa16f4EwAWpFquUmDNaJad4GQNlpNk0RkWscnyU3k2rQasxIB4UKooAQ1RCOQtBTFbpvZ5iGkMFEY+JaZ4qmdtoRTSDzIOAPN8H00KpQ/Ulk/6ZSg3h6ethMscB8xH9bo8zRgQKhKYYKXIRIrVaxj91PMncfQ0QAUEoiL0holWRbGiXjHgUyhR4ZQgusLpaMJke4VwHRolrd+jQNnB7ccF6uSIrxqzqmjZEdHlA3UZq75PohcMFz8nJIXWMhGrLOjqyzYauq7m8uuTZ5SWX17fYgxLvOpRWVGVFmRfk1iZxF1HsHDxDUjIpJMsFoxTa6iHQMzEKlySpGAat0CHQbYXS/eTRI7756BHfevQGk8Jg1yv8vIHxmPvliB9+4xv85KNPyGxGmVdkNqP3mymS+WA1HgEZ1WjM1XLJKnhulmtyDW/cP6PUmtx7VteHuK7Bdy3bd9/m5OiQNx8/IjN99U7ROYfSmoODA44PD7ldbTh/9ZK2qQFR6aKnNhlD10lyonFucKZ3XStMBC8JpSwvUMZKMiMGLGluB5IHTeDk+JCjwwMCig8//5KNjzx58yGTStQZQ+eo65pN3VC3AT/pUtKnXxtlPTXGUFYVRyfHNM2Wtt6SkdTmbMadR494+OABi8WSL59+yWw2FUYHhjZ6olaMj4+Z3zzn2fWcTz/9nHunJ7z/ztucHR8SjKKOkViMuNq0VFXH2Z0TJlXJ3Kh+YQQYDLdjDGy3W0niOc+Xn3/OB0dHrNYrvvHu2xLrFbl42GGwMZLd3uCLG6mKjmecTic8mY6pWseLTcN1E6kOj8mO7qOnd3HXX1CPSkKes3KKxijpKlGyUqp+14g7pS8BLgIqJIbagZqhvT6y18/Zbzzpj1PcNHivsPvcgSe2B2r+Q5RUvnagsu46og4oGzFmxnLbcbnueLXxhGzCdDqmMJbu6oZlfcPzqysubuZ8+eqSi4sryX6moFEGtKd5pI2+rxZEGai0PaeNOwzZjp5m1L96dYMQ4q7s/JXKw1/12u9t2QXdcZioMQSKUcH9N+4zOhjTtVuev3jGsxcvuVmuqduGqjBUWcn9Bw84e3Qf7zztfIn3DpsZxiczDo9GKB1ZrG7YtpKdKvOcmJX46Pn85RVlOcJERZmXbG6WuEaaXPOyTBSI2CfOEmBLm06U6yVCkVTVtNE452malq7r8Kl8P/D2E1KQyZv6UtL3gyTwEOZ/5f8T2OkDEfnPD8g+WrMTNWgbGd/Y56IZjh3373c6mg+Bpq7ZrFZ0mw0tEeUdzWZFWxi2wdM5oT702fD+IwfEH3vFsl2g219Tt21Znt8SjShLXV1d8uGvP8QWinffeoP8jYeYvEAHh+okPNBKKHRBS+6+84Ft3TCuKsqilGb/4FmvV4zHI7Lc4Hqn8zS3g/Oi4pGAiszXQIx6AJpeB4o856Q6xI60ZCid+F6oXotQyXMjKk3JgV6LKZkP0hAtwECyo84HaYB3Prkxa9CGkFIwWVQELwuUthZlRfFGOEkpRAwhaccngOEVJZZRnlEaS2Es27amcR15CIlWkWOjoR0a/nqZZSlnp8g+0ZH2+sx0vxjsTZThYU1zL5LEHXbN9TEijdnDohpeq4b0k0QqY/LeGHY+NZiUnUZJDOnDEMTr2K8Terif+7RHYnh9Loc0T5B7g5JnS1hYsuENjYwKlBXgEfuUGEgTRgpwfQoUJMNrU++PZOKVtqBMAoApe+YaBpqQ1O8TVccLKNIK4ySgCcmvJwYJ+pU2WHTapMQLwDuPzqz0I6ZFWWCBQelE4AwB74WyFZUooTGsIv1io1PiQqKbmHpjAKJPFFStif2GrCRg7Nc7fCAoCUJCEKAib5NAR+uI0r3SXiYZxiiyy6GfW8aivARnWZ6JQlaUnjrVr/9K41yackZuq9YKa3v6ofiNdG0nx80LnOsTRh1FPqGXWPddSqDoiKulWiV0yTIli1KgT0QN91MCRZ2AE0rjfZrvqQE89L1pKiXrTNoYlEIZURWMiHoQfTbUh12vXOyfrgTEUsUvBE+eWxypty7N+h749DQRlZ4hWfSTYI0PWCX2FiJkIqEVJpOeGRfYzFc021rWcKVoXIfvtmQtvLy45Prykjw/EAZBZrGTEzaNo+k6QtkSXSBEz/HRlE0MNLlhuWmIi5YlgV/eXPPy+orF9Zz7ZoZLAXuV55RFQWYt3gnroCiKZB69J8KTEhVKQWa0yArHKH1kqReDBFQika7e0rUtTx7+gHfeesJbjx/DfEF7dUl3c0M1PeBeXvDDb7zL3/+H/4i8XxuNTKyubanynIOjQ+7cu4fNRoyt4XKxpJ7fsvABHSPvnJ1yUlUcGMPq7ESU95K0dVHkg9M9aa3qnJNm7oMZ08mU28WK81evcJ0wWYRK1QNVg1PQBce63tJ62Tu6tkn+MiFR6cokQ+4H022jREo3RkkKHx/MODyYYfKCj569pFGKg9MjrM7IlCK2LdumFkpZ7Yltm+ijQgMG8eyymfQvHRwfUtdLmvWK0lo225ZR5xkfHPDg/j0uLs5Zr9f0PYwGmcNKRcaHM9aXz3g1X/Hrjz/lW++/xzefaO7fOebZxlP7QFaNuNw0lEXDbz8+YTapuC6y1OclsaYYXkrVqK630kdmLM+ffokyhtvFnHv3zogkqnuU58WGSH5zRTu+RRVjOLvPyWTK41FFlW34k2XDqgmEgxPUwRlmdhfXOrpC6F/bYOiCTu3vaR2JifYcGRL3fcLJp21TRC7S+tXjjP6Z7aO6IaGX1of+8/q4d/hdQj1qx274D/H62oHKigmhC4QmsO62MqFVwbe+/T0piUVYbNZcX11wcfWSDz//FBczgsopjfDlfAx0PpWggB6OiG5+GLKThl2gMWTm9mKX/Qb5GKBtHc53ks1Wuyzev+s1gEUkUG4b2aCDdzx68xF37p9yevcQR8O23nJ5e8v/6f/yfwUfcesWc13iO83s7AvKcUUxrrheLomdY1bOOHlwyNHJDO9brs4b4hp8HQh1IJ/kaKMIyuA3NcpaZgczRnlFt21YzpeoxLm1acIGIm1wZL2vRwrgsizj7t1Tgmtp6obL5RLXBxfaonTqL4ohtRv0waMagtI+0tv5Wv4meh7ciaFvDEljGFDGoGYzMmNR3rF+9RIhAMk5Dk9AWuh3arKJ+rWpsRjGxRhzcsAXF89YrubcnZxyOjsANE9HX5IZSwgBF6RaknJAe+erX3uw8kIc0s+fXuBch+sclZ5weHSHo3v3WHWeP/nZB/zxn/+M77/zhDdPT3h4fMSD4xn1tmN1u+JP/vTn/Os/+ymffvEUgKoacXx8jPcR7x2X15e88+ieaKIrNZgAEgSAKNXnoVMGO3jaNOdDDMRxxoN7d/ntNx+yyWUue9cxpaQlsKLjerngreqUbx7dY7vYiGynVrjYcGcy5c2TO9xb3MXmltF0RF135GhG1nJ4ekBxlMPI8+RbD6iLlnqq+eZvfYOzR6cEG4iFSs3NmuPxGFve5/TsiKNiSmYyrMmJTjwijqoRL+dXfHb+gj/68Oc8W91ynBVglciBRiOVC4W4r5MCAqOJzsqa208hJY690gO3x6BNC6Q2O1Ca0rvy+xAk884Ok/Q5nxD16/6sfSDaN9r32EMpjNIIY11oZRIwS++J1moQ6Nh9eq8Ms7+C7E4wAk2UKprUcRCSfgxEp6SRO0bp7SKkeWHTo5ASB+lwmS0GoO+B6IJUgEwKzpUnBCWUpBggZEOiRSEButKKqKwAIBfxIZLap4cGe2ICtOkqvE6NnMrg644YRWbO5EWP1hDtMqTSEM2QiPRtTMF6Dz5EplmypjF5T5khQxdVAo0oIB8gakj3W6FRNkMpWf9M7NMrPqn9CY1K5WmPiB25MXgUDo+Jdth4o4qoAKFxyEn1GNgMINkM8y2pyLmIa4VqppRIzqpYCEWtjXu9lQblBTCgIbqWGMV92piRVGdReCVjr7VBKzOspaEfQA3eS9LAB0cIaafULt1bAco+9Y3pGBBdZ5X8nxKV+jWOh8InyWHTSyKHQFevUV6epc5tCbYUtSsrwFilXh+xJfDgO3QCwSqKWa3SGq+jqDRaS11vMMZQFAVtvaXe1ASbM3vzAb60RBU5Hmds9JjVKvDhhz/n9uaS29sbPv3kz/FtAGWY3n3Ayb17zE5OOKgK1m5DGxom1Uia641mfbPk1eaWbbtBRYPFUI0K1s2G1negILNGenhSYjTPMsqy5HY1x5OqX6pXZlRYZciMIrciNKC8x9UNIctQJiMzFltGWG+ITUthLeODGaOzY774x/8Y/+wF8XbOmbLcfecNjr/1LvdmI2oFIbTSo9J5mk1NkRnund3h2995n/HslKuLC54+/YLPL66oOwHzo++0HFQVx0XGQXVGTNRuY1TaBwNtECaDsRmtE+nhIi9Yr1bcXF1x8eI5ZW6xVmO0kuoJEicVecFyvuJP/vWf0URP09T4ZosBcqPxeQ7pedp6kTKPRvZ72cQ1WkOZWw4PZrz19tusvacFxrMxhVXEpmW9uCWGFkVaCyPS9F+MCFE8SaL3TKZHHBwdUY4rFvMXRNfy+P4D/sXPf0X74a/57OoVT+6c8t47b/HfJqsCo8GEiNquACgPZmxNxryFP/zJr3j7uz/i7qNjfve73+HyL37O7XrL0cMHPF1sqd2c7z+5y5tvPEQp+Nmvn1HkGUWRMZlMJKlBZLVaoZSmtDmhafn4ww+4vb3iD/7O30Yri9YZwUFEJL/D6hydfQN9UOIOj3m1bnh5ecMfPDrkyQqug6OzHbfHx/g33uV+93eY1rfYdstp6dBuQe1rAQoxJisMUc8ValZI8t2kNTQlZYZUFZJMSTGi2wMjfdzd72q7wDqtkwjKGfq7v8pw+BpfXztQ2XqNc1HkaL0EhiEa8rygSJvQs4uXrNZrtnUrpkYEonK4VOonIc7911+lxhUSnaP//WBWszdcA8XLR5zrxDfgK+Bkp8rzlWFWw+0gelEqyqqM+2+/Qds6ri+uiZmmcQ3z+S2r9ZK6blA6Z367QoVIjkFnke225vnzFyyul7i25cHDu/imoZpWjEY540lB24DC4FpP13qhHLQOpZEsb5DGvVs3h1oMwYyxQyARE0AIMRCcp9UhGSZqMSAMga5pU9NbzWazRWWZUEWSZJ5ItPqdgAG7DGmmNX5QMkrUqr7TJPY4o2czCt9/V5FK46kieIfr/6Cq6B8am7JXRHmoeqCqFOAjIXgmvmJ9s+SLj5/yx+OK5xcvWKzmnI2PmY6nGG34+INPqVdbqqLAJoUltZ8m7O/13jxQ6SS9c4QuiKNzjIwmE+48eMA7b79Nt1zSLOd0bcOLiwuW8zlfPssJRDrneHl5SeNaqlFJbjRF4jT3SmqrxRKlHhAjNJ1ntW1IrJ4EpvSQURelHHH/dsbROoMxkcvrOcsI190Kn7w9JqbEK2hUJOqI845immMLPaiSOTXCWMuCjrYEZzw+bHEa6ggb37Ged5Ttgk8XF1yu54TK8PCdR7QZfHZzTvuzP6PdNHKvtKHNIp3yNLR0qsEoyVR3LpIby01ZcLWdc7mc08VAFwKtc2zrljBGMt/eyxyKDIGoQqg5Log6Fd6n0npqXE0N4D2wS9ia15x1e9W4/r90H/pMUWCv4jFkkdTe+iw9MQNg6VFTRDaB9Dc7EYTUF7dXpe1Rdl/5/UqaCqIW9Z3+LOKu70WpRENKAaVP1Zz+YYpKspQqRlH16xM57EBMDCQ6ilQBhgtONCD5dKEr9QmBgdo6nHfKsalI7Kslip0mv0YybCqtGahB0pIYEy9e6Fji4SDvMYbhWnuKphpASsrxR9jJ0gigUWYnjiHH3Qeg/cmFYQ0auGxDAqAnyak0tjElt2Rt6H+3d1eGz+7FD4hqz2RYMpjDIkhiAwSkMtavi6EHKjpRWfpxTSpt/TxTciylxCxGg6j5IGCS2FNw+4BCiSnqAPj10NAfI4RBsn4/obRrnt0H6HrXYfuagA3KoEw6RJBKFgpsaqa31tCGQEx7UUhS4bEHfjGksdudS9t1MvoafAq2jYHjk1MKq/HNhmcvzskyRddtubpdiLT9bCbPTF6Q5SOOT++RZSWu6bi9vmbZLKm7LdcxkquMPFrs9ABXr6kbj7UFHhEqWC3WdF1DDB5byR7RK5T5KE30XdvJLFIS8Pf+WZJoEuGI2WyEziqCtbzc1vi8gqxElR49GWMIfP7lK57OZrzKDYfRUxzOsOMJzXZOfPklYTvn7cmUVz7QxQBGE5Ws5VEptm3L9c0tjoKm67BZzpv37jFfLLi5veFnP/sJnxYFozwj9I3sSvbgLMspRxXf/MY7jKtK0gdGwEimIk0tss5d21Jkhhjk75xPvkpKkZmMLgbmq6W4njtHiOJ5FIxFG8/F+StevbrDze2ccOckVe72kioonI9kRc7DR3f5/OKa2/WWP/7JB/zo3bcYGfChQSuN0RmZCRSl5XRS8Ph0yhdKS59MVIyrkvGowGgoixE+GpoucHl9zaJpMLnhO28/4dGbj3jrySOigm1dY7IcVdfEoPCLFdoonFF8eT1ns1xxcnTIt99+xP/no88433Y0IeKygnVeslQFBwcHnC6WNM3HGKMpVEZVFhgtJrPruhWKo1ZEbajblnqz5cO//CXzq2s2mw3W7lQ+dXTEbU1YbuGwQ3kR/vBty2bVsFo6stLA8QHBv8EXWqHPv6Ra3nA/BEz9ksrdENxKmBgY6RskpqRNT+GVHkatBgL8LolPep9KVWhF8l1Sw54x+G7RP8bykxB3q6mOsl71Jrtf5+trByqLxtO0HU3bERFJP5NK8XkmD8fVzTXz1Yq69Shl5TKjxyUX574KEHvktgdSdnJoJBOztLH2e9drCJChH8W7kCopr2dfX5NyU7yeYU1fRSLOOWyRUYxLnnznXbbbBqcVwdVsmi3XV1fcXN8SURTVmLZeQQgYK59VNw2vnr9idbMkU4o333xI12zRVlPkmqrKZfuIGp8ymlkuRoDa7/jqnXdsljWqk2CxKiscIfWARMm6JVf0EJS43FqNQYDKdrtlvd7QNA2d9xR5PjjyBh+S5n0g9kBR7WheVpn0nhTNRQaKTYj7S9KukqWQGGW4AKJovAfh2zMe0e/mWTL/kkyAGvjPRgHJk2ISR6yu5nz2wcfcXN3y6uaS5WbFQTlhUlZkynLz6oLNIjWrq71gM80OFdXe3ZVX3//UBeHU6wguBIpRxdGdM957/zuE5Zzm+pIvP/sVy/Waq6trXNOlZnjFertBW83sYEJlM4osTwGkp65rlgsZx4CicR4225RYTQET0gjc9/KgQZdqyGxmZcbt1S3zyyueLa5AQW4N01LUWZzWHB1OxJm9iOSFKCgFZGMK3nPdbolWOgVUVxOiFV68i4S6Id5IL1NRjDBZzumjO6ybmvnVS37x/HN869ARLJq7988wVuN9h3bSnC4N15IJLvKMDVvWXUMwGk8cmnHjOHGOo0/L3KDlhcisGiJ+N6/7CkWMRCPzzvSKT3vrQRRpO4T12QfAe893D5x7g7V+fvbBr9q9r6f2Q2qOT0C3ByU9AOlppa97Nn1ltU4Rdf9TOfROTUVYMjI/DEjiQCt86g2JsS/gp+dNxSQ/3IOl4URlLUxyr0QROBDgn6qIYW9l6383AIO0ge0FzsNn9/tWDyr69/fATvVUJDUUR0MISQpaD/dh6JUZvk6aACqd83DDEqs6nYO4OkuVmJikpodhVntruU6zqQcoPUwUsCGXkGg8MgCD6EQ60t6asb9XyLYfo9kLvnvIqnZFpLR3iaqVjGdIqmJoNRgUq6FPRCpysZc5VABCIVO7ySJV5tiLwuxc6qUaliSIM43yPtELBST2kDTuBRX9DNjts+zdb7kXQuVK/VEm4ROfqkoabFaIQaMVGnE/z0IvAZ+OERLtp68kxhil5wGR04+Jdmwzw9HhMbQr2tWCL758wenJCK0Dy82G0zuHVJMxWVlhizHV+IA79x/SbDc07ZZVvWa+mbPermjWK44PTzicHjM+uou6vabzIvHu0LgYWS/WxNBhtKLIxcg4xIiL0IVA5x1d22GMQVszKPepmKShtVTxZocHmERf87dznClRVYmqAjo4Mg2fPXvJp2XGlzpwkmlGp8eUecXV9VPaZwvCC8u7kxmq63hupAcsRFkvvbGs1htevHzFplMSCFvLW3fv8urVK9rlDT/52U+IIYhZpk0yITHS1B3jyYSTO3c4u3tXKtlK/G+M0lglggJNMtIMvsCr1Fwd4m7/NwYXA812g7GWvg9QK4020qN5cXHOq1cvub25kadCG2Jwe2BF0XlPllvuP7jDxbblZr7kj/7sAx6fHHN3VqJjlxJeBmM808ISJgVPzg74Y2vwAazSjEclk1GBBkbliDpolpsl1/M51/MlMUaq8Zijo0O++e5bfPz0OZvNltHMopqa6CJusZb91cCL+ZLlzS13xhXvv/WYo4MZ5nbNtvOErKLOR9wEy2Q85WQ6ERn9IJXdUZlU2rwXoIL0oqE11hm6puUXP/sFWkWazYY82xOgIRDXW8LtCk5rimgptaGpWxa3a25vWiYzS348Q49HfJofgM6p7CvejgqzdIzrltguCFbmpMYNq17sEzSIQ0rSuBjAyiAzo3ZARQ2L2G5dSOm4vbhYS08tu5jb0CtN7idFvp7X1w5U/s//wz9luVqxWq1RJhv49cfTiqPZmOm45A//7CesmkAXDZnOCNHLf1o2L1nYPb20bpbKrsSIzfJdkzg7WWHZ5CI+SOk6pMC2aZrhPcbqf+N5/7soYN4FylHGyfEJd+6dstpsuby85PL5DetNw/WVR6uMzGbY0HDv4IjGddyulhjvUeuaeu348ulTHj1+wF/7z/420XdcXl/y0w9+zhtPHoFXrFZrTu4dc3h8xNvf+AZ//kd/wu3lNZtNzbatqaqS9957wiyf0mxbPvv8GW3T0nUNdb1mdjClqHLKcsJkMqWsRswODnj+9AuW8znPL14xmR1xfHrCj95+yPnFS1arFcvbLarTZMpyOJ5Q1zWdc2IGidBvnEvUqfQQRsRk7ivFr6FEPhjJxSjSo1GCpLCtcZOKUBRQlYTWCeUgpM0/CqgyMWWEozTJhRgobMbFJ8949uGnrOsGbYxs8ulvIJKVBVUpBk9ChE4PmN5lPiUbsAeA04KstSYaCZCMtqzamudXl3zw0Sc8mlQ8ODriR+/9AW3n2GwbXp1fMhmNmI4rlHf84hd/yQcffEBucwjgO8dPP/yA25uWK6v5T/7j/xibl9i84MWrc/F6sEbARVRC4YiBosyZTireePyIUVWQZxmmMPzi1TM++uITfjU/p6oKjg9mHBcT6rZjud1yNxyg5cAUJpN+BWsGbqz3oefZoQDXJnUnbfGuRRHQKrLeNsStVLFEBjfQesd221BvGlbLNW+5hXgDbTYYK7TBiOL6aonSitG4YnxQUVYl08mUDEOGoTAiLdoHPNqICIG2GaTMTwQxr+vlcyO7jLhOCQulds+2EtWVGDQhisa+1ko21RRkyWfsArx+Jd4JLvTBbALaPtKbasaQVIqQ0zFa7bKsX0l2DGVBtb+u9IGw2n3dZ5yTj5CPPhmIGpQLqXIhgqISKarUa5aaS41QmnzcA2PowfhVOS8Z9j67HXe9fP3V92tnH7EO2Tb2Q1pF7zukvB++9snxOnhP9BGTGYzNZF1ImXTv5dO0igSvBrlznaX+wZ5qkO5tCHFXfX19VSFEUKEnLaU/3wvuE25LFRo7fL7Se0TPaIbECKnZV6ZXf7UxAY3Q41IJyCBliEEEA9JBh3sf9wBWPw124Ekbm4I6NYx7mnzDehmHqlcPzNMhDDI23knLDHEnRa6EhrmHy4hKXOsJLmVM0/qmzTDndALcu+P1Z80A0vpsq+hKpJyqMhhbkilDgcOU4vmyXCwolZgCe63wncNEcKmnTRlZT9s6sl55GhfpFAStyWczrNFk4wmojleffEp9fYt7r6Fu73F4NOW9b7zN5GAKxvDupmOUT8lMyWq7YF2v2LYNtQ9cn1+wnN9gihGZqbFmy3e+c5dVt+Q21LSLDa3b0rZbINLVG6LyvPfe73F8ciBjk+6z8562aUQaWWVkmU39rZHRqMBkGTbPMEaRK5G8V/UGlU/QWPTkCJ2XhHLE1YsX/PTTp5TnF/zBf/o3mLotYXHBlx/8OTe1Z07G73zr93hnmnM5tbhuy7qt2YZI27Wsnj3n88+/oCXj9OiQNx+c8V/87R/z4niEqxf8xc/+nOA8o7zEpepVRNG6gL1Z8OLymh/+8EdUxZiTw3FK9mi0jQSNsEJWt/jYkWUZRZ7z5ptPmM1mHBwe8qtf/YrVek3btnzzzTdRSrFaLrh+fk4IkWo0oqmXbNdrLi6uqNuOriyxQ0lxF+bmWcbJ4Yx33y357OkrPv74Ba+ursmZcpKB0RnaB6JryH3L2bjgr//2d/jH//0/ZnG7REXL0WzCwbgk1lusMsQA57dzlqslm82arjkENCenp/zP/97f4b/6r/8+F5c3VGWJdlEAf7MWJbc28OL2mp9+9BFZpvnxb3+Pb//ZL3nZRD66mGNyw9wbfvLRM/7aac7x6SmnxwdsOmlROBhPIELTNqzrmjLP034I47IgKs1nH30mdM7gGVcjlPJEFGVZsrq9QjWK6mDE93/nd/j9e/c5f3bN9V/8JRefvsR97x3+17//Pb739kM+mL3iH+qOT8ZHfNFp/NM1s+0txkkM7Y2BoOii9AaRPLMC0qNi+nUpVcQDJDl7hp6bXrhguGdpOeopZCGSuvP1UHFTQKZVkh7v+LpfXztQuVks2W5rNk0DqiN4R/QeE1uIjs61uKAH5YEYpefEJEWfkGQLe0lhk5oa+20ks7k8YEpK0CFKthklpScVNL7tUuPw6w3z8hq2I1nXvwJQhgzdXqZORYXRGUTFdlPz5WdfSDN012A12CInzzK2m1Y2TBUGeT9jLU3T0fmOTRsoc+H3fvzxJ3jXsFwvWa5WnJ9f0bZuAFRKQVvXEsBlli56vvXd93n06AE/+O77fPyLT/jy82csl0tUphlPx7z97mOyyhJ1pPEdh7MZZTViNJlwT99jspxwdX4NGHRpKWcVZmnIQsad0Zh2K6Vek2mKaSmGU03Ler2GCMeHh5zdu4c2hi++eM7t1YK6bhlVo16kZghw5J5qkT4lgYJEYdAqI9oMl+e0mSH3ERt6DBEhBMmJxigbc0zZ8tSUGZFFNs9EZ133Dcipb0AnCk7wfkebSCf3G9MhzQEBKWqYEzFt7Ju64fJmzu1yyaGGWmvaWuhPVWY4O55SFQVlnrO8rtEhkhnDpCyIIdKkUuu2adjWgbptMdYym415+rQVHwnVG10KHSnEJBkbPLnVlHlGkWdoC0WmyXPD6b0jJuMRJwczDscjNk1DtsqYTcdUNqO0lspme9lAL2Zu1u7CvCgBWhcCtfPJjyUmvaW+KhZS8508a23nqZuO1bpmPMrxoWOzzaiqkfgkoClGI3yQILk3VnTOYVSSec1zGXetyYoSqzNMlqW/B0KiHYS+xrIL7HppYnlbH6UyUDolSDXEuPudGrLykj0fcMnQV7K3BrxW9YhDoCpVngSi94LMHfUr7t6fXjoFfEM4mAK/nuL0+n3YBey9upVUffwwP/sMuDRT98Cir7b0R9ldkeCVNG4RqSCEONCQ+vftTL/6a+sDC17/3JiARKr4xRAFKaTKxPCxqVrSE7CIgSBJc5QSBbzo3XDtQwgzxMxqON6uSrVTqOl/N/z9gDNfB4PDM53AyOuqNnt1hf2P3Ivdd4SVBO1StUeWl/3M4W8uKv29/A2wCoNUfkh7H8Th8/pj9vN3R+uVPWUnz9/Tj9RrNzHG/hJ6aprazYE0/0nzbzj/4RbHvX97sCl/M1yOtmLkGqVyF7zIB3snfj5oS1CWPtvgXeiHQao8zgttKERa19HGiDUZTimC89w8v2B1s6BdLrl48YLjwzHZdMI7T57g8bLOmYwYPJ3fsJnPaZoNMQRO7j6krmsa5wkOuqZjvVzy5edPWS+X6CTH3ygzADvRu4PSlhidEVVquHaOtuswKcljU6Jn12CuIXq6xrO6jUyqijzLKSKpp9ARi5k8C1GRHR+xrBs+awJPr+c8zAMHWcbJk28xynJOR2OKwzNWVcbtyPJl07CtG5rOo5U4n1e5RZVTZpMxNrPcLtdsO4ctSu4/eIgKkUle9jNF1nYnT6HRmtxaMSfMMqJvRUhCaw7HI+6dHNM+fswbjx8yGo0pq4qAFlEJbciMkSDXObq6RmmF9w4XpeptoiY6R9s0zBdL6ral8y713TFUFY1KvcVBMa4q7t895Yff/w6zyRijxUwxN6RqYiB0jsxmzMbik5bnGV0XqapKYqmuY7up2dZbQkQa2bVms11zcXEpVK73v81777xL8JHleoNPyoA6dugGYvAs5kueX17yeHmPH01n3Ds74d7pJb++XKO0xUV4uVpRn93hYDTl4ekpn714RWgbirIYEjfOSwXcoAZDyJTnkSRO1LhtjQpC9S6KMYfWcDJT/M6TA35wd8ZbxxPCasNR7hl3S1ZPP+f2nQdsTw74/QcHBB1583jM5IOnmHbBan3NWYYkvELEBzU4z4t1hlRTArvG+pi+39+DZItUu2UgLQ5qj2bUF6B7e4ae6RBjpHUeY4VJ8XW/vv5m+s2GLmluRzqCc0Tv2GxEacF5T9Q5aPEGCNEPIAWlcF6kQHvVLmusVFQGoJIxOHAbyfQqn3wjYoCgxGXcOVxS7wAGqsJe8vQ3X7/xQzXQhIyxBA/r5ZovPvoUm0nZNDcaay2T6YzO3Ug/jPK44GTCGkOz7fCNw60bTu+dAooPf/krnKvxwdGEjpcvL0RdCckIeueYX91AlMyyi55vfftbfPd73+bHv/tDbs5v+eLzL1kslxycHHB4dMBv/fZ3aWjYdlsu51ccHE4pigqb52TVHSb1DFsWLFdrAX+FxuuAzjSnJ6c025auc6JDXxSAol5vaXxDJHL84IT3v/c+mc2ZL9ZcX9xQ11uqcjQ8jDup4ZT1jqJIFXupiShl4phluDxjYzXBimeCjwElom9kPWDtGTdJ3jJ64e9ak5MVxQ52xt3t8+kL7/xO4pVdBv61O9wHArHf1od3g9Jsmha9EEOxdZ6zsZblPFAWljwzHE0KMpNhlOJ8uaZrWnSEMrPiyZEqg23nqJuaddNiMsPBbIrrOoJWycxMD8GlnKMEgEYrbGraRAVyo6iqjPsnY6bTCScHB0zLgnVdk49yZkXFpKg4KMZUJsNYg7WGut5Q5hmz8TiBPog+klcFtWuZb9ZMsrE0bYeAT5WEIQhUPb9V9Ns3rWO9nVO3WzZNyWwm9AelLKODKXXb0HUt200tRp3OJadwkWwmAfksLzHaYmzyqEjBt++VgvbuET0QSaCzl1skVTaMManh3uKHQFgN/K3++Rcw2i+wfay7Ax/7ryGhoTUqRatD42DKPmkSkI67QHPoh+mj5LCrA8QUTfbfq+HRSM+/2iXIQ5DNvc9w6R6oDQFlBBWGFhqUGtSp9oN6BXsy5X1DfHpoiX8FWEnf9dc0fFRMAKUHFz09SfoAQ4hok8Jg1VN4IwQvIGUAmb5Hb/QALKUL6KHJa1Bpb9MfziXsSF2v37rU56IYKGc9Z/t1UKGGe7F/Pf1nDOOwD2DYJWJi/77hDIY/3QOdCmWUVOeQqqkYH0L0aviM185LbjwREXzoZ0a/N8h88gOlLu5d1wCQUqVqwHnDXOm/jfTzvx///n7EqHZaEP3PABLlMYSQKjuJLtwFfCf/Ku2JybdLGA59k2+qmHkvlaEQ6ZqGLgTsuJBgqvPcPDtnu1zh6pqbiwvaxw/IoubJG4+5vrnCdR1WGbquxjUd9XyB8w0ms5we32GxXrOqG5rFFtd1bJaep59/gcejtPiZCSUpDkkpEcrIUWREjKjdeY/rWmyWkWUZxlic26nQCdXH4VzHqqnJlaawAlR89DTBQTkCLcC8MIHtfMWz5YZfvbokP644OCg5/dZvo44P4OQAd35BnRmOCsunqzV13dG0jnGRMcpzxuOS6eldsjynzDNeXt2yXm8JxvL4zSeUxjArKobehKjEXNgJ/X1UlWSZyOV3dYCosUpxNJnQnt6h1IbvfffbTGczytGYX3/6+eA6b0impyGwWa1QWtO6VmjiRGL0Au7qhsVyxbbraJ1DxyQEku69QSjdhEhZZNy9c8zZ0RETv8H6hq5pyMww8fCdIysio/GYUVlS5BlNV1NUJWVRoHxgu92w3WzxUYxhtTFs6g0vX5zz6P4Dfut3fsR33vsm2+2WP/mLn+GTMqKJHZnT+K5jvVjz8uqaV4sFpqq4e3LMvZNjlD1HZwXRaq7aFVuTcVTmPDq5w7MXr2jahrwoAGEr+L6vJz12/RNuMwVlIfYK8xUqKMCQZyV2ZDg6Mvzn757y7dMxd8cZlyPDURmYmZqnz77g/OVbXN094T/99j1srnhzpHn1i79Eba9YrK/RpylhFgI+iAJsSNXngJLkwl56YjCq7od6eP5ljx/WX7W7kmFd3Ac4e2tu6xyjQsSivu7X1w5UXp5fsttyQpIuhGXXMV9tpQKiDFGLh4iKHms0eWZpg/ylVqJr3m88vSIQMQ4+AjF6fNN7oXgCYt7Yti0h+bD08sS/WVX5H/dScdfkWYea9XpFPW+Z1hV3z0548s4TXjwLbOuW68uFKD+oSIgCMnTQFKYitKCD8Fmr0ZisMLiu487ZHbLSEjPFhx98Qtc4xqMxKipWN0s++8tP6Z1Hc1Xw6suXNOstf/bHf8Ef/ZM/5PLVJSjDozff4Mk7j3nn2+/y/OoZeqVpVMd4NqbrOn798a/oHIzHE97/7W9zeveE9XrLP/9//yGff/QcRWQ6O+bk3oTOd/z0g4850McUeYEa5ZhRIdl0E3l+eU70gfPLV6KaEjtaX5MZKyFG3M17Gfx+TwzDWBICrnN03kM5wikPxqG2W2wX0DGIag7ipmxiTA3M4AjEVIY0/VH2gjyZd7ugJQKDelzcz26me9zTvno6YUwZ49hnohRFnjM9OETnmSiaRIvzkqlUEUwm9JK66ehaL4aAIUi/gPOY5PTdBbhZrphWBffu3kknpNFW6I+6D7yHcZOFwntPUwdc7MRpVxkyk2OVEYaHF7nWPC9ZrzqefnTB80/PMa4HOoa2rZlNxpydHBFVoK1bNuuab3zvG3jrWXZL2BqWN2tePbvEFqJMJrYlGpMA+Z07JxRVTlZmlLOMaAImMykojGgViMaDTT0rVkOIiXojVCHXtnRZMiS0Gp0VKJsNVdYhuNcmCWF4cXc2Jslw970FcRBdSDeTvmzdV9V2C/BuPkR6tfmeEhVB76TMe7rUMEfSZ5tECdHhdWljZSzG8BoNbFet6T90zzw1nfsuNpTMlzaiTtPPw14cZC90FtXDdGyR7ITo+1xZuqZ+IHVkMFfqAXmqFg5XpvoKUw9GXu8BjIjSlOqfqTicfhpyjc0MyojnRN8TqI2YkVqb7wGS/l6lPo3+eGr33/C9nAE9pbNvBiV85RneXdprAcLwiiIOMoChvfvTX1MkJX5fu7B0nJhaevq/Uz2Yk/EJvQqlTgHY3oY+fB13gyfWSH4PAacVKwLK7S7L6L05kACG2VnkamvRqXLVhw1hUFjcu4b9oegBqdrrMdqDSv2j0KPWvv8w+h4kxkQnAR0gQ6GD7MWu61C5wVaScJB7FYmxG/oe667GK/BKs16vxPNCG6xWoEXyuFnPMbnFFgdkZU4+G5NNx6xax+fXV7y4vODg9Jjnn33OzeUFATg+u8P0YIYJDf7mnO7llxSjw2QqrBnfOZQe1c7RuC3dq5p6c4uJjizPyHNLyA11CCy3HWvf4ZHKuC3L1+ZR3zPXNHWqEGtmoxGjUSWU48KwDR1dveb45ADrAmzG3F5FqruH5A80/82vf8Z/3p1xMHuT0x//WKSs6xV////1D2izEnN8SvnmIzKtCe2G0fSYg0nF8fEhv/vXfkwwlnXT8We//pz5fM56veIHP/wt3n34kG89fkSuRTFSfHx2YaX3ouK1XFxhlcQjMRoe3D3DpoTYcrng+vqa5XrDJ0+/FKDStULLVYrxeMyrly+RJJM06RMjrutoVzXLmyWvzi9ZbBumrXjalFlGDJGu8wh1MKcoK+arNcZm3Dk8JCxbYtMRIrTO4bwoF9ZdQ86Yw8NDDg4OqEYVV+s1Ns+YTMc8OLvDdrVi2zQ8ffESZS1FVbJdL/j1x59yenLK3/2bf5Pf+9EPiTHyL/7oT8GmvcdvefPxG6ioWN5e8fziis+ePsfPl7x7MOX8/hn/3ew5R++/T34wo64XNOOMptnw6O4dfvqLSNe0VGWB6zq2262sCSqts3s7TbNaoYsMlReYg0PUZkPsOq5ePeP49JDD4zHv3r/Phx9+wb/8o5/zl198xmox5+FBzpeffsSLn/85H9a3/HLxDp/96he8+Oxjrv7iL7jb3HAndhBPBGTEiKbDxoAl0ClwShGNlkQSMXmCiYpiHJowE9U5zfUYIr3XWG8PEEl9LHuJobRiQ1S0nafUBlON+LpfXztQEbqGbDS9a+WO5gXCj4OegqH6DUSJUZkhgAoYY4cNyGgzBKNqr2wOEKM0yYewMx/7qvfJv63/ZP93rxE3UoQg2SPP5GBMPjphNBtz9+EJozKjshrfeepNw6Z2HJ/NyMucPLNc1JGuDbRoYp6hvMcCi/ktJtOYTDOZ3mM0rfBW9O5jdBhtODg+oKsd169uuLlZUBQFb7z9iNG4ZLvd8MlHn7NebjDacjDLCcFzfXPNn/30J3jlabuW+WIBXULz2tAGRwigswxbjtBNYLNtcC5gtUJFKIsC47U8uPMVazaSWHPSlDm/XrC6WUGAvCp49NZDgg9sl1uCk6ya1nZA7ANNJu2CfTASkCqLCrJRRRvxQagGOgbRoycBAfayq4MiBcm4athTB/1+1E6hIuGm9NdqeLD+rfOXIX5Kfg7S1Lja1FTekWcGr0cEJY2gaQYTI9L4TMqiaoNKVPbOdXTe0/rI1fUN1dkJB+MRoPE+0nQOM8iEJjMuBU1n6TpHyAtUluG7QMSA0kNgogk6AAEAAElEQVTQPoB5LX0erWvZrGquL27QnYAMrTQ+dKznNcvrFUFFmrplu6opTw4Yn4ywhwXzxZqr5YpXF7dkmYDuGH2i14koxvXNEpMZdKF4+1tvMJ6VVNNyJyc9BHQK0MMCBzAaVVQqG7LCUWuiMfJv37TbB+Eq+WWovhE7cfmNHoznCGEXpcpBX3+mlRp8gPYz4vvv73+8C45fXxN6kMLee+JXQMj+OjNQlXTf67L/Qbv3D54ccbfqvAZ++ska2V1/6HtLdtngvv9kAEYxjc2wnezRqnpQsu/x0h8vfdsLgqV9agBU0DdeQk9z09oMinpKg45yDm7IsgYCSSJ9bwCGGsQeyEibwA6ARuib1XdjGIc5NoxzZNgL+kTEUC1j0A1Iv9+rkoSw621Lf7y77XuN8WkD6z2q1N757N2u4Vhq7zhDzN8nHdLQDwMee/yyl6XsyyD7gGk4Xv8svH7sXqHnr9rm9rAI+9S4fTi1/95+FQqJ0rc/LsN9SM+vQqeKrSXPc2yWYzORvm6cI+DRKuJioPWebdvShSACL3mO7hwugmtrYlagbUaRV3TdBgiUkwNsUeK14tXNLbeLNdtNQ1FaVCaVqmazhRjEfDIGRkXO4XSCKXI0pahiNh1FbiltxvrlFXRuEGTo6cRGSxbae4dvO/B+iEuGe7m3PvVgz5BUNZUo0k0OpiybSGxbTqoC5zxb3xGjISsrRuOSlybnF6uaO8/O+cGrc+abNc9evuT/+dOPufPoAd84PeOejomJINeWZxllUbJtHG10LLY1KIsyGcEYNk1H67w40hsIPRU79HMrJonyZASYPImUNZjMstys+dUnHxOVSf2ontVmjU9+ITkClDNryJOSqjx7QkHM85xxNUIrzc3tnPl6zWw6Imot+1TY74wjrR0AntBtE9U5EpPgQkAC/s4LM6UqS6bjCeNqjFbXtF2Lc076N4sMbS0+CPMly4RWfjuf8+rVOeevXnF4MOX+vTNG44q6acSkMsK63hJ8pPMd8/mC66sbrq5uOB6VPDo5ZDIu8VbTWk0xO6ZRDRvXkI8KlLVobRiNRpKA69xOHDLFHjoBdh/blDBR2GoMbUt0DSp01JsVL88v+b/9yV9yswnMlzUXH39M225p6i2nxmOff8Jifc4fvvg15y9fsri6wqwXtCoQjB1ofBhERElBFyMmiKF2iHEnTjjERX0SRA1b5F4GZfdd3F8n9lTD+k9JH2rynM4Hluv1by5E/56vrx2o9BkdWYd37pgiayb88UEoMzK8FxRaZRgTUdoPrvJEMNoOmTUJdOMQCAtAcfjOpYcnJgnLvTP6d4CV/jW8o59pCEWhdQ13jk658+CMN995wptPHtJuVrz4/FO6pqPetGy3jiw5yI6rMfNlizcdXQCDRqcqz3x+izaKajqiKAsm0zHeQp7lIkmsFbOTQ7qmoxiVrJ+9wOaWN956zGQ24uL8kl998GvGWcWoKBiNRjjXcn5xzsfPP+bO3bsYY1gvlvi6I88y8ixnE6UJsPPQdJGmE3U2pSTjblAYLaZ2GsNmtcV3HnyQ/gOjWNwsuLm+QSvNO+++w+ndOyil+OjDX7O93eI78QOJKgUq3g/BRr+wy0IvVQsTgvQl2T74DMmALQxzY3gkVP9gyHzpm2N1ekgSpnhNCnYXguwFRJG/cpMetmnVq92AQigazgXmyxW5y8mrDK8iQceUNdlJmvnQiSiELFH0yjzO+1R6hcurK84Op4xOj7HG0jhH2zmq3Axg3vuIc+LwXjcdZRHIC41L5nuQgIrWQ6Ao/VxWgE/dslqs0a00uCsUSkfWYcNVELpZU7fUq4bTd+9zd2q5O7vD9sWSZdtyu96S6Y4YAs63mN7vJQY4vyaoiFeB2dkhpsqYlTPZaPpkQp9nGVSg5M8FqIjKnzJG/rNWQEpynJfrSWaW6WbqPaAila8UcO4BDVledtWV1/6N4TfWgNfAzGsZ/a/Oif2/IV3X66CsP4Pd/O7B62ss4GFe9vcLGAKlHhC9FrcjCECplJfTesiw91VDCaj7XoVEMdoDJa9LNveZdL0LOoe7RdqR1ADwdEzO6mFX2RkCnSjVxv7+qhilEqVVaqBnoB8Mx+1DlV0mYDe8QzCcVAX7DWJ4ePe3xvQhPRjs1ZjoKcSxP9kd2NgHAsNH7Hjc/TkMVR3JeOxNhQEV9Pu6zM2UqUzb0TDWIe72tZS1G4DZcHlIxlWCSD9cs0rn1s/94TU8G/wb1HVSU34/Vn1vSX9y/SUMQFH45wNtcLjM1N9H2Bu+PsAURUZRRjNoK4FhXhRkeY61uawFaY2wKuKCp/Ee07a0CajkZUlNA52jabZYLX0fZTkm+oYQA9X0CF0UtEReXt+wWK5p6pasrNCZRueGtq7xzsm+AUyqiu5gJupWtkTrjO16y7iYkBeWdrEkdh1GpT7ZRIc0ykhA6Ryh7YY+yf35IqIHMh+1UeKBlHyQ5KYopocHXF2vYN1yUmWsnKbpLAFDnpdMplM+LUd8uK5RX7xk9MmnfHF+xU8+/px/8MFTfjia8SjP6am/MUSMFjBobc7V7ZJt51hst9i8JCtLdNswX69ZbrY0bUuWpd5d75KxZhwapoWSqQWoWI3ODCozLNYrfvnxR2y6iNECPEdVgbFyj4MCq7UYLaKEEdG0+BDEcd3mTMcTlLHczOfcrFYcbCfYohjii9gnFgCl9dDn49oNuA5hXehhrfGI7H8MgaooOJjMmI4mWG2p25bWdRRlrzxnicZitCUzGaEomC+WvDw/5+nTp5zdOebevTMODg9ozl8RXIdGsdis6ZyjbmvmtwuuLm94eXnF4ajk8ckhs/GIWxVoY2A8OmDbBtZKU41zdJZhspxqVNEslnSu262V6VnTQZJS2jmck57pvBwR1nNQAas76s2aZ+6S/+Zf/Dnr7IjWKdQvv+RAbRnrjrtZpHj5OZsvNvyRhU0tNNt7ObjcINKyqUfTKFQQpVQLWCJE8dHyPUDd2zfTzpD2tr14qV+7hqU0pceU2is6vP43NstwwdNu/icAVEzKOu3v8cMGjWyAPckiIgoPISqazqFtwBhNZnKKIgdkIxLFooAPKjVNycbk2xbnOrquSwtG4tHvHfv/X9pXf94RKflabZhWEx6c3afbei7O5/zqo2dsa0c1GnN2/5D794/ZrDf86ucf4/KC8mjGvTcfYoylvl1y9dEXVFZhrKIc53z4q18znY05e3iPw9Mp2diybjdsVUvMItmh5fDxAQeHB1THYzbrhvVqC95jlKMsS87uHNIUiq1r6FZzVrdrrLUQNbEVbfHl5pbFYkWWrRgx5ud//HPqpiYDHj++R1nm6Lzgpz//hM12S0DzO7/3exS24Od/9lM22w0+eg5Pjrhz7w7WZpR5hcLQti2bppGeghiliqMDip18Z/+KaldqzIK4qrvOibkdIlfczxGZH7LJh+QPIlz3/XygZI76YsQg/f1aGnUXoH11092fnXtHTIGfwZicrnMs5nNevHzO7OF9RiczrEnhRXDidK1lk3p5dc2XL895/vwldd0kilvH8cGMyWSMC5HriwsWZ6coY3n//XdZLBZs65rJqCQ3lkzLptCLRHz0+TPy7BVFZolWc6s7nAnkWmhZvat5IOCDAxOxlWV8NIZt6Hudxd03WLRXRKPQOiMrRkwmE4qyAK0YzyqmB2Nm0wmqb342Y/kAZEOPPtJ5x7brpNLmxdIv9hQYpBF811exC3SDFz8QrzyT8ZTpaIoqRkTEC6SsCvKiEAnjuqXtOkA26iLdU9P2nHyG4Ly/gyFxg2KMu0THEHym+74HJvpXryIIDA388vtelFESFr107v7822Xe47CoE/eIWHvr0KAyp3WSBJa/1XsVmpgWrz6x3p9X0oQYPtcBeBlz22d0lSLqgFImVZtIQbt85mvfvjbroV+f+yBX62ScgdCFfAhJ8lwSLhpFdGEI0MSsEZTSWGVTQATRR1zvndx31PdBst7bMBOg8r2MbwJ6qgcNe1/1Y4hSCSSoNO9UkhnvAV66OtWfcUibekz7SRje249DRABXfx932zDDWfRgNc0YorhC7b1z7zVcS0xCBgEfdiAkdN1wPjswDgozfJiA8x647j66B4w+hCSfDdFoBim0r8gxClVMJeU8PVxLUEkMARKNsJf3ZoeGo5YqYIzpczQuNdy7GAg6ovAo5fEWutDStuIwvzmYkgWPNnDb1FxvtpAX0HmiC7jGE7NAyCN5DqqBDMvJ7JT1tuXZ+QUH4xmLtqF2nu5qiY+WvJqg9Tl1U7PabDm8c4rKDUEpsqLCeUfXbLl89QpnHlAdzFgtzmnaNUFFrM5xyhGVxpSWLnj8ph4axGOMItsfQqKgSr+ozQx5YQmdw3UeZQ2Ni7RbRzmekM+3GLdhrECPSpyxXNgLoYopmD24x/OLKz65vOaf/3f/jEYb1saQPXmDo4dnnMwq2rbFeScN5hHmqy2b9hXNyxuizdBFwZtvPSEvM4omp+0cTdfRhoDOxhA9qFZ6w2JKJKRnIaIkmZvu48HRCfcfPubdb36L568ucD4IDTXNNe88Rnu6KAIIVVkmiqqohTkXaGNkPJvgjaVtHbc3c26nM4rTimbbkisYW8WqrmlaR9tBYZI1hU57aXDJykBirrp1bBcLqtGE0ubcu3uXu2evKD77hExpYdpkBbebDcumYTI75OZ2gWkbCmtY1Ru+PH/JP/vTP+F/87/8X/Deu+/wt/76j/m//z/+W25u59gs5+hwwrbeMp8vaDGUkwkffvEFf/1H3+dxWfHO2RE/6zpWyzV6dMxVCzFoHh0fcnJ2QrXYkOuchXNs2xZM/1T1K4dsClpZMheITYeqUo+g0thoicrgiNwurjBPjikPjpjN3uf0y484uH7F8WZJGzs6CwsdKUaWDE2pa/LCovOcm9LSqEjtInOv8elzw2xGt95Sr2uu59fcnYwpyoosgopSGXPJ1DZo8Q/qAThI7BX6CndaOzxKZIyVVPmVknhvs27EePXk+Kur4L/362sHKpJ8VWkh3gsG0r+KiFFq2BQGKTSlsZkSBG/sQGVQKNquGzJtwXt8qqK4tmNQ9+l3/b1j/o8BKa9TVfZeab/TiHvu/GbB514oV3mZ47xD6RKHFrGAesX8VvSvg4+EdY1DscnPicZQr7Zs12tyZSiKnOl0xqq+pr1xdMC4KikKg9pE6qalsAVvvf0WZw/OiEQubi6Yv1iwvFpQVWNskLF0weOThnsftJlEDdpsaglKtKXKKwiRV0+/pK4bfIzY3EJuCVqx9Y5N0+Ex3H90j7feeRuN5ud//lOh1KUAMM8Lkf31kdViJRzW2hE7h/KRwM7IK+5t8ENiN0qA0vcZxa6VNF3UBK3E7VorTE+MR8qYQ6iy58fwVVrN8PNhP9/LFu+/9a+qrqVMGTEMdA1FCgLajvlijrt7Sp6LBLVQ1JIUdpSAbLFqWG8atnVL0zbpuiNHh7NE1dLcXl8TY2TbOt54/IDF7ZjFYiGNjkbUVfIip25a1puaF+eXqCjZLDKoK42f2V3YFqVpcj+70X9lMt0n5uhBmI4QBcfiTexVbxnUPnzAd1IW10ZjtR0CE0IcpHStd7LBJEDaJ73757q3mopBzN/KvKRerunalq5t6PQFrtxiRhO0UWANrszIZ4fiD6QMyiQvCCN0N6k2BVky9Ov3UNROBBjvAv+U0e/vuZJm/H5G7OUzXg9MU8CoEx2kRw27Ie6pif2cSZvSPifor3j1NBLvPT5IUqbPzO9OYu+a4msfv/uXvWMimceQKK9G7a4j9A9d3D9E4h/vHXcnKDGc6XAyu6JRpEe9vTt3X1AhJXOUFv8bOYUk5xzT/UoTRGhjPcCUCtke+e03xE+GdWNvSPt7opVO7++B2P76L8fZvxVxd8FpPu3u15A1jKRG/DSGfZW+j9f70RlOua9cCAjZzb398+9B0W5dksxyv//FhETlILGXUNzDJbvnW+0dvx/P16t7fYNs73kq89mgeuDy2jzbn6s9zau//2r33l49MVXbeqDXixxEH/GtR+sWZ6IkoNqObrNmvVknufUpbVvTbDdoJZ5REU2Miq51ONWQVQ22KKmqgpPTI1wmHmixp2bESOsaNssl9XpJXuSicGgMhVbMJmPaesbV5S1d2+CdYzQeY43Bdx3NcoVvXJJXdWRGM8oLDkczDIo6KYgpJT1pUjOP/aHl51pjtAXt8Tpi8gwHuMZRFD41PDnapsUUFdPpmHI6Rpc5XhuyomCpIstuy9Z1BG3wWkO3xRIpioK2aaSHBzH+FW86T8OWDoUzhkePHpAZxaQsuL685KmBWaE4Gx+AAhdErGigDO6tfSiwVhQYV5stjQvk5YjJbEZdNzRNLWD/tedShFa6ph0eo36N7e26vQ+0LrBerqi3NQHDstmSa7DasvGBxnlaJ73JUl2WOAbvE5gSo+LOeVbbBePJDB8Do8mIg6MZJydHnJ2ecjCb0TrH1XzB7XIFupTqSmaITuLPbd3wwcefcXl1w52jY37/B7/NP/9Xf8qy6fCLNY9PN5Q6kN2ZcY5m3LW8uLim84EiL3kwrfj1zYZl29B5xzJAToauphwfHlIpDS7QNo66daik2DpQe/vHSRth1bQtOmsFyGiNDgaDJguB8fIC9TLDLK8ouxrbbCA6vBHWhoqRXEV6MamgCi50wa9UzmXtWUTHOgY2waA6j0VxOqmo7jzkblby4rNfs12veNE0PKkK7mgtSa49xdWY/JZifE1NQ9bvmBrylcRkXiEmzSlBVGQZygWa1Zav+/X1V1TYZTz1sFLGYYNHSdUl9gt1H0oqJUpa1khzcdj1mrRtM3C5gw8E73CdKFRJQNFrzv9mMfz/t5d67Z+oRCrY2JL51YKLl5d88PMPmR0fcHRywv3HjwlK07kWv1miryPRC1Bw6w3ttmG53eIKS9t2bFZr8mpCpi2zyYSb9RXresNys+W3v/tNbG4JJrBdN+TTkrfefgtdRK5vbviLn/wl519c4daO0WiC3goIaV2H1xnRalSWSZlYazKbcXmzJACz4xPycUZXb7n88jkhiIzf6PBATDZDYOta2iBA5NEbj3nw+CGu7vDBJ4fagGulXKrRtF3Lcr5mvdriGo92yQNCOWnSiiBOxmnL29UKJZMTJYsSuhZsAWoHUryWgGt4ePpMo9qjzNAHcfGrd++12/gaSPmNADLuBdd7QQh75+o9vutYLJa0XStqIcZivKOnRsQY6XxkuW7Ybju6TmS4jTZopTmezhiNSso8w203ECPbuuXxo/vMxyXXhaUsSimtW81sOma52nJ5veCXn36B6zqpQppAPKpgPGU/kOlJID3PXRRfkN4jpdJ9SH0NUREtosbTe1bIZJd+LOfp6g6lwWLQMXGMEcoVSp5bk/xzohKAYNOAh3R8CZ5EYtiYjKqquF6s6eqGZr5mu4QsH2EnB2SFQWWaJs+wbcCUlUg+aovXEIzIifbZY/uVYJAYU/JCgsGdZLBUknSvqGZElhJ286a/7+wFe/3GrrUZmmdF2SsMf6uG+bRDaK/7qbyeMBkqI71sOoDKXkvm7M/h/XVsONceufD6sVzcqaOZfZCWqhN9sNpXLfaYTul3aVPd+/yUQqOnuPX+Rn3QLkO5C3xDcAJoY38s6RcMUXj8ksFlUP8LUbj9gUTzTEBml+mPEsjuCRT0c9z7IEIauq+Gpd/0rSr7F7h3f/ofyjqicCEM82e45B0aTWO1kwlWegfmI7t51HtFSU+VGQY2pt6WsGfOqPtxSONqjPrKOfZgqx+F3bmHGF6T8B5GpfeeQiqrA7hLPYBS9Nqthj34HShi/RX3Fce9GdgfS5oeEB+YmBS9XE8CM+AQABAVXSZrZtd2rFcb1us1o1GJNho3ABXZSUhQoGsc0UeyUcP0eMrk6IjTsxNu13PqrhmeOYCua9gs5myXS8ZlSZXnVNaSoziYTnHB88nHn4qMboQHb72NyQpppl+tUV72MKIn05pRVnBUHbDp1rTNVvpcURiTqnCk8RuAiohehNQTYPOM1kHdOopOAm6ieLiNtGU2mVHOxihraI3FZBlRBWq3kV7NTtbnUK/Q0ZPnBavVFuc8KFFOc77DuUhHYOsc2xBwXU1VVORVxWeffsLTbkN0K+6OjlDaJFla6V3oxUj6rc3j0caQZTlZlrHcNOisYDydEdWSut6Qmt/QSmFT0ib6SNPVaK2xuU0YO+CcrMEuKtqoWM4XbDZbotasmpZcQ5lp1l68R4IPlFYn+miivwbpaerXkbbzXN8uGE8W+OAZjSsODw84Ozvh/tkdjmYz6rbl6lZMHvWkwmQWm1n8Rnpzm6bjlx9/xvMXFxxNDvmPfvADHjx+g4vrOep2wdubKQ/HGU/uH/Fny5YtgfPza5rWM6osj2YjqpsVdIE2dLRBUSiLKiccHx3SKsCJiXHddWhrkrR8Wq+Gx1ujnBOieG7RMRKUQRGwaFQIzFaXhHaLsrkoiTUrfHC0JkVdMVKicAkctKrkuSq5iZbFZsOV86y8x6GwMVAazTdNyY/efJc37j/gTmb54te/5HL5jOtxySNtxH/Mp3sQZQURAafdijvEw2nN6vd4r5Q8A0rEcqosJ3Se+nbF1/362oGKeCruNR/2q0sPWIavZbEYWDrprgp/UicFBcngda0bNpOm2QoNI4avqPP81VnMf69X3C3XeZFjc0tRFVRVSb3d8NGHH5AVBYcHhxyfHpJllnq95WpzQVBeaEHW8q3vfZdt1/Crjz5idX5LXHaM5xn333qD2ndcnl8SQ4b1OQd6yq+evWJTrblbzlhuFyy2KwKK07ce0a1bFp+di/miinQhMhtN0EXGdDola6Fbbzn/4gXz7Zqsyrk7vsuozAguR9HhW0PbeuaLJWMtG141LSmrjDyz6NbxR//wn3J7fcvNi0uyVKK9/vycq0/P0ZllenZAXuYUpWEcNNODY2xmWLg126R8ZUB06FPAqKI8D0orrAffRXCOaE1SXRLdq97deHjGkya4iqkyN2R69gK4fhb8VWAkzY+vBoGvN4kNnyCBhAoQxPtDa8ui9Ty9vGX2+TPemubMrKEyCpNZfHBst1vWqzlaBWaTMXmSuVQo2qaWrJxzaBRd07Bc3DI7O8E5z3qzwWiD14rOyTPUbGtcW+O6Bu9kLmEZMr8qZaTl65gy3CK7iQvE1uO8iG1qbWVcrJEKCgHlO3zT0tQtbedwKiatdRkgg4AD13SErhOTPi0LZiQmXrAZlIiG0K4PcPsN0XsyLR4AZycz6DrmH77iF7/+gMJFTFXhjWaj4IIAecmdoyN+9K1v8s3f/SHZ4QFLo2hJaiqmDyBk4dx5qYgKjdYaa/QAPGLyY+oDjP4c418xV/rv+4pB7/EklYLeETzu6GEIMAh9BL7n3TIcJ81NaaTsfy6/884TBhDe93HsZuhrQh/7ZRW166fpf96PwzZGDCIJ2yd7RLL59Sm+23wYjFJDSAGzXDTDjSRVL5KCWx/Aa5MP12LzHO8doasJSqOMwWYWrYU/3Xu9mAQWh4pAiELfUn22Xg9Fdll/B6QlFMYQaJsWm1mUFoPUPhCPMTBUaoY1AsKg+qV289hojAo452iaBqUkAZFn+bBXKZXU1Pp7OACPHXDtvMO3otaltALbi3lEOpeOu1clEsqBhhAIocN7N2SVCb03iviPSHAuGVSGn/fzKAwNzQJC0vV6Aagxnc9gHNozwlKyJ+zdx37u9JVV8bzywxjGGAaVPO+lWuLC/5e6//q1JcvzO7HPchGx3fHXpc+sqizX3rM5MyQ40FAABUkD6C8Q9H/oX5AAvQmQoNcRpHkYDAcaDjWDFsj2ZFd3VXd1Vfq8/h67Tbjl9PBbsc+5WaabZPFhIpG45969d5zYsVas9TNfA2jDwcERfVCctzuyVowhsOs60ApXWXIa0DoLXMpVoDQhB4ZeXOG1SkSlxCROgTqcMzs75PDeCfcf3aN90bNZd1z3O2ylmemK9tU5aRjE9d1mwuhp25Ehg53PmefI9uYcW81olgfMHz0gYYltB7UjDSMqJnFnJ5GNZVSemCVg3nY7+r4n+ICyShTsrMVVEas1mkw/ehkfLfLFdUEcvHl8zE3b8nK7wesIKmKJ5KqiN0J+D6ohxkQ1bjB+lLgnK8I4YGPGZCseKiGSUIhOU4EPGsfx6SHvnhyxMpEHRzPun97DMtJtbxhvrnh2flWKOordIGOhjSMm8bMaxpE+iHywD4H79x5I0XMccdYyn62oXM3Fq+eQRHExxLAvhHSteIHZStS7Uoz4YUTFSBh61tstP/70Iw6OVvzGr3yHV2PLOkOPoUKjrIVZ5LrvIHis71llJcqhOVGbmsEITPjlxRVVM2fb7jg9POLNhw94dv4Wi8UMZzSEzHa94+ryithFcvQorfGATQa6yKurc/7VX/wVwVX8l//0v+B/95/+Hr9lM9V//y/4X6/nPLRzXj1q+M2vPeTcLvjRzSXtixcYMh8+POPk1Q0vNiM+RiLQGse6dpzcf4CuKyDQtlt22x3WOREIei0elQQgxkTMgbRNBSqd9+ubUZmKTB7XMChoLaPRRA2BzMwYXNaCeFAGrzSXWD4aRobcEzMYaoHkFa+0lBN//dmXfDk74DsYvvXLv8k5hktl+LPdmkKg5jedlW5WSkLOLw1dnSe4cJ6qjwW5EIlZE9H4kBmyKLNqlYFfvNkj/EeCfu2DvyLxKlW9KbSc/puqKaVVnRLD4LGIzOMYxttNMQmWTjDSt8TJ6ZzqtUnx73dM2PCvVuWnSpUEgtLWCz4IqWw24+jkBGMN4+AJY6Df9gzdAHWDmtfk02MWbz9iaQ3q6IDH//b7hK7l4vqG0+MFWmvmbsHjxy+pnWG5qjlcCiHx4x/9mCF6qByHJw8IqmKnN4z5GUYJJr9ve/TFDbq2JJVptwNj1wt8rJLM3I8joRL5wZPTI86fbYjeo7OCkEjDSL/ZkcYR7yNffvY53a5j2PVUzu3lfqwWJSilNGGMdO0NKmdOD5ccHh+BVlw820AU5+P9mCvBq0dhTBKdJeeISZnaR4YqEfWUpIgCVDRgSsVzUpB63bHtNu34yeTkLuTjK6/lOwmLel3Ks7xcAm+17wJNpkljzHQh4UMiKEVUGm0tY9/TD8M+iZaAWDFh0Iwu7uIpY40IQ4zjuCfET/PvbiFY6xKQ3wlKjdJl47r9VpPgxO13kERBcMkT/CTKVjcF4pSk705Csf/dU5wKe5xqfu19IjUa8x1fEEoiWT45mbVmJS7pOWfGYWRsW3LXkcZE6zPeJ4wa6bRmrTKPcyLcbKXSvduihxEdA7iqQLbk+wpO9jaYV0oq9nd5Kftbom/5G7ddhdvvhbqT+E1djyyKO1OC89q9lh/kXuwD/jI/73QYbpNnta/KT4e+k/Tczktub3y57qnSM83ROHXA8p1ZPX2nO89AodKQJ7iHFs7VJOss2+OdxIfbahklWL0tLAnnaDIxl68oF5rLx1OW6zXKglHCwSjCCNYZyBPOv8Ckct5/P+F6pdvvPl3vBM26K/lcuue2qvZcRDV1DfeQpDs3WpXkYcq5mECJxdcjU7oe062Y5vHt/ZDXbmFlkjgU2dEi6hDL+Fpl7wyl3o8zCLdBaYUxknDtGV35NunV03fJufB3VJkCd7qAr/FVbie6ntZHlffQ1Wl+TM9DLs/9V+fLrfDE7TTMSt3O0ZzATCIWgZxjWUcFOtTUNVZZWZtyYuwHqpmjcobDw0NWixnzymFywimolIIwSgWdCMlDLsaAY09TGRaLRjpR4wBDT31Q40rimP2A0wlTaRprcBaMFkJ8O47s2q5wRyChGYdIyh4/dGhbodHYlFBePF1C8MRRCjLJB3KI5CgSvzqX7j8Td0dTWYe1lhDkXjbNjDF0RN+hYsQpRW0du75nETwHGu4vZlitqbXmSsmG6qOSclaBzhijMUbmyDB6QkygzL4opVSmH3qO7p3y1ltv8a2vv8XcWWyOvHF2yrBo8N0CRk+MCZ8Sy6ER8+sEQ4h4r4oSW5B9zI907RZQxBAZ2ihS9M7QzOfS/Q0RHwLW2GKyLAWfGBLKCnxPa422ihAsVikuzi+4vLwkDCO1sySf2Ox6jmdihNwOA1ebHS5HTuztXJ3mdcoiQrNre3Ztx+A9i0XD4WrJYjaTvTBGut2OdtczDJ5mqYhJ5mDXdnCQsc4yX8x5enHOR08f8+z6nG/MG948PkTPNSEEPr3p+N5lS/1AEeaJZBW7m2vqgxVvnKw4mTWs+rLn5YCNiU0HZ4sVM0353mKNYbTZr0f7hb0snqqst3nv3J5J+natzUoKTFplUb+VkiLBaYF3JwgpMKRMT2AgMpKFr5gnVJGszHs+WeV4cn3B+GmiW9+AT5ycvYFyc67iNU9o+Q0EHSJrpCmnuaO4WL5KKsWvVPaJQpEVY8uccU4UPb+KEvhFHL/wREUVZrNSU/VnWgT3Wl9lodwvnWUTgzR4IohSSCHSahQpBTEtCuHO+lvOWypzdwPXry7Cd/eun3/x3AYBUxAjF1wmgDS6w+BxVuBb987OGMeRFy9fkEJk7AaGbsSdHWOOV6gHJ7hH91ktl5y+9Rbtywsunj7l4vwlzfqYpp4xN3M+++wjrIP3v/aIk+Ml7abjRz/4W4yrOTi7z9c++CZbNMMIIUvlLeZMv+vxXKKdQTvDdr0jjB5S5HBxiGsc49DjKoWuK46Ojzl/ck0YBmzWqJBIvafLAVCElPn04kra31nTNDVjL2oWzlXYknQMQ+Dm+garFN/82n2Wx4eMMTF+ETGpeJxMwSEFOWAUyWn6maXqRTpvNkZiLWTMjHTTkplIvApUxhQVqCk4uhM63g7a7YDfmQvTgvHVGTAluBOZNu/PnfdSn7IxiLpckgUDxZgUPmaCSaQsAUhIia7vGYaeFGPx8ChTKItqnS5VZFP8QoZxRGsj/782R28hbsZKIpOUhDWmBNPpzr39yfk9ZVx6n13ElIhI8qOMKoIEt8ppwL6TQklg9HQf7iR6QqYriUqKryVXU4A3Bfxy3SVYI9P3Pe1mA7uWHGBQtnwvxTrDZVY8T+C7joOuxUWPGgfwnjxz0uFBYYCQYwkkwVrpdhjn9rAn0YBPJRCenuXpPhU+we2XAnjNSFF8OyYY0u28mr5fzLdnSHeieKWnoCbfst9hH+yyvz/y76FU3G8vpRRg9pK/0/iWxIopcWd/rmmduptEpSm4NvKsyrjrArtKEO/+Rvb3Yw8zUtPTIP+mld6/RxJPmCSOJ3N6tMJoi8KioicjnRNXGeEJRUUOuagsSSCuy5qqJz6bovCPdDHYFN+RvcJb8d5yxu4hYdqovQeStNzSfgzuiinIs32bpKTSyUl7UUK5l6kkTbIpxztjpvfn09M4lWck7X/X7fqkFEVKW55BY+Q7aU0h08teknPpJGi3T0B0pkQBFM6P2s9LwdyVezdB126nuIxYmhJy9uvEbapSvm9JONUd+B3TsGZJtFKMTJ1CpWXPEeUiwbFrJbK5dVXtn09SwntP1Rics8xOTzhYLVk0FTaLCEilFcSxFEUSKgeUktJD7ltm1rCc1fT9jtB3aN+zqE+wQYi/Ko5URtQ955WhdorKiehGPwysNztSlCQloem7kRwHfL/Duhpr5Vpy2Ba4qyePQRKV4AXal6aqty33Uu610UZ4is4Rk3SvmtmM7U6MEVPwWKVorGO96znxnsbAG8s5tYJaZVKluDGGiCOrSQQCjBXor7Ew+JKo6FtukdaKruuwzvHw0SN++VvfxG/XXD5/zslqSWoaWK2IY0eIkTEGhlG8t4bBsxsELl87S1TS5RzHgehH6cCEyG67oaocy9WK2WJJ8J6hbQuE9taIO+WM92EPw1XKYC0kZ2mc5fLikovzC9q2ZVZXhBxoNx1HriKkxE3f82q9Za7h9GiBIpZtuMgTZ/FdaXc9u50UXpfzhqPVgnndYJUihciuG9i1QtA/cJZAYlDQdx1ZJVxtOXQrnl1f0Dz5gk+eP+brzrI8XBLmmr/xnh+1nv/22Uu+5TWr45G4zGxvblicnfHGw/uczhsONgNdjlQqMU+Rbet5Z77kqLF0gyjPjaPf+2Dd7i23QeV+p45B1gqlCqJS1pWEBOQlVBJ1USWojZQ1MYEPmS55uhRIAk8R6FjWRX80o4noidM1b3i5vuLZ9TkXj5/w3Yfv8O7xQ3o752YTeDK0RDxTiSVhynnSa/vkJAaSUi77n9SUJE2VNbJy1Z6L+4s+fuGJyjAmXMEJyiYlmGyFLNzaGIw1xJQIUeAPqkRHPo74dkR14GzRNc+ZcRhKSHqHSM0+vuT2X8qxf9MUmvzdx+1G//qp9q/f+S0CAwE/jDz+/HO6ruP64oocEk0z4+zBGfU7b6AOFoTDJX/zve+juxF7syNvd8yipsfx7G8+wxrLcr7CBM1sXlHVDtc4XEzUyxVzM8N6xZc/+AiOj0gxcP+NR7z65HNG76maBrwkdr3fwdxQLxccHx3SZEMKkfVmjR888/mMg9kBbuZwvWV71TKrl1TWoos6U8qg3QK3KHr4uw6M4KzH6IlKEUPg8vKKNx7c5/7ZCe9/8Db/9m9+yNNXFwQvMnXaGLLOe77CNC65sgxvHBOvNuhdj+t6GWsU48wxmEwaoekiSRcscfE8UKXCeieDZA9RUVNFH/albvXTRu/uhLjF87/WlckCQUGDsQpVabwXGeHRC+5eEiqBa3Xes97tBOqhpRrlk5fqSFK044gaKeqvml3b0fY96Rtfx1pH3cwIUVRlooLNri8qLoIjZhwJ48iqmpMVBKPFsyVNyjRFejCLMV4ukEqnJuJtfj2VV4Wwq+5Uf7SStvIYGNsOqgpbOYyrZZUo8bhCo5PGpuLUXpIhUzbTlLNgtGMq0DpNCIltEAiHaT01muBkoY61Zps1uxAYxoH333rEd955k1/9zods/EC3XhMP5qBELVBlhTUOzK0B4zSooQhMyMJ5C/NKBb5jULcciKIoNT37U2cr5Tu8HQVqgpfmu6pdhruAt331W09GhjIf9xAybhO6XLgFOWesK8RI1B4aNiUrU+os5xauTA5h/52Mvg1Ypwu+2y3aT2WksOF9YCKhV+aWB3LLt7iVF0Zx28lU3HocJPGsUtoUOFNGWeEved+TsRjtULYSIJJSjFmgV9GDUo7SdLmFfuWMrWWtyTmTtCaniPcj1lUoo/feLtNubqwFXYJJJnlggSpNkt3y7lJa+qrvTUnTjQbl1L7bkUsyMAwjsYgBVFW1rxKGKJlZTrl4AWnqpqGqa/Y8niTVdzGWUftkc0INRBR98CL/64OsMcVrxuhb3IGmwOMmjp8SoZmMJOIhBCbp6im5uOXoTN+fIlSSC/ytFB/ukKrlJ7NPVW83v1Kk0LpIJEtVF5wEKFoKJjEpYoJkEtpVWDQuzQlGkpuj40NmRyfUyxW1aWhcQ2Uq8Y6yNY2tMHVE+ygqRUqzWB1j3Yz//r/+f/LGt97l/tsPef/BAy7PX3HT7qisBuOwpuL03gOcrXFVTbaJrm/ZbDe4gyV2NUcfNNiTOZtXHdtdj1keoIaR3I8MfU9dGWYHC1b3DxgvAt11JGaRV9ZG4ZzAaGLOhSOkcMagcQQ/0A0DGUXMCR9HQuoxKtPois3LFvMwcK+xLBeGD08O+dbZCf6b7/AH90/4H4zlr/7sj9Fk6lqkbm1lsZWom44+kLMqCZ3wRLRSXFxc8v2//lv+D/+r/4KFztycnPJ//D/9X3n28gXtbstsWUlHEoFGUgpKE29F3ORlnXIK8XizltlcjBKHoceHwMO33sLMFsTZgs1mI2uZMiSUJPHRQzVBtmEcA0oZTk9O2Gy2fPn4Kf/mBz/kP/ud3+ZoocjhJcSetu+52PZsQ6SqHHNbY4IUptGyL+WyJl5eranrOdfX19xfrQiHB5wulywWDVbBznu6YaQfRlIMfOODD/DDgN+2uHlFtmB84uLlOdZVfPTlY76OQmXLxx+94l8vez6uZlzOz/jxyw0n25GvfXhC3w2E4Hnn4QkLBWbXYoeB//I3v8uDWc2/+aM/Z3W65LBa0WyvCF74WEq7st6nOyvx9FMxmeV1YVJdGPdJTwqZCppqv7fUrkEpzRgTr242Ip5SCh1VkgQlEokqEQAXIGdZ47XXLHVFNnAxJv7s5QV/ux758M23qeYVOT/iIjzjMHfUecBEKZRoXTo1IPHQ1MnVWbgpMULOHKyWHNSaxmpeDpHNMNJ2ryMIfhHHLzxRiSipgGtxIFWi6Qc5F6diS1VXUn1UiuvNRtqcwYsKTglGY5gqtrcB6GtJyp2//7Qj/4yfv/qR17wVfsp51J1ffBeCkGKkbVtylk1DYDmy0IccmKlEZRSrquL64pru8orLJ8+Za5FarpyjrhupIChF3VRUVVVw2JqMxdUN487T7XqGq0uaocNYh1Ga+cGKNI6AYhgGtLMcnp5w8s496lmFybB+dk7fdgztQK1m+DFyeX1DMmBnFts6CXxjJHcTTlmc0kPvS7UpCHncQIqZoejWL+Y1D++dcnx4wJdPX3C93tKPHm1rklG3ZYFS3DYJ8WXpPW7rUVGCsKgkAFIx7WVbk2avQ37LVNkP2O0EmCKqaYYouIWtfHUU96XinzIZfmJWMBHqlZYAoTZVISNK8lysE8iIoWPX9/RdL1VZ5yD7MkdV6TbINzHG0A09Y/AMoychXZaL8wu0AmcMgzOEJBj3g+WSYC15GFk5w6gNXZ7yg1t4Ss5T7jYRe5luYAk57ji+7Ausk4+EdEgUGasVtbUS3GXxFTDaFDK02lcHEhMs5G4xoITYX4l5EkBJxFRSJG3oSn4UlaJDMWQIPnJvteL+akWtFC9u1oxkKvsmKStSKTOLKJKcYL8FFBnRKQm4qw63D/+me1EWD/lZvbYGSHfrNrCdAuqfOp3Kee+S7PdwGcVr0DDJdSbw0XQedZtz3+n8Tb9yGuP95Fb7iJ3Jk0D+uTxnty/vp/rtnCj1dMXeaV7G5hZadvd5yCkWuXBu4UkFzhdiIoWRhEZpB9oUD6gCDdPSadTakLWIIKVcqNOl+7RXcWICDMrfZZOXjXF/j9XEjZHvt+cl5Vtls30S/pVcTeWvjN3+nhQSP5QKsbRWpk6WydL9mMxOpyRmmvMp3SYhkzjC9LxP69LUiUoZ/PSeJAFHjJLUKKWwWSBZFZKU6TwlYRKM3M4/g5q6iajyFGqEvObL/mSAsneixEehXMP0hTMGtZeO16To90m4LsS922RH7v8EActR5oPoUZUah1YoZUhRhB1iBGNrrHFYaiwanSCMkdrWzOo5Qz9SNRVYjbUNIYr5o9+O7HaBeuO5eP6CB+8+pMmWhXX02jJoy6JpSLEYQgeFqxy1rchjQKco31mV5E9lUjuggpjqqpjQpaM8rQemSGobLfyou51mlECsY0r7IoQkrsLz8V5EPGKSMe36geADEEmho1GJ49qBSsysYjFzHJ2dsulaet/z+Q/+LW3bMfYj87nEANZY/OilwKtUUSGT56F2luA9F5dXvLi85N37pzx8600Oj094dn7JxfWGI7Ms8KzS9duvH1Mn+raIopTAzGqtaaqKatYwlM7L2A9UdzrVANoa8cvIiTCO+HEUo25jiQiXWGXIMbLd7fj48RN+9dvf5nC54P7hnOfnl3TDQB+EmJ9CwA8DjcpFoENNyyIpJbquZ7vdsd5sePP4kPmspmmEi6EVOOdYrA6Ye3k2v/H+BzhjGXY955tL+r7Dtz3Uc1IXuHh5zd9cXHF8eY1pVnx9OWNVORqVOFqumC1nLBvDentDs7mhqhvePjvjw01g07d8Y1HxaFFzc3bCmw+OWJjEi+6GYRjo+h63rBHIQn6dUM9UGrotRii4g2aXNTxrUdQas5h3GqXIY6QjiEdJ8ZpR3BnXsn5OXNV05/w6Rinuao2uarzVbFTiy/U1odKM1vEjveI9m3hAwOAhixKfYMOndXVanyWSCSEw5sQb777F22/c4/B4xb/4k+9x/eqa5+3/DFS/UuEYZG1QpgQ85SHXtpDS6hl10+Cqinb0+JjIXgiSFB5KCOG2ElwW/8mM6qth5Wtb0QTRuPvvd/ASd/exr3IbfiKhyT/5ynQ9MSbabbs/j7OOWKrwfeyZjz3WzznKmq4b2F3fcPH4MXG5oqprqsWM5ckxCdhuOyrETCmGhPeKmAzONmyGC7pdy7bbsCLRzBfMZwesTk6EW3J9Qz8M1EZz8vA+X//OhzRNxfrlKy4/fyYygf1ANVsQI0U/XFEtKlwXJQAMEe8HkV00lkZXtF23r/I2swZjNMFHNhtPCoEHJwc8un9CXdX84Z//Beu+J2SonCWZIimsFSaX4Dhq0igSxtV1RzKRrBTBAlkSFUqSEhXkCbYxRbz7oOb1ZGP/0N8Z37tv+GliC7dLxd0K4lf/lCqaVgptRd7ZOYtCVIdSEuWiDHgfaLuO3a4VqGIVyYQSS6vbjmJZWLdty67d0fUDKYNxjsurK4xSNHVVKryStB0eLKGZofqRJo1sjWEg7w0k9wnLFOSW5COX69OZUpGbeClq3+VKcYJxSddTl2r7vKlJlEp8P6B1I10Ho/ea6lOCQy7qflPCkm/v8121qiKEQ86KqA07BblUZ9qk6JPIUd47OOBssUB7z+bqiqBg7ix7PQ1tmNTH8rRoK7WHJMn3n3plsgroPd8BsQ6Y4vISaOqSTE7zZc+PmJKxO8c+4J/+nnLpbN2SrqckSjgBd7p1qigd7u+Rvj3fHXLf9LtTVjBJ3pbz3CYirydf04K3h0ntI/d0R8GFPXRtWt+EbVF6Kuo2AYqTL45SQqwugU/WmnEcGcZAzBplshCEh4DSGaUzmCwFFSd4+1TIwmYqMiDdu33yFabflffJo9b2tWd5D7UD1J3EkKkDptWd+VYCAH2nclnuwRT4pZL4aC1+DBJclsRFT7LRCls6+7lILfPas6bQ2eBLp0tMV0WxKKWEsVJdDTHQe4Eta23xQbxUQhJlvpSBmNDGCrwzQ4weUCjj0Hmqbe4HucydUOZoyQbJZCwCcEvkpG9RB1kx3Y2c5GdFJiVDikGMkzFSYQcStnghSWKTs3hypKRvzQNTRmvpruhs8SkRYmL0mWZW40yDyTU6CsR4jIHGzVjOFgyDx9iJ81EzBg0h4Tcj6/UIVcfN5QVxO2BHaLRlpiyDrljOF9IhTIkwJOzMUGuHHyMuQ2MksVU5o2MibHp0jNQ2Y2JC57zH18t01diS2GhdxDSYOqHFLLGskbKeSCItiUoglkRGOBWd2CmkQE4dM505rSoGlbAlgD07OeaXPvyAeaP5//y/FzzrOjbtwMnxAXXVYE1VireSqKQU5blCJGDHELi4uubTp8+4d3LEB++9zZvvvMPjl+e0H33CMpbu85R4l/Uh57h/ZrIypXuqGcZBoLPW0cwXxCyyvn3bQtMwm81k7iuBL7q6IueIHzJ+8FincK6S3TRnchC+0XbX8uPPH/P84pKmMtw/nPP4+TO6oaf3SVQnQ8R3LWqmS4FbEpDp+W67js12y/X1BvOBYdbUzOpKRG6Uwrqa1cERWy977Idf+zpHqwO6rueP/uJP2Ww3tLsdMzODIXH+/JI/e/qEey/O+fXVKb96YhmqzEk7MHtwn3Sw5LJWnK+vyFeXJG157+yMsc9cXL7gg5nl4cyxeXiPB/ePUcnz6otP9olKdXCM2uv93l172HtnpbK27OtYd2KTPCmf5kSjRDU0DAL1GlPEK6gQpT1BRtyWLfREMM2yz6hcbASArA3VfEV0lkFnPrs652a25Go244PlCmtHlmpgRk9GioJTDD0VdmTfB9D4EBlz5p1vvM8v/9p3efTOG/yPn3zJ5mrDk77nF3384sn0tSMC3Tiy60cmMqrWijSOEkTsWpq6pq4ruraVqq0SSElIiZBF4edntUz2a+/f54J+SkXt3+V4XVFqUliRI909t1KYWvCs/U3Pi+1nXLonPK9+jPcDIQQOVofEmOgHj1dweHaCM4ZYG24u1vSbzLDp6S6CBBg3Gx68+5Dl2QkP3nmXLz96Qr8bIFmOTw4JQ8+z8CnBe6zWDEPL4x99jIqR9bMLLp5dMPpAVdc8fHiPw5MDlsdzhqGn3e54Ep/TrXt8nxjHxKypsNphtShIhSxB+dAHUDD2PXOjOTg45Jd++Vs8fvaSi6sbLm422PmCunICd7gzTlkpktESwBrhHLntllApkisqQDqTiMUv5Va5XuWEThmdU6kW3Bn8O/f9bnD887psfOWjP3WsM1AgHDErdAAdFavlAlcZQvb0IeCjJieNztB3I9dXW169eoXThnndiKGYswKDXC3IOUIIkBLj0NP1PedX1yxmDbP5kq7vqa1jVs/QxkkwTkKrxKquOWoOSX3HqDtuxpaFkv6CViJbaFAYZcghM7YDN9drrFKyKWdZeiZlMKUNfdez2+1Yb9/A7mZU25YYRxarhg8+fIvrq45Xr6744ukzVkcrqsZRzSrByUbPGDpSEHiXMXq/OZE1CUMg4rOXKl5O+DERxkD2iSFrRmVFZSyDT4qgDLapefdoyf1Kc/n8KeubFj1rmDVzaEcJjFD4r6g4qRJ158kLhsxYkkOjRe5IlVV2kuAVU81JLe0OPCjfUYnSkqyC2juETzK0+7fnKYDlNp/OGWVKpb0oRU3CCWpSvLqzdEx+JJNEb0zyHQQjr4qZKqIKNWGg92Z+BdZRiPM5hf11SOBg2MMiVYGUTQWAsvmEJFVjlSfSsCJhUDFA8piUiTkQcyYkxab1bNqONiTq2ZJmbgmqxgBWKax1YDXKGqr5ElfgKxnxWwkxErMv913dciEUVM6VhKwEVKVYlaaiQRk36Q5lXFXLbUii2DQtBaF0LLSS5GDqCPhBpO6TEtK/1ZrKTTCNUhgztih6JRKp/F5NVUm1NKUgHSGt0cZhkmIYPO2uI+ZMZQ3LuqbSmTElNt3I1Ubcmpuq5mA+o3JIF9NaUs60IRCzx2iFRbHrIylnjI4c1E7gTgqSMkX+v2TdWUFOjOWeWTwpSlavtWYklbUXTCUmymmEodxzq9Kt0EGIDAYJRitIxkow5bN0+ZPIH4eUheY0GUXmxOhb3GxJNobx1StyfYCtGw6PjgEYhqJsNJuzOjrh/r17JGXxWpMRzKvSBuY1vR5Qw5rURz7+6x/RbVveuHfCEAO2rrj36BG+9wxdz/OXL6iHiqppODt9gJrPULMlf/z//f+R4gHozNnpQzQGnRvuv/sm49Ul/dUVw7ChruZoJ47ym2FLZd0e7qnROGNJWdZtpaQoEXzEqxZUZN44VssFF5fXjEPi6rql81LMMzlgsqdKgd87O0Nvtuz+9K/4wz/4VxweLHm4mPO73/wGfxwVLz76jIN5zby2aJW42W7p/YhxmqiiyE4rRWUV/dCzblv++rPHvPXmm/xK1fBLv/IdXtxc84NPPy0cQ24LXmWNyqVIwAT920NUItGPdLsds7ohhcAOGPtOQlYtRaEYEtv1hpPTMzg4Yjw6ZuiGQrBOZCMFnzSMOG3o11t++MOP+YO/+gFX3Tv8px++wzAGNm3Hs1fX/M57b3FSKRjWpUCiMVkKJ6Qo791t0Fbz7OICrxWqdigNrnKEEDm/uuazx09oR8/vf/M3sTHT3dxw/vK5rD+rBW0/oHQgjFtePHvOn/z4C+zFOT+s4Z8tFW/OLb92MueHTcXH7cg//9FT7oWGN8yc03/5B7z46DF5vWFGoL85ocuRw9Dz8vNP2PUd12sPbka1XJARCKyaOFvkKeV9fdHPiAdJeY72OcYoZptvPnoD7wfGcWTbCuco5US9F3i5Fa/JJf1RWWFKEUogZFIIlKJvwgwbtB/IyrGLFS+052XWrHPky6rmH9hD/hfzSOUDLnrarPfTRCspiKQCKSOBTprj+w85ef9DTr/5Id/48E/ZeUeI1c+Jsv79jv8IZPpbnfW76lxSvS0GbFFMkYIfGcdxX5H0Ke8n/Z0T7jd/uA008+u/9Gdez89LU362rO20+avbTfOrv+tupVQ+sQ8GdNZCrC+Yf2MER1jbipGAdoZmMWe33ckm0w8FoqAIY+T6/BpiIviBhdZUsxmrk2Pq1ZqEw2YhZHsf8NFja8ds0XB6fMTge/q2Y73dIRxXDTGxvRbp3KaxjP3A0I70bQcJrNHoWSNBtB+JKRSNfKl4xRhKsJc4Oz1luZhxebPh/Oqam80OW1V7hapJV3u691kp2UzN5C8wRWUypDrfBkncHeE7gZ/cmVLq+2qDpBSo777088b5Nfzg/kT5tYkihpSgIgWG6Bl3LZ02dJXDx4iPwrEKMdMPXhaTEDFWi8JZiqikCjUtSxCVEkJrFzjZrt1RWcusrl//QvsvrghRHJ3nWvO861nbnq3yrLRAoCY4Qi5wybp2HJ8c8NY7D8kxorLoeOii1iaBrmXoJVk9Oz3i+PCAo9Uh46hJxpONR1ctySh2YWB5MMc1TtyYs5ZgM4wsmznO2qLatO993al0q7KxB/re46PwasaU8JI6obK0ubOCw1nDg9WKw6pm9/IFZCOGkxQ+ikoSeCKb76QupvbqYtOEyLdriCpBPIC+JVhPHIp9gnCninc7VdQeVXxXGSmlaVVDZLSVfC6ULgRKvENKNvRaZWXiu0zwCyalJ/LeQE8aLPo1Mr9AbF5/hqb1KaW4575MM1rl26Rk35XIEyxNcceFQ/hKetJ5oXSmFDlpSIacpcMSUqKPgd3o2Q2eaERBSSVJdqwp/KiUCSGhU8Kn7vakKF6XKpaOayrfWWVR1sspkqIoMk2SqKpQ2Ce/H/mAdOFyFq6NBJOAVsRQEkgyEKS7q4QMHjMlSc7i3aQK1Hjq2ihFiInBe+qqLsWpTFM5CTpSZvQehcJY8CHhfWIIAqNNSeFMBnOrFLjphjJjDE0dMblQ8rNwPMaYSTFglaLSRuSdlcY5RyLjs8Zh8GUPjaMkw0ppIRYjHdiQFRH5d1e4XDlDjpkQZT5ZNFlb6abGhI+ZnCSwTdN8jMWMr/RobgOi8jwgcK+po2mMwVQOm6GuZqQg1XayEXQEQuI2TmMqx+HxCa0XXgHdIEpH1mBnDat5w3I5Z350AGTa3ZYXLy/QUTohBwfH6IUWnyDjUNkwRqhtjR0DCid8rqhQSTN0PdF3pDhi7JwYPWO/Qymoa8diXhODCNBM1XytNbZAEHUpAtxVBcxRas6VFen+nDMhRnzwhBCkQx2hVoaFtajPn3P144+5+OgT+n7H2ckxJ6enHGvDsnaY2tA4R2UMOiv6QZzp1f5eC+xVI8UnFQPPXl5yfr2hHyOLxYz5fCaJex72C8Eejnpn75sam4UNgdaypnftjsP6COccs0YKACGI9L61VirqCbwXn62E2DakVBSxjCJ4S1DIfhQDu82a5y9ecn815+bhCY01zJ1BRc/NdkM1sxw0FtTUoRceVswCl0zBM44D6+1O/JOUonEWYy3dMPDy4pzt+pqsNKvlnMppQoFiiy6GxdYNo4+040A39JhFQ9M8ZPbN93kWb7geW86vrvnBpuVJyFxgmA0jm5sNTz5/zMVmw8Wu5cfXV3zz61+jmS/wKvHRl4+5uLnBJUEbNHW1X4OEzzOte/K/Ykoy1N6f63azuW183hb3NdZajDWEwhM0dyDNd1b229ABNYUO5Z/KDwnwXsRTdcbZCqwiWc2rqPjbMVNH+KZe8NC0HOYo1ipTvGaLmNG0t+fb02LE+1BpzaxpODlc8Ys+fvEdFQosBMHMTelFLGovOUkleIwBXwKZ6aEJSWTbboOCv6M8Ph13IRd/j/fuN/Svvn+CDpSf717HrcLRz0pubuMRpW7JzsEHFvNZMf9TRAV2VrE6OuTy1Tm+78neM1ssUMoQQ2JzvSFFCXpjBozGugpd15igaPSM7uaSdrtjGHqa2jJfLbh3esbjp4/pu4Ft3xcolyLHyPWrC3zfMasd3TCy27W0mx2Na3DW4ZqKzWbDMAzifeEqjLFYaxj7kZwildHcv3+PZtbwo08/5dXVDePoOTo4EiJYIRCn8pBOj6dSimxE0WvCYBbgkkCTEtIGfm0c1X5e5Dv3dlp8ufvW/XP6M8Zf3f6wD96mVWHahPe/u/yhC8ktRZL37NZrKqXoqoohSlLtU8bHRNuXhTTn4pElVeJ8R3lrX9EnCiHTWXbbHYtmxmI+L6pTcm/MZHiQFDFIV6W2mYvtlks3sNGJt4pqUsyRjJXkwY/MZhX37h/jqBj6jol3oo1UhbUSzxrfD/Tbjjce3mN1dsDh4RFDdMTakxqPaRrsrELVhtmiwVUGWxkJXKNUXw+XS2rrSCGirVSQIhMUqvA9iu9C1wlBM8VIH8M+wDdZ0SfpCJ7O5jw6OORIw5PrDebwFGedbNTl/iiVRPgh6z3UZs8zKZNE4HmhVN1vuSjCP8lfmRJTt+R1fomanu8SIOy5Lah9UC0xcVG1y5K4SpcHTCoJelaFEF0UuFSRpJ1UyZQBJfyaEOV/o5QELHqaP3KpxujbApBW+++eCywlpVQ8ZkpVUpWER0l3J0VJElKpst1upHJ/Y46lvZ9FGSwrcpJx9RO0ZezZDiObfqBZzQgIATREMTDLRomQQulopNbvlb600hilMBpcVWNyxlq9L4qIz1LYu5rHIL4OdeUEWpLKvS7GnkoLPywVfoDKqSR0ihAmyE4kJXHhrpwjhkzIArtKKLRJ+JzohnG/rgRg9J5uHFjM5d6nGFnOZ0WpLNHuekBhbSSX5CkE8F74XtYmkhWX7s5H1t0onAnrqMeANUakhpEu3xgyYwhYBdmCa2ps5ZjVNUPbEyJgDX0MhJAJXURXwh2srSLsu9AKnwuMyVQCiUsSRMckXdW51gRtxaAvyO/OQO0MsSQiMWhJHpRASmQ6F/5WwZPpO1KsxlhMZcnK0DRLYkgM/UCK4GNAEal1JZBMZzk6PSFtb/DdDrWTBMEYw6xpOF4uODpccXB6AnHEDx1Pnr5gXjnmdcODe28wXy6x1uHcgpevLuj6EYuBqImjPHNaWRQV/bYl55bMiLULwjgwtBuU1sxnFctFwzj0pBD26Zgp3CRTijtG6yKgUHb6lAqnRUxJp8Q6xFD2/oyOmZk2HDiL//QTnv/RH/HjP/wTyJH1ySnr+w84+M7XWdWWauaYOYvTBpVhGAdiCKXbWgQNspb9QUnl/OmLc15e3LDrR5q6YjZrqJqG3A1MHMsJGLRf1Mqeyn4lFLW0mBK73Y7D40OqIuk79COhSBMfHh2ilCaEzDD0hX+XmNUNVlmBk+YKEzxKK8LQk8ZIv9tx8fIV54dLrq7fYFE5DpqKisyry0vMwYx3j07JQy9rU5LKY8zC0Uwx4seR9WZLCEl8XlyFsQafIq8uz+m3G+pmxnIxo66liDUGT4oKpRxVNWPT3ZD7gX7sWRwtOT485NGv/irPP/qIq6dP+bePv8cPz7dsU+bg/gHd6NmtN1w8e8VaG17FyL/+8hW/fdOyPPRklfjhk2c8e/6S985OUQpmlaMb+uIDpcSL7c6+oovsutEGYtjz4u7Khav9ei1Jqim87tGPMpJqKhTAHso5zcl8JwZSUwqj9/LBOQmPEANuptCVITjLJih+7DW9N/x6E3Dac2AGdLzDCy2VtlzimGmfHGOQjj8SlzV1xfH/HBKVedUUDLBsilNsb6taTIKsETKaMRhtWG/XtL2oIP1kpviTP/99jteM/EoF89/pKO83RSYTpIpwJ1z+Ow9thPymtCKFhDGKylnGODJzjrN7ZyyOV7TtjquX51TZSBkhjLjKYkzN4mCJzYnrJ0/5o08+Zz1osqmoloec/+hj/PoGM3akhZDLXp5fUNuaw/mK1m0I0ZMBXTnmiznaGB5/+ZxQXIAPmmXpZoBz9tYMTduC706o4KmsZjGb8+0Pv8G2HXh1teZqO2CrGdY1UvXPt2aAWWtpa05qFkhxOVpF1nfkYSfCZkqoENFDMRa0llRkeWVzvF1kf9ZY/uS/qjuvlN9TzjMt0FOeIq9OpNW0x6QrMjpHdAqoVJHRRGXocmbIMKJYtwMX1ze8Or+QBUgpQo5FvUSu1yjQxpKVwnuP0Yba1ZxfXjJfLDg+OaFuGukqxoizSrDgSXHm5hwYi8qeH7x8zmbl0KujadkgIlX9iWvSOMd8WWFIpFTtK9LW2j1R0YeEzktM1sQ0sru8ZH1zgYpSdTZKYxaKk/kBx4+OMaZA78jEYPAx0YeIW9Uop/Eh0Ezk55jIUrJGoTHKiHJbhNHLOFOqkRqNwbALW47nDd9544xHR4e47Y5nLy5geYxKiraLtH4EimJVkvFLUci9d2Vop+RBFBkSY9k4tTHUVUWM4jEQg8e54tZszZ1ZkxHRRYoqoQTCOYG2FpTCj+N+bmctVf0QI/3QC4ncGIE/lUU9hrBPmHQpHsg4+H2VMqREPwz4GDFaMZ/NqCuHdW4f6Kc0Yc65zbbVtMTd8mk0knxNXc4MdF23fyq01kXFV87pnPhCjCEyehE2ydnvVeW0q0SeO8HLyxuev3jJ5dU1pw8S9XyJrUaGCNYarDUonbAlKRl9CdCVwZZETWlFoisK9Zmc4x5+F/wgT6rSOA2LhcXNaq7XHUpJIpJCZOqGjeMgfDEUOiepyjvHMIwoLbw/Y6ZqtCYax7btuLzZiGlh6VylzD4J9Bl8igI1akXidbvZonKicpbFbEZKEKMUooxWWGOoCtRTKXi+2TFbLkgoOh+46EVcw2vL9ZCwRlMbLXMg3QqKGKNoaoet7F6+fBh6KfxZIwqOQTrc9WxBXVUsmlnxOSnEcCcwq+3Qs95tGcNITJGqmouJ2xDYhl4SqmCws4oEdOdrxiju2icnByx0Q20M84h07XICXwoRSoMKvLy65MXlBa+2l6yMxrgaW2u2w5axa3l5fUG3vSH6kXlTsTxaiTDHckHyAyknFvcr2PX4kHA5YHPAEqmtZdOt6Yctj1+8gNFjsuLZ1ZrVyRGmqvjyR19y+eQZYzfyahu42ey4ublhdv8tZvfvUR8dEfu2QOYsvh8liVUWWzXUiyXNaoXPgaFwiVKM0q01hqqqiDEyxkgKQYpMTcVqdUDf9YyjZ31zg/cjzhnpEmqLAbpxwMbIQYZnP/xbwtMvUeOG+t49kvJsL58Rz1fYsWUxr3BNRdaaISR6PxJTwhojnasSMGol0MJ57fjs8RP++tMv+d5nT3FVxenpCW+9/TaPP9qQU8Ka1yOW14o0d4qBaE1KER8Du7YTgvpyxTBeCMQRWK83zGZzDg6PaXvxDOvaDWt/gbWOZj7HzGYYbZnND8jNDDOMjHrHOw/u8fDsHqaZUxM5mdV8681HfPL4MV0HtVY4Bboo6klHNjN4WYPGceD8/JyuHWiWluVsTmUz9dEx/9nv/DafPX1JyImTwxkPDhek1Zxvf+Mb+McvUZst9XbD9eWadttx/eqSEDwLo/nuL3+T5rvf4pMff8J/9ad/wa5qcJXjzZNTbq6uOZxV/G/+2T8mHhzz0U3HvzF/yH/z8SV/8OUN3337Hvd+8/d52LVc/vVfsF1v2FzeMF8sSi6byLpA4pC11pZ92NoaHT0pBdlLyut7riWZi8tLhF9Yurela/l6xHO3h36n7gqFOlGinqRKETiicpACkh9I8wW5sRgz59WYufae//vumn9mDf/YNHzTDYQ4ElIiUuEBrxJ9CIwx4rWh95HgMzoZvvbee3Rtx9XV5U9EY/+hxy/emX5frdOgCxERqbRbrXHWSqWvJCqVcwzjeKcaekdxA6Qa/dpvmMLMKfj8aUHq7TsmXObdsBX+rm7NFAbuT/CVl6fSxM/orpTvMcHBYmkpZxzOWAiJq4sLTt95RL2ci6LIdUuIg7SsFSgjRM5GCw8iD55FdYg7OObs/a9RK8P2/JzNi2fkONK1A8++eEKlhRxPLG1sI23JrMSYLKaMH2Wy1s4RUyDkSNd1TEZsWpk9QssChwdHLOYzhlHURrbdwGp5IATM4Gm3G3l/lpbvLQZWbtGkKzS1oG8rPNPCKcmSCRGcIWtN1LpIlUpCMRWWp3RiWoD3HZLbDGTfxbk73rfjeneG3H0lM7WB8v6JT6gcxZhMKSKI2VKIBBRozWa7Y73esN5s9oZd0xyRIFSqvXs1u5z3QdH1es1p25JSYr5Y0nYtbT9ACgVvqnh0dA+dIjdDx3nfEpo5iywKWbHK2JIf5BIIj+PIMPTs+p1A+pSWhEQFWbCUIqSIRmGVwceRGBKRIu+qRCY1l1RCKUvIYW8gtesiXT+wbltmR2+hqxmNrpjgD7kUKFJRLkoxlc1OSSu+8CF0ufkRSQsOKsfXzo6wydN3W85vbrBdT+hHDnYj21Jxq42sI1P9wVlZwsTzQr6fLepsOYuLrgx7YNeN+5Z7jgljS0CiJQkqrZE9LEopeZZSSqQogaJ4CI13OhuakET5x4dQJH41aC/KWVm6T5Ns7j6BQBWYkFQRQ4wMxajNWI1P4EaPc1XphkRSnLguap9EwGQMWu5nTPuE7ZYXoxhHv6+w7uFnKRNClGtWmn4cBboSI1nF2+dJtfiYGULk5cUVr84vWK/XzI7vQxXBZYZxABxWO0LwJGXQysiYmykZKGtqnNZWWUNjqU5bhK8kz0qgjV6CtjGg9oq/maEvcOEpeC57DilhnaVKQPH5yNqCFhflPkghYIgQVYFTIMnu3r9BYnGxQDOWLkTGEBhzmbNZYZJUPpOCEYiDx+hAnTN1CTbQCt8NxAxDSLSDqOpp3TOvwWVDxog3WPFayTFChCF5zGiYZLNHP8q9U4ptuyuQoEydM85XtN5PtivSNZV8GpWhL8mAztCP8oyTMl3XEmNCYzF5lCJKlAG3ZPpRyPODUnQxEb10HPJYHLZTZkyZZxfnXK7X+G5gp25QxjGOkaHrSCnx7Nk5Y39DTiOr5QI7q3B1TYy6GJJarKrQasCqzPHBMb7ruQ6eruuIGZRxUt3f7cjBk6zj4uYaMpw/vWR3dU30kS+fvGAoxrvWLUk+4LfXWDR+7Iihk0A4gnEN464jhUwOCRMh9p6x64WIXyBfzlqCteKaXgJNV1UM48hYfN3efvcdglJs2g6bArapmFUNuyj+UdvrNWrX42KmdhXJOUGFqowePdYnXBYfCqWNdOqDL7ysWx+daV8xxlDlzHq95vmrV3z05Bm/9+33+Nq24zvPL3ny+UeEviueQGa/Nb6OgC41+Ttrgtaavh/IGZqZ+KVMYiF+HDHGEkLAVZWsq8WEULoeA4EsCmC6xHQK7p8c8e0P3uPNhw9Kh0RgaQ+PDhm6HSuLJOgFcUKZySJCEUvtK+9NH0PKGKtJYcBpzVsPHvCf/O7vMIbAg6NjTM4Mw0g/Dtjid7PrB4a2ReVMozVb77m5vORP//iP+f3f/E3u3T/lO9/8Bj968pR2GFh3nptdYN0GhjCycnC0cJweLtl1ka0xXOqG1azBaS2dRAoMW5UC5R1zagUYa/Zd/4lDpkojZb8W3glMYuFV7lUfC2ogT3dn/yF1+0vuxqUFqaQmTxM1bXES12jvxQuNRJ5ZsoFRaz4LM76fA4ch8L7VGMApjcLiiDRkTmxiaQQSGrMSPpb3fO3dd7i4vOTZy1f8oo//CNAvufuyWWsyaQ/vEpGJSXVG/A2sLbKA7FEIPzWJuPsv02DdVspfP/IUdOSffO01OeI7P9/1+lDltVRa5T/tKm6rEj/nKOeKUVq4iUxlHSEEXj57xtvf+Tq2doToWe9GQifSv7nIkSiVS7VBgs1mecjy0Zt849d/g+XRMa+ePuGTv8z4Fy/o2h3bmyua0rWqm2ZvPqS0BKfyZGgxmouZuqoK5CTS9X2p4OnSnhRokdNw7/SEpmlEEvHlOWNIvPP+1whhpO87tjc3t67KsVy7kY317njs4XMTnOauYgUZ4wPJCnwkWENVglzpG2T2RgF3Kghq+uHO3Lj7590xy2Vcp+SV4nyY4dbNeU/ILp/IEZUCRgsMr4uRPkQhk2rD9XrN9c2azWaDK4ZdEkiWBTdLMKiyYOhDSRZDyKw3Nzy43xJSYrE6oBtHNu0N3msqYI7i7Yfvctm3PG5bLoaOKjhWKRN8lFa4K6pKKFCafuzYdTtu2hsWTYPRRoLAdOvanpTM66CMPIW5wGS0VOzFLVyVKt6IKrKTKSWuth03my2vrq64/+YRzdxi9KwMj5jkJSQpTjGKlG2SMc4JgY0lVdZxhQcqpTluKr5x7wTtO7aba17d3OB2LUPbMdu0rNuelIIYbtXibRFzonJC3BvHEbLwVipX7SeAyEMLNMr7UbD0d5RlQK57/ygXwjBKCf8mSMIVYgSjiWS6YcSXIMUWaVtRQ5NnLZekNpVEhJyxxpSEQguvo3gPTElIiDKeOWWsU/QhYK3BVZ4weuFQlO6HMQbvPRNB1lqzh4F5H26fKa2wJcDKeeqgFA8F5O/jIJXbmEUKNEwyrIX/oJRiDIFuGOmGkfOra66vr+nbloc+4HLGKhjHnspkTFb4MJCwoBwGe2vISAmMcr7z8Aq/hbIsxKyJIRCDZ9fuMLsOZ3esFkusEVjd5maLH0e8H6mrSrgaRtbrylU0Ceq6wSpD0pakxcg2Rk8/iiN31q7AFMv1mLImlCAhaY2ySqRao/xda002lqiL6Z2KpGjoOkEDBAVRK0EOGEfXDcJ1CdD2An+K2aM1JBwJW0QohEzrg8CG4hAEEltgcj7G4usCfRDysiYzpogyFmUtOsSiMCfiJBlJfLQT2FKNI6iepEE5g293pJCEMD9IQKvMnJkTmf227RizrFspRcJuJ+7tY8R7gQNtu46r3ZZuGEljoA03JBQ+GYZdi/eRfvecGNcYLcpiB0dHGFuLqzvFxiDVwrtQmXvH9+m3Oy7bDdvNFjursFVNGAJDt8MPPQOGoe/ww0i/k2KZQvP0yQu0TkDEugVpWDOOPXp+zLjdMbYboigCYO2cLlwSxkAcAjZoUu8Ztp3cR6QLKIlKReWk2GCdo6oc15stMUQqV/Ht736bqBQXVze01xfMF3PqwyO+eLlmt2u5Or+mHiO1sszrGdfGEkutzoSE8QkbhNujjcXHxOiDjHPR+85T97HAXSugXa959uIFf/vZl/xv/8k/BNtw2Y78y//xf2Dse0KIWCccs3RnR5yi41z25lwCJWNskdhXVHUtqnWlIxy8x5uRYRhYHh2Rc2JnHNrI+hbGkeg9xlZUFWy3OxbLOW8+uMevffMbLFcrnr16SR56aud4dHQknbM4okIUU2StSFm4VpPtg/A9E7tdRz8GQkxooxgHT2Udp4dH/OPf/T1RWhtbkk/sdi032w3WVlTO0u12dNutKFpaR5cyV6/O+e/+2/+O737tPR6cnfEPfuvXWPuWL56/4OW6pe0ih23k1dU1y5MVc6W4t6pJTUNUjp2r8dbQxBFXOSYOkdhNZCYBkwl2PFlPpFK8k+Vwek8p4E6JTpFFFz+3jM7Tue8WX2UA90Xaqe6r2AuLQC7dOPmsbLlFpMh7VOFlpZkRI1lteBIWfK/zKD/ynzvNgdE4rUjZYYCFirxZw0c9PI0QMWQfMOPANz54lycvXvDxl0/4RR+/eHnioi4k0OzIFBOmLLjL0LdSvS+4ttVC8KyVdXut+b/r0PuhmhCld5LJr7z3Z3dcfs6h2Lc8vypP+u96ZCAbjSezGToOVytmVcOy0myfviLmxObykqHriDlCZbAhQ4B20/PJjz8ljCPdTcvp779JVy1Iesbz1RHr44Hrs0foF9fo0GJVJldAbbCrGVXWECLdriXHkjhqTSiKSBkxtdJJQRAcslKgrHQQqrrmrUcPGXzg4vkLfvjRxyybJavFikVds0sBXbL3lHR5OKfOShYi5/TAJjBRugnZTf2K27ukc6YaA31TEcVQhBgKrl7J1U51/j0c7D/4+GqfbV+22rtOUypKylo6Hxi3Le3QE8lo67i+uqbvB6y2nNw7lVa9NkQE6mIUgokupMAxCQ8gJ7i6WbPe7ugHT7NYML58ybPzC2zteKt2vDVvWI49H19e8udfPKZDYDK9HxjRmIR4BxhN70c2Q8/JbMaj0zNODw5YzmZYI7jnydVekvDMZEaXsyQkCs0YBwlidYKi7qFQhDxI9yxm+lEx+kjXi7mZDwPXNzcsDpZEBR2BnkRAAvx+GOn6ka7zRJ9krilNBAKRHYn79Zy3Zyu+MV+wu3jOxflzuhB4dX1DfvyUT//8e1y1PSlFamB1sEAbjU+B6OMtthlZ4CvrJGE0Qsb341A4HIHaOoHpVEKCjTHJelQ8C+q6Bi2GivNmhkNaVoP3cs050Y69JP4U2NTUucDsuwYTZLRk6NLduKN/r7SW5EVNDu13KmzZCjwlBsbCnVCFB5BygpjRSnypJg5CjMXQsexeWQnMMiopCMXJm6MEvLLPKbA1OQSpirl6X8UTpTJd5OU7glIEpThczGiMwq+WxGGk325JQaBxXecZh0DwfelQGNbtCCmgiTy8d0zO0vVJIRcD1SBBlJZnfOgHpnauLi7Y1gauuwGL8Le++PJjurZnGDwpRFxdMZvPODpcUtUNddMQY6JuGubLFZriQ6EMu2EkFkf6GARSoYx0Y6bi1qZvGVNgzJGpwjv5cmit6IwIlIQQ6PuBOLQCLWzmdEYMb5vFHGssIUI/JPr+hnHo8cOOl1bM+2pd4VxRrtOasRNBjjEmyAGlRM1Ply51dI4p5MxKZIFVNuhY4+khJ1w0mMpL4qYqUpSf9XKGUZY4JtbnOwZ2pORRvWLw28JfmZOzdGus0iznNbUxVF7TeYESEw3NrMJah3I1aMXyYMEb75+RfKTbdvztDz+m37UCIySjVBBIXjPnejsQVINd1ITBMMRM8i0xREzleOP9d/jB9/6EZ59/wth75sdHzI8OMBaOm3toNNtuRBmHqQI+bzDJidDEIhO6DhUD80cPmM2XOKuJ5y1mdkBvDLrX+LEn02JzotGGmbHEHEijJ/fSvXPOUFd1KaSKcII1om0ec+L0wT2auuH4+Jj/7B//IwKKTz7/gs9+/De8WVWcHN1ju2m5WO94sd3xVm1RRmFipN71VM0MN59xM6u5vllzvtkyPzjEVQ3ej2zWa7p+xLkGNRm97tcT6fTb7Dm/eMmf//Vf8+PPPmPeNHzz/Xd4+4Ov8/STT9g8e8zBUu/5ffsdL9+Kjew9mJgM/SQuGMaBpqnxShG9Z9Y0pJy5vr5idnCAa2Yc3X/A+uULUhilVV4aItpIcePRask//O1f592zYzofOL+8JJE5msH9HHnnaE4aFcPNFbtJUFlpmkqI+2GMZKVJCdbblqv1hsWsIqnEwdEhL56/4L/6f/039NpxfHrK7/7Ob2A3LevO08zm1Kah8oEvfIfREW0UnpHV/SM2bcuf/c3H/PP/6c/49jc+4IMP3+atJ29yM3g+++vPcEbTjSNfnG/58Gtz7s9nvDufsd72bNWInc32a3vtDHUzw9VzZMWQ4kMYFMvVivl8ztHxAc+fP2e73cpQlOBn79NExofA6D0oxYMH94uAQeb8/Fwgxeou9EsxiVCLdYCsZylGrDZUVY1Smu2uI5ciizZ67wWl9YjqdmjtaO69Q99UjI0imcTnqmLYVPzfrp8zNwmrM/iW7y4MHy5r/peLBVfpFU8uW7zVxKL1XdWGpKDz8d8zHvvZxy88UZnK05IhFkM5KC62mZhkI9Wl1afufi6/rqT11dPClHhMYKKfbGqor/yQfk6e8VOTkFzqkXcynJ941wRh+CnH68C1XJJdOVnIkSEEtDXMXEMcRbY4lWrwraqKfMZqjasagtL0zrO9PKd//AWb0/tcr68ZNhuUdmijWSxnvPvGGe9+8C62rrm63vHlp1/SDh0hZZarGlc5tNWsFYSCq49FfEJ0t6PAksZI5eYSGMVMu93RtR2r2YLVYkndNLTtju1uTdd15SEq111w+VPF4HbExMNDZWnl5qk1OlUEckbHiE6ic5+sKNAkhQQa5Z6k/f25PfdX7/9Xu6J3Xtx/dj/06nYulcuYpiIAJue97v6k7BRKwSLFzK5tGYeBFCPO3ZLicxbys9Wavpe2dT+Ogh3NqvANDLu259nLcyDTjYGQEnXOPDw85NfeeIRDsel2PLk8l85IMU8Ng2cwwofJSty0275nFg2x3XDzfEdVuAeVtXs/D12w/SlnYo4cHBzI9/Ke+bLGOoMzlvV1S98P7LqOauaKEprCe4pMbaJeCAG7ix4VPSlDGzxDDNJFionOB7oxCK61FK69kuseg2eTMu8uFhzWjsNK87zt6bcd0UfmTYVbLZifHmNnHSknGq2pKyfVt30bNu/HfuI6qCIeYLWGuGBKdCvr9iITghbKe08GpcC5Cl0SlVlVYcrmMIZALPfNx7CvULqS+Gil9p29XILsaa1I6daT5G4FbPqcQgjgmhKjl4BoIi5SPmuMvTVqg9vnLt92BiajRpRwavaNojsJSAy3Ov9GG+mCFVXGwgRlghooDTFESbR9YNNu2XUDu27gat3SjyNjzLiqImfhVaUYSTmSkmccemLw5OS5sHnPx0kRvBdOzNRk3ZvbGYM2ljj0pQsKjXW4Ag8bYsYDQRfpc60Yc6aPkIIoLY4h0IVEN3r0FBUoTe9j8RkSyII2Au8xe/MGiH6AKOaBggqTynoCohfZYulSJUz2+DiSk8YrjWoqSAKF8Soy+sS2HdHWieLRvCJHgXZa5dBW1rCUElFbUSELxRldicpPmlQU88SZFIhlSKKmGbuWZEURL6UsPjMaUB5jhTOls0WZmpSFmOyWFlfVzOuKyEo6iGZGCKN8LxRNY3FKU3lY6rl08KLBWI22lqqZ4yqLdZbZYgkJNpsdn33+mN4PZJWYOysdXGNwVYWuKpIxbNtWjEe1pfcbwthjVMW8rnj08CEqBz7e/FjW3xCwtiqiF1JcMMaCsVTDIH5txuFMRW6kOHR2fEYzd1ir6PoLtIu4QZGUR+cK5QdGLbzRWVNTWTHBzOOIzsIncEYQIVlFUBFbSPVGG2xVU83mVLMFgw9UVcXx0WF5lgR67WPgJgeeqcTx8QntakVXVUTniPM5/vCITdXQKvB+oK7EZNSHyDh4og9YE/YxjGxp8uyqlGm0wnctz5495bOnL3n3jYecnZ3w9jvvsru+4vzLz9gHstMZynOdCnLgjvVGSVRkPwzeU1VWDB6rCt/35f2JoWuxtYg9uLqWTmLxYcsp0nY7lqsF9x/c44P33kWpRM6epjL4IHtv2w8sK/Gfqw+PMMrQ9T0vXl1ifeRq25KVFHJiDnR9S9t30r2LCdsIaf5ifcMXL16xXB2yPDzgg3ffJaOwxpGVKvxQja1qtNF0IXJ4dMioDD7Bx18+Yblc8mvf/l2+/cEH9O3In//ZX0FV0w89VzdrUgzURnFcO9xu2EvOxyB8zPl8yWIxYzav8JNoVCnWGmOE+B/FsDHmiFHFCyxTpPBlvXWzBXoOtq64/9ZbpGFk6FqB25VOy34iQCk2SoI5jiOWzMJYvnFyyCIFTAx82mcuyeyQ3GiKMKWrMqKHjtR3sHRQ1+RxRj8PXGb447BhlkdcCBAD62C5DI4PqopRGzFQnSIz2ZCoXMWsbvhFH/8RoF9T2CeLqQREmbjfLtQ+WJgqkcS4TxpeU0D4Kee/raTfbizTQ/ZTj5/RUvlpcexPvPpaFvX3PyZYISUwUaWjFJM412ptONKW7Edy8Lffv1Q2yEKorazmcLnEx0DvMzcvnjD2Hck4ujFiMxxmwbwfLRb82q98i3/0T/4R1lX86Z99ny8/e8ymbbHacHCwYLWaUc8rtNFsNz3tdpCHpWhuT4ZQ3nvMaoXVlr4f2ay3+NHz8OyMqp6RlWK9ueZmfSPvdfb2Nse0b4MqDUnf3mlTOgkxRZHJK8HdNN11DJgYSdninRDqM9JB06U1F5WRitJ+JuTXB3Jq4cEtTFSixNfG6PW/FS1/hA9ThEfKOcQkzJQ5EBE50RAg+MR2t6PvelLwaO32FSlyRGmNcQafAkPw9OOAdm6/iFlbs9n2fP7lM5arhVR7laLRmvfOzvjdD7/Fs48/Z9e3vLq6YHHvATNrqTKkbmTU4rMRgsUPnqHt6bTh5asdr764IFPUjipHLjwpgfYZfPAM48B7779DSp7d9oa333/EcrZgUS34/OOnvLq44tn5S07uP8BVDmOtwJNUBqd49+sPsFVizB7lBY/fjYFhHMVjJWT60dP5kd4HAhLEB6WkMxQ87eBZHR9y3DhWNvPFtqffiGLMvcWc1b0TTt57m3XXApmZddL9QHC/zpp98mUKtyqRiSWlNRkqa4XIOEGhlJLx3j+fkwywLPxTJ8yaouqDqKsldfseWZwlcdTT5wv0Rqr05ZnIItOZ9q34OzPwTqFmD51UsqHsIVgFJqCR4o50FxVKCYTNKI1R7E0MYwxMRgra2H1yMl17AjFnLGIRzup9EqXRct3GQJGvla6rFQhGTlyvb7jZ9VxuWv70L75PN4zE0XNQ1gCFYO9j6TgQB2LwBO85v/Ql0c/kLA73UyfIaBF9qCqHxqFRbHbbAocKLOdzauuorUW5BmssKsVS9NKS2BjHiCbEzBgzhJ5dtysqekVwAuki5iRqiM4Ycl0V+Ma0TkUMGQf0MWBI1FqUz8YQCN2Im1UYDbVNjBNuNAaUm6GMyNMPKTOMgd225fjRPeazmmVj6dtB5G2TJhsJVsZhkC5FjKA9SSeMhpnRhCJ8QMrC4cuJNI7ELOpA/bjD6KbANzIBu09wq/kSV1c4W+HqOSm09D6wqI85WK04Wx1iZw3WOeauZhh7YoiolNFWIGZuzMxmxbwzakYv4hCzxZzZfC6V3xjQtmKx2bI8/BFDHNCj4vjggLFA6dxsjp3NyM5xdb0REQvjaMcRP/RUOlMby/sffMDp2RFPP/4cEyKqG7BNVThnogbl5hXOGuqhQc9maNdgfI2uG6ra8eD0IVVjUDqzbj2uzzSjpmeHDh41eDqrqZuKxXxGUzl0SsShx2RwWkk3RtJTEYgw4qtirQXtULYC63h1fgXA2ckxVh5GUojEGLjMgc914sHZA66fP2c9m6FnDfboCH32gOtKsVOalEZmNRgtbvfieC8uuZlb6XddvLt0ViysYde1PHv6hB9/9oSjwyO+9v47vP/BB7x4+oSx8JpkfSsYhhJQ6lTYnlmyFamfSYKWcib4kcQMZQ2uqRn7XvZCrenaLRWZWSMqY+RMHD1WGcbo2XYb3nz/fd546xHvv/cuIXtiHDlaztjtBNa43nXUuqZuKo6Pj3DGcH5+weVHnzKsW653gyQqKFSK7Potu64Tk+SQ0YVH2kbPj3/8IzAOt1yRjWO5XBU2ufA8TFXhmhkZ2IXI2XzJ3FQYW/HZk2ecHB/z1qO3+Y1vbcndyH/tRZrfDwNX11f40LNQS46bGqc6KAqKIQZSyqyWBxwczFnMK67XuwKzLcXXUrjctjtRIivdyqwKV9Inkbs3ltnqED1vaJYLHr77Hu35K9bnEe+DKLDeDXFA4LlG9p1h8DhnOWgqfu/hKWftGtdu+KNd5gcRdln8uWyWvUSljPYjRrek9ga1mEPlyK5hWCiuneMPuxvmQ0sTO8iRZ6Pl4+z4p85yrbQUl1KJwnQGraXLuDrgF338whMVtzoQ3G0MJBXxKaLSpKRUCD4ojDYiPaqVbGhqrwXFz0shpiN/5aec1Wux6L5b8jNyjD2e7xd4TGFHRibQPgHOgt02VMQx0KcNl2ng7XcfEauKDTvW654cYVY1WDuiSAx9z02p4gIsx46qXXN6fcFFgJDBZRjCQBrh6tU1P/zLHxFj4q/+4nv0wxZlEn3b885bb/JLv/Qh/+if/A7/8l/8T/z1D37MH//h91HKobMEcM46ETiwltXBEq016/UW62rRZ1eam/UNvR/ZtQJ30FbgJ3dbESoWk6NYel8Ct+SWO6QKPIz9TcpZJPSM98RRk+bNPihzZazynaTmdvzuZqIl+Pv75pX7CXMr1UiW4FahhFAbxQxLmYyqFFQKnzxdv2O9TlzfXNIPLTkJbls4KhmdPOJjJhCeFALJh9vOmYK6qui6ji8fP+HBozNC9CxmM2LKfPHsFf86/CXvuYbfvveA49/6XXTtyI0izRRhs0P1YCwYn4kh4kPE5JHL5xuefP5KSPPaYJ3o1CtFIfpahnGk7VoedD2oxBh67vcds3pG4+bcfPKMcHXNcHHB8sUaay1awzAMhBTxRO7H73J4PKNZaNRaCM6Dj2yKaIBC8WgItD6ySSNJy/XWTuOaBusMs8PAP3m44r1Gsf3sMS+frbm69jhbc2wbDpsFh2cnWL8gZ6i0iFHE4Om6HTe7lpwSVeU4WK5wzlFZw+BFTaV2DlV4QptNSwgerTTL4jsgXScR9tCFQOv9yBhGrjZt8YDIRQHIgVKl8yUJfho9o/d73HHw0k3qh1G6U84yn88LYV2kiZ21aAVd30sRJ2e8H4UwHIN0FApx9/TkmMo5tNKMwyieHTGJHwBglGY5m2ONKZA2B1qKIlc3N4SSCFSzmfgu+cAYJEC3RlM5jXWmcHcMPmZGH3l8fsl6vWbbtsSUqWczZrM5h8dHLGcV89rxy7/yIcMYGMcgildG44x0PccQ8TFSWyPStcbQdiNt19N2w35TmzWNqIWVe9/3HZfrDa+urtn6UZLEkIla0xwe8uD+fb713ls0TmFVJGAYvECwnj0/Z73dsd7sMM5ydLDi4dkJbz84o3YWZya/iyzE8akakTI3mzU5iTS0Lop9UiQRXpJPkaSSPE+momtFRc0U+F1V1yxX0p2cilJ9CIDCmBo/ivdEXVnGEFBKi1xyjOIzNIxM2D+FwiKcJlfbQl5PjDlgVem2pYh1FqstM1PRdX2ZWwblpPoasyqdIoEAVs0MHxLf/fXf4vnFM3KOvHF2n2a+BK1pu4602ZC7Hr/tUFokn2OOeK+wucAhayWqhpVjPQTCrqUfOppZjQ+eowf3aYNH9T3L4wdsuh19DLTGsPYZkyLbYcRHTciJ4DOqXqBnDevdBd/42nu8/fCMPz3819ysL2i7DWpxgLYyt4J2+CEKsb9ZorRFJUVUPTYbfBTVtdobrIGAYzQV3kXUrCJ1nmB31PWMZnVIc3hUulGJHBKPsOjZAnN8Qr2ybDc165s1o78hKRhC4MmPf8RstuDw4JB/XjeolIg+8sHXv8nBcsV8Meeeq2n7xF+edzweNGOuGd2Cs3tH3H/7HU7feo8nn33O0Kw4OnvIwXIlinUpU52cYYHlciEKguqWzSD+NQa1vmJcr1mfv+QPf/BXmEXN2f0zdAqsVgecvfs1xiAluEpB0mHCNkhBtBRRYzH/zMXMc1LC2yWLrSqaZUPtFkTviT7SG8UQMu1my3K+QBtDGP0eWhRj5vDeKfOjA3Yh4IBVM+NX3jrkk6fPuWx3PGmvmR08ZF43rJYHrOoag+b+w4f8wff/hmcXN1xcteScRG48CbcsRvEB2q63rNc7RhRqviJGuDi/5Pt/+0PG4Pn+93/AP/z9/4TZfMHi8Jj0+CXjONJve2IfqLXhg0f3eev+MfcWFRcvnvLhuw94cPg7+PZ/z7NX18QYsOOWodvi/ZKTxYxarzHJo8coiYK1VIsFTVVRa00YIvXpGbqZ0efETT+wubhBR4GZNq6BrIi+GDTMZ+jlAtPMcPMllbZon/g3/+qPCH1LDCOLxeLWkLiELRJDZELwKDKHhwcc1A0HtSMOgcNtx4Ndz6qeY8dI8InPgFSQTNZHdPKYAN3Vc6hrjK0IsxlDZegrw+zoIW/sLnm7U7Ab+PJ6yw9Hz3W/5KaP9MZx/fI525tLun5HiPDg9JB/+Bu//PcMwP7+xy88UTm+95DtzTW762sJ8iaYVAlEVXEgTllUHVRReVGls/KzWyN/1/GTmcfPopf83A4M/CT87O8R+N6GvPxkFpRv43iUKp0VgbdYazmYLbhIG0JMKKJUOZWR9qyp5OFPAylEbEycOcU7774jqitPnnLlNKPv+fiLp1xtBpRWbHY3vPveG/gx8PSTZ9ycX/H8i6fcvLrCoVhUFQbx2FDKkBC1Dq0l2AijODj3fbdvPSstUrSh4Pmn/167RbnUf6SsIFyPPKl9lfNk9oZ0+wShLMMqJXSITDBArYQvsvfNK59l/4m7J/5JdbefmoxO4/sTb769/qklTir64znSOIOeN9S13KeYIpu2pRtHfBZvhlwUrVKUCrSOgZgVKIu2Vemv33YOY5RAYPCemLJAIULg6dU139+usW5GTvAoJrQqTuce/Fq03JVKzJIRgn6KkDoONwOnCmKBtekYReAANdl3CMlXaQ523b4LNLvc4syAVTtc2/NGgvfrGTZmdA7yuZCLYZ7mvefXzLcdVSOLaCoVz66Mp0HRtgPDEGn7KAWKmHEpo53FGkWjK87aAd15nj27Zr3pGWKUpGwIDNuOi/WWi25H1w3sbrZYpUkx0rVb2t2OlBJWaw4ODpjNZiwXi71xe87Q7naMw0i7k8RDK8W8qTlYLZnNxFyudq5AFzLt0NP1PVfXN7KJk7HW0tSCWc/WEUuBO/mI9x7vRaVo6Ae8H+n6nqquqKqKo+Mj6R4Xxa5JqWxbOgYhStVsIug3TUNTPrsN7J81PwqGeQyBtu8wSBdi0cxxTkQ0qkrEBVJKrLdb4eZkIUv7YkRnrJXzOwcq4ZzFOEkmhjHQDp4vX7xit2vp+56UoZmNNM3I9Rg5Xs44XDTUzkrilDJjP2KLIltIWbolKeNdRukMRNbbXUlUeozTNN7ThEBdVXvhj912KxKzu54xgc+KkDV9yGwHT73reHW9ZtE4Zs7gibSd+Bi9uNmx2XZs2gGMIugeXXVUTUdTWSoj84bSZXJFfY2sSEXtrCvqbZMfW0ziP+KjQCyVtlhTM/QtSimsq8AorK243ozE5CWBTUJ2z2gMNUPooHSOAmLe6VxFSJOZLhhXlW6dOHRPnIHRh2K4GamcwyhEfrzMC4cRVbck8sYYKSiHBFqXolFWmKrGx8TF+Q3nF8+ARPaGxXJEW8sQAu1mx9C27C6vEM+ijAoi8GCtYT7zRSnPoKua4HtiDEJubkdSDqRk0KbCukyyNV73jCEyeKiHiDaBMWThmJHRdU3KnnEM/Piv/poP3njEg0cPePONR8Q0st5uGEYv/Cmt8AV2E4FcSbdAzG8zIQk08/ziJc6A0QnGgeB7kh9RQ2DoOoIPBQIo9yZZhXWWpqqJpsDJrGG5WIjile2kt5IE9mq1hhQZu45PP/mEg+WSWdNwdv+hJItGMTdQodBJs1uuGI9P8PcewMNT8tkZcXXA4Gqa0zMeruYsj09xswUpKU7ffpesDYvFQvhtRQQklUJXRmEuFwz6Obtdx5dPvuTTx4/44uUlbz54wM1my5PrG54+P0cj6og+ixcH+5hLoawmDwL3E+5KRCHKn8nV6NmM+ugAe3DE2A/stjsm24mkMqluQGnMKhAKlB3j0MoSk2Lb9TgHytUs6xmr+Yw2jvidwDN9CIQQCEU6//D4kJPTEzZj5NmrNWiNziIU0rYdfd9zbCu6dmDbjbSdRxtHVpl+HOjHgdF72rajqivmywXz+UwkyrMU9LabDavlnF/+1tc5Xaw4nc/48sljDr/1AScnB/zed7/Fpx9/wma7JlpD9Bk/Zpa15dBmNjrSpICzIqE+145FVVFbSzd4KfguFmgSOookv0qQBbWNjhFjHLZyLB49YMiREAPbqytceb3frMmFB3k3SZnCFuG55OIplXC1BqMZtOazfqQJiojDZk2dA4vkUT6TrAUtKl+ZBNFjup7c7kizljybk5SgPuLsAB96Br/DxtJMMJrnAYYABIhtR+wHovd4H2mc5f7p0U8Juv7Djl94onL66C1GH7k4vyAVEphS7OVNp+whpYgvqloppYI/lePvSlV+wi2+HD+L+H43bdhDzPhKQlKC6bvn/nsbTnI34KYsIwUVmm55mmKCKapnXT/g+5FqbjmeLXmitRAZs2xGSlsCFXa2IMdAbjtxe86Jk8bym7/6Hcac+YPtFV1jubka+OHHr+i7HzObV3z9G4/47V/6day2/Js28fyzpwzXG95545R+s8UBFVAV0jHKQhaCsVKBvtvhQ6AfPWNIxAzZaFzJyJ2xpeooak6vcT1ywdFmza1RJnv/O13en5VsLoVNLC3qkFE6CIYSyrzQBcyTsXliqei7N37/890EZVId+0rPpbzGT++85JKk5HybqMSEjpFl5ZivlixmM1xlSQrWbUc7ekZUMTCV+5CCtJ4FcmJQpsZWhkQqErmpwO3kWRijVF+Vreh94unNNdv1BYuoeTBbcm95gKoDRguJ1rdiCJZi4NhKW9tnwd9LF8WQkin3JN8uboApPgi5qondKN4e1uIvWxFBiJm3lQFjUIdH4tuQSmRuXBlLhX1ygzYUpaspm1UkLfT8SoCre4lWi2CGLYlsDMpY8Vm52DK0Pa+udtycrBh1xswsvu0JVxu2L8/58uqa88srPvvxJ8yaubS725Zh6PcVwYPVAcvlkvtnp8yLU9+u63jx4hVt29F2g3AgAGc0R0cHrBZz7p+dspiJF5H3Izdtx67tePnq/Pb91jJvZtRNw+r4uJiWStk9hMgwDLx8+Yq2E85SN7Q0TcNsNuPs7KyodYl54USSvNnc0PcDow/ybBtRjDpYHXCwWjCrI8/XLWEvkYzIovqRru9EDlsbZnUjPAsjHZycCpfGj2XYEl3bi3IZcHC4YrGYU1cVYxhFEMBZtLW0w8C263n68lLUxgqGug4SZF62A+vlnOPVjKPlskgrJ7z3xZxOAutcxCictZKwxMT1eiueWUNP3UhHoXIVs9l8b2653W7pupGuGwkRQtYENMkn0q7Hpyv8OLCazzhcLBhTZr1rubpZc3nT0g2ebgzgFOsxsRkSm15EFCpjSMFjSVQGFpV09hUWnXv6ENj0gfV6TQyZFBX92BYYWyargFIWrRpi3KGtwdULkoqQDTlXRPpCm5KEJEdFDo6gOlIOgjYwlcx9UxGUx1nNsq6p5ivxsMrCf8kpEoMEY7GYdc7mNZXRNCrTei8ePoNAtOSOJ0KOErCnhHFJOm/Rkp1l9JFXr67pd5dYa7i5Hjk8OsDVNbmqGbZb+t2Wq+dPMWWtVdrijMBIZ7NBZM+NgWqOSj2kQAygjexy0YvZpKk0XtcMWdOlTN8nbOfRRqSNQ+HimGZG9j1Du+Wv/ujP+Me/97ucfPghH7z/Htt2Kxy3YYQcyEYzJo0PIu6Rs5IOkimLesioGOg2j9GlwGRUL5rTPqPiCMGD9+QUiCGKIIeDqnbMZw2d6UALv205X9LuOpQ2pEyBLkaWi5koBPqRTz/5hEcPH/Lw4UPu3X+Ejz3tsJVERSnmyjKcHhP6h8Q44t6+hzk6JS+WhLphMX/IvWXNwb2H2Ax9N3D//a+TXSX+JEqJ2phzUgDIGR8jenXAGDO780u++OJzzu494MdPX/L7X3+XaB1Pe8+T4QeQoWrmxNhKMBKzPNdWoypD3nWkst/lFMouaUBXmNWK+uwMVzkpxJxfwOgFJeA9oarAibrW9vwCbwLYGrIl+MSmbTFOoevMsZmzms/YxQF1GQkhMI4CQTZB4LHHJ4e8885b9An+5uPHsgcp0Mqw2Wxody0PT4+5uLnmph3ZbHu0tiidGfywh9lqrVmsVhwcHbK4usQ6gQHmFNmsr1nMHL/zW7/GzEtV8ePPP+X99x/x5tkJv/3tb3DQXfHylee5z8QhM/aZw9pxr8r0NrJIkUZBY+HAVhzMGmauZtePzK3FzRqsBtONaB8hehFsyAkTImY+p1odcv/dD7g8f8768oLLZ0+xMQr00Bq0s+ii5lhCE6BIZ6NQUWKTnAUmGlVmmxM/2AV81NyohreTR+XEMkcqH0X+3WlBZoSICpGq62C3IzYb8v0zMpacDGlhaP2O6+GGeQgoo5g5x1XShKBwYyb1HWkYhRc4jtTOsZjNfkpg9R92/MITlb/6wQ+IfUdSQoEWo6hYsJ0SEI+jqGgYo6nrhuA9/TCUBT6LCsvPO/6e0J4pVPx3Of69kpSS5OjyvwFyFBOyqKRakxECeY4KlSwaxePHL1jUFUerBd96+wGZRNt3rLsBV9e89fYHvP3ht1FGc/HqOT/6sz+hX9/wN9/7C37jt36L+2en/NY33+fFR3/NVlve+dp3WS1nHB/O+eY37nOyXNJvWhZWc53g8RfP+b/8n/8fHB8fY11FZUVrPo4D6JaipCoBesG/z5sG5yOhVBW1mrbD1+4Ar6WXSTYsckIljcoChZsUSVX5SE6QDPvxVIBOEeMzdhyF3KgmAr3ab8avp7I/JWH9WQOlbl+bujnT9UiCKhfoizeJSpDGAeUjR33gw7OHvP/tX2JVW2oDOQbuv/kOyjZUiyuag4M96d63w75PtKoEUqeNEUx+CuQUxccmS2Xx4vqCw4Mj7p2ecdxYmpfPmX3xGW99/xOaq458NQgURClp42cYcmSbI7rSuCw+NClnogZfIB+3kLZbgYM4DbKaFNQgZVXIdtLVslrtK/m3Ha8Cq8vyr31xf58AnbkM/ZgjVivmzuKKAEguBE6tEuBpssNnzWUyYERHvzk4oneeLkuiGrqesN7w8sUrfvTpp7w6v+LV05fcv/+AuqrRynDv7KFIBBdzNG00u96zGa73nLAhZHQ14+zwdJ+txRjx0XPdj3QvXhbPGSFzDz4SM1SLw31xJedElzRDHxiuroUDoqSSnpJ4gcxXCw5PDouLNTTNrPhGqX1CpbUGbQGFq5YoM6dOWSCUUzapFbsx0vqdVNUK50tI3AZdLVg2qz0ZP8UgfC6l6IdYCi6a+eJwz1Fplke3nW2tGFOib0d5kqxDq5oxZYaoidny8OGbe6L/dr0p7tzCx/EBzq9HMZRNucgr+z2cZAijCElYjUOVZCaTjMXUc2aupmkqcbr3gWQglaBxHBXGzjg4FhhfNwxs25bRjyjrUM5xPQTWfsezTUcqHjW6qnn49jGj9+y6DlRGJ1ARXr64lOupLCkHdMrYmJlVUk7SWZTtUNLp2N60hJwFJmEdSSeiClg9K9LSBlyzN3Vt1ztyVmhXMzuYYYxs9KrvJKG1Mk8yjhgTQzsSxwGvvVxTUrQ5sttcy3NkLNapIoSW8OtWIGI6oZMnWos3hjQG8alRCohMfhh5GKGgFSpXFeK5w2ik0HT/jPOXA33X8uTzT0m7hywWS+xiKcIAIdNUByxXFbVzOFXRxR0pJ5yqJBiMCZsyQxJYmlcJM0gxYjFbclAgbmOfSUkRg0hYbzcbtKvQx3P0KJXY0A64+YpqtqANL6CyYA3LkzMWR0fU6xs2F5eoxQLqBo8iKYHcRRLKj+AjsSr+X1qjco2rIpYEvSLnnswAMWIrh64dm7bl1a7lyeU5Kmm8T+zagbbvceOIiqLU6H0gRjC2BmXICc6OTwk+0LYd3/uL79F1Pbauef+DY1IbYdSgXBFEGDl68ICdS3TLmsrNmC9nrOYOS+JmvWV9HYi/9F0ysOs8T16e45WmbmZMBXWlJu8l6dgZZwnGcXB8ysXTL3ny8Sf86V/+Bf/0N3+Jr1nHOnr+5Ic/pNv1XO1ashGbBKdEVjYlTQ6aiN0Xq1SU3VYrQQfs+o726TNsXeFjoOs7bPFPyVi2PtHUFQf3jglJEW/WDD5zuDzkZHnIYTPnprti23fcbHY8OD7hdL7kd979JrXS1M4QyQxaJLh1grePztge9RhjCELQonYNNzc3bDZr6jcesh5HXu62PL++ls6mVgx+4OLimpzAmZqXF+cEDQfHRywOl2SdWR0f0ixmzBdzTo+OeGN1QIyRHzz9nL/98jnXm45fOjtmqCp2xnK1Gbjc9ehlz2ll+AcPHvCtg5FNyDTGc1hpfun0Hj88PmK+aAgmsH75nHGzZqENJJHlHtVI1EXQhMx81aBmFa8+/Zz2xUv8dsOBsdimke6PEkpETOkrRo9qD9gJOcmzZETE4Pr6ki4EtK65MIbva8U7OnL64B7fOD7mP3/vO/zrv/wr/uLjj3i+3TK3FTNT0YQRttcErbAP76PcktQ0eKe44IRWaZaXG2p6lmpEhUxUmVEpsm3Q1RzXLAluLJ3knxWA/fsfv/BE5XJ9Q5UjVZYIpYSshdQlxC6tb8mrkzncBPWZPnMbPP60QPSnq4NNm/JkcgbCMZgq13ePn/j8dH13zvXVY7qeSS50+vtkoDZde86QlCQpsVT2NXKztZIEzRlLpQI5RnY7MeczRlNZizORpq45OjhEO4eyhvnhIdVsztju6Pstu/MXrJziwczx/v0TThYzjh++w8XNFX3X8fiLl7zMz8F7apVYzCw+OG46aIeIi4EQMqPvSCmg8GglbsiVq4TEpoQ4XDeWlDPdMDDGRJzkI2QIUXf/UsaHfNtFU+U9+4pA+Tkr7jioyhiQBM5kQhR4mFLELKaAijvv/XnHV96Yv/Ln3XPkKYCfKkpKrj+TxWm+dBK2V5cw9Cw0DG2P0oJblyB04ObmBoIv3y0Ti0SfUgrn5L4qJSoyFCJzcB60IumMtrKxX2021MyYhchKGR4YTZMyTmWMMlQZ6gxbMq5opC+SosqZuuDpJzKf3n/d2/kJuYQ05UbkyZiydKAKt8RkVSB2+bYVU8I0hXSjEnq/8Cal9+dZJyE71kpRR/k9UQkMwqJxylErw5CgC0lksY1C1RavxLNE+YQulVsDjG2PHwacq/YDqIungHWFCJ3SHlY3pVZNVWGUQLpu1d2kQpn0bYdXadkMUhLogy0Qrel5n7DhWsn9smWNCd7Lb1KKWdOUzqDCOVOMVuX9WltAi+JdEnKWuE4XV3RyMeACoywhlUSfjLGq4NJl/UQpgW2U51OlAsUxGuPsvnEd4yRBCnVdFcL9ZO5ZupV7vxwNOaHR2GJ056wEMGkcAVXMQEWCmQTjMJZgOkt1rrgySgc57aGAlGRYNmDQSWGVyJlnpQWOKJuEONgXdTtttMDZ6gqlitFbTogMdBEBCaUyrEQFSmdFVRcYZDFaTbasNQmyshhVVAdDghTJIRCyJFfOGpKp9nMoapkDSSmyqfbjmbKVvrlyIvGcM0mLsWRKihxhDOXpswpjXZl7WfLUnMlGoa0FpQlJi0iEFsW4NO1ZSeYQWqOdERNlpUnKCv8oZbItEFlE6CMhXg5K3/k8QkKX6a6omwUZTbvZyIqsDU3TYJPD24owZmzdoJ3MWXDy3NsZarIRcLX4ImWR9NWm7Ku1pdIOkyIhdbi6oUqJdmxJKRRu4lQlLgIQg5jK6rpiTJkxJBaLJcvFksV8zqsXL1GpYQIMa6Ol2l4bqYmhwJb5nJVIAdtKpFVTJGMgGbQaMUr4ZLGshak8L50f2fqRw7MT6tMjqtUSX55vZyr2DkglqCcLR8mHwHa35eryirfeGvf+a0krfILeR2zSNFXDbHXIg2bGyipMkur50HasdxvCMJIz7HYt1zc3JKUJY/FL2q/reY8UqKoKEpj5gplxDJstX37yCZ89e85iMeODNx7w5v0znj07Z3O9ZbkQf6mQItnWsnZYTQzSNZ28uETuVmCSOSfiMIq1Qc5YY/cCH8KFE/VQnzLZ1iRTEaKijwKtW1YVXW+IObD1ntmupbaW2hjmVYWz/3/q/uTXtizP78M+q9t7n+72r4v3oo/IzMi2sopVZLGqRFISTJOSSQgwDGhgwM3EE3vg/0ATTz2xIBvuYAgCaAOkKMGCKVEiiywUWV32mZERGd178frb39PtbjUe/NY+575osopScsCTiIx499177j67Wev3+307QdmHesvaguXyiqurOYv5gtD3MvCwlrIoKctS7LGzuYtCobNlex/kOTWFYzqZ0TUd9WpNUQkdOIWI7zu0nhKT4tn5JfViSfA9z45PWbWe9c2ab917idO658Hpgl88OuWtrzfc1AnrDJ3vJUvGFuwUjp1CBkXGGlzpMEZhfIeqoU9JqIkyvUR7xBlrOkFZS/Q99dUFsa/RWmiNw54nG0m4VqNcK1ryf0auUeoHdCUEvIJlzm8KsaW6XXHv1i1+87e+S6MTvUk8/emP5P7XYGMPXY1uCtxyjd4ZEZymj4pYVoTpLv3OHmZ9jmlqDIGoAsnIhq9CwPiAQ5xQQ/g3wJ74cr1k1yhKozaLynAy07UCg7xgyrQi5Abjum5BXl8YyviZ1xYaS/n9B6cLhQ8+f9P2jTecP7V9X0lmNfJtQ3Hymd83fN/1rw+/e9vE5NrWaIJSeNljMEkxThKg6LSmcgLxe+9Zrdcy9axKptMJhbGMipLdnR36IAGQbjTCjUaYwtHXPRdPH7JjIndvHvKt1+7Q+MTOzVf4p3/8jGcnJzz4uIXFit3S8o23bjHbKYlWM/cKrKVLiXXT0bY1IXSo2FEVI4qiFJtENVgxSgGmlKIgcbGq8SGSMs/+cx3g5kv5JtYAWrpVLSd9uBRpc2/kplLJtEDFiOk9JLEE9SRMEpF7VNdQn881rFuh+vWvxmtIyouIjHw1Qk6dTpt3iYjDidKQPJwfP6ddXKH6lquLBY2Ggkjve+bzS549fUxdlhuUQueicmhoN/eLVtmpyWCNwhQWU1psWbJcrzi7uCDu7VCu19ztPHesZmKShN2lgiJCGRNXKlKlRJFgiqICRjqH5+XJvH0BwUr5vKTcPOfhQZIcjsGRb0CdtNk8HAzCloigbDqBjgmM3lzDgCAm0SuM6kgKKmUZ50K2ByqkQHVa42ykzK5PXim8UbSlxnuhN5gu4ooCVRaUxhHbDnxkOp0JTclorBFnOaUlUKvv2s3AwyjxjXfO4r1oSNbrNSmJJW9VjYjaAbLulGUJQBPFPEkphbUiZE4klBFnKaXEr750BUrBql2jshC9Go1o25YQA0pZ0Tok0eZYM2hAOjQBraIEQBopuNu+y1QtSU+OuVGxRksYmpFwzs2ak649PVqhrYjvi6ogBeHw16uVnAsjBhnRe0KKBOImfJJOyi+i3LM2h/BZBaU1cg6qUiiaCayzwh4JEd8LDchqBdGzTWXWMmWPAe1FZCt5KNJI2KhE+4A0Phqxr1dK5+wWhVEKorgfVqXDGpULtoDSbrO+D+LgpKxYrSuDtiWp68RZRyf0qMhZM0GKW6SobvtW7H27QJ881jpGSqHLsaC5IRCMlmJca6IZSYOThKonDZ5DVRNUjEQifZSG3feB3ufQTSvuf6TsYlhKk4bTGDQpQu8TqCTuPqOK2PeEKI5AyVqUStjKIXkXBkyBjy0hu8nJ0EKoSShLMgpFJCVFDACBtpaJJ4WjHM/QtqRddRhXYKuS0WxCioqu86zbhC4KkoG6W4pTlLaoaprd1iDaguRlmmuCwRZi+x0IlJUMZdatoog9HjCrmpT63KgrUhZ6hRTpVzUqBMpJRRMi665nNp6yt7PDzmwKsWeLrQcJuTQWNRpJ85NEP5SSQUUlaFLpcNbgYw9I0W27NSbJqCaoiDLSdAQSq65j0TW89dXXqQ530NOK5+cnKKByhax7Kj+P2pBMzkfSmvW65vT0lLquZaimFUHLcxDbQNEmdnTJ3myX1/empLZhtZxjkEbl7OSUvm4lV2254PLiQhz4vKfr5bpJz6/RVmOsITYdVinsZMZ0NKFbrfn0g/f54Qe/4FtfeZOvvXqXt16+y3rV8PjJc3YmlRiL9AlbWpSVoD8dhJ8ehmGOFvtpkMca34OXNcO4gj71bFwyezFaaJqWYAppVpJh3kp22NQ61qZkHWCdPGfzORNXcDSbUhWGwmm0DqIDReOKguPzCx4/e87Z2Rl91+JMRVlYZtMJs+mUalRRjYWG64whtZGYAt4rVFFQlGN2gyG2Hc1iiVKGnckMFRLzxRwSdH3gw4dPiZ1YY6+WLbo4Yb2s4d/5XZ7OO95/fM733/2Yv/7XVzgDunScrlecXa14c/+AQ1cydYp1swKjcWWmZaaICz1d35JsIcO2oDBeBhOj/RuiiWsalqfPGY1LTCWDB9TAy7k29B1qh+tFTd7DY8rW9DnWwSpFNIa+j9Tec7luuGdLqhs3+PXf/i6psphRwe//5F1iUPQ+4nQPfY2uDcV8ga9m6DH0JFRZoWxB2j/AtwtU0+GKQNQBbIS+JTUNcVVjrQzuUu/5Vb9+5Y3KwdEtzHpOv5pnBwlBEXzfbpoQ2bgNTtvNZCOmF7JTvxAx+ezXvoyepfXWxWdw/yFvittCMhelKWcY6CHbRWghfghZ+oJC/HPipgFdCZ6Yw+68LgBNkeCOs0yMYqoh+bCZ1i2S2OEm7bhx4zaFc7Rdz9nFCSFpxnhu3tzDlCV123BxtI9t15yt5zz4+GNsV/PVWzP++m98ncW65oc//5DV84dcHZ+zrBNv3rjBvVsHfO1rb/EH3/shF1cXXK7WkAKFtRztHvDy7VeYTcZUhePk9JLzy0s+evCAaVkxKgqmkzEn8wWjsuQvfe1rfHp2wfFiyYcnp1TOYo3+3PmREwcpyGRJclHUxrpapkMRosLEnMuqZFI6oC/BR5SWwixEv6Glpeso6OfglRdRlG1D9Oe80radTjExRB2GFNEoMIlmtaauxcv98vyUiTGMjULVNcvTY44//YTixs2cNzI0uSojdbk9U4J0DHoonQArk9LJbErXe5qm4+LxExahp48dX60MsXBMSqHdBJ/o+0SvDS7BflRMvOhWtFXYvqXQirFzqLIk5Sl+TOJaFAnZ/FWuh1AzpcHOgx9ilFVQqU0ZKB9FyyY9zOCjakVwC6QO+qhokqYITnjCvccpJ9kmiHGDNhpValwlVLNpq1gu1lwFz1lTQ4RJTOyXFQc7uzQ7u1y5ki4pPJrpaMR0NqMoHKUzTMZjbLYotlZlq202yEMCyX0wDucm+K4Xd5/Yyc9pcaUSZ0Ioi1LoVikPfU1eL6zQy2I2V5CEZEsx3pG7Rck0yRmLMwaNpWlEF2K1RZWy/hiMNDMpYgsrKFsSJGcyFatXhWjBjJZmNuTNSKsg9EmFhHrltHu06FBSCnRtTWlLirKksm7owEnRo7T8nE1GhNvWEqaatm5YredorcQJbWdMPZ+T48OZVCO6rpPpckr5PjC0QfSFPiINQNYdFVEodPK9KefWiB2qdRZjDatmLU56UQlKohVWKSk+8zMZY5BGyIqJhdUaazTLxueiTdFnow3fdrlHkmvhrCA7nkDTdXmdVXT1Gh0TJgpS5QpLMdnFKIjes2wbOW5nMdMR88vlRrBaaZeFzSW9N6QQwXfCpVFyLZdNTwpBnOhGBSlbrDddnxGmiHFGzqF1NIOrnIbRQYUyomNbNa1MuhUUY8kFwkDXtJikmSqFmmoIkbZv6bPg2JQKAqQkqErf98Q+4NuaqAw+RuqrVkwAUNidEW0B89SwvHhG13lCiKiQ6PsWFZQENxs5B013ji4cyliSSdRdTfAetGFESaEco8JxSYf3PcGLHnPZ1LRenPC0MmjtsDahkyVNLE3f4kNPVUy4WnccXy3QlWVydMBet2Z0/wEdDt9GkrOYlDAEdOoIOfBVGUXsO5KP7GtNEQIaWEcZZGijCFfn+JjoSNTGYnZ2mBwdsKrXNMHTWUM3HXH77ksc3jhk/sMFV1dLrtYLlBPUaTqeoIzFd57OR44ODqnKApMiq/kcnRJd27BYnhNnM0y3wNRzXj/Y4bcODvm7X3uNR89PePf+I25NdzgtC84MMNH0tafueypj0NZSuQILknmWB7opDkHIhmgcwVpmB3ssri64ePqUf/qHf4xWlq+99hXu3brNo08f4ZcXqNnuJouo62rw2Y68l2ySEAJOa1IyeLJQO++Hvm1zdk65GUqlBCkq2r5jvV7x+ku32X/pDY5+5zf4+KOf89GjT/hn3zP81je/wd5kzMn8iuQjbfA8Ojsh4dkdjziaTmhjlCJ+MuP52RlPnj1jcXWFBM+K056zct+tgaPDfe7dvsGdw32etTV979FY9nb2mcx28NMG5yLRt8zPTghti0lQKcfpo8eszi8oreNyfibD2iawu7fPqu14vmjo3ZhUjjldXLJaXuG7mv3xLeY+8Gy14pbSTCaH7DjLs7ohJIVzJUezGb/57W9x6+iQeb3i/pOnnF1esTibo3WJKSrKnX2aq3Nx7rOQrCZZS2ELoo+i8YvZGl59cX2lEpRKUFoVwarAQY78cKMR65Fm6T0fnZzw8Nkx7z34lJOrU9751ld55e3X+fDpc/7gT7/H+x9/wq3bN9Ep4nxNunhOGk1IoykjXaJ0xBuPuXOEqi9JV+e03ZLClhSm4MOf/4zVyRP++J/8N5TWgY8kH/jf/79/98+ruv6VXr/yRkUFmZgEJQucnGb1YtGYQEiO4h6llYTyEHKBmevNL6N+DX93/bX5voGKMFS28s0iQMpc7/iZ97mOyAj/M34hovLZ33sdkkvpWkGsZeI4cpYbowmvFAmXAr5vaREntMHFKoRI09S88fqrzKZTLq/mPHj8kHq9xC8vuDl6G1tYHl8u2XOGpnScBDg+PWdWOeqmYbo7JYbI6fEJCkXpCuqmYTwpKKqCed1zfrlmXXfcODzgpVuHHOzucO/GLV6+dZud6YRxVfH89JST83Nu3drn2fNzFssVz87POdyZcmN/h7ffeJWzpoXlcpOx8OWvAVqSGZjK8DqZWkWS62yiyihJAh02iIeOEkA5ULKG22b4rzQ4f31Br5rBui88ugRCSdteUTbhkQM6xnAbRcmz8JFu1bBarJnP12hl6NoO37esrxaEphUP/ujF331AfTIdY6DiDPfPAOGHzH8LwbNO2e42RLrOsyBwoQLHytD2iVEKONNjg8J4TSuPi2SXIMVu8IlSgzMKpxOXeBoUjSZPMYVjk/NsBUrKicJKKQyZT0526EP+EVMDQQa1EtcsA6ADlkQJ7BcOHcVN7Cp6okoUNlGypVwpE9E6ilV3FA1bpxQN0CRF2ym0SRiVGBtF6SzeGHzmwvcksRPODjhJqc2xay2BiErJwCPkcxyz0FBl9xhtBB1KSQITbaY4ScK9TPlDvh/lZ7a26ZtbTW3XEJUn9OT7RQTlekNxNSnlIj3jfVrlZiTl0MDceOTjsFZ4SkZlZMEI4hBiwhMhB3zJ4FNQT/TwuKXsFiXfoJ3O6DLbxHkSNqlsgazAwmxSYEYOazVNjLSh3VA9fIxCRdAatKbr+kxF2lJfQy4mRO8Ut/f6UOykLfIjvOsg6fTDc7CxrZfrFIdnOGbaqIJt2J8ME+R8p4yyZAOLFPIeIgL/RAZ5TD4nRibROkVsPu9JC0V3oNRoa+g397vGluXG9U+CF7NuLmvAUEKfUQOKnwXiKoFy271FCksZiqVMPUoEjNUom8FmAxFP30W8b7MxhiDzw/BEO0HAkpFzG5UMIJIio4iGpLVcb6VF+xQTxinR3fQ9ofUQxZLajgpBaqym6dpM61Vo6xgChYSymt3SlCZYlV2DElErkpb3SlpCeoOKdF2L73uc05jCYftC8mViJHmPNQ50HgAkizYFUUd813I5X3B2MWe/cpRlwc5sRjXZJbS9hJVG0CFidWBsDF2CXgVSCBS5lvAholUSQfOAJsYgjmtWMlgmFIzGY4rC4fsebQyuLHl6dsrs6JDZ7h77u7s8Pz1jWa8pRxVlWWZKqFhQhyA0SmOFghpilIBrbbh35zbu1hGj/R12KsttCzPl0f2agp6dUvP67Zs09RJiBwQ631F3rQw0lSYGz0BLl2dqy7sWCmYkBS8W69ZQKMWzx0/4+NPHvPf4Gfs7M+7cPOLOrSPWzRqnoDQQk3jFKxMkyy1GVIhoKzTLFIPknSVZ/4UeliAYTB40hq6nqxu0SoxLzW++9Rqv3n2Jey+/xJ+MoKtXXK2WWK0ZVQV7YUxdy8Cj8z3eRwlNTGBdQdSGrvdcnF9ydXlF8n1eRy1KGfpO9GenV1dosw3+FSW5Fk2a95gYsZWjqxcyPM57LChptFYtwbd09QqVa5Sm7WAx5/j0lHc/+pRqPObO7VvszyYkxDBlXDhs1heufYNKHW5A75UM3/d3d7h1dMRLN28wXlzy/PgUHcQpUztNtIquqenqNX3bYoxBoUlJnqONKc0Qbf0FBU7K2Lo2kjhlgSJ6Zloz1oZKJY4J1CpSjMdczBd88uAhH95/xNtvvcnObMbXv/Ym9x8/4tnJCW0fKZQMhVSzgnZN6hrMtMrDFeiqKW46g50p+njJYGa0aBrU8SmLy0sZakY22Sq/ytevvFEJ9RIVgsDTSqZFKg0Wa9vqMcWYxdX5IlsDPdsqky9GM77ola5VggqVk6BlyiI7ndAZNHZzPAPNZWOvm/Ixxeywk7Y0i78IkhOztVfKBW/sPaNixJsH+7xuWvp2zZPmijom+igUnaQdwUfWiyXf+Npb3Lp1k8fPnvPP/+hfUK/m1OfPuFVqrFM8vjjloNC0oxKS5vjsnFGhuZjPKScTLq4WPHzyDGsLZtMZTd+JYKs0PHp+yfHpkj7AN775Br/3V36N1+69xOu373Bzb5/JaMRkOuXs4pTTywve/eht/qvf/2N++t6H/PzDj3jtpZu8fu8lvvbVN/nh/QdCR/slTUpmppBXcxIKnTLvWg3XVxLfiXkaTW5gMl3KBEBJBo+WSivTPK5jJduG4IX74S901+RjHQ44v6VSw80AUQm1q+88/bphcbXm/GLF7mTMelWzOrtgdX5Faj0jV2TNQBag6xxEp/KUP6bM8ZUAwev0whgS7WKNNnaTYtuqyNwkHvvERedxMTIuPDYZbHTUepDPRsbK0qXIOgX2xmU2vwm833dcKsVciUOIJkmTokUQGoNMlXU+VqPk/bzfOp9pBDExWmMylU/0VhGXIhWwkzTvWMMkJcrkeRQbUkrsWMvIC82zV1HodClR9ELNCCgalCTYB2i9RWuPUzAyicJo1krRhMA6BjrY6CZQYvMdUsQQsUqKJa00Aei9OKzEGFBazCuGdUAayIR14sDligKQqaKI02U9UcZIo5Ky1iLfKtrozA8Wm1JpfgcnCrVZM8TpKxdx+fuVgqIsSVqEsSkPRcqqzDlG+tq6l9ELpdAG+tijrAal8Z3YRRstjb5SGg0UKlM2kPRunads1mhpDmKkzA+oUhGn4cZszP5oRFE5Pnp2zMPTS9BTsZbPoYhoTdKGdb3OOgpF6Vy2bI0bJ7OUdSHDE9n5Pj/PQsPrMqc9ZVR6KPiG9VYQb1kPTMhaQDQ6JvokGQ0pNyGSDh3E9tkIAhNz8ehDEIqMs1uNjzGoKkmYo0r4Xq5iH6XINQps4bIblexV1XiEmIL01K0nkMN5pWtHY9F2q4k0hUVHBSlKE4Iiq0akAdAmZ/MEiJJtYoyW69v3+N7TNS3ed6AV1pTEFEhJYZOR4FUlxgsRT0iD4iyCVhint2xcpanKsdzTfkTd1aR6DSvE2EUr7LigHMvaNa8bbFGgtUVTYcqYfR8sIbZ5MFfQO6HppphImQ5ZKosyLjcqPV3TEruOqppS+hF9iuj5lYijg8cVEatlv0zR4txIdD3rNacn5+zsnDK+tce4LDnY3WO6e0h3eUEX6qxpCtio2DMF69jTxETynklRYrXlrF6jjUIXhjIV1KuWNni8Mdm9b8TBCKaTKYWzhE5sZctqzMcPHjLZ2WNnZ5fbN27y4YNPWa4X3HrpkHI0wjqHT5n+6MX+W1uLqyqhTxmDKkre+cpX2Du4wf7BDYwx7OtA1a1YXJ4S24aZi7zz6l2cjowLg0qBtmtYNQ2xF6vyvu/Q2WlRMTAPFCllnVYIqOBFB+Uc46Lk5NET3vvgI/ZffZ9ff+U2b7x8j2dfeZM/+bOfoINnt7Qk4yTUyjpUyEhpRH5XksT1kL8eUYS+hxSINmuMYyC0He1qxah0HOzt8De/+y2+9dW3eOPN17gztnx4/z4/+cX7KA2VcxIqGGVo6Y0nxEQIiRjBjSq6GJkvV5w8P+Hy7ByClybFCNWzaRqu5nMen2ruHR1QWEEfk7UQAjokYtPAuKGcjlie13StxDWEKPqusqjouyWaQF/PKUxJMgXn3RXrpiHEyB/94Kd86/WXefuNV7l38wiUovWBSVkwLkqssazCmpQaHJrCCLOkKCw3Dg+4eXjI0f4BOnqKqIhtbpALjSqgXlzSLhaEpqbUFpUMBC3Dj2H/4EU2yGd10UklMAqnDSOgaBMH2rKvLeMUWWYH2dnBLpcXF7y3WvCDn7zPzs4eO7Mdvv2Nt/nwwQMePz/lo6enKC1OY6pZkuolsVlT7B0JGhsTdbVD3NmDg33KZ88gyRpQ+4BvGuadZ903GEzOevrVvn7ljUp9dYbVJtMfpBGRiaeVqW6UAB8ttadwPZMUUXn3yb3KVqL9Ra/raIZSQ56GFBgpi8OUkpyBpIdc1q24dNBLDOiOFAdRpghfVuqqFzU0g7Xy5itKk9AEDKGZM9ub8e23XuLI15w8e8Z7v/iA1WRMrw0dUsApXTCa7vLP/uR7TKZj2r7B6EA1ctR9xy8++ZiyKOm6ljffeJ2vfOUr/Ppf+Sv85AffY3F5xn/9h38E1uGVYVnucL44x6fEzZu3uFjWnF/OWV1d8Xf+1r/LN975On/t936H/f1dccmYX9DUK+bLS9brJVXpeOWle7z23d/m1uuv8+HPf86/uH3Iv/3rf5npeMI/+v0/4Pvvvc+Ti0um1WTQQ26vCXzumkVS3uhlMqPSMI0bEBb5qaE/GDQRJgmqomPE9FnwPjQ5A3z1JdS/zyMwv+QAh7+4dmFj/h9Kc3jzJtPpDjffMNx5/TUmO1Pu3rvLMxVYLS6YHB3x1mzEa197m7IwG+vAAaAZDlur/A85XC9vPoIOZZWO0ShtKScV7vgZxYNPOXr3AdM+MVaOghKrpNC69LBCs1CaWtcEY4hFwY/HMz7qO366XnPhe4KxUDiGUOLh84WsY9g7nAodxxhIni70rJsWkt4cu0y15XmLKggKg+dgsotNGtUHbvuOlxS8oxzOa4q+Z+FXHDEBFGsSJZEqaqpg6Y2mToGzVDO2MqWaqESdxGHuLGeGXLQtx1dzEYCqRE+AtsF6gyvEQTCESKuyQBuhSXQ5k0RrTdN2klOhRZRpc6GutWBLvg+gDMpovA+EKAhG7FtcUeRp/jYTythChO99IIQ6N0iiqxhQAqMTxjlxAIwpi/AjbdttGpqIuJ0Zk/NPMhKckGPVmT/vvccHOR9GyTPTtB1WSXBbVGlzg0U067am6zswikk1YlQIl1tFucnbwhBDB75jvw2UKjFzhrfuvgox0faBn59IkKYmUabBDy6SdNwgRihBh6y11Os1tihwZYHvO0y2S26DUIl6L5kicjOJVgdkDQ0xbBDv3sfN8xii6IcUKWeCqLzmpow2CU0FIMVA8gly81YYR0KKrSo6gg54FaiMBICq6DEpimA4RopMOVMRJsrJFNYDyWfUSFHGgkQUdMRso/NcbpxjFIpXyHuTjWpDY9NG54yqArpM3Yk98+WKBFijxcnOGEZlSVGIBsoaQ+x6VBRkoK0bsR1WgnQ4bcUYIsk5AdBeCTIbGkLdCR01N3LOOm7euUffRPquZ3F2Seo7qtGI/dkRuc8lRHDKoiJ4DMqMiSTqzhOjBi2mAyLcgMaJDW+RFEUHYzciaENsI229oq3n8hmUAaWJHlLwInRPivHejFGasD4/46N3f8rZw/vs/u2/yasv3eTo8IBfPHyKrkrs1ZxmOc/BgoGkLdHIAGzmNN9661Vef+k20+kuD5+fcHJxiQ8wmc0wzvHR4/uwWBMXSx68+y7l0Yx9dQs3LiFbzhd9YnV+wfHxc776V/4Sd27f4eHT53RtTxgnjCuYVSP6puEieNR4TF8UrJVmmRSTsmJUFbR1x8nxJafnHafrJa/e2OXrd2/yN37j1+gf3Wf54EP++Y8+4vnlinnd82vhTXyXWKzWFFUpQ4Ykzcp2eCE1iwoJl1FKtMG7EjUJVCmwPp3z4N2fcNou+Pr/6n/Jd975Or/1zW/xH63/Ez69/4AnT58zne1itEcryb4h30/RWGIb6X0HMUiIrCuwMZJaz7KpKUcVShtG04JbN19mb1zx0v6EHatw9RKOn6IuLyibhiNXcv/D+6xWa37x8Se8+fZX2JnNmI5LtFOYyjLembCoGz58+JB/+E/+OR98+imXyyXBe7Q1pBjo+g7jZPCyXqwobt9hPJ4xnu3gLuZ0bUcTWjrV4lNLbDXjcoKJmvPzU3HpM5omiNi+cBaspSwLtPZY4Oz8ksVyxU/fe4+/9NU32B8doSj40c8/psPw27/3V5lMx4zGFfX8EkKDDol+UXOwN+UN9TI7sz2I8PDxU3787k/45PETLpcrXFmiYkKFxM7OLmvv6UkyOMhrDNkcAwbE9TNVytCs5OHYsm2JqSOguGkMhTY4o0mhY+w9N4Cbt+7wCLhazvnP//E/wWtL6zV3b93j937jLzG2Bf/H/9t/imdKdAW6D9h6RVpeovwNCD2x9yySQ9sjJruRw4NHmHaNCT17qmBkKopScRFb0lDo/Ipfv/JGZUMT2UzOc5e4USjISwogmUATRAyk0rWLkwau+fZD/7k0sCTv41yxSVpeda245eoNwWdDL8ozeaEPZBrBcARfqH8ZeBrDv699GaQo0iihYBiZ+J4v19w6nLF/8xZffeMNHjY1l13Pat1Q+5ouRBofeH56wU1tuPfSbX7ju7/OqHC8+co9bt95iaqsuHXrJQ4P9rHO0Sc4mJRcXJxxdvKcP/vJu5xcXrBoZbrgnKEsRbg6nU757je+we/85m/w6isvs1M6tPe5ORSamLIRg8KhMSFiF0v2Y+JWVfDyzQOOz8+4//SYn33wgFXTSfbAUIVfvw4DWrZp3ORpSynJQ7oZE1z7wTQ8mErq39yxqIH+lZ0sktZELZPjjIF97jpsjoPNZcwojdr0OF94/wyHtLmNFClK4bS3s8tLd++Siinjgz1K5fH1FU57ZrMKM7GQJpACbmjABzJZbkC2tCl5CrSSQC2l82Q7nzylJRG4nE2gr1HHJaPeM/aKmQYbNVYnSeTOgZkexdRYllazcIZHOvDYwKk1NCmBMRhlNxdHZdg4qEDQoEYFunRoZyFKcd8t2s0zorI7k0xzyPgKJAxhPAKtCSHw1DesfaTpA98oHWOt2CdS+UhKGpVgnBQViolW9EpqnDZAoSHpRFQRp7JayBjamFi1HeeXV2LHqYYrn+lYWklDEYXT6wY607WHUjjduRlWW9esGANkq0+jt42zTPfl3hXx/KB1iUSyy1+M1555laeO+ddmQWoYUFtkLbG5GVM6O3+RXZmGKVnMLk8I/XRzb2bKSoxxow1RuSFLQ0NFxPtMLSrMRgzrYxDKWAgysMlFeYgyBU4RVNtBWrDue/x4wvHVij6ozbOsEL3J4KRYOivotBb0TyZAUVzTlCDLPkQiPTrrn+KASgVpJMRZT/hqMnPY/r4Nkj2cT3k05PzHfP2y85cxRswOhusRYxa7kxGbhCJKNkSSPSimfrM/WaVIxmC1QWiOakMzS1qasbbNRaJSWfshQwydhvspgc/IQFLgA4rMLVeSBK6VojRiAKEV6KKQRiWbSaSshTNKkuSNdYKSIfqwoCVXhRDk/TPap/JaE5M0TCQIvUf5KPf8te1S1iA5Ro3GlA6dFMve0y1rbNLMDke0SYIvlQ95vVUo7RhMyFMQF8YoEkN0yHu+FR2aURFUoDSGiCMWkcIoCi3mHn6gUg6PaX6yCmPR2qFmM9ZXF1zMr3jy9BEv3z5gd7bLvbsvsVhLsKfSuUXUGh+gz9kiN2djvvnay3z3a29TllNKo0l9x+NnpxzevcfBzRs8n59xeXbB/PSUWK8ZG83eZCo21EnySUpjpYlbLLDOsruzw42jGzw+vdysDYLeyVBz7/CIcjxmNJ6gi5Km61nXK549e8706C67t19BHxzQWMPxYsXxs2f4Zs3euMIWms73zBdLUg+xT/jeb3O8hidlM5/bbmIqxU1wctQW5Ry6KhkZTVfXzJ8+5/j0VDKHDo945e5tfNMQ647Z7l6mlSoGsxSlFK6sNohzV9f4rhdUQmXUHXDGUFYjpjszdmdTRgaMiZzPL3liwbcrvv/DH3M2XxC05enxGcfHJ/zZ935Ery0v3bnF63fv0LWKMCoxzvD8wTFPnh2zqBu+8+vf5dWLK378kx/z/PFT2vWKuq0py5LRaERMPc4YJuOKl27e4NNPHxMijHb3KSYzkiuZ1y2T0QjtDKNmTd2LxscoubYasM6hrRG6ZoqMxxXGlQQfuZwvaK1FVRUfPHjMsm354z/9M54/PaFbrjG9UMxcStm0RvYt5xzrrmW5XHJ6eZW1abnQHgb1+foN1eYQhJ6uUaa+ZFSe/1L+1mTmRo9imQLrbF5jkpjrzEjE4NkblSSmPHzymI8/uc+9m7d49c5vcu/ObZaLOQd7O/ik6Poea0p012CaBbFr5fcYzVh7pqVjlHaopjsoArruaRGqtAZWZkMq/5W/fuWNinPCH9d5wjSgI8NLkcSeMPOGtRZB4GBp9oUf80sm4Z914Ro2xaIsKV2Bc47lecvADZdvy5tiLgpkk7uuSdkWF8N7vpCtcq1Z+ezNNBRJKXpc4WhC5MNnp7x19w5HO/vc2t3jTz/8kAdn5zxf1VyulzQh0qO4WKy4fesOv/aNX2P8lwzT8YjbNw9xpmBUjTncP5SJvYIQer7zztsslisePHrMjz58zPMPHnH//mPe+PrbjMc7lE5Tuoo3XnmV/8V/+B/yxr07FFpx+uwZ6wBKa6pRyWRUCuc/RnEdmS9ZPT6DZ8dUqzVHe2P+8Ec/45Mnp3z09JzR3pRxNSEwWNBtz9NnX0qpTUGUYp7E5jI+Dtx52WUzmjIEBybhkPsEPhK8R1kRYW4bji9/HNS1+yV9yfclpFDeFOTkAjg3KSkjEPs7e7z+yivsHt1k2fWsugXz4zkqBfZ3SqyZiCWhVpgBGREQSQqqlMRLPxs2qAENimKxKf1Rkh9S0tHY6Zg4KkhWUXnPxGtmFnTSuCQ87Ki2jeGRKwlOsXCaj3XPcwt9mYW/ymCVhHOqlIXxBDwJj2dnWlCOK2zlIPTYFGnPBfnanLkhyW/TBBgShsnuGFMa+hS4quFy3fLpRc3r04qRD7ysE2GVSD6RomZHKQqtcYWE4Y082ChUuC4Jlc3meyM5Rx8Ti6bheNVBiNnOFylUjEYZI/qGEDdhU9ZKkKBWKidPSxGrtEy1hyI/poTvRSNnryF8cfOsiwPNYIyQtFgcD/qHYe2yxmZDgkhIKgfzCa7qvTwjzjmSEr2JMobY95JJkSkNKC0uUvn8xnzMQSX8phlPGG2xxm0yTRJC3xsE4z5FClMIDcVZQtsSEvQxYpPYwIbeU0ck8BPNYtVzslpj9CUfXC4xbgSmwCaF0DDZDBm01oxKEXyT0ag4NHvO5XMTxO3Mp/z0DQ6LShypGIYCQocbdIowiHOHDlDlbUNdQ1rzWpyzBZwxeNVnqVX26otiKjBoaIQKHMQNLDm8F164yUYgYutr6Lt28xmNNsSMVq0aaVSMFfF8TKJ70kEGDUoLepGAkBR4L1RJAyn12QK2oLJF1iR57KiEBN5HfM5ZcMZgbTaZsU4CDOWb8FYRgkzWCYOLXG64E9nWWLQoPvRkmy9Uvle0Ee2XxhCzw1hZZgv6TDstMOyMKy6bQPCe1HuCStKUOrWhKKrcqHidCD7heim8rAVrRBeC8ZRKjCq86+kqR+ocSyPvE1JEa+Q5T4qkAirbv4739livlyzWSz75+H2++85b7Exf4e3XX+PJ81OePj+WotoalLZ0IdJ2nqQiL+3t8Vtf/Qr/9m99lzYo1ss55yfHvHdywu63v8PrL7/Mj97/GQ8vLnj64D5lWzMtCo52dumtwadE1/dMioK+65hfXaGUZn9/n3svvcSDk8uMqiq6rsMHjzKa2zduU4zG2FIQscvzU86eP+cHP/4xr37H8JVX3+LOm28RLk95cvaM93/2M+7ujbh7sMvhwR6fPr9kfjnHd4HQBXznc1eSnf+UIaKyRioPNIb6RTi60qhQoolMigI6z/LknAePHzEeV+zMxrz16j0cMvAa7+1JnQYbW2mhdFqKomBUVcxPzjk/O+PJk8coZTK64nCuYG82497de0ynY3y3ZnV5zINnz1jML3lYWP7Rf/f7dBHe+uo7XM5r7t9/wB/9yffwVcmyrbmxt0NpembjEqUUH39ynwdPnpGs5d//u3+H9WqNMop/+vgxzXLOcrVkPBoxm0xZ10uc1exMRrz12iv88Z/9GJ80e7deYrR7hNKa87On7N48ojCaGHqakzNi5ylsyWrVkPqIcYVYHNtAIrK3t0tRjbDG8uT4GGcNZjrlp+/+nJ998CE398fM3QGYksr2KC/20jbrZ5pWqGPzesnF4pLzxZJuyL5CEM0UPARBZQeE3g4B2XEzgmWr4/18PToUniNtZVinEud9yxRLpbWwFpSGFFg3Kw5GFa4q+eG7P+aDDz7gxs4e/6Pf+R1euXMboyIvv3SbJ2cXLOqGWTnGdGtYX9HUa1Q5onCOu1VPWRUU1R7FzgF0DWm95AoxLBGrb4WJSfxbfsWvX3mjUpBv+iycg6zfMKIbuV5ARhJt24pgOaUXBu0vvL5sEv6ZabrKD17Xi8OKDwOlQDbCYSI7POnSoPjNcf6y4ld+7IvzW/IHkqlX5jOPJjPSaMIzHP/FD9/nxqjgKwdTXnnlNe7ee5l36pqr0LH2Hcu65j/4W/9j3vrKO7zx7d9EqR4denS3pu9T9h3w9J1HqYgKPSpGdnamfOev/lX+o71DfvCDH/Mf/1//73jfMYmJV49u83f/9r/Ha/fusVsUfPrue8S+ZeIs49JJuvky8KxuqNc1JycnPH30lIuzcx4+esyTkwsu1g3P+45LrWiVZnrnCOKAPH35S1h1MunRSmcbXNB5FBdV3OgMto1hnqzmx1QPjUoQr++Yz7v+wl/9JZ0sA0CzReeGZyjlKfjAIs+sQbkHs0UqMfDuz37G+794j2hleuezFeBgPYySaadKEd11ueFRhCxwFovQQRdF3nwy3UtvURdSzp1IkXWKvJoS30iJX5tOmPSgfCTqnqDAI02HRWg56+S4HxL/kp7FnVvoNrBz2dD6BnTAWDlHGrF5jklBSEQvdobOadzIkTqxQSZGVKZ+oQAvzaScKyPFbwJVKIqxoSo0rpyxcAXPg+J7JqA6zTf9lOl5QwyJ2kqL5BXZF0/OdYnBB0sAtApUJJTy9KlFFYaicLheqDzWWaazmRQqWgvlxSe0gllZ4ZzYkVbOiHg2BFrvs1ZNPopkNinIlgIpiaVrYnjPEmdl8h1TkqIbySxISUJpnSuoSqFmhL5DOcnUiEpRN60kwCtNWRSobMVe58n8qCqzIF6E2s5JMemzw5NC4YqCkNPor9UkKGRiHpW4gumUUDFQlA5bOBKZJuJFP2G1FeFq05JGUQoTa7Eh0HcS2ldN9yknDltauraGLkLXMSrcRqsnVsNCDxlPxvS5Gek70fXEKN8zaJ2q8Vh0XX2fkSn5et9tE3xgsDLe2sJ/do4YkamxzmiYXHd5vrrg6Wovdt+FodCWtmtJvif0ia5tpZG0FoXJXb3PAZpAMnSx3wxIYugxxlIYhwdC8HQ5X0Uh+S5Rp+xmJogUMZsmWCtIUt9JQ6Ak7FJjcwEIdbMeFh7G0wkpJdq2BiVaFuscIQSCb2nbjqIspBEJnkTEB0/drAVJshZTOIFpfcCHhsIIVdC6anPdUkjbpjeJXTGI05OsP4rJ/j6Li1PWfcvj+Tk3Dw84ONijXbVczue0XY8PnSCwClJhJOVbGWI0pCjmB9HJnWqUYmxLUEJnu13tczAds1gtCErx7PiMtmkZmyl9kGtaKScUs96TlKaqJugEn95/xOMnT7lx8xauKLHVCDOaYNo+MzekUS4Kx2RS8pvf+AY3d3cITc3958d89OATPrp/n0ePHvP9H/2IJ1cXPPz0E5yFe/duEa/kmC5XK+7evkdhHX3fc7muGZtE1Y/ofcdsOuXe7buM3n+AdQXJSL7J3sEBu4c3QBfUbcfqYsGiWVIvl9TLNZPRlP2dEbf2Hd86nHK5POHk6pz/9oPv87vf/iq/+91v8sbhTR5Pz/jQwPHynJP1nKuuzTTpJAGVVSU5S7m+yJAkQUlTHiO4UKKUxdgxzchhe82BMrw03mOsHYv1iq+9/SrfeP117O8YmmwLHYhifa/kH5+zwJTSpAAP7t/nT//4j3n//ffxMeLGE+x4TNlWTNuW2DTU9ZKz81P+6OmZZKIoxYPTK3wIXHY/wVhH3XQcvvo690/PiEXB7Rs3Uf0evu64Oj3nD/70z3h0esF551ks5rzy8l3+d//b/w2HOzPefe89fvLBL1gs5vQH+4zLgsvFnJQi3/na1/iXb/2c2XzJa197m9TWkBJ3X32Fg5s32RmP+Oabb/GHf/JnPD85pwmJdRepu5oHnz7hW9/6Jjv7hyzWax4+fESYzynLksW6YXdvl3e+8Q7vffghDz/9lP/sv/zHmGqXcTXi9f0R/cNDjnYmeDviyXzBsvNQFBw/fcrF+TnL9RqlXV6DQEVP6lrqq0uhglnLZVPLXh7hurTjS8hDeZUU9pHDkKwhas2ib/m0bjivW+64ESMrSPFqtcRHacreeO0V7j/6lJOTU37ru9/m69/+Oq++8w7f+PpXWHz/Rzw9OWY23kG3LXG9pF6tqJTlxnjM/+Hv/DbzJvD4dMHf//g9grqAaFh3SxZdy6LvITocFverbyv+Nbh+5aA4ldGLrbAy5qmxFJXDkGxAM4bXl5ecn29MvvClFX30RC8UiqFRGYplaVRzkzLYjabh/bdv82U0s899/fqx5/dKMQvCrcGNKq7Wa+rLOVdnp9zdnVI5EWBWk5JxMeHmZMI4JeL8issHH0sqMRETe8AIpSApJOQ6QfKymPQ9Shlujiu+dvc2/+5v/TqX52cU1vDGvbvcrAqKds3p8yfMz88Jfc/CSGpBCJLfMr+as1ytOD075+z0gsVqxcXlJb6NqAgj65gjE2U5QQJYDkjE565R/n/1wglV1wr1JJ+BmLuTXKLkIk3mVUl+zaCvHaarKi/eGw7Z9Utw7c/X/lpd+9oGefvCazp8NYsVlfx36wPJdwRtSMpkS8iBEpTDmaInhR66niHMMbxwjGlz3123G0x+cDUbGmehDNUp0qFkqqs0Sg9PRX520uAWJS5aC+ACxaky6KLEBo9XLRoRxW+cq9RwRFrQq7Cl3iStsmuTaCkGWsmA9KhMW5NTFdEpW8cWFl0pCh9wfcKVjkurOCVypj33kPBInTRJxc2gcBuues31LSYcSqb9GuroszuM0J20lthPmRKLrTBRJsyD647oFoacEEFVfHYCE9qQnPvBvjwxWPtuG9oBme36XlCFAf3LnZu1dnP8w+9JDJRPOVajNNbJ93nv8zQ95cZFnh9jLcZatJJGRSFTTeecZNvk5jXlQYrkU6qh+94EXmqjiQpxE0Ts1WMAVzgZFBi1yUhIakBqJPVYqxHeJ0Ly9D6gowwDJDqUzcAh5nPS5NwrnwPdUHlApLYDKmMsyQ0NljS5G5pvfg5ifs42iLgSSqSyKvcvWf+nNqZm25fKRIs0PE/yHkaLk5EsUYNj2Paai2ZRqgGf6a8qN0tJyTMf8sRi+GzOOcjXRSP6CqPzOCJn9Uiwp9wLNudq6Iwey+fNFK+MFnVdT0pJJvIZUxXr660hQ9/3cp6SNJgojXElOptGkF3HlNaib5IHFqUzo4FEMtJwyT00rHERCPRBNELj3V3qpibEwOX8Ckti5KzQ9roW5WXf1kYQP60NQUUkXiOhfUZUvMJosEYxcQUo0VlVRlNOJoydpbvdsl6u6btus8ZoJTksSWczGmVwriB5z/nFMSdnFzw7OUVN91l3ntZHrKvyHpg21tbaynVQRpCR+w8ecnxyxmpZY23B8+NjLpua+uyStKpJfZCBgbPYsqAsKkzOL1qul+jK4IOn7ztGVcXh4QGjcSVhnDHhrKXrRTfWdTVN19N2HSF1gmS23WYDUgqqlHA+oDvPqu+5XK85vVpgUYyLgtl4RNO31G1D27QblzdIQjFTQ7NupM7I6G5Sgtob7/NeoVFVSVIdKUTmZxdUZUGkZ2xBJU0Mlq5uBWFNPUmlrJ8UO+sQRZPVdIGrZ08JyytUs5YhrIaistDWLC7OqNuWVb3mYn5BnQNFg1IkmY6xXi8lXwtNNZmwiJ553fHs/IqXD3ZZ1y3np2c8en7Mk9MLLuqen737LjF6vvbVt/m17/4a09mMXsm+0zY1490p60xHG89m7B0d0hqDMYmdWcmoLJke3MRn98TZbMbtO3dR5ZiT+ZKm6+nrmrOzS87PL5nOJrjs/NZ3nQTAdj0axSsv3eFof4+z01PaFCmCp+0aTi8afhQaxqOSspzkvBGHSRKtEHyQ/WCoWxCzAmKk71rGoxHFqGJ5VREzOue0lf0hr1XD9HTz33naNtwXQtHURLHgpEsSBH2aEuMYKZKiQ0xUgvI4V3LlV6ybK773459w4/YRB3szXr17h59/+BFaCTpL6NF9R9k32MaSloonH3zAsoucztes2xanFJNRxY2po8PTxkATNTFoQvgL1On/iq9feaOShl7k2uR7KA9z77L56qZ2Zdi8eKFTGabhcL2JUJ/593YLGybmfQziCKQiuiwYLGGHA0xR8iTiZ5qkF8vfF18vUMFifOFrw+Q55VCmmAw2StEymU047TuOL8750/ff5/ZszP5kzJ2jfd68e4uj3Rm3D/a5fPyU+uSMZx98wHgyoahKqklJNZpijJVU8lKKppgihZZk3OCf4Kzj7tjxP/sbv8uTx48gBG4dHmFXcy5PnvLpJ59kF49I03VcLBYs12vOz885PT1jtVqzWK1pozjBuMpxb7rHuBpxNJpRr1aCUnmx6VSQrWGHB+jaeWJL2SD/t0K9WDyAIDND4T00Npv5ccrUK5WRi1zoDMXtF9DuhmvD5w/p2vHk2+ta4bL94eHiJ1Dbz6iU2LIaU6LdCF1UxPE4c9gVhXOk0JG6hl5pVAiyyW9OwfB75d60rhCaBgrftfLp1dbPLKEogGnwFH1HXOfnRInOQ4ofaTaVShgduSBxqjTnxnJYVqS+oWFLbTNJrIyTgl4nTBgoI2lTnMeMDkUlBggb97LNuc8Be0lso00UnrBzBZQW23WUfWRcOVaF5pSOh6rntpKEesM1N6coLkwxQdAxw8YiLi6UPK9Ray67hloXtD4H/OUgQW1l+CCha3JOtDHYwqFIdE3DqCiwRhFxpFyUgtoUi9rmAh8kUC3b6MYU6b3Yc7ZtSzUabQw/rrt5pSAuZnbTEEHyEWcsWDl3UkAKoiwFr5iHqBwiKW5cJl9TuVhaieA/eE+IaoNWpJRwiKXzgPYMiIE2mj7mFHut6XwnoZlGb9Pl8/ugoCPQEqRZiIp21dKHnmQkjNYpTYh9pnhJHklIUsR3TZOR45QtlMWVbNB4CX3KYJ00LcH7jUZFD/a0eUA1PJyDXg5tcraN3GvB95t1P4Qh1woG0n7KVrpDMzdQjrXS2MIIXSmI/fEQtKqdFrSk6zEmZ2dpg7IyIvEhbtYSpTTlaLJd82NerZQjRI9oj8RAA6VI1uEqobIwFJMxEoKEhMZ88G3TAHJfGGNBye9N+XcrjaBD+Z7AlWhtKUdC55SflXVDG001HtHlVHMyxZCs44hNLUhNHlbIgC6JNaotOLhxi0Xdsl4tOTs9pz67YGQV+zMDoQAkXNI4aQYMjj4luhjomyh2sAqhWlsotGGnKFGIA1+RApPxCD2dMCpLTo9PWS1X0qRltK3vwrV1RlEUJfjIet3x5Nkp04MnTO86LlY1y7bnoKxIoRO0Ke9ZSUPdNXgSXYSfvvcLnj07oal7ZrNdnj4/4eqT+9xwjlgvSW1D4Qy2KhnvzKiKCmvEFfRyfUUxKfChp2lbDvdnTCc7TKYjIkJhHJWO+WLF+dklq1WX6X+JalpC1xPaZtPc+5jQrcd0AR0iejzisu355NkxkRmjouBgd0bdtazXNc2qwdpiqEsJwWdNks4UVNGZJal80Tphew8YkjHo0UiGEeuaxw8f03YN6/Ueh6UGH+kbz2K+JPQtqaspdRDkMkVBYGOiTorTqzXz+YL52SmqXmRb+kA1GxHrBc+f1VwultSt5OTYXgJGvdLMpmNi6GgWlzRdj3YV451D5k3Lqos8Or7gO6+/Ar7n008f8+j5MU9PLzi/WvMHf/iHzBdzbt66yW/8+nd57dVXKadjjFbU6yU393dY1g3aWnbGu+wdHVETCb7h7s19bh4ccOPlN/nJLx4Qeo+zBa++/jrTGzfxT56CdVydnvHogw/49NFj9vd3mY4Lgu/pu5bY9/R1h4mKN16+x50bNzg9O2cRRHulU+BiOefh1RVRwf5oypuvvcn+/gyrDUYZzEbLua08BuZ03zQUNwqK8ZhqMqXpLuh6L2t5Ht6g2Q4urjUpG9qREmdLBeA1BpNdNBMnMVHGiFMwMU6Mc6KH0uDRrLqaf/ZHf8Q7b77KV+7e5u3XX+H7Pz2gdI4QPNprtO+Y9isxMqiX/ON/9DExQRMT6/WSA6PYm435zsGIcqQxheIiRq6awKL9NyCZ3mcYyyohVwy2s92AsJBdWvL3681GlSeGv+zNf1knsZnPkoWfUmAO8+sEWZQaiCG8UOxetyDetD9DJztQjl7gCKbN70Froex4v7mXROwZ6JslZ08esV7XGN9x79YRTmsaEp+cnvLg2RNUSliMaByMonSKqSspjWVcFIzLQsRrxuGMQoZrCYugFDFG2l4KMaMkGTimSNPWrFc1fS/2ur7Lk9De58mYwmpFZTVHlePe7IiirCidZbcouDkaE7Thx01LWHu64CmQZOR0vQu9dg6H67DRhVwHKobXMBH+3JX7zFVUaTPlBJn2CFlQvdCIfA5lu/77rvWywzM+8CdfaHOvfS0NzQCQ0Fn4rglGgTVE6+it2yQjx7Ig9Y6kNaYs0F2L6qPEx+T3kXpK7klXlPm8SKOhkhSYQ2JJVAabnxID2BhQUZFyMGYi5Wm3TNNSdiDQWmMLjbUJr+W+6GMO28OiECvNtu9puyUQMDaye7jD+GCGmVaYlEghcvr4hKvTOQpJIh9VFTqTmZNS0qRpmyf6Gus0lArbS2ifmsi9s550eNtRBHm+Tcw6HWU3ZyaRJ4EDhJapPpaCuvUsU8PS9xTjsdjh+ij6KAOkVvQISuw6lclFfEio3mf9gVCgYoz0XQdJ5cJSiv1hIxmNpMD0vafPwWq2qKSZ6oXGVBYF1jmUszLoiKK/MnkHsgOyEhPNRogoAhg9iM0RESckmvUa79xmyi9Dw8h6XaO1obAl63Yt6I9SWJ2RsCTOZsumYdU2uZEWxMkak0WioquQtUlyC6yVQjfFRGkdxipMobG9JmIwVuNyRk1InqZu6LueajQRlxylWTZybNoags9Ww1F0gcNgqemGkN1E18fN+uqzVbGEbJabBy+EsEGkbFFgcqMizbIswbFJGySHvO7FEBnp0SaAt8+uXygllp9KMktkCh5pu05yRdBo6/AxZDfCKPdkXu6DHwK9EmU1ys1m2NhWpxiISRoijBMr7BwSXKoJ2kjj03eSLt8FT0S0ImKJ7fLekiiKKtPAWqH1JdFwSD8tiBlKGlT5isp7Wdw0S845+qzV8jFgbNY+EehCyu+1Ge0K4pj1cvPVFW3oaEPHanGKmUwZF1OOdl9ifvaMrpmjkzisaetQk8DhwS7KGJ41c0LsZGpdVEwrR2EUbV1LeKcSC/LQrCic5db+AUe7O5xfXvHh2XMOd48YlyN00AQtRgg6BYyzqGnF3v4Bnzx5xmnb8YobsWgbDIl1IxoF4zQqWdF9BcOnJ884PzvlqHD84N2PCUXBzu0bPO0eEZxFWUdX18S6RXnP3t6OUOyMwhvLbHefuy+9hDPS1C/XNc26RR8oJpOKotLMlw2L5Yrj+TlX51csF2sOX3qVZbNgsZgz6ypi36K9x6hIqTQTDM/OTglGMXv1Fd554/d4dP8j/ssfvMdYO4IruHvnNh89esDp+RV9u6I0W9MMUi+5KtpgbQVKZ8oPYinsAzFK7k4MkHTE2RHV/pRlaulOnvL82UMOrWUgWV6cPKW9Oqc7fc6NowmFUZt9JxUj+vEeTaMIXZ/XESidZW93h9IY6rrheL4Ca0VbqB3RCtW+NJZgLSkFtLJUGdH2yTMaTVHK8Oz5CfefPMWmwMOnx1xeLdEoXn/5HjoqPvroU/4v/6+/x1/99e9yuL/P17/5TS4uzzBAj8JQEoPmYt1xen7F+eWK3aMZd19/i9du3eRgusejTz7lydUVf/TjU1575RVeOtzn6MYBHz95yrPjUzqlWFuw3nNvdpNbN45YL1aE3vPBB+9zfnHKzo19zKhk52CP+fMT3Ggsg6RqysjJerubaZqrxQKvFKUt2NnZo7qaC604id25yut81644efSAohpxsLdP5xxtXXN5cSYBn3m4lDKiPhDiyXXC8CyLdj2hVKBUsjfEqKhRdJmO3ilx7zNAc7USB0hX8uP3P+C/+G9/n8vVir/9N/8GDx8/4/nxCe/ef8LYwqiz6IcPqK2jNpaflPCbX3mT33ztVV46X/DJ++/zyUcX3KznfP3miLdvjdm9UUr+0peFgP8PeP3qyWSwmY4MlJOYJEhu+DpxmHwLzL3h9Vx/A+CzVe71r34Wadk6f127nJuv5Q3mBdH8Z9+Va7DaNbRkoL2oay3P5ncLL/3FylmowyAFQr1a0rc9ynsKa6mMRqWY046lSYshgBLNQPKJ2PQ4pWm0ZmmMJDIrCdnTKqFMokDlEEXJAQAorJV00JToeikyiJFCKZyKKAM6e35bo6kKy2RUUjnH2JUYa3HWMHaOqSlYxUSo1xtaQoLNJHsQ/iZyqFs+NV/cS+bzxSCWVy9804u9Rn6HDL1sEZDhgU2bS3rdSOEL3uGF3379DtvIxIe/SNsO+brz3At3pGIzNU5qOA9bxAVtsvOR3jasajjq3J+pgeoy5EYM8OP1xWh7vq7/d8y85AQbZyOVlDQxbBEuY6SI1NbQhR7le5nIWbHfHU1GzI4mOKspCs1oNsI4Q0wBqzWznSmvvvkKy90lbdPRNi2+6+l9JGQ9lyKiTKaEqFyoC3cAjEIXVpK/nUUyoK9ru9T2AqVhICDXxKgcShchaEXd9dR0eArK4ZzGSAzkJmRzN1xDRwcBddqkuEs+kvgWaa1zo67F8nhASvKpTqRN4WsyfSGl7HqVv971/UY0b5BibLjGRisp7GweyKS0+bcgCxIOp5TkqMS+R+mQ6alSoMeQMEYsjQe3tTwZ2ZwzbfQG9eq9z3/WKKOxw72kZBrrQ9hMd6XQFttbZyyJnAqfEaaUyFSBtHEP26LJWayuhH6o1HANhdq0Hfhk1Poa8myMJknyplDFhmyZFIlJb74/BKGEyeBGUJGY4oY6ZtDE/D2owbwgryFJbRoc2eg1Sm1d3NKAfA30rs0+FLEuH5cWqtwG31SDe5hch0FHtnWPi1mnI/feEMInAKW8nyB/Oa8oU8U25xR5D58Rl+HzxghKDW5pcXuurBy7HwZjw/6kDUkNTmpJiqO8oA1P3uach2w2kP+xVYHpDO1qyTpGJsawOyqp9nbou4Ium04oY9Gjglkha4meOHwhn2WvspRWYRSYmLBabBRCiqgQgID2LfujgqPpmA+f9zl9W2FdCapH5LhJ9s+kKcuStm6IF1f4pmU2naBj4vLkKU3v0Z1iZLXsm1FRaksMkVXTcrJYU+2W4mJVVaiiRbUdUSO2uMYwmoxpQuR0vmK231AUJTcOb1CVJat6TYyB86sFk+kcn2A6mbBed6y6DlcUjKcTjLHcuX2TcOOAtq15/PQxXRPEShxxO3NGcT5fsl4u8M2a3335FcndSJHj+5+y8j1N03N8fMKqbiDJeVAb1oHQfxVIXsiwt6TsQBjiZuClSBskXSVYLeeoqmJUlYzHU5y1GK0ZjRz11ZTFqKSJHR0RqxITY1C2BO2whcEkBW2HtgVoi0+aVd3S9J4uhKy/0Og8HBv2LHGdU9khMI+hgsdo0dW1Tc+TZ8+xRM6vFoQQ0cpQlgVWa9r1imenJ+xUFXfu3OHVN16jRZ7hxvecXcxpO09U0KyWJO+JWCbTPWazXSbOcvtwT4Zt8xV70xF7O1N2dnaonGFvMqbrPb5tqKxhtLfLzt4BISTOLs6ZzSZgFD/4wQ94fnxC3bR5YCSOh9pKeKwzmrKwxL6j7aMEO6okdOZru/i2zpV13XeiWfSjEZPxiOl4hO87opcw3MFcKi/8ck6HP+Y3TloxBENOTUa2E/Spp8t2+j7KGphUjgrNtYsyjkcnZ/zo/Y/4jW9/ExUjB9OprHohonyArkG5AluNmRzucOflV3nrrTfpj6+4uLzk5OSY+vKC1WXPUjXMdEk1tZTjfwM0KnB98ZRNRQTU16g7wHZ3+YLXsLlz7Vs2/UH63LduNnP57ZsCVPb3XBhma87PUZU+cwgDb3q4H9RQ/A2bsIw9c+HBpgm69tulqElJJrHdiuAjNhdrY2spFJgksDO5MFMpIBNm8dhXEQgJH/ucju7FfYeINpFSGXFtyfex0gq8gWSwaEoNO0WJM5rKKQqjKYxmPCrE+UMrisIxHYurQ2UK4bYrRTSG5GHd9HS93wh7o0qSgGsUzokgM8ZIG9vPXJb0+V5zU6duzqyc7c+c/xdayHTt5659x5BK/2XmBl/U5m6ySl4QsFxfTa43sOqFwx5QnQEgUmwfeJ0RBnIiNEp9ZoEaftUWtbvenH62q0sMBfewSV277xNEJXiWAlSUojgocQGLSmFcgS0jduzonrfE3tMoRTkeMRlN2D3a5fbLNxhPKsajgl4H2uBpuxplC3b2Z7zy0l2aRcPl2SVPHz7hycNndF1Lmx2BtAU7kqZTGTBGqBdRK6JRmFJco4qyJLHOwXBq0+Rtms+UNjQ8rRRWZZGnkqnZqulYJ0MoBYFQ5LUEcQYTa2A1TC7EmCBvCEPBCNlFK0qK0sBjV0aE8DFKWGEcXKNSwuagRL1JlGejO0gp0axrKeSVwmojabzDmmfshps/6EwSgoCEwY0ph6Z5n0hZcG5zvovS4INHp5jTjnMAZM5KSbnZsYXbWAZ3XlK1rbMozcY+vPfSpHRdj7ZW6D9Zl2cKS2GFl01uCpTShK4XdNiCcVaofQjVSM6j+P1FhCYWc4fX9x3G6A2C5L3H956iLDBGibhcFUP5n5vBlJ0hhR4TvMd3rYTQWYe1Bh+z619eh43ReLJTWKbGxXyuVLb91kqCHoFN3oZKBpUSTZNpOikXUyrJuuacIFK5YXthjYgp075UbhyCUDgR9EWKCtEfhZCtpBVYY8FYrE2onEa/obDmpsmHgO972rZ9YTMaKJkMzWGUTBjjvTSTvt/kSiQiZTnKTpvbpkeKIp21Z0HohyqROknKVlphC8toNqL3Nd1qydW6YaIUh2NHObsNKTKv6zz8k8T6orAYrbjlJvggyHfpnDRAMeYmUwY2rRdbZRM8qV5wa1zSH+zw/Q8SyQtKVZaVrG1JobN9q1aKqiy5WszxPmCajptHh4SjAy4vn9PMW2LnqaoC3/UE5zkYTwHNoms5XrXsjWFCgR3PsOtWRMK9whnHSFvGeztcdT2fHJ+xt3dAVZbcu/0S0b7B+eUZ88UVT4/PUNqx33r29w65upCJ+9GNQ3Z290gx8fbbr7G3t4MrHP/Z3/8HXC2WLOseUxkKq3FW8ej0iuPjY1arBf/rW3d44/YNfuuNl/mv/v4/4OOnx5ydnPP48WOMNYxHEwmQjZCyCYI0vIrQdZvBgjgeBuj9ZtcSP0YljWqMXJ2dMbpxg/1bt7h98xZlWVK4gtnuiNVqxfHpCT/74CPqtkWnSFkVUhb7QFFYelWjmh5TSkL7ukv07ZqQIkkP1GyVhyLCVIneo7TdNCpCA0nEvseaHoC+a7j/6UN0ijR1TcwDHK01VivW9ZrHH39A33TcefkV/GjCdFoydoZF1/Lzjz5iMV+gVaJdXqGTJibHeLzLdLpLFRvevPsSR7v7HFzN2d+dcbCzw1fu3uXG7pTHNw8xkzGLqwUpRCajgr2LC+q25efvvc+r7mV8DLz/X/839Bk5LUdTjLa5UXFYDUVmpdR1S9+2xBApigLvRQP42b0fZK3vvcd3gdX8ihsH+0xnM2KInJ+dsVqt6Pw2i0qrjYqVTZQDEI2CHOS8YxwjJ2vcol2KEUyCFAxeyeAvGS35cCRmu7s8vZiz/tkv+MarP2BxdsXBeCJIa0yk3oNtseWI4ug2L731Oq+/8w3e/tobLGdnPLm85On5Ce3J+5yetJQXEdMVHN502EPHr/r1qxfTf/bPSosTBEPhmQsChqKNTV07TMjjMMG69o6RtP3TNdqWFJjXf7/a6B+SzoLUzM+O4Yu5c18m0t9M4a81VXLT5GyJuC2GPvdTmwKMjQd6nxEmoxUzY5gYQ6E0LmkJ8lMRZzylEjcmi8GY7TEYJVMqgwilrNaSa2C2A+1CCXWjcJbCZkqZhtJpoXYUBX22FEVl+hoalTRN29L7QON7QnJ4Em1MeC9oD04+kDYG5xxd1+XiZbg2X3AeX/jS9fL/803Kl12D6z89TDZT+uzffsFvSZs5xOb6bf6cPv9zL/x87j9TntxGJTS0pJBp4uAml6HZIewz5iZnoK1sPocSytFQ7GWC/Wc+7KBVyU3TFxyjuEuljSBdK4FaQ+zxa6E03Li5w2uvH/H1r7+Cbzp822GqAjcqKSYVPYned5wvr7haXgklkgQBSuc4H4/Z250yvVHwzo23ePudN/Cdp1u3wrd2FjcpMFNNE1vOFpf0XrHuO5Ztw4QZOEsxGZP05SDLlud8aO5j/gfQSQiFGrGFDiQ6lVj3nsYGtLWUrmBUlEyqQmxNFXRdXsy1iJiDFyFoDF5EzWqgeSnxi1WytsQYCG27aXSVEvegoZmNyETa957CCRXJlqVQWWKk7TMVA0hObTNU8tDCGkNpHU0Q6k85GkGvhaIRvBRoKTGuRgx38YDeoKB0JTEI/3h3NNpM8tddT1ADvS3gowTb7uzuCl1KkTnmfc6DyTqLqkJpTe9F8JtiIvaeWslAJeXzmVLCKp0De91mc1QolJHnzlqTr6a4Dxklk3rh0Mu57Dsv+oRCmpyQh0RlOcqNvNqYCqSU8E29uSfapsMbjzcdo/E487RzEaS2GgYlgUX03m97ihwurPSAtApF0RlpREOKWC+ugynKejYU1SFEgu9IQdLfUTLgapu16IV6Tzkeiw6mKNHWCpLkU24AkHN0be0YUBbrLMpC8F4oXuEa+kKeRAsEk5tdg7Z5fTTAkJuTqg0dSBFzhky2JpBRLiiNK6v8uMnxxdycCvCt0Fj60BN9j18u6aPHaM3t19/iyf1POb2ac37yhN/79te4sTvj6upKrLcR9zCXdUmyr2e77yjIz0BJiwOChdoknI8Ky929fV67dZOf3/+Up8uWq6sLjm7dgaBRGAm9FLiAnYMD+q6jrRuevvtzbrz9Jru3bvLXf+evYtY13dWcP/3TH1CvGlJRMitHWFPiY8GiD5w9fgzPnuGqgt5HjC3AjfGhYU3k0aqhXXa0456vhp5yXLKvZ3zy9IKz83MuLs5YrQpu3b7JrRuHBKcIdU1o18SUGE2mzCYT7t4+4DvffIdXX7nHj99/j+91P+bp6Tk70xlhPKVzY06PP+Hhe+/z7JNP+D//x/8J/953v8rf/OYb/O2/9hv8i598wEXzLjs7RyhrqKqKvhXLXLkJnFBNJYlW1rBWJuob18gYcw0liNmws6wvl9y/uuLJ/fvsTiZYI/lHo5dfYXZ0xMGdO7zzG7c4efyYn//0x/zgJ++iQmCShzXDJD5l04pV38nARQtqHGLYPPfWGEEX+x7lMptGIZLKlLAxoPs1oFApcnp+kV39oBrLNP9qsWBxdYUxhhuHN4hdQ7e4IM3PsPaAdhV49+ycd3/xEaUz/PZ3v8HueMSj43P+yZ99j8u/9pext27w8uEB3bKFzqOnE+7eOGRnOmaiPLdtZO9gxtdf/is8fHLKs7NzfvrxJ5S6YFxOKMpS6IdGCn+nxOXODflx+fnu2p7Jzpjf+8u/yeMHn/Dk8SP+8E+/R1lNBInWA3UvbWqA4eXsQP9d8eEHv8AVBYeHN9g72Gd3fx9rHcurOfV6Tb1ebdAUo2LOYNP0snPQA8/bhpk2jLXiVTvhrOmYe09jEtrpPKiKIlaNCetESznvav6ff+8fUoUOHXumEyc254iD2XjkKCvL+arhv/qjH/OH3/85d24c4DB887W3mD74Ga/YOa/OOt759h47N2dMDyefL1z+B75+9Y3KddREqS1CMYyiBwAif5POTjCRAQ6/1pCw3UA3tc7Q2SAbZP4127/nOpVjWKTjdkL1y16JPJ3LSIq1m4mBIEQvdsZaJwhZL7Apo4ej36Iyw39EhtgsoTYUWlMqzUgZCgVOJyqrmVhwSmO1FetALZN7ZwZheaJAY7Vm5BwqNzMqJVwuomWCmd14QDzBc/6E9WFTyAgdZaBEDPqPRCDhSfTZyWyg5phMFwhZ0Bc/06h94Tn+CzQk2zd4oevcAjHX4YzP/cgXX9nPieW/CGq5DrAM/zk0KPkABprJC7+T3PQMBbd0J9vvU8N7bA6GwYFoKGg//2G2Bf32Lr9+oPKXQ8MUETQl6YQ2icKCtRprZTJc7e3IdCQkuuhlw9ACTZfWUY0ck1kl6NDQUefftMlpIFFMCkazEe7GASopfAw0viMV8tmDmqBUQWFb+h5m4zGjLuCs0L5ibry0yr79L3yq3NhlGhtxa2EeSTl/xGLzPyYjBzElOp9RUp03Se/lmgz3w4CswOY6DgOTSJICe7hc1ybdaL1pFkM2RhhE6UpJSKrJHGKFukbRUpsEcokh0RitNy5epITK0d+DaH5w79FKyTQ+pez6J0OJYSXRKjtVDQVgHnpIk5PXqGsIo2KgJ+qtli7m4NQ8pQ9EnLa5IR+QApPX1SEDKWMgSo5koIcpsgvc4FJzLaPGbNblnDqvtkMoNTRaaVtYCVikwYr1rs7nbUAt08ZZLa+xw/nOxdLwsMSQNtc/Rmk5ByMVWefEClhvsk8GdzsEuUiKqAPey8/KvnHdFSbmZkJMAoRKHFEI6hV9EMezjFylnD+TEDe/mNdLWTPVxtJZ+mizWSN0RqXkd26NLZIWJy1ZXCIh9BtUO+ptto8eFs6kidn85Pq+vDFsiPmaK4VyDnZ2cFWFDz2Pjk+ouzdRSjOyli5K7oMPCRNDpo8M2jJ5qKIS3V1CmktBoTQ6ZqfIGCmtZmdU8vLRARfrpyzWdRbWg1GZgaGlMCxGI8qyJLQdi7MLJjeuGO/MuPnKXcaTMV1h+J4KRNWTtGU8Kklomi7Q+Y66E7TS2B1MXp9TUhhb4azGjib0KNZtR5cShUoEFbm4OGGxuKBZL7BuQt+3eN/RrhZYFZmOSp6fXjKuRkwmUyZVwawq2K1KDnd3qcqCkCLFdIoqRnTRsLy8oF+vUL7jg5++y491w6204NXbR1SlZToeM5nsoKylGlX0tqXvPX3oZdAT88KVAikO97NhuPlVXq9SRj43uH5MhNjTtB2hbjb00BQ1s3XLGs1Xv/NtZlWBVYGHTx6yuprTrTuqUlBN4wbf3OyOp9N2EJcGkwbZI7WWoZDYvbCpjICNnfpwXwv1L22NUVTOhcrmD/iEs5FCw15hmCnFvGn59MEjnj97zv7ujFFZcu+lO3g0vvkxF+cXXJxf0I4UF+cXnF1cMV+uuHfjAAMs6yU2RUZaS0xC6EhdS7teC/Uqh0LKeh0ZVSVJO5KyMnBJQwWXXQkjTMZjRmWFNY5mXYN2FLnG+7KaU+WrJto9oVQvFnO0ERR7OptJzeUcXfAyBNEKqyH6QPQRYg6P1gqvYZUiPsKdasReMaFMiWf1SoKLtc6DwdxoxUTwgeQD6+WaXZvYM4lLDYukaCJip+w9ZG1h3fXQddzamzJ2JdPdfaimFKamcA3VSFNWDluMvuRT//d//eqT6dUwKc9lmlgVbSdN1753WFhJoIkbnvb1gg2GQlQ2ymHjUHmSNzQP3vtNgSLWkEBM2d0rvVBQfxZBuc4jHzjYymwdaK4XlFudQcpGVgMfc3OIn3llFxmVp2ykHNwkSFOhYKQUlYXSKCbOsOMMpdE44yisCGWdsxRGg4FgoNQWpzWVK8DAwGk1+YZOOm/cWQphskl3CD5raFTmQwpX2+dNKOTOKpDoUqSL22N1VqatSkmKad+LiPS6Puha3b89Z1/YqXxx16G41quo7fttGpU0oHHyN9vf9fn32+iYEJpSyhPFa73mcFG/+FiUlGMbNGZAVdhe9yE7J8WUIW69KXRlY9n+MqUVm2SMTQG0FcqRrvVDmw/24rGpXHBHEl5BByQVKAqYjgzlSFyzurpnMt2hLErKouLs4pyma2hWNWaimcwmHBzsszubUbiCwjmMUTRNy+XVgmfPz6ibhrapqcrE7niHGzduUuiC+XzO44ePKUclxWjCbHdGVUxYrVsqO2K0W7G3bCj0elNIJQThMLkYC2S6QgKVZLpOUqiw/bhJSzFkncPZ3KhoS1FWmeKyFqekjCB2WXy40ZMode0ekEZ+GByo6/bBbScbuBJYPuZCeshR0SoKxSvrC/RIE4NQfgbrYT00JPn+CCRMtgcunNvQjYbhigweLD6L8kmSSB1iyAnfcjx970WrQaJvOzD6mlU4G63YcIeYjFSIi5vKTYzYMGOtNEQ6EHovTllWip107dxZ54SEGiQkkpQ2NshmU0QroVHm3yPSrNxWFYO5qqLtm7yZakIMorMzRhCjoUEmu6dZg6vKDc2FJCYEBpOptoKKb0M5pUEdhgshCu9bp82qS0psgjeVAldVsg6HQOhzKRXTll6HousaQd2CpyirTAWz+f3kHHVNCyk70GlpMvuupRqPAeh9jyLbyOtcjGwWtq2ORET8+trQTc6xz6hbihGj9CZ2ZshkCF4+c4xihWp0yMM1tYkHSJs487TdE3ODURjRc7RtS2GNIKDGMJ7NaJcL3n34hN++XHG4s4tLmaIWAtGnjOSBLty1hUrctnwU22VCyAMcy+BQ6FUkhZ5Cw9t37/Dx0+c8b9d0fcuoKLHa0NU1phChfFGOqEYjQtOwODtnfHLGdDbl8J2vsjet6GzEuoSyEYrIbGdCQFPXHV1b49tWzu1kLInqSlH7hJuOGU0mTPYOSCGyrtfUUcI3+67h6dMH1IslvmupppauXbNaXnH85FOS9+xOKt57/5T9vQOmkylVUeBSxHQth9MpVSHPz2hvH1VNaIJifnyM6hpmlePjd9/DXT5h+eh9/uf/wd8CIrs7M2bTPbQrGI1HpFHDarVkvlwKhWfYALJrXt6E8g6YB6CZPZKyg6FGhhgg+pD1cinDH624nPeUZ1dcXC34n/713+HGG3f55jtv8P0f/ZCHTc98eYUpnKDJ1mRNlBTG0W6RQ8hOpzGIg2E2ddFaid42DoW9NCrkP6cUsuY6D1KUQWkxJBFkLrFc1RzuVkyc5vakpLSaxbrmg/c/5MmTJ+h4E6sNL997GUxBqRPHz57xaDbmXgEP7n/K0+NTzi8u+eobrzKdVJwvzzgoJhhlubo85/z8mPPzc9aLK5p6he9baZh7D0axM50QlKMPifm6xRQFKjdXZFc/UnYPVIquaSlH1yhf17fya69MaMFamwdikZOTY8qyYjKdcu/le9jCUUzHrPoWU0jD6KxlOV/Qr2t0K+ufUYZUahZtwypGbldTDnd3UYXj4uEnmypJ5WNNSZqUrpcG6VArXikVL5eJ9SrwKYpl0ui+xTdrwnqNMw6bAoZIpRSzakRZjriY7EG4JNKjTSQpTUj/JlC/1FB6DWStYQPIj1TKFqF6Oy2U6Z9QFFIu5PvO432fN2pHURRURZUDv+R/zg3uKSq7zwg02reNWDKGATr9sr6W4QiHo8do8akvnMUYcYKJ8Vo5nLZC0T4XKtcL4m1heW26N1QvIMLRlL3/ozQUSWWYFEWPog7gUVR5Ku8QIX3Mo+gYsuAShU8I/1qJH0yI4qu+EbMmuSie7JaTBdExRtG+kIha6uZk8gWMmi5Cm3mOSmmsBmcg4Qk+0XZBKEyfufZDsf3Lz/gvvxjbs7gt0GOSidxmsiq7Ltv/h43gYVC9wwaq3RzQtX5kMHNQL3zD9si1sRuRchg+oNLo3LBZbXJFJMV3ytqHTdTFtY+ldaZ+eS+owTU64fXXtbbmxYMdvLtTypoIcf7pfOAmI94aj+hvzGiixnSKMsHzTz+k7z0hJkajEmctY+tQrSZeLbh4tmZlJfxTK4WyuchOCdsnqhBQHpZn51z0x3zo30MlTelKppMpR/u7AmFrRalKpuOKvbsz2m7FTt+RzhcUUeG0kYbq2ifUw82Shmu+RRB0Suj04jxOtB9SJLdNK7z4opDNLXN5S1cQTdY0SNwyJre1KSV838v0zhiK8US47ZnCtbHaHc65NhQDnSmJfqLPRSpacmdUNpUY1qAeaTYSSTQnTjZ6H+Rr2mqsdTm7KdH6XvJIsiAbrVDZlaoP4oLWpmzdqhXFZLJptFBQZB2H2zQPcn+EuEVMRa+iCVF89LXS2R0o5k0WaX4U1G2Dy2nNG/lmivRtJ25i1makQp6FgX6I2qIoAMlHjLVYZyiDy8er6Js+fxYxDAHJXFAKnLO4osiOVfmW91tdR9d31/QgguxsBl8ZXSlcmdfiAUGXb4hhqz+LQ14Nct8M94MJmkH/0+WMEZWpiMPxq9yMFmWJ0mI6EJO4nkmBVqK0zZPiXKjk80a2WbfW4vscGKkUrqhyvsw1CpgV/VTwQZoQG7dI4oYKlzASrEWMMnzSWj53SHLc3osttssBtl3f0ntP2/UkFEZrpqMRbjBScJb1yy9zenzMu+/9jB9/9AmlVvzGm6/QLhf4mHAODBZQtIBOWZdAQqfsVlg4iEKb0cFirUYZRVKBxkto6ldfvs3PPz3gol5xcnHGnaNbjMuRBPwi+i1NT+EsaVxxdnGBb2qaqznvf/ghlyenXF1c4IsdUmpRPnE4HRPouGgWtF1HYQomRcVBOaJbL+nbNSk2hHXPul3Sz8/Adyw1/LEOrBYLlpdXXD55wDtvvsEbr36d03YNSnN5Mef+Bw9IVkM2smi7houLc46LwPGkZEZgp7SMrcVEoO/pllcsz57Td60gek6jXMXDq4bLnzzmK299iK1m7O7MWC8uaLoGrSLjspJMGWtIZUVI4FNCR3HLG3YGCfYM0rlqjUkRbXOdkoZBGjijsRnp6YncNBFfX3H10YL/0//jP+XmvVe498Yb7H7nL1O8/nXay0uOP/g5/XpFt2xxSnKznCukcc7DMmEJJMlpcnozJOqbhhh6UEmo0hEIihQgqggqCsKyGXiAeHvKUFUsSiLruuajBw/5e//w/4uKmrb3dP2K1165yXQ85Q//5Ed8u0msmpqXjvZZL5Y8eX7CBzsjHl9ccbmuoah4/9Fjns0v0H1Deetl1l3NP/rpz/jo4SMWqzUmSVOiktgcGzXDKmijp2s9/eAXlMTFC5UoxxU+Bf7x7/9Tzo+PWVxdsbO/T1E4oUV+CdNjs04m8CGhs0ZwMh7hfWBxeckf/8t/wWg8wZUlA52zmozZ29+nKM9ZzxekusYahzGWWBSsygYfeo51YtnV2L4Ry+V+0MsocYlD1pu+kyydcjbmjf2SX586mkcrFn3P494zcolY13TzJTRrxqVlr9CMfc9sMmFclZzeuUV7cUzdyeewymIpfunn/u/z+tciph86/m3595nJ90A34vrUW/QSYaAlePFIN0ZTlSVFUVIUFcooUNvJFvk9dBo0j9coTZv3v96KXCtct3uu/FurDd9db1x7hv8jF7UquynEF5qU6+8jU4aUJ7jbyb+whNLm39KcaOHzZhQExUbnMEwrkwJPFqnlz660/NvYwd50EF/mab0a+MtZsLwRM2+MYK/rkHN+hvwTkiJEhY+KNkZxYspvG5LoGT7fpKjP/PnPv0++8HUd7vgsvHBtIi7dQGKLWHDtmn5mgXiha8gw9eab82LOtpke2ucBaEkAgyhQ66FuQSm1mdxeq5pgcApKadMobg4wbxzXjubFdutar5Ve+C62oW25gR2OuPKJ/TZwb9Vx/uwEIpg+MDs5yenaMC4dzlicFW5qEn7jxjY3KdCZYy+0I41NCRsCuu3w3tN3PSkpyrJkujOlaNdCiVIJZYQyZGyJ6RrKizn6ci3hgUr0PDELl8219WBz/pLa0nCuXdIhsDKmgE8B5SMGu53u50vZdZ1oXNJwTrMjWRbAA7kJyE3lYFUexQ6WGKSpUZKTkJSIO4eck5D6PPwIKJvpUUqLiw1y4JtEcJD7JJ9jyRLZGnloKxtyyKn3A13VGIPR0njEmLVwRrJjEgll1EYon1KUaZrWWauQERutNmvfsHYM949WQpUySm0alaFBSkrobSbT4RSCziRjCJk/OlBwB+e06/foxoEtka/NYDSxfY43zMh8HAMt2Co2mTIvPM7ZXUuor4ImayWfbwjyFR1ONm7ZBOOZDYV1c3sN+8DGvVGRYpQ0dzsIVtOGkSkp8WHj0CXoz1YDo3PGjEmGEII4XCaxnk45hHAI+LRWCnulldD96FBBZfczvbmexMEFMm70Hj0RsqW/SkgBPDw7SdaCshL6pky2Y34khoFO2qxXA50wBrFL1Xkd77uAtlIUTydj6tmUkBTnV0vOrhZoZ7FaEfJAY3jOdIjbc5tknzFq0IXleyFfP6XYsCWUgtlkxI29GTfOZzx9ekE6TChnUcEJtSUGQkREy2WJMZp2tWJ5cUFoX6KoKqZ7B0wbz/ziktiLG1YbA03wBDTWOEpXYoGuawn1Eh17YtZ64QpSknvg8mrJcrGkXq5wRSk25ErR9x1t11G3Leu6BafRzjAelWgFXdewWhqWywXL1YSuaVAhUGhFf3VFfXrCypWyHhkN1or+KwRa4P7xFeXI0yPIje9blEqsQkTZAuVKUsgoRGZ75DGnnPO8NmzLGTWUDSSUWG0P35E3NJXAJo/KWUTPHz5m3QXWIaEnM4r9fUa7O6TUUV9csDo7Q9US+BgGI5thlJgbcCMPCIOLnWTcDA5lenM8w/DghVfKVZLK7pf5GTNJESPUbc/T0wtmrqQsC16+c5Nbt29RVWM0BQ8/fcj51SXzqwsW9YpFU3NRN+iioBpPICSenl1wvlywWxSE/hmLdcPHDx7x6Olz+r7ncGfG+GgPUsA5cVpVgO96uk4+t3bVph6IKaKsIRI5Ob/g6uqKZr2mKIrMEvriQeSf91J5KGWVIYZA37YSB7BSUv+FRLtaE3uhnvrYS83bRmLfEYJn4SNd22a6sNDVVMomC/luUFazN93FWUO3XnLiE582kU4ZUB6rpKBOfUdqa2JTg6nQrkD5Dkekshq3M2akdpj6fcYHRxQ7e9jxzr/y5/7zXr/yRkXS4NWGti9r2LYUU7mQjig8YAeuMsgGExK+D/RdjzYiyJxNpxhboI1Db/iScUMFCD7kh074jX22HX3hobh+zwxTwZQ2xagsqAbndN5o9ZbWlbnGA+3Lx0jvvQTuqGvcdnlTxK5zW8zm6kkyGVLKPvla/luBN5qYnZMYam+lUDbzSTV0KdM1UsKkhNeawkWZQgoUklOVwxYhuD6V1gOH3ohTC0jDR/Yai6JLCSlJQFnU+KBoUqTP6IvvI0FJUJyse9c/9xec5xf+fL3q/yWvzXsO3WNevAbIO9um5lONUteXaK4V+jJB2Fhgv+AuvW2OB+vjzQQqN0gKyayJQ9NpnDiZaC0mCpk+J5Qy4d4OdIvsRp9DtJIsNCDXI/O1X1jErt2jiW3TuGkkQRrPgU1h2Dh9Ja2o2sDhvMF0PaP6GV3b4uuGct0RlDh+mCzOVkgy+aa/zsV+Asq8iSUU/trvPrI2N/h5o7EaXRmsLrAJXAi0qSeVBcXODgbDqIvYRYdJ8lzp/LkCcVPUiUogc5eHU6GGf/QGXbFBaBlNlODBiZLkd5MpTTFE6rbDuRwWmYT7rxEHmcF9pSiKzZCga1tBHeJwz3t0FPFon8MFlQJblBhj6FOi6ersIGUpso7CXhuWDHbHSZHtX2Xq7/vswqQUMQaMk80spogK8hxZZyiMxRmDddcKdm1o+k5SiJW47ZlsHGC0RiUlFtI5gdzYLcqjtM5+BVlInp//YSCToiQWi7UzVNbmnyUjDhqlDSFI8zLoLrQRykHIhfEGEUI+y2BpLPd82hQiWUaPUoqyLLZFrNmmuPe5kRdUOORjVYIaZRpLH7fNvlbkTChNp0JGSPQLja+gPXI3+5iPKSZ6Yp5mStM70LSK6PDe07XiiKaVGJL0IW4LcKM3VEZBzKTFF12j/I6u71AInVBbQYOtkeseTbYgNhnDy3baIXPHQwiy5mZRlwydhaY7aKJCPj/j8YSmlXvA+yC6RgXK5NU/ieuZ0bJukDUmkOi6jr6XvXZmDZPxmH5nh7IaczZf8uz8EozGWQ1Rk5QRJkCUzJMBHUwp0/iU2lK4c184TPXFNU8avvG45N7hIReXK374wUNZkwvHoL0JscckK7k6Sfa51dUl+B77za9z8+49TFnRd4HTJ8/w6zUhRDodaUIiYjG2FHF+DIR6RT+/onDZCjslvLFEV6BswWLd03XSFh4d3UBpw3yxZDG/ZDHbZVSN6XwipR5DYHd3inOavq1ZzD2X8zkXswlXFxfErmWkFfWzZyy0wfqA1YBzhBQZl2WuiTTvP5tj9YIYPF27IiFmJfN1jXERl0QLJnWDNHNps5cEBttzcpOdb8+8Nw8DofTC/xSgYk+hNKU1nJ+eUq9qTs8vefm7v87ujUP2bhywe7TD/PkJzz/6hPrpM0LbZGRI9lwRdTuUUTid3VVjJHS9FNUpbIfJJGIOypNtXJPYNlFC/TckrfBGhn0aTSTR+0jb1RweTbl5eMDb77zJq29/hbIcsV52/IN/8J/z0f1PeHRxysU7X+WqO+R83TCe7VBVY/q65cOnT/Ap8cqNO7z/8RMuruZ89PApZ2cXGK3YrUom44rCaUajEmsMJEW3bmj7QNSGqhpv6h0ZilhCUiyXa5arNaFrqcrqlyIpL/xdXiOH52cYNBWFY3d3j/V6TdO0dPWabrUEpTgHClPIUMekzSAKnwhehhuLlJhH0U67jOpbbXCZ4h8UqNJw79W7HB7s8bM//T4/WfY8W3m0svQGKiu1qvItql0SV3OihegsqWtwyTOyitH+lL3ZDW6awM691zDVDGX/DRDTh0zP0Rsix3aSCFIExXyxpYjUeRqTqNe1TICDp6oqqtGI0WiEcYVw34afyZvOMHmRh7yWsDbfiwPKn/tKm9p58Lo3xubB+VD46jwFFMetECNd39G27UbzMjyIL7yvlF+A8MNVDBsetAjQQWL72KT8FkFjk5IicNjk2TZ6ShlBM6JYesYUScqz7lqss1hlIG0UEOjPdgxxq58Qy0o5RyYX1Z3vJUwvyrF7H+i8Zx1CFmxr/ObMD5Pvv8jEQH3m3/lPX/Kz+oWvv3gdByodgTzFVte6k6GxkX/U9ide+PstwDYs6dLciUhOCgGZLEvGxNC4YApQssnpPKEYmm4IuRjIDYgxEAIKI5uFzlrIGDfN44ufKx/N0KQiVtAeiLk50GQtXOafoxTJGKLSrHygW3WktecgJaJzpBszRi+/jM4bm83WkeRGOb+V0BpDRMUo6EgODqTfImbJaqIP+Lojtr2kHruE92BCovCRvlkTgideNvREJlGhgqW/ZnyipV8G2DgIyZW4TnRLsgd7CSG0ruRgukfp3GaAMBtVOGuFToLQYFoSKfqNaHnkxA0s+IDNguu+7ze8XJACeUN7SzqLFYWaGUKkWdX0bbehg27yU0JA6ipHWRSAPNd90xK1Rlsp7J0GqzRlVcpwgkQfh/sALAprCylmlRaDp5TAe7STpjgmMORjs1bOcfAUhRUNXpAgz5jR0yGtWJqaLIY1kuORUqBr6nw+Mh0q5PVOix5GKbk/fZ/RIZUYjSpBE9C0bZvzQAy+7fA+2xkHQXyUyfodLcLaGIdGQAkVZGgwkBDVqBW+loJGWwlEdc7irKNet4To6bqW2MeMZAh9ckB3Ekg+iwmZEpsQvmqm8qnBFEWOp9BZ+B4Cqh342l6a6YxQKbW9I03+rNYY2q5no4sZ0GqtcBSbIpDcjGmtccaCEmTO5K02MeiUFDEFyT5AGnDlDDoJgqaQrKwdV9CHrb5FnF5lvfbBkwKwWuEzbaxwFSF6/PAeTvJynDbEKHqpcVVhjIRCxiT0mt571qs1o8mE2WjCa6+9yfHFGT9Pn/Lg6TE3phWz8YS6C/QqgRITAYOWoFiVyd75+m4dF7f0TRI4beV+i4HX795Gace/+PEvaNZLzi4ce0c3KADftnR9R+e9WL5ORtTzOcv5BZ9+8D7T2ZjD6ZiqUEwmJcHKLzXKUpoRO7M9CqvBKrRNaBWFpuZlzU5akyYTQjFCuRJbOEZ2gh5Z5pcXhLZhfllw+/YB3brmSfOElDNBVIJmsaStOxZ2yaIqWDct79//lP/ff/cHnF0tUdaws7fLZDzGaYNPMvm21rK3u4fQtD0fPXoiVHXfcfvuXYrRGFNWXM7rYb5JXTcyCIsRNWSWgTSMSEOi9ZYBMojpFdJQoy1JR5KWXDWhsrYy0Ak9OzoS+kh/3vLkX/5zno8nFLM9Du/coSwK9u69wuzGTXzb0C2X+PUKvAcvluspBlLoCeuG1HtU36OC5PzIgp+Le16wlyEy6JGTxDds0FGTB36ZppkHF3/3f/Lvc3Swx6ePPuH/8/f/Prao+Ld+79/izp0blJXlXvcK77z5BiNX8Kd/+C+5c+cO46pCx8jz41MWTcvlVc0HP/8p8/mcqA1N3TGqKkK4wdX8ihA8k+mUdd1ugn61cWhj8aHHRIuOGnDiIpuZJdZasZQfhvTXa95f0rhsX0OzeY2InocuztnNeRPzjuwA12uSlucr+IbbxZjdsiQpz3HXMQ8B5WxGUhPaJ5yWAey67dg/OOIrX/0qUz3lh9//AT/86CO+9dXX6BWMlWbVdqgQUb6jWS2orWatodUV0bdYHZgc3uH00QXLRyf45ROqaYUdV3zrr/0FPvK/wutfE/Vr4NvqrVCRbXmWZ90Z7s4C/OzEogBjLeVolG3iig2kSF7USWlDDxs27uD7fOO8KJrfknkY8NDNdH2A9FWmMgzTxGvV/mbTjzmEp+/7bfjhFzQpQ3eshgL62kRxm8WSVTxp60gTowhgh3s6KSVWqxlSHzY/2QvCMBTcduPyQ9umUF9HL4Z5phySOO9oYp5wpZjdjfLv0sjEoM86n0HyEfX2/bZAyechFDVoRTbL5Rf83Be+siuT4sXrNpxbhnO5NbDe/qZMc0nDn7Yoy+aeyZ9/4ye7uUb579PQtMq0vBtgsSxeVmpoaAcTB7ZHoNIWCRvePKMuQxW+gd8zkpe2B89n1zL1ya1dvAABAABJREFU2bOltlS0a50Y6v9P3Z/9yrZl553Yb3ZrrWh2e7rbZ97smSRTKVIlFkuqBgVDEGD4zaiXevKb/y0/Gn7zQ9kw4FJJKqlAURJFkcwks7mZtz/tPruLiNXMph7GmGvFuZmUy8YVYEXi5jknduyIFWt2Y3zjG9+HwWVLoNBhsf2Af3xG9433efzf/ENc12JSwurakAbHNCcqyw6ISG9OE3EcKIeJkrTPqXWEpmW13szJ7FQiuVQaQWG6v+P++Uue//SXjPd3UCzWBaqTeqUVyjooS8V1DglnYoAIBWSZ4846VusVm67RXqGszZc1TzXgoCl+7s0QnYJKkKgLXqqGReeH1XVojNWeDDujwTiHM1boIWaZfVarFdUlvNKtqgeJ90H8YqwVqWRNLtq2JWVFyKdpruLJAIpKk3NuriwZB8Y6ijGMUao7rqp3Kf2v7gXZonSiozmo2XiVLrXWEJpW98vMLAs9z03puxFFqTL3uBVdKG72JzEkRee89mRVkGlWx5KNTdeTqtJQMEWSsXncip0ppDkKv94YD0d7kLPSx5e14mWKnYGlmmiVXK+3BsdQl1kFDoyOq60mjfV3a/BfN/05GTCgAE79/dmHieX+LjODeQ9e9oNlD6IU9TtZ+h1rdcU6kSzPSHIlN0gCT28dXdMSinpWlUxAqsuuGGyx8/PO2rlPKxWn1UrpUfE6n62WY+WzAwWpBjVarZumSSqETeDk/JxnL57x4uaOpy9ec7l+G98F8exQgZxCPUPr90xUFoOpa4z5puk9UmJmLpxttjy5zDy+OONFlGbvh2+/TfaBEjNxlD0mYQndmunQk8eeV89e8PzLp2Adm1XHwweXUmlxllGHMTQt3gmdtZS4jHepgM0yD4yCG5vNmpXfcHNzze3+wOFw4MnjR9xc37E79OzHSOOlSjuOEy4LIHu3L1i/Zz8m7oZIdo5uu2G92eJDo8IU1WtHEuZ6PcM4idhDARsabGjABfCTMggMLhcBvqrscFWbs0fN2lY2dFPBp/rddFZiFYwx2iPsvFZkZGxsSfg0wu4OhoG479mlxNi1hHUnv5cipSSl2QsdN8VJno8jeRohRWxO5CJnp4CsMqeXHf949dSqQqZUpsvcw7kcTyll2vWazdkpZ/sL7nd7Dq9v+NkvPwJjuDg/49xavvP+B5hS+ORnv+Czz7+gbQIPzk4ZhoFpGDn0PWOMjHFiij0lS/WxbRqmMTLFEeuCWADourfWah+fVI0W43B0r1riuhpj1pijPmYWx1G89AapYsnlEVn0AzlOmJz1rNKFVOpWVf+i66skOhLn1rPxnilFhpzpiwhV1fc2RunQuXB3t+Pq6pazs0vp2fSe+1yYVNbdMFLV5KZxYJoGpqkllw5TMsFkNttTrnLDq9eR07tnnF10nJz/J6D6BcqdVZpLYTkQQIKjZJDsMxeMydJnoYee04N9vd1inQfrSJQlqNLDKackSFuKcgCr0ycwD+pvoyaVee80i3OwMcq7rgvI6GZbMw7DmJJouo+jHpbLe1fZzTKfdYvaUJX4rBx0QTisIuXaqzInK8KFrL4GSZ+zRmr/3jqhzKUFlTeabGSdhUu8UFhC3Xm70rNXvqstjilJo1VUIzGDTOyYE2OKxKhUDGtmV3lzvIPU960RCAYlLjFH6PPVLk8dxcd6rxGKw3ztR+8LGoXMWj6SmJSvvE+9tmLfoHrJuB/vBDUwWT4rJznwu7aZ1d7yhNBSrPgqGOcwaoJnlJp0HGBXrj+wyDfqJlM0AJwDmDq1ju5LPTTq97BzEH9868x8/2wBV2ClNl8tnpvrPacfnPP23/kx3/s//feE9Rr6HlKkxEweE2YqFAQt96sA3lGs4/VHv+b+6oqb5y/Idwed7wNu1XL5ztt883d/CKEhjZF432NbJ1UNbxlvb/nsT/+cF5++ZHxxTSwZt/VLQCnptc4OW/fbZfALcgArpTNmeVXwThTKVhsMcNfvdd1kbBHamrMW11hSqv0aOueL/DcnS1lUpCQXke3bWkvbNGLOB0zjiPdHIh0xajUEnNfkp0A1j405E1qpOKyL+AaknNn3O3yRasjppiOmhI2RIaa5qlTpfTJfZMIaYwiNm9f/NE2C1h3Rk6DgVc7T5oJbW/1eMhNzkd6b4dBrYmjYrjeMw8A0TUKr1T1P8jmdWc5LElvE52dJ84zQxoyFuUpj8UaUmqJ1M4Uso8BKkUTBe60tF/GKqVSvnIvSZ4smKmLUWFS1qBitNiiNSAQShOveNJ3sAiUTp6SVoaL31cwJp7G1glwlpGEGuaZJnLKdxVmvvUUShFjrEaaZ9EzmXAGqRfq+Or+bYmfTSrkm80YiTUHFY2S2p9pob6FxUjWLqVCmuhpk/3JakWlDS2jEAyimiTJFkUl1cm9q31TXiHJf17QUJ6qNQ44iuGBEjEV6gI0YmnqR+M5D1vkviWjjPM4ZTi8v+ChFhpsDH33+lG+/9wTfNHC413hM7qOxbt6gSgXWYO4rOlbJjDHKvpAhJMv5ZouxDd989wmvP/uSm5ueJggdK0ewZSIhjcvd5oQ8jIy58PTzp7h2xe3djm99+0P8++/iDTTesUtZ1NqahmCLFLfjpHuQ7C1gMMWQp4HaszSWiZO3L3l8ec7Hn33Gq9tbxsOB743w5dOXfPHsS9YPLliHlpULpDjRGE8IsOtHsp84ZI/dnLDKGecs29NzUN+yGCOuSJ9KzFIlmkYRuAkh4ENHNoYxZ4iJXjYrAcZWa5xuYOPQS2KQMtYZodFm2U3MXL3Q75mSgg8yF4USKbGUMYGcLFJoFzaAJ9FmYIiUw4HD6yvuvSN1Ab9ZE7yn8x6voO0wjaRRkhOmEeKELUnMKoFSLDkbpN23yI43n3NLTGA1+c4UiEZUy3QvrAfgFBN348BDZ3ny3rt0qxXPXl3zP//Jn/L3fvADHl+ec3Fywt/9wfeZxom/+Dd/zp/8+Z+Rc+bv/O4PRDGxFHKObLdbcow8ff6UrlnTNYGTzZZpjOz7EYzHBb3igwgRGOcV2NVqbE6An3HM+lhSsaNk4m95fLXSYmp1NWV2NzfiV1Spc0ZFeoxToLxow5qbx7w1E2fW8mG7Yj8Z7qbCvfYJFSBZCFZiG5MSn3/2lL4v/IPf/zHnZ2ecPTjjZhqx2WJMUKaBJLbj2DOOK2KcKFicKbQ2cX52zpep4eMXPX73C95/e41LJ3/rd/7/9fH1yxP7RcYxK0o1B8m6oTlT8EbkeL//4TcZ+oHbu3vWmxX4gGs7ivUU6zHOC3VK+1HKNCnqOzKp7nVV+5JJfYRk/bbrq39akdJz6nsgm28NDI2CEIJ2jdPE/nCYPRuOk5//UFmv8rcbL6hWE/xcLajuznMWrocyxpA0AAWZ9HW+i2lXJpZMY50cEkjlxZiszaWSJJisB4QGNjWwz2SVSpUB6cdRuLlpQf2mXDgU2GfDGMFgZ7PJ4287B+IzzQ/eTFC+ki0svzRrwslbLBtSfXmhjmV9rr5fXl70G9UcZuSzKP2vmBooL+MrV2DmjURoFeLXsd5sidPENI7SzGmcGIU1LSY0GNcQY8EJyCJzpM4abSjP1kGaNIUxx3nRknpo0HSc8RmtwEgJvID6Eiw3ZNkR1Z2EgtD3bIGgke+pD5ys15j7HfefPeP1T3/J1EB3fsb2ydv41QbXtrjW0e/2XH/6Jc9++THjMAoq2205efhYKgMl88mf/Xs+/5uPeP3sNT/63/8jxjHy2S9/Qbi7FQnf4Hj4g2+xPt3w4Xtv8fknX9INkXUGlzJq4q6gmn7/siD7s+qdMTTBs3EZS+Kbmw2v1ms+N7AfdqQY2e/3tKuVOIkb1HtEmo+j9oytuo6i1YtpHCmhwTpHG4I4lhuYkm7gJXO/24mstwFbDI1t8S7QdC25NNoD08/VNuMdpIrKZ8appxRRIzPeqbx5oB8TU9xDsUxR0GbbNvggzt4xRsYpMqbINEgAaozhzG0ITkiZTiBSchTp2aA9EK4g6lFZK0xZPFZCcPiwBuuISVzup34glTucNlYHvXfS+wUxy2fXqnEpWUwnFT20pcj+ajOhytzqc61zdMGTfGZKkSlFaapWmlYTmhkhMVmEBIyzkrgplc8ggIBQpCw5Rfo0Ya3HGJFcb9tO+kmCpWsaTf4zg5lmsMEaM4/J0jQP1taAQdIuZw1tG+b9MkXx28hZ+iPadiWgkjfY7IhR2fQxChhhF0EBqa4KoBRTpFUwyjhLsrIf5ZyZ4kiMiX4YaYPHB0/bBvb9IGBQXfsoW8YZkaJHErZcMrvxAKpaFpqGrmtlGGLSfFMUwNCAKsWJwzDQ+MD5ySlTGckx0Q89eTBv7EfWCi0sxkii0K1aTi4fMN7d8JNff86Pf/gdzs82QEJ5Xpq45fk8rFS3AoqKCx2t6Jp33s2gxZQiKQ6sHPz93/0un19dcf30BePtLav1Kev1hhcY4hggTQLFTBGLYRivePr0S+7ub0RSebNhfXbCmCLFOKy3TMOe4AzZWx2bzJTybKDsSsHe93QPtjSrjv72NTe7W1anHX/wX/4XXL16zfXL1/zyC1FzmnLk9v41e9PiTcPJakUwYmFw/fI1uAa32rI9OeP2+orb11dMw8jq5JRmcyLVxCRI/ouXLyUB8Z4n77xFHEfG/sD+7p71iWF9smIae6JmtE6TbUdhmg7kKCwSp7R5SmEYxvkszTlrf2SVAi5LZaBozFKPXyM072pCHJw0kvu5ByvjxoKZEsXAZArj0fo3ukcIBzGRrYA1cRKKbJ5G8egp4gNVWSXWOaHA1tgnLf4kJavan8rRGwzBN/z688/IrvD2g3P+8T/8r/j8y6f8q7/4Kw67PYeu48N33+VP/+zfcHN7x2fPn7M79DQhENqG05MN94eBly9fcXJ6RtM0XF1f0aoE87DfY4JUHt999z1ev3rJ/d0tqWSCVt7JRZMSOb+sQajCqlRYe7Fqcp6OAOXjc/4//JDYYNUEVlbowDejrEk5oIT5U4DeJDFpLpa/s3nEB2biYYrk3Y7OOk67NVeHgc5aGmOYjNLvSqHznuuXV9y8vuOt9QkPH17yx5d/n//xn/8zWhtoXas9jokyDYQ4EBys1x3d6QnbzZaL1ZaHmxPGty/gG2f84ep9PvzWW7z/jbf/N37X/+2P/ygVlXqzK1Cq+YMGn/pvLfGfbNZY4H53wLoCPgg/W1VVigbbpRRKysRxkERlTlIE2TnGnecAeq6wLMlFDVZr0FErKmZOchTPNkL3ipXuVY6yfH38tiSlZsUzWqAqYt5JsC/SmV9BFep35IiWoBOzKIWilGXDSSlTnK9XSm2oW9ArVDLTKIIhaBJUZRgtW9Y6RL0/lTZnDH2BQy6MisBIdq2oIXVQFfM3CwXrqwuy0jGKORqb+rLjNXz0a4IqmqM8RCk7pfrhLNc938Q5yVE1m/mfZUkSzDK2ck+1L6UU8epolibnmCLFiKwoxqoUrVNFmyoHbeaDughkRaVvzIl5jTxmQMksi6HOyaP/L0qrUCBxeZ6FVvjGtCvyxgZUHrRIkOgduR/Yv3zF8198xNgWzt59h+7snOb0HIxh6keef/wZ+9c3xGFke35Bs+7o1itC12K8BWd4/PKa+1dX3D57QbzbE4eeod8TX19RUib5hvH+QJ4SXQhiXkpZ5tcbIy9z1hRz/M1UESwLsm4FsW/aRgJzHXdTCusQ6FrhlHvvBaVNiSGN6qtkCc6JiZw1mBDEo8NKplQbfl05ouxow7azlsY3daLMvWK1dyVon4x1TpuhM2MUzpFBexeMVenkFpOz4l2C9hdjabx4I8nlWHKyMwhRitIvMXMVoA1BNPfrvgX6s7pu0eBQxRu0OxAECYxIlUKuQb6nN3beS2BmjWgVUKq9IfiZ5mArRFEEfZVtol6nxxmPcRZwM0VE6JMOi5GeFQ0+0pQpUVWuQCWP83IusNDOjrcH79UAErmGZQM5UrWyS+WsziwoQinRfbCi+4A2tiM9ZEUNLinS2G6lV68q1plS5iqNVSqoVdWuQpkVi5wa7cqNlX3GWQtJ+oisZe4dmleGBoYih6ynhyZxQn+T5EvouvJnq8aYpRQRF9D90DqnVY2CR+X2j865YqUJuoJVM/25OIyXig+l0DWes4sL7kvmi1dXvLy54a0HJ5w0Lf0gHjxePb6qBLz0MZlZJKPe77oZyr6+jGr10nnv8QMut2saY3j6xZc8ftvQbbbENEpjfYqiPImcRYnMMA2wzzx7+pxmtWK/23O3+5C8bbDB0R/u8Y2nNeoyrqBenTZV/MI6aV7uc9K9JHLadTQqeHF18xpfMqebFa6xDIMIEBy8Z50kuB/299z6QDaOYC0mTYz9jtV6rbGlmUVKjJVKrlEovus6srN4Mvt9T9wfGKwjHfaKYznpEVWkx04jlKxS/XauXDY1zJ8zXaviLvW0LCxO6cw4nwGStaqAqFLTJatwhCDnsvfIuZTnszXPFE9T9/AidMNMkYqg93RNQ9u0UuEdBsZxlAT3OADK4r8h+3FWFomcrQu7wrDb91y9vib1O7795C3O2pZPP/+CKUX2h54UEz/52c94fXPL/eFA03asuhaA7WYNxvHi9Y14Ea1WbE9OKFFoeUM/UCa5z8U1dKsVpRQOhz3GS39qThmnx7PVZCXDYgNRz+ZaMje6sX4lXinzuc0bz1P3Yd2Tg4GA7tcIgC1KgmauUhckHmmdY2MKK+DlNLDXnuK1NbSIxUVS4AAnMvw5DsRx5OXVC77z7W/w/uVj/lXXkaZMTJOclaVAjsTDgWF/z+F+xf3+lJu7jqvO4w574u6aFQOn65bNekW72fJ1P772REU2J/n7V6lXc7JSoJQIKbPpOqYxYoyVCooXeo21HiEhafCeJFGZ+gNpGkX+7ghhXmhHx6HdfFHztVTzsWoq9mafiZkDWWMQHuM0MU6TBFp2efclyv7bH5Xu1ahXhUE2ggXf06O5aJICyqMvR6+ruHmZD+GkspA1rZLmuRoci1uwBHZ6pbno9qG0vGw07sg4JypVKReKqooV37DLiduU6Avzwjg2zJujcEVEvpKezP/OJs9bzcJzWSRdj+8okscJF72+vlYUciIn5frWqpEe1HXTnUe+LKlKefPCljmpgUnWjblbr1hv1hSyNEbHCdpm6U+pJVPrwHmR4Sw1X5MAD+tUgnOZhxIA6l8KSuNDqwjHd2y5PsiaoMvvFb1nlSaI9lPURAsqr186QYqD3Djioef22XM+/+u/pm8jMU88ev99mq5lGkb2L675+b/+dwTvefz2W3zj935Au93impbDOGK8oekCj1anfPpXP+XpL/4J07OXxByJ08B0f42ZCs6uOby6Jd3tsYA30rwKUb+2rqtKZstmCbYLc6An+voOnCM3ltI2lBAwSeaft46T0zXtdi0eJd4yjpFhHLlPSZIaBTd0Kyd0Yj6VS2aIesgbJ47s2jUTrCQZwXtO1hvuDgdS0QRU5V4b7yVB8h5jIeYkKkt50qqAGLRG7enyq0bciQuUnEhegJemDaLKRGHMGeMDyRZilv2taL9BUPrh2qg8cdEkBZFi986RnYIZRno9iu4iJUVMLrTB4Y0AHd7Le4pSGMRJGq4pKuMc5CjI+llNNfNTlDDGKGpUORFVlarxDmc6RT6lSu2yE4fyeawz0ziJfLS3pFyISQKRbt3Srlogk2JVDqsiDkUDWVl7jXdzIjEpZcdgtRG+VjYWfn6VcZfARzcIq/tEkYDIe3FAxximMZFK0mBA6IMloz020lcl1SDxM4HFFbqYRMlC0/HeYzTxdMbOia2LUWkcmfVqhcEyTRMYp5Uy6VVKKcGYMEEArtZ7eV0pNL4lIkpzXWgxaN8kVRzC0XYt0zRhkrAbgnN45+d9ylVvjkHO3zf4B85iFNnu2pbHT57ggF/82Ud8/PQpTy42vPvhN8jpjpImTOfmypwEVzLmhUK0Zq5Ulwo01f3NGDEZTiPBGb759kPeeXDBzz/9kr/4q59irOHhk8ccDtfSp6IGgHEcyTkSi1TtxjHx619/wpjgZLvhH/2973O6PcWtPHd3r/GrFWtnaE8usSEoCKIKl6WIR1FwhK6h1wA5T4k0TEz7PYfbW16+es77j855/9EDVt7w5cs7nh323PYDmzhxkhOHu2v2h5Gbuz3vP3mISSPxcEfXvk3TBBVfQBgcXsCsKtDQNgHrDSsLh9e3DNPEsN9R9r0kvtYRVdQiWzGIFhU4S9IIyBnDplGlPRWD0INwOWPs3HArIEzRHrasu4ZWBHf9gXGaGMYRY7wYPFtRvVsmiqJupfbMyJpJKRFVJfRsu+V0u+Wth4/o2o4YI/f397x8+ZJxFBndWvXMOVOs9C2KS7tUW22xUBI5SUxwGAZevHrFx1fP+W//u9/BP3rIrz77hH//84+5vt9xtzvwL//1v+b17R1PHr/H2fkFm7XQbi9OL2iakV9/+Uw9njwPHj/m1dOXjONEvz8wpIFsDH694WR7wmazIRdpPB+nSJmO+3iN7pW1Co3uzsxgda3wHt24JS44+vec0LPkL7YUGh3v1jkVUCqzqq6zhnayRDzWeIopNMHTYvn80PPcJu4MnDlPyGAy9KVIjBICLk0YEilGvnzxJX/wo+/xu9/+Ju8+eMjzq1fc7va0XasBZ2a8vebWgokTZ87Rpp5pf0seb5g+/wi/e83qocMUx5DM155Y/EdJVErN1o+Sh/qYB8mI5Oef/uVPSaUwpkwOG93MlypKLpk0DpRxpEwDJk5S0jRLYyLmKAiWq9Cn9bhUtHRulHbicj2jkXpwOmvIxooCSt9Lli2lh9+YSP+BGzCXWb0mKZIL5fl6E0Z9uevVFo0HhCYUc8FlaDKgXPpJG+mcNazbhiY4dZ01jFPEmKgGcyhtSK7F5DJvJCIvmqmaIAlDyU5oYjkyYLiLhV/e7vmLF7d8cRjBekXjWFbXcaJylHAcZTHLeJtqHrdUSDLpKDmpP0WS1ao+XfXa9bDvVmtVZVuQVMySElV3bwFo7NyXKiBCnQd2LnHL7dHWTmtlPljD/c0NKRacbyg+SE9GaMmuwQfR10d52QahCpEnTDbS/2GdGD+WMKsUFSsBG0aQ2oos2vxmKlpvrkHMA++JDCbTIr0OkxGdlJShRKNBqsqnloIviGHVlBh2E/byEee/5/m2MSSXObm4ZHX5iDj0XH38Kb/+0z/nyePHnH/wDk9+57scdj3jfg/7A9FA27W0q46Pf/5Lbq9vePjtb+IvT+mvX7O7vuW9D7/BsBt49vlLtkjiFrXhsk6W2lUkh6qE2vN00XnqVLHOJOhL5suc+fOpcDNFKIbteoVjorGWbVhJj0uMTGPEWcMmOLYPzvFe+Lu7w4BtW6F7tQ39OJJL4dRu5sNRzPC8VG6aIMpVRSog6xBISDIQdW5ZK27ezgj6GJwluIYmeELT4qyjJFHoSSnhg+NsK67VJmU1d6zmknIHgoHUyBryLmDMBcZIj4lxahDoMtMUybnQde0i+EGhaYNUWEvGIl4a3oqLdEmJkzbgt2vxoBgSPkiPyHB/wIVA2wRdo8seWTSRD75RsQDZM3rtz5ubcQt4VxF7RyxVbSjjuk59TkRtLYRAXLVYI54jMSWmJPSyVdtxsloJpTUlpilp78pEcJ6mCTRtI4mMin4cDr3IbTYiE110j29CM9PJpnGS98xJKGfO4lQBr677ejYYaxiDqMHFLNL4zjpW3Yo2NNJf4BwxR1HhaRtyXBQ5jIrAoL1+3jqZW3reeOuYrGPyfvbfiUkk7lNOopZmLK1z4J0kmE0jFT41S005k0phvVprMgAFh3GO9TrM1a80TXTei98B4qORS2boR1wjBpGHcRIZaAuNczL3c8ZiWK87SWiDJz9+hMmFnxjHzz75jNMu8Iff/T7W95iknWaKIks1R/ailPJcXamqngUV8TB1x0tEpNrlUuSPfvgdHp1uOf/TP+P+5jnXN89YNV5FHCzeeHIoZNsw+gsO/YFxnJjyyOHQU3LPyxevOXn3AzbbjsZkzNST95C6AFEU5/oxCk7nPW+99xZvv/sW5xeXvLi/5WJzQmc8H/3lT3j96jk3V1cAnK43fPDkCf+H//qP+Rd//lP+xb/7KZ/c7HBGBBEenGxoVxtOzy75L//BH/OzXzzkJ3+zgfUWYw1xOjDEURTtmhbrPEElfZ8+fc7lqTiJH85u6ZqG0+2W733jm0ofikIp1iZ8byvYJlGSRZJPoQcKmBVCQADQ5XTJMLNCCoYYpbJRciEVUfwbhpHX93fc3t3x4uoVz1+9pp8m9uOBYpz2TQXmXjhEL1/OQehCS9M0bNYbHj16yGa95mS7nitujy4ueXTxgDhNxCSGr6KEKkh/KqKqenN7Sz8M9P0olfZSSGTu7vcMfc/VZ8/Z3d3y5NED/uD3vs/PP3vG9d2eT569IGdPG9Z0TUvXtQq4qET8NNE4hw+NJPXrLZGXAGzPTvC9gAeH3T257TBWaHDrViTqD8PIHHGkRNYxmH2DdD2gyURRJbZKcf4PPRbBKU3ujSSSzhgag6halkIxhjgJhe7J6QOKEwbAp8NrRixr4G+SY8qG4iAEJ1WjUgSUUXp6LImmkWr90+dPOfR7Vm3D73/v2/zpXxx4+uI5bdtob6JhjBN3L19w+/IFrz7+hH/rDY2H8zLxgzX88BR8EzC+kJj+P37f/28f/1ESlaV0AlDmDFPGoFZcJFi+3fdCG3BuLnOLh4oGOrkQx54yjTCNghyWwqwmVbONGZ0viqhqRcMslRPnFtUmp70mBmCmFYjD/RTjrO6FYSnlz9+oftZvfPmFVlDVcZw4xtcgvgaltZm+JmPFuHq3pLKi2XP1XwDwRmkfVtAYMTkTjwljjNIvDMYo7UZVwExWSdra54MTHmkBUiGmQp/g+SHyYpj42e3IyzGxz7IR18Co0reoB5AxRzfBLGNxdI+Ok4n6k6X6o/DQ0R2dp86MxCOf5TzGSxOoJCG1kmJm5LsmyRk3095kI9VqmkCuVH7pMWUup1r6l43CKI2rOCcc1NCADxjv5z4lY4xUf1IhxzKX8zGWokgU1s5zEZNJlUVj6khLyLHomBlslvHfl8gEgvIghbBc19JXEkUz3xKlzqSEdY7u7IyLD94n2UK7WuO6lv3rK3avrhju7nn3x7/D9sljCH5Bna3Fl0zuD9ze3XH78hW5FC7ffw/WHXZccXJxweryHLeZODUN69Mt/etrpnGcq30WK0lzqeMuSfRs/qh0DpOVClYgmsLBWV61DQff4jF0wwEfishE6uafsjRhB01IZOLIvRQHZXHs9d7PLu1oQA7KvdYKgzOClKO9WK1ReoaaLVa52krJMsaqyILVAK2OOYTksEnWTd1jimGWvRXJXhXYsBavc9M7SxPEKX3fH2ZwpPpsFPXPqI9ZVrl+b1PXmASGmTz3xTnnKWWSqgOQqolhVTrU72J1bhUjFaScReGtpEzTIJUBleZFK+ezGEmu+5+OsT5PAZ8zMXlyAZs9vhRahHLTNAFrRJ40lEzwEsDHFOYqVwieaNK8X1qMjrEj+VotEWPFuVJutOekFOWWi/wxRalJRSXGrZFYOjtSsZgi6LdTwQDrxNQx+IAtFuskocva02RUycwpn7zRyutcFTOSyGUiGVGOS1GanY2Re7BUhLQyYUTxS6gXed5mJXCRsUtaJRKWQNExkbH3SveqJ07KAsZhljOn0hqtlIuoAILAQFLNWrUtJydbTi4ueHW747NnL9n3IwWViVY6m2zldpYoTjmpBYFlKevXBFGDMSNVq6zX9+jiHGstr25u+NWz57ze7dmenNC1HY0XKeWYpJdqTCM39zvudweev74jp5E4Ru52e0yBdWjYtAHT9wz3IwcHTJPIBMcoCe56xTsPH3Gx2bLynlcU0jgy7g/Sr1AybevpVmtJLGPkdLtiu+5YrVpWh1G81jCcnJzw+NFj3nnrHS7PT1hvNvh2xZAyTetoV636oVmSBvzWSWK360f2YaBre7JJrLrA47NTvvPuEwBG9biZ9wONAZxFpIbRyp6xEtDnzCJVXGohf2YO1EdUE1pJ/iGmzDhFVqvA6bpl3QaaELg7HLjd79n3o7I5oqrnIQa0Xsim3hjWbUfbdmy3W1Yh4I2Y2lZRBWcM664lN2GmcEsCW/S8V3ZD03C/2/H85WuSGhYWK5S7Eh1pKowx4rzj/Xfe5nS75f4wsh9G6dtLogibcyDFxG4/YHD0fU9/f8t9tyJ0Hav1hs3JCd4YuvUKaxKDlaQtWAtW6Im1qiqVwdqT85vJR0Er0ChwrvFQVWI8snz77Y+jmLnMJ2blFWkiYxbRppRlXzbOsouOFylhc6FvV6IMSCYaS/GGbCXKwAjdNSHnmLeW277n9u6Om/s7Hl1esupaEQyQ8pBcg5M+olxkHIZJQClTCr0PZBqKev6JxP3X+/j6ExWY1Y1qSSvPgyq3X7ZQkcc95Ehw0DiL99J02vcjLoQ5QB4PO4gjJkqmJo3odh70+rq60WaqSZeZA3qnfOKaqIAG/YgcMgC5cHs40A8DwzQJvWcu3/2Wh3lz1pUq+2kg+CANscbMG4Q0Xos6eFJ6gLCw8sxtz9aox4RQJFwS5+Zafq3JitAWJNNNysf3R0ZnIOVDCjrB8kKDkDoCU86UmBhT5joW/vqm55P7A//+pofQUlxDY8RYTELKmgjJJK8R8tx/Ug+n33K75i4Wox47uvEK8nN8H7UaVCtY6D2pn2GdIpByv532MlVJVQpYRX2k72ZR6rHGUruBvFMH3SJeFONuJwhONosUqzFk5ylNg+lWFO8p3s7BfOUeM8pYSgCuQasXj5O6yQnykknao0QpM1UrK/PXaIeBi5EpZ27LyGg8SRuYE2b+b6ZQzLfbYLMEYUUVX4yB1ckW/8H7RKr6UeHVz/6G2+fPISUe/e73sV3D7voaj8M1Dr9qMEPP3dMrnv31R9w8fc7pW09474e/Q9l2tKbw3ne/Q9sE1tay/dCyCZ6rly/p+wMUg9P/2ZqMFUFga9NvMplkspbSNeFDkLMxNNxfXJC7LRnH/voV7rwluLUEZ0hwnmIhbALWWoZxIGZxerfW0TSNBNUIop+U2uA1kFQpGkCbPK0AAKEJBD2HJgpjSouHha494zyuCTgnykxTVQYzhRA83metvAhCGGPEKbjQtY1IZRbxGahIqTOZ1ksyvd+r9Ki1eGdo9VqHcZoPdescrZf39NQeC6TpEkhWaJ3OOZx3dEb35Qyt7h3GWnywIoCiwc2k/SQheKGxpUQu0IUVTuloso2LqEftlZGEX+lYStmqiVV1Wt8PA0H9qrquXeZw6jG6VkqnfXjzNiDrZDCLEe923Wkjq6EkA9YpSLMEZTXpqmDFcbE3F1Fro/bGOFkzDkdExBCcEbEMuQZJghrrF+TUM1fngw/C8ffSDyVV3UzrJbG2WJHOVrBkzKJC5b2dPWrqPARRvvQK2o3TyNxjWERcQ5ppzdJzQFXakgqMP0J4rbEiZWzFt6sGWMFIldwZA9oHJvcmkUah36y3Z5yfnfL2++/z7LNf4fOXPH91zXod8EH6w2bJb1NzksyYRBnIGIvFz0lKniWvC9ZlShGfnSmrvOz5CSenG/7kL37KZ89e8vDiERcX56xXHRFpGB9jpE+Jlzd7Xt7c8eL+LzB5JA+R67t7TCqcNR0PN2uu767Z3d1S9rc0tmXddNyliZPNlosHF3z//fexLkhj/9izu02k/Z6cRKp4c9LR5x0xw+vrW/p+B2TatuF0vcI7Mfy7fPCQH37ve/zw+9/jfpxEyMIEDrsd52enPH5wzkdfPCMZR8TS6lhZZ5imxM3tTsxBc8+77QXvPjjnw7cfUUrmMAzzvK7AWo1tJAMVERJrvcp4S8WyAqD1HM1USrlOjaCvR9aC9McatuuW8fyMtx895PHjR7y+veXZqys+f/aC/b5nvx+kT8oLC6ENDcF6Oh843azp2pZV10FOTH1kPOzwoVFw2OF9IDRB53yZk1ehjgr48PjigqubW3a7kbv7G2kTsIahH8EFvG1FPTEEvv3euzx68ICbXU8/RYYhigzxfi9rMUX6Q0+MI/3hwNXzLxmmxPb8knc//CaP35rwFjanW1pXaJwj9hOrJkisNh4knshVTTFhs5kTD0PtIVtqV4vskPauHlVLvkqSPw576hZVIaeieY9DvdvkFJLYqxTuDvectYbOtxgfeNZPHMbI6YNH2P4A48gBg/VB+r3JEncmmJTW6q1l7AeevXjJx59/wePHD9muVgLuaMNMNuC9O/JzEaZBKQWiJXnP5C3RR7AFV/4TSFR+28OANBYim1oq0vjpgNP1Gu9FPePBoycU75kwfPSrX5HGSRS/lKOLtkkb0CRCg40iHGI992RzdlrR8CLrKQmLNEFXVNPW4N559sPI9f2O2/t7cimz0gZwlKiUN79TnXRF9gyKJEarVmgVtUHdVnqTgawmTRGIGE26ChMJSyEAodS+FTS5qId+lSIWkzJJBjOibV6vSIPnpD0NmmLEkkklk4CAh2xIw8CzYc/zfuDPr3d8fJu4i4V21WHUTHBQJE6a1N3RtzfKlVU0/GiJfXUt/vZEz/7GMzNVwGjTJwoHpcI47qlGVuVoUc+fARrE1lYiszyvCVUuSzUPRacw2pSmlSfvoPLyc9XcN1ZMR50jWbBzOCjuupp3zPWRuVJUxSAEGFVUSVTxRNRLD20gGK3+YeinW2LOTKkIIrJEWNRbVH0SVHN3viHa4j9XD3LJoo5nBdEzxnLx+An7q1teXr3kZ//P/5HTt55w8tYT+nEiDQNpt6O/umYcB4Zp5MM//nusL85pTrf0fY9zLacffEi0wvFu2g53fYsxHrsblNKG0g2Wpnol2gnqYg02W1yGaAvFZIIB37a4bg3dhvV2IxS8ODINkcFOjKtJDT9h1bakKc6JW3BeueeZ/e4OYy1d20rZP4sTeNS17bWpuCbLKRYSiRxh1GA92Xq/xZyvOChevs1hvyeXQhta5oZPq54sxmBK0cBzaX53ztK20vZarGE6JIIP2kMgRxwF1p0kBcYY+mmiAlsn6/VcnYJMcB5vpU/DKW85T6ISZbS3ahgG8uEgje1HwiHGSuJcjKPW8kQ9UICcKSoJwYjpplVBgpSg2IKxhaD30RnDfoxavbYUpBE/aYWrCH5Ca7eyN1tLLmrcmCahrjlwzkgCod93FRpRY7MG45NSV2UNO1UJG02i7w/sD3u2rceHhhBEbjdpsCZtAYI8x5gYswRnkmgIhU2hBEnWkWDQK9DkjSHYgHGiWhW1T0cEEKYZ/DJevlvMmb4fuesHAWacrDvnPBsfCFilqmYZK2RvsEHkvHMulJgEYJrEj8Iagw2BUZXtmiaQsswv4+xcnZhKEXl1Y8hxFL8Da9msOvphIBfYNmtaL2pK0yQJcymFPkbGaSLmzDhlTq3hfLvmh9//Hv/i6Rd8cnXHv/7JT/iDH3zIg9MtKca6VTJNiX6QsQsK/JUilJuqrmiMwXmhxKKmrBTD87sd//InP+dnn3/Js6uXYjsQE93nr+YzvRjtk0qZXCBszjHNiosn7xD3Pen+htdXL0nDjtYkNm3HizFxe7/n4ckZ773zPg8fPMR5w2bTsd2sePL2W4wU7vYH0uHA6/6GkgvNakNMsv9/8flnnL73hLOzJ5xfPmSzfU7rLeM0EcqK7AKYwJ/95K/5k3/7Z3z58jXtesvpyRm///0PefjoAeuTE/78F59wmASYwQYKImvdBgs5Mh5GrEmUImfNfhhIJdMP/RyYLgwiBdus+qCVAkxU4+pacYsxa49kZZMsojyoOIOzlvboID3pGmFpxMyj01P6cWT3wcCzV1dc39/z6vqGFy9fMIwjU0ysvKNpAqu2JQSLITGOBwUF5ZEoIoXsHFMcNQZT7zoFlZPuS2MPTdcK7bHxjMOBfpwgNPSHA8VHyFGl3cXM9f7mmlfPnjGkRCwj2RVu9veMacI7hylwun2H89MTfvT7P+R2N2CDY2Ut773zjlS/G0+JLXaKxDHSeI9vGh5eXrI/DOR+UJ+rWglSWrOerylKD60UtPWnOhbYRXL5tz3+1kJLqSIdsn8ZBdCkMl7YTfe0qSGYhtPNmsP+wJQmXB7l3EfmgCsCWCVriEmqbjlHqvnUarPhxatX/ORvfsY//IM/pOk2bLZni9S4VsZr8OG8KiYCt2nkRcl8mSw5d9gsPTFf9+NrT1SWcPUoODVLHnnMxi+l6CYuf0+TyESimTApirqFIgGC2pgZVT02lKoV7Jp8eG0iDEHpHc7P9AsJ8MUx2XvHbT/SDwP7XjYHOGbS//bvqF9g+aOAd57GO1rlJxuWUp38Q3tuMKRS8fRFfhhqcmF0IWh+Xo6QQmRB10lUBQJmWcL6UXkpT0opX/0pCqQSiQnuDxOf7Qe+7Hs+OwzcFk+0js4Jqng8nkLlMXMpufIRlj6ko/tl3hz+rz4qNW9+yVyZqnSypcXT6H0zJWNms643P6gmCjUJmfWCTMUa5S4k/R7zD/UQzObN8Z7FDLR0bnRyFa3sVJM54WjXgE7vgTGUOXGQTSrPH6cy2DP8uLyudm/YitwgnjpJk9mv9rEsEgu//YbP31qRTEFTIVtDe3rCyeOHXL7/DsPtPXsXCK4hGaE/xMOBYg3tdsN6/YD14weEriMDtiiiozqfxjiMIs3FaPI0h75H88ccXZNMAkH3in43VZdJPhCbhtSscEGCeIt4PTQhSJIW1RjWOaUG6O87S/UMSzlRKZeVHmHe2CdU+SrLGqvVuJwKozqBF4f0dTgzN0YLTYi5SpepSnQ6h1TGM3jZg+p3d9rnVZTKU9WwckqyHqyoc2VNauq1V8EEUwzZSGBrjdKwlN4Yc1L0XyuGdf7mSoHI+FYEIKy1FF/l2FkokpQjc1dxLzaKqFWxD7RqQxaVNjHPq+IFGuzPCoUVnMnzcylpj0Ix2vOmIiKpBrJl8YEyhmGKGO3Fmue3Blq1KT+mxKQUtSlHTBaqVkE9D3ISx3fdj72zREHLMIriOmtV+Uv7C43SaxD/kUpXTinOq8y7qpwmAJP0DmnlJOa5alN0LIOrIJKhcY5i7ZGSpG4VVkwmsworZFOpt1bXl2EaJUiL0c6IeTbMwew4iiy6t/JfDS6C97PiElWEQxNWp2i8nRv+BUwsOWEcnJ+d0W5O2I8jH33xjB98810uz2TO1rO5UGXeK3j15njVA7zoms/FYIOoj3369Cl//fFn/PWnTxnGA94KiHnQgAutKM39r9Zjp4IJe3IwNN5h1muCsziE8rJed7RNIDiRat90Dasm0HaBNjiCMayCJ0eJMbqmoQsNBcuL1zeE4Aje8s1vfMCTh6dsT05oViu22xMuzs84vR8JTSOV05K5vd9xc/WK+/3AZnvKw8tzvvvNb+CbwHhESy6addWEYdUJEJNiJsaEMeLrZKyBWOY5Nh9pVVFKgbGZ+pxq/6ns/tao4EbVhtffqUEvpdozVIqh7BkueNk3fKaxlnUT2KxagjOcn6w5367Zto79vme3l4QkOPG+c95rbLXEgKVooCtBicwFkylVD7FmoXUPKYU0ib/MZtVyerIl9AOHVIjTJL5RpXAYBvpx1L3EQE4c9veyj1ihnPnNRpQagdVqxWbV0jYewy0ZRzAiOOG8m32qrHpVOWMIznGy2TCNCYMk/XNcUMsdiJLk/BVnYK7GLzre/O0PU/+vsNy7unRZWhTq+1sk8exsR46Fw77HG6HkOiv9m0XNV1NOGgcVtLFbKIM5zhFECEH6k65vuHp9LdS3EJY4rZR5jDALm8NgmKzhLmVeDhND9OR8pHr4NT6+fh8VoE5QWV2SydeA0miAWAPvujGnFHl9/RrTNBA8JU64kvEg5SqEny+HvN6MemjrOzsjB0jXeklUfKANYZbKnM1zkITGeYcNgS9eXnG7O3B/GAjBs5zd5Y0J9kbZzsx5QP0nq7ahDZ5V4+ZDjxoQlSr7JxQAby2TIglC+tHAAOmxyZqx5orUl0JOYpYpwZIigqqUBoLgZqVAkBLVZ6kUxOwvZ2JJ7PPEbio8vY381e2ep8PA5ynRhJU0sIIojZQ808eqposWjmrZgjqY9eBj/h68eYPeuFPMcovzgOiCrCpb87trFUQMJ90yDnNyU74yTscB/PzW89ZRg4XlmuWVVl+c9QCpfVCVglOTFAOqlqTU7vkEMTP1q6ggRJUpLHMJXsdZA+ZstRRs9fmUICdKFopPxjEVS1RFrARCLdMybgFp1H/j7i7/kwqm9CelJAeEK9BdnvG4+Rar0y2f/tu/pL+6wfQRt+0ozpAdnL7ziO3lBefvPOEQI2kU1C9YTyloL0oBXyh5FNPVkoiuHpVUjzu5qqOeMEkQqBNb/m3BeE/fNBzajrTeYkOgcYEmWE5PT0Q+OnhRfULW8DCIPHHKCd94aTz1XgxlC3hjCaGZkxDnBOF2jWPsJ0FoYS7f5yRyr8WgohtS8vZNLXtLMtY0DTXZHUeVnjWWvu8xFLqTDV3X4rxjmiraCTGO82GW4sRkoOTEqm2PAAtJxgqIyV9dJjHRaN9Gs5LKTM6FIUWC5o4od71k9ZdRJb+wEQUoay3JGaqhY1VJy4gBI5o0NSFQioEs6mSWGhBkSaRLZiiTNvNa2tCoco9Im87KilS1GjgcDhjrcTawaVeKrHpK6iVhMVVaXChBt4cDMWdShm0r/WnWi0JhTpE8In5FJWNDYCoTlIhB+k1SkYPaujCjgs47Qim4Sary3kqgRUHmUUozCGE1nKKIX0Q/DBStrjYhUMikqEmWznMRU5BW/XoOpiJ8b5vBpEzXthhjyThRP9L1Enyt8ME0jGQguEbGCKkG9sMgJo85yz4jqBVNI34/94eBw2GgCZ7zkw1Gz0rjAqVYoQbFkckkoR0i89wVi6XQeTGPtd6TphGyrL3Th4/ox4m/+PVn/PGPf8jbCB2uisRItTrPe2+p/6dAgYQDhRwT2UqPmgmOMU382U9+wl/+/Fd8/PyGR2cnsqeYLImqJt4pRbz3OO9pvOXm+iXDOLLZbmg8bLannG83tM7iSuL87ISzkxPK/sCT8zNaZ0lTDx6GcU/qLcF8gzwOTH3PxekZZ5cXhLbjp//D/4uuCVycnfKP/9E/Ikx7VkTCasPlwwd88P57HLJjiJmpFOIoJqrTOPHw/IL33nrCt95/jx//8Hd4/uoVv/zkU6YpkbIRg1zdi3IpXJysSYNl6AtXh4Qzls16RQieKu6RKqVcBS+AGUi02mMXyzgn5tZalfO22u9alam0qmUtUKlYTiqKpUDOBC8Jb4qJYAy5OFL2nHQNU06MMXL9+AG3d/e8vLphv9sDCMoeVNxD/ZhyEQDBKgU3ZaGAGmtxNXiu/z/7a8EwDFAyl+enrBrP3X7PFy9fMY0j2SRaY7i+v+fmfsc7ObNqJSkdrg5SWUZEVU5OT9ms1zhjuLi4YNs1EEeIwlYIup9bRCYdL5L3wXsshuAs56dn7O722IImKhUA1iTFFLqmYXDS95tiBN3rq9R8jQ3egBbNm+d2FW1SfGpmoRgrkZck4LKGDIZgPSfbM+7v7rm+lUqgDZ6maYn9QHXdzUXOR1esXnLGqUiKdpnQNI2M6+0tv/r1x9zf3xNCoKa9ugXOoh+FjDFegBnnuBoHmtuJu6EjZoOzXz9R62t/R2912y6VZ5wXyoomL9YFleKsnEvAwNX1NTEL6h+s0LkkQy6KONu54bCmPsIlFvlNrzKWm64leFX2qkgW4qElsbBhtdlydxh49uKKV6/vGHOm0WDE/G1frmaTHKFEKdN4z3bTsV2tsUZKxlaRw6zyfxg50E0+MKXIbX9ga88xpqHxjpMQlL6BoHtmkSsGiT8mpKcFrQYpCMKcjWQJNmpQPqpsXiwwFsuQDFd95OnY83pIfHqbeTZk+uI5bRoaa7BIk6NsZYIoZk0EsqJ38w3Sz670MnSMqunifNuW2wdGkq0FNmBBU8xRMKs/lX9bkf0tIl1aUd+5f8ggGvCa7OSvILDL8NVEwWjSVTfJtGwMIEghkGdfDEFFKwkrI31SEXDLb81BgbWWYo8+OCuCXRaEpFYZKxWnM4iaXU7YJN8l20BvHJOJJJeZiqUxUoUz9jhtrrTHSiNZbrZinDQ2kKfIcLjnfndP4yxnZ6ec/vEfqvHgJP1PTcBtVkwxU6bIzS8/AedkekWpPpjGYzYdNhdBsKneCYXJlLmqYY9S+1JkLlsMIVt6pKcj2kRDIRdDj+Vpsbx2DauTM85Pt6ycw5XEplvjvCcZ6LZrCXKdo21XYqiXM6Ft56rK6XwguHn9l1IIjfDr21VLrwpdpRhWqxXWWekJ0GuWqos0PbdtS9L5V53iCzBOcVacs0UABKO/Iw7ujtPNhikJ71+SkgZWhtYbKm+5bVtM1oZLTYwxljMrDf05ZeIUCd4qPz3qPDdstyfzZzWNI0+RrGaSoranileajK27FbUxdJiMop6Wy+2Gohl7npIkj8Fwtt3IvhwT8ZClr84aztx6xirIzHNwu90sQQqi5GUphHZF04qKl3fiS5CTIYYT1usV69WKm7sdU5HW8xO2QmFzFm+LNiBb8NoQWooE09NEmQZSFnUu770YgKbINEVWXSvzMBfiFGm85XTTUbBzw37jvQTx04ixXhMYMW511hKawPWhZ0qZmAvbVac5YWS33zPGRB9HXLOi0aq0dZZshBy62+9lHa5bGg2EoBCTVNJSkvWWNbnpGq3KW6u9SRmPpTs7IebCboqiHKmAeTBCXzl/vGLSvhZMoW0brLHsDwdRh7SWy9MzRq1W2CJULW8tq/aEWm2JxagkKgwl8+jxA3KOfPnpr/nJ56+wruMbj08FRNQgtwbRMcYZgzo+A6o4BangvOHu0HN1d8+vX10xpolVY1jZgkkTkGgxvPfuO2w3az77+Nf86Pd/j0ePH/OXf/UTxoutKLRNif1hj/eOR2+9A1aMVn/8o9+jnSLPm4YnZydEa4l5Yr8TIKgJnhAa4nTH/n5HMHB+suX0wQN++Pu/y+tnz0l9z+PzM87XjzjpLHdD5HY3cBhGvvnWI3zb4tuO0/MzTMrkceKzjz/GNQ0rbxj7A7bAtlstoFYp2JTIMTGZzNvvXUKaGA4Hbm/vaZxj0zaqQlgkgI5puZFHCFxCQLBisoiBFEXLq6R/PQFKlspiPXswiOxvZsqTKEHp2ViixGSxCEBBkT27dZ7WebJvWPvAg9NTnjx8wH5/ULnyPAsASXWzLL1gWrlOqVaW5L8xp5mebrTqkBW8D8h96B484P5wAOP47PkrhlwImy2fffEFF6cbvvfd73N6fsrFgwte3L7knUdvsVmtaXwgqciJKYZV29E1gTGOBGOkShUPoLK+b10+4M6AjZHQuDmiOT055WV4hTeGMmVMMLN1QJwmvDWcdCu2T54w9j2ff/GF0JFzwTfNHHd8FbKt8c1XH3Px6yjOWuIgjT9SYiRzeyMiCFgPTqjLZYrCPDGy73sl7FsVUmqdiHyA5z5l9lGUCksRL7kf/vB3GCm8vr/h6uYWb1SMxZhlnYdmBjlaY4lj4WZMvB4yh2ze6P/8uh5ff0WlZvwaRS9BE/ONd1ZCvmIqGl7VH9Q1PWdMI1UCyVr1l81SnZGnjKqrWBrvCE404js1g/Pez2ZnBjMbaDkvAcluv+f17R1TKpr1Kq8DfmNimaO/VaQ650QbAqumYbvuaJ2TTV6pDEJz0L/rn+uuE+37cWKIEzsKoSRaIDptjg5yOAfjcUjPScqaaKG0r1zTgzRTRQR5KloVgKjo8D5ldhH2MfNy3/Pl2HMzZV6MMGnA13k/d43kuiiKUK5qwFuMXQKTo6VWa2XHlYzf/jDzr82yz0ur+YzqMKMPNSlk/k7z+xeV+VUIIqspWtFkbh6vUiswOj91s7aG+XoXsp1uCMUcXZe8t0l5/nk1Ic0cU8Y0C3YOWzxLjacslCNqYnmUoOm1+JLE5TdH9aspJK24Jf3MmiDN90JvWa2qGAPLOCwjUYqsuZwL4zASB3Er39/vpFesbfDbFf3tDqzB3DeYtqPERD70pGGUteYDNA121RFa0W83xs4CAmBwCaXGHSWLc7ok/z8bhSMUojoWYzG8nCIv+oG7+x17ZyneLxVT70Gro9YKV1bkV+VgnWoF06KKWxZjjxodS2EqCZccY4qi5x+l36AfB1HRK2luxDeoMR6FnJIkG0UoSsL5XqpnMq+kkdkgHPZxGChAO45ErXA4a5YeOCdjYowEHCBrexxGqgdF8NLULsIPAB6cyoVntCJvJImIkZzMTP2iJq91vtYgIWlVJGfSJIddyoV9PICV72dywQWHD45k3IySSiAkwVBK0lyac6IgJpEhBApC84o50jViZocpjFm8CGKZSHahB/aHiXE4cHfruDvsRcTCWtKoDfresVk3rFrPqgsYE7SirmPgHZRAZchETciMEfU3lBprjFT5BHQQPyopEil1z1qapsXYGrhJhUdUxNCEIsl4qKmlt5amaSg2MZnEkFVMw3lxtjdS8V+1rao0IevKGKWeGTBOKktO9sWUM0ZRtYKCGVY8nJxzJAolZKYo9A5LVZm0tD7QmzwrVrbauDyOE6FtsNbRdStclGpOGkW2NTkjSY2e364YUjZMuVDGyOl2y/50x6fJ8Mnz15w0Le9cbufkVxr9bd0J5y2u5KN5aFVIhUJjLUMs7PvEfS99Mk0wWJL0BpJF2l8phtaomp81xGHAN0LrjtNB9ppUuLq94+Z+z8nZyNsPH3L75BHhcODJ5Rk90OdMHBMliRpe23ZQYIqTKB1lMSW8vLyEYWTc7chxom23nJ5uKMYxxsQwTDw42dKtV3SbDeeX55QpEvue++0avJgHj8Moxphasat7nkGVPnOmDQqm5kTbBOmNcEaZBAbn/GLDwAy6U5vQcymqKqiAzBEN6fgUFQBuAQLnk0+PXKUtsPTGKoRiFII7Av+cszQEYQIYI7S1lLR/SBKUKWtviu43QkPN85xIup8m3ZvrmZZYHOq9tay7BiicrNcYXhJTZEwToWlp2g5jLLe3t9zcXDOMA9vVivPtCd469lnfP6uQjLU0oZ37jw0KDJbCuu0YNGE3Ft3XpPpja8vAHEnWoSzSimIM69WaLgRuNhv240hUoZ4as1FB1aNxPH4ce9/UxGSJp+pzzGB/zjCVaR5/aw2NcXgDXcwcMoxZ2DkVAI8p4Qs0GIqxeKPqkaR5bnZdQ9uIIW3JAppTUDUvxLOrLBTZoGX8nA2HKH3XVFbP1/j4+hMV42bkHDQunReHfFlf9aVlRcyTIqh7ey7L64tRJM1IAWwJkiVYCN7TNg1dECngxsnkdiplm4ZxdhUObSAE2aR+/smXPHt9y7NXN5hmpTSFN2lD9XqXaSWTRxS7MjlGLk+2nKxXnG83xHHSRe/nahFIYxqaVjy6eAAls7u/5/bmhr5kphAY+4G1t5wEy8WqIYWAM06bU6Gkoh4pquBBlkCFNPPfnTFMEVKCmGEXC/uUeNH3PD9M3A6RV4eRl+PIocAYAqdrWWCddUxFG8SMXcqcBlH+AVCnaaOHfVUSyUecxHK0oc2LrRzf0TcTjiNXjaU6ZOrCXfpPhF4gz2Xlus7SmKANgGoOxpGkbNGDnnro63zUBlqMmfukpMxaD1MLxpGy+AKYqPUTRWmysSSjHPasaY61GB8EWax8XKrWvfYlZKVKZLkYY+U9wjQKSh5HTbhgAqJWiAp2FmCIaLIy32mrymtHyYm4Uskjy4E3MtAPAzaO3Hz0MV/+6Z/Tl4nLD97lG3/3d3n9y48ZDz1TjDz5/nclKBoH7j79Aucc67MTuDgnnJ5C2xK2DcV7shXPDFcszVQTlUXGsaoA1hOzstUq+8tRiMA+Fz7d7/lVybzEYe5PWGu/V9euCSHQNK1szM7hm1aaxbM0LuK8NqBIo70PntC2jDHNUrtzzirqF8SYuL/bURCVtCYELi7OWXUdq66jIOO/3+/FADZO9Ic93ktgfnpxgXXSS7Np16y7FdYa9ocD19fXDEM/ywBbZ9lsNjRdK98lhPkAjHnEIH0rV1evGRVFb0MgRqmMtus1XdfRNg0n61ZooQmKSRwOe4ZxIMeRtm1Evaxp5IgzFu/rGirEYSDHiZwTY4Z+mDj0I1cvb7BWGtu365b1Spyde78nJ0FFu8ar6hTc7Q4Mw4Fx6HHes92u2Ww3xOQYx4kYJ5qHWzzgbeHQ39FH8VDILtI1DU1oefb0Ndd3e27u9uSQcE2HaztevriFLL1I7773mMfnW94634JvsaHBNZ3OICjWkeOk0sYRh5F73LbEXKvuToNGWTnDOEhzvTao++DpVityESWfmDKN85SSpIdxvxNloZgIJdKGhrZtWa02+FwoU+Luei+L0xVWSJ+LBc7WW/I00e927IdexEJaUQwT5bAW5wKliCTtlHpiTpAiDrkHLgR8EJdsDyLXmrNQnvW/gMFlK8aV1rBZNTjrGLyj6YwmKmtWU0MaR2731xz6e4wDHy5wmtjYWMB6EU8omYuzU8ZxYJctP/34C3Lf83e//Y6ABtQeQtkD3VGQlVVMxlgJFI2TJbrxjsN94nDI3I+iULdqLDDK2Qa0rWe3u+NwuCemyOvXV6Q48er5c04fXNJu1vTDSJ7kPPyrn/+SR48ec3F2zjcfPyJ98B7nzvDu2RmHImfh7c09eZrwzrLdbLHWkOLE6ckph0PPze7Axfk5nTHEw4G7uxvefXTB2ekZ1gfGlNkdDrx1fsK69WzWDZuu4a4/sLu7oXGGpmvl2g4HUi7isaS0G4sqAhYBZr2T8yg5y2azpusa9UqR5ANVD6zALzAnA5U6b/VsETWwBc1ekhQzV+dqAj6fFZqoF2TfLLo+cimSsMupN8czMWdJ1BExoq5txN9GPVnq2T7qyizGQoyUlEkxSRddKmoFIIlEhkXsJx91YudC4yzRe842G6wR6uK+73n4+AlPnryD955f//pX/PznP+OQBlZNw+l6TRpHsnVMuYgNg1bz15str9wVxiRhX8SEyZlN27HzXoFwsXyIaXoDxDD2GFTNM0OCXFivOrxdM00TXzx/xt3hIGqSPjBThjAzHaye1EvSOEdN87OwxE6mjrNWvCUOFYNNgLUJXHYdF97ysLd80U+8iIl77ZUM1lCmiC+GoBOjsV7sD6w8kXIm5QlMwWsCslxZBjXHzVlhWgud74guQIrspsIIQqv6mh9fe6LST9NMbZFhXTJ8kAAquyiUDKvSmtmQYlXu0sbFXPXj7dyYbilkK38zBlZtkCA7BLo20DaeVRCDxWIs2RjaboXNGVcyFxfn7KaRZze3/M3Hn9LHgldjHwGFigSPeq3H2MMxw3CME613PNie8dblGZ02/UqzacEhCE81EHNem+hjJEVBzBvrudiuCcawbRtWPtA4gw2WV4c9r8YRe7+Xkj4QKDRGenaCEXm5qWT6FGWDwZKLEySSwkDmbpjoU+FQDEOWBkbjPS4E1ijK3zREF7hDG2GNAecpGowQJ1wS1MFYO1cojDbp6R4wP0xN+0tZEhRTK216P99AFhb6SzWcK0Z7cUrd+Jb3Synh9TD0ToUSrKNtW9q2leCPSiuUTxDkV5NFPSBSEZWOnAv7w4Gor5EKnAPryM2asNrg2jWuabBBJa4LGoCI0aLMa6NqNgUzv4+qZkjupT0bea4cRiNUu1Ai67ue6XDg0PdEPdSKSerOCxHHYARZ7MhEI9SBaBKZBbErZLBFmgL9Ke16RWi2WAfNdsvm7JT+xVNW7hucXZ4SgfX5GZfvvMXJwydixhUjYbuWYYwTJ5cPpSLhHHa9otluWD+8xDUr8IEcAiUP+KYl4Bh1g8va7DVXUhTZji7DVPDFsiodpoxkEkPKbJ9c8nDbEU48Jy7SGJGg9nmPjQ7KQCYTMUwHqYxKFbao8IEjNC17H2SsvPSLZV27PqgPyzSJbOU0MfWiMkQRMKB/taFpOzbbLT4Eci7c3d5w6HfEaSTP3gaGT5yjWI91ge3mlFW7whnLOPQc9reiWnPYCSLuHE3bYpoO5xvarhMkVJPymDJxmtjfvpaENScFbhAOt2/xzQrXNHTble4NhjJO3N3esj/s6aee0EhPTdtuCKEl+Jam6TThz+zvXjENe1KcaLotxUhj7cY7rexkdq4wTZOY6iWVoc0ZZwrTFJlipm2CBNDOiZGqkeS+XbXo0uNk08jYxILNqEhEpO93TDExxsyYI/v9yG4/0GxWDEOk7ycePnmbkjNxnLj79Bf8wltCsJSmw7crwmrNZrsVGehxpL+/lQQsRtI04kJLWG3x3Up7lyQBsWnCTiPD7n52PU/GYkND6Na41UaUEmPETiNxONDf3zD1vVQhYmTdrfBNg2872tMzSa6aFXf7g1Qfu4aSI3kaSfsdJoqi3rC7l4QSyM6y2m5xTYtvV6w3J8L1t47r1y+Y+gN5t6dT5oBxgVSdpbcbMZ+lkKeRw+0NaRxgGLXqBdY7uvUG1zS4tgPXkhGvsHh/x3jYc/f6laxNKwH2ZnuCbzvcesOUBDTEeFIcub2/Y/fyGV/eWba2p58mzrctbXCYOFEUVKtqb0BFhubKMYrw+uBwTvxtXDIiQhEjxgvzIRV4/vLVrBrWrbf8L//urygpE5zhs9dXpFK4PHvAlCW5+/k/+xm//+E32P7+7/Ddh+fkh2eEwy1N28o5C5yuOihZ9hQrBN6pRA6D5dX1Lde392Q+JjjHdrXm7fffp+ladrd37Ixj6CPWBVzbkHKhP0w8Ci3PDge+fP6cDsNqa9muWprGsk+ybxrbYNOAjZEUgvTpFBiGjDeAcazWHe2qwTdSHclZ8BTp5dKzVSmmrpS5+oVBekk1YpmDaxUQccZSrNcm+npOM/eRlbxUnKVv09B4TygVVMvqRSV0XRcCVs9iSgIjDew5pTkGCM5TWQd4pZ3mJMFuEXEfgyQnQ4xMKek5j/a3iGBG2zl8Y3g0rlg3jn1v6KfCgKXPmf3tjm+//wHBB9qzNSe+I00TaYrqUZTp44Fh6Fk1ntV2Q7fqpAcXQxwPTL2jlETTrVmttzQA00AeLaVssW3AtA19irQp46wkmJX0nksk54hvGt5/6xGNg6ubW379/IXEwN5j1PxWD2k9F7VSomOSjQokLJESFRx3pgg1OyHxSZGEiiIMksl71ustj9uW78XnhDBiTOZAmemzxRhcSbQpEWwjbA1rOXiP7zqabsV+iOz3E4f9hHEOZ8FZmRPSM23w9XoxxCS2AJnMLjnGYn+zXPQ1PL72RKW6jBo9YGtjuly7BqGpYsPSyFXVd6qfSQ3wZsUD86Zaj3V2dgxtvadrAqtVK+VcH6ThE0mKAiLl2HlH5y3X9yMvXr2mj4lULKEiEGapAgDMJ63+USsDSSX5TlYdjy7O2K46QZCymrpVSMFqPwdF0O0MWMsUJzl844SnzGirb6SxrQmeOAykLBO3yoxaC9kym/5NqTDExE7NtVKRJPGQBJ2OFvbjJGiCb8hq8uaUIpALME0MU4RUVH1DoZyUReUKUU8SREc3Qy05m+Nm+qNHOcpKFzTAzH1K9fl5Puj/pKKy/K7kOmUuhS7nnplpBM6KHKx3KpHYdaI+Mld75DMqRQWU154FMclp0Z23kzSdZSJ1wjlTyDlipgF7uMeOMvdmlRI9OKqSBkcKdeZIS7zU7wNUM05jKj0l49XwLpZMSpGcBcVyRTTUi4HJFiYKjVZbhAZWiKZSL4wG2h4OE+Ozl9z94le47RrSBCZDTORxpL9+RYkTTRNwGWxMDK9vhd+aMz7DdHuvh2LGKlom/goZkxOjRbixVpoQ46uXDC9eiaS4lsqXVazb7VEVqCwZjKCsRYwB3704Y/3onPHRGVudq967eS+wxkkSrXSYmOIRmldUIjiAGm4aDZR08gjn24hjt8igRhGaqLQmBLxwIdCuVlgn1dHDNjBNW3KKmJTnQ7gvmYwFRaob32KNJceWdNaS48jQ76l9asZ7ig1YJ42PlVaQtU8h50RceSgTpuTaG0/WZBUXwHn8qqWxYhiZB8fWZoZ1YMrruXrjvSQpTiWQQcCYQ+lInaXkRNNupIJqLds2UKm4wWZ1kFaPGG3Qt0aUp2JMtI1UrbxzQnXIhZINzbpRWgh0rZfzNBaCsRQjCfihX6sDfSI7GPqRvh8xvqPXvz9+64Emy2nZjg1E5zEhYINlpZWiMcO685hkIHtStOACJlhpAnUFjDRpe1vw3pBaDaCAaJyIdZiMNeI6nTyQMslB23hcs5krzc6J90xxVsxDSQSTaFspGZgAMUrlNIXag+fBb4ixlUDMGMKqwziPcYbW1iDI4lpHxGNKQ6dIeDGOoUBxBRDABiDbjPReGyxB6CYiXYZxBUvCloQx0rM0EYkm0rlMt2mkIq+iIcEWeW2e8FnWqTOQTaFpHD946wHnnePdh+dqK1DV7dQTrCj1UFf/LJ1eTwJjVD5bTTu9U0psbcgXifFSCm3X0TUqhGEcxhtwIukbGi/NvlYhRCtqWdNw4PbmiunBqRhwBpFDdk6sCeqZEULAmMLhsOf11WtuDtKr1jSBLjQCODpL04rbug+em5u9qqrVOMFo0J3w3rPabDjxQTyCEGEfmysJ9+j1tTtyjhWk8X32JzNuBj2rb9LsC2ZEBdRSjp5jLrHXhnndbhaAuJ7H9Uw+VmY6KrBUamtlTQgubGrhct6Hi46t0SpBRubzrHql1ypnt9UKv6mBA8WKwplV4RKrKnqgUsZZZMDbIGqFZ5u1GOJaS8qI6pdW07/1zQ9Zn5zQMxJv9zBlutWKaAqkIgB/Fmp18I42BKYQiKh/n4H+sMdaQ9sENqsVzjmCtTTez+OfcvU7q/c76z7n8NYQrCUYw8V2i8Hw6n4nIEhKWuk6jpWO0N3feBzHRzp2GmuYN95jicByMRQfoO0w3uGjpUloz3EiIVVllw2uZJoCrYHBiMCMGOs2HHoBp+KUqN92DstKjdM0VgM9o2TO3e5H9vuBqR9UqODre/zHS1SOb3VRk0dV6hr6fkazm8aLKZZztK7BGuHx1gRndtA1IrcYvJXNpG3ZtB2Nd9LMfroRBSwsaZRM35iItYnttuXh+Sn761tub6755cefYVwr5S1r5t6GedHPp6Jkh9VxN6eJNPa89eCcRxdnvPf2E9IkgzqOUVQyaieBq2iUVclj+ftu6BnjRD/2nHoPxtFkh/UdTeNZtx35MJBsxjpL24pxZBssXeNlMVjYj4n9FBkOO5IzxClxf7vj+fWBMRVCt2JMEecsJ6sVLjipgqSEw0lT6CHSD1FED5xTyhPMKb85RsSpOjZA0f1G26WPd8T6Sg0OKwWr0mDLsufNnyR3W7L7WaxgDmwL9ZPqR+Usgaok+iLfKxr7kRzdvKEb0MRC+22MVTfqQkkGa0SdqPFuTjSyKRQjBpc+HUiHkdJbzJ0e5kb489m6WY1HBTbALI12xR4lWAalLoobsSz0TIkZ68wcOBWTGXIkZ0eDoS2WoGhX7xIDmS5ZUPW3aIQeJrGT3K/WdeSrHbd/9lPyg/8Bs16RjdCrSszkKRN9ol2t2J6ekFNhSJnrlPBNIwGusdzf3wECHqxWK1LKDP2AcQbbeHbrhjRNiO9Gy/DFU+7++hdMd3eCIOEgGxbJ3KNGyuwQjY1CMgnTWkIprMfE3/3gLfjOB6x+8C3CTHuxM60AjMiCejcrQFEWtFFUzkTpTGKAxRHeqZeSwJMymy3STLyIeyiNrCrmaIJrrPSICc1C1ZNyoU9RqBB1Ihd1sjGO1lutgks/QUxZ6JVJrnlOHhAApH6PpvNzX4TTPTXlzGGMjFoByM4QlMZRe4jEi8MSpyiyzVknH0pfVNCnlKT+UhZjnOrql6XqaQzYTKO9f77rIEdMjhjbinJTTHMTrrEwFEtJmrQH4XlbU7DOi+GgktCtLVhXOMSyBELOEKeRcei531lB/FOkC57GB2mMjWkWbDhME1MWBcVKjUkpSeKm50QxWcGcwpDqfiKHdmMNnb62Ah/JWMYpse8HchC6RrGG3PeYUvDGcHKyITiLd5a+F/PBwzgx5EShijt00idFIU5CzTIpSXAQPNv1SlZEkQpaohBToldZYat+KymfS2CVC8HLnIq5cBgmxpwZNDinBrzxEmcMK9/SNgEMjCmy73uVnbYYTdIzBTNeiMpX8LRBnp+miX6U+RypfoIGg1eg5xTzrcdsVw2n2zXb9Url/43QLrVs6QozMwKYk8F6HkgjrqFrPKvW4aySmQtY1xD7ngK8//bbnK5XOGP47PPPubx8yGq9Znf9mrOzLa7x/M2nX8KUCQ1888l3iWngV7/+BQ82K/b9gHN+AeiciO2stxva1Yo+Z65eXvHRL37FZ9f3fP+73+E73/wGHzy64MWrK+4OBxHeWa/Yrld88vkzdr0IKlCUTugMQ39gu9nwjQ8+4KRp6A8DwzCKyp46pc91ZaMxUs7i12Pl/plSNCaSpCyXShNOC3NID9m5uqJn6gykZgXBvqIEWbIAMfkoUfE+UKXr60ksZ5mZ55Qz8mHWGmyue9s8kG+oqAKqbCYUbOG6KQ3Q1Vhw7tQUupEG+sE6fHZzIlVcbci3rJsGAjSmYdV2OL8nToXrm1tub8Ur6z/7+/8ZL15f8Vd//RdcHwaMtTy4uOTq9gaGzLpxeBKuJFaNY7NqoWSGnGmVEnr7+hXrkxPWXcvlxTk5J3xoOFuteN2taJt2TlSKKfM9ddYQbEvnvdg6TBMPT844WZ9wiJkvX7xgdzhgmgrazVH/PG5LrEwNJOZlXUHJ6k1vTF1mla1hFMzJjC6wbzuufctoRiwRSyJFoee3zuEp2FRoM6xcJhm4C6JYu2pX3N7t2R8GAZFyxBqHRX7PaCtDUp8/myGUPAtaPb265/XViv1Vyxlf7+Pr71FxlfBVY1UZBFF8EErM6WYtaEXT8A/++D8ndC1Thv/pn/5zpmHElqSUCJnWXXA0QaSGLzayaZxut5yfnVNyYZpG+rGHkjEWQieHUOM87z0U2sp+GPnnf/lTvri645AsvgkSWJZFsUpjF3kUbVbX2TGOA6vgePvhBX/wrQ9kk24aknekphBXhUM/MkwT+zEdgRSWfpjE5TmLyg3F4o0nW89YLPdjZPf0BbZkfIE2eBrn6ZqGmCecNRwsbLpGBAOsyAbaAqehY8qJ1jpC53FbT58iyRrc6oRSCmM/cribZKEZORyl8CpVHKeNqdJIvjRH1oa9eWw1iBF0BmZ8vJqNzPCNqpTMk8AsZedciCnOC3ZWhzGQ3mjArmMgjxoIFkUKizEMRx32BpZAmAWByvOFKKKkSYxsBlmDpSoPrcVcJ7Qlk0URSehcmuyQxTyxoltGgj0xuKqoUAWO6mctqVm2RXpOjLx/NBBNxqXIfhoYTGEIohVfcqFzDSc50yXDbR7xWe75ZAqRRFIfB2sM1sH6YkNKI+lnH3H7i1+RHRSPJgsGsiMHx84aXhuo8iJVQkL8I+xyi0wNiGRVW/xcLUlIcIX1pH4ijxOrYWL0QkmSqpEmgHOwUvDGQkyUlJjKSDrpKE2D2wZcC7ii5peS5Gjj1DxRan+SXSaiIpKSIDtnloDIOuYGRUUDQZTw5iTGGJKTDd8bj7FLsktxOv/y0luTquGgofOrea5yhGYy/yHBey6BSgacsUydj8vhX6/xGIXOc4ySjuayVXStVh6reo6ccdr0WSNFAyWneqt0WsoFOqPBh6795WKK9MgZS5pGTD0q/VrQyZzwTSsywTEx+nYW3yg67tK/5rBF5rN3ZvZ3GrSMZmw5qmIXcrYLTkRdc0cPg94fI6IXSxR35HOgmPXccC/USFP3NQ2KxWtHq/XOL6CMMfN+yLxvZzKJ6luluaZco132Pmvd/Pei+5NBmnOl+npE2aEsCaaxc2+aFEi12pyV2luU0qMqdtZqYqihjvSDCSW10naTNDHO47uMbJnnqzMo0qHvpEm6xajPizTeLr5cWWTYi0glF622WTWZJBtpkFymnuBW86DKPSjJ0PnASdewCrJOYoaENI9bEmet5b/5z/+Qd5885p/8T/+Eb33nuzx48JDXz1+w7dYMU+Ljpy9obOF8c8L/+b/7P3IYbxnjni+fPSe4wPbkjJKjUoQtxhShWJfEfjewO4zEbPmjH/+IH//uD/jBt7/J5abjl599wefPX3F3e0t/siGuV1zvDowp4730l627lnXXsd/dc355wfn5OzTG8vSLp9zd3YvgTUpC+U6RXER5qybMJSVC02BKJo0j97e37Hd7xjGyXrciklDXte4FtdkdTbznuFfHtUjKPN/7WpHxwSszogpzqBQ+ZRb0kD3TUXuKRbErY5waRs5znvkvS4O+xVkBGKDMVZfj5AiKJFlIFSLGAkYSf+MVaEoJciFnEWZpjEiKb5s1q6aha1vOTjo2647NasXJyQk3o7AgbMm88/BSbSo8U2zxDoKDB9sVp9uObRs43ahq5NDTdA3ee7rg2bQt2Xu2my1pPIh5tzc0VvaIqn4q9hECRhZntKpstUdYzjSD5YNHjzE58+r2hpd3tzjrtRf6uEvljYhnFvsAAbonYxiBsRTGIoyQbGRdSqIrm1aKiQOF187QhJYx7zBD4WHr2eXMQGK9FaPXUAr3z5/ydtNw0TQ8C4GhdfQk/tm//Ffc398xDD0PW6ugixXJeZNxtogHFAWKhZTECiR4bqcd1/3EzaH///9EZZFI1RJhWRqski6Ut996zGazZrvd8Hs//D44x/2hx3tDHOSYdcqfdEbKb61uDCebNSebNadb+TOlxNAbYpzk4PWOxhs2TcPZqmPTrXlxfcMvP3/K51f33BwmoU/MwcASCNQ/5JwyitaJhntj4Xzd8cHjhzw+P6ULgQSk+poiiGvTOEIbAEtMmf2U2McEJkGWfhMXgZSEFlAKCatBsQbMFfUFPWCRYGCIJJsYDWRUMrYixxlaa1i1AaJhlyYJFJHXSPOXHJKp1ASs/qd5ezFfSVIUxa4bjV18TJZEhVm+d/aBOUpg5sJ3WUQW7Pxz+WhT8xP9rGUzXIKUuV9IuvoliDii/JSi1JmS5yRCAvAyV3UkUVmC01rKrIHGHLdT/d1rv0nB5qUx3OicKUaQc2MUhZ8Rp6+Wbhd5yaxKHJKoyOdmK67QfUwMMZEbkSqAQvEGlxwrDCc2sTKWtbMUL4ety5EuFjoMa+MpwUjwOGXaQ0+2mZzAlowpFlM8JapshKJedQzl+8m3d85JwGnKPFekKuSphmWZUSmWjpJFFjg1hr01BGNpMARtOLLFYIMo7nlvaI3BJoOJcg9GYO8No5X5kWKUa9b7jFYDwM7l1rqv6MbDnBDbBSmvvzIHtqaKKhwhvvr/iyTkkvzWA8UuT6uqnCaqSLZde/HqJiJmWXrjjNVL1mvUuZbLkejDcVVydlVlfv38p/bQmXwcwFtNBHXtmONKp8zAWo1a5rj8e3FGZ06y68yd6+ImzwZ+pai3hQVTVAqzJJyKEVj1UqlXY8hSWaEstklG+hTkppT5u1lbx7aO79JEPCdTde3q1dUqZ9F7UvcCMbqrdFevt6EqLsmKTFl44xZJMKThu956nQxBEo6sKmZyGZKIg1bY1NizVuWXypwqh1m3BIkpz8lVocziHtZaakWw7lMClSnFqaAqQiqBbqpRZh27o/mpc7qYcpSIlvn9lznPTNOSG/hmoHqUikllcZ5ztZ9qJCVmUZU5GdTrnROxec4tn58yhMax7gIXJ2u+ePmKOKranTVQDPf3O16/vmbVtowxcnN3B85z6HuGYWLfj9wPPZvQsl21vP/4ITc7y+1eqEPileYxKqZgde54YzFZBDJ8aHjw8CE/+p3v8eHbTySgXXdsVyu6tqMU8c+52+24ub2llMJaK0mdBs79fs80RYZxpFg3s0qsqh/lrL43FVygJvLCv2i0av3k4QPOTrZi1Hg0F2qoUt4YP3kPUw0P63jqWqDGXWUBAuTP6vGxzAlTUfz5EJa5IL+7vK8euW8ACxWQM+iaLo7iZdwLzP0tFUC0R8GWmLDW52sLQFbM086xhylCT6rxX9dtuDw742S7wRi4u79nv9+z6VY0ccIq9b+af6/bRgJ0I2IlQgGUva/xlhAcbRD6VsrL2eEN2CIJZUn1DDca2ii93JTZMoOilfw4URC7jJP1ilQy90M/g9UL8Lfc7rp3GyMVSXF+F8PnCREEOO4FRmO7qmKak9hR7KbINQaPMCNOiojvxFKYUiI2DdE5snecW3jfZE6c4fNp4Iv7wvXdHSmOOFN4yxv6YtgDvfbSzxdt9Jgy4ldFFhEj0SD6T6CZ3umpZ5S/KM1YohoV1UzrR7//Q955+wlPHj3ixz/6Pe73B7589oLOW6IFkw2Ncp+9c6yCZ9W1bNcrLs5O2aw6tuuV9HMYyMGJlKG3hM6zaQtvn13yzUfv8MnTV/zqyxf8P/7lv+HVBD4E1l03L1LmpVKRzKKN2iK/GqeRfhi53LR849E5f/CDb3MRRBljmBLRLwHCunMU6yB05GwYxsjNbk9C/BYASJFhGLiNkX4YKdbS2MCqFc75Kji6oCpRKdE5cVZNsTDFRF8yQ0kigVwKlsyq8WLeZB1d64nOMNz3DLUvQxEVZwy+adjHyJgzOSbln4vHhZuPoXy8ZcnmUeMHNV0smdnPBPR2zvrteb4nM7fVygFvjREFijnwUVUYdCM2y6HHHNxBfWLOrYzBejtvxvIhcj3FVqUs+bUFwaxbqpmVTBZlKgmKszFk52UcUwITIUfAzlXZGgPKP6SiYpSDWpOxGd8qgnFVOeZ6j00RGd1GN9N+HNlNkfshSs+G3ByGxkC2bJLniYVV6zhdB6KzHGLiMIxs9wMn3nLWNeRgsLTYYkRdz2ayS9hcsNlikxyCEoiWenLIoVdvc90xYR5L5kB3uZeFQSuSFlzHkBO304HbLAdNVyxtUzDa+9S0ItlqWlgPUCZDHDwv+ondlHnmhK/e5ITve1Fms3buRzJK2RKHeDGNm6N7w5xoWAwJ2TwpaUb9rF5/7XGaaQ9lUTcpFCpcLr1Ey8Fcp6VIywovf6E51IR7Ts0VXa8Tou43FZWrE3IJ/liemhOlmpAtC0mrfvVT9P1LXu7D3CcHmvBW5Rp39F3kBfG3XNtXNWl8Psz0wlT28ziUNFCKgWJh6iVgNwZKnlXpoPaVIeo/1lNcI5+XzDy3JBAqeinlaP4p0AKzslH9/tkIJauA0tzsUXIm377KeR5ZS9SLktfXG5xHCRKsIZFnAYY632fgBhm8OYQ3EvDIdcqH5Czy8wZR22vaZv5eMvZGW8p03hwliBUUskkvzdqlMlLnxFHAL6O0zKBkJLGY98o5qEwSJOlPZ1PaIsIbzO+g91+pghKXZaZJesG8C0glOi8qRAVtrIbaijCPq3Xz/NIthFJEOnXTeC5O1nz4ziN+8fGn9Pf3pJNT8W3Iho8+eUo//C+cbDfs+p6fffZcRB/ajrv9jtvDnk9vrvnOk7dYr1taV3hwcsJ21fL6fk/1nnBKr3J2rglTUub66orT8zN++Hs/5B//V/8Q0+9Jw14U1NSPx1rL/W5Hv9vxxZdPOT875eHFOV3TsF51bLdbrvcHbm5uuL67YxUapmEU1b2uwewHYhxJKWpiYbFF52/JDCmx3XScbc5498kj3ro8Z7PqxItDBV68XUyjj+di1uqWak/OFeKCNLaXIwWtChxLIm0pJVIKqnL1ZmCpbbFklsp0nXnu6Dw9tl6QU8Bg9L7Vn+ecGWOURvx5Wct+VY2qs1Z2AIkbs1ZejCWlnlgyzgQuTk+JrqGs13zrvXd56+EDhnHgk88+5X6348mDB4xXr5jGQWihiKT1qm1onINcxPdFVUxNyXhjaZ1hrR56MUlc5BGDxTINTEPPNI7Miqey4UjsVFQkAqlSxZLEv6qAt57z7YbVquMwjVzd3NAPI8b4o7jmaJ9HDGadMSqAYJkw9DmRiiQumvrqvRcqudHXD+NI3u2JufDAOk59w7rAUBKHkrm9vyc3Dblr2ZyueZAS3yqF4iyH2xt+NY1MJeCdYeM9PwjwIhaexsJVBYaMOepBKyTnmYaREkfsRaZtLZtNw9f9+PotJFFzxiJZYMriGk2Rcp91FuMbnG8JTYc1cH99w2e//oTd3Z6SYbVaq3RloGsaVk1g3TZs1Ok5AYcpMsU7Va4wnJ6f4AwEa/jeu29hrOPZ7p7/2//8T/jlFy94NY5sVhey6FLCKUfbSvkEOeEt2KSNqIFxP7BuAm+fv8Uf/uBDnpyf8Na5bqTa7JZKlQoUyoNk6x6yIebMftpycdIyTpPoiKu76/3hnGevrtntD9zv9sTJ0noPpoFicaZgShIHXyN9GH2Wje1mmghYWms5bxpCF9i0gYvNhtvn1+z7keuhEImKaBRWxtFYx9okUciJkd0wkIyTfg/nZj4qSrtbKg8SCMSYMGWSQMYoS1KTiYo31AW0zAZ55GmZITN6CILSaSBTcnnjd45iUL76N+A3uLj1NaUGhxqD5ZlLu5Rc57pP0aN7js0MGEW6FS2uiVM5Qm+X3SXr6xfFk4r8yia+cIApR3FUKYwxCX/XW959+x0ui2GMhc9fPWPY73h22PN/ObzgYYaH2fCo69hiODWGYII0Dk+QxpE2T2wYoS+MqYhYBAZnCsEkfM4IjcnjtJTtMfPULyj6asCYKnkJLtckHr2v0hiZTcHaXCN3UhlofeCiW+ODJ04Tr/f3bE86vPM4Lxrvxhqsd0wu0qfEzSryNy927HxgvLzkg4dP2J4/oA2e4J1SrJw26CtF0S5BWKV8OeeOCHYFX4NWuwxtmmeBJozueGaZOntUWRCkQnb0rkb9nyhHweUSVB/VEhGx8xk/1bmhLfhGuNrHcfPxo5DnuQtO+qaK9KtUScyal9T0vfbyCf6iwftcwtDplw1q2rA8yXJ/lpRJ14ne74mNULRKRfb1oHQrOTo1oE1a/SAvlRFjIRfRyCs+z5/njz5Tj1zAzD1BJZfZVLNUVF5zz4W0v0iVy6MCF9K0ryncPFbGGg2ntJIhI0kxnpii0jsQsGNGhI/CfitRdtKKUa27avYi90YTBaO9EVg7C7ug36EaCZlSr22u387Jdpm9DfTemOVu5SLmv3WaiEcEM4hyNJEW6k29B3qfKwqfcyFF7Qu1hpzjIjNbg2MrPQO1wbDWyjBgjFPp9YXuJwpUMi/m5BVNZnT8p5johx4o/IM//DFfvrxlnApXN9cigGAtBsfPP3sqtMvVejYMbJ0le08CdvvIqlvx4PIc2xjGQ2IaJlldtSJQDCUZYlaKXVC5ZAqPT8+4tA2kgZR6chpZ+QeYbBj6keubW043b/Pg8px33n2HdfBsu4ZpiBwOPRjpV4qlUKxh3a0pNhIp4AzJFKYU52qUKwaXmQPPu8MebzImTXzn/fc5Xa9ovWU3VvCjNtofVVh0D6yCMRV4UvX1OSniqJqSc17+rpUL9PeN7vvLQxOUmsCWQgVjKMcAz9EZXGboBIOb389Zgwm+wl2qrqkC1EdTU96z9grr7lSsCFw4MTNtnMGlid2r17x9ccGTywvubm9FyEPXwzCMjMPAZAwxFUoRsEB8sQz9EMk4rAu0PlBSJI4jKY6E0Inxabei9CMOUWSLcWKaJknCiwrMFPC54IueNUswIZ5lNUYqEWcMbz94hDOe2909N3d3SpW0X1muZV7Pzjkm3Wv6UrDzbpNxdX/XPQNjMN7T73oOh0huDCsKnYNNkp49W2S+3N3vGcbIJnQkBqYysk33vF0s3zKenxhoKJybxB9Zx8+MGFv/PAvzwxQIqeColeFWZN6HkccngYuVYWOPDEq/psfXT/2ajwdUKWbZiK0q+HSdSMk67/nsi2d8/MnnfPTxZ5CFW9g0gbZpRMUreOGCtg2rVYsPQRU8loDQO2mwXzWBbdsBlmdX1/z8iy/45dMXXO0OWN9oMy1gxMneWTGQEn1s3em9nxf0yjsuTzd8+M5bfOu9dzhdtay9SP2hQdJcokXLgFTPF1HW2uaM95ZpmkgxMU3iGL3qOiiW23aHMRBHMb2KpTBq5ankyKTQ65gzvTbwxpxl0VpDUHlQYyzDFOdGPmsMtmhD8DSRnCMhkofWOpra+6gNtVaNpQSVMxinuutWuam5YMtEioOi75rf16jdLIH/Evbpo9R1rFuZe5PeVUoNROaTef69+Q9z9K4zsnSUyRxHfUcc/wKYvMzJ40RlwSfNfI1SIUmaUKTlswBm6pA5SlQKEjFICFD0eVPr6/WwnK9fDhQ5R4SmlovB+sCqXXHiGoYc2YdAbx03Scb+NhtunWVtYJ2lKuWwYuQUAsFB6yQ8jrYwWEM2FkehKU56W4ylGI+TGggqn07FioUmUuaAxxbw9dTQ7y8NzXKkzNlpLuIsDVzGQAekGLmfJtbO4UvCZYdVBNBZR0yZoRRuSTxbB1hvOX/nCZsHl2xOTwldJ9xlWysodl5zdXrMRnhGTbnmKbXQlqqvT6nzRoNq9PCf50hZxmdW9KnzYZ4tb0aCpZ60c6KiY1/H+iv575uP5R2P/61vIfNx/rgyB+rMIW3NeJdfmV8+51lmEXnIy3sd/9Lch2be+AnL3dDvV9AkRy8s16TjmLamyY/RL1xpXPOBahc0uOhaPEry6p91GyhvPHt8n46oE7/lntb7dfx163jUa577D3XfNqoelcpcZHxzWzHzpc7B7wJI6L+P5kNFtwXBPpIP0YF8Y8YczaF5Dv/mhFk+pv7FHCcUx++of9MNuaosGlPpZZk4RLmTVY3IGIp65dR3qbRtEddaRClydYEzKN0XDaHq+C/r5I3KzxvVPMOUItYYHl9e8sNvf4jB8umzpxiviURyHAZBwF23nqVyh8Me17RY5/nGwwd8//33eP/xQ/E5SpGoanlzJbgcDY9RQ00L280a3zmKbSjjAHo91WtnipF0GLDOcbI94fz8FF8ywQAkhmkiHw7kUlQK3c/f01ih/lAWY1RzNCGtNRQst3d3dKZw3gVOVw1ds7yH1YlojubCHPfY5czMeQER5gRlngZLhdfU9X6UVNS1Un9eT8iFMlaOTD2XCWbmM06+0yxtvLxb/Xj5vkgSXiui0qfzZkVVlM7yvM/N+70yFpxzlJS4u7mGlGicY71Zs92uqbTKmmRnU5g0sS1KEc9GVDWND3gbSMlThknoYKriZazBdx05H3Al4ijSY6hVmHI0oQxyRgZT/ZIk9stW1nQVKSmIXPNmtaKUwuFwUKNLMUk9DmOsUjuF9iVGxuWNdb/c/1yWtYQpFFXATE3HaAy9MQwmk5D9pGQwKZHHiYHAtbU8t57MSMLQKPgdkArNxnq21rC2UEqilAX1K5KHkRDqWxcc75w2nDYWSuTrfnz9iYr2MRSEZ45RFMMg8oeN5fz8RBRUfOCf/sm/4aOPPuajX31C4wJtF1h1Leu2o7GW1lnONitWq5bVqhOKl7Wzgo83BW8Kp63n0cUl7zx+wr/72c/5F//+L/m///N/weA6mrDibLuGnDHeYhsvCjHWzKoPVicaoWWKkWHoebBt+c77b/Ff/L2/y6PzM8iJ/rCnIkUhSIlLkjBFBfSc9t7pJDQ8ONvKZpUiN/cHDv3E7X7gbHPG/WHP85Mtz16+YhhHYhIFoJKyZPGjyIMeppExJYK1XHYt586zDobTxtPYwDhmXl5d8fLqNYdcODk5JZfAOEVu44RDFkDJlq7tcN7yoAk4hyh+uZbru57DOHGII7ZtsU4SGI8R/rcdOOzE9E7OfVmw84Gw7I4cbZXLQ3etlJJsQkcZyRKSMC8GOArw5kW5xGeSHP6WOcjSHHr05PJGfPUH+t/8o0Wl5Y3wYX6JO7q28ubBwFGyggoQgMpqyyEQYyamgvUWU6TXaEqZk27FxeVDuu2a6e6G8faam+maMUeuUuLufqJa+Hrncc7ig8GsmpmG0XgnolXe4K3HZYPPUlIuRhttpzi/T0qJzIJKl3mDZb7+YwpByoVEUXOuNFcVD3HEpcwqZpoiXOBxGrH9OAsVVDw7FEk8ijVMjeHyyWPeevttvvOj3+PhB++y3mywvsqGGz2zFkW4XJbDfmmmfpMkOM8VU/vk3hwjN0PQFaVcpkgNUGuFVCNT2SEK1Ibs8pU5lnNZjNXsm/axx8lP9S148xPnK3/zKW3gPl4HVen7OHEydcWZpUrm9KrnOLjAPLfNkqDIuPMbj6wBhbzgqMndGO3JqoGyPjWrhnGUpMhFl+PvVZSaV7+DQRKHjPRjGG1eVRT4OHmRfVrfak7c6l2TZmVDTdDqN7FzcuH0e1Wvj1o9dN4KBVaaLub5MCctpl66JlzHSUtN5DRIMiAqizpedf3U3o/6b+Hl12tc5mepyaWRwZ7nSgVuEXAupyoMkKWUo7PA2jrnpLemFOmjcVaa4sdJfHdKKWxPTqSPA6PqVPq9bKWxynt572fPn5wX6i7laI7PeYrUIUsplLgELc65mjvhnWWKQsu8PN3yv/vjP+SPfvRDPvnsM5WwLjhkTDIqHmMdMUY++uhXNKGhazvef/KIB5ennGxX3N7fiSJe0b5DFTAomtzKXMqMsYCFtx4/ImVDSRD3O7wRmVZvHZnCGEcO44R1gQcXlzx8eE7c7yljj8VymEbuhwHngjiTr9eUOIk8dCNWCQYYp5GURm3m95TixCjTGb54+pSNecz60RmPTjqC98RcMNZR27hqMlqBlbmnCZSimPWrJoRKvVRyqyw/RxWZMoMMUJVY655VzSVTFinfkjWOK8vvg4BNru6tOnHr7xpjBMwFMYqVJTjv4ZIwpVmx0WqzvoihZaJSzb1TFo51gFDKYop88fQL7q6vIRfefe893ru65sXzl+xfvNJYTL57P4nR5CZ4oimkYok2067XYC1jiYyHvSSaBcQTxuJP1hQ74uJIIEMSVlA0VXcwI3wE2Y9aY2mNzBvnkyQ1SZgzMadZze50u6FrW4ah53a3Y5gmaJb+WJtqBdIxAlOWfUpyOJ3H5uikS1m35wxETJE4tthAbzy3ZgQiOwPRWExGVARL5DomPlo19M2KD/LILYbJWLbOz6Iq0bc0pXCaCyKXb4SyDqJKB0xppGsMF5uOH7295tHGMsWBlq/38R+B+lUDBVllUqa06lBraEPg8uyc05NTvGv453/yr3n27AX7u3t+5713aFuHD5bTVUfnHK13XGzWNG1DaBo263bhmltL4wyrYHl8fkYshp9/8SX/1//3P+WjL55xN1pOHpzR+oBzhrNVNyc4rapnBSfeJbXH42bf0wJbv+a//aMf8+7jB7z18IIYsxyDTYfJCauofQhBFq36lEggkTVRkX9L9UR28dOLzDBFdvuBvu8Zp8i3x3fZHXp1fC3EaSLFyDiIl0IuggSM44CzhrOuYeWd+IWkRLGeISbM3Y7fe/ddjPestltAsugxikKP956ma8R4SZGGlEamlNhH+Jtff8kw3hGHSBtabPCE1ZqSIiVNEAvZW3L2svj0cJ0DiYpc1ZX3lTlRddePcImjIMN89Ve+8liCnvwbP3szMfK6Sc9H/FcQ7zk2qNd6BGnIYVCbzY/e9+jifiPVqRv1jIq+mbyYKvFohG/ugsM2hu1mIwGA9yQLr3e33I0HVs7wjYtTvvvt99luPdnCZDKlFyUm7zzdqpVGaGMQBWY5gHwIuODxqhBnzJEGjKJpOcb53tSKIHq4F7QAf0T/APkzJ3Ellucr9VE8aQ5Dr6ZghTQdoXBJezjmPgM5fF1w+CDeNw8fPGC7WXNxfkbTBAkyrH0jeK7rDcoRx79owovGcZXityDwEgwqvnocVJk3g/Nj1HKuhNUXzq9Nc6GgBpPzXC8SUNlKJ9XP/uo8Mcbr7x9F+Dq9joVH6kQ7ntnHNLKvPo77781xlv7Gn1U3rIIEy1rELGNd73ehIqUw98hoIFqVnyTOMYLEz4GtOfpM6oGAJAbyyfm3bBCGox6u+sulorD1ux295fzvN9+rlKxVcpYrV67JXBWpEEJBFJg0yCIv88sc3ZO5wbxev15QqplJfZiFv69+3zNSPVdgdOjT/LOjm6BjXmWul349mSs1bzTWqkplRaZ1PI+nValN+ug1KwHHSC9BXfNyJlppQNCxylRLARmLOh9SFtlrEQM0s8JbqiDd0fxAwbs5+E1JABv9eUTigt39Pavg2V5seOv8e/PtlD4OKd5ZxCy1lMJ75xsxpfWe3/3ed9kdduz6AzeHA84HgveYrOqKZTkD6nKVHFo8XHIuFF+wKVBpVYnMOOzY319xKK2e0xO7/Q6XCyF0kPsahXB6shHVuCQGrYQApqgxsci7kpM2YIskbEmRHCfONlu+/eE3+aO/93c47RxTLBxGmb8L0XTZt+rcSikdJQ517hlMEcPMeg+nqIaNMc73wFCIedlrsjFYk46S8v+Vuj9ptiXL8vuw3268Od3tXht9RGZGZmVlAdUKJEVIhJEiRTPBRJo4oyac6IvoQ2iomcwk00A0iBRIARBQaASQhQKqUIWqzKzMjIz29e82p3X33Wiw9t7u574bUUUgaiC3eHHvPcfdd7/3av7rv2SOuyGWfV88hJQyhUJ8VMAxekw0qQXCWWoth0rxusS0Dk2C3uqpV9xCVclAKa1Q0YqXwRhOT0+5d2/Hxf0L2uUKbMV6v0URqYymqSzOapxXOOeEFjhGzOmiKN5Cza6wVUXDUggavJNcQX7AK4HsW2uF1KXvGfoBNwwghHiyHykhj4mJKIQo3pNu6GR30TBvG1yKA/ZB+tA2lvceP+TJ85dcb7ZsvSQP1jpjeqTtAwGvRlknEx7IOTE9lylnlTAoSsB+pwTyfoieQWkcCgvMgBmRIQae9QMvQ+DFYsnBD+ydYzGfgdYYZflT1/OydzzvvUDVNJMTKJ0KCrSK1DbQ+B3RBQ6uZcm3e337ikrMFrC0gNRodco4y81mi1KWEDUvX1+xPxyErrgyws5gFfNaMs7PKsu8bakqi60stU20pVFRWcOsqVnOG2zd8Oz5S/7kk8/47NlLtr1jdXLKfDajtZa51ZzMRXgzytCmRIGStMoCChUjh76nntWcrpa8+9YjLk6WWG3ooyw8pW06fBSFljYxhGX4iY4JrgJy0GZYigJdQV0HKmsZ2lp4x33EORHyHEGS2KWgroy1jVFomBXCfV9pBTGkhGya3geW+04mmTHUbZNw8mIFl8zYGlvZtPAcw6Gn7zs656AbZJONEZ+4303MkBPhcw9hSEpOSNnZR1GnyPx5GuTBn2ykU7jKuMGOJ/Vo9Z1+FSe7XSpNTf5kFFrypSdKitw2XVq36ndL8BthPnwt/CILbdOn31BeEDiGmtQjh7KKd8VQ2UoSVlYVs9mcECUbuB4c1fkJ985OuH86AysxCSpZXKytaNu6WKiMEUExBMl7YiqLrStJxJagAiiVLL6BkNiLirCfGqBUiu8pB9KoDMQEu/CFlzXBO5NnpR8G2ZBjxLskLUXIMT4lWD+NszEpr0FVc7JcUtcVdZUS8CmYqMAcK77T37OuOfE45Lak+0b4zSi8FeG8KC1vjrNKa2E6xiMb0h33JgVXl/ImE/SojCQsqImn6tZ7j4SP8amjRo/QitttmC6McWyP3jFVsMrhF0ub3yw5Hi3lVHJZ82Lxm6gM6s31cPTGO/pRTb6b1nla8zu/unW98d1Rm6aqzS2FKH96q2LTuSH6wqhcjl8cK8bjpJkaSo60mVLTN3bBW1vSkXIab8/VrGSO7z/u2wwRlHvymlZKUTdi8zTGTDuf7BIa58q4lqSpcWzvbTr5UpdUtziuv9tXTP0GGSIuLGm1taOioiStQdAk9k8FaO5dnHKz3oiRLmHljTXYlONGYgQEVhOONP9pBWJa37I7K03RxX0Qw5zyg7AZupz4VLyqUWX2SwSVUVt8ELirTrlqpgvhiK2ptFkUgLaqWMxaTpZLlD+Q2R6nFOV37Q0Z8jVtXIZj5XU8HrEy9uMcm4xbEnQl7pA0x/K4jULxmG/l+PNjlrGxbmXFxViEbznKJ/VijE/Nynz2ugEFKpaNm20jBAZt07B3jk3XMW9kLKwx1E1NZy1dL4qKD0EIhKpqNOZ5T3QeTKRO+bhynFvMsDOXaKS1FrasxFw29eqXrtUpsWcKyzNZZiGdAxrJexYlPlkpTWsr5k1DPzj2e1/anqF+wko45mzJnZHjRvOoe5VlbVVkMVTK9xfFKxWUxA9n1Iu8Q7HQkS4GvFe89pZ9UHQoZo3E8zRIVvuD9hzI8XjT/TIWz0skJkNPlhu+aYf+N7u+dUUlW2hDDJNNK7njQmQYAn/2809BGTb7ns1mR21rzlYz6srQVpp5ZVi1NYtWuLJPFnPZgFLugmzJWNYVp6crLi7OebHe8sc//4T/69/62xzMjNX5OfcfPaLve+aV5XwxY1EramWolWHWzDDWoquKAPTOsdvvmdeaxw8v+NGvfJ+3Hz7EKDgkHGoWMlHCBlJZi1KaGBBcbFJacgC6uFRHQVEpqLWmrmDe2NI3MUjAF4CLXnB/SlHbqmy82ugEyQmFQSxj2MW6olDKpk1DPDB54scQ6bsuwXwim+2e/f7A+nLNIQZMgG0c0MET/cDQ91TOYZwnDgOhP+CHjn6/JXQHdIKgiWVMJq/W+ZBWCb6ep3WGOcgSy10zbmX5gKW4nokIZjxmi+448cvWPAmkl7NowsQDR8HGx9fkXUc0sBRhLOYAYcYFfvxslthyLNYkwH5iMdVyjArFsUoCX4RaGRrToLAoLEbXPHzwmP1hz83NNZvLVwwPL6jnLc2sKXOgqSrBbyflugSTG1NqJXz2unggVKHmyTWPyLKfwp2yBXnE1ZdTLUJheiuCbyopHWwhpjwuaZ6OPRTGzXfa/2kQYxDLXMbaeh9T+EEsB1/2ggSd66WODsLc7XpiyR4/V0cH/qg7HMPZRsVi/Fv6LscZCRNLmXNxlEOm9xdG8cmBfYQvT5Uo1n495t05lsJHjUDlA++Wt+N2W++6pgrW7XbGLMTefs9k3h8ZE/I2lt+cvCmUvsplHgvS5fHSYamvble2CNh5vhyPD1l4YjqXxmkaJkpfEczyuJQD/bg/8htkDcl+IHLBhMWNNw/fyLQ9o/BOBF2ZJMgFQpgqD8d9PQqTcfLO8bzM98QkJGSFZAyO9qXNZrK+yxhHUjjRpK1p3hpjOD09QSmFGzLhynEA7DTmKz+c8f65nJDWcoyiSIwQoJg3IzJM6aj/jta2jE83OA79wKhcSZtcYoyS7PIarQ2z1ZznV5dcXd9gv/iC1XJB09SsFosCP3OJ1a94DXwo9coxQ76fWP0zElRHOtejg2NGoPM9wfX0Q48yNSGIJ0j7KOxgWjGrK7a7ju7QU60kia4nFOrWDHUGEitaysMTYG4tjTaoICyiPni0iYBkp8/KadYtQvJoxXTgFCOQyjm9dFFiZH6IgdgkY2o2Ipgkj+WYlmSax/sEvRy1h6M5mwPTZb8OSR6iQP1A9nV09tiHkthWxQQFS/t3hnZmGJtKZ5CQE0m/KW3RSiBss6Zi0da0dc3Ty0tOX7/m3XkLSlNVFfVqSbe5Zt917PedKDp1RTObYaLks4mHgeHQY5ShXi2p6koMbN5lyjzou7SONV2ELgSGELEqw10DMXq0ilRG0TaWphJyhkWlU5oE8Ur6IF5InCThlTVsWbQtKMXOS347iBhriD4SgpMdqOyp6QpycidJij2kWJccG51kj36LS89ZU6cxlshSH8UbdM9KDHUfA1/uYR00g1IsZy0zK7Gw1lqCA9cHKqcEHpeVsBiTXCP5djoCXZDYGqMzi+C3d/0lZKb3CNPKRNaJAkkhiALzu//s94goCVwksJrPuL9acP/8lGVjmdeG09UJi9mMxXxOpTXGKKzW6CofZ5rz83vYumLT9fw//97v8uNf/BJlLf/Zf/K/wNiabTfw8tlL5nXL/ZNT4tBRN5bFYkY7mxOVxvnItjvg+oFDv+H733mftx8+4P1H9/FDh0unkrWVtAUShnm0KIMswsG5FOA7Wk3HRSiHjArZwp4CflWGp2RGndRnRFx0BK/KAs70yfiQXKsxHcppE1EelwLljJJga9KCaawhpM3bzloW1jJTlr4f2HcdXCreuXdCCAMvby65uXlFuAGrJTt6peGkqTk7WbBoKs5WM0mipWRs8kYXo8CTQBWWl3yNVoupIJA3QxLffEx9kHbmZM2ZCl1ZQSsHD8lCldyvib8heQwmggSUDSQinqZ82Gch2AURmENIAbZx3IDzoZyFXxl/pF+jCDpCmwqxwLEk50AIA3GQDOGDremrQKM02jl0P/Bnv/g5u92W7WbN9x5dsJzNaNpGEhNGhcUQMpF5iOBG+lAhkhKFxSglm1eUTTF6BWlDKcLmSC1UFEdyl6spKGfUVvJ8FuVTIAyZ+rUI7uXKjDI5SLkMdro/FGUlSwiT8Ocy9iMt5jjmKHWEhR89JqPwc2QF/wZhfirA53vz8+UdSiViizziE4t1mhtZqFa3e05RBNiixCqICTJxpKRkYeBW/aZ1DCFDMEaF4zhA+fiZ233xTddtRW0qSL5pFb9d5nSvj0kA0ZO65+9gzNlwXEdV+mHcG98Yi2+o+7St07pM+++ucR7bPLGW3poyx96qPJS63KuTEjsyaYUkcCY75C1r8119OrVay+cZsKmKEjfugrIAxD6h4GjtxKmGKmv/VjsydAilSpwZMRbihTzXbtexrLesxMQc63Pc5wLtmSpVY7tuK/E61VPnesVAtt0qpagqK+dFktSVimLQbGvszvDpF5/x4fsf0LYz/NCVusTJWOVg6gxHVROvfjZw5bbrVEYMAd8PdPueQ9dxGHrW6zUGS60NeuiYNzVtI3KB1uLNEQUyCeLA4D2Hvic3QcfJaIVAowI2evAeMZBFFAmafaxjSl+qBIkLIdGfG2lD8i5pFMH5oqyosu8okjggz6a93yQIYM71kvcsF6bmgDxeGu8jWufEp+M+4fM5HUVuGQ1eSuSYxBpKPtt1SigaATfO5fy+kn8FmYfWGh7du6DrB/pDx9/6u3+PHz15wn/1v/8vRd6xhqZdUq+XsNtzs95htKGylm7oscSSC6U/CDyrnc3Q1gppjkrG1gA4T9U0KKU42I69c+yHAYsSRrsQiDpSoWmV4WTWMDNimLRYnAsMPrIdIlaLMKCtTZ6ZiB96aq3RsxmPreZyvRYCJC1kJRK0no2bY2JapQTFUqUVMgSf4u3SvhJkNrvgQFuUMmgsOjGSDjowAB0RxcBb1rLUlkXU/MQNfOF6rjYdh6joiKwrh1eS0FK7Ub4TUg7IZB6y0LTEp/8Fz5v/qddfAvQrZJk1UbSJxKhMPpzh9c2aDCk5ay0X84YHqxnniznzxjJLysSsaahri0Fce5U1kmPCGIyxrPcHdldXXK1v+OTLJ2z2B05OT3lwfioBeH7DSdsya1oWbQ21pW4s7aKhaVuch9A7lIo0jeXCnPDWwwfcOz2hNoa+H0arz9SCT7KQZVlmcrBl4VQnIHtgetCNG06RxdPvMdHylO1BUdzWgvsNI5lV3uniCImQn7Fkj80ZULNgp5TBRAmmtAl2pFWF9wOzoUFZRec9q9UCVWvWKYmVAlqlaa3hYjXnYtGwaGvOlrOSeMyYlFU5KSJWJe+QcyW3gPzI3pHjJJsxkuJlXFp0IFzvYXxmevgmVUPoKuVYCmlzE6VGZTl8EoMhPe3TBu6jBAyWRFzJ2tQ7LzC8EFO7IC/QPLZTi74PSVmJFCXLJ8k9pLJ67wuNdTc4ApqAZxg6GGSMgjvg3IAKAw9PV5wtZjSVQVvJx6G1kURKWo1xQMUMONFC0lXEkzRBRvhIEgLSl0VfIAmIRVDMM3MU3uTQGxXt3KdZYJfPFIUIOEbSAmB6qSkL0mQdjRWexIcUa3L+NgkWiiI0lQpytwB4WyEBigHh9udwbE0UgUEdKxyTeuY63fWeUodRFSx9NX0LcQIRUoIzRx23JcZYkhvmv2912bSIN9v/DQrb8Td/QcVmcmuZG7fuuN0fx4nlbpVW9sJQvj4ay5glvNTbX9OcsjXmWsTpXOKoHwp0ZSK8fl37M3ww7wUlTikm5TU9lhM7xhCJSSpVcLRn3AUgPPISpvoUPTavgfHr1OfHClT5PhsP8jyerIFczuitnj6XHZqyVxUj22QG57kUYIzryWukdNb4vqkCM/2ZG5KFsTxGGa4s62TMFzGOqezB83bGyXLg+vqa/aHj0HUiOIdQcnaMe1dSxHI7JkJWTOXGxBSWOodhcBwOA4fO0w09vXepLiLfrDc7FNDUDSXXDrH0SVRiMHLey74ekWBkICcqVgrOVgvmbY0GhkQymXPsZKPbdLaMsPAgiRuVrJng5KzWShF92v3zuKcOznXL51JOzaBKs9NYThTr0utRnkcJ2U/ObaUT/bZPZ3/ub53OU7Q8lxNnqwyPxZBhjaJ0ifwzrikgBkEkICiNdtbS1sLe+umTp8zPz9n3AzEkRbFpUHVNNIZ+cFQzoRsWmWByhuf2JQh2DCbpTpK/zhATOkYTE03w4P1oUMl1torKaGZ1RauD5GKLBq80zkSC8lgXcRq8UVgvit4QPUFL8u8qSAC8D2JclLhTgWcF8ranilFQK4F5aUR4dzGKIyjNb8n1InNbYmgQ1r6yX8h7tYe58pxr6JTjpYpcAetDTx8FqjbEgAqRWmti8tGMq5Ekf6azfJoq4hvOmn/T69tn/YqxJBAMWYAEHCFNXs0QFMSAwfPO2Qkf3D/h/fvnnJ2cUjUVVWNp5zMJQE7LyFaGpm6AQDOb0ywW/NN//gf82S8+4cc/+zOunWK5OuHDt95BhUAYHHHouThZpeRMNcvVHG2NMH/pGvqBQy+c6/fPTnj74X0+ePQIg8L1/dRGJSJhspoVtGbO5xBzhmq5O5YARyCEwiVvCsWqKsGJKBLrUhLP0kTNQtrUalxEngSDK16rLPhpCgtSdr/JnNFIJFgSwqJQ4s4WoLUHPO+GB3z8ve9w6Aae31zx6vKKw6HD+ygLsa44T94UgejZ8SDVktgzKyomQWb6YRBlJdFUa52T9+V+TdYTH5KS4ZOCoiBqnHfEEDBm1NAUEe8HgneyuBMrTiSmxR6pUpKxGNNnebNVMTFuJcuG90lZSd4HFIfDQWgpfaBJVpVs4YkZenfoJrC7FFQeAoNzQj0cU0BhCqLb906ywnrPdddxve+43h/Y7NYCx4uRQcNqPuPi7IQfffA2Hzw4Z9VYVGOxSmMxkiBLi+s2u3qV0UWolR4iKWn5oEjzZyo95Dt1+W2imowguvG9qhzg+cAf52gK0s1eslJGErhvC+Ug5MhZhjqqk6hA+XM9gSpMrxFqNUL01AReopQaFdQ0awp8YlKZMAkGVWpSUBFuE0FCjG9ildINuW/z+297cG4Lg9PPj+NZxrYdxQ0wCtRlLBiVnzKuSdo4EghvCRvfqISUdkyUm+Mav9l8jrqMvOayfKyOnp7WRU0UktS/WTYpm8rojY7J2JEl39zfWYTORq9SryRQvOFNm/TH2Dz5LOdLma6lozaneZCrOu53yWyVlMtsVQ6JcUtn4TtDpo4MXreF95j+E8E5z63ssStsVqPIftTOmBZLyUcVx7kdVTxi9Sqzp+ToADLLWrzl3Yk54a+gBZzzRwxPKp2JKt2fvWFZAZ9ayY88LaPGlQLc5dwSL08oHvlxvSsIkivj/OyM5XLFV0+fs95sAcW7Dx8wDF1SDnLd9FGLj+SpXF+lIUpcgokQPez2PZc3G2562O4PErtaVVQodAw8e/6Cwd3DVnMepzHxzhGNzT2B85Ios+8GSqJZEFbP4NEaPnr/HR5dnFMZw3V3QOHRWjwJg/MMLkxQGoquOwh8KkSgT+cWeDckQTUJ2ZO9Ke+hzvel7SEJ3kYLmdA45uO+GUZ4hyh+aRyHQWDl1hq0MYVURfo3rVuT1EIv8k1ISl7xECoxOIdM/Zu8xTppXzGUyAqpC55KQVtZFvMFP3n6Fe2zZ7y+usEEMKbGtC00Ld5W9M4zN5baWmHHSwgHH2RNKmsxdYOpKonZTPVRCiqlscpIwLw2dF7y15mk1An1sENXQtwwnze0yqODJIpUtcTZtF6SejsnkCuXcusNg6OLioMLXO72uMEJM1yItFVFZY0k+cyZ7PMWlNaL1hqrFLWCIQqFMSEIUxwag8ZrhdfgAugQUCFgjEJFkRut07RhYBV6Vi10lcJT8c+3G2rE6zL4KLTKGHz0RRH2ImgKMU7yeEWd5TYZrW/7+tYVlYtFg49i0XXB471Yvl0MVFpTVYa3VnNOl3POT5b88N0HnFQVC2OomgpVW6gr4bM2lkrbEhTsleLRvQcMAa43HX/r7/0jDm5gfnLKr733HVw/sFtvePH6hlnbcHp6iomKOgXdz2YNQWlcyAmXBC6zXCxYLubMZwtmbUNtDCo2xHwgKmHzySdwzvCsc16AGAWOlawukUhT12kTjJMcBipZRUkKjxw8tqpQyuC953A4SLwASiBUyfKibYJxpU1Bq5QHxlajxUAJ9pQorlytTcpDYXDOFyuOTKikWauUEyV6lgj7y3ffe4RPwl7vAlpn4UPaGSeHYRaOiiEkSSgxpqzd6VIwBvpNIxbUKKQoo5NwKwuqBLlBET4UMbH0pCRk+eX5kCbVk/xvPJSjikQfwWfPgWyFrlhckORc6TLaFA9Kxs3GICxXWcJ2gy/yVghCgBC9LxsyqIQLVUSt6NzAruvZHjo2u33yCgVO2pbVYs7paslbF2c0laG2GiorinCU58mUvCELBzEdvnLIiBY4iTUhH8aUgyYdRySRr1jcSj8WwUrmsp5+N1FYpsK6HJhiAYxFW1ETC8xoR86i9vSv6d/5eAqxSKbjHCpPqJI4M46flPdkxiIgQ7NTMWM5o5c01ShNipEAd2RtimoUvkCYTrJF8Lg95anyZqsSzCHEBBESipeMJ5eHxoRsIuiNfaiO3i6X0WbSc+MdxaChksdRZQ9U0WSKQJkvnYTwLNOJopeF1DhpCZP5IlBLNenSLFDFzFcUc4xabsOkFRPhPJsSIiSmn9T2ku9h3APGmkwuldMYqnJP1GqyN6V+zDFHgDBijT0YQ14NGiHgnkbbZIVk/CxM+nvqrQghgopklHah5U5YforSlZRCsuKflIU8Z1Wm8k3eGTUqY+WmMb75SA3M5eT1qJQq1vyx2ydemomimM0NemLsiVlSVbIPQWZqmtDkJlZPYVQOjNt6nMzT4zU8tWNkb7UqiS7jGwOdt/sQPJWVjO0PHz3ksO/YbvdoXaG0QymHTRh8eZdAqsr8T/uyqcZ1ahxUVuj419sNN+s115sNm9CwOTh6H/m1H36f3WbD9eU1ytYobUFpdrsDwyCCrLVWvBpaYMT73rHe92VcIpHgOjSexirOljPa2hK9Y0yiLJH9xigEBiTWdu9zLCCgNN675DmS+ZPpukOyzocYCqJDa0Xfd2Veq5QTzCufPB2TQO00R3VibdVGQ4q7IASEeTjiYkD5cYXGGIlJ5igxojEAOclq9oArfPRy7kZ5b3Sj0qtiLMNvTI7FDAyuQ6vA4wcX6C++4Pryhh9/9jnfvXfOSdtglcHWNbquGfIUSvOrDwHnvEC42oDynmG/F6NllASkw74n+MB2t6NarPBEXq637PsDITgxIKHwQZRQW1naWc1iPsP6A/iI84aEJGNhNa1p8EGSOw8u4ING1TV7B5e7ji+fPWPddfgYuXdyms6gKNDu4AV9oDP/W/K8JPnxom1QfQfO03uPSzlcoq7LXPMm4gNlfWsk78tpMDxQireJktFRaU5qzWXsUMYyNzVvW8Pew6WTwPmIJiSfZyQQlAYqCAMMPSHWibz5jR363/r61hWVB6cLJGyHBKuBGAQMUltLU1eczmecrhacnax4dHFGozRVBFPXYA2xkmDhyoz/1CQPxevrNT//4ilfvbqimjWctHNOTla4bhD6QFtRVTXztkXHmCiIE7IviKXAxcC+G7jZ7Bj6A9vdgUM3QAjMKovVSRBUwqJV1TIIzocxh4sRXnc3DPTdgdpKosrFYi7MEiDmGcZYh5g2S7J1TInVVkhPUhxOkrKG4MbEYcnCQPp/VGIRdoMfmZpAOjsf+8qVslWiBi65DiAF8wbZRBAWJqG9NMK+opXwYSuIBPww4KJkLlZGje7diQialeoYI9r6JGcmoUBl2EYc5U89WqRzgjrZNCf5eKZ42SwwxHSo5rb7OCpCKpTNtiwZlYS/FNeii3U0lrieLJoXQS4m1plEG52vkILTBOudAxaTkOZFUQklcE4TE1d9VMml6rzk6hmGEhg5rytmTcOsaagqA4lpTWhE04AnqXmEiOajv6hilB0+b/oqe/Ck7wKhhIikh7I+hS5jl5UFNUoXR1cus0hVEyFqFHoEbz0Zuluvui1852dufzeKExxBRVQa4awGjZC4ad1Kd6SxAyZjXOS2iSU/v2NUFihKSR6G8n+Z0NJncVJQerTg8KMa59BkzYhwLfWdOAZyY8u9qZgi7KtceJzURyWrc95ilCr/pq8tJWflZfKNOhryrChlqWN8ulQ0jn0wzjtd6nA86OMcyf2ZPx/nY6pdUTBysSrdpyZPxPERNVFwyrge35Pn9ygxT5XAJNVMDCdHVY+TsshDlufAZA0mo4BS47NlP1FHr6KwZpXxmYxF2jeJt+yTee9U48vGHlHpueOVVfo5VyGOdZh6UOVsukPIyMpuLj6NRWnSVFlTEZXnehxnq3qjXrfWgmw8jPGL6og0ohis0nzzzqGM5uRkSXfo2e87Nts9xohH34WsLKmx3ancrGyHsoPEdEZZUVRubuiGTnLOuEDXOw6do72o6PeCw2/ambBGGZ0yw5NSFCRSDS0K1eA9nUtnd1q/RXlViSYhBogp5pRsAJB+NKlrQlCoGIS+O8UIZdr1HD437lSU/UgUiFCCust4ociGzxhjQYQIHbScPcaolEzaTmZILGM2XT1ZSQISzMuT91k9iQnKMmFWVLKXMtMfZ69untMhZoUYvBZylrPVklpp+l3HL7/8isfLGat5Q20s1lYoY3BQEA2DDylg3tP7IIZz5+n2e7rB4bzU00WH7x03ux1hvcZrw/VmJwbXGNDaJhgwECJWG2pTSRoAL4YZpbUYQ4kC49IKo0dZJIYU+K4VvfM0RuErkW/vnyzohoHeOfZ9l4yjeZnIL4JOkliVRgmdu0l9G2KWRSrGXHICDct7VQ4n1krIIGolys/cRC505LEWTgGb5uIQoZscTLIGA0RR/iMS40Tw+GhAVxj7bWdR+UtQVH7wwVtFSASFNTXWVtRNZvUynC4bmqqmqhtkakpQdl3XAm1JC7EymtpaUTRStvpXV1f8wZ/8KX/nn/w+a6e43y6Zn5xRG8PqpOXh6RnL1mCtpkrvMVpjtGXovGR+j7D3jpeXN3z+1ROePn2K84LB++F3P2A1a2krK8H+WlPVNaenpwzes95t0UqCtNqmYbvdsNmsuXz9ivcev8Pbjx/zg+9/j77fiwLTH2iqmhihH4YEK/IMXU9bN/TO83qzZn/oOFks+MFHHzGrBWu7PwwsFsIBPgw91krSrjolknLOsd5ssE1TNvV9tycSaZq6uJ532y3n5+c0TZMW8hhbQg5WMxWVjYQwsN1eSRImq5m1bQm463Z7+uQlaRNltDFCG51tmpmGVhHJJlqFuFVzrIhJQoNSQrdrrAUF3TCIZQhoKlsOyGFwZLxyCBKvZJInKufb6LtecpIYgzJKvFshJG9D2kSK4BcLjCuEIIsyudYlD4Zsjq4fGPqBYRiIgKks2mTmD0/GvyslzzRNWwS97XbD1HqXDwytEE+hqWja7HVT+EHmhXOOXedwXvChOp1AxSiikmChxw8zQERORxLfe4ptUWqMIwopmegtqsmiyKQyPODjaH2ORR2gPJeiH8v4xmStVlHsLhNtBbG/5HcdW9eLMJf6oYiWSrDq0ziU8kw+0FCSURg5ELIVb/T2pAMiC1ZAtoUXeJNSlKRoqJKzI0YJKCYLnSp3h7xLDMwxz/SJAJxuJiURI3t3snBUVOGSciT3SGYpmkK8KH9PxW7piSOvURI+jFYpgDqijCYoPVq4kvs+rcjcWdKOiYYkczpVLrvTJopHNoyMA3hcPw0FplC8UFpT1IzUR4qUnC/vGFmRUICazKGY11Aex0gRmtL7sq6Qa6LyPEjjrCfza/QoTpWUvCYmbgomypQaP5sMJ3kNgWaMdYnHjzDOvqw0Jrl8OoDiVclPThSGKSFFTAJsjj9EpZwnk+D+sgmJz17kiODRJEayIyUikIX1yCS2LY4xUTL3Y9m/p9C4WNb8hFhGZcOc3JdRBAqVYL5ivBMYXCbTmHR/aprJhrwIfd8XY4LRhkO3RxvNg3sXvHx5yc12wy+/+oq3Hpxxtprj9htIGc0hkA1cE1e6sEqpNGZao20NtuLp69d0fUddGVwX2Ox7rm62dOcVu8OOXT9wdn7BalbT1jqdGQbJURsxSvrOO0c/OLpeBF3ZU3wxGsUY6HZ7hr5LlPGChAgpVkGjsTHbr7Nhbuq5jIlWOBJS7qrgFVYZjJaYG09gcHKGCQGkxhZYuMTQqOytN0bkEyfMnxrJE9fOZ3m0yxhnhrFx0sUEvwXXO/b9HqXkHDfpvhyjOTgvRjqy8KwKPF4nQ22eYs4PKKWp6woSDfWj81POqoab7Z5//of/iu89PufeyTwZ+Sq0sQxo9oNHqYFoLD76pLRE2s4Rg0C8915YVq21qMHT7Q989eqSuNnh0Ky7gb4bBOaUmNNCiKgQaXTNzLZYZSRW1Qc0hpxA2XuPsrJ+K6sT2gVUVMyUobKKDx6e0bmI1ob3H15wudlxtdnzy3XHEGXPq/KZj8S6dOmsqJPnxshOisfhiTSqQYe0ZlXAKUVIBk8VA4MK9MbjtVAcbwI4HahV4GOr2bhA5wZex4HLoHkp0BuU0mnvCSlBpiJginLbqxnYFW274tu+vnVF5eP33i1aulKS88GaClQKiK+sJEhK1m8fQlIkUj6TmHIP6ygUDCpQN5bz1YrzxYq///t/yB/+4nN+8fKKH3z8MRenK+6vVqzqlkXbMG8aaivWDcnNItnjY4gMrccrxVxp1Kaj2R+wdcvy4hE+yoT65LInXvZkK5dS8rm1L8SLoUQoNkrTWIt3LmUiDWy45rObgZ88v8IjOU4OXUdT1dRVxaxuWTYGqyIWz2IhrCCvt3teXV2x2h9Ynp1zsZoRQ+Rms2HhJfmTDw6toTKGeTsjeM/+cODFy5e0bYtSGuccl9fX+BBo2hmDcwyDY7vZcnp6SdPUkvSxqjHGUlWmwNUUsFouCSHy9Plz+qHHVpa3Hj8SvGgIBDekAK+I85Gu61BKcX5+jvMpaVoIzKqKpqo5OVklQTCw3W6TBcrigcPhwKHvWK83aCMY2ZevXqMVVNby+NF9oasFFrOZZAy2lvl8Tt91dF3H9c0arRXGWk5Ozthtt+z3O3aHLSerFbP5rPCphyDxKiZ5wtq2YXLcJouE/N53PcMwsJjPWC2XLOZzUJH95RWHbk+tLXWVrDfJQxWi4vXrzxicEDA8uH+PqqqwVpJ9GS1WFO8D/bAViuliAVHUdT0qFTopcEaor7XR1MYKVj1GdBRoiUoxX0IfnK1dSTAzihgEvhd8ZLc9SHI3W7E4XaRg4JDoIgMlKWPe+GxWYFTxxikorDYhBKrKJq+aEkEiBKKBWdOMwepKWEv6vqfrOiKJrUYbsieNNKcEw05RrKqqKl6ynDNAIWyBIUoSs5AsR5rcF0DMcR+qHJ4i/OiidJPmRIye6EOxhk6tusaosg+gFNZkVhOVLINJfChaCsdzKkmkQamkoMSkmCQROPV31m0yFKnAq1K/5HfnPEchipUspP4YxfiI+P6L2IdCDAO+WC9HoFUmCTBlHFQp6wimBYXPXwRZNZabKj/Gxoxeq6jkAB6hfKOoP9VzsuoxQnWSQD/xVIjiF0flLgu+cnPRcHKiRqIbIX8qJzIdhXsdAzG4UTFKCuQIZ8oW6fRdOs9KH8WRiWcU3BXej4roVPnLyvGomOVy89od5xBEQhzhpVCmXREK8ziML8+B7TJKwFHuTXnUT2ZMBgymuVCU6sk8zsqmYkzgymSs8WNbpuOptSQAzMqNzopjFnaTTh91UVhRWcGxZMVCJ60lGaRHdUZl4hKPOvT4vmez3/LLZ8/49+e/xcOHjwk+0g0Dg/OjgpyUykKIMjiJWTWaXefoY4dXjvXNnrPVOR9/pHj+r3/BbnPNixcvcO/dJ0aJAzg/PcFEhx96KrNIcywyJMi1QTMc9nT7Lf1hW/JXEAWKPXQ7+sOBpy9ecu90xVsP7kMQb3wMHrTBJxicpB9I+1VaRBE4DB065U0ziBfJe4fHoZIwLbGV0tcSzyke1q7fl/1oVosF3LmBrjuIh8UoIdzRWmDjKq8vOW9DJCXznczdIGe9c46+HwDFMARsSoattJJwgMTumVd/SIqu1gJ3HwafDJOOGBLlcvA43+OS8bGuNWq75/rLL5hFmFUV++io53OWq1POV+f0hx0RRzu3heymGwJdHYkGrI+sDyLrnc2WuP5AFyI3uwP3zu7TNi1ut6dznu3hwGkzK2r1gCcqj0fgZCHFvQ6DEB2EIBTVDGIIEDa5tL+g0MbT1pp/9+P36AZZE23bEmNk2/Vsuz1WV6KsD2kv0wowDAQGFG5Iecsm3kcVApZB5C4Ng1LCZBaF8CDjcm4wbGNkFwMb7XmhLJexwlPTak+jHF0FvZMmGJ8MEkZJvI8SpUfT42NPh8fMFtTzBc1iwbd9feuKymI2K79rY7FGBEzvJVt7ZS2zdlasNc77FKQuLAs6Wb6VAaWNuPFC4Gq9Zb3e84uvnvF6s8e2Mx5cnHO+WnA6b2mMplIKq4VS16R/NiUQClqo4ozWoC2LoDhzKx49dCxOXIqrgcubDUPCdpscT6KhZNvRmqru0ShqYwhOEvZYY1gmr5EHqnaGCgFnrAgJtmK+POF81dBaRa0jbTvHeU8zb1mulrRNzWq1ZDZvAcF71k2D1mkxa0ku1FS1BEYaw4n31FWNUuAGR9QGH4QO2ntxd87mC9qmEY9MShhotMFYjfFC/xidJCNSBprZAqxNfWXS5hgxVYXV0p++64n9IIHgTuBMIQRUjFgdMCbgkt/Sh0DvPMoEggo4gmRCHQY2XYdSoizthwGFwobI9a4TdhEAZaiqSOVBGcdu33M4HLjabEX4tBaqGTebLdv1hvV2TedhMSRrkpNA9q7vxZthLYv5rGRkjikQXrLIevpuwDvHcjmn95EhKKpKs9t3HA4dVg9yOGiDC5EQRQF58uwFzg3JrFwzm0tyKqKnMobKaHaHA+vdns1uL168ZKFcLBZYLZ6ixopSo7XGe4+xNlmKDFYp+ZcIDFwAF8bAUbHKCs971w0SzDk4dntRVKq65tH9Mypri4UHMhxhPDx8EXwS+08UQUsXqB50fV/gBZQnFbtDR8brl5QhKscECL5X3OPZo6PLz5E9TthtRuswSaiZeE7y5q/lkItJ4MqB0QoIPgt6ipCt5kngnVqIVWKwEx3BFIN2vkeXnCoZmiFKkE1KNlnR0ma0gIekRCkJwI3kPhmpxqeKyFE7Jwpchr0YpSSQs3iMkuU5KZTCeiRB0zHFFOTuEx0ou+tHBSjj18tBl0kYGDPT344yKYpGcSukNhTBehTStUlqVEToQRWQcdjk29I45FmUyi/zUeV5mPy22ZunxKNWrP25PopEwZ2E3yziJi1GpfHPalAWwEEV7H6ez6EI8dMxoVARj2M4GcI4DdY/+mIUtvNQj2/J0vv0gUkfTdSYNHbZ06my8jBqVgAFkpThh550jxKBOd9829tZxjHm/mF8f3lq9Gjl+qlJa0bYZwnQLEpWjuzKcT+l5KKsTDote2UUZEiqD8mbHRW+kyD3djbj1ZdPeX55zb3zNavKoJRHJwbCsW6KzPAmPCSy9xlrGYKncwMxBi7OzjhdLvkXf/Y5fujZbDcoZel6x816w7wyKCU0tdmYGaNAf5USz/5hkIzmw9AXY0SpRVqb6+2W3eEgCQVJCIAc+0qOjUxJc5UEledxMemMqEwy+qTukhx2kOmIRYbRyXukkqIn/WKs7Ffk5ZMIjIxOXozJjI3k8UkKbBQDT14LzjmETjgkuUv21elw5uScVVLaInEkxElw5zy+0wcHN9ClvdxaTdNUzL3npG1ZzubUdS1pJrzHGMPZySlfba7pOs+sblFWJcSCF+VVO6KGw6FDGSEFyAaNSETbClPVDH4rZ3zIO4TMba2TXKhEIfbOERIJT9Kzj3yzJaZLKZQyaCPPt21N8DK3nba4ICxz56s5M1thULy+6QjZm6HGdePI5xZyvuR9IXqUGueEVuKlyoYDR+SgFJ1CFB7ggGKLwmNolEAMXTKwDWkVT4ko8n5BEAOSVZFZW0mi8brl276+dUWlSkwQxpiipBhjCGkCVZVknDfGoI0ETPsoAc0hBqIKgp8D2npG08z45dOXfPLFp/zkk8/4Z3/6M0zd8N3vfsi7jy4kCLmusdGhw4A/OELborAYlWAdySpstUXbnNm74eLshA/efZv9EBl8oHeO1+utBB8lNgxrhQAgmbDl4PZyjFZKMfQ9VmuBQmkNMeDDwL3Hj4lasT3suXr5kkXT8uFb7/L2gxMWbcXMiqUiADExaMQgrmA5NxXaWLFmEFOyq7TdJvpBpQ1VXYlAlw/+BLFyvk9B/zIWu/0+YS3h6DRD2GmGrpNNTRs+/t5COLqjJID0gzCKNFVF07ZEpdjsDxz2e0liRIZnxcJYobUuSQlDCNi6ET5urRjigGksTT/DNnUJknzw+GFhzQJhUVEomsVClE+lcRGc0jhjsfOFtEQregW90vTa4HXDwWtiF3BR0XXCZX95fS1xRFXF7DAk+FqF957NZsNut0twANkA1vuefR9Y7wdOVovEEqbZeU+3OdD1A+vtnsF5+sHx7OUrwa4qzRAkqdpqtaQymray1Nbw7PUVzy6vePb6SljNohwe52fnVMZijaaO4qXz3tG5gcpamrrh9PScWVOzaGu0VuwPPevtnqv1BmMsddNiNPT9gf1uw6vLS3a7PZvtXuAHSmOt4Ve+9wGnqzmrxVy8a1qUKKtFcdNGsz/s6fuevuvQSigeh2FgtVrSNg3z2Yyr62v6vsc5x8XFBVUlFqCf/vKXbHd7oYjUmsVsxsP79/jg3XexxrDfC4QwM0RZW1HXdfKADQTnGLoDu53MWec9Td2k+ayxjXhm54uWWdNgEpuc1MUzDI66rghRGIKMOabClLVlEr2meErKQYLCVDbN6Z5hSAe61qWtg3PM2pamqTlZLZF4okDfDxhjS34DGd+RDS3GQH/oMWn/EwOOl8M5Y7rFpTShXR6ZpKbBrtn7h4LKVtS1GBH6vudw6MRjp0D8CDkZbfYIJG9C8EXhzph1o2W/UFpybLjEVpd1Bh38kcBVsNGRElwvfPri6cuxaelmsoAbEAipzmHwUw+20sRi28+QHRJ5iMXWkrsixIibQCaVTv2XyDhUEgpCkrHzTxI5hSmelixya3Q04AVTIUQoCaaEntDQJ09RnCbWK8OVhN8wKl/lgJeOE3ZD+eSY9j4rK2O8yfS7KQNQmChI5ijnSionynlqEm+m1qP3PHvQU03xWYlKzHnTUJ0sLE9acOSVU6k8nbyuo2c0YKYKS6SUGJUQdIToRdAhUeUmBdfHrEyPwr1NBssQQlnTRmsO2x0XZ+eEZsY/+dM/419/8hnX6z1/47d+TTzRyhQji4x16negtlUysHlOzk55dbVms72hqTQfvP0OZyen/ON/8cfE4Li6ucJUMy6v1vzik1/y8PyE8+WMZjkfjR3G4LsBbQx1XXOz6+mHgUN3KIYEDUTvqIymqlsur2+42Ww59D1aieKgleHQ70Vwx1N4k5OxMnX9aNxSlugjvepQwaWYS/F+hCEg0HpSokZBevgoykSdiItA4mNnKVbEaE1bVUQiQ4J7Zxp+54cy9s1sluJYFOubG8klYg2zeSvCtxeGrLzCKlOBUrTIOswemK6XxIfD0CdYrRZDt5U6933PruuwxnJ2dsbpas5sMeevfv/7vPX4Ldr5gk+efkG/l/3g3Xfe4ue/+Ak3V5eE7sDJ2QnaGPq+42ANIdZU1Gw2N2KArTR+UBijqGrZY7zSvLy+wfnEWBsi2Y5TGaitwpjIrjswdHu8k5jTxlQir6V9w2rFrKnIvkyKcUiBhkVToZXhysHLmw1Pr6/4je99xHmtCf3A3/mDVzhfERHWOYvDEDC2Kslefd8x6IT4iY4qKnRMFMhay7kE9L7HxYEtsFNw0IYAdGh2UjVWUbFSihA0BGE8c0n+RIENIrNGpQkBahSnVvPwvGGxnEEz59u+vnVFpWnao+ylNlmDrc2HpAQ5xUByh4EfEte4USirsLXm3vlDXr1e89Offc7/7b/57/nq9RUvNzuW5xc8PD3h/cf3OJ9bWquSZUQSLtW1TV4IIxZjRmtKVddJ2QjoIAf8yawBLYfZEAIfPjwrjFL54EQrfMgZfIPEcxiBUIXg8N7hhp6zBDdanizpIuy7nisc7370Hou65mI+Z+j2bLo9h5wXRglO0CUMt0GMXSJjBKxKx+TE8ii/RQgO102Sq0lnoohUCMuQwkPQzK0CKxYS4uQAihGwxLYWXLlSKGOJVJQdMfWgikqYs4C6qmC1KAd/VCOCPFMpgirsUai8SJEES+Q/sgVNHdHlwsjFHjN1aOmCmBa7LkZEP4kQF2tdguYoVYSJvndFIEIL1lmwxJ6+61IsiqKqK6qUoDSbR6zRRekeoqfvHcMw0A8JWhahqhoReo3Gu0HaolJfJYvR/HTB+x+8K5hWRmtw9gAapfGDeH8OfUefMjMTI4tmTmU11mp8EkJMiMyUtKWqajkAXYWpK6rZnAx3MqYiY5ItEpTYe4VNB9WAovcBHSI6BJzP3hoAERB8hE74DsE6rjZbEYr7niHmgxBeXt1w6Hvpl75ns9sRIlgrdM+b9Zr9Yc8wSAzQYrlkPp9xenLCq8srtoc919s965s1Q8qcnd/tesdh6Knbmrfeeshf+53fYj5refnyJX/6x3/KzXoNSlE1FTEKtl0rebbverSxQulsdbJ+KmazRsYrRqy2LE9WaKVYrzcc9oekRIzz1NhRyWkaw8X5BavVkvv37rHf7Bi6jv5wQFldSECapGzev7hgu3vFoevY7XfUdU1lK2xly3pTWuO8l+SgfS+xYFpYAXN8lsSXCd3lq1evubq+oR96Hjx6xP17FyyXS3zfIYqKLBIRGqCyCmvFEtr1O4kbSJ6z/b5jf+hwbqBpGtq2YdbOiiEkwzhyTFcmFlEKtElQyCCwPOd6gYSmZ9t2Jt7cyhD1Qtal9+O+kJQlYYCSoNdibzeazjludgcOXSdQwBg5nc9pm5pl02LrlDE7BGKo09zXxXosMTwm9XNIsXGyT7mUeyMGMbqQDAgVAW2S5yz4Ettmmwahah2KopIp51X2eN6i1y3WWjWehYWlLfpynw9Co57350LzP4kBEahiwv6n+am15MfK3tBIJPQJmuwGidk0UFV1yoAt1KazepYUd4VPhgI/ZO+XSlnhxYvlE4JgauyS9poisA5uQJgkSUY26WfnZV7EGFDaEoMjBI87HASsoDSqqsWAlymRU2S6Beh7CIHGViVVgKkNq3aOns353gff5cc//yU//vlnfPT4Hh8+vsfFyYr9/pCyhQe0kbhGr+Dq+hqLpq4aHr/9Fje7Lf1hw/c/eJdH5/epbcPF6ZIXQ8/L16/YbA4YU3NyckbUshduDwODV1SVScxujqgroq3pfOQweA7DkGIvxFyy32z54N3HfOeDt1l5iR/5xS9+xvd/8DFaV4RoOa0bYvCERF4zNS36ZFS9vN6wP4hhQqGYtQ2r5ZzVbCEohsEJVW1S5A/dXvrNWh7efyQCrNKsNxvZi4ehGCqoNLtDz+AcfdcRnKeuLPPZjJPFkm7wXG13vPj8ObaqODk9pa0XItMFV+QVqwIBUzyzm+1WjC7GMmtatK0IxmJMJfG0h4PQ+QbHEB11owTSfrPm8ycvQSke3L/g7bcec35xn9/4rd/k01dXfLnZ0lSGRW1plhr/YODeo4doa2mtFViWH+iDZ9N11D4w14qr9RqlFZc3N5ws5rRBAtpfXb7mECLPnj1BxcisaZKSLltGZSpUUPgucHW9w7meEBwuRM4WNa2xGO3ww0AIMJs1NAkSvesORDReyVlezZd4F/n9P/ljXly+xhD4lXcfM68Nh77n4vMXvNh0HHqHrqxQaKOIwWO1wiqNN5aQCQq0QFtlrniqShJBm7om9BK3/Lzf8nQxY9W0zNFEN6AHh9cDA5E+KrSXM29QipDkpjFyUMxN/aFjflLxzoNTPv7uR5yer2D2/wcelflsLkG8SfW3VoKtTeKozq7EwkiUxFutFMZqqtpQ15btwfHp0xf8yz/9KT/78il7F6CuuX9+zr2zUy6WM+aNxWojFgNtMNZgG4utBFuZDyWxdohWGUmWvwQRq4wIE4KTVGOm1pQRPpt0nIsps7sSq56RYKiIJQSFt4rT5Yx2PmO2aHGbHQZhEDtdLJhVlqbSOC+HjvNQ6RTEBsSsGDEeakxc9/JnTFa6WA6BELzgF5OiopNgUlzM8vKU80WRgdsRktWvmLqOnsuHVHbfgkKFpGQSpd9UIeEsCsA4tkwgA+L6zMkfTTRJmUnUh2lOCO3e6GLNWHGXKINjlH7KUBVrbbKUitWnCE1G4/wgfaNyFmUxlMqvsRyEANEH/LwVyAyU+UoUdpmQGNeyouJjxFViBRd6YVHmZrN5caXv9ttkLY+pniLgtMkzIFb3ZCmNQM65oDTDEAor2BDE4hdDoLW1wBE1uBCo6pqqqVn5hfSHtlgjcMrBDeLF1OLFrGxNiMJ24vquWFWbpi7BriHNQa0VwbcE73FD7nuZt3VVibBcWc7Ozxl6yZXTzloUQsP7+NFDnJesua7rqa1ltVhRNQ3ESDObgVZUztFXPc2sFWIEpdDWiIWrDbQhUDmfDgcJxO3twGEbCcrQOaHPNi7QDZ4+KVfKZOYV8Ej8UAxRaKLRECUg0g1J6DJGrGExYpRHH+RAOfSObhC4gHOCPdfG0NgqCZKBzX4HusJFqJs52/WW7rCn3+8xdSXZyTXUxtI2A4vFivXuwHa/Y7Ne0zQNdV3TzloyHW+GxHrv8YOjacTrNQwCXZS9RygrnQ+st3sub9bsDh12vqRdLKkaRxgkmW0Om+8HSWbqvaYKAu3cd0PKdyTC7ma7Y7vbczgcmM9nIpisYmKYE69qFrhJiopQiFKEMfHEieBTEtTFyGq5pGlb2rYRASW1caQjkDnZdT27Q8fgvHhmEhPh/nBgs9txvd6IsKMUj8/POVnMOVnOQYn3px8GtJbEcMbKmsi7as4fIUJl8qhEIMFrnQvs9116v2a5nGGNGBFyolIVI+wPyfgigawxuQCmTHs+sz0plYTNnHskKyqqeBWzAw3iGKuTPB35y1j2xEg/9KniyUsT0z6SrJ1Z+7NpnWt0gkcKqYvPOHqlOCTmQqNTjEpSFPMGGXxEpX1AMQbNT+PX+ugJSSkV+vRsBAMXDqJoMSXl6CF6iAETEwW69wz9XvaOmGCm6f3ee4bBF49otsuZ6AFD52HWzBh85NV2x8+/eArBs9uu2B9EuR2co6oaglJ4xPP8+P5DzhYnXF6vefHqFS9evuBsMedGXWGUZdZUaNez70WBN8ayXK5wbk/vA5t9x81mS1UJeuDV6yvOAGzF5c2G7f6QoEbJeJfmiVaK2lZoIpvNDre74ePvf5fe9ez2e+IgkC8fnEC6S9/nnF2ez5+/YLPds93tUVpzulry4PyMs+WcwTkRiBMigxjZH/YyXYzh/OSUSosv7vLqii55z9u6QSco1L47CHS677EK2rpmtViw6jr2/cCzyzVPX7zCWMvpqXg5Kq3Q0SX6dpnEPuZcY5H1dkuMYK0oKiJ7iTllcJ7d/sChFzKZIUSaBlzwXG92PH19zeA8l5sNv/arP+T+vXsslgt+8uWXGGv5te9+yLytCday6zuUtQwRbrY7bGVlv97tCjurqgzX6w0+Bp69eAncpz90vLy85qRqcWiG/iAG5ETMlA0bSkW2uw7lI77vEwlCwAVRXtvaYrUXY1GMXG0PST6w7LqOTDRR15qbWc/gI7988ZrNoQcil9drtrWhcy4ZcCVmx0eN+KfE2xujQWmBASqXBTuZY1FFgqYwnkmGDS0y0qxlU1meKzgJmh4hBHIq0gN7peiUYkAgoxliKgQu2VWc2OuMJpqK11vHoA6YbeAR3+71rSsq988v5BelxK1YrESCtbfWJv70WILaTDrwGmOo6hZja/7u7/0Bf+ef/A/8t3//HzI7u+C9d97lux99xLv3L5hXMDeB1bwioHHB0KT4kKZKgfkJdpbzE2iTmS4kr4WGknnc9X1hyIISiiJxATlnSpBhMkogXwSP64QisaorTk9XnJycEJXiZrvh8uqKGBWzdkFTVVitcMFha5uUjZS0McW+FCNVgXXIpbUcpjmZoZoMWlYEgndFwBFGrTSplB6x9j4VoILEnaS+KB6K7L4GdMy5REST9iEfUpOK5hwHZeFOWYRuTYooGdyzlc8jdH4oTxwgh4aKvDDJiTDphzE3ByWoNkLylsQ05cT6FzKYI53Xkq1V6ing0uzVS0GbmYK6sgxOqKZjiOIdSd6qiKIbHLEfJBhOaSqVvGK5nW7AO9loaiBqUzQvpS05uYJCYCVZWRNJIwdBR1qrUXqGMosyrlolwuYIJH78qDVk2JJ0Rp405GSkcmMGPOSYhKTgBUmembsmpP5QShVvU4Yg6eTxGQaX4E8DTd2UOJ9DdxBFL0ZWq3nydgVCEAvgMAxst3sRAPUYn5GhIsELBODB2w9lXLUw0WmdNlAnQq3zgZeXa7p+IIQBbTUhOFbLBT/60Q+JIWJqW0gNtDZjnAoi8AZg73v6wwFiwFrxAkh9PE0lyiRehALvPbvtAWsrqrpmsVxx6Du67sD15evEflcJVM176f+mRdd1grc6uhDwg+P60LEdBvbOcfAB1w/0EWJVJW+CjFXOU1Q1LcZaUQLx+GxlSA5EH6FazJm5AM3AoCr2g6fed1iExIHUhyFK/4kQoNA6su8jm13Pfn/gMIh19tB1XF2vmTUN87bh4nxAJ+t+27Zl/ENec8U7IJvSq+s1+67n0Mu+IRC6gdVqxdnJKacnJywqm0hIXJp7juAddW158uqSz569YN9LXFxVS26um/WG11fXPHv1CqMVs6bmo7fe4uL0hPOTFev1JbvDju1+y2J5Sl3V1HXNg/sXaCVJ8V69fI41FfPZin2yGA/OMV8sJdi267i8vAIiVWX5+HvfpbKG4AaaWhK8NZVlfXNNU1ecnZ2LB9U7uq6jzgyPTmhP8xwf3JACm33a30VRGroOYw3zxTzFt4mAftKKggQwXyzEK6EVs7ZlGAZevXxJd5Bg6sVqyf7QsdvvuXx1SbOYYawQPzw6u2A1n3N+coKtLf3Q8+TZc4nDRGPqWpL7dh2EwMXZCfO2oWklwNqHwG6/pzscACFc6ROturW2JMXdbre8fP6Cvh+4uLiQgOIEt3p1ecnu0FHVNcuTE6qqoj/sqbSiqS1vPXoAURIJPnn+mkwIUtmUkyMENus1lRUyGCExyZuho+9ecegDoQ+08yV20fF3/vkf8QeLGScpRvD15SXb3ZZ2diLUw3i+8/Zj/jf/6/+U+48/4L/+7/8WP/vZT3n+7Anr11e02qKRrONVZwgucLXeUNcNjx495OnL5+zWa662Nwxdh0JknE8//4IPP/qQ9z+An/zslzx9/lI8+Wk/jjFSW0u373j+7CXnTc328jmH9Qv+3f/5v8PN+prPv3jOV8+v6H3ARdhsbmQPVppuv0+Ku+Ynv/yMm92O7aHDWMu90xPevn+P08WMQ3fgerMGYNa0LOcL1us1nRvoXc/52Wk63xTrzYYuEdScLJaAYvCey5u1zMngOT9dMW8aVjPxsK73HZ+/vOTJs5f4GKnrhof3zmgqS20VVqXgeCPB8c6nWFYv515VWTQ+eUChaedElMRTHrpyFjW1eNUGZXh5I/lyrl+/4Ld//be4OL9gdzjw9/7JP6OdzfirH/+Ai9NTiJ5t6NkOjqevr7h6+oSz8zNijDx/+ZK6qlgtFlDVfP7kBbv9nk3n+PD99xn6nj/68c/4TjS0yzlWgUsGRThmovvk2Ut839OkGOacfqBSUaB2ipRXTTyJ7XyBrWsChiGRD82toBp8VHx2taO1mlrD/+sf/x6qskRjhMwz9BgtHhOXDB02OmxSMJTR4Dx4IcNBQdQRrE5Ma46ZrogqYpuKe48fcrW74Wq74+TgOalFcRwY2KLZoOiJwggG2BCxKrFKJuO6IdBWmgHFy4Pnb//Tn3PRWhaV4b/4j/lWr29dUfm9f/1jjLVorbm6vqaqa9rZnLOzC/aHPZvdhsE7Zu2MWTvn6csXWCM0uL/9ox+xu9zw9PUl/+f/+/+D1+s9Dx+/z2/+xl/h3umK89WCkxpqq2msZj6bkZmPtJGmBCI6qiSEBVSivnURQt8jLnKLshUHF+j3XfLnUSzaMQnfISkORsmsUyS4UXLXq+iZz1ra2Yz5asXBOfb9wM1+T1211NYybxpMgroFIxCumA70IThUEC3XZCx3dnCoDJ9KWOSS3FCRgVMkz4JPGPIsqBdL2IS/vDjsgmLKVT/VKWLMCsHI1AMSiPUGPaUy4zsjR++cvi81YcLxrSe47OR2YdzEiYk1Z0pZA4laWCVFLhYlJqJGplWKDJfmxUThScqxRK5JAHLxH0UILhKVxyjxyMR0EOZeUEqU1KJgl3KyfpkVSVXw1hk5ng2jo9qVyEA9BTI3Mumky/uElc/GUXWUuyFMLJ7o7JfMlttYFIIcNK4mXT7Sh05iNnSGNqUxTgUrNc7FnKAw44q9G/P85IMFFOubNTloc1qOOMhUUbxy42JREurynFbToFqgtqUB90+X8t6ReDd1w2h5nl5FmC71SQxQyaOYe16RAw9VqmfMt5AhPSSlNxbljxL8meFTct8YYyHdmqA4IWfnntSPZJAoc2j8IgfI53bkSZITUJa6pfidwTticAIbTYGuAt2R/osxFmt6Xsshj6n3SQhSxVNYAp5Ll8q+milmffApL4Er4/jwrRR7p5QkSE2U7FVVFY+Qyu7N1M8+e1cUmOUJZ4/eJijxPBqj6YZBEtiFyL7vi/Fp0baoKJ6S5nqWkuBFFm1bFmfTCm14QCAN3svPXgWoLc3cUDUtFVDN57TLVVmP3jYc3MB6fUDpHltV1HXDl09fo5Ri+WqHNRIbtF6vmTWz1KeeqDU+krzoAaUi1oAbfIF37fY7lDbME1OOSsiC08UCg9DSd3thJmqbFjeIxf3J81eiFCuo6kriOqIQLSyXC5q6pq0r7i12zOqGRVtjmgoXHK+urtj2jhAVtm64WW/oux7XdZyvVsxnLYtFI9BN7zkMPdv9jhgjp4sTbJqHvXO08xaUZrvZsLm+wfcDs6+uClyyaVtubm7oh0G8v+sOay3b9RajJdP4i0OG+nlu1js517TAuJu6QqNYb3oq4xPETAhUTErkHFQkVoHTpeG3f/A9fvS9j1jfrME5dPTMa8v5/XP6vk8Wa2ibmv/or/91zu7d58mrl1xebbD1kouH77GzM4LWNEbz6PScVwfH1eaa51c3LJsaqyKH3nPwkUEpDt0gcazA6+2G05sbVtfXXG62bA8dw+BoaiUePKXRlWU/iEfCL084OEvHgn/wT/+Q+2crVvOWn3z6Kdd7x95rbG2prOQ2ox+K93Jx8YD5Rd7PxUtziHC42QtEu5lLTEzTEpo5rW0wQ4/uOroAXhsqY1ldPGSZcp/UVU1lLXVd8Va3Rxx6mrPTE4kr8g6tNGfAWx/GZEBN4RslETbJIyd7Wze4ZINLEehJ8M/05MF7geShUp4xl/K+BEm+nQx63wmKwTm2+y3f+9UfUbUt/9//8ff5s3/9J5ycnvHJl085aStmTU1Vz3j/3Q8IDj6NnrOzE1SE1lpmixnL5ZJ333mEd57t7oC2hsVsTpzN+fXf/C1UM6MbBjbbAzaKghKJ9MGhtKY1FR+8/ZjGWmpjUsyGSnZQYUk9DD37bsD7SFNbttsdh0PPetOhjMQls1xxtd7S9z3ns5p5U1NZQ1eg4wLTXaU0FUpXaf/2EBxtPStwzy7cMLieGC0+yJlXWU0wmqgivduVGF2ta656zWYfuQyaM1WxsBUeQ9SGoA0HF9j0O3x0hTgg55HJZ9ZsPuMweD59esP/6bMvmFeauTX8F/9HvtXrW1dUfvr5V4JDtoYXr16VHCr3LnZs9ltuNjcM3jGfLZjPFzx58QKtFG1TU89O2Bx2PHn5kidX1zTNnLfvP+adRw85mTUsasPMeGorge5NJThkEW504RrPnPlE6Au1HhKzMRE2B+/pU8C24H7HDPTZixGSw9pnD0IQi4BN9Kk5SaUkkOzpnGBKbSPsUkYJE0hQCFd4FsqzjB5JC1Yxsi7Jles6Ci7ptyQc53rnWI2SHDJHfSYl4ej37IpIQv/tZHA5Y/H0sSn0rDDiqIlge+uaCpijoJoZoEZ6y9KsLLiXQiMx94fKvSLaRhbOSjkqv2FUdJTOguAYF5O7NpZd1RQFILdDEjaVESIHYE5GJH9T/p+/jVBoFmPOOp2VjFtdlDOgi3Cc2Kpu3VT6KB6pS2UOxInimiNEcx+Uf9ldPalCkXWTcilTIWvPeU5O5g+3+3Icv5yHRik1eUYxccgdt0eNfTu+l6K85PpldpQch5BhRmW+G10UD4FFRFEkbQqaT6xcufypQh4y3luZot/mbOLZk5RV4BK9jjpaA8L0J3W0VVUosF0KTtfKJA/GCAtEyfzokwVdJzjRqJxT4rlyP+cuLMH0BQIkdxXDgU5Uoklg7vsO74bSH1moz4xtLkFoYqDEuuS25bqhJMbChxxXICWHolRKbJz3ISkrvnjIAySWREVwOft0TnCXRiLH/aQpnedSBOYRzjyQ8gApneIeEklHKEtFxsB7h+sHzlfzbHOiqRLMNwQxYqU9c7VYCEGA8wzJ0q1NEgLVOP+FCjZQJZr3xazFh4gyBlPVJSFbXdfC6FfXRFTyximUlvUnsY8UqKnVovz6IMl661mDUpq2nRVLZSTSzOfiuXUVQ5Bt21S1xPxog64b8XIpwGRDl0CZbSteOFvXeFvRKYXreizi5XDG4nRMcXIKVUtWb6U1tp1h6lpyioSA1oHWVDhkPdpaEuspILgBlSCb1WzGEk1wnirNfaUUbTujqmu8d5jK0s7aEk+nEQixrSUe0ITAiU7JnbUwLTZVJakAKl3Y7ZRCFJVE1Z8V6TMfUFVF1Jqb9Q7XdwTvmNdCJOC8Y9cNGFsxa1se3L+H0rDfb3l0/z7nZ2cSm2o1tdHUWmExLF5dEt1rbjZrVBQY96ETeGBV15ydLGmbCq0Vbz9+xMXFOYv5HFNVIjt4jyo01ALpquuas9NTHj96zDCc0x227A8Dh65nMW946+23WOwd2yFSt43kkasqlBsK8kbVVYrF1Qli6cs/ZRTGJvauqqZtWogxUQf3ECUtRFVJPjhIzKJKPps1NW7oZXoZIxT9MeKSp1ppLTDdFDsodNGMBkQ/wh6d90n0EEUlkuLIcn+EQIaRZ2ib5DzxQgaRxt3FBPMmcHH/HodDx4uXr9hcXUOEJy+e89G7D8Fo9oeei/Nz+q6n222oaouOkYWtaects/mMk+WKtx495nDoGLzn4uwMbTSVrXh2dcPh6krysyWa/KhEnrQWzu+d8MHDh6zalqEbUJVFG0kLYJWcrdvDgd1hwMfIfNZwdXXFbrtjfXNApzxxu6FnCAEXPY9PT1m2bVJUErpHKaxJMYVao42Q/4REWW1MhdZWGN78QAyOTSesX1qLbKCVJmohJ8LaYvxS2qKrFhcNO22S2c+gdA3Gcgi9rPss9yUFU6QKlbkFkqwM2w56F9mb0Yj3bV3fuqLyj//VT6jqGmMtl9c3grUOkflsTjcMHIaeCNiqxlqhlMvJ+f7gZ5/T+55dt+f04UM+fPtdvv/+hzxYzGi0otEwazVNXdEk5pdRcFVkzrhs7SMq1putWL6NYdE0clD7SPS9WLVCQQNBFD5uhQQo9s4lyUnUFWEUGqiaisVizny5Qs1aDt7z+upKGH20aObzupH8BU6o64xW2GqkPRVhJEF2oggpWSPP3wtdahLOJwLi1GshWnPuiyTQA+kISgJSujexe4iQ8+bYFSWOUQkoCgAUQenWU8VDclsByZ9lIUS8M/FNRUWNwlLezI9VpSLX33o2YSeL8J3qWeJS4iiZM3ouMlPRlHGntD+XdquOUwu6eB9u3RNFsAmppMKCw+225npO6/YNVxzH4q56ldbFY3ae0bKfn5uulfFpBRM2o3J3+SXrIJk2OCvGpkApR+FV2qcm5U6VYFWUrqxMTEf59lXm4l0TdbhV33RP7HP5k+46ui8kDwSAKd0fQpx4jjSCB04ewjxHpnMvtzUtkFLFqUIHRdGW9ozj4YeAG0ajSX50qqBM2z3t3+m4xkld+sP+qE+MFpYaiYyQoMqi6IRQ6iyMXmNZPjM4c7zPiOIOKjE2qeTt0I0ufTR6tJLiEUcP0jRHjE4KRw58z5fSOnkH1ZGCrzJ8Ms29SplEwywxKRm6KaQVUk6mdM3Bn2XEjBytCo81UgeXkqAe93kWpkjvr4RG1gvt+oDkwOp7YSIijlTYWivqKtHioxgiAp9NuYrqSuBSPgSh+Ibi8RqcY7PbiSCeIHuHvUAma1Nx2B/onWPngmDVlQiSaVBKnq8Yoa4aQiJ62W02iVXK8t58zn7fy9hkg5uWgPVlO5Mky0ogJFppTGXlnA4eqxSNrQXuiWdI7H1GC22+QRGdE2i1VtjKCswnjb9L5AO6qpAcRhJMX/qtmQntrmISbykwsKzwZqgzSlEbyWlltDAQoXLso00bl5gvY6Lsbecr5qsTsBW//y/+gP12CyHwN//jv1EYlAKgrCEQ+fyTX/KLZ0+Jnww8f/FC9vjlguvrK06WLffPTvjtX/s1losZdWX5/g++R9PM0Kbix188p/nqGW7ooW3L2ugOBx5/77v8e7/z2/zmj/4KqMCh2/FH//Qf44cD6+2e/8N/9V/S+8D1egdKFOG2aZBcK0I0UaAEUSCL+ZJ4GdA60tR1mtAZESFztDZiqBEP3uhtzbFBxhhh0pvuA1F6JwIhphxGTM/ctPYCRO9EMbcGbVO8p/f4FKM7RI+b7M5Z5sj7sw+BwzAQBl/2sfV+J3Lc2RkXDy/46skzdtst4dCx5YY//tlP+fjjDxmAr758yluPHvPgXAgVnr14TvSeB4sTUBFtNE1bs1qcpXhFx/nFKU1T4SP87u/9vgTUH/a01mCVZKXf7g8s5jN+9IPv8+/96g+4WCz49Jef064WQtakYZ5SSmz3O/adtHI+b9msr+j2e1znUVXDzW7Pf/v3/z6KnqqOfOc7b3M+mzGzluiSwVUL5Fslg7VNaz2medoPjhAi7azh88bwVaX540+fYVVLhcYNQda30ey7TqBjITAcek5mC84WK/bO0fV7rl2HoaKlplItIQ74FFs7TfAMgmUIUTF0A4vacnqy5HsfPKbWiopv//rWFZX/7D/5D2XSpcOs6we6vk/CzZicKFMYuxhS4KjDRtBK6DJXi7kkcGxbrE4c+lrRVKbg/2LJHyHWpJgsdC6IIB6S5SoqYbcwtSgquJgo/FJQYGI8qTLlZBR2pCEk1yQwpJwXRmlOTk5p24aoLS+SNl9Zy8nqBKs0lQJLir2pG/x0kJPQGWHcKFIgJ8hmkWl985XbOD1Ijyy8YYRd5TbdFupHSztQYDeqKENThWR8AX8xYXpSp7vqmNlgitX81jPZAzI+KpCRIxhZEfmn70/fJEW1vCOE0VNUrAHyZRaQIAuAuZ657uGojGnf5bqZhB3Pz07bGbMX4C4hO1sEyRtzLML/Xf0GY+Aq8fjz0neTuXGXUC9tDEe9fvs9kTfH5PY19aTdVQd4c75lSvI3youj+nbbS3dXuXcqK5PncxvK35N5e/Ts0WtCQlOm01GZcT6FUVHJQY8xhJJ8MueDyQpvnnsZGnfcnwkmmIQroQlWRSk+8kZN2jz9PfdBOBKmY4GEFUKKOwwZU2VmuqZU3oOKInrcrxl2mvvw9vcxClQkxIAKMqf9+HQROHIOJh/GtR+UuAhiDMkLQ1FEZN3GCfIzKx4JMseE7S8mz85kLxsz0IeipJVcDpHizVTprMnzVFgeZRyLrTeO3nmt+gR5C6gQaDS0SkFblb5RNlkfESG7KEmalJNSQdAYhCDCE1jU+WyI7LsO6wNtY7BNiu8MgWBbqTNgT84BRfCRQ9cL26Gi4ON75/C1SWvA4IMQvuizBbWRLOFKKTrnBCatxvI1glYwWmi6LaJQVrVlWTfiGYg5jirQGoWuEwlG9t5GCbfLeZOsBaNCmU/RSIBvzCHBOhIbW9atCj066qLMisI4wgKVaFslZjN6z5CZ48LEczqZsF3fC/FI3aBby9NffsH1zTWhO7BsW+qq4uryZWK0o+Qoi0pTW828lVit15eXnJ6d0cwX2LbFodimZJMh9FRGS1Jka/Ex8vzVJZvdDhn5WARuozSLtuJi1fDgZEaMnq6G//g/+g/57PNP+fknP+ef/94/46MPP+QH3/2Yl5fXsvZ9l+afGEEK06aKVI0Z5ziiECsfiH3IHSKW9WRQG1LsK0oRDqPKkT8T6O3EiKDGvhUWzgzfzZDZlKMuyvoJQWLPvNeoIZ+XsueGKPBR531iUk0GnQTjzzGhNgiUMWRZJJ3zWmvW2zVEz6//4GM++cnPebXd8Mc/+TE/+OGv8ME7b7M6O+NsPmfoDrye1cxnDXjP6XzG7rCVxJh+VNA0DsVACIreRdbX12xurqlSkt+gkJjQGNFRiAWapsYazX67QVtFjB5lDPsgMSraO4xPpBW7Pa1WrE6XvPXwEZ8+v+TVesOnn33Or/7K9/ngvXf4+IP3eP30CdubaxSRumpSnDUS52wMiiBeXaNp6rZ4GavacLFseOfxPZ68vmHdDez3A7O2wQfp/6aZ4UNge+hYzhqW84aT+QwdIrPmjFltaecrdn1gvRv4lz97IfEtPlAlL2oxqOVjNgQena746PE9Ht9bCn29c3zb17euqHzw9mNyYhlb1/S9sMpopYSq2Fps3thSsLdLfP1xcFhtqWzFvKmTp0M2qmQiwGolFHhRoEQi6KaDWkn2TW1Mih9W1E2TPCpWrKWTQ1GjCFHczEIPOwoF+b3ZzaqR/CBtXbGczTCVTfjKIBPFGGqT2pYsZ8TMYX9bcEj/y9bfsjGMgsZdQtvt600BMU4LOLpi+Vwd9QGTDeiuaypI/kXuuVvoHmErQPEzyCZL8QIdlZLrdWTNORZKjyzSRaiJY4Mnlmc1eabEVKT7862jojJ9X6nOpA/fbD8ka3fyhXp/t3B916d3KZTTur7pgfp6peOu90664s6rKHLwpsI6EaSnitHX1Wf62V31nAryY/3uVsD/ItcUHjlZBaNwHu+YW+VEn5TL14zBtKzb75kWemflxvKy4DvC/nhj3d1V76Pvj5Ta2766N+9j8r7pd7erl8v+WmPFG02KpU0EmTsCD8h3ZcFkAum8PQkTfXhRgiLiNZ6UMcL3Uj6sVINMMHLbGJP3UnlO1IQY1UipNRV6gkJrCUASj+9k/NNAK1QC/pLUDpXYz1J+EiVr3qV4G60lfmk0DSdGr9SOrLzpmBShEBL2XcbU5ncojU0xdiTISbaG11aLcmHARIHdxaRchaiodVIOEcGvT91m0/mklYIQaaxO+Sry+o4IwUv+DAmIVmBVoNIxJRzNnqMoJA067wlpPELE6zzUUueYmB/yMaihwCJVlDaOCVhD6RuUZFMXYdYXSJi2VqB5aRL4mEErowEpGwZEwQfJIG242Wy5vlmzWW9YzlqstWhjUhZ7UhyGwCxUMirUlaWta17tdwxestnX8wXBdez6ge3hIDOlsiX3UAhife+dK32cDRtN3TBvGpazWrLbx4AmsFouOTu/4OLmhqfPvuTy8pL1zTWzuqIfBrouJ9hNyntIHo/sy0hrqZxjMRJVKJ9n2HeMAe9H5ISbkPHETMJChqKnaWgmayilC8hKr04H+bg/5gUtZcXCjBnTGkreMtFaICkros7pNFHSvpKMiTGC0RaMpJLotluid7z31mMe3btgP/S8fPqUr56/YLFccfboEbaxKCqathHjYgzUVhEqK1D+ZPAAUCaTN8B2t2e73XLYH0RRSIaOGKMwxSaCh4giGglkDzHgvROImhuISlFpRHlVIsdKfJulbmpeXl7y5dMn1FXFOw8f8r133+P+yRn9zQ3DYc9+tyOEA2YwNMnAAJK3RYcgilNwVFVNbS11panbJVVT8fjilOHFJYduT4y1GN6UEop1L2NyGAZ2XYfRcGJqzuen3D8/oZ7PefL6muvdjm7oC7X7ZONO00D2sFpFzuYNb52f8PCkBTcQ3C3Iw7dwffusX8t5OTAAmIvL0xgreGCdWamE+QgllrgQoVJ2DAaP4iqXRHORgCbEHHAqt2Qe/AJxShSQKiU3MxjuNQ1DCPRuIPpRCLVKFQadSgs1ozFyUGhj0dYW7D9KYSvFvG05X61oKtk4rrdbFrUEn82bBhPyRhsIPhLDKMlki0S29JQs2Ekh0rli6botvBUBJTU+v2/0JsVJQjA1fdXknakIJYehgqMkZunJ/IojIeW2EjG+9PaX0/Li0VwYhSd/bHHOJ/hREepry5z2zZECdFvInViS8xPZg5Tz/NxlLZ42bhS4R69FhrHl8kbcfizJA7OleCpOKigW5um8mLYrpKBSlepoJ275aTtvC/lT78ztfswwrallvvTx1yjFdw1r7uuv86rkfph6mO66jgTkP6dd36SITedVtmSnh98U9I8E92MlRb7OczBbjI/bVuqdhY40b3W21sMb/T/Ox6QUq1tzNCttt9rok6Uxxlgsy1/XX7lJt9v7dR6621dhzJs8N10/t+eISuWFtJnEGAvRR14n48Ypf4aYlDyVY+hy94+a3FRJO/KClHvGPhD+h9T2rGBoJbahJO6YKZ4xjG8pmezVSPABsu+XmCud6O6NJXhXvJImYYTFCyEW7CFEnI+lXSDt9T6SqBZTwtGkH4U014jFWyD9CcY2WBBadR+TgVmnvDApF1TXJcFXl4SxKPGmKKWY1bUIrpqUHV1Pctk4Ykp0WevRup6Z9YQyXeb2UCA+ga4bcOR4Nl1y8JQrz+W0jxut6FyCorqQcqSooyzmGRYowycsVjJXBjFCxojS4rHzQZKpZstWVadxizkmNeWuMZCx1caYlMspcnJ6Rjubgzb86U9+IoZFW3N6ck7Xdxz6QTD+ZAEfdDJAGqNpmobVcsEnT1/RDR1YzemDh7x6+ZxXN5e8Wq9R+gRbVey7Hq8tQQU2+wPO+ZRQNeK8Y/CKBw8uOD875WK5YLe+ZgiOzjv26w3LxYrf/M3f4b/7uy/5+S8/58svn/G//Zt/E1BcX69B2xSQLjTgRQaIFPiiSWxeWmdCoBSTQD6PNd6NpCh9yvNirS1KvSThzNvm6D0JQbxYEQhakkaml6KN/FQRDCbNC4ndI2bokij4Xili1JikSArpgGRlF81I8lXJOIsCU7dzojEc+sDN1SvmVcWvfe87/OuPP6QfDvzij/+In//sE+rZgo/efx9VW4wKzE+XxCeB4Hu08tw/WxDR3PQh7QERYxTL1ZzOBb56/oIXr16z3mwS82tSgL1n1Tas2obdZsPOO2bGsLo4w/lBYhSjsEwarWiahnmTYPl+oGos2mieXq75f//uP+Jf/fin/NVf/RG/8YMf8vH773PY7eDx28wXC/70J3/K5nqNGxwnp2c0g6e2FctlI7nyYmC723K2WLKczahNxclixmo+47d/5SO67sDV9TWRRSF7sdZKLF6Ey+2eV9drTITvnd3ng8fv8t7jDzgYx8+ePeOz51+y2W0gPVfWORCUkvw+ERa14tHJjO88OGVVQz8ohuHrz5t/0+tbV1SMSYxR2UqTrE5GiQYagkoeD6Fq9DqmIHiFUnmDUil4SVyAxhp0hBBTvhOdDhYXihVGaXG3Oh/BJJrexOduFNTW0tQC7wiQsq0aNBVtUwmeVgvuzgVJ5uSjw1rDfNayWtRCvVcZtvstgwtURtHO5slVHjHJYeOR5FtyqMdEZyvKWrHWpQWdTW1xPL3LdWSFnggQKptC5CZQI12vKG3xSLjIm1d6oGzm6a90T1Z6KAYRslUz3VkENSYC+B1zUqlj4T/GibCWP7ijnbevbMWYQpuy9Xz67NGhycgFpZKr9rYAXd79Rr2zoJXa/jWCfLbkyTvHhFpaa2JVUaf8LuP9cWLpTYpmwuLf9qBkqFTJlD5hgyrtTRad6fvv8sQce5zU0Xf5udvtz32ev8ljPvW6HPfFm4rGXXCuqafythfs9piOffvN3qTb9xy1/2vuL58VRV8O7ulVFLti0X9TISxK8NiQb7xKnbKiM2nXG3OzxHS9+f2dSuXXa9p/7vd3zY8YY1GW1XTviLFQzkYoCWJhXKt53eQ+yvTWEYjBCeuR0sKCmPuhKHAZbqJGTTnNjcyhRxyVEaXUSL8exUiVQDYpM730dwwx/ZtAXHTe6jL8bGJSSMG8Oisp5AN6zHJudChtdjkRZNrHVRK8sxE6xGxVz/GBqQeT9zXJZRTKdyjoXB98YXcUqus8Bh5tk7FJg/aJ3txLvh8VxKtgEDamvH/HdHaoTGwSdIHZjefHGLumlaKqarrg8elsztEILuTcTyoplrEosbVNVugQSiOj5FkHEideotTzSuJhVBrlLCA7fIHhFVbCSKIN9ykgWIGROuy9Q6d7hr6nbltmi5bFyYqry2tu1mvJbdbOaJqW3W6DC0Fw+JnCPIJRBqfEG2E0tPM55+fn7H7xBS9evuT0yVfoumWz79hsO/a7Dn1mWC6WxCC5iraHHevtjn5woCUzfJ/KWS5WLOcrZvVSAsdRBK0JDobeQdD81m//Nb784gu++OxT/uW/+Jc8fusx773zNp8+eYrrB2JkzO2RDQFJafApdivGkBQWXYxeRonhwxknfBbJMKuUoEpsgeqqNGZ5r5N4ISlCZ5VOIPE+nQ+9xwdP3w+4YRCFuKoS66CmMlYglirvuylvl1HUTYUykojT5z1BpzUeIn7omdsZHsVmu6GOMDNCsvDRh+9zud7wT//gD/nqiy+plyd88N3vos5X2OC52g0E20AV2XcHZjOhuV4oSg6SutW0s5b99YZPP/uKm5sNQz/QJkUj+EA/HHj74oK3Ht7nOx+8C0ozeM/7773NZn3F4AasrWQ8UpyUCoL+sZUw4K33B/7r/+4f8uLlNQ8v7vM3/5O/gfWer559jvOBBxf3eXz/AQ9PT/n82VNevH7NF89ecLnZoJTiLe7RWIPRMIQBF3fseofVJ9SHjqap+PXvvMOrqzW7PvDpy2vms4a2rui7gyQXNkKWMFhDCIEX/cAfffWEF33P3h345ZdP+PL5NQSdjADltJA9QiuGweEHx1uP3+W9h/d59+E9wv5astvHuw2U/zbXt66o3BYBtZHYFB3Hb7IYEUnUm1NhMOX2UMrIRoai/JqsA9pkYW1I5jdQSVOXRZUohFXa9BBGr8aYZH2iYF6tNlgrsC5rFIOHGLzQfBKwthIK4lqwu6psnFBrS20TM00MaDVGUthkRSOEsuFrpUq9VFIIbosdtwWHu4SMUZROvRgnTlo1VS4mz5TZljahqSQ6KUJNC0AdTdKsVN2lnExakMpj8vObvBa36zd5023h8BvuHRsiP++ybH8dHOb4dUmQZEo4MBFKb4vUbzQsCxJx8ugk6P/2+N/RliwY3uUtuv3zm/rmm37/nwKtyj9v9990fL5OkH5DCL9V33EN/MXrNC376O8kOBeF4BvaM97ypkL3jW2Ylnvr3mmNvmmJTBUdJuM4ejPHGJby3v8JffNvct0ewyPijOlinipY3N3OGMdxVjFZcScCehbHp90wFpPXH+P6yMXfKiQmQ1jun6IATBSYXM9IjifSoCIZFh+z4J9jYJTk/yGS4DEjpV5RZuLoCREPpU8egnS6aTCJ8i+HvUqsk4j4OfHt6Is7nlsFAJfrhVjQNSM5RywdJE/o9DNvz4rMQpgFzjQG+ffEHiPernwej32pJn0u8QiqlKXSPCiW/OkAqqTgaPkupMDfvCPmMco6rhwPoUC1s8FNlBxpf0TiSLP3L2QdJzO0R3m/c74oWGiDrWqqqqbvevYHSWKak/YqJUJ23qtzd0phY6SiVYq2aThZLAh+4HA4sNnuOKlaYhTm0N2hx3nJtl7bisOuY73dsdtLXiWTcmzEBDGcz1pmbUtT1/RDIhJIMLMYpB0nJ6fsLnZsN2teX14yn8+4d3FPguNjT9f1WJXQGDlWJFGrC+xtsrjKQhtPMIUoq8YqtDLFaFPg9CUHWzyK2QMKeYbINwnGFygGjt45uq6X1AkIQ6qNopiEmOHuY318WivC9GbQidrY6EQLHCi57cTb6JjXNfO6JgbPg3sXPH54n9V8xubqmpfPnvHi5SvuNRWtkQzw9WwuLIR+wPuAVh7xLhq0EQNh10nyzlevL0XBVNmgKG1zztE2FaeLORenJ8To6fqeB2cnuH6HUbEwLYLGRw1I8sv5rKVznsvrDX/y0z+jrisePXjMd955i8tXL9ltNhAidWVZzGdU5j6eiK0rbrZ7rtdrhmFg3/UYlfJ8KUn+OIQg/7zDes35fM7b9855fr3l85eXxfCloiaogFfCpiawTUOvIi/Wa/becegOvLpe03WJDTePc2Q0CqmcjiDw4OKMe2dnnK1WbHyHw0kM4rd8feuKiks4Pa2UMIokKuG8CQgkMSIZh0FHlbRPEc4MEvie3X1B5YMnitBPgkMYUxaPQmFshQuRaDzDBFZXJU52YzVVZSRwy+VtSKOMkT+VQmFwCnZDx+ubG04WwoByslowdPtE0xlpKmE9MSnYTynJZi51SR1rbDKYxZShOG0QReBJG/UdFt/pdRvmlA+HbB6L03uKJeTPUXYmTEZqctiVDyEnsB+FgPxd3l/U9PCK6VCl1GNsl3xojJqUwZGEcls4vG1t/johMrc9xIjShkJffIdKUTwM+f3xTc9M+k3c5WGahjI9n7Czt+sqnP81OZGh8w6yVynfqkHlDNmKUZGZlH2XQH9bCcn33Pa05M9uX18nhE8hYG94JO7ou1svvVNZKaYyuLPuGS5VpKX8XSYnCGN/F5aou+bwXTJ7mqNTK/84b8e231bYpl6go/LueP/RM/kdt++Zln/H87cF/QKFSZZ7xYQVqzw6MrqpGN9ox7Rjbi/1uxTbN+o0KSfvUaaq7uwXkpfyViHlMCcp5CEkeukQChEKjEHw8lxei5S253qFFJcozFem9Ff+vwTspnjEKHEKU0EsMkqxUSl8Ujl0QqSEGMb94ojRD6FRDaQ9YrQOxpDrCi4MR+Mi5Up5Kgf4T7xAkLxACD1t/lzlOh5tFiNEONdPK508K1nwDylXSRqvHC+QLOLyePItp7WutElnpyT/zAlvkzUPYPJOqV8g0iOJjXNq26wwGG0Jzqe/vZzh6UGFvNck15WMkS8eoRBiItZRuL4vSYWNNml7yPFEUlZd1SmORRLIRqUgwbUVCTLrQrLYK87vPaRuGhTw6We/lHcbTdu2hBDoUsbwdJQJW1lRdGU0I4qZrbm3XLI5P8NGh+t7Dvuedx62rCtL1JHnN2seHw74EGmamv3lmicvXvH6+oowdCUeyIdACI6LsyWnJ0tmixn9dYfG0CR5KPjA4Hs4eN5+9IgP3nmHf/gP/gFffPWE3f7Ar//Wb7HebHj27BkxeiptqOuqeEC10qIciqugMJmJoD0QlMcrhY9yv7VWSCCC0JCHPB3MhF1QKVScnjfj7A5aQ/LgZE+1MRVBCS1v9J5KgVdJsSyrPAghUow4L2tVa818ZpN4E7EqUqsGlGRO3wwdwTkWOvD2vQfUlaU77HnvnYd0w56PP3yPHz95zlfDwCcffshF23J+ekIzW/LggYFuT7h8weFwoOPAoAxtW2OjxavA09cv+OzL5zx58hSfqLjzWohEumGgaWpOV0serlY8W6/p+x5/dibxM9qJ8qcsMWr8ADE4jNXcu/+Qf/mnP+ePf/xz/uBP/pD/8n/3n/Pv/89+m7dPT1hazfZkxXa3w5qIHw4s2pbvvPce7zx+i5P5il98+inPX75iv9/TNBWNbVjVlaTJMIZOR3bOgxpYNjM+fuct2rblp59+wsE5+j4ytwu88wxeklY3tqGxNRjNq/UVT1+/YOgHVByN6lmpzbuJ5MYS6FCl4Iff/YAP33mbe+f3GVyKM5/E+31b17euqORs0sZobKJFkyBDhPs5ePqUWMwYjU55yGXDkGCuoEm0lshmp3XauJXgHROetq6yYJp46Z1nGBxaWSm/xCEE+t4XKJlHoa1wnDs0h0NPjB35oLfW8PjhPS5OT4UGOQYGJ4eZ0YbGVqMglXGZiT4nGwrU5IC/m9Z3VDxuC+b552jlzFaILESlQ30CH4K0CRS6nHB0iB5fY/zEmHJlFNQFOpYFq2OhmnJXztERyXdMdLDEyX5b5B2VtawAvdnW8R1M7j0SzCYCddIphFdVTXxJXyMw5vLf7Bu5PyZrYmFmelNiZdQUs2yuJxZINSqCqRpG59iQUbC4LTjm9k8F57uUlD9PibvLC3VbGJ9+n62jRYHLCuikv964f9qfaUM76qg7BOAM8ZG5rG99J7+HJMRqKH1429KfLewqqkmekuN6FtjStN3p78y0x+Rnjgs6qvPke26XcdwBRzM8z4yjBI6394Bb46jUrZipyfumEDBACD4Y46Jg9MDdnqtvKBm3r4mCMa2rwC2Oy31jLsLX7C8RGBkec+K/klvolmJQ3h0hqpjyz8SSd0WSu4ayD73hSUuxG8GH0RosX6Q8RmIx1sakvCajGSOLXDFZFyMiBOuYxySPWYI0TeN5lHhmTNmfE0wz9ZtOMRcgQl6yt6GUxmBGOuTJHMyB6cX7QI7XkaD+4P1ozdYaNYm9C2nbCVmaJ8WmKaS/o+QEU8VLMZk7alRUshEn71kxioKX1bWQxlMlOFHwvnhusrIdY0yxDkmZTPtj9JQgeGOrwhRWGYtTgqPXCUM/tr5MkrLZhyyUGyUxEtGjgyIYzWKxoG5aqrZlt9tyOOwlAWBiTQpRrPoxapSxJSdFCMlsjyA4dPrTKs35aol76DlfzHFdz6tXl/zaD37Ig3v3qWvxANzs9zx5+Zx371+wHwZeXt9w2O2w0WMqLcH5CV7+4OKE1XKGNiMphErnj0rWfasNykd8GPj1v/rrPH/+jCdPn7D8xc+5d3GPj7/3PZ49fVrgVU5RPFBNVZU5MjXa+GRZdyFQVxXWGiprcc4TVFpviaUqDi7lfctrKMUQJW9HTMpmU1U4YwCH8xLv1FhbYIogSQdNQqyUMxCT5oWiqhMdtRLIfMwwMw2VqpCcV5pNf0CryMmsprYamwSA09WC9x494nd+/a/wxdPfZf3qFZ/99Ce89fACVOCd+w/Zu56gDXq2YFXXWALb7Za6sZiqgrrlyxc/5+dffM7Lm1c0tbDBabIRKdA2NR+++y7f/86HPL53wavdlvWh4+pmy7yqaW3FYdgz+IiKnsrC6ekpVVXxcrPj7/8Pv8cf/slP+J3f+E0+/ugjLk5P+eknn2FSzqeb9YFXwwaAk5OTsrfN5isev/0e9XzFn/zkJzy/WvN6s+VkVieIqMifVsl8XdUNs0Qi9Ssfvc8vn13y8morcdNWzuHBB2IYhCZfD2UPTatcOlaP6y4i5UQUu03H6azlrYslv/LR+5wsF+wPA8E0GF0VxebbvL51RaVKmEStNNbYFBCoSlyFChEyXaFOwXVxFJJQKgVGHgujeZ9KpL7yW+q4kC0qQTLpmkrYTVQKsPRBXLTBKTL4NyotXOABOufHyWgtTWU5XS5YzmdolaxM+dDJildyt+rpZqCSHSYxvxSNtAjAU2H7TYEJeOMgnioqx1+k77JkVLovHzCpEGDMPJg+m+AiYq5v7uyvqccbhU/KRWXvhJow1NwS9r7mKgLyHZ+XJ/+cd0CGOXAkOE4Frz/vKopTzGxDSbCayOCj+HB8qTQ3SD/G4uQdEqj79X16W4n42jreoQB83T3f5KG689ksqEKJK+COeh15XaaKwB3l5ukxvdTknqkVeXzP0fS8s/7ZCn384nGgytScCv6T76bfH5U9Le+uNfvnXGpSh7u+u61ovvFsum4rACq3D7irNreV3K97/7Q9uV/UrfVyVP87FKqjPpn0afqg7DvjvqWOni9l36VETZSRmPpBIbCSojwrJgeqQmBVqd4FbqUQpin52yf62tzWrKCUWZSegVgMTOVMym3KZRy1R5d+L4rK0cDkWh4rAnk8i8J01z5V5pKavCpBSNP71C3vVogTQxly1GWlJx8VTJW9rPSnHsn3HZc/NiUrp7L8cn9wy/D05n4hTHc5binvidlAmRR5JRSwed8VZfO2QSPvz6OogMrvlKD3pmmxdc3gBvEgeE9TS7ZvbTTOZdY10FZQDx4JEC7jqyTmVI62BMeZtZwsFlz3npvrG5x3NFXFarGg26zp3MB2vwdj6QbH9WYjEKxkOMzJFE1lOF0uaepqNLTESa+pTDZEIoGJnJ6ecDjsubq+4vXr1zR1w/nFBfN2VrxiYgGX8RmVzzd3i/xJJlDIq1+plOy2zHvK/Ds63ib70HQcvUk5kdJndV0l9EwQo0WKUxlJS9KaUclgncZc5//rBP1SWgwJ5LhjTVsJTa9Mt4BBsZq1fPeD9zlfLdm9uuTl06e8fPGc2azlYnXGwQlUszI13tZUKjJrHaaqCEqzPfS8eH3Fy9eXuOBoVWI1I0qePxVZLRc8fviAtx4+ZNbWSUmObHZ7FucrqsrQ+Y6YcsVYJSL/ruv5yWdP+eWXT7hab/hf/ju/w/2zc6w2PF9vMVYUlfVmx37f4YNnfRikJ5SWRK9RoWwNtuYw9ITeoaIo1VFBPwwQJcxgZirOFjPaxrJcLJi3eyrbJ7jWuL+FGHHRo/XIvjhB5DECTcf5GaPEfy0vlrzz4AH3TldUSnPoe/HfKjO1035r17euqMwXs2I10XoiYCtKxuMmY/DTJBWL5miJ0loL13q26JSsxyTWC1UOsqzZD4NL2ZEDRkcSEoiBSBcCh8GB91hjsbbCo3Ah0g+O3gXhJNeKi9MTThctZ4s5USmcd3g/YK1o+9YmzncVE04QynGQdnM1sQZ/reCgb1nV35C73oSqHAkNR1rF+EwWEo5ljvGAOCqDKVQqKSzp9C5Qk1sP5Y1JDp5Q2p0PF8VEYLxLwJwKt7fale+JuV8m5U5/f3MdjJv9qDSM9f/zFAHZ70brnSl5XY7ZfMpiLs+92c7j5JWUsSiCzF9AUP3aet7RZ7fbeBej19d5We56z9TyPwY7qzJ25V5GYf8IgpIPyTvaqaaC60Q4HAWQWDKV327ntI3Tuk+FvgjFuxMn94zLQHj586UnY35XIsXbY3K7Rbk+OdfGtN+P2n1rLZd5fmssShLEvi99rqbPT/qjMNHcquc3zaOjucAofGbL6TAMR318pMDc8XPSEUdCsPeJeVGN9LXTOmgtBBS35+PUs0M89ho1TVPOhv2wn9QlKQtaE1OSW20yJFfqsN2KldIYQ13Xo7DGKNwJAaUIvHkduQT1zVdm70JN8k9Nx3sCechCgQLBm5GZrlKwe2J6jAk5oLUZvWdqMubTtcuo9ChGLxxQ6qrCOA9Rxx657CEq65WsGDIRTigL8PaeOx0fpSL9EBJ6IntTKEqHTudA1CrJA0JaoBMUW2BOjuBDijVRCfLt0Rl2JIMjZxnjHmGNsK8pwIXEzmUrTk5PiYBznmdPnzCftSxmLU01srfZ4iWT/rGVJdpMFpGnswinIUG1UArbVLzz4CE3nz3h6ZMnvLq65GTRsmxattev2fcdm64H07Dedzx78RIVvLQzaFxwWK1ZNC2P799j3rT0/TAyRmqdzlER6n2OC4nSZw8fPuTBgwf87j/+RxwOHf0w8MPv/YDDfsfry9c0lU17p3iZsnyU54IoIiPTWyQWEpjpPYXhqczhNO6ZbECL3FZiagBUoLYGH5zkPYmeqqrTWAxkmUS8rPXR+2XuU/o/q0ESkyJKSogyV2bWolRkVld43+MRs3W/39EYy2//lV/nH/3+H7H7yU/55Sc/4+HjBwyHAa0aTF1jtWZmavQQOLGad+9dcHCR692en3/2FT/7xad88eQpdVOL4pSCoPaHPVVt+PC9D/nV73+Xj7/zETp6Zk3N9nDg8vKSR/fPaRYLun5P7ztiDDgPX7y45MmL1/xf/pu/zaurG07PTvhP//p/gFaBw7Zj4zw3ry7Z7w8c+oH9vqPrB/p+oG5rbFWhEtNbiJHm9ILt5SX7bkeMoYQcXN/s8U7mk0LRWmhrzb2HD1jMF1ycKV6+vEKHlKMo5v09x9Yh6+tNUbQYc2IEgid0e96+d85v/PD7nK4WHDYb1rs16Cp5Du9GEP3bXH8J0C9L0CluIOagvHHBGKuTOy0W5UMoD5Pok+43Zgqd0OJ7jhEXAtFHBi+c1gAxBuq6otGtHILB4UKgT9SDnkg0cpi5GHDdHnTF4ANd7/DBMZs1nJ6uODtZ0loj7B0pSNKgUNYkJhc9OcSnB3ce7DcFwNvXbSHx9k85A2/rsgLrimnWiJB2rBDFtKmN190T5u66He8WGZ5zLAjlTNJKIHtHMtGohJSP7xCajqy2E+GufC83HX0+/WzyogKLkE0wi84whQzchs7cbn+BsXD3eEwP7qkCNP21bK8qQ7wmkB81MnkppYqQ8HXz4y4l7g2B+UjAy31AGv9x3eRs5G9AD7/G2gZ393+pb1HcxnEps3Oq5EzGV3G7T5MeExifzkJfnFJiju+9fU1ja/QddckFxPhm/+UEmiKkqqO5GuGNvi/9PCk/w6+UUkd1yfW9S4nMGdqn994uJ89FPRFAb49dPgTy+/48xeS2gjQqFcgaymVzd9zTN72/CFnpb1H2EAtkiRkZFcBs5Lmrj6deiennU8a+GCWgNSs5uQ5F+C0GhemYCL3mNE9Krk9R6m+ZPqYK0m0FOSu0Y6LPzLwkBp+cQFNns42azKNIYr9NEtkdStzYMXKfymQz2b6ZoTfqFtkCHNXvjevWmiqeF3UEsBqV06QAcKuvpuOTy85rwSRDpIqMnikUKMlCQ0YiKAVZEJ8Y/CLj3lnqMh49pR+lnLHtATEG7bqe/X5P33W0bUtd1WhjBGkRk7IUZR5qbQpta457zfMgxCCxMlFLCgTnqQz86nfe53K95cXlFU+efkXzzjtcPLhPtzqhri19jPz8yQs+++o5z168ojHC9gXQ9R1nizn3z894eHFGUxn2+33J1SYCoyhGXaqTyePpJFLKGMNv/sZf5fmLl/zsZ3/GvF2wXMw5OT3j5vpSoGpJ0QgpEWaVFY/JXoVSDP1AzmM0Tcpr7AjJ0uQ+/xojTBpinZSjedtKMscQUoyrwla1jJAe2SpjjEd5dFwUVlalFfgEvVYao63QfwdPP/Q01lBZw3zeMCShPIaAiw5rG955dI+/9us/AuX55aef8OTnv8DvOmZVy+mjRzTzOa6pOLietQYM7A8DL16+5p/9/h/x7Nklw96zaFoyr5lTipCY4n7zh99n0dQc9hvW62sWrUWrFV89vWS93RGCp98fJO7KRT756gX/4id/xi++/JI/++IJv/bd7/D9D96jtoHdbks3dCzbisae4XwgoLFGEshe36zZdh2dc2RinxAjtm2om1piY4aBvu8ZhoF2OS9Yo+Aj+B4fPS9eX7PrnBhIrMjXsrY1lOxQ02UWJ3uFqIIqJeLsdhuG7sCPPnqH3/j+d/i1737E1eUlzjmcguByJOC3f/0lsH7JNXGso7L+oRQ5ec40hkIWQAo9nwjcMSgJgCzCtyq43BxUCslVqoX7XltD7H06hENhmMk88TH4hFPNGGFSQqeKRV2lzLwc4d9zcspCEpBqMx64E49K+uubrm9WYtIbskAXR8HtWNg7tpSP756MgGKyyRzVIN9S1OWjQ4H0/skLVbph6jmavuJYZ3lTsL6zrbfu/9p+Ofr8zXtkHkwUrW/o/ruExLsEvq+t89cJFuQxkToU4eovWI/p51+nnIyfHWlJoxBza8s5rtc3z8mvE0jvmgdqev8tAfPW09MWjHM5prrGMv1KWWM13hynaVumgtIbd8dvWoFZsTnaoe5Y07ee+Ib+QY3ejttekttt+LrPy+9f82z57o7y71KMvumKaSBKX6Y9dZr35i+qrOS2T+8dM8e/qfj9efWceqam+9uR8eCN+mSFTKRvuT/vn6EoMdNnlVKJBlUdQRWmrVHTPprsEyLE6XT/2C6dN+x0FaH+aC2Oz+X+u92u0i9Z0b5dt1j+V9ZmLsvoMe7htjLBpO1ZOFYce4zvmk/T8dAJ7jLWa4RqHe+jiRgCCpQz5PWdlbDy7tw6lRIUSoWVkmdF8bnltUyDJhZ8Eb72Xceh6xiGgVnbFsND9sZMr6xcHn0+3dsSNavWBq3FE/P44ozz5ZxZZbm8vOThxQUAi9mMymqUNXz5/CUvLq/ZbneSnDqd54MbqCrL2ckJq/kMawyDGyjwwVTXTDagEIFdM6JKiJHz0zN22x3PlOL5q1f4GHhw756Ih2kvCkUxSzFCKdbgqAeU4ni2j3NMDGwp0ai6NfeZzA+dJQKZ91pZiS0LeeDk/sywl/t9nL7T+SzngU/JVPPloxBleC+w/Mok+Szl5AlGE5xHGait5qN33+LV5StOFzP26w2vzQtePvkKVVvmwRHVkt4NOKWo1luur9Y8e/aCr548o+skL41NkzTEMYD+/OSEj959m1lt8cOAcz2L2YLKVjwzN3R9j9HQmEpixWIUV5E22Krl7Udv8Z333+XDd98WtE8i3q6rCltJvDRKM58tMMayWi643u7YdR39kJKXIgaSblgyuIF9d2C73QmbXWfTfA74weMceD/gBpfixBTa5vxuUTyVapzzt8/iMcGeIqBwg4cQaSvDr3z0Hu89us/pfMZ+/Zox4u3YiPFtXn8prF/j+pdFYpInIsIk+RfkmFqduL29d4w2Ep1iW0ZLh1isVAm6yowWGIOPcij53otWnqjnmjoFqQaoTUXUmkEHds6jjKa2DfdOlsysYqYicehxRhWYWuaIB9ApKDJDpUbhS03W3NcLuGKBHQW+Ow+n9Ja8tyotysZxAOpdAvIdB/k3zJepoHmnBJQ+OnbjjdjzrNlI0/Pp86ZC8XVz9rZwk+s+tc9SL3QAAQAASURBVJDn93jvE751EtyuKJTXb7z5lsDw5nXc4Knglr+eKm5FGZsqKdO3TbTJ/LnR4/zJ3sVyL8fj/XXC65vC/1hvVQSl8cBJR0Z+KVVly3jlNkSlCvXmN4ifb1yjkEY5WCFZjt9I7JgFNEqW7Ei2mlLYg0qrilknz4OQIDJvkk3kuuQ+OlLPskCUl+eR4pZqpjIU780pkg/2dN5PhCooltyJaj5VSrLgc3vWTYWr6We3x/+ufDl33Tt95uvuyX/fWafJd1nJCslDoSZCsfTjsRV9akEFIBMATPovxkhVVUVJmXonMsnBtH0hJRy83V/TfgFK9ndiLJ6ZqeIg45m9lZR3xxgnSVOP+9Alj6Ot6/LuXJ+pB+Wueo17RSx7gzEG7yRbuDa2KH4h+OK20FYstNM9I/fdtA/zN8XjpVIMwcQoNh1HbcZz0ifhPBKPjIHlPUYSO+YOMXksJkJpail5jy/9oPU4R8pBP55/k06SHzFK7g4VcYnVKsaIiZQEmtmvRRQq22zpz9SwqJQoejouRsqMLuBcYHCObrstjKA5yaV3LuVPU5BoeEOMBO/EO5X7Jgkmx/FxGpTF6EhTed69OOW9+xd8dn7KV19+ycXJCQ/vX3B/dULdVEQd+f/8q9/nky+fsNkeWBohXPAx0PU9s/mMt99+zMXJCf3QsTvs0NpijUkenEEMrmnj0WmvDVHgoDF4GrPk/sU9qnbO//iHf8TD7QZTCZxdKcSy7QdA5u7gPTpqrDr2GNdlzo85m/J8L9Aum3Pj3EGMcwRdDwVCZpCg+Zj3X6USeUFCgyiFURliKfcYleZsCPjgqBJUUg2OPgacF0NKpQ0GGIYeEkGGMYZgPRrotmt+4+PvMLOG3/+DP+IPfvwJz588ocLTDVvOHj7g3tvvMqta+hB59eIln/z0Z7x8/pznz5/SNhVtYwixx2iND57L62t+9bsf8qPvf4/f+eEPcfs9wTuWyzlnJ6cMHj5/ds2h61BE3nvnLfrhQO96fmXe8s4H79MP4gle1JHaQPSRqm1RtkJZBTophQFOV3MWsznt248FCtb3vHx9iTbS3qqu6d1A5xyboefm+ob1esOLFy/Y7XZ0XcdgB+Kgib5C64BSPZoeW3UM/SBnnI+JCKos5uniFYUUTUDhPbx+fc2D8wUfPH7Mf/6/+uucNC30Hbte4I1aa+a2zbsO3/b1l+NRUaOQmzHKIUspjBunNhpiYnzQgtONURZHyBCjcijIhln//6j7ux9bkiRPDPuZe8Q5mXnvraququ6a/pjpmdmZoTizuyIlAsQuBAFageQKhMAXPumv04NeCOhFEAjoReCDRIiQIIHQakFotZ8zO9M93dVdX/fezDwR7qYH+3Q/cW7VTt9+mCjcysxzIjzczc3NfmZubqbgyxawgQsL9QAT1mXFGWGNWwhArQWNKzZeQE8bQBXLsuJ7L+5wKoQTmguq1hlrKr4HDs9x77srp9nQMA8VyUnGQeAySOMxR0B/5eWXYSSf3agoDQQ4uSk8f9YXN54c/NDw3XAPLJuHvSMBGcRnUG9Lwmp659i+qtIrYyRv6efv81hs3rMSF1A4hhxlYCpCMMJB1iXOSWQQldvLdHOaz4DYzxphaGv2ottNXidHbvJ2obQ9MkhufeaGwHQWIQy1WBuRScXeLUCGNO4ZGA9oZxiSRxyhMDmTVAAamz0BSBHWMoc1mWEv65IVaAQvBSAPkENkbceBvwzc7Zp3UoI7WcNq4Gv1gNOMdENbwQcM2e4OCrE2SmRZn9jXtBn5PQFwp2Wim4WLzu8cxqM/53NMmbaZJrcyCeZ7euK7+aC3z7XGFFOaR10dEa+sU2UAuStp3R5M/Y+2j4G9/e7pVDU00fpr4YrXcjX6QaWA6vWZr9HYY8fRJv+MX20Oq/Wrd3dMEVUJO7a+Q9twl2NcsgNAY7iiyR3W7FikZwP0nYyo12KWcIwhHAF5TB5eaEaZ6bMsawzck559IUHdYygwwrBIdBOjKd438AdZOKlMuPGGSP60pu1vpdWwdnVtV6iBAaQnoWtMGi9Ug95Dv9MBfJasUADQUXDpDVtjrKczzqsA/8vzkzhI7VxO7yaKnKm5Z8dn8LrpbxmfhKcxgKfLBZ987wP8yU9/jP/+v/m/4C8+eIUPP/wQP/yzfx+v3z7i86+/xL/4N3+Br7/+CmuReWKl1ErA91484Mc/+ETldsVSF9ctnYX3m+5uns/iZW9gcGuiQ1rH62/e4HR/jx988ik+ePUKj0/P+Of/6t/g7//Zv4/ed7x5/VoSCpWKVYtvy87IuGvsqp9Et8qvalBQ8IPxSk4VLTqNAtfoDk4heCIlK6DJ0ASOljVMDRZiLf5JAJfipR8YBQ0FrTOe9g1PvQEMrRkjC03OMyuva8kKZuB5f4uXL1/i937nU/wX//gf4YvX/0f8+c/+Gl9/8xX2f/kv8Pkv/hpf/PJXeDg9gHvHF19+gS8//xyXp0c83C2gykBh9EJ4fr6g7R0vlhX/8H/8H+A/+rt/io9fvMBbkjTPvBDWKuvu41cP+NXXr3HZGl5++CHafkJvF3zQNnzWV/SuRaHbM3pvYNZETmxFGyXCp7eOUgmX/RlgKXZ6qozvf+8DPf5GKGvFzgtaZ7zqwGcffIS+d7z9vZ/i81//Cl988SX+9b/9CzyvkoXt9HLF89MTnp+fsa8Vj09PuDxfsD1dJM13swyFyWhhBjrjsl3QWwcx4e/85DP8vX/vD/F3/+gP8GI94fnpGd88PWMnAJ1RiNFL17PXfwvOqLiyIPbDhybsAaiiAeBCLa7BU8qIUCsDhipQyCz1xg7qBViboSACrYLRu6V7ZHRiFJbc7nfriqI5yO/WBQsxKtuGXNriN6Xp/YBiq1Aqo5GSFIPdZ3/4OLOeSIAtfYJpXNZg4OLpUPEB4P2ul6hP9grFc3+zwjFBP8O/zOOcrAhRDjyM+bC/HCaPKz19qc2ngI4csgOVo+wH//A3J0O0O/xiI/x3aSh1go+fnT20cut0MPrg/vFbDaVIyjf3wSk6G2BXbaVrouHcewN9TJo958CYSDdHT92wszlOBcT8/+8OnRrGAAVjNhYFpCYbzFCJ9sYRj4b+3PL8U72B+ohlPjLwzIDXb8kcYx5vM/aOjBUHB99hDd8y3K4MGXv//OwwIvnMVYrJMbbVRyGo3GBRWiB9NtHSRu8iIxko85UNldkgu7rXep10wjzubIyMfbJdssRjzJHsxbIWkoWPkfOpzNs43jTK0dlhzgT9FpniJOE8nfO7xt29cYdspJ+3NskHa6t7xrORZuEkS/M0zxclfvU+wH+SGuSJESbZwW5opJlC7o2LqVm+2ZrVJyoRuo6/6/cxD2HA2hOdJCnOpsXylrpgrQWNCNXORXD38DCrdQVOuQ90zomT3tEfnAz6N0+POJ8WfP/jj7AUwutvvsHPfv7X+OJ3fw9fvP4aP//VL/H1V19he35GJQYz6fmYjofzio9evcAnH30YTgkqEoEy6Iv0Tvso8fPeG04QZ9yL+3u8fvsWX33zGhosJgYPRB71zOPMvhvmIl7xyaHTw8jAEI+/aeaEWxKkg+1qDjucSmcXvaShgADY0l8DbkhJYzH/e2dsu1WvL2gsGKU7D0ayAaNb7w335zP+9I//EH/40x/j6fKMn//yV+hfF2ybZMp6s9yBO+Or119je3wL9I7zSc5WMxitM54vGxYi/N7vfIY//unv4Q9+/COANXFDLeJZ17X84cMdfv31a1x2ORe0FMJCC0oFCq8AClqreLp07J1AWACqYBCe9ipnoXtH6w3mXencPHPtcq5oTcddJaqnFkZlQllXEAgfvHzAaam4P53w+u1rfPP2EU+XTQpaFkJdpEbgUhc8L8943Tqw756yGgTFm+qkZkkqdL+e8XA+4Y9+93fw+z/8DD/8+HvYLjueny54eroAqxj0XAr23iIh03u+fgvpiS1XecdSJSe6bfcGcIkaHB1ddj3Uu9E6ewawannS5SEFpU2FDuPZPKg6EKtY39STSxBjp6nQe3vZVDkTPrx/wLpWnE8L1kWYoDVCrcuQxQfD74AcDIPqzKSE06o1RUVEsr3GJmyynokHspzqzFamC2HmxTUoZ8BpegvoHClSf9dcK0FFWJkyV+WtYTMM/NU09lHC83Ksex+UbgYQR2CR3CCJvktYdAjrzvFMCHOrnVECDNwYp48l/w2Mh6uLJe1MHcy0Tp3Ogt76mT3k9j4Lu3DD6qAf3/aZCH8T6qaM/E8H65a9yNfcDRCYP63mVlRtZrHdeYdH1JVItZ4Mi3G8NkGWEUu9agwAokws+xYBEdLC1/N068p9AkzIJgBLluHIen29+5mvmI9Ea4YYyQRw08P5pqA7O8C5ZagZaOXWUDh2QTJ/HO3KHvVx3kHNn80//b7Ely0dpLUVO/NE3qGwQodEUrCWiGAHDsIUOqblrcvelxMBmEyQ7FHV/54NFyqkSUqT5OTMf9YXTr8DVmwyZLWEFlmdJyuAqKSJtsAKGO1tRXlDwHLOdDc4q2xckIO+0GeMc9jTqobcD3s7DBszmAjwELuevk9C1efO3m/nGQiSYtUOivceZzMDrNrihIcAKhXSWpJAEOu3gU4gznLaHNrO6agDwpHkoDVdlngAJDqfuLjn3XZYuQMoHLwLAExoBFxax/Pe8PLuXtLYMuPutHodEQmv1zGzrgsCrNZOB4N7m0KSNPSxdyynE5Z6wl9+/jlO5zv86Psf40/+4Pfx819/jf/Xf/9PQOWMr9+8xq++/AJPX7/G0jYs6GhEeL40bJcLfvrZ9/AHP/4Mf/i7P8RFE0JUIlz2XYtjV5zPZ2ybnCuoSZY1NAf06+mMvXc8vnmDH3z4IcDAL778Cm+eHnGqBadlxXPrrhvWdR1cLhG6l0MnZ4eT3SEGQklrkpPeykadn28zmVda8Avi5+LKirBxQ4PsYddlAbocBGciNGJcSsXed6A3oDc8bs9Ye/UaPwCjNGApVULTasWXb99gPa340z/6Kf7X/+h/hs8+/gj/2//9f41yeoHtueOLX/wKbdsAAKfTGffrKuGYLJXqOzMuzxe8+fo1PvveR/gv//F/gn/w9/8MP/jeR/jrX/yV1wUsnbD1HVQIP/rkQ/zF51/gizdv8W9+9pf47IMXeDit2DtAtAMWGtcZCxGWJTmnSkEngEsBY8Hemxav1aLhRODGqEWz2/amO1gde9uAJsmbX718hR9/9ik++/7HePHyAX/5s5/j81//Gq/fPOLutAL8Ai/u77G1Ddu24a8r4fWbRzw+ybmuBkluQTpHS6349MMP8Ac/+SF++qPfwd/9g98D9ob2+jX+8vVrcTIBwKWjaibdt+XJ6/C87+u9Gyq9i0XK3NFph501scqvwvCchJUojr11jyX2HN9EfqZF8JlsDfYu7zGiyKF5UWFMHZfe0JjQueLSJAXx0+UZp9OKV/dnfPjBC7y4v9O4S3Yl7pljVDhfAT1OWXJSBi4Zd4/FS6JSTaBGvnTGsKtq14CI9SI3rh0c5W38o1CRrDBnsPwu4OPjSz9nhT8/N4Rk4DqdcQYO0tYITPwmf9u0U2LC8kY/hztJDMxhRy46jPmavbFX9Cfz/rOGDLDvrM0AeTa+phf5rzlrzpzJyH7P3tPovtKVzZOt84RkpWGkiWdYSfyb6ZDnejaYQoCKgZ3vlfXIzuNix0goRjYGjd+soFs2slgavZGPLkZztON085JFEv0fvNnzraNSng2FOauR90eNOBuD2/I8tp37OmdBy+cf5vtz2NIM5K2fR84I6/PVOknPJNsT6N3DveLm4LsEP5Ls09tY+UrPWETOGPj45rUyZ0Ub+mhALBXozOcQsvzqLRweuRiogPrwI8g94/mVcY0JdWwnR94p4SRDH+1+JLnI5EZq0cIPYWAwgDhvQyga5hFMQiTnJqPqfEshkVEQVkKgAQIDxWqNKQ9pNjVSumQ5cGX0znxGGMZjPRMzBO7ldj8D6chaB8z5l+g5r6Ejz3yWL/m59Bo36MFA3/YwgryWmu4MWUHMJp1jAvplR9838Lajtx2tFDQdT9cMa60DloSuVznbKK+zMCQCegOXgmqVOfUOcMeJNHyzSzHQ8+mE/+U/+If4b/7v/0/8d//v/w/+hz//V3Ject+xKjM2krC0tu/gfcd/+Pf+Pv7k7/wxvv/p9/Hm69fYtcjktu/YW8PlcsHpdEIpRc54+RxKcUYo3dZliXVVC3ZuePv8Fq/fvsYHD/d4OJ+x7t3XvBt1mSd8HZg8zHOkeq91z7xq35kTijnNeea3vNZ0cVBN2cZEcsIM8dOyoAHYegO6OL7QO573HZfW8faySSazumA5LXjeJSnBUgilLjCQdKpWc0XmeXve8eWvv8Sf/p0/wsuHD/D1Nxv+H//kn+Lzr77EWwbuHl5iXRacakXXNbV3xts3r7HvGwgN/+g//p/g7/3JH+N/8Q/+pzgtwFfffAEusvJY+9pYzs4+vHqFF/dnvH16xC9+8Ut8+vIB5/MZtG0yb6hafFxo0MGARLRhWVZ17Ms87BS7cIWtNhx8gCcGGknRziewGO8M9MuTpAYG4ZOXL3D60Wf49IOX+NnPf4bL84a2NdSX94ppdnxyf8KbN2/x9u1bfPPmtaTjbg3b8wVLrTivK37vdz7DT374GX7wycfY3ryR9Q/Ci5evHCtftguWZcVSV8EGpWgG1vd7vXdDJat3A/SydsXAYFZhq4LKwZTLVQpDQb83kSqp6ERmyj9yD29jubdxx3Pv2Duw9Y63z5IrfN8vuL+/x+l8wv3dWc4xAJoS0AT/oKYPlWv24IX+iM9Mb7BRg5PR4ALyyFgx7RD0E1XFAZAOM3iNxD8CzrM39jb4Px7rETg6+v27fHb1rvQ3Dx+NwjQ/a99HE3Eu4tb7494pZETdfCo+h7mZFTKm7w7b1w56O5Nh920G4617nDY3R+YDHPrCRB6W9J2udJsDCPtcgU7unk3F1Q6VzdXw6bWxlPtsn7zLULlF9+FTN1a+g5Fz0OeDb6DZHMcuH9x+iw7RNT5cg0fXkWHyXa8j0B0gZV4Dub/6gfGc9RfJ0LQHmMa/MRoLt/rzrvmcnS5H45f+sMq7/IVNCYE0ffrsGPGw3sGIPn4HhvebhEDwlj/JJqmHZ2+1S76e1UxIci4MCh2HW4mkhQrj73CMpbazseI0hdQJO6JlXstmmVD0Q9C90XpyNCHmcpxT/214l/EPMzyhh/Qh7pMQ5DBUnB4JEDMQdZJ69zIIOceaYQcD3k4LRLid1ZxgHSOB0T1vhIQWWShMUWNl33eUy4Y/+zt/iH/+b/4c/+Ruxa+++BznsuJcKk5dnFty3kQM2rv7O/z0Jz/BJ9/7CEupEvvfQx9kQxoAUNI6cKNbSyFScQOy1IoOxmXbsO0bwHeS5lfrpAiOj50s4fdx3tLs62c6P737+Z68y2boxoxNquQ6D2b8mpwBoNmAlJ7FoxbYnAUmXwi+K9KbGG/Plwvuz2eUZcGyntEuz4IXO6NSyKqmZwd9N4w7Lo9PusvwffxHf+/P8NXXX+H8s4pffv2NRksw9r5J9itmNAgPPdyd8P3vfYD/8M/+R/j7/94f47NPPsLr199gu2waRlncmWNUKaXg7rTiVBe8fvMGrTOoVlSt68dAMugAORgCgKWl1kmMjS6JBajoZ0rzfE67gtCIsEhqMVk7zuPC5/drxfLyBR5OC2h7xps3b3F5vqCW6rWcXqwVjy/v8fj4Aq9fn9F0l+/y9IRKBadlwWcfvsJH93d4WBZQ39UIqbg7n/xMX1djrVQC+Fq3vK/rt3KY3tL5AnC7w67OMnGtN+zNYvoqTssSaQyZ3YAxA4K7ZH/6+vEJoIKyLFK8iyoKLWitYduB563jGSuet47Hy4Yvv/4a57Xgo5dn/PR3f4CX5xPOteBy2dCahKEMAj714Winwv6+VkI0/DwEueqxGB490mfqqShUgNZUuJsng5MiOAYzc3+vPPbfApLy/UcA+6idIy99VuVxfzLq4M5RH58JzPkdmUzH789tDMS4Mi5yP2YAP99rXlgHmBDlGGFKYw0HAzMAufDw3ZREz9lTzvZO431ch5RB+zLApcxjiS7ZS310Zc/99Xjpqk19FQwFRFiM0KUelKO9ni+YTyLGdmCQzIbKQAP7PXWKvZ3EJbbQEn/dOgfxrvUgdIcDwgLyODYDAw4rZwB+MI/5vrwLlXdRhgPUN8A632jbvrPx2vtu1teQBxKQG9s3AGLjab1NRuHQzNVYclu225LHnOck/z0cqNdt9SyjjeyEvEsvir9O9UlAo7FiYWa3dnucD/MOdjZSoQBwEtxD0gQc1BxJcyLtp13aUiTYjvmgRhVcFy5EfjbLZRXmK39zPQ+HzipoqLHXKGGVcxHW5amVycD+7Jk/XrfXYw8aRZ/i3talwLPNVd5l8/as0kVnr4tyWivWSqhFzjeYZzoGae9lcBfvPMFKDqibSmWbnaE7FaAQS7z+6Yxf/vpLXPav8Z//p/8Zvnn9a3z9zef4r/+v/x2e6p3UNaGCrV2w7c94fvsGP/z0+/iDH/8Ef/rHf4QPHu7x5Re/xutv3qDWimVdPRSYiJwnpU5QR9WwRG4ddVmwrqscuNYkAetpBUB4vlzkfio4LyuwbRJ9UhjMNYSuympfWzonjOKf7/semfq0lMQc5tg5El+s6xq7kwb2JNmZ67Wu45NdEJ15ll2bjq6hipJI4XS+w+ttw6U1vH16xqtXr3B3f4/z+Yy3vYPbjq7rniDpm1vfpGgoS+pi4g7uG57ffIWX6xn/q//5P8Af/uQz/Is//wv8n//b/xv+2Z//Jb58/RXe7I8AJKR0WRb8+Puf4Pd/8mP8F//4P8F//Pf/FJ9+8BJvv/oSaDtAQK0rKhY1VRgVctygtx0v785483CHz7/4ApfW0Viym7XrlSCFTautW5IMXL2DewMV5eySE0BUWO6NWggLCsAVd1iTWS4ysLWOt487XtyfsXzwgJ98+jG++vIrfPP1N/j6669xeb6gtYYPPvtYD/DveHr7CFajat82313h1rBgx+XxG3zy8fdwfyfzcDqdgCKFONt20XYuePHwMmTxe77eu6FSa3h6RqUnwMYLYlHBskiBIjIA0LtuqbFWmC8eBtZLR4GkHpSwrx29SXw7lQqCFP5az2dcLh29P2J7fsSPfvA9fPjiHp9++AKv1grqO553E+A51z2lUBnSyqvXIOBaEOv9B2FZhyokkLkCLETcaAKp+pUf2jLPQwbN1p8j4DMDztlDfXOHYxrDTY9/MiCivzQqBmBQZDpEWMy2GTLxivFd2dgzoZdjsXObAsylF6WMXn/tHEK1E/Jf8Vnud4Fl7hmVvfU/A2OaCZHGLT/DKyLPiGhJ3jSrFJvmdaaDPQ1iz4fO3FMl59EgFe+TbGNaumQgFM889HLwTlAOI+vQk48AU8qK1p32hMmgsL5b2wqwWDNSlTTmo8sAjhmXzBIaA8rvybyeTVqldeKhfM0g/9pYi1bsFzMOzRXNfAwAO1tRrVivI7CDP5Pfbdetz+d1O6/TvO5vGmCCENNRJ+1zOsfiIRqp/eBDGg2H9P2cgtiNzum+CLsaU1DnjHG15n0K4a6CSI7iqp7UmQUFMHa4Vts0MJgNOGYeKrsf8gKPPOZjMiU2XUcOoivS83RWKbVeVNbbWN1TmuWf1d3QPjg/Du2bTIwCwNlb7jsxgGR4sj6YbCNZ05bmm0oNnd6tEKQSHsY7o86zDF05zFXSVsv3jSMVPXGE2JKFulUxUGd+Zmap8cFylrPWirV3MHUJCdIQsYKOlTS7kgJj8SvYnhThvN45H0lINvk8MEKe9Cbg8cXDC/z5X/01fv6rX+Orr36JP/39H+PVf/6f4VxX/MVf/hy/+OWvgHbBw/2Cdb3D6wX40Q8+xh/89If49OOPgN7w9PYNOgveISLc3Z2dt2yeaq3gLtniJF0zwmDTODZWbzrvG7bHJ/DWQF1AsItaUKzxZLQ6/0BTXpvBrn2wLFDd1oBiJTMsGfDi1yIr4AaNGaylmiEZzoDem4+0M9D6js6MHV3qeRME1xGhLCvOd/d4en4WB4aVKCgnQNPXgztQCHsTWuzMWEvROS6gvYP6BXv7Bj/90Wf44Q8+xp/84e/hf/iXf4HPv/gSv/ziVyiQc9AvHu7x0x//CD/45BP80e/9LranC/766XPwbkZaAVD9vJvw7gICsG8XfPDyHhsz/uXPfoHXj0/4+s0bfHReHb/Zqk6T486WQovsCi512HlpPdZ93Eu+C1qoOvyQIrsMdODudBKMAAYT4dNPP8bHH32It28e8fVXX+L1629wuTxjWSuW8wmvzmcxzu2f1qPa991l9MP9A9ZlwbKIM0BTvOGTjz90WVnronP1tyA9sQtGGNiTQXS2CYcOHiiIiqiuFNiepThgqQoKhbAuYqgwy/af5E7Qh2oBoaJcGioB54Xw6Uev8OGLe3z08h5L39GaVeyuoxAEhhovwLvAQsZWxyDLgNuVQXCjzfydv8fggit+Y9hrI+UWKLlliGQwcfR8BkA3PbFIyplHpWcjmNu7AoH+M4wI+Ww0Um683d8h95DT3Z7Xlwa48g4F3x22a8B74gX73t/DYZKzSZSMle3Z5I06AtC2W0PTu66Bj7ygJxBTgGs+A9wjChZ5aSFgV/dO/T1+r1PaKDQ8JE1rQwmADRWtkzFlxm4Gankt5nd33b0Z2WAgMAbCHy6tEby/i6dzsw6/vE1Of1zvbuaf15dB6ejT8C3zzTV9iydu9/3YkAEEkLIOjnH9vcwBgSjttCTa6bc3351lxgjzbxtkV88lI4Gh4UCJv6TNEMRer+igW0d0nsd7m75Zrly3ORvi34W/TIYPc6MgHbBzYHDicU+mGQXQvpK2LgNlLUQXYoFnNcQKznluyUQU1GDyuZz4UcNX5F2jLLB78uf5HFZReQcCSEMIuYesFCfJtY7L+oMJqLVg361v7MaGgEloGFnXHTFWEGuAvYL1EDG3oGukddeQvg50Yrx48QJMBa8fH/HVN1/h1cML/Onv/x7+4d/9M/yzFy/xrx/u8Pz8hIeHe9yd7/Cv/82/xvc+eIkPX73AaV2wPe9o+46qNXbEKCmhn2wOyVImh96K+Y3fiTt4b+jbhtIZhWNKbMaNzsd8SUPGsdEoHyMjckHuATsk3RAOpYQBAVCa9/xsZ0SCiNTPvctsnk4rulalB3e8uLuHFwJXK7rB+NhqsQifLaWCuQM743J5xIcfvMCrF/d48eIBdTnjy29e49dff421FKl2f3eHz37wKV69eIEP7h/w5vE1LrsUn1yKGChYpHafjKCDuyYZaA135xMedgm5e3q+4PHpGR/dnQHu0+ryyYQtLakXCMGuNt/sNo6cCYTqcdOhsN19qEgULAICllp8N7EBWJcV5VxwWk+oBKxLwRdffIFahf/O1RIuWJSAtCN1DUUGrMuKpRZN+U26G1ywrkuMB3r+tv4tMFTsYnSt3mtCyLb/CsqSK4TINYRaqVelauGhfd9UZBR8tDzAwQiLFdmZAVrQSQ7SPeIJpzvCDz78Hv7wJ59JysPLhsvW3SNjl29ndk3Ra4JxEg7jAudBGM/XXMBsUHxHwNvAGVn6PgOwY8aofHAtPLQ0eMi/bYdk/n7eabF750xZcZ+x9Lh7455Juj7Ya6A8ZtyTFEIO2YeADDx4bKRIFrGsAKWdYacFyk8eVpKV9Cio7fKsNMV2rez7DFLynkx4pixkxbtzBJYmWgT4dkRwCKj8qTTeTJKZv3LYjRkp+XPwCIbzuMxAlDEkJZSeMUNL6JwQjY0NATIt5aI5HbTDo7EiL9BXXocajsrzmq/ynDhfxfIdxmmhFbOBONPyyDgXsGxrs6fdpIN1pcCjuFLzYToQmccyOw7s96P1eit72NDfq3Uz0Tqlkbw2e0jX3zVAz+0dvT/44t2X7MLF2rwe42hYMiSkwOWOn31Ms39Aq0E2Jbod8UGWe+bZDjFYnAWZ+Wr+Z5l5ZPgQkSeM0Rb9/Z0ZNRnadr4CbCnz5crFY8MoGd9hsosSn+U6U7YjbN8OdJjAJINTpEHsBCRfDgCJpDD5ISx+zc/j3Njz5AflrX+2O2O780a3LGet3+fTSYrcbRt6a+gELVgIN/ywjzSUTHAV63JC6w2t7XJeIRllElIuEq2xGIvf/50f4+5f/TmemfGvfvZX+OMf/Ri/++kP8L/5x/8p/vqrL/HXX32BL776NV48vMK6nvG/+6/+K9zf3+F8KtjbBXvb0HvHBy8/AojR0dB7pKEVBwFrGmVy8G7z2zREyujHvYO3Dfz4hBOT1BqhKChKIKylqIE7GkLczTkbdasAgKkM2b1KkXVgu5Qy13G+d5Arzl9hoNRaPZR13zddkwVAQWGA0FE1O2RHwdYJbx4f0QC8fLjH5fkJ2+WCN19/g/I98kQDl737MYK6VFj9oIoFJ1rw8nyHtl2wXZ7w+puv8MU3X6JWwt35jO99+BF+57Mf4MWLl3j14k7PHkml923f8LhvWB4ecEJBZS00WUjO45CkDn66PGHfhE5lIby4v8fOhLZteP36Db45nfCTTz7GzlskGnLsBD8TRW6c63oQy0TorPzIpUZCJm0JzJ7O2HZAZMK0rUIi41nnCYz7hwe8eLhH2z/F/f3P8M03X+Pp6REMyQ63rItkIFNeqX3sdy0SVruuthMu83hVN+Xbxf+/8/XeDZXWSQFKB/jZPRye9heRKrAz/IwINOYUrHGIbNudFQWy9SoHjWIuqYjwgr6vq+35wf0Zp/MZDw8PaM8XKaijW3ghIbMik3aXSXjfumZwmJXc0U5FVn5HcfLdMvGYlW2s0SU8w7xLYEuReTvcy945GzMz8DsCQUdXzlIlFY3tvU4pEXbab4lPJVXoYRzUumqLlt3GQkBIvAGk3h0vKz4aERGzzoCl+HQjglxRsit4+3yJz+St/p0V8wvwz9BI8URTpL6w86hOBMz+KpVUmNitBsLGbXN4v2Us2Qga33kNggNAR7tEcKNH7i0IXCHBwsKDgHmkCxXvh7VPIM1SpLxToYAbYzVq0nam9TGcPVBJK9v/13woxepli95oRkQRm8+ShMM+j3knmDFkhM8szEmYf9uuxBF9x++ierjOVJIbc0hoBqXxaVS5N3pDBFdJCn0CtN/mnT/qazawrDcmZ6/6SQQ/yswG++VzK1gqz5qxwoMjJHvF879lEfleahVll4xPU3VzP4X/ZR5ZF605NHIRukxYVsKJR9/GM/Ijga4Mifx7NkzcUJjk6FFFenm/GKq5hPnRnOQQuCvnAUxymoNE+MwOBYucUBmamvZwMOND8DjvRBhTfBufWtx4rJeYgWz0pPVGqsuZw2AAgEJ+rhA9ns+OrMPQ2+kq0PTmXbInEYXDwTKhWRY0ge8dKOoI602BHrDTgrfbjjfPzzidTviwSjbPve/af2C/7FhWCVtBJex7x6U1PLdnf2e3dMoMEAveIDCobdg2od39iw/wwf09Xq5n/Kt//q9x1whnLni+bHjmjoUYn330Md68fcTnn/8Kb7/5Cp9+9AF+94c/xDdfv0G7bNieNpyWRwHwtaBQRaHinnouFbzYjqXww6VdwL2gS6CSfNwYdV2xnE+opwWP24ZL66BacaoVe+9S8Fp1jxhw5PhHopolFL+x6QVCXQqoE5qeVZFwpxJGJcKrDyJQre4YNANmdvjYzHqYJ8hrvAiPSr97B57bjsfnixjMa8WHdyeU+zPwwUusdy+AUnHpwPb8hL7tUqX+eVNDSM9WsPTx+fEtnt++xde//hwVEirG3LCe7rCeznh4+SEe7u/EIWGOE1XWSxFH+alIBtdSCuq6YFkW2YU4L7g/LTjVAu7AL3/2b/Hrr75GffwGlT+R8z4aBuVhzmZ8ul5Q7tb1np089n9moLCFmpOvBuGMZpJV1q8udzvbwmxH/2XuWtvQVW7+4LMf4MMPX+Hp8QlffvEFtn3H8/aE+xf3qKWKIU8hlwugRzEIy1K87IDgGp1fL2L77bjy3/X6LRgqHa0LMOqtxSRrzCIze55oZrlfvI8CiMTaBFrrmjVD4w6HsasSVHHSGdgbC4AqhPu7M87nM+5Oq8TuqSdGYtsPvITJOBBPxLWxMoPFq50S61lSgpjayJ9dpRRljloQCRinIYvlfFBt+Mh79+96zc/dbtNCEKLf8elVqzCvbGwdA0DK12+Kl6GWvIH54x2V3Lb2dDIm1IMQ1bzS/TnsyV7F6TYV4mmO7V7Or/T7BXQ7EB9Jkvo2Gin+/sMFfc0343fj87OhM/OpGWDW/+H+aA6AZSAVIFatbkTixtzjOQxkANep6zlVrY9CaSYLzYx3oBcDUwRcHUOM8UkfZyPlOpwn02No6YaBngE0FJCajDEeuF4XNu6jtg7erTyYdxFnWfJd1vC71sbRmzOQVCY3veefZd4QpQk3VqyNW7JNbzAcBIXR9jGgBrJ5e+crrxP7+mqetL/OO2ksjNvhaNn4O3IUvcswnPunJLnSDaOx8K41HEbc8M6De3DwjTlafOrAN3gvr8t0t9OWVe5Oc2RGgst5yg+BjS8SLexdwXm2Kz3SMyeJICLPuMSpfRtxNhZH2WYGcOCHrXdcmvzbG8POj4v9TVjXE5ZVwq0aGEybYoamuy8CmCXNOoNbA7H8689PaG0Dg/GSCNQb7pcFv/7l5/jZ3T1OKHi+PIFrAWrF3ekOX3zxJX7xy89xeXpG33b0bccvfv5LtG1D23a8efOIdVlR1wVWe6aWAH9EpKnA5bwRrXLwfqkVrcMdwR0kOyDLgq+fL/ho27HDapWYQyho52duCSF/CIlHNGqjyFgA+G5XQZqbNNOCYwBziNncmxcfiJ0x39HsKW21yXsib4OYwV1oX5c7nE8rzncPaFSxdUbbd2zbhstlw/Pzs+yktR2Xy0Uzqgneu7x9xOXpEW+/+goVHeCGbXsG1QV1WXG+f+0poakAS13FYCwFK0kGrjWdpVvXFXVZsS4LXr68R/3oBZbzCQDh6e0bPL95jRenivu14rRYLSAOjJQdSSbvMrZwHCQ/u6/wWGPDWle6XWGJNEHFCsGa/FNZeHd3h2WpOJ1OeHx6Qn/7iNYvKKVKkUgqOu/Sg0KERZM7VMPjxLBzq2y89relMv3l0swXgW0Xq3khwkKSV35vO9q+6fZr8S1G7l0Plq3oBGz7RXONbyjnsxIBALoXlAQq9s647A2XvWNdF5yXMz786AMwS9q+sGaLODMp4jbzJUV0ZgEfgCB7yOyew4quODZw8nfZwwyIQQdAHd4UIWiVYLt6GVDPXrT8Tvt52LcJwczP5Dbz8/Z77z0WVozQlRJDz/8kD/JRX/O7JGyvSLtNPARkns5Ew9krH22Kt6G1CCXZtLCnKSl57roPM8CwK9eDiFGmcZPsFITz0sR3wUyd4V35g5sgBsh57Wd6BehS+qUDpzf5capawpmfFPTAa6HIBzYiuT/tVDgw7/7uRXP7u4da2/aDvxSeGbdPE0DOHvvz6QTAChSGgeV8XS0+eeT9GRTmvw9royQFPn8H8ERv6+u3XyakmW1MowHnYIstVv7b25wN5yOjbPjb6EbSHzJl5nQ0XiRNbhL9yCBEBzQcgs7zmWuRRD+Ox2AHsMukxCKTlIX8dD+DGAfBw67ys05p3GH0Ja+t8WKax/y38YT9NPl+aw3F2IVK1zbasVw5dGb5L2FA5aKUvbEbxqO8TmE6WrhSdoPivbVWbNvm7zUgBpCvb9kZ17lmwaVG00LmLGQBQdI5WffpGQouc7qwI67gu0xzCwNiZj20q+O1p6b1ua6r/52NGSICN9kleny6oDUG04KnnfFmE4B8WgpOpxPW0wkfvPpQsozuO7558xpUKlDUuamypADYW8fedjw9PqI/vwE/v8Wbr7/A5fKEfbuAyoKvv3mLD+4r/urnP8eXv/wc/3T5pwABO8sORikFT2+f8PbtI7bHC372Fz/H26/e4nKRbEtdsyvVRYrkrbYTSWIkLrViWVbcV8L9/QmvXj7gT/7sT/Dq4RN8+L0P8Ktf/xqP24bHpwu+2YHXTHg83eGfffEF+MULfPyDT/Fh0V0QDjkAl4E6R+bsLAV1UZ2gtFhLAS0LWgoXrNUS/owheYVK2mWLyJLiRZq762ZLd9y1AGKpkaShtwZiOVf86m7B9rjh+etfA08VePUKn370Cl+/fcbz6zf4xc//Gm+fd1y2hueLZKlq+47L9uSGC5hRekclwstTxVKlFs2zRoV0ELbnR7x9/Q2IgPP57LqwlopKiF01LZp6vjvrWApevrxH4d8BffgBzi9eoILxcFrwJ7//E3zw8Ye4f3GW7HVmlRCw7XLmI4d/qpBGdpSaAB7VTj4GYLLl2FleF40i0fC+QsVlqVWivzTZZbw/rfg+foBvvv4aj2/f4rSe3Cjd2oZ1XbSOD7DWimWxoryWMbfoWVhA3Hq2+/N+r/ef9UuFGhFhLSefhMvlSTwBzAqcxEq3rF8EsZRFWIgtuVQCLQs0uzo6NIOCGqmXfYPJmtP5DktdUOuCx+cNFlayVImhK0lotqQg8sXMfsjtCMTe8sTa9W33HcWWOyDXn9R7xICCNSY4eR70meGQcur/0TWnF5zHHAo/aJQBSPZGBli3rXke4lctI5VvXR+AbXk8hQqxhgBBUvrlawbrrQVwjDCUyCxjyjo/G0p0bNf6I8kVAlTPRefm73sK/cjK2baxLXVpDl/ydwLpUHs8m+/paTcogMw4VzmUYwZnM92uALEJw3iNJJewXT7nTSRPjyFZA5wVve9On/y+W6lwDcjaYWEiiWEOIEwSd4sU7odkVGkbBrwyzY6MujzPmceP1um4doJvRpPt2tEwe+izkTk4JLJxqFqIkWmh/KSEP1zLnCkR93Z1xgB2TiP3R+4kA6CIv2M89mkqOpk/vwH283dEKViFdXfYgK6Os17NFw9Gp8wVYcxUJdd1qm6lJAUgIsR8xLNhdh0VxrT35Mxg87jmsc7P5t+P5Oe8LqvdBxzQRIxxiT9HGCz+rnFupe9hONm75zmLcwZmohpdI7GFfMHO8R4jL4ez0hXBJzF8WxcjrXLosKdMB7xqfAFAPZw4LTkuiQqoHsu2cwGWznh8fsYHd2e8uLvDJx99D5UlbOu0FB/bz3/2V3h8fsLlIlW5GwRUPe0alqM0a61JmYNtw7Y9Y7tc8PapgRvAreD57RPePG14ZsYHn3yMvje0veHp+Rlvnp7wpOFnS11wfvEC5XQPJuCrN2+k8roW7esMNAaee0N/3lBJvNX35zvUzij7jh2Ep6eON23H0z/9/+LVB6/w0fc+wk9+/CM59/LwApfXz/jhD3+E84sP8NVXX6E9XfD5L3+Fj37nU5H5e3ODsZQxq6mHCFLIXNLD+6QyvlJ1PVGMRwtJyJ/hMAi/VCoaQsbJIWE73/lQPmGpGtKvc5uN3jsi3C+fShHPyyMqyU5H3xoqM16cTvjJD74PWlaAKiKDqDo5mp3PARZowqVSJLsZLPJGz1713Q3fpVTNVpXPKRPM+DJeJiJw73j7/CyH1lFw6cAHn3yKDz8BqC5AkcMKrhdzRti0SzLrId+d8sUs/RGHoGGK1BIHjrpy1skLUJWv903P8+i5odYb+iYh+8vphFcffoiHhxe4PAnf79suGwKdsWv2wJ0ZfW8+twBhWarUUFHZa9FL7/t674bKUisAOXharGAQgLbHVqAVLTKwKaF7jLY3JY4UG6q1xK6LnNuBiVhmO9gr9yzL6nnse2vOgPEE9DkBE7fA1C0g8y4j5RAcJiX1rmfs3lmx+M6J3lPo2FM49330BB/vGKReHPbJQZ2b9cNN7o3Nn123zFd0z13w/rCN0/4Li/ywx8xDW7fARQZDWYkfGWpH383zN3zv7Y3tGGiS56/HagI0A8Z8xftTCMDAi6zj6en5a5A+932eegIdZGgbwSb5+BhDoLyboMe8M47j+JpnNwxOa+eYZ+Mdx+3fchTMfXt3/2R0t4yUuf1vG+vcP7a2jTeVP6spxmltX/Gh9SX9NIMl80++DJ9EswfBpYmnI7HJtQwbQneOrvQsY+TFWWbFfMdYb7ZL0AxO1lEMACD3sydnz7vm59Z3c1+zHL11fxhax+tg+Fy/O1LnBpCod3jhxfScz3uaby90p9/b2Md286zL7CB/xhlCWR+tzUlqDbSI+TUD89Y6NeeD6WZSfq9FjESLJHBjKgFrskGIwtAD6MC5EkpZASp4OK2ajl0clJ2bhFq9/gZPzxds+y7rhSgK4eouFTGjcAOjY60FzCuYCOfeAP3HeAMuFev5BCoV+7Zju2xY374FLYvWdltxf77D3XoHZsK2bdj3Hae7s4dRWVi7OegE6BNe3r8Qb34t8AywxHjzfMHly6/w9ukJH330IR5evsLp7ozTueOT5UN8+PID/NvWcV8r9sslnATzP1YHBQHMRWU4hVPRHBhmcNIsAeWSiJSU9tkwfY8zmvmcUXFHJvl3Vv6BEi/adbo7A7yCz6smjiCAxZgoa8FpXbGsJ5RaUaqWtyB1Zoj1BAJjLfBwulKkkr3ULjVcsLkhRyBN/ayGjBprDIrsmVCDr3d89foNnp6fxQBHwel8wrpIeOFlb3IEYmt6AF/XqdEhL65B1826ft65VYcT551raz+kiZIgtRXhgmVdRfYkGbcuK9bTGeuyyk5l010w1jo6LBjAdr0IGg5YJE+ZOxRZzqf+rTBU7u61yuW+J9DDOK12PqTKVi8z0LvHiBIBOxqoEOp5walWzzLQGAAVkJzwlQxde8OyFpS6YFlXYSgFVkWJWEpB33c09HQgOJTZvGswpE+8cZgy32d5w/N9t/62d+Z27JrBJSunWVaLUsqw05B3SObrljFzFP4SoGwMqQrvrhgrgzHQbTvZMh8FsLMFn1bJ3Dtdi37ESwFIh51r5+mxWfGXQur56oNhMN+f52n2yAHXBfbma/bgzZ/Nw2O+PpD7XY1borHeAOlW7RHvGX8TRV9uFTI8GouHvLjCijbk5jAkdGYPx2t8810vARqqmKr8bn2LNQjkHYn8XfCvZWsycPTueNh5Xd/qs7zPbYXhc3nvMR/MRssRqDUDNVPDaGx7lHvvYTxM69be5/M8jdnTwCNikG0WowJ2T21a4oeexhXhefMYj4D7NX1C5rABGKRwR7Y+3Ab9t+gHG82Il51eAm5H2r3LKZHfJTSKWg/fZjhlPjqS8bmNOblKNjbNWDnqmz7gY8qFJHuic+zyAkSiylvr4uXU+yV8OtU2IAOKCl7TK1uPEE8v94VEe+g6KDTIhVmGsALiLNdMX+aCngZwBDhJhflKxQ8FozXwvkvI9ipAkwEpjAegEvDJqweJwugd+5svcT6dFA80PD894vHxCc+PjzifTnj5cI9lPYk3ncVxWqvQypIaEElCCEaBrEhJ1tPbjqc3b9yddtl0x0uNkcfnJzxeJHnQWhasdcG6noX23LEoQAQRnp6egFJQlorT6Yx937BvF9yd73A+nXA6nbBtDdu+4bJd8NU3X+Hzz3+Jv/7lL9D+f/8c3//BD/DDH/0QH9y9wMvzA16eH/DjZcVlf8beN2yGbWpx/Z3n37S7zWAtJWWVMiOwgKd6W/Kt1ORiZqBJDZRiJxlUhtk5j+zsmLEAyQNutJoBahnPChWU84O8Ux1lJ8clkoSpc0PbL25wlVqxt93D+bhW5SUG41nuoepAvgPoHPVHsv0gDiTl64S3rNI8g0D1BCaglYpLL9g3Bl82dxzN13UoI6ffB8r4+0Tfy+ezI250ZM46Idqx4pzbtunuUlGDTdptreucVZwf7lHWBcu24fn5UdevhEVeLnIuqLcdp9MJ57sTyrKicEdxGcDo10P/jS/id7mK/gbXf/t/+j9g0CbKFUtd/NAYlAk8+4EKLUepJAUcifXfWuXwW2e8fvOEpVactEKmLH7GvkuaP9mJqaHUEkMcKZ5ZWWQldMtD+24v4QgIvw1I22fZU+ntkjBgIaWbNkW4Nm6Oxnf0+ZBSEGNKT1NUtnsTAx773wE0ToW/ECAX7rGweGcVQMCoHBNZ5MwRo2vRQ9HR846MCKOlyknJGYjMoOCWoWhx0u+6ZiCaQfO7vKu35iSDzbl9U9hRLOs2+J7HfNTPW+OYwdU8lgF8+jxe90f4Us4FRNgOHJgA+rmi/gxgV1XWrDxyZDyEAD8y+IUHIiY/Ym9vGaHzfBzRa17HVsBy3Ok5Dt2cHR25D+NkJHBqMcZpEQxrNDlAchiPGTesxr7I0XiBGFnHoW6jsT7SGJZGfqKhXd92fsPeY3KsM3tGrlqKH5q2tTufBTzuY4xYwJN5X8O4c0+uyoq8k+5yxlnrttzPfJDlYx5zdiTcSj+f+z/z4JER9C4D8Na67vMz3hZi7IPA1nXcje66b22i29pn9rCrI0CU+cHeLt24NtJkreSwnHFMwdvpczM0KbXLXfuPyPBGypuKtOTcAynIZcEZtciuidHK5BnP6y+yJVraZTfa3dBPGfKsqDCpY4HJU0w3ZuziXVQDBtpXjhTAZjxK4RcQCKe7s+vRy+WihqSAxta7GpqM1jZs+wZwx7IsWNdF3k/ixPQzQSCURcPv0xzmmihCe5sL7Zp6yW1GGSw7DHr5TpjiA9ha1yZNh8UDalSyFA5k2HqqIKW3z7/1T+epmDG9FEBDtqTyPCd+1zkh4PL87AXCF01VLDzL2mT3MzS2IwBIJrQkPsUBqBTaW0OEcA8ASPlRzjwTJETSz7q5o+3aGZGvOFcnjCI8H5FGolN1JhgwJ70s1XEdYXrP4BQZ9FoyviYMYnLDHYGdsT0/4fnpGc+Xi+4CWpIimbtaCl483GtfgYXI5crf/cf/5eG4/6bXe99Reft80VoUKnE6ADDuyoIqWykgaMVvXcgaMSiVNlEA1lSNuo271kWye+wd2948vlXOkwiwsKq0Ur00dlfc+8O3vWBHf3/X7/6m1y0GBmLx5E1ZyZ8/KndTQt/W/hWAdekP2QK3uUrfW9iX/w4VcYVQ2J0WAZ5cvJF/wcz+uQhR6Pybp3Xw16d+cvr/+InqY61Qfa3cvwtgt9C/b5vWo7bsc2vr1jULiKO+vKud2Wg5Atrf5ZqNrBkgZZB5BJTmduRLDLS3x1Q32xNpHEj3UTQwvgHGJ3Nr0ed4V+5X7u8tulubZvCKcL3mE2tz6Ctu80IeP/JayfTKK5oOho6xL5kGV+AWqmgp7wCNlLexiMFVp3m1/lwbA9/lmp0DxzeNf5rBe8Tnx0YqEj+meTXjY1DuGsjhCp7C6eVK3t5xbAjM62Pu37vWwrxuZpA/y6T5/oFO6bujewaDNcnsWJcMojoAfwMgVAisqVuNgiCoB3s0vOax3vp7XkvZ2TauoZFuGWyljrqTyiIJvG3oUCnasagMTfQJooJi2fP15qqF+tZllbByzUQVS7v7TkJNBaDzUmh6LwEgdbQQyeF5e3dBAReS1K+dI1bfkh1wV9AvDbe+igefgfW8uvPsTTWDuGNZC5grOsu5W8sOtj0/+VkacWg0tM64u7tX47Bib3PGxHnenACwtURF6OW7TZ1HyeDzo5hE0amEgSWHE8P5L8TY9foxgyA6pfM5GNnRPySeIeNv0sP82pqt9aJV0x10U+ANtq0EArhEUU3bkLB+yVBi7WQeJBBQ5KwZAV4pXj5WPQbhyRjKkVFhutcMEOgYsjzPuipCz25hD5N/+R5zhgJw3ilpDcUUyKSVUoAKgM/YW0dpDduujpdavAJ944bLtusRDVIHSEpf/h6v926oPDZG3yy7hQFLwqtyRoXEgYIvWNcT1lUy/PS9a+X65lm8tl0yQJVScL+RHgjacL4/oa4LuBDeXh6xlIK1VtydtS1mzUevfkLdXo4iUuwL5zbwGL1mI8jl4R7zeGYhPdcayO3mn3lb3N8F+NbrYD8Y4GP21IFzn2clkgsz+X0AhrORaWUSCNwZe9+9iJI4iZSeaYFV0t6qsDbvRUGcTdouF+mXnkPSYUjMoykgIG0VJkWNg3hvshAB6/LthAe3DBjZBpXwCEuckOfPiDKfYfouhgFzhANaZg9LlZjfn/nr+t3jrteRMXPEb/m7LKDsnncZK9bnWuPwJADdoUy8xmYqhhCe6SzJgkqSs+QeMitgKmsweW9NIQ00tgPz+leJw86WWEASFwQ4HekYKdC1IyrwbYAzgA/6isI3OkPfGXyV58R2X4A0J8hAzZRP+qeGfRjs6pE0rz0QGXJ0N8KUJ2J6fH73fZ/WStx77JzJB1DjvluXFcpsrUm9lPTenPmLWRxDFZHJyUOVwNgtrKNcr3Gb13GEDZbVz+WpmyrS/6yvzetrri8dmddG4rzzK1/5uPI48vrIiSJmOua1ncGA3XtkDOXryIjJ94dYHNc+QUOzSHcnM6ADwL2pLK7Bk44eLKohzoweGWpHxpldtZrOU4ejvjfkTXF9cEPDanv5gHC6c1B8CdQpwJZD/gzWkJhsfLHTSwAZAbg8X5B5PeYph6PtQySBOQVyAhmLbgCzFojUuVALKVQ1u1GkH8QcWWd1kT5vz8AWQ7XsZNu2SRG+ZQX6jn1r6K3jvC5YlwU4nfydnbvuADCYddeHR104GsreLQ+BL5rZSvRrms8s62xu8zzplcP+gEgS0QE/gwQI/p2NFJeXygumcxgdaN0Nkq76x9+vAP/u7i4ZRxqcx90Pecs8sq/1y+UCAnA+r6inVYA2xXpmCG6syRnS3ekhO0KmrtR+8PGty4KcJbOoAXxtXIR+MHYnyusuyzY1ftI6yY7MUR+NssLmP71WnBYpNXjXxBWs9K1VsNHpYQXXCiwLtv1r56n7h3s8PV/w+NTx9M1b3N2dcb4745vXjwB3q4j4Xq/3bqi8fnzEqVac6iLFGamgF8LT07NkYCCgrgXcOva+oXe48mIAb/cNr5+ecLp7kIXUOn79+ed4uDvjg5cv8OrDV5JebbugkFjLVKzIHetWqygXnqqk39p9GEHK9cTf8nK11nxRzZlW7Mqepvy+IzCqX2oxJI3ztOxeaWnv24a6LPBN/qxkrA8IAJrfH/HOul2tqSzFQJLdqLro4cYuhTdNkDAVkBVk5I7wGPhqFaHQui6IUAiWpQoAWr9xcL13NygFmNpI4KkM2avzEkotA1jItM/C2TL6GHgUcJvDdIJmBqHmeZmL3ln7u6YczO/Oz84e2cxf+75/K0DIBkmbQoKOrllhfBdv7tAHwuB1ErrI35KSXYyQKNY187KCRWYPxREwEb4yq/BulDZ4jzTfc//GK7yyc5Yn42275kxP5pkazwRd7zIZACKyIqujcrC24qCxFi9NRfuM32ZFkX9xGMYKYhzkxDku81TmugjXQDLCBgysDJnqfI4sK1RgpkzHHOqU+cIOqhblw3nNDQ4GjErXac62U1tQkOcpaDjPofXZ+0ocqXN9zGmuAS0k3N1TamzFnhRCD6onAyinJJ/X7uygmvlpDg+zKxs5R+eksm441DEJ1Pqz+nc/lKEEaBgts4RyiZNINIWHe3QCyAyY0CxDe9Zf0z/pPpO/BrbsnxjVSt986xWtLBxq/M6Ac75M9rTe/DwJ6TmWGZhlT7LRQ7in666L9NfezVrkz5xKDAPkIuxIdYzNhZ3psneBk6zwMNg4Axi8wrrjJya0LxAQ2t5gOxKFihQaXOuwdgkEqlJXBaUMJQKkvsWifh9OxkPsMMxyC0Ba7+TOECt6aPfVEpDT9R8lHEUR3n20LgBIoe41nF3zfNl1nQCCUMoSc8y2vuO8DREPvMt20ESxiKF/SzfMhdEoHApyGH/VqBvBkigSzeM1bQzugDydNpFmCfT/plBjLWB9C5McrXvTo3HPMARv51YY7i0MZH+7HKcCFHiKaUkzLJkDiQp6a9h7x7Zt4aCuFfcPD7hcnrFdNnz99VfYdpazYXrftu942rpuUFzv6P2m1/sv+NgaaBGrnxhoSuR9vwBFto6WsqCzHOLZ1ZtVawUXwnNveG4NpLHOrTU8bxvu786SWWFdse8baMt5/K2YpP0vLl8YCXjNAj5P7NFOSr6OAOXRZ0ceqSw0bimo2djJykk/iMVLCffke9PfBuR9rFA6aAadvTX35K7rispiIPVmCm9o0Ijs9CSkMwf5vvQ+MyJjj/SYfuNh9NFQ9AWuioEwzuO7QPjYxrjAeR4jhfId77nmhXkceSz5vXku552U2SM9t5PHdetd37Vvub1DkGmfJQVgfDYDjvB05yUX9GX3QOlfznjek+GHNhwf3xhTPGS8Mc2fA1x7Nw2Q2L7LvDWfIQInfzzlnZG0JjMw57TjQVciyEjjdAGuldjoUIHHuDtNFCBk82Ym3Ujfse/vujItZv7IbSH12TM4pef1Dy3cK3MkokYVb9OKyd5T3Vm66nteNzx+l56n2QhM3ne2m9g5IhpIHJHlso3Fx5voc0Sz+b6jULh38rHJ43cYQYeyZ5j4qa+J/zuzRHAMj2h2LePDua9EuMkylJjb+SSeNVl6JIenhqZmD+Q2KNIiT2OMZUGaEndu8fiV0QQ7TYjIjTLjiqA3+9lQ+VxPJZCGewUnStsmF676bOuJ9R4TToRGZrApKLRCe1YgW0PIXE4NiknWliQkKsgxSFl+sbafaTjinDCWsmPCjNgjHTHQFaTh9se8PjhMWnMa57WXnT8B2AtSsTJ/Bw8yP+bK++nLW408ALbLn7svjo7ITCvJXgiF+rS768ARYG3Vi9caEZKsJfIw/Xk9EwV2OdL3g8HjMir6PJdKmOXD3O6RXCced/xtR0UT9sp54d51B1wLYJ5Wj0Z5vjyjNXOciYNi35ucJ7I18p6v926orMuCh7t7fPDiJfq24Wl7xtP2DLQNtaw414q70z221vB82fHN0xMASIaKdUFjgNYzXr95g7Zv4L7jdz75GB998AofffASl2e536rPk6OoLgKgAAvVw4mcRXD2dvnipAgFmid9fnZW6EfnCbKXbm47P3+0k9P2sExjDFLQB7hOFUo0prw86ntrTQxGIpS6YHt8xLZtstVpGVBa1wU5XRwHLgF41VNYz3RxDUJSP+l2yDAJ8Eyn3qUI1KIp/vJV3CsI7PYMxTvCAKMhOcAMemWOI+THtoLjSkCbJbRh9qa+a+cs9zs/k2s0+PbyO/gq/3ReSP2ceSfvtLh3kMedjjlEMYctzuNYlvBkuRc8H3xNBJ6zSVntggIC6pSxqub41eAVa7IQvCqvCFYFXJnnSsQe52vI3JRrcwzEDSMFBqyg7xug3LtF7bzuDHyjm+EzgvqhYYyKZ+iezykBiPA5D9vJbYUl6e+h6bbWGKUIMJpB/buUJBC7kHaZfLLdlNkxYFmT7N7cT/fFqzedewNTHYhs/btyHGgjGRDbOry1q0jAUDerl5G2JO5Z6RKNYYNHxv8MzpjZd0PzepvvGUCfAbVb53pSG7POsLV/tTtYjucTRHrmIBEEEpLLTFqjJJ4dZDoF77pc5fGgvYH6ZbHQYsbz80W/Lzifl0EmXY8LIBQwIuTU1qV9L+0i9WXMhOhrLo05y9zRsIksZ2bEHukhmyvxriYg7a+wQ8dquBjozEQmiBDrsVMfxa1l16JYAgBYSCwAC9Mjmedl0XO5vePx8RG1VsU70zrWA+11iTBvzkLV1w5dOcbylfWMOY6dJxIuYpaEBfauWZ/ktsbpkfctmvlqzpCZrxyal2VENmZy8hl7p6wT45MCwGgiy91smFoptcceFlZrQakVp9PioVFNDavQgfo+dN9tBOysS+KlW2tzumZDItMjGxNHuj63fTPRCWR9qx0dMqlWFGY1Mp4hCRuEBqFTJIsgdcbpdMbDsuLu4R69yw5KYcapnpQChJcPL6RI5jvG+ze93ruh8vLhDkDHm7dvcL8sOC8L1qWC7u61aBBE8LWGbd+xd0ZdKup6wt4buAOlM06l4O7FCzzcnfDpRx9hrQX9smPRBVFqFQWYvQW6VZkn2kDSbIkeeXFmUGqKZT4kaNe8MHPb9u78Xrty5qnwRLGD2gxKLR1eh2bbINJkAlDrV4Fv2vol0uxYmrebhSjuqTWhzZDKxQZMl1o9fjzCGeBjzzQ1z0XY/UE3U24ZLGfa5YWWtyxz/LsXB9M5sBCrdV1d4D9vl2hXQQhnYBSWitCYxi3X2atjlwDkGNnR3GcBnelz65pBh433SFnOz83vnw3w/P3MnzNPz231CbTkvuS/ySZ7ukd49tojbe93o7wkI3IC3MXOQt0w4EbBrF55/2h0CtjVVOkr6w/v0477R50Z5o3MtDVFdkvuzuu+UOwgDv0m8rhvZisImhXR6FSR362dae0o/TKH53Tl2WAhsvkd+coz7CR6GIS3Nne2dMmyDqQKsZ79KFaB+BjY997jcHu6JxvA+ZmjNoAo7Akceyaz08fOm4F50AHMAnaMBn4+z84WkcnIvLsWaZSD7hkZ82CImiwEI4UKwdux+wYepdEg5GlOTaYSFXFMsRn1FiaksmzWZRRngCykR2QfO091ZiwU4Wp22Vkky3TlOiDNk9HTrm3b0ZqE7Jr8Nlk9jzkbamZ0yJQJFAyD0XTQ4rzcNPtV7tfMM7eSAhzJysxX8R2FnoTwuoxF+moOQijfmVFH+R08vwMDnQNEyzOxJjQ98hR6uNSK+/t7583ADVnOBG0j/C7Le7nnaOc+5FzirRKppWedkYF1pmfWg1mW2X0m222dzo6QfF53nscj7DDvwADQpAPs8xVytGuopMjGOLtr8jh2A42eXSN6hOP0nXUBdB21RBunHwC2ujFGeCc0ht262eDMY81zM1+zQeLzk+bPdvqs1qCvG0q6RA1iy8TZ2sg3pRQsfmZL31EKllrwvU8+wePzE56envD89i3OpxWn0wmXfQOIcH2C+je/3ruhcloXtF1ygD/Uqlm4ZFuJu2S/aCItXUBBAXhrHYUlm8KyLnh5f4cPXjzg5f2dnGnRw5uWC9o8oc7cdL1tfQQgb4Hm+e9bBk3+zpgjh0IA1ww1vyeDyLz45/fb1raeG3RBKnTjWAAJlAOhXELpxeIgkg1R8470cu0hNQBV/MXXY6fUblZm1od5fLdo4c+l7zMA3PfdhdH5fEbj5sLEPHA1Z9gYfglgIIJkjg09en98Nhuu+bNZqM7jzJ99F6F0bDTR1c93GSpH17cZNEfjOGrDN9J12X7bu3K/LaXlfBkXWQaSWwZb/uy6mekDMrkASJrzMLLILBflb56eF7wZ5xduyYnri9RLrKsxAQkz8uRvSkCQgJSSchyHKY5x/cx3DVS4Qb+RL3XE1lB00r/Nyo6SjOmcstmUkacEwNLQPyGzzjDRIPMknJwUGx6PagR712FpR3LXPneQkEGotWmgRA0XN6jizd4f75vxkNJi4EXnJfa2OC2SK94JAXPM5wd0ENmVjDzn7/h+6tAVRbM8zjonywTzLhONtB50g/6fO3tNqwwOTU8P/efg56EVGtfZbTmW5e41ffLz12s1wghd9w1UHgGl/SBoVlLlY9sVybuvI8eH0QWMOwO2izWzZam609KvExoYYFzX1Wk36ylKvw8yx9sIQ+ZIB8+yf75meXJLj43YIRyMR46Jo2uWs0fvGZ8XWs70miu42/ijXZMB1wasvV/gaYB+X3GKvwZ9McgjxE8K3abdHe7JMt/0QvRB33dAiyP+zrSz/to4OI2TKdeOE4O5FFKHKes6NseLZHcddJMaLue7BR0SbbE/PXnES9svoFIPC87+ptd7N1SqpPiRIn6toVb1uPZNxgqxYgsBS9VFCKBtDc9vnnF/XvHwcI/vvXrA/XnF/ekEYvHQlaVqgfriB3K5SzX7ZTl7H+Zt/LyT4p8nxQ/cVvJE5J6mozZnr4AJF/t8WZbhwHX2XtjzOcxMtiDHbFTcO6hUT5PnmUhUd2bGsK3BbdsOBRPVAjvKKsCD3TPUW5O45oXQu9FrFGK3AK29N3t9ZprZPVm4zQLp6J7L5eLvblPo1OjpNAEzzVVNYXWNFaiMhsEtkH8tCMPgOQKy2UOZBfQMCjC9zzOdHPRl5qnZW3VrO/+oD7cUy9Fz9u9I8NwC8QFyFdCGprA7RFnYtnuTLH3z+sv/7PC3jJUA7BjDv3SeVYl0MCLuBcPhUwEq8ZhhJ1MunVlljMmqDEvSg/OvCnyLAtZ4KtN2/Ewd4h4PbTVQ5Lvgo3eFCwEiY8ady/yuDPiTUZLBr4XNDfVdyAG4GFk6N0XGSDzygHtIE32tL0JjIbLtiPd2e0yyVuLwv3Sk+OdGkyxvXFbafFl4K0Z5K7vMBWish8plfHZwt3sW2chUaMU9iMhDOrqGLQ3YG0UzGHJsRWNMTGDXtb4ZQZjcE+vL4sOtidZYeUfmdgSEfWjHHtqbZIcj2C6cvT/0zb5vavxJ5jtLPWrASd4pTsJ9b5KNimM35Qiwhvy/3kkMegSINP3hDirmqLU20S5HJ+ToB5mvEjycHXkmJzxaIOk1W38AFJlqRqyqXucMLBmsCWfiijVuYYEyFqje6Z6VDVRQUcHQVMakkoeKJLsqJDssSRabcUKQYth2Nd2Jypk+ZX2Y0XAdBRC0j91E07+3ikof0f5Idh/psVthkkSWZhh+Hsf+WT+ykdr79fOxhvLY8k5zNnDVUGXJWkdkRS9Z5rgXNNMjyZXV2u6lN2QNZFltu+qLPNk5e5cxrm9zhcV34WhOzrNE08BShl/zWKJV+91DADGum/hphl7gh3UlPD8/wZySVfWhJSkQzAi0vaEuFS9fvsDDUqTWyvMznt4+4u7uDuvfBkPl8fGCRbeIPOVZZ1UEogzb1twrta4L9r2htR2vHu7w6sUDPvrgBU5LQSHG3jZY8Sg53CXT0ZURqAjszsrg6BzBIIg6o1RKbDjBienZDPJsMZvxcXSw6dbCBcZYejNIsoDP3qgQLFWLWMlne9sFEBwAz8G6zsAYAby67UiwxLfKQo1qxl4Qy2W7jWUUXEdjzIZX/u7oXI5dc59nL4+nHwT8MN7chwHMcXgVLFbdkSgUd/Qe6S6nMyRz/Ht+h3ljHMN0Hpkn3T9/dmUQpH7eoonRLtN1jgeGjkwA4HhYcQi/SvN0FJI3tDfx7WyU58+uxstiPDLFnDQ1KA0ze5ZgGyvRFNsaPDgCuQA5YcDE2RhmgFuX0EcIaPPsJWmdXWcdUpVSiqe/RhpzcM84Py5rWDITZSUij1ooS9C56qlFT5neI+WysOp4Jifasp4wohr9mBBArshOdG2EmoIqaqiRF8czRwiIUGwtwsyEMOpiFyTWrIdeEeXOiktEDSMxEmmie1bk8k/mvCLi96Xf8nlxusSOapJ9qV/6mL/T5scUdVby3cAns4fRSqrTmMtivKvAynbz7UURKqhr1UNAxnU1X3lcQZwc4jPpMBACA8d5GWM8e0Vv4cUvRKh6AFjavT4jMMwjioLCCIMDhHebZX4sBevp5HLE5IydXSGYY8foZAbQfFYn1sKyrOqI0wKVST5lB8Ctnezhcx+g/E+SCEjq3EJFwxnDOMo6s9j7CIo3OsoVAJPsY5TOKuRwv7yjQHrYnUCaTlyEILOB6SLRJwmgE4th3FsKiyKCZT2jYlTO4c4jPUx+Wv0NS89rRsYtp9WRvJ/PpNxycOW2zIliz7AKEa+VI8pKeWWWK+418Oek3Tjbk52htv5Go2DELY5JmSVMU78jGaDio65p1lWnqNHguo5IDY20Wl3sx46d0T6LxDnL2hX9rM8gL6Vh+i7Pj2Mzvx+gkNKoJjvT/PbEp+HcMZoKz5xOp3QOUbL02u6jZw1kxVAElPMJ51qwnFac7u6wrgtOy3s3K34bWb+kQmg+ByFpEhcdHKPxjqaVcpdSgcogJry8v8OrF3d4cX8H0jzo+75jAaFUjb319J+6REljw0Mv+XUIGNP/XT1mMCYPvruNA0A9exG+K1jNhsqRgVRKcRBqPc+7CDNYPNrGHYAo2D1As9fXvBoSz2x0zoJnBMfveo/9fWu8eYwzOJ7vX9d1AOs+FjZxcdAX/T9NwIkTBwgPjWOcf78G4dY+OQCx3w/7MQn83F8TgPm9BhTne4/aHdqndPekLOZ/pnB671j1cOOtd9wyRmblNnyf0Z0Zh8ljZOOUHYTu6/gYsFpTE50SMDu6YpdQD/fRqMytD/G7Kko3hOC8c8XtE4Cy8RmYjZnI8xAY3vpO1Kd1ML5mXAsjPbJCjvtGoJTbycouj5kLgTvQycK6gvc61Jvt1NJ7UrszMBlHbXZNGCkEHIwz+mZjNPBODvIpWqPbjg+7q/Uk3RIPhQEznkWw75XS3vnBS8mOeYfx2u9uWDENc2Jj8NVARodxTBg+SzRMst7ac2NED23XqwPaIU9sXkspnjk468FsDEo4iMXvs+/6WQgUgAh/KhDj1tM+C09KFe0UXMV53Vp7GJ6J1L9d6mUovWwdM6dDxDoowrXOtJcMDgaTYfbwwDdZ3sf9Ni8yeUBHB/Go69NKSDycDSjTWWoApvvh8x1A1JJwEJHUD4kpGvpozTAgNSuyMXeAMazP9n12JM4JYI6Mlu9y3dIPsw4xQyGvLaG2YMAyMo0PNnclYwjj0/G9Eep3NBa/veR1yiE8EPo9058BdW4qb2WdGy+aP0gyLOR/nCViBP+E7CnKd4ZPnV/182gsvQdGrqRHE2+MMsnCPMdd+IzNfKcIGtofqjm0j54Vp1JR6vJbKfYI/BYMlbvzGaTeEF6UGFvHpRNoqaBa8XrbcLls2PYdL1+9xMvzGWu9x6cffSh1PiAHgfbWsF121DspslMB7JBDnpa+z5XoBGjydbhwYQeNUgjPjQWe28xbotmrMBst9lneQclthucq+m1tZG+490G1NxFhLaehzTlMZG6fFWyoGglZ2qKv5m00QGEC1mrFHIW65b4f0VlIasqzDAvO36uVUpklfMCAcz5Mb8/bT7P47e+rZAVWmMtowhz1LdSnyNCDjVBFXzQtZAojGccygiGrEdNYvH85fnwW0k43F9ZiXDcDcKTzltoN4kY78wHEWQBFOI2CygNllOdsTizwrsvWSQ5nmMdr3hbKwjSGMbbHAYSSo9gNGZGG3QGNGddyiLX4ercdMynuFiDbAFopxc+/FGQwYtmHpPGSeM3QlM2HeL8iRApEsMReV2FZ9mxS+jJ/4TG/lfEmAPqsWGYwSQDC25jvjbAImn4iIXag2K5BEYVrR06yk69Cd1v66NXL17z2GGP9EJNpmW9MjvFV/20tsNKJJ9qNa2o+wGvvM+PS+bMIvxROa+saTwxrwhK2DHWSkgGT+3N1+LcWlLp6f5gZVO15yTwIiP9zTCCRAX8mV796j1kcpUDDq0PeF91t4xY7TgQ5mM3WBon+2/dNQ8pI5XwFc0Frm8/j+XyG7NLJWPbedD1AMt1BZO6yyJpqbZczpAp+vPp7tfNY2dkksipkccPeNJPVevJ1OOHOoWCd0T2HzzbWRAOp0KWF1bAZKwggGLtSKjdMPwHu+Tavs9yhESIOpoN/DfR1rRPHDPQeuxd1GZ1DWfaaHFrXxT+fw6sAeOmGWopnOTXwb/SwK+tQC9HLuviW/s5X8EcZMM2Rk2/WUXZf712SB0D05t4aQPAsYpx3giGOpdwl240TOUlqAMJDw4mKJ6hhbh7eaE4EIkJv8h59AE13tIrWrSLSgtSG80Gub1pvqkAoQ07tuw1Yob0bIeGAyjo0dlZGnGQ3UymoZkxw17o84ozg5KQqzntm2CdcwgzYWTOMDuIjueN6lCJqozcLtcdwr8nY3TAHFez9gse3b/H4+Ij/AO/3eu+Gyv3dGb3taG0HNMNN64w3zxt27mhg1CKGxnk54+604uF0wsP5hEXjBHfueHp6BoGxnk6eNhcchzmzYjKP8nwdGQIgAy9iz4vCNL5KAkMaOFzEMwB91z1HnuArAJv6N7eRgXMGMNlgygI6tzWHpSV7Wn7q2Rtrfz5fktsbDK40lrD4pe1al/TsGPI2Gy0zWD4KacqHZbPgtjZipyl2V7qiX0+1aZ4HttGzZo1zXToYunmL+5aR1g28ssYXq5exlIJKYwrkYU5sPhyUjkCrI+xI8QImWh/QJBtBU+juTYVBRG4UHilBo3F+Vjww14bNlXJTDG19MpA47CTldTaHEKR5cNPS5y3uYQD7vqGW6jjBWrUDqkxx/oryXAB+boVIAZydBSMLVaHcHSkuimT0964gPmVeyqRwgHWtvGe6AqPBk8+sxRoe19nR3Gbj9AioUOqXJeKwA/JOFwULbgwQeT2LwbCAPntgJNRalSYIw9XeQdEHc4jMss/Gm6+8jjIvZ6eO8xIRKMmbHDLp/Uiyw72oSd5mI3+m9RhmN85lxKsXnQ+TKexFB+3K74r1BGSv/Cx34vf4LIwUAywyk5ay1mjANnFjz1EGz7Jclo3Kxmsyfd93Wc++ToRfivY7ds3YBplCawPwxGfWBx1VF/BdoCxqjsQSXuZ9b/DUHjdkkQE4yuSyeWV1OrhOGK/ol2CNkW/s8+tn5DMa7pVnx7M1c9RD5p1D50+6B4hzmOLgE5O3koHnpO8n2tg6WNfVh25ngPI4nIYJC8zFhq0/mxaMNj6Z+z2vkzhDJPMpBStLOFg4wgNjLGKs73vz/uewuii6rfzv/YxIG05GZaEikT1J5pZKbj/nYwLM8BC7ausAB3rL6Ne7Zm7LvHLb2T3LzxlTikEj4xK9r+80OapYuFtkgsppKoRKoRuzHL7GmaPRGe+uqEtB4Y7L46PXsLu/v5f7u8zJ1uQfo2KnBVv5WxD6tRRCYwK6AELDipd9x9O+Y2s7Xj2csS4Llirpi8/rirt1BTGw945L27HtO5alYs2H9DiOIEFBgi/+CaxnpecTkMHswUJyMG+dBq6Ycf57PjDu7XzL8/MCnpXh0ViO2rv17ncBpPzMkbE0XyG4kyCVh5MxZ96kpDCn9pI9cHN89vehkYkACvOVDSFbRJzAi4N+FebFlCHgdTcy+Dmaw5mX/D/r35WiuqYBiJApIof6rE37zEDfQBRv04WSzkTuU76OwWzQcE4ScbR28jWfBziikxkY8v7h8av+XV3KIKy/WsFR4xs2g4SgKapZFJsCQ/NYG1wDQ3YiZ+U50cbi0O3LmFnlaQgYcHqwvTvWghg9eSDXdD+i6dF6tr5eK7J3k+/b2vfHlU+dRpkuGOWkjwETP6Y+XvUhh7BoFfl477XCnA0zu/lIhn3b70e8O3+Xd9FnIChGxbjjNfc333tLvg4DRuaNMCpzH2Y+yf29diYEXa4Mxcx7w3P2THTNDJpcW2qmx5EsdmOQgdirh663GKytW2tjb915K3a8GdDMd0TiCTYNQoCfh7G0+rIBE9ZC9vBnus39HmYkyajb+hhK+7mdzF88fHb0efCKgO1ZZub+zvQ/+pswvVd1HRT/HOmqI9qUUsLZktC86THCuDZaay4b52iNWb5lo+sWdiHILlwYJDEsO4cTdBU9YOGHZnTkhBo359tpHxglejDhj0xa+UIZgUK3Ew1nKY9wyi38d2QoZCfsLAuu25gRFGKhZFY0o4SyTj6O+HjXJTQFWHeizRlLhVB0d7Jzk7M9rYPWBWVdscxRBu/hev+mz76jkhT2WUgOFdUFWC4NZd/Q9x3MJ6xrxYv7O7y8O+NUJEtYaw1Pz8/45vkJd+c7LMuC02mVMAo1IirkUFzb90FgSRz6jcVtSnA6Y9F6FPwz4AZcscIhs/Uu6ZLNC1uXsdBeXjhHi2gG31lJ5h2SYUs6/bRQit7HooUDME/t3xKAozAzq91CAHjIw82shZagNVd8IUPDGeBZuVrv2LZNvyOs6wlVFeJcNK4mACwHDVlTMsoYnp+fve+SnSJ2AtwLxQ77AZDMbe84X8XgFs0gQ16Hh8q1QZH54egwOmC7bnqolhiLFeQCLLbpKkTNLpuzboWrCBIzi+uc5ibEDUTKWCTtLnm9i7j/1pUViNHuKFQw32/P2BiO+CcL1QEYkfTTVtSgAyCCL4ccFip6yFI253elUS3VY2RrJT3f1sOYAVDJNvSzYoGn97b++MXRVwvvMfkS7YrMcKWtw+rwybnSbR3JmWKfJWNwjgk/yug1r/dwFFyDUWm/OY1vARQfo64hpHf0LqEyTAJuc9jkkTHCOk4Ustp2cAKSnf1I/NoFaNYlkofMtAHGNZKNl1l+DrJjAmi5rVvX1TqevKO5mNyRwXPU3k1a8TxX4Z2utV6F08zPZrlzbUCJ+G1trs2TdvgS6OSx8cHyzfOS10Qeg8lqEGlFdEimKg1bZbA7fWC6tmnBTXFbCk+QyC1bUxlM2k6Uda3WSBphn8luD2CGQNYFNpdHxXfn+RppmeWacW94rN/1rO0OxcFkA6F2r8xVdgwdvd9qqOXQ5jwGogiXrMuCuiwSPpTWAxENiX7s2ZxNE9CD8RD9XjVDYtPdAsPkbOHXFo5vwF7/69wHPW1XxiAh+yQ0MI9njhaRML1RD40JCWiQDznq4da6i24RzMxz2acOS/us783r1hVrs0hWSlcfukvDYN0/vL4iqcQYJp159QibHf1967OMfUw2zLLVaLPvu/PVuq6eidbun53t9q7eI+z/fDrh+bLhsu14frpgWQtqJfTaUEA41wXLesKrFy9Q69+GHRUbLAg7ixdlax2nWrG+eMCHLx/w6tU9zqcVd6cTFsjOyPPlgm1vABFe3N/rjktB9j/DFCkYYC1ymASzLar54PUgvJEAgk5IrTUKLd1QRnYx65ah3rekw8izMeDdTorxiEFnZUy6eGavQTDQGNaQF2x+x7wAvJ+2g5C8pDJ2+d3i8ZnjLIGS33euOjO45QxmidGJXBhIessppCvTmGKGe+p7FlA5zOnKQJnnB5oiG2EUXYMOe14fmAzGIyWXPTc+fzaEWuRAKYexXAqBoUp9mt88JhBpCA0r8CX00hF1hgDm8ARRAuE2h3yQgz/3fwbEmR5mMJkQm/uZafwuT/PVe1TxsB0aJPbMXwA8jW/ObMJKAzEUIkwkx8hyZ/XYi/IzY9ozboGxtY5lqRpbrHMNDQM7UC0u8EFApaFWgnkdOwTQgyVtJVmYgdEDslaMc+zg/hFQvSUP7OdsBBpIM2cAERDF/Eb5kRX5u65cVbnb0qeBsVJs/gjUPHUwWWaapqE/EQrqIY4mgxFnRLJjBZiysaV+xbtn7+IY6nZkTNwyKubx2L1HRsmRkZT7OBsQs6LPv2eA8q6+zX2c2yLnYXbaZEM2X35WhU22jO1nOZr1zEgc4RWTOyUZKlygzFjEAdk1REvP4FifLWWzcUIU3bRxhTNj4LXcV32VGTW9j2vniF4zPed5zHQ13WnzOTv8zIBxOXzAcxZqZF9Jm3bPaMge8dq3GVQDqEcBW6rcOhoA3u8+7vhnGU21hjNHw1dBeqBfgbjgLXNsJLVdgHnXNV9yziGPQeiWMzPO82KGt3uD/HsAGAF1DlPPPDuuWY+X0M9iHpqnh9ZnAE8BDXvKPq9F0klnWVjIwxI7cHWuNMuFfLY2z/0s765k7BQGOP+br7n9o+8zbxi95vtziK3LBJK6hkwEqhXPj0943ghUCTCfF5PIgNbQbvDFb3K9d0PFMnAxA5fesWkM26lWCeU6LXjxcCeGyFKBvWFrjL01NJbFfTotHr9oMaZXCgtKJFxP4hHQmieY9LNCY2ylf39D8GUwVoicSc0St2dn5XeLOY6YET7Ga2t6NkSO+nckrAfBKDdOqXVD+SMxqQEPtvGqwpvB7xB6ld5JFGmqk2YKQaCfco80soTrmHRrz7xU8zjnhW5/D7tNRB7mw+rlNUNlPpNh77h1+RyoIL2aJ7KzGcdzbdQg75fRxoSh9Q3WSPQv9yP93xTHOxXcJJTexUtzG0eKNPP6EGOt//HQw8R7CL6CggCmUH7MaR11IwI87I0mIJGVQusdlYu35wawxbmn/gxjREoZmSyQCBPt1tXpeVZgL2dyqhAneHwCJZS/S7Scvz/iwyMldCQDbn139ZktwCRz5J6415W/MrQYkknpMaMTQatpwoxHHweuZWLuQ3YMBJ/m3oxX0GX87MhIyWsuf54dP7f4fjZejtbV0W7Iu/pxKO+/wzXygK0PwEAgUd51A1wypPceAaXZgDrkL3uvzYfNj+srTXo8gVPrR5j9zu3p97F/zDEmH6ztUhLSGPK7jmh07QjI4PCWjgygG7JtdBbGu/I9x/jhmk9zn2/p9iOeG+5DgOlCERmQ7ws5akbU6MAttcQz2kkfj+pHx0VaeyinbR8sTb0yLx3Nk/FtHld8l40K+b0nuT/TaD63Ot+T17e1J7gDKWvdvJsBf1/GIsG/8M+Q+ouJx2b8eYU9J17M37mjSeckY6l8HbV5dOX3H+085WczTsh/gwi1rpISnQhPj4y2N/QG1NOCCsu829EbXzP8e7je/x4NpGbCpTF+9c0bt15/55OP8OLuhPvzKbbE9h3btmFvjEaEu5cPOC0Vp1qwbRdXcvlQICCL0Ap5HQmdW8aKMBUEmJIQtxfJ9iR8PALJ+crgnIiGczE83ZOFWD48dbTLkxVFrVWse+AQXGbh6f04CHNgju17KappBwkhoKoLs1kBI2+X5VDxbIQ4XZgxsyFRhHNZ6FrO9CNp8HZVNONzWRGEoITPE4DBY5TndAA7y+IirbcIh8rel0ISNmjjJEDCp2w+LG73lsJOoFgHEGOxe2wnCn3MJIVrkMKGNkgVC4tIXOriz1n43NCfWRCUgloq6o1DvrXWFIY3AvwsvPJaWr5DLvR3gT1mxt52lCXqQRjYYCCSWRSAcvIBbaf6zoAqVlg2E90haw0oBaxx73avjHfMBOf/V2Nici1fAWm5O2gCQDyQqc4IEEZiLl4oubjI/cdQOeFKC+kwZRn7edv4NgDQkWO37dlty4UAx92KPFc3L4KnVeM09uEyAy2tPbZ3JcMkklvMOw8K6Bkhi3IXJvrPcecz6DR6tAZIDYrjUJ/5PVan6ihENq/7fM+hLjGyvWM3JV9HIW75ULC3wWHEX9Mnjycy4sn4ZY3FY3xVkyvrnBzynPuY+ceccJRAXWeWUC8V5iSNiLyg6LPt2lt0gAFF6a/uODpQn3ezrulHlECcrmEL5f4u17sAmrwz5uAWCL7Fi0CWneShVPOz2TDJxoq1OYcJz1gi9204Y6s1WAxrmLEBwA0Oy4bVWsNlu7ilq+oH2bCyq3oGrQS4PbpBdGefQuelzy3xlcmLjn3PO4Lyj2hc+3YOpXf2w/Pz/Mx1z45onXlZjLTs0KogFDQWzCLO6oq6VDDgIf0MBnEJfKDtdpZaPDI6gFvzncYjg9jmzTDSjOkynw24K26I8ZfiujHzxYzXskyrtfr8G10yDc2IncPsgo9JkmNRQakFH3z4Cm/ePuHt47PM/+mEclo1dLCl3fr3d73/go+7hHpd9oa1FtydV6zrgof7M5alggnYuqQwbPuG1nYsdcHd6QSpv8OHwj8TdWaErGDepaTkQ/ufwRd2I8Uy+ORnh3aV4Sz1KMkX3qzb/5OwcwGkIWbMEj5GFDs6Q78hjZGCdc9QpN/PcYVHY8/A3wwUtrECMPdIeIl1e5aKe4EzmAXCG23vzSFZwdzVQ3NsMKaAKQtGVWDuuVBahJESVDXhJZlgJi+U/uy9+1mXnr7PlYttLhr0QJjFHzMkXA3Rl3cZGCOtZd9APksGjNH5gB87+wC9Bb+VWQu1mUF+7aXpzCIglLZVzxNt23Z10NHea1l8suGWMxrNCvQIcN2iywz6coYY9cNjrCQPF+oGUmbFU0p4/GxXTviGPJTLzofpGwZlO5QTUXITokgfgwd+tvENYR8p5jzLmCFT1oGBBgLYD/dzjD28GQCA9Z3g1rJv1QFMZiBtICAO/BJyIb9ZFma5CSMPyaHWaoaErs+cHnwOrcjtSg597ZOuJy5hYNoOVedUMI/pivZ5PcnfYpQFf5o8BtzUZcmRR3QNWOYwRbvmyt1Gy1sGxq3PafruiA+u9JgyQD4rmefEowcQZ6Tm9TannyY3HqNnfBCyZ89bP238t9LkS3hLVx0RvMIMKQYKBvYu4UfKA/ke+0MObWvsv3npATC6j8UBEVu4oTBhNtgIFJXtkfSZd1x5ZgJx87jHLF7d142lspU+L05PO0d0ZJgcrY0M9rtuMx3ikNRWxjbAGMYzn230e1Vf5vU6YCEziqoWyi529oxwAqH1zWWStK+GAyzMTjKJMUOjD1R+key2mMNP6sMY/TMNTHZY+LXtSqmcAiIawZ8ooBo0W5bARnOB7Yw3su6wvy+Xi9PUik7O+ooy+/QOdmdH8DNhkhk6ViokO00dXuYCCSvNPJg/67274WBzmufX77UzTgOvsyacCGzwLt4yWrXW3PmYn8l8ZvSMfkwyWX8ty4LyIMc33j4+g8nKWxRAi7O/7+u9GyobA5ueS1mXBefziru7E06rWnQsmQJ2PdyDzqCF9DwKANbjqBmYpTCgWWD8u1yxiOMzQoQvDPdiuE3vRQJY0Wb6A8C4mKYORKgYD/lSgrF0oRNL3YduiHcCS/PPo+sqG4Z3x6xz6bKN37K/MCwOfdJSqcfZCJqNloG+Bh7NQFEB6/1PdCZSgJmMFBFqjKK5y/N3ZmSMNE6/03jepLXmYUAlVQGWrW1R9vMuyBGNM2+G97kjPN4wRBX3DW0wuIcgIrb7LRSqw3K1W3pdA3YGkk3J2I4Yq6ckz8eR0Z7Xz61DvIe8m76LsSiv0rgz6EqBEEaqrTOwrCHYVB6ApERb4xma3+8WrfcszcUcUpEob+/Q8zBqDRyOcQxFs8OsGBwax/QSnmI903LkYXIKHtKZ088wwOZdVDlEH8p/bHmc6zxvMz8PIZ0TwWZe6npewUIwS5ojy9bTicGliyptFrZDTrM8l7mvQmOLeQQknGnkNeteKNJ8T9Auj30wrCanxazQh1nIvPgO0H9E0wE0IhlOFKDD3u8OBJeT4REf+3KtlYIW1o/bY89zOMf7X49L+6BAbJSLHOuPyyjAEcvqqk2VXS6/cN03B8OA/7PnjJ6zkQuVhaZTgxYK2NWzLgA/dJQsffNIW59Hume9Nhu/7woZF768BqtzO5k+R/fOBld+h99LdqYv951T0g+4LBanBsBbkztmmiW6uQMISUyaTGMBzNVSHXfGvH7yy2NcCfTC1JzqCCIQ1XBMTkZJpnk2Oq52JXFc7y7TjYhQ0xmu7KASIyZwjDjNUvp/Jzs5XTnxaH7vQIlpPc7zPdAv46iAXW68E+ARFN+GV7Ice5fMOpL1R32vpaCshGWpaK1jZ0ZTmmdN9D6v926osASCY6nAq1cvcHc+43xawbx7lq1tk4wDtRbcne+8aBvbIay09WnW4BH4Aq4nO19HDBz91OehEyg3RbsY1cKR9Wt/s4GRA+FFNGbosgW5rquHGfXe1YLXdzT1bJYA4tafweM8XQS4IZRDF3Jf8/Pz4fsYp8UKA1YYz57f9wD72Ru3rEv0PwstMmqP2svBoMRuAJBdNgmjIZxPd6IotWK2rlCYl8TS0abAAlc0Rb0889ibeoz9nIsqk8VoecBbR4IlwMUITk35zgIx90HulNnMldJJJgWFrxWZZbQjRA54m1ub59aaZ/ewrV4DQjZPuS9HIZNHhvD1Z7Nai5+uNychTaVgLQX7vrunOL008tkTBo+OGXLctdjW1NcMLK5lQA7TEeXauPtO5pLDNqc5nj8b32ltTgJZ32+8KUrQvMZJeVXZPic1PGyul2XR7E2MWglEplwkvImZ8fT0hNNJsrbM4SW9NwdGs2fWwFF+l40nDI8x3MQKr2aA4HQWFAEzQsF5HYr3tYIkPGKJ2iZpZgZ6W1+MjPK+IGuOtJT7jTZXU+T9PzISjsK98rvz87lvY/8CCFk7OUwyy4w8tjGkI4yELIMb5NzcHF+f5zC3ebR+s7PC/gbwzt1TG0vebZUCbruGiojTsRbbecvzV7xvZuCUIvPHrNnmjD/q9YHimTbDeDAaVRZ90NEHt0Rj2bU0mpZSAKtbgzACfCfL/xdhqctUhDGv8CPHYzZ05zUSuuEYl+RwvBwVkp+3ebxV5HcwbpKzyK7WOva2q45bUKiCKPhnXRZ0DtqGvk/F/kxWph2JeKfsDHqhTmZP6uLj6B3bvmsGLckSNewOZBHmfFFQ6zVv50QveQ1nOmWn5LquQ6ZDy05mB/1FhFX/bNs2x0SndcVlu4jx11KiBwALzIC4TmCS5/do7R/JhcwPecyznsw8k6+8boOUwQsRyklSf4jD4ZHP+9pzWW4eRe4YbxMYlYCPPnyBS+t4umz483/7V1iK0O99X+/dUHn7/IR1KTifVzkUX0SJtt7cCuyFsNQF67pg1VRmAizDSs2XAS0T4JmQwLXxkIXhkdKxv2cjxNp0Rur9qqhZFlhZWZR6nVv8yEiwrW9YTKP1QX9z0MZmsJjgqBIniGvGYmYB4O7NjzAMu98g5uxFv2XoDdt3CpRlIWPIkOEhBEtVUGHeM0gRJaSwhBuKPxZIQV00FaJjG/F8QMeQ7R0X0LCCR9fzmWkvgEn6wWrZEAHU9ZkSCndUvomXOHbFMhgWwRfnBzJdeeKh/PcRIBYesXstvCkE/BwOAMgaubu7u7k+jPcEELcRAJRy1eYRSIsxy09SOkpMchgx4RWfFA7FdjoolJaHeVGANJ8vBhg9sQ6ldxvfhNJxX2wGEPp5a9359NaOU8DgSVAb8qLgO7tyaGcpUuOY9ZxUSf1wwG756BUEBC8AEbqlnk8e5Un+W+ZmzJT1bTtp1t/MIzOgvwY94ZEevrNbEsghEm+khZnmdmSnABjXjXyfsy4Jma5BdfTTPotqzTFrMXdHv8/F1ubr1ue5r4PczzvkNBpBR7R3GQSSjEEHIWp9mqtZz7k8MLqXkCV5buff83usn5YS18Ce9xlQA7ZiKdUNgxlQi/ebEZuMjNaO9XG+ZtnkYJ0IoKLrRnUWyKuC9yZnXm2eaikaGUB6NrF79jHbD9170zUrNMtr0mhaq0km9hCz2XjLhslRhs1r/jBv/fGuSj5DcfS9gegMwMf2j+lrfalV07pbe4ixm46WZ4M285xk3APlCSbJbmhGoNWzylcz3WnYg2QnzIEz5YQ5UvRxBvd5lwMIfs4pvfd9HxwvMZ8RMrtdLs4z8+6KzUNrDc/Pz1iWBff397IWupQ5MAOslurgfix8GqJwlh/Gd5aNdjZa5t8pTwQkNfLlchFHQTbGrvTAbWfbNX4doNjQj1tYOrcT93SgNyyl4P50wscffSj47/0fUXn/hsredpxWCfVaVPDNh4qWWvXfghxrbecWHKQlq/VdCgS4Juj8+6w05pbyfUcK6duUV/a6DAcSD4SIAbajS0J7QmGVof8G/EdDyUBBQoHXYzCQONPhiq55AcnfrJ4+B36AnukIoVK5aiE+OTArIK0MSveW4s60dzra94jFDmBKeRu8oqNWI418izTTwECCv12FNcOqyZLTcV60JnQ9DC197n0bilQdg6Cr3RKl+EATe5au28nGis+/ggfL0z8C22sAZwL/lqcn95eyckm9CIYTbyZzVOO1ZrLnlVOblnSciNE1mYHlLDUjZgDDwzyPa5s1jr5UUiMZmYXhxgELoMqK6kgRK0GcFwc+SP0oiZe9Z+n3TFPLDpiBqIHEEVATpLiWGtDD/NFwv/Qr3pVl5Dz/R2O8Mjpwnbwjt2X/5NC0yuY8IzZPCdAMrMvKs9lxIS/xHfXbMnaWF/5WnaOQVU7zNHezLMwyO8/V9Xtv65v5PXmu5vdcgRcqIitZUi7QxK/uSU3zm6/Mc3P78xzPnthbaxyIEJdpCcnhXetLZ0nHTgRmM2BHuuTxz/p0GOcRuM/hN0qrThIOboCYpQFJpjH11d4hjiuTSUlHykiHGmBIzpe5n7d2e45k6y0+mtdVHm/eGZ/xRl537+LFI1kvcsccfConGeg0Jrywe73/Nv+DPkpjRlo/FM477lLXy+7L4b/F2tKzq1luxfaWnV2KMZsBfUTvmeeHdyLhsc64XJ5FzqiOPLrf5mnYfUVEwdhnR1E9pvSOjBTLhHgknzPtfRwQbCVnp4UivTX0WuWM7sRDMw/MtDI9Es/NvHTNV3P/jnZ4mZvPXSGg1IJXL19g2xr27Tihy29yvXdDZS2Eu9OKFw/3umVomQ6ApVasy4rldAcgCZUuYGfORz1voeUF+S4j4pbAmO89EgKcFuosNOb2bRJz27NwsbAcovBwMLNkTpGHYGDfF1nV3Zbkidn2zdvtzOipEKS+HOjpkBbHoWbrg/UxA9TZWzPTMYPUxUA+wXP0A6mQVVe8UnRbMQE7nhEkrheXFXIESTYRSyEs0baqaLsjImkje2fLuO3MPB7sPp1OaL1J+I91ojP2Ltlx/MyIGYq+CxMAU10Z7l1ME6CbZAWAhEcY7+cdi7zdb4CYiKS4oQPimFcPG5zmxjxBdoDe/uWdE5p4y+iR+2Pb40egwXgnAJ31ROhguz3rWv37I+WdDSnru9OMeKiZwk0OYO+9odYFxTI6WZ/0ObustghY519j6o8AUvZIzcp92BWZwFsYKkUNcIwhh1XmdbtswJLAx3c8VHgNemxXwWLK7aDjHZiNf8L5Izxy7ciZFbsZOnlNZP7IvJEVawYmpRSVYV2NTFszYyhLDkm061RPCpqujYW5v7nfQh95i4QVmdoyYznCw7KMsbHNbdl3+fcjMHnrCpqP75n7n9ei0WK7XLCezyDSkCUo32KktRW+vTmn2aDBtXEwjykDszksOM9BXRYwgN52CdVsDagLThp6s6Mj8tQGPSzr1JGxlt9/NDe5vzWtP8FBenC8Vjw/X7C3JkWgVUcCkuVxfi8DWKqsnTLtfoTuiGE0TU5i1xDqmMY5X7eN63HMR1jilu7N2CF/lseQQXP+zMZljgSyKAAizxalPYSfV+EpjNnkrOGIYa0Atusrh6i7fSj17ZB0nAhlXNoeuyqlwByBMGeGrR99vRWNNh1ncst2sXIGS4siyPcOgJ2k/yXNwcx7tVY8PDwMYXBEBKoV1fsmz+Z322V8a9/b3JtcxjxHRElHjPzFzF42giBOgtOrV45JfU2bU1ajL/JaE74QPU3JqSO8kqf5eBMg08fomWknfTUdEZjwoxcPaC12JN/n9d4Nle9/+pHXSNkuzy4MzutJeHJv4EoOKjt39yR+FyWRryMhMjOh/TwS+Efvm0EaiAavt6WfBUiK73Y9T0KEKNJn4AJ+L6sXOfdtPrjtv+s7JR43QGkGjLbLMR6kxZXwZ/CwDTuPOyszF+Tu8YC3LUBEtvhBkHSYyYMZSpB8J22slhwCzsPSsvKi2DURoUcCDEk6xLYYATUowkPAngnMwHN4qTJt7TA9IJmOAIYXr9LFb5XRGYTqsZa6+KQUs/fRDE3yj9gFhAkBX+i9uwA2gppCgVVaV/4hj+WmOBDp0yJeKJrAd56DWanNBn0GKBlw5fj2I36avS8hGCMjjxU9kwPOhN6vvSsDr6kxa2tMPHAFlTsK1CigIsaqrguvNp8EvcwYgcvo+ZnjbDNNZr5n9V4V4zs9Jyz+LZZU1oRBuThPl+KG9iz8Z2A+h+3N3qowBEWWmIIh6uhafCzmSpQG87t3RHJInb0z73SboyDPkV1uKE7zTkSaiS/ai/a7gxrjkd73iYeu5W/QhgfesRTWIVeMRtKO0SIMl8jKlOmf18iRt3xW2JmGma4z6M50MbBB6ft5DTKzOyeqxXXbfYm+FEok3gfZMRAAmahIABd4EocjY3NuaJYXDrLqgnJWmaI6jq3/ySGRIwmu+RhXYDrTLO/2GBgdwHniZ9OVXUGcQUeTsXlOc1Y+64+9v7WGTnLGpeqOjElWoqJhdAHAj0DcPM4cYnfEP7euHN4ECChtyWCb52Q2/PPlY2TW8w3wbKGeIQyxTu2Mm8kN1/M+X92jO0Q3hrx20GwGos1PMrZLLd6HXPx2cBwo71SQexrynLpzi+GlFADFRZbqF+TnF4cdZxt/IQ/JraWA1KnEwBAl4oNLckf623z5Zbxj53Zs7o/4wuHTJC+yQ352JgWZRxkO3RETeochykktD9g16xLlBzMWAXih5Z50Q+5TllNGc8NYQavIbEkael/pOD33b3q9d0Pl5Yt7ow32tqvQU0+mCj1m9kxHplxuLeiricQoDL6zcRO49p2XGyTMug1tDgNRPjLBBAtVESZy5wPsj6N+qf7wTrA+lJWRfK0NgmCe02EhaFuwLVNnqhFY2g7AAFgPlKqP3e7L+lvnydrPoM7GP7djnZRDVwfzQ3S1eyaPyMIygQeyTyKcLCx5e6fwUHiErkG5/cs1ScIoRLwP6QwAWdwyZL5VKBpAiqEEY8XBadJ5Cdp5CkN9J4jgYTAG9HSuigojmUMM71MGhRltlpI5X9nz8m3XHCvu3fNXxfxKSN21sTKDTyctzffF7zNwswUkAl6MQmtZvEfKSbbWMM7jbAxY24UIrEkprE5OrAGxREgVM7OFXgoPFuN9kvVGA6+Ed8rem1NOHo137t9sKOQrgxSTGaIYM6gE4kTq9XZ9bsuumS9mIJTvv1JSWRanvrr44vhbPlMllkCmhXGZ4XEE5sY/w+iPdR9tp6emNkYes3/zbtK3rZGZFvPn8zv9Z2COCcREqLPPI/MwEtcJFBIHKhPsxq7ygkCoNPbHWjtKJ5+dUeYkceDZUx0sItldYUkNa4Bk3iWcAc0RTWZDz+7PfB/8p723/hmYLJIut7Kdf2hDGwy4E7FAQNMI9JMet8/sLJVexXS6zQGPfBS007nUpC1Xsuw70GcwlgkgLvg2eHdLRqQPHIT76jA+KsUdYfNztqbG9iOsVhx4qstNJdr7AXUoFZfXgDmX9HtP1T6dEePYOfJddQp577XuupxFkbpTwpc2/ryTaamSA6FIj4rV1Sq2C2c8B1fXWa6EUWG0GmVIUOgaR2Ve6GDYWV9X4yTOtzx/uQ12qiXIqhhTOwgzDq1hS64TNGGgynqB9t/0ZfQ98MctI2V29sSoZSBsetnDwLTe2QG2+02v30LBR/EKtMbYt451lUJ0CxHYY0p1O65Hmljgdhxt/uxIIB4tvKvvd3ZvTCnXQImndogsfKeHVwkCdsiK2HV2AM3eytQH5VDxQMTBuI6wxmuRw/JmwYs3R5kuMQhzvKMcLB5nUgBEFvYkPF1KESWjaI+UDjY+K5YnANq2Dh1y+6rJub1bb15ropY4AH7Z9iuQUqa+et85wLq8S/0vlBS/wVVX3NeKL0IPRiXonikzNEh288zbJM/WMKi4ORjc9/0wfCeUgCxX0fcGOk2GdHGCMKthqTRWHkrSyhhGFTJSG4zWdp93tvlQgZ2FrhHNFKftwLlXJTjz5jqbPf3eVxs0kpi6YSSk4QCw1Ln2dxgxR1mI4vcCIivgKQrT0zMPhiK5Z2igoYb22U7NYjskBHQ3cvL5EAaRiMLWmvOqGGYqE1rUKzHQnYE8EQ2HOvOVvfj2DqdxouNowMDX7gyy5PMxX/0t8D3PU/7c5mGWv6OyHgG4t91ZwGIpYAUptRYsyQDp3FFrThYQtTOW5diwiOw7BUTGI/JPutT1dwl/s5Tq+RzLSKsjQ+jd+mXOhsM8JnmYD/keXpV8DoWWKpeXooXRhF5VD6pDdRPszul3JrnHnBnMDNI0rsTmqAngZ7LSeG/fd5xOJ/fKX7bN5yfv7GedlOfcwlGWdXGZDwo626Hm+cyO/T6ereLhXfm7bdu87oeRwc5++QwXBfZ53UNk1VrlmPe2b7p2pb6DvXcw4DEaS4B5muE71j1ld4P2taZ12pldd1ptLuP9zFe+JnRdNe4iywqBFdRubTdlrUYoBoNrDuXb993nN4otqiOiFFA1nane/UKAYoCmvFN1V13mUEtGaPsLpSKqVs3deELnpKqezqDa5Yh+WhYBtZ0jgUCtFa23Ia0yqZFihRd7b2jM2PYNb54fJetcrVgR9Vta3o0jkiyiakDZLk2lWA8wHUwSbtm5Qys4ouo5R9GdCyyMm3SMtjvPvWO7XNygZyItkm0GRuAlywbr66EzPDX+6J4YaGeGRFcMmB3WZmRDaQRmcI01I5lTGXZuNPN21mESJRB6Y9bHl8vFx22RG3YmEMqbxXWT6atwRr3P670bKpdN06TuDafTCetSsXpGF4CqDZQDBOCGcZG+OwI1+fP5O3tDuBdki7AUAlPRw3Zmxeb32USOKSidQQql948Ht2MIygS+fKW9pS7JWg5vDnPKeY4Q8NxjOzSPz4Syee4SAfxn58iE1FrEK9oWrdHFMzRRd1Tklj3rzleB5xXPHgwR3hBlq4NvrXt0lHvDEMpAlL5BUHnWjTGONgfvJEZvB/tQ+eq+zEb+TvNcW2YXFYikZOitIXs+SJFhVjiZF0oC7+btIyouzLvOXXjMy8hf6EPmNChNTCDaGGS8Nu+hlHuaZ3AYj3TDJydzYFzUtRgiDePMxod7cJBpnBWlgefkFUzPO29APJ8yLxUiPMc5yvNkzxnoz2cnkFJOF5S0WuA8G/IxhzrEEiESpTUUGiOKuecoSGe8YP1bFjEMiPytMAdEBoe3jK/MO/bdbCSMBsaYnMCcKyO/577IHM3G5kzXMLSus8/kvzPQzO8dwmwEqfoaybLFYI3JQOY8pvHs21GfuxUHJMDqpEjIW08Ou9lQMMORIOGgUcBzHsc8vvyZGxV6ENb6M8/1DHJv0lIdJKyEMONjKYse6gbgxSt1DZI6XQwgcrRJ0PCKSPKIqmGppCDUz1xN/fT1tS4h63SrP4eRNj275pROfGpXLTXJOBrund/nspttjq7nJL+HmQcnSe8W0iShsVfvAdyQA6vjypU/+Rra933IGmX9qrW6wWM7CabHTRzKVGkoNUFrCEV/ba7CyZHmzOYBikOooBTgctnQ9wt67zjf3UX420FY4ixbbN3kXcJaqutuEb0c9FHdJ2NvSlczHqZD0wjZ6oIoOgIzcqxtK+ZpPJ7la77f0gTnubaU8WQUtwr2qtfqsuDh4SHWH1mxS9sp0xAtlUcCoNN6Y1YHKDkwD34Tgyr6VOJsCWjQy95n42d9l+3wgLrjn8B+wk/cu5y3JHFOAPA1bnfODi07z2xOVUaceyPquuMfc+S7g2nNh4wDmJsUVSc555dJke+fnTGzkU1ZZum8aYGiYdzv83r/BR/3HW3f0feGu9MDlqop3VTjkjPXaIzM19F3s5EyfXl1j33uuodjvTl049FQkUkZmkwgWEBpNjYMxMVlKBNurDiMpILGtvUZ94pHJrYbDQDlVvO4JIsQWSMjXQC38EWQEZALOw2KFcOcZMzjxepsnggeiy5Ma4ZPGQ50GRh3Y8ApMNMpaBsH3UIxjCCAlCa2eH0Efq8BaltUw0K1N888o1xg2++wBYhYjC70k6KdlWnRn5LFSoHYYKjABaZTJYFaM3iQxsyZ9pNRBkSMKTPrtruETA0jzLqFhLoJ88j7HXSyKrn0XZojWyPZWyTGC1/dG3OTvTQHnbI2aaRHBoGjUSycZFnDzKi1mcxjt7/EAIADD1OInLjSeJeGVjjWr0hiBcihsIqmRZ296++Sa1l5XBt2k0LEaMDMgM74wsaV75nby3TN/bh1fdv3gGb9YfH2CY8k50u6z5opyclzdMZj7q9+4mCE2TyL2ai3+ZFVnmUG0fVh/aN5MgPSnpP7rkG0j3s6+5bb0g9D3mQkYu8F0uF5CwXD9U2utAZqKOirWUHFumQGOEKsi4Yjzsagnb+Uvl8nHMjjyYe+v42vjngmr+HMz0f3Esm5THCsTSAONNu6z7tARipfVwyURR0jdgNN8uFgnBkLDHxiutrWpPed9NiiAxowVB5riuWrc1Amr1SHE+ChTWvvauynKbe/E62sz2Nqc32v1V7Lsje9vsCMqNCpYvyPaXudbAdyqbcoNcGmAya6ZkPFl2eRZCXcrThyhOz5XKbESlWTZtRSQFp3bniH8n0cJyDHOFfL1juIwIr5X8+7/3EeI9eR88eNDxRTFSAy1r4Dz4o8IseeBGgW0+vw/vz3wH8mWwAP/TQ6eqOSHiz3GKarAQ1xpLxnl8aX1sRsqAyOBeYgnulIk0O/hev911F58wanZcH5tOC0xmFoS8NYJ6E2b/8Co9fe7rPrKBuHV34+YhIy7yppmBniIH+XgkTWXoReWP50ySNfSglAZ4AfOq5DDUPT30N3wsxJdLAsL7Y4QCpmTQArUxY5XSwHrpUtmh4A7wSvOQLkeNAAwgCk+BM0jMY+K3Ho2Dbde1o0huNrMUDScV5XD5tqe/PFSIU0pjiyT8xz1rscjkbqL1EAzGzB29+ZhiYM7TsD9cDoqbZlaiETIkwIQEp9yKGsTSbMs2r8MStZ1h2eTKveUgpN6yN0mGQ7LomuEKemhE6og7Pn8RCIarIw5PyXXUMeeR8DoXuxzGRYaiIC4eXwxBFp5rEM8IEBEEDpWJRAs5GSaSVc1JHPUET2u+J83XnMPDd49SgKec3gX9Wsp0Mj0poK1k8dc1fvJ5HG8idgbx5b8ZLmrHjsa7HWCLEaK6CPyjD3bwb58xhyAgO738IvroFgUjClHMjJ0dibr1tg+whwHvXdPrP7mtaxgNKUW/c1wJU1DIys64nesrM7GPkHANfGmOVR9FlfnPo0Gh7ZALou0pfH15MjwT63926b0FXkzAhUriXD9Vc2Zi8qmsJCQDToQFLl3qd2+65x30ULZ0LHnnZRMmgZ6XS9LgfjqiRDH3DvtNWTMLoegde8EzbsrtRxd+WWXJjPQeXf7dmS9JI9l73FgJ5TycAVEONGZWDnCMsCh7PCHFB5R9H0bySEKRJK4+Mg12n6kOjeEvS3eZzHMjscPIGJAr3zuqISYaOCvu3YWweWa5k4z22Wjeu64vn52cfn/dZw5yujEpH0JK+D2SAdMvadTt4ulQilhTsNYp5zpkLnFdWLCd36ONZlEbZmoKN5Lblic89A3/eki/Sz1qRGjhkMFDs6fRuLIF62i48DqncsAYzhid5DxtlnpSDdR4FVihVElSMOpUgh33WpaL1j66Jbq4akLVS9f82jDMiNnLxuTD7Zut9a80LBZV1TuH5Ijew8BwHd0yLDeUAyZIqRKDuLKyJDWFzGp5kfZgePvkw2VTy50Ttk4294vXdD5e58wnldcVoXtx5tjEeH+/KVBdyR52/2yNjFEKadV4yTLgkoQIjbYcoogDIzPHXtLKgtk8Z82cLP3p0Mms0zJO33sT8I5eoMyh0WjWWLLgsn7uR9tiVvcYyNG1AW90T1FNdoxlaj5MkBS9C+9y9ob4LQFqxDblWOEu4ldLeDcPJMnC1wBWHIXw0Z+NjZCzXm+bbvrsApXRe0y88cPW9ZvCKYUuaBLKWTjskUXClFDL93gLWshMZ+mlIrflDQeYGFEUTZKVPYRg5MuOe5DWHQGRIKcKAUrtZHSg1Y1asIhKI0Q8aNbmvMeAS2m6dtgjwmPT9rQzKBa5cZRAAnwQjnD32Vt5fnSlsb+ot0zzzHFo44G5FEBKiyiQwkR+la2T+f35Pvm71cR9vi1ufcxyMgfmRQXHlwD8Y635v7ktvNbc08bCEit/pw61xKbqv37odSW2sKFnV/qksmqlrCKGO93wyPGfy6bMLIB7lf4/oK/psBcYBCufeW7MgOjSxb7ZLzbnmHW8+E6QrI7eYQIpMnHm4F3SEG3GHAnSOUg7SYrfXNFZT2h0bjdKCPzc88zzQavccZ5iQbn9fzodETesQfeb78HIsCGfsuy+Y5YUS8G8PvNoe+fpk1bXMakw9Zdq039egPawaxSwWyHSrZ8ciZd8MRBilI3Mb1nMebQ9vcGNfv81jNG0+UwkZ5lDd5DnOIFGk4lCUuOLo/0zjT7EhutNauknrMc2n3umF4MFdH6yXPq3xuBniWv4wI1TQ9kQwCD8tU16uvFX0nJQdSZz9nMxhRRjuY41t3dli/ZahjfAx3NYPU+tWY9Sxc7OwEjWUuc5pwCws2w9mwrejdJhkjjWYI3Z55wnCZtZ+NlIwDB3muY0HvYCpuVAtNTM4qvvDaK3oml8XYKmTGo0bBLMdnHLNBPc+/8bQbYLWgdUaxjL066CN++02v92+onE5Y1wWnpQ5MbxOclemRcn6nsUKUmMmn3/8fTIQA8hyWJRSrghl9qp5r95rQquXamzT3z3qR71P8qeBU+6Xjz8YLkrDJneDJyIGqOuFDV3nOmK7IYQevum/vht5jpx/YjAMLs0rKA2P/CCSV6Ec1Jt+RHNqyA3ImqKoRGrbgLCysw/xPZPMwzNwxKDviBftunpf5e1alB6Q2brWX5tIKLWU+ndu18WbhMigapT9TMqKnMVpuA2ILoZuAsQpDEUTyCSFOoozrSb7vaX3YYVvjDb1lNFRs9OyNDoaSPDsC2OBRCwWbPYm25pKYZpNi13Nngh2sxg1HLG6+Bzg48D8p9qPvTDGp+hrfO69Bf+7ak2k/Z4NnFuaz4XT0jrndd312y6i4BeqPngHCe5p3LeaxzeBnHoPINblfnDqxK+iyVbYoPSW3RMzlcD26eu/ROOaYbXbjpA9gKPo6tOIy5siotM9lzfDwPBn4cQdM8DMbGELw17t+B2Mo6AhmZBNokDtp/Jmv8xx8FxDwrl0Le3Gm8VEo27v03iwDMcxBgCu7t/eexfxVP60/vqbYNRFMK7n+xvVZrRFnyIsstFN4rtnDAzizu8Hs/ROHXhg0pRTdIX+3EU1cHaTlzy0cawZ9hlMMrFaidzoKbs2Dj3uiw5Huyv3OPJUTRcy0zeMc5ULOtJnadqoLWS3pBRGJYUgG7iPEnpJMoBLZz66MJvuMTeaoY49kR9LO3Qy9YtsBkva77ggz4hycpb1nB2CjcWH4ipg8xMtwXWE4b2TdYDWnTOdm2huuwwEP25XXpIUDWuRH09TMy2KJLQK3mftaQuik3WUpQC0oqXQD3ZARxg+53lj+3nQIkeCQzuJALTwt7vd8vf/0xPdn/z2D9/xzBnX53iPCpQaFwAc6v2q2D30SredaAx29l2FB7vs+TEhnRoNYipWKnpsIL8PgMXCL52BbVp/LCp1slyMB27btmuHJQlYk04flBw+amODrWJbVqzjvFrNLiAUMiOedCIBk+ZpT19lYs/fOx5EUR/ySBV0odCKCIRQi2b6tRatEk84VFlggiAFmV85p8ZVpmzirqVuGwhGPDEodlh8ICYhkDw553/Mz0o7tXF0Lf+O12ePAzMipF2MMlGKahWS2O2c7WwTCslan6d6SoeAyKCun0ZvpfKlC2YSh5Z4v1cIfxUBn6wjGrX8Lc1xSCGRjCTGT/CcFXBPtbYtePeymfFs36o+7DHb8NB1VAIiwpRADSakok7FbOukJaGaFerWTMr0zQoiEbn5uS9dUdGMEg3Nb2Rga5cHsZVRhbnn+KdK8AtdF3maAOh9yn/sTxkKAnPy8tXlkYBBde8Hzs1cgKxt/BipIPIJ9h/MbVVlP4vVjT0sPIikKxx1t7yh6YLkgsinNY6y1orWG5+fnq8/jjEtNRkWMcd8tpjwStjjI4dG4E6dA/B6D5FRjomD3kNbwFM/8MciVxKPd5EEpWHT3Zt92OfhOspktu+zFAfKVETDN7Qx2j/SmXV31XykF6+nkO2AM6M43A/uOWpepGGC88whADcZJApl+j9HGdO22K7CqzhfWVi0FrXVsmxQ0Pp9ODvyE1zgMPZWbDgI9bEWNOsjuL2s2UdM1z88XgOW58/nOk49sl01rgYgUNj3UuWt17eYhTwW686U6uXnKZrk8k5uqRbCG+JJ4nJd1zAhoczcbJ/N6nXkg65h8nU6nYc4O13B6Twaitj5mXspy1QEqfICAm4Nj35xOCoaM3+Wp0Ium/4EIKcxJCOy9LgO0n/tu60oTOohnC022FECFUKkCLYUva3KWvXU/Z7xzA1pHZWCpms2NEfXW5GGYvmhG00nf5DV/2TacTyeJRmF4ggULuSaEEQMa5UeeB3NQghj1fJbSGL1LiLLKiX1vGtrIOJ1O0gdfD0JtOT+kONL4Q/lz5rOsTzMPzVdRnLfvoldb1nV1DpV9P9f7T09M8SMWEw0EOhJu8tUIUOcFVzV8SZ0j+owxyzVoPWo/p3mzQ+ys1m0tmpJPGczAX2tNcqYrc5G+cFYa0V84CPIK7gbMjam5A+rokdhFAlvFX9YwAF3oBGi2iKLWtSld/d5Bory7KYMbYXwWpj5nmjfusYUn3+jMTWk4DeQjCikty6IFFOW5fNAfCqp8uxsWbabzZqjZrRnrt3lMRoMhL+yZV454qOoh6OvQPY4+EF09d3T4VNILdwfOGVjmdlpvYQwh+ANQJc5RhNM+99h/A1QwZWbCawyd9OrAA3gqKBWurIcdsnSFA4Gw991THUqdoIZ98rJ253F2XoauGYbwjm0zZ2OcwZGdBRpXbIXEVOGTKwMEtUiVoK43rz6PEcxnRQaEEZABqcQXB60tLGhvXQqTqmE2K3jm65htJ+PELzPvAITWd/NtodxYc7MhbADieich3Y+Y1xkcz9cMouf5z8/k0KzcdtwAD7Xj3iUMgfWcGZOcmWOdN92tZrCHIdmcZ4A2v38A+Qfe5TxE+V7S64rStnTFjFpp4Bkb6y3ZEYDx2ikSYMREGvl9My9m4HJkFBIRyiKGsnhoVQ+4+IvnMojIBnAGE7f4xMds/5iBtjuoAZE4MEBeC+Qo1DLzXX73IKvYdGeSlxTy1sZCrLt4qQAuc8fWOtre9HycEloPRZei2a8G/okELsYTCiXFiKkVqMBl35zvzGAFadiNHv8RWi9SvNjlbuxiA5Eu28906OfRLmBb4wyt4g7NFsXhEPMK7pm22qd3gcJsEJvjNX9+pLf2Gxnb7P55nc+8dstgMdxCbneofoLoDjK9AAvDgpyn9Z3LBjsJ6hEHNnbFOy31o/WG3sTBcXd3FnpD/Kky70qb1oei1gBjR5dCkmTZXkXW19MCUAH1jtoaapG5sjAqMKN08jkl4kgxXGQ3tzFgO3Pz2rAU3WLcwnGQpa52w07HGzh21A/BDyxrxlJfg+VMTy+eYtpStDOH4eg/CIop1FiaeG5+55EuyXwwGjLmqAzDSMIBr7H3b3q9d0PFcYyvjUSxK7CYn5uVfSIehCmtnodvb/kswxlCfdUD2MyCfLQizW5iUJUJL6pEIkQ5MY09h/CYzws7DJXRgADDs0UA6m9W61eyNYUHiEkBaHpnUSPFs0YoXfKClT4ogM0GY+pvws7xDBBVgGHtHe945Wv0dHhnANvyhMlmmxPpgCUmse5oY963vNgyEHuXIM+/Z8OwEKELykLj7oaTKKTiCss6a/S/Hq95YJU6GRwkXvfwmhrnQ/JobVrtWXt/awY6zEhJOwX69GA89D3RdjpoHTZjjENpTwghKwCC1KCwWHsxJIvnele6kK29NB6dL0kNL3Sw7WCfK/cM5zm0cQctjPd8XTt4ixhiTPN/xJP5CvqMz1mufMuDnxU0EbmiH/iNxjnvENrlXbUB5ELWO+lznmr8Bh9nOfJt93EiUExvln/Xim8IJShlMBSO1nnuy1HYiuolP8jqcoMC/IAiyw+ZIZCkVaabtXsUp51GP4xJAFdeT0meH9Ayy/0sCPMrjFfn77LBMtPpllya+dPmQfpCoVuooyOSgIg8iOrYx4bTNVA1EnkUBsUZGc61e4CYB+u/ym9ba8eGohZ8tHaV1uDwGKduKC9IPDzsrJKuuUbqUOjdk8HMslycHAVcGGjNectCYQDAM0gzgxUUEwH90r3AoTxTAjC7aCrebytqKRmnqoPoMODmeQ5JmEOVOnffmRlkQY/aTmacwuSHfX8gz2bsMpybnXZf81zNvx+1e8vYsZ/7vkufs95J4bOkAkjk9NC470h4zTCGFle34DBObbKpJ5X9GjXSpNRF5Y4TnwZZY1qEmDxDqeEhVoODS+wakeqzQhF5Y/Nv/1Q1CQ201prvFCtNLOuo5DQajTwiSaBh/JJlhfFgpr/hlOzs8LmwtTXJplIKFutL3yLTW74MR9kayjojvf/oupLzST/mz0Z+FONRktAAkcH2/V2/hYKPgCxqqMDT7AeWSo/Zwcu7FooRIXYRwkBw6OH6ZPIgz70Z3iMMdHd3J4th32WrmAvWpPmz1zLSAKZGVUB37WcOBZKMDRYLaCBUDp7Z1iYBwGIeYPHUGwDqFr/ZO4AmFXlrQSmszme1bDsDmrlpHD0paEzKkpNwUIGQjROhn3hIJUTDDKOStvKVGQWhwDeAeuwyDCsLCkaJXLyZckzY3rrnD1i7tj16pKDn+Z2BiQkue0XmIAHDsXh7686nJlg5tTUoCGi41ASyYmtWdwzUgyHCDJ6u2A7NmhIVvgmPqbUpUTLGtzp/dmizkLAGTDAkgaIKsdQy9L8WzSTPCkRYi67msCrfMREvTh67hVo4fY0+Oj8tCdt8zZ5aotFQGkClCcAEAmha00SEdV2HfhwJVHuXXDZ3ChIKUE8rUKWeUnve3GDMGbpmsNZg4J7RNgF+OYOX308EWqoeUga4RT2kbdtCcaXwHgt9YWZcrJhYDk21XQaStc0E8Ca0u1tPflZsmC/KxmEYurnuwlXfp3k5UlTrsmBdFmyXi76rOm27nknpANBld6WWAlqqho6Igj+dTrhcLrhcLljX1fv89PQEAJ7NyPpj/ZtDLluTQ6V3d+cE6jCsJxsfM7sxYDSPeSjKl8eGUfyuXKn0sfmfd4GMztZnl1FmSDGjQjzI826TjfnW3MxgNINWIAxGMybA7CnrYSPcW8jjNLplWdwR0w/XdAB/r5nFkploHoOpZ6sojm47qvFOJsKihSjBUt6g6hyvdQGXadfqYEY8y2Ip4BROLUAWON+dfZffQjKZLdkIFJ9UFCYw6w72QgAs06IWT05Oj5ISRrgOY0brjAbZIVrUE04A0CPJQmtN1i8BFVU3kK/PH9m4jWdNJuS5z4aMPZPnIK8buzJOyVfWsfa+QZ7WgmVIlGH7Tzq2onzTtF6dUqtpyFihms50iIGiUsX1len91gBsUqOklIJNjZYCyYIpdR3l6WVZsKBovS1tpUToN5iH8OKiB9lPuptoq96dK1pwkkgcLb0UjTbow5mjwdlj82G0yO8q2T2jtFRnLmuorJ05sfNcluXL5tbe5bLS5sWnVfR2LGhpZ9UdZ7A4y/Zm/GthWrdx1bZtEi2j/Dc7kSSUM54ts8H0Hq/3bqjkrEWeE5zT9tkEKG9ZdqlBzaIEeGVeM78drNlWLMFsjdGCjN2XWZgKGAgwvlslcDKGK1POdlt+46KO7kb4hozRBAqAXNaR8qFkA1XkhbssO0yti1v84FF1msKwVtUMQ4GEPDltMAl72/Eg2d2wReagBHEIUOylAFqDtzxRWGqJqDFgxhiRU6x39UIAWnv+mqlV1HrLpmjcuElKfOabq4VmAhGIczw9gKaFqtnnKHouCeGVsbMNM+9cgTo1UiwMoqhgE6WVhLpZHLgGgr5zwKyL38ZpKSah4EM6aHGiR54x50kKb1C1LCMkEYewqtb2MgCsachs/gAFGak9ZWg4UdI7swdyBl3zeOfQn9lzmMdghySNT5MFMtyf02kOrHDAKyX1LRtZswFhz7bWsSvvV6KrMea+QHnK4+tvgMvcL5MZls1lPgc10FP/54bzZPBlYDzT5Ajc2JiBWOuWICOPawbJZrxSatv6a4FXHgaaeMqAeTZQ7N3ZS2yGyhFoErkthLjuWz4gH3SzWOrbl611DT1pkdabCMOaCzkVNJ3l0i3+ljdg2GG3/s3G4VFI1q1xiGwPHhFdwC4z0l5WVAhPc3i19vTK79o6AwUhV23Xwpxi+lnSvIMDhjQspPUG2EHo1iQdMwRn2rgvl8s4NuN/DY01ve/mAzPa3tBJM5/17iFJ6veHZaky+Rq838Gcsl+psqUy8o/praLOIusHZ3mm95vDiojccVkKoaKiE/uzzg+TcfouOZr/nq9bz858NTsw8nnco7BX2bnQfuo6gabAd5Wg4IlZHGFjoh07XG47iTCh7jyW+346n5NRpAmAXPXEestrxA2MUtRBFDstBtvM2Tuf7xvWmdKieQybgH0P3lLwb/jEAhBqDlMGsKvuqqWGQdv5al5m59hpGc8cZR60easpaoPZQqQVbzHAvlMp4+1ao0bmXIpamrzO19HaN76wEHiTlTPu+k6Y/m9wvXdDxdMBGqCxa+r8raHMDAMXMiGQHCMp88RnZkDkeMnZILhe9MuiDNtZs0KkMwoJvORJmL0PA3gfAEU2RNKwAE/7Cls4ek8BwAUAFYm3VpQawDQaoQwaSYwA+9edPiHQC1ECWuz5y2vhpDhHoTYDMBNcw3h7l5hcMtCd50iFtgoaR1rTZQLFvVQ2zzT7I8Znrj6jCE3IZ1PcUGAGm/Wv3w/zmM4x+Si0crQpxxwyZPn6GXBvS+PuBsy8cE2g50Pi0pak80136jqCrgM3H2CF4mYQc0QLwni+BRZ6QMFzrHziys0VKEVsK+tcHMz/rXd727MimNZRvs9+z54/YtMy1Zd5vj8D6/kd/jMb9KX43Odr9kiSriNm9uw/OUTnaPyye0q6I2qG+YExPdHK5Ez2YqVGNYxRR2L0HN6toaHpuVlOzX3I8dVHYzH62TwMiu1QzgXdXD5hnCu7b94duWVEHNFZlHsZQqRmpXs09swTt8Cc9CfJIoQDQWjm0BgAhvce8XX+PNOOpu/zXNwyDo/6P9OKDUTFTExzmuhoRgqu5z7Lf7tk99/RnraWfjEdld4NC83xFM+acUl3jTuz7zrmmlDZuWZRDSZvx0HDgYGdcTgvC/R0mrQnjQ70zL9n/nBvOUYeGflTZKfo8eRpzjKIY8fBEucAkW1O9HKERJpz7V3za9/NP4/map7DMgFz4xMcfD7KM3UQM9JaN2PPeAfIET+iRrvvRInj02Qhp3ESLDCdOWptiRxcAWbfqY3JTuAgjyXRxHlPwbSF9JPRGhhA2cwXAHQHMDkPbJw6V3YMuHirozNJjLXuBLL3dsi5RQIN85L5y3jQ5tB+ZseTO28Ycr4ZAKFoaCGhGwYOJX+op+2aee2oX5QwQ+Dt8fpbYaj4paOptcaByt6vgAAwDmxWsj7tDsrHZ1xlZMCOzLzHhHx6egKRePXswHLT3PIBsiHszcC+7fJJue5jft+40EkPYEm/rgRFa4BucXdAwzd2kB6cX5fVq7ab4GQF+bbN5rVSBpqpEDVgqXGEMGWofSlaNBIMcGuR/3+an22XbDElL8I0zUY/V+Yk6XgLzGqVGxsYjVhDmA7StzJ7hiwGHHTl9KGWmWPgFRt/XiDKKi0pQXlGwsk2zfpWimQt4s7Y1dNhZ06tMi4wet2rhnSJEpB7cyHQqx0XmAe46g4Wg1AjG5QKUxAbtg3AogKr945aqoZ+SVzzrV0JZMEKeFpDA7bd+XE6kJuWisV+E+C7T5KfSHiqU4SSAOncA+AHZgkT+CE9fJ/redj6yAylYIS0b33b1Xsv93cT/oi1YYdeLWTIaGZnUUx27E0OuVtoVqEyFDPbtg1RC0ZBiL5sWdQr1q9BRObljqAlAUNdkSNgaSDIPY8pI0/OpMM9DuSaPLRD40Y+G7vRfCgGmttLfT6KdXd+TcbiHDJm48mhZtK1WJeiXEWu5d2ibd/9WQeg+v2yLBEGMV236A7gcPfIvrf35qxJWS/lMeWx5XvmjEvZSM6f2xzmecxg6tgwuq4ncwuQ5jka6GCGlK4Pp20fi8O53lOjOMKhRoPR+m+FIIGUXQpQoz0gRGsNrTeRNXXx3R0LJ2u6wxEOA5V9kEPthQjrKcL99lSMeRgnQj7WWtG4ewp1cw5tQggxBlqKBEi6I/PG0brM1wz0obtGFYRL4h/LTDU8CzVuyUI3FeRD16/qdBBQqV4BUpv3ufDtLcM7P3fVl8RrNufN1mKtWJdF9JmlZLb+G36z4oeloC6LF3EtVRKz2HxaoJzhEQb77gIBeiZS9BLAnq2SGd6fvktInlkcjqlohWXty2s3yzFKu5M2xzNNTH/L76P8MFzQ95x1bEzQ4e8yxzbleQA6CNylgGXT0C4yHehhsGOYru0yz3M3FLHO8gMSsj0YYBy4e5b3tQaGbG1Ha5HFdHZU5NDbeHeuTQafM2O7W8b1b3q9/9AvaKd5XDDAu5XMbNHmHQ0XMAZONKyC/VlvEDONMvFvvc8WXylFFiqiH029Z2YtZ086G6BKYzRBb8w6Gy9FPVi1FGCR7TdZh+I1NuFrWb5MiQSQSV6S3iWrkXq8hUwd3bI4kfyTJAQSBNDQhj7udsC8s1eCpVoklpQ1HMMAChXfrrXzNnl+bTJsd8EOcmWlCUjFdD9c7MaXYUCdaDUYzLga5lLvX2oNHshgQ+luwhVpbkxRGGi26uVWjZy0MCQzNE45rq5WSVElI58hZe4h/0lEUtCtSApNC5OplpKYJKyv9Ya2R2HMWoobRebRs3NC4oFR/kcSkOmy9xQiMdAy7yvvplQHERNLkkbXXQMe8hLGbLFJ0nke5kTf7TnfkddbbJe7Qam/+zY4ISls2fWrumvUUhhUVrCzEnaFMoUthKHCoLLKvJOMuVAZwooEYApNJTWtgAtTmAaxKL0v06D3htZlx26pdu4BaXy45ufUlvV5PuzuYzR6Wtyz0UBBmRkTWR7l3RILMbP3Zf7JWYVmxZUNqqww8/gHI0ZBqK0z2Bwb89v8M6czgNH+DMozEJsVuH2fryMDfm7v6FxOnpf82beFSOTP7PkMOI4U+GzwzAaM3uW6xORnBgVX64CgB95T/yysdZpLM2LyZ7k/eczZiOa0jnM/ocAJVLDU2AHxO4hANQCP83KN1MCzcWZXNuKyUQzoOQBx16PY2T8QUGwOR4fK9Zoddwrz+rzaYbX3qgyT9wePzzR0PoeePYUmmDAiAJjP4dmV9XR+99G6PFrveQxzCKHRoU/PMolR0dG932yGi8536wy0js6bv6NquLqqMaQODDrbxEKj5hiRucdRCyLJRMfyeW+kck3Ok1XVR1l+2Rgzb8x6cb5sPZkTlA136DUD/ByiavebEWZONOAg7G5hVD0Di941wYp+xyOvibEzzpG1eeTMgM/PdWhx/n1cSyMuPZTdkyyczzs2TT8f/GinfKy489+Cw/Rq88L2xTIxDCyBjxfm1UUGBllCP2ztI4CoCXK5PYQ4T98Ni3F6fzYs4hAxHLyCuxdlspAbH+/BWBykJ4NneK+9y5anAnKCWsImTKdn80IcDZgU/yjoD006IYtaQaaedhiY1MA3Mfw8QxayllPcFrKFbrlfjJMwR4B/VsDpHixjfO0H1EDqiSaFyCvJe1pnnR+Y8Zva7Elw2EFjM3acZtnjksZlGTvcU+QBx9odkHg9XBGEUBAmE37s8YA/JwAYYBRUMJiTkZAEbK0SftSpO986qEesHTn8F3PT9fwSlUgLalxouxmFaKhSn5Wojd2QtyVNWJN3tGvubBeMxJHGGOwgZV7fpUQaJkr6yZA6aV+Y7fxGAi0UKtsNqiTYj4DeLFBnJZ29RdELgGw1UByMBDCBINsh1GrlaV7sj+twsyRjaIEdEiYF7f48AkTM7Rg/zqAjTaX00zqUQpGyV9Gez7s1eYyzkTEbMEcK69auxSjfIuRSwgRtkmUvkTEq0xl45raz7DsC9nOY1DgX18Bz/jx/Zv9m7+uRgXwFXBEg0WiZgYb9Pod03ApXlO/NMWX3mgF+PE7vU7leJ5nXrB/zs3kdz2DnetdM58fuAYFLAVF4/zOAtHeSv5889Nmqkef7s1yxPgwyZrpMPaCQZIfq7LKjd/bshkfAK/POLR7K9LX32UyUEhk7b129m/aF9Cul8GdrT3WMj+cAQB5dhwZr+s76PYBoPfNKKL5rHOA3hcxpn/KZL9+d45SMhy1L29QBH1PsrBi+GsY1rylR5DBDs7XuB/bn9TQbkrfkib3LolFKGemWoemRXpl3PPN6M72SnULS34oOwu4NR1IFANj77uOppQzn1vIY5rDQw7Ehn8eC0yc7r27h4T5gnVHum/zJ9+f2rZuD7nvP128n9IswEMsuX5D5MxNMSFaqCSgDBEZkbbuUApSCdrm4wFy14I0VxCFlalccrWuBHMnAJSFfNPSjs1m85j2yMwlAoRoH6/JkmEJOArzo54kcPn5wbKPKbZbOVlI3LsuihYI6tr6NSojlDA0KSUjTSHKtCm/hU0DeqCSWA++SgUu3Yrfdz1Qs6+Ix9YBulfeOtu9eL4V794KBVCkO0voatP+6j9M8ewwGayFDbgcFzbokPozMNCM4NY8O0vmAvadQFAK4jUrtKNTQirAxZS9M9T623twj+fz87Dtcxp9gDZkyHigmgs0wNYEZM+OLv3dsGt7iCrQUnNYTtn0L/rGDdUPO+rgymI8Cj/LPwtwaghYU3QIALwQKAOfzeRL0ds8y8ZfynzBHfG7rYb43KVwCQtDbvJiyIPJdlTnLSYfwiYWbDLt7wKCs8j2Xy8WFeg59ctoKA8hZrgloShsNRMDpFDtMDdDU+joiXSpZedm8MhidgMX4quWseCErepfCsxm4ZsMpK5eBD5Ww/m7NDIjE0/aOOWQnz9sM+OYiooORoIrUUryCR3k93A8FN5BwD1/npXgByNO6DoabtZV3w3LozwxebZx3d3cgosOQNueZSQnbOzOfZL6b28ht2VqzeWCOHaE5NCdfucCwtWPhYbOxM4OIAGPHQOoo0UC+Z6atO2bS8/Z57o/RdF1X/zzvugHqCBKENmSnygf+83oNnhVN5TSfM6RBllg2sub14+PT0Jqny7PrqkqExQvYkrSfbGxvY3I6zgZSPo+Ws8TZYf3eeyqbEG27AZ14wP5+l68/du01++a0GzLLvvyZt9FHB9WV8QVgN0cn8+DYq+qcoXhcsEStfhYTRaIEmLvUnQPQGqOhoxTJBhXvB0iRiKQXFmdFZ9m1IRqzOA59VXBBpeB0kjoq5rufjemsAzKfzHJudLRY1MB8nyBV5oOdtOny4qH7DjBjPZ1GQ4HEwVDWse1s5AztCSFSrbG48roFcLXu5dHRmM8h0Nmos5BWG1t2ruQ2swy29ZszXQ6y4LdkpAC/pcP0acX6zzneOANcm9cQUrEoLVLSmhWQIQ+e1lO8Ql8nipTcK/C8bwriC5algjuhdalECt1dqFWzNFm8pRbXAbMOqCLvZonjxrSGKG73OICwlupbqLt5HwywGp1cYMeWn+12OPAj8gg6SZ0YXg6r09GLpH60xQsICIcW4TFakgIZqx5tn1VLQ8wc86UCiXkECYNytC1YCLCzLU0wuyfd8pAzy1kRW6oe5zotRHsfQbIsFfXQMRv9NOQsgVx4lxm5NQnp0jGZUAA8l7nav1djyxeRCtR9d6BZ1EArXbY5XdCoFW5DEv2tnqJS4KnHdI5ba54+WoxbcoCX3w+EAWjvsMJPjABPtp7YwtBMAIN1nD088Ga8m+FF5FlJgg7ysqE+AkGz2EQWSOuW7SASrhWnjcX4n9PfpUh4IxJAt2ve1ldyBlBMwvwoJMku51t9lz3bVLJQXTzG3Qeqc0iJvwyceyahiX+Lhp8A8BA/7dDx/QZ4JqVk4DQDZ98VMbIzoFDO17a1aW3M3rE8L7ntI/AjVNCsgsReqDPCGMmzL2UPZ8xFZJob1hiJI4iLD2KQK7l/WYHm33NfbxkWc+jcDDiMr/K78vdHRpHJNpgcZ/Z32b35XQbq83mbq9CQRB+TcbFzZbIuvh/mZ2rD+pl30OzfbMgdAbAjMCy/cupDiNQAcqJtgdCpcz+t3dHQie8H2imf5CKShzJlGk8lUodczFFPEtXkOZglDMfanDBoXjOz0QcW46wXDY0asnFae8nQM/meHXMl9ApsnQzOCQC21q90ZPAcErDm/F49o+RYiibjSZ2ydh4USvua+5joTURAYTliU4DKhMKE1g+MIGZsW5O2oHVLTF4nEsmOGjkwt2m4MkBsDZr8hXAaNzvjVgfnxizzsn44kgc2+eashJrIwttj+ONoRJEap7q+ege3Bipytljki/K64zBDskGImnZJrR5MoqbrRRvDvs9hV/FTls312svJWca1Hbspef6szVLM4dCu5Jbxkd9/oN/e5/VbMFRMsGJYPBmkuzCCsgkpqLZquQhA4wtX7xavhHy7LGqocBgz0jZp9XPgsl0kdGZZ1IAQwyIzIJEaBDYR0W2dGM3iBCSmVYOhiMDO3hKrqC33ZqBtzAREZiwVPDrCHKqkxLFvwpCBLHRQARUdN9QAmZhJHw2GtrExfLsxzhUYMLb3QUBt7z4fDjApQGlnKVgZ/Q6AbYBXDnNn4DJzThgqILi3ahgHND6WWHePQgDEYXahsXmKQtlR0EF5RoRJfj8PRnIpRc6QsMQ8VyJPTEBaICo8Z3EAG0hhgwA8aCjNgysIo6mYFImEsQ6ACFsjMx4UsLfWYg0J4fT5CLMAZKfFtuChCtvO73CqmOvxWDDhV4ZxKSVjHGQ0C49vGsW0jpICMsNv8uAcGRsDoA7RcQXo5zAAfyZdA/CE7pQkQywA6vi8rWXpTxS6GkZLGs5Jo8I8MlJsjLNndFamszGR52DQ/OmZWyBrNlRmuuc+uvIikemtpXmw+0txPhwWNDOIijt7fPfRziOV6M9Mn7lP+Z6j/s47pnP/Z6PAPsvtz58fGY4Wfz+v1dyGOL0CNHlIRwqDmg3qDBZkvjJf5fmSz6Jb14bObNTlTFmZtrf4caa/gDdAYs6Nnlk3WviM9c303Uibo3VsMmumPdLnRztd+f68ItzZgqwxVc9kHlBetT7Luw5owde7IePznF8EnytKH1k7BDl3kfSryV8q4YyUz4Xe1CNE6Eie6bBUDoT8AgF9D8duUT0+OyH8jK+Oye6JfgNgLcVItt4h9cGI0DnWtr2cKPBAgTgzKhU0btofgu7JyyFy4193/Eg7HjZPRnMArZsKV3wgTgPBX8e7DzI8od++764vYo3muRecJ88eGQGzAeAIyQEVIzkO8zM6Nk7KSzWx13RhyPnh3H78Ln/kZCDzd4Fr8rfylqtU0wfy7Ug/h+NwbNjWgeNhlYk3RMp7uX4Lh+n1wDXMC5yEo9+kA+0MKouCbiSUYwI4HXKGxP1bZhEL0cnxfq13tL1J9qZaQEvFmzdvUYiwryu+9+pDOSheqvUODOBy0SJsRaz/xh2tNyU+AbZFndLkGdj2PPRFQPTOjOd9R2cNvimyg1CIsJSiWSSAUgtqXVzpZTFiFVzld48xCWbqXXcLZJyVZCt2b5sYICRhZG2PIoasB3sLkdSZNOaydzbJbMXyqhQy070YXd7yA8Rzw+qZMcd7gGYAXdtkRmFIOspasZTTMMdZCMQuSBGhrbm/PYaZNf4YYvjIPHTsbfesWhc7RE4GoO1dSSxRnF8wAeb018Us27aEqovSCx7CvjvIXKa/W+iDgZd5txAUxkdh+OFF65u1k3+C6Oo7l305GYIebmt2RkX7Ax0PJqXfe8OlWcik8KbWZ8O2bQ60/NCoiFj9zYy00NqzV38Wggag8t92v62vfE5g9pofAczcRp7HvOU9Ayj7d+kX/zyHPwltrrPKjFlSBlLCwh6Jqq+FGUjOdMggdubFWclY3+YzJPZ9fscMTI8Ubr68bzwV8MyyGxIW2luXbGkqRK3yua8rOxxtaTM5hfZhMhZ1jubzJjbOeafNxjGff5i/n+PKZ2P2KOtXngtrV0CxQQsM6/TIsMq0z++2f4sWsTMAZbJC+IEROxUCELLTQ35aeNV1WEemoa3dTIcZoNi7D8HwAGDEwTeDEXufZRACuqb7D+B6tSuRnjviYdultjoqs0PjqhCh9tEzkjFj2zcwNJy6FIlsYGBJhonpg6LYw9ZrB/yQ+VAHpJSIRgBgiUYsQQ04sqAxAcXCLXVMEn6+Y28NtVSsuk6KtiPJQ3bBMeJJHNa/00jbLAlwsmEnkh0aNRnRuUtNNbI+a/HlEo4sO+vpodr2jdXLKBKGVgE3LioDqEuEkPUeSRx6R6maKl2NFWbDgzmxh6y/Xao3qg3IaA0ekp75Jutb2wFxrZOMgyz3gOv6SVkWzmFhs/Mk64Msc6gUUJVIGG4N9/cPIEiolOFTAF5UW/QT+wSaPtXGBYv5rr7QzrBTllsnPeIgY4wddZcWaX0yq+96GnMsHZlfq79i9xSLSkoytFbSzxB9pDLIxclyf6/XezdUNq3CPihEN8hIrWJb7AqqelcFzzD4LIssC7fwzBkDcZPiTra92Rly9oAZaAxCw6sXLz2tp6XEBMPB1XA4Xj+XKqQNUUEbaYHIJHa2+HJWBtMsVco4e9M0pV3CZAiSyrCoEAfBsy/9/9v7oyVJdlxJEFSQNPPIPLfqTj/ty843zP//0Irs7MpMT9+qk+FmJLEPqgDpkVmzD5MlckbE2Z238mR4mJvRSBBQKBQ+p2hSnJPdCU0pODntAIAJuCnLMQfmJlEaCih7ZsB9ChCjPGQLattmwOf0VNmqhQY3D20P9MDQh5SQtlfLZ18GPIx59heJg08LfWwH43TfJGC/RPlAQBeYkpUtcpzcC7z3XGu55tzx7NFBlgFc3GMcgjyXXg/n3Qnlho/3QKMRlAH9S97qq3PCp3T1GtjR/tj0rTUZ4TAwlvf2NVCJeYhRy2vGIFCURJeAJUWNtbanA6U2zafm3DY0X8+WVLRSMJ25huQbm2V365jnABiiposf+zlb9tVhjjnZD4KvDvSvHJFcF78Ifr46PfvnvjpD8b2voMPPqP3Xe/tXzlXeR2aXtu9/nYqfkM24VnCBOZ+WJinvKf67/PzcLxLM2+98bSD49Tvz3i2iXb27bT4AgQVYzk04HXNKMtu2/bHNf2a5gUSAwz7uQcYeYO3PsN/3jlTu/7bTIv5VMPb1eePv+z28DLPcJ4lq6x1Mn6wD2/b/Xui6f9/+Hvbv+co13wOJ+P2gEu9z4XpHcY3432zeqJqXNZ/+y3l7fdTX9br/2zaDL/e237euArOaez/oubtdiPv7ep1f3pfH9aM+5Kfb/ml8vV6rdQXYjuzj4dvnPT4fuza+a7JWFdv6BCCALJzMpT6FUpKaXc2S5Tv9y+cLYK1xfnTeNwGdMBOgWYFKStCv5ubFpsjpZLC1guhS2EtjhDKnvT5vKQUtGkIDwBhaKyOzaHtNnUewjJ/XZHFlRurug6zzrRQjQonXjFp0eodFjxxkl/b4zA5Q7QBDUGDhSDrz17Ub+2UHO35l479m6vZrcGoEwCQKG+vkFfjCNr/5jNufr4ESXP4s1vpePgADul+dl6/nxwpQ+Pt7feKev9uHv9wr7X/ZGpbG/L1mpaJ3VNrl0MyZlsIQ+3f/7vHbA5XndYMH3n5QOxkp2jRjjqQdGcSXlEMZztLeYCgbneUBwMlLLWqEceDnxuQGKA58PB4YY+C+btx3f8nAsEDUc8O7TUAoBGskFj+ylJW9sWLAEAf2pfkXjXPRi53xYiW/WGhF4AYqX/HU16+7TvIwCNtGx6ISxWIKNZ05Q6hWBquURDN1Swxo5EjMMVC8InztoezMdvYyvVt8+17L6yTyi5WaThUpV2JXzk4aSPfk07oja4FglnzZuFfoXqf4nnEYdAXArVWYF0CGOJ1sM2r4z4neJ3X55SKt0BcoghgiI/diWOCoWEjN0GeND7IMQnheW4DLONvTqYwD0M2TVxrPGP1AaPwCpciLvjgNMXZjDb3nZTCjJsDCG8zf4bW+IqbRmwOrFgv8feM/kj5gRMHTaTJTsDmVrtf7eXGetYa/BAxfn+lXz7gfIPshsD/3r9Dfr4fBr52pV8c2DjvfPv+re4p7CId0/87diQonbT90ltF//d/92fa6glwTaxr1V63er/7cl2ffUfOvDvTuyI8ABlxoWuxVYHXz3uYoFbx0bQcQijxwT6fmxQHYePKvc/l673G/Pllcuxcv747a/qxfnet/FWju87TPP7CClK+/lw5JmOV8vwVLJOT12b4GXL96R+v5X4O0/Xm/OlBxbwSNXtfU1zmJ8RpMv4KGX+tWcu5/sf5/Xqv/ei557Sq7Eueh/fRc++9kYL7d83ou6LnLT9+7z+PX+d2fq5YlXQ8gnekd7Ay0G7L3u21lYj8CdwB73ceXP3n/+XNkPVecXwUmVTRDLSOp02HHgRVwmNWXrPNPTu7Le9Ncl3UN/mx7j749R1lzuzvLAdCaWqwXsy3IAetp4gu2/yWT4kvjVh1D4acteiBH9n7TmZpiDpiwaQI4fj7/wveyYhk0uv/rDP6+7vO7f7Hv48/XrON+ngOv/UP2nxdEbgM//f7+vftzrPYam1/hKxg0LMnu7GnzZQ+Ubd3Alo+47zOuh/XHxUbRFWTjK7OIeY9rv8f/Rm+xeKdadSB5Q2se/77x2wOV/9f/+39FrQ1N/Qh48A31vOBEXveFozWcx8mXLEpVrVGAZeiTwUIfIxW6zAwfHw9EOD37kIPOwzfqEu44oK3g+vyR1xwAhq4TBY59MjMSjmik81Beux73SAtOpxpQMbStdgUAijkKJooDFundxwfOWtm87rrp/BZLPXm+5ILWIoWuWo7CtPWUQwFjSp2bNahrjjE7nXoAFVTHMKNCST0OmFPJKtEsNd+SSeZiL3RUjuNQEzw5R07t96Jgsl8DZlUN7JY6FyIUcMA39NCqwcAmhVRQg5TD+ubcWjrKrRQWygGpALbmls8NRPZHFLpSyId1R0HBLIbjrAp4NcXbnyqa3pw/N6/j/A8FJkjjHU6dCf26r6XQRbG0uRzNOCzzuw2PxwOtsqCt6331e+Lj8eAZaKIz7JjVF+fjK83MdmsSwxYF6msWJzi6vB6bpPW76+BUUXc4aTAUIX/32Jz/LZ400QFeAjCztW7mfKkz+nr/X9WFdmfp6/iVUxDfsf/u/pndWMcB9FNjvlJWTdm2DuJ/vxYQxsH2tSCYv/7VcXp1+L7+PdZXjFC+yc9mpmBlSwI0mb6oonsjw6CpxHd9pY1EMEBqK/dWi2fT/Q69s0MoW3dHVwF9qtHFnHfwoCo/O5G0mR2jj7zHzJ5uh2lQnmKvBYWzlfbi0B/Hke/kKwUvrrM7qjvdY193e6D7q8CAoMraW6TpFFSrL+tsH0Eh253mX1FJ93Mn98iXtRvrKxx5rmWu253K9XVPLFWuqfXJBqVjrOxKXPNrMPiV5rbmZFfiwvbv+7z+LHX9qznax08O17+g0B7HKzXvlQrEPfZ1nnMuv0hM5x7fwAbbbFCcNTwjKkp1TFczzEFbZsV+mruv7y6GQceqMdNNMI93/f3xWHtZoKr7oupF8XPM9T6XOxUpbZ/9ar45R6l0OgbFh0JiPujRTpCvtgZr7RW4wXK+20aXF5ybAUec49P3M3VfR1+C9fA+bO3dsM37WbcHEvtjzTkxO6nKdaOF/p8Fs/sFdqnlOBf393ffd/qcY4zM8rS5Nc/lAwAGDIkHFHtdH7td2GtLdqVH2v2173N/41XBMeZkTlc5gMPaYgOFvf8KNiixmO8BRXW5znMrhJggyuLo4YHtgNCXYCd85bK+ByBjiKUZvz9k+f19VIy60cOxOt7OwQKrwoZ3S4UAKlKulJ2Fovd8OYbqQd/hi/r8fGZUtxDkPSqVY6TgBFPlshYF7qQyzVw4lC42o3PgyoRMLeDYuD7DyR4ofqIdDbUdK2VmqwcIYGit4Nkn/o///t9JtzLDt+PAQrMXalGt4GjkCd5jKttCNPvz8wl3UpmOxo6si4eoxW1Ew8tx4vPHD4zp+LyeCoJM8zUy8uXmCYd3UxIy8lXd1nvovWsOmKmgIWFq/etB+4q2KKDanMo0jEEZggx5DZQbiWTWzWAlR7NEoTzRrVpXI8QZPHczlK1z+Qt3HfE7BZAyRyCoMSeJjk2hTbahHEK8A2k2WGYDp08U8W9hr9/L2g4G3td9c4UYM0uxvvZr5TTaK/3o7nciPHm4m7FIGQwS94MtMjmllBcEc2qtjklpTXNgYL7Qd8Lpufv9E+WsqH9LnyuQTwc5/q+v9HIY4V/RcwJQcPvXNQfx/v/VQZTXKeXlf93DqK/P/HTwmW224+ei3V+NKsW9XGRf0D9eC/nzryjXHmTF97W65CJRQKntvDGu59GHbAxwCHBYtoe1dcwmlpR9/tWN0ZZxfQ8osxg9BaZgByurJi+C0O0AjDWbTxnz6k7ajBlKq4pkWM82M90qx8eF0tXg/isILCVtQDh0MV6c9JSL/7lu4auE5v4OfhUMx+f250GuF95jMeR6+krr/OpY7c7Pr5HVCOxfV88eeAA8k746rfu7+HrvlEGWcqUM6lSGPG4jAgxe89co9NcAytKmO+lJ/Cm2qfrpXr7+9359otPxHV8/G59/ZVDEfcRRwveQmySfhf/+gvXkdy1Q4TUo6wGsuFgdsnEFgCvr+ApOvD5TBAzwFUiVrZFlBH3ItAb3Wa414OU9hzO71yfEe/n/FyTFJXOOzGBbXVTapXwWBYARrMcFtLfCb1jvxjG9LF/m/2SsoCcyKPLXtueJgGt/rq+B/1dwjsX6uqe4Zyylva+gRc69R7bLs3l1euCxE4PqDU+RJQCSy6efet8Xm5oigJ6f7cz+fuLv+z3uc7+DDvteHqodPc5DtW1qL7HNTfh0cY0dkKOdwstnzcpGPV9TA6NapW8WaeRC+sI2+HKe5f3X+gL8/a7x+4vpC0O4narlzg7vLK4qOEpbSlMmp1SIFQ3/XNKzNVK03Ni35IZLIerLL10bCEAumoKYxO3M35zmcFJ32kT8vI+xKElO40hkomMchlLYGX23mtMHtcINqOc3TL/xf/zXP3BdNx7HAfzn3zHvi8+j2y6l4GwHfNJI3WNg+OoA/89//pOBTmt4nIPZgIC2nTd2NgZ6Xiqe942rD/z5fGZ0HnUXsSFHvJc5mfkqBdXYe2NqoU5Rmfrombrto6N6AVzZHl3DAcklA4gMk+7/xeA4k8w1jXykjtdhE3+LLIyJWBx/Z+DLRw+JZERaNLioYy4hlM0hgCMNS5UKCw8LXzLQwdcsDvNNHtvioRiwRIAUzvrr4axgzGmg6QTOPIBKKbBa9foim8j5ZGOrzcDpsHB3jN51fmwGsRRKBkO1KPA8HHeDlc0fDeqlg7w/cqY9qXMZqPSB67qy+DccHxd/Npy2OSflrbUm4/uL5mwPAHbkJ0Y9+C5CUOB1N6819KsDOcZyXrd6GV3jq/PFR/dYoGuNIhTstmzfv/ieORfylFZ+ferX3xnzOonShva+mWHazHvgWySZoJS1XyNQjTnE9q1D8sF5X6Vs71yFwHsw4QxWhg94cRR/pYfBICGLL14o8PKZuIG52cHY/2a0K1P0Up8BlnDjmwOYqiXT886+7jEyOFBWM95ngBZFtsHt5zWxBxJxz78KdL+urWIF41ckBqMDO38RKCzn++e6p6+fea3DwZov353sDVwpFH8B/AVN359h/46oG6LNC+d8vSjXy4mfBrC3r+sX8GmbADM14k1zHRSQn9f6fk9fA5dY1/s+2R2h9flwkL46fDlrX5fmdm19xnwF9Pzxy/5ejnH8mXAvBDqLwfE657EnNp95OfSODaz0ZIiYGXoPB3q7Nf3uV3CGzntPsYRddCPnNS+w5vl17nI6UnSolP2mM2pd+yBm/OU9bu8k5s4Z5hKQ2N3aNR3L39p+4MD6lu1JtmD0qx+2j7ALcc/hQ84vn3H3jTrnEpUJ31A+RJyXsiX7qWNWkIR6nSk5V3EGxrOGL7Ct3V8FJ7/ql7Q/b1x/KaGtrOsYA7XRFmYgs1fN4/W7E5RUTBxzQpu4QIyvQaApQM93Vk1Jhq+gxWtgto+vNZi/a/z2QGXRDRyGgtIKijW06PUBoLUTc5KqQI3+olosLgSqdHQiEjCYB7peQPA9jOlkHyeH6FCGKFEPI/D4+KaDWUiYFxxVxCkHnd6yNv1woE/HPR1nrcxUlJLyt6U8aOQn8Pn5xC1lq7tPPJQpKrViODBGh19PVAeOWvDt2wf+0anqgTnwaAWHGc5W0AfVyu4+MhPRRxe3VkHXYMPF4VI9A3DUilZI2brvG//4xz9x947uwKhT0TNbPI458M/PT86XGb4fDechml6r+OePH6rnuVDbCVhB7xOPxyl0c+IaTxgc96Y+4XMy+AgHLqz456pjwV582OjAFIOKEPk+h7NWxnm+YN5jHb6twoyZgVAnOWrFVLZuuKN3Xud5XxnYtlrxOBoOBbXPzx/oY6C0Bge5yNf1RKsVrVYcje+8RjGgjuEpYxrp3VKlRjSYsXNIkYzeF0yqZLCmgITXeRwHjvPE8ThTBca7A4WFiWakbGTA3DtarThbQ0U4h5aH75wDswkFcTqHHBO1lRQ04GSHkZtoZukIGvic34+TwVJScAo+vj1o1BDCCOzHsnYa915K0ALwObge6ivyGsW1jhDdcJQCmDPzMwGg8OcDWOi11pXyX5lV4DW51gZE6/FJqgXiUI5gcoEY8e8RSN/3lcFhXjMdu1fe73JuwyFd6mo/IZZxqGIV1sI9lXIAJP1kbIqCCwXjGgo6z5xLgSgoWq/IWuxBOjq9b1QCiwBlI5zpmYJq5LLfTYpS7ttnfGIMh/kKCIHFxb+uSxKxr126y2b33VVoawITdD+jd2iTUflIAXzXXJSm/jf0ovj9v3SA1prYVfe+Upq+jthrfC72iAi6TDsabWe/XvyroIzsztTom/qWLRAggxc5R/v6qpvzGs5VsaJ51jreHNkMbnxzKH1las7zBMsPJj4/fySwURspJjkPWg97gPAa2K0/gFQmHSCvnWDkUH8FmGpUdA2ofg3AtmYhO/iVB7+/Fz5P7Kdly77WaXCHLydUz1gXNaffalQHoB4NRapFcw4GG9Mzkwiwr5oXOrJFFF8zg9c9mFGRPRZ7wsDsYHzv5+ic51pQLahrROJjL84ZNHU5djpDdwf3vi/UyrMmJPaDaSFTjw0Pz72fAYUJtCpL3Qs7dc4j8FjrKIP7sCn7O9Xemxsw16zimj2WRdK75/b+16D1TjVBiDlVisoEqpRQD0SW5brvtB2GjX4fN567fi3WInGPWnnOuQPHUWkj9Gdi0acASzqc5dm6rEm1gsfjBCxYOPzJHx+PvDN71BfbsO+neKdf7XSNQCoED76O48ABTtJ8khY4xsBxnmitorWDwM+XMX0BFTC8rCngVWky7qnfd64dK6TR86sLGU3N8ataNz0k/2c9/E+B6+8Y/wZ5YtcCWTw+OkdrWcUEBXdxlI6ijVoNC3HXkuHCnYCxwL0YaWP3PTAUKECG2+fEUavs2MTYVCS4ORQ1bjQE3+5puG1OBVKhqWy/O7qcyDnQnVmQ53XjqA02Hc/7xpgXfEz8t7/9B1iD0lB6x1kK5tFQrOHRGJSxfoe1IOyqxGcvpaAVLSwPRARoKJiTNLpv5yNpWJ+fn0QCasVZD9bDgI5kZC6O40BT6u9DQUqJBRoeaK0oCgymDm24o5VXfnO8oyDMG5gdC8WVTLmGY2cs8uvXhFdS2KqxFmi6w0vJTA6lGme+N9aKDDo1QkBuGTJAMsiblHUERXNMdHQahBIZGceleqExHdfd0aqxCeh5wkvJwsc5Zx7IcdDcwDrMZDgdKr6HCturwYzr8O4zuc6tFuDuDK66nhue4sTuwLhuHV7M9MzhGGUm4sGgxrPweRRnIChJZyiIT4cxjJb+Wmwp4kwZc4C9h1w3EZzqKLwOBzzmm2g8DX14T3E4mRpm0bmQwyWgAbpuoItWYp3sQQJvPNEZHZSuQs/c67sTar6hTOug4XTw4WuxDK6CkuRwoPjKHjiA9oo6/QqtDKeIt7cQu/gc97TuYAsO3IGjNngVFUfOWlAXY7+mgotj1dHURXtinYotVPMlkNI7LDVT/FF3BkjNyku+6zXFvuiomRH8Ct5ZUq4yyDXgPA/tuXB8wnHQdWpQbH/OSGRPIitAi3VKp0NL96eGpIFGxvr8WqOyo5W/ykDsWZTdoUhbawXTpuzQWlX5HSGeoHtPtDfVjooy9QAVsewLYs3/rls/rUST8SWLkLHKzw6gu6ezvd6/b3ss/kQgEtlh2YKCl7W75mwTi7CXj6xnzfn01cQ3LhxAIHw9b2YbGBDsAX/sf/dVlvy1ed16rrXfAo1nELL+bdkeiupECnkMz2DFzLK9QLQTCBuZPUSgmsgvqkf8npiLla2uavYcTmxE6PR1Rt77jFuaeaE1t5stpC8708ZGfabPiVZehRjiRB7BBtE1M9OqQHovCl9zuvZGvO7lp01lwdfntfhRjPVlAaASg3W4C7ho4TQrWxDXdMeIwv1S8OP5A70PPC/Wr7Za8e3jsYr+R0/77Oa4N4qX+8oGcEopcbyDT4rJ86x2nSNzBGPC80wM1TaDYZqjh6iOIddr2Ro1hv/5c1DyMxMg7mf0zmfXhU3vNhagOgyg1orH45FlFP2+aaP1XlevnXzdsXx0d7qvn/bROtdC0GE/D/iyR15urS89Q5xp27UyyPlV4PV/cfz2QIXyR0Q26SAIIQPWIlB/lGx65Ity4ZW/YznrUBTMg/soTdEfjQsR4K+Bit4ykHrWALbIdTlD4SS6HMMZGxHrYDeAHcnNRA0YlOwdjmF05m5F+9MDoWSB1d+/f0+UcYyBoxhQG1otOGsoaxTYBB2OonuX0WutJYUtETUrwKRj/e2DhXnXrfoHM1itOI4T83ljIRCGUoF2HEQuSiFKH5sEBiuVjlGt/LtRP9tVeF5KIAEl3xdMaJo2cC0FRyO178aSNVxymwo6p7Grb9lkno9TKKjoCnIAl8MY1Ak6bFE/EapjEfBU3Ts3GGtD4E7nUVKrd2fR1xjsCTEcwDSMQlobN5z69nRm//xgxizklUOCMzZtT3QPnCcBf5/PO4sa//h2wjsN6fP5zKL0UtWay5FoIBxAMXSow3Wp5POXieqg8skc6IVLworBBw9/Hm5hPEsivD45P3F49rGacZmeI8BT9xBiKGkMEftjqHYgg9yyDjvnUdz7L9DsOBi3HTa77nVH/xxp8NyXlKWVMIy0IfE74bynvVAA6KLyEQSx9B3iuqa7mB6BLlDqOlS+HjQxdodXs7WcZdjLmg3kFbuzuUwQr1FK7ic6dfz7VP2RWfD6leHbvgsWoTlSkttdqGL8xuaMQwHGcpf5qZnz4XIQ9O/x3mQMY00t2hAyYxkOalxzpwIMH/ncifRua8OLZ/ZuzbFnEKP/XD2uwkLrfdd9nWFz9Pf3vQUyX99ljHh3sTa2k2g7+OUcwDLIjT0H2XTScwzUZ9nmYcZcllW3v92bZ1Z6v6tXL0Qz8yU4409cGce9jo1rOLKAa9pfHBzstKmps8aQGLOBNiLqlhB7BKyHiv2f1/waaGxqHNiLrHkC8d++1rG97sVVCL1fV+8mv85zr/HnnjM4w+YLUfdWUVARTiUBQ9k25/vfa8mSApvZiY3OF7Zw39zbvWfNmBGkcwUhFu8zH2Cjlpmo75pwKpIS9KrHq22NeZhjrL3qUIZ1JIW8tpo+xfT1vftyC3vqyizG8xoCuGSWtZ7Myt+jY3QxPoZjzhulGE5b69CLqJraryEUVBz48Xnhx+cT//WPf6IUBinhR7A+NmqNkd8d70MrEXUDqoAts7A9XQQh8W8uoK7Y+lk0MXaIDq/zt1TaPK6LglSF3bJ6O7i1Bzbx87iVmEOUoL4SrIKASFOtYC0UL7qBXEM+Z9aZRnNxhVjpB8c5stv9fy06sBp9rsbZoB8f9xxnveU3ZduPyMAVre1/x/jtgUrTJqNj3DIY6YNFnlSo6eLgrVoNLSPMAdxzZgEvjNFvyP5ew6lYgZmbkBt54mwN58dHvhizXekHiPo9KhssA920uMYcMNWPVCBVthyO+5Zz2ojcVDOcjwfK7Gjh9IMo59EayuNMAzVGJ7I/Bj4eD6buamXzpz7Q540+oL6kjGQzI9BvdBmnbx/faNLviwpdSht/fj5xjw5rXNTTDZ/3TeMxBu4//4nv3x5oreHjpACAsegGQwutj452PHAeB7o7Pq8LBuDbcQJwBY6iRBXDuIGujMb37x8AxCd31qBU0cnu+yayeBDtj4PieV2AO759PGC1obZA22XJEGhkOMGBhLR0pnvvpBeVCEpopJtqbmopKGdDv2/cnWvOaoWVhjkHjtrw/UFqWLFIldeka/jkGgslFoDrtNWtg68MAFWXumgRFfdzYDq72v9v/+N/8Pvd8e1//n8Cosr8r/+f/2+KJPztb3/AnYHDn39+opRGRZBaUnnEWkUfA/d943s7cdaGR2t4zr7Qv7svae9J+tZ5HPjj+wd/3jtpiTMUs2RgbTUKC2WpsFipcx/OQAQ5953GuSmANQOqLf5tIE9D8wlAmUI53ZshtYLVm1cUIweU0aIjeI2OoxRl7hqu5xOB0AVtrM+pgkPkOzRQ4eqIDGIYHloSilhMUg+PxuzLUcXjfXGc4rUv5Hzv5ROG3LBU0UwBRzj7OxDiCqiiqzbPlj2LQ/qMu4PJYR0UqmNbgSHS61zINfcsg5y1PwMMcbwqoe1ObQg78PkrwmdcZy2dsqgPybqqEvcnkEDobzwnDz5lQ02CItn7Y8KX5oNoMVBghby3u8fvLllUiP4pC5piKT9lb7ZnHJvAxJ59CJELgLQ0LpUi2gp/0lKJcjk+oWI0dN51ob5nq6jYgqRY4ogAhpPra2EkOjzmzEzUnsWDUeVw5eqQ7xrqbm+iwQBIoCveQwblJRTl8HoP6y1rvjYBCZ+KK1ZBczj2GVwkEyF8gFC05PufWApRpdiyuXtArWCJfy8vVMevBeY/jc0/3X/PVc9XTHTGSbu2mkBT9p4OITKTEmsk1fVUSA28Zlj6ljUMZgmfMbLDGT7RRmiWYa+37fluDaWs986zzeB123MZba7zV1FjUseq7FcpBTXWiQEvEsxb8AkANp2NJ+HwKWddHj2ZBhMNUgqbEodx2f3aeH6LEhaGgyQDQ0HFPTriuK/1wHkaxNRHKQ1MAkURfdvWskBwsGF9DeUq0Mcj8GR57VKQgRbck+oFOGpjCjcybHEWhg2LM5J2UBczqtJWvJ4DufS+2Jx4/7HX5iBg43rDXT4nCv9NaSlELziAQNDZ2HIhAxaoJ52bEnNrne5jzqi6W6Q2rr24523/OMQKNGbL4ixaaSbd9wqqVw87y/f8u8dvD1TOI4qUAVjBmAMd7GRa5aC0AngxVA/jZxn9Qwd9pM7HIJ8zkQxfqcMKFdUbMxThUO6R4+JoLmrHRmBhWtOCY8gGd3GYJTfUF8IyOguOgwdfS4UVR/WQyBXFJNP4+r5SUJ1Fyz4H+hxEHhTIBcpWa1FNjuE4TozOjr9zDFoD3VdQtnrvuNUNFQroDAB8prLKfXEjtGJ4tIrZ+Swh7VcAHO1IOhsLqKvelelJnQ66goGhZouAVCzADZJGw2WIt/Q0FVSKjIcM59ZRnI5DCBXwsI0O8HHYBepvDtWUNNQqHr+J8OQTcNL7hlLgoSJGf3GgmqGVgqOQbii7DSL10W2XtIqkf1g4aELsp6dDFIGZwWAO3NfN53fHWQ0fx4laK85quO+J6+o4Hx/MQNXjRfL52+MBKxW1NgwLw+FpeOXJpFxyQc37Mas84grIk861aImKzB6ylgyqw2GEEE4nAgBm1IJfLllc0bdKWQWLcRgGsFAEVjDjpMPCKA8Od4w+QPbZQnpjb/LQDWrmMuaR9aShn0r7rIOrj8E1hRWsjDHQ71uCEXw/c071MXL0MaV+BtzhTE3gPx4HzlZg2g98v002hIY/DoNX1RbEbud/C/mP4Xr+MPHhABNQkUOgD0bBZ9SGhXNTjHSvXRwhMC5OYS6SJZcNS/QrAwKt+C6nn/vO8kb34yYy1y+HeVlBCUy1FkGXwwKQHCvwimADYEYz5uAl6xL3qXMh9m18FljIIAD1+YmCU0lzu2P2V/nUyALZ5tTcNzPORdRcIByS8PvYJBhgEDK3wvNbXdMdWEFmzpfr3JJa3dEySDcwoxL9K462Ct+H5qRUS+WzQFAjUHHZ1QDQVnBhuY+zgmtzPCOAptM5Fy3YtmwpVmO3l4AhzmbtRE4Q/+zzma5LvD+dVUnxHp1zVV7fIRwS8nAFDa8qgzFirwCvfVj2gCWzJ46XtRo/3/Njy947sIlZBC2I6/gVEfcZ6oh3unxBr9QVt3Uwc//vReL73E6ty1LshT639ryC2diaetcAMA0oNnkWyPaEAeH3BN2Qz20GslfkS+xBLn+2HM1YB7WYwM9YFwYz1RYCmOPiHjBndkVzZkHbVMAWZsnDZTZDibl1RzNHaQXnf3xTCEef51b2LmyB6V6rrczyyDULPI5Fs4yshcNRKjMnV+9ywrlvaYfWWiUTMg+fRccC4GPAJOoT+zVsWvQqC+GhsLNrLa7sT6yhyPqn+EwpWYdDIG+9n9wTCQbQtwk7XEtd53e8T9nkneoV+3kOzzA5Q2eLd6TTIc7jzR6G3/ASoCCez1/Ot985fnugUqp6WACAjGlxh6Eqo0K0m0MPnP/1apjWQlyLOw/bOQFJzVYznEfLgzKVS9xf+JirIBB5gO7DoCxKOLVCVvidq3AU4r9OTCIrxv9CBDC2uPATnk66SZIZPtXA0DL16uBCb1oYtVac54EuI9M3J4jpQBon0qakzCAaVAxubBqbVoscc/YacefGvGX4SjGMu6sI98bHeeBsDc1AQwgk7SkUfEzPNuZAVcarluWwAQpIUNPxhQFHI3d+OpV9prI7UzriVTzaondeSgHmTPTW5EkdtelaBeZAD8Mv8wwsXvxSy6BDWouhlQislqEL2tR0alC10jKoWoenmjwZMMX7LRGoODN+8d6KAY+j4HEe+DgfqAY8x8B1Dzw+Hmilqg4JACgWUR8PzpXeHwbXyB3Iqt5/Fu7WAoyJgaUM5KaA2QQmeYbMLwdgFtfRhUI0ogp1kFobqX86BEucUO4ZRNZalfaVcczDaO2r3O0OqaotKkGGIu5L/W8s1MZEB3LtLTilbs3Y2yAPx5D9NBZf9z7wfF7AecKawYJP7ayved4X+ygNZ48lZ9D9cRS0aeg+cGcvJTkqvvpRxGEQ76G1uhzS3ZQ5EhlLikzsUYmIxByHIzKiz09dmRbaEzkIXx2ocLK2gKD4XvS48fpnuC5QcSydrBUIg9SDsjIMse+ZKeIfmysQsmowt6UE5wshDwrcchiRvavi/uNPFKkHzec4WvZQ2eczHfSxMpqHnLs5ue+j23YEKSVUBHWR5/MJQEGIsiUBTkB2+b7okAYlzeTQLIfY1XNhnSer/5CUn5zFsPH7Ab65E9gLR+VS8NNay+wgZE/ie2OUUjMQ221TsbVXZuxTUKCjyHbNwdrOWNO7o707Wel8y8EFgsvPYv/XYGCbE6yi/MjkuTIqrfG6Xe8lqDMRmAPLKQtRCU6DmviWCOyX3Hl8PtZbgFqlRG+LDU23FegVW1mUODHSOqbDvgVUYPAx5yTNSfvFJAdeFHDEutibCiel0SNgWoF9KQU+TYGq5VpKJzBBTwUpCjrNADc2rbayLGlsZPdFkYLWnssUrKJ4JPgB7eWkqRkya3nnvgy7B6AuW1isSpmK9pTU0aDrbXYAm30K+h0I6NVqaO0E7d/E5/NSfQj3r5c4t+Ph+ZxcCwGkyc5on4UdqZNg54/PCyGv/zgImLCut1BgxgAEdQ7gQRq1L+7A5PusZtyXQO4fnsWvLRmWTVgy07lG3ZmZEeBYS01Z6rM1uI+0kVX1hqv5sv4nwKEqWxHiHXpH4V/xfpbYx30PBbILbOIzaqUpuMz1qT0Y9MXInLp7nhPFRlKof/f47YHKjx9UhTIA5+NEKYaPeqg+YOZiCiSnj5EFnPESM/VuRJaCexxoWwPY7b3y5bZacRwNfQxc141LjexaVXExtPGjgF7fg+2ApFNGNB/GyH/Ojjmcjow2wpDz6TDY4MZxA1wB8Aq64jtFIbKC1g7QGYznU9bAgb9/fCQCPRTJ3zpIa634+HggCgSPxwFg1SF8PB6YDlz3nehekcNZjwP/j//pPzH7DfhkQ8qjwM0wpgxAHhDA0Qq+P058NNbQHGYgRi5NbamItVbQGt+vj4GH1CjOtlLcY07MWypnVkB3UA685mhsTt+380i1FUo7JqFJGVeDFVHXwMOXReugQICd6CN69PA3wxlxLFpRLYbjqFQeAw+e6dykcbDUWlczPF0r0YVVp4ijhUIMD+97dNz9xvn9IaPh+CgF3z8e+PY48b/97/87/rwGru74b3/8LdGzP3/8yPqeU4Ecu/AW3B24zHHB2f+lVtSpfYTBtYCB4QPfvv2Rso27nvnn5yffcS2rwBFIsQmDaAWiBozgrfpkV2Jj4HuqCdvdmcFoteI8mpwAKHieeajNeelQbgokNgcIgFs0fxRFTHVGU8Yy+gyVXKNF9L+vQYzjyPduwJyoXlHOBx4fZyrbzTFEQQR8GswLjsbs2pwTn3PkPIy+Dpp97Ah/HBTLqYus4xcQJNCsePI4UGXs735jSbbq/hy4XMG7nIwQJLCykOd4h8UMTf2BAKSzFnvItIan9j3AmsBwFMdEAgWl6L3Uguf1ZO0TBCbJkSKtoyYgsqDHJVySCFwNB1+HnB0JFnmeCYagkMa0hxpQBmDONacvwvO+EwBLkApOOXhdv9aah2l0eQaAx7Ea3LHAmo/Q6nqftdjrvZilAETYqfieCLJqZoTFPRfI0IX+thrgAJUKi808A+Nsen7SWaIdJGIN+UzubJr8tW6CzvENqw3TgefdU4Hv+7ePla2SAxtgXgAMtZ08oydVs2qrKa0emYhQ5Dc3KTRtTSEVAJjOUU+n3vO9B4XarbBZ8Vy9QmKMewMCIqiohewC2FZ/x1x/KH/NsTWArZWN+hw4j5bqao4pMZGCz/uZDhcb7+1BH6+fLQq2tZrUG1fvolD9g+FbO1bgdA+47N2IAAC+KIfmOM5jZQ3jzBQjIJ49+mkMUZdDarjVpoy5oanetVr0yGJ2eOY7X/5OybkI8GqhKuGUAhTymLaAkKDnGSeeVN2ufeOGu5BtUCrrDn2SZj9EdaJ6I4OxYgWRFIYBYzCQv+xPfZ8B09L3ujrFfM6j4u/fH1pfPPn+/KeUTifwj4O+5vk4MfvN9QzgOKhS+uPPT5qjWlC+g8JHzixaAQl3dU62W5Atj3O0D8ezUwinmuEwZnZqNHFFrJ2SAE4KG2CTKDZeq/eJPz+fCWafarhtAP45JwNo2b3zODJghOzw47HO3eM403bc102qddi+xKo8hYGGGz6vjusm4Hy0htYqAMuGwH2O7HlIIHABnTw/fQlPaX+Y1sv/gt87/i3yxDQ+RDRbrSiNB9E0Y6f04Shl5iFqzk0TKEmgugAN1Ja0ZnbGQglH6F5hwNN7Rx+sC+DBbpl2DqNJOkscikhkItAoIrv8tmJGtKQY+iDf2oTKlDQkDLrJhSc6MDHpFWcQtJRUYETEWcAXTskUJYwKU7eYLXhxbpzSuUoJpttgRL8NpG+5UMHVq4WedR40Cv6ABRa48/6JwBfUcuBQGnShZACsqCEQfz+QhHocuMdgXczdE9UPChmzQ7FhjA0ZC12nMaYMNYOiyJpE75zw6kzfXxCpeR6y2azTiubGstidc16yKNBK1TOSchFcaz6iHBmhO7m5fR1eQU+iI6YDPqQp4Rj9zoPyGpRzHWMwK6U31nNzO57XJacYQooKD5waCM7EuKVo5somCCU8jqK6O3KYgxcPLCSneDQQ4zWsrEzf5lYKFSorTRyojNZZ1R6oks2OepzzBUlWkaH2UYhfIFzYDaENaWeLza+7KcV4eNHLhQ9kXZNpo0ahsWFDVgO1ks0cQoxhJrlWcYOzZoJf+zgOXquWlPstAiLi4Gkq6Kytie64U4ksn+PrekHsPa3NLxCGnrdu66tkxpZ4hGXQTofJM6gFVi8aSlgvBZw+VuEtHdco1g2FGAebOgeC8+qAEV0FvPDAsrH+HRWJqKbtxHJkwsYsyo6tDyG2rC8HWXbWXubNtvmNwCoAC3vJGJuxTolIdQSyFNKIx0v7rocNVHLMQRfNVp0RCrYmwvyldrT16pzoO8Fo3wKVlXGNvbADYwF8BMoRQAIs+kOBGeesLeA5FE/QFIidrcKdFKlZkfO1CoqFVzsyGC+q8RtjopVF46TpW/QiLZg8f/c1HoIhJueV976K83Pdy+ktHg3lSqK7YRu4Tx3Th3qVqTdLXCf+TM5j1KbSrkt9sdWsw+iBfrvnfcNMNYzKugBAqxk8jumYk05avNweTlastKK65gj0NRexBkyU4YoG73faUy+FwjSqsYu1X1JQQefMZIuB+77htaE10kuJ6HtS8+CrjiyCQYD26Tkow19KwdEKWi04RCGeDtXjYHvH0PyTBh73F5TD2C/xvbG+4p3lPRhzN3MM1XvQkfA4c/PZXQHFZgDyerIbCNCj5nkWinoTUfOsbIA5CijUBMl310I2DQDWLsvm3fcNnyMPuuhBtmiFBXfXGpyEUAuc9PjHI7OXdzTeTNuEbCbejpbZ1bGdma02+q06UyOzvYPiBkMx0o/7HGpx0eGV12ytJQA3x2SGVpLxpjnZZe4hwJ6AeIVNZhjnlh2KmMJKwaMeACqKkQYYdYukNfJ8nbNLdMjTfjkiYRABGTIQJti2soq/c/z+YvracPtNnHdSnYBccqVdLfiPgGEi3e6J7JHhTiYjEayS1B6Hs1AX24GifRLKTIkgALkJImU1BpH5SAkD25kUh2L09UhnogiBGTAvUjObYOsVWjPbDspwARjULEcmfpZpdlvF4z5A6secuO+OSywNOn1YxqjWhcIiggdLS7Q4jpNOuKzUHKRZBJXKsFDCcGJcfMeQkTVH8pJjk6bzBACFzmOguH/++MSP543/8V//RD3pAF6fn/jbH9/w7cPwkMeQvmkxFBeeI6pXKwzypjvG3XPzxEFBR4UBL6fT04ErrShYIdofkq1WCvDSqZVGuhXDHCZN9S/vw8IYrELpYkue8QU9NhrU6RO938oGsOagd9byHA9x56ejz3hmihGUVtGs4gjKW2GBKotPnaiox5sq+b4C3S1GhbHpjjYn7uetAtyBKseSVDYG11vYiXDGArmL50/aEbgX23ko9VxSlGCmA4wXZBZyZAtzVUmjWa9QRjr3wSqqjdUYTmWsbSJYJfd1OLEIG6OM3TQ6X6HoZmZqVhmf9cyGFTn7pRRYE1prQC0KvuQoRrPLaqQVQt9lJZqoKQixMAG+7j0cnbIX3G+qKtvfUAp8UN6zz6C5VCH62s9lP2x2lFOBtXju+V60RyLIlWo47r6c4GKvEsw8qPiMWjy5/opRrjOCi/3+gyoS92ZSLXMLkCbuxbPe5dViYgWBiEDUdDasACbWaAa9CvYmVHRe9G8zei5sLrBHDQcyi8oaQ6x1txLCPGcki0yHsb+cI9iQU9gKoqZPNgbevr0WZlwxwwbrPBOoMxIciUmM84kAQZPzMgfXeNlArKQpA6u+QmujtqBFOc+qYnnmwks6OkuwJOgc5cvZFUFf/P7r2KlwaXfN1lrRHMaMhFrndEdpdZ1n7spu06aUot+Ynk4jM2ycQyo2Bq0ICmIKFTnH6kNVvKA4/Qaqck5cYznoGD0zG4kMF+DRTkRzX87PcpID3LljrTkwFKSEDZDJezlbl18yUprdrKAdRjoljAGpdkLYvOxRJLAr0XUzTD/o/Lc49PeXJDuvPcPjfAFFGSxgsy9YKoABZgIR+OoeBhDSwMgMvDFTXbA9+6IF0o9b9xVro4j+vPYQ54eshslrwlU2sK5QTLR/M/h1YwTdLGtPeB8UJIn3QKf77lwHpHmrpqhV1HqkLHLU/04nCBKZ7RCQiTNxIgR4uGYtXSZ7/aM5JBsIGOcEbgPQxVKgIJPVmjZi+mSz36CJaTv1SZvn7mhtopRK30aZm2mGZx/aH5zoIrr7eZ4ABqroWmvPzfQ7YQUhYlPbyoBPnSes1QkAl0pvthvR3zj+DZ3pgXYwXW+K6Ef0slBy7R4dzQ0VFaWouHBMqhCISjXuK2tT+t2TA3okMq/CWieS3Xuk1wpKk4MjJFrrlYeC6SCZq+idWQJjo7u+CqmpSANYZUq1mKEC3KB5nnCjngUyKoqsRXO47yFKmUlalYWs0VTQHegzin8pkxsOVKsF3juRg0rUxCBlEciPmHKM58R1qTC2RLdvfuh5PXEeB6YVfPblGBJpG4mYHkVOGcT3NT5nQSC3F8q0rMGp4KY8WkGpB7w4frihf7LA7lt54Hh8x+PjgNlIlYk+fEkBOlYNkhy9+H/hbBqWYoYr4zWno3sYX8D7QsccngEuphMVzXdFJ5XSvKToTN0MTfYUdSEOrXCM1KhreAJDbsCfn5/J32dRPDMdPz47biGGf/znCQD4vJ64zFDPA49apRLH8R/f/6AjNwd+fF64xsQ1HD/uman1j48TFY7qE0cVCGCAXbcAaiI09yBP+NgoJYEQ+ZwYQYIzw7fHI/fK1UNimxzZogxba4x4ArEqRvWsRP9BxKqQDJ9z3WolVc9XoTANGvKQ5D9FVgHp58M9U+V5Nvl6vwFosDMwGxT++PFk01RnQXKtQN2+u9aCGn2JAPTZcfULfq11VmtJ6g8PAKXrPZqrFjYXnTOFGuIQqkViCjqlI/tUMhDjAR/O5P0MCghYj1QYhIZCGObEUZvkPqfQUv6szzvrHGBFPRnC6eAeeZHrrQWYcu6m1ro5Uh7VgFYZuA933LeEQTJw1H0KWCgKcOdk0atcXNplRIHvEhrgQhXiDsfw1WRs1QFwU0UYVCTiEXzu4Vyf0Yw1MsNUxSPtlxReUoHD6fbRUZVxXdn6itk7pg0JGeSWID3FVLuiNRqUlxVT876v+37ptbKySQWO1RTyrFTw80rHlkb9yHXsYAZghewuNUmdKnOgXxKz8AL2OOC1n8+h2rwimltFmQ44ZdGHcT9wPRd8nAeOQvGUdHZLyWJ9Ly6mAp21kPM10MGJmr3g08dzR6DeRweMNanH0TArQZdxj+WIKsgPNczkzkdjT3Bfl0L62VAm5SgNR22ylczh9E5UeprjRMGswPV5Z7alHmc2sW3mQtInhpWk+t53J2JfxEgAgb558FxstaI1PmMERpEReqon13RgWk+b2wrpqKfsJ7O/g02i3TFQ0N0xuqPPjj4EEnjUGRhQDO08dJ5VXPeF4QN377jGwHSCqw9MnINn67fHSYd3LiU8YGUv3IEf15UgbtgwBuWLUurQObt3djfPd91HXhWsk101R+dZA/vLIBgwtTtwBWh3PldRn5a9vhigWECpwFmL6MMBEyachfM80BrBtHDKizLU0yf6vLO/B6eYjvk9V0aiVvZw6zfwX39eeBxL0v9Wk+7jOHAWrskAhcd9475vZllqTWDAp+PzemY27GxH+j9zdpyNe/Xv3x74UQued4HPJ6Y7rsE+fE3ZYTYhN4IUo+MQ68K9YipAfKpReCn0UaNRea8F9/PG1Qd76Km+dfbO5shFNSWqYTzOIwO52HesIeZ6H1LvDR989AuRofr+jX7Odtz9tvFvyKjwhU9EkyA+JFF02WfVYjjomEeX1yoD1N0ZqRO84MFt8XIA+CS9CkoRuuchNKfjum8AdEhba0JmDdMjVUnFqFKj+LsIhBAKUkpKrJrxZZWNvlFsFe1GlssjziX8gfxXE8JYiObbFm0GtxYIJ6fQebMiJQeDK7Imf3AhV/yt9d9E/1TwCTmmWbhr6TSk2oQDjpFGiChUR5mGI5BCzcUQ1zeRJQDF6MTF7z2aoXw/0OrfGek7ldC+HwUHQAUlpS7HlNqXGea8GSSUiXYeOccQogMVTU+/EZtnuhj3ZWm9J/2lAIfqW3wOTefWa2U6bneMa2YAG3SlYi+5EgT6xExI1/riv5PDOfF5dR4GbmhHxTSy/p5daiilYFjF87rw48cT9z1QjgO1QagP10vIQUMzMMPJtQq0hfT5dPopEdRNl2Kc59xGNiTWH40275v/XRPZHqL2zOB2Qw4EhJpJRtQMP6nyxcHCLOaE+yp+hashZDjdCqQCkcGIrNe6r1zbMrIRwEZgHJ+N9Us6wKrdKBVoRZBdCSRwOeJTdBJ9BQ+1fNPB9a5Zd3DfN3rvQpEJKwbyyO/Vfo1D3CkOATCjmtnh3uVARj0DEFTUsBWhJBiHcO8DAyMpGkWy4+uGbUPUV+BWzdDnei9l64atJIeKynmZdDQBOgLK3vic7EETKymeBWxmiiLUDSu7EVnvUCWLQnaKTZQXIYESiLthk8lUGKPv2ntgJU/eJ0ZIxStbNWbQiCZ8Fpi5kE0jYd48g1vdKc+mjRbsvtDP3IRYaxa+2VoLalOgv6Tj7cgzjOANJmsdof3KJbOcxpBBDwoj34PJwdM+6LQx3R0fj5Dfj5qQkoAC9xFrlkZI+OvnrYSQi699Luc02APAkjCmsmPUwHC+uEewzdeiqCXF2ZDZrJBzjgLd2hZNrjqSbuNap7UUlGMFb5hiQNiiyK2gmYDcHFxTVcBeNYM5RRhq43kYNVjBMiil4lEb7mB2GAVM4uVNm0ljmhO4JinldUQ4zvkKiXeqydHH6TdrglCjHosmsEdNizJD0RaArr6oaiPqACQys9noaTMpYQ4i7tWYJYrsEilPE9VWvSEssodzLWsPP4DzwjYHYLAnmg/rwNY5EgEOwL5asReieJwiMiPpq+4VmKb6i5VVK8UI/KImYEIaJnK+E4j2VyEMbUN0d9S59mucd9Fcdi2PAqDg1HkX1++dNRhuBRAQVWqhGuZ03PeFo5zMeljFeTzSx2zaB9Mdvd9Jra3qTZc9yuS7RO0RM5r0E67e4W5oLhpjLWjOIMMjwzUJzBQwm2GtwmtBs4kmVcABsVIEsP+YT9yX4dt5ZO+zWioeD0M79F5Ffe9j4JLgzBiTPe3EIBmDPuhxnLDRqSw7Fiix2+QqulkkDf4tUQr+HTUq4eAaVXDmEEIFbIuVf5/QLgZJ46UyasSMAi9bcmwKDOArVRkHhAM6CJWBCdm4Dfljh28AYGqtqmC5FBOI4QsdjZtVoXk2XAL4GTm+VuJ+IjzgL0ZQEDFLfA+EtDiQtTPcWAVmVeoda6L4uJtqSKANm2MXILSBQeLQTq965ji8drC6eyijrGyGm8PkLJlVVHHzdzQ7a4oQAScPwfvuKWjwx7czKXijTzqYctpGZ5HftILmei8eNRgG2Mn/1XuYc3vGcFqxUJNaC6aMzj26aHoFp4kuE/UOLqdI33VLdatkXQhdxA071n0ses3zJgLsMMAo3HD3jrsvnrejkPLoE1dQDmrB8IIf18D/+POTi79WFAUibgYvBU/1lTAFY3Ggp6JYrRjX9YomRRA1FvUgVoTl2zbtnXB+ICUQOtCpjKLahlBEGbnW6EyVPPgiUA0qFQ+mXe0GnsebHJoopNyoPwAPMNW+RFAYMRZRKd1DYeVmBCsEeNSXJeiBhYcf3FF1KMRaDcnI6A7N9Q5ERqdsNqsKZeV7X8pCNZqAOtTXadtXUkjZg4flBC9HLFdXOP1TDpHp84k8ktLC5m6UXi+laq8qONkCPD6Kb//uyU9uhcf1klRmfdMeqGSgEeCG5sqKs5jWVz8PBjtVNtVFfdX7gidnnVRIZiZqrcxEz61RajpCK+gNuVvGSsu5ikANxjUV/UmKkwoSNVhhB4NaBmMNydQ7n66sfQQBtSK6lO8AyXpNvoyrrY8EDQcICpNk55UBis7kS/pXmX1dJ7vZK0iZk4IVobxUwsXSeppyAn1O+CNqjda+qrXljp8T2esjAurYu+yKzvdQFOgQ4Nvkrwvt7ujKthmL5uNch2opI7CLiTHNtZmJ8iZ1yJgzEDR0OVY+VUdqypboPKkW6l2soIl5iAakzoiRdhOiWMs3ONuZQVJm1EBKedoSMzxO9cXqdwZdR2vLPpUtkBy+BHHkZIdkfdQFso4tbMaN6KeD7Z2EOMicMzMxE6I8ZbDiGagQaJwS5Zg5j/EMRTUdem2A7rHDcd2At5bUaYeapK4oD6GSNeI9IMANrvmoZ9v3wqL3reAg6JgYM21dfCa+BzZXAF60JlsBuiegwkvHvsmZg1lLula0c+hT/mKx7A8T5QR65HWWGjMXUTPJ77lVQwz1VRPgYZTuf96fmLPBFXicoiYasPb9CBW0qTYVJvo6bZnNCZuaG51Z3Cm8f8Yxjof2WKsVrWrvuIB9nQ8Hi3cAGFpV+QAMoy9hg3l3jN5xQ0IemhuKkdQ8m1hnRnGCMegLERBtYjeNBDWPj28w+U6RGco1GHY5ejuZiWJv2zr7fePf0pm+CgGBE11oj2PREuZUIVygDXKCKmk9pQBnKTgfq1nkR2Pqk1QGbo5ix4bEIdHJ1hr+/reT6j5jbJkIoFReJzSqYyPectjGDIWH8JjWQTl85BFWdEGqIVlAABDYno5kLYZy6B5FzhzbmZg0IqyDAobtICJ/Ho4XRROmw4tkQqOgWPKhgbQBWYwbTiIMqO3Ej89P3J2OdsjeDTjOWlQLILRIaAtTmk3BJU1InwM+oGJboP94wufEebZEOe4nd6c7xOOtcC8YcPx4/gDg+P7tAwpZ8Ox3UuyKFZRDNRVC+OaceF63Ai3gdDXTnBP1aOotw2LGIUrKdIf1juihMKdhzErEW44rneyBiaEmoryfURhwkIOKxdv2m2v8qPj2OBDFdrP/wLCCDsOl5p5/+/Yd//zxxI/rxu0TD2OR2nVNFu2px8eP50U6whw4j6K1fGCCQcU1Lni/8DgPFogfB0bvmLMTibeSh3dlVy0VNXJ5tmP1s7F6pPDEdV+kGR6N9BSwg/glaoCZoRwH3JUJQyx5dtzmu6svMqSx3/JgA41pz/4tEejSkHIfEMnJgy+2jdZSyJnWUnB1Kak4UOYQxeRkndp94x///Ae+ffuG8zjw8Xhk0PH8vDPb51HrVgracSIoF+4Tz4vZsz7YOygcj1D3ibqCGKHiNGX083hX5BXyutFzB3J0ahSBgjV2100xBjZArTiMCl5jOoa6I8d+2OlKuzwm56ygNkM7jgQbmGEo6ZwHbacqCIYBz+teazkO4S9BW4EBJSR1ZcecxdGRmVR4iMg27c5IrJ3HtwOKPEi/VMAbGZUJSvrGCBpgrNXgiLd24HlduHtXQN/QWsN1PVGnoXlLBxtwTHTWBGYPnhUsLdqWgh1MZVrjZzqg6eHIrEsdEkCrapo6XU0pl3MTflgpfDdjkKpbwbPycXxDqDrGswa9qpihnCfOI/ZnADU1UaMI8Lm8TFz7KjoX0O9nql9hOmYZonUeCVYQ3V7vKuSAU34crMNDFFBjZR/X+pNzqFrKyNhC+51/Adp0tEYly/tmxsmVuY8ifT0aAM91GH5EKFtNZTRC8QoKgE3O5XTHdS2FtNZOQOyIRyvonYHv/fxEPQ60o8G9qr6FaPOtxsztqKgwVBRNQZFdFaDmjsd5ZHB4Pg7AmQm7Qgq7FDw+PvTODNeT82lWUI+CKQTb1VPM3fD5eUlNq2h/CHCcLh7nVJ0Gn2uOCeqjUd0SEaxudssxUBxSDisv+8ABXNcNYPUNShpuBgYzZYET5NDv5x7ReuxXhysItgKY6HyvvWWm1g4pYKVUfEhhcjrPjud1k9o8J/uSFWbcLB3BAAAvv0lEQVSasjEtJuphyfyghPTAHHfS6YEoQJiUpB895f/j/h6PAwMDPhxAQ9Q0Z9ALvovzPAnOCOjwCCyOA2YH5m14Pm8CtspYlGr4KN8wbp73//jzTzweD7R24L/9599IS5xB9171jNmTbLL+ZoyJf/54UgWuVnx8fCB6ZQ2d1VZWYCW8UsD6xFkLyuPEx3Fw7o0093/8+IF+0zfo15UBUvqSUQeps7iY4RL9zd3XefKbx+/voxLW2ePwEXqahbxIxx5m5PQhkEDxgEGdde6doK9gi/CFO3hecTkIihoDQRlShQJUv0L4US8NC02Sg+RmKhQTv79Yfn+EIIEUs7FRSZRY9YrKNITx5hdFBL0mIVgxQdtR0GKOOk1OsQolfcopXeinj402sl93e6Z0rEuF29ShcKWkYBFvO3j5gb66Y5PaZGfzUHMbQmHu0ZeUqYnu56sQ2KyiHUYJStXlsE8f05TFoqOsp/MSPNJEzuKRXAFYAUIWyhCNJk2NH2si7uzkSx54f164+8WU9nEkOJpNHs1e0tyBjjuIvoZDtK/dVhYfO1BIh2Fgok+uuW/ngT/Ohj+Oiv/+vHCUij8+PqjOYgWtVKERJkTWmH7FqolpR8OPZ8d93bjuC3/740HlN2PDuSkBBhbTk0o4xlDGrybawwmOFPREH89EoLChaaOIqjFVp5NdhqU2Iwdf8XQ6pslpFdqKPMwW8rYONFt7QxQ215pLB1f712wFPAF606gyOEIU64OIT3CJW41mpVzfvd8ZQMX7H2OI9rLcTzcoQFeAW1RnIZtgQW2xVUBoiEzBCqrgyhRV0mr2lPnO/465ApjlKjNskQ4VYq7J2365p1CP0n6hL65rbQ53PG/SPd1f/uydy2d8fx6Ptmxq4f4qAOc8wJlB9aIoFoaoDlbYk2qmHRfaqYe7nre+ZfUGcADzvvONRI8fYCkfhdMERNM/LpLaGp6RcbSF7k/3VUMi28jMYcmMTWzuyN5SqUezX5ZKEO/BGdR2JGq7UMS1l3q/X2us4l1ZZG+jz5X2US15BoRDHs+ajXUnnfJcC/GadNbyPLEEy5jw13qM+8DKjMQhuJB+BnsUSKmpshXiSYCyR2UFbiuIW2dGOHbxnQGwkd+uRsWuBsZwtKMmNuhzwmZZZ2W+G2XjWgAiA24h21rTkcpz/75Z4KxnD6BtzIExSAtqIZndgM/PJwUN+sCuxgf4qhk9pBpZ+AaHAJaQkC4Cb0gV9cyWhSx1MBCYSdrOfxcIGeRP2RL4DlpaBupzIvdMAJGtLBo6GzqKOixkKQWE9OpnnmGsG4FvNHhN+vTVyHl9PzNuRX5DoE7BoMlj0db9WaW9ChqewfK5ioLL5ct52p/oLj99vUfWYBQ4Zp4J8e+sqNOyER06xAKmTwYUbvJ71G4hhJNyjgqssaeNu+PqXZLBfM6uTArKsjFMeDCbusQRTCUPlDyOjDPinWsN9DFxjAk3gd4+Uxk31jQbbfOsHwJNJ6gCO7X/sy+V0670EX2v1LRTNibmN3wvNwlIyQ4/1Lahj4JRimqJPemlBM46A2qsQCjKDkpSgn/v+P3F9F/+EinGQPojSHC9+FIbUoon0FYgZdVekEL9Xjg2KT2IRWEKRxcenNCJOFdXB2FPZ4pGVIFPQaIwTHurJ4mMQXxZUMWmu2hNXPRzxme12SIa0nfGY8Z9jjSGSGfEQQpIFOC65vBOrXbNjzaiKSiMDzNeXggPXM0JwXskusT5aLVlyvGoNZ33jpkFlLMotR0oigzvdd843OG1KTUahYY6JK2gtEYN/elAFa8TQB+DG6KST14MLwcbdP95PIbKCkMRmSkA07OHwlGycAPRDDPecVdW5CgFDdxIrYbxDYRcqHGuZBq41fBIgaRQg0hzp7NngE9mEcdkoPLtbPhopu70FefZSO9TmXIEJUmxKIFYzaRE+bzQ+4X78xPnf35n/Y0BQwgGwKLbEQWaY3CNeGWn42IsIIcC3jHxHD2dtZhx0gCGtqEcT+PvBs92fyfcF0XzU7HTn8KDskIlqzj0Q86w1rI542Ffbe3f2CI0pdqP3P3The7Ema7tPkZHHwyKD2npV7PMfrr46bHGAvMwLHWbCYi6x3ddqoIUOVClBdKNrL3hWe9ssKkaOz6GaKUAnvdzObwbjzqBh80J8ZyQ0PyBHFFSRmo7YGULFoEwjPk8UY+13lSYRF+f25yP+OwMoGBzajNQARSsIINbOqFEnmtbyHpev4qCqS/NpndwouhYDoBpD2UDuWI4z60nRVJKPEGTDFTAmsMf+kwtBcdJWeEMEvcMii3UdQe79nUXGckl/UuLEFTHWM8lGwrHZ2KuB9xLfnVSAgEVr4adshXkQVROZQwjmIm6szGlNvZlRJA5J/fRtgVFuxZ/P39m2+LhHc850a+O4yFFomYYF5kGZb9/z1X2so7iLJ1z4jwPBOJKH5UA1xxzqahB1E0wyKQBFT3bSNvNGjKdtSEvbM42BbCJehykVSqQDKc02gk4HKYCYpjhum4Mo+MWoinVCBbN3uHoaMcpB523VQUOtKPkGTkcGOgKBiKLQEXJ+Dtrj6ZqrSznRDFeeDLIGpIRMvBrD8W+CdsV8uFhH4qxh9hRV/DYZacZANGhZq2aVqoBdZqc0ABj156Pz4wsoXz1PGMtRc+jsGuWYh9IECBoe0z+DLE+JjyC9ML6vzhbISqea44XhZY3ZaWgIhTKmBVpZWVb+dy+7Wv6nIuGC+7bUlFFD5fXRdpvYaabDIkh0IpzwwL6nmp158n+XNBZGfvNvWuva5dEPIcAIqb8PEtgrI4477g2xhDIKCGm2emfjDHYLNmYLaMssvrRxXnoDFR0UOEshWIqtjFubK3VbJlgwNlYxzKm41M+hcc0hg/vZPjAO0wAQAAqAez/7vHbA5XQqE+VFMSBuBYRaUicuDGuTF8ejWnNMamkYYVNjVqLQnMV+6h4MlKspRRYbbK9RudIG7u1QK0WRcLdpGDAYqIuyhRKUWM8qXWoKKkq0nWlm0trwHT0e+DqPQ+IJsWj+74x1J31cS4lBB+ksAQ/Nd5nKO0QSQPcBrW3S8X9+WT8FsixGzCcEbBTL3yhEwXHceAQXSUQ5h/P5ypQtILzoOE+HmzYZVoI4byVUvDt+wed/LsrbUnU9yyGNg1lSi1GBulo1LAK8HKMiefzT5iRT9oacM8nZp+AF3x8+45vjxPWr3RmePxxVsYXp+ruS3q6OA3gx+PM9OOcQ6pJBuBGmRNtTnw7C74//oDSU7IZBqrm8Lki8IAZbFeU8ZXtmdPp/JaKWQpuNbI0KAvnwHNMUUAK/qfvJ74VwO4nvp0ssocBY1x43h3Pa9Io1ILWSqKmnOooaL3xcTYc7Q/8x7cP/PHxnY3f3PHxOBONAxjssfkkG7vdF5u9FSGOvaso7r7ZtFQp4/NsMvpLl33OgaMtNLga1PskHHF+b3DO5xi4r1sGqyG8aAbUM/98PD6IHGcmBAHw8D1X1juZQeopgImGEg7jnKx14npcqiR9DEwYajvwH9+/oUwitp+fP+io1AaUoKIA53Fmv5roUwPnw54PNV91w5+fP6hopj0SdVpMs/OFrUNyrde416RUmKlOxZKqYLbm5+o9gz7aEQXdtaRq3TUG+k1KazGqj01ETyckzeslA7MFJCFKUNSlPOo6gkokmQB99RQ9kkh7KB+t4nXZHY9Ca2RgcIiiRLsXyO3u4EBNADU3dc3dcRxrTq4r6UvHcST99Va/otGH6F/8TL/Zz6LWiqMdRM/nSCAAcfZgwr2jWJwrM23AHJQChYmWOBfivWfGbtk/OB2cWivKeYK0u4rv7bu6PytwhWEOx/W80O8LrRZ8//YtFQPnHBu9jZ2jxxj4888/8ccff7DWbYbsNrNVt6h6PBd1O3OiqgZp+sTzSVWebx8fOc9hR60YvDpKY1cvPJH0xCJRiag920EJYIEWkUWJNcczt704K7VVFI8gf260RdrZ+9qoOYrjWYugFVkMTZlNGAQOyS5DoKb3Veenz9nmsEbN3RyODrYOiA7nDqDUhiGQaVw3wbMCPD4eiP4nmIuSRlVO0qp89oz7Pj4+OMfu9CWs4KgH2uNAqwTIMD2lZY+j4TgELMY2EKAY2fzzlOM8HFe/EKdlq41ytPRntbUKHh9Hng0FDOKPWgWgCrxUs9PpybLlew5vF8BcrKF856SLlvyjbZVgT9g9tnLg9x0PnRNT797pJ8Y9vwAGJnXNGfWkHa/KZIWUMGN27PlkLzJKudc8y27c9CcqKXjXRWGU5+dFZoWpfrmWZDIS0LxhN9fjeTYUOzBudYg34OPxDQ7gvroCCs5PBzPcx3kmrdbHVE+VBpTCdz6npIyZMWqlwV2sCjiKVCn7uHA/nwy6H8fKVNSGo7HQn9x72tdL9iIobH3wO5i9K1mvlOATN7XOIGZpvIi9VJk9n51KeaGeZwJl//j+PfdT0pp94vPHEx+PBx6PB373+P01Kh4Ra1BYAEA0DwV5Y0x5xVOIRSC3WrDF8WFnGm3brh0UmQZThMcfFFsIpCcCQYO+cGMVCk72WogUHJ1RXuMjpGwRmRxbBnIA0bEzFZOUnTBj+jWCounUMA6GjW9zEIheqJ9NONBX1H8cVajoUnEqqBm19045ShpzgzuDtqMWHBZBmRwmzXecDVW0mFpWZsIUNYez7NrgRfVFdEJc71G9bZpUvKYDoydCOe+uXii6dyk7tWl4tANnZcRf4Oj3xaIzfcawsky36kqSCuQA3FLquZbCouCI8J31MwCA6CVhJnnZQMYDiZ6siVIstORILSAJuCmdCuf3ygl0oT7ZokxLxHVAF81hU3DXHZKhjr4B/B4GKbG+Le891lE44LWof84ZAShziqHbPmfRWtZ7M+qnFzj5q0XPo0Db4Wogp8ML4USzjw0dwbXfuGl5jWLhoDBwDpNHbRe9897TuQlnO8CEUmOvfYWFXffo6WBDBdURpJBiqbWtomCfpBTOCOCBlL408OWOqVo0V0ErfN31ZP5x0Yqo1GQwYLBWJ+mOiAwlg8lw+iLrE05/PkMfCYyEBv0YziJMBXHhdM2wmeLaR48Rd8dTIhEmjrMVOllxmDt4WFRBvcWUzp8Qx1oIqq26B/ii79zRmFTomSECZlHsjE0VoX0S+v6R0lqKUxuFc3uzRWAVCGOkE3ScTQXzvgWtBGBCbYxF5JNgioUNggqMifrXoveBScVJIbOkbkxY+F0vKKsL/EECV7EuWOcVNEkXQuq8hxLPrqxeOH265n3fKCp2lQ+LcPOCAmeSfwVYp5JSHAZmrX3iui/cUhl0A4VCIjsDOWzxYKrJm0Kig3pMRFzy2tjEWGLfmMOmaX/RppNzD83xCLwhKR+GJbTBtRbAIfdRqdF0N6jOcTauMzLeAWuEmOv3yf01dV36CVJR48rSOUjKMBR4WiEFug8GGL13dnpvFdULxgiJWj2USUTHDCjseeIq+K+lAIeh+qJErr0Yc2tsDAnWIx214kDFHJb7fkyqU5IxUvSHnddNnohPx3UPXJ2qT7E295rbPiJr5DqrLM/IAmSvL1lPUuW38y/+Wouh+MScBqvb73jYqqjEzdWFmPW4Rqy5XKjQ2emLVp83AizGgyGzhwEUQ/YyPsy1GcyCoDCqnk3rbU6g+2DmhZuZ152OaqpFgqMkou9oVnHdnev4DvelwETH9a3+hvszKKGvkvjFVqsHtUGi0/441EuPq7g7s2JXj6bgpLwxQGBWFOBZ9lELmkkVU3czpjM7IVvV9M6nswyCNOWioKTDuiEEbc2MwewwBYNLCIe4tuM5ZAsDmC6Nmfnwkwuf5J7xDkivLACOQrGnBTjxvIoa8vjTJOCQZvY3jn9DMf1CNHxvtGfA0MEchi2CFLOmonfPRoNHW6hcROGMFqURnUWbscgiUCkZKUY37RJO8CBt6R7Oviv6jOmwq0YdadfLiv0UDtLUgloqS4GwqMhTB4Q5I9pwhuI+9xQqu10r9Z9Op8OL41AqvEtTfi6bQeerTwxtmokVjWsK8wDlx9UzZNK5PKq6n4fBR2yWcMJ5gpuT23i0lo22zGoaXpQGH7eKjge17QGMe/DQcWCgau6YhXnUk0bXiJx3qYIFzcgdieLefUim08XX1vusxoyQampWbxPngQ2idtXWOomDktRdUiFqORCqJ1R0KS+yoO7A1Hp1OGppK5ibpHOlSedpTqfACyommvjh3UFjNVaX2Ojdk8WlkHMEZXFqSdpeLcxWna3pecI4rcODzw6+N9BwVhOSmZS4ZZSOWlGVzXFlJps8vqGHCtpEHGj2shl2h9Qz0AxJ5Rp5MXdJ4Vrus5eDDevWGP8poIKaWXUF4MeRG2DVtuhAs1A88py/2Tu8cT4nkMWOE6I3addm8KYMB6egwLQmRjiLWAdUWjkFIcuhdSnL6L33mSjx48FCf2aeOpWDtkOSAab40ViKPA7H1UdKtzYF5qWYKCW0GVFASgrCwJBTk+pkWnNZ4ifUDVZwSYkvilSDFlCLnBwjiETaxkAAOOHaR5PSlX2Ml2qyc0H3it/j2WCNwho7pUufotKYWYI00TMk6KGuPUXEP+wdRVpMtRoj+oOk5VzZRx5O0LPQGwnlQc+ThOtx5u9QHSn4MwFcFH13FIVPkEO/JKAJZq3O3pxcAx2QCNIi0zYGu5X3dApWrysLHnjuO0kxI86I4KPLhqHgaKsuL+Wy58pgmxuKhDaO49hknhfYs494ptyLRvBkmGpAt0AlI6d495Y4EJaLB87fIOhgEWzGuzNanvAZJpz0WVs0zB7y1Mo2VQWCZiq4v7sCK6pNxRONsDtb4B42PkRdonmsO2BtnQGHMXPeakHvls7aPS7d88oAwYBxd5BbLrGFMdjbIvZLRs6xWk11h9xny+6HLxHrnvslEG7haBLbqTDj2V/yfcVa0J6bG0XUFCXqGYsousj3JbuyqWECK2u7PNSgZsWejmDFQGHG+B7VhMVzuSdoFN9YZaeSrw6dt1okSzGSe7UiwL+CZydIO68p4QmTCifnO/xCICiiUcejmkS9uybgePqkpLUDx1GZYQfvZfSZtM2zRi0T18AEM8gk7RCkrMbP39rzw51KrTqnSU2vmNPYGgENsELhkaiTMTV9LobH2TCtYkzD531hvYkQXaBvWZyMFFNdmJmj6b6KCSCF6ssnM/dcR5FdXna+eJHgxMhMOvvN/f5I5fcHKnkurJsN2sEQd/SS520w9JsLbEohTG3a85APJChVZwayUHXnV/f7TgMYvwcYnleXQS5M/02pKui+qLhCRJJStQ3XdePPHz9gomMwlT3zRdGo6vebCndrFV+VFI/HIepU77iup2x2ZTYG3KJ1CGFxh82BWgq+PR5Z1HuNSaQ9N2hgASpKKwUfjwNwYjHVmap7DuAeM2Von538/VoK7GSKtIC1IoGa8j0hDTpAZ7Ffl55bRkpFW0T7G4qJE8w2tXKsSh7o4uCxjkEN5gJhCY62/Aaw2y4Pnc/7xlFdgabhKAVHq/j28RAyT2cpGoZdo2Mqg3XdT2aNasH3x0NOggNOuUHaxPUO88+2fM0Mj8cjpT4nVgdhGjwDSqU6xhwsRLWSa8FRkloY6APivZtlIW18Y4VR7vjuuHBpHdFAh1xnAM9zOj6lPmKQBKECWgd11s92qshe9UZOmdHjeCB6i2RxngFzVpy1oVrB42SaGkDK3rKzfUTMX6INCJUtm/St60A/WgaAvW+CEI5E0ACho76h6wDO88z7vKXucxznRpOks2MGnCebxHLXq0mjGUpZwZZPOtarazYRqynlMNoMUp3mHBiyQ7U1uE9q0OvQpWa8aKRCZYtUgABg+IXhlOheh6+DTRZpHseYOFpjdus8qLbSOz6fnwxWTfVKc6LDMHpnczP1OSidwEuX+s4wYBaqvrjWRRPKHVS1CDA8HRvP+2JgKfuJUPaZ2dwzHIlW2fSM1NEJzEBWA/QYsKymW/tphbaesUxtVXQjOhfhlNGfD+dH2TaL+pMDIabicwKVZ0LUFhmWDYs9vihYFZG9Su64AfPm2XR3dWF2CCUMwZFKdZvnE1fveEiF6+PxAKD6DNwSMFnBUcb2tiiCPNOUPW9H3vt9XfDpOM6PlAM+6iZL754KcwQHJHoBQ1MAc7a6zsJC6rGZZT+g3K/K3vE2lcUeHSMYjXqGOMbHnFRYulc37GGsBWrHieZV0bzWFujQUJg6sqWGDGLk9FISe7JD+GQhfXY/94FqVLOiiMvUHLB2CcVQxsTZDrTaUo4bzj3QtfemziQTSDdFu+pzoeq35sfMiKDvQGSeEeL5AxTo8AmfBJEiiLEnM2BjDPL4dWZMd4y747rZE63DMc3xvNnY76hNhdfM1n37+9+pOHZ3/PjxJxWcKn2RWih7Two9F/zwYNAzm8jmmFI1846nUxmstUplM6zANQJSA5bdB+BjKoArwXpD0KAjWJ1y6KMgP/yxkftNQNd2vtLGc2VwbXmYDl4zAhsXs8P4OxE8GCDFRGaOe/QN8qhhlQhObYAz8L9FEyg1qM6GrtYZcww8764zrKLVpgwVA9jjHjBIiAg8Px6PA9/bYrmEyuyYA9YaadLJLJl43ndmO4+yVNZaaeg3/YTr+hPfPj5wHge+fbSkrY5gDrgag4oNVC/VbVXD558/EKI2tZQUkog6PoPRVgjsHKOn8lqRAzacFO6u7Pp5NIFwBA2tlKw7rKGwel+Anv1zzqSU/+7x2wOV6CYOvBpnk9PQjgovlooG7DrPA7RZDZYJknb1JThzLWCfgDXlUEQdi0MJQg74+8tRCYe5liKJNYh3t645DYnskDLFF17lHNfawOIs6FCl8Z3SKY8DzoEspoueHGG0zGlYrs87EbJvjYV6pQCffeDW5uFt01jEoRHcYSumBj4VmJNdUgfT0z/ujvM4M5gq5qIRmbihRNO6mg4eR0NRYZRjpV9ZVC/QB2PVwwhtcU9wAzBT00bZnUDJhFK68yyrpeBodBaD4kSnlX1FrFYUSeAVA749Dt53oHVqJHXfz5SQnJ4xUQax0OYOxKZYdMv1PHC0hbf19brgyIuNpmg0cBRoEApeDSaO9BgDzQymQnlSdcIp45pvZtshqHVqDF6GhXNKdK2oQVMLJ9pc3F2nQyHUvQX1JpRxMlhyFTvfACqi+3S/n7xGFN7bNgNxWMd/AgAipb6Hcomrgh7f1isJkQELhHDhO+4TvW9Inu53gXG5mPJQinsCVNMBKCh1zEl6XjXgbEumNBD1nGMwcJqBLgZ1ywEqwVQ08ZZvV9d5JCAMs6IeK3GgxyHyuv5NtAsrRtlLbCgUgHJQoY1CHPHzGbuO9kBOFW3LFmQYEhGPgk5tzAQz5vZ+4iVF34pEqEXZIOBTFhgSz2fIAteFoBXJXYcDy/o1PvZC2dL2b3MfUsDItWaZOaWjlC5MZlhqZWaL8xbnCf+MsZTEwsmqohXGfE8v+fNAu6lOJscZmpMtu1UEILCHDe3RcdSXZ0oZXF33kqhF0CrDMYsmxaE6tL6jUOq+hF0U2NKHKG0UmNl7hMndY0bWIqhfeyHk8yaQNFDea1nAgO4rnMYUiME6rwi68JfPoynDF4DCXF3ktU5SaCDW4facy5HdqzEjMI6PW777IjYCFGgE176qgB5zog8k26GowWIIVpjHlQzM0GCr6Yl3TJQ4Ar8JIyUy7i6Csi5FMnc5tlJF2rJrE7TjQSMvei+lFDQ0UjCr5/k4y6qLHXGnpTDTUhiwnYeEhaYTQHJS5I+j5TO48z2FSEnMUawRdznjZrmGop/PPWRjbIFey1fi+mibk7mK333tN1vvjz5Omp7897llacKq8egQDS/2AdYmNrEM6BMMAcJ5EVEOpWY2HRCoMcaQlDJ9GDeyHQLjiAwwEzL2QhWbGDCjvX3YgchVjtExJrNwLWolUVAbgTwYV8Sq3bA8x5pc1ikqXuyd0TtcYFyWHTjrQ+C++p0AuMdAc6mxWhG1kXvMDGgH12RrRhXRqma6IHDWWhFwK1EeY1ABW+dZ+MJZ/G50oFotVPacnjVIZtFHKH5V52wBPh5UhO0jgHWkT/k7x7+hmD4czNdgJV8koMhOkoIq+GI3Veo5RDQOLIO2jJ2c/qiAkjNbqw6GYqmYYmE/Yz/ocGAEySi5eBi3uHca7VIrrj4ANRkChE42cvums1iKN8msQjiTYxJljE3Lgk05y6HBPh3Pmwhzq4Y/TtKiDOzrcqnPCet9AEfNg7DVmod2UIgmHPcc6LPgGhPPZwdQUro3PndEFoMvJ9He42jp4PdxJxI4JlILf0zH0UoGSjBLhyveTZP2efAkTbVD7qRl0RQUGtNimP1OasTwCVOtUq2eCMTHeUDiGllkN6fjzx/PNIoZxRtemutRnnShLORlWgaInIboIrxQtHixpgNlUYZI62mBzAsRdBjm6JhSoHGtTSsrFVpAg5yN3nw10axRN1Qo42yVQUVIaJLHSwf6HruDPNWwkvfGIIXGqounP4YQRWNBvPszszS1tZc9Cjnia/8iDzqzoFjF3rQ0uPnPBnJ0i7JOko2I+Z0KkNj9lkF0Oi/m+2WQ4nkZzOh3bdUXuVSNrJikSrnHbwX5ZZO4jUBpTk9lHUVLLIguRbx4FyIc3Hw67jXrMQDoEB8KxvXgGXgajHUAW9wbmWCI4lY4iVpzqtvT+i0KTg2kMbm7hAiCfroUr1Jp1kpyuC2uPScmo4UMHuLFMqgv6UizqbLWqq+Pxj7IRBQvjVtCG/yDxeuPfZMO8nICYx0N1bcxQ3O8rJE4K6LuMJxYBiGkz+W5UNSdO6/tuc749do3Cu7YpBcqsC8Z5EWwXJ00neFSa9KeWF+3sqE+WfAfqzboKw5IijfoP0GPea1OZrNhgln9vrnKxGmHQIg55VxMBRRTWXYFdRORvGbg1bV3g265Byq5DvW8u43MLujxzEBKFUNqQ0NO19FMtqTk+90BxdirK2MXa+b1v22bm5CXjTOJTnhNQM4jUAeSGlld36VnD++U5y4ya5XtAoClQrh2yTYEQHbaRoOjHicsHc7lOVPWFdzLo+s+S1LAxUBn7cxwdC/MeihllQCee66to1XVwXbc9yUXx3AoexDB6VAWFdv+papZAWwSuDRR/ErI9lfcg8AobOKocT5FAMRAmPQdS1vL9/XaAwl63WH7uRd8u8dYQp7ri5/R301AsDKxSwJfZ82UfdhEdrheFATp3AOQjZcBUD1uKjDS+on1mDUoClRob7t8sqWgFU0QKTKkGrighNdDpGbDBJkfw8mGIFhSWWckMPGl1i7AC4iKpQj2vm8U9Tw6zhN37yqZcLR2ZIYQPlTzZdnfqBVR0GqBqw9g9NLDtFwXTUIDc6P6L6r7yhLClOHunPdkfZihTL1PIw0+FDXr0VAr6YX+vNnjbP7fIFABkOjObpRCTYiKQjyECgrOjyNl4cwNbg0NDZ/PZ/Y+YMqzAjhUHBtUEhmdOXGcRx4o933zZY+Jb49vRE8LQH4oi0dra2il4CwFo9+YqpnxzmLXVtk/hLS0aLJIQ/rPf/6TzsOc+P7tA61RiWFCRkSLMIq3g1YSqjnuDCqqPQDQEH0/WJx53xdm72weFbK/IK2ltabAoyQ9ohXyzB2G+v0/UK+OcziKHeQ2jg63ir//7Q88WgPmZEAzOj4/6bCuJk9Epw1K+ZYihauLhsMKaS424ZOp1VIK6szScgDITftdB/Hu85Ca1TEvIpH36Hlw1nZQIcMMhztOU2AFoN+k41Ddgo7An5+faMcDx3mgHSfG7IjOqsHdrPS+mNZU46cVkEnVqG+FiFhN/oKmBiz00AFc94Ufg02Z2vEgpREDD73jUgr++eMH50LPhVDCm6yfsaPhunoiyEdrRM5qyAfS+TtbOOgds3N93dPxvG/UUqldbwUopO20xiLlz/tKKkYLqknvmE7qwXQFqbY5j3NlEfZDKZq6BZof6zrQWzjvP2uNBN2EQwqEUwYArLU4znXNPCjnRDsba2aMVEozoJ0HqlDnH88nnjeRom/nifPbgwFs7ziDRjNnKvAFVS+CwnD2xjVQjxO1NjweH5iDDc4A4HEemN6UidD9AynK4WCPj1qBY041jFXxsQCYOUYa/9YqgvtN9EzInpzloiDg41EBr7g7qXoAUgMfcJytLbtqKw/BpncRhlgqvLjLoXHHURvrjpzre44J72BWOoAlX9S7Eal+Of8RsLkWiJUC3CFnbRm0WynZLTqV7ATjFdTU5a+qX5vTUaxm1mNRtMKY5LYUxzscGh6yoYh2bzVBzPaM/GUCGYU9OCARhTFXtsQJsMBUlySVnOM8gFJD2RiuQOI8G1wU3gk5xarr+PZQIKT9XmvFx+Mh0CzoSwzm+nSM50XkHgWXzqzhQnUHbdbf//Y3AjHzoCqhCbGVA1jyvRSgVDyOg06d6KGxx9oOSmzUPzNkA9L5+ckzT/uEMrISCpnq07QBXZgu53e9q8VRL9pzK2hh8EEK7t2pWmYFiJaS0P0xWzhFWSNt+mwN3gKsctmyhjlvUayvzHidjw8pUb7WPbDPTEmKdrWCAt7jfd/o/WZN4HmitSYp/ouNN0Ub5qNVwBkcjHFjXh1zTJyPB5U3W2WGGzyruwLaVF4bQ3UrM2lk1VinYBP0AxQQnYeaVFoBWqMADeI0WhTSAAn66Gp2PNCOwvVsht4d0yQygUUj4ztTI1xFGYKO8nwM5xiIQJLnekr1+6qzHWNkfWQpkSlw1TyoMaXFvnFYGamgWa1IWr6gl/DveF/VmAXo2XwWeLSG4zgFDqwg1EA6fSzL6L00vIsONVELJLZD23Z1irCw/vVbBkYEaBglm4AxN8OteONhAqGCJXTdoqPfUiUs+P6ffyMd0BnAVDFrSjH1VDE870u0TcfRPtirZKwMRXPgKBXdmc0ppaKPyBIyU3NPylNbZWa2whMMYT87ZX5HEzhnqA+u12JUG5tz0N8aC4wtRwluucA22oI+OkIApTbDoza0+fvDit9+xXCU6BisaD0LAkHnMQ7BMSa6Fn2owiS6K1h/ejSWUqOf7UBbxpYR+tUHfvy4RAVpNKJCUUMGmPxDli4NYKGzcCLuCJTQYF4z1R/UkUMBgzm1tINLvorZAgGQSlU8U2BhBhzVUD6W3nzSsWHZeLEUNvRJ5NFI2ypCDHhI0fD16fiv6xZyShWIcUk6MoIwxAHH+zjPIzMS1702dTMInbI8mGrlQTZ8JPceoIZ7Lex2zWLquZz6ObM3SCmrH0AaRUgBJwLMfksFjNSjKOaNwuExQsHFZLgjA4fkME8hC9ZYfBZIt8Tn+f/FwZxzoyBtI87ZKQTMp+czhNPLjAlwD9ecDPzx7cFDdpJbbIX0AIIRnvUejvBbV8bm7izcnqAxYvdcIPLfvGc1Z9K8VhlH2KJn3ONikAEomUF1NLhoFhbBiAEq+tupIRGgMPuoeZhRYLnPURwHgZKSX10N2lPr4OKksyBP+GcafmYIoumWvhuWGQAD8vqBvoZ0cqtBfQRwHBvCuztGQBTtRoPSsCtFlJn7eZFKUkLggH2MIsR2rRsig7zPkMIcsm9mEL2K9gbqP1GqZEw93EnLeSyoiUSP3vOgC1IQUnZ4zWc0VZyCLs1V5B2uy/CUwg4btI9E9t2ZwZpYhfnuGWiH3Y7dkU3Lor7QWWQatRPhdMw5pXgXEMuqDxkuxxlIyqc7ROmIncHr9L7W6QzgRHPBM4Zrp9+3pHSrwkgisa3VAC1FQWUQNxUc+WSgUIFUPQxVPgYfpBWG4xs0n7DXEShCe8qD2itbblYlriBkW758KQXX88naojlxGM/DWiumDdmxDoMnTWPoLQwU/LiGruOZoVn0Kq7d53WjgMpUEVzGHjZAgazHgsC+RIqyTFGcbJOZFY9AP22Y1qPFNQ3RZC9rEkwIea7FlYUJkCRVD+eSaY5Gf+6ki/PJZqrllUoGgbuLegcFH6vPz54wjX4V7kCpx6KyzZuOv1BzAjJtk90Niu+is4Wi6S0VpTInmhVYaTCIoiMQsxadTZGkZ9QI+EQzQzsOOGoiQ2ymaZLGPUktjV91kqiisIqO97o/yN6NuOdaNWvIwBM6s+hfRRYea30aBR6WFHVQyizfp6YXmecIAGN757sdjsfm2VNV3zsDE+LaHFP9eozAgDJrxLssf58gA61RpHjCVpEaNTN7wwyx5gqR2fbll6LiOEpmUm8WrMBAASEyPCh6UKI+d0403fgssYM4l6GS1SqDP6s8B1uLOkH6U5jquScfrNSqhqAE8mk/ov6OT35GGwCn+hkDkoHuA4eAIWaSuC8+x0BxpBhSE8PkUpG9IxgTtNvRGNSkBnoeDAizhCFsn+s9KONDV6ykrQj7UdpaW79r/PZA5WgtI/qgTgQViAZWKLeiyFuFUGPGz0sixcgAAIzkilKwUhkI1JQTRsrY87rx48eFx9HwjVq4zHS4y6Hb+OezaNkF2QPpREV9BFQD0nsnP9bYDTdQyNZW87G4zyRZ6OcWd+kTIa14FMPj2Dsvh8PHQMWNEXEcMuaOFkYTjuwDou3Sx8Q/Pi9KFNeKb63gU0IF4TLE4UJpPj7HcP7u83kLuYqDmbZgRCfZVnCeFT/uIdoGUPqAVQjVJ0Qy+hBKy41d1FSSDv7I1G06QFoHE5IkHkvpKfjynN+QwVwIsJWqFLwQtuEpxUwmYMn3EM4mD1JQPWPOdEbXiFoaR9SjBCLHDFLlYW3E2EnFEnrVatItxujANBR1eGaWIDJPlsFiPMsdaAuAU4FqhS+DLqGACKJapMt1KEwZ1T5GShrDuZ9aa0RdVRg39L0RIGcwkL5LHEq7wYyfxf3oP+TMbq6yDhUVGIt3b5VGzIMaqUMzKS1wZZPi+luOK9Bf2YcAEaIbM9V8KoCti/uceQ3T/8mO2bwoiA6yiPk4QoffUk7afJKTKmd6ggd6ZOtifUbNxzSmzANBDkWspAol8ijKRFkB4uyT9U7hQ+pgTdshOxB9g0bZC+RXsMmMJ583lcm0/jMI1GfNQ1loo0/YorAExVL+Lwyy4+ZCIxuRuuF6z7rXpv5i23nFjANSeY3S7lxzO0ofgX4cfOGCV290GCrPBzfey9VvNFhKKIczSCEJBinMjJr8hBAzoNJZyOBOHdpT9nvMgXt0VCsYClRi/UVJQJACwxWDivSDKuKSlZryVM24Zvtg/627D7SPB69ZVXau/jC5xrwkmDYA3PeAueNDlI+k+CComYbrecHgqN/O8CoR1J6gp0VfrgA1Yv6XRDvthQejNhxGWysyHKtdACOj8C36CfAD+zrdMulc21iApmAaB9JJ1Abi9UTfGy5lQLEdavHcMyVrKQQiKJiuxwEftyS5IxBVJrCG0AIQts+S2ijSsuxuvznHZsYGkbIHpISPzHJwLcUZMxFqV1VF2wAoZoIQ6eFZ+2gni/3H0NxAReYu2x20Jtpxl080nTWL0WX9OXR+Tk/a9/4HCvgCKBpzwgtElaZqWNTGxHzGetj/N+6Lsc3GsNC54uHnxN42oJaQPWeAWgwoh0Gyf/K9uMWmqOMvR/V+H/Bkb8SiW3Rl0pRSclc29FCGcY6J57gwh+tcqbjU2PEarpYDBozBubH1HXHAjBk+AulWFLiQwmYtkpQ2zGg+Kdt9HAccIzOkRUBR2CgYcMgPHO4o0+F+K9s60VVbyaCnwEvBNQeKO5obTGIt1ciMibEHt/QZjG0/aoWVhjrJ7gnKbO8MYKsxUPGirFspkpCP7PliYPzOYb7zs97jPd7jPd7jPd7jPd7jPd7jPf4C4/eHPu/xHu/xHu/xHu/xHu/xHu/xHv8XxztQeY/3eI/3eI/3eI/3eI/3eI+/3HgHKu/xHu/xHu/xHu/xHu/xHu/xlxvvQOU93uM93uM93uM93uM93uM9/nLjHai8x3u8x3u8x3u8x3u8x3u8x19uvAOV93iP93iP93iP93iP93iP9/jLjXeg8h7v8R7v8R7v8R7v8R7v8R5/ufEOVN7jPd7jPd7jPd7jPd7jPd7jLzfegcp7vMd7vMd7vMd7vMd7vMd7/OXGO1B5j/d4j/d4j/d4j/d4j/d4j7/ceAcq7/Ee7/Ee7/Ee7/Ee7/Ee7/GXG+9A5T3e4z3e4z3e4z3e4z3e4z3+cuMdqLzHe7zHe7zHe7zHe7zHe7zHX268A5X3eI/3eI/3eI/3eI/3eI/3+MuNd6DyHu/xHu/xHu/xHu/xHu/xHn+58Q5U3uM93uM93uM93uM93uM93uMvN96Bynu8x3u8x3u8x3u8x3u8x3v85cY7UHmP93iP93iP93iP93iP93iPv9x4Byrv8R7v8R7v8R7v8R7v8R7v8Zcb/z8OXqbm4muoFAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "#@title Draw a Mask, Press Finish, Wait for Inpainting\n", + "\n", + "if fname is None:\n", + " from google.colab import files\n", + " files = files.upload()\n", + " fname = list(files.keys())[0]\n", + "else:\n", + " fname = wget.download(fname)\n", + "\n", + "shutil.rmtree('./data_for_prediction', ignore_errors=True)\n", + "!mkdir data_for_prediction\n", + "\n", + "copyfile(fname, f'./data_for_prediction/{fname}')\n", + "os.remove(fname)\n", + "fname = f'./data_for_prediction/{fname}'\n", + "\n", + "image64 = base64.b64encode(open(fname, 'rb').read())\n", + "image64 = image64.decode('utf-8')\n", + "\n", + "print(f'Will use {fname} for inpainting')\n", + "img = np.array(plt.imread(f'{fname}')[:,:,:3])\n", + "\n", + "draw(image64, filename=f\"./{fname.split('.')[1]}_mask.png\", w=img.shape[1], h=img.shape[0], line_width=0.04*img.shape[1])\n", + "#@title Show a masked image and save a mask\n", + "import matplotlib.pyplot as plt\n", + "plt.rcParams[\"figure.figsize\"] = (15,5)\n", + "plt.rcParams['figure.dpi'] = 200\n", + "plt.subplot(131)\n", + "with_mask = np.array(plt.imread(f\"./{fname.split('.')[1]}_mask.png\")[:,:,:3])\n", + "mask = (with_mask[:,:,0]==1)*(with_mask[:,:,1]==0)*(with_mask[:,:,2]==0)\n", + "plt.imshow(mask, cmap='gray')\n", + "plt.axis('off')\n", + "plt.title('mask')\n", + "plt.imsave(f\"./{fname.split('.')[1]}_mask.png\",mask, cmap='gray')\n", + "\n", + "plt.subplot(132)\n", + "img = np.array(plt.imread(f'{fname}')[:,:,:3])\n", + "plt.imshow(img)\n", + "plt.axis('off')\n", + "plt.title('img')\n", + "\n", + "plt.subplot(133)\n", + "img = np.array((1-mask.reshape(mask.shape[0], mask.shape[1], -1))*plt.imread(fname)[:,:,:3])\n", + "_=plt.imshow(img)\n", + "_=plt.axis('off')\n", + "_=plt.title('img * mask')\n", + "plt.show()\n", + "\n", + "print('Run inpainting')\n", + "if '.jpeg' in fname:\n", + " !PYTHONPATH=. TORCH_HOME=$(pwd) python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/data_for_prediction outdir=/content/output dataset.img_suffix=.jpeg > /dev/null\n", + "elif '.jpg' in fname:\n", + " !PYTHONPATH=. TORCH_HOME=$(pwd) python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/data_for_prediction outdir=/content/output dataset.img_suffix=.jpg > /dev/null\n", + "elif '.png' in fname:\n", + " !PYTHONPATH=. TORCH_HOME=$(pwd) python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/data_for_prediction outdir=/content/output dataset.img_suffix=.png > /dev/null\n", + "else:\n", + " print(f'Error: unknown suffix .{fname.split(\".\")[-1]} use [.png, .jpeg, .jpg]')\n", + "\n", + "plt.rcParams['figure.dpi'] = 200\n", + "plt.imshow(plt.imread(f\"/content/output/{fname.split('.')[1].split('/')[2]}_mask.png\"))\n", + "_=plt.axis('off')\n", + "_=plt.title('inpainting result')\n", + "plt.show()\n", + "fname = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ug9vfkBHqxzZ" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/lama/README.md b/lama/README.md new file mode 100644 index 0000000000000000000000000000000000000000..641d33e55dd04240f1e25c50c97614d32aa8f6e6 --- /dev/null +++ b/lama/README.md @@ -0,0 +1,464 @@ +# 🦙 LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions + +by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, +Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky. + +

+ 🔥🔥🔥 +
+ +LaMa generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures. +

+ +[[Project page](https://advimman.github.io/lama-project/)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)] [[Casual GAN Papers Summary](https://www.casualganpapers.com/large-masks-fourier-convolutions-inpainting/LaMa-explained.html)] + +

+ + + +
+ Try out in Google Colab +

+ +

+ +

+ + +

+ +

+ +# LaMa development +(Feel free to share your paper by creating an issue) +- https://github.com/geekyutao/Inpaint-Anything --- Inpaint Anything: Segment Anything Meets Image Inpainting +

+ +

+ +- [Feature Refinement to Improve High Resolution Image Inpainting](https://arxiv.org/abs/2206.13644) / [video](https://www.youtube.com/watch?v=gEukhOheWgE) / code https://github.com/advimman/lama/pull/112 / by Geomagical Labs ([geomagical.com](geomagical.com)) +

+ +

+ +# Non-official 3rd party apps: +(Feel free to share your app/implementation/demo by creating an issue) + +- https://github.com/enesmsahin/simple-lama-inpainting - a simple pip package for LaMa inpainting. +- https://github.com/mallman/CoreMLaMa - Apple's Core ML model format +- [https://cleanup.pictures](https://cleanup.pictures/) - a simple interactive object removal tool by [@cyrildiagne](https://twitter.com/cyrildiagne) + - [lama-cleaner](https://github.com/Sanster/lama-cleaner) by [@Sanster](https://github.com/Sanster/lama-cleaner) is a self-host version of [https://cleanup.pictures](https://cleanup.pictures/) +- Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/lama) by [@AK391](https://github.com/AK391) +- Telegram bot [@MagicEraserBot](https://t.me/MagicEraserBot) by [@Moldoteck](https://github.com/Moldoteck), [code](https://github.com/Moldoteck/MagicEraser) +- [Auto-LaMa](https://github.com/andy971022/auto-lama) = DE:TR object detection + LaMa inpainting by [@andy971022](https://github.com/andy971022) +- [LAMA-Magic-Eraser-Local](https://github.com/zhaoyun0071/LAMA-Magic-Eraser-Local) = a standalone inpainting application built with PyQt5 by [@zhaoyun0071](https://github.com/zhaoyun0071) +- [Hama](https://www.hama.app/) - object removal with a smart brush which simplifies mask drawing. +- [ModelScope](https://www.modelscope.cn/models/damo/cv_fft_inpainting_lama/summary) = the largest Model Community in Chinese by [@chenbinghui1](https://github.com/chenbinghui1). +- [LaMa with MaskDINO](https://github.com/qwopqwop200/lama-with-maskdino) = MaskDINO object detection + LaMa inpainting with refinement by [@qwopqwop200](https://github.com/qwopqwop200). +- [CoreMLaMa](https://github.com/mallman/CoreMLaMa) - a script to convert Lama Cleaner's port of LaMa to Apple's Core ML model format. + +# Environment setup + +Clone the repo: +`git clone https://github.com/advimman/lama.git` + +There are three options of an environment: + +1. Python virtualenv: + + ``` + virtualenv inpenv --python=/usr/bin/python3 + source inpenv/bin/activate + pip install torch==1.8.0 torchvision==0.9.0 + + cd lama + pip install -r requirements.txt + ``` + +2. Conda + + ``` + % Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html + wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh + bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda + $HOME/miniconda/bin/conda init bash + + cd lama + conda env create -f conda_env.yml + conda activate lama + conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y + pip install pytorch-lightning==1.2.9 + ``` + +3. Docker: No actions are needed 🎉. + +# Inference + +Run +``` +cd lama +export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) +``` + +**1. Download pre-trained models** + +The best model (Places2, Places Challenge): + +``` +curl -LJO https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip +unzip big-lama.zip +``` + +All models (Places & CelebA-HQ): + +``` +download [https://drive.google.com/drive/folders/1B2x7eQDgecTL0oh3LSIBDGj0fTxs6Ips?usp=drive_link] +unzip lama-models.zip +``` + +**2. Prepare images and masks** + +Download test images: + +``` +unzip LaMa_test_images.zip +``` +
+ OR prepare your data: +1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder. + +- You can use the [script](https://github.com/advimman/lama/blob/main/bin/gen_mask_dataset.py) for random masks generation. +- Check the format of the files: + ``` + image1_mask001.png + image1.png + image2_mask001.png + image2.png + ``` + +2) Specify `image_suffix`, e.g. `.png` or `.jpg` or `_input.jpg` in `configs/prediction/default.yaml`. + +
+ + +**3. Predict** + +On the host machine: + + python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output + +**OR** in the docker + +The following command will pull the docker image from Docker Hub and execute the prediction script +``` +bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu +``` +Docker cuda: +``` +bash docker/2_predict_with_gpu.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output +``` + +**4. Predict with Refinement** + +On the host machine: + + python3 bin/predict.py refine=True model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output + +# Train and Eval + +Make sure you run: + +``` +cd lama +export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) +``` + +Then download models for _perceptual loss_: + + mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/ + wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth + + +## Places + +⚠️ NB: FID/SSIM/LPIPS metric values for Places that we see in LaMa paper are computed on 30000 images that we produce in evaluation section below. +For more details on evaluation data check [[Section 3. Dataset splits in Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf#subsection.3.1)] ⚠️ + +On the host machine: + + # Download data from http://places2.csail.mit.edu/download.html + # Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section + wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar + wget http://data.csail.mit.edu/places/places365/val_large.tar + wget http://data.csail.mit.edu/places/places365/test_large.tar + + # Unpack train/test/val data and create .yaml config for it + bash fetch_data/places_standard_train_prepare.sh + bash fetch_data/places_standard_test_val_prepare.sh + + # Sample images for test and viz at the end of epoch + bash fetch_data/places_standard_test_val_sample.sh + bash fetch_data/places_standard_test_val_gen_masks.sh + + # Run training + python3 bin/train.py -cn lama-fourier location=places_standard + + # To evaluate trained model and report metrics as in our paper + # we need to sample previously unseen 30k images and generate masks for them + bash fetch_data/places_standard_evaluation_prepare_data.sh + + # Infer model on thick/thin/medium masks in 256 and 512 and run evaluation + # like this: + python3 bin/predict.py \ + model.path=$(pwd)/experiments/__lama-fourier_/ \ + indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \ + outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt + + python3 bin/evaluate_predicts.py \ + $(pwd)/configs/eval2_gpu.yaml \ + $(pwd)/places_standard_dataset/evaluation/random_thick_512/ \ + $(pwd)/inference/random_thick_512 \ + $(pwd)/inference/random_thick_512_metrics.csv + + + +Docker: TODO + +## CelebA +On the host machine: + + # Make shure you are in lama folder + cd lama + export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) + + # Download CelebA-HQ dataset + # Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P + + # unzip & split into train/test/visualization & create config for it + bash fetch_data/celebahq_dataset_prepare.sh + + # generate masks for test and visual_test at the end of epoch + bash fetch_data/celebahq_gen_masks.sh + + # Run training + python3 bin/train.py -cn lama-fourier-celeba data.batch_size=10 + + # Infer model on thick/thin/medium masks in 256 and run evaluation + # like this: + python3 bin/predict.py \ + model.path=$(pwd)/experiments/__lama-fourier-celeba_/ \ + indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \ + outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt + + +Docker: TODO + +## Places Challenge + +On the host machine: + + # This script downloads multiple .tar files in parallel and unpacks them + # Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama) + bash places_challenge_train_download.sh + + TODO: prepare + TODO: train + TODO: eval + +Docker: TODO + +## Create your data + +Please check bash scripts for data preparation and mask generation from CelebaHQ section, +if you stuck at one of the following steps. + + +On the host machine: + + # Make shure you are in lama folder + cd lama + export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd) + + # You need to prepare following image folders: + $ ls my_dataset + train + val_source # 2000 or more images + visual_test_source # 100 or more images + eval_source # 2000 or more images + + # LaMa generates random masks for the train data on the flight, + # but needs fixed masks for test and visual_test for consistency of evaluation. + + # Suppose, we want to evaluate and pick best models + # on 512x512 val dataset with thick/thin/medium masks + # And your images have .jpg extention: + + python3 bin/gen_mask_dataset.py \ + $(pwd)/configs/data_gen/random__512.yaml \ # thick, thin, medium + my_dataset/val_source/ \ + my_dataset/val/random__512.yaml \# thick, thin, medium + --ext jpg + + # So the mask generator will: + # 1. resize and crop val images and save them as .png + # 2. generate masks + + ls my_dataset/val/random_medium_512/ + image1_crop000_mask000.png + image1_crop000.png + image2_crop000_mask000.png + image2_crop000.png + ... + + # Generate thick, thin, medium masks for visual_test folder: + + python3 bin/gen_mask_dataset.py \ + $(pwd)/configs/data_gen/random__512.yaml \ #thick, thin, medium + my_dataset/visual_test_source/ \ + my_dataset/visual_test/random__512/ \ #thick, thin, medium + --ext jpg + + + ls my_dataset/visual_test/random_thick_512/ + image1_crop000_mask000.png + image1_crop000.png + image2_crop000_mask000.png + image2_crop000.png + ... + + # Same process for eval_source image folder: + + python3 bin/gen_mask_dataset.py \ + $(pwd)/configs/data_gen/random__512.yaml \ #thick, thin, medium + my_dataset/eval_source/ \ + my_dataset/eval/random__512/ \ #thick, thin, medium + --ext jpg + + + + # Generate location config file which locate these folders: + + touch my_dataset.yaml + echo "data_root_dir: $(pwd)/my_dataset/" >> my_dataset.yaml + echo "out_root_dir: $(pwd)/experiments/" >> my_dataset.yaml + echo "tb_dir: $(pwd)/tb_logs/" >> my_dataset.yaml + mv my_dataset.yaml ${PWD}/configs/training/location/ + + + # Check data config for consistency with my_dataset folder structure: + $ cat ${PWD}/configs/training/data/abl-04-256-mh-dist + ... + train: + indir: ${location.data_root_dir}/train + ... + val: + indir: ${location.data_root_dir}/val + img_suffix: .png + visual_test: + indir: ${location.data_root_dir}/visual_test + img_suffix: .png + + + # Run training + python3 bin/train.py -cn lama-fourier location=my_dataset data.batch_size=10 + + # Evaluation: LaMa training procedure picks best few models according to + # scores on my_dataset/val/ + + # To evaluate one of your best models (i.e. at epoch=32) + # on previously unseen my_dataset/eval do the following + # for thin, thick and medium: + + # infer: + python3 bin/predict.py \ + model.path=$(pwd)/experiments/__lama-fourier_/ \ + indir=$(pwd)/my_dataset/eval/random__512/ \ + outdir=$(pwd)/inference/my_dataset/random__512 \ + model.checkpoint=epoch32.ckpt + + # metrics calculation: + python3 bin/evaluate_predicts.py \ + $(pwd)/configs/eval2_gpu.yaml \ + $(pwd)/my_dataset/eval/random__512/ \ + $(pwd)/inference/my_dataset/random__512 \ + $(pwd)/inference/my_dataset/random__512_metrics.csv + + +**OR** in the docker: + + TODO: train + TODO: eval + +# Hints + +### Generate different kinds of masks +The following command will execute a script that generates random masks. + + bash docker/1_generate_masks_from_raw_images.sh \ + configs/data_gen/random_medium_512.yaml \ + /directory_with_input_images \ + /directory_where_to_store_images_and_masks \ + --ext png + +The test data generation command stores images in the format, +which is suitable for [prediction](#prediction). + +The table below describes which configs we used to generate different test sets from the paper. +Note that we *do not fix a random seed*, so the results will be slightly different each time. + +| | Places 512x512 | CelebA 256x256 | +|--------|------------------------|------------------------| +| Narrow | random_thin_512.yaml | random_thin_256.yaml | +| Medium | random_medium_512.yaml | random_medium_256.yaml | +| Wide | random_thick_512.yaml | random_thick_256.yaml | + +Feel free to change the config path (argument #1) to any other config in `configs/data_gen` +or adjust config files themselves. + +### Override parameters in configs +Also you can override parameters in config like this: + + python3 bin/train.py -cn data.batch_size=10 run_title=my-title + +Where .yaml file extension is omitted + +### Models options +Config names for models from paper (substitude into the training command): + + * big-lama + * big-lama-regular + * lama-fourier + * lama-regular + * lama_small_train_masks + +Which are seated in configs/training/folder + +### Links +- All the data (models, test images, etc.) https://disk.yandex.ru/d/AmdeG-bIjmvSug +- Test images from the paper https://disk.yandex.ru/d/xKQJZeVRk5vLlQ +- The pre-trained models https://disk.yandex.ru/d/EgqaSnLohjuzAg +- The models for perceptual loss https://disk.yandex.ru/d/ncVmQlmT_kTemQ +- Our training logs are available at https://disk.yandex.ru/d/9Bt1wNSDS4jDkQ + + +### Training time & resources + +TODO + +## Acknowledgments + +* Segmentation code and models if form [CSAILVision](https://github.com/CSAILVision/semantic-segmentation-pytorch). +* LPIPS metric is from [richzhang](https://github.com/richzhang/PerceptualSimilarity) +* SSIM is from [Po-Hsun-Su](https://github.com/Po-Hsun-Su/pytorch-ssim) +* FID is from [mseitzer](https://github.com/mseitzer/pytorch-fid) + +## Citation +If you found this code helpful, please consider citing: +``` +@article{suvorov2021resolution, + title={Resolution-robust Large Mask Inpainting with Fourier Convolutions}, + author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor}, + journal={arXiv preprint arXiv:2109.07161}, + year={2021} +} +``` diff --git a/lama/bin/analyze_errors.py b/lama/bin/analyze_errors.py new file mode 100644 index 0000000000000000000000000000000000000000..f88c698ed5be554cdc9776ee09c9e86b6be0c41a --- /dev/null +++ b/lama/bin/analyze_errors.py @@ -0,0 +1,316 @@ +#!/usr/bin/env python3 +import cv2 +import numpy as np +import sklearn +import torch +import os +import pickle +import pandas as pd +import matplotlib.pyplot as plt +from joblib import Parallel, delayed + +from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset, load_image +from saicinpainting.evaluation.losses.fid.inception import InceptionV3 +from saicinpainting.evaluation.utils import load_yaml +from saicinpainting.training.visualizers.base import visualize_mask_and_images + + +def draw_score(img, score): + img = np.transpose(img, (1, 2, 0)) + cv2.putText(img, f'{score:.2f}', + (40, 40), + cv2.FONT_HERSHEY_SIMPLEX, + 1, + (0, 1, 0), + thickness=3) + img = np.transpose(img, (2, 0, 1)) + return img + + +def save_global_samples(global_mask_fnames, mask2real_fname, mask2fake_fname, out_dir, real_scores_by_fname, fake_scores_by_fname): + for cur_mask_fname in global_mask_fnames: + cur_real_fname = mask2real_fname[cur_mask_fname] + orig_img = load_image(cur_real_fname, mode='RGB') + fake_img = load_image(mask2fake_fname[cur_mask_fname], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]] + mask = load_image(cur_mask_fname, mode='L')[None, ...] + + draw_score(orig_img, real_scores_by_fname.loc[cur_real_fname, 'real_score']) + draw_score(fake_img, fake_scores_by_fname.loc[cur_mask_fname, 'fake_score']) + + cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=mask, fake=fake_img), + keys=['image', 'fake'], + last_without_mask=True) + cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8') + cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR) + cv2.imwrite(os.path.join(out_dir, os.path.splitext(os.path.basename(cur_mask_fname))[0] + '.jpg'), + cur_grid) + + +def save_samples_by_real(worst_best_by_real, mask2fake_fname, fake_info, out_dir): + for real_fname in worst_best_by_real.index: + worst_mask_path = worst_best_by_real.loc[real_fname, 'worst'] + best_mask_path = worst_best_by_real.loc[real_fname, 'best'] + orig_img = load_image(real_fname, mode='RGB') + worst_mask_img = load_image(worst_mask_path, mode='L')[None, ...] + worst_fake_img = load_image(mask2fake_fname[worst_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]] + best_mask_img = load_image(best_mask_path, mode='L')[None, ...] + best_fake_img = load_image(mask2fake_fname[best_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]] + + draw_score(orig_img, worst_best_by_real.loc[real_fname, 'real_score']) + draw_score(worst_fake_img, worst_best_by_real.loc[real_fname, 'worst_score']) + draw_score(best_fake_img, worst_best_by_real.loc[real_fname, 'best_score']) + + cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=np.zeros_like(worst_mask_img), + worst_mask=worst_mask_img, worst_img=worst_fake_img, + best_mask=best_mask_img, best_img=best_fake_img), + keys=['image', 'worst_mask', 'worst_img', 'best_mask', 'best_img'], + rescale_keys=['worst_mask', 'best_mask'], + last_without_mask=True) + cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8') + cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR) + cv2.imwrite(os.path.join(out_dir, + os.path.splitext(os.path.basename(real_fname))[0] + '.jpg'), + cur_grid) + + fig, (ax1, ax2) = plt.subplots(1, 2) + cur_stat = fake_info[fake_info['real_fname'] == real_fname] + cur_stat['fake_score'].hist(ax=ax1) + cur_stat['real_score'].hist(ax=ax2) + fig.tight_layout() + fig.savefig(os.path.join(out_dir, + os.path.splitext(os.path.basename(real_fname))[0] + '_scores.png')) + plt.close(fig) + + +def extract_overlapping_masks(mask_fnames, cur_i, fake_scores_table, max_overlaps_n=2): + result_pairs = [] + result_scores = [] + mask_fname_a = mask_fnames[cur_i] + mask_a = load_image(mask_fname_a, mode='L')[None, ...] > 0.5 + cur_score_a = fake_scores_table.loc[mask_fname_a, 'fake_score'] + for mask_fname_b in mask_fnames[cur_i + 1:]: + mask_b = load_image(mask_fname_b, mode='L')[None, ...] > 0.5 + if not np.any(mask_a & mask_b): + continue + cur_score_b = fake_scores_table.loc[mask_fname_b, 'fake_score'] + result_pairs.append((mask_fname_a, mask_fname_b)) + result_scores.append(cur_score_b - cur_score_a) + if len(result_pairs) >= max_overlaps_n: + break + return result_pairs, result_scores + + +def main(args): + config = load_yaml(args.config) + + latents_dir = os.path.join(args.outpath, 'latents') + os.makedirs(latents_dir, exist_ok=True) + global_worst_dir = os.path.join(args.outpath, 'global_worst') + os.makedirs(global_worst_dir, exist_ok=True) + global_best_dir = os.path.join(args.outpath, 'global_best') + os.makedirs(global_best_dir, exist_ok=True) + worst_best_by_best_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_max') + os.makedirs(worst_best_by_best_worst_score_diff_max_dir, exist_ok=True) + worst_best_by_best_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_min') + os.makedirs(worst_best_by_best_worst_score_diff_min_dir, exist_ok=True) + worst_best_by_real_best_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_max') + os.makedirs(worst_best_by_real_best_score_diff_max_dir, exist_ok=True) + worst_best_by_real_best_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_min') + os.makedirs(worst_best_by_real_best_score_diff_min_dir, exist_ok=True) + worst_best_by_real_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_max') + os.makedirs(worst_best_by_real_worst_score_diff_max_dir, exist_ok=True) + worst_best_by_real_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_min') + os.makedirs(worst_best_by_real_worst_score_diff_min_dir, exist_ok=True) + + if not args.only_report: + block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048] + inception_model = InceptionV3([block_idx]).eval().cuda() + + dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) + + real2vector_cache = {} + + real_features = [] + fake_features = [] + + orig_fnames = [] + mask_fnames = [] + mask2real_fname = {} + mask2fake_fname = {} + + for batch_i, batch in enumerate(dataset): + orig_img_fname = dataset.img_filenames[batch_i] + mask_fname = dataset.mask_filenames[batch_i] + fake_fname = dataset.pred_filenames[batch_i] + mask2real_fname[mask_fname] = orig_img_fname + mask2fake_fname[mask_fname] = fake_fname + + cur_real_vector = real2vector_cache.get(orig_img_fname, None) + if cur_real_vector is None: + with torch.no_grad(): + in_img = torch.from_numpy(batch['image'][None, ...]).cuda() + cur_real_vector = inception_model(in_img)[0].squeeze(-1).squeeze(-1).cpu().numpy() + real2vector_cache[orig_img_fname] = cur_real_vector + + pred_img = torch.from_numpy(batch['inpainted'][None, ...]).cuda() + cur_fake_vector = inception_model(pred_img)[0].squeeze(-1).squeeze(-1).cpu().numpy() + + real_features.append(cur_real_vector) + fake_features.append(cur_fake_vector) + + orig_fnames.append(orig_img_fname) + mask_fnames.append(mask_fname) + + ids_features = np.concatenate(real_features + fake_features, axis=0) + ids_labels = np.array(([1] * len(real_features)) + ([0] * len(fake_features))) + + with open(os.path.join(latents_dir, 'featues.pkl'), 'wb') as f: + pickle.dump(ids_features, f, protocol=3) + with open(os.path.join(latents_dir, 'labels.pkl'), 'wb') as f: + pickle.dump(ids_labels, f, protocol=3) + with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'wb') as f: + pickle.dump(orig_fnames, f, protocol=3) + with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'wb') as f: + pickle.dump(mask_fnames, f, protocol=3) + with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'wb') as f: + pickle.dump(mask2real_fname, f, protocol=3) + with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'wb') as f: + pickle.dump(mask2fake_fname, f, protocol=3) + + svm = sklearn.svm.LinearSVC(dual=False) + svm.fit(ids_features, ids_labels) + + pred_scores = svm.decision_function(ids_features) + real_scores = pred_scores[:len(real_features)] + fake_scores = pred_scores[len(real_features):] + + with open(os.path.join(latents_dir, 'pred_scores.pkl'), 'wb') as f: + pickle.dump(pred_scores, f, protocol=3) + with open(os.path.join(latents_dir, 'real_scores.pkl'), 'wb') as f: + pickle.dump(real_scores, f, protocol=3) + with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'wb') as f: + pickle.dump(fake_scores, f, protocol=3) + else: + with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'rb') as f: + orig_fnames = pickle.load(f) + with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'rb') as f: + mask_fnames = pickle.load(f) + with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'rb') as f: + mask2real_fname = pickle.load(f) + with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'rb') as f: + mask2fake_fname = pickle.load(f) + with open(os.path.join(latents_dir, 'real_scores.pkl'), 'rb') as f: + real_scores = pickle.load(f) + with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'rb') as f: + fake_scores = pickle.load(f) + + real_info = pd.DataFrame(data=[dict(real_fname=fname, + real_score=score) + for fname, score + in zip(orig_fnames, real_scores)]) + real_info.set_index('real_fname', drop=True, inplace=True) + + fake_info = pd.DataFrame(data=[dict(mask_fname=fname, + fake_fname=mask2fake_fname[fname], + real_fname=mask2real_fname[fname], + fake_score=score) + for fname, score + in zip(mask_fnames, fake_scores)]) + fake_info = fake_info.join(real_info, on='real_fname', how='left') + fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True) + + fake_stats_by_real = fake_info.groupby('real_fname')['fake_score'].describe()[['mean', 'std']].rename( + {'mean': 'mean_fake_by_real', 'std': 'std_fake_by_real'}, axis=1) + fake_info = fake_info.join(fake_stats_by_real, on='real_fname', rsuffix='stat_by_real') + fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True) + fake_info.to_csv(os.path.join(latents_dir, 'join_scores_table.csv'), sep='\t', index=False) + + fake_scores_table = fake_info.set_index('mask_fname')['fake_score'].to_frame() + real_scores_table = fake_info.set_index('real_fname')['real_score'].drop_duplicates().to_frame() + + fig, (ax1, ax2) = plt.subplots(1, 2) + ax1.hist(fake_scores) + ax2.hist(real_scores) + fig.tight_layout() + fig.savefig(os.path.join(args.outpath, 'global_scores_hist.png')) + plt.close(fig) + + global_worst_masks = fake_info.sort_values('fake_score', ascending=True)['mask_fname'].iloc[:config.take_global_top].to_list() + global_best_masks = fake_info.sort_values('fake_score', ascending=False)['mask_fname'].iloc[:config.take_global_top].to_list() + save_global_samples(global_worst_masks, mask2real_fname, mask2fake_fname, global_worst_dir, real_scores_table, fake_scores_table) + save_global_samples(global_best_masks, mask2real_fname, mask2fake_fname, global_best_dir, real_scores_table, fake_scores_table) + + # grouped by real + worst_samples_by_real = fake_info.groupby('real_fname').apply( + lambda d: d.set_index('mask_fname')['fake_score'].idxmin()).to_frame().rename({0: 'worst'}, axis=1) + best_samples_by_real = fake_info.groupby('real_fname').apply( + lambda d: d.set_index('mask_fname')['fake_score'].idxmax()).to_frame().rename({0: 'best'}, axis=1) + worst_best_by_real = pd.concat([worst_samples_by_real, best_samples_by_real], axis=1) + + worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'worst_score'}, axis=1), + on='worst') + worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'best_score'}, axis=1), + on='best') + worst_best_by_real = worst_best_by_real.join(real_scores_table) + + worst_best_by_real['best_worst_score_diff'] = worst_best_by_real['best_score'] - worst_best_by_real['worst_score'] + worst_best_by_real['real_best_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['best_score'] + worst_best_by_real['real_worst_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['worst_score'] + + worst_best_by_best_worst_score_diff_min = worst_best_by_real.sort_values('best_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top] + worst_best_by_best_worst_score_diff_max = worst_best_by_real.sort_values('best_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top] + save_samples_by_real(worst_best_by_best_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_min_dir) + save_samples_by_real(worst_best_by_best_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_max_dir) + + worst_best_by_real_best_score_diff_min = worst_best_by_real.sort_values('real_best_score_diff', ascending=True).iloc[:config.take_worst_best_top] + worst_best_by_real_best_score_diff_max = worst_best_by_real.sort_values('real_best_score_diff', ascending=False).iloc[:config.take_worst_best_top] + save_samples_by_real(worst_best_by_real_best_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_min_dir) + save_samples_by_real(worst_best_by_real_best_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_max_dir) + + worst_best_by_real_worst_score_diff_min = worst_best_by_real.sort_values('real_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top] + worst_best_by_real_worst_score_diff_max = worst_best_by_real.sort_values('real_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top] + save_samples_by_real(worst_best_by_real_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_min_dir) + save_samples_by_real(worst_best_by_real_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_max_dir) + + # analyze what change of mask causes bigger change of score + overlapping_mask_fname_pairs = [] + overlapping_mask_fname_score_diffs = [] + for cur_real_fname in orig_fnames: + cur_fakes_info = fake_info[fake_info['real_fname'] == cur_real_fname] + cur_mask_fnames = sorted(cur_fakes_info['mask_fname'].unique()) + + cur_mask_pairs_and_scores = Parallel(args.n_jobs)( + delayed(extract_overlapping_masks)(cur_mask_fnames, i, fake_scores_table) + for i in range(len(cur_mask_fnames) - 1) + ) + for cur_pairs, cur_scores in cur_mask_pairs_and_scores: + overlapping_mask_fname_pairs.extend(cur_pairs) + overlapping_mask_fname_score_diffs.extend(cur_scores) + + overlapping_mask_fname_pairs = np.asarray(overlapping_mask_fname_pairs) + overlapping_mask_fname_score_diffs = np.asarray(overlapping_mask_fname_score_diffs) + overlapping_sort_idx = np.argsort(overlapping_mask_fname_score_diffs) + overlapping_mask_fname_pairs = overlapping_mask_fname_pairs[overlapping_sort_idx] + overlapping_mask_fname_score_diffs = overlapping_mask_fname_score_diffs[overlapping_sort_idx] + + + + + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('config', type=str, help='Path to config for dataset generation') + aparser.add_argument('datadir', type=str, + help='Path to folder with images and masks (output of gen_mask_dataset.py)') + aparser.add_argument('predictdir', type=str, + help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') + aparser.add_argument('outpath', type=str, help='Where to put results') + aparser.add_argument('--only-report', action='store_true', + help='Whether to skip prediction and feature extraction, ' + 'load all the possible latents and proceed with report only') + aparser.add_argument('--n-jobs', type=int, default=8, help='how many processes to use for pair mask mining') + + main(aparser.parse_args()) diff --git a/lama/bin/blur_predicts.py b/lama/bin/blur_predicts.py new file mode 100644 index 0000000000000000000000000000000000000000..e40948110a91f52dbd8d8158dd95ad821c3a6f8a --- /dev/null +++ b/lama/bin/blur_predicts.py @@ -0,0 +1,57 @@ +#!/usr/bin/env python3 + +import os + +import cv2 +import numpy as np +import tqdm + +from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset +from saicinpainting.evaluation.utils import load_yaml + + +def main(args): + config = load_yaml(args.config) + + if not args.predictdir.endswith('/'): + args.predictdir += '/' + + dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) + + os.makedirs(os.path.dirname(args.outpath), exist_ok=True) + + for img_i in tqdm.trange(len(dataset)): + pred_fname = dataset.pred_filenames[img_i] + cur_out_fname = os.path.join(args.outpath, pred_fname[len(args.predictdir):]) + os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) + + sample = dataset[img_i] + img = sample['image'] + mask = sample['mask'] + inpainted = sample['inpainted'] + + inpainted_blurred = cv2.GaussianBlur(np.transpose(inpainted, (1, 2, 0)), + ksize=(args.k, args.k), + sigmaX=args.s, sigmaY=args.s, + borderType=cv2.BORDER_REFLECT) + + cur_res = (1 - mask) * np.transpose(img, (1, 2, 0)) + mask * inpainted_blurred + cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') + cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) + cv2.imwrite(cur_out_fname, cur_res) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('config', type=str, help='Path to evaluation config') + aparser.add_argument('datadir', type=str, + help='Path to folder with images and masks (output of gen_mask_dataset.py)') + aparser.add_argument('predictdir', type=str, + help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') + aparser.add_argument('outpath', type=str, help='Where to put results') + aparser.add_argument('-s', type=float, default=0.1, help='Gaussian blur sigma') + aparser.add_argument('-k', type=int, default=5, help='Kernel size in gaussian blur') + + main(aparser.parse_args()) diff --git a/lama/bin/calc_dataset_stats.py b/lama/bin/calc_dataset_stats.py new file mode 100644 index 0000000000000000000000000000000000000000..ac801a5f606044e414c6e13ef01f257347cd0296 --- /dev/null +++ b/lama/bin/calc_dataset_stats.py @@ -0,0 +1,88 @@ +#!/usr/bin/env python3 + +import os + +import numpy as np +import tqdm +from scipy.ndimage.morphology import distance_transform_edt + +from saicinpainting.evaluation.data import InpaintingDataset +from saicinpainting.evaluation.vis import save_item_for_vis + + +def main(args): + dataset = InpaintingDataset(args.datadir, img_suffix='.png') + + area_bins = np.linspace(0, 1, args.area_bins + 1) + + heights = [] + widths = [] + image_areas = [] + hole_areas = [] + hole_area_percents = [] + known_pixel_distances = [] + + area_bins_count = np.zeros(args.area_bins) + area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)] + + bin2i = [[] for _ in range(args.area_bins)] + + for i, item in enumerate(tqdm.tqdm(dataset)): + h, w = item['image'].shape[1:] + heights.append(h) + widths.append(w) + full_area = h * w + image_areas.append(full_area) + bin_mask = item['mask'] > 0.5 + hole_area = bin_mask.sum() + hole_areas.append(hole_area) + hole_percent = hole_area / full_area + hole_area_percents.append(hole_percent) + bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1) + area_bins_count[bin_i] += 1 + bin2i[bin_i].append(i) + + cur_dist = distance_transform_edt(bin_mask) + cur_dist_inside_mask = cur_dist[bin_mask] + known_pixel_distances.append(cur_dist_inside_mask.mean()) + + os.makedirs(args.outdir, exist_ok=True) + with open(os.path.join(args.outdir, 'summary.txt'), 'w') as f: + f.write(f'''Location: {args.datadir} + +Number of samples: {len(dataset)} + +Image height: min {min(heights):5d} max {max(heights):5d} mean {np.mean(heights):.2f} +Image width: min {min(widths):5d} max {max(widths):5d} mean {np.mean(widths):.2f} +Image area: min {min(image_areas):7d} max {max(image_areas):7d} mean {np.mean(image_areas):.2f} +Hole area: min {min(hole_areas):7d} max {max(hole_areas):7d} mean {np.mean(hole_areas):.2f} +Hole area %: min {min(hole_area_percents) * 100:2.2f} max {max(hole_area_percents) * 100:2.2f} mean {np.mean(hole_area_percents) * 100:2.2f} +Dist 2known: min {min(known_pixel_distances):2.2f} max {max(known_pixel_distances):2.2f} mean {np.mean(known_pixel_distances):2.2f} median {np.median(known_pixel_distances):2.2f} + +Stats by hole area %: +''') + for bin_i in range(args.area_bins): + f.write(f'{area_bin_titles[bin_i]}%: ' + f'samples number {area_bins_count[bin_i]}, ' + f'{area_bins_count[bin_i] / len(dataset) * 100:.1f}%\n') + + for bin_i in range(args.area_bins): + bindir = os.path.join(args.outdir, 'samples', area_bin_titles[bin_i]) + os.makedirs(bindir, exist_ok=True) + bin_idx = bin2i[bin_i] + for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False): + save_item_for_vis(dataset[sample_i], os.path.join(bindir, f'{sample_i}.png')) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('datadir', type=str, + help='Path to folder with images and masks (output of gen_mask_dataset.py)') + aparser.add_argument('outdir', type=str, help='Where to put results') + aparser.add_argument('--samples-n', type=int, default=10, + help='Number of sample images with masks to copy for visualization for each area bin') + aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have') + + main(aparser.parse_args()) diff --git a/lama/bin/debug/analyze_overlapping_masks.sh b/lama/bin/debug/analyze_overlapping_masks.sh new file mode 100644 index 0000000000000000000000000000000000000000..d7b708f9a8755cda4ad02663d3aabca4d8147475 --- /dev/null +++ b/lama/bin/debug/analyze_overlapping_masks.sh @@ -0,0 +1,31 @@ +#!/bin/bash + +BASEDIR="$(dirname $0)" + +# paths are valid for mml7 + +# select images +#ls /data/inpainting/work/data/train | shuf | head -2000 | xargs -n1 -I{} cp {} /data/inpainting/mask_analysis/src + +# generate masks +#"$BASEDIR/../gen_debug_mask_dataset.py" \ +# "$BASEDIR/../../configs/debug_mask_gen.yaml" \ +# "/data/inpainting/mask_analysis/src" \ +# "/data/inpainting/mask_analysis/generated" + +# predict +#"$BASEDIR/../predict.py" \ +# model.path="simple_pix2pix2_gap_sdpl_novgg_large_b18_ffc075_batch8x15/saved_checkpoint/r.suvorov_2021-04-30_14-41-12_train_simple_pix2pix2_gap_sdpl_novgg_large_b18_ffc075_batch8x15_epoch22-step-574999" \ +# indir="/data/inpainting/mask_analysis/generated" \ +# outdir="/data/inpainting/mask_analysis/predicted" \ +# dataset.img_suffix=.jpg \ +# +out_ext=.jpg + +# analyze good and bad samples +"$BASEDIR/../analyze_errors.py" \ + --only-report \ + --n-jobs 8 \ + "$BASEDIR/../../configs/analyze_mask_errors.yaml" \ + "/data/inpainting/mask_analysis/small/generated" \ + "/data/inpainting/mask_analysis/small/predicted" \ + "/data/inpainting/mask_analysis/small/report" diff --git a/lama/bin/evaluate_predicts.py b/lama/bin/evaluate_predicts.py new file mode 100644 index 0000000000000000000000000000000000000000..5fc0dd8f936d60f53c61181751a6a85fb3896691 --- /dev/null +++ b/lama/bin/evaluate_predicts.py @@ -0,0 +1,79 @@ +#!/usr/bin/env python3 + +import os + +import pandas as pd + +from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset +from saicinpainting.evaluation.evaluator import InpaintingEvaluator, lpips_fid100_f1 +from saicinpainting.evaluation.losses.base_loss import SegmentationAwareSSIM, \ + SegmentationClassStats, SSIMScore, LPIPSScore, FIDScore, SegmentationAwareLPIPS, SegmentationAwareFID +from saicinpainting.evaluation.utils import load_yaml + + +def main(args): + config = load_yaml(args.config) + + dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) + + metrics = { + 'ssim': SSIMScore(), + 'lpips': LPIPSScore(), + 'fid': FIDScore() + } + enable_segm = config.get('segmentation', dict(enable=False)).get('enable', False) + if enable_segm: + weights_path = os.path.expandvars(config.segmentation.weights_path) + metrics.update(dict( + segm_stats=SegmentationClassStats(weights_path=weights_path), + segm_ssim=SegmentationAwareSSIM(weights_path=weights_path), + segm_lpips=SegmentationAwareLPIPS(weights_path=weights_path), + segm_fid=SegmentationAwareFID(weights_path=weights_path) + )) + evaluator = InpaintingEvaluator(dataset, scores=metrics, + integral_title='lpips_fid100_f1', integral_func=lpips_fid100_f1, + **config.evaluator_kwargs) + + os.makedirs(os.path.dirname(args.outpath), exist_ok=True) + + results = evaluator.evaluate() + + results = pd.DataFrame(results).stack(1).unstack(0) + results.dropna(axis=1, how='all', inplace=True) + results.to_csv(args.outpath, sep='\t', float_format='%.4f') + + if enable_segm: + only_short_results = results[[c for c in results.columns if not c[0].startswith('segm_')]].dropna(axis=1, how='all') + only_short_results.to_csv(args.outpath + '_short', sep='\t', float_format='%.4f') + + print(only_short_results) + + segm_metrics_results = results[['segm_ssim', 'segm_lpips', 'segm_fid']].dropna(axis=1, how='all').transpose().unstack(0).reorder_levels([1, 0], axis=1) + segm_metrics_results.drop(['mean', 'std'], axis=0, inplace=True) + + segm_stats_results = results['segm_stats'].dropna(axis=1, how='all').transpose() + segm_stats_results.index = pd.MultiIndex.from_tuples(n.split('/') for n in segm_stats_results.index) + segm_stats_results = segm_stats_results.unstack(0).reorder_levels([1, 0], axis=1) + segm_stats_results.sort_index(axis=1, inplace=True) + segm_stats_results.dropna(axis=0, how='all', inplace=True) + + segm_results = pd.concat([segm_metrics_results, segm_stats_results], axis=1, sort=True) + segm_results.sort_values(('mask_freq', 'total'), ascending=False, inplace=True) + + segm_results.to_csv(args.outpath + '_segm', sep='\t', float_format='%.4f') + else: + print(results) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('config', type=str, help='Path to evaluation config') + aparser.add_argument('datadir', type=str, + help='Path to folder with images and masks (output of gen_mask_dataset.py)') + aparser.add_argument('predictdir', type=str, + help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') + aparser.add_argument('outpath', type=str, help='Where to put results') + + main(aparser.parse_args()) diff --git a/lama/bin/evaluator_example.py b/lama/bin/evaluator_example.py new file mode 100644 index 0000000000000000000000000000000000000000..d45d1b28789a4c6bceffcb2f7454ab2fbe64e27d --- /dev/null +++ b/lama/bin/evaluator_example.py @@ -0,0 +1,76 @@ +import os + +import cv2 +import numpy as np +import torch +from skimage import io +from skimage.transform import resize +from torch.utils.data import Dataset + +from saicinpainting.evaluation.evaluator import InpaintingEvaluator +from saicinpainting.evaluation.losses.base_loss import SSIMScore, LPIPSScore, FIDScore + + +class SimpleImageDataset(Dataset): + def __init__(self, root_dir, image_size=(400, 600)): + self.root_dir = root_dir + self.files = sorted(os.listdir(root_dir)) + self.image_size = image_size + + def __getitem__(self, index): + img_name = os.path.join(self.root_dir, self.files[index]) + image = io.imread(img_name) + image = resize(image, self.image_size, anti_aliasing=True) + image = torch.FloatTensor(image).permute(2, 0, 1) + return image + + def __len__(self): + return len(self.files) + + +def create_rectangle_mask(height, width): + mask = np.ones((height, width)) + up_left_corner = width // 4, height // 4 + down_right_corner = (width - up_left_corner[0] - 1, height - up_left_corner[1] - 1) + cv2.rectangle(mask, up_left_corner, down_right_corner, (0, 0, 0), thickness=cv2.FILLED) + return mask + + +class Model(): + def __call__(self, img_batch, mask_batch): + mean = (img_batch * mask_batch[:, None, :, :]).sum(dim=(2, 3)) / mask_batch.sum(dim=(1, 2))[:, None] + inpainted = mean[:, :, None, None] * (1 - mask_batch[:, None, :, :]) + img_batch * mask_batch[:, None, :, :] + return inpainted + + +class SimpleImageSquareMaskDataset(Dataset): + def __init__(self, dataset): + self.dataset = dataset + self.mask = torch.FloatTensor(create_rectangle_mask(*self.dataset.image_size)) + self.model = Model() + + def __getitem__(self, index): + img = self.dataset[index] + mask = self.mask.clone() + inpainted = self.model(img[None, ...], mask[None, ...]) + return dict(image=img, mask=mask, inpainted=inpainted) + + def __len__(self): + return len(self.dataset) + + +dataset = SimpleImageDataset('imgs') +mask_dataset = SimpleImageSquareMaskDataset(dataset) +model = Model() +metrics = { + 'ssim': SSIMScore(), + 'lpips': LPIPSScore(), + 'fid': FIDScore() +} + +evaluator = InpaintingEvaluator( + mask_dataset, scores=metrics, batch_size=3, area_grouping=True +) + +results = evaluator.evaluate(model) +print(results) diff --git a/lama/bin/extract_masks.py b/lama/bin/extract_masks.py new file mode 100644 index 0000000000000000000000000000000000000000..c7558816904565a11e95dfbad10a1f3a564228dc --- /dev/null +++ b/lama/bin/extract_masks.py @@ -0,0 +1,63 @@ +import PIL.Image as Image +import numpy as np +import os + + +def main(args): + if not args.indir.endswith('/'): + args.indir += '/' + os.makedirs(args.outdir, exist_ok=True) + + src_images = [ + args.indir+fname for fname in os.listdir(args.indir)] + + tgt_masks = [ + args.outdir+fname[:-4] + f'_mask000.png' + for fname in os.listdir(args.indir)] + + for img_name, msk_name in zip(src_images, tgt_masks): + #print(img) + #print(msk) + + image = Image.open(img_name).convert('RGB') + image = np.transpose(np.array(image), (2, 0, 1)) + + mask = (image == 255).astype(int) + + print(mask.dtype, mask.shape) + + + Image.fromarray( + np.clip(mask[0,:,:] * 255, 0, 255).astype('uint8'),mode='L' + ).save(msk_name) + + + + + ''' + for infile in src_images: + try: + file_relpath = infile[len(indir):] + img_outpath = os.path.join(outdir, file_relpath) + os.makedirs(os.path.dirname(img_outpath), exist_ok=True) + + image = Image.open(infile).convert('RGB') + + mask = + + Image.fromarray( + np.clip( + cur_mask * 255, 0, 255).astype('uint8'), + mode='L' + ).save(cur_basename + f'_mask{i:03d}.png') + ''' + + + +if __name__ == '__main__': + import argparse + aparser = argparse.ArgumentParser() + aparser.add_argument('--indir', type=str, help='Path to folder with images') + aparser.add_argument('--outdir', type=str, help='Path to folder to store aligned images and masks to') + + main(aparser.parse_args()) diff --git a/lama/bin/filter_sharded_dataset.py b/lama/bin/filter_sharded_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..1188727f667d2e52f84d77b9c1c697db7919e88e --- /dev/null +++ b/lama/bin/filter_sharded_dataset.py @@ -0,0 +1,69 @@ +#!/usr/bin/env python3 + + +import math +import os +import random + +import braceexpand +import webdataset as wds + +DEFAULT_CATS_FILE = os.path.join(os.path.dirname(__file__), '..', 'configs', 'places2-categories_157.txt') + +def is_good_key(key, cats): + return any(c in key for c in cats) + + +def main(args): + if args.categories == 'nofilter': + good_categories = None + else: + with open(args.categories, 'r') as f: + good_categories = set(line.strip().split(' ')[0] for line in f if line.strip()) + + all_input_files = list(braceexpand.braceexpand(args.infile)) + chunk_size = int(math.ceil(len(all_input_files) / args.n_read_streams)) + + input_iterators = [iter(wds.Dataset(all_input_files[start : start + chunk_size]).shuffle(args.shuffle_buffer)) + for start in range(0, len(all_input_files), chunk_size)] + output_datasets = [wds.ShardWriter(args.outpattern.format(i)) for i in range(args.n_write_streams)] + + good_readers = list(range(len(input_iterators))) + step_i = 0 + good_samples = 0 + bad_samples = 0 + while len(good_readers) > 0: + if step_i % args.print_freq == 0: + print(f'Iterations done {step_i}; readers alive {good_readers}; good samples {good_samples}; bad samples {bad_samples}') + + step_i += 1 + + ri = random.choice(good_readers) + try: + sample = next(input_iterators[ri]) + except StopIteration: + good_readers = list(set(good_readers) - {ri}) + continue + + if good_categories is not None and not is_good_key(sample['__key__'], good_categories): + bad_samples += 1 + continue + + wi = random.randint(0, args.n_write_streams - 1) + output_datasets[wi].write(sample) + good_samples += 1 + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('--categories', type=str, default=DEFAULT_CATS_FILE) + aparser.add_argument('--shuffle-buffer', type=int, default=10000) + aparser.add_argument('--n-read-streams', type=int, default=10) + aparser.add_argument('--n-write-streams', type=int, default=10) + aparser.add_argument('--print-freq', type=int, default=1000) + aparser.add_argument('infile', type=str) + aparser.add_argument('outpattern', type=str) + + main(aparser.parse_args()) diff --git a/lama/bin/gen_debug_mask_dataset.py b/lama/bin/gen_debug_mask_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..ac5591c6909bb0261e99ef4a4ee3d86bcff9f0da --- /dev/null +++ b/lama/bin/gen_debug_mask_dataset.py @@ -0,0 +1,61 @@ +#!/usr/bin/env python3 + +import glob +import os + +import PIL.Image as Image +import cv2 +import numpy as np +import tqdm +import shutil + + +from saicinpainting.evaluation.utils import load_yaml + + +def generate_masks_for_img(infile, outmask_pattern, mask_size=200, step=0.5): + inimg = Image.open(infile) + width, height = inimg.size + step_abs = int(mask_size * step) + + mask = np.zeros((height, width), dtype='uint8') + mask_i = 0 + + for start_vertical in range(0, height - step_abs, step_abs): + for start_horizontal in range(0, width - step_abs, step_abs): + mask[start_vertical:start_vertical + mask_size, start_horizontal:start_horizontal + mask_size] = 255 + + cv2.imwrite(outmask_pattern.format(mask_i), mask) + + mask[start_vertical:start_vertical + mask_size, start_horizontal:start_horizontal + mask_size] = 0 + mask_i += 1 + + +def main(args): + if not args.indir.endswith('/'): + args.indir += '/' + if not args.outdir.endswith('/'): + args.outdir += '/' + + config = load_yaml(args.config) + + in_files = list(glob.glob(os.path.join(args.indir, '**', f'*{config.img_ext}'), recursive=True)) + for infile in tqdm.tqdm(in_files): + outimg = args.outdir + infile[len(args.indir):] + outmask_pattern = outimg[:-len(config.img_ext)] + '_mask{:04d}.png' + + os.makedirs(os.path.dirname(outimg), exist_ok=True) + shutil.copy2(infile, outimg) + + generate_masks_for_img(infile, outmask_pattern, **config.gen_kwargs) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('config', type=str, help='Path to config for dataset generation') + aparser.add_argument('indir', type=str, help='Path to folder with images') + aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to') + + main(aparser.parse_args()) diff --git a/lama/bin/gen_mask_dataset.py b/lama/bin/gen_mask_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..9dcf100e2789d619de1e92197a71675fb979749e --- /dev/null +++ b/lama/bin/gen_mask_dataset.py @@ -0,0 +1,130 @@ +#!/usr/bin/env python3 + +import glob +import os +import shutil +import traceback + +import PIL.Image as Image +import numpy as np +from joblib import Parallel, delayed + +from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop +from saicinpainting.evaluation.utils import load_yaml, SmallMode +from saicinpainting.training.data.masks import MixedMaskGenerator + + +class MakeManyMasksWrapper: + def __init__(self, impl, variants_n=2): + self.impl = impl + self.variants_n = variants_n + + def get_masks(self, img): + img = np.transpose(np.array(img), (2, 0, 1)) + return [self.impl(img)[0] for _ in range(self.variants_n)] + + +def process_images(src_images, indir, outdir, config): + if config.generator_kind == 'segmentation': + mask_generator = SegmentationMask(**config.mask_generator_kwargs) + elif config.generator_kind == 'random': + variants_n = config.mask_generator_kwargs.pop('variants_n', 2) + mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**config.mask_generator_kwargs), + variants_n=variants_n) + else: + raise ValueError(f'Unexpected generator kind: {config.generator_kind}') + + max_tamper_area = config.get('max_tamper_area', 1) + + for infile in src_images: + try: + file_relpath = infile[len(indir):] + img_outpath = os.path.join(outdir, file_relpath) + os.makedirs(os.path.dirname(img_outpath), exist_ok=True) + + image = Image.open(infile).convert('RGB') + + # scale input image to output resolution and filter smaller images + if min(image.size) < config.cropping.out_min_size: + handle_small_mode = SmallMode(config.cropping.handle_small_mode) + if handle_small_mode == SmallMode.DROP: + continue + elif handle_small_mode == SmallMode.UPSCALE: + factor = config.cropping.out_min_size / min(image.size) + out_size = (np.array(image.size) * factor).round().astype('uint32') + image = image.resize(out_size, resample=Image.BICUBIC) + else: + factor = config.cropping.out_min_size / min(image.size) + out_size = (np.array(image.size) * factor).round().astype('uint32') + image = image.resize(out_size, resample=Image.BICUBIC) + + # generate and select masks + src_masks = mask_generator.get_masks(image) + + filtered_image_mask_pairs = [] + for cur_mask in src_masks: + if config.cropping.out_square_crop: + (crop_left, + crop_top, + crop_right, + crop_bottom) = propose_random_square_crop(cur_mask, + min_overlap=config.cropping.crop_min_overlap) + cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right] + cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom)) + else: + cur_image = image + + if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area: + continue + + filtered_image_mask_pairs.append((cur_image, cur_mask)) + + mask_indices = np.random.choice(len(filtered_image_mask_pairs), + size=min(len(filtered_image_mask_pairs), config.max_masks_per_image), + replace=False) + + # crop masks; save masks together with input image + mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0]) + for i, idx in enumerate(mask_indices): + cur_image, cur_mask = filtered_image_mask_pairs[idx] + cur_basename = mask_basename + f'_crop{i:03d}' + Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'), + mode='L').save(cur_basename + f'_mask{i:03d}.png') + cur_image.save(cur_basename + '.png') + except KeyboardInterrupt: + return + except Exception as ex: + print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}') + + +def main(args): + if not args.indir.endswith('/'): + args.indir += '/' + + os.makedirs(args.outdir, exist_ok=True) + + config = load_yaml(args.config) + + in_files = list(glob.glob(os.path.join(args.indir, '**', f'*.{args.ext}'), recursive=True)) + if args.n_jobs == 0: + process_images(in_files, args.indir, args.outdir, config) + else: + in_files_n = len(in_files) + chunk_size = in_files_n // args.n_jobs + (1 if in_files_n % args.n_jobs > 0 else 0) + Parallel(n_jobs=args.n_jobs)( + delayed(process_images)(in_files[start:start+chunk_size], args.indir, args.outdir, config) + for start in range(0, len(in_files), chunk_size) + ) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('config', type=str, help='Path to config for dataset generation') + aparser.add_argument('indir', type=str, help='Path to folder with images') + aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to') + aparser.add_argument('--n-jobs', type=int, default=0, help='How many processes to use') + aparser.add_argument('--ext', type=str, default='jpg', help='Input image extension') + + main(aparser.parse_args()) diff --git a/lama/bin/gen_mask_dataset_hydra.py b/lama/bin/gen_mask_dataset_hydra.py new file mode 100644 index 0000000000000000000000000000000000000000..e52aa3adef4c79288358e4232ae5d35100501c7a --- /dev/null +++ b/lama/bin/gen_mask_dataset_hydra.py @@ -0,0 +1,124 @@ +#!/usr/bin/env python3 + +import glob +import os +import shutil +import traceback +import hydra +from omegaconf import OmegaConf + +import PIL.Image as Image +import numpy as np +from joblib import Parallel, delayed + +from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop +from saicinpainting.evaluation.utils import load_yaml, SmallMode +from saicinpainting.training.data.masks import MixedMaskGenerator + + +class MakeManyMasksWrapper: + def __init__(self, impl, variants_n=2): + self.impl = impl + self.variants_n = variants_n + + def get_masks(self, img): + img = np.transpose(np.array(img), (2, 0, 1)) + return [self.impl(img)[0] for _ in range(self.variants_n)] + + +def process_images(src_images, indir, outdir, config): + if config.generator_kind == 'segmentation': + mask_generator = SegmentationMask(**config.mask_generator_kwargs) + elif config.generator_kind == 'random': + mask_generator_kwargs = OmegaConf.to_container(config.mask_generator_kwargs, resolve=True) + variants_n = mask_generator_kwargs.pop('variants_n', 2) + mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**mask_generator_kwargs), + variants_n=variants_n) + else: + raise ValueError(f'Unexpected generator kind: {config.generator_kind}') + + max_tamper_area = config.get('max_tamper_area', 1) + + for infile in src_images: + try: + file_relpath = infile[len(indir):] + img_outpath = os.path.join(outdir, file_relpath) + os.makedirs(os.path.dirname(img_outpath), exist_ok=True) + + image = Image.open(infile).convert('RGB') + + # scale input image to output resolution and filter smaller images + if min(image.size) < config.cropping.out_min_size: + handle_small_mode = SmallMode(config.cropping.handle_small_mode) + if handle_small_mode == SmallMode.DROP: + continue + elif handle_small_mode == SmallMode.UPSCALE: + factor = config.cropping.out_min_size / min(image.size) + out_size = (np.array(image.size) * factor).round().astype('uint32') + image = image.resize(out_size, resample=Image.BICUBIC) + else: + factor = config.cropping.out_min_size / min(image.size) + out_size = (np.array(image.size) * factor).round().astype('uint32') + image = image.resize(out_size, resample=Image.BICUBIC) + + # generate and select masks + src_masks = mask_generator.get_masks(image) + + filtered_image_mask_pairs = [] + for cur_mask in src_masks: + if config.cropping.out_square_crop: + (crop_left, + crop_top, + crop_right, + crop_bottom) = propose_random_square_crop(cur_mask, + min_overlap=config.cropping.crop_min_overlap) + cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right] + cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom)) + else: + cur_image = image + + if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area: + continue + + filtered_image_mask_pairs.append((cur_image, cur_mask)) + + mask_indices = np.random.choice(len(filtered_image_mask_pairs), + size=min(len(filtered_image_mask_pairs), config.max_masks_per_image), + replace=False) + + # crop masks; save masks together with input image + mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0]) + for i, idx in enumerate(mask_indices): + cur_image, cur_mask = filtered_image_mask_pairs[idx] + cur_basename = mask_basename + f'_crop{i:03d}' + Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'), + mode='L').save(cur_basename + f'_mask{i:03d}.png') + cur_image.save(cur_basename + '.png') + except KeyboardInterrupt: + return + except Exception as ex: + print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}') + + +@hydra.main(config_path='../configs/data_gen/whydra', config_name='random_medium_256.yaml') +def main(config: OmegaConf): + if not config.indir.endswith('/'): + config.indir += '/' + + os.makedirs(config.outdir, exist_ok=True) + + in_files = list(glob.glob(os.path.join(config.indir, '**', f'*.{config.location.extension}'), + recursive=True)) + if config.n_jobs == 0: + process_images(in_files, config.indir, config.outdir, config) + else: + in_files_n = len(in_files) + chunk_size = in_files_n // config.n_jobs + (1 if in_files_n % config.n_jobs > 0 else 0) + Parallel(n_jobs=config.n_jobs)( + delayed(process_images)(in_files[start:start+chunk_size], config.indir, config.outdir, config) + for start in range(0, len(in_files), chunk_size) + ) + + +if __name__ == '__main__': + main() diff --git a/lama/bin/gen_outpainting_dataset.py b/lama/bin/gen_outpainting_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..a29f278941671f2a991274d4ebb4e73dacc370ac --- /dev/null +++ b/lama/bin/gen_outpainting_dataset.py @@ -0,0 +1,88 @@ +#!/usr/bin/env python3 +import glob +import logging +import os +import shutil +import sys +import traceback + +from saicinpainting.evaluation.data import load_image +from saicinpainting.evaluation.utils import move_to_device + +os.environ['OMP_NUM_THREADS'] = '1' +os.environ['OPENBLAS_NUM_THREADS'] = '1' +os.environ['MKL_NUM_THREADS'] = '1' +os.environ['VECLIB_MAXIMUM_THREADS'] = '1' +os.environ['NUMEXPR_NUM_THREADS'] = '1' + +import cv2 +import hydra +import numpy as np +import torch +import tqdm +import yaml +from omegaconf import OmegaConf +from torch.utils.data._utils.collate import default_collate + +from saicinpainting.training.data.datasets import make_default_val_dataset +from saicinpainting.training.trainers import load_checkpoint +from saicinpainting.utils import register_debug_signal_handlers + +LOGGER = logging.getLogger(__name__) + + +def main(args): + try: + if not args.indir.endswith('/'): + args.indir += '/' + + for in_img in glob.glob(os.path.join(args.indir, '**', '*' + args.img_suffix), recursive=True): + if 'mask' in os.path.basename(in_img): + continue + + out_img_path = os.path.join(args.outdir, os.path.splitext(in_img[len(args.indir):])[0] + '.png') + out_mask_path = f'{os.path.splitext(out_img_path)[0]}_mask.png' + + os.makedirs(os.path.dirname(out_img_path), exist_ok=True) + + img = load_image(in_img) + height, width = img.shape[1:] + pad_h, pad_w = int(height * args.coef / 2), int(width * args.coef / 2) + + mask = np.zeros((height, width), dtype='uint8') + + if args.expand: + img = np.pad(img, ((0, 0), (pad_h, pad_h), (pad_w, pad_w))) + mask = np.pad(mask, ((pad_h, pad_h), (pad_w, pad_w)), mode='constant', constant_values=255) + else: + mask[:pad_h] = 255 + mask[-pad_h:] = 255 + mask[:, :pad_w] = 255 + mask[:, -pad_w:] = 255 + + # img = np.pad(img, ((0, 0), (pad_h * 2, pad_h * 2), (pad_w * 2, pad_w * 2)), mode='symmetric') + # mask = np.pad(mask, ((pad_h * 2, pad_h * 2), (pad_w * 2, pad_w * 2)), mode = 'symmetric') + + img = np.clip(np.transpose(img, (1, 2, 0)) * 255, 0, 255).astype('uint8') + img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) + cv2.imwrite(out_img_path, img) + + cv2.imwrite(out_mask_path, mask) + except KeyboardInterrupt: + LOGGER.warning('Interrupted by user') + except Exception as ex: + LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') + sys.exit(1) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('indir', type=str, help='Root directory with images') + aparser.add_argument('outdir', type=str, help='Where to store results') + aparser.add_argument('--img-suffix', type=str, default='.png', help='Input image extension') + aparser.add_argument('--expand', action='store_true', help='Generate mask by padding (true) or by cropping (false)') + aparser.add_argument('--coef', type=float, default=0.2, help='How much to crop/expand in order to get masks') + + main(aparser.parse_args()) diff --git a/lama/bin/make_checkpoint.py b/lama/bin/make_checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..cdcb0bf4b5f4b112e9e749e7dd46a6d10074849d --- /dev/null +++ b/lama/bin/make_checkpoint.py @@ -0,0 +1,79 @@ +#!/usr/bin/env python3 + +import os +import shutil + +import torch + + +def get_checkpoint_files(s): + s = s.strip() + if ',' in s: + return [get_checkpoint_files(chunk) for chunk in s.split(',')] + return 'last.ckpt' if s == 'last' else f'{s}.ckpt' + + +def main(args): + checkpoint_fnames = get_checkpoint_files(args.epochs) + if isinstance(checkpoint_fnames, str): + checkpoint_fnames = [checkpoint_fnames] + assert len(checkpoint_fnames) >= 1 + + checkpoint_path = os.path.join(args.indir, 'models', checkpoint_fnames[0]) + checkpoint = torch.load(checkpoint_path, map_location='cpu') + del checkpoint['optimizer_states'] + + if len(checkpoint_fnames) > 1: + for fname in checkpoint_fnames[1:]: + print('sum', fname) + sum_tensors_cnt = 0 + other_cp = torch.load(os.path.join(args.indir, 'models', fname), map_location='cpu') + for k in checkpoint['state_dict'].keys(): + if checkpoint['state_dict'][k].dtype is torch.float: + checkpoint['state_dict'][k].data.add_(other_cp['state_dict'][k].data) + sum_tensors_cnt += 1 + print('summed', sum_tensors_cnt, 'tensors') + + for k in checkpoint['state_dict'].keys(): + if checkpoint['state_dict'][k].dtype is torch.float: + checkpoint['state_dict'][k].data.mul_(1 / float(len(checkpoint_fnames))) + + state_dict = checkpoint['state_dict'] + + if not args.leave_discriminators: + for k in list(state_dict.keys()): + if k.startswith('discriminator.'): + del state_dict[k] + + if not args.leave_losses: + for k in list(state_dict.keys()): + if k.startswith('loss_'): + del state_dict[k] + + out_checkpoint_path = os.path.join(args.outdir, 'models', 'best.ckpt') + os.makedirs(os.path.dirname(out_checkpoint_path), exist_ok=True) + + torch.save(checkpoint, out_checkpoint_path) + + shutil.copy2(os.path.join(args.indir, 'config.yaml'), + os.path.join(args.outdir, 'config.yaml')) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('indir', + help='Path to directory with output of training ' + '(i.e. directory, which has samples, modules, config.yaml and train.log') + aparser.add_argument('outdir', + help='Where to put minimal checkpoint, which can be consumed by "bin/predict.py"') + aparser.add_argument('--epochs', type=str, default='last', + help='Which checkpoint to take. ' + 'Can be "last" or integer - number of epoch') + aparser.add_argument('--leave-discriminators', action='store_true', + help='If enabled, the state of discriminators will not be removed from the checkpoint') + aparser.add_argument('--leave-losses', action='store_true', + help='If enabled, weights of nn-based losses (e.g. perceptual) will not be removed') + + main(aparser.parse_args()) diff --git a/lama/bin/mask_example.py b/lama/bin/mask_example.py new file mode 100644 index 0000000000000000000000000000000000000000..5fc99d2143a6d4aec119d16aca8a337b65de3a45 --- /dev/null +++ b/lama/bin/mask_example.py @@ -0,0 +1,14 @@ +import matplotlib.pyplot as plt +from skimage import io +from skimage.transform import resize + +from saicinpainting.evaluation.masks.mask import SegmentationMask + +im = io.imread('imgs/ex4.jpg') +im = resize(im, (512, 1024), anti_aliasing=True) +mask_seg = SegmentationMask(num_variants_per_mask=10) +mask_examples = mask_seg.get_masks(im) +for i, example in enumerate(mask_examples): + plt.imshow(example) + plt.show() + plt.imsave(f'tmp/img_masks/{i}.png', example) diff --git a/lama/bin/paper_runfiles/blur_tests.sh b/lama/bin/paper_runfiles/blur_tests.sh new file mode 100644 index 0000000000000000000000000000000000000000..fbd81c3bfefe207525048c1da068230848d0ab17 --- /dev/null +++ b/lama/bin/paper_runfiles/blur_tests.sh @@ -0,0 +1,37 @@ +##!/usr/bin/env bash +# +## !!! file set to make test_large_30k from the vanilla test_large: configs/test_large_30k.lst +# +## paths to data are valid for mml7 +#PLACES_ROOT="/data/inpainting/Places365" +#OUT_DIR="/data/inpainting/paper_data/Places365_val_test" +# +#source "$(dirname $0)/env.sh" +# +#for datadir in test_large_30k # val_large +#do +# for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512 +# do +# "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \ +# "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 8 +# +# "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" +# done +# +# for conf in segm_256 segm_512 +# do +# "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \ +# "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 2 +# +# "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" +# done +#done +# +#IN_DIR="/data/inpainting/paper_data/Places365_val_test/test_large_30k/random_medium_512" +#PRED_DIR="/data/inpainting/predictions/final/images/r.suvorov_2021-03-05_17-08-35_train_ablv2_work_resume_epoch37/random_medium_512" +#BLUR_OUT_DIR="/data/inpainting/predictions/final/blur/images" +# +#for b in 0.1 +# +#"$BINDIR/blur_predicts.py" "$BASEDIR/../../configs/eval2.yaml" "$CUR_IN_DIR" "$CUR_OUT_DIR" "$CUR_EVAL_DIR" +# diff --git a/lama/bin/paper_runfiles/env.sh b/lama/bin/paper_runfiles/env.sh new file mode 100644 index 0000000000000000000000000000000000000000..4dbf7f16914a6414305c64b37f3fe53eb90405e4 --- /dev/null +++ b/lama/bin/paper_runfiles/env.sh @@ -0,0 +1,8 @@ +DIRNAME="$(dirname $0)" +DIRNAME="$(realpath ""$DIRNAME"")" + +BINDIR="$DIRNAME/.." +SRCDIR="$BINDIR/.." +CONFIGDIR="$SRCDIR/configs" + +export PYTHONPATH="$SRCDIR:$PYTHONPATH" diff --git a/lama/bin/paper_runfiles/find_best_checkpoint.py b/lama/bin/paper_runfiles/find_best_checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..729f848fcb1ac7b1a3045384971c62324bf0393f --- /dev/null +++ b/lama/bin/paper_runfiles/find_best_checkpoint.py @@ -0,0 +1,54 @@ +#!/usr/bin/env python3 + + +import os +from argparse import ArgumentParser + + +def ssim_fid100_f1(metrics, fid_scale=100): + ssim = metrics.loc['total', 'ssim']['mean'] + fid = metrics.loc['total', 'fid']['mean'] + fid_rel = max(0, fid_scale - fid) / fid_scale + f1 = 2 * ssim * fid_rel / (ssim + fid_rel + 1e-3) + return f1 + + +def find_best_checkpoint(model_list, models_dir): + with open(model_list) as f: + models = [m.strip() for m in f.readlines()] + with open(f'{model_list}_best', 'w') as f: + for model in models: + print(model) + best_f1 = 0 + best_epoch = 0 + best_step = 0 + with open(os.path.join(models_dir, model, 'train.log')) as fm: + lines = fm.readlines() + for line_index in range(len(lines)): + line = lines[line_index] + if 'Validation metrics after epoch' in line: + sharp_index = line.index('#') + cur_ep = line[sharp_index + 1:] + comma_index = cur_ep.index(',') + cur_ep = int(cur_ep[:comma_index]) + total_index = line.index('total ') + step = int(line[total_index:].split()[1].strip()) + total_line = lines[line_index + 5] + if not total_line.startswith('total'): + continue + words = total_line.strip().split() + f1 = float(words[-1]) + print(f'\tEpoch: {cur_ep}, f1={f1}') + if f1 > best_f1: + best_f1 = f1 + best_epoch = cur_ep + best_step = step + f.write(f'{model}\t{best_epoch}\t{best_step}\t{best_f1}\n') + + +if __name__ == '__main__': + parser = ArgumentParser() + parser.add_argument('model_list') + parser.add_argument('models_dir') + args = parser.parse_args() + find_best_checkpoint(args.model_list, args.models_dir) diff --git a/lama/bin/paper_runfiles/generate_test_celeba-hq.sh b/lama/bin/paper_runfiles/generate_test_celeba-hq.sh new file mode 100644 index 0000000000000000000000000000000000000000..3600c73e70defb556e1f52d2141040d6112ea39c --- /dev/null +++ b/lama/bin/paper_runfiles/generate_test_celeba-hq.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +# paths to data are valid for mml-ws01 +OUT_DIR="/media/inpainting/paper_data/CelebA-HQ_val_test" + +source "$(dirname $0)/env.sh" + +for datadir in "val" "test" +do + for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512 + do + "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-celeba-hq \ + location.out_dir=$OUT_DIR cropping.out_square_crop=False + + "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" + done +done diff --git a/lama/bin/paper_runfiles/generate_test_ffhq.sh b/lama/bin/paper_runfiles/generate_test_ffhq.sh new file mode 100644 index 0000000000000000000000000000000000000000..c52dc318d3f052486803429dc620a1083074f603 --- /dev/null +++ b/lama/bin/paper_runfiles/generate_test_ffhq.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +# paths to data are valid for mml-ws01 +OUT_DIR="/media/inpainting/paper_data/FFHQ_val" + +source "$(dirname $0)/env.sh" + +for datadir in test +do + for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512 + do + "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-ffhq \ + location.out_dir=$OUT_DIR cropping.out_square_crop=False + + "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" + done +done diff --git a/lama/bin/paper_runfiles/generate_test_paris.sh b/lama/bin/paper_runfiles/generate_test_paris.sh new file mode 100644 index 0000000000000000000000000000000000000000..90581c585de37ad6108e649e148668f0d5c14711 --- /dev/null +++ b/lama/bin/paper_runfiles/generate_test_paris.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +# paths to data are valid for mml-ws01 +OUT_DIR="/media/inpainting/paper_data/Paris_StreetView_Dataset_val" + +source "$(dirname $0)/env.sh" + +for datadir in paris_eval_gt +do + for conf in random_thin_256 random_medium_256 random_thick_256 segm_256 + do + "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-paris \ + location.out_dir=OUT_DIR cropping.out_square_crop=False cropping.out_min_size=227 + + "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" + done +done diff --git a/lama/bin/paper_runfiles/generate_test_paris_256.sh b/lama/bin/paper_runfiles/generate_test_paris_256.sh new file mode 100644 index 0000000000000000000000000000000000000000..411dfae1b92f023a0978fb3779b54e868022a2f4 --- /dev/null +++ b/lama/bin/paper_runfiles/generate_test_paris_256.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +# paths to data are valid for mml-ws01 +OUT_DIR="/media/inpainting/paper_data/Paris_StreetView_Dataset_val_256" + +source "$(dirname $0)/env.sh" + +for datadir in paris_eval_gt +do + for conf in random_thin_256 random_medium_256 random_thick_256 segm_256 + do + "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-paris \ + location.out_dir=$OUT_DIR cropping.out_square_crop=False cropping.out_min_size=256 + + "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" + done +done diff --git a/lama/bin/paper_runfiles/generate_val_test.sh b/lama/bin/paper_runfiles/generate_val_test.sh new file mode 100644 index 0000000000000000000000000000000000000000..cf7e5fdf7930edef335faa3c3f4c94e5c438f132 --- /dev/null +++ b/lama/bin/paper_runfiles/generate_val_test.sh @@ -0,0 +1,28 @@ +#!/usr/bin/env bash + +# !!! file set to make test_large_30k from the vanilla test_large: configs/test_large_30k.lst + +# paths to data are valid for mml7 +PLACES_ROOT="/data/inpainting/Places365" +OUT_DIR="/data/inpainting/paper_data/Places365_val_test" + +source "$(dirname $0)/env.sh" + +for datadir in test_large_30k # val_large +do + for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512 + do + "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \ + "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 8 + + "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" + done + + for conf in segm_256 segm_512 + do + "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \ + "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 2 + + "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats" + done +done diff --git a/lama/bin/paper_runfiles/predict_inner_features.sh b/lama/bin/paper_runfiles/predict_inner_features.sh new file mode 100644 index 0000000000000000000000000000000000000000..cea0caf374c482d3a9c8ea381923dba48f39caa2 --- /dev/null +++ b/lama/bin/paper_runfiles/predict_inner_features.sh @@ -0,0 +1,20 @@ +#!/usr/bin/env bash + +# paths to data are valid for mml7 + +source "$(dirname $0)/env.sh" + +"$BINDIR/predict_inner_features.py" \ + -cn default_inner_features_ffc \ + model.path="/data/inpainting/paper_data/final_models/ours/r.suvorov_2021-03-05_17-34-05_train_ablv2_work_ffc075_resume_epoch39" \ + indir="/data/inpainting/paper_data/inner_features_vis/input/" \ + outdir="/data/inpainting/paper_data/inner_features_vis/output/ffc" \ + dataset.img_suffix=.png + + +"$BINDIR/predict_inner_features.py" \ + -cn default_inner_features_work \ + model.path="/data/inpainting/paper_data/final_models/ours/r.suvorov_2021-03-05_17-08-35_train_ablv2_work_resume_epoch37" \ + indir="/data/inpainting/paper_data/inner_features_vis/input/" \ + outdir="/data/inpainting/paper_data/inner_features_vis/output/work" \ + dataset.img_suffix=.png diff --git a/lama/bin/paper_runfiles/update_test_data_stats.sh b/lama/bin/paper_runfiles/update_test_data_stats.sh new file mode 100644 index 0000000000000000000000000000000000000000..e0a02419a4f8c37e426fb172575191d2cb90dded --- /dev/null +++ b/lama/bin/paper_runfiles/update_test_data_stats.sh @@ -0,0 +1,30 @@ +#!/usr/bin/env bash + +# paths to data are valid for mml7 + +source "$(dirname $0)/env.sh" + +#INDIR="/data/inpainting/paper_data/Places365_val_test/test_large_30k" +# +#for dataset in random_medium_256 random_medium_512 random_thick_256 random_thick_512 random_thin_256 random_thin_512 +#do +# "$BINDIR/calc_dataset_stats.py" "$INDIR/$dataset" "$INDIR/${dataset}_stats2" +#done +# +#"$BINDIR/calc_dataset_stats.py" "/data/inpainting/evalset2" "/data/inpainting/evalset2_stats2" + + +INDIR="/data/inpainting/paper_data/CelebA-HQ_val_test/test" + +for dataset in random_medium_256 random_thick_256 random_thin_256 +do + "$BINDIR/calc_dataset_stats.py" "$INDIR/$dataset" "$INDIR/${dataset}_stats2" +done + + +INDIR="/data/inpainting/paper_data/Paris_StreetView_Dataset_val_256/paris_eval_gt" + +for dataset in random_medium_256 random_thick_256 random_thin_256 +do + "$BINDIR/calc_dataset_stats.py" "$INDIR/$dataset" "$INDIR/${dataset}_stats2" +done \ No newline at end of file diff --git a/lama/bin/predict.py b/lama/bin/predict.py new file mode 100644 index 0000000000000000000000000000000000000000..5a51da7b1a4d76b003115fb26b2d5ad8afb8c99e --- /dev/null +++ b/lama/bin/predict.py @@ -0,0 +1,104 @@ +#!/usr/bin/env python3 + +# Example command: +# ./bin/predict.py \ +# model.path= \ +# indir= \ +# outdir= + +import logging +import os +import sys +import traceback + +from saicinpainting.evaluation.utils import move_to_device +from saicinpainting.evaluation.refinement import refine_predict +os.environ['OMP_NUM_THREADS'] = '1' +os.environ['OPENBLAS_NUM_THREADS'] = '1' +os.environ['MKL_NUM_THREADS'] = '1' +os.environ['VECLIB_MAXIMUM_THREADS'] = '1' +os.environ['NUMEXPR_NUM_THREADS'] = '1' + +import cv2 +import hydra +import numpy as np +import torch +import tqdm +import yaml +from omegaconf import OmegaConf +from torch.utils.data._utils.collate import default_collate + +from saicinpainting.training.data.datasets import make_default_val_dataset +from saicinpainting.training.trainers import load_checkpoint +from saicinpainting.utils import register_debug_signal_handlers + +LOGGER = logging.getLogger(__name__) + + +@hydra.main(config_path='../configs/prediction', config_name='default.yaml') +def main(predict_config: OmegaConf): + try: + if sys.platform != 'win32': + register_debug_signal_handlers() # kill -10 will result in traceback dumped into log + + device = torch.device("cpu") + + train_config_path = os.path.join(predict_config.model.path, 'config.yaml') + with open(train_config_path, 'r') as f: + train_config = OmegaConf.create(yaml.safe_load(f)) + + train_config.training_model.predict_only = True + train_config.visualizer.kind = 'noop' + + out_ext = predict_config.get('out_ext', '.png') + + checkpoint_path = os.path.join(predict_config.model.path, + 'models', + predict_config.model.checkpoint) + model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') + model.freeze() + if not predict_config.get('refine', False): + model.to(device) + + if not predict_config.indir.endswith('/'): + predict_config.indir += '/' + + dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) + for img_i in tqdm.trange(len(dataset)): + mask_fname = dataset.mask_filenames[img_i] + cur_out_fname = os.path.join( + predict_config.outdir, + os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext + ) + os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) + batch = default_collate([dataset[img_i]]) + if predict_config.get('refine', False): + assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" + # image unpadding is taken care of in the refiner, so that output image + # is same size as the input image + cur_res = refine_predict(batch, model, **predict_config.refiner) + cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() + else: + with torch.no_grad(): + batch = move_to_device(batch, device) + batch['mask'] = (batch['mask'] > 0) * 1 + batch = model(batch) + cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() + unpad_to_size = batch.get('unpad_to_size', None) + if unpad_to_size is not None: + orig_height, orig_width = unpad_to_size + cur_res = cur_res[:orig_height, :orig_width] + + cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') + cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) + cv2.imwrite(cur_out_fname, cur_res) + + except KeyboardInterrupt: + LOGGER.warning('Interrupted by user') + except Exception as ex: + LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') + sys.exit(1) + + +if __name__ == '__main__': + main() diff --git a/lama/bin/predict_inner_features.py b/lama/bin/predict_inner_features.py new file mode 100644 index 0000000000000000000000000000000000000000..3c87838d97ed0e7a2e2054dfe579659dfd679e41 --- /dev/null +++ b/lama/bin/predict_inner_features.py @@ -0,0 +1,120 @@ +#!/usr/bin/env python3 + +# Example command: +# ./bin/predict.py \ +# model.path= \ +# indir= \ +# outdir= + +import logging +import os +import sys +import traceback + +from saicinpainting.evaluation.utils import move_to_device + +os.environ['OMP_NUM_THREADS'] = '1' +os.environ['OPENBLAS_NUM_THREADS'] = '1' +os.environ['MKL_NUM_THREADS'] = '1' +os.environ['VECLIB_MAXIMUM_THREADS'] = '1' +os.environ['NUMEXPR_NUM_THREADS'] = '1' + +import cv2 +import hydra +import numpy as np +import torch +import tqdm +import yaml +from omegaconf import OmegaConf +from torch.utils.data._utils.collate import default_collate + +from saicinpainting.training.data.datasets import make_default_val_dataset +from saicinpainting.training.trainers import load_checkpoint, DefaultInpaintingTrainingModule +from saicinpainting.utils import register_debug_signal_handlers, get_shape + +LOGGER = logging.getLogger(__name__) + + +@hydra.main(config_path='../configs/prediction', config_name='default_inner_features.yaml') +def main(predict_config: OmegaConf): + try: + if sys.platform != 'win32': + register_debug_signal_handlers() # kill -10 will result in traceback dumped into log + + device = torch.device(predict_config.device) + + train_config_path = os.path.join(predict_config.model.path, 'config.yaml') + with open(train_config_path, 'r') as f: + train_config = OmegaConf.create(yaml.safe_load(f)) + + checkpoint_path = os.path.join(predict_config.model.path, 'models', predict_config.model.checkpoint) + model = load_checkpoint(train_config, checkpoint_path, strict=False) + model.freeze() + model.to(device) + + assert isinstance(model, DefaultInpaintingTrainingModule), 'Only DefaultInpaintingTrainingModule is supported' + assert isinstance(getattr(model.generator, 'model', None), torch.nn.Sequential) + + if not predict_config.indir.endswith('/'): + predict_config.indir += '/' + + dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) + + max_level = max(predict_config.levels) + + with torch.no_grad(): + for img_i in tqdm.trange(len(dataset)): + mask_fname = dataset.mask_filenames[img_i] + cur_out_fname = os.path.join(predict_config.outdir, os.path.splitext(mask_fname[len(predict_config.indir):])[0]) + os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) + + batch = move_to_device(default_collate([dataset[img_i]]), device) + + img = batch['image'] + mask = batch['mask'] + mask[:] = 0 + mask_h, mask_w = mask.shape[-2:] + mask[:, :, + mask_h // 2 - predict_config.hole_radius : mask_h // 2 + predict_config.hole_radius, + mask_w // 2 - predict_config.hole_radius : mask_w // 2 + predict_config.hole_radius] = 1 + + masked_img = torch.cat([img * (1 - mask), mask], dim=1) + + feats = masked_img + for level_i, level in enumerate(model.generator.model): + feats = level(feats) + if level_i in predict_config.levels: + cur_feats = torch.cat([f for f in feats if torch.is_tensor(f)], dim=1) \ + if isinstance(feats, tuple) else feats + + if predict_config.slice_channels: + cur_feats = cur_feats[:, slice(*predict_config.slice_channels)] + + cur_feat = cur_feats.pow(2).mean(1).pow(0.5).clone() + cur_feat -= cur_feat.min() + cur_feat /= cur_feat.std() + cur_feat = cur_feat.clamp(0, 1) / 1 + cur_feat = cur_feat.cpu().numpy()[0] + cur_feat *= 255 + cur_feat = np.clip(cur_feat, 0, 255).astype('uint8') + cv2.imwrite(cur_out_fname + f'_lev{level_i:02d}_norm.png', cur_feat) + + # for channel_i in predict_config.channels: + # + # cur_feat = cur_feats[0, channel_i].clone().detach().cpu().numpy() + # cur_feat -= cur_feat.min() + # cur_feat /= cur_feat.max() + # cur_feat *= 255 + # cur_feat = np.clip(cur_feat, 0, 255).astype('uint8') + # cv2.imwrite(cur_out_fname + f'_lev{level_i}_ch{channel_i}.png', cur_feat) + elif level_i >= max_level: + break + except KeyboardInterrupt: + LOGGER.warning('Interrupted by user') + except Exception as ex: + LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') + sys.exit(1) + + +if __name__ == '__main__': + main() diff --git a/lama/bin/report_from_tb.py b/lama/bin/report_from_tb.py new file mode 100644 index 0000000000000000000000000000000000000000..e15503e05edbb11d1e5ce0f28d145b376fee8ae0 --- /dev/null +++ b/lama/bin/report_from_tb.py @@ -0,0 +1,83 @@ +#!/usr/bin/env python3 + +import glob +import os +import re + +import tensorflow as tf +from torch.utils.tensorboard import SummaryWriter + + +GROUPING_RULES = [ + re.compile(r'^(?Ptrain|test|val|extra_val_.*?(256|512))_(?P.*)', re.I) +] + + +DROP_RULES = [ + re.compile(r'_std$', re.I) +] + + +def need_drop(tag): + for rule in DROP_RULES: + if rule.search(tag): + return True + return False + + +def get_group_and_title(tag): + for rule in GROUPING_RULES: + match = rule.search(tag) + if match is None: + continue + return match.group('group'), match.group('title') + return None, None + + +def main(args): + os.makedirs(args.outdir, exist_ok=True) + + ignored_events = set() + + for orig_fname in glob.glob(args.inglob): + cur_dirpath = os.path.dirname(orig_fname) # remove filename, this should point to "version_0" directory + subdirname = os.path.basename(cur_dirpath) # == "version_0" most of time + exp_root_path = os.path.dirname(cur_dirpath) # remove "version_0" + exp_name = os.path.basename(exp_root_path) + + writers_by_group = {} + + for e in tf.compat.v1.train.summary_iterator(orig_fname): + for v in e.summary.value: + if need_drop(v.tag): + continue + + cur_group, cur_title = get_group_and_title(v.tag) + if cur_group is None: + if v.tag not in ignored_events: + print(f'WARNING: Could not detect group for {v.tag}, ignoring it') + ignored_events.add(v.tag) + continue + + cur_writer = writers_by_group.get(cur_group, None) + if cur_writer is None: + if args.include_version: + cur_outdir = os.path.join(args.outdir, exp_name, f'{subdirname}_{cur_group}') + else: + cur_outdir = os.path.join(args.outdir, exp_name, cur_group) + cur_writer = SummaryWriter(cur_outdir) + writers_by_group[cur_group] = cur_writer + + cur_writer.add_scalar(cur_title, v.simple_value, global_step=e.step, walltime=e.wall_time) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('inglob', type=str) + aparser.add_argument('outdir', type=str) + aparser.add_argument('--include-version', action='store_true', + help='Include subdirectory name e.g. "version_0" into output path') + + main(aparser.parse_args()) diff --git a/lama/bin/sample_from_dataset.py b/lama/bin/sample_from_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..4224ef6b42039372056c4b0873e77826aa6ad0a4 --- /dev/null +++ b/lama/bin/sample_from_dataset.py @@ -0,0 +1,87 @@ +#!/usr/bin/env python3 + +import os + +import numpy as np +import tqdm +from skimage import io +from skimage.segmentation import mark_boundaries + +from saicinpainting.evaluation.data import InpaintingDataset +from saicinpainting.evaluation.vis import save_item_for_vis + +def save_mask_for_sidebyside(item, out_file): + mask = item['mask']# > 0.5 + if mask.ndim == 3: + mask = mask[0] + mask = np.clip(mask * 255, 0, 255).astype('uint8') + io.imsave(out_file, mask) + +def save_img_for_sidebyside(item, out_file): + img = np.transpose(item['image'], (1, 2, 0)) + img = np.clip(img * 255, 0, 255).astype('uint8') + io.imsave(out_file, img) + +def save_masked_img_for_sidebyside(item, out_file): + mask = item['mask'] + img = item['image'] + + img = (1-mask) * img + mask + img = np.transpose(img, (1, 2, 0)) + + img = np.clip(img * 255, 0, 255).astype('uint8') + io.imsave(out_file, img) + +def main(args): + dataset = InpaintingDataset(args.datadir, img_suffix='.png') + + area_bins = np.linspace(0, 1, args.area_bins + 1) + + heights = [] + widths = [] + image_areas = [] + hole_areas = [] + hole_area_percents = [] + area_bins_count = np.zeros(args.area_bins) + area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)] + + bin2i = [[] for _ in range(args.area_bins)] + + for i, item in enumerate(tqdm.tqdm(dataset)): + h, w = item['image'].shape[1:] + heights.append(h) + widths.append(w) + full_area = h * w + image_areas.append(full_area) + hole_area = (item['mask'] == 1).sum() + hole_areas.append(hole_area) + hole_percent = hole_area / full_area + hole_area_percents.append(hole_percent) + bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1) + area_bins_count[bin_i] += 1 + bin2i[bin_i].append(i) + + os.makedirs(args.outdir, exist_ok=True) + + for bin_i in range(args.area_bins): + bindir = os.path.join(args.outdir, area_bin_titles[bin_i]) + os.makedirs(bindir, exist_ok=True) + bin_idx = bin2i[bin_i] + for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False): + item = dataset[sample_i] + path = os.path.join(bindir, dataset.img_filenames[sample_i].split('/')[-1]) + save_masked_img_for_sidebyside(item, path) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('--datadir', type=str, + help='Path to folder with images and masks (output of gen_mask_dataset.py)') + aparser.add_argument('--outdir', type=str, help='Where to put results') + aparser.add_argument('--samples-n', type=int, default=10, + help='Number of sample images with masks to copy for visualization for each area bin') + aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have') + + main(aparser.parse_args()) diff --git a/lama/bin/side_by_side.py b/lama/bin/side_by_side.py new file mode 100644 index 0000000000000000000000000000000000000000..6c42e53acd9230a230b352854a2f4c80fd380784 --- /dev/null +++ b/lama/bin/side_by_side.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python3 +import os +import random + +import cv2 +import numpy as np + +from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset +from saicinpainting.evaluation.utils import load_yaml +from saicinpainting.training.visualizers.base import visualize_mask_and_images + + +def main(args): + config = load_yaml(args.config) + + datasets = [PrecomputedInpaintingResultsDataset(args.datadir, cur_predictdir, **config.dataset_kwargs) + for cur_predictdir in args.predictdirs] + assert len({len(ds) for ds in datasets}) == 1 + len_first = len(datasets[0]) + + indices = list(range(len_first)) + if len_first > args.max_n: + indices = sorted(random.sample(indices, args.max_n)) + + os.makedirs(args.outpath, exist_ok=True) + + filename2i = {} + + keys = ['image'] + [i for i in range(len(datasets))] + for img_i in indices: + try: + mask_fname = os.path.basename(datasets[0].mask_filenames[img_i]) + if mask_fname in filename2i: + filename2i[mask_fname] += 1 + idx = filename2i[mask_fname] + mask_fname_only, ext = os.path.split(mask_fname) + mask_fname = f'{mask_fname_only}_{idx}{ext}' + else: + filename2i[mask_fname] = 1 + + cur_vis_dict = datasets[0][img_i] + for ds_i, ds in enumerate(datasets): + cur_vis_dict[ds_i] = ds[img_i]['inpainted'] + + vis_img = visualize_mask_and_images(cur_vis_dict, keys, + last_without_mask=False, + mask_only_first=True, + black_mask=args.black) + vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8') + + out_fname = os.path.join(args.outpath, mask_fname) + + + + vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR) + cv2.imwrite(out_fname, vis_img) + except Exception as ex: + print(f'Could not process {img_i} due to {ex}') + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('--max-n', type=int, default=100, help='Maximum number of images to print') + aparser.add_argument('--black', action='store_true', help='Whether to fill mask on GT with black') + aparser.add_argument('config', type=str, help='Path to evaluation config (e.g. configs/eval1.yaml)') + aparser.add_argument('outpath', type=str, help='Where to put results') + aparser.add_argument('datadir', type=str, + help='Path to folder with images and masks') + aparser.add_argument('predictdirs', type=str, + nargs='+', + help='Path to folders with predicts') + + + main(aparser.parse_args()) diff --git a/lama/bin/split_tar.py b/lama/bin/split_tar.py new file mode 100644 index 0000000000000000000000000000000000000000..90b331f531bbcb9ccc73a87e83d9dc39f9e199ec --- /dev/null +++ b/lama/bin/split_tar.py @@ -0,0 +1,22 @@ +#!/usr/bin/env python3 + + +import tqdm +import webdataset as wds + + +def main(args): + input_dataset = wds.Dataset(args.infile) + output_dataset = wds.ShardWriter(args.outpattern) + for rec in tqdm.tqdm(input_dataset): + output_dataset.write(rec) + + +if __name__ == '__main__': + import argparse + + aparser = argparse.ArgumentParser() + aparser.add_argument('infile', type=str) + aparser.add_argument('outpattern', type=str) + + main(aparser.parse_args()) diff --git a/lama/bin/to_jit.py b/lama/bin/to_jit.py new file mode 100644 index 0000000000000000000000000000000000000000..184e3110167b04e3b927a86536369990177a415b --- /dev/null +++ b/lama/bin/to_jit.py @@ -0,0 +1,76 @@ +import os +from pathlib import Path + +import hydra +import torch +import yaml +from omegaconf import OmegaConf +from torch import nn + +from saicinpainting.training.trainers import load_checkpoint +from saicinpainting.utils import register_debug_signal_handlers + + +class JITWrapper(nn.Module): + def __init__(self, model): + super().__init__() + self.model = model + + def forward(self, image, mask): + batch = { + "image": image, + "mask": mask + } + out = self.model(batch) + return out["inpainted"] + + +@hydra.main(config_path="../configs/prediction", config_name="default.yaml") +def main(predict_config: OmegaConf): + if sys.platform != 'win32': + register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log + + train_config_path = os.path.join(predict_config.model.path, "config.yaml") + with open(train_config_path, "r") as f: + train_config = OmegaConf.create(yaml.safe_load(f)) + + train_config.training_model.predict_only = True + train_config.visualizer.kind = "noop" + + checkpoint_path = os.path.join( + predict_config.model.path, "models", predict_config.model.checkpoint + ) + model = load_checkpoint( + train_config, checkpoint_path, strict=False, map_location="cpu" + ) + model.eval() + jit_model_wrapper = JITWrapper(model) + + image = torch.rand(1, 3, 120, 120) + mask = torch.rand(1, 1, 120, 120) + output = jit_model_wrapper(image, mask) + + if torch.cuda.is_available(): + device = torch.device("cuda") + else: + device = torch.device("cpu") + + image = image.to(device) + mask = mask.to(device) + traced_model = torch.jit.trace(jit_model_wrapper, (image, mask), strict=False).to(device) + + save_path = Path(predict_config.save_path) + save_path.parent.mkdir(parents=True, exist_ok=True) + + print(f"Saving big-lama.pt model to {save_path}") + traced_model.save(save_path) + + print(f"Checking jit model output...") + jit_model = torch.jit.load(str(save_path)) + jit_output = jit_model(image, mask) + diff = (output - jit_output).abs().sum() + print(f"diff: {diff}") + + +if __name__ == "__main__": + main() diff --git a/lama/bin/train.py b/lama/bin/train.py new file mode 100644 index 0000000000000000000000000000000000000000..70f266830c4ffc8b5fb93dbb1572dfe271a7bac2 --- /dev/null +++ b/lama/bin/train.py @@ -0,0 +1,73 @@ +#!/usr/bin/env python3 + +import logging +import os +import sys +import traceback + +os.environ['OMP_NUM_THREADS'] = '1' +os.environ['OPENBLAS_NUM_THREADS'] = '1' +os.environ['MKL_NUM_THREADS'] = '1' +os.environ['VECLIB_MAXIMUM_THREADS'] = '1' +os.environ['NUMEXPR_NUM_THREADS'] = '1' + +import hydra +from omegaconf import OmegaConf +from pytorch_lightning import Trainer +from pytorch_lightning.callbacks import ModelCheckpoint +from pytorch_lightning.loggers import TensorBoardLogger +from pytorch_lightning.plugins import DDPPlugin + +from saicinpainting.training.trainers import make_training_model +from saicinpainting.utils import register_debug_signal_handlers, handle_ddp_subprocess, handle_ddp_parent_process, \ + handle_deterministic_config + +LOGGER = logging.getLogger(__name__) + + +@handle_ddp_subprocess() +@hydra.main(config_path='../configs/training', config_name='tiny_test.yaml') +def main(config: OmegaConf): + try: + need_set_deterministic = handle_deterministic_config(config) + + if sys.platform != 'win32': + register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log + + is_in_ddp_subprocess = handle_ddp_parent_process() + + config.visualizer.outdir = os.path.join(os.getcwd(), config.visualizer.outdir) + if not is_in_ddp_subprocess: + LOGGER.info(OmegaConf.to_yaml(config)) + OmegaConf.save(config, os.path.join(os.getcwd(), 'config.yaml')) + + checkpoints_dir = os.path.join(os.getcwd(), 'models') + os.makedirs(checkpoints_dir, exist_ok=True) + + # there is no need to suppress this logger in ddp, because it handles rank on its own + metrics_logger = TensorBoardLogger(config.location.tb_dir, name=os.path.basename(os.getcwd())) + metrics_logger.log_hyperparams(config) + + training_model = make_training_model(config) + + trainer_kwargs = OmegaConf.to_container(config.trainer.kwargs, resolve=True) + if need_set_deterministic: + trainer_kwargs['deterministic'] = True + + trainer = Trainer( + # there is no need to suppress checkpointing in ddp, because it handles rank on its own + callbacks=ModelCheckpoint(dirpath=checkpoints_dir, **config.trainer.checkpoint_kwargs), + logger=metrics_logger, + default_root_dir=os.getcwd(), + **trainer_kwargs + ) + trainer.fit(training_model) + except KeyboardInterrupt: + LOGGER.warning('Interrupted by user') + except Exception as ex: + LOGGER.critical(f'Training failed due to {ex}:\n{traceback.format_exc()}') + sys.exit(1) + + +if __name__ == '__main__': + main() diff --git a/lama/conda_env.yml b/lama/conda_env.yml new file mode 100644 index 0000000000000000000000000000000000000000..4fd56ef641881619fb7d133d4f1e7b3e296ae560 --- /dev/null +++ b/lama/conda_env.yml @@ -0,0 +1,165 @@ +name: lama +channels: + - defaults + - conda-forge +dependencies: + - _libgcc_mutex=0.1=main + - _openmp_mutex=4.5=1_gnu + - absl-py=0.13.0=py36h06a4308_0 + - aiohttp=3.7.4.post0=py36h7f8727e_2 + - antlr-python-runtime=4.8=py36h9f0ad1d_2 + - async-timeout=3.0.1=py36h06a4308_0 + - attrs=21.2.0=pyhd3eb1b0_0 + - blas=1.0=mkl + - blinker=1.4=py36h06a4308_0 + - brotlipy=0.7.0=py36h27cfd23_1003 + - bzip2=1.0.8=h7b6447c_0 + - c-ares=1.17.1=h27cfd23_0 + - ca-certificates=2021.7.5=h06a4308_1 + - cachetools=4.2.2=pyhd3eb1b0_0 + - certifi=2021.5.30=py36h06a4308_0 + - cffi=1.14.6=py36h400218f_0 + - chardet=4.0.0=py36h06a4308_1003 + - charset-normalizer=2.0.4=pyhd3eb1b0_0 + - click=8.0.1=pyhd3eb1b0_0 + - cloudpickle=2.0.0=pyhd3eb1b0_0 + - coverage=5.5=py36h27cfd23_2 + - cryptography=3.4.7=py36hd23ed53_0 + - cudatoolkit=10.2.89=hfd86e86_1 + - cycler=0.10.0=py36_0 + - cython=0.29.24=py36h295c915_0 + - cytoolz=0.11.0=py36h7b6447c_0 + - dask-core=1.1.4=py36_1 + - dataclasses=0.8=pyh4f3eec9_6 + - dbus=1.13.18=hb2f20db_0 + - decorator=5.0.9=pyhd3eb1b0_0 + - easydict=1.9=py_0 + - expat=2.4.1=h2531618_2 + - ffmpeg=4.2.2=h20bf706_0 + - fontconfig=2.13.1=h6c09931_0 + - freetype=2.10.4=h5ab3b9f_0 + - fsspec=2021.8.1=pyhd3eb1b0_0 + - future=0.18.2=py36_1 + - glib=2.69.1=h5202010_0 + - gmp=6.2.1=h2531618_2 + - gnutls=3.6.15=he1e5248_0 + - google-auth=1.33.0=pyhd3eb1b0_0 + - google-auth-oauthlib=0.4.4=pyhd3eb1b0_0 + - grpcio=1.36.1=py36h2157cd5_1 + - gst-plugins-base=1.14.0=h8213a91_2 + - gstreamer=1.14.0=h28cd5cc_2 + - hydra-core=1.1.0=pyhd8ed1ab_0 + - icu=58.2=he6710b0_3 + - idna=3.2=pyhd3eb1b0_0 + - idna_ssl=1.1.0=py36h06a4308_0 + - imageio=2.9.0=pyhd3eb1b0_0 + - importlib-metadata=4.8.1=py36h06a4308_0 + - importlib_resources=5.2.0=pyhd3eb1b0_1 + - intel-openmp=2021.3.0=h06a4308_3350 + - joblib=1.0.1=pyhd3eb1b0_0 + - jpeg=9b=h024ee3a_2 + - kiwisolver=1.3.1=py36h2531618_0 + - lame=3.100=h7b6447c_0 + - lcms2=2.12=h3be6417_0 + - ld_impl_linux-64=2.35.1=h7274673_9 + - libblas=3.9.0=11_linux64_mkl + - libcblas=3.9.0=11_linux64_mkl + - libffi=3.3=he6710b0_2 + - libgcc-ng=9.3.0=h5101ec6_17 + - libgfortran-ng=9.3.0=ha5ec8a7_17 + - libgfortran5=9.3.0=ha5ec8a7_17 + - libgomp=9.3.0=h5101ec6_17 + - libidn2=2.3.2=h7f8727e_0 + - liblapack=3.9.0=11_linux64_mkl + - libopus=1.3.1=h7b6447c_0 + - libpng=1.6.37=hbc83047_0 + - libprotobuf=3.17.2=h4ff587b_1 + - libstdcxx-ng=9.3.0=hd4cf53a_17 + - libtasn1=4.16.0=h27cfd23_0 + - libtiff=4.2.0=h85742a9_0 + - libunistring=0.9.10=h27cfd23_0 + - libuuid=1.0.3=h1bed415_2 + - libuv=1.40.0=h7b6447c_0 + - libvpx=1.7.0=h439df22_0 + - libwebp-base=1.2.0=h27cfd23_0 + - libxcb=1.14=h7b6447c_0 + - libxml2=2.9.12=h03d6c58_0 + - lz4-c=1.9.3=h295c915_1 + - markdown=3.3.4=py36h06a4308_0 + - matplotlib=3.3.4=py36h06a4308_0 + - matplotlib-base=3.3.4=py36h62a2d02_0 + - mkl=2021.3.0=h06a4308_520 + - multidict=5.1.0=py36h27cfd23_2 + - ncurses=6.2=he6710b0_1 + - nettle=3.7.3=hbbd107a_1 + - networkx=2.2=py36_1 + - ninja=1.10.2=hff7bd54_1 + - numpy=1.19.5=py36hfc0c790_2 + - oauthlib=3.1.1=pyhd3eb1b0_0 + - olefile=0.46=py36_0 + - omegaconf=2.1.1=py36h5fab9bb_0 + - openh264=2.1.0=hd408876_0 + - openjpeg=2.4.0=h3ad879b_0 + - openssl=1.1.1l=h7f8727e_0 + - packaging=21.0=pyhd3eb1b0_0 + - pandas=1.1.5=py36h284efc9_0 + - pcre=8.45=h295c915_0 + - pillow=8.3.1=py36h2c7a002_0 + - pip=21.0.1=py36h06a4308_0 + - protobuf=3.17.2=py36h295c915_0 + - pyasn1=0.4.8=pyhd3eb1b0_0 + - pyasn1-modules=0.2.8=py_0 + - pycparser=2.20=py_2 + - pyjwt=2.1.0=py36h06a4308_0 + - pyopenssl=20.0.1=pyhd3eb1b0_1 + - pyparsing=2.4.7=pyhd3eb1b0_0 + - pyqt=5.9.2=py36h05f1152_2 + - pysocks=1.7.1=py36h06a4308_0 + - python=3.6.13=h12debd9_1 + - python-dateutil=2.8.2=pyhd3eb1b0_0 + - python_abi=3.6=2_cp36m + - pytz=2021.1=pyhd3eb1b0_0 + - pywavelets=1.1.1=py36h7b6447c_2 + - pyyaml=5.4.1=py36h27cfd23_1 + - qt=5.9.7=h5867ecd_1 + - readline=8.1=h27cfd23_0 + - requests=2.26.0=pyhd3eb1b0_0 + - requests-oauthlib=1.3.0=py_0 + - rsa=4.7.2=pyhd3eb1b0_1 + - scikit-image=0.17.2=py36h284efc9_4 + - scikit-learn=0.24.2=py36ha9443f7_0 + - scipy=1.5.3=py36h9e8f40b_0 + - setuptools=58.0.4=py36h06a4308_0 + - sip=4.19.8=py36hf484d3e_0 + - six=1.16.0=pyhd3eb1b0_0 + - sqlite=3.36.0=hc218d9a_0 + - tabulate=0.8.9=py36h06a4308_0 + - tensorboard=2.4.0=pyhc547734_0 + - tensorboard-plugin-wit=1.6.0=py_0 + - threadpoolctl=2.2.0=pyh0d69192_0 + - tifffile=2020.10.1=py36hdd07704_2 + - tk=8.6.11=h1ccaba5_0 + - toolz=0.11.1=pyhd3eb1b0_0 + - tqdm=4.62.2=pyhd3eb1b0_1 + - typing-extensions=3.10.0.2=hd3eb1b0_0 + - typing_extensions=3.10.0.2=pyh06a4308_0 + - urllib3=1.26.6=pyhd3eb1b0_1 + - werkzeug=2.0.1=pyhd3eb1b0_0 + - wheel=0.37.0=pyhd3eb1b0_1 + - x264=1!157.20191217=h7b6447c_0 + - xz=5.2.5=h7b6447c_0 + - yaml=0.2.5=h7b6447c_0 + - yarl=1.6.3=py36h27cfd23_0 + - zipp=3.5.0=pyhd3eb1b0_0 + - zlib=1.2.11=h7b6447c_3 + - zstd=1.4.9=haebb681_0 + - pip: + - albumentations==0.5.2 + - braceexpand==0.1.7 + - imgaug==0.4.0 + - kornia==0.5.0 + - opencv-python==4.5.3.56 + - opencv-python-headless==4.5.3.56 + - shapely==1.7.1 + - webdataset==0.1.76 + - wldhx-yadisk-direct==0.0.6 diff --git a/lama/configs/analyze_mask_errors.yaml b/lama/configs/analyze_mask_errors.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9484a564a75aeab684625b07a75af517f2398327 --- /dev/null +++ b/lama/configs/analyze_mask_errors.yaml @@ -0,0 +1,7 @@ +dataset_kwargs: + img_suffix: .jpg + inpainted_suffix: .jpg + +take_global_top: 30 +take_worst_best_top: 30 +take_overlapping_top: 30 \ No newline at end of file diff --git a/lama/configs/data_gen/random_medium_256.yaml b/lama/configs/data_gen/random_medium_256.yaml new file mode 100644 index 0000000000000000000000000000000000000000..b50c19d5d72c7251dd233c317a47835ccadffc9b --- /dev/null +++ b/lama/configs/data_gen/random_medium_256.yaml @@ -0,0 +1,33 @@ +generator_kind: random + +mask_generator_kwargs: + irregular_proba: 1 + irregular_kwargs: + min_times: 4 + max_times: 5 + max_width: 50 + max_angle: 4 + max_len: 100 + + box_proba: 0.3 + box_kwargs: + margin: 0 + bbox_min_size: 10 + bbox_max_size: 50 + max_times: 5 + min_times: 1 + + segm_proba: 0 + squares_proba: 0 + + variants_n: 5 + +max_masks_per_image: 1 + +cropping: + out_min_size: 256 + handle_small_mode: upscale + out_square_crop: True + crop_min_overlap: 1 + +max_tamper_area: 0.5 diff --git a/lama/configs/data_gen/random_medium_512.yaml b/lama/configs/data_gen/random_medium_512.yaml new file mode 100644 index 0000000000000000000000000000000000000000..42d7a4c3fa4d919b3865ba1e6638650dcf29eea2 --- /dev/null +++ b/lama/configs/data_gen/random_medium_512.yaml @@ -0,0 +1,33 @@ +generator_kind: random + +mask_generator_kwargs: + irregular_proba: 1 + irregular_kwargs: + min_times: 4 + max_times: 10 + max_width: 100 + max_angle: 4 + max_len: 200 + + box_proba: 0.3 + box_kwargs: + margin: 0 + bbox_min_size: 30 + bbox_max_size: 150 + max_times: 5 + min_times: 1 + + segm_proba: 0 + squares_proba: 0 + + variants_n: 5 + +max_masks_per_image: 1 + +cropping: + out_min_size: 512 + handle_small_mode: upscale + out_square_crop: True + crop_min_overlap: 1 + +max_tamper_area: 0.5 diff --git a/lama/configs/data_gen/random_thick_256.yaml b/lama/configs/data_gen/random_thick_256.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e793464a6b9290068a663697cb1a7fd64192b3c6 --- /dev/null +++ b/lama/configs/data_gen/random_thick_256.yaml @@ -0,0 +1,33 @@ +generator_kind: random + +mask_generator_kwargs: + irregular_proba: 1 + irregular_kwargs: + min_times: 1 + max_times: 5 + max_width: 100 + max_angle: 4 + max_len: 200 + + box_proba: 0.3 + box_kwargs: + margin: 10 + bbox_min_size: 30 + bbox_max_size: 150 + max_times: 3 + min_times: 1 + + segm_proba: 0 + squares_proba: 0 + + variants_n: 5 + +max_masks_per_image: 1 + +cropping: + out_min_size: 256 + handle_small_mode: upscale + out_square_crop: True + crop_min_overlap: 1 + +max_tamper_area: 0.5 diff --git a/lama/configs/data_gen/random_thick_512.yaml b/lama/configs/data_gen/random_thick_512.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9c0e07aa376fda988423956bd4176b7123a154cc --- /dev/null +++ b/lama/configs/data_gen/random_thick_512.yaml @@ -0,0 +1,33 @@ +generator_kind: random + +mask_generator_kwargs: + irregular_proba: 1 + irregular_kwargs: + min_times: 1 + max_times: 5 + max_width: 250 + max_angle: 4 + max_len: 450 + + box_proba: 0.3 + box_kwargs: + margin: 10 + bbox_min_size: 30 + bbox_max_size: 300 + max_times: 4 + min_times: 1 + + segm_proba: 0 + squares_proba: 0 + + variants_n: 5 + +max_masks_per_image: 1 + +cropping: + out_min_size: 512 + handle_small_mode: upscale + out_square_crop: True + crop_min_overlap: 1 + +max_tamper_area: 0.5 diff --git a/lama/configs/data_gen/random_thin_256.yaml b/lama/configs/data_gen/random_thin_256.yaml new file mode 100644 index 0000000000000000000000000000000000000000..eb69903af9d86f78779e6647f17e9515c677abaa --- /dev/null +++ b/lama/configs/data_gen/random_thin_256.yaml @@ -0,0 +1,25 @@ +generator_kind: random + +mask_generator_kwargs: + irregular_proba: 1 + irregular_kwargs: + min_times: 4 + max_times: 50 + max_width: 10 + max_angle: 4 + max_len: 40 + box_proba: 0 + segm_proba: 0 + squares_proba: 0 + + variants_n: 5 + +max_masks_per_image: 1 + +cropping: + out_min_size: 256 + handle_small_mode: upscale + out_square_crop: True + crop_min_overlap: 1 + +max_tamper_area: 0.5 diff --git a/lama/configs/data_gen/random_thin_512.yaml b/lama/configs/data_gen/random_thin_512.yaml new file mode 100644 index 0000000000000000000000000000000000000000..db433a241bee048448bf944ced872eb37173ad04 --- /dev/null +++ b/lama/configs/data_gen/random_thin_512.yaml @@ -0,0 +1,25 @@ +generator_kind: random + +mask_generator_kwargs: + irregular_proba: 1 + irregular_kwargs: + min_times: 4 + max_times: 70 + max_width: 20 + max_angle: 4 + max_len: 100 + box_proba: 0 + segm_proba: 0 + squares_proba: 0 + + variants_n: 5 + +max_masks_per_image: 1 + +cropping: + out_min_size: 512 + handle_small_mode: upscale + out_square_crop: True + crop_min_overlap: 1 + +max_tamper_area: 0.5 diff --git a/lama/configs/debug_mask_gen.yaml b/lama/configs/debug_mask_gen.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5c257254ff9ea15ee83c6c7dac08cd93310bca0c --- /dev/null +++ b/lama/configs/debug_mask_gen.yaml @@ -0,0 +1,5 @@ +img_ext: .jpg + +gen_kwargs: + mask_size: 200 + step: 0.5 diff --git a/lama/configs/eval1.yaml b/lama/configs/eval1.yaml new file mode 100644 index 0000000000000000000000000000000000000000..be45b833994fa96cf91cadfecdf63b44192e071a --- /dev/null +++ b/lama/configs/eval1.yaml @@ -0,0 +1,6 @@ +evaluator_kwargs: + batch_size: 8 + +dataset_kwargs: + img_suffix: .png + inpainted_suffix: .jpg \ No newline at end of file diff --git a/lama/configs/eval2.yaml b/lama/configs/eval2.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0836fbfd89f1ee51de39e223552fe48de980d9d3 --- /dev/null +++ b/lama/configs/eval2.yaml @@ -0,0 +1,7 @@ +evaluator_kwargs: + batch_size: 8 + device: cuda + +dataset_kwargs: + img_suffix: .png + inpainted_suffix: .png \ No newline at end of file diff --git a/lama/configs/eval2_cpu.yaml b/lama/configs/eval2_cpu.yaml new file mode 100644 index 0000000000000000000000000000000000000000..730624e8499e96509910da09fbe99f7711997a8d --- /dev/null +++ b/lama/configs/eval2_cpu.yaml @@ -0,0 +1,7 @@ +evaluator_kwargs: + batch_size: 8 + device: cpu + +dataset_kwargs: + img_suffix: .png + inpainted_suffix: .png \ No newline at end of file diff --git a/lama/configs/eval2_gpu.yaml b/lama/configs/eval2_gpu.yaml new file mode 100644 index 0000000000000000000000000000000000000000..eca9d64d1ddaf9eff414d15b446e09de4a5d829c --- /dev/null +++ b/lama/configs/eval2_gpu.yaml @@ -0,0 +1,6 @@ +evaluator_kwargs: + batch_size: 8 + +dataset_kwargs: + img_suffix: .png + inpainted_suffix: .png \ No newline at end of file diff --git a/lama/configs/eval2_jpg.yaml b/lama/configs/eval2_jpg.yaml new file mode 100644 index 0000000000000000000000000000000000000000..be45b833994fa96cf91cadfecdf63b44192e071a --- /dev/null +++ b/lama/configs/eval2_jpg.yaml @@ -0,0 +1,6 @@ +evaluator_kwargs: + batch_size: 8 + +dataset_kwargs: + img_suffix: .png + inpainted_suffix: .jpg \ No newline at end of file diff --git a/lama/configs/eval2_segm.yaml b/lama/configs/eval2_segm.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5b5de329545c2a3df3146eb42997a683edad4b54 --- /dev/null +++ b/lama/configs/eval2_segm.yaml @@ -0,0 +1,10 @@ +evaluator_kwargs: + batch_size: 8 + +dataset_kwargs: + img_suffix: .png + inpainted_suffix: .png + +segmentation: + enable: True + weights_path: ${TORCH_HOME} diff --git a/lama/configs/eval2_segm_test.yaml b/lama/configs/eval2_segm_test.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3a38011bfdd758dc3be9f7aa00ae16854f038c6a --- /dev/null +++ b/lama/configs/eval2_segm_test.yaml @@ -0,0 +1,11 @@ +evaluator_kwargs: + batch_size: 1 + +dataset_kwargs: + img_suffix: _input.png + inpainted_suffix: .png + pad_out_to_modulo: 8 + +segmentation: + enable: True + weights_path: ${TORCH_HOME} diff --git a/lama/configs/eval2_test.yaml b/lama/configs/eval2_test.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2a4543d475656644b8c1271f55bdd099889f80a6 --- /dev/null +++ b/lama/configs/eval2_test.yaml @@ -0,0 +1,7 @@ +evaluator_kwargs: + batch_size: 1 + +dataset_kwargs: + img_suffix: _input.png + inpainted_suffix: .png + pad_out_to_modulo: 8 diff --git a/lama/configs/places2-categories_157.txt b/lama/configs/places2-categories_157.txt new file mode 100644 index 0000000000000000000000000000000000000000..b717681993346d6f776c624019e5cfe46376147b --- /dev/null +++ b/lama/configs/places2-categories_157.txt @@ -0,0 +1,157 @@ +/a/airplane_cabin 1 +/a/airport_terminal 2 +/a/alcove 3 +/a/alley 4 +/a/amphitheater 5 +/a/amusement_park 7 +/a/apartment_building/outdoor 8 +/a/aqueduct 10 +/a/arcade 11 +/a/arch 12 +/a/archive 14 +/a/art_gallery 19 +/a/artists_loft 22 +/a/assembly_line 23 +/a/atrium/public 25 +/a/attic 26 +/a/auditorium 27 +/b/bakery/shop 31 +/b/balcony/exterior 32 +/b/balcony/interior 33 +/b/ballroom 35 +/b/banquet_hall 38 +/b/barndoor 41 +/b/basement 43 +/b/basketball_court/indoor 44 +/b/bathroom 45 +/b/bazaar/indoor 46 +/b/bazaar/outdoor 47 +/b/beach_house 49 +/b/bedchamber 51 +/b/bedroom 52 +/b/berth 55 +/b/boardwalk 57 +/b/boathouse 59 +/b/bookstore 60 +/b/booth/indoor 61 +/b/bow_window/indoor 63 +/b/bowling_alley 64 +/b/bridge 66 +/b/building_facade 67 +/b/bus_interior 70 +/b/bus_station/indoor 71 +/c/cabin/outdoor 74 +/c/campus 77 +/c/canal/urban 79 +/c/candy_store 80 +/c/carrousel 83 +/c/castle 84 +/c/chalet 87 +/c/childs_room 89 +/c/church/indoor 90 +/c/church/outdoor 91 +/c/closet 95 +/c/conference_center 101 +/c/conference_room 102 +/c/construction_site 103 +/c/corridor 106 +/c/cottage 107 +/c/courthouse 108 +/c/courtyard 109 +/d/delicatessen 114 +/d/department_store 115 +/d/diner/outdoor 119 +/d/dining_hall 120 +/d/dining_room 121 +/d/doorway/outdoor 123 +/d/dorm_room 124 +/d/downtown 125 +/d/driveway 127 +/e/elevator/door 129 +/e/elevator_lobby 130 +/e/elevator_shaft 131 +/e/embassy 132 +/e/entrance_hall 134 +/e/escalator/indoor 135 +/f/fastfood_restaurant 139 +/f/fire_escape 143 +/f/fire_station 144 +/f/food_court 148 +/g/galley 155 +/g/garage/outdoor 157 +/g/gas_station 158 +/g/gazebo/exterior 159 +/g/general_store/indoor 160 +/g/general_store/outdoor 161 +/g/greenhouse/outdoor 166 +/g/gymnasium/indoor 168 +/h/hangar/outdoor 170 +/h/hardware_store 172 +/h/home_office 176 +/h/home_theater 177 +/h/hospital 178 +/h/hotel/outdoor 181 +/h/hotel_room 182 +/h/house 183 +/h/hunting_lodge/outdoor 184 +/i/industrial_area 192 +/i/inn/outdoor 193 +/j/jacuzzi/indoor 195 +/j/jail_cell 196 +/k/kasbah 200 +/k/kitchen 203 +/l/laundromat 208 +/l/library/indoor 212 +/l/library/outdoor 213 +/l/lighthouse 214 +/l/living_room 215 +/l/loading_dock 216 +/l/lobby 217 +/l/lock_chamber 218 +/m/mansion 220 +/m/manufactured_home 221 +/m/mausoleum 226 +/m/medina 227 +/m/mezzanine 228 +/m/mosque/outdoor 230 +/m/movie_theater/indoor 235 +/m/museum/outdoor 237 +/n/nursery 240 +/o/oast_house 242 +/o/office 244 +/o/office_building 245 +/o/office_cubicles 246 +/p/pagoda 251 +/p/palace 252 +/p/pantry 253 +/p/parking_garage/indoor 255 +/p/parking_garage/outdoor 256 +/p/pavilion 260 +/p/pet_shop 261 +/p/porch 272 +/r/reception 280 +/r/recreation_room 281 +/r/restaurant_patio 286 +/r/rope_bridge 291 +/r/ruin 292 +/s/sauna 295 +/s/schoolhouse 296 +/s/server_room 298 +/s/shed 299 +/s/shopfront 301 +/s/shopping_mall/indoor 302 +/s/shower 303 +/s/skyscraper 307 +/s/staircase 317 +/s/storage_room 318 +/s/subway_station/platform 320 +/s/synagogue/outdoor 327 +/t/television_room 328 +/t/temple/asia 330 +/t/throne_room 331 +/t/tower 334 +/t/train_station/platform 337 +/u/utility_room 343 +/w/waiting_room 352 +/w/wet_bar 358 +/y/youth_hostel 363 \ No newline at end of file diff --git a/lama/configs/prediction/default.yaml b/lama/configs/prediction/default.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3acff9fa41d0f7cde5ce908e9231f5666fb447d7 --- /dev/null +++ b/lama/configs/prediction/default.yaml @@ -0,0 +1,24 @@ +indir: no # to be overriden in CLI +outdir: no # to be overriden in CLI + +model: + path: no # to be overriden in CLI + checkpoint: best.ckpt + +dataset: + kind: default + img_suffix: .png + pad_out_to_modulo: 8 + +device: cuda +out_key: inpainted + +refine: False # refiner will only run if this is True +refiner: + gpu_ids: 0,1 # the GPU ids of the machine to use. If only single GPU, use: "0," + modulo: ${dataset.pad_out_to_modulo} + n_iters: 15 # number of iterations of refinement for each scale + lr: 0.002 # learning rate + min_side: 512 # all sides of image on all scales should be >= min_side / sqrt(2) + max_scales: 3 # max number of downscaling scales for the image-mask pyramid + px_budget: 1800000 # pixels budget. Any image will be resized to satisfy height*width <= px_budget \ No newline at end of file diff --git a/lama/configs/test_large_30k.lst b/lama/configs/test_large_30k.lst new file mode 100644 index 0000000000000000000000000000000000000000..75ad55277b4119e2bba7f425ef6a92115ce9ff04 --- /dev/null +++ b/lama/configs/test_large_30k.lst @@ -0,0 +1,30000 @@ +Places365_test_00000001.jpg +Places365_test_00000009.jpg +Places365_test_00000016.jpg +Places365_test_00000022.jpg +Places365_test_00000035.jpg +Places365_test_00000037.jpg +Places365_test_00000040.jpg +Places365_test_00000045.jpg +Places365_test_00000052.jpg +Places365_test_00000062.jpg +Places365_test_00000069.jpg +Places365_test_00000077.jpg +Places365_test_00000098.jpg +Places365_test_00000105.jpg +Places365_test_00000131.jpg +Places365_test_00000172.jpg +Places365_test_00000187.jpg +Places365_test_00000200.jpg +Places365_test_00000262.jpg +Places365_test_00000291.jpg +Places365_test_00000294.jpg +Places365_test_00000322.jpg +Places365_test_00000328.jpg +Places365_test_00000332.jpg +Places365_test_00000358.jpg +Places365_test_00000365.jpg +Places365_test_00000371.jpg +Places365_test_00000381.jpg +Places365_test_00000431.jpg +Places365_test_00000435.jpg +Places365_test_00000456.jpg +Places365_test_00000459.jpg +Places365_test_00000469.jpg +Places365_test_00000484.jpg +Places365_test_00000490.jpg +Places365_test_00000517.jpg +Places365_test_00000545.jpg +Places365_test_00000546.jpg +Places365_test_00000555.jpg +Places365_test_00000557.jpg +Places365_test_00000569.jpg +Places365_test_00000574.jpg +Places365_test_00000607.jpg +Places365_test_00000611.jpg +Places365_test_00000614.jpg +Places365_test_00000620.jpg +Places365_test_00000629.jpg +Places365_test_00000643.jpg +Places365_test_00000650.jpg +Places365_test_00000661.jpg +Places365_test_00000670.jpg +Places365_test_00000671.jpg +Places365_test_00000676.jpg +Places365_test_00000687.jpg +Places365_test_00000694.jpg +Places365_test_00000726.jpg +Places365_test_00000730.jpg +Places365_test_00000734.jpg +Places365_test_00000739.jpg +Places365_test_00000770.jpg +Places365_test_00000775.jpg +Places365_test_00000812.jpg +Places365_test_00000844.jpg +Places365_test_00000853.jpg +Places365_test_00000855.jpg +Places365_test_00000859.jpg +Places365_test_00000870.jpg +Places365_test_00000879.jpg +Places365_test_00000885.jpg +Places365_test_00000889.jpg +Places365_test_00000891.jpg +Places365_test_00000931.jpg +Places365_test_00000940.jpg +Places365_test_00000952.jpg +Places365_test_00000990.jpg +Places365_test_00000994.jpg +Places365_test_00000996.jpg +Places365_test_00000997.jpg +Places365_test_00001000.jpg +Places365_test_00001035.jpg +Places365_test_00001040.jpg +Places365_test_00001044.jpg +Places365_test_00001045.jpg +Places365_test_00001062.jpg +Places365_test_00001077.jpg +Places365_test_00001083.jpg +Places365_test_00001091.jpg +Places365_test_00001096.jpg +Places365_test_00001100.jpg +Places365_test_00001114.jpg +Places365_test_00001149.jpg +Places365_test_00001151.jpg +Places365_test_00001158.jpg +Places365_test_00001181.jpg +Places365_test_00001182.jpg +Places365_test_00001191.jpg +Places365_test_00001194.jpg +Places365_test_00001197.jpg +Places365_test_00001200.jpg +Places365_test_00001205.jpg +Places365_test_00001211.jpg +Places365_test_00001216.jpg +Places365_test_00001222.jpg +Places365_test_00001224.jpg +Places365_test_00001233.jpg +Places365_test_00001245.jpg +Places365_test_00001264.jpg +Places365_test_00001268.jpg +Places365_test_00001273.jpg +Places365_test_00001283.jpg +Places365_test_00001287.jpg +Places365_test_00001306.jpg +Places365_test_00001323.jpg +Places365_test_00001327.jpg +Places365_test_00001339.jpg +Places365_test_00001345.jpg +Places365_test_00001354.jpg +Places365_test_00001371.jpg +Places365_test_00001380.jpg +Places365_test_00001393.jpg +Places365_test_00001420.jpg +Places365_test_00001443.jpg +Places365_test_00001449.jpg +Places365_test_00001452.jpg +Places365_test_00001453.jpg +Places365_test_00001463.jpg +Places365_test_00001468.jpg +Places365_test_00001503.jpg +Places365_test_00001533.jpg +Places365_test_00001540.jpg +Places365_test_00001548.jpg +Places365_test_00001566.jpg +Places365_test_00001568.jpg +Places365_test_00001579.jpg +Places365_test_00001580.jpg +Places365_test_00001589.jpg +Places365_test_00001594.jpg +Places365_test_00001602.jpg +Places365_test_00001613.jpg +Places365_test_00001622.jpg +Places365_test_00001672.jpg +Places365_test_00001679.jpg +Places365_test_00001682.jpg +Places365_test_00001690.jpg +Places365_test_00001708.jpg +Places365_test_00001716.jpg +Places365_test_00001722.jpg +Places365_test_00001728.jpg +Places365_test_00001754.jpg +Places365_test_00001774.jpg +Places365_test_00001789.jpg +Places365_test_00001795.jpg +Places365_test_00001798.jpg +Places365_test_00001859.jpg +Places365_test_00001868.jpg +Places365_test_00001879.jpg +Places365_test_00001883.jpg +Places365_test_00001886.jpg +Places365_test_00001890.jpg +Places365_test_00001892.jpg +Places365_test_00001901.jpg +Places365_test_00001910.jpg +Places365_test_00001929.jpg +Places365_test_00001942.jpg +Places365_test_00001947.jpg +Places365_test_00001965.jpg +Places365_test_00001981.jpg +Places365_test_00001991.jpg +Places365_test_00002011.jpg +Places365_test_00002017.jpg +Places365_test_00002026.jpg +Places365_test_00002036.jpg +Places365_test_00002041.jpg +Places365_test_00002057.jpg +Places365_test_00002059.jpg +Places365_test_00002065.jpg +Places365_test_00002073.jpg +Places365_test_00002079.jpg +Places365_test_00002082.jpg +Places365_test_00002089.jpg +Places365_test_00002094.jpg +Places365_test_00002095.jpg +Places365_test_00002138.jpg +Places365_test_00002170.jpg +Places365_test_00002172.jpg +Places365_test_00002178.jpg +Places365_test_00002185.jpg +Places365_test_00002187.jpg +Places365_test_00002192.jpg +Places365_test_00002195.jpg +Places365_test_00002198.jpg +Places365_test_00002203.jpg +Places365_test_00002222.jpg +Places365_test_00002232.jpg +Places365_test_00002243.jpg +Places365_test_00002252.jpg +Places365_test_00002294.jpg +Places365_test_00002301.jpg +Places365_test_00002310.jpg +Places365_test_00002322.jpg +Places365_test_00002333.jpg +Places365_test_00002339.jpg +Places365_test_00002356.jpg +Places365_test_00002364.jpg +Places365_test_00002369.jpg +Places365_test_00002372.jpg +Places365_test_00002374.jpg +Places365_test_00002379.jpg +Places365_test_00002380.jpg +Places365_test_00002381.jpg +Places365_test_00002382.jpg +Places365_test_00002408.jpg +Places365_test_00002412.jpg +Places365_test_00002422.jpg +Places365_test_00002437.jpg +Places365_test_00002459.jpg +Places365_test_00002466.jpg +Places365_test_00002473.jpg +Places365_test_00002494.jpg +Places365_test_00002500.jpg +Places365_test_00002526.jpg +Places365_test_00002537.jpg +Places365_test_00002541.jpg +Places365_test_00002550.jpg +Places365_test_00002557.jpg +Places365_test_00002566.jpg +Places365_test_00002571.jpg +Places365_test_00002592.jpg +Places365_test_00002595.jpg +Places365_test_00002632.jpg +Places365_test_00002659.jpg +Places365_test_00002661.jpg +Places365_test_00002688.jpg +Places365_test_00002691.jpg +Places365_test_00002699.jpg +Places365_test_00002743.jpg +Places365_test_00002786.jpg +Places365_test_00002805.jpg +Places365_test_00002806.jpg +Places365_test_00002814.jpg +Places365_test_00002817.jpg +Places365_test_00002842.jpg +Places365_test_00002848.jpg +Places365_test_00002872.jpg +Places365_test_00002887.jpg +Places365_test_00002898.jpg +Places365_test_00002904.jpg +Places365_test_00002925.jpg +Places365_test_00002932.jpg +Places365_test_00002942.jpg +Places365_test_00002990.jpg +Places365_test_00002992.jpg +Places365_test_00003000.jpg +Places365_test_00003005.jpg +Places365_test_00003016.jpg +Places365_test_00003017.jpg +Places365_test_00003018.jpg +Places365_test_00003026.jpg +Places365_test_00003027.jpg +Places365_test_00003032.jpg +Places365_test_00003038.jpg +Places365_test_00003050.jpg +Places365_test_00003063.jpg +Places365_test_00003076.jpg +Places365_test_00003084.jpg +Places365_test_00003088.jpg +Places365_test_00003091.jpg +Places365_test_00003105.jpg +Places365_test_00003113.jpg +Places365_test_00003125.jpg +Places365_test_00003126.jpg +Places365_test_00003144.jpg +Places365_test_00003156.jpg +Places365_test_00003161.jpg +Places365_test_00003164.jpg +Places365_test_00003166.jpg +Places365_test_00003167.jpg +Places365_test_00003181.jpg +Places365_test_00003211.jpg +Places365_test_00003216.jpg +Places365_test_00003221.jpg +Places365_test_00003233.jpg +Places365_test_00003236.jpg +Places365_test_00003237.jpg +Places365_test_00003246.jpg +Places365_test_00003248.jpg +Places365_test_00003251.jpg +Places365_test_00003257.jpg +Places365_test_00003272.jpg +Places365_test_00003287.jpg +Places365_test_00003316.jpg +Places365_test_00003337.jpg +Places365_test_00003338.jpg +Places365_test_00003350.jpg +Places365_test_00003373.jpg +Places365_test_00003393.jpg +Places365_test_00003406.jpg +Places365_test_00003411.jpg +Places365_test_00003412.jpg +Places365_test_00003416.jpg +Places365_test_00003426.jpg +Places365_test_00003427.jpg +Places365_test_00003453.jpg +Places365_test_00003484.jpg +Places365_test_00003487.jpg +Places365_test_00003491.jpg +Places365_test_00003545.jpg +Places365_test_00003555.jpg +Places365_test_00003567.jpg +Places365_test_00003575.jpg +Places365_test_00003582.jpg +Places365_test_00003595.jpg +Places365_test_00003609.jpg +Places365_test_00003613.jpg +Places365_test_00003620.jpg +Places365_test_00003635.jpg +Places365_test_00003647.jpg +Places365_test_00003650.jpg +Places365_test_00003665.jpg +Places365_test_00003672.jpg +Places365_test_00003686.jpg +Places365_test_00003720.jpg +Places365_test_00003722.jpg +Places365_test_00003731.jpg +Places365_test_00003732.jpg +Places365_test_00003748.jpg +Places365_test_00003770.jpg +Places365_test_00003773.jpg +Places365_test_00003778.jpg +Places365_test_00003786.jpg +Places365_test_00003796.jpg +Places365_test_00003804.jpg +Places365_test_00003823.jpg +Places365_test_00003842.jpg +Places365_test_00003857.jpg +Places365_test_00003860.jpg +Places365_test_00003901.jpg +Places365_test_00003941.jpg +Places365_test_00003942.jpg +Places365_test_00003967.jpg +Places365_test_00003968.jpg +Places365_test_00003991.jpg +Places365_test_00004012.jpg +Places365_test_00004036.jpg +Places365_test_00004047.jpg +Places365_test_00004056.jpg +Places365_test_00004073.jpg +Places365_test_00004081.jpg +Places365_test_00004116.jpg +Places365_test_00004119.jpg +Places365_test_00004142.jpg +Places365_test_00004146.jpg +Places365_test_00004151.jpg +Places365_test_00004160.jpg +Places365_test_00004163.jpg +Places365_test_00004166.jpg +Places365_test_00004173.jpg +Places365_test_00004176.jpg +Places365_test_00004194.jpg +Places365_test_00004220.jpg +Places365_test_00004221.jpg +Places365_test_00004225.jpg +Places365_test_00004226.jpg +Places365_test_00004249.jpg +Places365_test_00004256.jpg +Places365_test_00004268.jpg +Places365_test_00004284.jpg +Places365_test_00004286.jpg +Places365_test_00004292.jpg +Places365_test_00004293.jpg +Places365_test_00004314.jpg +Places365_test_00004318.jpg +Places365_test_00004342.jpg +Places365_test_00004358.jpg +Places365_test_00004367.jpg +Places365_test_00004381.jpg +Places365_test_00004385.jpg +Places365_test_00004392.jpg +Places365_test_00004395.jpg +Places365_test_00004410.jpg +Places365_test_00004474.jpg +Places365_test_00004508.jpg +Places365_test_00004514.jpg +Places365_test_00004552.jpg +Places365_test_00004557.jpg +Places365_test_00004559.jpg +Places365_test_00004570.jpg +Places365_test_00004589.jpg +Places365_test_00004601.jpg +Places365_test_00004617.jpg +Places365_test_00004619.jpg +Places365_test_00004626.jpg +Places365_test_00004637.jpg +Places365_test_00004647.jpg +Places365_test_00004648.jpg +Places365_test_00004674.jpg +Places365_test_00004680.jpg +Places365_test_00004697.jpg +Places365_test_00004702.jpg +Places365_test_00004719.jpg +Places365_test_00004726.jpg +Places365_test_00004732.jpg +Places365_test_00004742.jpg +Places365_test_00004751.jpg +Places365_test_00004753.jpg +Places365_test_00004755.jpg +Places365_test_00004762.jpg +Places365_test_00004766.jpg +Places365_test_00004774.jpg +Places365_test_00004780.jpg +Places365_test_00004807.jpg +Places365_test_00004808.jpg +Places365_test_00004811.jpg +Places365_test_00004812.jpg +Places365_test_00004817.jpg +Places365_test_00004824.jpg +Places365_test_00004841.jpg +Places365_test_00004856.jpg +Places365_test_00004858.jpg +Places365_test_00004863.jpg +Places365_test_00004874.jpg +Places365_test_00004879.jpg +Places365_test_00004880.jpg +Places365_test_00004899.jpg +Places365_test_00004900.jpg +Places365_test_00004903.jpg +Places365_test_00004933.jpg +Places365_test_00004935.jpg +Places365_test_00004944.jpg +Places365_test_00004957.jpg +Places365_test_00004969.jpg +Places365_test_00004983.jpg +Places365_test_00004991.jpg +Places365_test_00005011.jpg +Places365_test_00005012.jpg +Places365_test_00005015.jpg +Places365_test_00005032.jpg +Places365_test_00005065.jpg +Places365_test_00005067.jpg +Places365_test_00005085.jpg +Places365_test_00005100.jpg +Places365_test_00005106.jpg +Places365_test_00005121.jpg +Places365_test_00005158.jpg +Places365_test_00005162.jpg +Places365_test_00005166.jpg +Places365_test_00005170.jpg +Places365_test_00005194.jpg +Places365_test_00005195.jpg +Places365_test_00005206.jpg +Places365_test_00005208.jpg +Places365_test_00005218.jpg +Places365_test_00005220.jpg +Places365_test_00005238.jpg +Places365_test_00005260.jpg +Places365_test_00005289.jpg +Places365_test_00005296.jpg +Places365_test_00005298.jpg +Places365_test_00005310.jpg +Places365_test_00005325.jpg +Places365_test_00005343.jpg +Places365_test_00005361.jpg +Places365_test_00005375.jpg +Places365_test_00005419.jpg +Places365_test_00005427.jpg +Places365_test_00005439.jpg +Places365_test_00005449.jpg +Places365_test_00005467.jpg +Places365_test_00005475.jpg +Places365_test_00005489.jpg +Places365_test_00005493.jpg +Places365_test_00005507.jpg +Places365_test_00005526.jpg +Places365_test_00005538.jpg +Places365_test_00005542.jpg +Places365_test_00005547.jpg +Places365_test_00005578.jpg +Places365_test_00005586.jpg +Places365_test_00005620.jpg +Places365_test_00005629.jpg +Places365_test_00005640.jpg +Places365_test_00005643.jpg +Places365_test_00005662.jpg +Places365_test_00005669.jpg +Places365_test_00005682.jpg +Places365_test_00005723.jpg +Places365_test_00005726.jpg +Places365_test_00005732.jpg +Places365_test_00005764.jpg +Places365_test_00005775.jpg +Places365_test_00005820.jpg +Places365_test_00005827.jpg +Places365_test_00005843.jpg +Places365_test_00005844.jpg +Places365_test_00005860.jpg +Places365_test_00005868.jpg +Places365_test_00005876.jpg +Places365_test_00005895.jpg +Places365_test_00005897.jpg +Places365_test_00005918.jpg +Places365_test_00005931.jpg +Places365_test_00005934.jpg +Places365_test_00005962.jpg +Places365_test_00005971.jpg +Places365_test_00006003.jpg +Places365_test_00006049.jpg +Places365_test_00006060.jpg +Places365_test_00006068.jpg +Places365_test_00006070.jpg +Places365_test_00006078.jpg +Places365_test_00006090.jpg +Places365_test_00006106.jpg +Places365_test_00006124.jpg +Places365_test_00006141.jpg +Places365_test_00006154.jpg +Places365_test_00006160.jpg +Places365_test_00006165.jpg +Places365_test_00006172.jpg +Places365_test_00006199.jpg +Places365_test_00006260.jpg +Places365_test_00006266.jpg +Places365_test_00006271.jpg +Places365_test_00006272.jpg +Places365_test_00006284.jpg +Places365_test_00006285.jpg +Places365_test_00006291.jpg +Places365_test_00006300.jpg +Places365_test_00006305.jpg +Places365_test_00006326.jpg +Places365_test_00006353.jpg +Places365_test_00006356.jpg +Places365_test_00006359.jpg +Places365_test_00006385.jpg +Places365_test_00006387.jpg +Places365_test_00006405.jpg +Places365_test_00006409.jpg +Places365_test_00006420.jpg +Places365_test_00006425.jpg +Places365_test_00006428.jpg +Places365_test_00006434.jpg +Places365_test_00006439.jpg +Places365_test_00006452.jpg +Places365_test_00006457.jpg +Places365_test_00006460.jpg +Places365_test_00006466.jpg +Places365_test_00006503.jpg +Places365_test_00006510.jpg +Places365_test_00006519.jpg +Places365_test_00006526.jpg +Places365_test_00006531.jpg +Places365_test_00006545.jpg +Places365_test_00006550.jpg +Places365_test_00006551.jpg +Places365_test_00006558.jpg +Places365_test_00006565.jpg +Places365_test_00006575.jpg +Places365_test_00006578.jpg +Places365_test_00006579.jpg +Places365_test_00006584.jpg +Places365_test_00006599.jpg +Places365_test_00006609.jpg +Places365_test_00006616.jpg +Places365_test_00006642.jpg +Places365_test_00006691.jpg +Places365_test_00006696.jpg +Places365_test_00006698.jpg +Places365_test_00006704.jpg +Places365_test_00006717.jpg +Places365_test_00006719.jpg +Places365_test_00006727.jpg +Places365_test_00006731.jpg +Places365_test_00006741.jpg +Places365_test_00006750.jpg +Places365_test_00006751.jpg +Places365_test_00006755.jpg +Places365_test_00006759.jpg +Places365_test_00006761.jpg +Places365_test_00006778.jpg +Places365_test_00006783.jpg +Places365_test_00006813.jpg +Places365_test_00006814.jpg +Places365_test_00006844.jpg +Places365_test_00006845.jpg +Places365_test_00006847.jpg +Places365_test_00006853.jpg +Places365_test_00006854.jpg +Places365_test_00006855.jpg +Places365_test_00006866.jpg +Places365_test_00006869.jpg +Places365_test_00006886.jpg +Places365_test_00006891.jpg +Places365_test_00006893.jpg +Places365_test_00006899.jpg +Places365_test_00006907.jpg +Places365_test_00006908.jpg +Places365_test_00006921.jpg +Places365_test_00006926.jpg +Places365_test_00006935.jpg +Places365_test_00006940.jpg +Places365_test_00006946.jpg +Places365_test_00006995.jpg +Places365_test_00007014.jpg +Places365_test_00007025.jpg +Places365_test_00007030.jpg +Places365_test_00007036.jpg +Places365_test_00007040.jpg +Places365_test_00007042.jpg +Places365_test_00007053.jpg +Places365_test_00007058.jpg +Places365_test_00007072.jpg +Places365_test_00007077.jpg +Places365_test_00007099.jpg +Places365_test_00007103.jpg +Places365_test_00007104.jpg +Places365_test_00007108.jpg +Places365_test_00007110.jpg +Places365_test_00007112.jpg +Places365_test_00007117.jpg +Places365_test_00007123.jpg +Places365_test_00007129.jpg +Places365_test_00007146.jpg +Places365_test_00007149.jpg +Places365_test_00007179.jpg +Places365_test_00007213.jpg +Places365_test_00007215.jpg +Places365_test_00007220.jpg +Places365_test_00007222.jpg +Places365_test_00007255.jpg +Places365_test_00007259.jpg +Places365_test_00007262.jpg +Places365_test_00007283.jpg +Places365_test_00007291.jpg +Places365_test_00007293.jpg +Places365_test_00007309.jpg +Places365_test_00007333.jpg +Places365_test_00007343.jpg +Places365_test_00007353.jpg +Places365_test_00007373.jpg +Places365_test_00007387.jpg +Places365_test_00007389.jpg +Places365_test_00007395.jpg +Places365_test_00007396.jpg +Places365_test_00007404.jpg +Places365_test_00007405.jpg +Places365_test_00007408.jpg +Places365_test_00007427.jpg +Places365_test_00007441.jpg +Places365_test_00007463.jpg +Places365_test_00007467.jpg +Places365_test_00007477.jpg +Places365_test_00007480.jpg +Places365_test_00007513.jpg +Places365_test_00007514.jpg +Places365_test_00007533.jpg +Places365_test_00007536.jpg +Places365_test_00007556.jpg +Places365_test_00007571.jpg +Places365_test_00007572.jpg +Places365_test_00007594.jpg +Places365_test_00007608.jpg +Places365_test_00007617.jpg +Places365_test_00007619.jpg +Places365_test_00007620.jpg +Places365_test_00007623.jpg +Places365_test_00007624.jpg +Places365_test_00007625.jpg +Places365_test_00007644.jpg +Places365_test_00007646.jpg +Places365_test_00007679.jpg +Places365_test_00007688.jpg +Places365_test_00007695.jpg +Places365_test_00007710.jpg +Places365_test_00007724.jpg +Places365_test_00007730.jpg +Places365_test_00007746.jpg +Places365_test_00007753.jpg +Places365_test_00007762.jpg +Places365_test_00007782.jpg +Places365_test_00007794.jpg +Places365_test_00007802.jpg +Places365_test_00007803.jpg +Places365_test_00007809.jpg +Places365_test_00007825.jpg +Places365_test_00007831.jpg +Places365_test_00007834.jpg +Places365_test_00007842.jpg +Places365_test_00007868.jpg +Places365_test_00007871.jpg +Places365_test_00007880.jpg +Places365_test_00007896.jpg +Places365_test_00007914.jpg +Places365_test_00007915.jpg +Places365_test_00007920.jpg +Places365_test_00007931.jpg +Places365_test_00007945.jpg +Places365_test_00007949.jpg +Places365_test_00007964.jpg +Places365_test_00007976.jpg +Places365_test_00007996.jpg +Places365_test_00008005.jpg +Places365_test_00008016.jpg +Places365_test_00008019.jpg +Places365_test_00008023.jpg +Places365_test_00008066.jpg +Places365_test_00008070.jpg +Places365_test_00008101.jpg +Places365_test_00008103.jpg +Places365_test_00008107.jpg +Places365_test_00008124.jpg +Places365_test_00008130.jpg +Places365_test_00008185.jpg +Places365_test_00008209.jpg +Places365_test_00008248.jpg +Places365_test_00008256.jpg +Places365_test_00008274.jpg +Places365_test_00008291.jpg +Places365_test_00008304.jpg +Places365_test_00008306.jpg +Places365_test_00008319.jpg +Places365_test_00008322.jpg +Places365_test_00008353.jpg +Places365_test_00008359.jpg +Places365_test_00008363.jpg +Places365_test_00008374.jpg +Places365_test_00008377.jpg +Places365_test_00008384.jpg +Places365_test_00008391.jpg +Places365_test_00008405.jpg +Places365_test_00008414.jpg +Places365_test_00008419.jpg +Places365_test_00008425.jpg +Places365_test_00008431.jpg +Places365_test_00008436.jpg +Places365_test_00008461.jpg +Places365_test_00008465.jpg +Places365_test_00008479.jpg +Places365_test_00008482.jpg +Places365_test_00008487.jpg +Places365_test_00008493.jpg +Places365_test_00008497.jpg +Places365_test_00008501.jpg +Places365_test_00008504.jpg +Places365_test_00008520.jpg +Places365_test_00008522.jpg +Places365_test_00008530.jpg +Places365_test_00008553.jpg +Places365_test_00008557.jpg +Places365_test_00008569.jpg +Places365_test_00008588.jpg +Places365_test_00008589.jpg +Places365_test_00008590.jpg +Places365_test_00008610.jpg +Places365_test_00008611.jpg +Places365_test_00008617.jpg +Places365_test_00008630.jpg +Places365_test_00008639.jpg +Places365_test_00008649.jpg +Places365_test_00008654.jpg +Places365_test_00008676.jpg +Places365_test_00008685.jpg +Places365_test_00008693.jpg +Places365_test_00008716.jpg +Places365_test_00008744.jpg +Places365_test_00008750.jpg +Places365_test_00008754.jpg +Places365_test_00008761.jpg +Places365_test_00008766.jpg +Places365_test_00008776.jpg +Places365_test_00008777.jpg +Places365_test_00008790.jpg +Places365_test_00008791.jpg +Places365_test_00008800.jpg +Places365_test_00008845.jpg +Places365_test_00008852.jpg +Places365_test_00008883.jpg +Places365_test_00008887.jpg +Places365_test_00008917.jpg +Places365_test_00008934.jpg +Places365_test_00008946.jpg +Places365_test_00008960.jpg +Places365_test_00008973.jpg +Places365_test_00009005.jpg +Places365_test_00009009.jpg +Places365_test_00009034.jpg +Places365_test_00009041.jpg +Places365_test_00009050.jpg +Places365_test_00009055.jpg +Places365_test_00009063.jpg +Places365_test_00009072.jpg +Places365_test_00009073.jpg +Places365_test_00009076.jpg +Places365_test_00009103.jpg +Places365_test_00009106.jpg +Places365_test_00009133.jpg +Places365_test_00009134.jpg +Places365_test_00009145.jpg +Places365_test_00009150.jpg +Places365_test_00009163.jpg +Places365_test_00009178.jpg +Places365_test_00009185.jpg +Places365_test_00009191.jpg +Places365_test_00009209.jpg +Places365_test_00009218.jpg +Places365_test_00009219.jpg +Places365_test_00009230.jpg +Places365_test_00009235.jpg +Places365_test_00009245.jpg +Places365_test_00009256.jpg +Places365_test_00009262.jpg +Places365_test_00009285.jpg +Places365_test_00009290.jpg +Places365_test_00009296.jpg +Places365_test_00009297.jpg +Places365_test_00009304.jpg +Places365_test_00009320.jpg +Places365_test_00009357.jpg +Places365_test_00009399.jpg +Places365_test_00009400.jpg +Places365_test_00009408.jpg +Places365_test_00009412.jpg +Places365_test_00009429.jpg +Places365_test_00009436.jpg +Places365_test_00009444.jpg +Places365_test_00009450.jpg +Places365_test_00009451.jpg +Places365_test_00009472.jpg +Places365_test_00009487.jpg +Places365_test_00009494.jpg +Places365_test_00009500.jpg +Places365_test_00009502.jpg +Places365_test_00009510.jpg +Places365_test_00009536.jpg +Places365_test_00009539.jpg +Places365_test_00009545.jpg +Places365_test_00009546.jpg +Places365_test_00009551.jpg +Places365_test_00009561.jpg +Places365_test_00009562.jpg +Places365_test_00009563.jpg +Places365_test_00009577.jpg +Places365_test_00009584.jpg +Places365_test_00009602.jpg +Places365_test_00009658.jpg +Places365_test_00009660.jpg +Places365_test_00009665.jpg +Places365_test_00009684.jpg +Places365_test_00009689.jpg +Places365_test_00009700.jpg +Places365_test_00009706.jpg +Places365_test_00009707.jpg +Places365_test_00009715.jpg +Places365_test_00009743.jpg +Places365_test_00009761.jpg +Places365_test_00009775.jpg +Places365_test_00009776.jpg +Places365_test_00009791.jpg +Places365_test_00009794.jpg +Places365_test_00009811.jpg +Places365_test_00009824.jpg +Places365_test_00009835.jpg +Places365_test_00009845.jpg +Places365_test_00009846.jpg +Places365_test_00009848.jpg +Places365_test_00009861.jpg +Places365_test_00009871.jpg +Places365_test_00009874.jpg +Places365_test_00009893.jpg +Places365_test_00009896.jpg +Places365_test_00009905.jpg +Places365_test_00009906.jpg +Places365_test_00009912.jpg +Places365_test_00009915.jpg +Places365_test_00009920.jpg +Places365_test_00009927.jpg +Places365_test_00009928.jpg +Places365_test_00009930.jpg +Places365_test_00009934.jpg +Places365_test_00009941.jpg +Places365_test_00009952.jpg +Places365_test_00009956.jpg +Places365_test_00009976.jpg +Places365_test_00009979.jpg +Places365_test_00009981.jpg +Places365_test_00009994.jpg +Places365_test_00009998.jpg +Places365_test_00010002.jpg +Places365_test_00010006.jpg +Places365_test_00010007.jpg +Places365_test_00010014.jpg +Places365_test_00010053.jpg +Places365_test_00010060.jpg +Places365_test_00010062.jpg +Places365_test_00010067.jpg +Places365_test_00010081.jpg +Places365_test_00010084.jpg +Places365_test_00010099.jpg +Places365_test_00010105.jpg +Places365_test_00010110.jpg +Places365_test_00010112.jpg +Places365_test_00010151.jpg +Places365_test_00010176.jpg +Places365_test_00010181.jpg +Places365_test_00010196.jpg +Places365_test_00010203.jpg +Places365_test_00010231.jpg +Places365_test_00010236.jpg +Places365_test_00010241.jpg +Places365_test_00010250.jpg +Places365_test_00010266.jpg +Places365_test_00010280.jpg +Places365_test_00010291.jpg +Places365_test_00010293.jpg +Places365_test_00010304.jpg +Places365_test_00010319.jpg +Places365_test_00010331.jpg +Places365_test_00010342.jpg +Places365_test_00010352.jpg +Places365_test_00010363.jpg +Places365_test_00010376.jpg +Places365_test_00010381.jpg +Places365_test_00010402.jpg +Places365_test_00010404.jpg +Places365_test_00010415.jpg +Places365_test_00010434.jpg +Places365_test_00010450.jpg +Places365_test_00010455.jpg +Places365_test_00010462.jpg +Places365_test_00010489.jpg +Places365_test_00010521.jpg +Places365_test_00010556.jpg +Places365_test_00010567.jpg +Places365_test_00010578.jpg +Places365_test_00010587.jpg +Places365_test_00010598.jpg +Places365_test_00010623.jpg +Places365_test_00010624.jpg +Places365_test_00010627.jpg +Places365_test_00010634.jpg +Places365_test_00010638.jpg +Places365_test_00010640.jpg +Places365_test_00010643.jpg +Places365_test_00010678.jpg +Places365_test_00010682.jpg +Places365_test_00010689.jpg +Places365_test_00010692.jpg +Places365_test_00010707.jpg +Places365_test_00010726.jpg +Places365_test_00010750.jpg +Places365_test_00010752.jpg +Places365_test_00010774.jpg +Places365_test_00010781.jpg +Places365_test_00010802.jpg +Places365_test_00010807.jpg +Places365_test_00010816.jpg +Places365_test_00010825.jpg +Places365_test_00010830.jpg +Places365_test_00010841.jpg +Places365_test_00010867.jpg +Places365_test_00010874.jpg +Places365_test_00010876.jpg +Places365_test_00010881.jpg +Places365_test_00010888.jpg +Places365_test_00010895.jpg +Places365_test_00010911.jpg +Places365_test_00010921.jpg +Places365_test_00010959.jpg +Places365_test_00010971.jpg +Places365_test_00010989.jpg +Places365_test_00011016.jpg +Places365_test_00011017.jpg +Places365_test_00011044.jpg +Places365_test_00011076.jpg +Places365_test_00011090.jpg +Places365_test_00011101.jpg +Places365_test_00011107.jpg +Places365_test_00011128.jpg +Places365_test_00011134.jpg +Places365_test_00011146.jpg +Places365_test_00011152.jpg +Places365_test_00011170.jpg +Places365_test_00011183.jpg +Places365_test_00011202.jpg +Places365_test_00011206.jpg +Places365_test_00011211.jpg +Places365_test_00011213.jpg +Places365_test_00011214.jpg +Places365_test_00011215.jpg +Places365_test_00011240.jpg +Places365_test_00011260.jpg +Places365_test_00011262.jpg +Places365_test_00011273.jpg +Places365_test_00011277.jpg +Places365_test_00011280.jpg +Places365_test_00011282.jpg +Places365_test_00011284.jpg +Places365_test_00011295.jpg +Places365_test_00011300.jpg +Places365_test_00011310.jpg +Places365_test_00011312.jpg +Places365_test_00011313.jpg +Places365_test_00011330.jpg +Places365_test_00011332.jpg +Places365_test_00011352.jpg +Places365_test_00011358.jpg +Places365_test_00011368.jpg +Places365_test_00011377.jpg +Places365_test_00011418.jpg +Places365_test_00011456.jpg +Places365_test_00011457.jpg +Places365_test_00011477.jpg +Places365_test_00011480.jpg +Places365_test_00011495.jpg +Places365_test_00011508.jpg +Places365_test_00011515.jpg +Places365_test_00011534.jpg +Places365_test_00011545.jpg +Places365_test_00011560.jpg +Places365_test_00011584.jpg +Places365_test_00011591.jpg +Places365_test_00011619.jpg +Places365_test_00011623.jpg +Places365_test_00011626.jpg +Places365_test_00011649.jpg +Places365_test_00011669.jpg +Places365_test_00011674.jpg +Places365_test_00011686.jpg +Places365_test_00011690.jpg +Places365_test_00011707.jpg +Places365_test_00011718.jpg +Places365_test_00011719.jpg +Places365_test_00011742.jpg +Places365_test_00011747.jpg +Places365_test_00011759.jpg +Places365_test_00011774.jpg +Places365_test_00011790.jpg +Places365_test_00011801.jpg +Places365_test_00011824.jpg +Places365_test_00011826.jpg +Places365_test_00011848.jpg +Places365_test_00011862.jpg +Places365_test_00011869.jpg +Places365_test_00011870.jpg +Places365_test_00011871.jpg +Places365_test_00011873.jpg +Places365_test_00011877.jpg +Places365_test_00011887.jpg +Places365_test_00011896.jpg +Places365_test_00011899.jpg +Places365_test_00011900.jpg +Places365_test_00011903.jpg +Places365_test_00011925.jpg +Places365_test_00011939.jpg +Places365_test_00011943.jpg +Places365_test_00011954.jpg +Places365_test_00011958.jpg +Places365_test_00011960.jpg +Places365_test_00011963.jpg +Places365_test_00012001.jpg +Places365_test_00012008.jpg +Places365_test_00012010.jpg +Places365_test_00012022.jpg +Places365_test_00012046.jpg +Places365_test_00012051.jpg +Places365_test_00012075.jpg +Places365_test_00012076.jpg +Places365_test_00012084.jpg +Places365_test_00012100.jpg +Places365_test_00012127.jpg +Places365_test_00012133.jpg +Places365_test_00012135.jpg +Places365_test_00012141.jpg +Places365_test_00012186.jpg +Places365_test_00012200.jpg +Places365_test_00012218.jpg +Places365_test_00012224.jpg +Places365_test_00012230.jpg +Places365_test_00012254.jpg +Places365_test_00012265.jpg +Places365_test_00012269.jpg +Places365_test_00012270.jpg +Places365_test_00012279.jpg +Places365_test_00012317.jpg +Places365_test_00012320.jpg +Places365_test_00012338.jpg +Places365_test_00012342.jpg +Places365_test_00012364.jpg +Places365_test_00012370.jpg +Places365_test_00012384.jpg +Places365_test_00012392.jpg +Places365_test_00012397.jpg +Places365_test_00012402.jpg +Places365_test_00012415.jpg +Places365_test_00012425.jpg +Places365_test_00012440.jpg +Places365_test_00012441.jpg +Places365_test_00012452.jpg +Places365_test_00012456.jpg +Places365_test_00012470.jpg +Places365_test_00012473.jpg +Places365_test_00012475.jpg +Places365_test_00012480.jpg +Places365_test_00012487.jpg +Places365_test_00012491.jpg +Places365_test_00012501.jpg +Places365_test_00012510.jpg +Places365_test_00012519.jpg +Places365_test_00012543.jpg +Places365_test_00012552.jpg +Places365_test_00012553.jpg +Places365_test_00012557.jpg +Places365_test_00012563.jpg +Places365_test_00012564.jpg +Places365_test_00012585.jpg +Places365_test_00012587.jpg +Places365_test_00012614.jpg +Places365_test_00012615.jpg +Places365_test_00012616.jpg +Places365_test_00012622.jpg +Places365_test_00012636.jpg +Places365_test_00012640.jpg +Places365_test_00012644.jpg +Places365_test_00012672.jpg +Places365_test_00012681.jpg +Places365_test_00012723.jpg +Places365_test_00012730.jpg +Places365_test_00012745.jpg +Places365_test_00012780.jpg +Places365_test_00012791.jpg +Places365_test_00012792.jpg +Places365_test_00012799.jpg +Places365_test_00012801.jpg +Places365_test_00012832.jpg +Places365_test_00012838.jpg +Places365_test_00012842.jpg +Places365_test_00012901.jpg +Places365_test_00012905.jpg +Places365_test_00012913.jpg +Places365_test_00012922.jpg +Places365_test_00012926.jpg +Places365_test_00012927.jpg +Places365_test_00012946.jpg +Places365_test_00012981.jpg +Places365_test_00012985.jpg +Places365_test_00012989.jpg +Places365_test_00013005.jpg +Places365_test_00013007.jpg +Places365_test_00013018.jpg +Places365_test_00013035.jpg +Places365_test_00013054.jpg +Places365_test_00013070.jpg +Places365_test_00013073.jpg +Places365_test_00013104.jpg +Places365_test_00013109.jpg +Places365_test_00013115.jpg +Places365_test_00013124.jpg +Places365_test_00013128.jpg +Places365_test_00013130.jpg +Places365_test_00013144.jpg +Places365_test_00013151.jpg +Places365_test_00013157.jpg +Places365_test_00013163.jpg +Places365_test_00013189.jpg +Places365_test_00013196.jpg +Places365_test_00013209.jpg +Places365_test_00013213.jpg +Places365_test_00013218.jpg +Places365_test_00013244.jpg +Places365_test_00013245.jpg +Places365_test_00013248.jpg +Places365_test_00013250.jpg +Places365_test_00013256.jpg +Places365_test_00013264.jpg +Places365_test_00013265.jpg +Places365_test_00013269.jpg +Places365_test_00013271.jpg +Places365_test_00013280.jpg +Places365_test_00013328.jpg +Places365_test_00013359.jpg +Places365_test_00013369.jpg +Places365_test_00013376.jpg +Places365_test_00013378.jpg +Places365_test_00013389.jpg +Places365_test_00013398.jpg +Places365_test_00013403.jpg +Places365_test_00013410.jpg +Places365_test_00013417.jpg +Places365_test_00013439.jpg +Places365_test_00013440.jpg +Places365_test_00013457.jpg +Places365_test_00013467.jpg +Places365_test_00013485.jpg +Places365_test_00013491.jpg +Places365_test_00013501.jpg +Places365_test_00013524.jpg +Places365_test_00013525.jpg +Places365_test_00013557.jpg +Places365_test_00013563.jpg +Places365_test_00013574.jpg +Places365_test_00013581.jpg +Places365_test_00013594.jpg +Places365_test_00013611.jpg +Places365_test_00013619.jpg +Places365_test_00013624.jpg +Places365_test_00013648.jpg +Places365_test_00013655.jpg +Places365_test_00013658.jpg +Places365_test_00013663.jpg +Places365_test_00013666.jpg +Places365_test_00013669.jpg +Places365_test_00013674.jpg +Places365_test_00013679.jpg +Places365_test_00013692.jpg +Places365_test_00013701.jpg +Places365_test_00013726.jpg +Places365_test_00013730.jpg +Places365_test_00013748.jpg +Places365_test_00013757.jpg +Places365_test_00013782.jpg +Places365_test_00013786.jpg +Places365_test_00013795.jpg +Places365_test_00013813.jpg +Places365_test_00013825.jpg +Places365_test_00013833.jpg +Places365_test_00013837.jpg +Places365_test_00013926.jpg +Places365_test_00013934.jpg +Places365_test_00013975.jpg +Places365_test_00014012.jpg +Places365_test_00014014.jpg +Places365_test_00014021.jpg +Places365_test_00014029.jpg +Places365_test_00014039.jpg +Places365_test_00014047.jpg +Places365_test_00014048.jpg +Places365_test_00014052.jpg +Places365_test_00014053.jpg +Places365_test_00014055.jpg +Places365_test_00014060.jpg +Places365_test_00014077.jpg +Places365_test_00014081.jpg +Places365_test_00014086.jpg +Places365_test_00014087.jpg +Places365_test_00014111.jpg +Places365_test_00014114.jpg +Places365_test_00014115.jpg +Places365_test_00014118.jpg +Places365_test_00014124.jpg +Places365_test_00014162.jpg +Places365_test_00014177.jpg +Places365_test_00014195.jpg +Places365_test_00014201.jpg +Places365_test_00014203.jpg +Places365_test_00014204.jpg +Places365_test_00014206.jpg +Places365_test_00014211.jpg +Places365_test_00014215.jpg +Places365_test_00014216.jpg +Places365_test_00014271.jpg +Places365_test_00014278.jpg +Places365_test_00014291.jpg +Places365_test_00014299.jpg +Places365_test_00014300.jpg +Places365_test_00014314.jpg +Places365_test_00014318.jpg +Places365_test_00014320.jpg +Places365_test_00014332.jpg +Places365_test_00014338.jpg +Places365_test_00014350.jpg +Places365_test_00014364.jpg +Places365_test_00014380.jpg +Places365_test_00014381.jpg +Places365_test_00014387.jpg +Places365_test_00014401.jpg +Places365_test_00014407.jpg +Places365_test_00014414.jpg +Places365_test_00014437.jpg +Places365_test_00014453.jpg +Places365_test_00014458.jpg +Places365_test_00014462.jpg +Places365_test_00014471.jpg +Places365_test_00014486.jpg +Places365_test_00014488.jpg +Places365_test_00014505.jpg +Places365_test_00014510.jpg +Places365_test_00014511.jpg +Places365_test_00014526.jpg +Places365_test_00014536.jpg +Places365_test_00014542.jpg +Places365_test_00014567.jpg +Places365_test_00014568.jpg +Places365_test_00014576.jpg +Places365_test_00014607.jpg +Places365_test_00014610.jpg +Places365_test_00014615.jpg +Places365_test_00014626.jpg +Places365_test_00014632.jpg +Places365_test_00014639.jpg +Places365_test_00014643.jpg +Places365_test_00014648.jpg +Places365_test_00014652.jpg +Places365_test_00014662.jpg +Places365_test_00014685.jpg +Places365_test_00014686.jpg +Places365_test_00014705.jpg +Places365_test_00014714.jpg +Places365_test_00014715.jpg +Places365_test_00014716.jpg +Places365_test_00014749.jpg +Places365_test_00014757.jpg +Places365_test_00014764.jpg +Places365_test_00014798.jpg +Places365_test_00014825.jpg +Places365_test_00014838.jpg +Places365_test_00014842.jpg +Places365_test_00014846.jpg +Places365_test_00014853.jpg +Places365_test_00014859.jpg +Places365_test_00014861.jpg +Places365_test_00014873.jpg +Places365_test_00014879.jpg +Places365_test_00014884.jpg +Places365_test_00014906.jpg +Places365_test_00014907.jpg +Places365_test_00014916.jpg +Places365_test_00014934.jpg +Places365_test_00014961.jpg +Places365_test_00014963.jpg +Places365_test_00015007.jpg +Places365_test_00015008.jpg +Places365_test_00015013.jpg +Places365_test_00015046.jpg +Places365_test_00015087.jpg +Places365_test_00015100.jpg +Places365_test_00015107.jpg +Places365_test_00015109.jpg +Places365_test_00015111.jpg +Places365_test_00015139.jpg +Places365_test_00015148.jpg +Places365_test_00015155.jpg +Places365_test_00015173.jpg +Places365_test_00015184.jpg +Places365_test_00015187.jpg +Places365_test_00015189.jpg +Places365_test_00015193.jpg +Places365_test_00015201.jpg +Places365_test_00015214.jpg +Places365_test_00015226.jpg +Places365_test_00015243.jpg +Places365_test_00015291.jpg +Places365_test_00015302.jpg +Places365_test_00015335.jpg +Places365_test_00015339.jpg +Places365_test_00015340.jpg +Places365_test_00015362.jpg +Places365_test_00015371.jpg +Places365_test_00015373.jpg +Places365_test_00015374.jpg +Places365_test_00015415.jpg +Places365_test_00015418.jpg +Places365_test_00015425.jpg +Places365_test_00015442.jpg +Places365_test_00015450.jpg +Places365_test_00015465.jpg +Places365_test_00015476.jpg +Places365_test_00015497.jpg +Places365_test_00015560.jpg +Places365_test_00015565.jpg +Places365_test_00015574.jpg +Places365_test_00015577.jpg +Places365_test_00015578.jpg +Places365_test_00015586.jpg +Places365_test_00015588.jpg +Places365_test_00015595.jpg +Places365_test_00015633.jpg +Places365_test_00015640.jpg +Places365_test_00015650.jpg +Places365_test_00015651.jpg +Places365_test_00015691.jpg +Places365_test_00015700.jpg +Places365_test_00015704.jpg +Places365_test_00015712.jpg +Places365_test_00015723.jpg +Places365_test_00015740.jpg +Places365_test_00015772.jpg +Places365_test_00015780.jpg +Places365_test_00015792.jpg +Places365_test_00015802.jpg +Places365_test_00015803.jpg +Places365_test_00015812.jpg +Places365_test_00015813.jpg +Places365_test_00015826.jpg +Places365_test_00015836.jpg +Places365_test_00015839.jpg +Places365_test_00015842.jpg +Places365_test_00015847.jpg +Places365_test_00015854.jpg +Places365_test_00015858.jpg +Places365_test_00015869.jpg +Places365_test_00015872.jpg +Places365_test_00015874.jpg +Places365_test_00015877.jpg +Places365_test_00015878.jpg +Places365_test_00015883.jpg +Places365_test_00015895.jpg +Places365_test_00015909.jpg +Places365_test_00015916.jpg +Places365_test_00015918.jpg +Places365_test_00015954.jpg +Places365_test_00016000.jpg +Places365_test_00016009.jpg +Places365_test_00016013.jpg +Places365_test_00016036.jpg +Places365_test_00016039.jpg +Places365_test_00016040.jpg +Places365_test_00016053.jpg +Places365_test_00016059.jpg +Places365_test_00016074.jpg +Places365_test_00016077.jpg +Places365_test_00016085.jpg +Places365_test_00016086.jpg +Places365_test_00016091.jpg +Places365_test_00016096.jpg +Places365_test_00016097.jpg +Places365_test_00016130.jpg +Places365_test_00016147.jpg +Places365_test_00016152.jpg +Places365_test_00016168.jpg +Places365_test_00016176.jpg +Places365_test_00016200.jpg +Places365_test_00016232.jpg +Places365_test_00016237.jpg +Places365_test_00016255.jpg +Places365_test_00016267.jpg +Places365_test_00016271.jpg +Places365_test_00016280.jpg +Places365_test_00016300.jpg +Places365_test_00016307.jpg +Places365_test_00016326.jpg +Places365_test_00016342.jpg +Places365_test_00016343.jpg +Places365_test_00016352.jpg +Places365_test_00016356.jpg +Places365_test_00016386.jpg +Places365_test_00016387.jpg +Places365_test_00016393.jpg +Places365_test_00016394.jpg +Places365_test_00016401.jpg +Places365_test_00016407.jpg +Places365_test_00016411.jpg +Places365_test_00016423.jpg +Places365_test_00016431.jpg +Places365_test_00016435.jpg +Places365_test_00016478.jpg +Places365_test_00016520.jpg +Places365_test_00016541.jpg +Places365_test_00016550.jpg +Places365_test_00016558.jpg +Places365_test_00016595.jpg +Places365_test_00016627.jpg +Places365_test_00016639.jpg +Places365_test_00016665.jpg +Places365_test_00016670.jpg +Places365_test_00016671.jpg +Places365_test_00016698.jpg +Places365_test_00016702.jpg +Places365_test_00016705.jpg +Places365_test_00016707.jpg +Places365_test_00016714.jpg +Places365_test_00016725.jpg +Places365_test_00016734.jpg +Places365_test_00016748.jpg +Places365_test_00016766.jpg +Places365_test_00016778.jpg +Places365_test_00016787.jpg +Places365_test_00016812.jpg +Places365_test_00016820.jpg +Places365_test_00016838.jpg +Places365_test_00016843.jpg +Places365_test_00016857.jpg +Places365_test_00016864.jpg +Places365_test_00016866.jpg +Places365_test_00016880.jpg +Places365_test_00016883.jpg +Places365_test_00016905.jpg +Places365_test_00016906.jpg +Places365_test_00016913.jpg +Places365_test_00016915.jpg +Places365_test_00016933.jpg +Places365_test_00016954.jpg +Places365_test_00016955.jpg +Places365_test_00016957.jpg +Places365_test_00016963.jpg +Places365_test_00016969.jpg +Places365_test_00016987.jpg +Places365_test_00016991.jpg +Places365_test_00016993.jpg +Places365_test_00017011.jpg +Places365_test_00017072.jpg +Places365_test_00017096.jpg +Places365_test_00017111.jpg +Places365_test_00017122.jpg +Places365_test_00017134.jpg +Places365_test_00017153.jpg +Places365_test_00017179.jpg +Places365_test_00017190.jpg +Places365_test_00017220.jpg +Places365_test_00017226.jpg +Places365_test_00017235.jpg +Places365_test_00017239.jpg +Places365_test_00017254.jpg +Places365_test_00017256.jpg +Places365_test_00017265.jpg +Places365_test_00017288.jpg +Places365_test_00017293.jpg +Places365_test_00017295.jpg +Places365_test_00017301.jpg +Places365_test_00017313.jpg +Places365_test_00017314.jpg +Places365_test_00017334.jpg +Places365_test_00017336.jpg +Places365_test_00017343.jpg +Places365_test_00017368.jpg +Places365_test_00017385.jpg +Places365_test_00017406.jpg +Places365_test_00017411.jpg +Places365_test_00017415.jpg +Places365_test_00017429.jpg +Places365_test_00017438.jpg +Places365_test_00017444.jpg +Places365_test_00017458.jpg +Places365_test_00017460.jpg +Places365_test_00017470.jpg +Places365_test_00017474.jpg +Places365_test_00017510.jpg +Places365_test_00017537.jpg +Places365_test_00017584.jpg +Places365_test_00017590.jpg +Places365_test_00017602.jpg +Places365_test_00017610.jpg +Places365_test_00017631.jpg +Places365_test_00017645.jpg +Places365_test_00017646.jpg +Places365_test_00017658.jpg +Places365_test_00017679.jpg +Places365_test_00017692.jpg +Places365_test_00017709.jpg +Places365_test_00017711.jpg +Places365_test_00017724.jpg +Places365_test_00017732.jpg +Places365_test_00017750.jpg +Places365_test_00017763.jpg +Places365_test_00017764.jpg +Places365_test_00017775.jpg +Places365_test_00017803.jpg +Places365_test_00017821.jpg +Places365_test_00017830.jpg +Places365_test_00017835.jpg +Places365_test_00017838.jpg +Places365_test_00017852.jpg +Places365_test_00017855.jpg +Places365_test_00017858.jpg +Places365_test_00017860.jpg +Places365_test_00017863.jpg +Places365_test_00017866.jpg +Places365_test_00017874.jpg +Places365_test_00017910.jpg +Places365_test_00017913.jpg +Places365_test_00017916.jpg +Places365_test_00017975.jpg +Places365_test_00017986.jpg +Places365_test_00018001.jpg +Places365_test_00018009.jpg +Places365_test_00018012.jpg +Places365_test_00018015.jpg +Places365_test_00018024.jpg +Places365_test_00018033.jpg +Places365_test_00018042.jpg +Places365_test_00018045.jpg +Places365_test_00018061.jpg +Places365_test_00018062.jpg +Places365_test_00018072.jpg +Places365_test_00018080.jpg +Places365_test_00018083.jpg +Places365_test_00018094.jpg +Places365_test_00018099.jpg +Places365_test_00018104.jpg +Places365_test_00018112.jpg +Places365_test_00018120.jpg +Places365_test_00018135.jpg +Places365_test_00018140.jpg +Places365_test_00018153.jpg +Places365_test_00018164.jpg +Places365_test_00018184.jpg +Places365_test_00018208.jpg +Places365_test_00018209.jpg +Places365_test_00018214.jpg +Places365_test_00018218.jpg +Places365_test_00018238.jpg +Places365_test_00018241.jpg +Places365_test_00018249.jpg +Places365_test_00018262.jpg +Places365_test_00018265.jpg +Places365_test_00018268.jpg +Places365_test_00018280.jpg +Places365_test_00018286.jpg +Places365_test_00018293.jpg +Places365_test_00018324.jpg +Places365_test_00018326.jpg +Places365_test_00018330.jpg +Places365_test_00018339.jpg +Places365_test_00018340.jpg +Places365_test_00018343.jpg +Places365_test_00018345.jpg +Places365_test_00018356.jpg +Places365_test_00018426.jpg +Places365_test_00018432.jpg +Places365_test_00018441.jpg +Places365_test_00018443.jpg +Places365_test_00018444.jpg +Places365_test_00018446.jpg +Places365_test_00018452.jpg +Places365_test_00018459.jpg +Places365_test_00018465.jpg +Places365_test_00018495.jpg +Places365_test_00018501.jpg +Places365_test_00018504.jpg +Places365_test_00018520.jpg +Places365_test_00018537.jpg +Places365_test_00018541.jpg +Places365_test_00018555.jpg +Places365_test_00018563.jpg +Places365_test_00018566.jpg +Places365_test_00018569.jpg +Places365_test_00018576.jpg +Places365_test_00018577.jpg +Places365_test_00018596.jpg +Places365_test_00018609.jpg +Places365_test_00018622.jpg +Places365_test_00018626.jpg +Places365_test_00018629.jpg +Places365_test_00018650.jpg +Places365_test_00018671.jpg +Places365_test_00018690.jpg +Places365_test_00018703.jpg +Places365_test_00018707.jpg +Places365_test_00018714.jpg +Places365_test_00018716.jpg +Places365_test_00018718.jpg +Places365_test_00018719.jpg +Places365_test_00018733.jpg +Places365_test_00018747.jpg +Places365_test_00018756.jpg +Places365_test_00018771.jpg +Places365_test_00018775.jpg +Places365_test_00018809.jpg +Places365_test_00018853.jpg +Places365_test_00018887.jpg +Places365_test_00018890.jpg +Places365_test_00018916.jpg +Places365_test_00018926.jpg +Places365_test_00018944.jpg +Places365_test_00018948.jpg +Places365_test_00018983.jpg +Places365_test_00018984.jpg +Places365_test_00018992.jpg +Places365_test_00018997.jpg +Places365_test_00018999.jpg +Places365_test_00019018.jpg +Places365_test_00019039.jpg +Places365_test_00019064.jpg +Places365_test_00019069.jpg +Places365_test_00019073.jpg +Places365_test_00019098.jpg +Places365_test_00019124.jpg +Places365_test_00019132.jpg +Places365_test_00019137.jpg +Places365_test_00019152.jpg +Places365_test_00019162.jpg +Places365_test_00019163.jpg +Places365_test_00019165.jpg +Places365_test_00019168.jpg +Places365_test_00019173.jpg +Places365_test_00019181.jpg +Places365_test_00019183.jpg +Places365_test_00019197.jpg +Places365_test_00019223.jpg +Places365_test_00019227.jpg +Places365_test_00019248.jpg +Places365_test_00019250.jpg +Places365_test_00019258.jpg +Places365_test_00019265.jpg +Places365_test_00019270.jpg +Places365_test_00019272.jpg +Places365_test_00019278.jpg +Places365_test_00019282.jpg +Places365_test_00019301.jpg +Places365_test_00019302.jpg +Places365_test_00019313.jpg +Places365_test_00019318.jpg +Places365_test_00019333.jpg +Places365_test_00019351.jpg +Places365_test_00019354.jpg +Places365_test_00019358.jpg +Places365_test_00019380.jpg +Places365_test_00019405.jpg +Places365_test_00019435.jpg +Places365_test_00019439.jpg +Places365_test_00019451.jpg +Places365_test_00019475.jpg +Places365_test_00019493.jpg +Places365_test_00019505.jpg +Places365_test_00019514.jpg +Places365_test_00019521.jpg +Places365_test_00019527.jpg +Places365_test_00019539.jpg +Places365_test_00019542.jpg +Places365_test_00019555.jpg +Places365_test_00019562.jpg +Places365_test_00019568.jpg +Places365_test_00019592.jpg +Places365_test_00019594.jpg +Places365_test_00019600.jpg +Places365_test_00019678.jpg +Places365_test_00019686.jpg +Places365_test_00019709.jpg +Places365_test_00019730.jpg +Places365_test_00019743.jpg +Places365_test_00019756.jpg +Places365_test_00019780.jpg +Places365_test_00019784.jpg +Places365_test_00019787.jpg +Places365_test_00019790.jpg +Places365_test_00019800.jpg +Places365_test_00019807.jpg +Places365_test_00019809.jpg +Places365_test_00019811.jpg +Places365_test_00019818.jpg +Places365_test_00019819.jpg +Places365_test_00019821.jpg +Places365_test_00019827.jpg +Places365_test_00019833.jpg +Places365_test_00019837.jpg +Places365_test_00019838.jpg +Places365_test_00019867.jpg +Places365_test_00019870.jpg +Places365_test_00019899.jpg +Places365_test_00019902.jpg +Places365_test_00019904.jpg +Places365_test_00019933.jpg +Places365_test_00019946.jpg +Places365_test_00019955.jpg +Places365_test_00019958.jpg +Places365_test_00019960.jpg +Places365_test_00019992.jpg +Places365_test_00019996.jpg +Places365_test_00020017.jpg +Places365_test_00020039.jpg +Places365_test_00020048.jpg +Places365_test_00020062.jpg +Places365_test_00020081.jpg +Places365_test_00020084.jpg +Places365_test_00020088.jpg +Places365_test_00020100.jpg +Places365_test_00020112.jpg +Places365_test_00020116.jpg +Places365_test_00020123.jpg +Places365_test_00020131.jpg +Places365_test_00020137.jpg +Places365_test_00020152.jpg +Places365_test_00020154.jpg +Places365_test_00020158.jpg +Places365_test_00020163.jpg +Places365_test_00020179.jpg +Places365_test_00020183.jpg +Places365_test_00020200.jpg +Places365_test_00020201.jpg +Places365_test_00020208.jpg +Places365_test_00020212.jpg +Places365_test_00020218.jpg +Places365_test_00020233.jpg +Places365_test_00020248.jpg +Places365_test_00020299.jpg +Places365_test_00020324.jpg +Places365_test_00020330.jpg +Places365_test_00020338.jpg +Places365_test_00020345.jpg +Places365_test_00020351.jpg +Places365_test_00020366.jpg +Places365_test_00020367.jpg +Places365_test_00020368.jpg +Places365_test_00020370.jpg +Places365_test_00020391.jpg +Places365_test_00020414.jpg +Places365_test_00020418.jpg +Places365_test_00020425.jpg +Places365_test_00020490.jpg +Places365_test_00020492.jpg +Places365_test_00020499.jpg +Places365_test_00020502.jpg +Places365_test_00020512.jpg +Places365_test_00020517.jpg +Places365_test_00020522.jpg +Places365_test_00020525.jpg +Places365_test_00020528.jpg +Places365_test_00020537.jpg +Places365_test_00020543.jpg +Places365_test_00020546.jpg +Places365_test_00020548.jpg +Places365_test_00020553.jpg +Places365_test_00020558.jpg +Places365_test_00020563.jpg +Places365_test_00020565.jpg +Places365_test_00020567.jpg +Places365_test_00020572.jpg +Places365_test_00020587.jpg +Places365_test_00020596.jpg +Places365_test_00020618.jpg +Places365_test_00020637.jpg +Places365_test_00020640.jpg +Places365_test_00020644.jpg +Places365_test_00020645.jpg +Places365_test_00020656.jpg +Places365_test_00020667.jpg +Places365_test_00020670.jpg +Places365_test_00020684.jpg +Places365_test_00020688.jpg +Places365_test_00020696.jpg +Places365_test_00020697.jpg +Places365_test_00020702.jpg +Places365_test_00020726.jpg +Places365_test_00020733.jpg +Places365_test_00020744.jpg +Places365_test_00020758.jpg +Places365_test_00020813.jpg +Places365_test_00020814.jpg +Places365_test_00020826.jpg +Places365_test_00020832.jpg +Places365_test_00020843.jpg +Places365_test_00020862.jpg +Places365_test_00020863.jpg +Places365_test_00020869.jpg +Places365_test_00020895.jpg +Places365_test_00020912.jpg +Places365_test_00020913.jpg +Places365_test_00020942.jpg +Places365_test_00020977.jpg +Places365_test_00020980.jpg +Places365_test_00020990.jpg +Places365_test_00021010.jpg +Places365_test_00021035.jpg +Places365_test_00021046.jpg +Places365_test_00021049.jpg +Places365_test_00021053.jpg +Places365_test_00021078.jpg +Places365_test_00021086.jpg +Places365_test_00021104.jpg +Places365_test_00021110.jpg +Places365_test_00021127.jpg +Places365_test_00021155.jpg +Places365_test_00021187.jpg +Places365_test_00021207.jpg +Places365_test_00021209.jpg +Places365_test_00021211.jpg +Places365_test_00021213.jpg +Places365_test_00021217.jpg +Places365_test_00021228.jpg +Places365_test_00021229.jpg +Places365_test_00021240.jpg +Places365_test_00021276.jpg +Places365_test_00021319.jpg +Places365_test_00021322.jpg +Places365_test_00021329.jpg +Places365_test_00021335.jpg +Places365_test_00021349.jpg +Places365_test_00021358.jpg +Places365_test_00021360.jpg +Places365_test_00021362.jpg +Places365_test_00021366.jpg +Places365_test_00021375.jpg +Places365_test_00021398.jpg +Places365_test_00021400.jpg +Places365_test_00021405.jpg +Places365_test_00021418.jpg +Places365_test_00021446.jpg +Places365_test_00021450.jpg +Places365_test_00021469.jpg +Places365_test_00021486.jpg +Places365_test_00021488.jpg +Places365_test_00021490.jpg +Places365_test_00021503.jpg +Places365_test_00021508.jpg +Places365_test_00021529.jpg +Places365_test_00021530.jpg +Places365_test_00021567.jpg +Places365_test_00021573.jpg +Places365_test_00021587.jpg +Places365_test_00021632.jpg +Places365_test_00021640.jpg +Places365_test_00021651.jpg +Places365_test_00021655.jpg +Places365_test_00021675.jpg +Places365_test_00021678.jpg +Places365_test_00021697.jpg +Places365_test_00021713.jpg +Places365_test_00021724.jpg +Places365_test_00021732.jpg +Places365_test_00021749.jpg +Places365_test_00021755.jpg +Places365_test_00021776.jpg +Places365_test_00021782.jpg +Places365_test_00021818.jpg +Places365_test_00021826.jpg +Places365_test_00021843.jpg +Places365_test_00021858.jpg +Places365_test_00021871.jpg +Places365_test_00021872.jpg +Places365_test_00021888.jpg +Places365_test_00021898.jpg +Places365_test_00021906.jpg +Places365_test_00021908.jpg +Places365_test_00021929.jpg +Places365_test_00021939.jpg +Places365_test_00021943.jpg +Places365_test_00021953.jpg +Places365_test_00021963.jpg +Places365_test_00021979.jpg +Places365_test_00021980.jpg +Places365_test_00021984.jpg +Places365_test_00022006.jpg +Places365_test_00022034.jpg +Places365_test_00022038.jpg +Places365_test_00022047.jpg +Places365_test_00022048.jpg +Places365_test_00022071.jpg +Places365_test_00022074.jpg +Places365_test_00022086.jpg +Places365_test_00022098.jpg +Places365_test_00022101.jpg +Places365_test_00022114.jpg +Places365_test_00022121.jpg +Places365_test_00022140.jpg +Places365_test_00022142.jpg +Places365_test_00022145.jpg +Places365_test_00022155.jpg +Places365_test_00022169.jpg +Places365_test_00022172.jpg +Places365_test_00022183.jpg +Places365_test_00022191.jpg +Places365_test_00022192.jpg +Places365_test_00022196.jpg +Places365_test_00022203.jpg +Places365_test_00022207.jpg +Places365_test_00022215.jpg +Places365_test_00022218.jpg +Places365_test_00022225.jpg +Places365_test_00022236.jpg +Places365_test_00022257.jpg +Places365_test_00022262.jpg +Places365_test_00022263.jpg +Places365_test_00022269.jpg +Places365_test_00022272.jpg +Places365_test_00022275.jpg +Places365_test_00022276.jpg +Places365_test_00022284.jpg +Places365_test_00022289.jpg +Places365_test_00022290.jpg +Places365_test_00022300.jpg +Places365_test_00022301.jpg +Places365_test_00022312.jpg +Places365_test_00022333.jpg +Places365_test_00022349.jpg +Places365_test_00022357.jpg +Places365_test_00022359.jpg +Places365_test_00022380.jpg +Places365_test_00022391.jpg +Places365_test_00022396.jpg +Places365_test_00022408.jpg +Places365_test_00022416.jpg +Places365_test_00022421.jpg +Places365_test_00022453.jpg +Places365_test_00022474.jpg +Places365_test_00022502.jpg +Places365_test_00022517.jpg +Places365_test_00022526.jpg +Places365_test_00022532.jpg +Places365_test_00022544.jpg +Places365_test_00022566.jpg +Places365_test_00022581.jpg +Places365_test_00022588.jpg +Places365_test_00022616.jpg +Places365_test_00022633.jpg +Places365_test_00022634.jpg +Places365_test_00022637.jpg +Places365_test_00022644.jpg +Places365_test_00022670.jpg +Places365_test_00022675.jpg +Places365_test_00022684.jpg +Places365_test_00022685.jpg +Places365_test_00022699.jpg +Places365_test_00022721.jpg +Places365_test_00022728.jpg +Places365_test_00022748.jpg +Places365_test_00022760.jpg +Places365_test_00022764.jpg +Places365_test_00022766.jpg +Places365_test_00022779.jpg +Places365_test_00022793.jpg +Places365_test_00022800.jpg +Places365_test_00022804.jpg +Places365_test_00022812.jpg +Places365_test_00022827.jpg +Places365_test_00022853.jpg +Places365_test_00022855.jpg +Places365_test_00022857.jpg +Places365_test_00022866.jpg +Places365_test_00022873.jpg +Places365_test_00022877.jpg +Places365_test_00022884.jpg +Places365_test_00022904.jpg +Places365_test_00022905.jpg +Places365_test_00022915.jpg +Places365_test_00022943.jpg +Places365_test_00022947.jpg +Places365_test_00022958.jpg +Places365_test_00023016.jpg +Places365_test_00023040.jpg +Places365_test_00023086.jpg +Places365_test_00023092.jpg +Places365_test_00023097.jpg +Places365_test_00023110.jpg +Places365_test_00023126.jpg +Places365_test_00023129.jpg +Places365_test_00023134.jpg +Places365_test_00023140.jpg +Places365_test_00023147.jpg +Places365_test_00023149.jpg +Places365_test_00023201.jpg +Places365_test_00023206.jpg +Places365_test_00023213.jpg +Places365_test_00023215.jpg +Places365_test_00023224.jpg +Places365_test_00023256.jpg +Places365_test_00023257.jpg +Places365_test_00023262.jpg +Places365_test_00023286.jpg +Places365_test_00023308.jpg +Places365_test_00023314.jpg +Places365_test_00023316.jpg +Places365_test_00023325.jpg +Places365_test_00023333.jpg +Places365_test_00023355.jpg +Places365_test_00023383.jpg +Places365_test_00023389.jpg +Places365_test_00023402.jpg +Places365_test_00023414.jpg +Places365_test_00023442.jpg +Places365_test_00023456.jpg +Places365_test_00023457.jpg +Places365_test_00023461.jpg +Places365_test_00023489.jpg +Places365_test_00023491.jpg +Places365_test_00023496.jpg +Places365_test_00023507.jpg +Places365_test_00023515.jpg +Places365_test_00023520.jpg +Places365_test_00023522.jpg +Places365_test_00023524.jpg +Places365_test_00023533.jpg +Places365_test_00023538.jpg +Places365_test_00023555.jpg +Places365_test_00023564.jpg +Places365_test_00023576.jpg +Places365_test_00023584.jpg +Places365_test_00023588.jpg +Places365_test_00023602.jpg +Places365_test_00023605.jpg +Places365_test_00023617.jpg +Places365_test_00023633.jpg +Places365_test_00023650.jpg +Places365_test_00023659.jpg +Places365_test_00023662.jpg +Places365_test_00023663.jpg +Places365_test_00023679.jpg +Places365_test_00023694.jpg +Places365_test_00023715.jpg +Places365_test_00023717.jpg +Places365_test_00023718.jpg +Places365_test_00023723.jpg +Places365_test_00023725.jpg +Places365_test_00023728.jpg +Places365_test_00023732.jpg +Places365_test_00023737.jpg +Places365_test_00023757.jpg +Places365_test_00023760.jpg +Places365_test_00023762.jpg +Places365_test_00023765.jpg +Places365_test_00023770.jpg +Places365_test_00023772.jpg +Places365_test_00023792.jpg +Places365_test_00023824.jpg +Places365_test_00023833.jpg +Places365_test_00023839.jpg +Places365_test_00023855.jpg +Places365_test_00023858.jpg +Places365_test_00023896.jpg +Places365_test_00023916.jpg +Places365_test_00023925.jpg +Places365_test_00023930.jpg +Places365_test_00023940.jpg +Places365_test_00023950.jpg +Places365_test_00023960.jpg +Places365_test_00023974.jpg +Places365_test_00023984.jpg +Places365_test_00023986.jpg +Places365_test_00023987.jpg +Places365_test_00023989.jpg +Places365_test_00023994.jpg +Places365_test_00023995.jpg +Places365_test_00024006.jpg +Places365_test_00024017.jpg +Places365_test_00024032.jpg +Places365_test_00024034.jpg +Places365_test_00024057.jpg +Places365_test_00024089.jpg +Places365_test_00024091.jpg +Places365_test_00024101.jpg +Places365_test_00024106.jpg +Places365_test_00024121.jpg +Places365_test_00024152.jpg +Places365_test_00024159.jpg +Places365_test_00024173.jpg +Places365_test_00024189.jpg +Places365_test_00024197.jpg +Places365_test_00024198.jpg +Places365_test_00024225.jpg +Places365_test_00024233.jpg +Places365_test_00024236.jpg +Places365_test_00024237.jpg +Places365_test_00024238.jpg +Places365_test_00024255.jpg +Places365_test_00024260.jpg +Places365_test_00024262.jpg +Places365_test_00024282.jpg +Places365_test_00024291.jpg +Places365_test_00024299.jpg +Places365_test_00024302.jpg +Places365_test_00024307.jpg +Places365_test_00024317.jpg +Places365_test_00024335.jpg +Places365_test_00024336.jpg +Places365_test_00024338.jpg +Places365_test_00024343.jpg +Places365_test_00024351.jpg +Places365_test_00024368.jpg +Places365_test_00024386.jpg +Places365_test_00024398.jpg +Places365_test_00024399.jpg +Places365_test_00024403.jpg +Places365_test_00024408.jpg +Places365_test_00024421.jpg +Places365_test_00024425.jpg +Places365_test_00024438.jpg +Places365_test_00024445.jpg +Places365_test_00024448.jpg +Places365_test_00024449.jpg +Places365_test_00024474.jpg +Places365_test_00024491.jpg +Places365_test_00024508.jpg +Places365_test_00024512.jpg +Places365_test_00024531.jpg +Places365_test_00024543.jpg +Places365_test_00024547.jpg +Places365_test_00024560.jpg +Places365_test_00024570.jpg +Places365_test_00024585.jpg +Places365_test_00024593.jpg +Places365_test_00024600.jpg +Places365_test_00024601.jpg +Places365_test_00024613.jpg +Places365_test_00024616.jpg +Places365_test_00024630.jpg +Places365_test_00024654.jpg +Places365_test_00024667.jpg +Places365_test_00024675.jpg +Places365_test_00024677.jpg +Places365_test_00024709.jpg +Places365_test_00024714.jpg +Places365_test_00024718.jpg +Places365_test_00024721.jpg +Places365_test_00024726.jpg +Places365_test_00024731.jpg +Places365_test_00024734.jpg +Places365_test_00024741.jpg +Places365_test_00024758.jpg +Places365_test_00024778.jpg +Places365_test_00024779.jpg +Places365_test_00024789.jpg +Places365_test_00024804.jpg +Places365_test_00024813.jpg +Places365_test_00024824.jpg +Places365_test_00024853.jpg +Places365_test_00024858.jpg +Places365_test_00024887.jpg +Places365_test_00024893.jpg +Places365_test_00024897.jpg +Places365_test_00024905.jpg +Places365_test_00024919.jpg +Places365_test_00024922.jpg +Places365_test_00024923.jpg +Places365_test_00024930.jpg +Places365_test_00024939.jpg +Places365_test_00024940.jpg +Places365_test_00024959.jpg +Places365_test_00024960.jpg +Places365_test_00024961.jpg +Places365_test_00024967.jpg +Places365_test_00024980.jpg +Places365_test_00024997.jpg +Places365_test_00025001.jpg +Places365_test_00025028.jpg +Places365_test_00025041.jpg +Places365_test_00025042.jpg +Places365_test_00025069.jpg +Places365_test_00025081.jpg +Places365_test_00025083.jpg +Places365_test_00025084.jpg +Places365_test_00025091.jpg +Places365_test_00025106.jpg +Places365_test_00025110.jpg +Places365_test_00025119.jpg +Places365_test_00025130.jpg +Places365_test_00025137.jpg +Places365_test_00025153.jpg +Places365_test_00025164.jpg +Places365_test_00025167.jpg +Places365_test_00025168.jpg +Places365_test_00025185.jpg +Places365_test_00025197.jpg +Places365_test_00025206.jpg +Places365_test_00025227.jpg +Places365_test_00025243.jpg +Places365_test_00025250.jpg +Places365_test_00025268.jpg +Places365_test_00025275.jpg +Places365_test_00025289.jpg +Places365_test_00025325.jpg +Places365_test_00025343.jpg +Places365_test_00025349.jpg +Places365_test_00025350.jpg +Places365_test_00025357.jpg +Places365_test_00025380.jpg +Places365_test_00025436.jpg +Places365_test_00025437.jpg +Places365_test_00025439.jpg +Places365_test_00025444.jpg +Places365_test_00025451.jpg +Places365_test_00025467.jpg +Places365_test_00025470.jpg +Places365_test_00025473.jpg +Places365_test_00025491.jpg +Places365_test_00025513.jpg +Places365_test_00025539.jpg +Places365_test_00025550.jpg +Places365_test_00025553.jpg +Places365_test_00025560.jpg +Places365_test_00025572.jpg +Places365_test_00025575.jpg +Places365_test_00025577.jpg +Places365_test_00025578.jpg +Places365_test_00025580.jpg +Places365_test_00025631.jpg +Places365_test_00025643.jpg +Places365_test_00025647.jpg +Places365_test_00025652.jpg +Places365_test_00025655.jpg +Places365_test_00025660.jpg +Places365_test_00025666.jpg +Places365_test_00025668.jpg +Places365_test_00025682.jpg +Places365_test_00025686.jpg +Places365_test_00025690.jpg +Places365_test_00025736.jpg +Places365_test_00025760.jpg +Places365_test_00025761.jpg +Places365_test_00025768.jpg +Places365_test_00025769.jpg +Places365_test_00025771.jpg +Places365_test_00025773.jpg +Places365_test_00025774.jpg +Places365_test_00025780.jpg +Places365_test_00025781.jpg +Places365_test_00025782.jpg +Places365_test_00025788.jpg +Places365_test_00025801.jpg +Places365_test_00025826.jpg +Places365_test_00025840.jpg +Places365_test_00025841.jpg +Places365_test_00025850.jpg +Places365_test_00025859.jpg +Places365_test_00025861.jpg +Places365_test_00025863.jpg +Places365_test_00025881.jpg +Places365_test_00025894.jpg +Places365_test_00025895.jpg +Places365_test_00025898.jpg +Places365_test_00025931.jpg +Places365_test_00025937.jpg +Places365_test_00025952.jpg +Places365_test_00025966.jpg +Places365_test_00025970.jpg +Places365_test_00025985.jpg +Places365_test_00025991.jpg +Places365_test_00025992.jpg +Places365_test_00025997.jpg +Places365_test_00026001.jpg +Places365_test_00026002.jpg +Places365_test_00026004.jpg +Places365_test_00026026.jpg +Places365_test_00026052.jpg +Places365_test_00026053.jpg +Places365_test_00026057.jpg +Places365_test_00026066.jpg +Places365_test_00026109.jpg +Places365_test_00026110.jpg +Places365_test_00026126.jpg +Places365_test_00026141.jpg +Places365_test_00026152.jpg +Places365_test_00026154.jpg +Places365_test_00026157.jpg +Places365_test_00026159.jpg +Places365_test_00026164.jpg +Places365_test_00026165.jpg +Places365_test_00026170.jpg +Places365_test_00026174.jpg +Places365_test_00026200.jpg +Places365_test_00026208.jpg +Places365_test_00026220.jpg +Places365_test_00026235.jpg +Places365_test_00026236.jpg +Places365_test_00026248.jpg +Places365_test_00026302.jpg +Places365_test_00026303.jpg +Places365_test_00026314.jpg +Places365_test_00026316.jpg +Places365_test_00026317.jpg +Places365_test_00026339.jpg +Places365_test_00026340.jpg +Places365_test_00026359.jpg +Places365_test_00026375.jpg +Places365_test_00026445.jpg +Places365_test_00026480.jpg +Places365_test_00026487.jpg +Places365_test_00026496.jpg +Places365_test_00026505.jpg +Places365_test_00026523.jpg +Places365_test_00026525.jpg +Places365_test_00026554.jpg +Places365_test_00026562.jpg +Places365_test_00026567.jpg +Places365_test_00026569.jpg +Places365_test_00026570.jpg +Places365_test_00026576.jpg +Places365_test_00026617.jpg +Places365_test_00026620.jpg +Places365_test_00026646.jpg +Places365_test_00026647.jpg +Places365_test_00026671.jpg +Places365_test_00026689.jpg +Places365_test_00026711.jpg +Places365_test_00026713.jpg +Places365_test_00026729.jpg +Places365_test_00026735.jpg +Places365_test_00026739.jpg +Places365_test_00026753.jpg +Places365_test_00026756.jpg +Places365_test_00026788.jpg +Places365_test_00026796.jpg +Places365_test_00026797.jpg +Places365_test_00026798.jpg +Places365_test_00026800.jpg +Places365_test_00026801.jpg +Places365_test_00026803.jpg +Places365_test_00026807.jpg +Places365_test_00026837.jpg +Places365_test_00026851.jpg +Places365_test_00026855.jpg +Places365_test_00026877.jpg +Places365_test_00026878.jpg +Places365_test_00026888.jpg +Places365_test_00026905.jpg +Places365_test_00026907.jpg +Places365_test_00026908.jpg +Places365_test_00026917.jpg +Places365_test_00026926.jpg +Places365_test_00026927.jpg +Places365_test_00026939.jpg +Places365_test_00026951.jpg +Places365_test_00026953.jpg +Places365_test_00026955.jpg +Places365_test_00026958.jpg +Places365_test_00026966.jpg +Places365_test_00026971.jpg +Places365_test_00026979.jpg +Places365_test_00026980.jpg +Places365_test_00026990.jpg +Places365_test_00026992.jpg +Places365_test_00026995.jpg +Places365_test_00027000.jpg +Places365_test_00027002.jpg +Places365_test_00027003.jpg +Places365_test_00027009.jpg +Places365_test_00027021.jpg +Places365_test_00027026.jpg +Places365_test_00027043.jpg +Places365_test_00027048.jpg +Places365_test_00027050.jpg +Places365_test_00027057.jpg +Places365_test_00027060.jpg +Places365_test_00027062.jpg +Places365_test_00027077.jpg +Places365_test_00027116.jpg +Places365_test_00027118.jpg +Places365_test_00027122.jpg +Places365_test_00027126.jpg +Places365_test_00027133.jpg +Places365_test_00027147.jpg +Places365_test_00027173.jpg +Places365_test_00027201.jpg +Places365_test_00027203.jpg +Places365_test_00027205.jpg +Places365_test_00027217.jpg +Places365_test_00027223.jpg +Places365_test_00027226.jpg +Places365_test_00027248.jpg +Places365_test_00027249.jpg +Places365_test_00027254.jpg +Places365_test_00027289.jpg +Places365_test_00027294.jpg +Places365_test_00027300.jpg +Places365_test_00027309.jpg +Places365_test_00027328.jpg +Places365_test_00027338.jpg +Places365_test_00027340.jpg +Places365_test_00027344.jpg +Places365_test_00027349.jpg +Places365_test_00027355.jpg +Places365_test_00027376.jpg +Places365_test_00027417.jpg +Places365_test_00027421.jpg +Places365_test_00027429.jpg +Places365_test_00027432.jpg +Places365_test_00027458.jpg +Places365_test_00027471.jpg +Places365_test_00027475.jpg +Places365_test_00027487.jpg +Places365_test_00027489.jpg +Places365_test_00027497.jpg +Places365_test_00027506.jpg +Places365_test_00027530.jpg +Places365_test_00027540.jpg +Places365_test_00027542.jpg +Places365_test_00027552.jpg +Places365_test_00027579.jpg +Places365_test_00027590.jpg +Places365_test_00027610.jpg +Places365_test_00027635.jpg +Places365_test_00027639.jpg +Places365_test_00027643.jpg +Places365_test_00027647.jpg +Places365_test_00027649.jpg +Places365_test_00027651.jpg +Places365_test_00027666.jpg +Places365_test_00027667.jpg +Places365_test_00027687.jpg +Places365_test_00027692.jpg +Places365_test_00027693.jpg +Places365_test_00027694.jpg +Places365_test_00027703.jpg +Places365_test_00027729.jpg +Places365_test_00027752.jpg +Places365_test_00027754.jpg +Places365_test_00027756.jpg +Places365_test_00027764.jpg +Places365_test_00027766.jpg +Places365_test_00027771.jpg +Places365_test_00027803.jpg +Places365_test_00027811.jpg +Places365_test_00027812.jpg +Places365_test_00027852.jpg +Places365_test_00027869.jpg +Places365_test_00027883.jpg +Places365_test_00027887.jpg +Places365_test_00027892.jpg +Places365_test_00027933.jpg +Places365_test_00027941.jpg +Places365_test_00027942.jpg +Places365_test_00027951.jpg +Places365_test_00027958.jpg +Places365_test_00027963.jpg +Places365_test_00028013.jpg +Places365_test_00028021.jpg +Places365_test_00028024.jpg +Places365_test_00028045.jpg +Places365_test_00028049.jpg +Places365_test_00028097.jpg +Places365_test_00028102.jpg +Places365_test_00028110.jpg +Places365_test_00028115.jpg +Places365_test_00028122.jpg +Places365_test_00028123.jpg +Places365_test_00028127.jpg +Places365_test_00028130.jpg +Places365_test_00028138.jpg +Places365_test_00028155.jpg +Places365_test_00028161.jpg +Places365_test_00028168.jpg +Places365_test_00028173.jpg +Places365_test_00028174.jpg +Places365_test_00028206.jpg +Places365_test_00028226.jpg +Places365_test_00028228.jpg +Places365_test_00028252.jpg +Places365_test_00028258.jpg +Places365_test_00028262.jpg +Places365_test_00028264.jpg +Places365_test_00028277.jpg +Places365_test_00028313.jpg +Places365_test_00028318.jpg +Places365_test_00028326.jpg +Places365_test_00028331.jpg +Places365_test_00028337.jpg +Places365_test_00028366.jpg +Places365_test_00028370.jpg +Places365_test_00028375.jpg +Places365_test_00028391.jpg +Places365_test_00028428.jpg +Places365_test_00028432.jpg +Places365_test_00028449.jpg +Places365_test_00028451.jpg +Places365_test_00028462.jpg +Places365_test_00028463.jpg +Places365_test_00028464.jpg +Places365_test_00028476.jpg +Places365_test_00028478.jpg +Places365_test_00028490.jpg +Places365_test_00028491.jpg +Places365_test_00028494.jpg +Places365_test_00028496.jpg +Places365_test_00028501.jpg +Places365_test_00028502.jpg +Places365_test_00028521.jpg +Places365_test_00028535.jpg +Places365_test_00028539.jpg +Places365_test_00028541.jpg +Places365_test_00028550.jpg +Places365_test_00028552.jpg +Places365_test_00028553.jpg +Places365_test_00028559.jpg +Places365_test_00028569.jpg +Places365_test_00028576.jpg +Places365_test_00028583.jpg +Places365_test_00028595.jpg +Places365_test_00028600.jpg +Places365_test_00028609.jpg +Places365_test_00028623.jpg +Places365_test_00028633.jpg +Places365_test_00028642.jpg +Places365_test_00028644.jpg +Places365_test_00028657.jpg +Places365_test_00028680.jpg +Places365_test_00028712.jpg +Places365_test_00028714.jpg +Places365_test_00028728.jpg +Places365_test_00028750.jpg +Places365_test_00028753.jpg +Places365_test_00028756.jpg +Places365_test_00028761.jpg +Places365_test_00028762.jpg +Places365_test_00028773.jpg +Places365_test_00028802.jpg +Places365_test_00028853.jpg +Places365_test_00028855.jpg +Places365_test_00028857.jpg +Places365_test_00028870.jpg +Places365_test_00028877.jpg +Places365_test_00028884.jpg +Places365_test_00028887.jpg +Places365_test_00028888.jpg +Places365_test_00028900.jpg +Places365_test_00028903.jpg +Places365_test_00028908.jpg +Places365_test_00028920.jpg +Places365_test_00028943.jpg +Places365_test_00028950.jpg +Places365_test_00028954.jpg +Places365_test_00028979.jpg +Places365_test_00028999.jpg +Places365_test_00029003.jpg +Places365_test_00029005.jpg +Places365_test_00029007.jpg +Places365_test_00029015.jpg +Places365_test_00029038.jpg +Places365_test_00029048.jpg +Places365_test_00029081.jpg +Places365_test_00029096.jpg +Places365_test_00029105.jpg +Places365_test_00029133.jpg +Places365_test_00029135.jpg +Places365_test_00029150.jpg +Places365_test_00029152.jpg +Places365_test_00029154.jpg +Places365_test_00029182.jpg +Places365_test_00029199.jpg +Places365_test_00029202.jpg +Places365_test_00029204.jpg +Places365_test_00029209.jpg +Places365_test_00029222.jpg +Places365_test_00029247.jpg +Places365_test_00029267.jpg +Places365_test_00029296.jpg +Places365_test_00029302.jpg +Places365_test_00029309.jpg +Places365_test_00029316.jpg +Places365_test_00029322.jpg +Places365_test_00029323.jpg +Places365_test_00029331.jpg +Places365_test_00029333.jpg +Places365_test_00029350.jpg +Places365_test_00029363.jpg +Places365_test_00029370.jpg +Places365_test_00029384.jpg +Places365_test_00029389.jpg +Places365_test_00029400.jpg +Places365_test_00029408.jpg +Places365_test_00029439.jpg +Places365_test_00029455.jpg +Places365_test_00029460.jpg +Places365_test_00029463.jpg +Places365_test_00029487.jpg +Places365_test_00029503.jpg +Places365_test_00029507.jpg +Places365_test_00029519.jpg +Places365_test_00029524.jpg +Places365_test_00029526.jpg +Places365_test_00029528.jpg +Places365_test_00029552.jpg +Places365_test_00029565.jpg +Places365_test_00029610.jpg +Places365_test_00029631.jpg +Places365_test_00029632.jpg +Places365_test_00029634.jpg +Places365_test_00029644.jpg +Places365_test_00029656.jpg +Places365_test_00029665.jpg +Places365_test_00029670.jpg +Places365_test_00029672.jpg +Places365_test_00029695.jpg +Places365_test_00029702.jpg +Places365_test_00029707.jpg +Places365_test_00029711.jpg +Places365_test_00029716.jpg +Places365_test_00029746.jpg +Places365_test_00029753.jpg +Places365_test_00029761.jpg +Places365_test_00029772.jpg +Places365_test_00029776.jpg +Places365_test_00029790.jpg +Places365_test_00029818.jpg +Places365_test_00029819.jpg +Places365_test_00029827.jpg +Places365_test_00029832.jpg +Places365_test_00029838.jpg +Places365_test_00029873.jpg +Places365_test_00029879.jpg +Places365_test_00029922.jpg +Places365_test_00029943.jpg +Places365_test_00029952.jpg +Places365_test_00029962.jpg +Places365_test_00029963.jpg +Places365_test_00029982.jpg +Places365_test_00029989.jpg +Places365_test_00029991.jpg +Places365_test_00030005.jpg +Places365_test_00030008.jpg +Places365_test_00030018.jpg +Places365_test_00030024.jpg +Places365_test_00030049.jpg +Places365_test_00030055.jpg +Places365_test_00030056.jpg +Places365_test_00030057.jpg +Places365_test_00030070.jpg +Places365_test_00030082.jpg +Places365_test_00030099.jpg +Places365_test_00030100.jpg +Places365_test_00030103.jpg +Places365_test_00030107.jpg +Places365_test_00030114.jpg +Places365_test_00030115.jpg +Places365_test_00030116.jpg +Places365_test_00030125.jpg +Places365_test_00030129.jpg +Places365_test_00030134.jpg +Places365_test_00030143.jpg +Places365_test_00030147.jpg +Places365_test_00030158.jpg +Places365_test_00030161.jpg +Places365_test_00030178.jpg +Places365_test_00030185.jpg +Places365_test_00030198.jpg +Places365_test_00030201.jpg +Places365_test_00030217.jpg +Places365_test_00030233.jpg +Places365_test_00030235.jpg +Places365_test_00030259.jpg +Places365_test_00030261.jpg +Places365_test_00030268.jpg +Places365_test_00030272.jpg +Places365_test_00030282.jpg +Places365_test_00030287.jpg +Places365_test_00030290.jpg +Places365_test_00030297.jpg +Places365_test_00030301.jpg +Places365_test_00030308.jpg +Places365_test_00030313.jpg +Places365_test_00030319.jpg +Places365_test_00030322.jpg +Places365_test_00030328.jpg +Places365_test_00030337.jpg +Places365_test_00030351.jpg +Places365_test_00030352.jpg +Places365_test_00030373.jpg +Places365_test_00030377.jpg +Places365_test_00030380.jpg +Places365_test_00030408.jpg +Places365_test_00030410.jpg +Places365_test_00030421.jpg +Places365_test_00030435.jpg +Places365_test_00030440.jpg +Places365_test_00030445.jpg +Places365_test_00030446.jpg +Places365_test_00030449.jpg +Places365_test_00030457.jpg +Places365_test_00030465.jpg +Places365_test_00030468.jpg +Places365_test_00030469.jpg +Places365_test_00030494.jpg +Places365_test_00030500.jpg +Places365_test_00030510.jpg +Places365_test_00030513.jpg +Places365_test_00030515.jpg +Places365_test_00030524.jpg +Places365_test_00030525.jpg +Places365_test_00030530.jpg +Places365_test_00030549.jpg +Places365_test_00030553.jpg +Places365_test_00030567.jpg +Places365_test_00030580.jpg +Places365_test_00030585.jpg +Places365_test_00030588.jpg +Places365_test_00030590.jpg +Places365_test_00030592.jpg +Places365_test_00030595.jpg +Places365_test_00030602.jpg +Places365_test_00030609.jpg +Places365_test_00030616.jpg +Places365_test_00030626.jpg +Places365_test_00030632.jpg +Places365_test_00030633.jpg +Places365_test_00030641.jpg +Places365_test_00030643.jpg +Places365_test_00030664.jpg +Places365_test_00030669.jpg +Places365_test_00030675.jpg +Places365_test_00030682.jpg +Places365_test_00030702.jpg +Places365_test_00030712.jpg +Places365_test_00030719.jpg +Places365_test_00030807.jpg +Places365_test_00030814.jpg +Places365_test_00030816.jpg +Places365_test_00030821.jpg +Places365_test_00030834.jpg +Places365_test_00030839.jpg +Places365_test_00030857.jpg +Places365_test_00030887.jpg +Places365_test_00030900.jpg +Places365_test_00030915.jpg +Places365_test_00030918.jpg +Places365_test_00030952.jpg +Places365_test_00030970.jpg +Places365_test_00030973.jpg +Places365_test_00030984.jpg +Places365_test_00030985.jpg +Places365_test_00030989.jpg +Places365_test_00030991.jpg +Places365_test_00031012.jpg +Places365_test_00031020.jpg +Places365_test_00031026.jpg +Places365_test_00031039.jpg +Places365_test_00031041.jpg +Places365_test_00031043.jpg +Places365_test_00031044.jpg +Places365_test_00031046.jpg +Places365_test_00031057.jpg +Places365_test_00031064.jpg +Places365_test_00031075.jpg +Places365_test_00031077.jpg +Places365_test_00031095.jpg +Places365_test_00031107.jpg +Places365_test_00031109.jpg +Places365_test_00031117.jpg +Places365_test_00031121.jpg +Places365_test_00031122.jpg +Places365_test_00031124.jpg +Places365_test_00031144.jpg +Places365_test_00031149.jpg +Places365_test_00031156.jpg +Places365_test_00031183.jpg +Places365_test_00031210.jpg +Places365_test_00031246.jpg +Places365_test_00031258.jpg +Places365_test_00031261.jpg +Places365_test_00031266.jpg +Places365_test_00031268.jpg +Places365_test_00031281.jpg +Places365_test_00031283.jpg +Places365_test_00031288.jpg +Places365_test_00031289.jpg +Places365_test_00031300.jpg +Places365_test_00031302.jpg +Places365_test_00031306.jpg +Places365_test_00031307.jpg +Places365_test_00031330.jpg +Places365_test_00031339.jpg +Places365_test_00031357.jpg +Places365_test_00031374.jpg +Places365_test_00031375.jpg +Places365_test_00031377.jpg +Places365_test_00031380.jpg +Places365_test_00031396.jpg +Places365_test_00031413.jpg +Places365_test_00031415.jpg +Places365_test_00031421.jpg +Places365_test_00031450.jpg +Places365_test_00031452.jpg +Places365_test_00031486.jpg +Places365_test_00031508.jpg +Places365_test_00031516.jpg +Places365_test_00031528.jpg +Places365_test_00031541.jpg +Places365_test_00031571.jpg +Places365_test_00031582.jpg +Places365_test_00031584.jpg +Places365_test_00031607.jpg +Places365_test_00031623.jpg +Places365_test_00031638.jpg +Places365_test_00031692.jpg +Places365_test_00031703.jpg +Places365_test_00031705.jpg +Places365_test_00031707.jpg +Places365_test_00031720.jpg +Places365_test_00031723.jpg +Places365_test_00031732.jpg +Places365_test_00031744.jpg +Places365_test_00031751.jpg +Places365_test_00031769.jpg +Places365_test_00031772.jpg +Places365_test_00031782.jpg +Places365_test_00031790.jpg +Places365_test_00031823.jpg +Places365_test_00031833.jpg +Places365_test_00031875.jpg +Places365_test_00031884.jpg +Places365_test_00031902.jpg +Places365_test_00031921.jpg +Places365_test_00031927.jpg +Places365_test_00031931.jpg +Places365_test_00031960.jpg +Places365_test_00031966.jpg +Places365_test_00031990.jpg +Places365_test_00032001.jpg +Places365_test_00032014.jpg +Places365_test_00032021.jpg +Places365_test_00032030.jpg +Places365_test_00032054.jpg +Places365_test_00032068.jpg +Places365_test_00032097.jpg +Places365_test_00032112.jpg +Places365_test_00032120.jpg +Places365_test_00032151.jpg +Places365_test_00032152.jpg +Places365_test_00032153.jpg +Places365_test_00032154.jpg +Places365_test_00032159.jpg +Places365_test_00032162.jpg +Places365_test_00032187.jpg +Places365_test_00032193.jpg +Places365_test_00032206.jpg +Places365_test_00032209.jpg +Places365_test_00032262.jpg +Places365_test_00032269.jpg +Places365_test_00032290.jpg +Places365_test_00032303.jpg +Places365_test_00032306.jpg +Places365_test_00032320.jpg +Places365_test_00032329.jpg +Places365_test_00032340.jpg +Places365_test_00032352.jpg +Places365_test_00032355.jpg +Places365_test_00032361.jpg +Places365_test_00032365.jpg +Places365_test_00032373.jpg +Places365_test_00032382.jpg +Places365_test_00032386.jpg +Places365_test_00032411.jpg +Places365_test_00032434.jpg +Places365_test_00032435.jpg +Places365_test_00032467.jpg +Places365_test_00032468.jpg +Places365_test_00032483.jpg +Places365_test_00032484.jpg +Places365_test_00032498.jpg +Places365_test_00032499.jpg +Places365_test_00032502.jpg +Places365_test_00032529.jpg +Places365_test_00032575.jpg +Places365_test_00032591.jpg +Places365_test_00032598.jpg +Places365_test_00032601.jpg +Places365_test_00032608.jpg +Places365_test_00032626.jpg +Places365_test_00032650.jpg +Places365_test_00032655.jpg +Places365_test_00032661.jpg +Places365_test_00032676.jpg +Places365_test_00032682.jpg +Places365_test_00032708.jpg +Places365_test_00032735.jpg +Places365_test_00032742.jpg +Places365_test_00032764.jpg +Places365_test_00032776.jpg +Places365_test_00032777.jpg +Places365_test_00032795.jpg +Places365_test_00032796.jpg +Places365_test_00032808.jpg +Places365_test_00032818.jpg +Places365_test_00032819.jpg +Places365_test_00032832.jpg +Places365_test_00032850.jpg +Places365_test_00032851.jpg +Places365_test_00032852.jpg +Places365_test_00032877.jpg +Places365_test_00032880.jpg +Places365_test_00032903.jpg +Places365_test_00032920.jpg +Places365_test_00032930.jpg +Places365_test_00032949.jpg +Places365_test_00032953.jpg +Places365_test_00032957.jpg +Places365_test_00032975.jpg +Places365_test_00032981.jpg +Places365_test_00033001.jpg +Places365_test_00033003.jpg +Places365_test_00033007.jpg +Places365_test_00033022.jpg +Places365_test_00033024.jpg +Places365_test_00033038.jpg +Places365_test_00033050.jpg +Places365_test_00033059.jpg +Places365_test_00033064.jpg +Places365_test_00033077.jpg +Places365_test_00033079.jpg +Places365_test_00033084.jpg +Places365_test_00033090.jpg +Places365_test_00033102.jpg +Places365_test_00033105.jpg +Places365_test_00033110.jpg +Places365_test_00033125.jpg +Places365_test_00033126.jpg +Places365_test_00033136.jpg +Places365_test_00033138.jpg +Places365_test_00033140.jpg +Places365_test_00033143.jpg +Places365_test_00033144.jpg +Places365_test_00033150.jpg +Places365_test_00033155.jpg +Places365_test_00033173.jpg +Places365_test_00033180.jpg +Places365_test_00033184.jpg +Places365_test_00033215.jpg +Places365_test_00033216.jpg +Places365_test_00033229.jpg +Places365_test_00033232.jpg +Places365_test_00033270.jpg +Places365_test_00033273.jpg +Places365_test_00033276.jpg +Places365_test_00033279.jpg +Places365_test_00033283.jpg +Places365_test_00033294.jpg +Places365_test_00033301.jpg +Places365_test_00033307.jpg +Places365_test_00033311.jpg +Places365_test_00033324.jpg +Places365_test_00033328.jpg +Places365_test_00033332.jpg +Places365_test_00033345.jpg +Places365_test_00033348.jpg +Places365_test_00033358.jpg +Places365_test_00033360.jpg +Places365_test_00033376.jpg +Places365_test_00033407.jpg +Places365_test_00033408.jpg +Places365_test_00033418.jpg +Places365_test_00033421.jpg +Places365_test_00033427.jpg +Places365_test_00033428.jpg +Places365_test_00033434.jpg +Places365_test_00033475.jpg +Places365_test_00033492.jpg +Places365_test_00033503.jpg +Places365_test_00033528.jpg +Places365_test_00033547.jpg +Places365_test_00033556.jpg +Places365_test_00033562.jpg +Places365_test_00033572.jpg +Places365_test_00033579.jpg +Places365_test_00033588.jpg +Places365_test_00033626.jpg +Places365_test_00033643.jpg +Places365_test_00033660.jpg +Places365_test_00033668.jpg +Places365_test_00033669.jpg +Places365_test_00033671.jpg +Places365_test_00033682.jpg +Places365_test_00033683.jpg +Places365_test_00033696.jpg +Places365_test_00033705.jpg +Places365_test_00033708.jpg +Places365_test_00033710.jpg +Places365_test_00033711.jpg +Places365_test_00033712.jpg +Places365_test_00033744.jpg +Places365_test_00033772.jpg +Places365_test_00033778.jpg +Places365_test_00033779.jpg +Places365_test_00033790.jpg +Places365_test_00033811.jpg +Places365_test_00033821.jpg +Places365_test_00033839.jpg +Places365_test_00033842.jpg +Places365_test_00033853.jpg +Places365_test_00033862.jpg +Places365_test_00033865.jpg +Places365_test_00033895.jpg +Places365_test_00033919.jpg +Places365_test_00033929.jpg +Places365_test_00033947.jpg +Places365_test_00033961.jpg +Places365_test_00033970.jpg +Places365_test_00033981.jpg +Places365_test_00034030.jpg +Places365_test_00034033.jpg +Places365_test_00034053.jpg +Places365_test_00034060.jpg +Places365_test_00034066.jpg +Places365_test_00034128.jpg +Places365_test_00034131.jpg +Places365_test_00034137.jpg +Places365_test_00034150.jpg +Places365_test_00034152.jpg +Places365_test_00034153.jpg +Places365_test_00034192.jpg +Places365_test_00034212.jpg +Places365_test_00034223.jpg +Places365_test_00034228.jpg +Places365_test_00034238.jpg +Places365_test_00034246.jpg +Places365_test_00034247.jpg +Places365_test_00034259.jpg +Places365_test_00034290.jpg +Places365_test_00034317.jpg +Places365_test_00034342.jpg +Places365_test_00034344.jpg +Places365_test_00034347.jpg +Places365_test_00034353.jpg +Places365_test_00034363.jpg +Places365_test_00034371.jpg +Places365_test_00034374.jpg +Places365_test_00034379.jpg +Places365_test_00034395.jpg +Places365_test_00034406.jpg +Places365_test_00034410.jpg +Places365_test_00034436.jpg +Places365_test_00034446.jpg +Places365_test_00034460.jpg +Places365_test_00034461.jpg +Places365_test_00034466.jpg +Places365_test_00034468.jpg +Places365_test_00034483.jpg +Places365_test_00034486.jpg +Places365_test_00034500.jpg +Places365_test_00034504.jpg +Places365_test_00034508.jpg +Places365_test_00034522.jpg +Places365_test_00034535.jpg +Places365_test_00034542.jpg +Places365_test_00034548.jpg +Places365_test_00034553.jpg +Places365_test_00034568.jpg +Places365_test_00034573.jpg +Places365_test_00034574.jpg +Places365_test_00034595.jpg +Places365_test_00034599.jpg +Places365_test_00034606.jpg +Places365_test_00034627.jpg +Places365_test_00034639.jpg +Places365_test_00034649.jpg +Places365_test_00034662.jpg +Places365_test_00034671.jpg +Places365_test_00034695.jpg +Places365_test_00034697.jpg +Places365_test_00034711.jpg +Places365_test_00034713.jpg +Places365_test_00034726.jpg +Places365_test_00034763.jpg +Places365_test_00034765.jpg +Places365_test_00034800.jpg +Places365_test_00034823.jpg +Places365_test_00034827.jpg +Places365_test_00034850.jpg +Places365_test_00034862.jpg +Places365_test_00034881.jpg +Places365_test_00034886.jpg +Places365_test_00034908.jpg +Places365_test_00034919.jpg +Places365_test_00034935.jpg +Places365_test_00034944.jpg +Places365_test_00034952.jpg +Places365_test_00034958.jpg +Places365_test_00034963.jpg +Places365_test_00034966.jpg +Places365_test_00034967.jpg +Places365_test_00034991.jpg +Places365_test_00034994.jpg +Places365_test_00034995.jpg +Places365_test_00035025.jpg +Places365_test_00035028.jpg +Places365_test_00035038.jpg +Places365_test_00035056.jpg +Places365_test_00035060.jpg +Places365_test_00035077.jpg +Places365_test_00035092.jpg +Places365_test_00035096.jpg +Places365_test_00035108.jpg +Places365_test_00035111.jpg +Places365_test_00035112.jpg +Places365_test_00035147.jpg +Places365_test_00035150.jpg +Places365_test_00035171.jpg +Places365_test_00035191.jpg +Places365_test_00035206.jpg +Places365_test_00035208.jpg +Places365_test_00035221.jpg +Places365_test_00035225.jpg +Places365_test_00035236.jpg +Places365_test_00035256.jpg +Places365_test_00035266.jpg +Places365_test_00035267.jpg +Places365_test_00035279.jpg +Places365_test_00035295.jpg +Places365_test_00035303.jpg +Places365_test_00035326.jpg +Places365_test_00035345.jpg +Places365_test_00035350.jpg +Places365_test_00035351.jpg +Places365_test_00035365.jpg +Places365_test_00035370.jpg +Places365_test_00035383.jpg +Places365_test_00035386.jpg +Places365_test_00035394.jpg +Places365_test_00035396.jpg +Places365_test_00035397.jpg +Places365_test_00035414.jpg +Places365_test_00035427.jpg +Places365_test_00035471.jpg +Places365_test_00035484.jpg +Places365_test_00035507.jpg +Places365_test_00035522.jpg +Places365_test_00035525.jpg +Places365_test_00035526.jpg +Places365_test_00035537.jpg +Places365_test_00035541.jpg +Places365_test_00035542.jpg +Places365_test_00035554.jpg +Places365_test_00035560.jpg +Places365_test_00035566.jpg +Places365_test_00035575.jpg +Places365_test_00035586.jpg +Places365_test_00035621.jpg +Places365_test_00035638.jpg +Places365_test_00035646.jpg +Places365_test_00035670.jpg +Places365_test_00035690.jpg +Places365_test_00035695.jpg +Places365_test_00035698.jpg +Places365_test_00035722.jpg +Places365_test_00035730.jpg +Places365_test_00035736.jpg +Places365_test_00035737.jpg +Places365_test_00035751.jpg +Places365_test_00035756.jpg +Places365_test_00035779.jpg +Places365_test_00035782.jpg +Places365_test_00035786.jpg +Places365_test_00035812.jpg +Places365_test_00035823.jpg +Places365_test_00035828.jpg +Places365_test_00035829.jpg +Places365_test_00035858.jpg +Places365_test_00035872.jpg +Places365_test_00035877.jpg +Places365_test_00035895.jpg +Places365_test_00035903.jpg +Places365_test_00035906.jpg +Places365_test_00035956.jpg +Places365_test_00035979.jpg +Places365_test_00035992.jpg +Places365_test_00036005.jpg +Places365_test_00036008.jpg +Places365_test_00036029.jpg +Places365_test_00036049.jpg +Places365_test_00036055.jpg +Places365_test_00036065.jpg +Places365_test_00036082.jpg +Places365_test_00036085.jpg +Places365_test_00036111.jpg +Places365_test_00036113.jpg +Places365_test_00036114.jpg +Places365_test_00036118.jpg +Places365_test_00036144.jpg +Places365_test_00036146.jpg +Places365_test_00036153.jpg +Places365_test_00036167.jpg +Places365_test_00036177.jpg +Places365_test_00036179.jpg +Places365_test_00036190.jpg +Places365_test_00036195.jpg +Places365_test_00036199.jpg +Places365_test_00036204.jpg +Places365_test_00036216.jpg +Places365_test_00036225.jpg +Places365_test_00036244.jpg +Places365_test_00036249.jpg +Places365_test_00036253.jpg +Places365_test_00036258.jpg +Places365_test_00036270.jpg +Places365_test_00036272.jpg +Places365_test_00036282.jpg +Places365_test_00036285.jpg +Places365_test_00036291.jpg +Places365_test_00036292.jpg +Places365_test_00036309.jpg +Places365_test_00036320.jpg +Places365_test_00036330.jpg +Places365_test_00036333.jpg +Places365_test_00036349.jpg +Places365_test_00036350.jpg +Places365_test_00036373.jpg +Places365_test_00036396.jpg +Places365_test_00036427.jpg +Places365_test_00036442.jpg +Places365_test_00036487.jpg +Places365_test_00036488.jpg +Places365_test_00036493.jpg +Places365_test_00036495.jpg +Places365_test_00036501.jpg +Places365_test_00036518.jpg +Places365_test_00036543.jpg +Places365_test_00036544.jpg +Places365_test_00036551.jpg +Places365_test_00036559.jpg +Places365_test_00036602.jpg +Places365_test_00036605.jpg +Places365_test_00036606.jpg +Places365_test_00036630.jpg +Places365_test_00036642.jpg +Places365_test_00036645.jpg +Places365_test_00036651.jpg +Places365_test_00036694.jpg +Places365_test_00036696.jpg +Places365_test_00036699.jpg +Places365_test_00036710.jpg +Places365_test_00036718.jpg +Places365_test_00036719.jpg +Places365_test_00036735.jpg +Places365_test_00036738.jpg +Places365_test_00036762.jpg +Places365_test_00036790.jpg +Places365_test_00036811.jpg +Places365_test_00036812.jpg +Places365_test_00036814.jpg +Places365_test_00036818.jpg +Places365_test_00036821.jpg +Places365_test_00036850.jpg +Places365_test_00036868.jpg +Places365_test_00036888.jpg +Places365_test_00036901.jpg +Places365_test_00036908.jpg +Places365_test_00036915.jpg +Places365_test_00036921.jpg +Places365_test_00036932.jpg +Places365_test_00036938.jpg +Places365_test_00036944.jpg +Places365_test_00036946.jpg +Places365_test_00036947.jpg +Places365_test_00036960.jpg +Places365_test_00036969.jpg +Places365_test_00036974.jpg +Places365_test_00036977.jpg +Places365_test_00036984.jpg +Places365_test_00036989.jpg +Places365_test_00036992.jpg +Places365_test_00036993.jpg +Places365_test_00037014.jpg +Places365_test_00037039.jpg +Places365_test_00037045.jpg +Places365_test_00037069.jpg +Places365_test_00037078.jpg +Places365_test_00037087.jpg +Places365_test_00037095.jpg +Places365_test_00037097.jpg +Places365_test_00037098.jpg +Places365_test_00037106.jpg +Places365_test_00037109.jpg +Places365_test_00037112.jpg +Places365_test_00037117.jpg +Places365_test_00037129.jpg +Places365_test_00037162.jpg +Places365_test_00037193.jpg +Places365_test_00037232.jpg +Places365_test_00037245.jpg +Places365_test_00037249.jpg +Places365_test_00037288.jpg +Places365_test_00037302.jpg +Places365_test_00037308.jpg +Places365_test_00037309.jpg +Places365_test_00037310.jpg +Places365_test_00037317.jpg +Places365_test_00037332.jpg +Places365_test_00037347.jpg +Places365_test_00037352.jpg +Places365_test_00037371.jpg +Places365_test_00037402.jpg +Places365_test_00037420.jpg +Places365_test_00037421.jpg +Places365_test_00037424.jpg +Places365_test_00037444.jpg +Places365_test_00037446.jpg +Places365_test_00037464.jpg +Places365_test_00037468.jpg +Places365_test_00037472.jpg +Places365_test_00037482.jpg +Places365_test_00037483.jpg +Places365_test_00037509.jpg +Places365_test_00037515.jpg +Places365_test_00037532.jpg +Places365_test_00037534.jpg +Places365_test_00037538.jpg +Places365_test_00037539.jpg +Places365_test_00037561.jpg +Places365_test_00037576.jpg +Places365_test_00037591.jpg +Places365_test_00037599.jpg +Places365_test_00037620.jpg +Places365_test_00037626.jpg +Places365_test_00037633.jpg +Places365_test_00037646.jpg +Places365_test_00037649.jpg +Places365_test_00037667.jpg +Places365_test_00037672.jpg +Places365_test_00037674.jpg +Places365_test_00037679.jpg +Places365_test_00037680.jpg +Places365_test_00037698.jpg +Places365_test_00037763.jpg +Places365_test_00037764.jpg +Places365_test_00037778.jpg +Places365_test_00037783.jpg +Places365_test_00037786.jpg +Places365_test_00037794.jpg +Places365_test_00037808.jpg +Places365_test_00037809.jpg +Places365_test_00037826.jpg +Places365_test_00037838.jpg +Places365_test_00037848.jpg +Places365_test_00037860.jpg +Places365_test_00037868.jpg +Places365_test_00037876.jpg +Places365_test_00037881.jpg +Places365_test_00037883.jpg +Places365_test_00037932.jpg +Places365_test_00037944.jpg +Places365_test_00037951.jpg +Places365_test_00037964.jpg +Places365_test_00037974.jpg +Places365_test_00037976.jpg +Places365_test_00037980.jpg +Places365_test_00037997.jpg +Places365_test_00038001.jpg +Places365_test_00038005.jpg +Places365_test_00038032.jpg +Places365_test_00038063.jpg +Places365_test_00038077.jpg +Places365_test_00038093.jpg +Places365_test_00038100.jpg +Places365_test_00038104.jpg +Places365_test_00038119.jpg +Places365_test_00038134.jpg +Places365_test_00038139.jpg +Places365_test_00038140.jpg +Places365_test_00038153.jpg +Places365_test_00038170.jpg +Places365_test_00038172.jpg +Places365_test_00038175.jpg +Places365_test_00038178.jpg +Places365_test_00038181.jpg +Places365_test_00038188.jpg +Places365_test_00038190.jpg +Places365_test_00038195.jpg +Places365_test_00038202.jpg +Places365_test_00038203.jpg +Places365_test_00038207.jpg +Places365_test_00038215.jpg +Places365_test_00038225.jpg +Places365_test_00038249.jpg +Places365_test_00038263.jpg +Places365_test_00038264.jpg +Places365_test_00038278.jpg +Places365_test_00038287.jpg +Places365_test_00038306.jpg +Places365_test_00038318.jpg +Places365_test_00038346.jpg +Places365_test_00038370.jpg +Places365_test_00038373.jpg +Places365_test_00038376.jpg +Places365_test_00038384.jpg +Places365_test_00038389.jpg +Places365_test_00038398.jpg +Places365_test_00038412.jpg +Places365_test_00038431.jpg +Places365_test_00038433.jpg +Places365_test_00038434.jpg +Places365_test_00038445.jpg +Places365_test_00038492.jpg +Places365_test_00038502.jpg +Places365_test_00038503.jpg +Places365_test_00038512.jpg +Places365_test_00038513.jpg +Places365_test_00038517.jpg +Places365_test_00038527.jpg +Places365_test_00038528.jpg +Places365_test_00038537.jpg +Places365_test_00038550.jpg +Places365_test_00038574.jpg +Places365_test_00038584.jpg +Places365_test_00038610.jpg +Places365_test_00038622.jpg +Places365_test_00038634.jpg +Places365_test_00038675.jpg +Places365_test_00038685.jpg +Places365_test_00038688.jpg +Places365_test_00038730.jpg +Places365_test_00038736.jpg +Places365_test_00038741.jpg +Places365_test_00038752.jpg +Places365_test_00038781.jpg +Places365_test_00038786.jpg +Places365_test_00038793.jpg +Places365_test_00038816.jpg +Places365_test_00038817.jpg +Places365_test_00038818.jpg +Places365_test_00038845.jpg +Places365_test_00038865.jpg +Places365_test_00038885.jpg +Places365_test_00038887.jpg +Places365_test_00038905.jpg +Places365_test_00038910.jpg +Places365_test_00038914.jpg +Places365_test_00038918.jpg +Places365_test_00038954.jpg +Places365_test_00038965.jpg +Places365_test_00038970.jpg +Places365_test_00038977.jpg +Places365_test_00038981.jpg +Places365_test_00039005.jpg +Places365_test_00039009.jpg +Places365_test_00039012.jpg +Places365_test_00039020.jpg +Places365_test_00039023.jpg +Places365_test_00039026.jpg +Places365_test_00039028.jpg +Places365_test_00039041.jpg +Places365_test_00039045.jpg +Places365_test_00039047.jpg +Places365_test_00039064.jpg +Places365_test_00039077.jpg +Places365_test_00039080.jpg +Places365_test_00039087.jpg +Places365_test_00039089.jpg +Places365_test_00039092.jpg +Places365_test_00039099.jpg +Places365_test_00039113.jpg +Places365_test_00039116.jpg +Places365_test_00039145.jpg +Places365_test_00039153.jpg +Places365_test_00039179.jpg +Places365_test_00039191.jpg +Places365_test_00039197.jpg +Places365_test_00039204.jpg +Places365_test_00039210.jpg +Places365_test_00039213.jpg +Places365_test_00039218.jpg +Places365_test_00039234.jpg +Places365_test_00039253.jpg +Places365_test_00039268.jpg +Places365_test_00039275.jpg +Places365_test_00039285.jpg +Places365_test_00039301.jpg +Places365_test_00039310.jpg +Places365_test_00039321.jpg +Places365_test_00039323.jpg +Places365_test_00039326.jpg +Places365_test_00039339.jpg +Places365_test_00039368.jpg +Places365_test_00039370.jpg +Places365_test_00039376.jpg +Places365_test_00039379.jpg +Places365_test_00039393.jpg +Places365_test_00039410.jpg +Places365_test_00039493.jpg +Places365_test_00039498.jpg +Places365_test_00039505.jpg +Places365_test_00039571.jpg +Places365_test_00039580.jpg +Places365_test_00039592.jpg +Places365_test_00039602.jpg +Places365_test_00039634.jpg +Places365_test_00039641.jpg +Places365_test_00039646.jpg +Places365_test_00039650.jpg +Places365_test_00039669.jpg +Places365_test_00039673.jpg +Places365_test_00039676.jpg +Places365_test_00039694.jpg +Places365_test_00039697.jpg +Places365_test_00039699.jpg +Places365_test_00039704.jpg +Places365_test_00039706.jpg +Places365_test_00039711.jpg +Places365_test_00039721.jpg +Places365_test_00039739.jpg +Places365_test_00039765.jpg +Places365_test_00039766.jpg +Places365_test_00039769.jpg +Places365_test_00039772.jpg +Places365_test_00039785.jpg +Places365_test_00039787.jpg +Places365_test_00039794.jpg +Places365_test_00039805.jpg +Places365_test_00039814.jpg +Places365_test_00039815.jpg +Places365_test_00039826.jpg +Places365_test_00039842.jpg +Places365_test_00039866.jpg +Places365_test_00039879.jpg +Places365_test_00039894.jpg +Places365_test_00039901.jpg +Places365_test_00039921.jpg +Places365_test_00039933.jpg +Places365_test_00039934.jpg +Places365_test_00039937.jpg +Places365_test_00039942.jpg +Places365_test_00039953.jpg +Places365_test_00039985.jpg +Places365_test_00040030.jpg +Places365_test_00040033.jpg +Places365_test_00040038.jpg +Places365_test_00040067.jpg +Places365_test_00040073.jpg +Places365_test_00040115.jpg +Places365_test_00040122.jpg +Places365_test_00040135.jpg +Places365_test_00040140.jpg +Places365_test_00040157.jpg +Places365_test_00040160.jpg +Places365_test_00040166.jpg +Places365_test_00040176.jpg +Places365_test_00040183.jpg +Places365_test_00040187.jpg +Places365_test_00040200.jpg +Places365_test_00040203.jpg +Places365_test_00040206.jpg +Places365_test_00040216.jpg +Places365_test_00040217.jpg +Places365_test_00040218.jpg +Places365_test_00040231.jpg +Places365_test_00040240.jpg +Places365_test_00040267.jpg +Places365_test_00040272.jpg +Places365_test_00040274.jpg +Places365_test_00040277.jpg +Places365_test_00040313.jpg +Places365_test_00040314.jpg +Places365_test_00040315.jpg +Places365_test_00040328.jpg +Places365_test_00040330.jpg +Places365_test_00040344.jpg +Places365_test_00040361.jpg +Places365_test_00040366.jpg +Places365_test_00040370.jpg +Places365_test_00040375.jpg +Places365_test_00040387.jpg +Places365_test_00040394.jpg +Places365_test_00040397.jpg +Places365_test_00040401.jpg +Places365_test_00040415.jpg +Places365_test_00040433.jpg +Places365_test_00040436.jpg +Places365_test_00040446.jpg +Places365_test_00040465.jpg +Places365_test_00040471.jpg +Places365_test_00040479.jpg +Places365_test_00040487.jpg +Places365_test_00040489.jpg +Places365_test_00040492.jpg +Places365_test_00040507.jpg +Places365_test_00040523.jpg +Places365_test_00040536.jpg +Places365_test_00040547.jpg +Places365_test_00040558.jpg +Places365_test_00040560.jpg +Places365_test_00040580.jpg +Places365_test_00040584.jpg +Places365_test_00040588.jpg +Places365_test_00040590.jpg +Places365_test_00040619.jpg +Places365_test_00040624.jpg +Places365_test_00040631.jpg +Places365_test_00040644.jpg +Places365_test_00040655.jpg +Places365_test_00040670.jpg +Places365_test_00040671.jpg +Places365_test_00040672.jpg +Places365_test_00040679.jpg +Places365_test_00040689.jpg +Places365_test_00040699.jpg +Places365_test_00040700.jpg +Places365_test_00040721.jpg +Places365_test_00040723.jpg +Places365_test_00040729.jpg +Places365_test_00040737.jpg +Places365_test_00040745.jpg +Places365_test_00040755.jpg +Places365_test_00040769.jpg +Places365_test_00040776.jpg +Places365_test_00040777.jpg +Places365_test_00040781.jpg +Places365_test_00040792.jpg +Places365_test_00040797.jpg +Places365_test_00040798.jpg +Places365_test_00040801.jpg +Places365_test_00040830.jpg +Places365_test_00040856.jpg +Places365_test_00040864.jpg +Places365_test_00040868.jpg +Places365_test_00040883.jpg +Places365_test_00040896.jpg +Places365_test_00040912.jpg +Places365_test_00040924.jpg +Places365_test_00040927.jpg +Places365_test_00040946.jpg +Places365_test_00040973.jpg +Places365_test_00040982.jpg +Places365_test_00040998.jpg +Places365_test_00041000.jpg +Places365_test_00041002.jpg +Places365_test_00041006.jpg +Places365_test_00041009.jpg +Places365_test_00041014.jpg +Places365_test_00041017.jpg +Places365_test_00041022.jpg +Places365_test_00041027.jpg +Places365_test_00041037.jpg +Places365_test_00041039.jpg +Places365_test_00041051.jpg +Places365_test_00041071.jpg +Places365_test_00041084.jpg +Places365_test_00041103.jpg +Places365_test_00041105.jpg +Places365_test_00041145.jpg +Places365_test_00041152.jpg +Places365_test_00041164.jpg +Places365_test_00041180.jpg +Places365_test_00041184.jpg +Places365_test_00041204.jpg +Places365_test_00041215.jpg +Places365_test_00041218.jpg +Places365_test_00041222.jpg +Places365_test_00041224.jpg +Places365_test_00041226.jpg +Places365_test_00041232.jpg +Places365_test_00041237.jpg +Places365_test_00041243.jpg +Places365_test_00041248.jpg +Places365_test_00041249.jpg +Places365_test_00041257.jpg +Places365_test_00041271.jpg +Places365_test_00041275.jpg +Places365_test_00041280.jpg +Places365_test_00041284.jpg +Places365_test_00041289.jpg +Places365_test_00041293.jpg +Places365_test_00041303.jpg +Places365_test_00041309.jpg +Places365_test_00041314.jpg +Places365_test_00041340.jpg +Places365_test_00041348.jpg +Places365_test_00041364.jpg +Places365_test_00041421.jpg +Places365_test_00041462.jpg +Places365_test_00041468.jpg +Places365_test_00041513.jpg +Places365_test_00041522.jpg +Places365_test_00041524.jpg +Places365_test_00041542.jpg +Places365_test_00041551.jpg +Places365_test_00041555.jpg +Places365_test_00041571.jpg +Places365_test_00041578.jpg +Places365_test_00041584.jpg +Places365_test_00041594.jpg +Places365_test_00041607.jpg +Places365_test_00041614.jpg +Places365_test_00041619.jpg +Places365_test_00041625.jpg +Places365_test_00041627.jpg +Places365_test_00041628.jpg +Places365_test_00041637.jpg +Places365_test_00041640.jpg +Places365_test_00041659.jpg +Places365_test_00041665.jpg +Places365_test_00041673.jpg +Places365_test_00041678.jpg +Places365_test_00041680.jpg +Places365_test_00041683.jpg +Places365_test_00041684.jpg +Places365_test_00041691.jpg +Places365_test_00041723.jpg +Places365_test_00041735.jpg +Places365_test_00041737.jpg +Places365_test_00041758.jpg +Places365_test_00041770.jpg +Places365_test_00041819.jpg +Places365_test_00041828.jpg +Places365_test_00041829.jpg +Places365_test_00041840.jpg +Places365_test_00041846.jpg +Places365_test_00041860.jpg +Places365_test_00041878.jpg +Places365_test_00041891.jpg +Places365_test_00041905.jpg +Places365_test_00041906.jpg +Places365_test_00041910.jpg +Places365_test_00041956.jpg +Places365_test_00041957.jpg +Places365_test_00041962.jpg +Places365_test_00041966.jpg +Places365_test_00042004.jpg +Places365_test_00042013.jpg +Places365_test_00042021.jpg +Places365_test_00042033.jpg +Places365_test_00042046.jpg +Places365_test_00042067.jpg +Places365_test_00042068.jpg +Places365_test_00042079.jpg +Places365_test_00042086.jpg +Places365_test_00042091.jpg +Places365_test_00042099.jpg +Places365_test_00042106.jpg +Places365_test_00042135.jpg +Places365_test_00042136.jpg +Places365_test_00042162.jpg +Places365_test_00042163.jpg +Places365_test_00042173.jpg +Places365_test_00042174.jpg +Places365_test_00042187.jpg +Places365_test_00042193.jpg +Places365_test_00042211.jpg +Places365_test_00042228.jpg +Places365_test_00042265.jpg +Places365_test_00042266.jpg +Places365_test_00042274.jpg +Places365_test_00042278.jpg +Places365_test_00042280.jpg +Places365_test_00042300.jpg +Places365_test_00042302.jpg +Places365_test_00042304.jpg +Places365_test_00042323.jpg +Places365_test_00042329.jpg +Places365_test_00042331.jpg +Places365_test_00042337.jpg +Places365_test_00042351.jpg +Places365_test_00042362.jpg +Places365_test_00042363.jpg +Places365_test_00042366.jpg +Places365_test_00042368.jpg +Places365_test_00042379.jpg +Places365_test_00042424.jpg +Places365_test_00042459.jpg +Places365_test_00042482.jpg +Places365_test_00042484.jpg +Places365_test_00042500.jpg +Places365_test_00042502.jpg +Places365_test_00042513.jpg +Places365_test_00042515.jpg +Places365_test_00042519.jpg +Places365_test_00042524.jpg +Places365_test_00042551.jpg +Places365_test_00042557.jpg +Places365_test_00042564.jpg +Places365_test_00042567.jpg +Places365_test_00042575.jpg +Places365_test_00042580.jpg +Places365_test_00042581.jpg +Places365_test_00042585.jpg +Places365_test_00042603.jpg +Places365_test_00042604.jpg +Places365_test_00042609.jpg +Places365_test_00042612.jpg +Places365_test_00042635.jpg +Places365_test_00042638.jpg +Places365_test_00042645.jpg +Places365_test_00042651.jpg +Places365_test_00042654.jpg +Places365_test_00042666.jpg +Places365_test_00042700.jpg +Places365_test_00042704.jpg +Places365_test_00042725.jpg +Places365_test_00042727.jpg +Places365_test_00042755.jpg +Places365_test_00042769.jpg +Places365_test_00042774.jpg +Places365_test_00042779.jpg +Places365_test_00042786.jpg +Places365_test_00042787.jpg +Places365_test_00042798.jpg +Places365_test_00042806.jpg +Places365_test_00042807.jpg +Places365_test_00042816.jpg +Places365_test_00042847.jpg +Places365_test_00042853.jpg +Places365_test_00042861.jpg +Places365_test_00042866.jpg +Places365_test_00042867.jpg +Places365_test_00042868.jpg +Places365_test_00042878.jpg +Places365_test_00042889.jpg +Places365_test_00042894.jpg +Places365_test_00042895.jpg +Places365_test_00042917.jpg +Places365_test_00042924.jpg +Places365_test_00042947.jpg +Places365_test_00042948.jpg +Places365_test_00042955.jpg +Places365_test_00042970.jpg +Places365_test_00042978.jpg +Places365_test_00042981.jpg +Places365_test_00042991.jpg +Places365_test_00043003.jpg +Places365_test_00043012.jpg +Places365_test_00043015.jpg +Places365_test_00043031.jpg +Places365_test_00043032.jpg +Places365_test_00043064.jpg +Places365_test_00043068.jpg +Places365_test_00043091.jpg +Places365_test_00043096.jpg +Places365_test_00043107.jpg +Places365_test_00043125.jpg +Places365_test_00043133.jpg +Places365_test_00043138.jpg +Places365_test_00043157.jpg +Places365_test_00043167.jpg +Places365_test_00043181.jpg +Places365_test_00043194.jpg +Places365_test_00043195.jpg +Places365_test_00043196.jpg +Places365_test_00043219.jpg +Places365_test_00043221.jpg +Places365_test_00043232.jpg +Places365_test_00043239.jpg +Places365_test_00043244.jpg +Places365_test_00043253.jpg +Places365_test_00043279.jpg +Places365_test_00043287.jpg +Places365_test_00043306.jpg +Places365_test_00043311.jpg +Places365_test_00043323.jpg +Places365_test_00043331.jpg +Places365_test_00043337.jpg +Places365_test_00043348.jpg +Places365_test_00043349.jpg +Places365_test_00043359.jpg +Places365_test_00043365.jpg +Places365_test_00043366.jpg +Places365_test_00043386.jpg +Places365_test_00043390.jpg +Places365_test_00043395.jpg +Places365_test_00043402.jpg +Places365_test_00043413.jpg +Places365_test_00043423.jpg +Places365_test_00043424.jpg +Places365_test_00043425.jpg +Places365_test_00043431.jpg +Places365_test_00043475.jpg +Places365_test_00043485.jpg +Places365_test_00043490.jpg +Places365_test_00043498.jpg +Places365_test_00043507.jpg +Places365_test_00043521.jpg +Places365_test_00043549.jpg +Places365_test_00043552.jpg +Places365_test_00043556.jpg +Places365_test_00043561.jpg +Places365_test_00043562.jpg +Places365_test_00043566.jpg +Places365_test_00043574.jpg +Places365_test_00043586.jpg +Places365_test_00043599.jpg +Places365_test_00043606.jpg +Places365_test_00043614.jpg +Places365_test_00043653.jpg +Places365_test_00043656.jpg +Places365_test_00043670.jpg +Places365_test_00043671.jpg +Places365_test_00043683.jpg +Places365_test_00043684.jpg +Places365_test_00043694.jpg +Places365_test_00043695.jpg +Places365_test_00043722.jpg +Places365_test_00043725.jpg +Places365_test_00043750.jpg +Places365_test_00043774.jpg +Places365_test_00043779.jpg +Places365_test_00043802.jpg +Places365_test_00043812.jpg +Places365_test_00043814.jpg +Places365_test_00043827.jpg +Places365_test_00043831.jpg +Places365_test_00043837.jpg +Places365_test_00043848.jpg +Places365_test_00043853.jpg +Places365_test_00043859.jpg +Places365_test_00043865.jpg +Places365_test_00043866.jpg +Places365_test_00043897.jpg +Places365_test_00043903.jpg +Places365_test_00043907.jpg +Places365_test_00043909.jpg +Places365_test_00043937.jpg +Places365_test_00043941.jpg +Places365_test_00043946.jpg +Places365_test_00043952.jpg +Places365_test_00043965.jpg +Places365_test_00043971.jpg +Places365_test_00043979.jpg +Places365_test_00043991.jpg +Places365_test_00043993.jpg +Places365_test_00043994.jpg +Places365_test_00043998.jpg +Places365_test_00043999.jpg +Places365_test_00044006.jpg +Places365_test_00044010.jpg +Places365_test_00044026.jpg +Places365_test_00044031.jpg +Places365_test_00044043.jpg +Places365_test_00044056.jpg +Places365_test_00044074.jpg +Places365_test_00044105.jpg +Places365_test_00044135.jpg +Places365_test_00044138.jpg +Places365_test_00044139.jpg +Places365_test_00044152.jpg +Places365_test_00044166.jpg +Places365_test_00044170.jpg +Places365_test_00044178.jpg +Places365_test_00044191.jpg +Places365_test_00044197.jpg +Places365_test_00044208.jpg +Places365_test_00044211.jpg +Places365_test_00044231.jpg +Places365_test_00044256.jpg +Places365_test_00044262.jpg +Places365_test_00044278.jpg +Places365_test_00044287.jpg +Places365_test_00044290.jpg +Places365_test_00044291.jpg +Places365_test_00044292.jpg +Places365_test_00044294.jpg +Places365_test_00044296.jpg +Places365_test_00044300.jpg +Places365_test_00044321.jpg +Places365_test_00044322.jpg +Places365_test_00044329.jpg +Places365_test_00044356.jpg +Places365_test_00044367.jpg +Places365_test_00044405.jpg +Places365_test_00044454.jpg +Places365_test_00044458.jpg +Places365_test_00044462.jpg +Places365_test_00044480.jpg +Places365_test_00044481.jpg +Places365_test_00044488.jpg +Places365_test_00044491.jpg +Places365_test_00044512.jpg +Places365_test_00044520.jpg +Places365_test_00044521.jpg +Places365_test_00044530.jpg +Places365_test_00044551.jpg +Places365_test_00044561.jpg +Places365_test_00044584.jpg +Places365_test_00044586.jpg +Places365_test_00044606.jpg +Places365_test_00044631.jpg +Places365_test_00044634.jpg +Places365_test_00044644.jpg +Places365_test_00044649.jpg +Places365_test_00044676.jpg +Places365_test_00044705.jpg +Places365_test_00044713.jpg +Places365_test_00044724.jpg +Places365_test_00044730.jpg +Places365_test_00044748.jpg +Places365_test_00044770.jpg +Places365_test_00044772.jpg +Places365_test_00044794.jpg +Places365_test_00044803.jpg +Places365_test_00044825.jpg +Places365_test_00044838.jpg +Places365_test_00044847.jpg +Places365_test_00044870.jpg +Places365_test_00044871.jpg +Places365_test_00044894.jpg +Places365_test_00044908.jpg +Places365_test_00044925.jpg +Places365_test_00044941.jpg +Places365_test_00044942.jpg +Places365_test_00044945.jpg +Places365_test_00044964.jpg +Places365_test_00044966.jpg +Places365_test_00044971.jpg +Places365_test_00045012.jpg +Places365_test_00045020.jpg +Places365_test_00045027.jpg +Places365_test_00045029.jpg +Places365_test_00045036.jpg +Places365_test_00045039.jpg +Places365_test_00045044.jpg +Places365_test_00045084.jpg +Places365_test_00045100.jpg +Places365_test_00045116.jpg +Places365_test_00045138.jpg +Places365_test_00045144.jpg +Places365_test_00045163.jpg +Places365_test_00045165.jpg +Places365_test_00045166.jpg +Places365_test_00045190.jpg +Places365_test_00045194.jpg +Places365_test_00045197.jpg +Places365_test_00045199.jpg +Places365_test_00045203.jpg +Places365_test_00045205.jpg +Places365_test_00045221.jpg +Places365_test_00045225.jpg +Places365_test_00045227.jpg +Places365_test_00045228.jpg +Places365_test_00045233.jpg +Places365_test_00045247.jpg +Places365_test_00045248.jpg +Places365_test_00045250.jpg +Places365_test_00045281.jpg +Places365_test_00045311.jpg +Places365_test_00045312.jpg +Places365_test_00045320.jpg +Places365_test_00045322.jpg +Places365_test_00045329.jpg +Places365_test_00045346.jpg +Places365_test_00045353.jpg +Places365_test_00045361.jpg +Places365_test_00045367.jpg +Places365_test_00045368.jpg +Places365_test_00045396.jpg +Places365_test_00045400.jpg +Places365_test_00045408.jpg +Places365_test_00045426.jpg +Places365_test_00045432.jpg +Places365_test_00045476.jpg +Places365_test_00045479.jpg +Places365_test_00045490.jpg +Places365_test_00045506.jpg +Places365_test_00045513.jpg +Places365_test_00045529.jpg +Places365_test_00045544.jpg +Places365_test_00045552.jpg +Places365_test_00045569.jpg +Places365_test_00045573.jpg +Places365_test_00045587.jpg +Places365_test_00045593.jpg +Places365_test_00045596.jpg +Places365_test_00045613.jpg +Places365_test_00045634.jpg +Places365_test_00045648.jpg +Places365_test_00045673.jpg +Places365_test_00045697.jpg +Places365_test_00045700.jpg +Places365_test_00045713.jpg +Places365_test_00045724.jpg +Places365_test_00045731.jpg +Places365_test_00045741.jpg +Places365_test_00045752.jpg +Places365_test_00045786.jpg +Places365_test_00045801.jpg +Places365_test_00045809.jpg +Places365_test_00045842.jpg +Places365_test_00045849.jpg +Places365_test_00045852.jpg +Places365_test_00045862.jpg +Places365_test_00045867.jpg +Places365_test_00045876.jpg +Places365_test_00045879.jpg +Places365_test_00045904.jpg +Places365_test_00045916.jpg +Places365_test_00045929.jpg +Places365_test_00045938.jpg +Places365_test_00045950.jpg +Places365_test_00045965.jpg +Places365_test_00045969.jpg +Places365_test_00045973.jpg +Places365_test_00045984.jpg +Places365_test_00045999.jpg +Places365_test_00046020.jpg +Places365_test_00046031.jpg +Places365_test_00046041.jpg +Places365_test_00046052.jpg +Places365_test_00046072.jpg +Places365_test_00046074.jpg +Places365_test_00046087.jpg +Places365_test_00046100.jpg +Places365_test_00046111.jpg +Places365_test_00046121.jpg +Places365_test_00046143.jpg +Places365_test_00046152.jpg +Places365_test_00046155.jpg +Places365_test_00046166.jpg +Places365_test_00046175.jpg +Places365_test_00046210.jpg +Places365_test_00046213.jpg +Places365_test_00046239.jpg +Places365_test_00046297.jpg +Places365_test_00046307.jpg +Places365_test_00046330.jpg +Places365_test_00046342.jpg +Places365_test_00046343.jpg +Places365_test_00046356.jpg +Places365_test_00046371.jpg +Places365_test_00046373.jpg +Places365_test_00046386.jpg +Places365_test_00046405.jpg +Places365_test_00046440.jpg +Places365_test_00046442.jpg +Places365_test_00046484.jpg +Places365_test_00046488.jpg +Places365_test_00046493.jpg +Places365_test_00046497.jpg +Places365_test_00046501.jpg +Places365_test_00046506.jpg +Places365_test_00046517.jpg +Places365_test_00046530.jpg +Places365_test_00046544.jpg +Places365_test_00046545.jpg +Places365_test_00046550.jpg +Places365_test_00046552.jpg +Places365_test_00046579.jpg +Places365_test_00046583.jpg +Places365_test_00046610.jpg +Places365_test_00046617.jpg +Places365_test_00046622.jpg +Places365_test_00046632.jpg +Places365_test_00046637.jpg +Places365_test_00046670.jpg +Places365_test_00046709.jpg +Places365_test_00046714.jpg +Places365_test_00046722.jpg +Places365_test_00046744.jpg +Places365_test_00046760.jpg +Places365_test_00046762.jpg +Places365_test_00046765.jpg +Places365_test_00046770.jpg +Places365_test_00046793.jpg +Places365_test_00046795.jpg +Places365_test_00046798.jpg +Places365_test_00046799.jpg +Places365_test_00046807.jpg +Places365_test_00046825.jpg +Places365_test_00046827.jpg +Places365_test_00046834.jpg +Places365_test_00046861.jpg +Places365_test_00046864.jpg +Places365_test_00046870.jpg +Places365_test_00046893.jpg +Places365_test_00046896.jpg +Places365_test_00046898.jpg +Places365_test_00046908.jpg +Places365_test_00046916.jpg +Places365_test_00046917.jpg +Places365_test_00046922.jpg +Places365_test_00046926.jpg +Places365_test_00046932.jpg +Places365_test_00046936.jpg +Places365_test_00046946.jpg +Places365_test_00046969.jpg +Places365_test_00046972.jpg +Places365_test_00046979.jpg +Places365_test_00047014.jpg +Places365_test_00047050.jpg +Places365_test_00047071.jpg +Places365_test_00047097.jpg +Places365_test_00047105.jpg +Places365_test_00047110.jpg +Places365_test_00047117.jpg +Places365_test_00047123.jpg +Places365_test_00047140.jpg +Places365_test_00047150.jpg +Places365_test_00047154.jpg +Places365_test_00047178.jpg +Places365_test_00047187.jpg +Places365_test_00047188.jpg +Places365_test_00047189.jpg +Places365_test_00047201.jpg +Places365_test_00047210.jpg +Places365_test_00047216.jpg +Places365_test_00047230.jpg +Places365_test_00047240.jpg +Places365_test_00047246.jpg +Places365_test_00047251.jpg +Places365_test_00047253.jpg +Places365_test_00047261.jpg +Places365_test_00047270.jpg +Places365_test_00047273.jpg +Places365_test_00047278.jpg +Places365_test_00047288.jpg +Places365_test_00047300.jpg +Places365_test_00047422.jpg +Places365_test_00047444.jpg +Places365_test_00047450.jpg +Places365_test_00047464.jpg +Places365_test_00047471.jpg +Places365_test_00047501.jpg +Places365_test_00047509.jpg +Places365_test_00047523.jpg +Places365_test_00047524.jpg +Places365_test_00047529.jpg +Places365_test_00047530.jpg +Places365_test_00047541.jpg +Places365_test_00047556.jpg +Places365_test_00047568.jpg +Places365_test_00047575.jpg +Places365_test_00047604.jpg +Places365_test_00047626.jpg +Places365_test_00047632.jpg +Places365_test_00047645.jpg +Places365_test_00047659.jpg +Places365_test_00047694.jpg +Places365_test_00047710.jpg +Places365_test_00047712.jpg +Places365_test_00047713.jpg +Places365_test_00047740.jpg +Places365_test_00047741.jpg +Places365_test_00047748.jpg +Places365_test_00047749.jpg +Places365_test_00047764.jpg +Places365_test_00047775.jpg +Places365_test_00047776.jpg +Places365_test_00047778.jpg +Places365_test_00047781.jpg +Places365_test_00047793.jpg +Places365_test_00047794.jpg +Places365_test_00047820.jpg +Places365_test_00047832.jpg +Places365_test_00047833.jpg +Places365_test_00047838.jpg +Places365_test_00047848.jpg +Places365_test_00047854.jpg +Places365_test_00047857.jpg +Places365_test_00047859.jpg +Places365_test_00047872.jpg +Places365_test_00047881.jpg +Places365_test_00047895.jpg +Places365_test_00047904.jpg +Places365_test_00047930.jpg +Places365_test_00047935.jpg +Places365_test_00047941.jpg +Places365_test_00047980.jpg +Places365_test_00047983.jpg +Places365_test_00047994.jpg +Places365_test_00047999.jpg +Places365_test_00048022.jpg +Places365_test_00048037.jpg +Places365_test_00048055.jpg +Places365_test_00048081.jpg +Places365_test_00048088.jpg +Places365_test_00048108.jpg +Places365_test_00048112.jpg +Places365_test_00048113.jpg +Places365_test_00048120.jpg +Places365_test_00048122.jpg +Places365_test_00048146.jpg +Places365_test_00048156.jpg +Places365_test_00048169.jpg +Places365_test_00048182.jpg +Places365_test_00048190.jpg +Places365_test_00048196.jpg +Places365_test_00048203.jpg +Places365_test_00048206.jpg +Places365_test_00048211.jpg +Places365_test_00048212.jpg +Places365_test_00048216.jpg +Places365_test_00048217.jpg +Places365_test_00048218.jpg +Places365_test_00048226.jpg +Places365_test_00048231.jpg +Places365_test_00048239.jpg +Places365_test_00048254.jpg +Places365_test_00048296.jpg +Places365_test_00048303.jpg +Places365_test_00048310.jpg +Places365_test_00048311.jpg +Places365_test_00048317.jpg +Places365_test_00048332.jpg +Places365_test_00048347.jpg +Places365_test_00048351.jpg +Places365_test_00048385.jpg +Places365_test_00048402.jpg +Places365_test_00048421.jpg +Places365_test_00048436.jpg +Places365_test_00048450.jpg +Places365_test_00048475.jpg +Places365_test_00048479.jpg +Places365_test_00048482.jpg +Places365_test_00048492.jpg +Places365_test_00048498.jpg +Places365_test_00048507.jpg +Places365_test_00048512.jpg +Places365_test_00048518.jpg +Places365_test_00048532.jpg +Places365_test_00048546.jpg +Places365_test_00048551.jpg +Places365_test_00048584.jpg +Places365_test_00048593.jpg +Places365_test_00048596.jpg +Places365_test_00048609.jpg +Places365_test_00048631.jpg +Places365_test_00048646.jpg +Places365_test_00048650.jpg +Places365_test_00048651.jpg +Places365_test_00048658.jpg +Places365_test_00048677.jpg +Places365_test_00048686.jpg +Places365_test_00048695.jpg +Places365_test_00048696.jpg +Places365_test_00048705.jpg +Places365_test_00048716.jpg +Places365_test_00048748.jpg +Places365_test_00048754.jpg +Places365_test_00048757.jpg +Places365_test_00048765.jpg +Places365_test_00048769.jpg +Places365_test_00048779.jpg +Places365_test_00048781.jpg +Places365_test_00048810.jpg +Places365_test_00048817.jpg +Places365_test_00048854.jpg +Places365_test_00048859.jpg +Places365_test_00048866.jpg +Places365_test_00048893.jpg +Places365_test_00048902.jpg +Places365_test_00048915.jpg +Places365_test_00048941.jpg +Places365_test_00048948.jpg +Places365_test_00048960.jpg +Places365_test_00048968.jpg +Places365_test_00048969.jpg +Places365_test_00048983.jpg +Places365_test_00048991.jpg +Places365_test_00048995.jpg +Places365_test_00049005.jpg +Places365_test_00049008.jpg +Places365_test_00049013.jpg +Places365_test_00049061.jpg +Places365_test_00049062.jpg +Places365_test_00049072.jpg +Places365_test_00049073.jpg +Places365_test_00049097.jpg +Places365_test_00049103.jpg +Places365_test_00049116.jpg +Places365_test_00049121.jpg +Places365_test_00049124.jpg +Places365_test_00049144.jpg +Places365_test_00049171.jpg +Places365_test_00049192.jpg +Places365_test_00049193.jpg +Places365_test_00049199.jpg +Places365_test_00049232.jpg +Places365_test_00049238.jpg +Places365_test_00049270.jpg +Places365_test_00049288.jpg +Places365_test_00049297.jpg +Places365_test_00049322.jpg +Places365_test_00049343.jpg +Places365_test_00049345.jpg +Places365_test_00049375.jpg +Places365_test_00049390.jpg +Places365_test_00049391.jpg +Places365_test_00049396.jpg +Places365_test_00049397.jpg +Places365_test_00049411.jpg +Places365_test_00049431.jpg +Places365_test_00049442.jpg +Places365_test_00049447.jpg +Places365_test_00049458.jpg +Places365_test_00049461.jpg +Places365_test_00049476.jpg +Places365_test_00049503.jpg +Places365_test_00049522.jpg +Places365_test_00049544.jpg +Places365_test_00049549.jpg +Places365_test_00049556.jpg +Places365_test_00049573.jpg +Places365_test_00049576.jpg +Places365_test_00049585.jpg +Places365_test_00049599.jpg +Places365_test_00049646.jpg +Places365_test_00049662.jpg +Places365_test_00049677.jpg +Places365_test_00049689.jpg +Places365_test_00049708.jpg +Places365_test_00049710.jpg +Places365_test_00049735.jpg +Places365_test_00049749.jpg +Places365_test_00049752.jpg +Places365_test_00049789.jpg +Places365_test_00049805.jpg +Places365_test_00049822.jpg +Places365_test_00049823.jpg +Places365_test_00049828.jpg +Places365_test_00049838.jpg +Places365_test_00049839.jpg +Places365_test_00049841.jpg +Places365_test_00049843.jpg +Places365_test_00049860.jpg +Places365_test_00049886.jpg +Places365_test_00049911.jpg +Places365_test_00049926.jpg +Places365_test_00049930.jpg +Places365_test_00049960.jpg +Places365_test_00050024.jpg +Places365_test_00050030.jpg +Places365_test_00050031.jpg +Places365_test_00050044.jpg +Places365_test_00050055.jpg +Places365_test_00050064.jpg +Places365_test_00050077.jpg +Places365_test_00050081.jpg +Places365_test_00050085.jpg +Places365_test_00050093.jpg +Places365_test_00050103.jpg +Places365_test_00050119.jpg +Places365_test_00050127.jpg +Places365_test_00050131.jpg +Places365_test_00050134.jpg +Places365_test_00050151.jpg +Places365_test_00050179.jpg +Places365_test_00050191.jpg +Places365_test_00050193.jpg +Places365_test_00050228.jpg +Places365_test_00050268.jpg +Places365_test_00050270.jpg +Places365_test_00050280.jpg +Places365_test_00050285.jpg +Places365_test_00050292.jpg +Places365_test_00050297.jpg +Places365_test_00050315.jpg +Places365_test_00050325.jpg +Places365_test_00050330.jpg +Places365_test_00050353.jpg +Places365_test_00050359.jpg +Places365_test_00050389.jpg +Places365_test_00050392.jpg +Places365_test_00050401.jpg +Places365_test_00050411.jpg +Places365_test_00050429.jpg +Places365_test_00050432.jpg +Places365_test_00050434.jpg +Places365_test_00050436.jpg +Places365_test_00050475.jpg +Places365_test_00050489.jpg +Places365_test_00050498.jpg +Places365_test_00050499.jpg +Places365_test_00050508.jpg +Places365_test_00050510.jpg +Places365_test_00050522.jpg +Places365_test_00050536.jpg +Places365_test_00050549.jpg +Places365_test_00050554.jpg +Places365_test_00050569.jpg +Places365_test_00050585.jpg +Places365_test_00050602.jpg +Places365_test_00050605.jpg +Places365_test_00050606.jpg +Places365_test_00050624.jpg +Places365_test_00050633.jpg +Places365_test_00050638.jpg +Places365_test_00050639.jpg +Places365_test_00050643.jpg +Places365_test_00050674.jpg +Places365_test_00050696.jpg +Places365_test_00050717.jpg +Places365_test_00050727.jpg +Places365_test_00050751.jpg +Places365_test_00050765.jpg +Places365_test_00050769.jpg +Places365_test_00050778.jpg +Places365_test_00050788.jpg +Places365_test_00050813.jpg +Places365_test_00050816.jpg +Places365_test_00050839.jpg +Places365_test_00050860.jpg +Places365_test_00050868.jpg +Places365_test_00050875.jpg +Places365_test_00050887.jpg +Places365_test_00050891.jpg +Places365_test_00050898.jpg +Places365_test_00050904.jpg +Places365_test_00050908.jpg +Places365_test_00050915.jpg +Places365_test_00050925.jpg +Places365_test_00050934.jpg +Places365_test_00050935.jpg +Places365_test_00050953.jpg +Places365_test_00050987.jpg +Places365_test_00050995.jpg +Places365_test_00050997.jpg +Places365_test_00051001.jpg +Places365_test_00051020.jpg +Places365_test_00051032.jpg +Places365_test_00051044.jpg +Places365_test_00051048.jpg +Places365_test_00051070.jpg +Places365_test_00051074.jpg +Places365_test_00051115.jpg +Places365_test_00051119.jpg +Places365_test_00051132.jpg +Places365_test_00051133.jpg +Places365_test_00051139.jpg +Places365_test_00051158.jpg +Places365_test_00051178.jpg +Places365_test_00051181.jpg +Places365_test_00051194.jpg +Places365_test_00051196.jpg +Places365_test_00051214.jpg +Places365_test_00051225.jpg +Places365_test_00051234.jpg +Places365_test_00051251.jpg +Places365_test_00051261.jpg +Places365_test_00051262.jpg +Places365_test_00051275.jpg +Places365_test_00051277.jpg +Places365_test_00051291.jpg +Places365_test_00051297.jpg +Places365_test_00051317.jpg +Places365_test_00051325.jpg +Places365_test_00051326.jpg +Places365_test_00051334.jpg +Places365_test_00051341.jpg +Places365_test_00051354.jpg +Places365_test_00051359.jpg +Places365_test_00051370.jpg +Places365_test_00051371.jpg +Places365_test_00051389.jpg +Places365_test_00051390.jpg +Places365_test_00051401.jpg +Places365_test_00051406.jpg +Places365_test_00051427.jpg +Places365_test_00051428.jpg +Places365_test_00051450.jpg +Places365_test_00051455.jpg +Places365_test_00051456.jpg +Places365_test_00051474.jpg +Places365_test_00051502.jpg +Places365_test_00051521.jpg +Places365_test_00051526.jpg +Places365_test_00051536.jpg +Places365_test_00051556.jpg +Places365_test_00051561.jpg +Places365_test_00051573.jpg +Places365_test_00051582.jpg +Places365_test_00051594.jpg +Places365_test_00051635.jpg +Places365_test_00051638.jpg +Places365_test_00051660.jpg +Places365_test_00051695.jpg +Places365_test_00051705.jpg +Places365_test_00051725.jpg +Places365_test_00051728.jpg +Places365_test_00051742.jpg +Places365_test_00051759.jpg +Places365_test_00051784.jpg +Places365_test_00051794.jpg +Places365_test_00051804.jpg +Places365_test_00051806.jpg +Places365_test_00051838.jpg +Places365_test_00051843.jpg +Places365_test_00051872.jpg +Places365_test_00051881.jpg +Places365_test_00051905.jpg +Places365_test_00051935.jpg +Places365_test_00051958.jpg +Places365_test_00051966.jpg +Places365_test_00051975.jpg +Places365_test_00051987.jpg +Places365_test_00051994.jpg +Places365_test_00051999.jpg +Places365_test_00052004.jpg +Places365_test_00052020.jpg +Places365_test_00052029.jpg +Places365_test_00052032.jpg +Places365_test_00052033.jpg +Places365_test_00052036.jpg +Places365_test_00052044.jpg +Places365_test_00052048.jpg +Places365_test_00052050.jpg +Places365_test_00052051.jpg +Places365_test_00052057.jpg +Places365_test_00052064.jpg +Places365_test_00052107.jpg +Places365_test_00052115.jpg +Places365_test_00052117.jpg +Places365_test_00052142.jpg +Places365_test_00052143.jpg +Places365_test_00052154.jpg +Places365_test_00052158.jpg +Places365_test_00052178.jpg +Places365_test_00052179.jpg +Places365_test_00052197.jpg +Places365_test_00052203.jpg +Places365_test_00052206.jpg +Places365_test_00052214.jpg +Places365_test_00052218.jpg +Places365_test_00052223.jpg +Places365_test_00052240.jpg +Places365_test_00052244.jpg +Places365_test_00052297.jpg +Places365_test_00052305.jpg +Places365_test_00052306.jpg +Places365_test_00052314.jpg +Places365_test_00052324.jpg +Places365_test_00052332.jpg +Places365_test_00052336.jpg +Places365_test_00052340.jpg +Places365_test_00052344.jpg +Places365_test_00052347.jpg +Places365_test_00052360.jpg +Places365_test_00052388.jpg +Places365_test_00052392.jpg +Places365_test_00052393.jpg +Places365_test_00052415.jpg +Places365_test_00052431.jpg +Places365_test_00052437.jpg +Places365_test_00052438.jpg +Places365_test_00052448.jpg +Places365_test_00052461.jpg +Places365_test_00052478.jpg +Places365_test_00052480.jpg +Places365_test_00052491.jpg +Places365_test_00052498.jpg +Places365_test_00052541.jpg +Places365_test_00052546.jpg +Places365_test_00052561.jpg +Places365_test_00052562.jpg +Places365_test_00052574.jpg +Places365_test_00052583.jpg +Places365_test_00052595.jpg +Places365_test_00052599.jpg +Places365_test_00052602.jpg +Places365_test_00052624.jpg +Places365_test_00052625.jpg +Places365_test_00052627.jpg +Places365_test_00052631.jpg +Places365_test_00052643.jpg +Places365_test_00052653.jpg +Places365_test_00052664.jpg +Places365_test_00052669.jpg +Places365_test_00052672.jpg +Places365_test_00052674.jpg +Places365_test_00052677.jpg +Places365_test_00052710.jpg +Places365_test_00052714.jpg +Places365_test_00052721.jpg +Places365_test_00052731.jpg +Places365_test_00052740.jpg +Places365_test_00052752.jpg +Places365_test_00052753.jpg +Places365_test_00052770.jpg +Places365_test_00052787.jpg +Places365_test_00052833.jpg +Places365_test_00052838.jpg +Places365_test_00052845.jpg +Places365_test_00052854.jpg +Places365_test_00052878.jpg +Places365_test_00052880.jpg +Places365_test_00052892.jpg +Places365_test_00052912.jpg +Places365_test_00052923.jpg +Places365_test_00052941.jpg +Places365_test_00052945.jpg +Places365_test_00052960.jpg +Places365_test_00052961.jpg +Places365_test_00053005.jpg +Places365_test_00053015.jpg +Places365_test_00053049.jpg +Places365_test_00053054.jpg +Places365_test_00053061.jpg +Places365_test_00053070.jpg +Places365_test_00053080.jpg +Places365_test_00053093.jpg +Places365_test_00053124.jpg +Places365_test_00053131.jpg +Places365_test_00053140.jpg +Places365_test_00053141.jpg +Places365_test_00053146.jpg +Places365_test_00053158.jpg +Places365_test_00053162.jpg +Places365_test_00053168.jpg +Places365_test_00053185.jpg +Places365_test_00053197.jpg +Places365_test_00053220.jpg +Places365_test_00053221.jpg +Places365_test_00053227.jpg +Places365_test_00053229.jpg +Places365_test_00053234.jpg +Places365_test_00053245.jpg +Places365_test_00053251.jpg +Places365_test_00053298.jpg +Places365_test_00053311.jpg +Places365_test_00053313.jpg +Places365_test_00053333.jpg +Places365_test_00053336.jpg +Places365_test_00053337.jpg +Places365_test_00053355.jpg +Places365_test_00053359.jpg +Places365_test_00053365.jpg +Places365_test_00053367.jpg +Places365_test_00053380.jpg +Places365_test_00053393.jpg +Places365_test_00053436.jpg +Places365_test_00053470.jpg +Places365_test_00053476.jpg +Places365_test_00053491.jpg +Places365_test_00053514.jpg +Places365_test_00053530.jpg +Places365_test_00053544.jpg +Places365_test_00053557.jpg +Places365_test_00053569.jpg +Places365_test_00053576.jpg +Places365_test_00053596.jpg +Places365_test_00053604.jpg +Places365_test_00053606.jpg +Places365_test_00053627.jpg +Places365_test_00053633.jpg +Places365_test_00053635.jpg +Places365_test_00053644.jpg +Places365_test_00053658.jpg +Places365_test_00053661.jpg +Places365_test_00053709.jpg +Places365_test_00053713.jpg +Places365_test_00053725.jpg +Places365_test_00053728.jpg +Places365_test_00053756.jpg +Places365_test_00053774.jpg +Places365_test_00053788.jpg +Places365_test_00053805.jpg +Places365_test_00053822.jpg +Places365_test_00053852.jpg +Places365_test_00053866.jpg +Places365_test_00053875.jpg +Places365_test_00053879.jpg +Places365_test_00053882.jpg +Places365_test_00053887.jpg +Places365_test_00053894.jpg +Places365_test_00053911.jpg +Places365_test_00053933.jpg +Places365_test_00053947.jpg +Places365_test_00053949.jpg +Places365_test_00053973.jpg +Places365_test_00053978.jpg +Places365_test_00053985.jpg +Places365_test_00053993.jpg +Places365_test_00054005.jpg +Places365_test_00054014.jpg +Places365_test_00054017.jpg +Places365_test_00054036.jpg +Places365_test_00054039.jpg +Places365_test_00054053.jpg +Places365_test_00054054.jpg +Places365_test_00054070.jpg +Places365_test_00054078.jpg +Places365_test_00054086.jpg +Places365_test_00054094.jpg +Places365_test_00054107.jpg +Places365_test_00054112.jpg +Places365_test_00054130.jpg +Places365_test_00054198.jpg +Places365_test_00054217.jpg +Places365_test_00054224.jpg +Places365_test_00054241.jpg +Places365_test_00054259.jpg +Places365_test_00054268.jpg +Places365_test_00054280.jpg +Places365_test_00054290.jpg +Places365_test_00054303.jpg +Places365_test_00054314.jpg +Places365_test_00054316.jpg +Places365_test_00054324.jpg +Places365_test_00054331.jpg +Places365_test_00054334.jpg +Places365_test_00054337.jpg +Places365_test_00054340.jpg +Places365_test_00054347.jpg +Places365_test_00054356.jpg +Places365_test_00054357.jpg +Places365_test_00054360.jpg +Places365_test_00054378.jpg +Places365_test_00054383.jpg +Places365_test_00054394.jpg +Places365_test_00054402.jpg +Places365_test_00054409.jpg +Places365_test_00054414.jpg +Places365_test_00054440.jpg +Places365_test_00054445.jpg +Places365_test_00054462.jpg +Places365_test_00054463.jpg +Places365_test_00054474.jpg +Places365_test_00054476.jpg +Places365_test_00054481.jpg +Places365_test_00054485.jpg +Places365_test_00054493.jpg +Places365_test_00054501.jpg +Places365_test_00054521.jpg +Places365_test_00054542.jpg +Places365_test_00054593.jpg +Places365_test_00054602.jpg +Places365_test_00054616.jpg +Places365_test_00054634.jpg +Places365_test_00054637.jpg +Places365_test_00054660.jpg +Places365_test_00054666.jpg +Places365_test_00054684.jpg +Places365_test_00054686.jpg +Places365_test_00054693.jpg +Places365_test_00054695.jpg +Places365_test_00054713.jpg +Places365_test_00054737.jpg +Places365_test_00054739.jpg +Places365_test_00054752.jpg +Places365_test_00054755.jpg +Places365_test_00054775.jpg +Places365_test_00054779.jpg +Places365_test_00054783.jpg +Places365_test_00054793.jpg +Places365_test_00054813.jpg +Places365_test_00054816.jpg +Places365_test_00054817.jpg +Places365_test_00054818.jpg +Places365_test_00054824.jpg +Places365_test_00054843.jpg +Places365_test_00054855.jpg +Places365_test_00054857.jpg +Places365_test_00054862.jpg +Places365_test_00054867.jpg +Places365_test_00054875.jpg +Places365_test_00054879.jpg +Places365_test_00054882.jpg +Places365_test_00054894.jpg +Places365_test_00054904.jpg +Places365_test_00054916.jpg +Places365_test_00054922.jpg +Places365_test_00054930.jpg +Places365_test_00054939.jpg +Places365_test_00054944.jpg +Places365_test_00054956.jpg +Places365_test_00054960.jpg +Places365_test_00054965.jpg +Places365_test_00054969.jpg +Places365_test_00054999.jpg +Places365_test_00055000.jpg +Places365_test_00055012.jpg +Places365_test_00055017.jpg +Places365_test_00055022.jpg +Places365_test_00055043.jpg +Places365_test_00055067.jpg +Places365_test_00055081.jpg +Places365_test_00055083.jpg +Places365_test_00055093.jpg +Places365_test_00055127.jpg +Places365_test_00055141.jpg +Places365_test_00055153.jpg +Places365_test_00055161.jpg +Places365_test_00055162.jpg +Places365_test_00055174.jpg +Places365_test_00055196.jpg +Places365_test_00055202.jpg +Places365_test_00055215.jpg +Places365_test_00055226.jpg +Places365_test_00055288.jpg +Places365_test_00055298.jpg +Places365_test_00055324.jpg +Places365_test_00055333.jpg +Places365_test_00055338.jpg +Places365_test_00055340.jpg +Places365_test_00055354.jpg +Places365_test_00055356.jpg +Places365_test_00055390.jpg +Places365_test_00055397.jpg +Places365_test_00055404.jpg +Places365_test_00055409.jpg +Places365_test_00055424.jpg +Places365_test_00055429.jpg +Places365_test_00055437.jpg +Places365_test_00055440.jpg +Places365_test_00055467.jpg +Places365_test_00055473.jpg +Places365_test_00055503.jpg +Places365_test_00055504.jpg +Places365_test_00055518.jpg +Places365_test_00055563.jpg +Places365_test_00055574.jpg +Places365_test_00055583.jpg +Places365_test_00055585.jpg +Places365_test_00055599.jpg +Places365_test_00055611.jpg +Places365_test_00055675.jpg +Places365_test_00055679.jpg +Places365_test_00055688.jpg +Places365_test_00055691.jpg +Places365_test_00055697.jpg +Places365_test_00055705.jpg +Places365_test_00055719.jpg +Places365_test_00055722.jpg +Places365_test_00055724.jpg +Places365_test_00055728.jpg +Places365_test_00055738.jpg +Places365_test_00055739.jpg +Places365_test_00055748.jpg +Places365_test_00055764.jpg +Places365_test_00055765.jpg +Places365_test_00055782.jpg +Places365_test_00055799.jpg +Places365_test_00055803.jpg +Places365_test_00055811.jpg +Places365_test_00055816.jpg +Places365_test_00055819.jpg +Places365_test_00055826.jpg +Places365_test_00055838.jpg +Places365_test_00055843.jpg +Places365_test_00055856.jpg +Places365_test_00055863.jpg +Places365_test_00055884.jpg +Places365_test_00055896.jpg +Places365_test_00055911.jpg +Places365_test_00055915.jpg +Places365_test_00055935.jpg +Places365_test_00055960.jpg +Places365_test_00055965.jpg +Places365_test_00055984.jpg +Places365_test_00055993.jpg +Places365_test_00055998.jpg +Places365_test_00056001.jpg +Places365_test_00056004.jpg +Places365_test_00056010.jpg +Places365_test_00056033.jpg +Places365_test_00056050.jpg +Places365_test_00056061.jpg +Places365_test_00056062.jpg +Places365_test_00056067.jpg +Places365_test_00056071.jpg +Places365_test_00056075.jpg +Places365_test_00056076.jpg +Places365_test_00056080.jpg +Places365_test_00056082.jpg +Places365_test_00056084.jpg +Places365_test_00056093.jpg +Places365_test_00056097.jpg +Places365_test_00056116.jpg +Places365_test_00056198.jpg +Places365_test_00056207.jpg +Places365_test_00056223.jpg +Places365_test_00056236.jpg +Places365_test_00056237.jpg +Places365_test_00056243.jpg +Places365_test_00056247.jpg +Places365_test_00056263.jpg +Places365_test_00056271.jpg +Places365_test_00056289.jpg +Places365_test_00056300.jpg +Places365_test_00056301.jpg +Places365_test_00056302.jpg +Places365_test_00056319.jpg +Places365_test_00056322.jpg +Places365_test_00056328.jpg +Places365_test_00056340.jpg +Places365_test_00056360.jpg +Places365_test_00056372.jpg +Places365_test_00056375.jpg +Places365_test_00056398.jpg +Places365_test_00056403.jpg +Places365_test_00056422.jpg +Places365_test_00056424.jpg +Places365_test_00056425.jpg +Places365_test_00056427.jpg +Places365_test_00056430.jpg +Places365_test_00056437.jpg +Places365_test_00056438.jpg +Places365_test_00056439.jpg +Places365_test_00056459.jpg +Places365_test_00056480.jpg +Places365_test_00056493.jpg +Places365_test_00056495.jpg +Places365_test_00056498.jpg +Places365_test_00056528.jpg +Places365_test_00056529.jpg +Places365_test_00056532.jpg +Places365_test_00056536.jpg +Places365_test_00056541.jpg +Places365_test_00056553.jpg +Places365_test_00056564.jpg +Places365_test_00056565.jpg +Places365_test_00056573.jpg +Places365_test_00056593.jpg +Places365_test_00056597.jpg +Places365_test_00056598.jpg +Places365_test_00056609.jpg +Places365_test_00056615.jpg +Places365_test_00056623.jpg +Places365_test_00056629.jpg +Places365_test_00056631.jpg +Places365_test_00056662.jpg +Places365_test_00056671.jpg +Places365_test_00056674.jpg +Places365_test_00056677.jpg +Places365_test_00056680.jpg +Places365_test_00056731.jpg +Places365_test_00056744.jpg +Places365_test_00056778.jpg +Places365_test_00056788.jpg +Places365_test_00056790.jpg +Places365_test_00056796.jpg +Places365_test_00056816.jpg +Places365_test_00056818.jpg +Places365_test_00056836.jpg +Places365_test_00056837.jpg +Places365_test_00056853.jpg +Places365_test_00056854.jpg +Places365_test_00056861.jpg +Places365_test_00056868.jpg +Places365_test_00056884.jpg +Places365_test_00056904.jpg +Places365_test_00056912.jpg +Places365_test_00056918.jpg +Places365_test_00056932.jpg +Places365_test_00056934.jpg +Places365_test_00056955.jpg +Places365_test_00056982.jpg +Places365_test_00056986.jpg +Places365_test_00056990.jpg +Places365_test_00057000.jpg +Places365_test_00057001.jpg +Places365_test_00057008.jpg +Places365_test_00057022.jpg +Places365_test_00057027.jpg +Places365_test_00057039.jpg +Places365_test_00057043.jpg +Places365_test_00057080.jpg +Places365_test_00057101.jpg +Places365_test_00057106.jpg +Places365_test_00057113.jpg +Places365_test_00057125.jpg +Places365_test_00057130.jpg +Places365_test_00057143.jpg +Places365_test_00057144.jpg +Places365_test_00057157.jpg +Places365_test_00057160.jpg +Places365_test_00057163.jpg +Places365_test_00057173.jpg +Places365_test_00057191.jpg +Places365_test_00057238.jpg +Places365_test_00057255.jpg +Places365_test_00057262.jpg +Places365_test_00057271.jpg +Places365_test_00057292.jpg +Places365_test_00057324.jpg +Places365_test_00057332.jpg +Places365_test_00057357.jpg +Places365_test_00057361.jpg +Places365_test_00057363.jpg +Places365_test_00057386.jpg +Places365_test_00057392.jpg +Places365_test_00057428.jpg +Places365_test_00057457.jpg +Places365_test_00057471.jpg +Places365_test_00057481.jpg +Places365_test_00057498.jpg +Places365_test_00057500.jpg +Places365_test_00057522.jpg +Places365_test_00057536.jpg +Places365_test_00057541.jpg +Places365_test_00057577.jpg +Places365_test_00057579.jpg +Places365_test_00057591.jpg +Places365_test_00057596.jpg +Places365_test_00057599.jpg +Places365_test_00057601.jpg +Places365_test_00057615.jpg +Places365_test_00057636.jpg +Places365_test_00057638.jpg +Places365_test_00057664.jpg +Places365_test_00057677.jpg +Places365_test_00057682.jpg +Places365_test_00057684.jpg +Places365_test_00057690.jpg +Places365_test_00057693.jpg +Places365_test_00057739.jpg +Places365_test_00057743.jpg +Places365_test_00057744.jpg +Places365_test_00057750.jpg +Places365_test_00057751.jpg +Places365_test_00057754.jpg +Places365_test_00057755.jpg +Places365_test_00057766.jpg +Places365_test_00057780.jpg +Places365_test_00057793.jpg +Places365_test_00057796.jpg +Places365_test_00057808.jpg +Places365_test_00057813.jpg +Places365_test_00057818.jpg +Places365_test_00057831.jpg +Places365_test_00057842.jpg +Places365_test_00057847.jpg +Places365_test_00057850.jpg +Places365_test_00057858.jpg +Places365_test_00057859.jpg +Places365_test_00057861.jpg +Places365_test_00057864.jpg +Places365_test_00057882.jpg +Places365_test_00057897.jpg +Places365_test_00057903.jpg +Places365_test_00057922.jpg +Places365_test_00057938.jpg +Places365_test_00057943.jpg +Places365_test_00057958.jpg +Places365_test_00057965.jpg +Places365_test_00057977.jpg +Places365_test_00057979.jpg +Places365_test_00057995.jpg +Places365_test_00058002.jpg +Places365_test_00058062.jpg +Places365_test_00058077.jpg +Places365_test_00058108.jpg +Places365_test_00058110.jpg +Places365_test_00058111.jpg +Places365_test_00058112.jpg +Places365_test_00058118.jpg +Places365_test_00058125.jpg +Places365_test_00058139.jpg +Places365_test_00058146.jpg +Places365_test_00058151.jpg +Places365_test_00058154.jpg +Places365_test_00058183.jpg +Places365_test_00058238.jpg +Places365_test_00058250.jpg +Places365_test_00058271.jpg +Places365_test_00058276.jpg +Places365_test_00058282.jpg +Places365_test_00058286.jpg +Places365_test_00058288.jpg +Places365_test_00058290.jpg +Places365_test_00058293.jpg +Places365_test_00058298.jpg +Places365_test_00058313.jpg +Places365_test_00058330.jpg +Places365_test_00058332.jpg +Places365_test_00058355.jpg +Places365_test_00058356.jpg +Places365_test_00058370.jpg +Places365_test_00058407.jpg +Places365_test_00058413.jpg +Places365_test_00058418.jpg +Places365_test_00058430.jpg +Places365_test_00058447.jpg +Places365_test_00058452.jpg +Places365_test_00058480.jpg +Places365_test_00058484.jpg +Places365_test_00058488.jpg +Places365_test_00058507.jpg +Places365_test_00058553.jpg +Places365_test_00058567.jpg +Places365_test_00058588.jpg +Places365_test_00058589.jpg +Places365_test_00058610.jpg +Places365_test_00058620.jpg +Places365_test_00058626.jpg +Places365_test_00058642.jpg +Places365_test_00058650.jpg +Places365_test_00058667.jpg +Places365_test_00058670.jpg +Places365_test_00058680.jpg +Places365_test_00058686.jpg +Places365_test_00058699.jpg +Places365_test_00058714.jpg +Places365_test_00058728.jpg +Places365_test_00058760.jpg +Places365_test_00058787.jpg +Places365_test_00058817.jpg +Places365_test_00058824.jpg +Places365_test_00058837.jpg +Places365_test_00058841.jpg +Places365_test_00058843.jpg +Places365_test_00058868.jpg +Places365_test_00058886.jpg +Places365_test_00058902.jpg +Places365_test_00058904.jpg +Places365_test_00058919.jpg +Places365_test_00058932.jpg +Places365_test_00058948.jpg +Places365_test_00058956.jpg +Places365_test_00058981.jpg +Places365_test_00059010.jpg +Places365_test_00059036.jpg +Places365_test_00059043.jpg +Places365_test_00059053.jpg +Places365_test_00059059.jpg +Places365_test_00059066.jpg +Places365_test_00059092.jpg +Places365_test_00059120.jpg +Places365_test_00059140.jpg +Places365_test_00059143.jpg +Places365_test_00059151.jpg +Places365_test_00059165.jpg +Places365_test_00059175.jpg +Places365_test_00059185.jpg +Places365_test_00059196.jpg +Places365_test_00059208.jpg +Places365_test_00059211.jpg +Places365_test_00059218.jpg +Places365_test_00059237.jpg +Places365_test_00059247.jpg +Places365_test_00059255.jpg +Places365_test_00059261.jpg +Places365_test_00059268.jpg +Places365_test_00059295.jpg +Places365_test_00059304.jpg +Places365_test_00059309.jpg +Places365_test_00059314.jpg +Places365_test_00059338.jpg +Places365_test_00059354.jpg +Places365_test_00059361.jpg +Places365_test_00059365.jpg +Places365_test_00059369.jpg +Places365_test_00059386.jpg +Places365_test_00059403.jpg +Places365_test_00059410.jpg +Places365_test_00059422.jpg +Places365_test_00059423.jpg +Places365_test_00059424.jpg +Places365_test_00059426.jpg +Places365_test_00059430.jpg +Places365_test_00059461.jpg +Places365_test_00059463.jpg +Places365_test_00059464.jpg +Places365_test_00059465.jpg +Places365_test_00059471.jpg +Places365_test_00059474.jpg +Places365_test_00059492.jpg +Places365_test_00059494.jpg +Places365_test_00059501.jpg +Places365_test_00059517.jpg +Places365_test_00059522.jpg +Places365_test_00059549.jpg +Places365_test_00059567.jpg +Places365_test_00059597.jpg +Places365_test_00059639.jpg +Places365_test_00059644.jpg +Places365_test_00059646.jpg +Places365_test_00059669.jpg +Places365_test_00059671.jpg +Places365_test_00059680.jpg +Places365_test_00059690.jpg +Places365_test_00059704.jpg +Places365_test_00059720.jpg +Places365_test_00059742.jpg +Places365_test_00059745.jpg +Places365_test_00059746.jpg +Places365_test_00059760.jpg +Places365_test_00059762.jpg +Places365_test_00059764.jpg +Places365_test_00059766.jpg +Places365_test_00059788.jpg +Places365_test_00059810.jpg +Places365_test_00059838.jpg +Places365_test_00059847.jpg +Places365_test_00059880.jpg +Places365_test_00059904.jpg +Places365_test_00059907.jpg +Places365_test_00059933.jpg +Places365_test_00059936.jpg +Places365_test_00059947.jpg +Places365_test_00059988.jpg +Places365_test_00059991.jpg +Places365_test_00060005.jpg +Places365_test_00060021.jpg +Places365_test_00060022.jpg +Places365_test_00060023.jpg +Places365_test_00060024.jpg +Places365_test_00060033.jpg +Places365_test_00060039.jpg +Places365_test_00060099.jpg +Places365_test_00060121.jpg +Places365_test_00060132.jpg +Places365_test_00060133.jpg +Places365_test_00060139.jpg +Places365_test_00060155.jpg +Places365_test_00060179.jpg +Places365_test_00060189.jpg +Places365_test_00060193.jpg +Places365_test_00060195.jpg +Places365_test_00060200.jpg +Places365_test_00060204.jpg +Places365_test_00060209.jpg +Places365_test_00060222.jpg +Places365_test_00060247.jpg +Places365_test_00060251.jpg +Places365_test_00060273.jpg +Places365_test_00060308.jpg +Places365_test_00060317.jpg +Places365_test_00060320.jpg +Places365_test_00060333.jpg +Places365_test_00060334.jpg +Places365_test_00060342.jpg +Places365_test_00060355.jpg +Places365_test_00060368.jpg +Places365_test_00060370.jpg +Places365_test_00060373.jpg +Places365_test_00060374.jpg +Places365_test_00060380.jpg +Places365_test_00060401.jpg +Places365_test_00060411.jpg +Places365_test_00060414.jpg +Places365_test_00060419.jpg +Places365_test_00060433.jpg +Places365_test_00060443.jpg +Places365_test_00060458.jpg +Places365_test_00060474.jpg +Places365_test_00060485.jpg +Places365_test_00060510.jpg +Places365_test_00060511.jpg +Places365_test_00060514.jpg +Places365_test_00060517.jpg +Places365_test_00060519.jpg +Places365_test_00060546.jpg +Places365_test_00060568.jpg +Places365_test_00060626.jpg +Places365_test_00060650.jpg +Places365_test_00060656.jpg +Places365_test_00060661.jpg +Places365_test_00060675.jpg +Places365_test_00060680.jpg +Places365_test_00060681.jpg +Places365_test_00060688.jpg +Places365_test_00060709.jpg +Places365_test_00060713.jpg +Places365_test_00060714.jpg +Places365_test_00060723.jpg +Places365_test_00060725.jpg +Places365_test_00060726.jpg +Places365_test_00060745.jpg +Places365_test_00060746.jpg +Places365_test_00060751.jpg +Places365_test_00060754.jpg +Places365_test_00060776.jpg +Places365_test_00060786.jpg +Places365_test_00060798.jpg +Places365_test_00060801.jpg +Places365_test_00060820.jpg +Places365_test_00060835.jpg +Places365_test_00060841.jpg +Places365_test_00060846.jpg +Places365_test_00060853.jpg +Places365_test_00060858.jpg +Places365_test_00060859.jpg +Places365_test_00060880.jpg +Places365_test_00060890.jpg +Places365_test_00060896.jpg +Places365_test_00060906.jpg +Places365_test_00060907.jpg +Places365_test_00060910.jpg +Places365_test_00060914.jpg +Places365_test_00060916.jpg +Places365_test_00060943.jpg +Places365_test_00060971.jpg +Places365_test_00060985.jpg +Places365_test_00060987.jpg +Places365_test_00060991.jpg +Places365_test_00060995.jpg +Places365_test_00060996.jpg +Places365_test_00060997.jpg +Places365_test_00061013.jpg +Places365_test_00061015.jpg +Places365_test_00061024.jpg +Places365_test_00061041.jpg +Places365_test_00061044.jpg +Places365_test_00061046.jpg +Places365_test_00061056.jpg +Places365_test_00061069.jpg +Places365_test_00061079.jpg +Places365_test_00061090.jpg +Places365_test_00061110.jpg +Places365_test_00061111.jpg +Places365_test_00061121.jpg +Places365_test_00061122.jpg +Places365_test_00061153.jpg +Places365_test_00061180.jpg +Places365_test_00061184.jpg +Places365_test_00061192.jpg +Places365_test_00061204.jpg +Places365_test_00061207.jpg +Places365_test_00061230.jpg +Places365_test_00061240.jpg +Places365_test_00061245.jpg +Places365_test_00061270.jpg +Places365_test_00061275.jpg +Places365_test_00061291.jpg +Places365_test_00061299.jpg +Places365_test_00061301.jpg +Places365_test_00061318.jpg +Places365_test_00061332.jpg +Places365_test_00061369.jpg +Places365_test_00061370.jpg +Places365_test_00061406.jpg +Places365_test_00061414.jpg +Places365_test_00061415.jpg +Places365_test_00061420.jpg +Places365_test_00061448.jpg +Places365_test_00061455.jpg +Places365_test_00061478.jpg +Places365_test_00061499.jpg +Places365_test_00061510.jpg +Places365_test_00061528.jpg +Places365_test_00061529.jpg +Places365_test_00061533.jpg +Places365_test_00061547.jpg +Places365_test_00061553.jpg +Places365_test_00061563.jpg +Places365_test_00061570.jpg +Places365_test_00061606.jpg +Places365_test_00061609.jpg +Places365_test_00061619.jpg +Places365_test_00061646.jpg +Places365_test_00061658.jpg +Places365_test_00061662.jpg +Places365_test_00061665.jpg +Places365_test_00061689.jpg +Places365_test_00061698.jpg +Places365_test_00061711.jpg +Places365_test_00061714.jpg +Places365_test_00061744.jpg +Places365_test_00061747.jpg +Places365_test_00061748.jpg +Places365_test_00061769.jpg +Places365_test_00061780.jpg +Places365_test_00061786.jpg +Places365_test_00061797.jpg +Places365_test_00061812.jpg +Places365_test_00061820.jpg +Places365_test_00061837.jpg +Places365_test_00061843.jpg +Places365_test_00061858.jpg +Places365_test_00061865.jpg +Places365_test_00061866.jpg +Places365_test_00061867.jpg +Places365_test_00061869.jpg +Places365_test_00061880.jpg +Places365_test_00061900.jpg +Places365_test_00061925.jpg +Places365_test_00061935.jpg +Places365_test_00061940.jpg +Places365_test_00061949.jpg +Places365_test_00061964.jpg +Places365_test_00061966.jpg +Places365_test_00061976.jpg +Places365_test_00061985.jpg +Places365_test_00061990.jpg +Places365_test_00062020.jpg +Places365_test_00062081.jpg +Places365_test_00062109.jpg +Places365_test_00062112.jpg +Places365_test_00062125.jpg +Places365_test_00062138.jpg +Places365_test_00062151.jpg +Places365_test_00062157.jpg +Places365_test_00062160.jpg +Places365_test_00062172.jpg +Places365_test_00062183.jpg +Places365_test_00062209.jpg +Places365_test_00062215.jpg +Places365_test_00062216.jpg +Places365_test_00062218.jpg +Places365_test_00062225.jpg +Places365_test_00062231.jpg +Places365_test_00062236.jpg +Places365_test_00062242.jpg +Places365_test_00062251.jpg +Places365_test_00062252.jpg +Places365_test_00062254.jpg +Places365_test_00062276.jpg +Places365_test_00062277.jpg +Places365_test_00062313.jpg +Places365_test_00062327.jpg +Places365_test_00062335.jpg +Places365_test_00062352.jpg +Places365_test_00062358.jpg +Places365_test_00062374.jpg +Places365_test_00062376.jpg +Places365_test_00062387.jpg +Places365_test_00062393.jpg +Places365_test_00062398.jpg +Places365_test_00062400.jpg +Places365_test_00062404.jpg +Places365_test_00062426.jpg +Places365_test_00062433.jpg +Places365_test_00062443.jpg +Places365_test_00062465.jpg +Places365_test_00062467.jpg +Places365_test_00062486.jpg +Places365_test_00062497.jpg +Places365_test_00062538.jpg +Places365_test_00062552.jpg +Places365_test_00062589.jpg +Places365_test_00062615.jpg +Places365_test_00062622.jpg +Places365_test_00062648.jpg +Places365_test_00062668.jpg +Places365_test_00062691.jpg +Places365_test_00062695.jpg +Places365_test_00062708.jpg +Places365_test_00062739.jpg +Places365_test_00062745.jpg +Places365_test_00062769.jpg +Places365_test_00062773.jpg +Places365_test_00062774.jpg +Places365_test_00062787.jpg +Places365_test_00062793.jpg +Places365_test_00062800.jpg +Places365_test_00062806.jpg +Places365_test_00062810.jpg +Places365_test_00062817.jpg +Places365_test_00062823.jpg +Places365_test_00062852.jpg +Places365_test_00062865.jpg +Places365_test_00062873.jpg +Places365_test_00062875.jpg +Places365_test_00062881.jpg +Places365_test_00062886.jpg +Places365_test_00062888.jpg +Places365_test_00062890.jpg +Places365_test_00062907.jpg +Places365_test_00062912.jpg +Places365_test_00062915.jpg +Places365_test_00062917.jpg +Places365_test_00062936.jpg +Places365_test_00062963.jpg +Places365_test_00062966.jpg +Places365_test_00062988.jpg +Places365_test_00062992.jpg +Places365_test_00062994.jpg +Places365_test_00063003.jpg +Places365_test_00063012.jpg +Places365_test_00063018.jpg +Places365_test_00063021.jpg +Places365_test_00063040.jpg +Places365_test_00063056.jpg +Places365_test_00063059.jpg +Places365_test_00063076.jpg +Places365_test_00063095.jpg +Places365_test_00063117.jpg +Places365_test_00063129.jpg +Places365_test_00063132.jpg +Places365_test_00063148.jpg +Places365_test_00063150.jpg +Places365_test_00063158.jpg +Places365_test_00063181.jpg +Places365_test_00063187.jpg +Places365_test_00063194.jpg +Places365_test_00063196.jpg +Places365_test_00063215.jpg +Places365_test_00063219.jpg +Places365_test_00063232.jpg +Places365_test_00063236.jpg +Places365_test_00063239.jpg +Places365_test_00063243.jpg +Places365_test_00063244.jpg +Places365_test_00063246.jpg +Places365_test_00063257.jpg +Places365_test_00063261.jpg +Places365_test_00063264.jpg +Places365_test_00063275.jpg +Places365_test_00063279.jpg +Places365_test_00063280.jpg +Places365_test_00063310.jpg +Places365_test_00063311.jpg +Places365_test_00063325.jpg +Places365_test_00063332.jpg +Places365_test_00063340.jpg +Places365_test_00063346.jpg +Places365_test_00063353.jpg +Places365_test_00063355.jpg +Places365_test_00063369.jpg +Places365_test_00063377.jpg +Places365_test_00063394.jpg +Places365_test_00063399.jpg +Places365_test_00063407.jpg +Places365_test_00063408.jpg +Places365_test_00063409.jpg +Places365_test_00063444.jpg +Places365_test_00063449.jpg +Places365_test_00063452.jpg +Places365_test_00063465.jpg +Places365_test_00063471.jpg +Places365_test_00063483.jpg +Places365_test_00063492.jpg +Places365_test_00063497.jpg +Places365_test_00063501.jpg +Places365_test_00063516.jpg +Places365_test_00063554.jpg +Places365_test_00063565.jpg +Places365_test_00063580.jpg +Places365_test_00063581.jpg +Places365_test_00063585.jpg +Places365_test_00063588.jpg +Places365_test_00063598.jpg +Places365_test_00063606.jpg +Places365_test_00063610.jpg +Places365_test_00063615.jpg +Places365_test_00063618.jpg +Places365_test_00063637.jpg +Places365_test_00063644.jpg +Places365_test_00063661.jpg +Places365_test_00063662.jpg +Places365_test_00063681.jpg +Places365_test_00063707.jpg +Places365_test_00063724.jpg +Places365_test_00063731.jpg +Places365_test_00063734.jpg +Places365_test_00063822.jpg +Places365_test_00063841.jpg +Places365_test_00063848.jpg +Places365_test_00063861.jpg +Places365_test_00063879.jpg +Places365_test_00063886.jpg +Places365_test_00063902.jpg +Places365_test_00063908.jpg +Places365_test_00063924.jpg +Places365_test_00063926.jpg +Places365_test_00063951.jpg +Places365_test_00063959.jpg +Places365_test_00063963.jpg +Places365_test_00063969.jpg +Places365_test_00063970.jpg +Places365_test_00063976.jpg +Places365_test_00063980.jpg +Places365_test_00063986.jpg +Places365_test_00063992.jpg +Places365_test_00064001.jpg +Places365_test_00064008.jpg +Places365_test_00064015.jpg +Places365_test_00064018.jpg +Places365_test_00064022.jpg +Places365_test_00064033.jpg +Places365_test_00064034.jpg +Places365_test_00064068.jpg +Places365_test_00064080.jpg +Places365_test_00064083.jpg +Places365_test_00064100.jpg +Places365_test_00064105.jpg +Places365_test_00064108.jpg +Places365_test_00064119.jpg +Places365_test_00064130.jpg +Places365_test_00064151.jpg +Places365_test_00064158.jpg +Places365_test_00064167.jpg +Places365_test_00064177.jpg +Places365_test_00064184.jpg +Places365_test_00064192.jpg +Places365_test_00064196.jpg +Places365_test_00064199.jpg +Places365_test_00064204.jpg +Places365_test_00064209.jpg +Places365_test_00064214.jpg +Places365_test_00064219.jpg +Places365_test_00064222.jpg +Places365_test_00064231.jpg +Places365_test_00064242.jpg +Places365_test_00064245.jpg +Places365_test_00064262.jpg +Places365_test_00064266.jpg +Places365_test_00064267.jpg +Places365_test_00064271.jpg +Places365_test_00064276.jpg +Places365_test_00064277.jpg +Places365_test_00064302.jpg +Places365_test_00064303.jpg +Places365_test_00064311.jpg +Places365_test_00064322.jpg +Places365_test_00064331.jpg +Places365_test_00064339.jpg +Places365_test_00064350.jpg +Places365_test_00064351.jpg +Places365_test_00064357.jpg +Places365_test_00064369.jpg +Places365_test_00064388.jpg +Places365_test_00064395.jpg +Places365_test_00064399.jpg +Places365_test_00064439.jpg +Places365_test_00064454.jpg +Places365_test_00064480.jpg +Places365_test_00064483.jpg +Places365_test_00064494.jpg +Places365_test_00064510.jpg +Places365_test_00064519.jpg +Places365_test_00064530.jpg +Places365_test_00064533.jpg +Places365_test_00064547.jpg +Places365_test_00064577.jpg +Places365_test_00064581.jpg +Places365_test_00064590.jpg +Places365_test_00064595.jpg +Places365_test_00064605.jpg +Places365_test_00064608.jpg +Places365_test_00064615.jpg +Places365_test_00064630.jpg +Places365_test_00064631.jpg +Places365_test_00064634.jpg +Places365_test_00064644.jpg +Places365_test_00064660.jpg +Places365_test_00064672.jpg +Places365_test_00064675.jpg +Places365_test_00064681.jpg +Places365_test_00064716.jpg +Places365_test_00064722.jpg +Places365_test_00064734.jpg +Places365_test_00064742.jpg +Places365_test_00064743.jpg +Places365_test_00064748.jpg +Places365_test_00064752.jpg +Places365_test_00064755.jpg +Places365_test_00064777.jpg +Places365_test_00064786.jpg +Places365_test_00064787.jpg +Places365_test_00064789.jpg +Places365_test_00064798.jpg +Places365_test_00064804.jpg +Places365_test_00064806.jpg +Places365_test_00064815.jpg +Places365_test_00064817.jpg +Places365_test_00064826.jpg +Places365_test_00064858.jpg +Places365_test_00064897.jpg +Places365_test_00064920.jpg +Places365_test_00064921.jpg +Places365_test_00064933.jpg +Places365_test_00064935.jpg +Places365_test_00064947.jpg +Places365_test_00064972.jpg +Places365_test_00064980.jpg +Places365_test_00064992.jpg +Places365_test_00064994.jpg +Places365_test_00065006.jpg +Places365_test_00065015.jpg +Places365_test_00065020.jpg +Places365_test_00065032.jpg +Places365_test_00065039.jpg +Places365_test_00065056.jpg +Places365_test_00065106.jpg +Places365_test_00065110.jpg +Places365_test_00065123.jpg +Places365_test_00065148.jpg +Places365_test_00065149.jpg +Places365_test_00065153.jpg +Places365_test_00065156.jpg +Places365_test_00065177.jpg +Places365_test_00065187.jpg +Places365_test_00065196.jpg +Places365_test_00065208.jpg +Places365_test_00065214.jpg +Places365_test_00065216.jpg +Places365_test_00065225.jpg +Places365_test_00065237.jpg +Places365_test_00065248.jpg +Places365_test_00065253.jpg +Places365_test_00065257.jpg +Places365_test_00065262.jpg +Places365_test_00065270.jpg +Places365_test_00065289.jpg +Places365_test_00065301.jpg +Places365_test_00065302.jpg +Places365_test_00065303.jpg +Places365_test_00065335.jpg +Places365_test_00065349.jpg +Places365_test_00065380.jpg +Places365_test_00065385.jpg +Places365_test_00065393.jpg +Places365_test_00065400.jpg +Places365_test_00065402.jpg +Places365_test_00065403.jpg +Places365_test_00065419.jpg +Places365_test_00065435.jpg +Places365_test_00065436.jpg +Places365_test_00065457.jpg +Places365_test_00065474.jpg +Places365_test_00065475.jpg +Places365_test_00065482.jpg +Places365_test_00065500.jpg +Places365_test_00065507.jpg +Places365_test_00065524.jpg +Places365_test_00065529.jpg +Places365_test_00065536.jpg +Places365_test_00065543.jpg +Places365_test_00065560.jpg +Places365_test_00065566.jpg +Places365_test_00065577.jpg +Places365_test_00065580.jpg +Places365_test_00065587.jpg +Places365_test_00065596.jpg +Places365_test_00065598.jpg +Places365_test_00065615.jpg +Places365_test_00065630.jpg +Places365_test_00065638.jpg +Places365_test_00065642.jpg +Places365_test_00065656.jpg +Places365_test_00065657.jpg +Places365_test_00065688.jpg +Places365_test_00065693.jpg +Places365_test_00065694.jpg +Places365_test_00065705.jpg +Places365_test_00065721.jpg +Places365_test_00065724.jpg +Places365_test_00065725.jpg +Places365_test_00065731.jpg +Places365_test_00065755.jpg +Places365_test_00065762.jpg +Places365_test_00065771.jpg +Places365_test_00065779.jpg +Places365_test_00065785.jpg +Places365_test_00065799.jpg +Places365_test_00065803.jpg +Places365_test_00065811.jpg +Places365_test_00065813.jpg +Places365_test_00065818.jpg +Places365_test_00065822.jpg +Places365_test_00065874.jpg +Places365_test_00065887.jpg +Places365_test_00065896.jpg +Places365_test_00065931.jpg +Places365_test_00065933.jpg +Places365_test_00065960.jpg +Places365_test_00065971.jpg +Places365_test_00065990.jpg +Places365_test_00065992.jpg +Places365_test_00066010.jpg +Places365_test_00066040.jpg +Places365_test_00066041.jpg +Places365_test_00066048.jpg +Places365_test_00066060.jpg +Places365_test_00066062.jpg +Places365_test_00066070.jpg +Places365_test_00066101.jpg +Places365_test_00066120.jpg +Places365_test_00066125.jpg +Places365_test_00066129.jpg +Places365_test_00066139.jpg +Places365_test_00066145.jpg +Places365_test_00066173.jpg +Places365_test_00066183.jpg +Places365_test_00066203.jpg +Places365_test_00066213.jpg +Places365_test_00066227.jpg +Places365_test_00066238.jpg +Places365_test_00066246.jpg +Places365_test_00066250.jpg +Places365_test_00066263.jpg +Places365_test_00066269.jpg +Places365_test_00066274.jpg +Places365_test_00066277.jpg +Places365_test_00066289.jpg +Places365_test_00066290.jpg +Places365_test_00066291.jpg +Places365_test_00066299.jpg +Places365_test_00066306.jpg +Places365_test_00066307.jpg +Places365_test_00066329.jpg +Places365_test_00066330.jpg +Places365_test_00066341.jpg +Places365_test_00066346.jpg +Places365_test_00066355.jpg +Places365_test_00066366.jpg +Places365_test_00066384.jpg +Places365_test_00066396.jpg +Places365_test_00066411.jpg +Places365_test_00066414.jpg +Places365_test_00066419.jpg +Places365_test_00066423.jpg +Places365_test_00066431.jpg +Places365_test_00066433.jpg +Places365_test_00066437.jpg +Places365_test_00066447.jpg +Places365_test_00066461.jpg +Places365_test_00066463.jpg +Places365_test_00066498.jpg +Places365_test_00066502.jpg +Places365_test_00066506.jpg +Places365_test_00066512.jpg +Places365_test_00066522.jpg +Places365_test_00066523.jpg +Places365_test_00066525.jpg +Places365_test_00066536.jpg +Places365_test_00066558.jpg +Places365_test_00066571.jpg +Places365_test_00066576.jpg +Places365_test_00066588.jpg +Places365_test_00066592.jpg +Places365_test_00066617.jpg +Places365_test_00066637.jpg +Places365_test_00066639.jpg +Places365_test_00066644.jpg +Places365_test_00066681.jpg +Places365_test_00066690.jpg +Places365_test_00066713.jpg +Places365_test_00066744.jpg +Places365_test_00066764.jpg +Places365_test_00066780.jpg +Places365_test_00066806.jpg +Places365_test_00066811.jpg +Places365_test_00066814.jpg +Places365_test_00066817.jpg +Places365_test_00066820.jpg +Places365_test_00066832.jpg +Places365_test_00066844.jpg +Places365_test_00066859.jpg +Places365_test_00066867.jpg +Places365_test_00066879.jpg +Places365_test_00066890.jpg +Places365_test_00066929.jpg +Places365_test_00066931.jpg +Places365_test_00066936.jpg +Places365_test_00066941.jpg +Places365_test_00066944.jpg +Places365_test_00066954.jpg +Places365_test_00066961.jpg +Places365_test_00066968.jpg +Places365_test_00066977.jpg +Places365_test_00066989.jpg +Places365_test_00067003.jpg +Places365_test_00067016.jpg +Places365_test_00067041.jpg +Places365_test_00067044.jpg +Places365_test_00067062.jpg +Places365_test_00067091.jpg +Places365_test_00067095.jpg +Places365_test_00067102.jpg +Places365_test_00067109.jpg +Places365_test_00067111.jpg +Places365_test_00067119.jpg +Places365_test_00067129.jpg +Places365_test_00067141.jpg +Places365_test_00067146.jpg +Places365_test_00067171.jpg +Places365_test_00067177.jpg +Places365_test_00067181.jpg +Places365_test_00067191.jpg +Places365_test_00067197.jpg +Places365_test_00067242.jpg +Places365_test_00067254.jpg +Places365_test_00067296.jpg +Places365_test_00067298.jpg +Places365_test_00067311.jpg +Places365_test_00067314.jpg +Places365_test_00067321.jpg +Places365_test_00067334.jpg +Places365_test_00067361.jpg +Places365_test_00067362.jpg +Places365_test_00067372.jpg +Places365_test_00067373.jpg +Places365_test_00067386.jpg +Places365_test_00067390.jpg +Places365_test_00067407.jpg +Places365_test_00067434.jpg +Places365_test_00067439.jpg +Places365_test_00067451.jpg +Places365_test_00067463.jpg +Places365_test_00067466.jpg +Places365_test_00067476.jpg +Places365_test_00067484.jpg +Places365_test_00067517.jpg +Places365_test_00067537.jpg +Places365_test_00067552.jpg +Places365_test_00067559.jpg +Places365_test_00067561.jpg +Places365_test_00067593.jpg +Places365_test_00067630.jpg +Places365_test_00067634.jpg +Places365_test_00067637.jpg +Places365_test_00067640.jpg +Places365_test_00067653.jpg +Places365_test_00067654.jpg +Places365_test_00067665.jpg +Places365_test_00067673.jpg +Places365_test_00067674.jpg +Places365_test_00067682.jpg +Places365_test_00067704.jpg +Places365_test_00067710.jpg +Places365_test_00067712.jpg +Places365_test_00067716.jpg +Places365_test_00067727.jpg +Places365_test_00067730.jpg +Places365_test_00067749.jpg +Places365_test_00067752.jpg +Places365_test_00067775.jpg +Places365_test_00067831.jpg +Places365_test_00067856.jpg +Places365_test_00067876.jpg +Places365_test_00067890.jpg +Places365_test_00067895.jpg +Places365_test_00067909.jpg +Places365_test_00067911.jpg +Places365_test_00067920.jpg +Places365_test_00067927.jpg +Places365_test_00067930.jpg +Places365_test_00067945.jpg +Places365_test_00067951.jpg +Places365_test_00067966.jpg +Places365_test_00067967.jpg +Places365_test_00067968.jpg +Places365_test_00067973.jpg +Places365_test_00067980.jpg +Places365_test_00067996.jpg +Places365_test_00068000.jpg +Places365_test_00068023.jpg +Places365_test_00068030.jpg +Places365_test_00068031.jpg +Places365_test_00068033.jpg +Places365_test_00068043.jpg +Places365_test_00068062.jpg +Places365_test_00068073.jpg +Places365_test_00068079.jpg +Places365_test_00068091.jpg +Places365_test_00068093.jpg +Places365_test_00068099.jpg +Places365_test_00068112.jpg +Places365_test_00068113.jpg +Places365_test_00068158.jpg +Places365_test_00068161.jpg +Places365_test_00068171.jpg +Places365_test_00068176.jpg +Places365_test_00068180.jpg +Places365_test_00068182.jpg +Places365_test_00068198.jpg +Places365_test_00068207.jpg +Places365_test_00068229.jpg +Places365_test_00068247.jpg +Places365_test_00068249.jpg +Places365_test_00068277.jpg +Places365_test_00068305.jpg +Places365_test_00068327.jpg +Places365_test_00068331.jpg +Places365_test_00068333.jpg +Places365_test_00068356.jpg +Places365_test_00068358.jpg +Places365_test_00068381.jpg +Places365_test_00068413.jpg +Places365_test_00068423.jpg +Places365_test_00068429.jpg +Places365_test_00068436.jpg +Places365_test_00068483.jpg +Places365_test_00068502.jpg +Places365_test_00068515.jpg +Places365_test_00068520.jpg +Places365_test_00068521.jpg +Places365_test_00068537.jpg +Places365_test_00068538.jpg +Places365_test_00068550.jpg +Places365_test_00068552.jpg +Places365_test_00068577.jpg +Places365_test_00068610.jpg +Places365_test_00068611.jpg +Places365_test_00068612.jpg +Places365_test_00068616.jpg +Places365_test_00068640.jpg +Places365_test_00068656.jpg +Places365_test_00068666.jpg +Places365_test_00068669.jpg +Places365_test_00068684.jpg +Places365_test_00068688.jpg +Places365_test_00068697.jpg +Places365_test_00068700.jpg +Places365_test_00068709.jpg +Places365_test_00068738.jpg +Places365_test_00068771.jpg +Places365_test_00068776.jpg +Places365_test_00068777.jpg +Places365_test_00068811.jpg +Places365_test_00068823.jpg +Places365_test_00068827.jpg +Places365_test_00068830.jpg +Places365_test_00068843.jpg +Places365_test_00068849.jpg +Places365_test_00068851.jpg +Places365_test_00068856.jpg +Places365_test_00068862.jpg +Places365_test_00068868.jpg +Places365_test_00068870.jpg +Places365_test_00068877.jpg +Places365_test_00068900.jpg +Places365_test_00068924.jpg +Places365_test_00068974.jpg +Places365_test_00068976.jpg +Places365_test_00068981.jpg +Places365_test_00069012.jpg +Places365_test_00069013.jpg +Places365_test_00069036.jpg +Places365_test_00069079.jpg +Places365_test_00069082.jpg +Places365_test_00069085.jpg +Places365_test_00069090.jpg +Places365_test_00069093.jpg +Places365_test_00069106.jpg +Places365_test_00069113.jpg +Places365_test_00069115.jpg +Places365_test_00069126.jpg +Places365_test_00069132.jpg +Places365_test_00069135.jpg +Places365_test_00069140.jpg +Places365_test_00069183.jpg +Places365_test_00069253.jpg +Places365_test_00069256.jpg +Places365_test_00069267.jpg +Places365_test_00069288.jpg +Places365_test_00069289.jpg +Places365_test_00069290.jpg +Places365_test_00069305.jpg +Places365_test_00069313.jpg +Places365_test_00069328.jpg +Places365_test_00069336.jpg +Places365_test_00069376.jpg +Places365_test_00069377.jpg +Places365_test_00069388.jpg +Places365_test_00069390.jpg +Places365_test_00069394.jpg +Places365_test_00069405.jpg +Places365_test_00069408.jpg +Places365_test_00069420.jpg +Places365_test_00069434.jpg +Places365_test_00069452.jpg +Places365_test_00069472.jpg +Places365_test_00069487.jpg +Places365_test_00069497.jpg +Places365_test_00069498.jpg +Places365_test_00069502.jpg +Places365_test_00069509.jpg +Places365_test_00069527.jpg +Places365_test_00069528.jpg +Places365_test_00069536.jpg +Places365_test_00069544.jpg +Places365_test_00069546.jpg +Places365_test_00069553.jpg +Places365_test_00069564.jpg +Places365_test_00069578.jpg +Places365_test_00069585.jpg +Places365_test_00069586.jpg +Places365_test_00069587.jpg +Places365_test_00069600.jpg +Places365_test_00069603.jpg +Places365_test_00069605.jpg +Places365_test_00069613.jpg +Places365_test_00069615.jpg +Places365_test_00069626.jpg +Places365_test_00069630.jpg +Places365_test_00069644.jpg +Places365_test_00069675.jpg +Places365_test_00069680.jpg +Places365_test_00069688.jpg +Places365_test_00069694.jpg +Places365_test_00069699.jpg +Places365_test_00069706.jpg +Places365_test_00069735.jpg +Places365_test_00069768.jpg +Places365_test_00069776.jpg +Places365_test_00069796.jpg +Places365_test_00069807.jpg +Places365_test_00069812.jpg +Places365_test_00069818.jpg +Places365_test_00069831.jpg +Places365_test_00069859.jpg +Places365_test_00069866.jpg +Places365_test_00069868.jpg +Places365_test_00069893.jpg +Places365_test_00069923.jpg +Places365_test_00069925.jpg +Places365_test_00069929.jpg +Places365_test_00069941.jpg +Places365_test_00069942.jpg +Places365_test_00069945.jpg +Places365_test_00069953.jpg +Places365_test_00069975.jpg +Places365_test_00069986.jpg +Places365_test_00069992.jpg +Places365_test_00070014.jpg +Places365_test_00070016.jpg +Places365_test_00070046.jpg +Places365_test_00070053.jpg +Places365_test_00070055.jpg +Places365_test_00070056.jpg +Places365_test_00070089.jpg +Places365_test_00070093.jpg +Places365_test_00070100.jpg +Places365_test_00070106.jpg +Places365_test_00070107.jpg +Places365_test_00070113.jpg +Places365_test_00070117.jpg +Places365_test_00070137.jpg +Places365_test_00070146.jpg +Places365_test_00070149.jpg +Places365_test_00070181.jpg +Places365_test_00070199.jpg +Places365_test_00070213.jpg +Places365_test_00070216.jpg +Places365_test_00070219.jpg +Places365_test_00070254.jpg +Places365_test_00070261.jpg +Places365_test_00070284.jpg +Places365_test_00070300.jpg +Places365_test_00070307.jpg +Places365_test_00070319.jpg +Places365_test_00070325.jpg +Places365_test_00070347.jpg +Places365_test_00070366.jpg +Places365_test_00070374.jpg +Places365_test_00070397.jpg +Places365_test_00070398.jpg +Places365_test_00070409.jpg +Places365_test_00070411.jpg +Places365_test_00070412.jpg +Places365_test_00070438.jpg +Places365_test_00070445.jpg +Places365_test_00070448.jpg +Places365_test_00070456.jpg +Places365_test_00070472.jpg +Places365_test_00070473.jpg +Places365_test_00070483.jpg +Places365_test_00070532.jpg +Places365_test_00070543.jpg +Places365_test_00070554.jpg +Places365_test_00070555.jpg +Places365_test_00070562.jpg +Places365_test_00070579.jpg +Places365_test_00070584.jpg +Places365_test_00070600.jpg +Places365_test_00070616.jpg +Places365_test_00070636.jpg +Places365_test_00070669.jpg +Places365_test_00070680.jpg +Places365_test_00070681.jpg +Places365_test_00070685.jpg +Places365_test_00070712.jpg +Places365_test_00070714.jpg +Places365_test_00070715.jpg +Places365_test_00070717.jpg +Places365_test_00070732.jpg +Places365_test_00070738.jpg +Places365_test_00070748.jpg +Places365_test_00070770.jpg +Places365_test_00070777.jpg +Places365_test_00070778.jpg +Places365_test_00070779.jpg +Places365_test_00070783.jpg +Places365_test_00070803.jpg +Places365_test_00070815.jpg +Places365_test_00070818.jpg +Places365_test_00070824.jpg +Places365_test_00070839.jpg +Places365_test_00070844.jpg +Places365_test_00070864.jpg +Places365_test_00070874.jpg +Places365_test_00070875.jpg +Places365_test_00070886.jpg +Places365_test_00070949.jpg +Places365_test_00070961.jpg +Places365_test_00070967.jpg +Places365_test_00070968.jpg +Places365_test_00070972.jpg +Places365_test_00070989.jpg +Places365_test_00070990.jpg +Places365_test_00070997.jpg +Places365_test_00071013.jpg +Places365_test_00071031.jpg +Places365_test_00071032.jpg +Places365_test_00071038.jpg +Places365_test_00071040.jpg +Places365_test_00071046.jpg +Places365_test_00071051.jpg +Places365_test_00071058.jpg +Places365_test_00071089.jpg +Places365_test_00071095.jpg +Places365_test_00071097.jpg +Places365_test_00071101.jpg +Places365_test_00071113.jpg +Places365_test_00071121.jpg +Places365_test_00071126.jpg +Places365_test_00071128.jpg +Places365_test_00071140.jpg +Places365_test_00071152.jpg +Places365_test_00071155.jpg +Places365_test_00071158.jpg +Places365_test_00071172.jpg +Places365_test_00071174.jpg +Places365_test_00071180.jpg +Places365_test_00071187.jpg +Places365_test_00071190.jpg +Places365_test_00071222.jpg +Places365_test_00071226.jpg +Places365_test_00071232.jpg +Places365_test_00071234.jpg +Places365_test_00071242.jpg +Places365_test_00071249.jpg +Places365_test_00071254.jpg +Places365_test_00071266.jpg +Places365_test_00071284.jpg +Places365_test_00071299.jpg +Places365_test_00071301.jpg +Places365_test_00071303.jpg +Places365_test_00071312.jpg +Places365_test_00071324.jpg +Places365_test_00071337.jpg +Places365_test_00071338.jpg +Places365_test_00071341.jpg +Places365_test_00071344.jpg +Places365_test_00071350.jpg +Places365_test_00071356.jpg +Places365_test_00071362.jpg +Places365_test_00071370.jpg +Places365_test_00071378.jpg +Places365_test_00071403.jpg +Places365_test_00071412.jpg +Places365_test_00071418.jpg +Places365_test_00071433.jpg +Places365_test_00071437.jpg +Places365_test_00071451.jpg +Places365_test_00071481.jpg +Places365_test_00071485.jpg +Places365_test_00071496.jpg +Places365_test_00071507.jpg +Places365_test_00071523.jpg +Places365_test_00071535.jpg +Places365_test_00071538.jpg +Places365_test_00071574.jpg +Places365_test_00071575.jpg +Places365_test_00071593.jpg +Places365_test_00071595.jpg +Places365_test_00071597.jpg +Places365_test_00071598.jpg +Places365_test_00071607.jpg +Places365_test_00071625.jpg +Places365_test_00071673.jpg +Places365_test_00071682.jpg +Places365_test_00071703.jpg +Places365_test_00071705.jpg +Places365_test_00071721.jpg +Places365_test_00071725.jpg +Places365_test_00071732.jpg +Places365_test_00071748.jpg +Places365_test_00071749.jpg +Places365_test_00071751.jpg +Places365_test_00071756.jpg +Places365_test_00071765.jpg +Places365_test_00071778.jpg +Places365_test_00071789.jpg +Places365_test_00071808.jpg +Places365_test_00071812.jpg +Places365_test_00071822.jpg +Places365_test_00071830.jpg +Places365_test_00071838.jpg +Places365_test_00071840.jpg +Places365_test_00071846.jpg +Places365_test_00071851.jpg +Places365_test_00071862.jpg +Places365_test_00071872.jpg +Places365_test_00071887.jpg +Places365_test_00071889.jpg +Places365_test_00071909.jpg +Places365_test_00071918.jpg +Places365_test_00071931.jpg +Places365_test_00071961.jpg +Places365_test_00071966.jpg +Places365_test_00071982.jpg +Places365_test_00071988.jpg +Places365_test_00072003.jpg +Places365_test_00072010.jpg +Places365_test_00072014.jpg +Places365_test_00072016.jpg +Places365_test_00072026.jpg +Places365_test_00072027.jpg +Places365_test_00072041.jpg +Places365_test_00072059.jpg +Places365_test_00072064.jpg +Places365_test_00072077.jpg +Places365_test_00072081.jpg +Places365_test_00072086.jpg +Places365_test_00072093.jpg +Places365_test_00072106.jpg +Places365_test_00072108.jpg +Places365_test_00072119.jpg +Places365_test_00072122.jpg +Places365_test_00072149.jpg +Places365_test_00072172.jpg +Places365_test_00072182.jpg +Places365_test_00072185.jpg +Places365_test_00072189.jpg +Places365_test_00072191.jpg +Places365_test_00072220.jpg +Places365_test_00072231.jpg +Places365_test_00072248.jpg +Places365_test_00072285.jpg +Places365_test_00072312.jpg +Places365_test_00072323.jpg +Places365_test_00072324.jpg +Places365_test_00072326.jpg +Places365_test_00072333.jpg +Places365_test_00072357.jpg +Places365_test_00072380.jpg +Places365_test_00072394.jpg +Places365_test_00072397.jpg +Places365_test_00072411.jpg +Places365_test_00072413.jpg +Places365_test_00072418.jpg +Places365_test_00072443.jpg +Places365_test_00072465.jpg +Places365_test_00072467.jpg +Places365_test_00072498.jpg +Places365_test_00072526.jpg +Places365_test_00072538.jpg +Places365_test_00072542.jpg +Places365_test_00072562.jpg +Places365_test_00072565.jpg +Places365_test_00072576.jpg +Places365_test_00072578.jpg +Places365_test_00072585.jpg +Places365_test_00072621.jpg +Places365_test_00072624.jpg +Places365_test_00072628.jpg +Places365_test_00072647.jpg +Places365_test_00072648.jpg +Places365_test_00072656.jpg +Places365_test_00072662.jpg +Places365_test_00072675.jpg +Places365_test_00072692.jpg +Places365_test_00072700.jpg +Places365_test_00072723.jpg +Places365_test_00072732.jpg +Places365_test_00072749.jpg +Places365_test_00072758.jpg +Places365_test_00072782.jpg +Places365_test_00072783.jpg +Places365_test_00072787.jpg +Places365_test_00072793.jpg +Places365_test_00072796.jpg +Places365_test_00072797.jpg +Places365_test_00072804.jpg +Places365_test_00072807.jpg +Places365_test_00072808.jpg +Places365_test_00072823.jpg +Places365_test_00072825.jpg +Places365_test_00072847.jpg +Places365_test_00072865.jpg +Places365_test_00072866.jpg +Places365_test_00072868.jpg +Places365_test_00072874.jpg +Places365_test_00072877.jpg +Places365_test_00072879.jpg +Places365_test_00072880.jpg +Places365_test_00072887.jpg +Places365_test_00072919.jpg +Places365_test_00072955.jpg +Places365_test_00072964.jpg +Places365_test_00072968.jpg +Places365_test_00072971.jpg +Places365_test_00072976.jpg +Places365_test_00073006.jpg +Places365_test_00073026.jpg +Places365_test_00073030.jpg +Places365_test_00073040.jpg +Places365_test_00073051.jpg +Places365_test_00073057.jpg +Places365_test_00073081.jpg +Places365_test_00073098.jpg +Places365_test_00073107.jpg +Places365_test_00073118.jpg +Places365_test_00073121.jpg +Places365_test_00073133.jpg +Places365_test_00073134.jpg +Places365_test_00073135.jpg +Places365_test_00073148.jpg +Places365_test_00073151.jpg +Places365_test_00073161.jpg +Places365_test_00073175.jpg +Places365_test_00073187.jpg +Places365_test_00073213.jpg +Places365_test_00073220.jpg +Places365_test_00073223.jpg +Places365_test_00073239.jpg +Places365_test_00073259.jpg +Places365_test_00073262.jpg +Places365_test_00073290.jpg +Places365_test_00073298.jpg +Places365_test_00073299.jpg +Places365_test_00073303.jpg +Places365_test_00073320.jpg +Places365_test_00073329.jpg +Places365_test_00073334.jpg +Places365_test_00073343.jpg +Places365_test_00073354.jpg +Places365_test_00073378.jpg +Places365_test_00073388.jpg +Places365_test_00073400.jpg +Places365_test_00073401.jpg +Places365_test_00073414.jpg +Places365_test_00073420.jpg +Places365_test_00073423.jpg +Places365_test_00073435.jpg +Places365_test_00073439.jpg +Places365_test_00073440.jpg +Places365_test_00073441.jpg +Places365_test_00073456.jpg +Places365_test_00073473.jpg +Places365_test_00073481.jpg +Places365_test_00073487.jpg +Places365_test_00073496.jpg +Places365_test_00073497.jpg +Places365_test_00073519.jpg +Places365_test_00073556.jpg +Places365_test_00073571.jpg +Places365_test_00073579.jpg +Places365_test_00073581.jpg +Places365_test_00073588.jpg +Places365_test_00073595.jpg +Places365_test_00073601.jpg +Places365_test_00073626.jpg +Places365_test_00073629.jpg +Places365_test_00073644.jpg +Places365_test_00073658.jpg +Places365_test_00073674.jpg +Places365_test_00073675.jpg +Places365_test_00073681.jpg +Places365_test_00073693.jpg +Places365_test_00073694.jpg +Places365_test_00073696.jpg +Places365_test_00073721.jpg +Places365_test_00073733.jpg +Places365_test_00073789.jpg +Places365_test_00073802.jpg +Places365_test_00073803.jpg +Places365_test_00073814.jpg +Places365_test_00073831.jpg +Places365_test_00073841.jpg +Places365_test_00073842.jpg +Places365_test_00073850.jpg +Places365_test_00073853.jpg +Places365_test_00073856.jpg +Places365_test_00073861.jpg +Places365_test_00073879.jpg +Places365_test_00073892.jpg +Places365_test_00073898.jpg +Places365_test_00073910.jpg +Places365_test_00073925.jpg +Places365_test_00073927.jpg +Places365_test_00073955.jpg +Places365_test_00073958.jpg +Places365_test_00073970.jpg +Places365_test_00073972.jpg +Places365_test_00073982.jpg +Places365_test_00073993.jpg +Places365_test_00073997.jpg +Places365_test_00073999.jpg +Places365_test_00074009.jpg +Places365_test_00074010.jpg +Places365_test_00074022.jpg +Places365_test_00074030.jpg +Places365_test_00074037.jpg +Places365_test_00074053.jpg +Places365_test_00074058.jpg +Places365_test_00074140.jpg +Places365_test_00074143.jpg +Places365_test_00074144.jpg +Places365_test_00074167.jpg +Places365_test_00074176.jpg +Places365_test_00074181.jpg +Places365_test_00074186.jpg +Places365_test_00074190.jpg +Places365_test_00074191.jpg +Places365_test_00074207.jpg +Places365_test_00074216.jpg +Places365_test_00074227.jpg +Places365_test_00074231.jpg +Places365_test_00074240.jpg +Places365_test_00074245.jpg +Places365_test_00074247.jpg +Places365_test_00074262.jpg +Places365_test_00074263.jpg +Places365_test_00074278.jpg +Places365_test_00074283.jpg +Places365_test_00074286.jpg +Places365_test_00074316.jpg +Places365_test_00074337.jpg +Places365_test_00074338.jpg +Places365_test_00074357.jpg +Places365_test_00074367.jpg +Places365_test_00074369.jpg +Places365_test_00074374.jpg +Places365_test_00074392.jpg +Places365_test_00074396.jpg +Places365_test_00074421.jpg +Places365_test_00074443.jpg +Places365_test_00074444.jpg +Places365_test_00074453.jpg +Places365_test_00074458.jpg +Places365_test_00074462.jpg +Places365_test_00074479.jpg +Places365_test_00074502.jpg +Places365_test_00074538.jpg +Places365_test_00074554.jpg +Places365_test_00074567.jpg +Places365_test_00074569.jpg +Places365_test_00074572.jpg +Places365_test_00074582.jpg +Places365_test_00074584.jpg +Places365_test_00074595.jpg +Places365_test_00074597.jpg +Places365_test_00074627.jpg +Places365_test_00074650.jpg +Places365_test_00074670.jpg +Places365_test_00074680.jpg +Places365_test_00074682.jpg +Places365_test_00074692.jpg +Places365_test_00074693.jpg +Places365_test_00074699.jpg +Places365_test_00074702.jpg +Places365_test_00074703.jpg +Places365_test_00074704.jpg +Places365_test_00074709.jpg +Places365_test_00074711.jpg +Places365_test_00074723.jpg +Places365_test_00074724.jpg +Places365_test_00074744.jpg +Places365_test_00074751.jpg +Places365_test_00074754.jpg +Places365_test_00074760.jpg +Places365_test_00074765.jpg +Places365_test_00074784.jpg +Places365_test_00074789.jpg +Places365_test_00074793.jpg +Places365_test_00074803.jpg +Places365_test_00074830.jpg +Places365_test_00074858.jpg +Places365_test_00074861.jpg +Places365_test_00074866.jpg +Places365_test_00074889.jpg +Places365_test_00074893.jpg +Places365_test_00074899.jpg +Places365_test_00074927.jpg +Places365_test_00074944.jpg +Places365_test_00074946.jpg +Places365_test_00074951.jpg +Places365_test_00074963.jpg +Places365_test_00074967.jpg +Places365_test_00074969.jpg +Places365_test_00075014.jpg +Places365_test_00075028.jpg +Places365_test_00075033.jpg +Places365_test_00075034.jpg +Places365_test_00075038.jpg +Places365_test_00075051.jpg +Places365_test_00075060.jpg +Places365_test_00075069.jpg +Places365_test_00075079.jpg +Places365_test_00075089.jpg +Places365_test_00075091.jpg +Places365_test_00075105.jpg +Places365_test_00075123.jpg +Places365_test_00075125.jpg +Places365_test_00075127.jpg +Places365_test_00075132.jpg +Places365_test_00075140.jpg +Places365_test_00075154.jpg +Places365_test_00075156.jpg +Places365_test_00075158.jpg +Places365_test_00075174.jpg +Places365_test_00075188.jpg +Places365_test_00075195.jpg +Places365_test_00075196.jpg +Places365_test_00075200.jpg +Places365_test_00075212.jpg +Places365_test_00075213.jpg +Places365_test_00075227.jpg +Places365_test_00075262.jpg +Places365_test_00075263.jpg +Places365_test_00075275.jpg +Places365_test_00075292.jpg +Places365_test_00075293.jpg +Places365_test_00075300.jpg +Places365_test_00075312.jpg +Places365_test_00075317.jpg +Places365_test_00075342.jpg +Places365_test_00075349.jpg +Places365_test_00075394.jpg +Places365_test_00075398.jpg +Places365_test_00075421.jpg +Places365_test_00075424.jpg +Places365_test_00075430.jpg +Places365_test_00075433.jpg +Places365_test_00075441.jpg +Places365_test_00075460.jpg +Places365_test_00075472.jpg +Places365_test_00075475.jpg +Places365_test_00075477.jpg +Places365_test_00075478.jpg +Places365_test_00075483.jpg +Places365_test_00075490.jpg +Places365_test_00075491.jpg +Places365_test_00075493.jpg +Places365_test_00075496.jpg +Places365_test_00075509.jpg +Places365_test_00075516.jpg +Places365_test_00075520.jpg +Places365_test_00075524.jpg +Places365_test_00075531.jpg +Places365_test_00075534.jpg +Places365_test_00075594.jpg +Places365_test_00075600.jpg +Places365_test_00075603.jpg +Places365_test_00075624.jpg +Places365_test_00075649.jpg +Places365_test_00075657.jpg +Places365_test_00075677.jpg +Places365_test_00075696.jpg +Places365_test_00075732.jpg +Places365_test_00075759.jpg +Places365_test_00075771.jpg +Places365_test_00075772.jpg +Places365_test_00075800.jpg +Places365_test_00075831.jpg +Places365_test_00075835.jpg +Places365_test_00075878.jpg +Places365_test_00075888.jpg +Places365_test_00075897.jpg +Places365_test_00075910.jpg +Places365_test_00075924.jpg +Places365_test_00075930.jpg +Places365_test_00075932.jpg +Places365_test_00075949.jpg +Places365_test_00075960.jpg +Places365_test_00075961.jpg +Places365_test_00075978.jpg +Places365_test_00075979.jpg +Places365_test_00075981.jpg +Places365_test_00076016.jpg +Places365_test_00076028.jpg +Places365_test_00076034.jpg +Places365_test_00076036.jpg +Places365_test_00076073.jpg +Places365_test_00076085.jpg +Places365_test_00076113.jpg +Places365_test_00076133.jpg +Places365_test_00076134.jpg +Places365_test_00076135.jpg +Places365_test_00076150.jpg +Places365_test_00076160.jpg +Places365_test_00076168.jpg +Places365_test_00076202.jpg +Places365_test_00076205.jpg +Places365_test_00076212.jpg +Places365_test_00076217.jpg +Places365_test_00076221.jpg +Places365_test_00076226.jpg +Places365_test_00076233.jpg +Places365_test_00076234.jpg +Places365_test_00076242.jpg +Places365_test_00076284.jpg +Places365_test_00076285.jpg +Places365_test_00076287.jpg +Places365_test_00076299.jpg +Places365_test_00076305.jpg +Places365_test_00076323.jpg +Places365_test_00076328.jpg +Places365_test_00076330.jpg +Places365_test_00076332.jpg +Places365_test_00076336.jpg +Places365_test_00076371.jpg +Places365_test_00076380.jpg +Places365_test_00076385.jpg +Places365_test_00076390.jpg +Places365_test_00076392.jpg +Places365_test_00076398.jpg +Places365_test_00076407.jpg +Places365_test_00076411.jpg +Places365_test_00076415.jpg +Places365_test_00076423.jpg +Places365_test_00076440.jpg +Places365_test_00076444.jpg +Places365_test_00076456.jpg +Places365_test_00076458.jpg +Places365_test_00076482.jpg +Places365_test_00076493.jpg +Places365_test_00076494.jpg +Places365_test_00076503.jpg +Places365_test_00076505.jpg +Places365_test_00076517.jpg +Places365_test_00076537.jpg +Places365_test_00076540.jpg +Places365_test_00076548.jpg +Places365_test_00076551.jpg +Places365_test_00076565.jpg +Places365_test_00076572.jpg +Places365_test_00076587.jpg +Places365_test_00076592.jpg +Places365_test_00076618.jpg +Places365_test_00076620.jpg +Places365_test_00076638.jpg +Places365_test_00076659.jpg +Places365_test_00076664.jpg +Places365_test_00076670.jpg +Places365_test_00076701.jpg +Places365_test_00076713.jpg +Places365_test_00076717.jpg +Places365_test_00076732.jpg +Places365_test_00076733.jpg +Places365_test_00076746.jpg +Places365_test_00076748.jpg +Places365_test_00076749.jpg +Places365_test_00076761.jpg +Places365_test_00076762.jpg +Places365_test_00076768.jpg +Places365_test_00076771.jpg +Places365_test_00076786.jpg +Places365_test_00076789.jpg +Places365_test_00076790.jpg +Places365_test_00076803.jpg +Places365_test_00076809.jpg +Places365_test_00076842.jpg +Places365_test_00076857.jpg +Places365_test_00076859.jpg +Places365_test_00076866.jpg +Places365_test_00076874.jpg +Places365_test_00076880.jpg +Places365_test_00076883.jpg +Places365_test_00076884.jpg +Places365_test_00076897.jpg +Places365_test_00076912.jpg +Places365_test_00076921.jpg +Places365_test_00076930.jpg +Places365_test_00076935.jpg +Places365_test_00076944.jpg +Places365_test_00076952.jpg +Places365_test_00076955.jpg +Places365_test_00076964.jpg +Places365_test_00076976.jpg +Places365_test_00076980.jpg +Places365_test_00076984.jpg +Places365_test_00077004.jpg +Places365_test_00077057.jpg +Places365_test_00077061.jpg +Places365_test_00077062.jpg +Places365_test_00077070.jpg +Places365_test_00077077.jpg +Places365_test_00077080.jpg +Places365_test_00077085.jpg +Places365_test_00077086.jpg +Places365_test_00077087.jpg +Places365_test_00077097.jpg +Places365_test_00077103.jpg +Places365_test_00077118.jpg +Places365_test_00077119.jpg +Places365_test_00077127.jpg +Places365_test_00077152.jpg +Places365_test_00077153.jpg +Places365_test_00077154.jpg +Places365_test_00077191.jpg +Places365_test_00077201.jpg +Places365_test_00077231.jpg +Places365_test_00077242.jpg +Places365_test_00077252.jpg +Places365_test_00077254.jpg +Places365_test_00077265.jpg +Places365_test_00077270.jpg +Places365_test_00077295.jpg +Places365_test_00077297.jpg +Places365_test_00077314.jpg +Places365_test_00077318.jpg +Places365_test_00077322.jpg +Places365_test_00077324.jpg +Places365_test_00077326.jpg +Places365_test_00077331.jpg +Places365_test_00077359.jpg +Places365_test_00077370.jpg +Places365_test_00077373.jpg +Places365_test_00077386.jpg +Places365_test_00077390.jpg +Places365_test_00077403.jpg +Places365_test_00077465.jpg +Places365_test_00077472.jpg +Places365_test_00077484.jpg +Places365_test_00077507.jpg +Places365_test_00077527.jpg +Places365_test_00077552.jpg +Places365_test_00077557.jpg +Places365_test_00077566.jpg +Places365_test_00077570.jpg +Places365_test_00077571.jpg +Places365_test_00077582.jpg +Places365_test_00077607.jpg +Places365_test_00077619.jpg +Places365_test_00077623.jpg +Places365_test_00077659.jpg +Places365_test_00077670.jpg +Places365_test_00077671.jpg +Places365_test_00077683.jpg +Places365_test_00077688.jpg +Places365_test_00077698.jpg +Places365_test_00077715.jpg +Places365_test_00077730.jpg +Places365_test_00077752.jpg +Places365_test_00077769.jpg +Places365_test_00077795.jpg +Places365_test_00077807.jpg +Places365_test_00077826.jpg +Places365_test_00077830.jpg +Places365_test_00077856.jpg +Places365_test_00077861.jpg +Places365_test_00077869.jpg +Places365_test_00077884.jpg +Places365_test_00077904.jpg +Places365_test_00077911.jpg +Places365_test_00077916.jpg +Places365_test_00077938.jpg +Places365_test_00077941.jpg +Places365_test_00077972.jpg +Places365_test_00077981.jpg +Places365_test_00077996.jpg +Places365_test_00077998.jpg +Places365_test_00078000.jpg +Places365_test_00078001.jpg +Places365_test_00078014.jpg +Places365_test_00078020.jpg +Places365_test_00078030.jpg +Places365_test_00078046.jpg +Places365_test_00078073.jpg +Places365_test_00078088.jpg +Places365_test_00078098.jpg +Places365_test_00078099.jpg +Places365_test_00078141.jpg +Places365_test_00078176.jpg +Places365_test_00078198.jpg +Places365_test_00078209.jpg +Places365_test_00078220.jpg +Places365_test_00078230.jpg +Places365_test_00078260.jpg +Places365_test_00078263.jpg +Places365_test_00078266.jpg +Places365_test_00078269.jpg +Places365_test_00078281.jpg +Places365_test_00078283.jpg +Places365_test_00078319.jpg +Places365_test_00078323.jpg +Places365_test_00078329.jpg +Places365_test_00078330.jpg +Places365_test_00078342.jpg +Places365_test_00078383.jpg +Places365_test_00078412.jpg +Places365_test_00078428.jpg +Places365_test_00078437.jpg +Places365_test_00078442.jpg +Places365_test_00078448.jpg +Places365_test_00078453.jpg +Places365_test_00078470.jpg +Places365_test_00078494.jpg +Places365_test_00078501.jpg +Places365_test_00078505.jpg +Places365_test_00078535.jpg +Places365_test_00078541.jpg +Places365_test_00078572.jpg +Places365_test_00078618.jpg +Places365_test_00078635.jpg +Places365_test_00078640.jpg +Places365_test_00078669.jpg +Places365_test_00078671.jpg +Places365_test_00078675.jpg +Places365_test_00078692.jpg +Places365_test_00078703.jpg +Places365_test_00078706.jpg +Places365_test_00078708.jpg +Places365_test_00078709.jpg +Places365_test_00078712.jpg +Places365_test_00078730.jpg +Places365_test_00078735.jpg +Places365_test_00078747.jpg +Places365_test_00078759.jpg +Places365_test_00078777.jpg +Places365_test_00078798.jpg +Places365_test_00078815.jpg +Places365_test_00078823.jpg +Places365_test_00078839.jpg +Places365_test_00078840.jpg +Places365_test_00078843.jpg +Places365_test_00078905.jpg +Places365_test_00078910.jpg +Places365_test_00078919.jpg +Places365_test_00078941.jpg +Places365_test_00078946.jpg +Places365_test_00078947.jpg +Places365_test_00078977.jpg +Places365_test_00078978.jpg +Places365_test_00078983.jpg +Places365_test_00078988.jpg +Places365_test_00078996.jpg +Places365_test_00079000.jpg +Places365_test_00079015.jpg +Places365_test_00079024.jpg +Places365_test_00079037.jpg +Places365_test_00079041.jpg +Places365_test_00079044.jpg +Places365_test_00079049.jpg +Places365_test_00079054.jpg +Places365_test_00079087.jpg +Places365_test_00079116.jpg +Places365_test_00079153.jpg +Places365_test_00079156.jpg +Places365_test_00079161.jpg +Places365_test_00079171.jpg +Places365_test_00079174.jpg +Places365_test_00079179.jpg +Places365_test_00079210.jpg +Places365_test_00079222.jpg +Places365_test_00079230.jpg +Places365_test_00079235.jpg +Places365_test_00079236.jpg +Places365_test_00079237.jpg +Places365_test_00079266.jpg +Places365_test_00079270.jpg +Places365_test_00079273.jpg +Places365_test_00079280.jpg +Places365_test_00079285.jpg +Places365_test_00079299.jpg +Places365_test_00079302.jpg +Places365_test_00079307.jpg +Places365_test_00079321.jpg +Places365_test_00079323.jpg +Places365_test_00079343.jpg +Places365_test_00079344.jpg +Places365_test_00079369.jpg +Places365_test_00079376.jpg +Places365_test_00079406.jpg +Places365_test_00079420.jpg +Places365_test_00079430.jpg +Places365_test_00079440.jpg +Places365_test_00079447.jpg +Places365_test_00079450.jpg +Places365_test_00079466.jpg +Places365_test_00079473.jpg +Places365_test_00079482.jpg +Places365_test_00079505.jpg +Places365_test_00079509.jpg +Places365_test_00079513.jpg +Places365_test_00079522.jpg +Places365_test_00079527.jpg +Places365_test_00079535.jpg +Places365_test_00079573.jpg +Places365_test_00079591.jpg +Places365_test_00079597.jpg +Places365_test_00079610.jpg +Places365_test_00079611.jpg +Places365_test_00079614.jpg +Places365_test_00079615.jpg +Places365_test_00079616.jpg +Places365_test_00079619.jpg +Places365_test_00079684.jpg +Places365_test_00079689.jpg +Places365_test_00079733.jpg +Places365_test_00079737.jpg +Places365_test_00079745.jpg +Places365_test_00079761.jpg +Places365_test_00079764.jpg +Places365_test_00079770.jpg +Places365_test_00079773.jpg +Places365_test_00079815.jpg +Places365_test_00079816.jpg +Places365_test_00079850.jpg +Places365_test_00079853.jpg +Places365_test_00079855.jpg +Places365_test_00079871.jpg +Places365_test_00079880.jpg +Places365_test_00079885.jpg +Places365_test_00079887.jpg +Places365_test_00079893.jpg +Places365_test_00079897.jpg +Places365_test_00079911.jpg +Places365_test_00079923.jpg +Places365_test_00079961.jpg +Places365_test_00079987.jpg +Places365_test_00080010.jpg +Places365_test_00080011.jpg +Places365_test_00080013.jpg +Places365_test_00080014.jpg +Places365_test_00080049.jpg +Places365_test_00080079.jpg +Places365_test_00080091.jpg +Places365_test_00080096.jpg +Places365_test_00080104.jpg +Places365_test_00080122.jpg +Places365_test_00080151.jpg +Places365_test_00080165.jpg +Places365_test_00080166.jpg +Places365_test_00080167.jpg +Places365_test_00080189.jpg +Places365_test_00080206.jpg +Places365_test_00080223.jpg +Places365_test_00080227.jpg +Places365_test_00080297.jpg +Places365_test_00080310.jpg +Places365_test_00080314.jpg +Places365_test_00080315.jpg +Places365_test_00080339.jpg +Places365_test_00080340.jpg +Places365_test_00080344.jpg +Places365_test_00080349.jpg +Places365_test_00080354.jpg +Places365_test_00080358.jpg +Places365_test_00080366.jpg +Places365_test_00080438.jpg +Places365_test_00080439.jpg +Places365_test_00080447.jpg +Places365_test_00080450.jpg +Places365_test_00080480.jpg +Places365_test_00080482.jpg +Places365_test_00080499.jpg +Places365_test_00080508.jpg +Places365_test_00080509.jpg +Places365_test_00080523.jpg +Places365_test_00080534.jpg +Places365_test_00080535.jpg +Places365_test_00080548.jpg +Places365_test_00080556.jpg +Places365_test_00080577.jpg +Places365_test_00080581.jpg +Places365_test_00080600.jpg +Places365_test_00080623.jpg +Places365_test_00080627.jpg +Places365_test_00080636.jpg +Places365_test_00080649.jpg +Places365_test_00080653.jpg +Places365_test_00080681.jpg +Places365_test_00080682.jpg +Places365_test_00080683.jpg +Places365_test_00080693.jpg +Places365_test_00080698.jpg +Places365_test_00080712.jpg +Places365_test_00080719.jpg +Places365_test_00080780.jpg +Places365_test_00080786.jpg +Places365_test_00080792.jpg +Places365_test_00080794.jpg +Places365_test_00080809.jpg +Places365_test_00080813.jpg +Places365_test_00080843.jpg +Places365_test_00080850.jpg +Places365_test_00080867.jpg +Places365_test_00080874.jpg +Places365_test_00080877.jpg +Places365_test_00080889.jpg +Places365_test_00080897.jpg +Places365_test_00080927.jpg +Places365_test_00080933.jpg +Places365_test_00080939.jpg +Places365_test_00080945.jpg +Places365_test_00080958.jpg +Places365_test_00080960.jpg +Places365_test_00080965.jpg +Places365_test_00080969.jpg +Places365_test_00080978.jpg +Places365_test_00080993.jpg +Places365_test_00081012.jpg +Places365_test_00081017.jpg +Places365_test_00081018.jpg +Places365_test_00081038.jpg +Places365_test_00081041.jpg +Places365_test_00081079.jpg +Places365_test_00081084.jpg +Places365_test_00081091.jpg +Places365_test_00081106.jpg +Places365_test_00081116.jpg +Places365_test_00081123.jpg +Places365_test_00081143.jpg +Places365_test_00081144.jpg +Places365_test_00081150.jpg +Places365_test_00081174.jpg +Places365_test_00081184.jpg +Places365_test_00081188.jpg +Places365_test_00081222.jpg +Places365_test_00081229.jpg +Places365_test_00081246.jpg +Places365_test_00081267.jpg +Places365_test_00081274.jpg +Places365_test_00081283.jpg +Places365_test_00081288.jpg +Places365_test_00081295.jpg +Places365_test_00081296.jpg +Places365_test_00081298.jpg +Places365_test_00081308.jpg +Places365_test_00081331.jpg +Places365_test_00081337.jpg +Places365_test_00081370.jpg +Places365_test_00081372.jpg +Places365_test_00081373.jpg +Places365_test_00081377.jpg +Places365_test_00081380.jpg +Places365_test_00081381.jpg +Places365_test_00081389.jpg +Places365_test_00081392.jpg +Places365_test_00081405.jpg +Places365_test_00081407.jpg +Places365_test_00081408.jpg +Places365_test_00081409.jpg +Places365_test_00081410.jpg +Places365_test_00081418.jpg +Places365_test_00081425.jpg +Places365_test_00081427.jpg +Places365_test_00081428.jpg +Places365_test_00081429.jpg +Places365_test_00081452.jpg +Places365_test_00081454.jpg +Places365_test_00081457.jpg +Places365_test_00081469.jpg +Places365_test_00081470.jpg +Places365_test_00081504.jpg +Places365_test_00081545.jpg +Places365_test_00081558.jpg +Places365_test_00081575.jpg +Places365_test_00081588.jpg +Places365_test_00081593.jpg +Places365_test_00081597.jpg +Places365_test_00081598.jpg +Places365_test_00081621.jpg +Places365_test_00081623.jpg +Places365_test_00081625.jpg +Places365_test_00081628.jpg +Places365_test_00081629.jpg +Places365_test_00081632.jpg +Places365_test_00081641.jpg +Places365_test_00081654.jpg +Places365_test_00081661.jpg +Places365_test_00081662.jpg +Places365_test_00081676.jpg +Places365_test_00081678.jpg +Places365_test_00081679.jpg +Places365_test_00081698.jpg +Places365_test_00081704.jpg +Places365_test_00081728.jpg +Places365_test_00081745.jpg +Places365_test_00081752.jpg +Places365_test_00081754.jpg +Places365_test_00081765.jpg +Places365_test_00081766.jpg +Places365_test_00081789.jpg +Places365_test_00081809.jpg +Places365_test_00081837.jpg +Places365_test_00081845.jpg +Places365_test_00081852.jpg +Places365_test_00081877.jpg +Places365_test_00081909.jpg +Places365_test_00081923.jpg +Places365_test_00081933.jpg +Places365_test_00081940.jpg +Places365_test_00081946.jpg +Places365_test_00081958.jpg +Places365_test_00081962.jpg +Places365_test_00081978.jpg +Places365_test_00082015.jpg +Places365_test_00082016.jpg +Places365_test_00082019.jpg +Places365_test_00082044.jpg +Places365_test_00082052.jpg +Places365_test_00082059.jpg +Places365_test_00082061.jpg +Places365_test_00082064.jpg +Places365_test_00082085.jpg +Places365_test_00082108.jpg +Places365_test_00082112.jpg +Places365_test_00082127.jpg +Places365_test_00082145.jpg +Places365_test_00082149.jpg +Places365_test_00082150.jpg +Places365_test_00082153.jpg +Places365_test_00082192.jpg +Places365_test_00082197.jpg +Places365_test_00082207.jpg +Places365_test_00082223.jpg +Places365_test_00082228.jpg +Places365_test_00082230.jpg +Places365_test_00082241.jpg +Places365_test_00082254.jpg +Places365_test_00082263.jpg +Places365_test_00082266.jpg +Places365_test_00082299.jpg +Places365_test_00082323.jpg +Places365_test_00082325.jpg +Places365_test_00082326.jpg +Places365_test_00082329.jpg +Places365_test_00082330.jpg +Places365_test_00082355.jpg +Places365_test_00082357.jpg +Places365_test_00082370.jpg +Places365_test_00082383.jpg +Places365_test_00082431.jpg +Places365_test_00082433.jpg +Places365_test_00082441.jpg +Places365_test_00082443.jpg +Places365_test_00082465.jpg +Places365_test_00082485.jpg +Places365_test_00082497.jpg +Places365_test_00082504.jpg +Places365_test_00082515.jpg +Places365_test_00082527.jpg +Places365_test_00082547.jpg +Places365_test_00082549.jpg +Places365_test_00082569.jpg +Places365_test_00082592.jpg +Places365_test_00082635.jpg +Places365_test_00082642.jpg +Places365_test_00082658.jpg +Places365_test_00082667.jpg +Places365_test_00082670.jpg +Places365_test_00082682.jpg +Places365_test_00082695.jpg +Places365_test_00082696.jpg +Places365_test_00082707.jpg +Places365_test_00082748.jpg +Places365_test_00082758.jpg +Places365_test_00082767.jpg +Places365_test_00082779.jpg +Places365_test_00082790.jpg +Places365_test_00082794.jpg +Places365_test_00082809.jpg +Places365_test_00082810.jpg +Places365_test_00082826.jpg +Places365_test_00082842.jpg +Places365_test_00082854.jpg +Places365_test_00082875.jpg +Places365_test_00082879.jpg +Places365_test_00082904.jpg +Places365_test_00082917.jpg +Places365_test_00082919.jpg +Places365_test_00082922.jpg +Places365_test_00082948.jpg +Places365_test_00082950.jpg +Places365_test_00082955.jpg +Places365_test_00082969.jpg +Places365_test_00082983.jpg +Places365_test_00082987.jpg +Places365_test_00082988.jpg +Places365_test_00083020.jpg +Places365_test_00083033.jpg +Places365_test_00083037.jpg +Places365_test_00083042.jpg +Places365_test_00083046.jpg +Places365_test_00083052.jpg +Places365_test_00083055.jpg +Places365_test_00083062.jpg +Places365_test_00083077.jpg +Places365_test_00083085.jpg +Places365_test_00083086.jpg +Places365_test_00083096.jpg +Places365_test_00083098.jpg +Places365_test_00083103.jpg +Places365_test_00083115.jpg +Places365_test_00083118.jpg +Places365_test_00083159.jpg +Places365_test_00083163.jpg +Places365_test_00083198.jpg +Places365_test_00083202.jpg +Places365_test_00083218.jpg +Places365_test_00083234.jpg +Places365_test_00083246.jpg +Places365_test_00083259.jpg +Places365_test_00083288.jpg +Places365_test_00083305.jpg +Places365_test_00083306.jpg +Places365_test_00083327.jpg +Places365_test_00083360.jpg +Places365_test_00083365.jpg +Places365_test_00083373.jpg +Places365_test_00083391.jpg +Places365_test_00083406.jpg +Places365_test_00083414.jpg +Places365_test_00083459.jpg +Places365_test_00083472.jpg +Places365_test_00083477.jpg +Places365_test_00083480.jpg +Places365_test_00083495.jpg +Places365_test_00083501.jpg +Places365_test_00083502.jpg +Places365_test_00083508.jpg +Places365_test_00083512.jpg +Places365_test_00083514.jpg +Places365_test_00083517.jpg +Places365_test_00083519.jpg +Places365_test_00083552.jpg +Places365_test_00083555.jpg +Places365_test_00083560.jpg +Places365_test_00083587.jpg +Places365_test_00083591.jpg +Places365_test_00083612.jpg +Places365_test_00083613.jpg +Places365_test_00083629.jpg +Places365_test_00083635.jpg +Places365_test_00083639.jpg +Places365_test_00083647.jpg +Places365_test_00083650.jpg +Places365_test_00083667.jpg +Places365_test_00083678.jpg +Places365_test_00083685.jpg +Places365_test_00083697.jpg +Places365_test_00083698.jpg +Places365_test_00083703.jpg +Places365_test_00083718.jpg +Places365_test_00083726.jpg +Places365_test_00083731.jpg +Places365_test_00083735.jpg +Places365_test_00083745.jpg +Places365_test_00083751.jpg +Places365_test_00083780.jpg +Places365_test_00083807.jpg +Places365_test_00083813.jpg +Places365_test_00083814.jpg +Places365_test_00083818.jpg +Places365_test_00083819.jpg +Places365_test_00083833.jpg +Places365_test_00083834.jpg +Places365_test_00083845.jpg +Places365_test_00083850.jpg +Places365_test_00083856.jpg +Places365_test_00083885.jpg +Places365_test_00083894.jpg +Places365_test_00083902.jpg +Places365_test_00083909.jpg +Places365_test_00083934.jpg +Places365_test_00083937.jpg +Places365_test_00083942.jpg +Places365_test_00083943.jpg +Places365_test_00083967.jpg +Places365_test_00083970.jpg +Places365_test_00083976.jpg +Places365_test_00083982.jpg +Places365_test_00083987.jpg +Places365_test_00083995.jpg +Places365_test_00084002.jpg +Places365_test_00084027.jpg +Places365_test_00084043.jpg +Places365_test_00084045.jpg +Places365_test_00084056.jpg +Places365_test_00084058.jpg +Places365_test_00084068.jpg +Places365_test_00084080.jpg +Places365_test_00084081.jpg +Places365_test_00084083.jpg +Places365_test_00084095.jpg +Places365_test_00084114.jpg +Places365_test_00084125.jpg +Places365_test_00084130.jpg +Places365_test_00084147.jpg +Places365_test_00084153.jpg +Places365_test_00084154.jpg +Places365_test_00084156.jpg +Places365_test_00084164.jpg +Places365_test_00084177.jpg +Places365_test_00084183.jpg +Places365_test_00084185.jpg +Places365_test_00084186.jpg +Places365_test_00084195.jpg +Places365_test_00084208.jpg +Places365_test_00084225.jpg +Places365_test_00084228.jpg +Places365_test_00084232.jpg +Places365_test_00084239.jpg +Places365_test_00084270.jpg +Places365_test_00084273.jpg +Places365_test_00084278.jpg +Places365_test_00084283.jpg +Places365_test_00084284.jpg +Places365_test_00084291.jpg +Places365_test_00084295.jpg +Places365_test_00084299.jpg +Places365_test_00084302.jpg +Places365_test_00084310.jpg +Places365_test_00084314.jpg +Places365_test_00084344.jpg +Places365_test_00084348.jpg +Places365_test_00084363.jpg +Places365_test_00084371.jpg +Places365_test_00084392.jpg +Places365_test_00084394.jpg +Places365_test_00084403.jpg +Places365_test_00084439.jpg +Places365_test_00084448.jpg +Places365_test_00084458.jpg +Places365_test_00084464.jpg +Places365_test_00084473.jpg +Places365_test_00084484.jpg +Places365_test_00084506.jpg +Places365_test_00084507.jpg +Places365_test_00084532.jpg +Places365_test_00084533.jpg +Places365_test_00084549.jpg +Places365_test_00084556.jpg +Places365_test_00084558.jpg +Places365_test_00084560.jpg +Places365_test_00084573.jpg +Places365_test_00084580.jpg +Places365_test_00084588.jpg +Places365_test_00084590.jpg +Places365_test_00084608.jpg +Places365_test_00084614.jpg +Places365_test_00084640.jpg +Places365_test_00084651.jpg +Places365_test_00084653.jpg +Places365_test_00084656.jpg +Places365_test_00084657.jpg +Places365_test_00084661.jpg +Places365_test_00084667.jpg +Places365_test_00084670.jpg +Places365_test_00084702.jpg +Places365_test_00084740.jpg +Places365_test_00084750.jpg +Places365_test_00084772.jpg +Places365_test_00084783.jpg +Places365_test_00084788.jpg +Places365_test_00084791.jpg +Places365_test_00084796.jpg +Places365_test_00084818.jpg +Places365_test_00084851.jpg +Places365_test_00084858.jpg +Places365_test_00084861.jpg +Places365_test_00084872.jpg +Places365_test_00084887.jpg +Places365_test_00084889.jpg +Places365_test_00084892.jpg +Places365_test_00084897.jpg +Places365_test_00084906.jpg +Places365_test_00084910.jpg +Places365_test_00084917.jpg +Places365_test_00084920.jpg +Places365_test_00084928.jpg +Places365_test_00084990.jpg +Places365_test_00084997.jpg +Places365_test_00085008.jpg +Places365_test_00085020.jpg +Places365_test_00085026.jpg +Places365_test_00085053.jpg +Places365_test_00085061.jpg +Places365_test_00085072.jpg +Places365_test_00085125.jpg +Places365_test_00085130.jpg +Places365_test_00085132.jpg +Places365_test_00085133.jpg +Places365_test_00085136.jpg +Places365_test_00085146.jpg +Places365_test_00085150.jpg +Places365_test_00085180.jpg +Places365_test_00085190.jpg +Places365_test_00085201.jpg +Places365_test_00085202.jpg +Places365_test_00085212.jpg +Places365_test_00085217.jpg +Places365_test_00085240.jpg +Places365_test_00085243.jpg +Places365_test_00085253.jpg +Places365_test_00085269.jpg +Places365_test_00085285.jpg +Places365_test_00085319.jpg +Places365_test_00085325.jpg +Places365_test_00085332.jpg +Places365_test_00085365.jpg +Places365_test_00085369.jpg +Places365_test_00085376.jpg +Places365_test_00085383.jpg +Places365_test_00085393.jpg +Places365_test_00085431.jpg +Places365_test_00085460.jpg +Places365_test_00085461.jpg +Places365_test_00085462.jpg +Places365_test_00085478.jpg +Places365_test_00085482.jpg +Places365_test_00085489.jpg +Places365_test_00085510.jpg +Places365_test_00085515.jpg +Places365_test_00085534.jpg +Places365_test_00085542.jpg +Places365_test_00085548.jpg +Places365_test_00085553.jpg +Places365_test_00085566.jpg +Places365_test_00085600.jpg +Places365_test_00085602.jpg +Places365_test_00085603.jpg +Places365_test_00085612.jpg +Places365_test_00085613.jpg +Places365_test_00085614.jpg +Places365_test_00085629.jpg +Places365_test_00085636.jpg +Places365_test_00085658.jpg +Places365_test_00085669.jpg +Places365_test_00085685.jpg +Places365_test_00085695.jpg +Places365_test_00085711.jpg +Places365_test_00085713.jpg +Places365_test_00085718.jpg +Places365_test_00085730.jpg +Places365_test_00085737.jpg +Places365_test_00085742.jpg +Places365_test_00085759.jpg +Places365_test_00085773.jpg +Places365_test_00085778.jpg +Places365_test_00085781.jpg +Places365_test_00085797.jpg +Places365_test_00085803.jpg +Places365_test_00085814.jpg +Places365_test_00085825.jpg +Places365_test_00085842.jpg +Places365_test_00085845.jpg +Places365_test_00085854.jpg +Places365_test_00085855.jpg +Places365_test_00085866.jpg +Places365_test_00085880.jpg +Places365_test_00085902.jpg +Places365_test_00085905.jpg +Places365_test_00085906.jpg +Places365_test_00085924.jpg +Places365_test_00085933.jpg +Places365_test_00085941.jpg +Places365_test_00085952.jpg +Places365_test_00085968.jpg +Places365_test_00085994.jpg +Places365_test_00085996.jpg +Places365_test_00086008.jpg +Places365_test_00086044.jpg +Places365_test_00086046.jpg +Places365_test_00086053.jpg +Places365_test_00086056.jpg +Places365_test_00086058.jpg +Places365_test_00086062.jpg +Places365_test_00086068.jpg +Places365_test_00086098.jpg +Places365_test_00086105.jpg +Places365_test_00086112.jpg +Places365_test_00086116.jpg +Places365_test_00086117.jpg +Places365_test_00086118.jpg +Places365_test_00086134.jpg +Places365_test_00086143.jpg +Places365_test_00086164.jpg +Places365_test_00086165.jpg +Places365_test_00086166.jpg +Places365_test_00086173.jpg +Places365_test_00086182.jpg +Places365_test_00086194.jpg +Places365_test_00086214.jpg +Places365_test_00086222.jpg +Places365_test_00086228.jpg +Places365_test_00086229.jpg +Places365_test_00086237.jpg +Places365_test_00086243.jpg +Places365_test_00086250.jpg +Places365_test_00086253.jpg +Places365_test_00086255.jpg +Places365_test_00086291.jpg +Places365_test_00086298.jpg +Places365_test_00086311.jpg +Places365_test_00086327.jpg +Places365_test_00086340.jpg +Places365_test_00086342.jpg +Places365_test_00086352.jpg +Places365_test_00086353.jpg +Places365_test_00086375.jpg +Places365_test_00086389.jpg +Places365_test_00086400.jpg +Places365_test_00086413.jpg +Places365_test_00086414.jpg +Places365_test_00086417.jpg +Places365_test_00086419.jpg +Places365_test_00086444.jpg +Places365_test_00086484.jpg +Places365_test_00086496.jpg +Places365_test_00086519.jpg +Places365_test_00086527.jpg +Places365_test_00086567.jpg +Places365_test_00086568.jpg +Places365_test_00086575.jpg +Places365_test_00086580.jpg +Places365_test_00086605.jpg +Places365_test_00086620.jpg +Places365_test_00086624.jpg +Places365_test_00086637.jpg +Places365_test_00086643.jpg +Places365_test_00086647.jpg +Places365_test_00086648.jpg +Places365_test_00086662.jpg +Places365_test_00086676.jpg +Places365_test_00086702.jpg +Places365_test_00086703.jpg +Places365_test_00086704.jpg +Places365_test_00086706.jpg +Places365_test_00086710.jpg +Places365_test_00086725.jpg +Places365_test_00086748.jpg +Places365_test_00086769.jpg +Places365_test_00086777.jpg +Places365_test_00086782.jpg +Places365_test_00086808.jpg +Places365_test_00086819.jpg +Places365_test_00086820.jpg +Places365_test_00086827.jpg +Places365_test_00086838.jpg +Places365_test_00086848.jpg +Places365_test_00086850.jpg +Places365_test_00086877.jpg +Places365_test_00086893.jpg +Places365_test_00086895.jpg +Places365_test_00086896.jpg +Places365_test_00086917.jpg +Places365_test_00086940.jpg +Places365_test_00086942.jpg +Places365_test_00086955.jpg +Places365_test_00086965.jpg +Places365_test_00086980.jpg +Places365_test_00086994.jpg +Places365_test_00087001.jpg +Places365_test_00087024.jpg +Places365_test_00087041.jpg +Places365_test_00087046.jpg +Places365_test_00087052.jpg +Places365_test_00087096.jpg +Places365_test_00087097.jpg +Places365_test_00087099.jpg +Places365_test_00087108.jpg +Places365_test_00087120.jpg +Places365_test_00087150.jpg +Places365_test_00087162.jpg +Places365_test_00087177.jpg +Places365_test_00087182.jpg +Places365_test_00087189.jpg +Places365_test_00087190.jpg +Places365_test_00087193.jpg +Places365_test_00087219.jpg +Places365_test_00087238.jpg +Places365_test_00087263.jpg +Places365_test_00087272.jpg +Places365_test_00087276.jpg +Places365_test_00087278.jpg +Places365_test_00087292.jpg +Places365_test_00087299.jpg +Places365_test_00087305.jpg +Places365_test_00087306.jpg +Places365_test_00087322.jpg +Places365_test_00087329.jpg +Places365_test_00087335.jpg +Places365_test_00087341.jpg +Places365_test_00087351.jpg +Places365_test_00087353.jpg +Places365_test_00087367.jpg +Places365_test_00087374.jpg +Places365_test_00087425.jpg +Places365_test_00087439.jpg +Places365_test_00087442.jpg +Places365_test_00087445.jpg +Places365_test_00087449.jpg +Places365_test_00087458.jpg +Places365_test_00087470.jpg +Places365_test_00087480.jpg +Places365_test_00087501.jpg +Places365_test_00087506.jpg +Places365_test_00087510.jpg +Places365_test_00087511.jpg +Places365_test_00087512.jpg +Places365_test_00087515.jpg +Places365_test_00087518.jpg +Places365_test_00087529.jpg +Places365_test_00087534.jpg +Places365_test_00087541.jpg +Places365_test_00087542.jpg +Places365_test_00087565.jpg +Places365_test_00087576.jpg +Places365_test_00087579.jpg +Places365_test_00087598.jpg +Places365_test_00087608.jpg +Places365_test_00087622.jpg +Places365_test_00087632.jpg +Places365_test_00087643.jpg +Places365_test_00087658.jpg +Places365_test_00087661.jpg +Places365_test_00087665.jpg +Places365_test_00087694.jpg +Places365_test_00087695.jpg +Places365_test_00087712.jpg +Places365_test_00087726.jpg +Places365_test_00087774.jpg +Places365_test_00087785.jpg +Places365_test_00087789.jpg +Places365_test_00087791.jpg +Places365_test_00087804.jpg +Places365_test_00087806.jpg +Places365_test_00087809.jpg +Places365_test_00087817.jpg +Places365_test_00087827.jpg +Places365_test_00087831.jpg +Places365_test_00087842.jpg +Places365_test_00087856.jpg +Places365_test_00087858.jpg +Places365_test_00087865.jpg +Places365_test_00087869.jpg +Places365_test_00087877.jpg +Places365_test_00087880.jpg +Places365_test_00087914.jpg +Places365_test_00087919.jpg +Places365_test_00087931.jpg +Places365_test_00087945.jpg +Places365_test_00087955.jpg +Places365_test_00087964.jpg +Places365_test_00087965.jpg +Places365_test_00087973.jpg +Places365_test_00088002.jpg +Places365_test_00088022.jpg +Places365_test_00088041.jpg +Places365_test_00088051.jpg +Places365_test_00088060.jpg +Places365_test_00088065.jpg +Places365_test_00088066.jpg +Places365_test_00088071.jpg +Places365_test_00088079.jpg +Places365_test_00088097.jpg +Places365_test_00088104.jpg +Places365_test_00088117.jpg +Places365_test_00088138.jpg +Places365_test_00088149.jpg +Places365_test_00088182.jpg +Places365_test_00088191.jpg +Places365_test_00088195.jpg +Places365_test_00088218.jpg +Places365_test_00088221.jpg +Places365_test_00088239.jpg +Places365_test_00088243.jpg +Places365_test_00088269.jpg +Places365_test_00088272.jpg +Places365_test_00088277.jpg +Places365_test_00088280.jpg +Places365_test_00088285.jpg +Places365_test_00088286.jpg +Places365_test_00088289.jpg +Places365_test_00088291.jpg +Places365_test_00088295.jpg +Places365_test_00088304.jpg +Places365_test_00088308.jpg +Places365_test_00088322.jpg +Places365_test_00088338.jpg +Places365_test_00088347.jpg +Places365_test_00088348.jpg +Places365_test_00088373.jpg +Places365_test_00088409.jpg +Places365_test_00088415.jpg +Places365_test_00088419.jpg +Places365_test_00088431.jpg +Places365_test_00088442.jpg +Places365_test_00088452.jpg +Places365_test_00088465.jpg +Places365_test_00088472.jpg +Places365_test_00088486.jpg +Places365_test_00088497.jpg +Places365_test_00088500.jpg +Places365_test_00088524.jpg +Places365_test_00088529.jpg +Places365_test_00088532.jpg +Places365_test_00088538.jpg +Places365_test_00088542.jpg +Places365_test_00088559.jpg +Places365_test_00088582.jpg +Places365_test_00088586.jpg +Places365_test_00088594.jpg +Places365_test_00088603.jpg +Places365_test_00088635.jpg +Places365_test_00088645.jpg +Places365_test_00088652.jpg +Places365_test_00088667.jpg +Places365_test_00088668.jpg +Places365_test_00088695.jpg +Places365_test_00088701.jpg +Places365_test_00088723.jpg +Places365_test_00088737.jpg +Places365_test_00088741.jpg +Places365_test_00088760.jpg +Places365_test_00088795.jpg +Places365_test_00088820.jpg +Places365_test_00088828.jpg +Places365_test_00088831.jpg +Places365_test_00088838.jpg +Places365_test_00088855.jpg +Places365_test_00088881.jpg +Places365_test_00088882.jpg +Places365_test_00088884.jpg +Places365_test_00088890.jpg +Places365_test_00088893.jpg +Places365_test_00088921.jpg +Places365_test_00088925.jpg +Places365_test_00088928.jpg +Places365_test_00088929.jpg +Places365_test_00088933.jpg +Places365_test_00088936.jpg +Places365_test_00088946.jpg +Places365_test_00088954.jpg +Places365_test_00088984.jpg +Places365_test_00088987.jpg +Places365_test_00088997.jpg +Places365_test_00089013.jpg +Places365_test_00089016.jpg +Places365_test_00089048.jpg +Places365_test_00089060.jpg +Places365_test_00089071.jpg +Places365_test_00089079.jpg +Places365_test_00089084.jpg +Places365_test_00089088.jpg +Places365_test_00089089.jpg +Places365_test_00089093.jpg +Places365_test_00089110.jpg +Places365_test_00089130.jpg +Places365_test_00089132.jpg +Places365_test_00089141.jpg +Places365_test_00089142.jpg +Places365_test_00089145.jpg +Places365_test_00089152.jpg +Places365_test_00089156.jpg +Places365_test_00089169.jpg +Places365_test_00089222.jpg +Places365_test_00089231.jpg +Places365_test_00089241.jpg +Places365_test_00089261.jpg +Places365_test_00089294.jpg +Places365_test_00089305.jpg +Places365_test_00089313.jpg +Places365_test_00089339.jpg +Places365_test_00089350.jpg +Places365_test_00089372.jpg +Places365_test_00089383.jpg +Places365_test_00089385.jpg +Places365_test_00089409.jpg +Places365_test_00089411.jpg +Places365_test_00089438.jpg +Places365_test_00089440.jpg +Places365_test_00089442.jpg +Places365_test_00089450.jpg +Places365_test_00089464.jpg +Places365_test_00089477.jpg +Places365_test_00089479.jpg +Places365_test_00089517.jpg +Places365_test_00089518.jpg +Places365_test_00089520.jpg +Places365_test_00089541.jpg +Places365_test_00089572.jpg +Places365_test_00089573.jpg +Places365_test_00089574.jpg +Places365_test_00089648.jpg +Places365_test_00089654.jpg +Places365_test_00089661.jpg +Places365_test_00089662.jpg +Places365_test_00089669.jpg +Places365_test_00089687.jpg +Places365_test_00089692.jpg +Places365_test_00089698.jpg +Places365_test_00089718.jpg +Places365_test_00089725.jpg +Places365_test_00089726.jpg +Places365_test_00089736.jpg +Places365_test_00089740.jpg +Places365_test_00089775.jpg +Places365_test_00089785.jpg +Places365_test_00089798.jpg +Places365_test_00089801.jpg +Places365_test_00089828.jpg +Places365_test_00089839.jpg +Places365_test_00089849.jpg +Places365_test_00089851.jpg +Places365_test_00089858.jpg +Places365_test_00089870.jpg +Places365_test_00089878.jpg +Places365_test_00089884.jpg +Places365_test_00089885.jpg +Places365_test_00089914.jpg +Places365_test_00089929.jpg +Places365_test_00089936.jpg +Places365_test_00089959.jpg +Places365_test_00089961.jpg +Places365_test_00089994.jpg +Places365_test_00090001.jpg +Places365_test_00090010.jpg +Places365_test_00090018.jpg +Places365_test_00090020.jpg +Places365_test_00090043.jpg +Places365_test_00090074.jpg +Places365_test_00090075.jpg +Places365_test_00090081.jpg +Places365_test_00090089.jpg +Places365_test_00090094.jpg +Places365_test_00090104.jpg +Places365_test_00090110.jpg +Places365_test_00090129.jpg +Places365_test_00090149.jpg +Places365_test_00090166.jpg +Places365_test_00090173.jpg +Places365_test_00090193.jpg +Places365_test_00090200.jpg +Places365_test_00090206.jpg +Places365_test_00090240.jpg +Places365_test_00090241.jpg +Places365_test_00090244.jpg +Places365_test_00090254.jpg +Places365_test_00090256.jpg +Places365_test_00090258.jpg +Places365_test_00090263.jpg +Places365_test_00090266.jpg +Places365_test_00090285.jpg +Places365_test_00090290.jpg +Places365_test_00090298.jpg +Places365_test_00090299.jpg +Places365_test_00090307.jpg +Places365_test_00090313.jpg +Places365_test_00090316.jpg +Places365_test_00090319.jpg +Places365_test_00090381.jpg +Places365_test_00090389.jpg +Places365_test_00090391.jpg +Places365_test_00090398.jpg +Places365_test_00090400.jpg +Places365_test_00090402.jpg +Places365_test_00090405.jpg +Places365_test_00090413.jpg +Places365_test_00090414.jpg +Places365_test_00090424.jpg +Places365_test_00090449.jpg +Places365_test_00090457.jpg +Places365_test_00090465.jpg +Places365_test_00090476.jpg +Places365_test_00090482.jpg +Places365_test_00090483.jpg +Places365_test_00090489.jpg +Places365_test_00090492.jpg +Places365_test_00090506.jpg +Places365_test_00090521.jpg +Places365_test_00090543.jpg +Places365_test_00090568.jpg +Places365_test_00090640.jpg +Places365_test_00090641.jpg +Places365_test_00090653.jpg +Places365_test_00090659.jpg +Places365_test_00090663.jpg +Places365_test_00090681.jpg +Places365_test_00090694.jpg +Places365_test_00090720.jpg +Places365_test_00090731.jpg +Places365_test_00090734.jpg +Places365_test_00090736.jpg +Places365_test_00090749.jpg +Places365_test_00090750.jpg +Places365_test_00090756.jpg +Places365_test_00090780.jpg +Places365_test_00090798.jpg +Places365_test_00090808.jpg +Places365_test_00090829.jpg +Places365_test_00090836.jpg +Places365_test_00090840.jpg +Places365_test_00090865.jpg +Places365_test_00090888.jpg +Places365_test_00090892.jpg +Places365_test_00090902.jpg +Places365_test_00090911.jpg +Places365_test_00090919.jpg +Places365_test_00090937.jpg +Places365_test_00090941.jpg +Places365_test_00090943.jpg +Places365_test_00090968.jpg +Places365_test_00091009.jpg +Places365_test_00091028.jpg +Places365_test_00091046.jpg +Places365_test_00091059.jpg +Places365_test_00091078.jpg +Places365_test_00091083.jpg +Places365_test_00091090.jpg +Places365_test_00091103.jpg +Places365_test_00091111.jpg +Places365_test_00091114.jpg +Places365_test_00091127.jpg +Places365_test_00091138.jpg +Places365_test_00091156.jpg +Places365_test_00091167.jpg +Places365_test_00091186.jpg +Places365_test_00091188.jpg +Places365_test_00091195.jpg +Places365_test_00091235.jpg +Places365_test_00091250.jpg +Places365_test_00091256.jpg +Places365_test_00091264.jpg +Places365_test_00091281.jpg +Places365_test_00091283.jpg +Places365_test_00091289.jpg +Places365_test_00091303.jpg +Places365_test_00091314.jpg +Places365_test_00091331.jpg +Places365_test_00091350.jpg +Places365_test_00091372.jpg +Places365_test_00091373.jpg +Places365_test_00091377.jpg +Places365_test_00091386.jpg +Places365_test_00091402.jpg +Places365_test_00091435.jpg +Places365_test_00091444.jpg +Places365_test_00091481.jpg +Places365_test_00091496.jpg +Places365_test_00091500.jpg +Places365_test_00091507.jpg +Places365_test_00091517.jpg +Places365_test_00091549.jpg +Places365_test_00091550.jpg +Places365_test_00091558.jpg +Places365_test_00091559.jpg +Places365_test_00091567.jpg +Places365_test_00091577.jpg +Places365_test_00091578.jpg +Places365_test_00091606.jpg +Places365_test_00091634.jpg +Places365_test_00091636.jpg +Places365_test_00091641.jpg +Places365_test_00091642.jpg +Places365_test_00091645.jpg +Places365_test_00091652.jpg +Places365_test_00091662.jpg +Places365_test_00091668.jpg +Places365_test_00091675.jpg +Places365_test_00091679.jpg +Places365_test_00091688.jpg +Places365_test_00091692.jpg +Places365_test_00091698.jpg +Places365_test_00091701.jpg +Places365_test_00091702.jpg +Places365_test_00091705.jpg +Places365_test_00091707.jpg +Places365_test_00091729.jpg +Places365_test_00091731.jpg +Places365_test_00091735.jpg +Places365_test_00091740.jpg +Places365_test_00091754.jpg +Places365_test_00091761.jpg +Places365_test_00091769.jpg +Places365_test_00091776.jpg +Places365_test_00091786.jpg +Places365_test_00091794.jpg +Places365_test_00091798.jpg +Places365_test_00091801.jpg +Places365_test_00091816.jpg +Places365_test_00091817.jpg +Places365_test_00091835.jpg +Places365_test_00091840.jpg +Places365_test_00091843.jpg +Places365_test_00091845.jpg +Places365_test_00091871.jpg +Places365_test_00091890.jpg +Places365_test_00091895.jpg +Places365_test_00091900.jpg +Places365_test_00091930.jpg +Places365_test_00091933.jpg +Places365_test_00091936.jpg +Places365_test_00091940.jpg +Places365_test_00091946.jpg +Places365_test_00091977.jpg +Places365_test_00091978.jpg +Places365_test_00091981.jpg +Places365_test_00091988.jpg +Places365_test_00092003.jpg +Places365_test_00092009.jpg +Places365_test_00092034.jpg +Places365_test_00092045.jpg +Places365_test_00092046.jpg +Places365_test_00092051.jpg +Places365_test_00092059.jpg +Places365_test_00092065.jpg +Places365_test_00092116.jpg +Places365_test_00092119.jpg +Places365_test_00092133.jpg +Places365_test_00092141.jpg +Places365_test_00092143.jpg +Places365_test_00092146.jpg +Places365_test_00092151.jpg +Places365_test_00092161.jpg +Places365_test_00092193.jpg +Places365_test_00092203.jpg +Places365_test_00092207.jpg +Places365_test_00092210.jpg +Places365_test_00092212.jpg +Places365_test_00092219.jpg +Places365_test_00092222.jpg +Places365_test_00092233.jpg +Places365_test_00092236.jpg +Places365_test_00092237.jpg +Places365_test_00092240.jpg +Places365_test_00092241.jpg +Places365_test_00092250.jpg +Places365_test_00092294.jpg +Places365_test_00092297.jpg +Places365_test_00092306.jpg +Places365_test_00092309.jpg +Places365_test_00092329.jpg +Places365_test_00092334.jpg +Places365_test_00092339.jpg +Places365_test_00092342.jpg +Places365_test_00092349.jpg +Places365_test_00092354.jpg +Places365_test_00092381.jpg +Places365_test_00092384.jpg +Places365_test_00092386.jpg +Places365_test_00092398.jpg +Places365_test_00092403.jpg +Places365_test_00092405.jpg +Places365_test_00092407.jpg +Places365_test_00092412.jpg +Places365_test_00092413.jpg +Places365_test_00092414.jpg +Places365_test_00092428.jpg +Places365_test_00092429.jpg +Places365_test_00092435.jpg +Places365_test_00092438.jpg +Places365_test_00092442.jpg +Places365_test_00092514.jpg +Places365_test_00092517.jpg +Places365_test_00092523.jpg +Places365_test_00092525.jpg +Places365_test_00092530.jpg +Places365_test_00092547.jpg +Places365_test_00092552.jpg +Places365_test_00092570.jpg +Places365_test_00092573.jpg +Places365_test_00092586.jpg +Places365_test_00092590.jpg +Places365_test_00092594.jpg +Places365_test_00092597.jpg +Places365_test_00092598.jpg +Places365_test_00092635.jpg +Places365_test_00092666.jpg +Places365_test_00092670.jpg +Places365_test_00092671.jpg +Places365_test_00092693.jpg +Places365_test_00092703.jpg +Places365_test_00092706.jpg +Places365_test_00092716.jpg +Places365_test_00092745.jpg +Places365_test_00092750.jpg +Places365_test_00092757.jpg +Places365_test_00092761.jpg +Places365_test_00092769.jpg +Places365_test_00092772.jpg +Places365_test_00092774.jpg +Places365_test_00092779.jpg +Places365_test_00092809.jpg +Places365_test_00092816.jpg +Places365_test_00092822.jpg +Places365_test_00092830.jpg +Places365_test_00092838.jpg +Places365_test_00092852.jpg +Places365_test_00092859.jpg +Places365_test_00092868.jpg +Places365_test_00092880.jpg +Places365_test_00092888.jpg +Places365_test_00092903.jpg +Places365_test_00092934.jpg +Places365_test_00092947.jpg +Places365_test_00092949.jpg +Places365_test_00092973.jpg +Places365_test_00092987.jpg +Places365_test_00093011.jpg +Places365_test_00093014.jpg +Places365_test_00093032.jpg +Places365_test_00093037.jpg +Places365_test_00093039.jpg +Places365_test_00093044.jpg +Places365_test_00093050.jpg +Places365_test_00093064.jpg +Places365_test_00093083.jpg +Places365_test_00093088.jpg +Places365_test_00093091.jpg +Places365_test_00093100.jpg +Places365_test_00093141.jpg +Places365_test_00093153.jpg +Places365_test_00093159.jpg +Places365_test_00093160.jpg +Places365_test_00093166.jpg +Places365_test_00093173.jpg +Places365_test_00093174.jpg +Places365_test_00093176.jpg +Places365_test_00093202.jpg +Places365_test_00093243.jpg +Places365_test_00093253.jpg +Places365_test_00093271.jpg +Places365_test_00093277.jpg +Places365_test_00093278.jpg +Places365_test_00093282.jpg +Places365_test_00093285.jpg +Places365_test_00093296.jpg +Places365_test_00093305.jpg +Places365_test_00093310.jpg +Places365_test_00093313.jpg +Places365_test_00093323.jpg +Places365_test_00093335.jpg +Places365_test_00093350.jpg +Places365_test_00093354.jpg +Places365_test_00093366.jpg +Places365_test_00093369.jpg +Places365_test_00093387.jpg +Places365_test_00093392.jpg +Places365_test_00093396.jpg +Places365_test_00093416.jpg +Places365_test_00093437.jpg +Places365_test_00093440.jpg +Places365_test_00093451.jpg +Places365_test_00093472.jpg +Places365_test_00093483.jpg +Places365_test_00093485.jpg +Places365_test_00093497.jpg +Places365_test_00093498.jpg +Places365_test_00093502.jpg +Places365_test_00093505.jpg +Places365_test_00093513.jpg +Places365_test_00093518.jpg +Places365_test_00093527.jpg +Places365_test_00093531.jpg +Places365_test_00093548.jpg +Places365_test_00093560.jpg +Places365_test_00093570.jpg +Places365_test_00093571.jpg +Places365_test_00093577.jpg +Places365_test_00093583.jpg +Places365_test_00093599.jpg +Places365_test_00093629.jpg +Places365_test_00093644.jpg +Places365_test_00093657.jpg +Places365_test_00093661.jpg +Places365_test_00093664.jpg +Places365_test_00093667.jpg +Places365_test_00093692.jpg +Places365_test_00093693.jpg +Places365_test_00093696.jpg +Places365_test_00093751.jpg +Places365_test_00093758.jpg +Places365_test_00093762.jpg +Places365_test_00093786.jpg +Places365_test_00093792.jpg +Places365_test_00093796.jpg +Places365_test_00093799.jpg +Places365_test_00093815.jpg +Places365_test_00093853.jpg +Places365_test_00093859.jpg +Places365_test_00093875.jpg +Places365_test_00093889.jpg +Places365_test_00093900.jpg +Places365_test_00093903.jpg +Places365_test_00093927.jpg +Places365_test_00093938.jpg +Places365_test_00093957.jpg +Places365_test_00093958.jpg +Places365_test_00093969.jpg +Places365_test_00093975.jpg +Places365_test_00093980.jpg +Places365_test_00093992.jpg +Places365_test_00093993.jpg +Places365_test_00094031.jpg +Places365_test_00094040.jpg +Places365_test_00094049.jpg +Places365_test_00094052.jpg +Places365_test_00094065.jpg +Places365_test_00094066.jpg +Places365_test_00094074.jpg +Places365_test_00094080.jpg +Places365_test_00094085.jpg +Places365_test_00094090.jpg +Places365_test_00094099.jpg +Places365_test_00094110.jpg +Places365_test_00094119.jpg +Places365_test_00094127.jpg +Places365_test_00094134.jpg +Places365_test_00094153.jpg +Places365_test_00094159.jpg +Places365_test_00094161.jpg +Places365_test_00094162.jpg +Places365_test_00094180.jpg +Places365_test_00094187.jpg +Places365_test_00094193.jpg +Places365_test_00094196.jpg +Places365_test_00094206.jpg +Places365_test_00094207.jpg +Places365_test_00094218.jpg +Places365_test_00094244.jpg +Places365_test_00094295.jpg +Places365_test_00094318.jpg +Places365_test_00094319.jpg +Places365_test_00094321.jpg +Places365_test_00094336.jpg +Places365_test_00094340.jpg +Places365_test_00094341.jpg +Places365_test_00094342.jpg +Places365_test_00094350.jpg +Places365_test_00094408.jpg +Places365_test_00094419.jpg +Places365_test_00094425.jpg +Places365_test_00094426.jpg +Places365_test_00094446.jpg +Places365_test_00094448.jpg +Places365_test_00094460.jpg +Places365_test_00094462.jpg +Places365_test_00094495.jpg +Places365_test_00094496.jpg +Places365_test_00094511.jpg +Places365_test_00094521.jpg +Places365_test_00094523.jpg +Places365_test_00094532.jpg +Places365_test_00094534.jpg +Places365_test_00094548.jpg +Places365_test_00094566.jpg +Places365_test_00094573.jpg +Places365_test_00094576.jpg +Places365_test_00094589.jpg +Places365_test_00094592.jpg +Places365_test_00094593.jpg +Places365_test_00094595.jpg +Places365_test_00094597.jpg +Places365_test_00094599.jpg +Places365_test_00094602.jpg +Places365_test_00094613.jpg +Places365_test_00094616.jpg +Places365_test_00094620.jpg +Places365_test_00094630.jpg +Places365_test_00094634.jpg +Places365_test_00094636.jpg +Places365_test_00094661.jpg +Places365_test_00094675.jpg +Places365_test_00094698.jpg +Places365_test_00094700.jpg +Places365_test_00094701.jpg +Places365_test_00094714.jpg +Places365_test_00094723.jpg +Places365_test_00094746.jpg +Places365_test_00094789.jpg +Places365_test_00094791.jpg +Places365_test_00094794.jpg +Places365_test_00094799.jpg +Places365_test_00094807.jpg +Places365_test_00094814.jpg +Places365_test_00094823.jpg +Places365_test_00094830.jpg +Places365_test_00094837.jpg +Places365_test_00094847.jpg +Places365_test_00094863.jpg +Places365_test_00094869.jpg +Places365_test_00094881.jpg +Places365_test_00094892.jpg +Places365_test_00094906.jpg +Places365_test_00094951.jpg +Places365_test_00094970.jpg +Places365_test_00095015.jpg +Places365_test_00095018.jpg +Places365_test_00095022.jpg +Places365_test_00095027.jpg +Places365_test_00095056.jpg +Places365_test_00095058.jpg +Places365_test_00095059.jpg +Places365_test_00095073.jpg +Places365_test_00095077.jpg +Places365_test_00095089.jpg +Places365_test_00095112.jpg +Places365_test_00095124.jpg +Places365_test_00095137.jpg +Places365_test_00095141.jpg +Places365_test_00095142.jpg +Places365_test_00095148.jpg +Places365_test_00095149.jpg +Places365_test_00095161.jpg +Places365_test_00095162.jpg +Places365_test_00095176.jpg +Places365_test_00095192.jpg +Places365_test_00095194.jpg +Places365_test_00095210.jpg +Places365_test_00095211.jpg +Places365_test_00095213.jpg +Places365_test_00095217.jpg +Places365_test_00095233.jpg +Places365_test_00095278.jpg +Places365_test_00095289.jpg +Places365_test_00095325.jpg +Places365_test_00095326.jpg +Places365_test_00095344.jpg +Places365_test_00095358.jpg +Places365_test_00095362.jpg +Places365_test_00095391.jpg +Places365_test_00095399.jpg +Places365_test_00095428.jpg +Places365_test_00095449.jpg +Places365_test_00095450.jpg +Places365_test_00095456.jpg +Places365_test_00095466.jpg +Places365_test_00095498.jpg +Places365_test_00095558.jpg +Places365_test_00095559.jpg +Places365_test_00095561.jpg +Places365_test_00095579.jpg +Places365_test_00095584.jpg +Places365_test_00095591.jpg +Places365_test_00095597.jpg +Places365_test_00095609.jpg +Places365_test_00095651.jpg +Places365_test_00095657.jpg +Places365_test_00095691.jpg +Places365_test_00095697.jpg +Places365_test_00095716.jpg +Places365_test_00095740.jpg +Places365_test_00095742.jpg +Places365_test_00095751.jpg +Places365_test_00095756.jpg +Places365_test_00095757.jpg +Places365_test_00095758.jpg +Places365_test_00095780.jpg +Places365_test_00095788.jpg +Places365_test_00095789.jpg +Places365_test_00095791.jpg +Places365_test_00095796.jpg +Places365_test_00095823.jpg +Places365_test_00095846.jpg +Places365_test_00095858.jpg +Places365_test_00095890.jpg +Places365_test_00095891.jpg +Places365_test_00095896.jpg +Places365_test_00095903.jpg +Places365_test_00095905.jpg +Places365_test_00095911.jpg +Places365_test_00095924.jpg +Places365_test_00095942.jpg +Places365_test_00095951.jpg +Places365_test_00095953.jpg +Places365_test_00095954.jpg +Places365_test_00095980.jpg +Places365_test_00095984.jpg +Places365_test_00095989.jpg +Places365_test_00096010.jpg +Places365_test_00096013.jpg +Places365_test_00096014.jpg +Places365_test_00096021.jpg +Places365_test_00096043.jpg +Places365_test_00096052.jpg +Places365_test_00096080.jpg +Places365_test_00096085.jpg +Places365_test_00096105.jpg +Places365_test_00096106.jpg +Places365_test_00096110.jpg +Places365_test_00096116.jpg +Places365_test_00096118.jpg +Places365_test_00096124.jpg +Places365_test_00096128.jpg +Places365_test_00096129.jpg +Places365_test_00096145.jpg +Places365_test_00096154.jpg +Places365_test_00096155.jpg +Places365_test_00096167.jpg +Places365_test_00096188.jpg +Places365_test_00096213.jpg +Places365_test_00096218.jpg +Places365_test_00096225.jpg +Places365_test_00096226.jpg +Places365_test_00096227.jpg +Places365_test_00096232.jpg +Places365_test_00096242.jpg +Places365_test_00096246.jpg +Places365_test_00096251.jpg +Places365_test_00096262.jpg +Places365_test_00096280.jpg +Places365_test_00096285.jpg +Places365_test_00096286.jpg +Places365_test_00096291.jpg +Places365_test_00096298.jpg +Places365_test_00096315.jpg +Places365_test_00096333.jpg +Places365_test_00096341.jpg +Places365_test_00096344.jpg +Places365_test_00096371.jpg +Places365_test_00096372.jpg +Places365_test_00096373.jpg +Places365_test_00096382.jpg +Places365_test_00096411.jpg +Places365_test_00096421.jpg +Places365_test_00096423.jpg +Places365_test_00096432.jpg +Places365_test_00096440.jpg +Places365_test_00096452.jpg +Places365_test_00096454.jpg +Places365_test_00096476.jpg +Places365_test_00096477.jpg +Places365_test_00096488.jpg +Places365_test_00096513.jpg +Places365_test_00096544.jpg +Places365_test_00096573.jpg +Places365_test_00096578.jpg +Places365_test_00096595.jpg +Places365_test_00096607.jpg +Places365_test_00096622.jpg +Places365_test_00096623.jpg +Places365_test_00096624.jpg +Places365_test_00096633.jpg +Places365_test_00096652.jpg +Places365_test_00096659.jpg +Places365_test_00096662.jpg +Places365_test_00096664.jpg +Places365_test_00096693.jpg +Places365_test_00096708.jpg +Places365_test_00096727.jpg +Places365_test_00096735.jpg +Places365_test_00096740.jpg +Places365_test_00096763.jpg +Places365_test_00096766.jpg +Places365_test_00096793.jpg +Places365_test_00096798.jpg +Places365_test_00096801.jpg +Places365_test_00096852.jpg +Places365_test_00096855.jpg +Places365_test_00096860.jpg +Places365_test_00096862.jpg +Places365_test_00096869.jpg +Places365_test_00096877.jpg +Places365_test_00096911.jpg +Places365_test_00096922.jpg +Places365_test_00096923.jpg +Places365_test_00096925.jpg +Places365_test_00096953.jpg +Places365_test_00096963.jpg +Places365_test_00096982.jpg +Places365_test_00096985.jpg +Places365_test_00096989.jpg +Places365_test_00097009.jpg +Places365_test_00097011.jpg +Places365_test_00097019.jpg +Places365_test_00097030.jpg +Places365_test_00097063.jpg +Places365_test_00097070.jpg +Places365_test_00097074.jpg +Places365_test_00097075.jpg +Places365_test_00097093.jpg +Places365_test_00097110.jpg +Places365_test_00097121.jpg +Places365_test_00097123.jpg +Places365_test_00097159.jpg +Places365_test_00097168.jpg +Places365_test_00097170.jpg +Places365_test_00097176.jpg +Places365_test_00097179.jpg +Places365_test_00097182.jpg +Places365_test_00097193.jpg +Places365_test_00097196.jpg +Places365_test_00097220.jpg +Places365_test_00097231.jpg +Places365_test_00097233.jpg +Places365_test_00097260.jpg +Places365_test_00097273.jpg +Places365_test_00097278.jpg +Places365_test_00097287.jpg +Places365_test_00097298.jpg +Places365_test_00097316.jpg +Places365_test_00097319.jpg +Places365_test_00097336.jpg +Places365_test_00097355.jpg +Places365_test_00097365.jpg +Places365_test_00097375.jpg +Places365_test_00097402.jpg +Places365_test_00097405.jpg +Places365_test_00097414.jpg +Places365_test_00097416.jpg +Places365_test_00097422.jpg +Places365_test_00097423.jpg +Places365_test_00097426.jpg +Places365_test_00097447.jpg +Places365_test_00097451.jpg +Places365_test_00097453.jpg +Places365_test_00097460.jpg +Places365_test_00097465.jpg +Places365_test_00097469.jpg +Places365_test_00097480.jpg +Places365_test_00097483.jpg +Places365_test_00097485.jpg +Places365_test_00097492.jpg +Places365_test_00097522.jpg +Places365_test_00097532.jpg +Places365_test_00097542.jpg +Places365_test_00097543.jpg +Places365_test_00097554.jpg +Places365_test_00097561.jpg +Places365_test_00097563.jpg +Places365_test_00097570.jpg +Places365_test_00097586.jpg +Places365_test_00097633.jpg +Places365_test_00097639.jpg +Places365_test_00097649.jpg +Places365_test_00097657.jpg +Places365_test_00097660.jpg +Places365_test_00097664.jpg +Places365_test_00097667.jpg +Places365_test_00097697.jpg +Places365_test_00097710.jpg +Places365_test_00097711.jpg +Places365_test_00097715.jpg +Places365_test_00097774.jpg +Places365_test_00097780.jpg +Places365_test_00097781.jpg +Places365_test_00097800.jpg +Places365_test_00097810.jpg +Places365_test_00097812.jpg +Places365_test_00097831.jpg +Places365_test_00097835.jpg +Places365_test_00097856.jpg +Places365_test_00097859.jpg +Places365_test_00097867.jpg +Places365_test_00097868.jpg +Places365_test_00097871.jpg +Places365_test_00097875.jpg +Places365_test_00097876.jpg +Places365_test_00097891.jpg +Places365_test_00097915.jpg +Places365_test_00097923.jpg +Places365_test_00097929.jpg +Places365_test_00097944.jpg +Places365_test_00097945.jpg +Places365_test_00097958.jpg +Places365_test_00097964.jpg +Places365_test_00098062.jpg +Places365_test_00098069.jpg +Places365_test_00098078.jpg +Places365_test_00098115.jpg +Places365_test_00098138.jpg +Places365_test_00098147.jpg +Places365_test_00098156.jpg +Places365_test_00098162.jpg +Places365_test_00098163.jpg +Places365_test_00098177.jpg +Places365_test_00098183.jpg +Places365_test_00098184.jpg +Places365_test_00098205.jpg +Places365_test_00098217.jpg +Places365_test_00098221.jpg +Places365_test_00098233.jpg +Places365_test_00098234.jpg +Places365_test_00098241.jpg +Places365_test_00098244.jpg +Places365_test_00098248.jpg +Places365_test_00098256.jpg +Places365_test_00098296.jpg +Places365_test_00098302.jpg +Places365_test_00098316.jpg +Places365_test_00098337.jpg +Places365_test_00098352.jpg +Places365_test_00098353.jpg +Places365_test_00098356.jpg +Places365_test_00098360.jpg +Places365_test_00098363.jpg +Places365_test_00098392.jpg +Places365_test_00098397.jpg +Places365_test_00098415.jpg +Places365_test_00098418.jpg +Places365_test_00098433.jpg +Places365_test_00098441.jpg +Places365_test_00098443.jpg +Places365_test_00098453.jpg +Places365_test_00098472.jpg +Places365_test_00098488.jpg +Places365_test_00098504.jpg +Places365_test_00098531.jpg +Places365_test_00098534.jpg +Places365_test_00098544.jpg +Places365_test_00098555.jpg +Places365_test_00098570.jpg +Places365_test_00098581.jpg +Places365_test_00098586.jpg +Places365_test_00098590.jpg +Places365_test_00098591.jpg +Places365_test_00098605.jpg +Places365_test_00098618.jpg +Places365_test_00098620.jpg +Places365_test_00098659.jpg +Places365_test_00098667.jpg +Places365_test_00098668.jpg +Places365_test_00098679.jpg +Places365_test_00098685.jpg +Places365_test_00098688.jpg +Places365_test_00098692.jpg +Places365_test_00098720.jpg +Places365_test_00098727.jpg +Places365_test_00098770.jpg +Places365_test_00098790.jpg +Places365_test_00098806.jpg +Places365_test_00098824.jpg +Places365_test_00098832.jpg +Places365_test_00098853.jpg +Places365_test_00098878.jpg +Places365_test_00098883.jpg +Places365_test_00098885.jpg +Places365_test_00098894.jpg +Places365_test_00098899.jpg +Places365_test_00098901.jpg +Places365_test_00098905.jpg +Places365_test_00098925.jpg +Places365_test_00098935.jpg +Places365_test_00098937.jpg +Places365_test_00098943.jpg +Places365_test_00098947.jpg +Places365_test_00098948.jpg +Places365_test_00098965.jpg +Places365_test_00098978.jpg +Places365_test_00098986.jpg +Places365_test_00098998.jpg +Places365_test_00099003.jpg +Places365_test_00099004.jpg +Places365_test_00099007.jpg +Places365_test_00099016.jpg +Places365_test_00099022.jpg +Places365_test_00099025.jpg +Places365_test_00099035.jpg +Places365_test_00099038.jpg +Places365_test_00099050.jpg +Places365_test_00099053.jpg +Places365_test_00099057.jpg +Places365_test_00099062.jpg +Places365_test_00099087.jpg +Places365_test_00099094.jpg +Places365_test_00099115.jpg +Places365_test_00099116.jpg +Places365_test_00099127.jpg +Places365_test_00099138.jpg +Places365_test_00099141.jpg +Places365_test_00099154.jpg +Places365_test_00099155.jpg +Places365_test_00099157.jpg +Places365_test_00099173.jpg +Places365_test_00099178.jpg +Places365_test_00099181.jpg +Places365_test_00099184.jpg +Places365_test_00099225.jpg +Places365_test_00099247.jpg +Places365_test_00099249.jpg +Places365_test_00099269.jpg +Places365_test_00099281.jpg +Places365_test_00099297.jpg +Places365_test_00099301.jpg +Places365_test_00099313.jpg +Places365_test_00099327.jpg +Places365_test_00099329.jpg +Places365_test_00099344.jpg +Places365_test_00099353.jpg +Places365_test_00099380.jpg +Places365_test_00099384.jpg +Places365_test_00099395.jpg +Places365_test_00099415.jpg +Places365_test_00099419.jpg +Places365_test_00099425.jpg +Places365_test_00099430.jpg +Places365_test_00099443.jpg +Places365_test_00099460.jpg +Places365_test_00099464.jpg +Places365_test_00099465.jpg +Places365_test_00099468.jpg +Places365_test_00099486.jpg +Places365_test_00099492.jpg +Places365_test_00099498.jpg +Places365_test_00099499.jpg +Places365_test_00099507.jpg +Places365_test_00099520.jpg +Places365_test_00099533.jpg +Places365_test_00099560.jpg +Places365_test_00099568.jpg +Places365_test_00099574.jpg +Places365_test_00099590.jpg +Places365_test_00099593.jpg +Places365_test_00099595.jpg +Places365_test_00099614.jpg +Places365_test_00099658.jpg +Places365_test_00099662.jpg +Places365_test_00099679.jpg +Places365_test_00099683.jpg +Places365_test_00099690.jpg +Places365_test_00099725.jpg +Places365_test_00099727.jpg +Places365_test_00099732.jpg +Places365_test_00099754.jpg +Places365_test_00099766.jpg +Places365_test_00099767.jpg +Places365_test_00099768.jpg +Places365_test_00099776.jpg +Places365_test_00099789.jpg +Places365_test_00099792.jpg +Places365_test_00099799.jpg +Places365_test_00099806.jpg +Places365_test_00099810.jpg +Places365_test_00099814.jpg +Places365_test_00099830.jpg +Places365_test_00099843.jpg +Places365_test_00099844.jpg +Places365_test_00099847.jpg +Places365_test_00099864.jpg +Places365_test_00099867.jpg +Places365_test_00099871.jpg +Places365_test_00099875.jpg +Places365_test_00099876.jpg +Places365_test_00099896.jpg +Places365_test_00099901.jpg +Places365_test_00099904.jpg +Places365_test_00099910.jpg +Places365_test_00099915.jpg +Places365_test_00099933.jpg +Places365_test_00099977.jpg +Places365_test_00099983.jpg +Places365_test_00100002.jpg +Places365_test_00100017.jpg +Places365_test_00100027.jpg +Places365_test_00100034.jpg +Places365_test_00100039.jpg +Places365_test_00100047.jpg +Places365_test_00100076.jpg +Places365_test_00100097.jpg +Places365_test_00100098.jpg +Places365_test_00100119.jpg +Places365_test_00100138.jpg +Places365_test_00100154.jpg +Places365_test_00100167.jpg +Places365_test_00100188.jpg +Places365_test_00100203.jpg +Places365_test_00100234.jpg +Places365_test_00100246.jpg +Places365_test_00100253.jpg +Places365_test_00100254.jpg +Places365_test_00100279.jpg +Places365_test_00100282.jpg +Places365_test_00100290.jpg +Places365_test_00100292.jpg +Places365_test_00100311.jpg +Places365_test_00100312.jpg +Places365_test_00100334.jpg +Places365_test_00100338.jpg +Places365_test_00100364.jpg +Places365_test_00100375.jpg +Places365_test_00100386.jpg +Places365_test_00100406.jpg +Places365_test_00100421.jpg +Places365_test_00100426.jpg +Places365_test_00100428.jpg +Places365_test_00100436.jpg +Places365_test_00100443.jpg +Places365_test_00100445.jpg +Places365_test_00100447.jpg +Places365_test_00100453.jpg +Places365_test_00100455.jpg +Places365_test_00100462.jpg +Places365_test_00100471.jpg +Places365_test_00100493.jpg +Places365_test_00100498.jpg +Places365_test_00100501.jpg +Places365_test_00100508.jpg +Places365_test_00100516.jpg +Places365_test_00100517.jpg +Places365_test_00100542.jpg +Places365_test_00100544.jpg +Places365_test_00100573.jpg +Places365_test_00100586.jpg +Places365_test_00100587.jpg +Places365_test_00100599.jpg +Places365_test_00100603.jpg +Places365_test_00100609.jpg +Places365_test_00100634.jpg +Places365_test_00100646.jpg +Places365_test_00100657.jpg +Places365_test_00100666.jpg +Places365_test_00100670.jpg +Places365_test_00100678.jpg +Places365_test_00100684.jpg +Places365_test_00100687.jpg +Places365_test_00100704.jpg +Places365_test_00100713.jpg +Places365_test_00100715.jpg +Places365_test_00100718.jpg +Places365_test_00100722.jpg +Places365_test_00100758.jpg +Places365_test_00100760.jpg +Places365_test_00100763.jpg +Places365_test_00100768.jpg +Places365_test_00100777.jpg +Places365_test_00100784.jpg +Places365_test_00100787.jpg +Places365_test_00100794.jpg +Places365_test_00100798.jpg +Places365_test_00100817.jpg +Places365_test_00100819.jpg +Places365_test_00100824.jpg +Places365_test_00100825.jpg +Places365_test_00100850.jpg +Places365_test_00100853.jpg +Places365_test_00100858.jpg +Places365_test_00100860.jpg +Places365_test_00100870.jpg +Places365_test_00100882.jpg +Places365_test_00100884.jpg +Places365_test_00100893.jpg +Places365_test_00100894.jpg +Places365_test_00100907.jpg +Places365_test_00100921.jpg +Places365_test_00100932.jpg +Places365_test_00100953.jpg +Places365_test_00100961.jpg +Places365_test_00100963.jpg +Places365_test_00100975.jpg +Places365_test_00100978.jpg +Places365_test_00101026.jpg +Places365_test_00101033.jpg +Places365_test_00101045.jpg +Places365_test_00101052.jpg +Places365_test_00101072.jpg +Places365_test_00101075.jpg +Places365_test_00101079.jpg +Places365_test_00101110.jpg +Places365_test_00101115.jpg +Places365_test_00101117.jpg +Places365_test_00101124.jpg +Places365_test_00101130.jpg +Places365_test_00101143.jpg +Places365_test_00101152.jpg +Places365_test_00101170.jpg +Places365_test_00101190.jpg +Places365_test_00101205.jpg +Places365_test_00101206.jpg +Places365_test_00101219.jpg +Places365_test_00101223.jpg +Places365_test_00101224.jpg +Places365_test_00101230.jpg +Places365_test_00101239.jpg +Places365_test_00101240.jpg +Places365_test_00101247.jpg +Places365_test_00101269.jpg +Places365_test_00101274.jpg +Places365_test_00101276.jpg +Places365_test_00101277.jpg +Places365_test_00101281.jpg +Places365_test_00101284.jpg +Places365_test_00101300.jpg +Places365_test_00101313.jpg +Places365_test_00101320.jpg +Places365_test_00101322.jpg +Places365_test_00101344.jpg +Places365_test_00101355.jpg +Places365_test_00101361.jpg +Places365_test_00101401.jpg +Places365_test_00101411.jpg +Places365_test_00101413.jpg +Places365_test_00101418.jpg +Places365_test_00101423.jpg +Places365_test_00101442.jpg +Places365_test_00101444.jpg +Places365_test_00101450.jpg +Places365_test_00101453.jpg +Places365_test_00101476.jpg +Places365_test_00101480.jpg +Places365_test_00101483.jpg +Places365_test_00101497.jpg +Places365_test_00101502.jpg +Places365_test_00101506.jpg +Places365_test_00101513.jpg +Places365_test_00101534.jpg +Places365_test_00101545.jpg +Places365_test_00101561.jpg +Places365_test_00101566.jpg +Places365_test_00101601.jpg +Places365_test_00101606.jpg +Places365_test_00101628.jpg +Places365_test_00101630.jpg +Places365_test_00101637.jpg +Places365_test_00101645.jpg +Places365_test_00101659.jpg +Places365_test_00101668.jpg +Places365_test_00101673.jpg +Places365_test_00101686.jpg +Places365_test_00101721.jpg +Places365_test_00101726.jpg +Places365_test_00101729.jpg +Places365_test_00101744.jpg +Places365_test_00101765.jpg +Places365_test_00101769.jpg +Places365_test_00101781.jpg +Places365_test_00101806.jpg +Places365_test_00101808.jpg +Places365_test_00101830.jpg +Places365_test_00101834.jpg +Places365_test_00101848.jpg +Places365_test_00101868.jpg +Places365_test_00101885.jpg +Places365_test_00101893.jpg +Places365_test_00101903.jpg +Places365_test_00101910.jpg +Places365_test_00101914.jpg +Places365_test_00101919.jpg +Places365_test_00101929.jpg +Places365_test_00101944.jpg +Places365_test_00101948.jpg +Places365_test_00101955.jpg +Places365_test_00101956.jpg +Places365_test_00101964.jpg +Places365_test_00101972.jpg +Places365_test_00101993.jpg +Places365_test_00101996.jpg +Places365_test_00102012.jpg +Places365_test_00102020.jpg +Places365_test_00102031.jpg +Places365_test_00102045.jpg +Places365_test_00102057.jpg +Places365_test_00102059.jpg +Places365_test_00102061.jpg +Places365_test_00102082.jpg +Places365_test_00102091.jpg +Places365_test_00102094.jpg +Places365_test_00102103.jpg +Places365_test_00102111.jpg +Places365_test_00102118.jpg +Places365_test_00102122.jpg +Places365_test_00102133.jpg +Places365_test_00102148.jpg +Places365_test_00102153.jpg +Places365_test_00102172.jpg +Places365_test_00102179.jpg +Places365_test_00102194.jpg +Places365_test_00102211.jpg +Places365_test_00102212.jpg +Places365_test_00102217.jpg +Places365_test_00102223.jpg +Places365_test_00102244.jpg +Places365_test_00102246.jpg +Places365_test_00102254.jpg +Places365_test_00102256.jpg +Places365_test_00102260.jpg +Places365_test_00102266.jpg +Places365_test_00102276.jpg +Places365_test_00102293.jpg +Places365_test_00102295.jpg +Places365_test_00102301.jpg +Places365_test_00102303.jpg +Places365_test_00102308.jpg +Places365_test_00102321.jpg +Places365_test_00102332.jpg +Places365_test_00102354.jpg +Places365_test_00102361.jpg +Places365_test_00102396.jpg +Places365_test_00102401.jpg +Places365_test_00102409.jpg +Places365_test_00102417.jpg +Places365_test_00102426.jpg +Places365_test_00102443.jpg +Places365_test_00102451.jpg +Places365_test_00102456.jpg +Places365_test_00102457.jpg +Places365_test_00102461.jpg +Places365_test_00102490.jpg +Places365_test_00102502.jpg +Places365_test_00102503.jpg +Places365_test_00102528.jpg +Places365_test_00102567.jpg +Places365_test_00102575.jpg +Places365_test_00102589.jpg +Places365_test_00102594.jpg +Places365_test_00102595.jpg +Places365_test_00102597.jpg +Places365_test_00102599.jpg +Places365_test_00102610.jpg +Places365_test_00102618.jpg +Places365_test_00102633.jpg +Places365_test_00102656.jpg +Places365_test_00102670.jpg +Places365_test_00102673.jpg +Places365_test_00102685.jpg +Places365_test_00102693.jpg +Places365_test_00102703.jpg +Places365_test_00102707.jpg +Places365_test_00102727.jpg +Places365_test_00102733.jpg +Places365_test_00102735.jpg +Places365_test_00102739.jpg +Places365_test_00102745.jpg +Places365_test_00102762.jpg +Places365_test_00102782.jpg +Places365_test_00102785.jpg +Places365_test_00102795.jpg +Places365_test_00102796.jpg +Places365_test_00102811.jpg +Places365_test_00102864.jpg +Places365_test_00102869.jpg +Places365_test_00102881.jpg +Places365_test_00102937.jpg +Places365_test_00102943.jpg +Places365_test_00102999.jpg +Places365_test_00103002.jpg +Places365_test_00103003.jpg +Places365_test_00103008.jpg +Places365_test_00103010.jpg +Places365_test_00103023.jpg +Places365_test_00103037.jpg +Places365_test_00103057.jpg +Places365_test_00103061.jpg +Places365_test_00103069.jpg +Places365_test_00103074.jpg +Places365_test_00103077.jpg +Places365_test_00103094.jpg +Places365_test_00103099.jpg +Places365_test_00103116.jpg +Places365_test_00103122.jpg +Places365_test_00103130.jpg +Places365_test_00103136.jpg +Places365_test_00103149.jpg +Places365_test_00103153.jpg +Places365_test_00103177.jpg +Places365_test_00103200.jpg +Places365_test_00103214.jpg +Places365_test_00103224.jpg +Places365_test_00103228.jpg +Places365_test_00103231.jpg +Places365_test_00103238.jpg +Places365_test_00103242.jpg +Places365_test_00103250.jpg +Places365_test_00103281.jpg +Places365_test_00103284.jpg +Places365_test_00103287.jpg +Places365_test_00103301.jpg +Places365_test_00103305.jpg +Places365_test_00103317.jpg +Places365_test_00103323.jpg +Places365_test_00103327.jpg +Places365_test_00103350.jpg +Places365_test_00103353.jpg +Places365_test_00103369.jpg +Places365_test_00103383.jpg +Places365_test_00103386.jpg +Places365_test_00103387.jpg +Places365_test_00103408.jpg +Places365_test_00103418.jpg +Places365_test_00103434.jpg +Places365_test_00103442.jpg +Places365_test_00103459.jpg +Places365_test_00103465.jpg +Places365_test_00103513.jpg +Places365_test_00103525.jpg +Places365_test_00103528.jpg +Places365_test_00103572.jpg +Places365_test_00103575.jpg +Places365_test_00103589.jpg +Places365_test_00103598.jpg +Places365_test_00103600.jpg +Places365_test_00103615.jpg +Places365_test_00103618.jpg +Places365_test_00103634.jpg +Places365_test_00103638.jpg +Places365_test_00103659.jpg +Places365_test_00103664.jpg +Places365_test_00103667.jpg +Places365_test_00103695.jpg +Places365_test_00103698.jpg +Places365_test_00103747.jpg +Places365_test_00103780.jpg +Places365_test_00103781.jpg +Places365_test_00103785.jpg +Places365_test_00103797.jpg +Places365_test_00103801.jpg +Places365_test_00103856.jpg +Places365_test_00103876.jpg +Places365_test_00103886.jpg +Places365_test_00103891.jpg +Places365_test_00103924.jpg +Places365_test_00103937.jpg +Places365_test_00103938.jpg +Places365_test_00103953.jpg +Places365_test_00103981.jpg +Places365_test_00103991.jpg +Places365_test_00103993.jpg +Places365_test_00104061.jpg +Places365_test_00104067.jpg +Places365_test_00104080.jpg +Places365_test_00104083.jpg +Places365_test_00104086.jpg +Places365_test_00104089.jpg +Places365_test_00104113.jpg +Places365_test_00104136.jpg +Places365_test_00104142.jpg +Places365_test_00104147.jpg +Places365_test_00104151.jpg +Places365_test_00104152.jpg +Places365_test_00104155.jpg +Places365_test_00104156.jpg +Places365_test_00104157.jpg +Places365_test_00104159.jpg +Places365_test_00104162.jpg +Places365_test_00104169.jpg +Places365_test_00104175.jpg +Places365_test_00104181.jpg +Places365_test_00104186.jpg +Places365_test_00104193.jpg +Places365_test_00104195.jpg +Places365_test_00104202.jpg +Places365_test_00104212.jpg +Places365_test_00104218.jpg +Places365_test_00104225.jpg +Places365_test_00104261.jpg +Places365_test_00104265.jpg +Places365_test_00104268.jpg +Places365_test_00104274.jpg +Places365_test_00104275.jpg +Places365_test_00104313.jpg +Places365_test_00104324.jpg +Places365_test_00104326.jpg +Places365_test_00104345.jpg +Places365_test_00104349.jpg +Places365_test_00104361.jpg +Places365_test_00104366.jpg +Places365_test_00104407.jpg +Places365_test_00104426.jpg +Places365_test_00104428.jpg +Places365_test_00104454.jpg +Places365_test_00104456.jpg +Places365_test_00104468.jpg +Places365_test_00104472.jpg +Places365_test_00104481.jpg +Places365_test_00104489.jpg +Places365_test_00104512.jpg +Places365_test_00104515.jpg +Places365_test_00104523.jpg +Places365_test_00104571.jpg +Places365_test_00104582.jpg +Places365_test_00104583.jpg +Places365_test_00104594.jpg +Places365_test_00104604.jpg +Places365_test_00104610.jpg +Places365_test_00104611.jpg +Places365_test_00104638.jpg +Places365_test_00104640.jpg +Places365_test_00104641.jpg +Places365_test_00104656.jpg +Places365_test_00104677.jpg +Places365_test_00104687.jpg +Places365_test_00104693.jpg +Places365_test_00104712.jpg +Places365_test_00104727.jpg +Places365_test_00104734.jpg +Places365_test_00104737.jpg +Places365_test_00104740.jpg +Places365_test_00104744.jpg +Places365_test_00104754.jpg +Places365_test_00104757.jpg +Places365_test_00104773.jpg +Places365_test_00104791.jpg +Places365_test_00104796.jpg +Places365_test_00104837.jpg +Places365_test_00104840.jpg +Places365_test_00104846.jpg +Places365_test_00104853.jpg +Places365_test_00104862.jpg +Places365_test_00104888.jpg +Places365_test_00104895.jpg +Places365_test_00104897.jpg +Places365_test_00104931.jpg +Places365_test_00104938.jpg +Places365_test_00104942.jpg +Places365_test_00104952.jpg +Places365_test_00104956.jpg +Places365_test_00104971.jpg +Places365_test_00104978.jpg +Places365_test_00104984.jpg +Places365_test_00104988.jpg +Places365_test_00104997.jpg +Places365_test_00105022.jpg +Places365_test_00105032.jpg +Places365_test_00105040.jpg +Places365_test_00105087.jpg +Places365_test_00105089.jpg +Places365_test_00105103.jpg +Places365_test_00105105.jpg +Places365_test_00105113.jpg +Places365_test_00105127.jpg +Places365_test_00105135.jpg +Places365_test_00105150.jpg +Places365_test_00105164.jpg +Places365_test_00105183.jpg +Places365_test_00105186.jpg +Places365_test_00105189.jpg +Places365_test_00105200.jpg +Places365_test_00105226.jpg +Places365_test_00105237.jpg +Places365_test_00105238.jpg +Places365_test_00105251.jpg +Places365_test_00105262.jpg +Places365_test_00105269.jpg +Places365_test_00105270.jpg +Places365_test_00105282.jpg +Places365_test_00105283.jpg +Places365_test_00105296.jpg +Places365_test_00105297.jpg +Places365_test_00105306.jpg +Places365_test_00105316.jpg +Places365_test_00105343.jpg +Places365_test_00105357.jpg +Places365_test_00105369.jpg +Places365_test_00105380.jpg +Places365_test_00105383.jpg +Places365_test_00105413.jpg +Places365_test_00105422.jpg +Places365_test_00105436.jpg +Places365_test_00105441.jpg +Places365_test_00105444.jpg +Places365_test_00105457.jpg +Places365_test_00105458.jpg +Places365_test_00105464.jpg +Places365_test_00105467.jpg +Places365_test_00105482.jpg +Places365_test_00105483.jpg +Places365_test_00105551.jpg +Places365_test_00105558.jpg +Places365_test_00105565.jpg +Places365_test_00105569.jpg +Places365_test_00105580.jpg +Places365_test_00105583.jpg +Places365_test_00105585.jpg +Places365_test_00105594.jpg +Places365_test_00105625.jpg +Places365_test_00105628.jpg +Places365_test_00105633.jpg +Places365_test_00105647.jpg +Places365_test_00105672.jpg +Places365_test_00105710.jpg +Places365_test_00105713.jpg +Places365_test_00105717.jpg +Places365_test_00105720.jpg +Places365_test_00105724.jpg +Places365_test_00105727.jpg +Places365_test_00105728.jpg +Places365_test_00105741.jpg +Places365_test_00105749.jpg +Places365_test_00105756.jpg +Places365_test_00105760.jpg +Places365_test_00105767.jpg +Places365_test_00105772.jpg +Places365_test_00105776.jpg +Places365_test_00105788.jpg +Places365_test_00105793.jpg +Places365_test_00105817.jpg +Places365_test_00105821.jpg +Places365_test_00105824.jpg +Places365_test_00105825.jpg +Places365_test_00105828.jpg +Places365_test_00105836.jpg +Places365_test_00105851.jpg +Places365_test_00105865.jpg +Places365_test_00105886.jpg +Places365_test_00105887.jpg +Places365_test_00105903.jpg +Places365_test_00105922.jpg +Places365_test_00105931.jpg +Places365_test_00105938.jpg +Places365_test_00105954.jpg +Places365_test_00105970.jpg +Places365_test_00105985.jpg +Places365_test_00105989.jpg +Places365_test_00105991.jpg +Places365_test_00105995.jpg +Places365_test_00105996.jpg +Places365_test_00105999.jpg +Places365_test_00106001.jpg +Places365_test_00106011.jpg +Places365_test_00106018.jpg +Places365_test_00106022.jpg +Places365_test_00106047.jpg +Places365_test_00106092.jpg +Places365_test_00106111.jpg +Places365_test_00106126.jpg +Places365_test_00106135.jpg +Places365_test_00106148.jpg +Places365_test_00106152.jpg +Places365_test_00106183.jpg +Places365_test_00106185.jpg +Places365_test_00106192.jpg +Places365_test_00106208.jpg +Places365_test_00106221.jpg +Places365_test_00106231.jpg +Places365_test_00106232.jpg +Places365_test_00106274.jpg +Places365_test_00106284.jpg +Places365_test_00106286.jpg +Places365_test_00106301.jpg +Places365_test_00106313.jpg +Places365_test_00106321.jpg +Places365_test_00106331.jpg +Places365_test_00106334.jpg +Places365_test_00106348.jpg +Places365_test_00106374.jpg +Places365_test_00106376.jpg +Places365_test_00106384.jpg +Places365_test_00106401.jpg +Places365_test_00106440.jpg +Places365_test_00106442.jpg +Places365_test_00106445.jpg +Places365_test_00106465.jpg +Places365_test_00106473.jpg +Places365_test_00106476.jpg +Places365_test_00106482.jpg +Places365_test_00106483.jpg +Places365_test_00106498.jpg +Places365_test_00106514.jpg +Places365_test_00106528.jpg +Places365_test_00106530.jpg +Places365_test_00106551.jpg +Places365_test_00106553.jpg +Places365_test_00106558.jpg +Places365_test_00106559.jpg +Places365_test_00106563.jpg +Places365_test_00106593.jpg +Places365_test_00106596.jpg +Places365_test_00106603.jpg +Places365_test_00106604.jpg +Places365_test_00106609.jpg +Places365_test_00106615.jpg +Places365_test_00106620.jpg +Places365_test_00106628.jpg +Places365_test_00106630.jpg +Places365_test_00106635.jpg +Places365_test_00106661.jpg +Places365_test_00106662.jpg +Places365_test_00106688.jpg +Places365_test_00106702.jpg +Places365_test_00106720.jpg +Places365_test_00106741.jpg +Places365_test_00106765.jpg +Places365_test_00106787.jpg +Places365_test_00106799.jpg +Places365_test_00106891.jpg +Places365_test_00106896.jpg +Places365_test_00106899.jpg +Places365_test_00106905.jpg +Places365_test_00106909.jpg +Places365_test_00106912.jpg +Places365_test_00106915.jpg +Places365_test_00106953.jpg +Places365_test_00106959.jpg +Places365_test_00106971.jpg +Places365_test_00106972.jpg +Places365_test_00106977.jpg +Places365_test_00106993.jpg +Places365_test_00107002.jpg +Places365_test_00107006.jpg +Places365_test_00107008.jpg +Places365_test_00107009.jpg +Places365_test_00107039.jpg +Places365_test_00107048.jpg +Places365_test_00107056.jpg +Places365_test_00107069.jpg +Places365_test_00107078.jpg +Places365_test_00107098.jpg +Places365_test_00107117.jpg +Places365_test_00107119.jpg +Places365_test_00107122.jpg +Places365_test_00107127.jpg +Places365_test_00107128.jpg +Places365_test_00107142.jpg +Places365_test_00107144.jpg +Places365_test_00107170.jpg +Places365_test_00107177.jpg +Places365_test_00107184.jpg +Places365_test_00107190.jpg +Places365_test_00107242.jpg +Places365_test_00107250.jpg +Places365_test_00107260.jpg +Places365_test_00107267.jpg +Places365_test_00107282.jpg +Places365_test_00107285.jpg +Places365_test_00107291.jpg +Places365_test_00107339.jpg +Places365_test_00107345.jpg +Places365_test_00107353.jpg +Places365_test_00107365.jpg +Places365_test_00107366.jpg +Places365_test_00107367.jpg +Places365_test_00107369.jpg +Places365_test_00107390.jpg +Places365_test_00107409.jpg +Places365_test_00107425.jpg +Places365_test_00107437.jpg +Places365_test_00107464.jpg +Places365_test_00107486.jpg +Places365_test_00107505.jpg +Places365_test_00107521.jpg +Places365_test_00107527.jpg +Places365_test_00107537.jpg +Places365_test_00107539.jpg +Places365_test_00107546.jpg +Places365_test_00107551.jpg +Places365_test_00107552.jpg +Places365_test_00107563.jpg +Places365_test_00107566.jpg +Places365_test_00107569.jpg +Places365_test_00107574.jpg +Places365_test_00107591.jpg +Places365_test_00107596.jpg +Places365_test_00107624.jpg +Places365_test_00107634.jpg +Places365_test_00107637.jpg +Places365_test_00107639.jpg +Places365_test_00107656.jpg +Places365_test_00107677.jpg +Places365_test_00107691.jpg +Places365_test_00107698.jpg +Places365_test_00107711.jpg +Places365_test_00107723.jpg +Places365_test_00107731.jpg +Places365_test_00107744.jpg +Places365_test_00107765.jpg +Places365_test_00107766.jpg +Places365_test_00107779.jpg +Places365_test_00107781.jpg +Places365_test_00107783.jpg +Places365_test_00107804.jpg +Places365_test_00107821.jpg +Places365_test_00107826.jpg +Places365_test_00107827.jpg +Places365_test_00107833.jpg +Places365_test_00107844.jpg +Places365_test_00107845.jpg +Places365_test_00107853.jpg +Places365_test_00107855.jpg +Places365_test_00107866.jpg +Places365_test_00107870.jpg +Places365_test_00107872.jpg +Places365_test_00107884.jpg +Places365_test_00107892.jpg +Places365_test_00107925.jpg +Places365_test_00107927.jpg +Places365_test_00107928.jpg +Places365_test_00107930.jpg +Places365_test_00107954.jpg +Places365_test_00107956.jpg +Places365_test_00107980.jpg +Places365_test_00107998.jpg +Places365_test_00108002.jpg +Places365_test_00108009.jpg +Places365_test_00108015.jpg +Places365_test_00108029.jpg +Places365_test_00108047.jpg +Places365_test_00108112.jpg +Places365_test_00108121.jpg +Places365_test_00108123.jpg +Places365_test_00108128.jpg +Places365_test_00108155.jpg +Places365_test_00108170.jpg +Places365_test_00108172.jpg +Places365_test_00108180.jpg +Places365_test_00108193.jpg +Places365_test_00108198.jpg +Places365_test_00108211.jpg +Places365_test_00108221.jpg +Places365_test_00108231.jpg +Places365_test_00108232.jpg +Places365_test_00108242.jpg +Places365_test_00108245.jpg +Places365_test_00108260.jpg +Places365_test_00108263.jpg +Places365_test_00108280.jpg +Places365_test_00108283.jpg +Places365_test_00108302.jpg +Places365_test_00108308.jpg +Places365_test_00108313.jpg +Places365_test_00108325.jpg +Places365_test_00108331.jpg +Places365_test_00108348.jpg +Places365_test_00108359.jpg +Places365_test_00108363.jpg +Places365_test_00108383.jpg +Places365_test_00108393.jpg +Places365_test_00108402.jpg +Places365_test_00108403.jpg +Places365_test_00108432.jpg +Places365_test_00108434.jpg +Places365_test_00108449.jpg +Places365_test_00108472.jpg +Places365_test_00108489.jpg +Places365_test_00108497.jpg +Places365_test_00108514.jpg +Places365_test_00108549.jpg +Places365_test_00108566.jpg +Places365_test_00108571.jpg +Places365_test_00108573.jpg +Places365_test_00108595.jpg +Places365_test_00108621.jpg +Places365_test_00108632.jpg +Places365_test_00108642.jpg +Places365_test_00108654.jpg +Places365_test_00108664.jpg +Places365_test_00108674.jpg +Places365_test_00108693.jpg +Places365_test_00108715.jpg +Places365_test_00108717.jpg +Places365_test_00108728.jpg +Places365_test_00108730.jpg +Places365_test_00108736.jpg +Places365_test_00108740.jpg +Places365_test_00108767.jpg +Places365_test_00108780.jpg +Places365_test_00108782.jpg +Places365_test_00108786.jpg +Places365_test_00108792.jpg +Places365_test_00108803.jpg +Places365_test_00108820.jpg +Places365_test_00108837.jpg +Places365_test_00108844.jpg +Places365_test_00108845.jpg +Places365_test_00108850.jpg +Places365_test_00108854.jpg +Places365_test_00108856.jpg +Places365_test_00108857.jpg +Places365_test_00108862.jpg +Places365_test_00108876.jpg +Places365_test_00108879.jpg +Places365_test_00108888.jpg +Places365_test_00108897.jpg +Places365_test_00108904.jpg +Places365_test_00108917.jpg +Places365_test_00108920.jpg +Places365_test_00108956.jpg +Places365_test_00108959.jpg +Places365_test_00108965.jpg +Places365_test_00108972.jpg +Places365_test_00108987.jpg +Places365_test_00108991.jpg +Places365_test_00109012.jpg +Places365_test_00109014.jpg +Places365_test_00109017.jpg +Places365_test_00109025.jpg +Places365_test_00109033.jpg +Places365_test_00109056.jpg +Places365_test_00109065.jpg +Places365_test_00109068.jpg +Places365_test_00109075.jpg +Places365_test_00109136.jpg +Places365_test_00109153.jpg +Places365_test_00109158.jpg +Places365_test_00109160.jpg +Places365_test_00109165.jpg +Places365_test_00109195.jpg +Places365_test_00109215.jpg +Places365_test_00109217.jpg +Places365_test_00109230.jpg +Places365_test_00109236.jpg +Places365_test_00109263.jpg +Places365_test_00109268.jpg +Places365_test_00109281.jpg +Places365_test_00109284.jpg +Places365_test_00109287.jpg +Places365_test_00109292.jpg +Places365_test_00109314.jpg +Places365_test_00109317.jpg +Places365_test_00109337.jpg +Places365_test_00109342.jpg +Places365_test_00109350.jpg +Places365_test_00109370.jpg +Places365_test_00109375.jpg +Places365_test_00109397.jpg +Places365_test_00109400.jpg +Places365_test_00109403.jpg +Places365_test_00109426.jpg +Places365_test_00109439.jpg +Places365_test_00109443.jpg +Places365_test_00109462.jpg +Places365_test_00109483.jpg +Places365_test_00109486.jpg +Places365_test_00109489.jpg +Places365_test_00109498.jpg +Places365_test_00109522.jpg +Places365_test_00109523.jpg +Places365_test_00109527.jpg +Places365_test_00109534.jpg +Places365_test_00109557.jpg +Places365_test_00109563.jpg +Places365_test_00109564.jpg +Places365_test_00109565.jpg +Places365_test_00109577.jpg +Places365_test_00109614.jpg +Places365_test_00109646.jpg +Places365_test_00109648.jpg +Places365_test_00109661.jpg +Places365_test_00109664.jpg +Places365_test_00109666.jpg +Places365_test_00109674.jpg +Places365_test_00109690.jpg +Places365_test_00109704.jpg +Places365_test_00109707.jpg +Places365_test_00109710.jpg +Places365_test_00109717.jpg +Places365_test_00109726.jpg +Places365_test_00109738.jpg +Places365_test_00109749.jpg +Places365_test_00109754.jpg +Places365_test_00109756.jpg +Places365_test_00109764.jpg +Places365_test_00109773.jpg +Places365_test_00109774.jpg +Places365_test_00109787.jpg +Places365_test_00109796.jpg +Places365_test_00109798.jpg +Places365_test_00109799.jpg +Places365_test_00109808.jpg +Places365_test_00109824.jpg +Places365_test_00109829.jpg +Places365_test_00109840.jpg +Places365_test_00109842.jpg +Places365_test_00109849.jpg +Places365_test_00109852.jpg +Places365_test_00109855.jpg +Places365_test_00109859.jpg +Places365_test_00109860.jpg +Places365_test_00109868.jpg +Places365_test_00109884.jpg +Places365_test_00109899.jpg +Places365_test_00109900.jpg +Places365_test_00109930.jpg +Places365_test_00109936.jpg +Places365_test_00109949.jpg +Places365_test_00109991.jpg +Places365_test_00110000.jpg +Places365_test_00110008.jpg +Places365_test_00110013.jpg +Places365_test_00110034.jpg +Places365_test_00110056.jpg +Places365_test_00110059.jpg +Places365_test_00110060.jpg +Places365_test_00110069.jpg +Places365_test_00110082.jpg +Places365_test_00110083.jpg +Places365_test_00110095.jpg +Places365_test_00110106.jpg +Places365_test_00110112.jpg +Places365_test_00110119.jpg +Places365_test_00110130.jpg +Places365_test_00110141.jpg +Places365_test_00110148.jpg +Places365_test_00110158.jpg +Places365_test_00110178.jpg +Places365_test_00110198.jpg +Places365_test_00110203.jpg +Places365_test_00110210.jpg +Places365_test_00110221.jpg +Places365_test_00110222.jpg +Places365_test_00110223.jpg +Places365_test_00110235.jpg +Places365_test_00110236.jpg +Places365_test_00110253.jpg +Places365_test_00110260.jpg +Places365_test_00110275.jpg +Places365_test_00110289.jpg +Places365_test_00110312.jpg +Places365_test_00110322.jpg +Places365_test_00110357.jpg +Places365_test_00110374.jpg +Places365_test_00110376.jpg +Places365_test_00110379.jpg +Places365_test_00110386.jpg +Places365_test_00110391.jpg +Places365_test_00110394.jpg +Places365_test_00110407.jpg +Places365_test_00110416.jpg +Places365_test_00110433.jpg +Places365_test_00110445.jpg +Places365_test_00110450.jpg +Places365_test_00110452.jpg +Places365_test_00110459.jpg +Places365_test_00110467.jpg +Places365_test_00110479.jpg +Places365_test_00110497.jpg +Places365_test_00110503.jpg +Places365_test_00110521.jpg +Places365_test_00110528.jpg +Places365_test_00110537.jpg +Places365_test_00110540.jpg +Places365_test_00110558.jpg +Places365_test_00110571.jpg +Places365_test_00110577.jpg +Places365_test_00110592.jpg +Places365_test_00110595.jpg +Places365_test_00110599.jpg +Places365_test_00110611.jpg +Places365_test_00110621.jpg +Places365_test_00110623.jpg +Places365_test_00110626.jpg +Places365_test_00110627.jpg +Places365_test_00110631.jpg +Places365_test_00110642.jpg +Places365_test_00110653.jpg +Places365_test_00110658.jpg +Places365_test_00110660.jpg +Places365_test_00110670.jpg +Places365_test_00110714.jpg +Places365_test_00110720.jpg +Places365_test_00110723.jpg +Places365_test_00110732.jpg +Places365_test_00110738.jpg +Places365_test_00110749.jpg +Places365_test_00110812.jpg +Places365_test_00110821.jpg +Places365_test_00110849.jpg +Places365_test_00110862.jpg +Places365_test_00110871.jpg +Places365_test_00110874.jpg +Places365_test_00110875.jpg +Places365_test_00110876.jpg +Places365_test_00110881.jpg +Places365_test_00110884.jpg +Places365_test_00110899.jpg +Places365_test_00110907.jpg +Places365_test_00110932.jpg +Places365_test_00110952.jpg +Places365_test_00110956.jpg +Places365_test_00110964.jpg +Places365_test_00110975.jpg +Places365_test_00110985.jpg +Places365_test_00111003.jpg +Places365_test_00111012.jpg +Places365_test_00111070.jpg +Places365_test_00111075.jpg +Places365_test_00111078.jpg +Places365_test_00111084.jpg +Places365_test_00111105.jpg +Places365_test_00111130.jpg +Places365_test_00111132.jpg +Places365_test_00111139.jpg +Places365_test_00111166.jpg +Places365_test_00111167.jpg +Places365_test_00111171.jpg +Places365_test_00111183.jpg +Places365_test_00111184.jpg +Places365_test_00111188.jpg +Places365_test_00111189.jpg +Places365_test_00111191.jpg +Places365_test_00111202.jpg +Places365_test_00111213.jpg +Places365_test_00111220.jpg +Places365_test_00111221.jpg +Places365_test_00111226.jpg +Places365_test_00111240.jpg +Places365_test_00111245.jpg +Places365_test_00111248.jpg +Places365_test_00111260.jpg +Places365_test_00111268.jpg +Places365_test_00111276.jpg +Places365_test_00111312.jpg +Places365_test_00111335.jpg +Places365_test_00111355.jpg +Places365_test_00111363.jpg +Places365_test_00111366.jpg +Places365_test_00111369.jpg +Places365_test_00111374.jpg +Places365_test_00111386.jpg +Places365_test_00111394.jpg +Places365_test_00111406.jpg +Places365_test_00111432.jpg +Places365_test_00111445.jpg +Places365_test_00111469.jpg +Places365_test_00111471.jpg +Places365_test_00111515.jpg +Places365_test_00111529.jpg +Places365_test_00111554.jpg +Places365_test_00111562.jpg +Places365_test_00111590.jpg +Places365_test_00111596.jpg +Places365_test_00111601.jpg +Places365_test_00111605.jpg +Places365_test_00111609.jpg +Places365_test_00111629.jpg +Places365_test_00111641.jpg +Places365_test_00111654.jpg +Places365_test_00111662.jpg +Places365_test_00111678.jpg +Places365_test_00111684.jpg +Places365_test_00111691.jpg +Places365_test_00111706.jpg +Places365_test_00111715.jpg +Places365_test_00111726.jpg +Places365_test_00111728.jpg +Places365_test_00111740.jpg +Places365_test_00111750.jpg +Places365_test_00111763.jpg +Places365_test_00111767.jpg +Places365_test_00111775.jpg +Places365_test_00111780.jpg +Places365_test_00111781.jpg +Places365_test_00111788.jpg +Places365_test_00111795.jpg +Places365_test_00111814.jpg +Places365_test_00111816.jpg +Places365_test_00111829.jpg +Places365_test_00111838.jpg +Places365_test_00111855.jpg +Places365_test_00111857.jpg +Places365_test_00111875.jpg +Places365_test_00111907.jpg +Places365_test_00111911.jpg +Places365_test_00111935.jpg +Places365_test_00111942.jpg +Places365_test_00111947.jpg +Places365_test_00111958.jpg +Places365_test_00111962.jpg +Places365_test_00111964.jpg +Places365_test_00111968.jpg +Places365_test_00111971.jpg +Places365_test_00111973.jpg +Places365_test_00111979.jpg +Places365_test_00111981.jpg +Places365_test_00111994.jpg +Places365_test_00112003.jpg +Places365_test_00112010.jpg +Places365_test_00112037.jpg +Places365_test_00112060.jpg +Places365_test_00112066.jpg +Places365_test_00112069.jpg +Places365_test_00112075.jpg +Places365_test_00112106.jpg +Places365_test_00112113.jpg +Places365_test_00112118.jpg +Places365_test_00112147.jpg +Places365_test_00112151.jpg +Places365_test_00112158.jpg +Places365_test_00112174.jpg +Places365_test_00112186.jpg +Places365_test_00112193.jpg +Places365_test_00112195.jpg +Places365_test_00112198.jpg +Places365_test_00112229.jpg +Places365_test_00112240.jpg +Places365_test_00112242.jpg +Places365_test_00112255.jpg +Places365_test_00112258.jpg +Places365_test_00112262.jpg +Places365_test_00112274.jpg +Places365_test_00112278.jpg +Places365_test_00112295.jpg +Places365_test_00112325.jpg +Places365_test_00112346.jpg +Places365_test_00112348.jpg +Places365_test_00112370.jpg +Places365_test_00112375.jpg +Places365_test_00112377.jpg +Places365_test_00112378.jpg +Places365_test_00112387.jpg +Places365_test_00112390.jpg +Places365_test_00112421.jpg +Places365_test_00112427.jpg +Places365_test_00112429.jpg +Places365_test_00112446.jpg +Places365_test_00112449.jpg +Places365_test_00112480.jpg +Places365_test_00112493.jpg +Places365_test_00112529.jpg +Places365_test_00112538.jpg +Places365_test_00112554.jpg +Places365_test_00112563.jpg +Places365_test_00112574.jpg +Places365_test_00112575.jpg +Places365_test_00112577.jpg +Places365_test_00112592.jpg +Places365_test_00112595.jpg +Places365_test_00112603.jpg +Places365_test_00112628.jpg +Places365_test_00112636.jpg +Places365_test_00112641.jpg +Places365_test_00112652.jpg +Places365_test_00112657.jpg +Places365_test_00112672.jpg +Places365_test_00112693.jpg +Places365_test_00112703.jpg +Places365_test_00112709.jpg +Places365_test_00112725.jpg +Places365_test_00112726.jpg +Places365_test_00112731.jpg +Places365_test_00112741.jpg +Places365_test_00112751.jpg +Places365_test_00112761.jpg +Places365_test_00112765.jpg +Places365_test_00112767.jpg +Places365_test_00112768.jpg +Places365_test_00112775.jpg +Places365_test_00112788.jpg +Places365_test_00112798.jpg +Places365_test_00112801.jpg +Places365_test_00112808.jpg +Places365_test_00112817.jpg +Places365_test_00112830.jpg +Places365_test_00112845.jpg +Places365_test_00112860.jpg +Places365_test_00112866.jpg +Places365_test_00112867.jpg +Places365_test_00112869.jpg +Places365_test_00112894.jpg +Places365_test_00112899.jpg +Places365_test_00112912.jpg +Places365_test_00112920.jpg +Places365_test_00112929.jpg +Places365_test_00112937.jpg +Places365_test_00112944.jpg +Places365_test_00112949.jpg +Places365_test_00112964.jpg +Places365_test_00112975.jpg +Places365_test_00112981.jpg +Places365_test_00112989.jpg +Places365_test_00112990.jpg +Places365_test_00113000.jpg +Places365_test_00113009.jpg +Places365_test_00113015.jpg +Places365_test_00113018.jpg +Places365_test_00113033.jpg +Places365_test_00113034.jpg +Places365_test_00113038.jpg +Places365_test_00113053.jpg +Places365_test_00113064.jpg +Places365_test_00113075.jpg +Places365_test_00113085.jpg +Places365_test_00113111.jpg +Places365_test_00113113.jpg +Places365_test_00113122.jpg +Places365_test_00113123.jpg +Places365_test_00113153.jpg +Places365_test_00113163.jpg +Places365_test_00113171.jpg +Places365_test_00113173.jpg +Places365_test_00113188.jpg +Places365_test_00113207.jpg +Places365_test_00113214.jpg +Places365_test_00113222.jpg +Places365_test_00113230.jpg +Places365_test_00113232.jpg +Places365_test_00113243.jpg +Places365_test_00113251.jpg +Places365_test_00113266.jpg +Places365_test_00113269.jpg +Places365_test_00113305.jpg +Places365_test_00113314.jpg +Places365_test_00113335.jpg +Places365_test_00113359.jpg +Places365_test_00113374.jpg +Places365_test_00113380.jpg +Places365_test_00113394.jpg +Places365_test_00113422.jpg +Places365_test_00113423.jpg +Places365_test_00113431.jpg +Places365_test_00113441.jpg +Places365_test_00113446.jpg +Places365_test_00113469.jpg +Places365_test_00113478.jpg +Places365_test_00113480.jpg +Places365_test_00113481.jpg +Places365_test_00113521.jpg +Places365_test_00113525.jpg +Places365_test_00113529.jpg +Places365_test_00113531.jpg +Places365_test_00113544.jpg +Places365_test_00113554.jpg +Places365_test_00113575.jpg +Places365_test_00113590.jpg +Places365_test_00113612.jpg +Places365_test_00113614.jpg +Places365_test_00113629.jpg +Places365_test_00113634.jpg +Places365_test_00113636.jpg +Places365_test_00113643.jpg +Places365_test_00113667.jpg +Places365_test_00113685.jpg +Places365_test_00113693.jpg +Places365_test_00113723.jpg +Places365_test_00113734.jpg +Places365_test_00113736.jpg +Places365_test_00113781.jpg +Places365_test_00113786.jpg +Places365_test_00113806.jpg +Places365_test_00113809.jpg +Places365_test_00113813.jpg +Places365_test_00113823.jpg +Places365_test_00113833.jpg +Places365_test_00113835.jpg +Places365_test_00113844.jpg +Places365_test_00113853.jpg +Places365_test_00113859.jpg +Places365_test_00113867.jpg +Places365_test_00113869.jpg +Places365_test_00113883.jpg +Places365_test_00113884.jpg +Places365_test_00113888.jpg +Places365_test_00113890.jpg +Places365_test_00113901.jpg +Places365_test_00113906.jpg +Places365_test_00113924.jpg +Places365_test_00113930.jpg +Places365_test_00113942.jpg +Places365_test_00113957.jpg +Places365_test_00113982.jpg +Places365_test_00113988.jpg +Places365_test_00113991.jpg +Places365_test_00114002.jpg +Places365_test_00114003.jpg +Places365_test_00114031.jpg +Places365_test_00114036.jpg +Places365_test_00114047.jpg +Places365_test_00114067.jpg +Places365_test_00114070.jpg +Places365_test_00114072.jpg +Places365_test_00114121.jpg +Places365_test_00114152.jpg +Places365_test_00114169.jpg +Places365_test_00114173.jpg +Places365_test_00114183.jpg +Places365_test_00114194.jpg +Places365_test_00114226.jpg +Places365_test_00114238.jpg +Places365_test_00114240.jpg +Places365_test_00114274.jpg +Places365_test_00114280.jpg +Places365_test_00114283.jpg +Places365_test_00114288.jpg +Places365_test_00114289.jpg +Places365_test_00114305.jpg +Places365_test_00114329.jpg +Places365_test_00114343.jpg +Places365_test_00114352.jpg +Places365_test_00114353.jpg +Places365_test_00114358.jpg +Places365_test_00114360.jpg +Places365_test_00114363.jpg +Places365_test_00114364.jpg +Places365_test_00114384.jpg +Places365_test_00114399.jpg +Places365_test_00114407.jpg +Places365_test_00114408.jpg +Places365_test_00114413.jpg +Places365_test_00114419.jpg +Places365_test_00114427.jpg +Places365_test_00114431.jpg +Places365_test_00114434.jpg +Places365_test_00114454.jpg +Places365_test_00114461.jpg +Places365_test_00114465.jpg +Places365_test_00114468.jpg +Places365_test_00114470.jpg +Places365_test_00114474.jpg +Places365_test_00114475.jpg +Places365_test_00114486.jpg +Places365_test_00114489.jpg +Places365_test_00114494.jpg +Places365_test_00114504.jpg +Places365_test_00114507.jpg +Places365_test_00114514.jpg +Places365_test_00114520.jpg +Places365_test_00114534.jpg +Places365_test_00114538.jpg +Places365_test_00114551.jpg +Places365_test_00114556.jpg +Places365_test_00114558.jpg +Places365_test_00114562.jpg +Places365_test_00114566.jpg +Places365_test_00114585.jpg +Places365_test_00114594.jpg +Places365_test_00114607.jpg +Places365_test_00114609.jpg +Places365_test_00114626.jpg +Places365_test_00114637.jpg +Places365_test_00114639.jpg +Places365_test_00114643.jpg +Places365_test_00114645.jpg +Places365_test_00114647.jpg +Places365_test_00114664.jpg +Places365_test_00114684.jpg +Places365_test_00114715.jpg +Places365_test_00114723.jpg +Places365_test_00114732.jpg +Places365_test_00114755.jpg +Places365_test_00114762.jpg +Places365_test_00114767.jpg +Places365_test_00114771.jpg +Places365_test_00114792.jpg +Places365_test_00114805.jpg +Places365_test_00114833.jpg +Places365_test_00114848.jpg +Places365_test_00114856.jpg +Places365_test_00114858.jpg +Places365_test_00114867.jpg +Places365_test_00114872.jpg +Places365_test_00114876.jpg +Places365_test_00114890.jpg +Places365_test_00114891.jpg +Places365_test_00114892.jpg +Places365_test_00114903.jpg +Places365_test_00114905.jpg +Places365_test_00114913.jpg +Places365_test_00114918.jpg +Places365_test_00114928.jpg +Places365_test_00114932.jpg +Places365_test_00114939.jpg +Places365_test_00114942.jpg +Places365_test_00114944.jpg +Places365_test_00114960.jpg +Places365_test_00114973.jpg +Places365_test_00114986.jpg +Places365_test_00114997.jpg +Places365_test_00114998.jpg +Places365_test_00115018.jpg +Places365_test_00115049.jpg +Places365_test_00115058.jpg +Places365_test_00115081.jpg +Places365_test_00115115.jpg +Places365_test_00115119.jpg +Places365_test_00115130.jpg +Places365_test_00115149.jpg +Places365_test_00115178.jpg +Places365_test_00115198.jpg +Places365_test_00115217.jpg +Places365_test_00115226.jpg +Places365_test_00115235.jpg +Places365_test_00115236.jpg +Places365_test_00115241.jpg +Places365_test_00115243.jpg +Places365_test_00115263.jpg +Places365_test_00115277.jpg +Places365_test_00115292.jpg +Places365_test_00115294.jpg +Places365_test_00115300.jpg +Places365_test_00115302.jpg +Places365_test_00115315.jpg +Places365_test_00115321.jpg +Places365_test_00115335.jpg +Places365_test_00115339.jpg +Places365_test_00115354.jpg +Places365_test_00115360.jpg +Places365_test_00115364.jpg +Places365_test_00115365.jpg +Places365_test_00115366.jpg +Places365_test_00115377.jpg +Places365_test_00115388.jpg +Places365_test_00115389.jpg +Places365_test_00115392.jpg +Places365_test_00115397.jpg +Places365_test_00115406.jpg +Places365_test_00115410.jpg +Places365_test_00115437.jpg +Places365_test_00115452.jpg +Places365_test_00115458.jpg +Places365_test_00115460.jpg +Places365_test_00115480.jpg +Places365_test_00115488.jpg +Places365_test_00115491.jpg +Places365_test_00115494.jpg +Places365_test_00115495.jpg +Places365_test_00115511.jpg +Places365_test_00115512.jpg +Places365_test_00115523.jpg +Places365_test_00115524.jpg +Places365_test_00115531.jpg +Places365_test_00115564.jpg +Places365_test_00115565.jpg +Places365_test_00115583.jpg +Places365_test_00115584.jpg +Places365_test_00115587.jpg +Places365_test_00115596.jpg +Places365_test_00115601.jpg +Places365_test_00115618.jpg +Places365_test_00115637.jpg +Places365_test_00115638.jpg +Places365_test_00115640.jpg +Places365_test_00115659.jpg +Places365_test_00115664.jpg +Places365_test_00115670.jpg +Places365_test_00115682.jpg +Places365_test_00115688.jpg +Places365_test_00115696.jpg +Places365_test_00115698.jpg +Places365_test_00115721.jpg +Places365_test_00115726.jpg +Places365_test_00115745.jpg +Places365_test_00115749.jpg +Places365_test_00115756.jpg +Places365_test_00115768.jpg +Places365_test_00115779.jpg +Places365_test_00115786.jpg +Places365_test_00115787.jpg +Places365_test_00115817.jpg +Places365_test_00115829.jpg +Places365_test_00115842.jpg +Places365_test_00115848.jpg +Places365_test_00115864.jpg +Places365_test_00115868.jpg +Places365_test_00115898.jpg +Places365_test_00115915.jpg +Places365_test_00115916.jpg +Places365_test_00115952.jpg +Places365_test_00115955.jpg +Places365_test_00115960.jpg +Places365_test_00115979.jpg +Places365_test_00115981.jpg +Places365_test_00115985.jpg +Places365_test_00115993.jpg +Places365_test_00116008.jpg +Places365_test_00116011.jpg +Places365_test_00116015.jpg +Places365_test_00116025.jpg +Places365_test_00116033.jpg +Places365_test_00116069.jpg +Places365_test_00116070.jpg +Places365_test_00116081.jpg +Places365_test_00116089.jpg +Places365_test_00116090.jpg +Places365_test_00116098.jpg +Places365_test_00116102.jpg +Places365_test_00116103.jpg +Places365_test_00116107.jpg +Places365_test_00116114.jpg +Places365_test_00116121.jpg +Places365_test_00116137.jpg +Places365_test_00116164.jpg +Places365_test_00116179.jpg +Places365_test_00116200.jpg +Places365_test_00116206.jpg +Places365_test_00116214.jpg +Places365_test_00116216.jpg +Places365_test_00116223.jpg +Places365_test_00116228.jpg +Places365_test_00116242.jpg +Places365_test_00116253.jpg +Places365_test_00116258.jpg +Places365_test_00116261.jpg +Places365_test_00116269.jpg +Places365_test_00116271.jpg +Places365_test_00116283.jpg +Places365_test_00116288.jpg +Places365_test_00116293.jpg +Places365_test_00116295.jpg +Places365_test_00116302.jpg +Places365_test_00116309.jpg +Places365_test_00116329.jpg +Places365_test_00116338.jpg +Places365_test_00116339.jpg +Places365_test_00116348.jpg +Places365_test_00116382.jpg +Places365_test_00116386.jpg +Places365_test_00116414.jpg +Places365_test_00116423.jpg +Places365_test_00116449.jpg +Places365_test_00116453.jpg +Places365_test_00116456.jpg +Places365_test_00116467.jpg +Places365_test_00116491.jpg +Places365_test_00116516.jpg +Places365_test_00116523.jpg +Places365_test_00116525.jpg +Places365_test_00116534.jpg +Places365_test_00116540.jpg +Places365_test_00116552.jpg +Places365_test_00116556.jpg +Places365_test_00116567.jpg +Places365_test_00116569.jpg +Places365_test_00116577.jpg +Places365_test_00116586.jpg +Places365_test_00116601.jpg +Places365_test_00116620.jpg +Places365_test_00116625.jpg +Places365_test_00116629.jpg +Places365_test_00116642.jpg +Places365_test_00116664.jpg +Places365_test_00116679.jpg +Places365_test_00116708.jpg +Places365_test_00116728.jpg +Places365_test_00116746.jpg +Places365_test_00116753.jpg +Places365_test_00116767.jpg +Places365_test_00116781.jpg +Places365_test_00116786.jpg +Places365_test_00116822.jpg +Places365_test_00116823.jpg +Places365_test_00116828.jpg +Places365_test_00116831.jpg +Places365_test_00116846.jpg +Places365_test_00116853.jpg +Places365_test_00116863.jpg +Places365_test_00116894.jpg +Places365_test_00116897.jpg +Places365_test_00116899.jpg +Places365_test_00116916.jpg +Places365_test_00116927.jpg +Places365_test_00116929.jpg +Places365_test_00116932.jpg +Places365_test_00116943.jpg +Places365_test_00116944.jpg +Places365_test_00116960.jpg +Places365_test_00116966.jpg +Places365_test_00116978.jpg +Places365_test_00116986.jpg +Places365_test_00116996.jpg +Places365_test_00117008.jpg +Places365_test_00117034.jpg +Places365_test_00117037.jpg +Places365_test_00117071.jpg +Places365_test_00117079.jpg +Places365_test_00117084.jpg +Places365_test_00117101.jpg +Places365_test_00117102.jpg +Places365_test_00117104.jpg +Places365_test_00117108.jpg +Places365_test_00117111.jpg +Places365_test_00117135.jpg +Places365_test_00117137.jpg +Places365_test_00117141.jpg +Places365_test_00117148.jpg +Places365_test_00117163.jpg +Places365_test_00117165.jpg +Places365_test_00117187.jpg +Places365_test_00117197.jpg +Places365_test_00117204.jpg +Places365_test_00117215.jpg +Places365_test_00117222.jpg +Places365_test_00117224.jpg +Places365_test_00117231.jpg +Places365_test_00117269.jpg +Places365_test_00117287.jpg +Places365_test_00117291.jpg +Places365_test_00117302.jpg +Places365_test_00117304.jpg +Places365_test_00117314.jpg +Places365_test_00117328.jpg +Places365_test_00117334.jpg +Places365_test_00117338.jpg +Places365_test_00117350.jpg +Places365_test_00117371.jpg +Places365_test_00117378.jpg +Places365_test_00117398.jpg +Places365_test_00117427.jpg +Places365_test_00117432.jpg +Places365_test_00117455.jpg +Places365_test_00117461.jpg +Places365_test_00117463.jpg +Places365_test_00117483.jpg +Places365_test_00117494.jpg +Places365_test_00117495.jpg +Places365_test_00117500.jpg +Places365_test_00117543.jpg +Places365_test_00117554.jpg +Places365_test_00117556.jpg +Places365_test_00117563.jpg +Places365_test_00117578.jpg +Places365_test_00117581.jpg +Places365_test_00117596.jpg +Places365_test_00117618.jpg +Places365_test_00117625.jpg +Places365_test_00117628.jpg +Places365_test_00117638.jpg +Places365_test_00117687.jpg +Places365_test_00117691.jpg +Places365_test_00117703.jpg +Places365_test_00117704.jpg +Places365_test_00117713.jpg +Places365_test_00117722.jpg +Places365_test_00117732.jpg +Places365_test_00117741.jpg +Places365_test_00117760.jpg +Places365_test_00117777.jpg +Places365_test_00117782.jpg +Places365_test_00117797.jpg +Places365_test_00117819.jpg +Places365_test_00117821.jpg +Places365_test_00117822.jpg +Places365_test_00117828.jpg +Places365_test_00117847.jpg +Places365_test_00117859.jpg +Places365_test_00117868.jpg +Places365_test_00117884.jpg +Places365_test_00117893.jpg +Places365_test_00117895.jpg +Places365_test_00117900.jpg +Places365_test_00117910.jpg +Places365_test_00117931.jpg +Places365_test_00117950.jpg +Places365_test_00117955.jpg +Places365_test_00117963.jpg +Places365_test_00117975.jpg +Places365_test_00117982.jpg +Places365_test_00117993.jpg +Places365_test_00118003.jpg +Places365_test_00118008.jpg +Places365_test_00118012.jpg +Places365_test_00118021.jpg +Places365_test_00118022.jpg +Places365_test_00118034.jpg +Places365_test_00118046.jpg +Places365_test_00118077.jpg +Places365_test_00118099.jpg +Places365_test_00118119.jpg +Places365_test_00118123.jpg +Places365_test_00118129.jpg +Places365_test_00118132.jpg +Places365_test_00118136.jpg +Places365_test_00118140.jpg +Places365_test_00118148.jpg +Places365_test_00118150.jpg +Places365_test_00118170.jpg +Places365_test_00118174.jpg +Places365_test_00118183.jpg +Places365_test_00118185.jpg +Places365_test_00118191.jpg +Places365_test_00118192.jpg +Places365_test_00118194.jpg +Places365_test_00118195.jpg +Places365_test_00118203.jpg +Places365_test_00118209.jpg +Places365_test_00118220.jpg +Places365_test_00118223.jpg +Places365_test_00118248.jpg +Places365_test_00118251.jpg +Places365_test_00118261.jpg +Places365_test_00118292.jpg +Places365_test_00118293.jpg +Places365_test_00118308.jpg +Places365_test_00118313.jpg +Places365_test_00118317.jpg +Places365_test_00118326.jpg +Places365_test_00118335.jpg +Places365_test_00118363.jpg +Places365_test_00118368.jpg +Places365_test_00118372.jpg +Places365_test_00118384.jpg +Places365_test_00118388.jpg +Places365_test_00118414.jpg +Places365_test_00118437.jpg +Places365_test_00118442.jpg +Places365_test_00118448.jpg +Places365_test_00118458.jpg +Places365_test_00118481.jpg +Places365_test_00118504.jpg +Places365_test_00118506.jpg +Places365_test_00118530.jpg +Places365_test_00118555.jpg +Places365_test_00118558.jpg +Places365_test_00118571.jpg +Places365_test_00118575.jpg +Places365_test_00118586.jpg +Places365_test_00118590.jpg +Places365_test_00118601.jpg +Places365_test_00118608.jpg +Places365_test_00118645.jpg +Places365_test_00118650.jpg +Places365_test_00118656.jpg +Places365_test_00118659.jpg +Places365_test_00118661.jpg +Places365_test_00118665.jpg +Places365_test_00118670.jpg +Places365_test_00118680.jpg +Places365_test_00118684.jpg +Places365_test_00118686.jpg +Places365_test_00118688.jpg +Places365_test_00118693.jpg +Places365_test_00118695.jpg +Places365_test_00118697.jpg +Places365_test_00118701.jpg +Places365_test_00118708.jpg +Places365_test_00118717.jpg +Places365_test_00118738.jpg +Places365_test_00118745.jpg +Places365_test_00118752.jpg +Places365_test_00118762.jpg +Places365_test_00118788.jpg +Places365_test_00118817.jpg +Places365_test_00118881.jpg +Places365_test_00118884.jpg +Places365_test_00118891.jpg +Places365_test_00118902.jpg +Places365_test_00118903.jpg +Places365_test_00118923.jpg +Places365_test_00118942.jpg +Places365_test_00118955.jpg +Places365_test_00118957.jpg +Places365_test_00118958.jpg +Places365_test_00118973.jpg +Places365_test_00118976.jpg +Places365_test_00118991.jpg +Places365_test_00119011.jpg +Places365_test_00119019.jpg +Places365_test_00119020.jpg +Places365_test_00119028.jpg +Places365_test_00119045.jpg +Places365_test_00119063.jpg +Places365_test_00119073.jpg +Places365_test_00119077.jpg +Places365_test_00119089.jpg +Places365_test_00119111.jpg +Places365_test_00119117.jpg +Places365_test_00119121.jpg +Places365_test_00119136.jpg +Places365_test_00119151.jpg +Places365_test_00119171.jpg +Places365_test_00119172.jpg +Places365_test_00119188.jpg +Places365_test_00119224.jpg +Places365_test_00119234.jpg +Places365_test_00119236.jpg +Places365_test_00119260.jpg +Places365_test_00119267.jpg +Places365_test_00119275.jpg +Places365_test_00119296.jpg +Places365_test_00119312.jpg +Places365_test_00119333.jpg +Places365_test_00119350.jpg +Places365_test_00119353.jpg +Places365_test_00119368.jpg +Places365_test_00119372.jpg +Places365_test_00119410.jpg +Places365_test_00119420.jpg +Places365_test_00119433.jpg +Places365_test_00119440.jpg +Places365_test_00119459.jpg +Places365_test_00119461.jpg +Places365_test_00119463.jpg +Places365_test_00119469.jpg +Places365_test_00119470.jpg +Places365_test_00119474.jpg +Places365_test_00119492.jpg +Places365_test_00119499.jpg +Places365_test_00119528.jpg +Places365_test_00119542.jpg +Places365_test_00119551.jpg +Places365_test_00119569.jpg +Places365_test_00119573.jpg +Places365_test_00119603.jpg +Places365_test_00119611.jpg +Places365_test_00119612.jpg +Places365_test_00119621.jpg +Places365_test_00119625.jpg +Places365_test_00119632.jpg +Places365_test_00119661.jpg +Places365_test_00119663.jpg +Places365_test_00119665.jpg +Places365_test_00119703.jpg +Places365_test_00119708.jpg +Places365_test_00119719.jpg +Places365_test_00119742.jpg +Places365_test_00119746.jpg +Places365_test_00119747.jpg +Places365_test_00119751.jpg +Places365_test_00119777.jpg +Places365_test_00119778.jpg +Places365_test_00119788.jpg +Places365_test_00119795.jpg +Places365_test_00119800.jpg +Places365_test_00119807.jpg +Places365_test_00119883.jpg +Places365_test_00119889.jpg +Places365_test_00119890.jpg +Places365_test_00119921.jpg +Places365_test_00119927.jpg +Places365_test_00119931.jpg +Places365_test_00119935.jpg +Places365_test_00119940.jpg +Places365_test_00119946.jpg +Places365_test_00119950.jpg +Places365_test_00119952.jpg +Places365_test_00119982.jpg +Places365_test_00119988.jpg +Places365_test_00119991.jpg +Places365_test_00119994.jpg +Places365_test_00120006.jpg +Places365_test_00120017.jpg +Places365_test_00120056.jpg +Places365_test_00120062.jpg +Places365_test_00120069.jpg +Places365_test_00120073.jpg +Places365_test_00120102.jpg +Places365_test_00120113.jpg +Places365_test_00120133.jpg +Places365_test_00120137.jpg +Places365_test_00120146.jpg +Places365_test_00120149.jpg +Places365_test_00120199.jpg +Places365_test_00120206.jpg +Places365_test_00120210.jpg +Places365_test_00120217.jpg +Places365_test_00120219.jpg +Places365_test_00120226.jpg +Places365_test_00120229.jpg +Places365_test_00120255.jpg +Places365_test_00120261.jpg +Places365_test_00120292.jpg +Places365_test_00120293.jpg +Places365_test_00120304.jpg +Places365_test_00120307.jpg +Places365_test_00120315.jpg +Places365_test_00120319.jpg +Places365_test_00120331.jpg +Places365_test_00120354.jpg +Places365_test_00120355.jpg +Places365_test_00120363.jpg +Places365_test_00120365.jpg +Places365_test_00120370.jpg +Places365_test_00120382.jpg +Places365_test_00120389.jpg +Places365_test_00120393.jpg +Places365_test_00120405.jpg +Places365_test_00120407.jpg +Places365_test_00120413.jpg +Places365_test_00120446.jpg +Places365_test_00120453.jpg +Places365_test_00120469.jpg +Places365_test_00120470.jpg +Places365_test_00120471.jpg +Places365_test_00120484.jpg +Places365_test_00120493.jpg +Places365_test_00120513.jpg +Places365_test_00120519.jpg +Places365_test_00120527.jpg +Places365_test_00120537.jpg +Places365_test_00120552.jpg +Places365_test_00120556.jpg +Places365_test_00120559.jpg +Places365_test_00120563.jpg +Places365_test_00120573.jpg +Places365_test_00120579.jpg +Places365_test_00120582.jpg +Places365_test_00120585.jpg +Places365_test_00120586.jpg +Places365_test_00120587.jpg +Places365_test_00120609.jpg +Places365_test_00120612.jpg +Places365_test_00120614.jpg +Places365_test_00120617.jpg +Places365_test_00120630.jpg +Places365_test_00120634.jpg +Places365_test_00120650.jpg +Places365_test_00120654.jpg +Places365_test_00120660.jpg +Places365_test_00120668.jpg +Places365_test_00120677.jpg +Places365_test_00120689.jpg +Places365_test_00120692.jpg +Places365_test_00120710.jpg +Places365_test_00120718.jpg +Places365_test_00120725.jpg +Places365_test_00120740.jpg +Places365_test_00120754.jpg +Places365_test_00120759.jpg +Places365_test_00120774.jpg +Places365_test_00120778.jpg +Places365_test_00120779.jpg +Places365_test_00120791.jpg +Places365_test_00120799.jpg +Places365_test_00120814.jpg +Places365_test_00120817.jpg +Places365_test_00120839.jpg +Places365_test_00120857.jpg +Places365_test_00120878.jpg +Places365_test_00120882.jpg +Places365_test_00120887.jpg +Places365_test_00120902.jpg +Places365_test_00120909.jpg +Places365_test_00120915.jpg +Places365_test_00120925.jpg +Places365_test_00120933.jpg +Places365_test_00120963.jpg +Places365_test_00120991.jpg +Places365_test_00121007.jpg +Places365_test_00121011.jpg +Places365_test_00121019.jpg +Places365_test_00121028.jpg +Places365_test_00121047.jpg +Places365_test_00121051.jpg +Places365_test_00121090.jpg +Places365_test_00121091.jpg +Places365_test_00121095.jpg +Places365_test_00121097.jpg +Places365_test_00121130.jpg +Places365_test_00121135.jpg +Places365_test_00121139.jpg +Places365_test_00121152.jpg +Places365_test_00121161.jpg +Places365_test_00121168.jpg +Places365_test_00121172.jpg +Places365_test_00121196.jpg +Places365_test_00121197.jpg +Places365_test_00121207.jpg +Places365_test_00121209.jpg +Places365_test_00121218.jpg +Places365_test_00121241.jpg +Places365_test_00121247.jpg +Places365_test_00121255.jpg +Places365_test_00121270.jpg +Places365_test_00121275.jpg +Places365_test_00121291.jpg +Places365_test_00121311.jpg +Places365_test_00121326.jpg +Places365_test_00121332.jpg +Places365_test_00121342.jpg +Places365_test_00121356.jpg +Places365_test_00121358.jpg +Places365_test_00121379.jpg +Places365_test_00121396.jpg +Places365_test_00121442.jpg +Places365_test_00121454.jpg +Places365_test_00121472.jpg +Places365_test_00121477.jpg +Places365_test_00121487.jpg +Places365_test_00121489.jpg +Places365_test_00121494.jpg +Places365_test_00121498.jpg +Places365_test_00121506.jpg +Places365_test_00121511.jpg +Places365_test_00121531.jpg +Places365_test_00121533.jpg +Places365_test_00121550.jpg +Places365_test_00121563.jpg +Places365_test_00121583.jpg +Places365_test_00121591.jpg +Places365_test_00121602.jpg +Places365_test_00121615.jpg +Places365_test_00121618.jpg +Places365_test_00121620.jpg +Places365_test_00121623.jpg +Places365_test_00121658.jpg +Places365_test_00121664.jpg +Places365_test_00121665.jpg +Places365_test_00121667.jpg +Places365_test_00121691.jpg +Places365_test_00121695.jpg +Places365_test_00121715.jpg +Places365_test_00121718.jpg +Places365_test_00121726.jpg +Places365_test_00121762.jpg +Places365_test_00121768.jpg +Places365_test_00121776.jpg +Places365_test_00121783.jpg +Places365_test_00121811.jpg +Places365_test_00121812.jpg +Places365_test_00121818.jpg +Places365_test_00121831.jpg +Places365_test_00121832.jpg +Places365_test_00121834.jpg +Places365_test_00121889.jpg +Places365_test_00121906.jpg +Places365_test_00121917.jpg +Places365_test_00121935.jpg +Places365_test_00121937.jpg +Places365_test_00121948.jpg +Places365_test_00121952.jpg +Places365_test_00121959.jpg +Places365_test_00121973.jpg +Places365_test_00122006.jpg +Places365_test_00122015.jpg +Places365_test_00122019.jpg +Places365_test_00122035.jpg +Places365_test_00122041.jpg +Places365_test_00122045.jpg +Places365_test_00122048.jpg +Places365_test_00122051.jpg +Places365_test_00122064.jpg +Places365_test_00122095.jpg +Places365_test_00122099.jpg +Places365_test_00122108.jpg +Places365_test_00122120.jpg +Places365_test_00122131.jpg +Places365_test_00122136.jpg +Places365_test_00122141.jpg +Places365_test_00122150.jpg +Places365_test_00122154.jpg +Places365_test_00122155.jpg +Places365_test_00122161.jpg +Places365_test_00122198.jpg +Places365_test_00122212.jpg +Places365_test_00122260.jpg +Places365_test_00122265.jpg +Places365_test_00122272.jpg +Places365_test_00122274.jpg +Places365_test_00122281.jpg +Places365_test_00122287.jpg +Places365_test_00122288.jpg +Places365_test_00122299.jpg +Places365_test_00122300.jpg +Places365_test_00122318.jpg +Places365_test_00122329.jpg +Places365_test_00122333.jpg +Places365_test_00122336.jpg +Places365_test_00122342.jpg +Places365_test_00122345.jpg +Places365_test_00122348.jpg +Places365_test_00122349.jpg +Places365_test_00122354.jpg +Places365_test_00122376.jpg +Places365_test_00122384.jpg +Places365_test_00122387.jpg +Places365_test_00122393.jpg +Places365_test_00122436.jpg +Places365_test_00122463.jpg +Places365_test_00122465.jpg +Places365_test_00122475.jpg +Places365_test_00122502.jpg +Places365_test_00122503.jpg +Places365_test_00122517.jpg +Places365_test_00122544.jpg +Places365_test_00122545.jpg +Places365_test_00122556.jpg +Places365_test_00122579.jpg +Places365_test_00122588.jpg +Places365_test_00122590.jpg +Places365_test_00122595.jpg +Places365_test_00122596.jpg +Places365_test_00122652.jpg +Places365_test_00122658.jpg +Places365_test_00122662.jpg +Places365_test_00122678.jpg +Places365_test_00122681.jpg +Places365_test_00122692.jpg +Places365_test_00122696.jpg +Places365_test_00122701.jpg +Places365_test_00122717.jpg +Places365_test_00122727.jpg +Places365_test_00122747.jpg +Places365_test_00122750.jpg +Places365_test_00122754.jpg +Places365_test_00122767.jpg +Places365_test_00122778.jpg +Places365_test_00122793.jpg +Places365_test_00122798.jpg +Places365_test_00122804.jpg +Places365_test_00122823.jpg +Places365_test_00122852.jpg +Places365_test_00122896.jpg +Places365_test_00122899.jpg +Places365_test_00122902.jpg +Places365_test_00122910.jpg +Places365_test_00122923.jpg +Places365_test_00122927.jpg +Places365_test_00122936.jpg +Places365_test_00122943.jpg +Places365_test_00122954.jpg +Places365_test_00122958.jpg +Places365_test_00122974.jpg +Places365_test_00122975.jpg +Places365_test_00122981.jpg +Places365_test_00123000.jpg +Places365_test_00123001.jpg +Places365_test_00123004.jpg +Places365_test_00123024.jpg +Places365_test_00123051.jpg +Places365_test_00123055.jpg +Places365_test_00123064.jpg +Places365_test_00123071.jpg +Places365_test_00123074.jpg +Places365_test_00123078.jpg +Places365_test_00123102.jpg +Places365_test_00123107.jpg +Places365_test_00123125.jpg +Places365_test_00123126.jpg +Places365_test_00123138.jpg +Places365_test_00123150.jpg +Places365_test_00123154.jpg +Places365_test_00123161.jpg +Places365_test_00123191.jpg +Places365_test_00123199.jpg +Places365_test_00123201.jpg +Places365_test_00123210.jpg +Places365_test_00123224.jpg +Places365_test_00123258.jpg +Places365_test_00123261.jpg +Places365_test_00123263.jpg +Places365_test_00123264.jpg +Places365_test_00123276.jpg +Places365_test_00123279.jpg +Places365_test_00123291.jpg +Places365_test_00123306.jpg +Places365_test_00123326.jpg +Places365_test_00123333.jpg +Places365_test_00123335.jpg +Places365_test_00123336.jpg +Places365_test_00123341.jpg +Places365_test_00123344.jpg +Places365_test_00123363.jpg +Places365_test_00123407.jpg +Places365_test_00123418.jpg +Places365_test_00123422.jpg +Places365_test_00123442.jpg +Places365_test_00123446.jpg +Places365_test_00123458.jpg +Places365_test_00123483.jpg +Places365_test_00123492.jpg +Places365_test_00123496.jpg +Places365_test_00123511.jpg +Places365_test_00123532.jpg +Places365_test_00123555.jpg +Places365_test_00123559.jpg +Places365_test_00123582.jpg +Places365_test_00123592.jpg +Places365_test_00123605.jpg +Places365_test_00123608.jpg +Places365_test_00123617.jpg +Places365_test_00123621.jpg +Places365_test_00123628.jpg +Places365_test_00123650.jpg +Places365_test_00123660.jpg +Places365_test_00123677.jpg +Places365_test_00123691.jpg +Places365_test_00123697.jpg +Places365_test_00123698.jpg +Places365_test_00123700.jpg +Places365_test_00123709.jpg +Places365_test_00123717.jpg +Places365_test_00123718.jpg +Places365_test_00123731.jpg +Places365_test_00123738.jpg +Places365_test_00123741.jpg +Places365_test_00123763.jpg +Places365_test_00123782.jpg +Places365_test_00123809.jpg +Places365_test_00123811.jpg +Places365_test_00123820.jpg +Places365_test_00123828.jpg +Places365_test_00123866.jpg +Places365_test_00123882.jpg +Places365_test_00123883.jpg +Places365_test_00123884.jpg +Places365_test_00123930.jpg +Places365_test_00123944.jpg +Places365_test_00123950.jpg +Places365_test_00123952.jpg +Places365_test_00123975.jpg +Places365_test_00123985.jpg +Places365_test_00124000.jpg +Places365_test_00124001.jpg +Places365_test_00124012.jpg +Places365_test_00124020.jpg +Places365_test_00124048.jpg +Places365_test_00124054.jpg +Places365_test_00124058.jpg +Places365_test_00124059.jpg +Places365_test_00124068.jpg +Places365_test_00124074.jpg +Places365_test_00124078.jpg +Places365_test_00124081.jpg +Places365_test_00124093.jpg +Places365_test_00124100.jpg +Places365_test_00124106.jpg +Places365_test_00124114.jpg +Places365_test_00124116.jpg +Places365_test_00124126.jpg +Places365_test_00124148.jpg +Places365_test_00124151.jpg +Places365_test_00124153.jpg +Places365_test_00124155.jpg +Places365_test_00124182.jpg +Places365_test_00124206.jpg +Places365_test_00124250.jpg +Places365_test_00124254.jpg +Places365_test_00124257.jpg +Places365_test_00124259.jpg +Places365_test_00124260.jpg +Places365_test_00124285.jpg +Places365_test_00124290.jpg +Places365_test_00124304.jpg +Places365_test_00124305.jpg +Places365_test_00124307.jpg +Places365_test_00124313.jpg +Places365_test_00124317.jpg +Places365_test_00124326.jpg +Places365_test_00124342.jpg +Places365_test_00124354.jpg +Places365_test_00124398.jpg +Places365_test_00124428.jpg +Places365_test_00124468.jpg +Places365_test_00124489.jpg +Places365_test_00124504.jpg +Places365_test_00124511.jpg +Places365_test_00124517.jpg +Places365_test_00124523.jpg +Places365_test_00124535.jpg +Places365_test_00124550.jpg +Places365_test_00124564.jpg +Places365_test_00124570.jpg +Places365_test_00124583.jpg +Places365_test_00124585.jpg +Places365_test_00124596.jpg +Places365_test_00124602.jpg +Places365_test_00124623.jpg +Places365_test_00124627.jpg +Places365_test_00124643.jpg +Places365_test_00124651.jpg +Places365_test_00124662.jpg +Places365_test_00124665.jpg +Places365_test_00124682.jpg +Places365_test_00124698.jpg +Places365_test_00124717.jpg +Places365_test_00124723.jpg +Places365_test_00124751.jpg +Places365_test_00124753.jpg +Places365_test_00124757.jpg +Places365_test_00124763.jpg +Places365_test_00124764.jpg +Places365_test_00124779.jpg +Places365_test_00124813.jpg +Places365_test_00124815.jpg +Places365_test_00124822.jpg +Places365_test_00124838.jpg +Places365_test_00124861.jpg +Places365_test_00124862.jpg +Places365_test_00124864.jpg +Places365_test_00124877.jpg +Places365_test_00124887.jpg +Places365_test_00124893.jpg +Places365_test_00124895.jpg +Places365_test_00124909.jpg +Places365_test_00124911.jpg +Places365_test_00124935.jpg +Places365_test_00124944.jpg +Places365_test_00124959.jpg +Places365_test_00124970.jpg +Places365_test_00124989.jpg +Places365_test_00125016.jpg +Places365_test_00125037.jpg +Places365_test_00125038.jpg +Places365_test_00125054.jpg +Places365_test_00125067.jpg +Places365_test_00125086.jpg +Places365_test_00125114.jpg +Places365_test_00125120.jpg +Places365_test_00125133.jpg +Places365_test_00125171.jpg +Places365_test_00125180.jpg +Places365_test_00125181.jpg +Places365_test_00125193.jpg +Places365_test_00125196.jpg +Places365_test_00125197.jpg +Places365_test_00125205.jpg +Places365_test_00125206.jpg +Places365_test_00125208.jpg +Places365_test_00125211.jpg +Places365_test_00125222.jpg +Places365_test_00125229.jpg +Places365_test_00125243.jpg +Places365_test_00125246.jpg +Places365_test_00125257.jpg +Places365_test_00125319.jpg +Places365_test_00125320.jpg +Places365_test_00125321.jpg +Places365_test_00125330.jpg +Places365_test_00125356.jpg +Places365_test_00125364.jpg +Places365_test_00125387.jpg +Places365_test_00125391.jpg +Places365_test_00125392.jpg +Places365_test_00125396.jpg +Places365_test_00125437.jpg +Places365_test_00125439.jpg +Places365_test_00125459.jpg +Places365_test_00125468.jpg +Places365_test_00125469.jpg +Places365_test_00125481.jpg +Places365_test_00125497.jpg +Places365_test_00125536.jpg +Places365_test_00125538.jpg +Places365_test_00125547.jpg +Places365_test_00125553.jpg +Places365_test_00125594.jpg +Places365_test_00125596.jpg +Places365_test_00125597.jpg +Places365_test_00125603.jpg +Places365_test_00125619.jpg +Places365_test_00125620.jpg +Places365_test_00125623.jpg +Places365_test_00125639.jpg +Places365_test_00125653.jpg +Places365_test_00125658.jpg +Places365_test_00125668.jpg +Places365_test_00125676.jpg +Places365_test_00125678.jpg +Places365_test_00125688.jpg +Places365_test_00125700.jpg +Places365_test_00125716.jpg +Places365_test_00125725.jpg +Places365_test_00125739.jpg +Places365_test_00125745.jpg +Places365_test_00125746.jpg +Places365_test_00125758.jpg +Places365_test_00125768.jpg +Places365_test_00125771.jpg +Places365_test_00125772.jpg +Places365_test_00125788.jpg +Places365_test_00125789.jpg +Places365_test_00125833.jpg +Places365_test_00125837.jpg +Places365_test_00125849.jpg +Places365_test_00125866.jpg +Places365_test_00125879.jpg +Places365_test_00125888.jpg +Places365_test_00125897.jpg +Places365_test_00125906.jpg +Places365_test_00125912.jpg +Places365_test_00125913.jpg +Places365_test_00125926.jpg +Places365_test_00125928.jpg +Places365_test_00125929.jpg +Places365_test_00125935.jpg +Places365_test_00125940.jpg +Places365_test_00125947.jpg +Places365_test_00125954.jpg +Places365_test_00125968.jpg +Places365_test_00125969.jpg +Places365_test_00125970.jpg +Places365_test_00126007.jpg +Places365_test_00126015.jpg +Places365_test_00126020.jpg +Places365_test_00126023.jpg +Places365_test_00126044.jpg +Places365_test_00126090.jpg +Places365_test_00126115.jpg +Places365_test_00126118.jpg +Places365_test_00126128.jpg +Places365_test_00126131.jpg +Places365_test_00126144.jpg +Places365_test_00126179.jpg +Places365_test_00126194.jpg +Places365_test_00126196.jpg +Places365_test_00126210.jpg +Places365_test_00126256.jpg +Places365_test_00126269.jpg +Places365_test_00126270.jpg +Places365_test_00126271.jpg +Places365_test_00126280.jpg +Places365_test_00126305.jpg +Places365_test_00126307.jpg +Places365_test_00126308.jpg +Places365_test_00126324.jpg +Places365_test_00126352.jpg +Places365_test_00126371.jpg +Places365_test_00126372.jpg +Places365_test_00126388.jpg +Places365_test_00126391.jpg +Places365_test_00126405.jpg +Places365_test_00126411.jpg +Places365_test_00126412.jpg +Places365_test_00126438.jpg +Places365_test_00126471.jpg +Places365_test_00126487.jpg +Places365_test_00126489.jpg +Places365_test_00126490.jpg +Places365_test_00126493.jpg +Places365_test_00126501.jpg +Places365_test_00126511.jpg +Places365_test_00126518.jpg +Places365_test_00126520.jpg +Places365_test_00126536.jpg +Places365_test_00126545.jpg +Places365_test_00126555.jpg +Places365_test_00126560.jpg +Places365_test_00126571.jpg +Places365_test_00126608.jpg +Places365_test_00126610.jpg +Places365_test_00126631.jpg +Places365_test_00126652.jpg +Places365_test_00126655.jpg +Places365_test_00126664.jpg +Places365_test_00126669.jpg +Places365_test_00126682.jpg +Places365_test_00126684.jpg +Places365_test_00126698.jpg +Places365_test_00126710.jpg +Places365_test_00126716.jpg +Places365_test_00126738.jpg +Places365_test_00126751.jpg +Places365_test_00126769.jpg +Places365_test_00126772.jpg +Places365_test_00126791.jpg +Places365_test_00126811.jpg +Places365_test_00126816.jpg +Places365_test_00126817.jpg +Places365_test_00126818.jpg +Places365_test_00126826.jpg +Places365_test_00126829.jpg +Places365_test_00126836.jpg +Places365_test_00126841.jpg +Places365_test_00126842.jpg +Places365_test_00126854.jpg +Places365_test_00126873.jpg +Places365_test_00126877.jpg +Places365_test_00126912.jpg +Places365_test_00126941.jpg +Places365_test_00126942.jpg +Places365_test_00126948.jpg +Places365_test_00126969.jpg +Places365_test_00126974.jpg +Places365_test_00126990.jpg +Places365_test_00126999.jpg +Places365_test_00127019.jpg +Places365_test_00127021.jpg +Places365_test_00127034.jpg +Places365_test_00127057.jpg +Places365_test_00127081.jpg +Places365_test_00127086.jpg +Places365_test_00127090.jpg +Places365_test_00127092.jpg +Places365_test_00127113.jpg +Places365_test_00127117.jpg +Places365_test_00127119.jpg +Places365_test_00127157.jpg +Places365_test_00127166.jpg +Places365_test_00127187.jpg +Places365_test_00127199.jpg +Places365_test_00127200.jpg +Places365_test_00127202.jpg +Places365_test_00127205.jpg +Places365_test_00127233.jpg +Places365_test_00127239.jpg +Places365_test_00127243.jpg +Places365_test_00127244.jpg +Places365_test_00127264.jpg +Places365_test_00127308.jpg +Places365_test_00127321.jpg +Places365_test_00127350.jpg +Places365_test_00127358.jpg +Places365_test_00127374.jpg +Places365_test_00127382.jpg +Places365_test_00127384.jpg +Places365_test_00127389.jpg +Places365_test_00127392.jpg +Places365_test_00127415.jpg +Places365_test_00127423.jpg +Places365_test_00127433.jpg +Places365_test_00127436.jpg +Places365_test_00127450.jpg +Places365_test_00127480.jpg +Places365_test_00127511.jpg +Places365_test_00127521.jpg +Places365_test_00127525.jpg +Places365_test_00127544.jpg +Places365_test_00127546.jpg +Places365_test_00127566.jpg +Places365_test_00127580.jpg +Places365_test_00127585.jpg +Places365_test_00127619.jpg +Places365_test_00127627.jpg +Places365_test_00127633.jpg +Places365_test_00127638.jpg +Places365_test_00127652.jpg +Places365_test_00127659.jpg +Places365_test_00127685.jpg +Places365_test_00127690.jpg +Places365_test_00127698.jpg +Places365_test_00127714.jpg +Places365_test_00127717.jpg +Places365_test_00127723.jpg +Places365_test_00127729.jpg +Places365_test_00127738.jpg +Places365_test_00127744.jpg +Places365_test_00127750.jpg +Places365_test_00127753.jpg +Places365_test_00127756.jpg +Places365_test_00127761.jpg +Places365_test_00127762.jpg +Places365_test_00127806.jpg +Places365_test_00127824.jpg +Places365_test_00127826.jpg +Places365_test_00127828.jpg +Places365_test_00127843.jpg +Places365_test_00127845.jpg +Places365_test_00127847.jpg +Places365_test_00127852.jpg +Places365_test_00127858.jpg +Places365_test_00127860.jpg +Places365_test_00127865.jpg +Places365_test_00127899.jpg +Places365_test_00127902.jpg +Places365_test_00127919.jpg +Places365_test_00127923.jpg +Places365_test_00127926.jpg +Places365_test_00127935.jpg +Places365_test_00127937.jpg +Places365_test_00127947.jpg +Places365_test_00127954.jpg +Places365_test_00127960.jpg +Places365_test_00127964.jpg +Places365_test_00127973.jpg +Places365_test_00127990.jpg +Places365_test_00128004.jpg +Places365_test_00128014.jpg +Places365_test_00128018.jpg +Places365_test_00128080.jpg +Places365_test_00128081.jpg +Places365_test_00128082.jpg +Places365_test_00128104.jpg +Places365_test_00128110.jpg +Places365_test_00128115.jpg +Places365_test_00128149.jpg +Places365_test_00128159.jpg +Places365_test_00128166.jpg +Places365_test_00128171.jpg +Places365_test_00128191.jpg +Places365_test_00128207.jpg +Places365_test_00128209.jpg +Places365_test_00128215.jpg +Places365_test_00128219.jpg +Places365_test_00128230.jpg +Places365_test_00128269.jpg +Places365_test_00128277.jpg +Places365_test_00128279.jpg +Places365_test_00128281.jpg +Places365_test_00128289.jpg +Places365_test_00128295.jpg +Places365_test_00128299.jpg +Places365_test_00128300.jpg +Places365_test_00128324.jpg +Places365_test_00128326.jpg +Places365_test_00128337.jpg +Places365_test_00128362.jpg +Places365_test_00128402.jpg +Places365_test_00128415.jpg +Places365_test_00128422.jpg +Places365_test_00128449.jpg +Places365_test_00128460.jpg +Places365_test_00128463.jpg +Places365_test_00128475.jpg +Places365_test_00128476.jpg +Places365_test_00128496.jpg +Places365_test_00128505.jpg +Places365_test_00128516.jpg +Places365_test_00128523.jpg +Places365_test_00128565.jpg +Places365_test_00128581.jpg +Places365_test_00128582.jpg +Places365_test_00128594.jpg +Places365_test_00128596.jpg +Places365_test_00128603.jpg +Places365_test_00128608.jpg +Places365_test_00128617.jpg +Places365_test_00128628.jpg +Places365_test_00128637.jpg +Places365_test_00128652.jpg +Places365_test_00128655.jpg +Places365_test_00128661.jpg +Places365_test_00128678.jpg +Places365_test_00128681.jpg +Places365_test_00128683.jpg +Places365_test_00128684.jpg +Places365_test_00128699.jpg +Places365_test_00128749.jpg +Places365_test_00128756.jpg +Places365_test_00128762.jpg +Places365_test_00128776.jpg +Places365_test_00128785.jpg +Places365_test_00128802.jpg +Places365_test_00128804.jpg +Places365_test_00128815.jpg +Places365_test_00128817.jpg +Places365_test_00128836.jpg +Places365_test_00128842.jpg +Places365_test_00128865.jpg +Places365_test_00128868.jpg +Places365_test_00128881.jpg +Places365_test_00128900.jpg +Places365_test_00128913.jpg +Places365_test_00128918.jpg +Places365_test_00128921.jpg +Places365_test_00128937.jpg +Places365_test_00128939.jpg +Places365_test_00128964.jpg +Places365_test_00128971.jpg +Places365_test_00128983.jpg +Places365_test_00128988.jpg +Places365_test_00128993.jpg +Places365_test_00128998.jpg +Places365_test_00128999.jpg +Places365_test_00129013.jpg +Places365_test_00129030.jpg +Places365_test_00129036.jpg +Places365_test_00129058.jpg +Places365_test_00129063.jpg +Places365_test_00129092.jpg +Places365_test_00129095.jpg +Places365_test_00129099.jpg +Places365_test_00129142.jpg +Places365_test_00129145.jpg +Places365_test_00129167.jpg +Places365_test_00129181.jpg +Places365_test_00129218.jpg +Places365_test_00129252.jpg +Places365_test_00129254.jpg +Places365_test_00129258.jpg +Places365_test_00129259.jpg +Places365_test_00129267.jpg +Places365_test_00129279.jpg +Places365_test_00129287.jpg +Places365_test_00129293.jpg +Places365_test_00129310.jpg +Places365_test_00129347.jpg +Places365_test_00129379.jpg +Places365_test_00129388.jpg +Places365_test_00129398.jpg +Places365_test_00129405.jpg +Places365_test_00129408.jpg +Places365_test_00129420.jpg +Places365_test_00129426.jpg +Places365_test_00129456.jpg +Places365_test_00129458.jpg +Places365_test_00129471.jpg +Places365_test_00129475.jpg +Places365_test_00129476.jpg +Places365_test_00129492.jpg +Places365_test_00129509.jpg +Places365_test_00129514.jpg +Places365_test_00129525.jpg +Places365_test_00129539.jpg +Places365_test_00129543.jpg +Places365_test_00129545.jpg +Places365_test_00129556.jpg +Places365_test_00129577.jpg +Places365_test_00129589.jpg +Places365_test_00129614.jpg +Places365_test_00129619.jpg +Places365_test_00129624.jpg +Places365_test_00129626.jpg +Places365_test_00129632.jpg +Places365_test_00129665.jpg +Places365_test_00129669.jpg +Places365_test_00129672.jpg +Places365_test_00129688.jpg +Places365_test_00129692.jpg +Places365_test_00129698.jpg +Places365_test_00129715.jpg +Places365_test_00129720.jpg +Places365_test_00129729.jpg +Places365_test_00129744.jpg +Places365_test_00129760.jpg +Places365_test_00129780.jpg +Places365_test_00129782.jpg +Places365_test_00129801.jpg +Places365_test_00129804.jpg +Places365_test_00129819.jpg +Places365_test_00129843.jpg +Places365_test_00129857.jpg +Places365_test_00129868.jpg +Places365_test_00129881.jpg +Places365_test_00129907.jpg +Places365_test_00129916.jpg +Places365_test_00129917.jpg +Places365_test_00129989.jpg +Places365_test_00130002.jpg +Places365_test_00130010.jpg +Places365_test_00130011.jpg +Places365_test_00130014.jpg +Places365_test_00130027.jpg +Places365_test_00130030.jpg +Places365_test_00130042.jpg +Places365_test_00130054.jpg +Places365_test_00130079.jpg +Places365_test_00130080.jpg +Places365_test_00130092.jpg +Places365_test_00130097.jpg +Places365_test_00130106.jpg +Places365_test_00130123.jpg +Places365_test_00130124.jpg +Places365_test_00130127.jpg +Places365_test_00130138.jpg +Places365_test_00130147.jpg +Places365_test_00130158.jpg +Places365_test_00130160.jpg +Places365_test_00130187.jpg +Places365_test_00130194.jpg +Places365_test_00130202.jpg +Places365_test_00130206.jpg +Places365_test_00130227.jpg +Places365_test_00130261.jpg +Places365_test_00130262.jpg +Places365_test_00130264.jpg +Places365_test_00130271.jpg +Places365_test_00130272.jpg +Places365_test_00130276.jpg +Places365_test_00130279.jpg +Places365_test_00130288.jpg +Places365_test_00130293.jpg +Places365_test_00130299.jpg +Places365_test_00130309.jpg +Places365_test_00130311.jpg +Places365_test_00130314.jpg +Places365_test_00130318.jpg +Places365_test_00130323.jpg +Places365_test_00130334.jpg +Places365_test_00130348.jpg +Places365_test_00130353.jpg +Places365_test_00130371.jpg +Places365_test_00130385.jpg +Places365_test_00130441.jpg +Places365_test_00130456.jpg +Places365_test_00130479.jpg +Places365_test_00130497.jpg +Places365_test_00130500.jpg +Places365_test_00130501.jpg +Places365_test_00130527.jpg +Places365_test_00130531.jpg +Places365_test_00130546.jpg +Places365_test_00130561.jpg +Places365_test_00130577.jpg +Places365_test_00130579.jpg +Places365_test_00130593.jpg +Places365_test_00130598.jpg +Places365_test_00130600.jpg +Places365_test_00130605.jpg +Places365_test_00130606.jpg +Places365_test_00130616.jpg +Places365_test_00130617.jpg +Places365_test_00130634.jpg +Places365_test_00130651.jpg +Places365_test_00130655.jpg +Places365_test_00130696.jpg +Places365_test_00130699.jpg +Places365_test_00130705.jpg +Places365_test_00130715.jpg +Places365_test_00130722.jpg +Places365_test_00130724.jpg +Places365_test_00130736.jpg +Places365_test_00130747.jpg +Places365_test_00130752.jpg +Places365_test_00130775.jpg +Places365_test_00130781.jpg +Places365_test_00130797.jpg +Places365_test_00130808.jpg +Places365_test_00130815.jpg +Places365_test_00130817.jpg +Places365_test_00130827.jpg +Places365_test_00130837.jpg +Places365_test_00130845.jpg +Places365_test_00130854.jpg +Places365_test_00130870.jpg +Places365_test_00130871.jpg +Places365_test_00130889.jpg +Places365_test_00130899.jpg +Places365_test_00130907.jpg +Places365_test_00130910.jpg +Places365_test_00130919.jpg +Places365_test_00130935.jpg +Places365_test_00130941.jpg +Places365_test_00130942.jpg +Places365_test_00130966.jpg +Places365_test_00130967.jpg +Places365_test_00130973.jpg +Places365_test_00130975.jpg +Places365_test_00130980.jpg +Places365_test_00130989.jpg +Places365_test_00131026.jpg +Places365_test_00131030.jpg +Places365_test_00131032.jpg +Places365_test_00131056.jpg +Places365_test_00131078.jpg +Places365_test_00131080.jpg +Places365_test_00131085.jpg +Places365_test_00131097.jpg +Places365_test_00131100.jpg +Places365_test_00131105.jpg +Places365_test_00131108.jpg +Places365_test_00131115.jpg +Places365_test_00131126.jpg +Places365_test_00131133.jpg +Places365_test_00131135.jpg +Places365_test_00131156.jpg +Places365_test_00131161.jpg +Places365_test_00131179.jpg +Places365_test_00131189.jpg +Places365_test_00131208.jpg +Places365_test_00131212.jpg +Places365_test_00131213.jpg +Places365_test_00131241.jpg +Places365_test_00131251.jpg +Places365_test_00131263.jpg +Places365_test_00131268.jpg +Places365_test_00131269.jpg +Places365_test_00131299.jpg +Places365_test_00131300.jpg +Places365_test_00131306.jpg +Places365_test_00131327.jpg +Places365_test_00131345.jpg +Places365_test_00131346.jpg +Places365_test_00131369.jpg +Places365_test_00131383.jpg +Places365_test_00131389.jpg +Places365_test_00131391.jpg +Places365_test_00131397.jpg +Places365_test_00131399.jpg +Places365_test_00131410.jpg +Places365_test_00131421.jpg +Places365_test_00131460.jpg +Places365_test_00131513.jpg +Places365_test_00131526.jpg +Places365_test_00131531.jpg +Places365_test_00131546.jpg +Places365_test_00131555.jpg +Places365_test_00131574.jpg +Places365_test_00131613.jpg +Places365_test_00131615.jpg +Places365_test_00131632.jpg +Places365_test_00131642.jpg +Places365_test_00131644.jpg +Places365_test_00131655.jpg +Places365_test_00131661.jpg +Places365_test_00131664.jpg +Places365_test_00131665.jpg +Places365_test_00131680.jpg +Places365_test_00131701.jpg +Places365_test_00131717.jpg +Places365_test_00131720.jpg +Places365_test_00131721.jpg +Places365_test_00131798.jpg +Places365_test_00131800.jpg +Places365_test_00131820.jpg +Places365_test_00131827.jpg +Places365_test_00131828.jpg +Places365_test_00131852.jpg +Places365_test_00131870.jpg +Places365_test_00131907.jpg +Places365_test_00131918.jpg +Places365_test_00131928.jpg +Places365_test_00131933.jpg +Places365_test_00131935.jpg +Places365_test_00131936.jpg +Places365_test_00131950.jpg +Places365_test_00131958.jpg +Places365_test_00132022.jpg +Places365_test_00132025.jpg +Places365_test_00132039.jpg +Places365_test_00132064.jpg +Places365_test_00132076.jpg +Places365_test_00132091.jpg +Places365_test_00132094.jpg +Places365_test_00132103.jpg +Places365_test_00132114.jpg +Places365_test_00132140.jpg +Places365_test_00132143.jpg +Places365_test_00132160.jpg +Places365_test_00132161.jpg +Places365_test_00132165.jpg +Places365_test_00132187.jpg +Places365_test_00132188.jpg +Places365_test_00132194.jpg +Places365_test_00132197.jpg +Places365_test_00132253.jpg +Places365_test_00132254.jpg +Places365_test_00132262.jpg +Places365_test_00132286.jpg +Places365_test_00132287.jpg +Places365_test_00132324.jpg +Places365_test_00132354.jpg +Places365_test_00132375.jpg +Places365_test_00132383.jpg +Places365_test_00132390.jpg +Places365_test_00132405.jpg +Places365_test_00132421.jpg +Places365_test_00132430.jpg +Places365_test_00132442.jpg +Places365_test_00132451.jpg +Places365_test_00132484.jpg +Places365_test_00132485.jpg +Places365_test_00132510.jpg +Places365_test_00132514.jpg +Places365_test_00132522.jpg +Places365_test_00132536.jpg +Places365_test_00132541.jpg +Places365_test_00132550.jpg +Places365_test_00132579.jpg +Places365_test_00132588.jpg +Places365_test_00132595.jpg +Places365_test_00132598.jpg +Places365_test_00132624.jpg +Places365_test_00132635.jpg +Places365_test_00132640.jpg +Places365_test_00132643.jpg +Places365_test_00132656.jpg +Places365_test_00132660.jpg +Places365_test_00132669.jpg +Places365_test_00132673.jpg +Places365_test_00132677.jpg +Places365_test_00132684.jpg +Places365_test_00132685.jpg +Places365_test_00132709.jpg +Places365_test_00132728.jpg +Places365_test_00132730.jpg +Places365_test_00132731.jpg +Places365_test_00132735.jpg +Places365_test_00132754.jpg +Places365_test_00132760.jpg +Places365_test_00132768.jpg +Places365_test_00132771.jpg +Places365_test_00132785.jpg +Places365_test_00132804.jpg +Places365_test_00132829.jpg +Places365_test_00132833.jpg +Places365_test_00132834.jpg +Places365_test_00132845.jpg +Places365_test_00132847.jpg +Places365_test_00132862.jpg +Places365_test_00132874.jpg +Places365_test_00132884.jpg +Places365_test_00132908.jpg +Places365_test_00132915.jpg +Places365_test_00132917.jpg +Places365_test_00132926.jpg +Places365_test_00132932.jpg +Places365_test_00132941.jpg +Places365_test_00132952.jpg +Places365_test_00132966.jpg +Places365_test_00132969.jpg +Places365_test_00132973.jpg +Places365_test_00132986.jpg +Places365_test_00133025.jpg +Places365_test_00133034.jpg +Places365_test_00133045.jpg +Places365_test_00133053.jpg +Places365_test_00133061.jpg +Places365_test_00133067.jpg +Places365_test_00133097.jpg +Places365_test_00133123.jpg +Places365_test_00133135.jpg +Places365_test_00133141.jpg +Places365_test_00133155.jpg +Places365_test_00133165.jpg +Places365_test_00133192.jpg +Places365_test_00133208.jpg +Places365_test_00133216.jpg +Places365_test_00133219.jpg +Places365_test_00133226.jpg +Places365_test_00133231.jpg +Places365_test_00133240.jpg +Places365_test_00133255.jpg +Places365_test_00133257.jpg +Places365_test_00133261.jpg +Places365_test_00133266.jpg +Places365_test_00133272.jpg +Places365_test_00133284.jpg +Places365_test_00133317.jpg +Places365_test_00133321.jpg +Places365_test_00133325.jpg +Places365_test_00133326.jpg +Places365_test_00133341.jpg +Places365_test_00133347.jpg +Places365_test_00133353.jpg +Places365_test_00133366.jpg +Places365_test_00133369.jpg +Places365_test_00133379.jpg +Places365_test_00133380.jpg +Places365_test_00133383.jpg +Places365_test_00133395.jpg +Places365_test_00133410.jpg +Places365_test_00133439.jpg +Places365_test_00133448.jpg +Places365_test_00133483.jpg +Places365_test_00133486.jpg +Places365_test_00133487.jpg +Places365_test_00133498.jpg +Places365_test_00133509.jpg +Places365_test_00133541.jpg +Places365_test_00133544.jpg +Places365_test_00133546.jpg +Places365_test_00133550.jpg +Places365_test_00133554.jpg +Places365_test_00133565.jpg +Places365_test_00133575.jpg +Places365_test_00133578.jpg +Places365_test_00133585.jpg +Places365_test_00133589.jpg +Places365_test_00133606.jpg +Places365_test_00133616.jpg +Places365_test_00133626.jpg +Places365_test_00133634.jpg +Places365_test_00133642.jpg +Places365_test_00133645.jpg +Places365_test_00133647.jpg +Places365_test_00133654.jpg +Places365_test_00133658.jpg +Places365_test_00133680.jpg +Places365_test_00133696.jpg +Places365_test_00133699.jpg +Places365_test_00133714.jpg +Places365_test_00133720.jpg +Places365_test_00133733.jpg +Places365_test_00133738.jpg +Places365_test_00133755.jpg +Places365_test_00133764.jpg +Places365_test_00133765.jpg +Places365_test_00133766.jpg +Places365_test_00133784.jpg +Places365_test_00133788.jpg +Places365_test_00133816.jpg +Places365_test_00133824.jpg +Places365_test_00133838.jpg +Places365_test_00133843.jpg +Places365_test_00133888.jpg +Places365_test_00133890.jpg +Places365_test_00133896.jpg +Places365_test_00133902.jpg +Places365_test_00133904.jpg +Places365_test_00133920.jpg +Places365_test_00133933.jpg +Places365_test_00133944.jpg +Places365_test_00133947.jpg +Places365_test_00133974.jpg +Places365_test_00134000.jpg +Places365_test_00134008.jpg +Places365_test_00134010.jpg +Places365_test_00134019.jpg +Places365_test_00134024.jpg +Places365_test_00134035.jpg +Places365_test_00134040.jpg +Places365_test_00134056.jpg +Places365_test_00134082.jpg +Places365_test_00134087.jpg +Places365_test_00134105.jpg +Places365_test_00134114.jpg +Places365_test_00134129.jpg +Places365_test_00134147.jpg +Places365_test_00134152.jpg +Places365_test_00134163.jpg +Places365_test_00134179.jpg +Places365_test_00134187.jpg +Places365_test_00134201.jpg +Places365_test_00134208.jpg +Places365_test_00134248.jpg +Places365_test_00134258.jpg +Places365_test_00134294.jpg +Places365_test_00134296.jpg +Places365_test_00134297.jpg +Places365_test_00134302.jpg +Places365_test_00134311.jpg +Places365_test_00134316.jpg +Places365_test_00134319.jpg +Places365_test_00134322.jpg +Places365_test_00134349.jpg +Places365_test_00134376.jpg +Places365_test_00134400.jpg +Places365_test_00134401.jpg +Places365_test_00134428.jpg +Places365_test_00134429.jpg +Places365_test_00134441.jpg +Places365_test_00134474.jpg +Places365_test_00134485.jpg +Places365_test_00134488.jpg +Places365_test_00134490.jpg +Places365_test_00134508.jpg +Places365_test_00134514.jpg +Places365_test_00134529.jpg +Places365_test_00134545.jpg +Places365_test_00134546.jpg +Places365_test_00134563.jpg +Places365_test_00134564.jpg +Places365_test_00134572.jpg +Places365_test_00134590.jpg +Places365_test_00134600.jpg +Places365_test_00134605.jpg +Places365_test_00134616.jpg +Places365_test_00134620.jpg +Places365_test_00134633.jpg +Places365_test_00134640.jpg +Places365_test_00134642.jpg +Places365_test_00134644.jpg +Places365_test_00134653.jpg +Places365_test_00134654.jpg +Places365_test_00134666.jpg +Places365_test_00134678.jpg +Places365_test_00134709.jpg +Places365_test_00134721.jpg +Places365_test_00134768.jpg +Places365_test_00134787.jpg +Places365_test_00134788.jpg +Places365_test_00134794.jpg +Places365_test_00134796.jpg +Places365_test_00134799.jpg +Places365_test_00134820.jpg +Places365_test_00134826.jpg +Places365_test_00134842.jpg +Places365_test_00134852.jpg +Places365_test_00134853.jpg +Places365_test_00134868.jpg +Places365_test_00134883.jpg +Places365_test_00134889.jpg +Places365_test_00134920.jpg +Places365_test_00134923.jpg +Places365_test_00134926.jpg +Places365_test_00134946.jpg +Places365_test_00134987.jpg +Places365_test_00135018.jpg +Places365_test_00135019.jpg +Places365_test_00135020.jpg +Places365_test_00135023.jpg +Places365_test_00135027.jpg +Places365_test_00135033.jpg +Places365_test_00135047.jpg +Places365_test_00135050.jpg +Places365_test_00135058.jpg +Places365_test_00135065.jpg +Places365_test_00135066.jpg +Places365_test_00135068.jpg +Places365_test_00135094.jpg +Places365_test_00135129.jpg +Places365_test_00135130.jpg +Places365_test_00135142.jpg +Places365_test_00135149.jpg +Places365_test_00135157.jpg +Places365_test_00135168.jpg +Places365_test_00135169.jpg +Places365_test_00135183.jpg +Places365_test_00135184.jpg +Places365_test_00135209.jpg +Places365_test_00135212.jpg +Places365_test_00135223.jpg +Places365_test_00135259.jpg +Places365_test_00135261.jpg +Places365_test_00135265.jpg +Places365_test_00135293.jpg +Places365_test_00135300.jpg +Places365_test_00135304.jpg +Places365_test_00135310.jpg +Places365_test_00135314.jpg +Places365_test_00135322.jpg +Places365_test_00135327.jpg +Places365_test_00135332.jpg +Places365_test_00135359.jpg +Places365_test_00135407.jpg +Places365_test_00135410.jpg +Places365_test_00135428.jpg +Places365_test_00135440.jpg +Places365_test_00135461.jpg +Places365_test_00135477.jpg +Places365_test_00135487.jpg +Places365_test_00135488.jpg +Places365_test_00135502.jpg +Places365_test_00135505.jpg +Places365_test_00135507.jpg +Places365_test_00135521.jpg +Places365_test_00135536.jpg +Places365_test_00135549.jpg +Places365_test_00135551.jpg +Places365_test_00135557.jpg +Places365_test_00135563.jpg +Places365_test_00135565.jpg +Places365_test_00135567.jpg +Places365_test_00135568.jpg +Places365_test_00135591.jpg +Places365_test_00135593.jpg +Places365_test_00135594.jpg +Places365_test_00135617.jpg +Places365_test_00135623.jpg +Places365_test_00135651.jpg +Places365_test_00135652.jpg +Places365_test_00135660.jpg +Places365_test_00135672.jpg +Places365_test_00135682.jpg +Places365_test_00135685.jpg +Places365_test_00135688.jpg +Places365_test_00135691.jpg +Places365_test_00135701.jpg +Places365_test_00135712.jpg +Places365_test_00135728.jpg +Places365_test_00135733.jpg +Places365_test_00135748.jpg +Places365_test_00135754.jpg +Places365_test_00135756.jpg +Places365_test_00135770.jpg +Places365_test_00135778.jpg +Places365_test_00135783.jpg +Places365_test_00135786.jpg +Places365_test_00135804.jpg +Places365_test_00135840.jpg +Places365_test_00135846.jpg +Places365_test_00135857.jpg +Places365_test_00135864.jpg +Places365_test_00135893.jpg +Places365_test_00135901.jpg +Places365_test_00135908.jpg +Places365_test_00135961.jpg +Places365_test_00135971.jpg +Places365_test_00135972.jpg +Places365_test_00135989.jpg +Places365_test_00135995.jpg +Places365_test_00136012.jpg +Places365_test_00136056.jpg +Places365_test_00136069.jpg +Places365_test_00136070.jpg +Places365_test_00136095.jpg +Places365_test_00136115.jpg +Places365_test_00136123.jpg +Places365_test_00136127.jpg +Places365_test_00136157.jpg +Places365_test_00136166.jpg +Places365_test_00136176.jpg +Places365_test_00136194.jpg +Places365_test_00136200.jpg +Places365_test_00136201.jpg +Places365_test_00136202.jpg +Places365_test_00136206.jpg +Places365_test_00136214.jpg +Places365_test_00136220.jpg +Places365_test_00136223.jpg +Places365_test_00136226.jpg +Places365_test_00136239.jpg +Places365_test_00136244.jpg +Places365_test_00136250.jpg +Places365_test_00136255.jpg +Places365_test_00136259.jpg +Places365_test_00136284.jpg +Places365_test_00136287.jpg +Places365_test_00136290.jpg +Places365_test_00136297.jpg +Places365_test_00136299.jpg +Places365_test_00136318.jpg +Places365_test_00136324.jpg +Places365_test_00136330.jpg +Places365_test_00136339.jpg +Places365_test_00136348.jpg +Places365_test_00136383.jpg +Places365_test_00136385.jpg +Places365_test_00136387.jpg +Places365_test_00136392.jpg +Places365_test_00136396.jpg +Places365_test_00136406.jpg +Places365_test_00136408.jpg +Places365_test_00136418.jpg +Places365_test_00136421.jpg +Places365_test_00136428.jpg +Places365_test_00136470.jpg +Places365_test_00136472.jpg +Places365_test_00136496.jpg +Places365_test_00136504.jpg +Places365_test_00136512.jpg +Places365_test_00136518.jpg +Places365_test_00136530.jpg +Places365_test_00136546.jpg +Places365_test_00136568.jpg +Places365_test_00136575.jpg +Places365_test_00136608.jpg +Places365_test_00136612.jpg +Places365_test_00136621.jpg +Places365_test_00136628.jpg +Places365_test_00136631.jpg +Places365_test_00136643.jpg +Places365_test_00136658.jpg +Places365_test_00136668.jpg +Places365_test_00136672.jpg +Places365_test_00136686.jpg +Places365_test_00136710.jpg +Places365_test_00136715.jpg +Places365_test_00136716.jpg +Places365_test_00136749.jpg +Places365_test_00136791.jpg +Places365_test_00136796.jpg +Places365_test_00136803.jpg +Places365_test_00136809.jpg +Places365_test_00136825.jpg +Places365_test_00136841.jpg +Places365_test_00136857.jpg +Places365_test_00136865.jpg +Places365_test_00136884.jpg +Places365_test_00136922.jpg +Places365_test_00136933.jpg +Places365_test_00136937.jpg +Places365_test_00136963.jpg +Places365_test_00136970.jpg +Places365_test_00136972.jpg +Places365_test_00136977.jpg +Places365_test_00136993.jpg +Places365_test_00137002.jpg +Places365_test_00137033.jpg +Places365_test_00137076.jpg +Places365_test_00137112.jpg +Places365_test_00137116.jpg +Places365_test_00137129.jpg +Places365_test_00137134.jpg +Places365_test_00137140.jpg +Places365_test_00137186.jpg +Places365_test_00137188.jpg +Places365_test_00137199.jpg +Places365_test_00137211.jpg +Places365_test_00137225.jpg +Places365_test_00137236.jpg +Places365_test_00137285.jpg +Places365_test_00137303.jpg +Places365_test_00137317.jpg +Places365_test_00137321.jpg +Places365_test_00137349.jpg +Places365_test_00137398.jpg +Places365_test_00137412.jpg +Places365_test_00137414.jpg +Places365_test_00137421.jpg +Places365_test_00137424.jpg +Places365_test_00137425.jpg +Places365_test_00137432.jpg +Places365_test_00137468.jpg +Places365_test_00137473.jpg +Places365_test_00137491.jpg +Places365_test_00137493.jpg +Places365_test_00137497.jpg +Places365_test_00137498.jpg +Places365_test_00137519.jpg +Places365_test_00137528.jpg +Places365_test_00137544.jpg +Places365_test_00137548.jpg +Places365_test_00137555.jpg +Places365_test_00137563.jpg +Places365_test_00137606.jpg +Places365_test_00137610.jpg +Places365_test_00137618.jpg +Places365_test_00137628.jpg +Places365_test_00137657.jpg +Places365_test_00137663.jpg +Places365_test_00137667.jpg +Places365_test_00137689.jpg +Places365_test_00137706.jpg +Places365_test_00137720.jpg +Places365_test_00137735.jpg +Places365_test_00137759.jpg +Places365_test_00137784.jpg +Places365_test_00137798.jpg +Places365_test_00137811.jpg +Places365_test_00137813.jpg +Places365_test_00137823.jpg +Places365_test_00137824.jpg +Places365_test_00137828.jpg +Places365_test_00137847.jpg +Places365_test_00137849.jpg +Places365_test_00137866.jpg +Places365_test_00137885.jpg +Places365_test_00137892.jpg +Places365_test_00137896.jpg +Places365_test_00137905.jpg +Places365_test_00137962.jpg +Places365_test_00138003.jpg +Places365_test_00138004.jpg +Places365_test_00138025.jpg +Places365_test_00138034.jpg +Places365_test_00138086.jpg +Places365_test_00138105.jpg +Places365_test_00138113.jpg +Places365_test_00138116.jpg +Places365_test_00138139.jpg +Places365_test_00138142.jpg +Places365_test_00138149.jpg +Places365_test_00138154.jpg +Places365_test_00138159.jpg +Places365_test_00138168.jpg +Places365_test_00138181.jpg +Places365_test_00138207.jpg +Places365_test_00138221.jpg +Places365_test_00138229.jpg +Places365_test_00138238.jpg +Places365_test_00138244.jpg +Places365_test_00138254.jpg +Places365_test_00138265.jpg +Places365_test_00138273.jpg +Places365_test_00138274.jpg +Places365_test_00138308.jpg +Places365_test_00138318.jpg +Places365_test_00138337.jpg +Places365_test_00138346.jpg +Places365_test_00138359.jpg +Places365_test_00138380.jpg +Places365_test_00138405.jpg +Places365_test_00138416.jpg +Places365_test_00138417.jpg +Places365_test_00138418.jpg +Places365_test_00138428.jpg +Places365_test_00138489.jpg +Places365_test_00138507.jpg +Places365_test_00138515.jpg +Places365_test_00138518.jpg +Places365_test_00138530.jpg +Places365_test_00138542.jpg +Places365_test_00138558.jpg +Places365_test_00138569.jpg +Places365_test_00138570.jpg +Places365_test_00138579.jpg +Places365_test_00138606.jpg +Places365_test_00138608.jpg +Places365_test_00138620.jpg +Places365_test_00138646.jpg +Places365_test_00138653.jpg +Places365_test_00138664.jpg +Places365_test_00138668.jpg +Places365_test_00138693.jpg +Places365_test_00138717.jpg +Places365_test_00138739.jpg +Places365_test_00138740.jpg +Places365_test_00138755.jpg +Places365_test_00138774.jpg +Places365_test_00138790.jpg +Places365_test_00138793.jpg +Places365_test_00138813.jpg +Places365_test_00138831.jpg +Places365_test_00138836.jpg +Places365_test_00138839.jpg +Places365_test_00138840.jpg +Places365_test_00138869.jpg +Places365_test_00138908.jpg +Places365_test_00138925.jpg +Places365_test_00138946.jpg +Places365_test_00138948.jpg +Places365_test_00138955.jpg +Places365_test_00138963.jpg +Places365_test_00138970.jpg +Places365_test_00138979.jpg +Places365_test_00139014.jpg +Places365_test_00139017.jpg +Places365_test_00139026.jpg +Places365_test_00139030.jpg +Places365_test_00139032.jpg +Places365_test_00139037.jpg +Places365_test_00139045.jpg +Places365_test_00139075.jpg +Places365_test_00139082.jpg +Places365_test_00139088.jpg +Places365_test_00139127.jpg +Places365_test_00139131.jpg +Places365_test_00139134.jpg +Places365_test_00139150.jpg +Places365_test_00139153.jpg +Places365_test_00139163.jpg +Places365_test_00139189.jpg +Places365_test_00139190.jpg +Places365_test_00139199.jpg +Places365_test_00139205.jpg +Places365_test_00139221.jpg +Places365_test_00139237.jpg +Places365_test_00139246.jpg +Places365_test_00139259.jpg +Places365_test_00139266.jpg +Places365_test_00139282.jpg +Places365_test_00139284.jpg +Places365_test_00139287.jpg +Places365_test_00139308.jpg +Places365_test_00139322.jpg +Places365_test_00139335.jpg +Places365_test_00139350.jpg +Places365_test_00139359.jpg +Places365_test_00139374.jpg +Places365_test_00139379.jpg +Places365_test_00139380.jpg +Places365_test_00139391.jpg +Places365_test_00139411.jpg +Places365_test_00139412.jpg +Places365_test_00139421.jpg +Places365_test_00139423.jpg +Places365_test_00139437.jpg +Places365_test_00139442.jpg +Places365_test_00139454.jpg +Places365_test_00139463.jpg +Places365_test_00139465.jpg +Places365_test_00139467.jpg +Places365_test_00139477.jpg +Places365_test_00139485.jpg +Places365_test_00139498.jpg +Places365_test_00139514.jpg +Places365_test_00139532.jpg +Places365_test_00139539.jpg +Places365_test_00139541.jpg +Places365_test_00139549.jpg +Places365_test_00139560.jpg +Places365_test_00139570.jpg +Places365_test_00139577.jpg +Places365_test_00139601.jpg +Places365_test_00139640.jpg +Places365_test_00139644.jpg +Places365_test_00139649.jpg +Places365_test_00139651.jpg +Places365_test_00139684.jpg +Places365_test_00139685.jpg +Places365_test_00139690.jpg +Places365_test_00139691.jpg +Places365_test_00139727.jpg +Places365_test_00139730.jpg +Places365_test_00139731.jpg +Places365_test_00139743.jpg +Places365_test_00139747.jpg +Places365_test_00139766.jpg +Places365_test_00139805.jpg +Places365_test_00139809.jpg +Places365_test_00139813.jpg +Places365_test_00139816.jpg +Places365_test_00139833.jpg +Places365_test_00139834.jpg +Places365_test_00139839.jpg +Places365_test_00139856.jpg +Places365_test_00139859.jpg +Places365_test_00139865.jpg +Places365_test_00139873.jpg +Places365_test_00139887.jpg +Places365_test_00139898.jpg +Places365_test_00139915.jpg +Places365_test_00139917.jpg +Places365_test_00139919.jpg +Places365_test_00139923.jpg +Places365_test_00139931.jpg +Places365_test_00139933.jpg +Places365_test_00139943.jpg +Places365_test_00139960.jpg +Places365_test_00139963.jpg +Places365_test_00139975.jpg +Places365_test_00140003.jpg +Places365_test_00140010.jpg +Places365_test_00140017.jpg +Places365_test_00140024.jpg +Places365_test_00140044.jpg +Places365_test_00140051.jpg +Places365_test_00140062.jpg +Places365_test_00140072.jpg +Places365_test_00140090.jpg +Places365_test_00140093.jpg +Places365_test_00140095.jpg +Places365_test_00140104.jpg +Places365_test_00140107.jpg +Places365_test_00140114.jpg +Places365_test_00140128.jpg +Places365_test_00140160.jpg +Places365_test_00140164.jpg +Places365_test_00140171.jpg +Places365_test_00140182.jpg +Places365_test_00140204.jpg +Places365_test_00140212.jpg +Places365_test_00140223.jpg +Places365_test_00140234.jpg +Places365_test_00140250.jpg +Places365_test_00140252.jpg +Places365_test_00140266.jpg +Places365_test_00140276.jpg +Places365_test_00140300.jpg +Places365_test_00140313.jpg +Places365_test_00140314.jpg +Places365_test_00140316.jpg +Places365_test_00140345.jpg +Places365_test_00140386.jpg +Places365_test_00140392.jpg +Places365_test_00140394.jpg +Places365_test_00140410.jpg +Places365_test_00140422.jpg +Places365_test_00140441.jpg +Places365_test_00140451.jpg +Places365_test_00140458.jpg +Places365_test_00140471.jpg +Places365_test_00140476.jpg +Places365_test_00140516.jpg +Places365_test_00140534.jpg +Places365_test_00140543.jpg +Places365_test_00140545.jpg +Places365_test_00140547.jpg +Places365_test_00140554.jpg +Places365_test_00140559.jpg +Places365_test_00140564.jpg +Places365_test_00140568.jpg +Places365_test_00140569.jpg +Places365_test_00140583.jpg +Places365_test_00140589.jpg +Places365_test_00140592.jpg +Places365_test_00140595.jpg +Places365_test_00140599.jpg +Places365_test_00140606.jpg +Places365_test_00140623.jpg +Places365_test_00140639.jpg +Places365_test_00140646.jpg +Places365_test_00140647.jpg +Places365_test_00140654.jpg +Places365_test_00140655.jpg +Places365_test_00140656.jpg +Places365_test_00140659.jpg +Places365_test_00140667.jpg +Places365_test_00140670.jpg +Places365_test_00140675.jpg +Places365_test_00140685.jpg +Places365_test_00140691.jpg +Places365_test_00140695.jpg +Places365_test_00140706.jpg +Places365_test_00140709.jpg +Places365_test_00140726.jpg +Places365_test_00140734.jpg +Places365_test_00140742.jpg +Places365_test_00140745.jpg +Places365_test_00140790.jpg +Places365_test_00140810.jpg +Places365_test_00140813.jpg +Places365_test_00140820.jpg +Places365_test_00140822.jpg +Places365_test_00140830.jpg +Places365_test_00140849.jpg +Places365_test_00140860.jpg +Places365_test_00140871.jpg +Places365_test_00140875.jpg +Places365_test_00140894.jpg +Places365_test_00140909.jpg +Places365_test_00140916.jpg +Places365_test_00140929.jpg +Places365_test_00140933.jpg +Places365_test_00140954.jpg +Places365_test_00140956.jpg +Places365_test_00140960.jpg +Places365_test_00140976.jpg +Places365_test_00140988.jpg +Places365_test_00140990.jpg +Places365_test_00140991.jpg +Places365_test_00140994.jpg +Places365_test_00141002.jpg +Places365_test_00141019.jpg +Places365_test_00141024.jpg +Places365_test_00141043.jpg +Places365_test_00141046.jpg +Places365_test_00141048.jpg +Places365_test_00141053.jpg +Places365_test_00141057.jpg +Places365_test_00141058.jpg +Places365_test_00141072.jpg +Places365_test_00141083.jpg +Places365_test_00141100.jpg +Places365_test_00141126.jpg +Places365_test_00141129.jpg +Places365_test_00141147.jpg +Places365_test_00141158.jpg +Places365_test_00141183.jpg +Places365_test_00141184.jpg +Places365_test_00141228.jpg +Places365_test_00141253.jpg +Places365_test_00141270.jpg +Places365_test_00141273.jpg +Places365_test_00141275.jpg +Places365_test_00141281.jpg +Places365_test_00141296.jpg +Places365_test_00141301.jpg +Places365_test_00141302.jpg +Places365_test_00141305.jpg +Places365_test_00141340.jpg +Places365_test_00141350.jpg +Places365_test_00141353.jpg +Places365_test_00141362.jpg +Places365_test_00141364.jpg +Places365_test_00141365.jpg +Places365_test_00141370.jpg +Places365_test_00141373.jpg +Places365_test_00141379.jpg +Places365_test_00141400.jpg +Places365_test_00141402.jpg +Places365_test_00141411.jpg +Places365_test_00141414.jpg +Places365_test_00141420.jpg +Places365_test_00141421.jpg +Places365_test_00141434.jpg +Places365_test_00141445.jpg +Places365_test_00141454.jpg +Places365_test_00141458.jpg +Places365_test_00141461.jpg +Places365_test_00141463.jpg +Places365_test_00141472.jpg +Places365_test_00141492.jpg +Places365_test_00141504.jpg +Places365_test_00141511.jpg +Places365_test_00141521.jpg +Places365_test_00141524.jpg +Places365_test_00141525.jpg +Places365_test_00141537.jpg +Places365_test_00141541.jpg +Places365_test_00141551.jpg +Places365_test_00141568.jpg +Places365_test_00141571.jpg +Places365_test_00141581.jpg +Places365_test_00141583.jpg +Places365_test_00141589.jpg +Places365_test_00141611.jpg +Places365_test_00141620.jpg +Places365_test_00141631.jpg +Places365_test_00141645.jpg +Places365_test_00141657.jpg +Places365_test_00141663.jpg +Places365_test_00141678.jpg +Places365_test_00141689.jpg +Places365_test_00141694.jpg +Places365_test_00141696.jpg +Places365_test_00141700.jpg +Places365_test_00141701.jpg +Places365_test_00141704.jpg +Places365_test_00141706.jpg +Places365_test_00141712.jpg +Places365_test_00141749.jpg +Places365_test_00141758.jpg +Places365_test_00141759.jpg +Places365_test_00141800.jpg +Places365_test_00141822.jpg +Places365_test_00141833.jpg +Places365_test_00141837.jpg +Places365_test_00141841.jpg +Places365_test_00141855.jpg +Places365_test_00141859.jpg +Places365_test_00141878.jpg +Places365_test_00141880.jpg +Places365_test_00141890.jpg +Places365_test_00141896.jpg +Places365_test_00141940.jpg +Places365_test_00141942.jpg +Places365_test_00141959.jpg +Places365_test_00141972.jpg +Places365_test_00141995.jpg +Places365_test_00142021.jpg +Places365_test_00142024.jpg +Places365_test_00142069.jpg +Places365_test_00142072.jpg +Places365_test_00142095.jpg +Places365_test_00142097.jpg +Places365_test_00142108.jpg +Places365_test_00142110.jpg +Places365_test_00142111.jpg +Places365_test_00142128.jpg +Places365_test_00142156.jpg +Places365_test_00142176.jpg +Places365_test_00142179.jpg +Places365_test_00142186.jpg +Places365_test_00142189.jpg +Places365_test_00142192.jpg +Places365_test_00142193.jpg +Places365_test_00142199.jpg +Places365_test_00142205.jpg +Places365_test_00142217.jpg +Places365_test_00142224.jpg +Places365_test_00142228.jpg +Places365_test_00142237.jpg +Places365_test_00142247.jpg +Places365_test_00142255.jpg +Places365_test_00142273.jpg +Places365_test_00142276.jpg +Places365_test_00142304.jpg +Places365_test_00142315.jpg +Places365_test_00142323.jpg +Places365_test_00142330.jpg +Places365_test_00142351.jpg +Places365_test_00142353.jpg +Places365_test_00142357.jpg +Places365_test_00142360.jpg +Places365_test_00142368.jpg +Places365_test_00142378.jpg +Places365_test_00142389.jpg +Places365_test_00142392.jpg +Places365_test_00142396.jpg +Places365_test_00142407.jpg +Places365_test_00142410.jpg +Places365_test_00142426.jpg +Places365_test_00142429.jpg +Places365_test_00142431.jpg +Places365_test_00142444.jpg +Places365_test_00142457.jpg +Places365_test_00142473.jpg +Places365_test_00142486.jpg +Places365_test_00142491.jpg +Places365_test_00142493.jpg +Places365_test_00142494.jpg +Places365_test_00142509.jpg +Places365_test_00142517.jpg +Places365_test_00142520.jpg +Places365_test_00142542.jpg +Places365_test_00142543.jpg +Places365_test_00142547.jpg +Places365_test_00142557.jpg +Places365_test_00142568.jpg +Places365_test_00142570.jpg +Places365_test_00142580.jpg +Places365_test_00142586.jpg +Places365_test_00142592.jpg +Places365_test_00142595.jpg +Places365_test_00142621.jpg +Places365_test_00142644.jpg +Places365_test_00142646.jpg +Places365_test_00142648.jpg +Places365_test_00142654.jpg +Places365_test_00142667.jpg +Places365_test_00142680.jpg +Places365_test_00142681.jpg +Places365_test_00142691.jpg +Places365_test_00142694.jpg +Places365_test_00142696.jpg +Places365_test_00142700.jpg +Places365_test_00142711.jpg +Places365_test_00142722.jpg +Places365_test_00142732.jpg +Places365_test_00142737.jpg +Places365_test_00142738.jpg +Places365_test_00142741.jpg +Places365_test_00142753.jpg +Places365_test_00142770.jpg +Places365_test_00142774.jpg +Places365_test_00142780.jpg +Places365_test_00142795.jpg +Places365_test_00142806.jpg +Places365_test_00142807.jpg +Places365_test_00142823.jpg +Places365_test_00142832.jpg +Places365_test_00142841.jpg +Places365_test_00142861.jpg +Places365_test_00142878.jpg +Places365_test_00142887.jpg +Places365_test_00142888.jpg +Places365_test_00142889.jpg +Places365_test_00142895.jpg +Places365_test_00142920.jpg +Places365_test_00142929.jpg +Places365_test_00142933.jpg +Places365_test_00142946.jpg +Places365_test_00142967.jpg +Places365_test_00143012.jpg +Places365_test_00143018.jpg +Places365_test_00143020.jpg +Places365_test_00143022.jpg +Places365_test_00143023.jpg +Places365_test_00143024.jpg +Places365_test_00143032.jpg +Places365_test_00143060.jpg +Places365_test_00143081.jpg +Places365_test_00143130.jpg +Places365_test_00143151.jpg +Places365_test_00143152.jpg +Places365_test_00143175.jpg +Places365_test_00143189.jpg +Places365_test_00143194.jpg +Places365_test_00143195.jpg +Places365_test_00143202.jpg +Places365_test_00143211.jpg +Places365_test_00143214.jpg +Places365_test_00143216.jpg +Places365_test_00143217.jpg +Places365_test_00143218.jpg +Places365_test_00143258.jpg +Places365_test_00143266.jpg +Places365_test_00143278.jpg +Places365_test_00143288.jpg +Places365_test_00143292.jpg +Places365_test_00143302.jpg +Places365_test_00143303.jpg +Places365_test_00143320.jpg +Places365_test_00143327.jpg +Places365_test_00143340.jpg +Places365_test_00143359.jpg +Places365_test_00143372.jpg +Places365_test_00143384.jpg +Places365_test_00143388.jpg +Places365_test_00143398.jpg +Places365_test_00143402.jpg +Places365_test_00143406.jpg +Places365_test_00143436.jpg +Places365_test_00143440.jpg +Places365_test_00143447.jpg +Places365_test_00143468.jpg +Places365_test_00143475.jpg +Places365_test_00143497.jpg +Places365_test_00143506.jpg +Places365_test_00143508.jpg +Places365_test_00143547.jpg +Places365_test_00143552.jpg +Places365_test_00143560.jpg +Places365_test_00143562.jpg +Places365_test_00143573.jpg +Places365_test_00143604.jpg +Places365_test_00143679.jpg +Places365_test_00143715.jpg +Places365_test_00143720.jpg +Places365_test_00143734.jpg +Places365_test_00143739.jpg +Places365_test_00143753.jpg +Places365_test_00143805.jpg +Places365_test_00143816.jpg +Places365_test_00143829.jpg +Places365_test_00143839.jpg +Places365_test_00143840.jpg +Places365_test_00143845.jpg +Places365_test_00143846.jpg +Places365_test_00143859.jpg +Places365_test_00143866.jpg +Places365_test_00143868.jpg +Places365_test_00143882.jpg +Places365_test_00143892.jpg +Places365_test_00143899.jpg +Places365_test_00143916.jpg +Places365_test_00143921.jpg +Places365_test_00143922.jpg +Places365_test_00143927.jpg +Places365_test_00143947.jpg +Places365_test_00143983.jpg +Places365_test_00143986.jpg +Places365_test_00143989.jpg +Places365_test_00143993.jpg +Places365_test_00144002.jpg +Places365_test_00144012.jpg +Places365_test_00144018.jpg +Places365_test_00144057.jpg +Places365_test_00144079.jpg +Places365_test_00144100.jpg +Places365_test_00144133.jpg +Places365_test_00144138.jpg +Places365_test_00144140.jpg +Places365_test_00144143.jpg +Places365_test_00144166.jpg +Places365_test_00144179.jpg +Places365_test_00144187.jpg +Places365_test_00144200.jpg +Places365_test_00144211.jpg +Places365_test_00144216.jpg +Places365_test_00144217.jpg +Places365_test_00144221.jpg +Places365_test_00144239.jpg +Places365_test_00144245.jpg +Places365_test_00144257.jpg +Places365_test_00144261.jpg +Places365_test_00144263.jpg +Places365_test_00144273.jpg +Places365_test_00144279.jpg +Places365_test_00144295.jpg +Places365_test_00144302.jpg +Places365_test_00144325.jpg +Places365_test_00144333.jpg +Places365_test_00144339.jpg +Places365_test_00144362.jpg +Places365_test_00144368.jpg +Places365_test_00144379.jpg +Places365_test_00144389.jpg +Places365_test_00144393.jpg +Places365_test_00144415.jpg +Places365_test_00144425.jpg +Places365_test_00144432.jpg +Places365_test_00144438.jpg +Places365_test_00144440.jpg +Places365_test_00144462.jpg +Places365_test_00144477.jpg +Places365_test_00144492.jpg +Places365_test_00144495.jpg +Places365_test_00144499.jpg +Places365_test_00144503.jpg +Places365_test_00144507.jpg +Places365_test_00144520.jpg +Places365_test_00144522.jpg +Places365_test_00144536.jpg +Places365_test_00144545.jpg +Places365_test_00144547.jpg +Places365_test_00144556.jpg +Places365_test_00144560.jpg +Places365_test_00144562.jpg +Places365_test_00144563.jpg +Places365_test_00144573.jpg +Places365_test_00144580.jpg +Places365_test_00144582.jpg +Places365_test_00144595.jpg +Places365_test_00144621.jpg +Places365_test_00144641.jpg +Places365_test_00144663.jpg +Places365_test_00144670.jpg +Places365_test_00144679.jpg +Places365_test_00144681.jpg +Places365_test_00144696.jpg +Places365_test_00144701.jpg +Places365_test_00144709.jpg +Places365_test_00144714.jpg +Places365_test_00144720.jpg +Places365_test_00144726.jpg +Places365_test_00144737.jpg +Places365_test_00144744.jpg +Places365_test_00144758.jpg +Places365_test_00144762.jpg +Places365_test_00144769.jpg +Places365_test_00144771.jpg +Places365_test_00144782.jpg +Places365_test_00144788.jpg +Places365_test_00144806.jpg +Places365_test_00144811.jpg +Places365_test_00144813.jpg +Places365_test_00144834.jpg +Places365_test_00144842.jpg +Places365_test_00144867.jpg +Places365_test_00144870.jpg +Places365_test_00144871.jpg +Places365_test_00144877.jpg +Places365_test_00144901.jpg +Places365_test_00144903.jpg +Places365_test_00144915.jpg +Places365_test_00144931.jpg +Places365_test_00144957.jpg +Places365_test_00144965.jpg +Places365_test_00144983.jpg +Places365_test_00144985.jpg +Places365_test_00144988.jpg +Places365_test_00144993.jpg +Places365_test_00145047.jpg +Places365_test_00145051.jpg +Places365_test_00145052.jpg +Places365_test_00145061.jpg +Places365_test_00145071.jpg +Places365_test_00145079.jpg +Places365_test_00145082.jpg +Places365_test_00145085.jpg +Places365_test_00145087.jpg +Places365_test_00145100.jpg +Places365_test_00145102.jpg +Places365_test_00145153.jpg +Places365_test_00145162.jpg +Places365_test_00145180.jpg +Places365_test_00145186.jpg +Places365_test_00145195.jpg +Places365_test_00145200.jpg +Places365_test_00145203.jpg +Places365_test_00145222.jpg +Places365_test_00145273.jpg +Places365_test_00145299.jpg +Places365_test_00145302.jpg +Places365_test_00145319.jpg +Places365_test_00145327.jpg +Places365_test_00145338.jpg +Places365_test_00145348.jpg +Places365_test_00145349.jpg +Places365_test_00145357.jpg +Places365_test_00145360.jpg +Places365_test_00145383.jpg +Places365_test_00145403.jpg +Places365_test_00145428.jpg +Places365_test_00145430.jpg +Places365_test_00145432.jpg +Places365_test_00145445.jpg +Places365_test_00145446.jpg +Places365_test_00145447.jpg +Places365_test_00145455.jpg +Places365_test_00145458.jpg +Places365_test_00145459.jpg +Places365_test_00145475.jpg +Places365_test_00145476.jpg +Places365_test_00145493.jpg +Places365_test_00145526.jpg +Places365_test_00145547.jpg +Places365_test_00145552.jpg +Places365_test_00145558.jpg +Places365_test_00145582.jpg +Places365_test_00145594.jpg +Places365_test_00145609.jpg +Places365_test_00145610.jpg +Places365_test_00145616.jpg +Places365_test_00145646.jpg +Places365_test_00145655.jpg +Places365_test_00145683.jpg +Places365_test_00145690.jpg +Places365_test_00145703.jpg +Places365_test_00145705.jpg +Places365_test_00145720.jpg +Places365_test_00145723.jpg +Places365_test_00145770.jpg +Places365_test_00145778.jpg +Places365_test_00145792.jpg +Places365_test_00145813.jpg +Places365_test_00145826.jpg +Places365_test_00145838.jpg +Places365_test_00145849.jpg +Places365_test_00145852.jpg +Places365_test_00145858.jpg +Places365_test_00145863.jpg +Places365_test_00145874.jpg +Places365_test_00145891.jpg +Places365_test_00145894.jpg +Places365_test_00145913.jpg +Places365_test_00145921.jpg +Places365_test_00145922.jpg +Places365_test_00145935.jpg +Places365_test_00145948.jpg +Places365_test_00145984.jpg +Places365_test_00145989.jpg +Places365_test_00145995.jpg +Places365_test_00146007.jpg +Places365_test_00146025.jpg +Places365_test_00146031.jpg +Places365_test_00146038.jpg +Places365_test_00146041.jpg +Places365_test_00146050.jpg +Places365_test_00146075.jpg +Places365_test_00146085.jpg +Places365_test_00146089.jpg +Places365_test_00146090.jpg +Places365_test_00146099.jpg +Places365_test_00146104.jpg +Places365_test_00146108.jpg +Places365_test_00146110.jpg +Places365_test_00146111.jpg +Places365_test_00146128.jpg +Places365_test_00146130.jpg +Places365_test_00146150.jpg +Places365_test_00146180.jpg +Places365_test_00146184.jpg +Places365_test_00146208.jpg +Places365_test_00146223.jpg +Places365_test_00146239.jpg +Places365_test_00146248.jpg +Places365_test_00146256.jpg +Places365_test_00146259.jpg +Places365_test_00146260.jpg +Places365_test_00146268.jpg +Places365_test_00146273.jpg +Places365_test_00146303.jpg +Places365_test_00146314.jpg +Places365_test_00146325.jpg +Places365_test_00146327.jpg +Places365_test_00146334.jpg +Places365_test_00146346.jpg +Places365_test_00146352.jpg +Places365_test_00146362.jpg +Places365_test_00146380.jpg +Places365_test_00146381.jpg +Places365_test_00146383.jpg +Places365_test_00146388.jpg +Places365_test_00146390.jpg +Places365_test_00146393.jpg +Places365_test_00146400.jpg +Places365_test_00146419.jpg +Places365_test_00146438.jpg +Places365_test_00146459.jpg +Places365_test_00146460.jpg +Places365_test_00146469.jpg +Places365_test_00146488.jpg +Places365_test_00146508.jpg +Places365_test_00146542.jpg +Places365_test_00146547.jpg +Places365_test_00146548.jpg +Places365_test_00146562.jpg +Places365_test_00146566.jpg +Places365_test_00146569.jpg +Places365_test_00146578.jpg +Places365_test_00146585.jpg +Places365_test_00146591.jpg +Places365_test_00146596.jpg +Places365_test_00146608.jpg +Places365_test_00146614.jpg +Places365_test_00146620.jpg +Places365_test_00146626.jpg +Places365_test_00146645.jpg +Places365_test_00146657.jpg +Places365_test_00146669.jpg +Places365_test_00146673.jpg +Places365_test_00146675.jpg +Places365_test_00146677.jpg +Places365_test_00146681.jpg +Places365_test_00146708.jpg +Places365_test_00146720.jpg +Places365_test_00146721.jpg +Places365_test_00146723.jpg +Places365_test_00146724.jpg +Places365_test_00146727.jpg +Places365_test_00146735.jpg +Places365_test_00146772.jpg +Places365_test_00146773.jpg +Places365_test_00146782.jpg +Places365_test_00146786.jpg +Places365_test_00146794.jpg +Places365_test_00146815.jpg +Places365_test_00146824.jpg +Places365_test_00146833.jpg +Places365_test_00146835.jpg +Places365_test_00146836.jpg +Places365_test_00146846.jpg +Places365_test_00146859.jpg +Places365_test_00146867.jpg +Places365_test_00146872.jpg +Places365_test_00146880.jpg +Places365_test_00146906.jpg +Places365_test_00146927.jpg +Places365_test_00146930.jpg +Places365_test_00146935.jpg +Places365_test_00146938.jpg +Places365_test_00146948.jpg +Places365_test_00146949.jpg +Places365_test_00146955.jpg +Places365_test_00146988.jpg +Places365_test_00146994.jpg +Places365_test_00147005.jpg +Places365_test_00147035.jpg +Places365_test_00147037.jpg +Places365_test_00147039.jpg +Places365_test_00147062.jpg +Places365_test_00147076.jpg +Places365_test_00147089.jpg +Places365_test_00147091.jpg +Places365_test_00147110.jpg +Places365_test_00147111.jpg +Places365_test_00147113.jpg +Places365_test_00147131.jpg +Places365_test_00147132.jpg +Places365_test_00147142.jpg +Places365_test_00147146.jpg +Places365_test_00147152.jpg +Places365_test_00147158.jpg +Places365_test_00147159.jpg +Places365_test_00147164.jpg +Places365_test_00147167.jpg +Places365_test_00147187.jpg +Places365_test_00147194.jpg +Places365_test_00147202.jpg +Places365_test_00147206.jpg +Places365_test_00147223.jpg +Places365_test_00147250.jpg +Places365_test_00147257.jpg +Places365_test_00147258.jpg +Places365_test_00147278.jpg +Places365_test_00147283.jpg +Places365_test_00147290.jpg +Places365_test_00147291.jpg +Places365_test_00147292.jpg +Places365_test_00147300.jpg +Places365_test_00147309.jpg +Places365_test_00147324.jpg +Places365_test_00147333.jpg +Places365_test_00147337.jpg +Places365_test_00147342.jpg +Places365_test_00147354.jpg +Places365_test_00147356.jpg +Places365_test_00147382.jpg +Places365_test_00147397.jpg +Places365_test_00147400.jpg +Places365_test_00147403.jpg +Places365_test_00147406.jpg +Places365_test_00147420.jpg +Places365_test_00147423.jpg +Places365_test_00147472.jpg +Places365_test_00147475.jpg +Places365_test_00147489.jpg +Places365_test_00147491.jpg +Places365_test_00147494.jpg +Places365_test_00147530.jpg +Places365_test_00147542.jpg +Places365_test_00147544.jpg +Places365_test_00147546.jpg +Places365_test_00147551.jpg +Places365_test_00147555.jpg +Places365_test_00147569.jpg +Places365_test_00147571.jpg +Places365_test_00147575.jpg +Places365_test_00147600.jpg +Places365_test_00147602.jpg +Places365_test_00147630.jpg +Places365_test_00147634.jpg +Places365_test_00147647.jpg +Places365_test_00147655.jpg +Places365_test_00147688.jpg +Places365_test_00147693.jpg +Places365_test_00147707.jpg +Places365_test_00147714.jpg +Places365_test_00147716.jpg +Places365_test_00147732.jpg +Places365_test_00147738.jpg +Places365_test_00147745.jpg +Places365_test_00147753.jpg +Places365_test_00147758.jpg +Places365_test_00147759.jpg +Places365_test_00147768.jpg +Places365_test_00147775.jpg +Places365_test_00147794.jpg +Places365_test_00147803.jpg +Places365_test_00147809.jpg +Places365_test_00147814.jpg +Places365_test_00147848.jpg +Places365_test_00147849.jpg +Places365_test_00147857.jpg +Places365_test_00147876.jpg +Places365_test_00147878.jpg +Places365_test_00147884.jpg +Places365_test_00147914.jpg +Places365_test_00147929.jpg +Places365_test_00147938.jpg +Places365_test_00147951.jpg +Places365_test_00147971.jpg +Places365_test_00147975.jpg +Places365_test_00147977.jpg +Places365_test_00148007.jpg +Places365_test_00148011.jpg +Places365_test_00148013.jpg +Places365_test_00148037.jpg +Places365_test_00148064.jpg +Places365_test_00148071.jpg +Places365_test_00148088.jpg +Places365_test_00148100.jpg +Places365_test_00148101.jpg +Places365_test_00148106.jpg +Places365_test_00148123.jpg +Places365_test_00148128.jpg +Places365_test_00148131.jpg +Places365_test_00148147.jpg +Places365_test_00148149.jpg +Places365_test_00148157.jpg +Places365_test_00148188.jpg +Places365_test_00148199.jpg +Places365_test_00148220.jpg +Places365_test_00148225.jpg +Places365_test_00148229.jpg +Places365_test_00148248.jpg +Places365_test_00148252.jpg +Places365_test_00148263.jpg +Places365_test_00148265.jpg +Places365_test_00148269.jpg +Places365_test_00148286.jpg +Places365_test_00148287.jpg +Places365_test_00148304.jpg +Places365_test_00148306.jpg +Places365_test_00148313.jpg +Places365_test_00148322.jpg +Places365_test_00148334.jpg +Places365_test_00148343.jpg +Places365_test_00148355.jpg +Places365_test_00148356.jpg +Places365_test_00148358.jpg +Places365_test_00148360.jpg +Places365_test_00148389.jpg +Places365_test_00148418.jpg +Places365_test_00148433.jpg +Places365_test_00148439.jpg +Places365_test_00148445.jpg +Places365_test_00148446.jpg +Places365_test_00148452.jpg +Places365_test_00148473.jpg +Places365_test_00148475.jpg +Places365_test_00148478.jpg +Places365_test_00148481.jpg +Places365_test_00148482.jpg +Places365_test_00148484.jpg +Places365_test_00148507.jpg +Places365_test_00148522.jpg +Places365_test_00148523.jpg +Places365_test_00148529.jpg +Places365_test_00148531.jpg +Places365_test_00148546.jpg +Places365_test_00148570.jpg +Places365_test_00148580.jpg +Places365_test_00148582.jpg +Places365_test_00148587.jpg +Places365_test_00148589.jpg +Places365_test_00148593.jpg +Places365_test_00148596.jpg +Places365_test_00148597.jpg +Places365_test_00148598.jpg +Places365_test_00148611.jpg +Places365_test_00148616.jpg +Places365_test_00148632.jpg +Places365_test_00148642.jpg +Places365_test_00148644.jpg +Places365_test_00148680.jpg +Places365_test_00148686.jpg +Places365_test_00148703.jpg +Places365_test_00148710.jpg +Places365_test_00148719.jpg +Places365_test_00148728.jpg +Places365_test_00148738.jpg +Places365_test_00148754.jpg +Places365_test_00148760.jpg +Places365_test_00148762.jpg +Places365_test_00148772.jpg +Places365_test_00148796.jpg +Places365_test_00148819.jpg +Places365_test_00148833.jpg +Places365_test_00148834.jpg +Places365_test_00148875.jpg +Places365_test_00148884.jpg +Places365_test_00148887.jpg +Places365_test_00148949.jpg +Places365_test_00148956.jpg +Places365_test_00148971.jpg +Places365_test_00148981.jpg +Places365_test_00148985.jpg +Places365_test_00149000.jpg +Places365_test_00149026.jpg +Places365_test_00149032.jpg +Places365_test_00149033.jpg +Places365_test_00149052.jpg +Places365_test_00149058.jpg +Places365_test_00149071.jpg +Places365_test_00149077.jpg +Places365_test_00149123.jpg +Places365_test_00149134.jpg +Places365_test_00149137.jpg +Places365_test_00149155.jpg +Places365_test_00149165.jpg +Places365_test_00149183.jpg +Places365_test_00149204.jpg +Places365_test_00149207.jpg +Places365_test_00149219.jpg +Places365_test_00149230.jpg +Places365_test_00149236.jpg +Places365_test_00149237.jpg +Places365_test_00149253.jpg +Places365_test_00149273.jpg +Places365_test_00149278.jpg +Places365_test_00149285.jpg +Places365_test_00149289.jpg +Places365_test_00149290.jpg +Places365_test_00149310.jpg +Places365_test_00149314.jpg +Places365_test_00149321.jpg +Places365_test_00149325.jpg +Places365_test_00149329.jpg +Places365_test_00149343.jpg +Places365_test_00149347.jpg +Places365_test_00149361.jpg +Places365_test_00149367.jpg +Places365_test_00149383.jpg +Places365_test_00149403.jpg +Places365_test_00149413.jpg +Places365_test_00149420.jpg +Places365_test_00149424.jpg +Places365_test_00149427.jpg +Places365_test_00149436.jpg +Places365_test_00149450.jpg +Places365_test_00149458.jpg +Places365_test_00149461.jpg +Places365_test_00149470.jpg +Places365_test_00149488.jpg +Places365_test_00149494.jpg +Places365_test_00149523.jpg +Places365_test_00149528.jpg +Places365_test_00149541.jpg +Places365_test_00149557.jpg +Places365_test_00149561.jpg +Places365_test_00149576.jpg +Places365_test_00149582.jpg +Places365_test_00149587.jpg +Places365_test_00149598.jpg +Places365_test_00149602.jpg +Places365_test_00149612.jpg +Places365_test_00149642.jpg +Places365_test_00149657.jpg +Places365_test_00149662.jpg +Places365_test_00149669.jpg +Places365_test_00149672.jpg +Places365_test_00149674.jpg +Places365_test_00149686.jpg +Places365_test_00149687.jpg +Places365_test_00149690.jpg +Places365_test_00149715.jpg +Places365_test_00149723.jpg +Places365_test_00149732.jpg +Places365_test_00149744.jpg +Places365_test_00149754.jpg +Places365_test_00149763.jpg +Places365_test_00149769.jpg +Places365_test_00149774.jpg +Places365_test_00149775.jpg +Places365_test_00149787.jpg +Places365_test_00149799.jpg +Places365_test_00149802.jpg +Places365_test_00149822.jpg +Places365_test_00149833.jpg +Places365_test_00149841.jpg +Places365_test_00149845.jpg +Places365_test_00149853.jpg +Places365_test_00149882.jpg +Places365_test_00149884.jpg +Places365_test_00149887.jpg +Places365_test_00149894.jpg +Places365_test_00149896.jpg +Places365_test_00149904.jpg +Places365_test_00149913.jpg +Places365_test_00149914.jpg +Places365_test_00149937.jpg +Places365_test_00149955.jpg +Places365_test_00149975.jpg +Places365_test_00149980.jpg +Places365_test_00149991.jpg +Places365_test_00149992.jpg +Places365_test_00150003.jpg +Places365_test_00150016.jpg +Places365_test_00150022.jpg +Places365_test_00150030.jpg +Places365_test_00150033.jpg +Places365_test_00150057.jpg +Places365_test_00150060.jpg +Places365_test_00150066.jpg +Places365_test_00150101.jpg +Places365_test_00150105.jpg +Places365_test_00150116.jpg +Places365_test_00150137.jpg +Places365_test_00150147.jpg +Places365_test_00150182.jpg +Places365_test_00150207.jpg +Places365_test_00150224.jpg +Places365_test_00150240.jpg +Places365_test_00150248.jpg +Places365_test_00150270.jpg +Places365_test_00150276.jpg +Places365_test_00150293.jpg +Places365_test_00150327.jpg +Places365_test_00150333.jpg +Places365_test_00150340.jpg +Places365_test_00150355.jpg +Places365_test_00150357.jpg +Places365_test_00150362.jpg +Places365_test_00150375.jpg +Places365_test_00150384.jpg +Places365_test_00150390.jpg +Places365_test_00150396.jpg +Places365_test_00150405.jpg +Places365_test_00150420.jpg +Places365_test_00150442.jpg +Places365_test_00150443.jpg +Places365_test_00150446.jpg +Places365_test_00150449.jpg +Places365_test_00150474.jpg +Places365_test_00150475.jpg +Places365_test_00150481.jpg +Places365_test_00150491.jpg +Places365_test_00150495.jpg +Places365_test_00150501.jpg +Places365_test_00150504.jpg +Places365_test_00150523.jpg +Places365_test_00150538.jpg +Places365_test_00150547.jpg +Places365_test_00150553.jpg +Places365_test_00150560.jpg +Places365_test_00150576.jpg +Places365_test_00150605.jpg +Places365_test_00150609.jpg +Places365_test_00150653.jpg +Places365_test_00150677.jpg +Places365_test_00150696.jpg +Places365_test_00150701.jpg +Places365_test_00150702.jpg +Places365_test_00150733.jpg +Places365_test_00150735.jpg +Places365_test_00150743.jpg +Places365_test_00150745.jpg +Places365_test_00150753.jpg +Places365_test_00150761.jpg +Places365_test_00150763.jpg +Places365_test_00150769.jpg +Places365_test_00150772.jpg +Places365_test_00150779.jpg +Places365_test_00150794.jpg +Places365_test_00150818.jpg +Places365_test_00150822.jpg +Places365_test_00150826.jpg +Places365_test_00150829.jpg +Places365_test_00150845.jpg +Places365_test_00150870.jpg +Places365_test_00150881.jpg +Places365_test_00150893.jpg +Places365_test_00150903.jpg +Places365_test_00150926.jpg +Places365_test_00150927.jpg +Places365_test_00150942.jpg +Places365_test_00150947.jpg +Places365_test_00150949.jpg +Places365_test_00150954.jpg +Places365_test_00150992.jpg +Places365_test_00150996.jpg +Places365_test_00151018.jpg +Places365_test_00151026.jpg +Places365_test_00151051.jpg +Places365_test_00151108.jpg +Places365_test_00151128.jpg +Places365_test_00151130.jpg +Places365_test_00151131.jpg +Places365_test_00151136.jpg +Places365_test_00151171.jpg +Places365_test_00151179.jpg +Places365_test_00151186.jpg +Places365_test_00151191.jpg +Places365_test_00151196.jpg +Places365_test_00151214.jpg +Places365_test_00151222.jpg +Places365_test_00151227.jpg +Places365_test_00151236.jpg +Places365_test_00151238.jpg +Places365_test_00151242.jpg +Places365_test_00151248.jpg +Places365_test_00151249.jpg +Places365_test_00151257.jpg +Places365_test_00151265.jpg +Places365_test_00151272.jpg +Places365_test_00151274.jpg +Places365_test_00151275.jpg +Places365_test_00151282.jpg +Places365_test_00151322.jpg +Places365_test_00151329.jpg +Places365_test_00151342.jpg +Places365_test_00151344.jpg +Places365_test_00151352.jpg +Places365_test_00151361.jpg +Places365_test_00151364.jpg +Places365_test_00151368.jpg +Places365_test_00151384.jpg +Places365_test_00151391.jpg +Places365_test_00151428.jpg +Places365_test_00151436.jpg +Places365_test_00151438.jpg +Places365_test_00151445.jpg +Places365_test_00151448.jpg +Places365_test_00151461.jpg +Places365_test_00151469.jpg +Places365_test_00151499.jpg +Places365_test_00151503.jpg +Places365_test_00151506.jpg +Places365_test_00151515.jpg +Places365_test_00151525.jpg +Places365_test_00151545.jpg +Places365_test_00151557.jpg +Places365_test_00151563.jpg +Places365_test_00151571.jpg +Places365_test_00151572.jpg +Places365_test_00151573.jpg +Places365_test_00151581.jpg +Places365_test_00151593.jpg +Places365_test_00151608.jpg +Places365_test_00151618.jpg +Places365_test_00151624.jpg +Places365_test_00151628.jpg +Places365_test_00151641.jpg +Places365_test_00151645.jpg +Places365_test_00151661.jpg +Places365_test_00151669.jpg +Places365_test_00151672.jpg +Places365_test_00151700.jpg +Places365_test_00151701.jpg +Places365_test_00151704.jpg +Places365_test_00151705.jpg +Places365_test_00151721.jpg +Places365_test_00151733.jpg +Places365_test_00151737.jpg +Places365_test_00151746.jpg +Places365_test_00151763.jpg +Places365_test_00151772.jpg +Places365_test_00151786.jpg +Places365_test_00151788.jpg +Places365_test_00151818.jpg +Places365_test_00151868.jpg +Places365_test_00151872.jpg +Places365_test_00151892.jpg +Places365_test_00151900.jpg +Places365_test_00151902.jpg +Places365_test_00151916.jpg +Places365_test_00151922.jpg +Places365_test_00151934.jpg +Places365_test_00151937.jpg +Places365_test_00151952.jpg +Places365_test_00151964.jpg +Places365_test_00151966.jpg +Places365_test_00151975.jpg +Places365_test_00151977.jpg +Places365_test_00151986.jpg +Places365_test_00151987.jpg +Places365_test_00152011.jpg +Places365_test_00152037.jpg +Places365_test_00152043.jpg +Places365_test_00152059.jpg +Places365_test_00152067.jpg +Places365_test_00152070.jpg +Places365_test_00152075.jpg +Places365_test_00152083.jpg +Places365_test_00152094.jpg +Places365_test_00152107.jpg +Places365_test_00152119.jpg +Places365_test_00152122.jpg +Places365_test_00152148.jpg +Places365_test_00152151.jpg +Places365_test_00152203.jpg +Places365_test_00152223.jpg +Places365_test_00152225.jpg +Places365_test_00152240.jpg +Places365_test_00152243.jpg +Places365_test_00152244.jpg +Places365_test_00152262.jpg +Places365_test_00152271.jpg +Places365_test_00152273.jpg +Places365_test_00152285.jpg +Places365_test_00152286.jpg +Places365_test_00152291.jpg +Places365_test_00152292.jpg +Places365_test_00152302.jpg +Places365_test_00152308.jpg +Places365_test_00152313.jpg +Places365_test_00152314.jpg +Places365_test_00152317.jpg +Places365_test_00152323.jpg +Places365_test_00152349.jpg +Places365_test_00152352.jpg +Places365_test_00152377.jpg +Places365_test_00152382.jpg +Places365_test_00152398.jpg +Places365_test_00152405.jpg +Places365_test_00152422.jpg +Places365_test_00152448.jpg +Places365_test_00152450.jpg +Places365_test_00152455.jpg +Places365_test_00152466.jpg +Places365_test_00152468.jpg +Places365_test_00152469.jpg +Places365_test_00152472.jpg +Places365_test_00152513.jpg +Places365_test_00152524.jpg +Places365_test_00152527.jpg +Places365_test_00152546.jpg +Places365_test_00152550.jpg +Places365_test_00152552.jpg +Places365_test_00152578.jpg +Places365_test_00152581.jpg +Places365_test_00152592.jpg +Places365_test_00152600.jpg +Places365_test_00152617.jpg +Places365_test_00152641.jpg +Places365_test_00152661.jpg +Places365_test_00152677.jpg +Places365_test_00152678.jpg +Places365_test_00152679.jpg +Places365_test_00152690.jpg +Places365_test_00152698.jpg +Places365_test_00152710.jpg +Places365_test_00152721.jpg +Places365_test_00152729.jpg +Places365_test_00152731.jpg +Places365_test_00152735.jpg +Places365_test_00152741.jpg +Places365_test_00152748.jpg +Places365_test_00152791.jpg +Places365_test_00152792.jpg +Places365_test_00152807.jpg +Places365_test_00152846.jpg +Places365_test_00152850.jpg +Places365_test_00152858.jpg +Places365_test_00152859.jpg +Places365_test_00152873.jpg +Places365_test_00152895.jpg +Places365_test_00152920.jpg +Places365_test_00152928.jpg +Places365_test_00152937.jpg +Places365_test_00152945.jpg +Places365_test_00152951.jpg +Places365_test_00152966.jpg +Places365_test_00152969.jpg +Places365_test_00152976.jpg +Places365_test_00152990.jpg +Places365_test_00153007.jpg +Places365_test_00153024.jpg +Places365_test_00153032.jpg +Places365_test_00153059.jpg +Places365_test_00153066.jpg +Places365_test_00153068.jpg +Places365_test_00153069.jpg +Places365_test_00153083.jpg +Places365_test_00153092.jpg +Places365_test_00153094.jpg +Places365_test_00153099.jpg +Places365_test_00153102.jpg +Places365_test_00153103.jpg +Places365_test_00153106.jpg +Places365_test_00153124.jpg +Places365_test_00153125.jpg +Places365_test_00153134.jpg +Places365_test_00153143.jpg +Places365_test_00153149.jpg +Places365_test_00153152.jpg +Places365_test_00153158.jpg +Places365_test_00153192.jpg +Places365_test_00153196.jpg +Places365_test_00153204.jpg +Places365_test_00153210.jpg +Places365_test_00153211.jpg +Places365_test_00153225.jpg +Places365_test_00153232.jpg +Places365_test_00153241.jpg +Places365_test_00153243.jpg +Places365_test_00153244.jpg +Places365_test_00153249.jpg +Places365_test_00153266.jpg +Places365_test_00153272.jpg +Places365_test_00153296.jpg +Places365_test_00153302.jpg +Places365_test_00153324.jpg +Places365_test_00153347.jpg +Places365_test_00153362.jpg +Places365_test_00153365.jpg +Places365_test_00153368.jpg +Places365_test_00153375.jpg +Places365_test_00153379.jpg +Places365_test_00153388.jpg +Places365_test_00153395.jpg +Places365_test_00153418.jpg +Places365_test_00153433.jpg +Places365_test_00153437.jpg +Places365_test_00153438.jpg +Places365_test_00153469.jpg +Places365_test_00153480.jpg +Places365_test_00153485.jpg +Places365_test_00153493.jpg +Places365_test_00153500.jpg +Places365_test_00153502.jpg +Places365_test_00153503.jpg +Places365_test_00153508.jpg +Places365_test_00153511.jpg +Places365_test_00153520.jpg +Places365_test_00153539.jpg +Places365_test_00153549.jpg +Places365_test_00153560.jpg +Places365_test_00153572.jpg +Places365_test_00153573.jpg +Places365_test_00153583.jpg +Places365_test_00153587.jpg +Places365_test_00153589.jpg +Places365_test_00153598.jpg +Places365_test_00153610.jpg +Places365_test_00153616.jpg +Places365_test_00153621.jpg +Places365_test_00153624.jpg +Places365_test_00153645.jpg +Places365_test_00153646.jpg +Places365_test_00153677.jpg +Places365_test_00153684.jpg +Places365_test_00153686.jpg +Places365_test_00153689.jpg +Places365_test_00153697.jpg +Places365_test_00153733.jpg +Places365_test_00153738.jpg +Places365_test_00153739.jpg +Places365_test_00153740.jpg +Places365_test_00153758.jpg +Places365_test_00153759.jpg +Places365_test_00153768.jpg +Places365_test_00153770.jpg +Places365_test_00153774.jpg +Places365_test_00153779.jpg +Places365_test_00153788.jpg +Places365_test_00153793.jpg +Places365_test_00153795.jpg +Places365_test_00153803.jpg +Places365_test_00153804.jpg +Places365_test_00153813.jpg +Places365_test_00153820.jpg +Places365_test_00153834.jpg +Places365_test_00153844.jpg +Places365_test_00153863.jpg +Places365_test_00153871.jpg +Places365_test_00153873.jpg +Places365_test_00153878.jpg +Places365_test_00153899.jpg +Places365_test_00153900.jpg +Places365_test_00153903.jpg +Places365_test_00153933.jpg +Places365_test_00153934.jpg +Places365_test_00153943.jpg +Places365_test_00153947.jpg +Places365_test_00153957.jpg +Places365_test_00153971.jpg +Places365_test_00153980.jpg +Places365_test_00153981.jpg +Places365_test_00153985.jpg +Places365_test_00153991.jpg +Places365_test_00154009.jpg +Places365_test_00154021.jpg +Places365_test_00154023.jpg +Places365_test_00154024.jpg +Places365_test_00154025.jpg +Places365_test_00154027.jpg +Places365_test_00154042.jpg +Places365_test_00154046.jpg +Places365_test_00154061.jpg +Places365_test_00154063.jpg +Places365_test_00154069.jpg +Places365_test_00154076.jpg +Places365_test_00154079.jpg +Places365_test_00154098.jpg +Places365_test_00154106.jpg +Places365_test_00154115.jpg +Places365_test_00154127.jpg +Places365_test_00154153.jpg +Places365_test_00154157.jpg +Places365_test_00154163.jpg +Places365_test_00154172.jpg +Places365_test_00154238.jpg +Places365_test_00154239.jpg +Places365_test_00154241.jpg +Places365_test_00154245.jpg +Places365_test_00154247.jpg +Places365_test_00154249.jpg +Places365_test_00154270.jpg +Places365_test_00154276.jpg +Places365_test_00154278.jpg +Places365_test_00154283.jpg +Places365_test_00154288.jpg +Places365_test_00154290.jpg +Places365_test_00154297.jpg +Places365_test_00154302.jpg +Places365_test_00154307.jpg +Places365_test_00154313.jpg +Places365_test_00154343.jpg +Places365_test_00154345.jpg +Places365_test_00154346.jpg +Places365_test_00154355.jpg +Places365_test_00154356.jpg +Places365_test_00154379.jpg +Places365_test_00154456.jpg +Places365_test_00154470.jpg +Places365_test_00154488.jpg +Places365_test_00154489.jpg +Places365_test_00154491.jpg +Places365_test_00154502.jpg +Places365_test_00154530.jpg +Places365_test_00154533.jpg +Places365_test_00154564.jpg +Places365_test_00154572.jpg +Places365_test_00154600.jpg +Places365_test_00154606.jpg +Places365_test_00154618.jpg +Places365_test_00154631.jpg +Places365_test_00154642.jpg +Places365_test_00154705.jpg +Places365_test_00154711.jpg +Places365_test_00154726.jpg +Places365_test_00154736.jpg +Places365_test_00154751.jpg +Places365_test_00154782.jpg +Places365_test_00154822.jpg +Places365_test_00154823.jpg +Places365_test_00154878.jpg +Places365_test_00154897.jpg +Places365_test_00154900.jpg +Places365_test_00154906.jpg +Places365_test_00154908.jpg +Places365_test_00154913.jpg +Places365_test_00154918.jpg +Places365_test_00154925.jpg +Places365_test_00154929.jpg +Places365_test_00154941.jpg +Places365_test_00154954.jpg +Places365_test_00154961.jpg +Places365_test_00154994.jpg +Places365_test_00154999.jpg +Places365_test_00155001.jpg +Places365_test_00155003.jpg +Places365_test_00155004.jpg +Places365_test_00155005.jpg +Places365_test_00155043.jpg +Places365_test_00155049.jpg +Places365_test_00155051.jpg +Places365_test_00155060.jpg +Places365_test_00155063.jpg +Places365_test_00155076.jpg +Places365_test_00155101.jpg +Places365_test_00155109.jpg +Places365_test_00155135.jpg +Places365_test_00155141.jpg +Places365_test_00155152.jpg +Places365_test_00155153.jpg +Places365_test_00155183.jpg +Places365_test_00155212.jpg +Places365_test_00155226.jpg +Places365_test_00155236.jpg +Places365_test_00155244.jpg +Places365_test_00155248.jpg +Places365_test_00155260.jpg +Places365_test_00155278.jpg +Places365_test_00155285.jpg +Places365_test_00155297.jpg +Places365_test_00155323.jpg +Places365_test_00155324.jpg +Places365_test_00155327.jpg +Places365_test_00155329.jpg +Places365_test_00155338.jpg +Places365_test_00155340.jpg +Places365_test_00155350.jpg +Places365_test_00155389.jpg +Places365_test_00155411.jpg +Places365_test_00155430.jpg +Places365_test_00155431.jpg +Places365_test_00155434.jpg +Places365_test_00155435.jpg +Places365_test_00155447.jpg +Places365_test_00155458.jpg +Places365_test_00155464.jpg +Places365_test_00155468.jpg +Places365_test_00155469.jpg +Places365_test_00155517.jpg +Places365_test_00155530.jpg +Places365_test_00155534.jpg +Places365_test_00155569.jpg +Places365_test_00155576.jpg +Places365_test_00155589.jpg +Places365_test_00155632.jpg +Places365_test_00155643.jpg +Places365_test_00155658.jpg +Places365_test_00155684.jpg +Places365_test_00155704.jpg +Places365_test_00155720.jpg +Places365_test_00155727.jpg +Places365_test_00155733.jpg +Places365_test_00155747.jpg +Places365_test_00155772.jpg +Places365_test_00155799.jpg +Places365_test_00155803.jpg +Places365_test_00155805.jpg +Places365_test_00155809.jpg +Places365_test_00155812.jpg +Places365_test_00155815.jpg +Places365_test_00155817.jpg +Places365_test_00155823.jpg +Places365_test_00155831.jpg +Places365_test_00155833.jpg +Places365_test_00155839.jpg +Places365_test_00155853.jpg +Places365_test_00155856.jpg +Places365_test_00155864.jpg +Places365_test_00155875.jpg +Places365_test_00155888.jpg +Places365_test_00155903.jpg +Places365_test_00155906.jpg +Places365_test_00155909.jpg +Places365_test_00155921.jpg +Places365_test_00155958.jpg +Places365_test_00155965.jpg +Places365_test_00155996.jpg +Places365_test_00156029.jpg +Places365_test_00156032.jpg +Places365_test_00156039.jpg +Places365_test_00156051.jpg +Places365_test_00156062.jpg +Places365_test_00156064.jpg +Places365_test_00156083.jpg +Places365_test_00156089.jpg +Places365_test_00156094.jpg +Places365_test_00156117.jpg +Places365_test_00156118.jpg +Places365_test_00156120.jpg +Places365_test_00156121.jpg +Places365_test_00156127.jpg +Places365_test_00156133.jpg +Places365_test_00156134.jpg +Places365_test_00156140.jpg +Places365_test_00156145.jpg +Places365_test_00156146.jpg +Places365_test_00156177.jpg +Places365_test_00156181.jpg +Places365_test_00156204.jpg +Places365_test_00156215.jpg +Places365_test_00156217.jpg +Places365_test_00156234.jpg +Places365_test_00156250.jpg +Places365_test_00156262.jpg +Places365_test_00156284.jpg +Places365_test_00156296.jpg +Places365_test_00156327.jpg +Places365_test_00156355.jpg +Places365_test_00156357.jpg +Places365_test_00156359.jpg +Places365_test_00156366.jpg +Places365_test_00156383.jpg +Places365_test_00156384.jpg +Places365_test_00156385.jpg +Places365_test_00156399.jpg +Places365_test_00156400.jpg +Places365_test_00156416.jpg +Places365_test_00156427.jpg +Places365_test_00156430.jpg +Places365_test_00156440.jpg +Places365_test_00156445.jpg +Places365_test_00156455.jpg +Places365_test_00156466.jpg +Places365_test_00156478.jpg +Places365_test_00156495.jpg +Places365_test_00156512.jpg +Places365_test_00156524.jpg +Places365_test_00156529.jpg +Places365_test_00156534.jpg +Places365_test_00156554.jpg +Places365_test_00156581.jpg +Places365_test_00156615.jpg +Places365_test_00156620.jpg +Places365_test_00156623.jpg +Places365_test_00156651.jpg +Places365_test_00156660.jpg +Places365_test_00156666.jpg +Places365_test_00156695.jpg +Places365_test_00156698.jpg +Places365_test_00156713.jpg +Places365_test_00156717.jpg +Places365_test_00156721.jpg +Places365_test_00156727.jpg +Places365_test_00156730.jpg +Places365_test_00156737.jpg +Places365_test_00156750.jpg +Places365_test_00156752.jpg +Places365_test_00156767.jpg +Places365_test_00156773.jpg +Places365_test_00156789.jpg +Places365_test_00156805.jpg +Places365_test_00156810.jpg +Places365_test_00156821.jpg +Places365_test_00156830.jpg +Places365_test_00156845.jpg +Places365_test_00156853.jpg +Places365_test_00156886.jpg +Places365_test_00156890.jpg +Places365_test_00156893.jpg +Places365_test_00156895.jpg +Places365_test_00156919.jpg +Places365_test_00156948.jpg +Places365_test_00156968.jpg +Places365_test_00156985.jpg +Places365_test_00156989.jpg +Places365_test_00156993.jpg +Places365_test_00157005.jpg +Places365_test_00157015.jpg +Places365_test_00157028.jpg +Places365_test_00157044.jpg +Places365_test_00157045.jpg +Places365_test_00157057.jpg +Places365_test_00157063.jpg +Places365_test_00157064.jpg +Places365_test_00157067.jpg +Places365_test_00157081.jpg +Places365_test_00157087.jpg +Places365_test_00157136.jpg +Places365_test_00157142.jpg +Places365_test_00157146.jpg +Places365_test_00157162.jpg +Places365_test_00157170.jpg +Places365_test_00157176.jpg +Places365_test_00157187.jpg +Places365_test_00157204.jpg +Places365_test_00157210.jpg +Places365_test_00157219.jpg +Places365_test_00157239.jpg +Places365_test_00157244.jpg +Places365_test_00157248.jpg +Places365_test_00157250.jpg +Places365_test_00157256.jpg +Places365_test_00157273.jpg +Places365_test_00157284.jpg +Places365_test_00157289.jpg +Places365_test_00157312.jpg +Places365_test_00157333.jpg +Places365_test_00157336.jpg +Places365_test_00157341.jpg +Places365_test_00157348.jpg +Places365_test_00157368.jpg +Places365_test_00157372.jpg +Places365_test_00157388.jpg +Places365_test_00157396.jpg +Places365_test_00157411.jpg +Places365_test_00157423.jpg +Places365_test_00157424.jpg +Places365_test_00157428.jpg +Places365_test_00157468.jpg +Places365_test_00157470.jpg +Places365_test_00157479.jpg +Places365_test_00157481.jpg +Places365_test_00157487.jpg +Places365_test_00157493.jpg +Places365_test_00157506.jpg +Places365_test_00157510.jpg +Places365_test_00157515.jpg +Places365_test_00157525.jpg +Places365_test_00157544.jpg +Places365_test_00157552.jpg +Places365_test_00157572.jpg +Places365_test_00157578.jpg +Places365_test_00157586.jpg +Places365_test_00157592.jpg +Places365_test_00157595.jpg +Places365_test_00157600.jpg +Places365_test_00157602.jpg +Places365_test_00157613.jpg +Places365_test_00157615.jpg +Places365_test_00157620.jpg +Places365_test_00157627.jpg +Places365_test_00157629.jpg +Places365_test_00157631.jpg +Places365_test_00157635.jpg +Places365_test_00157638.jpg +Places365_test_00157646.jpg +Places365_test_00157650.jpg +Places365_test_00157651.jpg +Places365_test_00157658.jpg +Places365_test_00157661.jpg +Places365_test_00157671.jpg +Places365_test_00157689.jpg +Places365_test_00157698.jpg +Places365_test_00157700.jpg +Places365_test_00157704.jpg +Places365_test_00157712.jpg +Places365_test_00157714.jpg +Places365_test_00157718.jpg +Places365_test_00157726.jpg +Places365_test_00157728.jpg +Places365_test_00157743.jpg +Places365_test_00157747.jpg +Places365_test_00157752.jpg +Places365_test_00157760.jpg +Places365_test_00157771.jpg +Places365_test_00157793.jpg +Places365_test_00157811.jpg +Places365_test_00157813.jpg +Places365_test_00157876.jpg +Places365_test_00157880.jpg +Places365_test_00157892.jpg +Places365_test_00157900.jpg +Places365_test_00157928.jpg +Places365_test_00157943.jpg +Places365_test_00157951.jpg +Places365_test_00157974.jpg +Places365_test_00158000.jpg +Places365_test_00158027.jpg +Places365_test_00158028.jpg +Places365_test_00158029.jpg +Places365_test_00158031.jpg +Places365_test_00158046.jpg +Places365_test_00158052.jpg +Places365_test_00158056.jpg +Places365_test_00158088.jpg +Places365_test_00158091.jpg +Places365_test_00158099.jpg +Places365_test_00158113.jpg +Places365_test_00158135.jpg +Places365_test_00158159.jpg +Places365_test_00158161.jpg +Places365_test_00158162.jpg +Places365_test_00158171.jpg +Places365_test_00158182.jpg +Places365_test_00158183.jpg +Places365_test_00158191.jpg +Places365_test_00158196.jpg +Places365_test_00158205.jpg +Places365_test_00158206.jpg +Places365_test_00158213.jpg +Places365_test_00158229.jpg +Places365_test_00158241.jpg +Places365_test_00158246.jpg +Places365_test_00158253.jpg +Places365_test_00158272.jpg +Places365_test_00158278.jpg +Places365_test_00158284.jpg +Places365_test_00158288.jpg +Places365_test_00158292.jpg +Places365_test_00158296.jpg +Places365_test_00158303.jpg +Places365_test_00158312.jpg +Places365_test_00158317.jpg +Places365_test_00158325.jpg +Places365_test_00158333.jpg +Places365_test_00158351.jpg +Places365_test_00158378.jpg +Places365_test_00158390.jpg +Places365_test_00158397.jpg +Places365_test_00158400.jpg +Places365_test_00158422.jpg +Places365_test_00158428.jpg +Places365_test_00158435.jpg +Places365_test_00158442.jpg +Places365_test_00158461.jpg +Places365_test_00158466.jpg +Places365_test_00158468.jpg +Places365_test_00158472.jpg +Places365_test_00158483.jpg +Places365_test_00158486.jpg +Places365_test_00158525.jpg +Places365_test_00158540.jpg +Places365_test_00158581.jpg +Places365_test_00158586.jpg +Places365_test_00158591.jpg +Places365_test_00158600.jpg +Places365_test_00158603.jpg +Places365_test_00158638.jpg +Places365_test_00158646.jpg +Places365_test_00158648.jpg +Places365_test_00158653.jpg +Places365_test_00158659.jpg +Places365_test_00158662.jpg +Places365_test_00158666.jpg +Places365_test_00158672.jpg +Places365_test_00158678.jpg +Places365_test_00158688.jpg +Places365_test_00158696.jpg +Places365_test_00158706.jpg +Places365_test_00158729.jpg +Places365_test_00158741.jpg +Places365_test_00158753.jpg +Places365_test_00158756.jpg +Places365_test_00158757.jpg +Places365_test_00158760.jpg +Places365_test_00158768.jpg +Places365_test_00158786.jpg +Places365_test_00158788.jpg +Places365_test_00158790.jpg +Places365_test_00158798.jpg +Places365_test_00158829.jpg +Places365_test_00158832.jpg +Places365_test_00158850.jpg +Places365_test_00158852.jpg +Places365_test_00158856.jpg +Places365_test_00158869.jpg +Places365_test_00158880.jpg +Places365_test_00158901.jpg +Places365_test_00158904.jpg +Places365_test_00158943.jpg +Places365_test_00158965.jpg +Places365_test_00158982.jpg +Places365_test_00158986.jpg +Places365_test_00158989.jpg +Places365_test_00158990.jpg +Places365_test_00159008.jpg +Places365_test_00159019.jpg +Places365_test_00159044.jpg +Places365_test_00159054.jpg +Places365_test_00159070.jpg +Places365_test_00159071.jpg +Places365_test_00159074.jpg +Places365_test_00159096.jpg +Places365_test_00159098.jpg +Places365_test_00159129.jpg +Places365_test_00159131.jpg +Places365_test_00159133.jpg +Places365_test_00159141.jpg +Places365_test_00159143.jpg +Places365_test_00159147.jpg +Places365_test_00159163.jpg +Places365_test_00159169.jpg +Places365_test_00159200.jpg +Places365_test_00159209.jpg +Places365_test_00159222.jpg +Places365_test_00159240.jpg +Places365_test_00159241.jpg +Places365_test_00159256.jpg +Places365_test_00159260.jpg +Places365_test_00159262.jpg +Places365_test_00159272.jpg +Places365_test_00159285.jpg +Places365_test_00159286.jpg +Places365_test_00159314.jpg +Places365_test_00159333.jpg +Places365_test_00159339.jpg +Places365_test_00159342.jpg +Places365_test_00159378.jpg +Places365_test_00159380.jpg +Places365_test_00159387.jpg +Places365_test_00159401.jpg +Places365_test_00159405.jpg +Places365_test_00159411.jpg +Places365_test_00159429.jpg +Places365_test_00159461.jpg +Places365_test_00159466.jpg +Places365_test_00159483.jpg +Places365_test_00159509.jpg +Places365_test_00159516.jpg +Places365_test_00159527.jpg +Places365_test_00159528.jpg +Places365_test_00159530.jpg +Places365_test_00159550.jpg +Places365_test_00159566.jpg +Places365_test_00159595.jpg +Places365_test_00159599.jpg +Places365_test_00159610.jpg +Places365_test_00159641.jpg +Places365_test_00159646.jpg +Places365_test_00159653.jpg +Places365_test_00159655.jpg +Places365_test_00159666.jpg +Places365_test_00159671.jpg +Places365_test_00159677.jpg +Places365_test_00159696.jpg +Places365_test_00159703.jpg +Places365_test_00159719.jpg +Places365_test_00159723.jpg +Places365_test_00159759.jpg +Places365_test_00159770.jpg +Places365_test_00159778.jpg +Places365_test_00159793.jpg +Places365_test_00159817.jpg +Places365_test_00159829.jpg +Places365_test_00159830.jpg +Places365_test_00159833.jpg +Places365_test_00159838.jpg +Places365_test_00159842.jpg +Places365_test_00159870.jpg +Places365_test_00159872.jpg +Places365_test_00159881.jpg +Places365_test_00159888.jpg +Places365_test_00159892.jpg +Places365_test_00159908.jpg +Places365_test_00159910.jpg +Places365_test_00159913.jpg +Places365_test_00159947.jpg +Places365_test_00159956.jpg +Places365_test_00159957.jpg +Places365_test_00159998.jpg +Places365_test_00160014.jpg +Places365_test_00160035.jpg +Places365_test_00160048.jpg +Places365_test_00160050.jpg +Places365_test_00160051.jpg +Places365_test_00160054.jpg +Places365_test_00160056.jpg +Places365_test_00160064.jpg +Places365_test_00160080.jpg +Places365_test_00160117.jpg +Places365_test_00160121.jpg +Places365_test_00160129.jpg +Places365_test_00160132.jpg +Places365_test_00160133.jpg +Places365_test_00160149.jpg +Places365_test_00160180.jpg +Places365_test_00160184.jpg +Places365_test_00160193.jpg +Places365_test_00160202.jpg +Places365_test_00160205.jpg +Places365_test_00160216.jpg +Places365_test_00160227.jpg +Places365_test_00160231.jpg +Places365_test_00160232.jpg +Places365_test_00160242.jpg +Places365_test_00160243.jpg +Places365_test_00160248.jpg +Places365_test_00160258.jpg +Places365_test_00160264.jpg +Places365_test_00160266.jpg +Places365_test_00160273.jpg +Places365_test_00160279.jpg +Places365_test_00160288.jpg +Places365_test_00160289.jpg +Places365_test_00160292.jpg +Places365_test_00160317.jpg +Places365_test_00160338.jpg +Places365_test_00160371.jpg +Places365_test_00160373.jpg +Places365_test_00160378.jpg +Places365_test_00160380.jpg +Places365_test_00160392.jpg +Places365_test_00160399.jpg +Places365_test_00160406.jpg +Places365_test_00160447.jpg +Places365_test_00160469.jpg +Places365_test_00160481.jpg +Places365_test_00160491.jpg +Places365_test_00160500.jpg +Places365_test_00160513.jpg +Places365_test_00160514.jpg +Places365_test_00160528.jpg +Places365_test_00160531.jpg +Places365_test_00160535.jpg +Places365_test_00160545.jpg +Places365_test_00160551.jpg +Places365_test_00160553.jpg +Places365_test_00160574.jpg +Places365_test_00160583.jpg +Places365_test_00160584.jpg +Places365_test_00160586.jpg +Places365_test_00160618.jpg +Places365_test_00160674.jpg +Places365_test_00160676.jpg +Places365_test_00160687.jpg +Places365_test_00160703.jpg +Places365_test_00160709.jpg +Places365_test_00160745.jpg +Places365_test_00160748.jpg +Places365_test_00160752.jpg +Places365_test_00160753.jpg +Places365_test_00160760.jpg +Places365_test_00160762.jpg +Places365_test_00160764.jpg +Places365_test_00160768.jpg +Places365_test_00160772.jpg +Places365_test_00160773.jpg +Places365_test_00160777.jpg +Places365_test_00160788.jpg +Places365_test_00160793.jpg +Places365_test_00160794.jpg +Places365_test_00160815.jpg +Places365_test_00160816.jpg +Places365_test_00160819.jpg +Places365_test_00160823.jpg +Places365_test_00160827.jpg +Places365_test_00160833.jpg +Places365_test_00160837.jpg +Places365_test_00160839.jpg +Places365_test_00160843.jpg +Places365_test_00160858.jpg +Places365_test_00160859.jpg +Places365_test_00160861.jpg +Places365_test_00160862.jpg +Places365_test_00160869.jpg +Places365_test_00160878.jpg +Places365_test_00160883.jpg +Places365_test_00160886.jpg +Places365_test_00160892.jpg +Places365_test_00160899.jpg +Places365_test_00160901.jpg +Places365_test_00160908.jpg +Places365_test_00160919.jpg +Places365_test_00160933.jpg +Places365_test_00160943.jpg +Places365_test_00160952.jpg +Places365_test_00160969.jpg +Places365_test_00160970.jpg +Places365_test_00161005.jpg +Places365_test_00161027.jpg +Places365_test_00161035.jpg +Places365_test_00161041.jpg +Places365_test_00161047.jpg +Places365_test_00161053.jpg +Places365_test_00161060.jpg +Places365_test_00161066.jpg +Places365_test_00161106.jpg +Places365_test_00161114.jpg +Places365_test_00161120.jpg +Places365_test_00161131.jpg +Places365_test_00161147.jpg +Places365_test_00161171.jpg +Places365_test_00161172.jpg +Places365_test_00161238.jpg +Places365_test_00161252.jpg +Places365_test_00161262.jpg +Places365_test_00161272.jpg +Places365_test_00161275.jpg +Places365_test_00161281.jpg +Places365_test_00161298.jpg +Places365_test_00161300.jpg +Places365_test_00161303.jpg +Places365_test_00161304.jpg +Places365_test_00161307.jpg +Places365_test_00161313.jpg +Places365_test_00161322.jpg +Places365_test_00161337.jpg +Places365_test_00161377.jpg +Places365_test_00161390.jpg +Places365_test_00161399.jpg +Places365_test_00161411.jpg +Places365_test_00161414.jpg +Places365_test_00161423.jpg +Places365_test_00161425.jpg +Places365_test_00161433.jpg +Places365_test_00161434.jpg +Places365_test_00161462.jpg +Places365_test_00161469.jpg +Places365_test_00161505.jpg +Places365_test_00161559.jpg +Places365_test_00161575.jpg +Places365_test_00161588.jpg +Places365_test_00161608.jpg +Places365_test_00161628.jpg +Places365_test_00161635.jpg +Places365_test_00161636.jpg +Places365_test_00161644.jpg +Places365_test_00161646.jpg +Places365_test_00161647.jpg +Places365_test_00161655.jpg +Places365_test_00161659.jpg +Places365_test_00161681.jpg +Places365_test_00161691.jpg +Places365_test_00161708.jpg +Places365_test_00161714.jpg +Places365_test_00161717.jpg +Places365_test_00161723.jpg +Places365_test_00161739.jpg +Places365_test_00161761.jpg +Places365_test_00161762.jpg +Places365_test_00161764.jpg +Places365_test_00161809.jpg +Places365_test_00161821.jpg +Places365_test_00161832.jpg +Places365_test_00161837.jpg +Places365_test_00161843.jpg +Places365_test_00161851.jpg +Places365_test_00161855.jpg +Places365_test_00161863.jpg +Places365_test_00161866.jpg +Places365_test_00161921.jpg +Places365_test_00161922.jpg +Places365_test_00161936.jpg +Places365_test_00161946.jpg +Places365_test_00161956.jpg +Places365_test_00161958.jpg +Places365_test_00162014.jpg +Places365_test_00162015.jpg +Places365_test_00162022.jpg +Places365_test_00162024.jpg +Places365_test_00162031.jpg +Places365_test_00162043.jpg +Places365_test_00162068.jpg +Places365_test_00162080.jpg +Places365_test_00162099.jpg +Places365_test_00162108.jpg +Places365_test_00162127.jpg +Places365_test_00162141.jpg +Places365_test_00162164.jpg +Places365_test_00162166.jpg +Places365_test_00162177.jpg +Places365_test_00162179.jpg +Places365_test_00162195.jpg +Places365_test_00162210.jpg +Places365_test_00162215.jpg +Places365_test_00162216.jpg +Places365_test_00162225.jpg +Places365_test_00162271.jpg +Places365_test_00162281.jpg +Places365_test_00162310.jpg +Places365_test_00162313.jpg +Places365_test_00162334.jpg +Places365_test_00162358.jpg +Places365_test_00162364.jpg +Places365_test_00162369.jpg +Places365_test_00162371.jpg +Places365_test_00162374.jpg +Places365_test_00162380.jpg +Places365_test_00162405.jpg +Places365_test_00162413.jpg +Places365_test_00162420.jpg +Places365_test_00162423.jpg +Places365_test_00162429.jpg +Places365_test_00162437.jpg +Places365_test_00162473.jpg +Places365_test_00162474.jpg +Places365_test_00162491.jpg +Places365_test_00162506.jpg +Places365_test_00162512.jpg +Places365_test_00162516.jpg +Places365_test_00162522.jpg +Places365_test_00162534.jpg +Places365_test_00162536.jpg +Places365_test_00162537.jpg +Places365_test_00162552.jpg +Places365_test_00162566.jpg +Places365_test_00162569.jpg +Places365_test_00162572.jpg +Places365_test_00162581.jpg +Places365_test_00162608.jpg +Places365_test_00162618.jpg +Places365_test_00162621.jpg +Places365_test_00162652.jpg +Places365_test_00162654.jpg +Places365_test_00162684.jpg +Places365_test_00162689.jpg +Places365_test_00162698.jpg +Places365_test_00162704.jpg +Places365_test_00162715.jpg +Places365_test_00162725.jpg +Places365_test_00162730.jpg +Places365_test_00162735.jpg +Places365_test_00162756.jpg +Places365_test_00162764.jpg +Places365_test_00162769.jpg +Places365_test_00162787.jpg +Places365_test_00162792.jpg +Places365_test_00162843.jpg +Places365_test_00162847.jpg +Places365_test_00162885.jpg +Places365_test_00162903.jpg +Places365_test_00162909.jpg +Places365_test_00162913.jpg +Places365_test_00162924.jpg +Places365_test_00162930.jpg +Places365_test_00162936.jpg +Places365_test_00162942.jpg +Places365_test_00162971.jpg +Places365_test_00162976.jpg +Places365_test_00162991.jpg +Places365_test_00163006.jpg +Places365_test_00163012.jpg +Places365_test_00163033.jpg +Places365_test_00163036.jpg +Places365_test_00163052.jpg +Places365_test_00163059.jpg +Places365_test_00163064.jpg +Places365_test_00163065.jpg +Places365_test_00163067.jpg +Places365_test_00163116.jpg +Places365_test_00163126.jpg +Places365_test_00163143.jpg +Places365_test_00163147.jpg +Places365_test_00163149.jpg +Places365_test_00163156.jpg +Places365_test_00163166.jpg +Places365_test_00163167.jpg +Places365_test_00163179.jpg +Places365_test_00163182.jpg +Places365_test_00163189.jpg +Places365_test_00163208.jpg +Places365_test_00163222.jpg +Places365_test_00163226.jpg +Places365_test_00163249.jpg +Places365_test_00163251.jpg +Places365_test_00163267.jpg +Places365_test_00163282.jpg +Places365_test_00163285.jpg +Places365_test_00163291.jpg +Places365_test_00163306.jpg +Places365_test_00163316.jpg +Places365_test_00163325.jpg +Places365_test_00163332.jpg +Places365_test_00163357.jpg +Places365_test_00163362.jpg +Places365_test_00163382.jpg +Places365_test_00163384.jpg +Places365_test_00163407.jpg +Places365_test_00163421.jpg +Places365_test_00163424.jpg +Places365_test_00163426.jpg +Places365_test_00163427.jpg +Places365_test_00163440.jpg +Places365_test_00163452.jpg +Places365_test_00163453.jpg +Places365_test_00163495.jpg +Places365_test_00163501.jpg +Places365_test_00163502.jpg +Places365_test_00163510.jpg +Places365_test_00163523.jpg +Places365_test_00163528.jpg +Places365_test_00163536.jpg +Places365_test_00163546.jpg +Places365_test_00163547.jpg +Places365_test_00163573.jpg +Places365_test_00163594.jpg +Places365_test_00163603.jpg +Places365_test_00163605.jpg +Places365_test_00163613.jpg +Places365_test_00163616.jpg +Places365_test_00163626.jpg +Places365_test_00163627.jpg +Places365_test_00163628.jpg +Places365_test_00163629.jpg +Places365_test_00163656.jpg +Places365_test_00163658.jpg +Places365_test_00163659.jpg +Places365_test_00163663.jpg +Places365_test_00163664.jpg +Places365_test_00163669.jpg +Places365_test_00163679.jpg +Places365_test_00163689.jpg +Places365_test_00163691.jpg +Places365_test_00163692.jpg +Places365_test_00163698.jpg +Places365_test_00163701.jpg +Places365_test_00163706.jpg +Places365_test_00163717.jpg +Places365_test_00163727.jpg +Places365_test_00163740.jpg +Places365_test_00163750.jpg +Places365_test_00163752.jpg +Places365_test_00163762.jpg +Places365_test_00163766.jpg +Places365_test_00163774.jpg +Places365_test_00163779.jpg +Places365_test_00163791.jpg +Places365_test_00163793.jpg +Places365_test_00163800.jpg +Places365_test_00163828.jpg +Places365_test_00163830.jpg +Places365_test_00163853.jpg +Places365_test_00163855.jpg +Places365_test_00163857.jpg +Places365_test_00163870.jpg +Places365_test_00163877.jpg +Places365_test_00163902.jpg +Places365_test_00163904.jpg +Places365_test_00163910.jpg +Places365_test_00163916.jpg +Places365_test_00163948.jpg +Places365_test_00163959.jpg +Places365_test_00163976.jpg +Places365_test_00163980.jpg +Places365_test_00163999.jpg +Places365_test_00164057.jpg +Places365_test_00164058.jpg +Places365_test_00164059.jpg +Places365_test_00164075.jpg +Places365_test_00164078.jpg +Places365_test_00164085.jpg +Places365_test_00164089.jpg +Places365_test_00164090.jpg +Places365_test_00164105.jpg +Places365_test_00164109.jpg +Places365_test_00164116.jpg +Places365_test_00164125.jpg +Places365_test_00164153.jpg +Places365_test_00164154.jpg +Places365_test_00164165.jpg +Places365_test_00164182.jpg +Places365_test_00164188.jpg +Places365_test_00164193.jpg +Places365_test_00164250.jpg +Places365_test_00164251.jpg +Places365_test_00164265.jpg +Places365_test_00164285.jpg +Places365_test_00164303.jpg +Places365_test_00164305.jpg +Places365_test_00164309.jpg +Places365_test_00164361.jpg +Places365_test_00164363.jpg +Places365_test_00164379.jpg +Places365_test_00164388.jpg +Places365_test_00164394.jpg +Places365_test_00164412.jpg +Places365_test_00164427.jpg +Places365_test_00164441.jpg +Places365_test_00164449.jpg +Places365_test_00164463.jpg +Places365_test_00164470.jpg +Places365_test_00164485.jpg +Places365_test_00164507.jpg +Places365_test_00164512.jpg +Places365_test_00164535.jpg +Places365_test_00164540.jpg +Places365_test_00164541.jpg +Places365_test_00164543.jpg +Places365_test_00164563.jpg +Places365_test_00164569.jpg +Places365_test_00164570.jpg +Places365_test_00164574.jpg +Places365_test_00164596.jpg +Places365_test_00164598.jpg +Places365_test_00164604.jpg +Places365_test_00164605.jpg +Places365_test_00164611.jpg +Places365_test_00164619.jpg +Places365_test_00164629.jpg +Places365_test_00164659.jpg +Places365_test_00164671.jpg +Places365_test_00164673.jpg +Places365_test_00164691.jpg +Places365_test_00164694.jpg +Places365_test_00164697.jpg +Places365_test_00164709.jpg +Places365_test_00164715.jpg +Places365_test_00164716.jpg +Places365_test_00164720.jpg +Places365_test_00164736.jpg +Places365_test_00164748.jpg +Places365_test_00164749.jpg +Places365_test_00164760.jpg +Places365_test_00164769.jpg +Places365_test_00164791.jpg +Places365_test_00164828.jpg +Places365_test_00164831.jpg +Places365_test_00164851.jpg +Places365_test_00164862.jpg +Places365_test_00164892.jpg +Places365_test_00164940.jpg +Places365_test_00164943.jpg +Places365_test_00164965.jpg +Places365_test_00164984.jpg +Places365_test_00164987.jpg +Places365_test_00164988.jpg +Places365_test_00164993.jpg +Places365_test_00165001.jpg +Places365_test_00165014.jpg +Places365_test_00165016.jpg +Places365_test_00165024.jpg +Places365_test_00165049.jpg +Places365_test_00165060.jpg +Places365_test_00165061.jpg +Places365_test_00165074.jpg +Places365_test_00165080.jpg +Places365_test_00165085.jpg +Places365_test_00165091.jpg +Places365_test_00165093.jpg +Places365_test_00165104.jpg +Places365_test_00165113.jpg +Places365_test_00165119.jpg +Places365_test_00165123.jpg +Places365_test_00165131.jpg +Places365_test_00165147.jpg +Places365_test_00165158.jpg +Places365_test_00165159.jpg +Places365_test_00165190.jpg +Places365_test_00165197.jpg +Places365_test_00165201.jpg +Places365_test_00165209.jpg +Places365_test_00165212.jpg +Places365_test_00165213.jpg +Places365_test_00165218.jpg +Places365_test_00165220.jpg +Places365_test_00165257.jpg +Places365_test_00165268.jpg +Places365_test_00165277.jpg +Places365_test_00165282.jpg +Places365_test_00165286.jpg +Places365_test_00165288.jpg +Places365_test_00165298.jpg +Places365_test_00165300.jpg +Places365_test_00165301.jpg +Places365_test_00165326.jpg +Places365_test_00165335.jpg +Places365_test_00165349.jpg +Places365_test_00165357.jpg +Places365_test_00165374.jpg +Places365_test_00165377.jpg +Places365_test_00165378.jpg +Places365_test_00165386.jpg +Places365_test_00165427.jpg +Places365_test_00165430.jpg +Places365_test_00165441.jpg +Places365_test_00165459.jpg +Places365_test_00165462.jpg +Places365_test_00165469.jpg +Places365_test_00165511.jpg +Places365_test_00165528.jpg +Places365_test_00165532.jpg +Places365_test_00165541.jpg +Places365_test_00165549.jpg +Places365_test_00165560.jpg +Places365_test_00165565.jpg +Places365_test_00165574.jpg +Places365_test_00165581.jpg +Places365_test_00165582.jpg +Places365_test_00165593.jpg +Places365_test_00165599.jpg +Places365_test_00165602.jpg +Places365_test_00165610.jpg +Places365_test_00165622.jpg +Places365_test_00165627.jpg +Places365_test_00165630.jpg +Places365_test_00165641.jpg +Places365_test_00165667.jpg +Places365_test_00165670.jpg +Places365_test_00165700.jpg +Places365_test_00165725.jpg +Places365_test_00165732.jpg +Places365_test_00165753.jpg +Places365_test_00165759.jpg +Places365_test_00165763.jpg +Places365_test_00165772.jpg +Places365_test_00165787.jpg +Places365_test_00165789.jpg +Places365_test_00165799.jpg +Places365_test_00165807.jpg +Places365_test_00165813.jpg +Places365_test_00165849.jpg +Places365_test_00165863.jpg +Places365_test_00165869.jpg +Places365_test_00165874.jpg +Places365_test_00165882.jpg +Places365_test_00165887.jpg +Places365_test_00165898.jpg +Places365_test_00165939.jpg +Places365_test_00165954.jpg +Places365_test_00165974.jpg +Places365_test_00165976.jpg +Places365_test_00165982.jpg +Places365_test_00165988.jpg +Places365_test_00165993.jpg +Places365_test_00166027.jpg +Places365_test_00166040.jpg +Places365_test_00166042.jpg +Places365_test_00166066.jpg +Places365_test_00166101.jpg +Places365_test_00166102.jpg +Places365_test_00166114.jpg +Places365_test_00166115.jpg +Places365_test_00166121.jpg +Places365_test_00166125.jpg +Places365_test_00166126.jpg +Places365_test_00166141.jpg +Places365_test_00166166.jpg +Places365_test_00166178.jpg +Places365_test_00166179.jpg +Places365_test_00166192.jpg +Places365_test_00166211.jpg +Places365_test_00166212.jpg +Places365_test_00166221.jpg +Places365_test_00166225.jpg +Places365_test_00166249.jpg +Places365_test_00166250.jpg +Places365_test_00166254.jpg +Places365_test_00166258.jpg +Places365_test_00166299.jpg +Places365_test_00166311.jpg +Places365_test_00166322.jpg +Places365_test_00166345.jpg +Places365_test_00166347.jpg +Places365_test_00166348.jpg +Places365_test_00166350.jpg +Places365_test_00166355.jpg +Places365_test_00166363.jpg +Places365_test_00166365.jpg +Places365_test_00166367.jpg +Places365_test_00166368.jpg +Places365_test_00166374.jpg +Places365_test_00166379.jpg +Places365_test_00166395.jpg +Places365_test_00166412.jpg +Places365_test_00166432.jpg +Places365_test_00166450.jpg +Places365_test_00166457.jpg +Places365_test_00166461.jpg +Places365_test_00166479.jpg +Places365_test_00166497.jpg +Places365_test_00166505.jpg +Places365_test_00166527.jpg +Places365_test_00166538.jpg +Places365_test_00166561.jpg +Places365_test_00166579.jpg +Places365_test_00166595.jpg +Places365_test_00166600.jpg +Places365_test_00166606.jpg +Places365_test_00166614.jpg +Places365_test_00166619.jpg +Places365_test_00166620.jpg +Places365_test_00166633.jpg +Places365_test_00166649.jpg +Places365_test_00166653.jpg +Places365_test_00166659.jpg +Places365_test_00166665.jpg +Places365_test_00166670.jpg +Places365_test_00166687.jpg +Places365_test_00166703.jpg +Places365_test_00166723.jpg +Places365_test_00166730.jpg +Places365_test_00166734.jpg +Places365_test_00166742.jpg +Places365_test_00166744.jpg +Places365_test_00166757.jpg +Places365_test_00166762.jpg +Places365_test_00166772.jpg +Places365_test_00166773.jpg +Places365_test_00166781.jpg +Places365_test_00166787.jpg +Places365_test_00166795.jpg +Places365_test_00166804.jpg +Places365_test_00166825.jpg +Places365_test_00166844.jpg +Places365_test_00166846.jpg +Places365_test_00166866.jpg +Places365_test_00166871.jpg +Places365_test_00166887.jpg +Places365_test_00166900.jpg +Places365_test_00166902.jpg +Places365_test_00166915.jpg +Places365_test_00166924.jpg +Places365_test_00166955.jpg +Places365_test_00166957.jpg +Places365_test_00167001.jpg +Places365_test_00167011.jpg +Places365_test_00167018.jpg +Places365_test_00167034.jpg +Places365_test_00167072.jpg +Places365_test_00167075.jpg +Places365_test_00167079.jpg +Places365_test_00167082.jpg +Places365_test_00167083.jpg +Places365_test_00167091.jpg +Places365_test_00167106.jpg +Places365_test_00167110.jpg +Places365_test_00167122.jpg +Places365_test_00167130.jpg +Places365_test_00167160.jpg +Places365_test_00167170.jpg +Places365_test_00167183.jpg +Places365_test_00167191.jpg +Places365_test_00167217.jpg +Places365_test_00167239.jpg +Places365_test_00167253.jpg +Places365_test_00167262.jpg +Places365_test_00167281.jpg +Places365_test_00167297.jpg +Places365_test_00167309.jpg +Places365_test_00167316.jpg +Places365_test_00167340.jpg +Places365_test_00167349.jpg +Places365_test_00167350.jpg +Places365_test_00167357.jpg +Places365_test_00167359.jpg +Places365_test_00167374.jpg +Places365_test_00167412.jpg +Places365_test_00167427.jpg +Places365_test_00167429.jpg +Places365_test_00167435.jpg +Places365_test_00167442.jpg +Places365_test_00167451.jpg +Places365_test_00167457.jpg +Places365_test_00167465.jpg +Places365_test_00167473.jpg +Places365_test_00167519.jpg +Places365_test_00167540.jpg +Places365_test_00167543.jpg +Places365_test_00167547.jpg +Places365_test_00167551.jpg +Places365_test_00167553.jpg +Places365_test_00167557.jpg +Places365_test_00167568.jpg +Places365_test_00167585.jpg +Places365_test_00167588.jpg +Places365_test_00167597.jpg +Places365_test_00167606.jpg +Places365_test_00167636.jpg +Places365_test_00167637.jpg +Places365_test_00167658.jpg +Places365_test_00167660.jpg +Places365_test_00167681.jpg +Places365_test_00167688.jpg +Places365_test_00167690.jpg +Places365_test_00167698.jpg +Places365_test_00167705.jpg +Places365_test_00167712.jpg +Places365_test_00167727.jpg +Places365_test_00167762.jpg +Places365_test_00167772.jpg +Places365_test_00167780.jpg +Places365_test_00167784.jpg +Places365_test_00167785.jpg +Places365_test_00167788.jpg +Places365_test_00167791.jpg +Places365_test_00167833.jpg +Places365_test_00167843.jpg +Places365_test_00167864.jpg +Places365_test_00167898.jpg +Places365_test_00167906.jpg +Places365_test_00167914.jpg +Places365_test_00167918.jpg +Places365_test_00167929.jpg +Places365_test_00167939.jpg +Places365_test_00167966.jpg +Places365_test_00167967.jpg +Places365_test_00167985.jpg +Places365_test_00168012.jpg +Places365_test_00168015.jpg +Places365_test_00168018.jpg +Places365_test_00168040.jpg +Places365_test_00168042.jpg +Places365_test_00168049.jpg +Places365_test_00168052.jpg +Places365_test_00168057.jpg +Places365_test_00168081.jpg +Places365_test_00168091.jpg +Places365_test_00168092.jpg +Places365_test_00168094.jpg +Places365_test_00168111.jpg +Places365_test_00168112.jpg +Places365_test_00168143.jpg +Places365_test_00168151.jpg +Places365_test_00168156.jpg +Places365_test_00168165.jpg +Places365_test_00168188.jpg +Places365_test_00168189.jpg +Places365_test_00168214.jpg +Places365_test_00168222.jpg +Places365_test_00168225.jpg +Places365_test_00168230.jpg +Places365_test_00168234.jpg +Places365_test_00168243.jpg +Places365_test_00168251.jpg +Places365_test_00168257.jpg +Places365_test_00168264.jpg +Places365_test_00168267.jpg +Places365_test_00168268.jpg +Places365_test_00168269.jpg +Places365_test_00168276.jpg +Places365_test_00168310.jpg +Places365_test_00168327.jpg +Places365_test_00168330.jpg +Places365_test_00168336.jpg +Places365_test_00168340.jpg +Places365_test_00168346.jpg +Places365_test_00168350.jpg +Places365_test_00168353.jpg +Places365_test_00168359.jpg +Places365_test_00168369.jpg +Places365_test_00168388.jpg +Places365_test_00168394.jpg +Places365_test_00168395.jpg +Places365_test_00168406.jpg +Places365_test_00168416.jpg +Places365_test_00168425.jpg +Places365_test_00168440.jpg +Places365_test_00168445.jpg +Places365_test_00168478.jpg +Places365_test_00168479.jpg +Places365_test_00168486.jpg +Places365_test_00168503.jpg +Places365_test_00168530.jpg +Places365_test_00168531.jpg +Places365_test_00168535.jpg +Places365_test_00168555.jpg +Places365_test_00168560.jpg +Places365_test_00168567.jpg +Places365_test_00168573.jpg +Places365_test_00168589.jpg +Places365_test_00168605.jpg +Places365_test_00168616.jpg +Places365_test_00168637.jpg +Places365_test_00168638.jpg +Places365_test_00168656.jpg +Places365_test_00168660.jpg +Places365_test_00168663.jpg +Places365_test_00168666.jpg +Places365_test_00168671.jpg +Places365_test_00168695.jpg +Places365_test_00168704.jpg +Places365_test_00168709.jpg +Places365_test_00168724.jpg +Places365_test_00168740.jpg +Places365_test_00168751.jpg +Places365_test_00168756.jpg +Places365_test_00168762.jpg +Places365_test_00168764.jpg +Places365_test_00168772.jpg +Places365_test_00168775.jpg +Places365_test_00168789.jpg +Places365_test_00168803.jpg +Places365_test_00168815.jpg +Places365_test_00168846.jpg +Places365_test_00168849.jpg +Places365_test_00168851.jpg +Places365_test_00168853.jpg +Places365_test_00168881.jpg +Places365_test_00168891.jpg +Places365_test_00168910.jpg +Places365_test_00168912.jpg +Places365_test_00168926.jpg +Places365_test_00168940.jpg +Places365_test_00168944.jpg +Places365_test_00168946.jpg +Places365_test_00168963.jpg +Places365_test_00168975.jpg +Places365_test_00168989.jpg +Places365_test_00168998.jpg +Places365_test_00169005.jpg +Places365_test_00169006.jpg +Places365_test_00169029.jpg +Places365_test_00169040.jpg +Places365_test_00169046.jpg +Places365_test_00169062.jpg +Places365_test_00169088.jpg +Places365_test_00169113.jpg +Places365_test_00169120.jpg +Places365_test_00169138.jpg +Places365_test_00169142.jpg +Places365_test_00169147.jpg +Places365_test_00169160.jpg +Places365_test_00169172.jpg +Places365_test_00169199.jpg +Places365_test_00169224.jpg +Places365_test_00169243.jpg +Places365_test_00169257.jpg +Places365_test_00169261.jpg +Places365_test_00169300.jpg +Places365_test_00169302.jpg +Places365_test_00169306.jpg +Places365_test_00169309.jpg +Places365_test_00169320.jpg +Places365_test_00169322.jpg +Places365_test_00169331.jpg +Places365_test_00169344.jpg +Places365_test_00169358.jpg +Places365_test_00169405.jpg +Places365_test_00169425.jpg +Places365_test_00169436.jpg +Places365_test_00169441.jpg +Places365_test_00169451.jpg +Places365_test_00169466.jpg +Places365_test_00169469.jpg +Places365_test_00169472.jpg +Places365_test_00169502.jpg +Places365_test_00169503.jpg +Places365_test_00169515.jpg +Places365_test_00169517.jpg +Places365_test_00169533.jpg +Places365_test_00169537.jpg +Places365_test_00169543.jpg +Places365_test_00169553.jpg +Places365_test_00169575.jpg +Places365_test_00169588.jpg +Places365_test_00169595.jpg +Places365_test_00169608.jpg +Places365_test_00169629.jpg +Places365_test_00169644.jpg +Places365_test_00169647.jpg +Places365_test_00169667.jpg +Places365_test_00169671.jpg +Places365_test_00169674.jpg +Places365_test_00169680.jpg +Places365_test_00169688.jpg +Places365_test_00169696.jpg +Places365_test_00169712.jpg +Places365_test_00169727.jpg +Places365_test_00169734.jpg +Places365_test_00169748.jpg +Places365_test_00169750.jpg +Places365_test_00169759.jpg +Places365_test_00169783.jpg +Places365_test_00169809.jpg +Places365_test_00169812.jpg +Places365_test_00169815.jpg +Places365_test_00169828.jpg +Places365_test_00169832.jpg +Places365_test_00169846.jpg +Places365_test_00169854.jpg +Places365_test_00169873.jpg +Places365_test_00169892.jpg +Places365_test_00169922.jpg +Places365_test_00169926.jpg +Places365_test_00169929.jpg +Places365_test_00169942.jpg +Places365_test_00169946.jpg +Places365_test_00169956.jpg +Places365_test_00169980.jpg +Places365_test_00169981.jpg +Places365_test_00169997.jpg +Places365_test_00170003.jpg +Places365_test_00170017.jpg +Places365_test_00170039.jpg +Places365_test_00170045.jpg +Places365_test_00170048.jpg +Places365_test_00170062.jpg +Places365_test_00170063.jpg +Places365_test_00170065.jpg +Places365_test_00170072.jpg +Places365_test_00170073.jpg +Places365_test_00170092.jpg +Places365_test_00170098.jpg +Places365_test_00170109.jpg +Places365_test_00170122.jpg +Places365_test_00170123.jpg +Places365_test_00170143.jpg +Places365_test_00170150.jpg +Places365_test_00170169.jpg +Places365_test_00170194.jpg +Places365_test_00170206.jpg +Places365_test_00170216.jpg +Places365_test_00170224.jpg +Places365_test_00170238.jpg +Places365_test_00170272.jpg +Places365_test_00170278.jpg +Places365_test_00170280.jpg +Places365_test_00170284.jpg +Places365_test_00170310.jpg +Places365_test_00170313.jpg +Places365_test_00170336.jpg +Places365_test_00170351.jpg +Places365_test_00170364.jpg +Places365_test_00170387.jpg +Places365_test_00170405.jpg +Places365_test_00170410.jpg +Places365_test_00170431.jpg +Places365_test_00170434.jpg +Places365_test_00170455.jpg +Places365_test_00170463.jpg +Places365_test_00170468.jpg +Places365_test_00170476.jpg +Places365_test_00170478.jpg +Places365_test_00170479.jpg +Places365_test_00170486.jpg +Places365_test_00170492.jpg +Places365_test_00170498.jpg +Places365_test_00170511.jpg +Places365_test_00170524.jpg +Places365_test_00170541.jpg +Places365_test_00170556.jpg +Places365_test_00170563.jpg +Places365_test_00170567.jpg +Places365_test_00170575.jpg +Places365_test_00170585.jpg +Places365_test_00170590.jpg +Places365_test_00170598.jpg +Places365_test_00170619.jpg +Places365_test_00170636.jpg +Places365_test_00170637.jpg +Places365_test_00170659.jpg +Places365_test_00170669.jpg +Places365_test_00170671.jpg +Places365_test_00170678.jpg +Places365_test_00170694.jpg +Places365_test_00170706.jpg +Places365_test_00170707.jpg +Places365_test_00170735.jpg +Places365_test_00170761.jpg +Places365_test_00170768.jpg +Places365_test_00170769.jpg +Places365_test_00170780.jpg +Places365_test_00170787.jpg +Places365_test_00170791.jpg +Places365_test_00170793.jpg +Places365_test_00170798.jpg +Places365_test_00170803.jpg +Places365_test_00170807.jpg +Places365_test_00170809.jpg +Places365_test_00170812.jpg +Places365_test_00170813.jpg +Places365_test_00170814.jpg +Places365_test_00170815.jpg +Places365_test_00170816.jpg +Places365_test_00170843.jpg +Places365_test_00170855.jpg +Places365_test_00170861.jpg +Places365_test_00170869.jpg +Places365_test_00170875.jpg +Places365_test_00170884.jpg +Places365_test_00170908.jpg +Places365_test_00170909.jpg +Places365_test_00170930.jpg +Places365_test_00170950.jpg +Places365_test_00170966.jpg +Places365_test_00170995.jpg +Places365_test_00171004.jpg +Places365_test_00171010.jpg +Places365_test_00171011.jpg +Places365_test_00171036.jpg +Places365_test_00171040.jpg +Places365_test_00171042.jpg +Places365_test_00171061.jpg +Places365_test_00171071.jpg +Places365_test_00171073.jpg +Places365_test_00171099.jpg +Places365_test_00171103.jpg +Places365_test_00171111.jpg +Places365_test_00171134.jpg +Places365_test_00171156.jpg +Places365_test_00171166.jpg +Places365_test_00171170.jpg +Places365_test_00171181.jpg +Places365_test_00171189.jpg +Places365_test_00171192.jpg +Places365_test_00171197.jpg +Places365_test_00171200.jpg +Places365_test_00171201.jpg +Places365_test_00171210.jpg +Places365_test_00171211.jpg +Places365_test_00171222.jpg +Places365_test_00171236.jpg +Places365_test_00171262.jpg +Places365_test_00171286.jpg +Places365_test_00171315.jpg +Places365_test_00171368.jpg +Places365_test_00171372.jpg +Places365_test_00171388.jpg +Places365_test_00171389.jpg +Places365_test_00171416.jpg +Places365_test_00171431.jpg +Places365_test_00171445.jpg +Places365_test_00171471.jpg +Places365_test_00171473.jpg +Places365_test_00171494.jpg +Places365_test_00171498.jpg +Places365_test_00171500.jpg +Places365_test_00171509.jpg +Places365_test_00171523.jpg +Places365_test_00171536.jpg +Places365_test_00171541.jpg +Places365_test_00171559.jpg +Places365_test_00171567.jpg +Places365_test_00171581.jpg +Places365_test_00171583.jpg +Places365_test_00171600.jpg +Places365_test_00171608.jpg +Places365_test_00171611.jpg +Places365_test_00171614.jpg +Places365_test_00171620.jpg +Places365_test_00171621.jpg +Places365_test_00171631.jpg +Places365_test_00171651.jpg +Places365_test_00171670.jpg +Places365_test_00171683.jpg +Places365_test_00171687.jpg +Places365_test_00171688.jpg +Places365_test_00171697.jpg +Places365_test_00171707.jpg +Places365_test_00171721.jpg +Places365_test_00171725.jpg +Places365_test_00171731.jpg +Places365_test_00171737.jpg +Places365_test_00171749.jpg +Places365_test_00171752.jpg +Places365_test_00171759.jpg +Places365_test_00171766.jpg +Places365_test_00171788.jpg +Places365_test_00171791.jpg +Places365_test_00171798.jpg +Places365_test_00171813.jpg +Places365_test_00171814.jpg +Places365_test_00171815.jpg +Places365_test_00171817.jpg +Places365_test_00171823.jpg +Places365_test_00171836.jpg +Places365_test_00171863.jpg +Places365_test_00171875.jpg +Places365_test_00171885.jpg +Places365_test_00171888.jpg +Places365_test_00171893.jpg +Places365_test_00171897.jpg +Places365_test_00171920.jpg +Places365_test_00171925.jpg +Places365_test_00171931.jpg +Places365_test_00171941.jpg +Places365_test_00171951.jpg +Places365_test_00171960.jpg +Places365_test_00171971.jpg +Places365_test_00171983.jpg +Places365_test_00171988.jpg +Places365_test_00172011.jpg +Places365_test_00172019.jpg +Places365_test_00172031.jpg +Places365_test_00172047.jpg +Places365_test_00172051.jpg +Places365_test_00172058.jpg +Places365_test_00172066.jpg +Places365_test_00172086.jpg +Places365_test_00172087.jpg +Places365_test_00172122.jpg +Places365_test_00172132.jpg +Places365_test_00172153.jpg +Places365_test_00172163.jpg +Places365_test_00172165.jpg +Places365_test_00172167.jpg +Places365_test_00172182.jpg +Places365_test_00172188.jpg +Places365_test_00172214.jpg +Places365_test_00172221.jpg +Places365_test_00172231.jpg +Places365_test_00172234.jpg +Places365_test_00172235.jpg +Places365_test_00172246.jpg +Places365_test_00172257.jpg +Places365_test_00172266.jpg +Places365_test_00172281.jpg +Places365_test_00172288.jpg +Places365_test_00172292.jpg +Places365_test_00172331.jpg +Places365_test_00172334.jpg +Places365_test_00172341.jpg +Places365_test_00172354.jpg +Places365_test_00172359.jpg +Places365_test_00172367.jpg +Places365_test_00172371.jpg +Places365_test_00172372.jpg +Places365_test_00172383.jpg +Places365_test_00172393.jpg +Places365_test_00172398.jpg +Places365_test_00172409.jpg +Places365_test_00172416.jpg +Places365_test_00172417.jpg +Places365_test_00172418.jpg +Places365_test_00172432.jpg +Places365_test_00172440.jpg +Places365_test_00172451.jpg +Places365_test_00172456.jpg +Places365_test_00172495.jpg +Places365_test_00172514.jpg +Places365_test_00172529.jpg +Places365_test_00172562.jpg +Places365_test_00172567.jpg +Places365_test_00172573.jpg +Places365_test_00172575.jpg +Places365_test_00172588.jpg +Places365_test_00172599.jpg +Places365_test_00172609.jpg +Places365_test_00172611.jpg +Places365_test_00172623.jpg +Places365_test_00172626.jpg +Places365_test_00172637.jpg +Places365_test_00172666.jpg +Places365_test_00172667.jpg +Places365_test_00172678.jpg +Places365_test_00172721.jpg +Places365_test_00172731.jpg +Places365_test_00172735.jpg +Places365_test_00172744.jpg +Places365_test_00172755.jpg +Places365_test_00172781.jpg +Places365_test_00172784.jpg +Places365_test_00172790.jpg +Places365_test_00172814.jpg +Places365_test_00172818.jpg +Places365_test_00172820.jpg +Places365_test_00172825.jpg +Places365_test_00172831.jpg +Places365_test_00172841.jpg +Places365_test_00172852.jpg +Places365_test_00172862.jpg +Places365_test_00172876.jpg +Places365_test_00172891.jpg +Places365_test_00172900.jpg +Places365_test_00172902.jpg +Places365_test_00172922.jpg +Places365_test_00172935.jpg +Places365_test_00172941.jpg +Places365_test_00172948.jpg +Places365_test_00172956.jpg +Places365_test_00172960.jpg +Places365_test_00172961.jpg +Places365_test_00172967.jpg +Places365_test_00172982.jpg +Places365_test_00173007.jpg +Places365_test_00173012.jpg +Places365_test_00173016.jpg +Places365_test_00173025.jpg +Places365_test_00173049.jpg +Places365_test_00173053.jpg +Places365_test_00173054.jpg +Places365_test_00173071.jpg +Places365_test_00173074.jpg +Places365_test_00173078.jpg +Places365_test_00173085.jpg +Places365_test_00173093.jpg +Places365_test_00173094.jpg +Places365_test_00173096.jpg +Places365_test_00173114.jpg +Places365_test_00173125.jpg +Places365_test_00173133.jpg +Places365_test_00173139.jpg +Places365_test_00173160.jpg +Places365_test_00173163.jpg +Places365_test_00173169.jpg +Places365_test_00173187.jpg +Places365_test_00173192.jpg +Places365_test_00173203.jpg +Places365_test_00173208.jpg +Places365_test_00173213.jpg +Places365_test_00173216.jpg +Places365_test_00173218.jpg +Places365_test_00173230.jpg +Places365_test_00173237.jpg +Places365_test_00173242.jpg +Places365_test_00173249.jpg +Places365_test_00173254.jpg +Places365_test_00173269.jpg +Places365_test_00173277.jpg +Places365_test_00173318.jpg +Places365_test_00173323.jpg +Places365_test_00173333.jpg +Places365_test_00173336.jpg +Places365_test_00173351.jpg +Places365_test_00173378.jpg +Places365_test_00173394.jpg +Places365_test_00173397.jpg +Places365_test_00173406.jpg +Places365_test_00173413.jpg +Places365_test_00173418.jpg +Places365_test_00173447.jpg +Places365_test_00173459.jpg +Places365_test_00173477.jpg +Places365_test_00173478.jpg +Places365_test_00173480.jpg +Places365_test_00173488.jpg +Places365_test_00173489.jpg +Places365_test_00173492.jpg +Places365_test_00173494.jpg +Places365_test_00173502.jpg +Places365_test_00173506.jpg +Places365_test_00173522.jpg +Places365_test_00173523.jpg +Places365_test_00173541.jpg +Places365_test_00173548.jpg +Places365_test_00173582.jpg +Places365_test_00173587.jpg +Places365_test_00173588.jpg +Places365_test_00173607.jpg +Places365_test_00173611.jpg +Places365_test_00173617.jpg +Places365_test_00173650.jpg +Places365_test_00173653.jpg +Places365_test_00173672.jpg +Places365_test_00173675.jpg +Places365_test_00173714.jpg +Places365_test_00173717.jpg +Places365_test_00173720.jpg +Places365_test_00173732.jpg +Places365_test_00173752.jpg +Places365_test_00173773.jpg +Places365_test_00173794.jpg +Places365_test_00173801.jpg +Places365_test_00173815.jpg +Places365_test_00173828.jpg +Places365_test_00173835.jpg +Places365_test_00173848.jpg +Places365_test_00173872.jpg +Places365_test_00173895.jpg +Places365_test_00173925.jpg +Places365_test_00173945.jpg +Places365_test_00173950.jpg +Places365_test_00173951.jpg +Places365_test_00173960.jpg +Places365_test_00173974.jpg +Places365_test_00173991.jpg +Places365_test_00173993.jpg +Places365_test_00174033.jpg +Places365_test_00174058.jpg +Places365_test_00174075.jpg +Places365_test_00174078.jpg +Places365_test_00174103.jpg +Places365_test_00174107.jpg +Places365_test_00174122.jpg +Places365_test_00174131.jpg +Places365_test_00174133.jpg +Places365_test_00174140.jpg +Places365_test_00174144.jpg +Places365_test_00174158.jpg +Places365_test_00174159.jpg +Places365_test_00174166.jpg +Places365_test_00174169.jpg +Places365_test_00174170.jpg +Places365_test_00174183.jpg +Places365_test_00174191.jpg +Places365_test_00174195.jpg +Places365_test_00174202.jpg +Places365_test_00174217.jpg +Places365_test_00174221.jpg +Places365_test_00174253.jpg +Places365_test_00174255.jpg +Places365_test_00174262.jpg +Places365_test_00174272.jpg +Places365_test_00174284.jpg +Places365_test_00174290.jpg +Places365_test_00174291.jpg +Places365_test_00174316.jpg +Places365_test_00174321.jpg +Places365_test_00174324.jpg +Places365_test_00174334.jpg +Places365_test_00174354.jpg +Places365_test_00174363.jpg +Places365_test_00174373.jpg +Places365_test_00174398.jpg +Places365_test_00174418.jpg +Places365_test_00174426.jpg +Places365_test_00174435.jpg +Places365_test_00174439.jpg +Places365_test_00174449.jpg +Places365_test_00174450.jpg +Places365_test_00174470.jpg +Places365_test_00174512.jpg +Places365_test_00174516.jpg +Places365_test_00174538.jpg +Places365_test_00174578.jpg +Places365_test_00174593.jpg +Places365_test_00174610.jpg +Places365_test_00174646.jpg +Places365_test_00174657.jpg +Places365_test_00174663.jpg +Places365_test_00174664.jpg +Places365_test_00174700.jpg +Places365_test_00174719.jpg +Places365_test_00174744.jpg +Places365_test_00174745.jpg +Places365_test_00174751.jpg +Places365_test_00174765.jpg +Places365_test_00174766.jpg +Places365_test_00174772.jpg +Places365_test_00174791.jpg +Places365_test_00174793.jpg +Places365_test_00174806.jpg +Places365_test_00174814.jpg +Places365_test_00174825.jpg +Places365_test_00174829.jpg +Places365_test_00174838.jpg +Places365_test_00174845.jpg +Places365_test_00174846.jpg +Places365_test_00174893.jpg +Places365_test_00174895.jpg +Places365_test_00174909.jpg +Places365_test_00174919.jpg +Places365_test_00174922.jpg +Places365_test_00174925.jpg +Places365_test_00174939.jpg +Places365_test_00174946.jpg +Places365_test_00174973.jpg +Places365_test_00175011.jpg +Places365_test_00175020.jpg +Places365_test_00175021.jpg +Places365_test_00175030.jpg +Places365_test_00175031.jpg +Places365_test_00175041.jpg +Places365_test_00175045.jpg +Places365_test_00175055.jpg +Places365_test_00175061.jpg +Places365_test_00175065.jpg +Places365_test_00175067.jpg +Places365_test_00175073.jpg +Places365_test_00175093.jpg +Places365_test_00175096.jpg +Places365_test_00175159.jpg +Places365_test_00175162.jpg +Places365_test_00175164.jpg +Places365_test_00175171.jpg +Places365_test_00175175.jpg +Places365_test_00175208.jpg +Places365_test_00175219.jpg +Places365_test_00175221.jpg +Places365_test_00175222.jpg +Places365_test_00175234.jpg +Places365_test_00175238.jpg +Places365_test_00175241.jpg +Places365_test_00175246.jpg +Places365_test_00175258.jpg +Places365_test_00175275.jpg +Places365_test_00175282.jpg +Places365_test_00175285.jpg +Places365_test_00175286.jpg +Places365_test_00175295.jpg +Places365_test_00175302.jpg +Places365_test_00175310.jpg +Places365_test_00175319.jpg +Places365_test_00175335.jpg +Places365_test_00175350.jpg +Places365_test_00175387.jpg +Places365_test_00175395.jpg +Places365_test_00175397.jpg +Places365_test_00175404.jpg +Places365_test_00175411.jpg +Places365_test_00175417.jpg +Places365_test_00175422.jpg +Places365_test_00175427.jpg +Places365_test_00175429.jpg +Places365_test_00175441.jpg +Places365_test_00175487.jpg +Places365_test_00175506.jpg +Places365_test_00175519.jpg +Places365_test_00175553.jpg +Places365_test_00175558.jpg +Places365_test_00175576.jpg +Places365_test_00175579.jpg +Places365_test_00175585.jpg +Places365_test_00175606.jpg +Places365_test_00175610.jpg +Places365_test_00175622.jpg +Places365_test_00175626.jpg +Places365_test_00175627.jpg +Places365_test_00175636.jpg +Places365_test_00175657.jpg +Places365_test_00175679.jpg +Places365_test_00175690.jpg +Places365_test_00175700.jpg +Places365_test_00175742.jpg +Places365_test_00175744.jpg +Places365_test_00175769.jpg +Places365_test_00175772.jpg +Places365_test_00175801.jpg +Places365_test_00175803.jpg +Places365_test_00175806.jpg +Places365_test_00175809.jpg +Places365_test_00175812.jpg +Places365_test_00175819.jpg +Places365_test_00175828.jpg +Places365_test_00175847.jpg +Places365_test_00175862.jpg +Places365_test_00175872.jpg +Places365_test_00175884.jpg +Places365_test_00175886.jpg +Places365_test_00175901.jpg +Places365_test_00175908.jpg +Places365_test_00175910.jpg +Places365_test_00175927.jpg +Places365_test_00175928.jpg +Places365_test_00175938.jpg +Places365_test_00175944.jpg +Places365_test_00175973.jpg +Places365_test_00175982.jpg +Places365_test_00175984.jpg +Places365_test_00175989.jpg +Places365_test_00176003.jpg +Places365_test_00176005.jpg +Places365_test_00176007.jpg +Places365_test_00176011.jpg +Places365_test_00176034.jpg +Places365_test_00176038.jpg +Places365_test_00176043.jpg +Places365_test_00176049.jpg +Places365_test_00176068.jpg +Places365_test_00176071.jpg +Places365_test_00176074.jpg +Places365_test_00176084.jpg +Places365_test_00176086.jpg +Places365_test_00176088.jpg +Places365_test_00176091.jpg +Places365_test_00176097.jpg +Places365_test_00176113.jpg +Places365_test_00176122.jpg +Places365_test_00176127.jpg +Places365_test_00176133.jpg +Places365_test_00176135.jpg +Places365_test_00176147.jpg +Places365_test_00176154.jpg +Places365_test_00176156.jpg +Places365_test_00176160.jpg +Places365_test_00176164.jpg +Places365_test_00176168.jpg +Places365_test_00176169.jpg +Places365_test_00176182.jpg +Places365_test_00176230.jpg +Places365_test_00176241.jpg +Places365_test_00176264.jpg +Places365_test_00176268.jpg +Places365_test_00176276.jpg +Places365_test_00176278.jpg +Places365_test_00176292.jpg +Places365_test_00176305.jpg +Places365_test_00176324.jpg +Places365_test_00176331.jpg +Places365_test_00176381.jpg +Places365_test_00176386.jpg +Places365_test_00176412.jpg +Places365_test_00176420.jpg +Places365_test_00176425.jpg +Places365_test_00176428.jpg +Places365_test_00176432.jpg +Places365_test_00176433.jpg +Places365_test_00176452.jpg +Places365_test_00176478.jpg +Places365_test_00176482.jpg +Places365_test_00176502.jpg +Places365_test_00176510.jpg +Places365_test_00176524.jpg +Places365_test_00176529.jpg +Places365_test_00176530.jpg +Places365_test_00176535.jpg +Places365_test_00176537.jpg +Places365_test_00176555.jpg +Places365_test_00176573.jpg +Places365_test_00176588.jpg +Places365_test_00176618.jpg +Places365_test_00176632.jpg +Places365_test_00176636.jpg +Places365_test_00176643.jpg +Places365_test_00176649.jpg +Places365_test_00176654.jpg +Places365_test_00176689.jpg +Places365_test_00176696.jpg +Places365_test_00176716.jpg +Places365_test_00176717.jpg +Places365_test_00176747.jpg +Places365_test_00176764.jpg +Places365_test_00176769.jpg +Places365_test_00176776.jpg +Places365_test_00176805.jpg +Places365_test_00176812.jpg +Places365_test_00176815.jpg +Places365_test_00176824.jpg +Places365_test_00176827.jpg +Places365_test_00176832.jpg +Places365_test_00176837.jpg +Places365_test_00176841.jpg +Places365_test_00176842.jpg +Places365_test_00176846.jpg +Places365_test_00176858.jpg +Places365_test_00176870.jpg +Places365_test_00176872.jpg +Places365_test_00176873.jpg +Places365_test_00176879.jpg +Places365_test_00176893.jpg +Places365_test_00176901.jpg +Places365_test_00176904.jpg +Places365_test_00176915.jpg +Places365_test_00176930.jpg +Places365_test_00176942.jpg +Places365_test_00176962.jpg +Places365_test_00176963.jpg +Places365_test_00176965.jpg +Places365_test_00176966.jpg +Places365_test_00176976.jpg +Places365_test_00176978.jpg +Places365_test_00176996.jpg +Places365_test_00176999.jpg +Places365_test_00177004.jpg +Places365_test_00177006.jpg +Places365_test_00177018.jpg +Places365_test_00177033.jpg +Places365_test_00177048.jpg +Places365_test_00177055.jpg +Places365_test_00177056.jpg +Places365_test_00177063.jpg +Places365_test_00177064.jpg +Places365_test_00177065.jpg +Places365_test_00177070.jpg +Places365_test_00177072.jpg +Places365_test_00177078.jpg +Places365_test_00177085.jpg +Places365_test_00177088.jpg +Places365_test_00177122.jpg +Places365_test_00177155.jpg +Places365_test_00177165.jpg +Places365_test_00177169.jpg +Places365_test_00177173.jpg +Places365_test_00177184.jpg +Places365_test_00177206.jpg +Places365_test_00177209.jpg +Places365_test_00177224.jpg +Places365_test_00177271.jpg +Places365_test_00177292.jpg +Places365_test_00177303.jpg +Places365_test_00177331.jpg +Places365_test_00177334.jpg +Places365_test_00177336.jpg +Places365_test_00177342.jpg +Places365_test_00177352.jpg +Places365_test_00177366.jpg +Places365_test_00177388.jpg +Places365_test_00177392.jpg +Places365_test_00177394.jpg +Places365_test_00177397.jpg +Places365_test_00177409.jpg +Places365_test_00177427.jpg +Places365_test_00177429.jpg +Places365_test_00177442.jpg +Places365_test_00177443.jpg +Places365_test_00177452.jpg +Places365_test_00177454.jpg +Places365_test_00177463.jpg +Places365_test_00177465.jpg +Places365_test_00177470.jpg +Places365_test_00177481.jpg +Places365_test_00177489.jpg +Places365_test_00177494.jpg +Places365_test_00177518.jpg +Places365_test_00177522.jpg +Places365_test_00177532.jpg +Places365_test_00177539.jpg +Places365_test_00177558.jpg +Places365_test_00177584.jpg +Places365_test_00177587.jpg +Places365_test_00177625.jpg +Places365_test_00177635.jpg +Places365_test_00177643.jpg +Places365_test_00177666.jpg +Places365_test_00177671.jpg +Places365_test_00177675.jpg +Places365_test_00177688.jpg +Places365_test_00177694.jpg +Places365_test_00177711.jpg +Places365_test_00177726.jpg +Places365_test_00177733.jpg +Places365_test_00177738.jpg +Places365_test_00177746.jpg +Places365_test_00177764.jpg +Places365_test_00177779.jpg +Places365_test_00177797.jpg +Places365_test_00177808.jpg +Places365_test_00177821.jpg +Places365_test_00177824.jpg +Places365_test_00177836.jpg +Places365_test_00177867.jpg +Places365_test_00177877.jpg +Places365_test_00177887.jpg +Places365_test_00177905.jpg +Places365_test_00177921.jpg +Places365_test_00177929.jpg +Places365_test_00177949.jpg +Places365_test_00177959.jpg +Places365_test_00177965.jpg +Places365_test_00177977.jpg +Places365_test_00177984.jpg +Places365_test_00177999.jpg +Places365_test_00178007.jpg +Places365_test_00178011.jpg +Places365_test_00178028.jpg +Places365_test_00178050.jpg +Places365_test_00178054.jpg +Places365_test_00178062.jpg +Places365_test_00178072.jpg +Places365_test_00178081.jpg +Places365_test_00178085.jpg +Places365_test_00178087.jpg +Places365_test_00178090.jpg +Places365_test_00178097.jpg +Places365_test_00178100.jpg +Places365_test_00178109.jpg +Places365_test_00178116.jpg +Places365_test_00178123.jpg +Places365_test_00178128.jpg +Places365_test_00178149.jpg +Places365_test_00178160.jpg +Places365_test_00178162.jpg +Places365_test_00178169.jpg +Places365_test_00178202.jpg +Places365_test_00178207.jpg +Places365_test_00178227.jpg +Places365_test_00178229.jpg +Places365_test_00178252.jpg +Places365_test_00178253.jpg +Places365_test_00178279.jpg +Places365_test_00178295.jpg +Places365_test_00178303.jpg +Places365_test_00178306.jpg +Places365_test_00178311.jpg +Places365_test_00178312.jpg +Places365_test_00178327.jpg +Places365_test_00178341.jpg +Places365_test_00178347.jpg +Places365_test_00178355.jpg +Places365_test_00178358.jpg +Places365_test_00178362.jpg +Places365_test_00178366.jpg +Places365_test_00178384.jpg +Places365_test_00178398.jpg +Places365_test_00178404.jpg +Places365_test_00178416.jpg +Places365_test_00178417.jpg +Places365_test_00178423.jpg +Places365_test_00178435.jpg +Places365_test_00178437.jpg +Places365_test_00178453.jpg +Places365_test_00178475.jpg +Places365_test_00178484.jpg +Places365_test_00178487.jpg +Places365_test_00178507.jpg +Places365_test_00178510.jpg +Places365_test_00178518.jpg +Places365_test_00178526.jpg +Places365_test_00178546.jpg +Places365_test_00178550.jpg +Places365_test_00178551.jpg +Places365_test_00178556.jpg +Places365_test_00178558.jpg +Places365_test_00178574.jpg +Places365_test_00178592.jpg +Places365_test_00178632.jpg +Places365_test_00178645.jpg +Places365_test_00178651.jpg +Places365_test_00178669.jpg +Places365_test_00178674.jpg +Places365_test_00178675.jpg +Places365_test_00178677.jpg +Places365_test_00178680.jpg +Places365_test_00178684.jpg +Places365_test_00178696.jpg +Places365_test_00178721.jpg +Places365_test_00178725.jpg +Places365_test_00178727.jpg +Places365_test_00178742.jpg +Places365_test_00178753.jpg +Places365_test_00178756.jpg +Places365_test_00178774.jpg +Places365_test_00178780.jpg +Places365_test_00178790.jpg +Places365_test_00178828.jpg +Places365_test_00178839.jpg +Places365_test_00178852.jpg +Places365_test_00178856.jpg +Places365_test_00178902.jpg +Places365_test_00178912.jpg +Places365_test_00178932.jpg +Places365_test_00178938.jpg +Places365_test_00178953.jpg +Places365_test_00178955.jpg +Places365_test_00178969.jpg +Places365_test_00178971.jpg +Places365_test_00178987.jpg +Places365_test_00178992.jpg +Places365_test_00178993.jpg +Places365_test_00179006.jpg +Places365_test_00179008.jpg +Places365_test_00179041.jpg +Places365_test_00179080.jpg +Places365_test_00179084.jpg +Places365_test_00179103.jpg +Places365_test_00179127.jpg +Places365_test_00179128.jpg +Places365_test_00179164.jpg +Places365_test_00179184.jpg +Places365_test_00179189.jpg +Places365_test_00179200.jpg +Places365_test_00179201.jpg +Places365_test_00179226.jpg +Places365_test_00179248.jpg +Places365_test_00179250.jpg +Places365_test_00179266.jpg +Places365_test_00179272.jpg +Places365_test_00179299.jpg +Places365_test_00179302.jpg +Places365_test_00179317.jpg +Places365_test_00179321.jpg +Places365_test_00179334.jpg +Places365_test_00179349.jpg +Places365_test_00179365.jpg +Places365_test_00179376.jpg +Places365_test_00179379.jpg +Places365_test_00179386.jpg +Places365_test_00179428.jpg +Places365_test_00179447.jpg +Places365_test_00179463.jpg +Places365_test_00179476.jpg +Places365_test_00179504.jpg +Places365_test_00179553.jpg +Places365_test_00179580.jpg +Places365_test_00179585.jpg +Places365_test_00179591.jpg +Places365_test_00179599.jpg +Places365_test_00179608.jpg +Places365_test_00179611.jpg +Places365_test_00179625.jpg +Places365_test_00179651.jpg +Places365_test_00179655.jpg +Places365_test_00179660.jpg +Places365_test_00179670.jpg +Places365_test_00179672.jpg +Places365_test_00179674.jpg +Places365_test_00179677.jpg +Places365_test_00179689.jpg +Places365_test_00179694.jpg +Places365_test_00179711.jpg +Places365_test_00179725.jpg +Places365_test_00179727.jpg +Places365_test_00179756.jpg +Places365_test_00179759.jpg +Places365_test_00179782.jpg +Places365_test_00179793.jpg +Places365_test_00179803.jpg +Places365_test_00179809.jpg +Places365_test_00179825.jpg +Places365_test_00179837.jpg +Places365_test_00179858.jpg +Places365_test_00179907.jpg +Places365_test_00179912.jpg +Places365_test_00179923.jpg +Places365_test_00179933.jpg +Places365_test_00179939.jpg +Places365_test_00179982.jpg +Places365_test_00179990.jpg +Places365_test_00180005.jpg +Places365_test_00180017.jpg +Places365_test_00180047.jpg +Places365_test_00180059.jpg +Places365_test_00180065.jpg +Places365_test_00180077.jpg +Places365_test_00180096.jpg +Places365_test_00180111.jpg +Places365_test_00180112.jpg +Places365_test_00180126.jpg +Places365_test_00180144.jpg +Places365_test_00180149.jpg +Places365_test_00180154.jpg +Places365_test_00180162.jpg +Places365_test_00180176.jpg +Places365_test_00180183.jpg +Places365_test_00180201.jpg +Places365_test_00180208.jpg +Places365_test_00180210.jpg +Places365_test_00180226.jpg +Places365_test_00180249.jpg +Places365_test_00180252.jpg +Places365_test_00180255.jpg +Places365_test_00180257.jpg +Places365_test_00180261.jpg +Places365_test_00180276.jpg +Places365_test_00180299.jpg +Places365_test_00180305.jpg +Places365_test_00180312.jpg +Places365_test_00180318.jpg +Places365_test_00180320.jpg +Places365_test_00180341.jpg +Places365_test_00180353.jpg +Places365_test_00180373.jpg +Places365_test_00180382.jpg +Places365_test_00180384.jpg +Places365_test_00180387.jpg +Places365_test_00180396.jpg +Places365_test_00180408.jpg +Places365_test_00180426.jpg +Places365_test_00180430.jpg +Places365_test_00180453.jpg +Places365_test_00180461.jpg +Places365_test_00180495.jpg +Places365_test_00180497.jpg +Places365_test_00180501.jpg +Places365_test_00180506.jpg +Places365_test_00180511.jpg +Places365_test_00180532.jpg +Places365_test_00180546.jpg +Places365_test_00180565.jpg +Places365_test_00180566.jpg +Places365_test_00180568.jpg +Places365_test_00180583.jpg +Places365_test_00180591.jpg +Places365_test_00180600.jpg +Places365_test_00180610.jpg +Places365_test_00180614.jpg +Places365_test_00180617.jpg +Places365_test_00180618.jpg +Places365_test_00180625.jpg +Places365_test_00180632.jpg +Places365_test_00180671.jpg +Places365_test_00180682.jpg +Places365_test_00180690.jpg +Places365_test_00180692.jpg +Places365_test_00180713.jpg +Places365_test_00180718.jpg +Places365_test_00180738.jpg +Places365_test_00180767.jpg +Places365_test_00180774.jpg +Places365_test_00180782.jpg +Places365_test_00180790.jpg +Places365_test_00180795.jpg +Places365_test_00180811.jpg +Places365_test_00180826.jpg +Places365_test_00180838.jpg +Places365_test_00180859.jpg +Places365_test_00180873.jpg +Places365_test_00180881.jpg +Places365_test_00180882.jpg +Places365_test_00180884.jpg +Places365_test_00180886.jpg +Places365_test_00180887.jpg +Places365_test_00180902.jpg +Places365_test_00180905.jpg +Places365_test_00180908.jpg +Places365_test_00180911.jpg +Places365_test_00180915.jpg +Places365_test_00180927.jpg +Places365_test_00180951.jpg +Places365_test_00180961.jpg +Places365_test_00180985.jpg +Places365_test_00181001.jpg +Places365_test_00181004.jpg +Places365_test_00181014.jpg +Places365_test_00181033.jpg +Places365_test_00181041.jpg +Places365_test_00181047.jpg +Places365_test_00181053.jpg +Places365_test_00181059.jpg +Places365_test_00181083.jpg +Places365_test_00181109.jpg +Places365_test_00181121.jpg +Places365_test_00181128.jpg +Places365_test_00181142.jpg +Places365_test_00181156.jpg +Places365_test_00181158.jpg +Places365_test_00181159.jpg +Places365_test_00181163.jpg +Places365_test_00181165.jpg +Places365_test_00181170.jpg +Places365_test_00181174.jpg +Places365_test_00181200.jpg +Places365_test_00181201.jpg +Places365_test_00181204.jpg +Places365_test_00181208.jpg +Places365_test_00181212.jpg +Places365_test_00181213.jpg +Places365_test_00181245.jpg +Places365_test_00181258.jpg +Places365_test_00181260.jpg +Places365_test_00181264.jpg +Places365_test_00181268.jpg +Places365_test_00181269.jpg +Places365_test_00181272.jpg +Places365_test_00181280.jpg +Places365_test_00181291.jpg +Places365_test_00181299.jpg +Places365_test_00181312.jpg +Places365_test_00181328.jpg +Places365_test_00181330.jpg +Places365_test_00181338.jpg +Places365_test_00181350.jpg +Places365_test_00181358.jpg +Places365_test_00181361.jpg +Places365_test_00181363.jpg +Places365_test_00181370.jpg +Places365_test_00181384.jpg +Places365_test_00181415.jpg +Places365_test_00181427.jpg +Places365_test_00181442.jpg +Places365_test_00181451.jpg +Places365_test_00181456.jpg +Places365_test_00181464.jpg +Places365_test_00181471.jpg +Places365_test_00181480.jpg +Places365_test_00181484.jpg +Places365_test_00181490.jpg +Places365_test_00181493.jpg +Places365_test_00181519.jpg +Places365_test_00181524.jpg +Places365_test_00181526.jpg +Places365_test_00181529.jpg +Places365_test_00181535.jpg +Places365_test_00181544.jpg +Places365_test_00181547.jpg +Places365_test_00181548.jpg +Places365_test_00181552.jpg +Places365_test_00181555.jpg +Places365_test_00181565.jpg +Places365_test_00181570.jpg +Places365_test_00181577.jpg +Places365_test_00181597.jpg +Places365_test_00181611.jpg +Places365_test_00181617.jpg +Places365_test_00181628.jpg +Places365_test_00181630.jpg +Places365_test_00181668.jpg +Places365_test_00181670.jpg +Places365_test_00181687.jpg +Places365_test_00181690.jpg +Places365_test_00181701.jpg +Places365_test_00181706.jpg +Places365_test_00181751.jpg +Places365_test_00181752.jpg +Places365_test_00181774.jpg +Places365_test_00181775.jpg +Places365_test_00181801.jpg +Places365_test_00181807.jpg +Places365_test_00181809.jpg +Places365_test_00181817.jpg +Places365_test_00181818.jpg +Places365_test_00181823.jpg +Places365_test_00181831.jpg +Places365_test_00181842.jpg +Places365_test_00181843.jpg +Places365_test_00181850.jpg +Places365_test_00181852.jpg +Places365_test_00181866.jpg +Places365_test_00181869.jpg +Places365_test_00181872.jpg +Places365_test_00181881.jpg +Places365_test_00181895.jpg +Places365_test_00181904.jpg +Places365_test_00181911.jpg +Places365_test_00181921.jpg +Places365_test_00181923.jpg +Places365_test_00181926.jpg +Places365_test_00181929.jpg +Places365_test_00181938.jpg +Places365_test_00181980.jpg +Places365_test_00181996.jpg +Places365_test_00182010.jpg +Places365_test_00182034.jpg +Places365_test_00182040.jpg +Places365_test_00182047.jpg +Places365_test_00182054.jpg +Places365_test_00182067.jpg +Places365_test_00182083.jpg +Places365_test_00182085.jpg +Places365_test_00182088.jpg +Places365_test_00182094.jpg +Places365_test_00182096.jpg +Places365_test_00182107.jpg +Places365_test_00182113.jpg +Places365_test_00182114.jpg +Places365_test_00182120.jpg +Places365_test_00182134.jpg +Places365_test_00182139.jpg +Places365_test_00182147.jpg +Places365_test_00182178.jpg +Places365_test_00182213.jpg +Places365_test_00182241.jpg +Places365_test_00182259.jpg +Places365_test_00182277.jpg +Places365_test_00182282.jpg +Places365_test_00182300.jpg +Places365_test_00182316.jpg +Places365_test_00182318.jpg +Places365_test_00182345.jpg +Places365_test_00182349.jpg +Places365_test_00182361.jpg +Places365_test_00182364.jpg +Places365_test_00182379.jpg +Places365_test_00182396.jpg +Places365_test_00182397.jpg +Places365_test_00182405.jpg +Places365_test_00182423.jpg +Places365_test_00182458.jpg +Places365_test_00182466.jpg +Places365_test_00182469.jpg +Places365_test_00182488.jpg +Places365_test_00182501.jpg +Places365_test_00182505.jpg +Places365_test_00182518.jpg +Places365_test_00182520.jpg +Places365_test_00182533.jpg +Places365_test_00182535.jpg +Places365_test_00182538.jpg +Places365_test_00182544.jpg +Places365_test_00182551.jpg +Places365_test_00182563.jpg +Places365_test_00182568.jpg +Places365_test_00182586.jpg +Places365_test_00182607.jpg +Places365_test_00182616.jpg +Places365_test_00182620.jpg +Places365_test_00182623.jpg +Places365_test_00182642.jpg +Places365_test_00182656.jpg +Places365_test_00182672.jpg +Places365_test_00182690.jpg +Places365_test_00182706.jpg +Places365_test_00182710.jpg +Places365_test_00182711.jpg +Places365_test_00182721.jpg +Places365_test_00182722.jpg +Places365_test_00182737.jpg +Places365_test_00182761.jpg +Places365_test_00182772.jpg +Places365_test_00182831.jpg +Places365_test_00182835.jpg +Places365_test_00182850.jpg +Places365_test_00182868.jpg +Places365_test_00182895.jpg +Places365_test_00182915.jpg +Places365_test_00182916.jpg +Places365_test_00182932.jpg +Places365_test_00182985.jpg +Places365_test_00182986.jpg +Places365_test_00182992.jpg +Places365_test_00183014.jpg +Places365_test_00183018.jpg +Places365_test_00183027.jpg +Places365_test_00183043.jpg +Places365_test_00183053.jpg +Places365_test_00183058.jpg +Places365_test_00183079.jpg +Places365_test_00183095.jpg +Places365_test_00183103.jpg +Places365_test_00183116.jpg +Places365_test_00183129.jpg +Places365_test_00183161.jpg +Places365_test_00183174.jpg +Places365_test_00183176.jpg +Places365_test_00183199.jpg +Places365_test_00183229.jpg +Places365_test_00183249.jpg +Places365_test_00183271.jpg +Places365_test_00183281.jpg +Places365_test_00183292.jpg +Places365_test_00183293.jpg +Places365_test_00183311.jpg +Places365_test_00183315.jpg +Places365_test_00183339.jpg +Places365_test_00183347.jpg +Places365_test_00183350.jpg +Places365_test_00183355.jpg +Places365_test_00183361.jpg +Places365_test_00183363.jpg +Places365_test_00183365.jpg +Places365_test_00183373.jpg +Places365_test_00183374.jpg +Places365_test_00183383.jpg +Places365_test_00183386.jpg +Places365_test_00183418.jpg +Places365_test_00183419.jpg +Places365_test_00183428.jpg +Places365_test_00183481.jpg +Places365_test_00183484.jpg +Places365_test_00183485.jpg +Places365_test_00183489.jpg +Places365_test_00183514.jpg +Places365_test_00183516.jpg +Places365_test_00183551.jpg +Places365_test_00183558.jpg +Places365_test_00183561.jpg +Places365_test_00183562.jpg +Places365_test_00183565.jpg +Places365_test_00183583.jpg +Places365_test_00183587.jpg +Places365_test_00183592.jpg +Places365_test_00183601.jpg +Places365_test_00183625.jpg +Places365_test_00183638.jpg +Places365_test_00183641.jpg +Places365_test_00183651.jpg +Places365_test_00183664.jpg +Places365_test_00183668.jpg +Places365_test_00183682.jpg +Places365_test_00183685.jpg +Places365_test_00183688.jpg +Places365_test_00183690.jpg +Places365_test_00183694.jpg +Places365_test_00183696.jpg +Places365_test_00183706.jpg +Places365_test_00183719.jpg +Places365_test_00183720.jpg +Places365_test_00183741.jpg +Places365_test_00183757.jpg +Places365_test_00183772.jpg +Places365_test_00183774.jpg +Places365_test_00183775.jpg +Places365_test_00183781.jpg +Places365_test_00183782.jpg +Places365_test_00183791.jpg +Places365_test_00183808.jpg +Places365_test_00183810.jpg +Places365_test_00183825.jpg +Places365_test_00183826.jpg +Places365_test_00183828.jpg +Places365_test_00183851.jpg +Places365_test_00183857.jpg +Places365_test_00183874.jpg +Places365_test_00183892.jpg +Places365_test_00183922.jpg +Places365_test_00183923.jpg +Places365_test_00183941.jpg +Places365_test_00183943.jpg +Places365_test_00183947.jpg +Places365_test_00183956.jpg +Places365_test_00183969.jpg +Places365_test_00183981.jpg +Places365_test_00183984.jpg +Places365_test_00184014.jpg +Places365_test_00184024.jpg +Places365_test_00184025.jpg +Places365_test_00184035.jpg +Places365_test_00184043.jpg +Places365_test_00184062.jpg +Places365_test_00184067.jpg +Places365_test_00184073.jpg +Places365_test_00184079.jpg +Places365_test_00184080.jpg +Places365_test_00184081.jpg +Places365_test_00184097.jpg +Places365_test_00184130.jpg +Places365_test_00184176.jpg +Places365_test_00184177.jpg +Places365_test_00184182.jpg +Places365_test_00184197.jpg +Places365_test_00184200.jpg +Places365_test_00184215.jpg +Places365_test_00184220.jpg +Places365_test_00184245.jpg +Places365_test_00184247.jpg +Places365_test_00184259.jpg +Places365_test_00184269.jpg +Places365_test_00184282.jpg +Places365_test_00184288.jpg +Places365_test_00184298.jpg +Places365_test_00184299.jpg +Places365_test_00184300.jpg +Places365_test_00184308.jpg +Places365_test_00184312.jpg +Places365_test_00184319.jpg +Places365_test_00184326.jpg +Places365_test_00184327.jpg +Places365_test_00184330.jpg +Places365_test_00184332.jpg +Places365_test_00184351.jpg +Places365_test_00184372.jpg +Places365_test_00184376.jpg +Places365_test_00184385.jpg +Places365_test_00184389.jpg +Places365_test_00184407.jpg +Places365_test_00184480.jpg +Places365_test_00184481.jpg +Places365_test_00184511.jpg +Places365_test_00184514.jpg +Places365_test_00184523.jpg +Places365_test_00184548.jpg +Places365_test_00184553.jpg +Places365_test_00184590.jpg +Places365_test_00184640.jpg +Places365_test_00184643.jpg +Places365_test_00184654.jpg +Places365_test_00184675.jpg +Places365_test_00184676.jpg +Places365_test_00184679.jpg +Places365_test_00184684.jpg +Places365_test_00184707.jpg +Places365_test_00184710.jpg +Places365_test_00184758.jpg +Places365_test_00184762.jpg +Places365_test_00184775.jpg +Places365_test_00184776.jpg +Places365_test_00184777.jpg +Places365_test_00184780.jpg +Places365_test_00184783.jpg +Places365_test_00184793.jpg +Places365_test_00184809.jpg +Places365_test_00184813.jpg +Places365_test_00184814.jpg +Places365_test_00184851.jpg +Places365_test_00184852.jpg +Places365_test_00184865.jpg +Places365_test_00184866.jpg +Places365_test_00184873.jpg +Places365_test_00184883.jpg +Places365_test_00184907.jpg +Places365_test_00184912.jpg +Places365_test_00184949.jpg +Places365_test_00184974.jpg +Places365_test_00184978.jpg +Places365_test_00184989.jpg +Places365_test_00185025.jpg +Places365_test_00185036.jpg +Places365_test_00185043.jpg +Places365_test_00185052.jpg +Places365_test_00185054.jpg +Places365_test_00185062.jpg +Places365_test_00185066.jpg +Places365_test_00185070.jpg +Places365_test_00185071.jpg +Places365_test_00185073.jpg +Places365_test_00185084.jpg +Places365_test_00185087.jpg +Places365_test_00185094.jpg +Places365_test_00185099.jpg +Places365_test_00185102.jpg +Places365_test_00185108.jpg +Places365_test_00185119.jpg +Places365_test_00185131.jpg +Places365_test_00185134.jpg +Places365_test_00185169.jpg +Places365_test_00185203.jpg +Places365_test_00185247.jpg +Places365_test_00185249.jpg +Places365_test_00185263.jpg +Places365_test_00185273.jpg +Places365_test_00185283.jpg +Places365_test_00185288.jpg +Places365_test_00185294.jpg +Places365_test_00185338.jpg +Places365_test_00185342.jpg +Places365_test_00185347.jpg +Places365_test_00185362.jpg +Places365_test_00185366.jpg +Places365_test_00185370.jpg +Places365_test_00185378.jpg +Places365_test_00185386.jpg +Places365_test_00185395.jpg +Places365_test_00185435.jpg +Places365_test_00185441.jpg +Places365_test_00185460.jpg +Places365_test_00185469.jpg +Places365_test_00185486.jpg +Places365_test_00185492.jpg +Places365_test_00185494.jpg +Places365_test_00185498.jpg +Places365_test_00185512.jpg +Places365_test_00185524.jpg +Places365_test_00185537.jpg +Places365_test_00185538.jpg +Places365_test_00185546.jpg +Places365_test_00185548.jpg +Places365_test_00185553.jpg +Places365_test_00185589.jpg +Places365_test_00185596.jpg +Places365_test_00185615.jpg +Places365_test_00185629.jpg +Places365_test_00185638.jpg +Places365_test_00185643.jpg +Places365_test_00185653.jpg +Places365_test_00185654.jpg +Places365_test_00185659.jpg +Places365_test_00185670.jpg +Places365_test_00185673.jpg +Places365_test_00185674.jpg +Places365_test_00185679.jpg +Places365_test_00185723.jpg +Places365_test_00185753.jpg +Places365_test_00185777.jpg +Places365_test_00185780.jpg +Places365_test_00185790.jpg +Places365_test_00185800.jpg +Places365_test_00185802.jpg +Places365_test_00185816.jpg +Places365_test_00185843.jpg +Places365_test_00185848.jpg +Places365_test_00185849.jpg +Places365_test_00185853.jpg +Places365_test_00185870.jpg +Places365_test_00185875.jpg +Places365_test_00185891.jpg +Places365_test_00185897.jpg +Places365_test_00185906.jpg +Places365_test_00185919.jpg +Places365_test_00185923.jpg +Places365_test_00185949.jpg +Places365_test_00185985.jpg +Places365_test_00186011.jpg +Places365_test_00186024.jpg +Places365_test_00186045.jpg +Places365_test_00186047.jpg +Places365_test_00186066.jpg +Places365_test_00186084.jpg +Places365_test_00186085.jpg +Places365_test_00186091.jpg +Places365_test_00186096.jpg +Places365_test_00186103.jpg +Places365_test_00186105.jpg +Places365_test_00186116.jpg +Places365_test_00186150.jpg +Places365_test_00186155.jpg +Places365_test_00186156.jpg +Places365_test_00186162.jpg +Places365_test_00186164.jpg +Places365_test_00186165.jpg +Places365_test_00186176.jpg +Places365_test_00186185.jpg +Places365_test_00186193.jpg +Places365_test_00186198.jpg +Places365_test_00186199.jpg +Places365_test_00186202.jpg +Places365_test_00186229.jpg +Places365_test_00186232.jpg +Places365_test_00186235.jpg +Places365_test_00186245.jpg +Places365_test_00186271.jpg +Places365_test_00186273.jpg +Places365_test_00186293.jpg +Places365_test_00186313.jpg +Places365_test_00186331.jpg +Places365_test_00186339.jpg +Places365_test_00186357.jpg +Places365_test_00186363.jpg +Places365_test_00186376.jpg +Places365_test_00186388.jpg +Places365_test_00186422.jpg +Places365_test_00186430.jpg +Places365_test_00186433.jpg +Places365_test_00186447.jpg +Places365_test_00186452.jpg +Places365_test_00186466.jpg +Places365_test_00186505.jpg +Places365_test_00186525.jpg +Places365_test_00186540.jpg +Places365_test_00186559.jpg +Places365_test_00186569.jpg +Places365_test_00186575.jpg +Places365_test_00186588.jpg +Places365_test_00186602.jpg +Places365_test_00186613.jpg +Places365_test_00186629.jpg +Places365_test_00186635.jpg +Places365_test_00186637.jpg +Places365_test_00186652.jpg +Places365_test_00186658.jpg +Places365_test_00186686.jpg +Places365_test_00186714.jpg +Places365_test_00186733.jpg +Places365_test_00186742.jpg +Places365_test_00186753.jpg +Places365_test_00186770.jpg +Places365_test_00186774.jpg +Places365_test_00186776.jpg +Places365_test_00186790.jpg +Places365_test_00186794.jpg +Places365_test_00186798.jpg +Places365_test_00186825.jpg +Places365_test_00186835.jpg +Places365_test_00186837.jpg +Places365_test_00186844.jpg +Places365_test_00186851.jpg +Places365_test_00186859.jpg +Places365_test_00186860.jpg +Places365_test_00186867.jpg +Places365_test_00186875.jpg +Places365_test_00186881.jpg +Places365_test_00186901.jpg +Places365_test_00186902.jpg +Places365_test_00186911.jpg +Places365_test_00186921.jpg +Places365_test_00186934.jpg +Places365_test_00186946.jpg +Places365_test_00186959.jpg +Places365_test_00186980.jpg +Places365_test_00186990.jpg +Places365_test_00187006.jpg +Places365_test_00187027.jpg +Places365_test_00187034.jpg +Places365_test_00187059.jpg +Places365_test_00187061.jpg +Places365_test_00187065.jpg +Places365_test_00187077.jpg +Places365_test_00187079.jpg +Places365_test_00187105.jpg +Places365_test_00187107.jpg +Places365_test_00187108.jpg +Places365_test_00187138.jpg +Places365_test_00187140.jpg +Places365_test_00187161.jpg +Places365_test_00187164.jpg +Places365_test_00187183.jpg +Places365_test_00187187.jpg +Places365_test_00187208.jpg +Places365_test_00187213.jpg +Places365_test_00187214.jpg +Places365_test_00187222.jpg +Places365_test_00187225.jpg +Places365_test_00187226.jpg +Places365_test_00187237.jpg +Places365_test_00187250.jpg +Places365_test_00187263.jpg +Places365_test_00187276.jpg +Places365_test_00187296.jpg +Places365_test_00187310.jpg +Places365_test_00187318.jpg +Places365_test_00187327.jpg +Places365_test_00187346.jpg +Places365_test_00187354.jpg +Places365_test_00187355.jpg +Places365_test_00187364.jpg +Places365_test_00187369.jpg +Places365_test_00187386.jpg +Places365_test_00187394.jpg +Places365_test_00187408.jpg +Places365_test_00187410.jpg +Places365_test_00187414.jpg +Places365_test_00187432.jpg +Places365_test_00187445.jpg +Places365_test_00187489.jpg +Places365_test_00187490.jpg +Places365_test_00187492.jpg +Places365_test_00187499.jpg +Places365_test_00187515.jpg +Places365_test_00187526.jpg +Places365_test_00187532.jpg +Places365_test_00187537.jpg +Places365_test_00187547.jpg +Places365_test_00187556.jpg +Places365_test_00187557.jpg +Places365_test_00187568.jpg +Places365_test_00187606.jpg +Places365_test_00187621.jpg +Places365_test_00187628.jpg +Places365_test_00187666.jpg +Places365_test_00187672.jpg +Places365_test_00187675.jpg +Places365_test_00187689.jpg +Places365_test_00187706.jpg +Places365_test_00187707.jpg +Places365_test_00187718.jpg +Places365_test_00187725.jpg +Places365_test_00187729.jpg +Places365_test_00187737.jpg +Places365_test_00187765.jpg +Places365_test_00187766.jpg +Places365_test_00187767.jpg +Places365_test_00187769.jpg +Places365_test_00187770.jpg +Places365_test_00187786.jpg +Places365_test_00187792.jpg +Places365_test_00187801.jpg +Places365_test_00187807.jpg +Places365_test_00187817.jpg +Places365_test_00187821.jpg +Places365_test_00187844.jpg +Places365_test_00187859.jpg +Places365_test_00187873.jpg +Places365_test_00187875.jpg +Places365_test_00187895.jpg +Places365_test_00187907.jpg +Places365_test_00187917.jpg +Places365_test_00187920.jpg +Places365_test_00187925.jpg +Places365_test_00187931.jpg +Places365_test_00187936.jpg +Places365_test_00187947.jpg +Places365_test_00187958.jpg +Places365_test_00187981.jpg +Places365_test_00187984.jpg +Places365_test_00187985.jpg +Places365_test_00187997.jpg +Places365_test_00187999.jpg +Places365_test_00188003.jpg +Places365_test_00188006.jpg +Places365_test_00188027.jpg +Places365_test_00188037.jpg +Places365_test_00188038.jpg +Places365_test_00188039.jpg +Places365_test_00188056.jpg +Places365_test_00188063.jpg +Places365_test_00188065.jpg +Places365_test_00188068.jpg +Places365_test_00188097.jpg +Places365_test_00188109.jpg +Places365_test_00188110.jpg +Places365_test_00188112.jpg +Places365_test_00188136.jpg +Places365_test_00188142.jpg +Places365_test_00188173.jpg +Places365_test_00188175.jpg +Places365_test_00188178.jpg +Places365_test_00188183.jpg +Places365_test_00188198.jpg +Places365_test_00188202.jpg +Places365_test_00188208.jpg +Places365_test_00188227.jpg +Places365_test_00188234.jpg +Places365_test_00188235.jpg +Places365_test_00188250.jpg +Places365_test_00188269.jpg +Places365_test_00188271.jpg +Places365_test_00188285.jpg +Places365_test_00188335.jpg +Places365_test_00188339.jpg +Places365_test_00188363.jpg +Places365_test_00188371.jpg +Places365_test_00188373.jpg +Places365_test_00188374.jpg +Places365_test_00188377.jpg +Places365_test_00188386.jpg +Places365_test_00188399.jpg +Places365_test_00188404.jpg +Places365_test_00188416.jpg +Places365_test_00188420.jpg +Places365_test_00188468.jpg +Places365_test_00188471.jpg +Places365_test_00188483.jpg +Places365_test_00188493.jpg +Places365_test_00188496.jpg +Places365_test_00188504.jpg +Places365_test_00188517.jpg +Places365_test_00188520.jpg +Places365_test_00188528.jpg +Places365_test_00188532.jpg +Places365_test_00188555.jpg +Places365_test_00188558.jpg +Places365_test_00188559.jpg +Places365_test_00188573.jpg +Places365_test_00188579.jpg +Places365_test_00188586.jpg +Places365_test_00188591.jpg +Places365_test_00188603.jpg +Places365_test_00188613.jpg +Places365_test_00188629.jpg +Places365_test_00188653.jpg +Places365_test_00188654.jpg +Places365_test_00188667.jpg +Places365_test_00188669.jpg +Places365_test_00188670.jpg +Places365_test_00188675.jpg +Places365_test_00188680.jpg +Places365_test_00188690.jpg +Places365_test_00188704.jpg +Places365_test_00188724.jpg +Places365_test_00188734.jpg +Places365_test_00188737.jpg +Places365_test_00188743.jpg +Places365_test_00188756.jpg +Places365_test_00188768.jpg +Places365_test_00188773.jpg +Places365_test_00188781.jpg +Places365_test_00188792.jpg +Places365_test_00188799.jpg +Places365_test_00188802.jpg +Places365_test_00188826.jpg +Places365_test_00188832.jpg +Places365_test_00188834.jpg +Places365_test_00188843.jpg +Places365_test_00188847.jpg +Places365_test_00188848.jpg +Places365_test_00188859.jpg +Places365_test_00188880.jpg +Places365_test_00188888.jpg +Places365_test_00188909.jpg +Places365_test_00188929.jpg +Places365_test_00188932.jpg +Places365_test_00188946.jpg +Places365_test_00188964.jpg +Places365_test_00188966.jpg +Places365_test_00188978.jpg +Places365_test_00188980.jpg +Places365_test_00188997.jpg +Places365_test_00188999.jpg +Places365_test_00189001.jpg +Places365_test_00189007.jpg +Places365_test_00189022.jpg +Places365_test_00189028.jpg +Places365_test_00189048.jpg +Places365_test_00189058.jpg +Places365_test_00189062.jpg +Places365_test_00189071.jpg +Places365_test_00189084.jpg +Places365_test_00189101.jpg +Places365_test_00189113.jpg +Places365_test_00189118.jpg +Places365_test_00189129.jpg +Places365_test_00189143.jpg +Places365_test_00189147.jpg +Places365_test_00189150.jpg +Places365_test_00189152.jpg +Places365_test_00189154.jpg +Places365_test_00189157.jpg +Places365_test_00189172.jpg +Places365_test_00189173.jpg +Places365_test_00189177.jpg +Places365_test_00189181.jpg +Places365_test_00189183.jpg +Places365_test_00189187.jpg +Places365_test_00189189.jpg +Places365_test_00189198.jpg +Places365_test_00189200.jpg +Places365_test_00189212.jpg +Places365_test_00189226.jpg +Places365_test_00189246.jpg +Places365_test_00189247.jpg +Places365_test_00189273.jpg +Places365_test_00189315.jpg +Places365_test_00189318.jpg +Places365_test_00189355.jpg +Places365_test_00189370.jpg +Places365_test_00189375.jpg +Places365_test_00189379.jpg +Places365_test_00189380.jpg +Places365_test_00189382.jpg +Places365_test_00189392.jpg +Places365_test_00189411.jpg +Places365_test_00189414.jpg +Places365_test_00189423.jpg +Places365_test_00189424.jpg +Places365_test_00189431.jpg +Places365_test_00189432.jpg +Places365_test_00189435.jpg +Places365_test_00189437.jpg +Places365_test_00189469.jpg +Places365_test_00189472.jpg +Places365_test_00189487.jpg +Places365_test_00189492.jpg +Places365_test_00189512.jpg +Places365_test_00189517.jpg +Places365_test_00189566.jpg +Places365_test_00189582.jpg +Places365_test_00189608.jpg +Places365_test_00189609.jpg +Places365_test_00189610.jpg +Places365_test_00189614.jpg +Places365_test_00189625.jpg +Places365_test_00189632.jpg +Places365_test_00189643.jpg +Places365_test_00189661.jpg +Places365_test_00189673.jpg +Places365_test_00189676.jpg +Places365_test_00189679.jpg +Places365_test_00189686.jpg +Places365_test_00189689.jpg +Places365_test_00189699.jpg +Places365_test_00189703.jpg +Places365_test_00189711.jpg +Places365_test_00189729.jpg +Places365_test_00189735.jpg +Places365_test_00189751.jpg +Places365_test_00189772.jpg +Places365_test_00189791.jpg +Places365_test_00189792.jpg +Places365_test_00189804.jpg +Places365_test_00189805.jpg +Places365_test_00189809.jpg +Places365_test_00189820.jpg +Places365_test_00189827.jpg +Places365_test_00189829.jpg +Places365_test_00189845.jpg +Places365_test_00189878.jpg +Places365_test_00189883.jpg +Places365_test_00189888.jpg +Places365_test_00189889.jpg +Places365_test_00189920.jpg +Places365_test_00189923.jpg +Places365_test_00189932.jpg +Places365_test_00189944.jpg +Places365_test_00189954.jpg +Places365_test_00189978.jpg +Places365_test_00189993.jpg +Places365_test_00190030.jpg +Places365_test_00190034.jpg +Places365_test_00190040.jpg +Places365_test_00190045.jpg +Places365_test_00190050.jpg +Places365_test_00190064.jpg +Places365_test_00190071.jpg +Places365_test_00190091.jpg +Places365_test_00190097.jpg +Places365_test_00190100.jpg +Places365_test_00190112.jpg +Places365_test_00190119.jpg +Places365_test_00190123.jpg +Places365_test_00190128.jpg +Places365_test_00190150.jpg +Places365_test_00190152.jpg +Places365_test_00190160.jpg +Places365_test_00190161.jpg +Places365_test_00190165.jpg +Places365_test_00190167.jpg +Places365_test_00190173.jpg +Places365_test_00190177.jpg +Places365_test_00190191.jpg +Places365_test_00190200.jpg +Places365_test_00190209.jpg +Places365_test_00190211.jpg +Places365_test_00190229.jpg +Places365_test_00190234.jpg +Places365_test_00190241.jpg +Places365_test_00190248.jpg +Places365_test_00190252.jpg +Places365_test_00190257.jpg +Places365_test_00190284.jpg +Places365_test_00190301.jpg +Places365_test_00190334.jpg +Places365_test_00190352.jpg +Places365_test_00190375.jpg +Places365_test_00190380.jpg +Places365_test_00190386.jpg +Places365_test_00190387.jpg +Places365_test_00190408.jpg +Places365_test_00190410.jpg +Places365_test_00190413.jpg +Places365_test_00190422.jpg +Places365_test_00190463.jpg +Places365_test_00190468.jpg +Places365_test_00190479.jpg +Places365_test_00190489.jpg +Places365_test_00190496.jpg +Places365_test_00190500.jpg +Places365_test_00190508.jpg +Places365_test_00190509.jpg +Places365_test_00190524.jpg +Places365_test_00190527.jpg +Places365_test_00190530.jpg +Places365_test_00190536.jpg +Places365_test_00190545.jpg +Places365_test_00190580.jpg +Places365_test_00190584.jpg +Places365_test_00190588.jpg +Places365_test_00190595.jpg +Places365_test_00190598.jpg +Places365_test_00190604.jpg +Places365_test_00190606.jpg +Places365_test_00190625.jpg +Places365_test_00190633.jpg +Places365_test_00190635.jpg +Places365_test_00190636.jpg +Places365_test_00190637.jpg +Places365_test_00190662.jpg +Places365_test_00190671.jpg +Places365_test_00190676.jpg +Places365_test_00190695.jpg +Places365_test_00190697.jpg +Places365_test_00190704.jpg +Places365_test_00190711.jpg +Places365_test_00190745.jpg +Places365_test_00190749.jpg +Places365_test_00190762.jpg +Places365_test_00190763.jpg +Places365_test_00190769.jpg +Places365_test_00190776.jpg +Places365_test_00190777.jpg +Places365_test_00190781.jpg +Places365_test_00190793.jpg +Places365_test_00190808.jpg +Places365_test_00190813.jpg +Places365_test_00190818.jpg +Places365_test_00190819.jpg +Places365_test_00190820.jpg +Places365_test_00190821.jpg +Places365_test_00190840.jpg +Places365_test_00190844.jpg +Places365_test_00190846.jpg +Places365_test_00190851.jpg +Places365_test_00190855.jpg +Places365_test_00190856.jpg +Places365_test_00190869.jpg +Places365_test_00190881.jpg +Places365_test_00190885.jpg +Places365_test_00190900.jpg +Places365_test_00190903.jpg +Places365_test_00190917.jpg +Places365_test_00190919.jpg +Places365_test_00190923.jpg +Places365_test_00190927.jpg +Places365_test_00190935.jpg +Places365_test_00190956.jpg +Places365_test_00190959.jpg +Places365_test_00190965.jpg +Places365_test_00190968.jpg +Places365_test_00190972.jpg +Places365_test_00190983.jpg +Places365_test_00190988.jpg +Places365_test_00190990.jpg +Places365_test_00190997.jpg +Places365_test_00191004.jpg +Places365_test_00191007.jpg +Places365_test_00191013.jpg +Places365_test_00191020.jpg +Places365_test_00191031.jpg +Places365_test_00191043.jpg +Places365_test_00191059.jpg +Places365_test_00191062.jpg +Places365_test_00191073.jpg +Places365_test_00191077.jpg +Places365_test_00191091.jpg +Places365_test_00191098.jpg +Places365_test_00191110.jpg +Places365_test_00191112.jpg +Places365_test_00191128.jpg +Places365_test_00191133.jpg +Places365_test_00191146.jpg +Places365_test_00191155.jpg +Places365_test_00191191.jpg +Places365_test_00191193.jpg +Places365_test_00191206.jpg +Places365_test_00191231.jpg +Places365_test_00191233.jpg +Places365_test_00191241.jpg +Places365_test_00191246.jpg +Places365_test_00191247.jpg +Places365_test_00191267.jpg +Places365_test_00191273.jpg +Places365_test_00191274.jpg +Places365_test_00191284.jpg +Places365_test_00191294.jpg +Places365_test_00191299.jpg +Places365_test_00191306.jpg +Places365_test_00191323.jpg +Places365_test_00191350.jpg +Places365_test_00191363.jpg +Places365_test_00191365.jpg +Places365_test_00191399.jpg +Places365_test_00191408.jpg +Places365_test_00191410.jpg +Places365_test_00191426.jpg +Places365_test_00191441.jpg +Places365_test_00191467.jpg +Places365_test_00191469.jpg +Places365_test_00191476.jpg +Places365_test_00191482.jpg +Places365_test_00191488.jpg +Places365_test_00191495.jpg +Places365_test_00191508.jpg +Places365_test_00191516.jpg +Places365_test_00191525.jpg +Places365_test_00191536.jpg +Places365_test_00191542.jpg +Places365_test_00191555.jpg +Places365_test_00191557.jpg +Places365_test_00191581.jpg +Places365_test_00191590.jpg +Places365_test_00191595.jpg +Places365_test_00191602.jpg +Places365_test_00191611.jpg +Places365_test_00191626.jpg +Places365_test_00191630.jpg +Places365_test_00191645.jpg +Places365_test_00191667.jpg +Places365_test_00191675.jpg +Places365_test_00191688.jpg +Places365_test_00191693.jpg +Places365_test_00191702.jpg +Places365_test_00191703.jpg +Places365_test_00191707.jpg +Places365_test_00191710.jpg +Places365_test_00191734.jpg +Places365_test_00191735.jpg +Places365_test_00191741.jpg +Places365_test_00191747.jpg +Places365_test_00191752.jpg +Places365_test_00191753.jpg +Places365_test_00191760.jpg +Places365_test_00191766.jpg +Places365_test_00191770.jpg +Places365_test_00191789.jpg +Places365_test_00191814.jpg +Places365_test_00191817.jpg +Places365_test_00191819.jpg +Places365_test_00191836.jpg +Places365_test_00191855.jpg +Places365_test_00191859.jpg +Places365_test_00191863.jpg +Places365_test_00191877.jpg +Places365_test_00191878.jpg +Places365_test_00191879.jpg +Places365_test_00191887.jpg +Places365_test_00191896.jpg +Places365_test_00191899.jpg +Places365_test_00191900.jpg +Places365_test_00191916.jpg +Places365_test_00191920.jpg +Places365_test_00191943.jpg +Places365_test_00191946.jpg +Places365_test_00191956.jpg +Places365_test_00191968.jpg +Places365_test_00191993.jpg +Places365_test_00192009.jpg +Places365_test_00192048.jpg +Places365_test_00192059.jpg +Places365_test_00192064.jpg +Places365_test_00192065.jpg +Places365_test_00192067.jpg +Places365_test_00192070.jpg +Places365_test_00192085.jpg +Places365_test_00192089.jpg +Places365_test_00192096.jpg +Places365_test_00192101.jpg +Places365_test_00192133.jpg +Places365_test_00192139.jpg +Places365_test_00192141.jpg +Places365_test_00192142.jpg +Places365_test_00192152.jpg +Places365_test_00192175.jpg +Places365_test_00192192.jpg +Places365_test_00192224.jpg +Places365_test_00192235.jpg +Places365_test_00192238.jpg +Places365_test_00192253.jpg +Places365_test_00192257.jpg +Places365_test_00192259.jpg +Places365_test_00192270.jpg +Places365_test_00192273.jpg +Places365_test_00192274.jpg +Places365_test_00192276.jpg +Places365_test_00192292.jpg +Places365_test_00192307.jpg +Places365_test_00192325.jpg +Places365_test_00192327.jpg +Places365_test_00192336.jpg +Places365_test_00192350.jpg +Places365_test_00192352.jpg +Places365_test_00192361.jpg +Places365_test_00192382.jpg +Places365_test_00192412.jpg +Places365_test_00192413.jpg +Places365_test_00192418.jpg +Places365_test_00192423.jpg +Places365_test_00192425.jpg +Places365_test_00192434.jpg +Places365_test_00192442.jpg +Places365_test_00192453.jpg +Places365_test_00192457.jpg +Places365_test_00192464.jpg +Places365_test_00192543.jpg +Places365_test_00192583.jpg +Places365_test_00192603.jpg +Places365_test_00192614.jpg +Places365_test_00192617.jpg +Places365_test_00192618.jpg +Places365_test_00192619.jpg +Places365_test_00192633.jpg +Places365_test_00192659.jpg +Places365_test_00192677.jpg +Places365_test_00192697.jpg +Places365_test_00192714.jpg +Places365_test_00192717.jpg +Places365_test_00192732.jpg +Places365_test_00192739.jpg +Places365_test_00192743.jpg +Places365_test_00192744.jpg +Places365_test_00192751.jpg +Places365_test_00192752.jpg +Places365_test_00192801.jpg +Places365_test_00192835.jpg +Places365_test_00192869.jpg +Places365_test_00192876.jpg +Places365_test_00192880.jpg +Places365_test_00192897.jpg +Places365_test_00192899.jpg +Places365_test_00192900.jpg +Places365_test_00192907.jpg +Places365_test_00192908.jpg +Places365_test_00192910.jpg +Places365_test_00192928.jpg +Places365_test_00192936.jpg +Places365_test_00192943.jpg +Places365_test_00192967.jpg +Places365_test_00192980.jpg +Places365_test_00192991.jpg +Places365_test_00192992.jpg +Places365_test_00192994.jpg +Places365_test_00193014.jpg +Places365_test_00193023.jpg +Places365_test_00193031.jpg +Places365_test_00193052.jpg +Places365_test_00193066.jpg +Places365_test_00193077.jpg +Places365_test_00193097.jpg +Places365_test_00193103.jpg +Places365_test_00193122.jpg +Places365_test_00193123.jpg +Places365_test_00193141.jpg +Places365_test_00193153.jpg +Places365_test_00193156.jpg +Places365_test_00193164.jpg +Places365_test_00193169.jpg +Places365_test_00193172.jpg +Places365_test_00193180.jpg +Places365_test_00193185.jpg +Places365_test_00193205.jpg +Places365_test_00193231.jpg +Places365_test_00193260.jpg +Places365_test_00193275.jpg +Places365_test_00193276.jpg +Places365_test_00193280.jpg +Places365_test_00193290.jpg +Places365_test_00193291.jpg +Places365_test_00193307.jpg +Places365_test_00193309.jpg +Places365_test_00193337.jpg +Places365_test_00193344.jpg +Places365_test_00193348.jpg +Places365_test_00193365.jpg +Places365_test_00193367.jpg +Places365_test_00193368.jpg +Places365_test_00193369.jpg +Places365_test_00193393.jpg +Places365_test_00193425.jpg +Places365_test_00193445.jpg +Places365_test_00193463.jpg +Places365_test_00193481.jpg +Places365_test_00193486.jpg +Places365_test_00193512.jpg +Places365_test_00193542.jpg +Places365_test_00193557.jpg +Places365_test_00193559.jpg +Places365_test_00193563.jpg +Places365_test_00193583.jpg +Places365_test_00193590.jpg +Places365_test_00193603.jpg +Places365_test_00193618.jpg +Places365_test_00193626.jpg +Places365_test_00193636.jpg +Places365_test_00193666.jpg +Places365_test_00193668.jpg +Places365_test_00193671.jpg +Places365_test_00193702.jpg +Places365_test_00193703.jpg +Places365_test_00193715.jpg +Places365_test_00193716.jpg +Places365_test_00193724.jpg +Places365_test_00193730.jpg +Places365_test_00193737.jpg +Places365_test_00193752.jpg +Places365_test_00193768.jpg +Places365_test_00193769.jpg +Places365_test_00193774.jpg +Places365_test_00193794.jpg +Places365_test_00193820.jpg +Places365_test_00193832.jpg +Places365_test_00193833.jpg +Places365_test_00193847.jpg +Places365_test_00193863.jpg +Places365_test_00193867.jpg +Places365_test_00193877.jpg +Places365_test_00193895.jpg +Places365_test_00193903.jpg +Places365_test_00193921.jpg +Places365_test_00193924.jpg +Places365_test_00193948.jpg +Places365_test_00193955.jpg +Places365_test_00193966.jpg +Places365_test_00193982.jpg +Places365_test_00193997.jpg +Places365_test_00194020.jpg +Places365_test_00194071.jpg +Places365_test_00194073.jpg +Places365_test_00194075.jpg +Places365_test_00194109.jpg +Places365_test_00194123.jpg +Places365_test_00194135.jpg +Places365_test_00194137.jpg +Places365_test_00194164.jpg +Places365_test_00194167.jpg +Places365_test_00194173.jpg +Places365_test_00194175.jpg +Places365_test_00194184.jpg +Places365_test_00194189.jpg +Places365_test_00194197.jpg +Places365_test_00194205.jpg +Places365_test_00194226.jpg +Places365_test_00194231.jpg +Places365_test_00194240.jpg +Places365_test_00194244.jpg +Places365_test_00194248.jpg +Places365_test_00194250.jpg +Places365_test_00194260.jpg +Places365_test_00194271.jpg +Places365_test_00194272.jpg +Places365_test_00194273.jpg +Places365_test_00194277.jpg +Places365_test_00194284.jpg +Places365_test_00194296.jpg +Places365_test_00194318.jpg +Places365_test_00194326.jpg +Places365_test_00194332.jpg +Places365_test_00194338.jpg +Places365_test_00194345.jpg +Places365_test_00194351.jpg +Places365_test_00194355.jpg +Places365_test_00194393.jpg +Places365_test_00194403.jpg +Places365_test_00194422.jpg +Places365_test_00194424.jpg +Places365_test_00194439.jpg +Places365_test_00194441.jpg +Places365_test_00194452.jpg +Places365_test_00194455.jpg +Places365_test_00194463.jpg +Places365_test_00194485.jpg +Places365_test_00194493.jpg +Places365_test_00194508.jpg +Places365_test_00194528.jpg +Places365_test_00194530.jpg +Places365_test_00194533.jpg +Places365_test_00194538.jpg +Places365_test_00194574.jpg +Places365_test_00194580.jpg +Places365_test_00194588.jpg +Places365_test_00194591.jpg +Places365_test_00194601.jpg +Places365_test_00194630.jpg +Places365_test_00194636.jpg +Places365_test_00194668.jpg +Places365_test_00194687.jpg +Places365_test_00194731.jpg +Places365_test_00194738.jpg +Places365_test_00194740.jpg +Places365_test_00194751.jpg +Places365_test_00194756.jpg +Places365_test_00194766.jpg +Places365_test_00194826.jpg +Places365_test_00194830.jpg +Places365_test_00194837.jpg +Places365_test_00194860.jpg +Places365_test_00194888.jpg +Places365_test_00194895.jpg +Places365_test_00194914.jpg +Places365_test_00194922.jpg +Places365_test_00194942.jpg +Places365_test_00194962.jpg +Places365_test_00194964.jpg +Places365_test_00194979.jpg +Places365_test_00194982.jpg +Places365_test_00194991.jpg +Places365_test_00195010.jpg +Places365_test_00195026.jpg +Places365_test_00195027.jpg +Places365_test_00195038.jpg +Places365_test_00195047.jpg +Places365_test_00195053.jpg +Places365_test_00195057.jpg +Places365_test_00195059.jpg +Places365_test_00195098.jpg +Places365_test_00195101.jpg +Places365_test_00195107.jpg +Places365_test_00195192.jpg +Places365_test_00195211.jpg +Places365_test_00195224.jpg +Places365_test_00195226.jpg +Places365_test_00195232.jpg +Places365_test_00195236.jpg +Places365_test_00195247.jpg +Places365_test_00195259.jpg +Places365_test_00195267.jpg +Places365_test_00195287.jpg +Places365_test_00195291.jpg +Places365_test_00195309.jpg +Places365_test_00195322.jpg +Places365_test_00195328.jpg +Places365_test_00195338.jpg +Places365_test_00195341.jpg +Places365_test_00195379.jpg +Places365_test_00195383.jpg +Places365_test_00195390.jpg +Places365_test_00195394.jpg +Places365_test_00195430.jpg +Places365_test_00195450.jpg +Places365_test_00195453.jpg +Places365_test_00195457.jpg +Places365_test_00195460.jpg +Places365_test_00195475.jpg +Places365_test_00195476.jpg +Places365_test_00195480.jpg +Places365_test_00195481.jpg +Places365_test_00195494.jpg +Places365_test_00195503.jpg +Places365_test_00195507.jpg +Places365_test_00195561.jpg +Places365_test_00195575.jpg +Places365_test_00195584.jpg +Places365_test_00195604.jpg +Places365_test_00195613.jpg +Places365_test_00195630.jpg +Places365_test_00195634.jpg +Places365_test_00195641.jpg +Places365_test_00195658.jpg +Places365_test_00195679.jpg +Places365_test_00195687.jpg +Places365_test_00195700.jpg +Places365_test_00195703.jpg +Places365_test_00195707.jpg +Places365_test_00195709.jpg +Places365_test_00195710.jpg +Places365_test_00195715.jpg +Places365_test_00195717.jpg +Places365_test_00195720.jpg +Places365_test_00195759.jpg +Places365_test_00195767.jpg +Places365_test_00195781.jpg +Places365_test_00195817.jpg +Places365_test_00195823.jpg +Places365_test_00195830.jpg +Places365_test_00195838.jpg +Places365_test_00195852.jpg +Places365_test_00195859.jpg +Places365_test_00195864.jpg +Places365_test_00195871.jpg +Places365_test_00195890.jpg +Places365_test_00195904.jpg +Places365_test_00195912.jpg +Places365_test_00195936.jpg +Places365_test_00195953.jpg +Places365_test_00195959.jpg +Places365_test_00195964.jpg +Places365_test_00195981.jpg +Places365_test_00195985.jpg +Places365_test_00196017.jpg +Places365_test_00196019.jpg +Places365_test_00196024.jpg +Places365_test_00196032.jpg +Places365_test_00196048.jpg +Places365_test_00196051.jpg +Places365_test_00196063.jpg +Places365_test_00196066.jpg +Places365_test_00196083.jpg +Places365_test_00196109.jpg +Places365_test_00196151.jpg +Places365_test_00196159.jpg +Places365_test_00196161.jpg +Places365_test_00196164.jpg +Places365_test_00196166.jpg +Places365_test_00196167.jpg +Places365_test_00196172.jpg +Places365_test_00196180.jpg +Places365_test_00196182.jpg +Places365_test_00196198.jpg +Places365_test_00196199.jpg +Places365_test_00196200.jpg +Places365_test_00196224.jpg +Places365_test_00196226.jpg +Places365_test_00196227.jpg +Places365_test_00196229.jpg +Places365_test_00196231.jpg +Places365_test_00196232.jpg +Places365_test_00196239.jpg +Places365_test_00196242.jpg +Places365_test_00196248.jpg +Places365_test_00196268.jpg +Places365_test_00196280.jpg +Places365_test_00196284.jpg +Places365_test_00196303.jpg +Places365_test_00196335.jpg +Places365_test_00196343.jpg +Places365_test_00196350.jpg +Places365_test_00196361.jpg +Places365_test_00196409.jpg +Places365_test_00196415.jpg +Places365_test_00196423.jpg +Places365_test_00196424.jpg +Places365_test_00196427.jpg +Places365_test_00196434.jpg +Places365_test_00196438.jpg +Places365_test_00196448.jpg +Places365_test_00196457.jpg +Places365_test_00196465.jpg +Places365_test_00196469.jpg +Places365_test_00196492.jpg +Places365_test_00196510.jpg +Places365_test_00196531.jpg +Places365_test_00196535.jpg +Places365_test_00196549.jpg +Places365_test_00196555.jpg +Places365_test_00196569.jpg +Places365_test_00196574.jpg +Places365_test_00196598.jpg +Places365_test_00196612.jpg +Places365_test_00196616.jpg +Places365_test_00196619.jpg +Places365_test_00196627.jpg +Places365_test_00196632.jpg +Places365_test_00196684.jpg +Places365_test_00196691.jpg +Places365_test_00196694.jpg +Places365_test_00196703.jpg +Places365_test_00196744.jpg +Places365_test_00196774.jpg +Places365_test_00196787.jpg +Places365_test_00196807.jpg +Places365_test_00196841.jpg +Places365_test_00196856.jpg +Places365_test_00196863.jpg +Places365_test_00196865.jpg +Places365_test_00196888.jpg +Places365_test_00196894.jpg +Places365_test_00196896.jpg +Places365_test_00196900.jpg +Places365_test_00196908.jpg +Places365_test_00196912.jpg +Places365_test_00196926.jpg +Places365_test_00196929.jpg +Places365_test_00196936.jpg +Places365_test_00196939.jpg +Places365_test_00196945.jpg +Places365_test_00196953.jpg +Places365_test_00196967.jpg +Places365_test_00196986.jpg +Places365_test_00197002.jpg +Places365_test_00197006.jpg +Places365_test_00197009.jpg +Places365_test_00197011.jpg +Places365_test_00197015.jpg +Places365_test_00197016.jpg +Places365_test_00197017.jpg +Places365_test_00197019.jpg +Places365_test_00197020.jpg +Places365_test_00197021.jpg +Places365_test_00197038.jpg +Places365_test_00197079.jpg +Places365_test_00197110.jpg +Places365_test_00197115.jpg +Places365_test_00197135.jpg +Places365_test_00197141.jpg +Places365_test_00197144.jpg +Places365_test_00197171.jpg +Places365_test_00197183.jpg +Places365_test_00197184.jpg +Places365_test_00197191.jpg +Places365_test_00197216.jpg +Places365_test_00197221.jpg +Places365_test_00197223.jpg +Places365_test_00197238.jpg +Places365_test_00197283.jpg +Places365_test_00197287.jpg +Places365_test_00197288.jpg +Places365_test_00197297.jpg +Places365_test_00197298.jpg +Places365_test_00197318.jpg +Places365_test_00197324.jpg +Places365_test_00197340.jpg +Places365_test_00197342.jpg +Places365_test_00197349.jpg +Places365_test_00197378.jpg +Places365_test_00197390.jpg +Places365_test_00197412.jpg +Places365_test_00197416.jpg +Places365_test_00197429.jpg +Places365_test_00197481.jpg +Places365_test_00197482.jpg +Places365_test_00197486.jpg +Places365_test_00197488.jpg +Places365_test_00197490.jpg +Places365_test_00197492.jpg +Places365_test_00197502.jpg +Places365_test_00197511.jpg +Places365_test_00197521.jpg +Places365_test_00197523.jpg +Places365_test_00197529.jpg +Places365_test_00197531.jpg +Places365_test_00197551.jpg +Places365_test_00197585.jpg +Places365_test_00197594.jpg +Places365_test_00197611.jpg +Places365_test_00197632.jpg +Places365_test_00197639.jpg +Places365_test_00197640.jpg +Places365_test_00197644.jpg +Places365_test_00197647.jpg +Places365_test_00197651.jpg +Places365_test_00197664.jpg +Places365_test_00197668.jpg +Places365_test_00197671.jpg +Places365_test_00197673.jpg +Places365_test_00197674.jpg +Places365_test_00197697.jpg +Places365_test_00197714.jpg +Places365_test_00197720.jpg +Places365_test_00197729.jpg +Places365_test_00197741.jpg +Places365_test_00197747.jpg +Places365_test_00197755.jpg +Places365_test_00197762.jpg +Places365_test_00197770.jpg +Places365_test_00197785.jpg +Places365_test_00197790.jpg +Places365_test_00197850.jpg +Places365_test_00197871.jpg +Places365_test_00197880.jpg +Places365_test_00197884.jpg +Places365_test_00197885.jpg +Places365_test_00197890.jpg +Places365_test_00197892.jpg +Places365_test_00197898.jpg +Places365_test_00197926.jpg +Places365_test_00197954.jpg +Places365_test_00197957.jpg +Places365_test_00197958.jpg +Places365_test_00197965.jpg +Places365_test_00197970.jpg +Places365_test_00197973.jpg +Places365_test_00198009.jpg +Places365_test_00198021.jpg +Places365_test_00198034.jpg +Places365_test_00198049.jpg +Places365_test_00198050.jpg +Places365_test_00198065.jpg +Places365_test_00198082.jpg +Places365_test_00198104.jpg +Places365_test_00198107.jpg +Places365_test_00198123.jpg +Places365_test_00198140.jpg +Places365_test_00198144.jpg +Places365_test_00198149.jpg +Places365_test_00198152.jpg +Places365_test_00198173.jpg +Places365_test_00198180.jpg +Places365_test_00198185.jpg +Places365_test_00198190.jpg +Places365_test_00198205.jpg +Places365_test_00198209.jpg +Places365_test_00198222.jpg +Places365_test_00198232.jpg +Places365_test_00198243.jpg +Places365_test_00198252.jpg +Places365_test_00198278.jpg +Places365_test_00198282.jpg +Places365_test_00198290.jpg +Places365_test_00198298.jpg +Places365_test_00198321.jpg +Places365_test_00198323.jpg +Places365_test_00198326.jpg +Places365_test_00198334.jpg +Places365_test_00198340.jpg +Places365_test_00198367.jpg +Places365_test_00198371.jpg +Places365_test_00198397.jpg +Places365_test_00198398.jpg +Places365_test_00198415.jpg +Places365_test_00198430.jpg +Places365_test_00198436.jpg +Places365_test_00198438.jpg +Places365_test_00198439.jpg +Places365_test_00198444.jpg +Places365_test_00198452.jpg +Places365_test_00198454.jpg +Places365_test_00198462.jpg +Places365_test_00198484.jpg +Places365_test_00198491.jpg +Places365_test_00198495.jpg +Places365_test_00198506.jpg +Places365_test_00198542.jpg +Places365_test_00198545.jpg +Places365_test_00198556.jpg +Places365_test_00198560.jpg +Places365_test_00198565.jpg +Places365_test_00198570.jpg +Places365_test_00198571.jpg +Places365_test_00198585.jpg +Places365_test_00198590.jpg +Places365_test_00198591.jpg +Places365_test_00198602.jpg +Places365_test_00198608.jpg +Places365_test_00198646.jpg +Places365_test_00198657.jpg +Places365_test_00198672.jpg +Places365_test_00198677.jpg +Places365_test_00198678.jpg +Places365_test_00198681.jpg +Places365_test_00198684.jpg +Places365_test_00198701.jpg +Places365_test_00198703.jpg +Places365_test_00198705.jpg +Places365_test_00198759.jpg +Places365_test_00198760.jpg +Places365_test_00198787.jpg +Places365_test_00198790.jpg +Places365_test_00198805.jpg +Places365_test_00198809.jpg +Places365_test_00198817.jpg +Places365_test_00198878.jpg +Places365_test_00198880.jpg +Places365_test_00198899.jpg +Places365_test_00198900.jpg +Places365_test_00198913.jpg +Places365_test_00198922.jpg +Places365_test_00198929.jpg +Places365_test_00198985.jpg +Places365_test_00199023.jpg +Places365_test_00199027.jpg +Places365_test_00199032.jpg +Places365_test_00199046.jpg +Places365_test_00199053.jpg +Places365_test_00199055.jpg +Places365_test_00199079.jpg +Places365_test_00199085.jpg +Places365_test_00199092.jpg +Places365_test_00199099.jpg +Places365_test_00199100.jpg +Places365_test_00199114.jpg +Places365_test_00199115.jpg +Places365_test_00199123.jpg +Places365_test_00199149.jpg +Places365_test_00199152.jpg +Places365_test_00199161.jpg +Places365_test_00199162.jpg +Places365_test_00199169.jpg +Places365_test_00199181.jpg +Places365_test_00199190.jpg +Places365_test_00199199.jpg +Places365_test_00199217.jpg +Places365_test_00199225.jpg +Places365_test_00199237.jpg +Places365_test_00199239.jpg +Places365_test_00199243.jpg +Places365_test_00199250.jpg +Places365_test_00199253.jpg +Places365_test_00199258.jpg +Places365_test_00199260.jpg +Places365_test_00199288.jpg +Places365_test_00199291.jpg +Places365_test_00199304.jpg +Places365_test_00199332.jpg +Places365_test_00199337.jpg +Places365_test_00199338.jpg +Places365_test_00199344.jpg +Places365_test_00199349.jpg +Places365_test_00199366.jpg +Places365_test_00199397.jpg +Places365_test_00199433.jpg +Places365_test_00199449.jpg +Places365_test_00199450.jpg +Places365_test_00199494.jpg +Places365_test_00199498.jpg +Places365_test_00199504.jpg +Places365_test_00199543.jpg +Places365_test_00199561.jpg +Places365_test_00199570.jpg +Places365_test_00199575.jpg +Places365_test_00199577.jpg +Places365_test_00199580.jpg +Places365_test_00199582.jpg +Places365_test_00199588.jpg +Places365_test_00199590.jpg +Places365_test_00199604.jpg +Places365_test_00199616.jpg +Places365_test_00199629.jpg +Places365_test_00199645.jpg +Places365_test_00199650.jpg +Places365_test_00199652.jpg +Places365_test_00199663.jpg +Places365_test_00199702.jpg +Places365_test_00199720.jpg +Places365_test_00199730.jpg +Places365_test_00199733.jpg +Places365_test_00199746.jpg +Places365_test_00199749.jpg +Places365_test_00199754.jpg +Places365_test_00199772.jpg +Places365_test_00199779.jpg +Places365_test_00199789.jpg +Places365_test_00199802.jpg +Places365_test_00199827.jpg +Places365_test_00199831.jpg +Places365_test_00199834.jpg +Places365_test_00199837.jpg +Places365_test_00199839.jpg +Places365_test_00199879.jpg +Places365_test_00199893.jpg +Places365_test_00199896.jpg +Places365_test_00199897.jpg +Places365_test_00199903.jpg +Places365_test_00199915.jpg +Places365_test_00199921.jpg +Places365_test_00199930.jpg +Places365_test_00199937.jpg +Places365_test_00199955.jpg +Places365_test_00199956.jpg +Places365_test_00199957.jpg +Places365_test_00199989.jpg +Places365_test_00200001.jpg +Places365_test_00200011.jpg +Places365_test_00200013.jpg +Places365_test_00200023.jpg +Places365_test_00200037.jpg +Places365_test_00200044.jpg +Places365_test_00200047.jpg +Places365_test_00200063.jpg +Places365_test_00200069.jpg +Places365_test_00200074.jpg +Places365_test_00200086.jpg +Places365_test_00200092.jpg +Places365_test_00200108.jpg +Places365_test_00200115.jpg +Places365_test_00200119.jpg +Places365_test_00200122.jpg +Places365_test_00200130.jpg +Places365_test_00200176.jpg +Places365_test_00200187.jpg +Places365_test_00200197.jpg +Places365_test_00200208.jpg +Places365_test_00200220.jpg +Places365_test_00200237.jpg +Places365_test_00200239.jpg +Places365_test_00200240.jpg +Places365_test_00200268.jpg +Places365_test_00200270.jpg +Places365_test_00200275.jpg +Places365_test_00200280.jpg +Places365_test_00200285.jpg +Places365_test_00200292.jpg +Places365_test_00200299.jpg +Places365_test_00200342.jpg +Places365_test_00200350.jpg +Places365_test_00200351.jpg +Places365_test_00200355.jpg +Places365_test_00200360.jpg +Places365_test_00200376.jpg +Places365_test_00200378.jpg +Places365_test_00200383.jpg +Places365_test_00200392.jpg +Places365_test_00200398.jpg +Places365_test_00200402.jpg +Places365_test_00200414.jpg +Places365_test_00200420.jpg +Places365_test_00200432.jpg +Places365_test_00200440.jpg +Places365_test_00200444.jpg +Places365_test_00200448.jpg +Places365_test_00200456.jpg +Places365_test_00200457.jpg +Places365_test_00200463.jpg +Places365_test_00200465.jpg +Places365_test_00200469.jpg +Places365_test_00200477.jpg +Places365_test_00200481.jpg +Places365_test_00200484.jpg +Places365_test_00200496.jpg +Places365_test_00200517.jpg +Places365_test_00200518.jpg +Places365_test_00200525.jpg +Places365_test_00200549.jpg +Places365_test_00200552.jpg +Places365_test_00200569.jpg +Places365_test_00200578.jpg +Places365_test_00200580.jpg +Places365_test_00200582.jpg +Places365_test_00200588.jpg +Places365_test_00200589.jpg +Places365_test_00200597.jpg +Places365_test_00200604.jpg +Places365_test_00200608.jpg +Places365_test_00200609.jpg +Places365_test_00200610.jpg +Places365_test_00200624.jpg +Places365_test_00200628.jpg +Places365_test_00200673.jpg +Places365_test_00200678.jpg +Places365_test_00200710.jpg +Places365_test_00200726.jpg +Places365_test_00200736.jpg +Places365_test_00200743.jpg +Places365_test_00200756.jpg +Places365_test_00200757.jpg +Places365_test_00200764.jpg +Places365_test_00200770.jpg +Places365_test_00200778.jpg +Places365_test_00200782.jpg +Places365_test_00200790.jpg +Places365_test_00200793.jpg +Places365_test_00200818.jpg +Places365_test_00200837.jpg +Places365_test_00200859.jpg +Places365_test_00200871.jpg +Places365_test_00200892.jpg +Places365_test_00200893.jpg +Places365_test_00200902.jpg +Places365_test_00200967.jpg +Places365_test_00200969.jpg +Places365_test_00200975.jpg +Places365_test_00200985.jpg +Places365_test_00200989.jpg +Places365_test_00200998.jpg +Places365_test_00201004.jpg +Places365_test_00201022.jpg +Places365_test_00201036.jpg +Places365_test_00201048.jpg +Places365_test_00201055.jpg +Places365_test_00201061.jpg +Places365_test_00201071.jpg +Places365_test_00201084.jpg +Places365_test_00201120.jpg +Places365_test_00201142.jpg +Places365_test_00201148.jpg +Places365_test_00201149.jpg +Places365_test_00201179.jpg +Places365_test_00201180.jpg +Places365_test_00201189.jpg +Places365_test_00201201.jpg +Places365_test_00201235.jpg +Places365_test_00201244.jpg +Places365_test_00201249.jpg +Places365_test_00201290.jpg +Places365_test_00201297.jpg +Places365_test_00201303.jpg +Places365_test_00201323.jpg +Places365_test_00201325.jpg +Places365_test_00201327.jpg +Places365_test_00201361.jpg +Places365_test_00201371.jpg +Places365_test_00201375.jpg +Places365_test_00201381.jpg +Places365_test_00201391.jpg +Places365_test_00201393.jpg +Places365_test_00201399.jpg +Places365_test_00201407.jpg +Places365_test_00201421.jpg +Places365_test_00201422.jpg +Places365_test_00201435.jpg +Places365_test_00201447.jpg +Places365_test_00201451.jpg +Places365_test_00201456.jpg +Places365_test_00201460.jpg +Places365_test_00201467.jpg +Places365_test_00201469.jpg +Places365_test_00201476.jpg +Places365_test_00201482.jpg +Places365_test_00201486.jpg +Places365_test_00201494.jpg +Places365_test_00201497.jpg +Places365_test_00201505.jpg +Places365_test_00201513.jpg +Places365_test_00201514.jpg +Places365_test_00201537.jpg +Places365_test_00201540.jpg +Places365_test_00201554.jpg +Places365_test_00201557.jpg +Places365_test_00201582.jpg +Places365_test_00201597.jpg +Places365_test_00201611.jpg +Places365_test_00201633.jpg +Places365_test_00201640.jpg +Places365_test_00201659.jpg +Places365_test_00201672.jpg +Places365_test_00201674.jpg +Places365_test_00201680.jpg +Places365_test_00201693.jpg +Places365_test_00201698.jpg +Places365_test_00201726.jpg +Places365_test_00201727.jpg +Places365_test_00201734.jpg +Places365_test_00201738.jpg +Places365_test_00201760.jpg +Places365_test_00201776.jpg +Places365_test_00201820.jpg +Places365_test_00201825.jpg +Places365_test_00201828.jpg +Places365_test_00201837.jpg +Places365_test_00201852.jpg +Places365_test_00201860.jpg +Places365_test_00201872.jpg +Places365_test_00201876.jpg +Places365_test_00201879.jpg +Places365_test_00201894.jpg +Places365_test_00201915.jpg +Places365_test_00201922.jpg +Places365_test_00201933.jpg +Places365_test_00201957.jpg +Places365_test_00201964.jpg +Places365_test_00201966.jpg +Places365_test_00201970.jpg +Places365_test_00201979.jpg +Places365_test_00201982.jpg +Places365_test_00201989.jpg +Places365_test_00201997.jpg +Places365_test_00201999.jpg +Places365_test_00202016.jpg +Places365_test_00202025.jpg +Places365_test_00202053.jpg +Places365_test_00202059.jpg +Places365_test_00202077.jpg +Places365_test_00202111.jpg +Places365_test_00202125.jpg +Places365_test_00202134.jpg +Places365_test_00202139.jpg +Places365_test_00202149.jpg +Places365_test_00202160.jpg +Places365_test_00202168.jpg +Places365_test_00202175.jpg +Places365_test_00202180.jpg +Places365_test_00202186.jpg +Places365_test_00202201.jpg +Places365_test_00202204.jpg +Places365_test_00202214.jpg +Places365_test_00202251.jpg +Places365_test_00202262.jpg +Places365_test_00202269.jpg +Places365_test_00202279.jpg +Places365_test_00202280.jpg +Places365_test_00202294.jpg +Places365_test_00202297.jpg +Places365_test_00202302.jpg +Places365_test_00202303.jpg +Places365_test_00202312.jpg +Places365_test_00202316.jpg +Places365_test_00202322.jpg +Places365_test_00202333.jpg +Places365_test_00202345.jpg +Places365_test_00202348.jpg +Places365_test_00202352.jpg +Places365_test_00202369.jpg +Places365_test_00202396.jpg +Places365_test_00202404.jpg +Places365_test_00202413.jpg +Places365_test_00202440.jpg +Places365_test_00202468.jpg +Places365_test_00202469.jpg +Places365_test_00202476.jpg +Places365_test_00202479.jpg +Places365_test_00202495.jpg +Places365_test_00202512.jpg +Places365_test_00202516.jpg +Places365_test_00202519.jpg +Places365_test_00202521.jpg +Places365_test_00202528.jpg +Places365_test_00202536.jpg +Places365_test_00202551.jpg +Places365_test_00202558.jpg +Places365_test_00202600.jpg +Places365_test_00202627.jpg +Places365_test_00202629.jpg +Places365_test_00202642.jpg +Places365_test_00202659.jpg +Places365_test_00202676.jpg +Places365_test_00202680.jpg +Places365_test_00202682.jpg +Places365_test_00202684.jpg +Places365_test_00202694.jpg +Places365_test_00202715.jpg +Places365_test_00202738.jpg +Places365_test_00202744.jpg +Places365_test_00202745.jpg +Places365_test_00202765.jpg +Places365_test_00202771.jpg +Places365_test_00202791.jpg +Places365_test_00202806.jpg +Places365_test_00202823.jpg +Places365_test_00202825.jpg +Places365_test_00202832.jpg +Places365_test_00202853.jpg +Places365_test_00202861.jpg +Places365_test_00202915.jpg +Places365_test_00202949.jpg +Places365_test_00202967.jpg +Places365_test_00202973.jpg +Places365_test_00202991.jpg +Places365_test_00202993.jpg +Places365_test_00202998.jpg +Places365_test_00203014.jpg +Places365_test_00203023.jpg +Places365_test_00203025.jpg +Places365_test_00203026.jpg +Places365_test_00203028.jpg +Places365_test_00203055.jpg +Places365_test_00203078.jpg +Places365_test_00203086.jpg +Places365_test_00203090.jpg +Places365_test_00203098.jpg +Places365_test_00203101.jpg +Places365_test_00203104.jpg +Places365_test_00203125.jpg +Places365_test_00203126.jpg +Places365_test_00203129.jpg +Places365_test_00203132.jpg +Places365_test_00203144.jpg +Places365_test_00203147.jpg +Places365_test_00203158.jpg +Places365_test_00203177.jpg +Places365_test_00203190.jpg +Places365_test_00203199.jpg +Places365_test_00203215.jpg +Places365_test_00203219.jpg +Places365_test_00203221.jpg +Places365_test_00203235.jpg +Places365_test_00203248.jpg +Places365_test_00203260.jpg +Places365_test_00203275.jpg +Places365_test_00203276.jpg +Places365_test_00203278.jpg +Places365_test_00203301.jpg +Places365_test_00203302.jpg +Places365_test_00203326.jpg +Places365_test_00203328.jpg +Places365_test_00203331.jpg +Places365_test_00203359.jpg +Places365_test_00203376.jpg +Places365_test_00203380.jpg +Places365_test_00203381.jpg +Places365_test_00203383.jpg +Places365_test_00203389.jpg +Places365_test_00203390.jpg +Places365_test_00203407.jpg +Places365_test_00203415.jpg +Places365_test_00203458.jpg +Places365_test_00203497.jpg +Places365_test_00203524.jpg +Places365_test_00203538.jpg +Places365_test_00203542.jpg +Places365_test_00203543.jpg +Places365_test_00203545.jpg +Places365_test_00203555.jpg +Places365_test_00203557.jpg +Places365_test_00203565.jpg +Places365_test_00203578.jpg +Places365_test_00203591.jpg +Places365_test_00203594.jpg +Places365_test_00203605.jpg +Places365_test_00203651.jpg +Places365_test_00203667.jpg +Places365_test_00203668.jpg +Places365_test_00203673.jpg +Places365_test_00203675.jpg +Places365_test_00203682.jpg +Places365_test_00203688.jpg +Places365_test_00203695.jpg +Places365_test_00203719.jpg +Places365_test_00203734.jpg +Places365_test_00203740.jpg +Places365_test_00203747.jpg +Places365_test_00203751.jpg +Places365_test_00203757.jpg +Places365_test_00203780.jpg +Places365_test_00203790.jpg +Places365_test_00203795.jpg +Places365_test_00203801.jpg +Places365_test_00203833.jpg +Places365_test_00203846.jpg +Places365_test_00203865.jpg +Places365_test_00203884.jpg +Places365_test_00203896.jpg +Places365_test_00203901.jpg +Places365_test_00203902.jpg +Places365_test_00203914.jpg +Places365_test_00203941.jpg +Places365_test_00203951.jpg +Places365_test_00203972.jpg +Places365_test_00203979.jpg +Places365_test_00203980.jpg +Places365_test_00203987.jpg +Places365_test_00204010.jpg +Places365_test_00204016.jpg +Places365_test_00204017.jpg +Places365_test_00204021.jpg +Places365_test_00204030.jpg +Places365_test_00204046.jpg +Places365_test_00204068.jpg +Places365_test_00204079.jpg +Places365_test_00204089.jpg +Places365_test_00204095.jpg +Places365_test_00204107.jpg +Places365_test_00204114.jpg +Places365_test_00204115.jpg +Places365_test_00204139.jpg +Places365_test_00204151.jpg +Places365_test_00204153.jpg +Places365_test_00204160.jpg +Places365_test_00204177.jpg +Places365_test_00204185.jpg +Places365_test_00204193.jpg +Places365_test_00204203.jpg +Places365_test_00204211.jpg +Places365_test_00204219.jpg +Places365_test_00204222.jpg +Places365_test_00204230.jpg +Places365_test_00204234.jpg +Places365_test_00204236.jpg +Places365_test_00204237.jpg +Places365_test_00204241.jpg +Places365_test_00204246.jpg +Places365_test_00204257.jpg +Places365_test_00204260.jpg +Places365_test_00204273.jpg +Places365_test_00204278.jpg +Places365_test_00204294.jpg +Places365_test_00204299.jpg +Places365_test_00204303.jpg +Places365_test_00204310.jpg +Places365_test_00204322.jpg +Places365_test_00204353.jpg +Places365_test_00204364.jpg +Places365_test_00204372.jpg +Places365_test_00204379.jpg +Places365_test_00204390.jpg +Places365_test_00204398.jpg +Places365_test_00204400.jpg +Places365_test_00204401.jpg +Places365_test_00204408.jpg +Places365_test_00204440.jpg +Places365_test_00204448.jpg +Places365_test_00204467.jpg +Places365_test_00204470.jpg +Places365_test_00204478.jpg +Places365_test_00204489.jpg +Places365_test_00204494.jpg +Places365_test_00204496.jpg +Places365_test_00204497.jpg +Places365_test_00204505.jpg +Places365_test_00204533.jpg +Places365_test_00204539.jpg +Places365_test_00204553.jpg +Places365_test_00204563.jpg +Places365_test_00204574.jpg +Places365_test_00204583.jpg +Places365_test_00204584.jpg +Places365_test_00204601.jpg +Places365_test_00204606.jpg +Places365_test_00204627.jpg +Places365_test_00204634.jpg +Places365_test_00204637.jpg +Places365_test_00204662.jpg +Places365_test_00204672.jpg +Places365_test_00204684.jpg +Places365_test_00204704.jpg +Places365_test_00204711.jpg +Places365_test_00204737.jpg +Places365_test_00204745.jpg +Places365_test_00204759.jpg +Places365_test_00204760.jpg +Places365_test_00204763.jpg +Places365_test_00204771.jpg +Places365_test_00204782.jpg +Places365_test_00204787.jpg +Places365_test_00204796.jpg +Places365_test_00204799.jpg +Places365_test_00204809.jpg +Places365_test_00204812.jpg +Places365_test_00204826.jpg +Places365_test_00204831.jpg +Places365_test_00204843.jpg +Places365_test_00204857.jpg +Places365_test_00204885.jpg +Places365_test_00204945.jpg +Places365_test_00204953.jpg +Places365_test_00204954.jpg +Places365_test_00204962.jpg +Places365_test_00204976.jpg +Places365_test_00204978.jpg +Places365_test_00204991.jpg +Places365_test_00204997.jpg +Places365_test_00205000.jpg +Places365_test_00205002.jpg +Places365_test_00205006.jpg +Places365_test_00205009.jpg +Places365_test_00205013.jpg +Places365_test_00205030.jpg +Places365_test_00205038.jpg +Places365_test_00205042.jpg +Places365_test_00205043.jpg +Places365_test_00205066.jpg +Places365_test_00205082.jpg +Places365_test_00205084.jpg +Places365_test_00205089.jpg +Places365_test_00205091.jpg +Places365_test_00205106.jpg +Places365_test_00205133.jpg +Places365_test_00205155.jpg +Places365_test_00205170.jpg +Places365_test_00205175.jpg +Places365_test_00205185.jpg +Places365_test_00205204.jpg +Places365_test_00205206.jpg +Places365_test_00205241.jpg +Places365_test_00205243.jpg +Places365_test_00205245.jpg +Places365_test_00205254.jpg +Places365_test_00205263.jpg +Places365_test_00205269.jpg +Places365_test_00205276.jpg +Places365_test_00205293.jpg +Places365_test_00205304.jpg +Places365_test_00205335.jpg +Places365_test_00205343.jpg +Places365_test_00205355.jpg +Places365_test_00205358.jpg +Places365_test_00205360.jpg +Places365_test_00205364.jpg +Places365_test_00205369.jpg +Places365_test_00205382.jpg +Places365_test_00205387.jpg +Places365_test_00205458.jpg +Places365_test_00205495.jpg +Places365_test_00205527.jpg +Places365_test_00205538.jpg +Places365_test_00205545.jpg +Places365_test_00205557.jpg +Places365_test_00205561.jpg +Places365_test_00205573.jpg +Places365_test_00205607.jpg +Places365_test_00205633.jpg +Places365_test_00205641.jpg +Places365_test_00205644.jpg +Places365_test_00205651.jpg +Places365_test_00205659.jpg +Places365_test_00205701.jpg +Places365_test_00205705.jpg +Places365_test_00205707.jpg +Places365_test_00205709.jpg +Places365_test_00205724.jpg +Places365_test_00205742.jpg +Places365_test_00205745.jpg +Places365_test_00205750.jpg +Places365_test_00205758.jpg +Places365_test_00205759.jpg +Places365_test_00205770.jpg +Places365_test_00205788.jpg +Places365_test_00205792.jpg +Places365_test_00205801.jpg +Places365_test_00205804.jpg +Places365_test_00205821.jpg +Places365_test_00205836.jpg +Places365_test_00205846.jpg +Places365_test_00205848.jpg +Places365_test_00205850.jpg +Places365_test_00205854.jpg +Places365_test_00205859.jpg +Places365_test_00205868.jpg +Places365_test_00205870.jpg +Places365_test_00205873.jpg +Places365_test_00205874.jpg +Places365_test_00205876.jpg +Places365_test_00205882.jpg +Places365_test_00205895.jpg +Places365_test_00205899.jpg +Places365_test_00205901.jpg +Places365_test_00205915.jpg +Places365_test_00205932.jpg +Places365_test_00205937.jpg +Places365_test_00205965.jpg +Places365_test_00205970.jpg +Places365_test_00205975.jpg +Places365_test_00205978.jpg +Places365_test_00205980.jpg +Places365_test_00205998.jpg +Places365_test_00206004.jpg +Places365_test_00206010.jpg +Places365_test_00206031.jpg +Places365_test_00206049.jpg +Places365_test_00206077.jpg +Places365_test_00206083.jpg +Places365_test_00206086.jpg +Places365_test_00206087.jpg +Places365_test_00206090.jpg +Places365_test_00206093.jpg +Places365_test_00206100.jpg +Places365_test_00206109.jpg +Places365_test_00206111.jpg +Places365_test_00206114.jpg +Places365_test_00206123.jpg +Places365_test_00206128.jpg +Places365_test_00206146.jpg +Places365_test_00206154.jpg +Places365_test_00206160.jpg +Places365_test_00206167.jpg +Places365_test_00206170.jpg +Places365_test_00206182.jpg +Places365_test_00206189.jpg +Places365_test_00206190.jpg +Places365_test_00206206.jpg +Places365_test_00206222.jpg +Places365_test_00206226.jpg +Places365_test_00206232.jpg +Places365_test_00206252.jpg +Places365_test_00206263.jpg +Places365_test_00206277.jpg +Places365_test_00206279.jpg +Places365_test_00206292.jpg +Places365_test_00206298.jpg +Places365_test_00206300.jpg +Places365_test_00206312.jpg +Places365_test_00206318.jpg +Places365_test_00206332.jpg +Places365_test_00206342.jpg +Places365_test_00206345.jpg +Places365_test_00206346.jpg +Places365_test_00206375.jpg +Places365_test_00206394.jpg +Places365_test_00206421.jpg +Places365_test_00206427.jpg +Places365_test_00206441.jpg +Places365_test_00206447.jpg +Places365_test_00206448.jpg +Places365_test_00206451.jpg +Places365_test_00206455.jpg +Places365_test_00206458.jpg +Places365_test_00206463.jpg +Places365_test_00206469.jpg +Places365_test_00206484.jpg +Places365_test_00206490.jpg +Places365_test_00206497.jpg +Places365_test_00206505.jpg +Places365_test_00206509.jpg +Places365_test_00206524.jpg +Places365_test_00206545.jpg +Places365_test_00206548.jpg +Places365_test_00206566.jpg +Places365_test_00206576.jpg +Places365_test_00206582.jpg +Places365_test_00206608.jpg +Places365_test_00206610.jpg +Places365_test_00206630.jpg +Places365_test_00206668.jpg +Places365_test_00206685.jpg +Places365_test_00206687.jpg +Places365_test_00206689.jpg +Places365_test_00206695.jpg +Places365_test_00206708.jpg +Places365_test_00206725.jpg +Places365_test_00206767.jpg +Places365_test_00206776.jpg +Places365_test_00206799.jpg +Places365_test_00206801.jpg +Places365_test_00206814.jpg +Places365_test_00206820.jpg +Places365_test_00206824.jpg +Places365_test_00206832.jpg +Places365_test_00206835.jpg +Places365_test_00206840.jpg +Places365_test_00206873.jpg +Places365_test_00206881.jpg +Places365_test_00206896.jpg +Places365_test_00206907.jpg +Places365_test_00206908.jpg +Places365_test_00206912.jpg +Places365_test_00206920.jpg +Places365_test_00206927.jpg +Places365_test_00206942.jpg +Places365_test_00206944.jpg +Places365_test_00206956.jpg +Places365_test_00206958.jpg +Places365_test_00206961.jpg +Places365_test_00206973.jpg +Places365_test_00206982.jpg +Places365_test_00207013.jpg +Places365_test_00207027.jpg +Places365_test_00207041.jpg +Places365_test_00207043.jpg +Places365_test_00207044.jpg +Places365_test_00207052.jpg +Places365_test_00207062.jpg +Places365_test_00207084.jpg +Places365_test_00207092.jpg +Places365_test_00207101.jpg +Places365_test_00207118.jpg +Places365_test_00207141.jpg +Places365_test_00207143.jpg +Places365_test_00207145.jpg +Places365_test_00207147.jpg +Places365_test_00207153.jpg +Places365_test_00207167.jpg +Places365_test_00207193.jpg +Places365_test_00207194.jpg +Places365_test_00207212.jpg +Places365_test_00207213.jpg +Places365_test_00207216.jpg +Places365_test_00207220.jpg +Places365_test_00207224.jpg +Places365_test_00207225.jpg +Places365_test_00207250.jpg +Places365_test_00207257.jpg +Places365_test_00207259.jpg +Places365_test_00207266.jpg +Places365_test_00207284.jpg +Places365_test_00207285.jpg +Places365_test_00207295.jpg +Places365_test_00207321.jpg +Places365_test_00207349.jpg +Places365_test_00207355.jpg +Places365_test_00207389.jpg +Places365_test_00207405.jpg +Places365_test_00207425.jpg +Places365_test_00207439.jpg +Places365_test_00207445.jpg +Places365_test_00207446.jpg +Places365_test_00207464.jpg +Places365_test_00207502.jpg +Places365_test_00207503.jpg +Places365_test_00207533.jpg +Places365_test_00207557.jpg +Places365_test_00207577.jpg +Places365_test_00207581.jpg +Places365_test_00207600.jpg +Places365_test_00207601.jpg +Places365_test_00207608.jpg +Places365_test_00207613.jpg +Places365_test_00207621.jpg +Places365_test_00207630.jpg +Places365_test_00207639.jpg +Places365_test_00207644.jpg +Places365_test_00207663.jpg +Places365_test_00207674.jpg +Places365_test_00207680.jpg +Places365_test_00207683.jpg +Places365_test_00207685.jpg +Places365_test_00207690.jpg +Places365_test_00207707.jpg +Places365_test_00207712.jpg +Places365_test_00207719.jpg +Places365_test_00207724.jpg +Places365_test_00207725.jpg +Places365_test_00207729.jpg +Places365_test_00207734.jpg +Places365_test_00207740.jpg +Places365_test_00207747.jpg +Places365_test_00207757.jpg +Places365_test_00207761.jpg +Places365_test_00207768.jpg +Places365_test_00207770.jpg +Places365_test_00207775.jpg +Places365_test_00207787.jpg +Places365_test_00207788.jpg +Places365_test_00207801.jpg +Places365_test_00207802.jpg +Places365_test_00207841.jpg +Places365_test_00207852.jpg +Places365_test_00207857.jpg +Places365_test_00207871.jpg +Places365_test_00207873.jpg +Places365_test_00207892.jpg +Places365_test_00207896.jpg +Places365_test_00207897.jpg +Places365_test_00207905.jpg +Places365_test_00207906.jpg +Places365_test_00207940.jpg +Places365_test_00207957.jpg +Places365_test_00207960.jpg +Places365_test_00207961.jpg +Places365_test_00207967.jpg +Places365_test_00207986.jpg +Places365_test_00207996.jpg +Places365_test_00208011.jpg +Places365_test_00208013.jpg +Places365_test_00208038.jpg +Places365_test_00208059.jpg +Places365_test_00208085.jpg +Places365_test_00208094.jpg +Places365_test_00208104.jpg +Places365_test_00208107.jpg +Places365_test_00208126.jpg +Places365_test_00208130.jpg +Places365_test_00208131.jpg +Places365_test_00208140.jpg +Places365_test_00208142.jpg +Places365_test_00208147.jpg +Places365_test_00208153.jpg +Places365_test_00208172.jpg +Places365_test_00208182.jpg +Places365_test_00208193.jpg +Places365_test_00208208.jpg +Places365_test_00208227.jpg +Places365_test_00208228.jpg +Places365_test_00208239.jpg +Places365_test_00208245.jpg +Places365_test_00208286.jpg +Places365_test_00208306.jpg +Places365_test_00208316.jpg +Places365_test_00208324.jpg +Places365_test_00208344.jpg +Places365_test_00208358.jpg +Places365_test_00208390.jpg +Places365_test_00208395.jpg +Places365_test_00208396.jpg +Places365_test_00208398.jpg +Places365_test_00208421.jpg +Places365_test_00208424.jpg +Places365_test_00208434.jpg +Places365_test_00208441.jpg +Places365_test_00208447.jpg +Places365_test_00208464.jpg +Places365_test_00208476.jpg +Places365_test_00208500.jpg +Places365_test_00208516.jpg +Places365_test_00208524.jpg +Places365_test_00208529.jpg +Places365_test_00208535.jpg +Places365_test_00208537.jpg +Places365_test_00208544.jpg +Places365_test_00208550.jpg +Places365_test_00208557.jpg +Places365_test_00208562.jpg +Places365_test_00208563.jpg +Places365_test_00208590.jpg +Places365_test_00208593.jpg +Places365_test_00208597.jpg +Places365_test_00208613.jpg +Places365_test_00208624.jpg +Places365_test_00208630.jpg +Places365_test_00208632.jpg +Places365_test_00208644.jpg +Places365_test_00208660.jpg +Places365_test_00208683.jpg +Places365_test_00208719.jpg +Places365_test_00208724.jpg +Places365_test_00208756.jpg +Places365_test_00208767.jpg +Places365_test_00208803.jpg +Places365_test_00208812.jpg +Places365_test_00208845.jpg +Places365_test_00208851.jpg +Places365_test_00208857.jpg +Places365_test_00208858.jpg +Places365_test_00208890.jpg +Places365_test_00208902.jpg +Places365_test_00208903.jpg +Places365_test_00208915.jpg +Places365_test_00208917.jpg +Places365_test_00208925.jpg +Places365_test_00208926.jpg +Places365_test_00208930.jpg +Places365_test_00208936.jpg +Places365_test_00208940.jpg +Places365_test_00208950.jpg +Places365_test_00208958.jpg +Places365_test_00208959.jpg +Places365_test_00208996.jpg +Places365_test_00209018.jpg +Places365_test_00209024.jpg +Places365_test_00209034.jpg +Places365_test_00209039.jpg +Places365_test_00209058.jpg +Places365_test_00209107.jpg +Places365_test_00209121.jpg +Places365_test_00209153.jpg +Places365_test_00209205.jpg +Places365_test_00209217.jpg +Places365_test_00209242.jpg +Places365_test_00209261.jpg +Places365_test_00209289.jpg +Places365_test_00209295.jpg +Places365_test_00209298.jpg +Places365_test_00209299.jpg +Places365_test_00209310.jpg +Places365_test_00209311.jpg +Places365_test_00209317.jpg +Places365_test_00209325.jpg +Places365_test_00209352.jpg +Places365_test_00209379.jpg +Places365_test_00209384.jpg +Places365_test_00209405.jpg +Places365_test_00209417.jpg +Places365_test_00209433.jpg +Places365_test_00209450.jpg +Places365_test_00209453.jpg +Places365_test_00209457.jpg +Places365_test_00209462.jpg +Places365_test_00209487.jpg +Places365_test_00209494.jpg +Places365_test_00209513.jpg +Places365_test_00209526.jpg +Places365_test_00209538.jpg +Places365_test_00209551.jpg +Places365_test_00209555.jpg +Places365_test_00209580.jpg +Places365_test_00209584.jpg +Places365_test_00209610.jpg +Places365_test_00209614.jpg +Places365_test_00209634.jpg +Places365_test_00209641.jpg +Places365_test_00209643.jpg +Places365_test_00209654.jpg +Places365_test_00209657.jpg +Places365_test_00209688.jpg +Places365_test_00209692.jpg +Places365_test_00209720.jpg +Places365_test_00209726.jpg +Places365_test_00209735.jpg +Places365_test_00209738.jpg +Places365_test_00209767.jpg +Places365_test_00209769.jpg +Places365_test_00209775.jpg +Places365_test_00209785.jpg +Places365_test_00209808.jpg +Places365_test_00209827.jpg +Places365_test_00209830.jpg +Places365_test_00209841.jpg +Places365_test_00209844.jpg +Places365_test_00209858.jpg +Places365_test_00209868.jpg +Places365_test_00209877.jpg +Places365_test_00209887.jpg +Places365_test_00209890.jpg +Places365_test_00209895.jpg +Places365_test_00209925.jpg +Places365_test_00209935.jpg +Places365_test_00209938.jpg +Places365_test_00209939.jpg +Places365_test_00209951.jpg +Places365_test_00209952.jpg +Places365_test_00209980.jpg +Places365_test_00209997.jpg +Places365_test_00210004.jpg +Places365_test_00210008.jpg +Places365_test_00210019.jpg +Places365_test_00210020.jpg +Places365_test_00210053.jpg +Places365_test_00210054.jpg +Places365_test_00210086.jpg +Places365_test_00210108.jpg +Places365_test_00210110.jpg +Places365_test_00210141.jpg +Places365_test_00210169.jpg +Places365_test_00210236.jpg +Places365_test_00210245.jpg +Places365_test_00210258.jpg +Places365_test_00210278.jpg +Places365_test_00210302.jpg +Places365_test_00210327.jpg +Places365_test_00210334.jpg +Places365_test_00210335.jpg +Places365_test_00210346.jpg +Places365_test_00210357.jpg +Places365_test_00210393.jpg +Places365_test_00210412.jpg +Places365_test_00210415.jpg +Places365_test_00210420.jpg +Places365_test_00210422.jpg +Places365_test_00210439.jpg +Places365_test_00210462.jpg +Places365_test_00210470.jpg +Places365_test_00210483.jpg +Places365_test_00210503.jpg +Places365_test_00210508.jpg +Places365_test_00210514.jpg +Places365_test_00210515.jpg +Places365_test_00210519.jpg +Places365_test_00210520.jpg +Places365_test_00210533.jpg +Places365_test_00210570.jpg +Places365_test_00210586.jpg +Places365_test_00210606.jpg +Places365_test_00210613.jpg +Places365_test_00210637.jpg +Places365_test_00210648.jpg +Places365_test_00210658.jpg +Places365_test_00210661.jpg +Places365_test_00210666.jpg +Places365_test_00210682.jpg +Places365_test_00210683.jpg +Places365_test_00210698.jpg +Places365_test_00210712.jpg +Places365_test_00210733.jpg +Places365_test_00210744.jpg +Places365_test_00210766.jpg +Places365_test_00210767.jpg +Places365_test_00210773.jpg +Places365_test_00210787.jpg +Places365_test_00210813.jpg +Places365_test_00210842.jpg +Places365_test_00210865.jpg +Places365_test_00210880.jpg +Places365_test_00210896.jpg +Places365_test_00210905.jpg +Places365_test_00210912.jpg +Places365_test_00210922.jpg +Places365_test_00210923.jpg +Places365_test_00210924.jpg +Places365_test_00210932.jpg +Places365_test_00210947.jpg +Places365_test_00210950.jpg +Places365_test_00210961.jpg +Places365_test_00210975.jpg +Places365_test_00211003.jpg +Places365_test_00211007.jpg +Places365_test_00211009.jpg +Places365_test_00211013.jpg +Places365_test_00211038.jpg +Places365_test_00211039.jpg +Places365_test_00211045.jpg +Places365_test_00211050.jpg +Places365_test_00211053.jpg +Places365_test_00211056.jpg +Places365_test_00211067.jpg +Places365_test_00211068.jpg +Places365_test_00211071.jpg +Places365_test_00211077.jpg +Places365_test_00211098.jpg +Places365_test_00211103.jpg +Places365_test_00211113.jpg +Places365_test_00211115.jpg +Places365_test_00211116.jpg +Places365_test_00211118.jpg +Places365_test_00211120.jpg +Places365_test_00211148.jpg +Places365_test_00211171.jpg +Places365_test_00211182.jpg +Places365_test_00211243.jpg +Places365_test_00211244.jpg +Places365_test_00211254.jpg +Places365_test_00211267.jpg +Places365_test_00211271.jpg +Places365_test_00211289.jpg +Places365_test_00211306.jpg +Places365_test_00211312.jpg +Places365_test_00211317.jpg +Places365_test_00211318.jpg +Places365_test_00211348.jpg +Places365_test_00211368.jpg +Places365_test_00211383.jpg +Places365_test_00211392.jpg +Places365_test_00211414.jpg +Places365_test_00211418.jpg +Places365_test_00211422.jpg +Places365_test_00211427.jpg +Places365_test_00211433.jpg +Places365_test_00211447.jpg +Places365_test_00211456.jpg +Places365_test_00211464.jpg +Places365_test_00211477.jpg +Places365_test_00211485.jpg +Places365_test_00211488.jpg +Places365_test_00211498.jpg +Places365_test_00211499.jpg +Places365_test_00211504.jpg +Places365_test_00211544.jpg +Places365_test_00211554.jpg +Places365_test_00211569.jpg +Places365_test_00211571.jpg +Places365_test_00211574.jpg +Places365_test_00211575.jpg +Places365_test_00211576.jpg +Places365_test_00211579.jpg +Places365_test_00211587.jpg +Places365_test_00211606.jpg +Places365_test_00211615.jpg +Places365_test_00211621.jpg +Places365_test_00211632.jpg +Places365_test_00211636.jpg +Places365_test_00211643.jpg +Places365_test_00211652.jpg +Places365_test_00211653.jpg +Places365_test_00211655.jpg +Places365_test_00211679.jpg +Places365_test_00211689.jpg +Places365_test_00211691.jpg +Places365_test_00211693.jpg +Places365_test_00211706.jpg +Places365_test_00211709.jpg +Places365_test_00211757.jpg +Places365_test_00211764.jpg +Places365_test_00211769.jpg +Places365_test_00211791.jpg +Places365_test_00211794.jpg +Places365_test_00211809.jpg +Places365_test_00211812.jpg +Places365_test_00211840.jpg +Places365_test_00211848.jpg +Places365_test_00211856.jpg +Places365_test_00211865.jpg +Places365_test_00211869.jpg +Places365_test_00211877.jpg +Places365_test_00211882.jpg +Places365_test_00211883.jpg +Places365_test_00211892.jpg +Places365_test_00211895.jpg +Places365_test_00211915.jpg +Places365_test_00211918.jpg +Places365_test_00211924.jpg +Places365_test_00211927.jpg +Places365_test_00211931.jpg +Places365_test_00211934.jpg +Places365_test_00211947.jpg +Places365_test_00211969.jpg +Places365_test_00211975.jpg +Places365_test_00211997.jpg +Places365_test_00212004.jpg +Places365_test_00212010.jpg +Places365_test_00212017.jpg +Places365_test_00212024.jpg +Places365_test_00212025.jpg +Places365_test_00212036.jpg +Places365_test_00212043.jpg +Places365_test_00212044.jpg +Places365_test_00212048.jpg +Places365_test_00212083.jpg +Places365_test_00212085.jpg +Places365_test_00212105.jpg +Places365_test_00212120.jpg +Places365_test_00212156.jpg +Places365_test_00212196.jpg +Places365_test_00212205.jpg +Places365_test_00212224.jpg +Places365_test_00212229.jpg +Places365_test_00212230.jpg +Places365_test_00212247.jpg +Places365_test_00212284.jpg +Places365_test_00212304.jpg +Places365_test_00212305.jpg +Places365_test_00212318.jpg +Places365_test_00212328.jpg +Places365_test_00212335.jpg +Places365_test_00212370.jpg +Places365_test_00212376.jpg +Places365_test_00212378.jpg +Places365_test_00212392.jpg +Places365_test_00212430.jpg +Places365_test_00212432.jpg +Places365_test_00212444.jpg +Places365_test_00212452.jpg +Places365_test_00212456.jpg +Places365_test_00212459.jpg +Places365_test_00212470.jpg +Places365_test_00212477.jpg +Places365_test_00212504.jpg +Places365_test_00212523.jpg +Places365_test_00212541.jpg +Places365_test_00212549.jpg +Places365_test_00212562.jpg +Places365_test_00212587.jpg +Places365_test_00212591.jpg +Places365_test_00212592.jpg +Places365_test_00212599.jpg +Places365_test_00212631.jpg +Places365_test_00212638.jpg +Places365_test_00212647.jpg +Places365_test_00212665.jpg +Places365_test_00212668.jpg +Places365_test_00212708.jpg +Places365_test_00212716.jpg +Places365_test_00212721.jpg +Places365_test_00212723.jpg +Places365_test_00212748.jpg +Places365_test_00212781.jpg +Places365_test_00212818.jpg +Places365_test_00212821.jpg +Places365_test_00212833.jpg +Places365_test_00212836.jpg +Places365_test_00212844.jpg +Places365_test_00212847.jpg +Places365_test_00212849.jpg +Places365_test_00212852.jpg +Places365_test_00212863.jpg +Places365_test_00212869.jpg +Places365_test_00212876.jpg +Places365_test_00212879.jpg +Places365_test_00212886.jpg +Places365_test_00212893.jpg +Places365_test_00212913.jpg +Places365_test_00212922.jpg +Places365_test_00212927.jpg +Places365_test_00212955.jpg +Places365_test_00212956.jpg +Places365_test_00212959.jpg +Places365_test_00212977.jpg +Places365_test_00212982.jpg +Places365_test_00212998.jpg +Places365_test_00213018.jpg +Places365_test_00213049.jpg +Places365_test_00213052.jpg +Places365_test_00213057.jpg +Places365_test_00213080.jpg +Places365_test_00213085.jpg +Places365_test_00213098.jpg +Places365_test_00213109.jpg +Places365_test_00213115.jpg +Places365_test_00213122.jpg +Places365_test_00213134.jpg +Places365_test_00213150.jpg +Places365_test_00213154.jpg +Places365_test_00213157.jpg +Places365_test_00213165.jpg +Places365_test_00213179.jpg +Places365_test_00213185.jpg +Places365_test_00213186.jpg +Places365_test_00213193.jpg +Places365_test_00213204.jpg +Places365_test_00213215.jpg +Places365_test_00213223.jpg +Places365_test_00213224.jpg +Places365_test_00213229.jpg +Places365_test_00213253.jpg +Places365_test_00213266.jpg +Places365_test_00213269.jpg +Places365_test_00213282.jpg +Places365_test_00213283.jpg +Places365_test_00213305.jpg +Places365_test_00213380.jpg +Places365_test_00213384.jpg +Places365_test_00213393.jpg +Places365_test_00213394.jpg +Places365_test_00213408.jpg +Places365_test_00213409.jpg +Places365_test_00213416.jpg +Places365_test_00213420.jpg +Places365_test_00213425.jpg +Places365_test_00213433.jpg +Places365_test_00213451.jpg +Places365_test_00213478.jpg +Places365_test_00213490.jpg +Places365_test_00213509.jpg +Places365_test_00213517.jpg +Places365_test_00213534.jpg +Places365_test_00213545.jpg +Places365_test_00213558.jpg +Places365_test_00213562.jpg +Places365_test_00213580.jpg +Places365_test_00213591.jpg +Places365_test_00213596.jpg +Places365_test_00213600.jpg +Places365_test_00213613.jpg +Places365_test_00213614.jpg +Places365_test_00213615.jpg +Places365_test_00213626.jpg +Places365_test_00213664.jpg +Places365_test_00213666.jpg +Places365_test_00213678.jpg +Places365_test_00213685.jpg +Places365_test_00213694.jpg +Places365_test_00213715.jpg +Places365_test_00213721.jpg +Places365_test_00213727.jpg +Places365_test_00213741.jpg +Places365_test_00213746.jpg +Places365_test_00213748.jpg +Places365_test_00213752.jpg +Places365_test_00213757.jpg +Places365_test_00213770.jpg +Places365_test_00213792.jpg +Places365_test_00213832.jpg +Places365_test_00213859.jpg +Places365_test_00213863.jpg +Places365_test_00213868.jpg +Places365_test_00213877.jpg +Places365_test_00213883.jpg +Places365_test_00213888.jpg +Places365_test_00213892.jpg +Places365_test_00213899.jpg +Places365_test_00213918.jpg +Places365_test_00213955.jpg +Places365_test_00213968.jpg +Places365_test_00213980.jpg +Places365_test_00213990.jpg +Places365_test_00214026.jpg +Places365_test_00214054.jpg +Places365_test_00214058.jpg +Places365_test_00214060.jpg +Places365_test_00214069.jpg +Places365_test_00214072.jpg +Places365_test_00214111.jpg +Places365_test_00214121.jpg +Places365_test_00214123.jpg +Places365_test_00214127.jpg +Places365_test_00214134.jpg +Places365_test_00214153.jpg +Places365_test_00214156.jpg +Places365_test_00214182.jpg +Places365_test_00214192.jpg +Places365_test_00214196.jpg +Places365_test_00214205.jpg +Places365_test_00214206.jpg +Places365_test_00214211.jpg +Places365_test_00214222.jpg +Places365_test_00214224.jpg +Places365_test_00214225.jpg +Places365_test_00214229.jpg +Places365_test_00214236.jpg +Places365_test_00214245.jpg +Places365_test_00214267.jpg +Places365_test_00214282.jpg +Places365_test_00214289.jpg +Places365_test_00214294.jpg +Places365_test_00214319.jpg +Places365_test_00214325.jpg +Places365_test_00214327.jpg +Places365_test_00214328.jpg +Places365_test_00214329.jpg +Places365_test_00214335.jpg +Places365_test_00214345.jpg +Places365_test_00214367.jpg +Places365_test_00214370.jpg +Places365_test_00214371.jpg +Places365_test_00214372.jpg +Places365_test_00214379.jpg +Places365_test_00214399.jpg +Places365_test_00214404.jpg +Places365_test_00214412.jpg +Places365_test_00214426.jpg +Places365_test_00214438.jpg +Places365_test_00214459.jpg +Places365_test_00214468.jpg +Places365_test_00214474.jpg +Places365_test_00214476.jpg +Places365_test_00214485.jpg +Places365_test_00214500.jpg +Places365_test_00214505.jpg +Places365_test_00214507.jpg +Places365_test_00214516.jpg +Places365_test_00214534.jpg +Places365_test_00214539.jpg +Places365_test_00214543.jpg +Places365_test_00214563.jpg +Places365_test_00214564.jpg +Places365_test_00214574.jpg +Places365_test_00214582.jpg +Places365_test_00214595.jpg +Places365_test_00214616.jpg +Places365_test_00214617.jpg +Places365_test_00214618.jpg +Places365_test_00214619.jpg +Places365_test_00214625.jpg +Places365_test_00214640.jpg +Places365_test_00214688.jpg +Places365_test_00214712.jpg +Places365_test_00214720.jpg +Places365_test_00214724.jpg +Places365_test_00214726.jpg +Places365_test_00214747.jpg +Places365_test_00214774.jpg +Places365_test_00214800.jpg +Places365_test_00214801.jpg +Places365_test_00214835.jpg +Places365_test_00214857.jpg +Places365_test_00214869.jpg +Places365_test_00214876.jpg +Places365_test_00214879.jpg +Places365_test_00214889.jpg +Places365_test_00214951.jpg +Places365_test_00214968.jpg +Places365_test_00214972.jpg +Places365_test_00214977.jpg +Places365_test_00214990.jpg +Places365_test_00215000.jpg +Places365_test_00215011.jpg +Places365_test_00215013.jpg +Places365_test_00215014.jpg +Places365_test_00215037.jpg +Places365_test_00215042.jpg +Places365_test_00215050.jpg +Places365_test_00215105.jpg +Places365_test_00215109.jpg +Places365_test_00215126.jpg +Places365_test_00215132.jpg +Places365_test_00215141.jpg +Places365_test_00215142.jpg +Places365_test_00215143.jpg +Places365_test_00215161.jpg +Places365_test_00215183.jpg +Places365_test_00215191.jpg +Places365_test_00215201.jpg +Places365_test_00215221.jpg +Places365_test_00215225.jpg +Places365_test_00215227.jpg +Places365_test_00215235.jpg +Places365_test_00215258.jpg +Places365_test_00215268.jpg +Places365_test_00215269.jpg +Places365_test_00215289.jpg +Places365_test_00215291.jpg +Places365_test_00215305.jpg +Places365_test_00215312.jpg +Places365_test_00215331.jpg +Places365_test_00215339.jpg +Places365_test_00215341.jpg +Places365_test_00215343.jpg +Places365_test_00215347.jpg +Places365_test_00215367.jpg +Places365_test_00215371.jpg +Places365_test_00215379.jpg +Places365_test_00215398.jpg +Places365_test_00215400.jpg +Places365_test_00215401.jpg +Places365_test_00215404.jpg +Places365_test_00215416.jpg +Places365_test_00215455.jpg +Places365_test_00215456.jpg +Places365_test_00215469.jpg +Places365_test_00215481.jpg +Places365_test_00215482.jpg +Places365_test_00215501.jpg +Places365_test_00215514.jpg +Places365_test_00215526.jpg +Places365_test_00215528.jpg +Places365_test_00215539.jpg +Places365_test_00215547.jpg +Places365_test_00215559.jpg +Places365_test_00215560.jpg +Places365_test_00215581.jpg +Places365_test_00215586.jpg +Places365_test_00215606.jpg +Places365_test_00215615.jpg +Places365_test_00215617.jpg +Places365_test_00215623.jpg +Places365_test_00215638.jpg +Places365_test_00215659.jpg +Places365_test_00215672.jpg +Places365_test_00215677.jpg +Places365_test_00215701.jpg +Places365_test_00215722.jpg +Places365_test_00215724.jpg +Places365_test_00215741.jpg +Places365_test_00215754.jpg +Places365_test_00215767.jpg +Places365_test_00215772.jpg +Places365_test_00215798.jpg +Places365_test_00215801.jpg +Places365_test_00215822.jpg +Places365_test_00215825.jpg +Places365_test_00215844.jpg +Places365_test_00215851.jpg +Places365_test_00215852.jpg +Places365_test_00215858.jpg +Places365_test_00215860.jpg +Places365_test_00215872.jpg +Places365_test_00215873.jpg +Places365_test_00215878.jpg +Places365_test_00215879.jpg +Places365_test_00215885.jpg +Places365_test_00215895.jpg +Places365_test_00215901.jpg +Places365_test_00215926.jpg +Places365_test_00215928.jpg +Places365_test_00215962.jpg +Places365_test_00215965.jpg +Places365_test_00215969.jpg +Places365_test_00215978.jpg +Places365_test_00215994.jpg +Places365_test_00215997.jpg +Places365_test_00215998.jpg +Places365_test_00215999.jpg +Places365_test_00216012.jpg +Places365_test_00216017.jpg +Places365_test_00216024.jpg +Places365_test_00216031.jpg +Places365_test_00216059.jpg +Places365_test_00216080.jpg +Places365_test_00216100.jpg +Places365_test_00216148.jpg +Places365_test_00216151.jpg +Places365_test_00216153.jpg +Places365_test_00216158.jpg +Places365_test_00216165.jpg +Places365_test_00216167.jpg +Places365_test_00216168.jpg +Places365_test_00216181.jpg +Places365_test_00216193.jpg +Places365_test_00216194.jpg +Places365_test_00216215.jpg +Places365_test_00216250.jpg +Places365_test_00216260.jpg +Places365_test_00216262.jpg +Places365_test_00216265.jpg +Places365_test_00216272.jpg +Places365_test_00216276.jpg +Places365_test_00216279.jpg +Places365_test_00216293.jpg +Places365_test_00216294.jpg +Places365_test_00216302.jpg +Places365_test_00216327.jpg +Places365_test_00216331.jpg +Places365_test_00216338.jpg +Places365_test_00216340.jpg +Places365_test_00216341.jpg +Places365_test_00216344.jpg +Places365_test_00216351.jpg +Places365_test_00216371.jpg +Places365_test_00216377.jpg +Places365_test_00216392.jpg +Places365_test_00216395.jpg +Places365_test_00216399.jpg +Places365_test_00216409.jpg +Places365_test_00216412.jpg +Places365_test_00216426.jpg +Places365_test_00216442.jpg +Places365_test_00216446.jpg +Places365_test_00216484.jpg +Places365_test_00216497.jpg +Places365_test_00216500.jpg +Places365_test_00216523.jpg +Places365_test_00216535.jpg +Places365_test_00216538.jpg +Places365_test_00216546.jpg +Places365_test_00216547.jpg +Places365_test_00216558.jpg +Places365_test_00216567.jpg +Places365_test_00216600.jpg +Places365_test_00216611.jpg +Places365_test_00216625.jpg +Places365_test_00216626.jpg +Places365_test_00216637.jpg +Places365_test_00216693.jpg +Places365_test_00216714.jpg +Places365_test_00216727.jpg +Places365_test_00216733.jpg +Places365_test_00216740.jpg +Places365_test_00216744.jpg +Places365_test_00216754.jpg +Places365_test_00216755.jpg +Places365_test_00216757.jpg +Places365_test_00216764.jpg +Places365_test_00216772.jpg +Places365_test_00216784.jpg +Places365_test_00216791.jpg +Places365_test_00216803.jpg +Places365_test_00216807.jpg +Places365_test_00216820.jpg +Places365_test_00216861.jpg +Places365_test_00216863.jpg +Places365_test_00216864.jpg +Places365_test_00216876.jpg +Places365_test_00216897.jpg +Places365_test_00216913.jpg +Places365_test_00216915.jpg +Places365_test_00216919.jpg +Places365_test_00216921.jpg +Places365_test_00216929.jpg +Places365_test_00216945.jpg +Places365_test_00216953.jpg +Places365_test_00216954.jpg +Places365_test_00216969.jpg +Places365_test_00216974.jpg +Places365_test_00216977.jpg +Places365_test_00216978.jpg +Places365_test_00216992.jpg +Places365_test_00216998.jpg +Places365_test_00217032.jpg +Places365_test_00217069.jpg +Places365_test_00217087.jpg +Places365_test_00217092.jpg +Places365_test_00217095.jpg +Places365_test_00217098.jpg +Places365_test_00217166.jpg +Places365_test_00217184.jpg +Places365_test_00217190.jpg +Places365_test_00217191.jpg +Places365_test_00217196.jpg +Places365_test_00217207.jpg +Places365_test_00217208.jpg +Places365_test_00217220.jpg +Places365_test_00217223.jpg +Places365_test_00217259.jpg +Places365_test_00217265.jpg +Places365_test_00217267.jpg +Places365_test_00217275.jpg +Places365_test_00217277.jpg +Places365_test_00217281.jpg +Places365_test_00217309.jpg +Places365_test_00217326.jpg +Places365_test_00217336.jpg +Places365_test_00217360.jpg +Places365_test_00217380.jpg +Places365_test_00217388.jpg +Places365_test_00217391.jpg +Places365_test_00217392.jpg +Places365_test_00217416.jpg +Places365_test_00217422.jpg +Places365_test_00217445.jpg +Places365_test_00217452.jpg +Places365_test_00217457.jpg +Places365_test_00217460.jpg +Places365_test_00217464.jpg +Places365_test_00217465.jpg +Places365_test_00217471.jpg +Places365_test_00217517.jpg +Places365_test_00217533.jpg +Places365_test_00217539.jpg +Places365_test_00217552.jpg +Places365_test_00217558.jpg +Places365_test_00217590.jpg +Places365_test_00217593.jpg +Places365_test_00217611.jpg +Places365_test_00217614.jpg +Places365_test_00217630.jpg +Places365_test_00217631.jpg +Places365_test_00217633.jpg +Places365_test_00217653.jpg +Places365_test_00217658.jpg +Places365_test_00217661.jpg +Places365_test_00217668.jpg +Places365_test_00217681.jpg +Places365_test_00217686.jpg +Places365_test_00217692.jpg +Places365_test_00217700.jpg +Places365_test_00217703.jpg +Places365_test_00217705.jpg +Places365_test_00217720.jpg +Places365_test_00217747.jpg +Places365_test_00217759.jpg +Places365_test_00217760.jpg +Places365_test_00217788.jpg +Places365_test_00217811.jpg +Places365_test_00217819.jpg +Places365_test_00217828.jpg +Places365_test_00217835.jpg +Places365_test_00217842.jpg +Places365_test_00217847.jpg +Places365_test_00217858.jpg +Places365_test_00217867.jpg +Places365_test_00217873.jpg +Places365_test_00217888.jpg +Places365_test_00217909.jpg +Places365_test_00217910.jpg +Places365_test_00217933.jpg +Places365_test_00217988.jpg +Places365_test_00218004.jpg +Places365_test_00218018.jpg +Places365_test_00218029.jpg +Places365_test_00218076.jpg +Places365_test_00218084.jpg +Places365_test_00218086.jpg +Places365_test_00218102.jpg +Places365_test_00218105.jpg +Places365_test_00218126.jpg +Places365_test_00218129.jpg +Places365_test_00218130.jpg +Places365_test_00218152.jpg +Places365_test_00218189.jpg +Places365_test_00218201.jpg +Places365_test_00218241.jpg +Places365_test_00218250.jpg +Places365_test_00218261.jpg +Places365_test_00218271.jpg +Places365_test_00218275.jpg +Places365_test_00218287.jpg +Places365_test_00218292.jpg +Places365_test_00218310.jpg +Places365_test_00218351.jpg +Places365_test_00218356.jpg +Places365_test_00218380.jpg +Places365_test_00218387.jpg +Places365_test_00218392.jpg +Places365_test_00218402.jpg +Places365_test_00218412.jpg +Places365_test_00218413.jpg +Places365_test_00218433.jpg +Places365_test_00218436.jpg +Places365_test_00218438.jpg +Places365_test_00218442.jpg +Places365_test_00218447.jpg +Places365_test_00218457.jpg +Places365_test_00218460.jpg +Places365_test_00218461.jpg +Places365_test_00218465.jpg +Places365_test_00218482.jpg +Places365_test_00218500.jpg +Places365_test_00218510.jpg +Places365_test_00218515.jpg +Places365_test_00218526.jpg +Places365_test_00218544.jpg +Places365_test_00218548.jpg +Places365_test_00218560.jpg +Places365_test_00218564.jpg +Places365_test_00218584.jpg +Places365_test_00218596.jpg +Places365_test_00218606.jpg +Places365_test_00218607.jpg +Places365_test_00218610.jpg +Places365_test_00218616.jpg +Places365_test_00218620.jpg +Places365_test_00218625.jpg +Places365_test_00218626.jpg +Places365_test_00218631.jpg +Places365_test_00218632.jpg +Places365_test_00218637.jpg +Places365_test_00218662.jpg +Places365_test_00218672.jpg +Places365_test_00218676.jpg +Places365_test_00218677.jpg +Places365_test_00218683.jpg +Places365_test_00218703.jpg +Places365_test_00218714.jpg +Places365_test_00218733.jpg +Places365_test_00218756.jpg +Places365_test_00218774.jpg +Places365_test_00218779.jpg +Places365_test_00218781.jpg +Places365_test_00218787.jpg +Places365_test_00218799.jpg +Places365_test_00218808.jpg +Places365_test_00218809.jpg +Places365_test_00218810.jpg +Places365_test_00218815.jpg +Places365_test_00218820.jpg +Places365_test_00218825.jpg +Places365_test_00218826.jpg +Places365_test_00218829.jpg +Places365_test_00218830.jpg +Places365_test_00218842.jpg +Places365_test_00218851.jpg +Places365_test_00218855.jpg +Places365_test_00218857.jpg +Places365_test_00218859.jpg +Places365_test_00218887.jpg +Places365_test_00218897.jpg +Places365_test_00218909.jpg +Places365_test_00218943.jpg +Places365_test_00218947.jpg +Places365_test_00218970.jpg +Places365_test_00218972.jpg +Places365_test_00218980.jpg +Places365_test_00218984.jpg +Places365_test_00218997.jpg +Places365_test_00219001.jpg +Places365_test_00219004.jpg +Places365_test_00219014.jpg +Places365_test_00219020.jpg +Places365_test_00219044.jpg +Places365_test_00219073.jpg +Places365_test_00219111.jpg +Places365_test_00219112.jpg +Places365_test_00219115.jpg +Places365_test_00219116.jpg +Places365_test_00219122.jpg +Places365_test_00219139.jpg +Places365_test_00219142.jpg +Places365_test_00219152.jpg +Places365_test_00219163.jpg +Places365_test_00219164.jpg +Places365_test_00219170.jpg +Places365_test_00219185.jpg +Places365_test_00219219.jpg +Places365_test_00219225.jpg +Places365_test_00219231.jpg +Places365_test_00219236.jpg +Places365_test_00219237.jpg +Places365_test_00219243.jpg +Places365_test_00219244.jpg +Places365_test_00219247.jpg +Places365_test_00219266.jpg +Places365_test_00219275.jpg +Places365_test_00219292.jpg +Places365_test_00219295.jpg +Places365_test_00219296.jpg +Places365_test_00219359.jpg +Places365_test_00219378.jpg +Places365_test_00219380.jpg +Places365_test_00219396.jpg +Places365_test_00219405.jpg +Places365_test_00219420.jpg +Places365_test_00219426.jpg +Places365_test_00219432.jpg +Places365_test_00219461.jpg +Places365_test_00219489.jpg +Places365_test_00219495.jpg +Places365_test_00219505.jpg +Places365_test_00219511.jpg +Places365_test_00219521.jpg +Places365_test_00219527.jpg +Places365_test_00219539.jpg +Places365_test_00219551.jpg +Places365_test_00219561.jpg +Places365_test_00219574.jpg +Places365_test_00219615.jpg +Places365_test_00219638.jpg +Places365_test_00219678.jpg +Places365_test_00219679.jpg +Places365_test_00219680.jpg +Places365_test_00219688.jpg +Places365_test_00219694.jpg +Places365_test_00219699.jpg +Places365_test_00219701.jpg +Places365_test_00219703.jpg +Places365_test_00219704.jpg +Places365_test_00219709.jpg +Places365_test_00219726.jpg +Places365_test_00219740.jpg +Places365_test_00219752.jpg +Places365_test_00219756.jpg +Places365_test_00219762.jpg +Places365_test_00219774.jpg +Places365_test_00219776.jpg +Places365_test_00219779.jpg +Places365_test_00219796.jpg +Places365_test_00219807.jpg +Places365_test_00219809.jpg +Places365_test_00219825.jpg +Places365_test_00219837.jpg +Places365_test_00219850.jpg +Places365_test_00219861.jpg +Places365_test_00219866.jpg +Places365_test_00219889.jpg +Places365_test_00219890.jpg +Places365_test_00219891.jpg +Places365_test_00219895.jpg +Places365_test_00219901.jpg +Places365_test_00219904.jpg +Places365_test_00219937.jpg +Places365_test_00219962.jpg +Places365_test_00219964.jpg +Places365_test_00219965.jpg +Places365_test_00219969.jpg +Places365_test_00219971.jpg +Places365_test_00219986.jpg +Places365_test_00219990.jpg +Places365_test_00220004.jpg +Places365_test_00220006.jpg +Places365_test_00220010.jpg +Places365_test_00220011.jpg +Places365_test_00220025.jpg +Places365_test_00220030.jpg +Places365_test_00220042.jpg +Places365_test_00220046.jpg +Places365_test_00220049.jpg +Places365_test_00220053.jpg +Places365_test_00220058.jpg +Places365_test_00220108.jpg +Places365_test_00220111.jpg +Places365_test_00220116.jpg +Places365_test_00220126.jpg +Places365_test_00220142.jpg +Places365_test_00220146.jpg +Places365_test_00220152.jpg +Places365_test_00220160.jpg +Places365_test_00220184.jpg +Places365_test_00220194.jpg +Places365_test_00220200.jpg +Places365_test_00220211.jpg +Places365_test_00220234.jpg +Places365_test_00220245.jpg +Places365_test_00220247.jpg +Places365_test_00220279.jpg +Places365_test_00220295.jpg +Places365_test_00220299.jpg +Places365_test_00220303.jpg +Places365_test_00220313.jpg +Places365_test_00220315.jpg +Places365_test_00220317.jpg +Places365_test_00220318.jpg +Places365_test_00220319.jpg +Places365_test_00220336.jpg +Places365_test_00220339.jpg +Places365_test_00220347.jpg +Places365_test_00220358.jpg +Places365_test_00220378.jpg +Places365_test_00220380.jpg +Places365_test_00220382.jpg +Places365_test_00220384.jpg +Places365_test_00220406.jpg +Places365_test_00220409.jpg +Places365_test_00220411.jpg +Places365_test_00220418.jpg +Places365_test_00220424.jpg +Places365_test_00220438.jpg +Places365_test_00220452.jpg +Places365_test_00220484.jpg +Places365_test_00220486.jpg +Places365_test_00220490.jpg +Places365_test_00220500.jpg +Places365_test_00220502.jpg +Places365_test_00220508.jpg +Places365_test_00220512.jpg +Places365_test_00220516.jpg +Places365_test_00220527.jpg +Places365_test_00220569.jpg +Places365_test_00220573.jpg +Places365_test_00220574.jpg +Places365_test_00220591.jpg +Places365_test_00220594.jpg +Places365_test_00220595.jpg +Places365_test_00220604.jpg +Places365_test_00220625.jpg +Places365_test_00220643.jpg +Places365_test_00220644.jpg +Places365_test_00220658.jpg +Places365_test_00220683.jpg +Places365_test_00220687.jpg +Places365_test_00220697.jpg +Places365_test_00220699.jpg +Places365_test_00220733.jpg +Places365_test_00220741.jpg +Places365_test_00220745.jpg +Places365_test_00220773.jpg +Places365_test_00220781.jpg +Places365_test_00220788.jpg +Places365_test_00220791.jpg +Places365_test_00220795.jpg +Places365_test_00220796.jpg +Places365_test_00220800.jpg +Places365_test_00220801.jpg +Places365_test_00220812.jpg +Places365_test_00220821.jpg +Places365_test_00220824.jpg +Places365_test_00220825.jpg +Places365_test_00220827.jpg +Places365_test_00220846.jpg +Places365_test_00220855.jpg +Places365_test_00220857.jpg +Places365_test_00220864.jpg +Places365_test_00220879.jpg +Places365_test_00220890.jpg +Places365_test_00220907.jpg +Places365_test_00220921.jpg +Places365_test_00220930.jpg +Places365_test_00220949.jpg +Places365_test_00220970.jpg +Places365_test_00220977.jpg +Places365_test_00220992.jpg +Places365_test_00221015.jpg +Places365_test_00221016.jpg +Places365_test_00221019.jpg +Places365_test_00221021.jpg +Places365_test_00221030.jpg +Places365_test_00221046.jpg +Places365_test_00221065.jpg +Places365_test_00221091.jpg +Places365_test_00221099.jpg +Places365_test_00221107.jpg +Places365_test_00221117.jpg +Places365_test_00221126.jpg +Places365_test_00221131.jpg +Places365_test_00221148.jpg +Places365_test_00221151.jpg +Places365_test_00221163.jpg +Places365_test_00221176.jpg +Places365_test_00221181.jpg +Places365_test_00221204.jpg +Places365_test_00221214.jpg +Places365_test_00221230.jpg +Places365_test_00221236.jpg +Places365_test_00221239.jpg +Places365_test_00221252.jpg +Places365_test_00221259.jpg +Places365_test_00221265.jpg +Places365_test_00221273.jpg +Places365_test_00221278.jpg +Places365_test_00221279.jpg +Places365_test_00221296.jpg +Places365_test_00221310.jpg +Places365_test_00221324.jpg +Places365_test_00221347.jpg +Places365_test_00221348.jpg +Places365_test_00221353.jpg +Places365_test_00221364.jpg +Places365_test_00221367.jpg +Places365_test_00221370.jpg +Places365_test_00221397.jpg +Places365_test_00221404.jpg +Places365_test_00221411.jpg +Places365_test_00221412.jpg +Places365_test_00221435.jpg +Places365_test_00221460.jpg +Places365_test_00221468.jpg +Places365_test_00221470.jpg +Places365_test_00221484.jpg +Places365_test_00221509.jpg +Places365_test_00221510.jpg +Places365_test_00221520.jpg +Places365_test_00221532.jpg +Places365_test_00221544.jpg +Places365_test_00221551.jpg +Places365_test_00221552.jpg +Places365_test_00221568.jpg +Places365_test_00221571.jpg +Places365_test_00221575.jpg +Places365_test_00221586.jpg +Places365_test_00221594.jpg +Places365_test_00221610.jpg +Places365_test_00221620.jpg +Places365_test_00221627.jpg +Places365_test_00221648.jpg +Places365_test_00221652.jpg +Places365_test_00221663.jpg +Places365_test_00221725.jpg +Places365_test_00221738.jpg +Places365_test_00221757.jpg +Places365_test_00221780.jpg +Places365_test_00221785.jpg +Places365_test_00221787.jpg +Places365_test_00221805.jpg +Places365_test_00221812.jpg +Places365_test_00221839.jpg +Places365_test_00221842.jpg +Places365_test_00221860.jpg +Places365_test_00221868.jpg +Places365_test_00221875.jpg +Places365_test_00221876.jpg +Places365_test_00221894.jpg +Places365_test_00221897.jpg +Places365_test_00221905.jpg +Places365_test_00221912.jpg +Places365_test_00221938.jpg +Places365_test_00221957.jpg +Places365_test_00221960.jpg +Places365_test_00221968.jpg +Places365_test_00221971.jpg +Places365_test_00221982.jpg +Places365_test_00221994.jpg +Places365_test_00221995.jpg +Places365_test_00222008.jpg +Places365_test_00222016.jpg +Places365_test_00222018.jpg +Places365_test_00222036.jpg +Places365_test_00222049.jpg +Places365_test_00222060.jpg +Places365_test_00222061.jpg +Places365_test_00222083.jpg +Places365_test_00222094.jpg +Places365_test_00222099.jpg +Places365_test_00222108.jpg +Places365_test_00222110.jpg +Places365_test_00222120.jpg +Places365_test_00222136.jpg +Places365_test_00222140.jpg +Places365_test_00222151.jpg +Places365_test_00222155.jpg +Places365_test_00222183.jpg +Places365_test_00222194.jpg +Places365_test_00222197.jpg +Places365_test_00222206.jpg +Places365_test_00222209.jpg +Places365_test_00222212.jpg +Places365_test_00222214.jpg +Places365_test_00222239.jpg +Places365_test_00222261.jpg +Places365_test_00222265.jpg +Places365_test_00222267.jpg +Places365_test_00222269.jpg +Places365_test_00222271.jpg +Places365_test_00222275.jpg +Places365_test_00222284.jpg +Places365_test_00222298.jpg +Places365_test_00222312.jpg +Places365_test_00222330.jpg +Places365_test_00222351.jpg +Places365_test_00222376.jpg +Places365_test_00222415.jpg +Places365_test_00222417.jpg +Places365_test_00222419.jpg +Places365_test_00222428.jpg +Places365_test_00222439.jpg +Places365_test_00222444.jpg +Places365_test_00222448.jpg +Places365_test_00222463.jpg +Places365_test_00222470.jpg +Places365_test_00222472.jpg +Places365_test_00222475.jpg +Places365_test_00222479.jpg +Places365_test_00222485.jpg +Places365_test_00222499.jpg +Places365_test_00222500.jpg +Places365_test_00222510.jpg +Places365_test_00222512.jpg +Places365_test_00222513.jpg +Places365_test_00222529.jpg +Places365_test_00222531.jpg +Places365_test_00222538.jpg +Places365_test_00222552.jpg +Places365_test_00222554.jpg +Places365_test_00222562.jpg +Places365_test_00222568.jpg +Places365_test_00222572.jpg +Places365_test_00222598.jpg +Places365_test_00222608.jpg +Places365_test_00222613.jpg +Places365_test_00222623.jpg +Places365_test_00222638.jpg +Places365_test_00222646.jpg +Places365_test_00222669.jpg +Places365_test_00222698.jpg +Places365_test_00222716.jpg +Places365_test_00222724.jpg +Places365_test_00222748.jpg +Places365_test_00222770.jpg +Places365_test_00222780.jpg +Places365_test_00222803.jpg +Places365_test_00222811.jpg +Places365_test_00222819.jpg +Places365_test_00222820.jpg +Places365_test_00222839.jpg +Places365_test_00222844.jpg +Places365_test_00222847.jpg +Places365_test_00222849.jpg +Places365_test_00222853.jpg +Places365_test_00222854.jpg +Places365_test_00222868.jpg +Places365_test_00222878.jpg +Places365_test_00222884.jpg +Places365_test_00222904.jpg +Places365_test_00222952.jpg +Places365_test_00222961.jpg +Places365_test_00222962.jpg +Places365_test_00222969.jpg +Places365_test_00222982.jpg +Places365_test_00222988.jpg +Places365_test_00222997.jpg +Places365_test_00223007.jpg +Places365_test_00223012.jpg +Places365_test_00223014.jpg +Places365_test_00223019.jpg +Places365_test_00223021.jpg +Places365_test_00223029.jpg +Places365_test_00223032.jpg +Places365_test_00223035.jpg +Places365_test_00223037.jpg +Places365_test_00223048.jpg +Places365_test_00223051.jpg +Places365_test_00223052.jpg +Places365_test_00223054.jpg +Places365_test_00223065.jpg +Places365_test_00223066.jpg +Places365_test_00223072.jpg +Places365_test_00223073.jpg +Places365_test_00223080.jpg +Places365_test_00223090.jpg +Places365_test_00223110.jpg +Places365_test_00223123.jpg +Places365_test_00223126.jpg +Places365_test_00223140.jpg +Places365_test_00223153.jpg +Places365_test_00223160.jpg +Places365_test_00223176.jpg +Places365_test_00223190.jpg +Places365_test_00223195.jpg +Places365_test_00223199.jpg +Places365_test_00223205.jpg +Places365_test_00223206.jpg +Places365_test_00223208.jpg +Places365_test_00223210.jpg +Places365_test_00223213.jpg +Places365_test_00223220.jpg +Places365_test_00223250.jpg +Places365_test_00223283.jpg +Places365_test_00223299.jpg +Places365_test_00223308.jpg +Places365_test_00223309.jpg +Places365_test_00223326.jpg +Places365_test_00223328.jpg +Places365_test_00223331.jpg +Places365_test_00223336.jpg +Places365_test_00223338.jpg +Places365_test_00223344.jpg +Places365_test_00223362.jpg +Places365_test_00223364.jpg +Places365_test_00223369.jpg +Places365_test_00223370.jpg +Places365_test_00223416.jpg +Places365_test_00223422.jpg +Places365_test_00223438.jpg +Places365_test_00223445.jpg +Places365_test_00223450.jpg +Places365_test_00223458.jpg +Places365_test_00223460.jpg +Places365_test_00223480.jpg +Places365_test_00223506.jpg +Places365_test_00223507.jpg +Places365_test_00223509.jpg +Places365_test_00223511.jpg +Places365_test_00223518.jpg +Places365_test_00223525.jpg +Places365_test_00223543.jpg +Places365_test_00223549.jpg +Places365_test_00223560.jpg +Places365_test_00223585.jpg +Places365_test_00223596.jpg +Places365_test_00223597.jpg +Places365_test_00223625.jpg +Places365_test_00223636.jpg +Places365_test_00223663.jpg +Places365_test_00223666.jpg +Places365_test_00223684.jpg +Places365_test_00223693.jpg +Places365_test_00223697.jpg +Places365_test_00223700.jpg +Places365_test_00223709.jpg +Places365_test_00223711.jpg +Places365_test_00223715.jpg +Places365_test_00223719.jpg +Places365_test_00223734.jpg +Places365_test_00223745.jpg +Places365_test_00223747.jpg +Places365_test_00223754.jpg +Places365_test_00223758.jpg +Places365_test_00223759.jpg +Places365_test_00223762.jpg +Places365_test_00223768.jpg +Places365_test_00223772.jpg +Places365_test_00223782.jpg +Places365_test_00223808.jpg +Places365_test_00223822.jpg +Places365_test_00223829.jpg +Places365_test_00223849.jpg +Places365_test_00223850.jpg +Places365_test_00223854.jpg +Places365_test_00223860.jpg +Places365_test_00223864.jpg +Places365_test_00223872.jpg +Places365_test_00223891.jpg +Places365_test_00223914.jpg +Places365_test_00223928.jpg +Places365_test_00223940.jpg +Places365_test_00223945.jpg +Places365_test_00223972.jpg +Places365_test_00223980.jpg +Places365_test_00223983.jpg +Places365_test_00223989.jpg +Places365_test_00224005.jpg +Places365_test_00224021.jpg +Places365_test_00224031.jpg +Places365_test_00224033.jpg +Places365_test_00224047.jpg +Places365_test_00224048.jpg +Places365_test_00224054.jpg +Places365_test_00224057.jpg +Places365_test_00224060.jpg +Places365_test_00224065.jpg +Places365_test_00224071.jpg +Places365_test_00224074.jpg +Places365_test_00224078.jpg +Places365_test_00224095.jpg +Places365_test_00224104.jpg +Places365_test_00224105.jpg +Places365_test_00224118.jpg +Places365_test_00224122.jpg +Places365_test_00224127.jpg +Places365_test_00224129.jpg +Places365_test_00224134.jpg +Places365_test_00224150.jpg +Places365_test_00224156.jpg +Places365_test_00224158.jpg +Places365_test_00224167.jpg +Places365_test_00224191.jpg +Places365_test_00224195.jpg +Places365_test_00224201.jpg +Places365_test_00224209.jpg +Places365_test_00224281.jpg +Places365_test_00224292.jpg +Places365_test_00224293.jpg +Places365_test_00224295.jpg +Places365_test_00224297.jpg +Places365_test_00224308.jpg +Places365_test_00224313.jpg +Places365_test_00224321.jpg +Places365_test_00224338.jpg +Places365_test_00224339.jpg +Places365_test_00224365.jpg +Places365_test_00224389.jpg +Places365_test_00224418.jpg +Places365_test_00224430.jpg +Places365_test_00224433.jpg +Places365_test_00224443.jpg +Places365_test_00224444.jpg +Places365_test_00224447.jpg +Places365_test_00224448.jpg +Places365_test_00224464.jpg +Places365_test_00224501.jpg +Places365_test_00224505.jpg +Places365_test_00224516.jpg +Places365_test_00224527.jpg +Places365_test_00224534.jpg +Places365_test_00224539.jpg +Places365_test_00224548.jpg +Places365_test_00224573.jpg +Places365_test_00224585.jpg +Places365_test_00224600.jpg +Places365_test_00224605.jpg +Places365_test_00224626.jpg +Places365_test_00224650.jpg +Places365_test_00224652.jpg +Places365_test_00224656.jpg +Places365_test_00224677.jpg +Places365_test_00224690.jpg +Places365_test_00224700.jpg +Places365_test_00224722.jpg +Places365_test_00224736.jpg +Places365_test_00224753.jpg +Places365_test_00224758.jpg +Places365_test_00224762.jpg +Places365_test_00224774.jpg +Places365_test_00224784.jpg +Places365_test_00224796.jpg +Places365_test_00224813.jpg +Places365_test_00224823.jpg +Places365_test_00224837.jpg +Places365_test_00224842.jpg +Places365_test_00224847.jpg +Places365_test_00224856.jpg +Places365_test_00224858.jpg +Places365_test_00224866.jpg +Places365_test_00224899.jpg +Places365_test_00224911.jpg +Places365_test_00224913.jpg +Places365_test_00224918.jpg +Places365_test_00224935.jpg +Places365_test_00224943.jpg +Places365_test_00224946.jpg +Places365_test_00224978.jpg +Places365_test_00224987.jpg +Places365_test_00225006.jpg +Places365_test_00225008.jpg +Places365_test_00225009.jpg +Places365_test_00225049.jpg +Places365_test_00225085.jpg +Places365_test_00225086.jpg +Places365_test_00225091.jpg +Places365_test_00225103.jpg +Places365_test_00225107.jpg +Places365_test_00225110.jpg +Places365_test_00225115.jpg +Places365_test_00225124.jpg +Places365_test_00225147.jpg +Places365_test_00225179.jpg +Places365_test_00225184.jpg +Places365_test_00225190.jpg +Places365_test_00225200.jpg +Places365_test_00225204.jpg +Places365_test_00225214.jpg +Places365_test_00225219.jpg +Places365_test_00225252.jpg +Places365_test_00225270.jpg +Places365_test_00225277.jpg +Places365_test_00225280.jpg +Places365_test_00225309.jpg +Places365_test_00225340.jpg +Places365_test_00225343.jpg +Places365_test_00225351.jpg +Places365_test_00225357.jpg +Places365_test_00225361.jpg +Places365_test_00225366.jpg +Places365_test_00225369.jpg +Places365_test_00225371.jpg +Places365_test_00225375.jpg +Places365_test_00225376.jpg +Places365_test_00225378.jpg +Places365_test_00225379.jpg +Places365_test_00225381.jpg +Places365_test_00225417.jpg +Places365_test_00225422.jpg +Places365_test_00225441.jpg +Places365_test_00225452.jpg +Places365_test_00225465.jpg +Places365_test_00225470.jpg +Places365_test_00225471.jpg +Places365_test_00225473.jpg +Places365_test_00225476.jpg +Places365_test_00225482.jpg +Places365_test_00225486.jpg +Places365_test_00225488.jpg +Places365_test_00225496.jpg +Places365_test_00225513.jpg +Places365_test_00225516.jpg +Places365_test_00225525.jpg +Places365_test_00225528.jpg +Places365_test_00225540.jpg +Places365_test_00225550.jpg +Places365_test_00225557.jpg +Places365_test_00225561.jpg +Places365_test_00225577.jpg +Places365_test_00225581.jpg +Places365_test_00225583.jpg +Places365_test_00225586.jpg +Places365_test_00225595.jpg +Places365_test_00225614.jpg +Places365_test_00225650.jpg +Places365_test_00225653.jpg +Places365_test_00225656.jpg +Places365_test_00225659.jpg +Places365_test_00225676.jpg +Places365_test_00225678.jpg +Places365_test_00225695.jpg +Places365_test_00225696.jpg +Places365_test_00225697.jpg +Places365_test_00225711.jpg +Places365_test_00225714.jpg +Places365_test_00225719.jpg +Places365_test_00225739.jpg +Places365_test_00225761.jpg +Places365_test_00225767.jpg +Places365_test_00225775.jpg +Places365_test_00225778.jpg +Places365_test_00225790.jpg +Places365_test_00225807.jpg +Places365_test_00225813.jpg +Places365_test_00225824.jpg +Places365_test_00225825.jpg +Places365_test_00225826.jpg +Places365_test_00225832.jpg +Places365_test_00225866.jpg +Places365_test_00225887.jpg +Places365_test_00225898.jpg +Places365_test_00225905.jpg +Places365_test_00225910.jpg +Places365_test_00225913.jpg +Places365_test_00225914.jpg +Places365_test_00225917.jpg +Places365_test_00225932.jpg +Places365_test_00225970.jpg +Places365_test_00225998.jpg +Places365_test_00226008.jpg +Places365_test_00226010.jpg +Places365_test_00226016.jpg +Places365_test_00226065.jpg +Places365_test_00226071.jpg +Places365_test_00226083.jpg +Places365_test_00226094.jpg +Places365_test_00226117.jpg +Places365_test_00226125.jpg +Places365_test_00226144.jpg +Places365_test_00226215.jpg +Places365_test_00226218.jpg +Places365_test_00226239.jpg +Places365_test_00226240.jpg +Places365_test_00226258.jpg +Places365_test_00226268.jpg +Places365_test_00226271.jpg +Places365_test_00226279.jpg +Places365_test_00226288.jpg +Places365_test_00226295.jpg +Places365_test_00226317.jpg +Places365_test_00226319.jpg +Places365_test_00226325.jpg +Places365_test_00226330.jpg +Places365_test_00226335.jpg +Places365_test_00226343.jpg +Places365_test_00226345.jpg +Places365_test_00226352.jpg +Places365_test_00226371.jpg +Places365_test_00226378.jpg +Places365_test_00226389.jpg +Places365_test_00226392.jpg +Places365_test_00226394.jpg +Places365_test_00226408.jpg +Places365_test_00226419.jpg +Places365_test_00226424.jpg +Places365_test_00226430.jpg +Places365_test_00226432.jpg +Places365_test_00226443.jpg +Places365_test_00226460.jpg +Places365_test_00226461.jpg +Places365_test_00226464.jpg +Places365_test_00226470.jpg +Places365_test_00226516.jpg +Places365_test_00226528.jpg +Places365_test_00226542.jpg +Places365_test_00226547.jpg +Places365_test_00226563.jpg +Places365_test_00226582.jpg +Places365_test_00226594.jpg +Places365_test_00226598.jpg +Places365_test_00226602.jpg +Places365_test_00226604.jpg +Places365_test_00226619.jpg +Places365_test_00226620.jpg +Places365_test_00226621.jpg +Places365_test_00226622.jpg +Places365_test_00226623.jpg +Places365_test_00226624.jpg +Places365_test_00226628.jpg +Places365_test_00226646.jpg +Places365_test_00226650.jpg +Places365_test_00226677.jpg +Places365_test_00226682.jpg +Places365_test_00226698.jpg +Places365_test_00226718.jpg +Places365_test_00226722.jpg +Places365_test_00226725.jpg +Places365_test_00226726.jpg +Places365_test_00226728.jpg +Places365_test_00226748.jpg +Places365_test_00226769.jpg +Places365_test_00226796.jpg +Places365_test_00226805.jpg +Places365_test_00226812.jpg +Places365_test_00226820.jpg +Places365_test_00226830.jpg +Places365_test_00226832.jpg +Places365_test_00226841.jpg +Places365_test_00226860.jpg +Places365_test_00226865.jpg +Places365_test_00226872.jpg +Places365_test_00226879.jpg +Places365_test_00226880.jpg +Places365_test_00226885.jpg +Places365_test_00226894.jpg +Places365_test_00226923.jpg +Places365_test_00226952.jpg +Places365_test_00226963.jpg +Places365_test_00226976.jpg +Places365_test_00226986.jpg +Places365_test_00226987.jpg +Places365_test_00226999.jpg +Places365_test_00227003.jpg +Places365_test_00227008.jpg +Places365_test_00227011.jpg +Places365_test_00227039.jpg +Places365_test_00227054.jpg +Places365_test_00227086.jpg +Places365_test_00227095.jpg +Places365_test_00227101.jpg +Places365_test_00227119.jpg +Places365_test_00227127.jpg +Places365_test_00227137.jpg +Places365_test_00227153.jpg +Places365_test_00227155.jpg +Places365_test_00227165.jpg +Places365_test_00227168.jpg +Places365_test_00227175.jpg +Places365_test_00227195.jpg +Places365_test_00227197.jpg +Places365_test_00227199.jpg +Places365_test_00227206.jpg +Places365_test_00227212.jpg +Places365_test_00227216.jpg +Places365_test_00227233.jpg +Places365_test_00227253.jpg +Places365_test_00227265.jpg +Places365_test_00227298.jpg +Places365_test_00227313.jpg +Places365_test_00227317.jpg +Places365_test_00227318.jpg +Places365_test_00227323.jpg +Places365_test_00227325.jpg +Places365_test_00227333.jpg +Places365_test_00227349.jpg +Places365_test_00227354.jpg +Places365_test_00227362.jpg +Places365_test_00227363.jpg +Places365_test_00227364.jpg +Places365_test_00227368.jpg +Places365_test_00227393.jpg +Places365_test_00227395.jpg +Places365_test_00227406.jpg +Places365_test_00227416.jpg +Places365_test_00227436.jpg +Places365_test_00227438.jpg +Places365_test_00227439.jpg +Places365_test_00227453.jpg +Places365_test_00227455.jpg +Places365_test_00227490.jpg +Places365_test_00227491.jpg +Places365_test_00227500.jpg +Places365_test_00227549.jpg +Places365_test_00227558.jpg +Places365_test_00227569.jpg +Places365_test_00227590.jpg +Places365_test_00227604.jpg +Places365_test_00227607.jpg +Places365_test_00227608.jpg +Places365_test_00227636.jpg +Places365_test_00227638.jpg +Places365_test_00227642.jpg +Places365_test_00227645.jpg +Places365_test_00227650.jpg +Places365_test_00227656.jpg +Places365_test_00227661.jpg +Places365_test_00227695.jpg +Places365_test_00227696.jpg +Places365_test_00227700.jpg +Places365_test_00227702.jpg +Places365_test_00227709.jpg +Places365_test_00227711.jpg +Places365_test_00227716.jpg +Places365_test_00227718.jpg +Places365_test_00227727.jpg +Places365_test_00227735.jpg +Places365_test_00227747.jpg +Places365_test_00227761.jpg +Places365_test_00227772.jpg +Places365_test_00227777.jpg +Places365_test_00227779.jpg +Places365_test_00227783.jpg +Places365_test_00227793.jpg +Places365_test_00227810.jpg +Places365_test_00227812.jpg +Places365_test_00227819.jpg +Places365_test_00227823.jpg +Places365_test_00227836.jpg +Places365_test_00227839.jpg +Places365_test_00227840.jpg +Places365_test_00227854.jpg +Places365_test_00227891.jpg +Places365_test_00227904.jpg +Places365_test_00227907.jpg +Places365_test_00227924.jpg +Places365_test_00227927.jpg +Places365_test_00227935.jpg +Places365_test_00227938.jpg +Places365_test_00227953.jpg +Places365_test_00227961.jpg +Places365_test_00227985.jpg +Places365_test_00228001.jpg +Places365_test_00228012.jpg +Places365_test_00228013.jpg +Places365_test_00228027.jpg +Places365_test_00228029.jpg +Places365_test_00228039.jpg +Places365_test_00228041.jpg +Places365_test_00228054.jpg +Places365_test_00228060.jpg +Places365_test_00228063.jpg +Places365_test_00228081.jpg +Places365_test_00228094.jpg +Places365_test_00228106.jpg +Places365_test_00228108.jpg +Places365_test_00228111.jpg +Places365_test_00228156.jpg +Places365_test_00228172.jpg +Places365_test_00228175.jpg +Places365_test_00228176.jpg +Places365_test_00228193.jpg +Places365_test_00228200.jpg +Places365_test_00228204.jpg +Places365_test_00228210.jpg +Places365_test_00228215.jpg +Places365_test_00228226.jpg +Places365_test_00228233.jpg +Places365_test_00228234.jpg +Places365_test_00228241.jpg +Places365_test_00228246.jpg +Places365_test_00228248.jpg +Places365_test_00228253.jpg +Places365_test_00228256.jpg +Places365_test_00228257.jpg +Places365_test_00228286.jpg +Places365_test_00228299.jpg +Places365_test_00228301.jpg +Places365_test_00228306.jpg +Places365_test_00228310.jpg +Places365_test_00228314.jpg +Places365_test_00228316.jpg +Places365_test_00228318.jpg +Places365_test_00228322.jpg +Places365_test_00228334.jpg +Places365_test_00228340.jpg +Places365_test_00228346.jpg +Places365_test_00228356.jpg +Places365_test_00228363.jpg +Places365_test_00228364.jpg +Places365_test_00228378.jpg +Places365_test_00228386.jpg +Places365_test_00228401.jpg +Places365_test_00228414.jpg +Places365_test_00228429.jpg +Places365_test_00228444.jpg +Places365_test_00228452.jpg +Places365_test_00228467.jpg +Places365_test_00228492.jpg +Places365_test_00228506.jpg +Places365_test_00228508.jpg +Places365_test_00228548.jpg +Places365_test_00228557.jpg +Places365_test_00228564.jpg +Places365_test_00228569.jpg +Places365_test_00228578.jpg +Places365_test_00228582.jpg +Places365_test_00228583.jpg +Places365_test_00228596.jpg +Places365_test_00228623.jpg +Places365_test_00228647.jpg +Places365_test_00228670.jpg +Places365_test_00228711.jpg +Places365_test_00228722.jpg +Places365_test_00228723.jpg +Places365_test_00228730.jpg +Places365_test_00228733.jpg +Places365_test_00228734.jpg +Places365_test_00228749.jpg +Places365_test_00228765.jpg +Places365_test_00228766.jpg +Places365_test_00228778.jpg +Places365_test_00228790.jpg +Places365_test_00228827.jpg +Places365_test_00228843.jpg +Places365_test_00228855.jpg +Places365_test_00228901.jpg +Places365_test_00228923.jpg +Places365_test_00228927.jpg +Places365_test_00228936.jpg +Places365_test_00228940.jpg +Places365_test_00228942.jpg +Places365_test_00228953.jpg +Places365_test_00228965.jpg +Places365_test_00228967.jpg +Places365_test_00228979.jpg +Places365_test_00228986.jpg +Places365_test_00228991.jpg +Places365_test_00228996.jpg +Places365_test_00229006.jpg +Places365_test_00229010.jpg +Places365_test_00229013.jpg +Places365_test_00229019.jpg +Places365_test_00229027.jpg +Places365_test_00229042.jpg +Places365_test_00229062.jpg +Places365_test_00229083.jpg +Places365_test_00229095.jpg +Places365_test_00229107.jpg +Places365_test_00229125.jpg +Places365_test_00229126.jpg +Places365_test_00229127.jpg +Places365_test_00229134.jpg +Places365_test_00229142.jpg +Places365_test_00229148.jpg +Places365_test_00229156.jpg +Places365_test_00229162.jpg +Places365_test_00229176.jpg +Places365_test_00229180.jpg +Places365_test_00229181.jpg +Places365_test_00229186.jpg +Places365_test_00229194.jpg +Places365_test_00229196.jpg +Places365_test_00229217.jpg +Places365_test_00229219.jpg +Places365_test_00229243.jpg +Places365_test_00229251.jpg +Places365_test_00229276.jpg +Places365_test_00229282.jpg +Places365_test_00229292.jpg +Places365_test_00229305.jpg +Places365_test_00229307.jpg +Places365_test_00229309.jpg +Places365_test_00229313.jpg +Places365_test_00229320.jpg +Places365_test_00229323.jpg +Places365_test_00229336.jpg +Places365_test_00229338.jpg +Places365_test_00229352.jpg +Places365_test_00229357.jpg +Places365_test_00229367.jpg +Places365_test_00229375.jpg +Places365_test_00229384.jpg +Places365_test_00229389.jpg +Places365_test_00229394.jpg +Places365_test_00229395.jpg +Places365_test_00229396.jpg +Places365_test_00229416.jpg +Places365_test_00229450.jpg +Places365_test_00229452.jpg +Places365_test_00229458.jpg +Places365_test_00229463.jpg +Places365_test_00229479.jpg +Places365_test_00229488.jpg +Places365_test_00229514.jpg +Places365_test_00229528.jpg +Places365_test_00229529.jpg +Places365_test_00229534.jpg +Places365_test_00229558.jpg +Places365_test_00229603.jpg +Places365_test_00229612.jpg +Places365_test_00229630.jpg +Places365_test_00229635.jpg +Places365_test_00229655.jpg +Places365_test_00229663.jpg +Places365_test_00229676.jpg +Places365_test_00229695.jpg +Places365_test_00229700.jpg +Places365_test_00229707.jpg +Places365_test_00229732.jpg +Places365_test_00229739.jpg +Places365_test_00229744.jpg +Places365_test_00229747.jpg +Places365_test_00229763.jpg +Places365_test_00229773.jpg +Places365_test_00229774.jpg +Places365_test_00229775.jpg +Places365_test_00229777.jpg +Places365_test_00229789.jpg +Places365_test_00229798.jpg +Places365_test_00229808.jpg +Places365_test_00229818.jpg +Places365_test_00229825.jpg +Places365_test_00229833.jpg +Places365_test_00229847.jpg +Places365_test_00229852.jpg +Places365_test_00229856.jpg +Places365_test_00229862.jpg +Places365_test_00229872.jpg +Places365_test_00229901.jpg +Places365_test_00229911.jpg +Places365_test_00229949.jpg +Places365_test_00229952.jpg +Places365_test_00229954.jpg +Places365_test_00229963.jpg +Places365_test_00229969.jpg +Places365_test_00229974.jpg +Places365_test_00229994.jpg +Places365_test_00230001.jpg +Places365_test_00230009.jpg +Places365_test_00230022.jpg +Places365_test_00230074.jpg +Places365_test_00230094.jpg +Places365_test_00230110.jpg +Places365_test_00230115.jpg +Places365_test_00230133.jpg +Places365_test_00230138.jpg +Places365_test_00230140.jpg +Places365_test_00230145.jpg +Places365_test_00230149.jpg +Places365_test_00230172.jpg +Places365_test_00230180.jpg +Places365_test_00230186.jpg +Places365_test_00230190.jpg +Places365_test_00230200.jpg +Places365_test_00230212.jpg +Places365_test_00230220.jpg +Places365_test_00230243.jpg +Places365_test_00230251.jpg +Places365_test_00230263.jpg +Places365_test_00230280.jpg +Places365_test_00230284.jpg +Places365_test_00230295.jpg +Places365_test_00230302.jpg +Places365_test_00230305.jpg +Places365_test_00230314.jpg +Places365_test_00230328.jpg +Places365_test_00230338.jpg +Places365_test_00230390.jpg +Places365_test_00230399.jpg +Places365_test_00230404.jpg +Places365_test_00230409.jpg +Places365_test_00230420.jpg +Places365_test_00230428.jpg +Places365_test_00230453.jpg +Places365_test_00230460.jpg +Places365_test_00230465.jpg +Places365_test_00230469.jpg +Places365_test_00230476.jpg +Places365_test_00230509.jpg +Places365_test_00230513.jpg +Places365_test_00230561.jpg +Places365_test_00230584.jpg +Places365_test_00230590.jpg +Places365_test_00230594.jpg +Places365_test_00230600.jpg +Places365_test_00230640.jpg +Places365_test_00230646.jpg +Places365_test_00230649.jpg +Places365_test_00230681.jpg +Places365_test_00230684.jpg +Places365_test_00230720.jpg +Places365_test_00230732.jpg +Places365_test_00230748.jpg +Places365_test_00230753.jpg +Places365_test_00230757.jpg +Places365_test_00230760.jpg +Places365_test_00230763.jpg +Places365_test_00230768.jpg +Places365_test_00230769.jpg +Places365_test_00230772.jpg +Places365_test_00230777.jpg +Places365_test_00230786.jpg +Places365_test_00230788.jpg +Places365_test_00230790.jpg +Places365_test_00230801.jpg +Places365_test_00230807.jpg +Places365_test_00230820.jpg +Places365_test_00230866.jpg +Places365_test_00230886.jpg +Places365_test_00230890.jpg +Places365_test_00230911.jpg +Places365_test_00230922.jpg +Places365_test_00230923.jpg +Places365_test_00230931.jpg +Places365_test_00230936.jpg +Places365_test_00230945.jpg +Places365_test_00230954.jpg +Places365_test_00230969.jpg +Places365_test_00230972.jpg +Places365_test_00230976.jpg +Places365_test_00230978.jpg +Places365_test_00230987.jpg +Places365_test_00230988.jpg +Places365_test_00230994.jpg +Places365_test_00231005.jpg +Places365_test_00231013.jpg +Places365_test_00231029.jpg +Places365_test_00231033.jpg +Places365_test_00231035.jpg +Places365_test_00231039.jpg +Places365_test_00231062.jpg +Places365_test_00231069.jpg +Places365_test_00231097.jpg +Places365_test_00231115.jpg +Places365_test_00231130.jpg +Places365_test_00231136.jpg +Places365_test_00231142.jpg +Places365_test_00231144.jpg +Places365_test_00231153.jpg +Places365_test_00231169.jpg +Places365_test_00231188.jpg +Places365_test_00231216.jpg +Places365_test_00231233.jpg +Places365_test_00231250.jpg +Places365_test_00231269.jpg +Places365_test_00231346.jpg +Places365_test_00231367.jpg +Places365_test_00231379.jpg +Places365_test_00231395.jpg +Places365_test_00231401.jpg +Places365_test_00231411.jpg +Places365_test_00231413.jpg +Places365_test_00231431.jpg +Places365_test_00231436.jpg +Places365_test_00231441.jpg +Places365_test_00231442.jpg +Places365_test_00231449.jpg +Places365_test_00231455.jpg +Places365_test_00231473.jpg +Places365_test_00231477.jpg +Places365_test_00231494.jpg +Places365_test_00231495.jpg +Places365_test_00231513.jpg +Places365_test_00231520.jpg +Places365_test_00231550.jpg +Places365_test_00231561.jpg +Places365_test_00231578.jpg +Places365_test_00231582.jpg +Places365_test_00231589.jpg +Places365_test_00231597.jpg +Places365_test_00231600.jpg +Places365_test_00231606.jpg +Places365_test_00231624.jpg +Places365_test_00231647.jpg +Places365_test_00231660.jpg +Places365_test_00231665.jpg +Places365_test_00231677.jpg +Places365_test_00231688.jpg +Places365_test_00231698.jpg +Places365_test_00231708.jpg +Places365_test_00231709.jpg +Places365_test_00231712.jpg +Places365_test_00231713.jpg +Places365_test_00231718.jpg +Places365_test_00231729.jpg +Places365_test_00231730.jpg +Places365_test_00231750.jpg +Places365_test_00231754.jpg +Places365_test_00231757.jpg +Places365_test_00231763.jpg +Places365_test_00231765.jpg +Places365_test_00231771.jpg +Places365_test_00231780.jpg +Places365_test_00231781.jpg +Places365_test_00231791.jpg +Places365_test_00231793.jpg +Places365_test_00231804.jpg +Places365_test_00231809.jpg +Places365_test_00231825.jpg +Places365_test_00231830.jpg +Places365_test_00231835.jpg +Places365_test_00231838.jpg +Places365_test_00231847.jpg +Places365_test_00231848.jpg +Places365_test_00231852.jpg +Places365_test_00231853.jpg +Places365_test_00231858.jpg +Places365_test_00231879.jpg +Places365_test_00231889.jpg +Places365_test_00231927.jpg +Places365_test_00231930.jpg +Places365_test_00231937.jpg +Places365_test_00231943.jpg +Places365_test_00231947.jpg +Places365_test_00231990.jpg +Places365_test_00231998.jpg +Places365_test_00232001.jpg +Places365_test_00232004.jpg +Places365_test_00232008.jpg +Places365_test_00232009.jpg +Places365_test_00232037.jpg +Places365_test_00232048.jpg +Places365_test_00232088.jpg +Places365_test_00232096.jpg +Places365_test_00232104.jpg +Places365_test_00232111.jpg +Places365_test_00232119.jpg +Places365_test_00232122.jpg +Places365_test_00232124.jpg +Places365_test_00232126.jpg +Places365_test_00232138.jpg +Places365_test_00232144.jpg +Places365_test_00232147.jpg +Places365_test_00232162.jpg +Places365_test_00232179.jpg +Places365_test_00232180.jpg +Places365_test_00232188.jpg +Places365_test_00232190.jpg +Places365_test_00232200.jpg +Places365_test_00232206.jpg +Places365_test_00232209.jpg +Places365_test_00232211.jpg +Places365_test_00232212.jpg +Places365_test_00232233.jpg +Places365_test_00232276.jpg +Places365_test_00232290.jpg +Places365_test_00232300.jpg +Places365_test_00232320.jpg +Places365_test_00232330.jpg +Places365_test_00232343.jpg +Places365_test_00232356.jpg +Places365_test_00232361.jpg +Places365_test_00232374.jpg +Places365_test_00232375.jpg +Places365_test_00232392.jpg +Places365_test_00232406.jpg +Places365_test_00232417.jpg +Places365_test_00232423.jpg +Places365_test_00232440.jpg +Places365_test_00232443.jpg +Places365_test_00232449.jpg +Places365_test_00232452.jpg +Places365_test_00232459.jpg +Places365_test_00232469.jpg +Places365_test_00232487.jpg +Places365_test_00232537.jpg +Places365_test_00232545.jpg +Places365_test_00232560.jpg +Places365_test_00232570.jpg +Places365_test_00232611.jpg +Places365_test_00232626.jpg +Places365_test_00232630.jpg +Places365_test_00232634.jpg +Places365_test_00232636.jpg +Places365_test_00232648.jpg +Places365_test_00232653.jpg +Places365_test_00232654.jpg +Places365_test_00232672.jpg +Places365_test_00232675.jpg +Places365_test_00232676.jpg +Places365_test_00232689.jpg +Places365_test_00232699.jpg +Places365_test_00232711.jpg +Places365_test_00232718.jpg +Places365_test_00232725.jpg +Places365_test_00232727.jpg +Places365_test_00232739.jpg +Places365_test_00232757.jpg +Places365_test_00232764.jpg +Places365_test_00232789.jpg +Places365_test_00232790.jpg +Places365_test_00232795.jpg +Places365_test_00232800.jpg +Places365_test_00232812.jpg +Places365_test_00232813.jpg +Places365_test_00232819.jpg +Places365_test_00232840.jpg +Places365_test_00232846.jpg +Places365_test_00232855.jpg +Places365_test_00232872.jpg +Places365_test_00232904.jpg +Places365_test_00232905.jpg +Places365_test_00232917.jpg +Places365_test_00232924.jpg +Places365_test_00232926.jpg +Places365_test_00232937.jpg +Places365_test_00232947.jpg +Places365_test_00232955.jpg +Places365_test_00232965.jpg +Places365_test_00232975.jpg +Places365_test_00232979.jpg +Places365_test_00232986.jpg +Places365_test_00232998.jpg +Places365_test_00233023.jpg +Places365_test_00233029.jpg +Places365_test_00233033.jpg +Places365_test_00233035.jpg +Places365_test_00233041.jpg +Places365_test_00233059.jpg +Places365_test_00233065.jpg +Places365_test_00233068.jpg +Places365_test_00233085.jpg +Places365_test_00233092.jpg +Places365_test_00233096.jpg +Places365_test_00233100.jpg +Places365_test_00233114.jpg +Places365_test_00233118.jpg +Places365_test_00233120.jpg +Places365_test_00233156.jpg +Places365_test_00233157.jpg +Places365_test_00233163.jpg +Places365_test_00233167.jpg +Places365_test_00233173.jpg +Places365_test_00233185.jpg +Places365_test_00233194.jpg +Places365_test_00233200.jpg +Places365_test_00233205.jpg +Places365_test_00233239.jpg +Places365_test_00233241.jpg +Places365_test_00233265.jpg +Places365_test_00233281.jpg +Places365_test_00233287.jpg +Places365_test_00233296.jpg +Places365_test_00233299.jpg +Places365_test_00233315.jpg +Places365_test_00233322.jpg +Places365_test_00233327.jpg +Places365_test_00233331.jpg +Places365_test_00233346.jpg +Places365_test_00233350.jpg +Places365_test_00233353.jpg +Places365_test_00233359.jpg +Places365_test_00233362.jpg +Places365_test_00233371.jpg +Places365_test_00233372.jpg +Places365_test_00233385.jpg +Places365_test_00233396.jpg +Places365_test_00233405.jpg +Places365_test_00233406.jpg +Places365_test_00233408.jpg +Places365_test_00233411.jpg +Places365_test_00233423.jpg +Places365_test_00233432.jpg +Places365_test_00233453.jpg +Places365_test_00233468.jpg +Places365_test_00233471.jpg +Places365_test_00233489.jpg +Places365_test_00233512.jpg +Places365_test_00233516.jpg +Places365_test_00233523.jpg +Places365_test_00233537.jpg +Places365_test_00233540.jpg +Places365_test_00233548.jpg +Places365_test_00233559.jpg +Places365_test_00233567.jpg +Places365_test_00233572.jpg +Places365_test_00233573.jpg +Places365_test_00233580.jpg +Places365_test_00233582.jpg +Places365_test_00233597.jpg +Places365_test_00233598.jpg +Places365_test_00233604.jpg +Places365_test_00233608.jpg +Places365_test_00233611.jpg +Places365_test_00233618.jpg +Places365_test_00233620.jpg +Places365_test_00233635.jpg +Places365_test_00233637.jpg +Places365_test_00233638.jpg +Places365_test_00233639.jpg +Places365_test_00233640.jpg +Places365_test_00233642.jpg +Places365_test_00233644.jpg +Places365_test_00233687.jpg +Places365_test_00233689.jpg +Places365_test_00233697.jpg +Places365_test_00233698.jpg +Places365_test_00233705.jpg +Places365_test_00233709.jpg +Places365_test_00233732.jpg +Places365_test_00233733.jpg +Places365_test_00233758.jpg +Places365_test_00233767.jpg +Places365_test_00233770.jpg +Places365_test_00233778.jpg +Places365_test_00233780.jpg +Places365_test_00233783.jpg +Places365_test_00233796.jpg +Places365_test_00233798.jpg +Places365_test_00233806.jpg +Places365_test_00233818.jpg +Places365_test_00233819.jpg +Places365_test_00233823.jpg +Places365_test_00233831.jpg +Places365_test_00233832.jpg +Places365_test_00233869.jpg +Places365_test_00233873.jpg +Places365_test_00233882.jpg +Places365_test_00233913.jpg +Places365_test_00233956.jpg +Places365_test_00233965.jpg +Places365_test_00233967.jpg +Places365_test_00233972.jpg +Places365_test_00233983.jpg +Places365_test_00233991.jpg +Places365_test_00234010.jpg +Places365_test_00234040.jpg +Places365_test_00234049.jpg +Places365_test_00234060.jpg +Places365_test_00234090.jpg +Places365_test_00234097.jpg +Places365_test_00234105.jpg +Places365_test_00234123.jpg +Places365_test_00234129.jpg +Places365_test_00234142.jpg +Places365_test_00234143.jpg +Places365_test_00234148.jpg +Places365_test_00234154.jpg +Places365_test_00234171.jpg +Places365_test_00234179.jpg +Places365_test_00234188.jpg +Places365_test_00234193.jpg +Places365_test_00234217.jpg +Places365_test_00234225.jpg +Places365_test_00234233.jpg +Places365_test_00234235.jpg +Places365_test_00234246.jpg +Places365_test_00234247.jpg +Places365_test_00234279.jpg +Places365_test_00234286.jpg +Places365_test_00234291.jpg +Places365_test_00234299.jpg +Places365_test_00234300.jpg +Places365_test_00234303.jpg +Places365_test_00234304.jpg +Places365_test_00234305.jpg +Places365_test_00234318.jpg +Places365_test_00234332.jpg +Places365_test_00234342.jpg +Places365_test_00234349.jpg +Places365_test_00234357.jpg +Places365_test_00234364.jpg +Places365_test_00234378.jpg +Places365_test_00234382.jpg +Places365_test_00234398.jpg +Places365_test_00234441.jpg +Places365_test_00234451.jpg +Places365_test_00234457.jpg +Places365_test_00234470.jpg +Places365_test_00234476.jpg +Places365_test_00234496.jpg +Places365_test_00234506.jpg +Places365_test_00234507.jpg +Places365_test_00234519.jpg +Places365_test_00234542.jpg +Places365_test_00234544.jpg +Places365_test_00234556.jpg +Places365_test_00234582.jpg +Places365_test_00234583.jpg +Places365_test_00234593.jpg +Places365_test_00234621.jpg +Places365_test_00234626.jpg +Places365_test_00234634.jpg +Places365_test_00234639.jpg +Places365_test_00234647.jpg +Places365_test_00234661.jpg +Places365_test_00234662.jpg +Places365_test_00234677.jpg +Places365_test_00234702.jpg +Places365_test_00234704.jpg +Places365_test_00234714.jpg +Places365_test_00234717.jpg +Places365_test_00234724.jpg +Places365_test_00234736.jpg +Places365_test_00234741.jpg +Places365_test_00234749.jpg +Places365_test_00234773.jpg +Places365_test_00234791.jpg +Places365_test_00234820.jpg +Places365_test_00234831.jpg +Places365_test_00234836.jpg +Places365_test_00234837.jpg +Places365_test_00234850.jpg +Places365_test_00234854.jpg +Places365_test_00234883.jpg +Places365_test_00234892.jpg +Places365_test_00234902.jpg +Places365_test_00234913.jpg +Places365_test_00234914.jpg +Places365_test_00234915.jpg +Places365_test_00234930.jpg +Places365_test_00234939.jpg +Places365_test_00234942.jpg +Places365_test_00234948.jpg +Places365_test_00234951.jpg +Places365_test_00234954.jpg +Places365_test_00234980.jpg +Places365_test_00235006.jpg +Places365_test_00235016.jpg +Places365_test_00235019.jpg +Places365_test_00235030.jpg +Places365_test_00235037.jpg +Places365_test_00235038.jpg +Places365_test_00235053.jpg +Places365_test_00235068.jpg +Places365_test_00235073.jpg +Places365_test_00235075.jpg +Places365_test_00235077.jpg +Places365_test_00235137.jpg +Places365_test_00235159.jpg +Places365_test_00235189.jpg +Places365_test_00235208.jpg +Places365_test_00235219.jpg +Places365_test_00235232.jpg +Places365_test_00235234.jpg +Places365_test_00235239.jpg +Places365_test_00235250.jpg +Places365_test_00235257.jpg +Places365_test_00235268.jpg +Places365_test_00235288.jpg +Places365_test_00235290.jpg +Places365_test_00235309.jpg +Places365_test_00235340.jpg +Places365_test_00235356.jpg +Places365_test_00235370.jpg +Places365_test_00235397.jpg +Places365_test_00235400.jpg +Places365_test_00235404.jpg +Places365_test_00235406.jpg +Places365_test_00235429.jpg +Places365_test_00235434.jpg +Places365_test_00235439.jpg +Places365_test_00235446.jpg +Places365_test_00235453.jpg +Places365_test_00235464.jpg +Places365_test_00235470.jpg +Places365_test_00235473.jpg +Places365_test_00235475.jpg +Places365_test_00235485.jpg +Places365_test_00235486.jpg +Places365_test_00235494.jpg +Places365_test_00235499.jpg +Places365_test_00235504.jpg +Places365_test_00235524.jpg +Places365_test_00235531.jpg +Places365_test_00235554.jpg +Places365_test_00235569.jpg +Places365_test_00235571.jpg +Places365_test_00235576.jpg +Places365_test_00235585.jpg +Places365_test_00235606.jpg +Places365_test_00235623.jpg +Places365_test_00235625.jpg +Places365_test_00235626.jpg +Places365_test_00235634.jpg +Places365_test_00235659.jpg +Places365_test_00235664.jpg +Places365_test_00235685.jpg +Places365_test_00235686.jpg +Places365_test_00235688.jpg +Places365_test_00235718.jpg +Places365_test_00235720.jpg +Places365_test_00235748.jpg +Places365_test_00235764.jpg +Places365_test_00235769.jpg +Places365_test_00235777.jpg +Places365_test_00235779.jpg +Places365_test_00235782.jpg +Places365_test_00235784.jpg +Places365_test_00235798.jpg +Places365_test_00235802.jpg +Places365_test_00235817.jpg +Places365_test_00235831.jpg +Places365_test_00235837.jpg +Places365_test_00235857.jpg +Places365_test_00235871.jpg +Places365_test_00235875.jpg +Places365_test_00235917.jpg +Places365_test_00235932.jpg +Places365_test_00235970.jpg +Places365_test_00236010.jpg +Places365_test_00236011.jpg +Places365_test_00236014.jpg +Places365_test_00236020.jpg +Places365_test_00236024.jpg +Places365_test_00236050.jpg +Places365_test_00236052.jpg +Places365_test_00236057.jpg +Places365_test_00236058.jpg +Places365_test_00236072.jpg +Places365_test_00236093.jpg +Places365_test_00236098.jpg +Places365_test_00236105.jpg +Places365_test_00236114.jpg +Places365_test_00236120.jpg +Places365_test_00236124.jpg +Places365_test_00236133.jpg +Places365_test_00236150.jpg +Places365_test_00236151.jpg +Places365_test_00236152.jpg +Places365_test_00236161.jpg +Places365_test_00236169.jpg +Places365_test_00236170.jpg +Places365_test_00236209.jpg +Places365_test_00236212.jpg +Places365_test_00236230.jpg +Places365_test_00236253.jpg +Places365_test_00236265.jpg +Places365_test_00236267.jpg +Places365_test_00236272.jpg +Places365_test_00236279.jpg +Places365_test_00236284.jpg +Places365_test_00236285.jpg +Places365_test_00236297.jpg +Places365_test_00236305.jpg +Places365_test_00236318.jpg +Places365_test_00236339.jpg +Places365_test_00236343.jpg +Places365_test_00236350.jpg +Places365_test_00236353.jpg +Places365_test_00236357.jpg +Places365_test_00236368.jpg +Places365_test_00236372.jpg +Places365_test_00236374.jpg +Places365_test_00236375.jpg +Places365_test_00236382.jpg +Places365_test_00236420.jpg +Places365_test_00236429.jpg +Places365_test_00236432.jpg +Places365_test_00236433.jpg +Places365_test_00236456.jpg +Places365_test_00236458.jpg +Places365_test_00236459.jpg +Places365_test_00236474.jpg +Places365_test_00236477.jpg +Places365_test_00236480.jpg +Places365_test_00236506.jpg +Places365_test_00236529.jpg +Places365_test_00236532.jpg +Places365_test_00236552.jpg +Places365_test_00236554.jpg +Places365_test_00236565.jpg +Places365_test_00236567.jpg +Places365_test_00236583.jpg +Places365_test_00236584.jpg +Places365_test_00236594.jpg +Places365_test_00236596.jpg +Places365_test_00236609.jpg +Places365_test_00236632.jpg +Places365_test_00236648.jpg +Places365_test_00236650.jpg +Places365_test_00236695.jpg +Places365_test_00236731.jpg +Places365_test_00236738.jpg +Places365_test_00236753.jpg +Places365_test_00236763.jpg +Places365_test_00236769.jpg +Places365_test_00236773.jpg +Places365_test_00236777.jpg +Places365_test_00236785.jpg +Places365_test_00236799.jpg +Places365_test_00236806.jpg +Places365_test_00236810.jpg +Places365_test_00236814.jpg +Places365_test_00236823.jpg +Places365_test_00236845.jpg +Places365_test_00236846.jpg +Places365_test_00236848.jpg +Places365_test_00236873.jpg +Places365_test_00236888.jpg +Places365_test_00236909.jpg +Places365_test_00236917.jpg +Places365_test_00236926.jpg +Places365_test_00236949.jpg +Places365_test_00236957.jpg +Places365_test_00236971.jpg +Places365_test_00236985.jpg +Places365_test_00236987.jpg +Places365_test_00236991.jpg +Places365_test_00237000.jpg +Places365_test_00237016.jpg +Places365_test_00237022.jpg +Places365_test_00237025.jpg +Places365_test_00237027.jpg +Places365_test_00237045.jpg +Places365_test_00237058.jpg +Places365_test_00237075.jpg +Places365_test_00237088.jpg +Places365_test_00237108.jpg +Places365_test_00237123.jpg +Places365_test_00237129.jpg +Places365_test_00237135.jpg +Places365_test_00237179.jpg +Places365_test_00237182.jpg +Places365_test_00237188.jpg +Places365_test_00237191.jpg +Places365_test_00237206.jpg +Places365_test_00237222.jpg +Places365_test_00237232.jpg +Places365_test_00237253.jpg +Places365_test_00237254.jpg +Places365_test_00237266.jpg +Places365_test_00237273.jpg +Places365_test_00237287.jpg +Places365_test_00237291.jpg +Places365_test_00237296.jpg +Places365_test_00237297.jpg +Places365_test_00237300.jpg +Places365_test_00237302.jpg +Places365_test_00237314.jpg +Places365_test_00237316.jpg +Places365_test_00237328.jpg +Places365_test_00237351.jpg +Places365_test_00237365.jpg +Places365_test_00237370.jpg +Places365_test_00237373.jpg +Places365_test_00237390.jpg +Places365_test_00237393.jpg +Places365_test_00237397.jpg +Places365_test_00237405.jpg +Places365_test_00237436.jpg +Places365_test_00237437.jpg +Places365_test_00237440.jpg +Places365_test_00237450.jpg +Places365_test_00237458.jpg +Places365_test_00237464.jpg +Places365_test_00237468.jpg +Places365_test_00237472.jpg +Places365_test_00237494.jpg +Places365_test_00237499.jpg +Places365_test_00237501.jpg +Places365_test_00237508.jpg +Places365_test_00237521.jpg +Places365_test_00237526.jpg +Places365_test_00237561.jpg +Places365_test_00237566.jpg +Places365_test_00237575.jpg +Places365_test_00237578.jpg +Places365_test_00237584.jpg +Places365_test_00237607.jpg +Places365_test_00237616.jpg +Places365_test_00237623.jpg +Places365_test_00237637.jpg +Places365_test_00237665.jpg +Places365_test_00237671.jpg +Places365_test_00237680.jpg +Places365_test_00237696.jpg +Places365_test_00237701.jpg +Places365_test_00237702.jpg +Places365_test_00237713.jpg +Places365_test_00237725.jpg +Places365_test_00237732.jpg +Places365_test_00237739.jpg +Places365_test_00237749.jpg +Places365_test_00237759.jpg +Places365_test_00237760.jpg +Places365_test_00237769.jpg +Places365_test_00237776.jpg +Places365_test_00237796.jpg +Places365_test_00237798.jpg +Places365_test_00237802.jpg +Places365_test_00237825.jpg +Places365_test_00237856.jpg +Places365_test_00237887.jpg +Places365_test_00237904.jpg +Places365_test_00237921.jpg +Places365_test_00237946.jpg +Places365_test_00237958.jpg +Places365_test_00237966.jpg +Places365_test_00237973.jpg +Places365_test_00237988.jpg +Places365_test_00238002.jpg +Places365_test_00238008.jpg +Places365_test_00238014.jpg +Places365_test_00238037.jpg +Places365_test_00238070.jpg +Places365_test_00238073.jpg +Places365_test_00238076.jpg +Places365_test_00238077.jpg +Places365_test_00238078.jpg +Places365_test_00238099.jpg +Places365_test_00238101.jpg +Places365_test_00238109.jpg +Places365_test_00238111.jpg +Places365_test_00238133.jpg +Places365_test_00238147.jpg +Places365_test_00238148.jpg +Places365_test_00238168.jpg +Places365_test_00238178.jpg +Places365_test_00238188.jpg +Places365_test_00238189.jpg +Places365_test_00238194.jpg +Places365_test_00238250.jpg +Places365_test_00238259.jpg +Places365_test_00238268.jpg +Places365_test_00238273.jpg +Places365_test_00238313.jpg +Places365_test_00238325.jpg +Places365_test_00238349.jpg +Places365_test_00238350.jpg +Places365_test_00238355.jpg +Places365_test_00238360.jpg +Places365_test_00238381.jpg +Places365_test_00238393.jpg +Places365_test_00238397.jpg +Places365_test_00238404.jpg +Places365_test_00238407.jpg +Places365_test_00238408.jpg +Places365_test_00238441.jpg +Places365_test_00238442.jpg +Places365_test_00238487.jpg +Places365_test_00238498.jpg +Places365_test_00238519.jpg +Places365_test_00238548.jpg +Places365_test_00238550.jpg +Places365_test_00238555.jpg +Places365_test_00238583.jpg +Places365_test_00238591.jpg +Places365_test_00238592.jpg +Places365_test_00238593.jpg +Places365_test_00238602.jpg +Places365_test_00238608.jpg +Places365_test_00238611.jpg +Places365_test_00238629.jpg +Places365_test_00238637.jpg +Places365_test_00238640.jpg +Places365_test_00238652.jpg +Places365_test_00238678.jpg +Places365_test_00238683.jpg +Places365_test_00238696.jpg +Places365_test_00238712.jpg +Places365_test_00238720.jpg +Places365_test_00238726.jpg +Places365_test_00238727.jpg +Places365_test_00238731.jpg +Places365_test_00238742.jpg +Places365_test_00238750.jpg +Places365_test_00238751.jpg +Places365_test_00238752.jpg +Places365_test_00238757.jpg +Places365_test_00238767.jpg +Places365_test_00238782.jpg +Places365_test_00238806.jpg +Places365_test_00238812.jpg +Places365_test_00238814.jpg +Places365_test_00238821.jpg +Places365_test_00238830.jpg +Places365_test_00238847.jpg +Places365_test_00238863.jpg +Places365_test_00238879.jpg +Places365_test_00238910.jpg +Places365_test_00238917.jpg +Places365_test_00238922.jpg +Places365_test_00238927.jpg +Places365_test_00238929.jpg +Places365_test_00238939.jpg +Places365_test_00238951.jpg +Places365_test_00238956.jpg +Places365_test_00238973.jpg +Places365_test_00238974.jpg +Places365_test_00238983.jpg +Places365_test_00238996.jpg +Places365_test_00239008.jpg +Places365_test_00239011.jpg +Places365_test_00239018.jpg +Places365_test_00239033.jpg +Places365_test_00239074.jpg +Places365_test_00239079.jpg +Places365_test_00239080.jpg +Places365_test_00239093.jpg +Places365_test_00239094.jpg +Places365_test_00239120.jpg +Places365_test_00239132.jpg +Places365_test_00239136.jpg +Places365_test_00239147.jpg +Places365_test_00239152.jpg +Places365_test_00239155.jpg +Places365_test_00239163.jpg +Places365_test_00239168.jpg +Places365_test_00239170.jpg +Places365_test_00239174.jpg +Places365_test_00239194.jpg +Places365_test_00239199.jpg +Places365_test_00239214.jpg +Places365_test_00239237.jpg +Places365_test_00239246.jpg +Places365_test_00239255.jpg +Places365_test_00239274.jpg +Places365_test_00239280.jpg +Places365_test_00239285.jpg +Places365_test_00239290.jpg +Places365_test_00239310.jpg +Places365_test_00239315.jpg +Places365_test_00239318.jpg +Places365_test_00239340.jpg +Places365_test_00239349.jpg +Places365_test_00239360.jpg +Places365_test_00239364.jpg +Places365_test_00239366.jpg +Places365_test_00239380.jpg +Places365_test_00239391.jpg +Places365_test_00239406.jpg +Places365_test_00239413.jpg +Places365_test_00239425.jpg +Places365_test_00239427.jpg +Places365_test_00239430.jpg +Places365_test_00239440.jpg +Places365_test_00239461.jpg +Places365_test_00239473.jpg +Places365_test_00239502.jpg +Places365_test_00239534.jpg +Places365_test_00239557.jpg +Places365_test_00239564.jpg +Places365_test_00239608.jpg +Places365_test_00239635.jpg +Places365_test_00239636.jpg +Places365_test_00239643.jpg +Places365_test_00239668.jpg +Places365_test_00239680.jpg +Places365_test_00239719.jpg +Places365_test_00239731.jpg +Places365_test_00239742.jpg +Places365_test_00239753.jpg +Places365_test_00239761.jpg +Places365_test_00239774.jpg +Places365_test_00239786.jpg +Places365_test_00239805.jpg +Places365_test_00239814.jpg +Places365_test_00239820.jpg +Places365_test_00239850.jpg +Places365_test_00239876.jpg +Places365_test_00239878.jpg +Places365_test_00239881.jpg +Places365_test_00239886.jpg +Places365_test_00239887.jpg +Places365_test_00239902.jpg +Places365_test_00239914.jpg +Places365_test_00239928.jpg +Places365_test_00239941.jpg +Places365_test_00239943.jpg +Places365_test_00239951.jpg +Places365_test_00239954.jpg +Places365_test_00239963.jpg +Places365_test_00239991.jpg +Places365_test_00239995.jpg +Places365_test_00240030.jpg +Places365_test_00240035.jpg +Places365_test_00240038.jpg +Places365_test_00240051.jpg +Places365_test_00240056.jpg +Places365_test_00240060.jpg +Places365_test_00240090.jpg +Places365_test_00240102.jpg +Places365_test_00240112.jpg +Places365_test_00240114.jpg +Places365_test_00240132.jpg +Places365_test_00240135.jpg +Places365_test_00240138.jpg +Places365_test_00240141.jpg +Places365_test_00240161.jpg +Places365_test_00240170.jpg +Places365_test_00240178.jpg +Places365_test_00240179.jpg +Places365_test_00240188.jpg +Places365_test_00240202.jpg +Places365_test_00240214.jpg +Places365_test_00240230.jpg +Places365_test_00240237.jpg +Places365_test_00240255.jpg +Places365_test_00240290.jpg +Places365_test_00240312.jpg +Places365_test_00240320.jpg +Places365_test_00240327.jpg +Places365_test_00240331.jpg +Places365_test_00240356.jpg +Places365_test_00240357.jpg +Places365_test_00240359.jpg +Places365_test_00240373.jpg +Places365_test_00240374.jpg +Places365_test_00240378.jpg +Places365_test_00240385.jpg +Places365_test_00240404.jpg +Places365_test_00240410.jpg +Places365_test_00240433.jpg +Places365_test_00240438.jpg +Places365_test_00240448.jpg +Places365_test_00240469.jpg +Places365_test_00240472.jpg +Places365_test_00240479.jpg +Places365_test_00240493.jpg +Places365_test_00240494.jpg +Places365_test_00240495.jpg +Places365_test_00240513.jpg +Places365_test_00240515.jpg +Places365_test_00240517.jpg +Places365_test_00240524.jpg +Places365_test_00240528.jpg +Places365_test_00240537.jpg +Places365_test_00240540.jpg +Places365_test_00240551.jpg +Places365_test_00240552.jpg +Places365_test_00240554.jpg +Places365_test_00240578.jpg +Places365_test_00240613.jpg +Places365_test_00240616.jpg +Places365_test_00240672.jpg +Places365_test_00240677.jpg +Places365_test_00240678.jpg +Places365_test_00240688.jpg +Places365_test_00240695.jpg +Places365_test_00240707.jpg +Places365_test_00240708.jpg +Places365_test_00240727.jpg +Places365_test_00240732.jpg +Places365_test_00240738.jpg +Places365_test_00240755.jpg +Places365_test_00240758.jpg +Places365_test_00240762.jpg +Places365_test_00240822.jpg +Places365_test_00240828.jpg +Places365_test_00240838.jpg +Places365_test_00240839.jpg +Places365_test_00240847.jpg +Places365_test_00240849.jpg +Places365_test_00240873.jpg +Places365_test_00240886.jpg +Places365_test_00240895.jpg +Places365_test_00240900.jpg +Places365_test_00240902.jpg +Places365_test_00240910.jpg +Places365_test_00240922.jpg +Places365_test_00240933.jpg +Places365_test_00240934.jpg +Places365_test_00240944.jpg +Places365_test_00240949.jpg +Places365_test_00240950.jpg +Places365_test_00240953.jpg +Places365_test_00240958.jpg +Places365_test_00240960.jpg +Places365_test_00240961.jpg +Places365_test_00240971.jpg +Places365_test_00240985.jpg +Places365_test_00240987.jpg +Places365_test_00240988.jpg +Places365_test_00240992.jpg +Places365_test_00241022.jpg +Places365_test_00241028.jpg +Places365_test_00241039.jpg +Places365_test_00241048.jpg +Places365_test_00241087.jpg +Places365_test_00241095.jpg +Places365_test_00241096.jpg +Places365_test_00241102.jpg +Places365_test_00241104.jpg +Places365_test_00241105.jpg +Places365_test_00241113.jpg +Places365_test_00241135.jpg +Places365_test_00241138.jpg +Places365_test_00241164.jpg +Places365_test_00241168.jpg +Places365_test_00241176.jpg +Places365_test_00241187.jpg +Places365_test_00241200.jpg +Places365_test_00241213.jpg +Places365_test_00241219.jpg +Places365_test_00241221.jpg +Places365_test_00241232.jpg +Places365_test_00241241.jpg +Places365_test_00241244.jpg +Places365_test_00241246.jpg +Places365_test_00241248.jpg +Places365_test_00241260.jpg +Places365_test_00241276.jpg +Places365_test_00241284.jpg +Places365_test_00241286.jpg +Places365_test_00241289.jpg +Places365_test_00241318.jpg +Places365_test_00241346.jpg +Places365_test_00241348.jpg +Places365_test_00241350.jpg +Places365_test_00241353.jpg +Places365_test_00241394.jpg +Places365_test_00241395.jpg +Places365_test_00241405.jpg +Places365_test_00241437.jpg +Places365_test_00241438.jpg +Places365_test_00241454.jpg +Places365_test_00241455.jpg +Places365_test_00241471.jpg +Places365_test_00241476.jpg +Places365_test_00241506.jpg +Places365_test_00241520.jpg +Places365_test_00241532.jpg +Places365_test_00241534.jpg +Places365_test_00241561.jpg +Places365_test_00241562.jpg +Places365_test_00241578.jpg +Places365_test_00241580.jpg +Places365_test_00241598.jpg +Places365_test_00241599.jpg +Places365_test_00241613.jpg +Places365_test_00241620.jpg +Places365_test_00241634.jpg +Places365_test_00241683.jpg +Places365_test_00241713.jpg +Places365_test_00241721.jpg +Places365_test_00241737.jpg +Places365_test_00241741.jpg +Places365_test_00241761.jpg +Places365_test_00241766.jpg +Places365_test_00241769.jpg +Places365_test_00241771.jpg +Places365_test_00241778.jpg +Places365_test_00241783.jpg +Places365_test_00241794.jpg +Places365_test_00241799.jpg +Places365_test_00241808.jpg +Places365_test_00241810.jpg +Places365_test_00241827.jpg +Places365_test_00241845.jpg +Places365_test_00241851.jpg +Places365_test_00241852.jpg +Places365_test_00241882.jpg +Places365_test_00241896.jpg +Places365_test_00241907.jpg +Places365_test_00241920.jpg +Places365_test_00241921.jpg +Places365_test_00241940.jpg +Places365_test_00241959.jpg +Places365_test_00241960.jpg +Places365_test_00241974.jpg +Places365_test_00241996.jpg +Places365_test_00242006.jpg +Places365_test_00242013.jpg +Places365_test_00242018.jpg +Places365_test_00242030.jpg +Places365_test_00242033.jpg +Places365_test_00242051.jpg +Places365_test_00242054.jpg +Places365_test_00242061.jpg +Places365_test_00242067.jpg +Places365_test_00242068.jpg +Places365_test_00242079.jpg +Places365_test_00242106.jpg +Places365_test_00242109.jpg +Places365_test_00242134.jpg +Places365_test_00242157.jpg +Places365_test_00242162.jpg +Places365_test_00242169.jpg +Places365_test_00242170.jpg +Places365_test_00242176.jpg +Places365_test_00242185.jpg +Places365_test_00242188.jpg +Places365_test_00242191.jpg +Places365_test_00242199.jpg +Places365_test_00242202.jpg +Places365_test_00242221.jpg +Places365_test_00242227.jpg +Places365_test_00242235.jpg +Places365_test_00242247.jpg +Places365_test_00242256.jpg +Places365_test_00242276.jpg +Places365_test_00242281.jpg +Places365_test_00242293.jpg +Places365_test_00242295.jpg +Places365_test_00242301.jpg +Places365_test_00242307.jpg +Places365_test_00242320.jpg +Places365_test_00242329.jpg +Places365_test_00242333.jpg +Places365_test_00242335.jpg +Places365_test_00242336.jpg +Places365_test_00242345.jpg +Places365_test_00242361.jpg +Places365_test_00242362.jpg +Places365_test_00242370.jpg +Places365_test_00242376.jpg +Places365_test_00242381.jpg +Places365_test_00242388.jpg +Places365_test_00242404.jpg +Places365_test_00242410.jpg +Places365_test_00242414.jpg +Places365_test_00242433.jpg +Places365_test_00242453.jpg +Places365_test_00242459.jpg +Places365_test_00242472.jpg +Places365_test_00242487.jpg +Places365_test_00242488.jpg +Places365_test_00242495.jpg +Places365_test_00242506.jpg +Places365_test_00242512.jpg +Places365_test_00242513.jpg +Places365_test_00242514.jpg +Places365_test_00242524.jpg +Places365_test_00242528.jpg +Places365_test_00242533.jpg +Places365_test_00242536.jpg +Places365_test_00242539.jpg +Places365_test_00242545.jpg +Places365_test_00242562.jpg +Places365_test_00242593.jpg +Places365_test_00242605.jpg +Places365_test_00242622.jpg +Places365_test_00242630.jpg +Places365_test_00242645.jpg +Places365_test_00242656.jpg +Places365_test_00242660.jpg +Places365_test_00242678.jpg +Places365_test_00242682.jpg +Places365_test_00242690.jpg +Places365_test_00242699.jpg +Places365_test_00242705.jpg +Places365_test_00242729.jpg +Places365_test_00242745.jpg +Places365_test_00242750.jpg +Places365_test_00242765.jpg +Places365_test_00242780.jpg +Places365_test_00242787.jpg +Places365_test_00242804.jpg +Places365_test_00242805.jpg +Places365_test_00242815.jpg +Places365_test_00242820.jpg +Places365_test_00242836.jpg +Places365_test_00242854.jpg +Places365_test_00242869.jpg +Places365_test_00242875.jpg +Places365_test_00242927.jpg +Places365_test_00242944.jpg +Places365_test_00242952.jpg +Places365_test_00242953.jpg +Places365_test_00242957.jpg +Places365_test_00242962.jpg +Places365_test_00242972.jpg +Places365_test_00242991.jpg +Places365_test_00243005.jpg +Places365_test_00243035.jpg +Places365_test_00243037.jpg +Places365_test_00243039.jpg +Places365_test_00243052.jpg +Places365_test_00243076.jpg +Places365_test_00243080.jpg +Places365_test_00243081.jpg +Places365_test_00243088.jpg +Places365_test_00243089.jpg +Places365_test_00243092.jpg +Places365_test_00243102.jpg +Places365_test_00243106.jpg +Places365_test_00243108.jpg +Places365_test_00243135.jpg +Places365_test_00243141.jpg +Places365_test_00243191.jpg +Places365_test_00243199.jpg +Places365_test_00243202.jpg +Places365_test_00243204.jpg +Places365_test_00243219.jpg +Places365_test_00243224.jpg +Places365_test_00243232.jpg +Places365_test_00243234.jpg +Places365_test_00243248.jpg +Places365_test_00243257.jpg +Places365_test_00243263.jpg +Places365_test_00243307.jpg +Places365_test_00243311.jpg +Places365_test_00243324.jpg +Places365_test_00243349.jpg +Places365_test_00243353.jpg +Places365_test_00243375.jpg +Places365_test_00243413.jpg +Places365_test_00243419.jpg +Places365_test_00243423.jpg +Places365_test_00243427.jpg +Places365_test_00243437.jpg +Places365_test_00243456.jpg +Places365_test_00243457.jpg +Places365_test_00243459.jpg +Places365_test_00243485.jpg +Places365_test_00243493.jpg +Places365_test_00243501.jpg +Places365_test_00243512.jpg +Places365_test_00243523.jpg +Places365_test_00243528.jpg +Places365_test_00243569.jpg +Places365_test_00243574.jpg +Places365_test_00243576.jpg +Places365_test_00243593.jpg +Places365_test_00243596.jpg +Places365_test_00243608.jpg +Places365_test_00243611.jpg +Places365_test_00243612.jpg +Places365_test_00243620.jpg +Places365_test_00243626.jpg +Places365_test_00243632.jpg +Places365_test_00243643.jpg +Places365_test_00243644.jpg +Places365_test_00243663.jpg +Places365_test_00243669.jpg +Places365_test_00243670.jpg +Places365_test_00243673.jpg +Places365_test_00243678.jpg +Places365_test_00243692.jpg +Places365_test_00243693.jpg +Places365_test_00243697.jpg +Places365_test_00243702.jpg +Places365_test_00243710.jpg +Places365_test_00243717.jpg +Places365_test_00243732.jpg +Places365_test_00243744.jpg +Places365_test_00243769.jpg +Places365_test_00243796.jpg +Places365_test_00243800.jpg +Places365_test_00243811.jpg +Places365_test_00243819.jpg +Places365_test_00243825.jpg +Places365_test_00243830.jpg +Places365_test_00243832.jpg +Places365_test_00243849.jpg +Places365_test_00243851.jpg +Places365_test_00243855.jpg +Places365_test_00243857.jpg +Places365_test_00243861.jpg +Places365_test_00243875.jpg +Places365_test_00243884.jpg +Places365_test_00243918.jpg +Places365_test_00243956.jpg +Places365_test_00243973.jpg +Places365_test_00243988.jpg +Places365_test_00243997.jpg +Places365_test_00244011.jpg +Places365_test_00244022.jpg +Places365_test_00244042.jpg +Places365_test_00244050.jpg +Places365_test_00244059.jpg +Places365_test_00244064.jpg +Places365_test_00244085.jpg +Places365_test_00244122.jpg +Places365_test_00244143.jpg +Places365_test_00244151.jpg +Places365_test_00244181.jpg +Places365_test_00244187.jpg +Places365_test_00244190.jpg +Places365_test_00244194.jpg +Places365_test_00244199.jpg +Places365_test_00244202.jpg +Places365_test_00244207.jpg +Places365_test_00244210.jpg +Places365_test_00244223.jpg +Places365_test_00244227.jpg +Places365_test_00244228.jpg +Places365_test_00244231.jpg +Places365_test_00244234.jpg +Places365_test_00244266.jpg +Places365_test_00244272.jpg +Places365_test_00244278.jpg +Places365_test_00244281.jpg +Places365_test_00244284.jpg +Places365_test_00244300.jpg +Places365_test_00244316.jpg +Places365_test_00244318.jpg +Places365_test_00244337.jpg +Places365_test_00244338.jpg +Places365_test_00244340.jpg +Places365_test_00244341.jpg +Places365_test_00244347.jpg +Places365_test_00244360.jpg +Places365_test_00244361.jpg +Places365_test_00244395.jpg +Places365_test_00244411.jpg +Places365_test_00244462.jpg +Places365_test_00244467.jpg +Places365_test_00244497.jpg +Places365_test_00244514.jpg +Places365_test_00244517.jpg +Places365_test_00244527.jpg +Places365_test_00244536.jpg +Places365_test_00244538.jpg +Places365_test_00244555.jpg +Places365_test_00244560.jpg +Places365_test_00244564.jpg +Places365_test_00244569.jpg +Places365_test_00244579.jpg +Places365_test_00244586.jpg +Places365_test_00244606.jpg +Places365_test_00244618.jpg +Places365_test_00244645.jpg +Places365_test_00244649.jpg +Places365_test_00244651.jpg +Places365_test_00244657.jpg +Places365_test_00244660.jpg +Places365_test_00244663.jpg +Places365_test_00244671.jpg +Places365_test_00244696.jpg +Places365_test_00244702.jpg +Places365_test_00244710.jpg +Places365_test_00244711.jpg +Places365_test_00244712.jpg +Places365_test_00244717.jpg +Places365_test_00244718.jpg +Places365_test_00244768.jpg +Places365_test_00244773.jpg +Places365_test_00244782.jpg +Places365_test_00244791.jpg +Places365_test_00244808.jpg +Places365_test_00244821.jpg +Places365_test_00244822.jpg +Places365_test_00244854.jpg +Places365_test_00244867.jpg +Places365_test_00244876.jpg +Places365_test_00244878.jpg +Places365_test_00244903.jpg +Places365_test_00244914.jpg +Places365_test_00244949.jpg +Places365_test_00244951.jpg +Places365_test_00244952.jpg +Places365_test_00244956.jpg +Places365_test_00244958.jpg +Places365_test_00244976.jpg +Places365_test_00244977.jpg +Places365_test_00244985.jpg +Places365_test_00244993.jpg +Places365_test_00245017.jpg +Places365_test_00245027.jpg +Places365_test_00245033.jpg +Places365_test_00245071.jpg +Places365_test_00245077.jpg +Places365_test_00245082.jpg +Places365_test_00245097.jpg +Places365_test_00245098.jpg +Places365_test_00245112.jpg +Places365_test_00245117.jpg +Places365_test_00245118.jpg +Places365_test_00245145.jpg +Places365_test_00245150.jpg +Places365_test_00245152.jpg +Places365_test_00245189.jpg +Places365_test_00245197.jpg +Places365_test_00245220.jpg +Places365_test_00245240.jpg +Places365_test_00245242.jpg +Places365_test_00245264.jpg +Places365_test_00245267.jpg +Places365_test_00245283.jpg +Places365_test_00245308.jpg +Places365_test_00245313.jpg +Places365_test_00245316.jpg +Places365_test_00245346.jpg +Places365_test_00245353.jpg +Places365_test_00245354.jpg +Places365_test_00245378.jpg +Places365_test_00245404.jpg +Places365_test_00245414.jpg +Places365_test_00245415.jpg +Places365_test_00245424.jpg +Places365_test_00245433.jpg +Places365_test_00245439.jpg +Places365_test_00245460.jpg +Places365_test_00245481.jpg +Places365_test_00245513.jpg +Places365_test_00245530.jpg +Places365_test_00245533.jpg +Places365_test_00245534.jpg +Places365_test_00245548.jpg +Places365_test_00245555.jpg +Places365_test_00245560.jpg +Places365_test_00245568.jpg +Places365_test_00245576.jpg +Places365_test_00245583.jpg +Places365_test_00245599.jpg +Places365_test_00245610.jpg +Places365_test_00245614.jpg +Places365_test_00245646.jpg +Places365_test_00245654.jpg +Places365_test_00245660.jpg +Places365_test_00245677.jpg +Places365_test_00245687.jpg +Places365_test_00245691.jpg +Places365_test_00245705.jpg +Places365_test_00245708.jpg +Places365_test_00245730.jpg +Places365_test_00245757.jpg +Places365_test_00245766.jpg +Places365_test_00245805.jpg +Places365_test_00245809.jpg +Places365_test_00245828.jpg +Places365_test_00245834.jpg +Places365_test_00245840.jpg +Places365_test_00245846.jpg +Places365_test_00245856.jpg +Places365_test_00245857.jpg +Places365_test_00245859.jpg +Places365_test_00245860.jpg +Places365_test_00245871.jpg +Places365_test_00245902.jpg +Places365_test_00245907.jpg +Places365_test_00245918.jpg +Places365_test_00245934.jpg +Places365_test_00245949.jpg +Places365_test_00245950.jpg +Places365_test_00245953.jpg +Places365_test_00245963.jpg +Places365_test_00245984.jpg +Places365_test_00245985.jpg +Places365_test_00245992.jpg +Places365_test_00245994.jpg +Places365_test_00246025.jpg +Places365_test_00246034.jpg +Places365_test_00246039.jpg +Places365_test_00246060.jpg +Places365_test_00246089.jpg +Places365_test_00246093.jpg +Places365_test_00246112.jpg +Places365_test_00246114.jpg +Places365_test_00246131.jpg +Places365_test_00246136.jpg +Places365_test_00246182.jpg +Places365_test_00246183.jpg +Places365_test_00246185.jpg +Places365_test_00246188.jpg +Places365_test_00246209.jpg +Places365_test_00246223.jpg +Places365_test_00246224.jpg +Places365_test_00246227.jpg +Places365_test_00246239.jpg +Places365_test_00246263.jpg +Places365_test_00246277.jpg +Places365_test_00246302.jpg +Places365_test_00246304.jpg +Places365_test_00246320.jpg +Places365_test_00246321.jpg +Places365_test_00246325.jpg +Places365_test_00246328.jpg +Places365_test_00246329.jpg +Places365_test_00246336.jpg +Places365_test_00246342.jpg +Places365_test_00246345.jpg +Places365_test_00246358.jpg +Places365_test_00246362.jpg +Places365_test_00246365.jpg +Places365_test_00246373.jpg +Places365_test_00246386.jpg +Places365_test_00246390.jpg +Places365_test_00246394.jpg +Places365_test_00246421.jpg +Places365_test_00246430.jpg +Places365_test_00246431.jpg +Places365_test_00246446.jpg +Places365_test_00246458.jpg +Places365_test_00246462.jpg +Places365_test_00246467.jpg +Places365_test_00246468.jpg +Places365_test_00246470.jpg +Places365_test_00246494.jpg +Places365_test_00246500.jpg +Places365_test_00246510.jpg +Places365_test_00246515.jpg +Places365_test_00246518.jpg +Places365_test_00246520.jpg +Places365_test_00246521.jpg +Places365_test_00246544.jpg +Places365_test_00246561.jpg +Places365_test_00246575.jpg +Places365_test_00246579.jpg +Places365_test_00246590.jpg +Places365_test_00246597.jpg +Places365_test_00246607.jpg +Places365_test_00246609.jpg +Places365_test_00246611.jpg +Places365_test_00246620.jpg +Places365_test_00246623.jpg +Places365_test_00246634.jpg +Places365_test_00246650.jpg +Places365_test_00246659.jpg +Places365_test_00246662.jpg +Places365_test_00246674.jpg +Places365_test_00246677.jpg +Places365_test_00246722.jpg +Places365_test_00246725.jpg +Places365_test_00246729.jpg +Places365_test_00246742.jpg +Places365_test_00246761.jpg +Places365_test_00246781.jpg +Places365_test_00246803.jpg +Places365_test_00246811.jpg +Places365_test_00246823.jpg +Places365_test_00246836.jpg +Places365_test_00246843.jpg +Places365_test_00246849.jpg +Places365_test_00246864.jpg +Places365_test_00246873.jpg +Places365_test_00246875.jpg +Places365_test_00246876.jpg +Places365_test_00246889.jpg +Places365_test_00246901.jpg +Places365_test_00246916.jpg +Places365_test_00246920.jpg +Places365_test_00246925.jpg +Places365_test_00246939.jpg +Places365_test_00246944.jpg +Places365_test_00246945.jpg +Places365_test_00246958.jpg +Places365_test_00246963.jpg +Places365_test_00246965.jpg +Places365_test_00246980.jpg +Places365_test_00247013.jpg +Places365_test_00247033.jpg +Places365_test_00247047.jpg +Places365_test_00247048.jpg +Places365_test_00247056.jpg +Places365_test_00247063.jpg +Places365_test_00247072.jpg +Places365_test_00247080.jpg +Places365_test_00247090.jpg +Places365_test_00247102.jpg +Places365_test_00247103.jpg +Places365_test_00247108.jpg +Places365_test_00247115.jpg +Places365_test_00247139.jpg +Places365_test_00247158.jpg +Places365_test_00247169.jpg +Places365_test_00247170.jpg +Places365_test_00247175.jpg +Places365_test_00247179.jpg +Places365_test_00247183.jpg +Places365_test_00247206.jpg +Places365_test_00247210.jpg +Places365_test_00247211.jpg +Places365_test_00247214.jpg +Places365_test_00247220.jpg +Places365_test_00247227.jpg +Places365_test_00247233.jpg +Places365_test_00247239.jpg +Places365_test_00247241.jpg +Places365_test_00247247.jpg +Places365_test_00247269.jpg +Places365_test_00247288.jpg +Places365_test_00247308.jpg +Places365_test_00247328.jpg +Places365_test_00247342.jpg +Places365_test_00247344.jpg +Places365_test_00247347.jpg +Places365_test_00247350.jpg +Places365_test_00247352.jpg +Places365_test_00247360.jpg +Places365_test_00247365.jpg +Places365_test_00247367.jpg +Places365_test_00247374.jpg +Places365_test_00247379.jpg +Places365_test_00247391.jpg +Places365_test_00247404.jpg +Places365_test_00247417.jpg +Places365_test_00247419.jpg +Places365_test_00247420.jpg +Places365_test_00247422.jpg +Places365_test_00247423.jpg +Places365_test_00247426.jpg +Places365_test_00247436.jpg +Places365_test_00247465.jpg +Places365_test_00247471.jpg +Places365_test_00247487.jpg +Places365_test_00247495.jpg +Places365_test_00247500.jpg +Places365_test_00247516.jpg +Places365_test_00247521.jpg +Places365_test_00247549.jpg +Places365_test_00247557.jpg +Places365_test_00247558.jpg +Places365_test_00247564.jpg +Places365_test_00247569.jpg +Places365_test_00247577.jpg +Places365_test_00247580.jpg +Places365_test_00247612.jpg +Places365_test_00247618.jpg +Places365_test_00247621.jpg +Places365_test_00247634.jpg +Places365_test_00247642.jpg +Places365_test_00247651.jpg +Places365_test_00247655.jpg +Places365_test_00247661.jpg +Places365_test_00247667.jpg +Places365_test_00247671.jpg +Places365_test_00247679.jpg +Places365_test_00247685.jpg +Places365_test_00247691.jpg +Places365_test_00247692.jpg +Places365_test_00247695.jpg +Places365_test_00247696.jpg +Places365_test_00247726.jpg +Places365_test_00247731.jpg +Places365_test_00247739.jpg +Places365_test_00247743.jpg +Places365_test_00247750.jpg +Places365_test_00247753.jpg +Places365_test_00247777.jpg +Places365_test_00247783.jpg +Places365_test_00247786.jpg +Places365_test_00247811.jpg +Places365_test_00247825.jpg +Places365_test_00247827.jpg +Places365_test_00247834.jpg +Places365_test_00247836.jpg +Places365_test_00247847.jpg +Places365_test_00247849.jpg +Places365_test_00247857.jpg +Places365_test_00247864.jpg +Places365_test_00247882.jpg +Places365_test_00247887.jpg +Places365_test_00247888.jpg +Places365_test_00247889.jpg +Places365_test_00247904.jpg +Places365_test_00247911.jpg +Places365_test_00247925.jpg +Places365_test_00247957.jpg +Places365_test_00247963.jpg +Places365_test_00247973.jpg +Places365_test_00247976.jpg +Places365_test_00247977.jpg +Places365_test_00247986.jpg +Places365_test_00248001.jpg +Places365_test_00248013.jpg +Places365_test_00248014.jpg +Places365_test_00248015.jpg +Places365_test_00248023.jpg +Places365_test_00248038.jpg +Places365_test_00248043.jpg +Places365_test_00248047.jpg +Places365_test_00248067.jpg +Places365_test_00248081.jpg +Places365_test_00248113.jpg +Places365_test_00248159.jpg +Places365_test_00248163.jpg +Places365_test_00248166.jpg +Places365_test_00248177.jpg +Places365_test_00248193.jpg +Places365_test_00248220.jpg +Places365_test_00248243.jpg +Places365_test_00248244.jpg +Places365_test_00248246.jpg +Places365_test_00248247.jpg +Places365_test_00248249.jpg +Places365_test_00248260.jpg +Places365_test_00248278.jpg +Places365_test_00248300.jpg +Places365_test_00248316.jpg +Places365_test_00248333.jpg +Places365_test_00248343.jpg +Places365_test_00248355.jpg +Places365_test_00248370.jpg +Places365_test_00248408.jpg +Places365_test_00248415.jpg +Places365_test_00248418.jpg +Places365_test_00248427.jpg +Places365_test_00248428.jpg +Places365_test_00248431.jpg +Places365_test_00248447.jpg +Places365_test_00248458.jpg +Places365_test_00248464.jpg +Places365_test_00248465.jpg +Places365_test_00248467.jpg +Places365_test_00248482.jpg +Places365_test_00248491.jpg +Places365_test_00248494.jpg +Places365_test_00248527.jpg +Places365_test_00248539.jpg +Places365_test_00248543.jpg +Places365_test_00248573.jpg +Places365_test_00248607.jpg +Places365_test_00248624.jpg +Places365_test_00248626.jpg +Places365_test_00248628.jpg +Places365_test_00248629.jpg +Places365_test_00248648.jpg +Places365_test_00248655.jpg +Places365_test_00248673.jpg +Places365_test_00248679.jpg +Places365_test_00248680.jpg +Places365_test_00248698.jpg +Places365_test_00248703.jpg +Places365_test_00248717.jpg +Places365_test_00248731.jpg +Places365_test_00248767.jpg +Places365_test_00248792.jpg +Places365_test_00248796.jpg +Places365_test_00248806.jpg +Places365_test_00248831.jpg +Places365_test_00248835.jpg +Places365_test_00248841.jpg +Places365_test_00248855.jpg +Places365_test_00248862.jpg +Places365_test_00248868.jpg +Places365_test_00248879.jpg +Places365_test_00248886.jpg +Places365_test_00248898.jpg +Places365_test_00248899.jpg +Places365_test_00248902.jpg +Places365_test_00248904.jpg +Places365_test_00248919.jpg +Places365_test_00248941.jpg +Places365_test_00248944.jpg +Places365_test_00248956.jpg +Places365_test_00248960.jpg +Places365_test_00248966.jpg +Places365_test_00248983.jpg +Places365_test_00248985.jpg +Places365_test_00248988.jpg +Places365_test_00248999.jpg +Places365_test_00249001.jpg +Places365_test_00249004.jpg +Places365_test_00249014.jpg +Places365_test_00249037.jpg +Places365_test_00249043.jpg +Places365_test_00249051.jpg +Places365_test_00249059.jpg +Places365_test_00249067.jpg +Places365_test_00249084.jpg +Places365_test_00249102.jpg +Places365_test_00249107.jpg +Places365_test_00249120.jpg +Places365_test_00249160.jpg +Places365_test_00249185.jpg +Places365_test_00249208.jpg +Places365_test_00249215.jpg +Places365_test_00249223.jpg +Places365_test_00249224.jpg +Places365_test_00249225.jpg +Places365_test_00249227.jpg +Places365_test_00249244.jpg +Places365_test_00249255.jpg +Places365_test_00249256.jpg +Places365_test_00249265.jpg +Places365_test_00249288.jpg +Places365_test_00249296.jpg +Places365_test_00249317.jpg +Places365_test_00249323.jpg +Places365_test_00249333.jpg +Places365_test_00249338.jpg +Places365_test_00249358.jpg +Places365_test_00249372.jpg +Places365_test_00249408.jpg +Places365_test_00249411.jpg +Places365_test_00249420.jpg +Places365_test_00249421.jpg +Places365_test_00249425.jpg +Places365_test_00249435.jpg +Places365_test_00249447.jpg +Places365_test_00249456.jpg +Places365_test_00249463.jpg +Places365_test_00249472.jpg +Places365_test_00249473.jpg +Places365_test_00249496.jpg +Places365_test_00249507.jpg +Places365_test_00249514.jpg +Places365_test_00249516.jpg +Places365_test_00249519.jpg +Places365_test_00249523.jpg +Places365_test_00249527.jpg +Places365_test_00249539.jpg +Places365_test_00249541.jpg +Places365_test_00249560.jpg +Places365_test_00249567.jpg +Places365_test_00249569.jpg +Places365_test_00249578.jpg +Places365_test_00249628.jpg +Places365_test_00249641.jpg +Places365_test_00249654.jpg +Places365_test_00249680.jpg +Places365_test_00249685.jpg +Places365_test_00249688.jpg +Places365_test_00249692.jpg +Places365_test_00249695.jpg +Places365_test_00249716.jpg +Places365_test_00249724.jpg +Places365_test_00249735.jpg +Places365_test_00249737.jpg +Places365_test_00249753.jpg +Places365_test_00249807.jpg +Places365_test_00249824.jpg +Places365_test_00249851.jpg +Places365_test_00249878.jpg +Places365_test_00249882.jpg +Places365_test_00249892.jpg +Places365_test_00249896.jpg +Places365_test_00249900.jpg +Places365_test_00249904.jpg +Places365_test_00249914.jpg +Places365_test_00249918.jpg +Places365_test_00249927.jpg +Places365_test_00249937.jpg +Places365_test_00249952.jpg +Places365_test_00249978.jpg +Places365_test_00249981.jpg +Places365_test_00249984.jpg +Places365_test_00249992.jpg +Places365_test_00249996.jpg +Places365_test_00250022.jpg +Places365_test_00250027.jpg +Places365_test_00250035.jpg +Places365_test_00250037.jpg +Places365_test_00250053.jpg +Places365_test_00250070.jpg +Places365_test_00250106.jpg +Places365_test_00250118.jpg +Places365_test_00250119.jpg +Places365_test_00250128.jpg +Places365_test_00250138.jpg +Places365_test_00250141.jpg +Places365_test_00250155.jpg +Places365_test_00250189.jpg +Places365_test_00250202.jpg +Places365_test_00250204.jpg +Places365_test_00250231.jpg +Places365_test_00250241.jpg +Places365_test_00250246.jpg +Places365_test_00250249.jpg +Places365_test_00250256.jpg +Places365_test_00250258.jpg +Places365_test_00250265.jpg +Places365_test_00250280.jpg +Places365_test_00250282.jpg +Places365_test_00250289.jpg +Places365_test_00250293.jpg +Places365_test_00250305.jpg +Places365_test_00250382.jpg +Places365_test_00250385.jpg +Places365_test_00250393.jpg +Places365_test_00250394.jpg +Places365_test_00250402.jpg +Places365_test_00250414.jpg +Places365_test_00250415.jpg +Places365_test_00250420.jpg +Places365_test_00250440.jpg +Places365_test_00250463.jpg +Places365_test_00250477.jpg +Places365_test_00250478.jpg +Places365_test_00250480.jpg +Places365_test_00250491.jpg +Places365_test_00250493.jpg +Places365_test_00250512.jpg +Places365_test_00250514.jpg +Places365_test_00250516.jpg +Places365_test_00250517.jpg +Places365_test_00250520.jpg +Places365_test_00250549.jpg +Places365_test_00250561.jpg +Places365_test_00250567.jpg +Places365_test_00250568.jpg +Places365_test_00250589.jpg +Places365_test_00250609.jpg +Places365_test_00250614.jpg +Places365_test_00250617.jpg +Places365_test_00250627.jpg +Places365_test_00250632.jpg +Places365_test_00250642.jpg +Places365_test_00250670.jpg +Places365_test_00250675.jpg +Places365_test_00250700.jpg +Places365_test_00250702.jpg +Places365_test_00250703.jpg +Places365_test_00250707.jpg +Places365_test_00250709.jpg +Places365_test_00250713.jpg +Places365_test_00250718.jpg +Places365_test_00250720.jpg +Places365_test_00250735.jpg +Places365_test_00250745.jpg +Places365_test_00250774.jpg +Places365_test_00250779.jpg +Places365_test_00250790.jpg +Places365_test_00250808.jpg +Places365_test_00250810.jpg +Places365_test_00250821.jpg +Places365_test_00250827.jpg +Places365_test_00250843.jpg +Places365_test_00250845.jpg +Places365_test_00250852.jpg +Places365_test_00250871.jpg +Places365_test_00250873.jpg +Places365_test_00250877.jpg +Places365_test_00250881.jpg +Places365_test_00250886.jpg +Places365_test_00250887.jpg +Places365_test_00250920.jpg +Places365_test_00250939.jpg +Places365_test_00250940.jpg +Places365_test_00250954.jpg +Places365_test_00250957.jpg +Places365_test_00250959.jpg +Places365_test_00250979.jpg +Places365_test_00250983.jpg +Places365_test_00250991.jpg +Places365_test_00250993.jpg +Places365_test_00250997.jpg +Places365_test_00251013.jpg +Places365_test_00251020.jpg +Places365_test_00251029.jpg +Places365_test_00251033.jpg +Places365_test_00251041.jpg +Places365_test_00251043.jpg +Places365_test_00251064.jpg +Places365_test_00251077.jpg +Places365_test_00251080.jpg +Places365_test_00251091.jpg +Places365_test_00251096.jpg +Places365_test_00251109.jpg +Places365_test_00251150.jpg +Places365_test_00251151.jpg +Places365_test_00251159.jpg +Places365_test_00251172.jpg +Places365_test_00251176.jpg +Places365_test_00251183.jpg +Places365_test_00251194.jpg +Places365_test_00251248.jpg +Places365_test_00251249.jpg +Places365_test_00251289.jpg +Places365_test_00251290.jpg +Places365_test_00251291.jpg +Places365_test_00251301.jpg +Places365_test_00251304.jpg +Places365_test_00251308.jpg +Places365_test_00251318.jpg +Places365_test_00251323.jpg +Places365_test_00251327.jpg +Places365_test_00251340.jpg +Places365_test_00251349.jpg +Places365_test_00251360.jpg +Places365_test_00251368.jpg +Places365_test_00251373.jpg +Places365_test_00251379.jpg +Places365_test_00251388.jpg +Places365_test_00251392.jpg +Places365_test_00251403.jpg +Places365_test_00251404.jpg +Places365_test_00251408.jpg +Places365_test_00251423.jpg +Places365_test_00251438.jpg +Places365_test_00251439.jpg +Places365_test_00251447.jpg +Places365_test_00251452.jpg +Places365_test_00251469.jpg +Places365_test_00251470.jpg +Places365_test_00251472.jpg +Places365_test_00251475.jpg +Places365_test_00251487.jpg +Places365_test_00251501.jpg +Places365_test_00251505.jpg +Places365_test_00251507.jpg +Places365_test_00251512.jpg +Places365_test_00251521.jpg +Places365_test_00251529.jpg +Places365_test_00251546.jpg +Places365_test_00251569.jpg +Places365_test_00251571.jpg +Places365_test_00251573.jpg +Places365_test_00251582.jpg +Places365_test_00251595.jpg +Places365_test_00251614.jpg +Places365_test_00251644.jpg +Places365_test_00251646.jpg +Places365_test_00251652.jpg +Places365_test_00251671.jpg +Places365_test_00251677.jpg +Places365_test_00251690.jpg +Places365_test_00251705.jpg +Places365_test_00251714.jpg +Places365_test_00251746.jpg +Places365_test_00251758.jpg +Places365_test_00251781.jpg +Places365_test_00251819.jpg +Places365_test_00251824.jpg +Places365_test_00251836.jpg +Places365_test_00251838.jpg +Places365_test_00251849.jpg +Places365_test_00251851.jpg +Places365_test_00251910.jpg +Places365_test_00251931.jpg +Places365_test_00251951.jpg +Places365_test_00251956.jpg +Places365_test_00251961.jpg +Places365_test_00251963.jpg +Places365_test_00251964.jpg +Places365_test_00251974.jpg +Places365_test_00251981.jpg +Places365_test_00251984.jpg +Places365_test_00251990.jpg +Places365_test_00251996.jpg +Places365_test_00252007.jpg +Places365_test_00252012.jpg +Places365_test_00252013.jpg +Places365_test_00252020.jpg +Places365_test_00252043.jpg +Places365_test_00252047.jpg +Places365_test_00252104.jpg +Places365_test_00252129.jpg +Places365_test_00252143.jpg +Places365_test_00252181.jpg +Places365_test_00252191.jpg +Places365_test_00252192.jpg +Places365_test_00252197.jpg +Places365_test_00252200.jpg +Places365_test_00252210.jpg +Places365_test_00252215.jpg +Places365_test_00252234.jpg +Places365_test_00252241.jpg +Places365_test_00252262.jpg +Places365_test_00252288.jpg +Places365_test_00252293.jpg +Places365_test_00252294.jpg +Places365_test_00252309.jpg +Places365_test_00252312.jpg +Places365_test_00252324.jpg +Places365_test_00252329.jpg +Places365_test_00252339.jpg +Places365_test_00252347.jpg +Places365_test_00252366.jpg +Places365_test_00252369.jpg +Places365_test_00252370.jpg +Places365_test_00252389.jpg +Places365_test_00252401.jpg +Places365_test_00252409.jpg +Places365_test_00252411.jpg +Places365_test_00252416.jpg +Places365_test_00252424.jpg +Places365_test_00252430.jpg +Places365_test_00252442.jpg +Places365_test_00252458.jpg +Places365_test_00252462.jpg +Places365_test_00252484.jpg +Places365_test_00252492.jpg +Places365_test_00252494.jpg +Places365_test_00252496.jpg +Places365_test_00252497.jpg +Places365_test_00252508.jpg +Places365_test_00252509.jpg +Places365_test_00252512.jpg +Places365_test_00252534.jpg +Places365_test_00252537.jpg +Places365_test_00252539.jpg +Places365_test_00252546.jpg +Places365_test_00252547.jpg +Places365_test_00252553.jpg +Places365_test_00252560.jpg +Places365_test_00252574.jpg +Places365_test_00252586.jpg +Places365_test_00252612.jpg +Places365_test_00252622.jpg +Places365_test_00252640.jpg +Places365_test_00252645.jpg +Places365_test_00252658.jpg +Places365_test_00252665.jpg +Places365_test_00252673.jpg +Places365_test_00252680.jpg +Places365_test_00252697.jpg +Places365_test_00252704.jpg +Places365_test_00252709.jpg +Places365_test_00252712.jpg +Places365_test_00252714.jpg +Places365_test_00252726.jpg +Places365_test_00252739.jpg +Places365_test_00252757.jpg +Places365_test_00252762.jpg +Places365_test_00252763.jpg +Places365_test_00252765.jpg +Places365_test_00252771.jpg +Places365_test_00252773.jpg +Places365_test_00252777.jpg +Places365_test_00252791.jpg +Places365_test_00252812.jpg +Places365_test_00252833.jpg +Places365_test_00252870.jpg +Places365_test_00252883.jpg +Places365_test_00252886.jpg +Places365_test_00252903.jpg +Places365_test_00252926.jpg +Places365_test_00252927.jpg +Places365_test_00252937.jpg +Places365_test_00252950.jpg +Places365_test_00252961.jpg +Places365_test_00252962.jpg +Places365_test_00252963.jpg +Places365_test_00252971.jpg +Places365_test_00252979.jpg +Places365_test_00252981.jpg +Places365_test_00252989.jpg +Places365_test_00252999.jpg +Places365_test_00253001.jpg +Places365_test_00253004.jpg +Places365_test_00253015.jpg +Places365_test_00253016.jpg +Places365_test_00253018.jpg +Places365_test_00253028.jpg +Places365_test_00253031.jpg +Places365_test_00253033.jpg +Places365_test_00253036.jpg +Places365_test_00253056.jpg +Places365_test_00253059.jpg +Places365_test_00253084.jpg +Places365_test_00253089.jpg +Places365_test_00253112.jpg +Places365_test_00253114.jpg +Places365_test_00253127.jpg +Places365_test_00253130.jpg +Places365_test_00253131.jpg +Places365_test_00253136.jpg +Places365_test_00253138.jpg +Places365_test_00253144.jpg +Places365_test_00253177.jpg +Places365_test_00253178.jpg +Places365_test_00253187.jpg +Places365_test_00253208.jpg +Places365_test_00253248.jpg +Places365_test_00253250.jpg +Places365_test_00253265.jpg +Places365_test_00253284.jpg +Places365_test_00253285.jpg +Places365_test_00253286.jpg +Places365_test_00253287.jpg +Places365_test_00253300.jpg +Places365_test_00253323.jpg +Places365_test_00253336.jpg +Places365_test_00253340.jpg +Places365_test_00253345.jpg +Places365_test_00253351.jpg +Places365_test_00253361.jpg +Places365_test_00253410.jpg +Places365_test_00253414.jpg +Places365_test_00253417.jpg +Places365_test_00253418.jpg +Places365_test_00253429.jpg +Places365_test_00253433.jpg +Places365_test_00253436.jpg +Places365_test_00253458.jpg +Places365_test_00253459.jpg +Places365_test_00253465.jpg +Places365_test_00253467.jpg +Places365_test_00253469.jpg +Places365_test_00253489.jpg +Places365_test_00253494.jpg +Places365_test_00253514.jpg +Places365_test_00253518.jpg +Places365_test_00253522.jpg +Places365_test_00253528.jpg +Places365_test_00253537.jpg +Places365_test_00253556.jpg +Places365_test_00253559.jpg +Places365_test_00253581.jpg +Places365_test_00253606.jpg +Places365_test_00253614.jpg +Places365_test_00253619.jpg +Places365_test_00253621.jpg +Places365_test_00253638.jpg +Places365_test_00253655.jpg +Places365_test_00253675.jpg +Places365_test_00253681.jpg +Places365_test_00253693.jpg +Places365_test_00253695.jpg +Places365_test_00253725.jpg +Places365_test_00253726.jpg +Places365_test_00253738.jpg +Places365_test_00253749.jpg +Places365_test_00253752.jpg +Places365_test_00253767.jpg +Places365_test_00253769.jpg +Places365_test_00253773.jpg +Places365_test_00253775.jpg +Places365_test_00253792.jpg +Places365_test_00253807.jpg +Places365_test_00253808.jpg +Places365_test_00253809.jpg +Places365_test_00253816.jpg +Places365_test_00253849.jpg +Places365_test_00253859.jpg +Places365_test_00253867.jpg +Places365_test_00253874.jpg +Places365_test_00253892.jpg +Places365_test_00253901.jpg +Places365_test_00253904.jpg +Places365_test_00253928.jpg +Places365_test_00253933.jpg +Places365_test_00253948.jpg +Places365_test_00253956.jpg +Places365_test_00253967.jpg +Places365_test_00253974.jpg +Places365_test_00253979.jpg +Places365_test_00254017.jpg +Places365_test_00254024.jpg +Places365_test_00254035.jpg +Places365_test_00254050.jpg +Places365_test_00254053.jpg +Places365_test_00254057.jpg +Places365_test_00254066.jpg +Places365_test_00254069.jpg +Places365_test_00254079.jpg +Places365_test_00254094.jpg +Places365_test_00254106.jpg +Places365_test_00254136.jpg +Places365_test_00254141.jpg +Places365_test_00254172.jpg +Places365_test_00254175.jpg +Places365_test_00254177.jpg +Places365_test_00254202.jpg +Places365_test_00254216.jpg +Places365_test_00254221.jpg +Places365_test_00254230.jpg +Places365_test_00254233.jpg +Places365_test_00254243.jpg +Places365_test_00254264.jpg +Places365_test_00254277.jpg +Places365_test_00254287.jpg +Places365_test_00254290.jpg +Places365_test_00254301.jpg +Places365_test_00254326.jpg +Places365_test_00254333.jpg +Places365_test_00254338.jpg +Places365_test_00254367.jpg +Places365_test_00254374.jpg +Places365_test_00254377.jpg +Places365_test_00254378.jpg +Places365_test_00254391.jpg +Places365_test_00254393.jpg +Places365_test_00254416.jpg +Places365_test_00254429.jpg +Places365_test_00254442.jpg +Places365_test_00254445.jpg +Places365_test_00254454.jpg +Places365_test_00254461.jpg +Places365_test_00254464.jpg +Places365_test_00254466.jpg +Places365_test_00254504.jpg +Places365_test_00254515.jpg +Places365_test_00254517.jpg +Places365_test_00254564.jpg +Places365_test_00254576.jpg +Places365_test_00254619.jpg +Places365_test_00254645.jpg +Places365_test_00254675.jpg +Places365_test_00254688.jpg +Places365_test_00254697.jpg +Places365_test_00254704.jpg +Places365_test_00254706.jpg +Places365_test_00254719.jpg +Places365_test_00254734.jpg +Places365_test_00254745.jpg +Places365_test_00254749.jpg +Places365_test_00254758.jpg +Places365_test_00254765.jpg +Places365_test_00254782.jpg +Places365_test_00254797.jpg +Places365_test_00254803.jpg +Places365_test_00254808.jpg +Places365_test_00254825.jpg +Places365_test_00254843.jpg +Places365_test_00254850.jpg +Places365_test_00254854.jpg +Places365_test_00254855.jpg +Places365_test_00254858.jpg +Places365_test_00254870.jpg +Places365_test_00254873.jpg +Places365_test_00254895.jpg +Places365_test_00254904.jpg +Places365_test_00254923.jpg +Places365_test_00254937.jpg +Places365_test_00254951.jpg +Places365_test_00254957.jpg +Places365_test_00254967.jpg +Places365_test_00254987.jpg +Places365_test_00254999.jpg +Places365_test_00255000.jpg +Places365_test_00255002.jpg +Places365_test_00255014.jpg +Places365_test_00255023.jpg +Places365_test_00255072.jpg +Places365_test_00255088.jpg +Places365_test_00255098.jpg +Places365_test_00255103.jpg +Places365_test_00255111.jpg +Places365_test_00255115.jpg +Places365_test_00255128.jpg +Places365_test_00255129.jpg +Places365_test_00255132.jpg +Places365_test_00255135.jpg +Places365_test_00255142.jpg +Places365_test_00255143.jpg +Places365_test_00255144.jpg +Places365_test_00255168.jpg +Places365_test_00255178.jpg +Places365_test_00255222.jpg +Places365_test_00255247.jpg +Places365_test_00255248.jpg +Places365_test_00255250.jpg +Places365_test_00255260.jpg +Places365_test_00255264.jpg +Places365_test_00255268.jpg +Places365_test_00255279.jpg +Places365_test_00255303.jpg +Places365_test_00255313.jpg +Places365_test_00255318.jpg +Places365_test_00255320.jpg +Places365_test_00255337.jpg +Places365_test_00255342.jpg +Places365_test_00255351.jpg +Places365_test_00255359.jpg +Places365_test_00255377.jpg +Places365_test_00255378.jpg +Places365_test_00255394.jpg +Places365_test_00255403.jpg +Places365_test_00255433.jpg +Places365_test_00255445.jpg +Places365_test_00255462.jpg +Places365_test_00255475.jpg +Places365_test_00255482.jpg +Places365_test_00255487.jpg +Places365_test_00255492.jpg +Places365_test_00255495.jpg +Places365_test_00255499.jpg +Places365_test_00255510.jpg +Places365_test_00255511.jpg +Places365_test_00255520.jpg +Places365_test_00255523.jpg +Places365_test_00255524.jpg +Places365_test_00255531.jpg +Places365_test_00255538.jpg +Places365_test_00255555.jpg +Places365_test_00255579.jpg +Places365_test_00255592.jpg +Places365_test_00255613.jpg +Places365_test_00255637.jpg +Places365_test_00255667.jpg +Places365_test_00255674.jpg +Places365_test_00255686.jpg +Places365_test_00255692.jpg +Places365_test_00255696.jpg +Places365_test_00255698.jpg +Places365_test_00255699.jpg +Places365_test_00255712.jpg +Places365_test_00255722.jpg +Places365_test_00255726.jpg +Places365_test_00255741.jpg +Places365_test_00255756.jpg +Places365_test_00255775.jpg +Places365_test_00255780.jpg +Places365_test_00255783.jpg +Places365_test_00255789.jpg +Places365_test_00255792.jpg +Places365_test_00255795.jpg +Places365_test_00255803.jpg +Places365_test_00255811.jpg +Places365_test_00255818.jpg +Places365_test_00255832.jpg +Places365_test_00255837.jpg +Places365_test_00255857.jpg +Places365_test_00255876.jpg +Places365_test_00255878.jpg +Places365_test_00255897.jpg +Places365_test_00255902.jpg +Places365_test_00255930.jpg +Places365_test_00255937.jpg +Places365_test_00255947.jpg +Places365_test_00255955.jpg +Places365_test_00255982.jpg +Places365_test_00255994.jpg +Places365_test_00256017.jpg +Places365_test_00256029.jpg +Places365_test_00256048.jpg +Places365_test_00256051.jpg +Places365_test_00256055.jpg +Places365_test_00256061.jpg +Places365_test_00256063.jpg +Places365_test_00256069.jpg +Places365_test_00256077.jpg +Places365_test_00256091.jpg +Places365_test_00256092.jpg +Places365_test_00256102.jpg +Places365_test_00256105.jpg +Places365_test_00256106.jpg +Places365_test_00256123.jpg +Places365_test_00256124.jpg +Places365_test_00256130.jpg +Places365_test_00256156.jpg +Places365_test_00256162.jpg +Places365_test_00256172.jpg +Places365_test_00256173.jpg +Places365_test_00256189.jpg +Places365_test_00256191.jpg +Places365_test_00256198.jpg +Places365_test_00256203.jpg +Places365_test_00256205.jpg +Places365_test_00256218.jpg +Places365_test_00256229.jpg +Places365_test_00256232.jpg +Places365_test_00256235.jpg +Places365_test_00256245.jpg +Places365_test_00256258.jpg +Places365_test_00256271.jpg +Places365_test_00256277.jpg +Places365_test_00256281.jpg +Places365_test_00256288.jpg +Places365_test_00256299.jpg +Places365_test_00256301.jpg +Places365_test_00256323.jpg +Places365_test_00256326.jpg +Places365_test_00256343.jpg +Places365_test_00256344.jpg +Places365_test_00256424.jpg +Places365_test_00256454.jpg +Places365_test_00256474.jpg +Places365_test_00256476.jpg +Places365_test_00256506.jpg +Places365_test_00256509.jpg +Places365_test_00256531.jpg +Places365_test_00256546.jpg +Places365_test_00256558.jpg +Places365_test_00256565.jpg +Places365_test_00256572.jpg +Places365_test_00256573.jpg +Places365_test_00256584.jpg +Places365_test_00256590.jpg +Places365_test_00256592.jpg +Places365_test_00256604.jpg +Places365_test_00256611.jpg +Places365_test_00256615.jpg +Places365_test_00256621.jpg +Places365_test_00256636.jpg +Places365_test_00256637.jpg +Places365_test_00256652.jpg +Places365_test_00256656.jpg +Places365_test_00256670.jpg +Places365_test_00256687.jpg +Places365_test_00256699.jpg +Places365_test_00256701.jpg +Places365_test_00256706.jpg +Places365_test_00256714.jpg +Places365_test_00256722.jpg +Places365_test_00256737.jpg +Places365_test_00256745.jpg +Places365_test_00256762.jpg +Places365_test_00256766.jpg +Places365_test_00256770.jpg +Places365_test_00256782.jpg +Places365_test_00256799.jpg +Places365_test_00256800.jpg +Places365_test_00256807.jpg +Places365_test_00256815.jpg +Places365_test_00256838.jpg +Places365_test_00256849.jpg +Places365_test_00256850.jpg +Places365_test_00256853.jpg +Places365_test_00256866.jpg +Places365_test_00256880.jpg +Places365_test_00256889.jpg +Places365_test_00256898.jpg +Places365_test_00256901.jpg +Places365_test_00256905.jpg +Places365_test_00256936.jpg +Places365_test_00256949.jpg +Places365_test_00256955.jpg +Places365_test_00256957.jpg +Places365_test_00256960.jpg +Places365_test_00256962.jpg +Places365_test_00256968.jpg +Places365_test_00257006.jpg +Places365_test_00257018.jpg +Places365_test_00257019.jpg +Places365_test_00257025.jpg +Places365_test_00257027.jpg +Places365_test_00257043.jpg +Places365_test_00257045.jpg +Places365_test_00257048.jpg +Places365_test_00257050.jpg +Places365_test_00257060.jpg +Places365_test_00257082.jpg +Places365_test_00257090.jpg +Places365_test_00257116.jpg +Places365_test_00257125.jpg +Places365_test_00257131.jpg +Places365_test_00257133.jpg +Places365_test_00257137.jpg +Places365_test_00257164.jpg +Places365_test_00257176.jpg +Places365_test_00257186.jpg +Places365_test_00257206.jpg +Places365_test_00257211.jpg +Places365_test_00257242.jpg +Places365_test_00257250.jpg +Places365_test_00257254.jpg +Places365_test_00257258.jpg +Places365_test_00257275.jpg +Places365_test_00257282.jpg +Places365_test_00257303.jpg +Places365_test_00257312.jpg +Places365_test_00257319.jpg +Places365_test_00257330.jpg +Places365_test_00257342.jpg +Places365_test_00257348.jpg +Places365_test_00257354.jpg +Places365_test_00257374.jpg +Places365_test_00257386.jpg +Places365_test_00257394.jpg +Places365_test_00257395.jpg +Places365_test_00257405.jpg +Places365_test_00257406.jpg +Places365_test_00257417.jpg +Places365_test_00257426.jpg +Places365_test_00257442.jpg +Places365_test_00257449.jpg +Places365_test_00257468.jpg +Places365_test_00257477.jpg +Places365_test_00257478.jpg +Places365_test_00257492.jpg +Places365_test_00257499.jpg +Places365_test_00257520.jpg +Places365_test_00257525.jpg +Places365_test_00257544.jpg +Places365_test_00257554.jpg +Places365_test_00257556.jpg +Places365_test_00257557.jpg +Places365_test_00257600.jpg +Places365_test_00257625.jpg +Places365_test_00257651.jpg +Places365_test_00257653.jpg +Places365_test_00257685.jpg +Places365_test_00257688.jpg +Places365_test_00257697.jpg +Places365_test_00257717.jpg +Places365_test_00257732.jpg +Places365_test_00257763.jpg +Places365_test_00257786.jpg +Places365_test_00257811.jpg +Places365_test_00257832.jpg +Places365_test_00257834.jpg +Places365_test_00257862.jpg +Places365_test_00257867.jpg +Places365_test_00257877.jpg +Places365_test_00257888.jpg +Places365_test_00257916.jpg +Places365_test_00257920.jpg +Places365_test_00257925.jpg +Places365_test_00257929.jpg +Places365_test_00257932.jpg +Places365_test_00257935.jpg +Places365_test_00257945.jpg +Places365_test_00257952.jpg +Places365_test_00257955.jpg +Places365_test_00257956.jpg +Places365_test_00257971.jpg +Places365_test_00257973.jpg +Places365_test_00257986.jpg +Places365_test_00257993.jpg +Places365_test_00258002.jpg +Places365_test_00258005.jpg +Places365_test_00258011.jpg +Places365_test_00258012.jpg +Places365_test_00258030.jpg +Places365_test_00258036.jpg +Places365_test_00258038.jpg +Places365_test_00258049.jpg +Places365_test_00258053.jpg +Places365_test_00258058.jpg +Places365_test_00258066.jpg +Places365_test_00258070.jpg +Places365_test_00258073.jpg +Places365_test_00258079.jpg +Places365_test_00258094.jpg +Places365_test_00258101.jpg +Places365_test_00258110.jpg +Places365_test_00258116.jpg +Places365_test_00258123.jpg +Places365_test_00258127.jpg +Places365_test_00258134.jpg +Places365_test_00258139.jpg +Places365_test_00258155.jpg +Places365_test_00258158.jpg +Places365_test_00258173.jpg +Places365_test_00258174.jpg +Places365_test_00258176.jpg +Places365_test_00258180.jpg +Places365_test_00258184.jpg +Places365_test_00258190.jpg +Places365_test_00258210.jpg +Places365_test_00258222.jpg +Places365_test_00258234.jpg +Places365_test_00258238.jpg +Places365_test_00258244.jpg +Places365_test_00258256.jpg +Places365_test_00258273.jpg +Places365_test_00258280.jpg +Places365_test_00258284.jpg +Places365_test_00258287.jpg +Places365_test_00258298.jpg +Places365_test_00258303.jpg +Places365_test_00258333.jpg +Places365_test_00258345.jpg +Places365_test_00258351.jpg +Places365_test_00258356.jpg +Places365_test_00258361.jpg +Places365_test_00258376.jpg +Places365_test_00258395.jpg +Places365_test_00258404.jpg +Places365_test_00258410.jpg +Places365_test_00258411.jpg +Places365_test_00258421.jpg +Places365_test_00258437.jpg +Places365_test_00258450.jpg +Places365_test_00258454.jpg +Places365_test_00258469.jpg +Places365_test_00258483.jpg +Places365_test_00258487.jpg +Places365_test_00258488.jpg +Places365_test_00258489.jpg +Places365_test_00258506.jpg +Places365_test_00258515.jpg +Places365_test_00258559.jpg +Places365_test_00258587.jpg +Places365_test_00258601.jpg +Places365_test_00258603.jpg +Places365_test_00258626.jpg +Places365_test_00258630.jpg +Places365_test_00258632.jpg +Places365_test_00258646.jpg +Places365_test_00258666.jpg +Places365_test_00258667.jpg +Places365_test_00258670.jpg +Places365_test_00258697.jpg +Places365_test_00258707.jpg +Places365_test_00258744.jpg +Places365_test_00258772.jpg +Places365_test_00258776.jpg +Places365_test_00258778.jpg +Places365_test_00258804.jpg +Places365_test_00258813.jpg +Places365_test_00258820.jpg +Places365_test_00258827.jpg +Places365_test_00258841.jpg +Places365_test_00258843.jpg +Places365_test_00258862.jpg +Places365_test_00258865.jpg +Places365_test_00258868.jpg +Places365_test_00258882.jpg +Places365_test_00258897.jpg +Places365_test_00258911.jpg +Places365_test_00258918.jpg +Places365_test_00258936.jpg +Places365_test_00258938.jpg +Places365_test_00259012.jpg +Places365_test_00259016.jpg +Places365_test_00259048.jpg +Places365_test_00259057.jpg +Places365_test_00259067.jpg +Places365_test_00259069.jpg +Places365_test_00259076.jpg +Places365_test_00259086.jpg +Places365_test_00259094.jpg +Places365_test_00259113.jpg +Places365_test_00259114.jpg +Places365_test_00259117.jpg +Places365_test_00259130.jpg +Places365_test_00259140.jpg +Places365_test_00259146.jpg +Places365_test_00259152.jpg +Places365_test_00259153.jpg +Places365_test_00259161.jpg +Places365_test_00259172.jpg +Places365_test_00259174.jpg +Places365_test_00259175.jpg +Places365_test_00259194.jpg +Places365_test_00259195.jpg +Places365_test_00259202.jpg +Places365_test_00259232.jpg +Places365_test_00259243.jpg +Places365_test_00259253.jpg +Places365_test_00259260.jpg +Places365_test_00259262.jpg +Places365_test_00259278.jpg +Places365_test_00259295.jpg +Places365_test_00259306.jpg +Places365_test_00259330.jpg +Places365_test_00259332.jpg +Places365_test_00259336.jpg +Places365_test_00259340.jpg +Places365_test_00259348.jpg +Places365_test_00259364.jpg +Places365_test_00259366.jpg +Places365_test_00259391.jpg +Places365_test_00259418.jpg +Places365_test_00259429.jpg +Places365_test_00259439.jpg +Places365_test_00259443.jpg +Places365_test_00259444.jpg +Places365_test_00259461.jpg +Places365_test_00259464.jpg +Places365_test_00259472.jpg +Places365_test_00259479.jpg +Places365_test_00259493.jpg +Places365_test_00259499.jpg +Places365_test_00259526.jpg +Places365_test_00259530.jpg +Places365_test_00259534.jpg +Places365_test_00259535.jpg +Places365_test_00259542.jpg +Places365_test_00259549.jpg +Places365_test_00259582.jpg +Places365_test_00259611.jpg +Places365_test_00259617.jpg +Places365_test_00259632.jpg +Places365_test_00259656.jpg +Places365_test_00259660.jpg +Places365_test_00259661.jpg +Places365_test_00259664.jpg +Places365_test_00259669.jpg +Places365_test_00259687.jpg +Places365_test_00259696.jpg +Places365_test_00259701.jpg +Places365_test_00259733.jpg +Places365_test_00259738.jpg +Places365_test_00259741.jpg +Places365_test_00259753.jpg +Places365_test_00259759.jpg +Places365_test_00259770.jpg +Places365_test_00259772.jpg +Places365_test_00259779.jpg +Places365_test_00259782.jpg +Places365_test_00259808.jpg +Places365_test_00259822.jpg +Places365_test_00259830.jpg +Places365_test_00259856.jpg +Places365_test_00259861.jpg +Places365_test_00259870.jpg +Places365_test_00259881.jpg +Places365_test_00259883.jpg +Places365_test_00259885.jpg +Places365_test_00259890.jpg +Places365_test_00259898.jpg +Places365_test_00259909.jpg +Places365_test_00259918.jpg +Places365_test_00259939.jpg +Places365_test_00259968.jpg +Places365_test_00259979.jpg +Places365_test_00259983.jpg +Places365_test_00259988.jpg +Places365_test_00260000.jpg +Places365_test_00260004.jpg +Places365_test_00260006.jpg +Places365_test_00260012.jpg +Places365_test_00260018.jpg +Places365_test_00260024.jpg +Places365_test_00260028.jpg +Places365_test_00260030.jpg +Places365_test_00260052.jpg +Places365_test_00260059.jpg +Places365_test_00260067.jpg +Places365_test_00260084.jpg +Places365_test_00260086.jpg +Places365_test_00260106.jpg +Places365_test_00260114.jpg +Places365_test_00260123.jpg +Places365_test_00260124.jpg +Places365_test_00260142.jpg +Places365_test_00260145.jpg +Places365_test_00260156.jpg +Places365_test_00260167.jpg +Places365_test_00260172.jpg +Places365_test_00260187.jpg +Places365_test_00260191.jpg +Places365_test_00260216.jpg +Places365_test_00260218.jpg +Places365_test_00260231.jpg +Places365_test_00260241.jpg +Places365_test_00260264.jpg +Places365_test_00260265.jpg +Places365_test_00260269.jpg +Places365_test_00260291.jpg +Places365_test_00260305.jpg +Places365_test_00260345.jpg +Places365_test_00260347.jpg +Places365_test_00260352.jpg +Places365_test_00260368.jpg +Places365_test_00260380.jpg +Places365_test_00260405.jpg +Places365_test_00260406.jpg +Places365_test_00260415.jpg +Places365_test_00260421.jpg +Places365_test_00260425.jpg +Places365_test_00260429.jpg +Places365_test_00260435.jpg +Places365_test_00260462.jpg +Places365_test_00260472.jpg +Places365_test_00260485.jpg +Places365_test_00260488.jpg +Places365_test_00260507.jpg +Places365_test_00260525.jpg +Places365_test_00260526.jpg +Places365_test_00260532.jpg +Places365_test_00260553.jpg +Places365_test_00260571.jpg +Places365_test_00260593.jpg +Places365_test_00260597.jpg +Places365_test_00260598.jpg +Places365_test_00260600.jpg +Places365_test_00260603.jpg +Places365_test_00260617.jpg +Places365_test_00260622.jpg +Places365_test_00260623.jpg +Places365_test_00260624.jpg +Places365_test_00260640.jpg +Places365_test_00260643.jpg +Places365_test_00260646.jpg +Places365_test_00260657.jpg +Places365_test_00260670.jpg +Places365_test_00260674.jpg +Places365_test_00260676.jpg +Places365_test_00260684.jpg +Places365_test_00260686.jpg +Places365_test_00260696.jpg +Places365_test_00260709.jpg +Places365_test_00260714.jpg +Places365_test_00260725.jpg +Places365_test_00260729.jpg +Places365_test_00260735.jpg +Places365_test_00260743.jpg +Places365_test_00260753.jpg +Places365_test_00260756.jpg +Places365_test_00260758.jpg +Places365_test_00260762.jpg +Places365_test_00260772.jpg +Places365_test_00260783.jpg +Places365_test_00260791.jpg +Places365_test_00260809.jpg +Places365_test_00260820.jpg +Places365_test_00260842.jpg +Places365_test_00260845.jpg +Places365_test_00260846.jpg +Places365_test_00260847.jpg +Places365_test_00260855.jpg +Places365_test_00260863.jpg +Places365_test_00260875.jpg +Places365_test_00260891.jpg +Places365_test_00260896.jpg +Places365_test_00260934.jpg +Places365_test_00260940.jpg +Places365_test_00260957.jpg +Places365_test_00260973.jpg +Places365_test_00260974.jpg +Places365_test_00260994.jpg +Places365_test_00260999.jpg +Places365_test_00261000.jpg +Places365_test_00261001.jpg +Places365_test_00261011.jpg +Places365_test_00261023.jpg +Places365_test_00261035.jpg +Places365_test_00261041.jpg +Places365_test_00261043.jpg +Places365_test_00261056.jpg +Places365_test_00261062.jpg +Places365_test_00261073.jpg +Places365_test_00261082.jpg +Places365_test_00261087.jpg +Places365_test_00261097.jpg +Places365_test_00261107.jpg +Places365_test_00261119.jpg +Places365_test_00261144.jpg +Places365_test_00261157.jpg +Places365_test_00261187.jpg +Places365_test_00261188.jpg +Places365_test_00261190.jpg +Places365_test_00261193.jpg +Places365_test_00261201.jpg +Places365_test_00261212.jpg +Places365_test_00261252.jpg +Places365_test_00261255.jpg +Places365_test_00261258.jpg +Places365_test_00261265.jpg +Places365_test_00261294.jpg +Places365_test_00261310.jpg +Places365_test_00261314.jpg +Places365_test_00261341.jpg +Places365_test_00261342.jpg +Places365_test_00261345.jpg +Places365_test_00261352.jpg +Places365_test_00261355.jpg +Places365_test_00261404.jpg +Places365_test_00261405.jpg +Places365_test_00261418.jpg +Places365_test_00261423.jpg +Places365_test_00261450.jpg +Places365_test_00261462.jpg +Places365_test_00261483.jpg +Places365_test_00261486.jpg +Places365_test_00261507.jpg +Places365_test_00261512.jpg +Places365_test_00261519.jpg +Places365_test_00261520.jpg +Places365_test_00261526.jpg +Places365_test_00261530.jpg +Places365_test_00261534.jpg +Places365_test_00261540.jpg +Places365_test_00261546.jpg +Places365_test_00261548.jpg +Places365_test_00261559.jpg +Places365_test_00261570.jpg +Places365_test_00261603.jpg +Places365_test_00261604.jpg +Places365_test_00261612.jpg +Places365_test_00261621.jpg +Places365_test_00261626.jpg +Places365_test_00261661.jpg +Places365_test_00261663.jpg +Places365_test_00261668.jpg +Places365_test_00261675.jpg +Places365_test_00261676.jpg +Places365_test_00261683.jpg +Places365_test_00261686.jpg +Places365_test_00261701.jpg +Places365_test_00261705.jpg +Places365_test_00261719.jpg +Places365_test_00261733.jpg +Places365_test_00261742.jpg +Places365_test_00261745.jpg +Places365_test_00261746.jpg +Places365_test_00261766.jpg +Places365_test_00261788.jpg +Places365_test_00261793.jpg +Places365_test_00261816.jpg +Places365_test_00261883.jpg +Places365_test_00261897.jpg +Places365_test_00261921.jpg +Places365_test_00261928.jpg +Places365_test_00261966.jpg +Places365_test_00261968.jpg +Places365_test_00261970.jpg +Places365_test_00261973.jpg +Places365_test_00261976.jpg +Places365_test_00261990.jpg +Places365_test_00262003.jpg +Places365_test_00262014.jpg +Places365_test_00262021.jpg +Places365_test_00262027.jpg +Places365_test_00262028.jpg +Places365_test_00262061.jpg +Places365_test_00262068.jpg +Places365_test_00262092.jpg +Places365_test_00262101.jpg +Places365_test_00262115.jpg +Places365_test_00262124.jpg +Places365_test_00262125.jpg +Places365_test_00262151.jpg +Places365_test_00262165.jpg +Places365_test_00262170.jpg +Places365_test_00262175.jpg +Places365_test_00262198.jpg +Places365_test_00262208.jpg +Places365_test_00262213.jpg +Places365_test_00262215.jpg +Places365_test_00262233.jpg +Places365_test_00262237.jpg +Places365_test_00262250.jpg +Places365_test_00262263.jpg +Places365_test_00262276.jpg +Places365_test_00262280.jpg +Places365_test_00262284.jpg +Places365_test_00262297.jpg +Places365_test_00262299.jpg +Places365_test_00262311.jpg +Places365_test_00262334.jpg +Places365_test_00262338.jpg +Places365_test_00262356.jpg +Places365_test_00262358.jpg +Places365_test_00262360.jpg +Places365_test_00262361.jpg +Places365_test_00262364.jpg +Places365_test_00262374.jpg +Places365_test_00262383.jpg +Places365_test_00262396.jpg +Places365_test_00262409.jpg +Places365_test_00262410.jpg +Places365_test_00262414.jpg +Places365_test_00262416.jpg +Places365_test_00262418.jpg +Places365_test_00262423.jpg +Places365_test_00262437.jpg +Places365_test_00262455.jpg +Places365_test_00262468.jpg +Places365_test_00262472.jpg +Places365_test_00262488.jpg +Places365_test_00262503.jpg +Places365_test_00262509.jpg +Places365_test_00262510.jpg +Places365_test_00262537.jpg +Places365_test_00262542.jpg +Places365_test_00262549.jpg +Places365_test_00262567.jpg +Places365_test_00262574.jpg +Places365_test_00262595.jpg +Places365_test_00262596.jpg +Places365_test_00262610.jpg +Places365_test_00262615.jpg +Places365_test_00262640.jpg +Places365_test_00262644.jpg +Places365_test_00262645.jpg +Places365_test_00262646.jpg +Places365_test_00262648.jpg +Places365_test_00262654.jpg +Places365_test_00262659.jpg +Places365_test_00262660.jpg +Places365_test_00262663.jpg +Places365_test_00262668.jpg +Places365_test_00262674.jpg +Places365_test_00262676.jpg +Places365_test_00262690.jpg +Places365_test_00262709.jpg +Places365_test_00262721.jpg +Places365_test_00262722.jpg +Places365_test_00262730.jpg +Places365_test_00262732.jpg +Places365_test_00262753.jpg +Places365_test_00262762.jpg +Places365_test_00262766.jpg +Places365_test_00262800.jpg +Places365_test_00262811.jpg +Places365_test_00262821.jpg +Places365_test_00262838.jpg +Places365_test_00262840.jpg +Places365_test_00262849.jpg +Places365_test_00262851.jpg +Places365_test_00262852.jpg +Places365_test_00262855.jpg +Places365_test_00262856.jpg +Places365_test_00262879.jpg +Places365_test_00262891.jpg +Places365_test_00262898.jpg +Places365_test_00262906.jpg +Places365_test_00262908.jpg +Places365_test_00262909.jpg +Places365_test_00262912.jpg +Places365_test_00262925.jpg +Places365_test_00262927.jpg +Places365_test_00262929.jpg +Places365_test_00262934.jpg +Places365_test_00262937.jpg +Places365_test_00262979.jpg +Places365_test_00262984.jpg +Places365_test_00262992.jpg +Places365_test_00262995.jpg +Places365_test_00263021.jpg +Places365_test_00263022.jpg +Places365_test_00263031.jpg +Places365_test_00263035.jpg +Places365_test_00263036.jpg +Places365_test_00263040.jpg +Places365_test_00263046.jpg +Places365_test_00263050.jpg +Places365_test_00263054.jpg +Places365_test_00263067.jpg +Places365_test_00263079.jpg +Places365_test_00263099.jpg +Places365_test_00263103.jpg +Places365_test_00263112.jpg +Places365_test_00263129.jpg +Places365_test_00263134.jpg +Places365_test_00263140.jpg +Places365_test_00263166.jpg +Places365_test_00263173.jpg +Places365_test_00263203.jpg +Places365_test_00263211.jpg +Places365_test_00263216.jpg +Places365_test_00263250.jpg +Places365_test_00263260.jpg +Places365_test_00263264.jpg +Places365_test_00263276.jpg +Places365_test_00263287.jpg +Places365_test_00263294.jpg +Places365_test_00263312.jpg +Places365_test_00263333.jpg +Places365_test_00263343.jpg +Places365_test_00263350.jpg +Places365_test_00263361.jpg +Places365_test_00263366.jpg +Places365_test_00263376.jpg +Places365_test_00263380.jpg +Places365_test_00263388.jpg +Places365_test_00263389.jpg +Places365_test_00263390.jpg +Places365_test_00263393.jpg +Places365_test_00263400.jpg +Places365_test_00263406.jpg +Places365_test_00263420.jpg +Places365_test_00263445.jpg +Places365_test_00263452.jpg +Places365_test_00263455.jpg +Places365_test_00263458.jpg +Places365_test_00263469.jpg +Places365_test_00263480.jpg +Places365_test_00263486.jpg +Places365_test_00263507.jpg +Places365_test_00263513.jpg +Places365_test_00263525.jpg +Places365_test_00263540.jpg +Places365_test_00263550.jpg +Places365_test_00263578.jpg +Places365_test_00263592.jpg +Places365_test_00263603.jpg +Places365_test_00263605.jpg +Places365_test_00263608.jpg +Places365_test_00263609.jpg +Places365_test_00263620.jpg +Places365_test_00263634.jpg +Places365_test_00263643.jpg +Places365_test_00263663.jpg +Places365_test_00263667.jpg +Places365_test_00263674.jpg +Places365_test_00263703.jpg +Places365_test_00263710.jpg +Places365_test_00263713.jpg +Places365_test_00263740.jpg +Places365_test_00263766.jpg +Places365_test_00263770.jpg +Places365_test_00263778.jpg +Places365_test_00263779.jpg +Places365_test_00263785.jpg +Places365_test_00263797.jpg +Places365_test_00263807.jpg +Places365_test_00263820.jpg +Places365_test_00263826.jpg +Places365_test_00263832.jpg +Places365_test_00263834.jpg +Places365_test_00263836.jpg +Places365_test_00263845.jpg +Places365_test_00263846.jpg +Places365_test_00263857.jpg +Places365_test_00263870.jpg +Places365_test_00263886.jpg +Places365_test_00263905.jpg +Places365_test_00263916.jpg +Places365_test_00263921.jpg +Places365_test_00263934.jpg +Places365_test_00263951.jpg +Places365_test_00263954.jpg +Places365_test_00263973.jpg +Places365_test_00263988.jpg +Places365_test_00263995.jpg +Places365_test_00264008.jpg +Places365_test_00264019.jpg +Places365_test_00264023.jpg +Places365_test_00264024.jpg +Places365_test_00264035.jpg +Places365_test_00264043.jpg +Places365_test_00264049.jpg +Places365_test_00264069.jpg +Places365_test_00264070.jpg +Places365_test_00264074.jpg +Places365_test_00264095.jpg +Places365_test_00264106.jpg +Places365_test_00264115.jpg +Places365_test_00264147.jpg +Places365_test_00264169.jpg +Places365_test_00264179.jpg +Places365_test_00264182.jpg +Places365_test_00264199.jpg +Places365_test_00264210.jpg +Places365_test_00264221.jpg +Places365_test_00264223.jpg +Places365_test_00264231.jpg +Places365_test_00264235.jpg +Places365_test_00264246.jpg +Places365_test_00264254.jpg +Places365_test_00264257.jpg +Places365_test_00264264.jpg +Places365_test_00264267.jpg +Places365_test_00264270.jpg +Places365_test_00264271.jpg +Places365_test_00264283.jpg +Places365_test_00264305.jpg +Places365_test_00264330.jpg +Places365_test_00264349.jpg +Places365_test_00264353.jpg +Places365_test_00264359.jpg +Places365_test_00264360.jpg +Places365_test_00264361.jpg +Places365_test_00264369.jpg +Places365_test_00264379.jpg +Places365_test_00264392.jpg +Places365_test_00264397.jpg +Places365_test_00264400.jpg +Places365_test_00264403.jpg +Places365_test_00264411.jpg +Places365_test_00264414.jpg +Places365_test_00264415.jpg +Places365_test_00264419.jpg +Places365_test_00264436.jpg +Places365_test_00264445.jpg +Places365_test_00264446.jpg +Places365_test_00264459.jpg +Places365_test_00264462.jpg +Places365_test_00264464.jpg +Places365_test_00264467.jpg +Places365_test_00264488.jpg +Places365_test_00264504.jpg +Places365_test_00264512.jpg +Places365_test_00264513.jpg +Places365_test_00264523.jpg +Places365_test_00264550.jpg +Places365_test_00264553.jpg +Places365_test_00264566.jpg +Places365_test_00264580.jpg +Places365_test_00264585.jpg +Places365_test_00264589.jpg +Places365_test_00264602.jpg +Places365_test_00264621.jpg +Places365_test_00264631.jpg +Places365_test_00264636.jpg +Places365_test_00264640.jpg +Places365_test_00264641.jpg +Places365_test_00264642.jpg +Places365_test_00264648.jpg +Places365_test_00264652.jpg +Places365_test_00264653.jpg +Places365_test_00264676.jpg +Places365_test_00264682.jpg +Places365_test_00264718.jpg +Places365_test_00264747.jpg +Places365_test_00264754.jpg +Places365_test_00264755.jpg +Places365_test_00264767.jpg +Places365_test_00264769.jpg +Places365_test_00264783.jpg +Places365_test_00264788.jpg +Places365_test_00264794.jpg +Places365_test_00264798.jpg +Places365_test_00264807.jpg +Places365_test_00264811.jpg +Places365_test_00264813.jpg +Places365_test_00264815.jpg +Places365_test_00264845.jpg +Places365_test_00264854.jpg +Places365_test_00264859.jpg +Places365_test_00264887.jpg +Places365_test_00264899.jpg +Places365_test_00264907.jpg +Places365_test_00264921.jpg +Places365_test_00264925.jpg +Places365_test_00264926.jpg +Places365_test_00264939.jpg +Places365_test_00264952.jpg +Places365_test_00264977.jpg +Places365_test_00264985.jpg +Places365_test_00264990.jpg +Places365_test_00264992.jpg +Places365_test_00265001.jpg +Places365_test_00265023.jpg +Places365_test_00265029.jpg +Places365_test_00265032.jpg +Places365_test_00265040.jpg +Places365_test_00265042.jpg +Places365_test_00265056.jpg +Places365_test_00265057.jpg +Places365_test_00265066.jpg +Places365_test_00265091.jpg +Places365_test_00265105.jpg +Places365_test_00265109.jpg +Places365_test_00265116.jpg +Places365_test_00265129.jpg +Places365_test_00265154.jpg +Places365_test_00265183.jpg +Places365_test_00265189.jpg +Places365_test_00265217.jpg +Places365_test_00265242.jpg +Places365_test_00265244.jpg +Places365_test_00265250.jpg +Places365_test_00265259.jpg +Places365_test_00265263.jpg +Places365_test_00265281.jpg +Places365_test_00265285.jpg +Places365_test_00265303.jpg +Places365_test_00265304.jpg +Places365_test_00265309.jpg +Places365_test_00265333.jpg +Places365_test_00265337.jpg +Places365_test_00265356.jpg +Places365_test_00265362.jpg +Places365_test_00265392.jpg +Places365_test_00265395.jpg +Places365_test_00265397.jpg +Places365_test_00265406.jpg +Places365_test_00265412.jpg +Places365_test_00265436.jpg +Places365_test_00265447.jpg +Places365_test_00265477.jpg +Places365_test_00265493.jpg +Places365_test_00265497.jpg +Places365_test_00265512.jpg +Places365_test_00265516.jpg +Places365_test_00265517.jpg +Places365_test_00265519.jpg +Places365_test_00265537.jpg +Places365_test_00265542.jpg +Places365_test_00265567.jpg +Places365_test_00265573.jpg +Places365_test_00265578.jpg +Places365_test_00265593.jpg +Places365_test_00265595.jpg +Places365_test_00265605.jpg +Places365_test_00265609.jpg +Places365_test_00265617.jpg +Places365_test_00265622.jpg +Places365_test_00265635.jpg +Places365_test_00265662.jpg +Places365_test_00265667.jpg +Places365_test_00265686.jpg +Places365_test_00265703.jpg +Places365_test_00265708.jpg +Places365_test_00265710.jpg +Places365_test_00265714.jpg +Places365_test_00265716.jpg +Places365_test_00265722.jpg +Places365_test_00265723.jpg +Places365_test_00265731.jpg +Places365_test_00265734.jpg +Places365_test_00265737.jpg +Places365_test_00265740.jpg +Places365_test_00265741.jpg +Places365_test_00265761.jpg +Places365_test_00265776.jpg +Places365_test_00265779.jpg +Places365_test_00265781.jpg +Places365_test_00265786.jpg +Places365_test_00265790.jpg +Places365_test_00265802.jpg +Places365_test_00265822.jpg +Places365_test_00265840.jpg +Places365_test_00265856.jpg +Places365_test_00265873.jpg +Places365_test_00265888.jpg +Places365_test_00265890.jpg +Places365_test_00265918.jpg +Places365_test_00265919.jpg +Places365_test_00265928.jpg +Places365_test_00265942.jpg +Places365_test_00265961.jpg +Places365_test_00265967.jpg +Places365_test_00265968.jpg +Places365_test_00265971.jpg +Places365_test_00265976.jpg +Places365_test_00266000.jpg +Places365_test_00266019.jpg +Places365_test_00266024.jpg +Places365_test_00266042.jpg +Places365_test_00266048.jpg +Places365_test_00266074.jpg +Places365_test_00266082.jpg +Places365_test_00266100.jpg +Places365_test_00266114.jpg +Places365_test_00266125.jpg +Places365_test_00266126.jpg +Places365_test_00266144.jpg +Places365_test_00266156.jpg +Places365_test_00266160.jpg +Places365_test_00266161.jpg +Places365_test_00266175.jpg +Places365_test_00266183.jpg +Places365_test_00266199.jpg +Places365_test_00266218.jpg +Places365_test_00266226.jpg +Places365_test_00266228.jpg +Places365_test_00266237.jpg +Places365_test_00266238.jpg +Places365_test_00266240.jpg +Places365_test_00266243.jpg +Places365_test_00266255.jpg +Places365_test_00266258.jpg +Places365_test_00266263.jpg +Places365_test_00266266.jpg +Places365_test_00266273.jpg +Places365_test_00266279.jpg +Places365_test_00266298.jpg +Places365_test_00266299.jpg +Places365_test_00266304.jpg +Places365_test_00266306.jpg +Places365_test_00266333.jpg +Places365_test_00266341.jpg +Places365_test_00266344.jpg +Places365_test_00266346.jpg +Places365_test_00266351.jpg +Places365_test_00266359.jpg +Places365_test_00266361.jpg +Places365_test_00266367.jpg +Places365_test_00266370.jpg +Places365_test_00266377.jpg +Places365_test_00266389.jpg +Places365_test_00266401.jpg +Places365_test_00266403.jpg +Places365_test_00266404.jpg +Places365_test_00266408.jpg +Places365_test_00266417.jpg +Places365_test_00266427.jpg +Places365_test_00266428.jpg +Places365_test_00266430.jpg +Places365_test_00266448.jpg +Places365_test_00266458.jpg +Places365_test_00266459.jpg +Places365_test_00266478.jpg +Places365_test_00266479.jpg +Places365_test_00266486.jpg +Places365_test_00266492.jpg +Places365_test_00266497.jpg +Places365_test_00266500.jpg +Places365_test_00266539.jpg +Places365_test_00266542.jpg +Places365_test_00266550.jpg +Places365_test_00266569.jpg +Places365_test_00266572.jpg +Places365_test_00266595.jpg +Places365_test_00266596.jpg +Places365_test_00266601.jpg +Places365_test_00266619.jpg +Places365_test_00266625.jpg +Places365_test_00266628.jpg +Places365_test_00266672.jpg +Places365_test_00266680.jpg +Places365_test_00266690.jpg +Places365_test_00266704.jpg +Places365_test_00266707.jpg +Places365_test_00266715.jpg +Places365_test_00266734.jpg +Places365_test_00266735.jpg +Places365_test_00266736.jpg +Places365_test_00266754.jpg +Places365_test_00266764.jpg +Places365_test_00266780.jpg +Places365_test_00266783.jpg +Places365_test_00266785.jpg +Places365_test_00266806.jpg +Places365_test_00266858.jpg +Places365_test_00266860.jpg +Places365_test_00266865.jpg +Places365_test_00266872.jpg +Places365_test_00266876.jpg +Places365_test_00266882.jpg +Places365_test_00266884.jpg +Places365_test_00266894.jpg +Places365_test_00266909.jpg +Places365_test_00266917.jpg +Places365_test_00266920.jpg +Places365_test_00266959.jpg +Places365_test_00266968.jpg +Places365_test_00266975.jpg +Places365_test_00266981.jpg +Places365_test_00266995.jpg +Places365_test_00267009.jpg +Places365_test_00267010.jpg +Places365_test_00267030.jpg +Places365_test_00267051.jpg +Places365_test_00267066.jpg +Places365_test_00267075.jpg +Places365_test_00267079.jpg +Places365_test_00267082.jpg +Places365_test_00267084.jpg +Places365_test_00267086.jpg +Places365_test_00267088.jpg +Places365_test_00267093.jpg +Places365_test_00267096.jpg +Places365_test_00267099.jpg +Places365_test_00267100.jpg +Places365_test_00267103.jpg +Places365_test_00267114.jpg +Places365_test_00267126.jpg +Places365_test_00267133.jpg +Places365_test_00267138.jpg +Places365_test_00267146.jpg +Places365_test_00267162.jpg +Places365_test_00267178.jpg +Places365_test_00267181.jpg +Places365_test_00267183.jpg +Places365_test_00267194.jpg +Places365_test_00267209.jpg +Places365_test_00267226.jpg +Places365_test_00267242.jpg +Places365_test_00267255.jpg +Places365_test_00267267.jpg +Places365_test_00267272.jpg +Places365_test_00267274.jpg +Places365_test_00267279.jpg +Places365_test_00267313.jpg +Places365_test_00267314.jpg +Places365_test_00267323.jpg +Places365_test_00267337.jpg +Places365_test_00267371.jpg +Places365_test_00267377.jpg +Places365_test_00267384.jpg +Places365_test_00267390.jpg +Places365_test_00267414.jpg +Places365_test_00267428.jpg +Places365_test_00267434.jpg +Places365_test_00267453.jpg +Places365_test_00267458.jpg +Places365_test_00267461.jpg +Places365_test_00267470.jpg +Places365_test_00267473.jpg +Places365_test_00267487.jpg +Places365_test_00267499.jpg +Places365_test_00267505.jpg +Places365_test_00267525.jpg +Places365_test_00267543.jpg +Places365_test_00267554.jpg +Places365_test_00267558.jpg +Places365_test_00267559.jpg +Places365_test_00267572.jpg +Places365_test_00267575.jpg +Places365_test_00267582.jpg +Places365_test_00267583.jpg +Places365_test_00267590.jpg +Places365_test_00267596.jpg +Places365_test_00267606.jpg +Places365_test_00267612.jpg +Places365_test_00267639.jpg +Places365_test_00267650.jpg +Places365_test_00267651.jpg +Places365_test_00267660.jpg +Places365_test_00267662.jpg +Places365_test_00267666.jpg +Places365_test_00267678.jpg +Places365_test_00267693.jpg +Places365_test_00267707.jpg +Places365_test_00267718.jpg +Places365_test_00267725.jpg +Places365_test_00267744.jpg +Places365_test_00267746.jpg +Places365_test_00267762.jpg +Places365_test_00267776.jpg +Places365_test_00267784.jpg +Places365_test_00267789.jpg +Places365_test_00267812.jpg +Places365_test_00267833.jpg +Places365_test_00267840.jpg +Places365_test_00267855.jpg +Places365_test_00267868.jpg +Places365_test_00267872.jpg +Places365_test_00267875.jpg +Places365_test_00267890.jpg +Places365_test_00267901.jpg +Places365_test_00267917.jpg +Places365_test_00267927.jpg +Places365_test_00267936.jpg +Places365_test_00267945.jpg +Places365_test_00267949.jpg +Places365_test_00267970.jpg +Places365_test_00267973.jpg +Places365_test_00267996.jpg +Places365_test_00268012.jpg +Places365_test_00268034.jpg +Places365_test_00268042.jpg +Places365_test_00268049.jpg +Places365_test_00268079.jpg +Places365_test_00268091.jpg +Places365_test_00268094.jpg +Places365_test_00268117.jpg +Places365_test_00268125.jpg +Places365_test_00268160.jpg +Places365_test_00268168.jpg +Places365_test_00268169.jpg +Places365_test_00268178.jpg +Places365_test_00268190.jpg +Places365_test_00268198.jpg +Places365_test_00268202.jpg +Places365_test_00268220.jpg +Places365_test_00268225.jpg +Places365_test_00268231.jpg +Places365_test_00268240.jpg +Places365_test_00268261.jpg +Places365_test_00268282.jpg +Places365_test_00268311.jpg +Places365_test_00268322.jpg +Places365_test_00268323.jpg +Places365_test_00268340.jpg +Places365_test_00268350.jpg +Places365_test_00268354.jpg +Places365_test_00268391.jpg +Places365_test_00268393.jpg +Places365_test_00268469.jpg +Places365_test_00268529.jpg +Places365_test_00268538.jpg +Places365_test_00268595.jpg +Places365_test_00268608.jpg +Places365_test_00268629.jpg +Places365_test_00268638.jpg +Places365_test_00268643.jpg +Places365_test_00268646.jpg +Places365_test_00268656.jpg +Places365_test_00268661.jpg +Places365_test_00268665.jpg +Places365_test_00268695.jpg +Places365_test_00268696.jpg +Places365_test_00268699.jpg +Places365_test_00268708.jpg +Places365_test_00268709.jpg +Places365_test_00268726.jpg +Places365_test_00268733.jpg +Places365_test_00268768.jpg +Places365_test_00268773.jpg +Places365_test_00268776.jpg +Places365_test_00268779.jpg +Places365_test_00268784.jpg +Places365_test_00268794.jpg +Places365_test_00268795.jpg +Places365_test_00268796.jpg +Places365_test_00268820.jpg +Places365_test_00268822.jpg +Places365_test_00268842.jpg +Places365_test_00268868.jpg +Places365_test_00268882.jpg +Places365_test_00268897.jpg +Places365_test_00268903.jpg +Places365_test_00268904.jpg +Places365_test_00268921.jpg +Places365_test_00268929.jpg +Places365_test_00268945.jpg +Places365_test_00268947.jpg +Places365_test_00268950.jpg +Places365_test_00268980.jpg +Places365_test_00268985.jpg +Places365_test_00269003.jpg +Places365_test_00269058.jpg +Places365_test_00269067.jpg +Places365_test_00269075.jpg +Places365_test_00269078.jpg +Places365_test_00269092.jpg +Places365_test_00269118.jpg +Places365_test_00269119.jpg +Places365_test_00269124.jpg +Places365_test_00269127.jpg +Places365_test_00269140.jpg +Places365_test_00269171.jpg +Places365_test_00269181.jpg +Places365_test_00269200.jpg +Places365_test_00269205.jpg +Places365_test_00269209.jpg +Places365_test_00269223.jpg +Places365_test_00269230.jpg +Places365_test_00269239.jpg +Places365_test_00269253.jpg +Places365_test_00269275.jpg +Places365_test_00269278.jpg +Places365_test_00269279.jpg +Places365_test_00269286.jpg +Places365_test_00269309.jpg +Places365_test_00269317.jpg +Places365_test_00269327.jpg +Places365_test_00269343.jpg +Places365_test_00269344.jpg +Places365_test_00269352.jpg +Places365_test_00269358.jpg +Places365_test_00269371.jpg +Places365_test_00269432.jpg +Places365_test_00269441.jpg +Places365_test_00269456.jpg +Places365_test_00269480.jpg +Places365_test_00269486.jpg +Places365_test_00269496.jpg +Places365_test_00269500.jpg +Places365_test_00269502.jpg +Places365_test_00269505.jpg +Places365_test_00269512.jpg +Places365_test_00269519.jpg +Places365_test_00269531.jpg +Places365_test_00269536.jpg +Places365_test_00269539.jpg +Places365_test_00269546.jpg +Places365_test_00269552.jpg +Places365_test_00269555.jpg +Places365_test_00269566.jpg +Places365_test_00269586.jpg +Places365_test_00269606.jpg +Places365_test_00269621.jpg +Places365_test_00269639.jpg +Places365_test_00269653.jpg +Places365_test_00269654.jpg +Places365_test_00269656.jpg +Places365_test_00269660.jpg +Places365_test_00269662.jpg +Places365_test_00269678.jpg +Places365_test_00269679.jpg +Places365_test_00269699.jpg +Places365_test_00269703.jpg +Places365_test_00269706.jpg +Places365_test_00269723.jpg +Places365_test_00269757.jpg +Places365_test_00269763.jpg +Places365_test_00269774.jpg +Places365_test_00269796.jpg +Places365_test_00269800.jpg +Places365_test_00269812.jpg +Places365_test_00269815.jpg +Places365_test_00269839.jpg +Places365_test_00269840.jpg +Places365_test_00269844.jpg +Places365_test_00269850.jpg +Places365_test_00269871.jpg +Places365_test_00269876.jpg +Places365_test_00269882.jpg +Places365_test_00269888.jpg +Places365_test_00269895.jpg +Places365_test_00269901.jpg +Places365_test_00269904.jpg +Places365_test_00269942.jpg +Places365_test_00269956.jpg +Places365_test_00269957.jpg +Places365_test_00269968.jpg +Places365_test_00269973.jpg +Places365_test_00269997.jpg +Places365_test_00270005.jpg +Places365_test_00270009.jpg +Places365_test_00270012.jpg +Places365_test_00270018.jpg +Places365_test_00270063.jpg +Places365_test_00270069.jpg +Places365_test_00270072.jpg +Places365_test_00270082.jpg +Places365_test_00270089.jpg +Places365_test_00270091.jpg +Places365_test_00270095.jpg +Places365_test_00270102.jpg +Places365_test_00270109.jpg +Places365_test_00270119.jpg +Places365_test_00270128.jpg +Places365_test_00270161.jpg +Places365_test_00270169.jpg +Places365_test_00270185.jpg +Places365_test_00270193.jpg +Places365_test_00270218.jpg +Places365_test_00270232.jpg +Places365_test_00270233.jpg +Places365_test_00270259.jpg +Places365_test_00270265.jpg +Places365_test_00270271.jpg +Places365_test_00270279.jpg +Places365_test_00270280.jpg +Places365_test_00270286.jpg +Places365_test_00270290.jpg +Places365_test_00270294.jpg +Places365_test_00270305.jpg +Places365_test_00270319.jpg +Places365_test_00270322.jpg +Places365_test_00270346.jpg +Places365_test_00270354.jpg +Places365_test_00270364.jpg +Places365_test_00270374.jpg +Places365_test_00270380.jpg +Places365_test_00270389.jpg +Places365_test_00270391.jpg +Places365_test_00270393.jpg +Places365_test_00270399.jpg +Places365_test_00270431.jpg +Places365_test_00270436.jpg +Places365_test_00270438.jpg +Places365_test_00270470.jpg +Places365_test_00270474.jpg +Places365_test_00270476.jpg +Places365_test_00270492.jpg +Places365_test_00270494.jpg +Places365_test_00270502.jpg +Places365_test_00270514.jpg +Places365_test_00270521.jpg +Places365_test_00270543.jpg +Places365_test_00270554.jpg +Places365_test_00270566.jpg +Places365_test_00270580.jpg +Places365_test_00270582.jpg +Places365_test_00270584.jpg +Places365_test_00270609.jpg +Places365_test_00270621.jpg +Places365_test_00270624.jpg +Places365_test_00270645.jpg +Places365_test_00270647.jpg +Places365_test_00270659.jpg +Places365_test_00270660.jpg +Places365_test_00270664.jpg +Places365_test_00270679.jpg +Places365_test_00270689.jpg +Places365_test_00270693.jpg +Places365_test_00270696.jpg +Places365_test_00270702.jpg +Places365_test_00270712.jpg +Places365_test_00270719.jpg +Places365_test_00270736.jpg +Places365_test_00270741.jpg +Places365_test_00270754.jpg +Places365_test_00270768.jpg +Places365_test_00270776.jpg +Places365_test_00270778.jpg +Places365_test_00270782.jpg +Places365_test_00270787.jpg +Places365_test_00270790.jpg +Places365_test_00270791.jpg +Places365_test_00270799.jpg +Places365_test_00270802.jpg +Places365_test_00270815.jpg +Places365_test_00270820.jpg +Places365_test_00270823.jpg +Places365_test_00270834.jpg +Places365_test_00270835.jpg +Places365_test_00270838.jpg +Places365_test_00270840.jpg +Places365_test_00270850.jpg +Places365_test_00270856.jpg +Places365_test_00270879.jpg +Places365_test_00270888.jpg +Places365_test_00270890.jpg +Places365_test_00270891.jpg +Places365_test_00270908.jpg +Places365_test_00270909.jpg +Places365_test_00270910.jpg +Places365_test_00270916.jpg +Places365_test_00270921.jpg +Places365_test_00270926.jpg +Places365_test_00270935.jpg +Places365_test_00270937.jpg +Places365_test_00270948.jpg +Places365_test_00270958.jpg +Places365_test_00270965.jpg +Places365_test_00270968.jpg +Places365_test_00270971.jpg +Places365_test_00270978.jpg +Places365_test_00270981.jpg +Places365_test_00270995.jpg +Places365_test_00271011.jpg +Places365_test_00271013.jpg +Places365_test_00271026.jpg +Places365_test_00271039.jpg +Places365_test_00271054.jpg +Places365_test_00271070.jpg +Places365_test_00271091.jpg +Places365_test_00271098.jpg +Places365_test_00271128.jpg +Places365_test_00271131.jpg +Places365_test_00271159.jpg +Places365_test_00271188.jpg +Places365_test_00271219.jpg +Places365_test_00271222.jpg +Places365_test_00271223.jpg +Places365_test_00271228.jpg +Places365_test_00271240.jpg +Places365_test_00271249.jpg +Places365_test_00271265.jpg +Places365_test_00271273.jpg +Places365_test_00271274.jpg +Places365_test_00271276.jpg +Places365_test_00271282.jpg +Places365_test_00271288.jpg +Places365_test_00271322.jpg +Places365_test_00271332.jpg +Places365_test_00271352.jpg +Places365_test_00271370.jpg +Places365_test_00271372.jpg +Places365_test_00271388.jpg +Places365_test_00271469.jpg +Places365_test_00271472.jpg +Places365_test_00271474.jpg +Places365_test_00271481.jpg +Places365_test_00271489.jpg +Places365_test_00271496.jpg +Places365_test_00271509.jpg +Places365_test_00271511.jpg +Places365_test_00271522.jpg +Places365_test_00271524.jpg +Places365_test_00271528.jpg +Places365_test_00271539.jpg +Places365_test_00271552.jpg +Places365_test_00271558.jpg +Places365_test_00271565.jpg +Places365_test_00271570.jpg +Places365_test_00271573.jpg +Places365_test_00271576.jpg +Places365_test_00271591.jpg +Places365_test_00271611.jpg +Places365_test_00271622.jpg +Places365_test_00271630.jpg +Places365_test_00271643.jpg +Places365_test_00271655.jpg +Places365_test_00271657.jpg +Places365_test_00271664.jpg +Places365_test_00271672.jpg +Places365_test_00271681.jpg +Places365_test_00271715.jpg +Places365_test_00271723.jpg +Places365_test_00271731.jpg +Places365_test_00271747.jpg +Places365_test_00271758.jpg +Places365_test_00271762.jpg +Places365_test_00271784.jpg +Places365_test_00271785.jpg +Places365_test_00271800.jpg +Places365_test_00271805.jpg +Places365_test_00271808.jpg +Places365_test_00271815.jpg +Places365_test_00271823.jpg +Places365_test_00271828.jpg +Places365_test_00271874.jpg +Places365_test_00271889.jpg +Places365_test_00271900.jpg +Places365_test_00271905.jpg +Places365_test_00271941.jpg +Places365_test_00271955.jpg +Places365_test_00271972.jpg +Places365_test_00271985.jpg +Places365_test_00271993.jpg +Places365_test_00272006.jpg +Places365_test_00272019.jpg +Places365_test_00272033.jpg +Places365_test_00272055.jpg +Places365_test_00272059.jpg +Places365_test_00272063.jpg +Places365_test_00272066.jpg +Places365_test_00272088.jpg +Places365_test_00272094.jpg +Places365_test_00272099.jpg +Places365_test_00272104.jpg +Places365_test_00272120.jpg +Places365_test_00272136.jpg +Places365_test_00272151.jpg +Places365_test_00272153.jpg +Places365_test_00272171.jpg +Places365_test_00272177.jpg +Places365_test_00272181.jpg +Places365_test_00272185.jpg +Places365_test_00272188.jpg +Places365_test_00272196.jpg +Places365_test_00272199.jpg +Places365_test_00272231.jpg +Places365_test_00272232.jpg +Places365_test_00272263.jpg +Places365_test_00272264.jpg +Places365_test_00272266.jpg +Places365_test_00272267.jpg +Places365_test_00272280.jpg +Places365_test_00272316.jpg +Places365_test_00272319.jpg +Places365_test_00272325.jpg +Places365_test_00272331.jpg +Places365_test_00272346.jpg +Places365_test_00272353.jpg +Places365_test_00272397.jpg +Places365_test_00272403.jpg +Places365_test_00272440.jpg +Places365_test_00272466.jpg +Places365_test_00272469.jpg +Places365_test_00272471.jpg +Places365_test_00272478.jpg +Places365_test_00272493.jpg +Places365_test_00272495.jpg +Places365_test_00272505.jpg +Places365_test_00272526.jpg +Places365_test_00272528.jpg +Places365_test_00272529.jpg +Places365_test_00272553.jpg +Places365_test_00272579.jpg +Places365_test_00272597.jpg +Places365_test_00272604.jpg +Places365_test_00272620.jpg +Places365_test_00272648.jpg +Places365_test_00272654.jpg +Places365_test_00272678.jpg +Places365_test_00272712.jpg +Places365_test_00272722.jpg +Places365_test_00272724.jpg +Places365_test_00272743.jpg +Places365_test_00272744.jpg +Places365_test_00272753.jpg +Places365_test_00272767.jpg +Places365_test_00272787.jpg +Places365_test_00272797.jpg +Places365_test_00272798.jpg +Places365_test_00272801.jpg +Places365_test_00272807.jpg +Places365_test_00272819.jpg +Places365_test_00272823.jpg +Places365_test_00272828.jpg +Places365_test_00272854.jpg +Places365_test_00272857.jpg +Places365_test_00272861.jpg +Places365_test_00272867.jpg +Places365_test_00272871.jpg +Places365_test_00272877.jpg +Places365_test_00272878.jpg +Places365_test_00272882.jpg +Places365_test_00272883.jpg +Places365_test_00272887.jpg +Places365_test_00272889.jpg +Places365_test_00272899.jpg +Places365_test_00272929.jpg +Places365_test_00272939.jpg +Places365_test_00272943.jpg +Places365_test_00272945.jpg +Places365_test_00272954.jpg +Places365_test_00272970.jpg +Places365_test_00272972.jpg +Places365_test_00272986.jpg +Places365_test_00273046.jpg +Places365_test_00273056.jpg +Places365_test_00273059.jpg +Places365_test_00273090.jpg +Places365_test_00273092.jpg +Places365_test_00273094.jpg +Places365_test_00273111.jpg +Places365_test_00273112.jpg +Places365_test_00273126.jpg +Places365_test_00273134.jpg +Places365_test_00273142.jpg +Places365_test_00273154.jpg +Places365_test_00273171.jpg +Places365_test_00273177.jpg +Places365_test_00273209.jpg +Places365_test_00273220.jpg +Places365_test_00273232.jpg +Places365_test_00273268.jpg +Places365_test_00273307.jpg +Places365_test_00273311.jpg +Places365_test_00273320.jpg +Places365_test_00273348.jpg +Places365_test_00273349.jpg +Places365_test_00273354.jpg +Places365_test_00273360.jpg +Places365_test_00273383.jpg +Places365_test_00273401.jpg +Places365_test_00273407.jpg +Places365_test_00273429.jpg +Places365_test_00273434.jpg +Places365_test_00273439.jpg +Places365_test_00273442.jpg +Places365_test_00273445.jpg +Places365_test_00273453.jpg +Places365_test_00273455.jpg +Places365_test_00273476.jpg +Places365_test_00273485.jpg +Places365_test_00273487.jpg +Places365_test_00273497.jpg +Places365_test_00273510.jpg +Places365_test_00273524.jpg +Places365_test_00273531.jpg +Places365_test_00273552.jpg +Places365_test_00273555.jpg +Places365_test_00273604.jpg +Places365_test_00273614.jpg +Places365_test_00273626.jpg +Places365_test_00273642.jpg +Places365_test_00273647.jpg +Places365_test_00273677.jpg +Places365_test_00273679.jpg +Places365_test_00273696.jpg +Places365_test_00273709.jpg +Places365_test_00273718.jpg +Places365_test_00273725.jpg +Places365_test_00273737.jpg +Places365_test_00273739.jpg +Places365_test_00273752.jpg +Places365_test_00273754.jpg +Places365_test_00273757.jpg +Places365_test_00273770.jpg +Places365_test_00273800.jpg +Places365_test_00273802.jpg +Places365_test_00273804.jpg +Places365_test_00273809.jpg +Places365_test_00273820.jpg +Places365_test_00273832.jpg +Places365_test_00273836.jpg +Places365_test_00273855.jpg +Places365_test_00273860.jpg +Places365_test_00273864.jpg +Places365_test_00273865.jpg +Places365_test_00273870.jpg +Places365_test_00273918.jpg +Places365_test_00273927.jpg +Places365_test_00273933.jpg +Places365_test_00273949.jpg +Places365_test_00273980.jpg +Places365_test_00273981.jpg +Places365_test_00273993.jpg +Places365_test_00273994.jpg +Places365_test_00274000.jpg +Places365_test_00274030.jpg +Places365_test_00274031.jpg +Places365_test_00274057.jpg +Places365_test_00274060.jpg +Places365_test_00274074.jpg +Places365_test_00274079.jpg +Places365_test_00274089.jpg +Places365_test_00274092.jpg +Places365_test_00274106.jpg +Places365_test_00274158.jpg +Places365_test_00274165.jpg +Places365_test_00274193.jpg +Places365_test_00274196.jpg +Places365_test_00274206.jpg +Places365_test_00274236.jpg +Places365_test_00274240.jpg +Places365_test_00274248.jpg +Places365_test_00274250.jpg +Places365_test_00274261.jpg +Places365_test_00274275.jpg +Places365_test_00274276.jpg +Places365_test_00274294.jpg +Places365_test_00274341.jpg +Places365_test_00274371.jpg +Places365_test_00274379.jpg +Places365_test_00274385.jpg +Places365_test_00274387.jpg +Places365_test_00274397.jpg +Places365_test_00274427.jpg +Places365_test_00274428.jpg +Places365_test_00274432.jpg +Places365_test_00274436.jpg +Places365_test_00274442.jpg +Places365_test_00274457.jpg +Places365_test_00274474.jpg +Places365_test_00274477.jpg +Places365_test_00274479.jpg +Places365_test_00274483.jpg +Places365_test_00274490.jpg +Places365_test_00274508.jpg +Places365_test_00274511.jpg +Places365_test_00274530.jpg +Places365_test_00274547.jpg +Places365_test_00274550.jpg +Places365_test_00274560.jpg +Places365_test_00274561.jpg +Places365_test_00274594.jpg +Places365_test_00274607.jpg +Places365_test_00274615.jpg +Places365_test_00274619.jpg +Places365_test_00274631.jpg +Places365_test_00274637.jpg +Places365_test_00274660.jpg +Places365_test_00274682.jpg +Places365_test_00274683.jpg +Places365_test_00274688.jpg +Places365_test_00274700.jpg +Places365_test_00274712.jpg +Places365_test_00274732.jpg +Places365_test_00274734.jpg +Places365_test_00274740.jpg +Places365_test_00274781.jpg +Places365_test_00274791.jpg +Places365_test_00274814.jpg +Places365_test_00274837.jpg +Places365_test_00274840.jpg +Places365_test_00274846.jpg +Places365_test_00274868.jpg +Places365_test_00274869.jpg +Places365_test_00274870.jpg +Places365_test_00274875.jpg +Places365_test_00274890.jpg +Places365_test_00274899.jpg +Places365_test_00274920.jpg +Places365_test_00274928.jpg +Places365_test_00274942.jpg +Places365_test_00274966.jpg +Places365_test_00275001.jpg +Places365_test_00275002.jpg +Places365_test_00275004.jpg +Places365_test_00275009.jpg +Places365_test_00275012.jpg +Places365_test_00275018.jpg +Places365_test_00275024.jpg +Places365_test_00275034.jpg +Places365_test_00275041.jpg +Places365_test_00275044.jpg +Places365_test_00275070.jpg +Places365_test_00275074.jpg +Places365_test_00275093.jpg +Places365_test_00275097.jpg +Places365_test_00275120.jpg +Places365_test_00275121.jpg +Places365_test_00275124.jpg +Places365_test_00275130.jpg +Places365_test_00275131.jpg +Places365_test_00275140.jpg +Places365_test_00275144.jpg +Places365_test_00275163.jpg +Places365_test_00275165.jpg +Places365_test_00275194.jpg +Places365_test_00275206.jpg +Places365_test_00275219.jpg +Places365_test_00275223.jpg +Places365_test_00275231.jpg +Places365_test_00275232.jpg +Places365_test_00275244.jpg +Places365_test_00275259.jpg +Places365_test_00275287.jpg +Places365_test_00275293.jpg +Places365_test_00275299.jpg +Places365_test_00275329.jpg +Places365_test_00275331.jpg +Places365_test_00275335.jpg +Places365_test_00275338.jpg +Places365_test_00275347.jpg +Places365_test_00275348.jpg +Places365_test_00275354.jpg +Places365_test_00275357.jpg +Places365_test_00275421.jpg +Places365_test_00275437.jpg +Places365_test_00275440.jpg +Places365_test_00275446.jpg +Places365_test_00275450.jpg +Places365_test_00275451.jpg +Places365_test_00275454.jpg +Places365_test_00275480.jpg +Places365_test_00275483.jpg +Places365_test_00275511.jpg +Places365_test_00275540.jpg +Places365_test_00275545.jpg +Places365_test_00275554.jpg +Places365_test_00275564.jpg +Places365_test_00275566.jpg +Places365_test_00275581.jpg +Places365_test_00275619.jpg +Places365_test_00275632.jpg +Places365_test_00275633.jpg +Places365_test_00275635.jpg +Places365_test_00275636.jpg +Places365_test_00275646.jpg +Places365_test_00275661.jpg +Places365_test_00275667.jpg +Places365_test_00275681.jpg +Places365_test_00275682.jpg +Places365_test_00275687.jpg +Places365_test_00275688.jpg +Places365_test_00275695.jpg +Places365_test_00275697.jpg +Places365_test_00275702.jpg +Places365_test_00275720.jpg +Places365_test_00275731.jpg +Places365_test_00275749.jpg +Places365_test_00275756.jpg +Places365_test_00275772.jpg +Places365_test_00275782.jpg +Places365_test_00275783.jpg +Places365_test_00275795.jpg +Places365_test_00275800.jpg +Places365_test_00275843.jpg +Places365_test_00275846.jpg +Places365_test_00275856.jpg +Places365_test_00275859.jpg +Places365_test_00275873.jpg +Places365_test_00275886.jpg +Places365_test_00275899.jpg +Places365_test_00275900.jpg +Places365_test_00275908.jpg +Places365_test_00275918.jpg +Places365_test_00275923.jpg +Places365_test_00275933.jpg +Places365_test_00275965.jpg +Places365_test_00275971.jpg +Places365_test_00275980.jpg +Places365_test_00275990.jpg +Places365_test_00276003.jpg +Places365_test_00276006.jpg +Places365_test_00276014.jpg +Places365_test_00276023.jpg +Places365_test_00276051.jpg +Places365_test_00276053.jpg +Places365_test_00276059.jpg +Places365_test_00276060.jpg +Places365_test_00276069.jpg +Places365_test_00276076.jpg +Places365_test_00276087.jpg +Places365_test_00276098.jpg +Places365_test_00276099.jpg +Places365_test_00276106.jpg +Places365_test_00276121.jpg +Places365_test_00276176.jpg +Places365_test_00276185.jpg +Places365_test_00276193.jpg +Places365_test_00276200.jpg +Places365_test_00276216.jpg +Places365_test_00276217.jpg +Places365_test_00276227.jpg +Places365_test_00276237.jpg +Places365_test_00276243.jpg +Places365_test_00276264.jpg +Places365_test_00276267.jpg +Places365_test_00276280.jpg +Places365_test_00276287.jpg +Places365_test_00276296.jpg +Places365_test_00276301.jpg +Places365_test_00276303.jpg +Places365_test_00276337.jpg +Places365_test_00276353.jpg +Places365_test_00276364.jpg +Places365_test_00276374.jpg +Places365_test_00276380.jpg +Places365_test_00276383.jpg +Places365_test_00276384.jpg +Places365_test_00276390.jpg +Places365_test_00276395.jpg +Places365_test_00276396.jpg +Places365_test_00276400.jpg +Places365_test_00276419.jpg +Places365_test_00276422.jpg +Places365_test_00276430.jpg +Places365_test_00276431.jpg +Places365_test_00276439.jpg +Places365_test_00276447.jpg +Places365_test_00276478.jpg +Places365_test_00276482.jpg +Places365_test_00276486.jpg +Places365_test_00276495.jpg +Places365_test_00276499.jpg +Places365_test_00276500.jpg +Places365_test_00276516.jpg +Places365_test_00276524.jpg +Places365_test_00276528.jpg +Places365_test_00276530.jpg +Places365_test_00276545.jpg +Places365_test_00276546.jpg +Places365_test_00276559.jpg +Places365_test_00276560.jpg +Places365_test_00276564.jpg +Places365_test_00276575.jpg +Places365_test_00276583.jpg +Places365_test_00276596.jpg +Places365_test_00276621.jpg +Places365_test_00276633.jpg +Places365_test_00276638.jpg +Places365_test_00276648.jpg +Places365_test_00276649.jpg +Places365_test_00276650.jpg +Places365_test_00276652.jpg +Places365_test_00276658.jpg +Places365_test_00276662.jpg +Places365_test_00276665.jpg +Places365_test_00276667.jpg +Places365_test_00276674.jpg +Places365_test_00276675.jpg +Places365_test_00276697.jpg +Places365_test_00276716.jpg +Places365_test_00276720.jpg +Places365_test_00276721.jpg +Places365_test_00276735.jpg +Places365_test_00276736.jpg +Places365_test_00276748.jpg +Places365_test_00276757.jpg +Places365_test_00276767.jpg +Places365_test_00276775.jpg +Places365_test_00276777.jpg +Places365_test_00276780.jpg +Places365_test_00276792.jpg +Places365_test_00276797.jpg +Places365_test_00276799.jpg +Places365_test_00276812.jpg +Places365_test_00276815.jpg +Places365_test_00276819.jpg +Places365_test_00276826.jpg +Places365_test_00276841.jpg +Places365_test_00276848.jpg +Places365_test_00276885.jpg +Places365_test_00276890.jpg +Places365_test_00276910.jpg +Places365_test_00276924.jpg +Places365_test_00276925.jpg +Places365_test_00276933.jpg +Places365_test_00276939.jpg +Places365_test_00276944.jpg +Places365_test_00276960.jpg +Places365_test_00276971.jpg +Places365_test_00276995.jpg +Places365_test_00277006.jpg +Places365_test_00277008.jpg +Places365_test_00277022.jpg +Places365_test_00277032.jpg +Places365_test_00277058.jpg +Places365_test_00277063.jpg +Places365_test_00277065.jpg +Places365_test_00277079.jpg +Places365_test_00277087.jpg +Places365_test_00277100.jpg +Places365_test_00277105.jpg +Places365_test_00277108.jpg +Places365_test_00277111.jpg +Places365_test_00277112.jpg +Places365_test_00277118.jpg +Places365_test_00277125.jpg +Places365_test_00277128.jpg +Places365_test_00277146.jpg +Places365_test_00277175.jpg +Places365_test_00277185.jpg +Places365_test_00277192.jpg +Places365_test_00277195.jpg +Places365_test_00277213.jpg +Places365_test_00277216.jpg +Places365_test_00277218.jpg +Places365_test_00277224.jpg +Places365_test_00277226.jpg +Places365_test_00277227.jpg +Places365_test_00277228.jpg +Places365_test_00277231.jpg +Places365_test_00277238.jpg +Places365_test_00277246.jpg +Places365_test_00277247.jpg +Places365_test_00277254.jpg +Places365_test_00277259.jpg +Places365_test_00277283.jpg +Places365_test_00277291.jpg +Places365_test_00277292.jpg +Places365_test_00277301.jpg +Places365_test_00277306.jpg +Places365_test_00277337.jpg +Places365_test_00277342.jpg +Places365_test_00277344.jpg +Places365_test_00277358.jpg +Places365_test_00277417.jpg +Places365_test_00277466.jpg +Places365_test_00277470.jpg +Places365_test_00277472.jpg +Places365_test_00277473.jpg +Places365_test_00277485.jpg +Places365_test_00277498.jpg +Places365_test_00277518.jpg +Places365_test_00277527.jpg +Places365_test_00277536.jpg +Places365_test_00277545.jpg +Places365_test_00277549.jpg +Places365_test_00277568.jpg +Places365_test_00277578.jpg +Places365_test_00277584.jpg +Places365_test_00277616.jpg +Places365_test_00277635.jpg +Places365_test_00277637.jpg +Places365_test_00277667.jpg +Places365_test_00277676.jpg +Places365_test_00277682.jpg +Places365_test_00277683.jpg +Places365_test_00277713.jpg +Places365_test_00277738.jpg +Places365_test_00277745.jpg +Places365_test_00277754.jpg +Places365_test_00277778.jpg +Places365_test_00277782.jpg +Places365_test_00277792.jpg +Places365_test_00277797.jpg +Places365_test_00277798.jpg +Places365_test_00277805.jpg +Places365_test_00277806.jpg +Places365_test_00277808.jpg +Places365_test_00277809.jpg +Places365_test_00277818.jpg +Places365_test_00277844.jpg +Places365_test_00277850.jpg +Places365_test_00277871.jpg +Places365_test_00277873.jpg +Places365_test_00277889.jpg +Places365_test_00277892.jpg +Places365_test_00277902.jpg +Places365_test_00277903.jpg +Places365_test_00277906.jpg +Places365_test_00277918.jpg +Places365_test_00277929.jpg +Places365_test_00277966.jpg +Places365_test_00277982.jpg +Places365_test_00277984.jpg +Places365_test_00277991.jpg +Places365_test_00278002.jpg +Places365_test_00278010.jpg +Places365_test_00278029.jpg +Places365_test_00278044.jpg +Places365_test_00278070.jpg +Places365_test_00278091.jpg +Places365_test_00278113.jpg +Places365_test_00278117.jpg +Places365_test_00278121.jpg +Places365_test_00278134.jpg +Places365_test_00278144.jpg +Places365_test_00278151.jpg +Places365_test_00278153.jpg +Places365_test_00278161.jpg +Places365_test_00278172.jpg +Places365_test_00278187.jpg +Places365_test_00278204.jpg +Places365_test_00278208.jpg +Places365_test_00278211.jpg +Places365_test_00278217.jpg +Places365_test_00278218.jpg +Places365_test_00278220.jpg +Places365_test_00278226.jpg +Places365_test_00278228.jpg +Places365_test_00278235.jpg +Places365_test_00278260.jpg +Places365_test_00278264.jpg +Places365_test_00278276.jpg +Places365_test_00278280.jpg +Places365_test_00278281.jpg +Places365_test_00278317.jpg +Places365_test_00278325.jpg +Places365_test_00278343.jpg +Places365_test_00278356.jpg +Places365_test_00278366.jpg +Places365_test_00278370.jpg +Places365_test_00278389.jpg +Places365_test_00278391.jpg +Places365_test_00278406.jpg +Places365_test_00278412.jpg +Places365_test_00278413.jpg +Places365_test_00278431.jpg +Places365_test_00278432.jpg +Places365_test_00278437.jpg +Places365_test_00278440.jpg +Places365_test_00278456.jpg +Places365_test_00278472.jpg +Places365_test_00278483.jpg +Places365_test_00278490.jpg +Places365_test_00278500.jpg +Places365_test_00278509.jpg +Places365_test_00278529.jpg +Places365_test_00278535.jpg +Places365_test_00278562.jpg +Places365_test_00278566.jpg +Places365_test_00278579.jpg +Places365_test_00278581.jpg +Places365_test_00278585.jpg +Places365_test_00278596.jpg +Places365_test_00278600.jpg +Places365_test_00278603.jpg +Places365_test_00278614.jpg +Places365_test_00278625.jpg +Places365_test_00278633.jpg +Places365_test_00278638.jpg +Places365_test_00278646.jpg +Places365_test_00278654.jpg +Places365_test_00278667.jpg +Places365_test_00278673.jpg +Places365_test_00278683.jpg +Places365_test_00278702.jpg +Places365_test_00278708.jpg +Places365_test_00278712.jpg +Places365_test_00278731.jpg +Places365_test_00278740.jpg +Places365_test_00278767.jpg +Places365_test_00278789.jpg +Places365_test_00278797.jpg +Places365_test_00278816.jpg +Places365_test_00278817.jpg +Places365_test_00278829.jpg +Places365_test_00278836.jpg +Places365_test_00278842.jpg +Places365_test_00278850.jpg +Places365_test_00278854.jpg +Places365_test_00278856.jpg +Places365_test_00278858.jpg +Places365_test_00278862.jpg +Places365_test_00278875.jpg +Places365_test_00278879.jpg +Places365_test_00278890.jpg +Places365_test_00278892.jpg +Places365_test_00278909.jpg +Places365_test_00278962.jpg +Places365_test_00278964.jpg +Places365_test_00278966.jpg +Places365_test_00278987.jpg +Places365_test_00279012.jpg +Places365_test_00279018.jpg +Places365_test_00279029.jpg +Places365_test_00279038.jpg +Places365_test_00279045.jpg +Places365_test_00279049.jpg +Places365_test_00279057.jpg +Places365_test_00279071.jpg +Places365_test_00279080.jpg +Places365_test_00279086.jpg +Places365_test_00279090.jpg +Places365_test_00279091.jpg +Places365_test_00279092.jpg +Places365_test_00279094.jpg +Places365_test_00279099.jpg +Places365_test_00279104.jpg +Places365_test_00279114.jpg +Places365_test_00279122.jpg +Places365_test_00279124.jpg +Places365_test_00279128.jpg +Places365_test_00279129.jpg +Places365_test_00279133.jpg +Places365_test_00279152.jpg +Places365_test_00279154.jpg +Places365_test_00279160.jpg +Places365_test_00279161.jpg +Places365_test_00279164.jpg +Places365_test_00279168.jpg +Places365_test_00279170.jpg +Places365_test_00279178.jpg +Places365_test_00279180.jpg +Places365_test_00279188.jpg +Places365_test_00279191.jpg +Places365_test_00279196.jpg +Places365_test_00279199.jpg +Places365_test_00279219.jpg +Places365_test_00279220.jpg +Places365_test_00279222.jpg +Places365_test_00279225.jpg +Places365_test_00279233.jpg +Places365_test_00279257.jpg +Places365_test_00279261.jpg +Places365_test_00279264.jpg +Places365_test_00279267.jpg +Places365_test_00279287.jpg +Places365_test_00279292.jpg +Places365_test_00279307.jpg +Places365_test_00279308.jpg +Places365_test_00279318.jpg +Places365_test_00279334.jpg +Places365_test_00279340.jpg +Places365_test_00279343.jpg +Places365_test_00279362.jpg +Places365_test_00279389.jpg +Places365_test_00279392.jpg +Places365_test_00279395.jpg +Places365_test_00279405.jpg +Places365_test_00279407.jpg +Places365_test_00279414.jpg +Places365_test_00279417.jpg +Places365_test_00279429.jpg +Places365_test_00279433.jpg +Places365_test_00279437.jpg +Places365_test_00279458.jpg +Places365_test_00279459.jpg +Places365_test_00279460.jpg +Places365_test_00279472.jpg +Places365_test_00279490.jpg +Places365_test_00279522.jpg +Places365_test_00279527.jpg +Places365_test_00279558.jpg +Places365_test_00279570.jpg +Places365_test_00279573.jpg +Places365_test_00279600.jpg +Places365_test_00279608.jpg +Places365_test_00279628.jpg +Places365_test_00279634.jpg +Places365_test_00279639.jpg +Places365_test_00279669.jpg +Places365_test_00279675.jpg +Places365_test_00279689.jpg +Places365_test_00279696.jpg +Places365_test_00279720.jpg +Places365_test_00279729.jpg +Places365_test_00279731.jpg +Places365_test_00279735.jpg +Places365_test_00279738.jpg +Places365_test_00279761.jpg +Places365_test_00279762.jpg +Places365_test_00279766.jpg +Places365_test_00279777.jpg +Places365_test_00279783.jpg +Places365_test_00279787.jpg +Places365_test_00279788.jpg +Places365_test_00279812.jpg +Places365_test_00279820.jpg +Places365_test_00279830.jpg +Places365_test_00279848.jpg +Places365_test_00279851.jpg +Places365_test_00279859.jpg +Places365_test_00279877.jpg +Places365_test_00279878.jpg +Places365_test_00279888.jpg +Places365_test_00279889.jpg +Places365_test_00279890.jpg +Places365_test_00279895.jpg +Places365_test_00279905.jpg +Places365_test_00279909.jpg +Places365_test_00279918.jpg +Places365_test_00279930.jpg +Places365_test_00279939.jpg +Places365_test_00279945.jpg +Places365_test_00279991.jpg +Places365_test_00279995.jpg +Places365_test_00280006.jpg +Places365_test_00280022.jpg +Places365_test_00280023.jpg +Places365_test_00280030.jpg +Places365_test_00280045.jpg +Places365_test_00280056.jpg +Places365_test_00280068.jpg +Places365_test_00280087.jpg +Places365_test_00280102.jpg +Places365_test_00280116.jpg +Places365_test_00280118.jpg +Places365_test_00280123.jpg +Places365_test_00280131.jpg +Places365_test_00280134.jpg +Places365_test_00280154.jpg +Places365_test_00280155.jpg +Places365_test_00280176.jpg +Places365_test_00280208.jpg +Places365_test_00280217.jpg +Places365_test_00280219.jpg +Places365_test_00280226.jpg +Places365_test_00280238.jpg +Places365_test_00280241.jpg +Places365_test_00280253.jpg +Places365_test_00280264.jpg +Places365_test_00280284.jpg +Places365_test_00280300.jpg +Places365_test_00280331.jpg +Places365_test_00280339.jpg +Places365_test_00280356.jpg +Places365_test_00280362.jpg +Places365_test_00280384.jpg +Places365_test_00280401.jpg +Places365_test_00280409.jpg +Places365_test_00280441.jpg +Places365_test_00280443.jpg +Places365_test_00280451.jpg +Places365_test_00280460.jpg +Places365_test_00280462.jpg +Places365_test_00280472.jpg +Places365_test_00280481.jpg +Places365_test_00280499.jpg +Places365_test_00280506.jpg +Places365_test_00280508.jpg +Places365_test_00280528.jpg +Places365_test_00280558.jpg +Places365_test_00280562.jpg +Places365_test_00280567.jpg +Places365_test_00280584.jpg +Places365_test_00280586.jpg +Places365_test_00280600.jpg +Places365_test_00280616.jpg +Places365_test_00280627.jpg +Places365_test_00280637.jpg +Places365_test_00280638.jpg +Places365_test_00280644.jpg +Places365_test_00280663.jpg +Places365_test_00280683.jpg +Places365_test_00280684.jpg +Places365_test_00280687.jpg +Places365_test_00280703.jpg +Places365_test_00280704.jpg +Places365_test_00280707.jpg +Places365_test_00280708.jpg +Places365_test_00280745.jpg +Places365_test_00280752.jpg +Places365_test_00280754.jpg +Places365_test_00280757.jpg +Places365_test_00280758.jpg +Places365_test_00280763.jpg +Places365_test_00280764.jpg +Places365_test_00280769.jpg +Places365_test_00280770.jpg +Places365_test_00280812.jpg +Places365_test_00280813.jpg +Places365_test_00280815.jpg +Places365_test_00280819.jpg +Places365_test_00280859.jpg +Places365_test_00280862.jpg +Places365_test_00280918.jpg +Places365_test_00280922.jpg +Places365_test_00280931.jpg +Places365_test_00280941.jpg +Places365_test_00280944.jpg +Places365_test_00280945.jpg +Places365_test_00280967.jpg +Places365_test_00280979.jpg +Places365_test_00281004.jpg +Places365_test_00281057.jpg +Places365_test_00281061.jpg +Places365_test_00281070.jpg +Places365_test_00281079.jpg +Places365_test_00281105.jpg +Places365_test_00281116.jpg +Places365_test_00281138.jpg +Places365_test_00281139.jpg +Places365_test_00281155.jpg +Places365_test_00281162.jpg +Places365_test_00281182.jpg +Places365_test_00281200.jpg +Places365_test_00281212.jpg +Places365_test_00281224.jpg +Places365_test_00281227.jpg +Places365_test_00281233.jpg +Places365_test_00281244.jpg +Places365_test_00281261.jpg +Places365_test_00281265.jpg +Places365_test_00281269.jpg +Places365_test_00281271.jpg +Places365_test_00281313.jpg +Places365_test_00281314.jpg +Places365_test_00281324.jpg +Places365_test_00281326.jpg +Places365_test_00281328.jpg +Places365_test_00281355.jpg +Places365_test_00281357.jpg +Places365_test_00281368.jpg +Places365_test_00281377.jpg +Places365_test_00281384.jpg +Places365_test_00281418.jpg +Places365_test_00281423.jpg +Places365_test_00281433.jpg +Places365_test_00281441.jpg +Places365_test_00281446.jpg +Places365_test_00281450.jpg +Places365_test_00281466.jpg +Places365_test_00281474.jpg +Places365_test_00281479.jpg +Places365_test_00281493.jpg +Places365_test_00281516.jpg +Places365_test_00281526.jpg +Places365_test_00281558.jpg +Places365_test_00281567.jpg +Places365_test_00281568.jpg +Places365_test_00281570.jpg +Places365_test_00281594.jpg +Places365_test_00281604.jpg +Places365_test_00281606.jpg +Places365_test_00281608.jpg +Places365_test_00281633.jpg +Places365_test_00281639.jpg +Places365_test_00281647.jpg +Places365_test_00281648.jpg +Places365_test_00281657.jpg +Places365_test_00281665.jpg +Places365_test_00281669.jpg +Places365_test_00281688.jpg +Places365_test_00281701.jpg +Places365_test_00281717.jpg +Places365_test_00281729.jpg +Places365_test_00281741.jpg +Places365_test_00281748.jpg +Places365_test_00281749.jpg +Places365_test_00281777.jpg +Places365_test_00281797.jpg +Places365_test_00281819.jpg +Places365_test_00281827.jpg +Places365_test_00281831.jpg +Places365_test_00281849.jpg +Places365_test_00281852.jpg +Places365_test_00281875.jpg +Places365_test_00281878.jpg +Places365_test_00281885.jpg +Places365_test_00281894.jpg +Places365_test_00281917.jpg +Places365_test_00281922.jpg +Places365_test_00281928.jpg +Places365_test_00281934.jpg +Places365_test_00281953.jpg +Places365_test_00281969.jpg +Places365_test_00281987.jpg +Places365_test_00282003.jpg +Places365_test_00282007.jpg +Places365_test_00282012.jpg +Places365_test_00282014.jpg +Places365_test_00282021.jpg +Places365_test_00282030.jpg +Places365_test_00282032.jpg +Places365_test_00282045.jpg +Places365_test_00282049.jpg +Places365_test_00282065.jpg +Places365_test_00282082.jpg +Places365_test_00282088.jpg +Places365_test_00282089.jpg +Places365_test_00282091.jpg +Places365_test_00282093.jpg +Places365_test_00282103.jpg +Places365_test_00282105.jpg +Places365_test_00282113.jpg +Places365_test_00282123.jpg +Places365_test_00282130.jpg +Places365_test_00282149.jpg +Places365_test_00282195.jpg +Places365_test_00282199.jpg +Places365_test_00282214.jpg +Places365_test_00282223.jpg +Places365_test_00282234.jpg +Places365_test_00282250.jpg +Places365_test_00282252.jpg +Places365_test_00282257.jpg +Places365_test_00282266.jpg +Places365_test_00282269.jpg +Places365_test_00282287.jpg +Places365_test_00282300.jpg +Places365_test_00282303.jpg +Places365_test_00282304.jpg +Places365_test_00282308.jpg +Places365_test_00282326.jpg +Places365_test_00282331.jpg +Places365_test_00282341.jpg +Places365_test_00282360.jpg +Places365_test_00282371.jpg +Places365_test_00282374.jpg +Places365_test_00282375.jpg +Places365_test_00282376.jpg +Places365_test_00282414.jpg +Places365_test_00282483.jpg +Places365_test_00282492.jpg +Places365_test_00282494.jpg +Places365_test_00282503.jpg +Places365_test_00282552.jpg +Places365_test_00282563.jpg +Places365_test_00282564.jpg +Places365_test_00282577.jpg +Places365_test_00282588.jpg +Places365_test_00282591.jpg +Places365_test_00282624.jpg +Places365_test_00282626.jpg +Places365_test_00282627.jpg +Places365_test_00282637.jpg +Places365_test_00282648.jpg +Places365_test_00282660.jpg +Places365_test_00282662.jpg +Places365_test_00282668.jpg +Places365_test_00282673.jpg +Places365_test_00282676.jpg +Places365_test_00282686.jpg +Places365_test_00282693.jpg +Places365_test_00282712.jpg +Places365_test_00282755.jpg +Places365_test_00282758.jpg +Places365_test_00282775.jpg +Places365_test_00282777.jpg +Places365_test_00282783.jpg +Places365_test_00282795.jpg +Places365_test_00282818.jpg +Places365_test_00282822.jpg +Places365_test_00282830.jpg +Places365_test_00282831.jpg +Places365_test_00282848.jpg +Places365_test_00282862.jpg +Places365_test_00282864.jpg +Places365_test_00282865.jpg +Places365_test_00282867.jpg +Places365_test_00282879.jpg +Places365_test_00282886.jpg +Places365_test_00282892.jpg +Places365_test_00282893.jpg +Places365_test_00282897.jpg +Places365_test_00282901.jpg +Places365_test_00282905.jpg +Places365_test_00282916.jpg +Places365_test_00282924.jpg +Places365_test_00282933.jpg +Places365_test_00282940.jpg +Places365_test_00282942.jpg +Places365_test_00282946.jpg +Places365_test_00282947.jpg +Places365_test_00282972.jpg +Places365_test_00282980.jpg +Places365_test_00282986.jpg +Places365_test_00282992.jpg +Places365_test_00282994.jpg +Places365_test_00283018.jpg +Places365_test_00283020.jpg +Places365_test_00283040.jpg +Places365_test_00283058.jpg +Places365_test_00283073.jpg +Places365_test_00283085.jpg +Places365_test_00283087.jpg +Places365_test_00283117.jpg +Places365_test_00283124.jpg +Places365_test_00283161.jpg +Places365_test_00283189.jpg +Places365_test_00283195.jpg +Places365_test_00283204.jpg +Places365_test_00283245.jpg +Places365_test_00283249.jpg +Places365_test_00283261.jpg +Places365_test_00283264.jpg +Places365_test_00283279.jpg +Places365_test_00283318.jpg +Places365_test_00283319.jpg +Places365_test_00283334.jpg +Places365_test_00283339.jpg +Places365_test_00283343.jpg +Places365_test_00283352.jpg +Places365_test_00283353.jpg +Places365_test_00283354.jpg +Places365_test_00283423.jpg +Places365_test_00283428.jpg +Places365_test_00283431.jpg +Places365_test_00283435.jpg +Places365_test_00283447.jpg +Places365_test_00283475.jpg +Places365_test_00283484.jpg +Places365_test_00283488.jpg +Places365_test_00283523.jpg +Places365_test_00283549.jpg +Places365_test_00283558.jpg +Places365_test_00283573.jpg +Places365_test_00283576.jpg +Places365_test_00283592.jpg +Places365_test_00283595.jpg +Places365_test_00283603.jpg +Places365_test_00283606.jpg +Places365_test_00283627.jpg +Places365_test_00283629.jpg +Places365_test_00283640.jpg +Places365_test_00283670.jpg +Places365_test_00283671.jpg +Places365_test_00283679.jpg +Places365_test_00283691.jpg +Places365_test_00283730.jpg +Places365_test_00283733.jpg +Places365_test_00283747.jpg +Places365_test_00283754.jpg +Places365_test_00283796.jpg +Places365_test_00283804.jpg +Places365_test_00283829.jpg +Places365_test_00283864.jpg +Places365_test_00283867.jpg +Places365_test_00283876.jpg +Places365_test_00283891.jpg +Places365_test_00283932.jpg +Places365_test_00283946.jpg +Places365_test_00283949.jpg +Places365_test_00283950.jpg +Places365_test_00283961.jpg +Places365_test_00283978.jpg +Places365_test_00283998.jpg +Places365_test_00284020.jpg +Places365_test_00284027.jpg +Places365_test_00284039.jpg +Places365_test_00284048.jpg +Places365_test_00284059.jpg +Places365_test_00284060.jpg +Places365_test_00284066.jpg +Places365_test_00284077.jpg +Places365_test_00284086.jpg +Places365_test_00284113.jpg +Places365_test_00284115.jpg +Places365_test_00284131.jpg +Places365_test_00284136.jpg +Places365_test_00284147.jpg +Places365_test_00284161.jpg +Places365_test_00284170.jpg +Places365_test_00284172.jpg +Places365_test_00284195.jpg +Places365_test_00284210.jpg +Places365_test_00284244.jpg +Places365_test_00284251.jpg +Places365_test_00284274.jpg +Places365_test_00284283.jpg +Places365_test_00284292.jpg +Places365_test_00284323.jpg +Places365_test_00284330.jpg +Places365_test_00284338.jpg +Places365_test_00284340.jpg +Places365_test_00284341.jpg +Places365_test_00284346.jpg +Places365_test_00284360.jpg +Places365_test_00284371.jpg +Places365_test_00284374.jpg +Places365_test_00284377.jpg +Places365_test_00284387.jpg +Places365_test_00284394.jpg +Places365_test_00284403.jpg +Places365_test_00284405.jpg +Places365_test_00284417.jpg +Places365_test_00284418.jpg +Places365_test_00284427.jpg +Places365_test_00284438.jpg +Places365_test_00284440.jpg +Places365_test_00284444.jpg +Places365_test_00284445.jpg +Places365_test_00284453.jpg +Places365_test_00284455.jpg +Places365_test_00284457.jpg +Places365_test_00284459.jpg +Places365_test_00284462.jpg +Places365_test_00284469.jpg +Places365_test_00284499.jpg +Places365_test_00284503.jpg +Places365_test_00284519.jpg +Places365_test_00284531.jpg +Places365_test_00284534.jpg +Places365_test_00284554.jpg +Places365_test_00284563.jpg +Places365_test_00284565.jpg +Places365_test_00284578.jpg +Places365_test_00284583.jpg +Places365_test_00284587.jpg +Places365_test_00284599.jpg +Places365_test_00284600.jpg +Places365_test_00284614.jpg +Places365_test_00284624.jpg +Places365_test_00284633.jpg +Places365_test_00284640.jpg +Places365_test_00284654.jpg +Places365_test_00284655.jpg +Places365_test_00284668.jpg +Places365_test_00284682.jpg +Places365_test_00284711.jpg +Places365_test_00284720.jpg +Places365_test_00284725.jpg +Places365_test_00284726.jpg +Places365_test_00284753.jpg +Places365_test_00284767.jpg +Places365_test_00284808.jpg +Places365_test_00284833.jpg +Places365_test_00284858.jpg +Places365_test_00284881.jpg +Places365_test_00284884.jpg +Places365_test_00284889.jpg +Places365_test_00284913.jpg +Places365_test_00284914.jpg +Places365_test_00284925.jpg +Places365_test_00284939.jpg +Places365_test_00284942.jpg +Places365_test_00284948.jpg +Places365_test_00284959.jpg +Places365_test_00284964.jpg +Places365_test_00284966.jpg +Places365_test_00284986.jpg +Places365_test_00284991.jpg +Places365_test_00285009.jpg +Places365_test_00285014.jpg +Places365_test_00285030.jpg +Places365_test_00285052.jpg +Places365_test_00285059.jpg +Places365_test_00285076.jpg +Places365_test_00285078.jpg +Places365_test_00285084.jpg +Places365_test_00285088.jpg +Places365_test_00285089.jpg +Places365_test_00285102.jpg +Places365_test_00285110.jpg +Places365_test_00285116.jpg +Places365_test_00285121.jpg +Places365_test_00285136.jpg +Places365_test_00285163.jpg +Places365_test_00285198.jpg +Places365_test_00285205.jpg +Places365_test_00285220.jpg +Places365_test_00285230.jpg +Places365_test_00285236.jpg +Places365_test_00285237.jpg +Places365_test_00285244.jpg +Places365_test_00285251.jpg +Places365_test_00285252.jpg +Places365_test_00285274.jpg +Places365_test_00285275.jpg +Places365_test_00285281.jpg +Places365_test_00285304.jpg +Places365_test_00285305.jpg +Places365_test_00285307.jpg +Places365_test_00285314.jpg +Places365_test_00285330.jpg +Places365_test_00285332.jpg +Places365_test_00285333.jpg +Places365_test_00285340.jpg +Places365_test_00285359.jpg +Places365_test_00285360.jpg +Places365_test_00285371.jpg +Places365_test_00285372.jpg +Places365_test_00285373.jpg +Places365_test_00285392.jpg +Places365_test_00285441.jpg +Places365_test_00285449.jpg +Places365_test_00285452.jpg +Places365_test_00285456.jpg +Places365_test_00285466.jpg +Places365_test_00285473.jpg +Places365_test_00285475.jpg +Places365_test_00285477.jpg +Places365_test_00285523.jpg +Places365_test_00285535.jpg +Places365_test_00285542.jpg +Places365_test_00285600.jpg +Places365_test_00285613.jpg +Places365_test_00285632.jpg +Places365_test_00285638.jpg +Places365_test_00285640.jpg +Places365_test_00285645.jpg +Places365_test_00285646.jpg +Places365_test_00285675.jpg +Places365_test_00285698.jpg +Places365_test_00285703.jpg +Places365_test_00285712.jpg +Places365_test_00285720.jpg +Places365_test_00285727.jpg +Places365_test_00285732.jpg +Places365_test_00285744.jpg +Places365_test_00285747.jpg +Places365_test_00285748.jpg +Places365_test_00285767.jpg +Places365_test_00285770.jpg +Places365_test_00285800.jpg +Places365_test_00285817.jpg +Places365_test_00285821.jpg +Places365_test_00285835.jpg +Places365_test_00285847.jpg +Places365_test_00285884.jpg +Places365_test_00285891.jpg +Places365_test_00285904.jpg +Places365_test_00285908.jpg +Places365_test_00285910.jpg +Places365_test_00285911.jpg +Places365_test_00285928.jpg +Places365_test_00285935.jpg +Places365_test_00285937.jpg +Places365_test_00285946.jpg +Places365_test_00285972.jpg +Places365_test_00285991.jpg +Places365_test_00285998.jpg +Places365_test_00286009.jpg +Places365_test_00286013.jpg +Places365_test_00286015.jpg +Places365_test_00286026.jpg +Places365_test_00286030.jpg +Places365_test_00286032.jpg +Places365_test_00286043.jpg +Places365_test_00286051.jpg +Places365_test_00286065.jpg +Places365_test_00286086.jpg +Places365_test_00286089.jpg +Places365_test_00286113.jpg +Places365_test_00286115.jpg +Places365_test_00286119.jpg +Places365_test_00286125.jpg +Places365_test_00286131.jpg +Places365_test_00286148.jpg +Places365_test_00286149.jpg +Places365_test_00286153.jpg +Places365_test_00286155.jpg +Places365_test_00286158.jpg +Places365_test_00286159.jpg +Places365_test_00286197.jpg +Places365_test_00286205.jpg +Places365_test_00286214.jpg +Places365_test_00286220.jpg +Places365_test_00286221.jpg +Places365_test_00286245.jpg +Places365_test_00286263.jpg +Places365_test_00286268.jpg +Places365_test_00286279.jpg +Places365_test_00286309.jpg +Places365_test_00286310.jpg +Places365_test_00286320.jpg +Places365_test_00286348.jpg +Places365_test_00286362.jpg +Places365_test_00286363.jpg +Places365_test_00286365.jpg +Places365_test_00286373.jpg +Places365_test_00286404.jpg +Places365_test_00286414.jpg +Places365_test_00286426.jpg +Places365_test_00286427.jpg +Places365_test_00286435.jpg +Places365_test_00286437.jpg +Places365_test_00286439.jpg +Places365_test_00286441.jpg +Places365_test_00286448.jpg +Places365_test_00286453.jpg +Places365_test_00286456.jpg +Places365_test_00286465.jpg +Places365_test_00286477.jpg +Places365_test_00286485.jpg +Places365_test_00286497.jpg +Places365_test_00286499.jpg +Places365_test_00286503.jpg +Places365_test_00286506.jpg +Places365_test_00286514.jpg +Places365_test_00286526.jpg +Places365_test_00286527.jpg +Places365_test_00286558.jpg +Places365_test_00286565.jpg +Places365_test_00286573.jpg +Places365_test_00286574.jpg +Places365_test_00286586.jpg +Places365_test_00286592.jpg +Places365_test_00286593.jpg +Places365_test_00286594.jpg +Places365_test_00286620.jpg +Places365_test_00286642.jpg +Places365_test_00286658.jpg +Places365_test_00286662.jpg +Places365_test_00286663.jpg +Places365_test_00286665.jpg +Places365_test_00286670.jpg +Places365_test_00286685.jpg +Places365_test_00286687.jpg +Places365_test_00286700.jpg +Places365_test_00286711.jpg +Places365_test_00286728.jpg +Places365_test_00286729.jpg +Places365_test_00286744.jpg +Places365_test_00286749.jpg +Places365_test_00286769.jpg +Places365_test_00286773.jpg +Places365_test_00286774.jpg +Places365_test_00286782.jpg +Places365_test_00286794.jpg +Places365_test_00286822.jpg +Places365_test_00286831.jpg +Places365_test_00286835.jpg +Places365_test_00286839.jpg +Places365_test_00286843.jpg +Places365_test_00286845.jpg +Places365_test_00286850.jpg +Places365_test_00286862.jpg +Places365_test_00286866.jpg +Places365_test_00286905.jpg +Places365_test_00286908.jpg +Places365_test_00286909.jpg +Places365_test_00286919.jpg +Places365_test_00286924.jpg +Places365_test_00286934.jpg +Places365_test_00286971.jpg +Places365_test_00286979.jpg +Places365_test_00286995.jpg +Places365_test_00286999.jpg +Places365_test_00287010.jpg +Places365_test_00287015.jpg +Places365_test_00287017.jpg +Places365_test_00287031.jpg +Places365_test_00287035.jpg +Places365_test_00287044.jpg +Places365_test_00287049.jpg +Places365_test_00287061.jpg +Places365_test_00287073.jpg +Places365_test_00287094.jpg +Places365_test_00287110.jpg +Places365_test_00287112.jpg +Places365_test_00287136.jpg +Places365_test_00287144.jpg +Places365_test_00287156.jpg +Places365_test_00287166.jpg +Places365_test_00287168.jpg +Places365_test_00287187.jpg +Places365_test_00287198.jpg +Places365_test_00287207.jpg +Places365_test_00287212.jpg +Places365_test_00287215.jpg +Places365_test_00287235.jpg +Places365_test_00287237.jpg +Places365_test_00287255.jpg +Places365_test_00287258.jpg +Places365_test_00287267.jpg +Places365_test_00287283.jpg +Places365_test_00287287.jpg +Places365_test_00287327.jpg +Places365_test_00287331.jpg +Places365_test_00287333.jpg +Places365_test_00287346.jpg +Places365_test_00287351.jpg +Places365_test_00287354.jpg +Places365_test_00287358.jpg +Places365_test_00287361.jpg +Places365_test_00287370.jpg +Places365_test_00287378.jpg +Places365_test_00287384.jpg +Places365_test_00287389.jpg +Places365_test_00287394.jpg +Places365_test_00287398.jpg +Places365_test_00287402.jpg +Places365_test_00287415.jpg +Places365_test_00287418.jpg +Places365_test_00287423.jpg +Places365_test_00287437.jpg +Places365_test_00287441.jpg +Places365_test_00287465.jpg +Places365_test_00287467.jpg +Places365_test_00287479.jpg +Places365_test_00287503.jpg +Places365_test_00287505.jpg +Places365_test_00287506.jpg +Places365_test_00287508.jpg +Places365_test_00287513.jpg +Places365_test_00287558.jpg +Places365_test_00287560.jpg +Places365_test_00287608.jpg +Places365_test_00287615.jpg +Places365_test_00287616.jpg +Places365_test_00287639.jpg +Places365_test_00287644.jpg +Places365_test_00287646.jpg +Places365_test_00287696.jpg +Places365_test_00287698.jpg +Places365_test_00287708.jpg +Places365_test_00287709.jpg +Places365_test_00287713.jpg +Places365_test_00287727.jpg +Places365_test_00287730.jpg +Places365_test_00287739.jpg +Places365_test_00287741.jpg +Places365_test_00287757.jpg +Places365_test_00287759.jpg +Places365_test_00287766.jpg +Places365_test_00287769.jpg +Places365_test_00287776.jpg +Places365_test_00287795.jpg +Places365_test_00287797.jpg +Places365_test_00287807.jpg +Places365_test_00287825.jpg +Places365_test_00287830.jpg +Places365_test_00287836.jpg +Places365_test_00287858.jpg +Places365_test_00287866.jpg +Places365_test_00287874.jpg +Places365_test_00287879.jpg +Places365_test_00287881.jpg +Places365_test_00287894.jpg +Places365_test_00287900.jpg +Places365_test_00287909.jpg +Places365_test_00287915.jpg +Places365_test_00287936.jpg +Places365_test_00287939.jpg +Places365_test_00287949.jpg +Places365_test_00287964.jpg +Places365_test_00287965.jpg +Places365_test_00287969.jpg +Places365_test_00287977.jpg +Places365_test_00287987.jpg +Places365_test_00288007.jpg +Places365_test_00288012.jpg +Places365_test_00288016.jpg +Places365_test_00288033.jpg +Places365_test_00288051.jpg +Places365_test_00288053.jpg +Places365_test_00288058.jpg +Places365_test_00288086.jpg +Places365_test_00288089.jpg +Places365_test_00288101.jpg +Places365_test_00288103.jpg +Places365_test_00288117.jpg +Places365_test_00288135.jpg +Places365_test_00288139.jpg +Places365_test_00288144.jpg +Places365_test_00288148.jpg +Places365_test_00288152.jpg +Places365_test_00288161.jpg +Places365_test_00288180.jpg +Places365_test_00288185.jpg +Places365_test_00288187.jpg +Places365_test_00288197.jpg +Places365_test_00288198.jpg +Places365_test_00288199.jpg +Places365_test_00288200.jpg +Places365_test_00288217.jpg +Places365_test_00288225.jpg +Places365_test_00288246.jpg +Places365_test_00288249.jpg +Places365_test_00288260.jpg +Places365_test_00288268.jpg +Places365_test_00288283.jpg +Places365_test_00288286.jpg +Places365_test_00288303.jpg +Places365_test_00288305.jpg +Places365_test_00288319.jpg +Places365_test_00288327.jpg +Places365_test_00288328.jpg +Places365_test_00288329.jpg +Places365_test_00288343.jpg +Places365_test_00288351.jpg +Places365_test_00288360.jpg +Places365_test_00288369.jpg +Places365_test_00288414.jpg +Places365_test_00288417.jpg +Places365_test_00288436.jpg +Places365_test_00288443.jpg +Places365_test_00288452.jpg +Places365_test_00288461.jpg +Places365_test_00288477.jpg +Places365_test_00288516.jpg +Places365_test_00288529.jpg +Places365_test_00288530.jpg +Places365_test_00288536.jpg +Places365_test_00288545.jpg +Places365_test_00288549.jpg +Places365_test_00288557.jpg +Places365_test_00288559.jpg +Places365_test_00288564.jpg +Places365_test_00288568.jpg +Places365_test_00288575.jpg +Places365_test_00288601.jpg +Places365_test_00288612.jpg +Places365_test_00288617.jpg +Places365_test_00288620.jpg +Places365_test_00288629.jpg +Places365_test_00288630.jpg +Places365_test_00288652.jpg +Places365_test_00288655.jpg +Places365_test_00288665.jpg +Places365_test_00288666.jpg +Places365_test_00288671.jpg +Places365_test_00288674.jpg +Places365_test_00288697.jpg +Places365_test_00288701.jpg +Places365_test_00288707.jpg +Places365_test_00288713.jpg +Places365_test_00288715.jpg +Places365_test_00288731.jpg +Places365_test_00288734.jpg +Places365_test_00288756.jpg +Places365_test_00288766.jpg +Places365_test_00288778.jpg +Places365_test_00288780.jpg +Places365_test_00288784.jpg +Places365_test_00288794.jpg +Places365_test_00288797.jpg +Places365_test_00288798.jpg +Places365_test_00288814.jpg +Places365_test_00288844.jpg +Places365_test_00288849.jpg +Places365_test_00288859.jpg +Places365_test_00288865.jpg +Places365_test_00288869.jpg +Places365_test_00288893.jpg +Places365_test_00288902.jpg +Places365_test_00288904.jpg +Places365_test_00288912.jpg +Places365_test_00288915.jpg +Places365_test_00288924.jpg +Places365_test_00288945.jpg +Places365_test_00288946.jpg +Places365_test_00288962.jpg +Places365_test_00288965.jpg +Places365_test_00288979.jpg +Places365_test_00289011.jpg +Places365_test_00289015.jpg +Places365_test_00289018.jpg +Places365_test_00289032.jpg +Places365_test_00289055.jpg +Places365_test_00289081.jpg +Places365_test_00289110.jpg +Places365_test_00289119.jpg +Places365_test_00289122.jpg +Places365_test_00289162.jpg +Places365_test_00289166.jpg +Places365_test_00289201.jpg +Places365_test_00289205.jpg +Places365_test_00289210.jpg +Places365_test_00289212.jpg +Places365_test_00289245.jpg +Places365_test_00289259.jpg +Places365_test_00289271.jpg +Places365_test_00289275.jpg +Places365_test_00289288.jpg +Places365_test_00289298.jpg +Places365_test_00289321.jpg +Places365_test_00289344.jpg +Places365_test_00289345.jpg +Places365_test_00289350.jpg +Places365_test_00289384.jpg +Places365_test_00289401.jpg +Places365_test_00289425.jpg +Places365_test_00289427.jpg +Places365_test_00289435.jpg +Places365_test_00289442.jpg +Places365_test_00289451.jpg +Places365_test_00289489.jpg +Places365_test_00289503.jpg +Places365_test_00289511.jpg +Places365_test_00289538.jpg +Places365_test_00289539.jpg +Places365_test_00289555.jpg +Places365_test_00289566.jpg +Places365_test_00289578.jpg +Places365_test_00289597.jpg +Places365_test_00289607.jpg +Places365_test_00289610.jpg +Places365_test_00289615.jpg +Places365_test_00289620.jpg +Places365_test_00289633.jpg +Places365_test_00289640.jpg +Places365_test_00289641.jpg +Places365_test_00289658.jpg +Places365_test_00289677.jpg +Places365_test_00289685.jpg +Places365_test_00289689.jpg +Places365_test_00289699.jpg +Places365_test_00289701.jpg +Places365_test_00289704.jpg +Places365_test_00289714.jpg +Places365_test_00289718.jpg +Places365_test_00289734.jpg +Places365_test_00289737.jpg +Places365_test_00289739.jpg +Places365_test_00289761.jpg +Places365_test_00289766.jpg +Places365_test_00289782.jpg +Places365_test_00289793.jpg +Places365_test_00289808.jpg +Places365_test_00289814.jpg +Places365_test_00289817.jpg +Places365_test_00289842.jpg +Places365_test_00289857.jpg +Places365_test_00289866.jpg +Places365_test_00289868.jpg +Places365_test_00289884.jpg +Places365_test_00289899.jpg +Places365_test_00289900.jpg +Places365_test_00289920.jpg +Places365_test_00289926.jpg +Places365_test_00289928.jpg +Places365_test_00289937.jpg +Places365_test_00289947.jpg +Places365_test_00289966.jpg +Places365_test_00289971.jpg +Places365_test_00289986.jpg +Places365_test_00289989.jpg +Places365_test_00290026.jpg +Places365_test_00290028.jpg +Places365_test_00290054.jpg +Places365_test_00290057.jpg +Places365_test_00290060.jpg +Places365_test_00290073.jpg +Places365_test_00290082.jpg +Places365_test_00290091.jpg +Places365_test_00290101.jpg +Places365_test_00290115.jpg +Places365_test_00290120.jpg +Places365_test_00290129.jpg +Places365_test_00290133.jpg +Places365_test_00290135.jpg +Places365_test_00290149.jpg +Places365_test_00290166.jpg +Places365_test_00290171.jpg +Places365_test_00290173.jpg +Places365_test_00290194.jpg +Places365_test_00290203.jpg +Places365_test_00290215.jpg +Places365_test_00290227.jpg +Places365_test_00290230.jpg +Places365_test_00290232.jpg +Places365_test_00290236.jpg +Places365_test_00290241.jpg +Places365_test_00290253.jpg +Places365_test_00290259.jpg +Places365_test_00290300.jpg +Places365_test_00290318.jpg +Places365_test_00290321.jpg +Places365_test_00290336.jpg +Places365_test_00290347.jpg +Places365_test_00290348.jpg +Places365_test_00290349.jpg +Places365_test_00290386.jpg +Places365_test_00290388.jpg +Places365_test_00290389.jpg +Places365_test_00290393.jpg +Places365_test_00290394.jpg +Places365_test_00290396.jpg +Places365_test_00290416.jpg +Places365_test_00290427.jpg +Places365_test_00290441.jpg +Places365_test_00290449.jpg +Places365_test_00290450.jpg +Places365_test_00290458.jpg +Places365_test_00290464.jpg +Places365_test_00290483.jpg +Places365_test_00290506.jpg +Places365_test_00290507.jpg +Places365_test_00290519.jpg +Places365_test_00290522.jpg +Places365_test_00290527.jpg +Places365_test_00290535.jpg +Places365_test_00290540.jpg +Places365_test_00290556.jpg +Places365_test_00290564.jpg +Places365_test_00290579.jpg +Places365_test_00290585.jpg +Places365_test_00290587.jpg +Places365_test_00290590.jpg +Places365_test_00290591.jpg +Places365_test_00290604.jpg +Places365_test_00290605.jpg +Places365_test_00290608.jpg +Places365_test_00290620.jpg +Places365_test_00290639.jpg +Places365_test_00290651.jpg +Places365_test_00290652.jpg +Places365_test_00290659.jpg +Places365_test_00290672.jpg +Places365_test_00290674.jpg +Places365_test_00290679.jpg +Places365_test_00290688.jpg +Places365_test_00290690.jpg +Places365_test_00290696.jpg +Places365_test_00290716.jpg +Places365_test_00290759.jpg +Places365_test_00290772.jpg +Places365_test_00290778.jpg +Places365_test_00290801.jpg +Places365_test_00290805.jpg +Places365_test_00290819.jpg +Places365_test_00290830.jpg +Places365_test_00290836.jpg +Places365_test_00290839.jpg +Places365_test_00290858.jpg +Places365_test_00290874.jpg +Places365_test_00290884.jpg +Places365_test_00290919.jpg +Places365_test_00290924.jpg +Places365_test_00290937.jpg +Places365_test_00290951.jpg +Places365_test_00290953.jpg +Places365_test_00290963.jpg +Places365_test_00291002.jpg +Places365_test_00291004.jpg +Places365_test_00291020.jpg +Places365_test_00291021.jpg +Places365_test_00291035.jpg +Places365_test_00291042.jpg +Places365_test_00291050.jpg +Places365_test_00291054.jpg +Places365_test_00291067.jpg +Places365_test_00291078.jpg +Places365_test_00291095.jpg +Places365_test_00291111.jpg +Places365_test_00291126.jpg +Places365_test_00291139.jpg +Places365_test_00291141.jpg +Places365_test_00291163.jpg +Places365_test_00291167.jpg +Places365_test_00291175.jpg +Places365_test_00291181.jpg +Places365_test_00291215.jpg +Places365_test_00291257.jpg +Places365_test_00291260.jpg +Places365_test_00291263.jpg +Places365_test_00291265.jpg +Places365_test_00291278.jpg +Places365_test_00291288.jpg +Places365_test_00291292.jpg +Places365_test_00291300.jpg +Places365_test_00291308.jpg +Places365_test_00291314.jpg +Places365_test_00291319.jpg +Places365_test_00291331.jpg +Places365_test_00291341.jpg +Places365_test_00291367.jpg +Places365_test_00291380.jpg +Places365_test_00291399.jpg +Places365_test_00291403.jpg +Places365_test_00291423.jpg +Places365_test_00291429.jpg +Places365_test_00291440.jpg +Places365_test_00291455.jpg +Places365_test_00291458.jpg +Places365_test_00291469.jpg +Places365_test_00291488.jpg +Places365_test_00291490.jpg +Places365_test_00291512.jpg +Places365_test_00291517.jpg +Places365_test_00291530.jpg +Places365_test_00291532.jpg +Places365_test_00291534.jpg +Places365_test_00291538.jpg +Places365_test_00291550.jpg +Places365_test_00291556.jpg +Places365_test_00291557.jpg +Places365_test_00291559.jpg +Places365_test_00291560.jpg +Places365_test_00291568.jpg +Places365_test_00291574.jpg +Places365_test_00291592.jpg +Places365_test_00291594.jpg +Places365_test_00291616.jpg +Places365_test_00291620.jpg +Places365_test_00291656.jpg +Places365_test_00291680.jpg +Places365_test_00291703.jpg +Places365_test_00291713.jpg +Places365_test_00291718.jpg +Places365_test_00291723.jpg +Places365_test_00291759.jpg +Places365_test_00291761.jpg +Places365_test_00291777.jpg +Places365_test_00291793.jpg +Places365_test_00291794.jpg +Places365_test_00291803.jpg +Places365_test_00291806.jpg +Places365_test_00291828.jpg +Places365_test_00291831.jpg +Places365_test_00291832.jpg +Places365_test_00291844.jpg +Places365_test_00291850.jpg +Places365_test_00291854.jpg +Places365_test_00291877.jpg +Places365_test_00291882.jpg +Places365_test_00291894.jpg +Places365_test_00291920.jpg +Places365_test_00291921.jpg +Places365_test_00291932.jpg +Places365_test_00291948.jpg +Places365_test_00291961.jpg +Places365_test_00291996.jpg +Places365_test_00291998.jpg +Places365_test_00292013.jpg +Places365_test_00292015.jpg +Places365_test_00292021.jpg +Places365_test_00292024.jpg +Places365_test_00292035.jpg +Places365_test_00292036.jpg +Places365_test_00292052.jpg +Places365_test_00292064.jpg +Places365_test_00292066.jpg +Places365_test_00292077.jpg +Places365_test_00292078.jpg +Places365_test_00292095.jpg +Places365_test_00292104.jpg +Places365_test_00292132.jpg +Places365_test_00292135.jpg +Places365_test_00292144.jpg +Places365_test_00292146.jpg +Places365_test_00292151.jpg +Places365_test_00292173.jpg +Places365_test_00292187.jpg +Places365_test_00292227.jpg +Places365_test_00292238.jpg +Places365_test_00292245.jpg +Places365_test_00292246.jpg +Places365_test_00292258.jpg +Places365_test_00292261.jpg +Places365_test_00292275.jpg +Places365_test_00292288.jpg +Places365_test_00292293.jpg +Places365_test_00292297.jpg +Places365_test_00292298.jpg +Places365_test_00292299.jpg +Places365_test_00292311.jpg +Places365_test_00292325.jpg +Places365_test_00292337.jpg +Places365_test_00292339.jpg +Places365_test_00292340.jpg +Places365_test_00292351.jpg +Places365_test_00292361.jpg +Places365_test_00292369.jpg +Places365_test_00292382.jpg +Places365_test_00292400.jpg +Places365_test_00292418.jpg +Places365_test_00292425.jpg +Places365_test_00292429.jpg +Places365_test_00292446.jpg +Places365_test_00292453.jpg +Places365_test_00292469.jpg +Places365_test_00292485.jpg +Places365_test_00292493.jpg +Places365_test_00292557.jpg +Places365_test_00292566.jpg +Places365_test_00292574.jpg +Places365_test_00292577.jpg +Places365_test_00292582.jpg +Places365_test_00292592.jpg +Places365_test_00292622.jpg +Places365_test_00292641.jpg +Places365_test_00292655.jpg +Places365_test_00292660.jpg +Places365_test_00292712.jpg +Places365_test_00292716.jpg +Places365_test_00292717.jpg +Places365_test_00292720.jpg +Places365_test_00292731.jpg +Places365_test_00292743.jpg +Places365_test_00292748.jpg +Places365_test_00292772.jpg +Places365_test_00292800.jpg +Places365_test_00292809.jpg +Places365_test_00292812.jpg +Places365_test_00292813.jpg +Places365_test_00292843.jpg +Places365_test_00292853.jpg +Places365_test_00292891.jpg +Places365_test_00292895.jpg +Places365_test_00292899.jpg +Places365_test_00292901.jpg +Places365_test_00292912.jpg +Places365_test_00292930.jpg +Places365_test_00292939.jpg +Places365_test_00292942.jpg +Places365_test_00292944.jpg +Places365_test_00292967.jpg +Places365_test_00292975.jpg +Places365_test_00292985.jpg +Places365_test_00292992.jpg +Places365_test_00292999.jpg +Places365_test_00293009.jpg +Places365_test_00293023.jpg +Places365_test_00293033.jpg +Places365_test_00293038.jpg +Places365_test_00293039.jpg +Places365_test_00293041.jpg +Places365_test_00293056.jpg +Places365_test_00293082.jpg +Places365_test_00293138.jpg +Places365_test_00293141.jpg +Places365_test_00293142.jpg +Places365_test_00293166.jpg +Places365_test_00293173.jpg +Places365_test_00293182.jpg +Places365_test_00293192.jpg +Places365_test_00293198.jpg +Places365_test_00293200.jpg +Places365_test_00293215.jpg +Places365_test_00293247.jpg +Places365_test_00293251.jpg +Places365_test_00293258.jpg +Places365_test_00293274.jpg +Places365_test_00293275.jpg +Places365_test_00293290.jpg +Places365_test_00293308.jpg +Places365_test_00293313.jpg +Places365_test_00293317.jpg +Places365_test_00293325.jpg +Places365_test_00293327.jpg +Places365_test_00293343.jpg +Places365_test_00293352.jpg +Places365_test_00293386.jpg +Places365_test_00293392.jpg +Places365_test_00293404.jpg +Places365_test_00293405.jpg +Places365_test_00293414.jpg +Places365_test_00293419.jpg +Places365_test_00293423.jpg +Places365_test_00293435.jpg +Places365_test_00293436.jpg +Places365_test_00293438.jpg +Places365_test_00293465.jpg +Places365_test_00293480.jpg +Places365_test_00293485.jpg +Places365_test_00293488.jpg +Places365_test_00293498.jpg +Places365_test_00293506.jpg +Places365_test_00293510.jpg +Places365_test_00293526.jpg +Places365_test_00293527.jpg +Places365_test_00293532.jpg +Places365_test_00293534.jpg +Places365_test_00293553.jpg +Places365_test_00293562.jpg +Places365_test_00293575.jpg +Places365_test_00293580.jpg +Places365_test_00293584.jpg +Places365_test_00293596.jpg +Places365_test_00293604.jpg +Places365_test_00293608.jpg +Places365_test_00293614.jpg +Places365_test_00293616.jpg +Places365_test_00293621.jpg +Places365_test_00293624.jpg +Places365_test_00293627.jpg +Places365_test_00293640.jpg +Places365_test_00293645.jpg +Places365_test_00293650.jpg +Places365_test_00293655.jpg +Places365_test_00293678.jpg +Places365_test_00293693.jpg +Places365_test_00293706.jpg +Places365_test_00293707.jpg +Places365_test_00293718.jpg +Places365_test_00293719.jpg +Places365_test_00293722.jpg +Places365_test_00293730.jpg +Places365_test_00293731.jpg +Places365_test_00293745.jpg +Places365_test_00293749.jpg +Places365_test_00293759.jpg +Places365_test_00293763.jpg +Places365_test_00293769.jpg +Places365_test_00293789.jpg +Places365_test_00293802.jpg +Places365_test_00293829.jpg +Places365_test_00293830.jpg +Places365_test_00293840.jpg +Places365_test_00293841.jpg +Places365_test_00293896.jpg +Places365_test_00293902.jpg +Places365_test_00293932.jpg +Places365_test_00293935.jpg +Places365_test_00293942.jpg +Places365_test_00293949.jpg +Places365_test_00293951.jpg +Places365_test_00293960.jpg +Places365_test_00293965.jpg +Places365_test_00293967.jpg +Places365_test_00294006.jpg +Places365_test_00294036.jpg +Places365_test_00294078.jpg +Places365_test_00294106.jpg +Places365_test_00294120.jpg +Places365_test_00294123.jpg +Places365_test_00294132.jpg +Places365_test_00294140.jpg +Places365_test_00294141.jpg +Places365_test_00294151.jpg +Places365_test_00294154.jpg +Places365_test_00294157.jpg +Places365_test_00294159.jpg +Places365_test_00294161.jpg +Places365_test_00294178.jpg +Places365_test_00294193.jpg +Places365_test_00294199.jpg +Places365_test_00294207.jpg +Places365_test_00294208.jpg +Places365_test_00294211.jpg +Places365_test_00294218.jpg +Places365_test_00294223.jpg +Places365_test_00294224.jpg +Places365_test_00294234.jpg +Places365_test_00294247.jpg +Places365_test_00294252.jpg +Places365_test_00294264.jpg +Places365_test_00294267.jpg +Places365_test_00294291.jpg +Places365_test_00294312.jpg +Places365_test_00294320.jpg +Places365_test_00294338.jpg +Places365_test_00294349.jpg +Places365_test_00294350.jpg +Places365_test_00294351.jpg +Places365_test_00294360.jpg +Places365_test_00294421.jpg +Places365_test_00294432.jpg +Places365_test_00294439.jpg +Places365_test_00294446.jpg +Places365_test_00294460.jpg +Places365_test_00294476.jpg +Places365_test_00294501.jpg +Places365_test_00294539.jpg +Places365_test_00294546.jpg +Places365_test_00294553.jpg +Places365_test_00294560.jpg +Places365_test_00294582.jpg +Places365_test_00294592.jpg +Places365_test_00294593.jpg +Places365_test_00294623.jpg +Places365_test_00294625.jpg +Places365_test_00294640.jpg +Places365_test_00294643.jpg +Places365_test_00294651.jpg +Places365_test_00294675.jpg +Places365_test_00294686.jpg +Places365_test_00294701.jpg +Places365_test_00294714.jpg +Places365_test_00294715.jpg +Places365_test_00294720.jpg +Places365_test_00294737.jpg +Places365_test_00294783.jpg +Places365_test_00294830.jpg +Places365_test_00294831.jpg +Places365_test_00294832.jpg +Places365_test_00294834.jpg +Places365_test_00294843.jpg +Places365_test_00294851.jpg +Places365_test_00294867.jpg +Places365_test_00294877.jpg +Places365_test_00294898.jpg +Places365_test_00294905.jpg +Places365_test_00294920.jpg +Places365_test_00294942.jpg +Places365_test_00294968.jpg +Places365_test_00294974.jpg +Places365_test_00294976.jpg +Places365_test_00294986.jpg +Places365_test_00294999.jpg +Places365_test_00295028.jpg +Places365_test_00295049.jpg +Places365_test_00295052.jpg +Places365_test_00295056.jpg +Places365_test_00295068.jpg +Places365_test_00295080.jpg +Places365_test_00295101.jpg +Places365_test_00295108.jpg +Places365_test_00295128.jpg +Places365_test_00295147.jpg +Places365_test_00295157.jpg +Places365_test_00295172.jpg +Places365_test_00295185.jpg +Places365_test_00295195.jpg +Places365_test_00295204.jpg +Places365_test_00295205.jpg +Places365_test_00295206.jpg +Places365_test_00295211.jpg +Places365_test_00295228.jpg +Places365_test_00295237.jpg +Places365_test_00295245.jpg +Places365_test_00295247.jpg +Places365_test_00295250.jpg +Places365_test_00295262.jpg +Places365_test_00295301.jpg +Places365_test_00295307.jpg +Places365_test_00295335.jpg +Places365_test_00295336.jpg +Places365_test_00295353.jpg +Places365_test_00295359.jpg +Places365_test_00295372.jpg +Places365_test_00295393.jpg +Places365_test_00295399.jpg +Places365_test_00295402.jpg +Places365_test_00295425.jpg +Places365_test_00295442.jpg +Places365_test_00295463.jpg +Places365_test_00295481.jpg +Places365_test_00295490.jpg +Places365_test_00295495.jpg +Places365_test_00295497.jpg +Places365_test_00295499.jpg +Places365_test_00295503.jpg +Places365_test_00295507.jpg +Places365_test_00295514.jpg +Places365_test_00295521.jpg +Places365_test_00295522.jpg +Places365_test_00295527.jpg +Places365_test_00295531.jpg +Places365_test_00295536.jpg +Places365_test_00295565.jpg +Places365_test_00295570.jpg +Places365_test_00295573.jpg +Places365_test_00295583.jpg +Places365_test_00295598.jpg +Places365_test_00295615.jpg +Places365_test_00295618.jpg +Places365_test_00295622.jpg +Places365_test_00295627.jpg +Places365_test_00295630.jpg +Places365_test_00295639.jpg +Places365_test_00295648.jpg +Places365_test_00295658.jpg +Places365_test_00295687.jpg +Places365_test_00295692.jpg +Places365_test_00295696.jpg +Places365_test_00295717.jpg +Places365_test_00295722.jpg +Places365_test_00295729.jpg +Places365_test_00295749.jpg +Places365_test_00295758.jpg +Places365_test_00295761.jpg +Places365_test_00295767.jpg +Places365_test_00295771.jpg +Places365_test_00295781.jpg +Places365_test_00295803.jpg +Places365_test_00295841.jpg +Places365_test_00295865.jpg +Places365_test_00295882.jpg +Places365_test_00295887.jpg +Places365_test_00295906.jpg +Places365_test_00295924.jpg +Places365_test_00295936.jpg +Places365_test_00295940.jpg +Places365_test_00295944.jpg +Places365_test_00295947.jpg +Places365_test_00295986.jpg +Places365_test_00295995.jpg +Places365_test_00295997.jpg +Places365_test_00296007.jpg +Places365_test_00296011.jpg +Places365_test_00296019.jpg +Places365_test_00296021.jpg +Places365_test_00296034.jpg +Places365_test_00296039.jpg +Places365_test_00296049.jpg +Places365_test_00296066.jpg +Places365_test_00296068.jpg +Places365_test_00296076.jpg +Places365_test_00296081.jpg +Places365_test_00296107.jpg +Places365_test_00296108.jpg +Places365_test_00296119.jpg +Places365_test_00296126.jpg +Places365_test_00296131.jpg +Places365_test_00296137.jpg +Places365_test_00296152.jpg +Places365_test_00296198.jpg +Places365_test_00296207.jpg +Places365_test_00296234.jpg +Places365_test_00296250.jpg +Places365_test_00296257.jpg +Places365_test_00296276.jpg +Places365_test_00296302.jpg +Places365_test_00296309.jpg +Places365_test_00296342.jpg +Places365_test_00296344.jpg +Places365_test_00296361.jpg +Places365_test_00296363.jpg +Places365_test_00296367.jpg +Places365_test_00296422.jpg +Places365_test_00296425.jpg +Places365_test_00296448.jpg +Places365_test_00296449.jpg +Places365_test_00296472.jpg +Places365_test_00296473.jpg +Places365_test_00296478.jpg +Places365_test_00296507.jpg +Places365_test_00296536.jpg +Places365_test_00296569.jpg +Places365_test_00296592.jpg +Places365_test_00296616.jpg +Places365_test_00296632.jpg +Places365_test_00296657.jpg +Places365_test_00296667.jpg +Places365_test_00296677.jpg +Places365_test_00296688.jpg +Places365_test_00296699.jpg +Places365_test_00296718.jpg +Places365_test_00296732.jpg +Places365_test_00296735.jpg +Places365_test_00296743.jpg +Places365_test_00296800.jpg +Places365_test_00296815.jpg +Places365_test_00296826.jpg +Places365_test_00296828.jpg +Places365_test_00296833.jpg +Places365_test_00296846.jpg +Places365_test_00296848.jpg +Places365_test_00296850.jpg +Places365_test_00296856.jpg +Places365_test_00296867.jpg +Places365_test_00296878.jpg +Places365_test_00296892.jpg +Places365_test_00296906.jpg +Places365_test_00296928.jpg +Places365_test_00296938.jpg +Places365_test_00296944.jpg +Places365_test_00296957.jpg +Places365_test_00296965.jpg +Places365_test_00296970.jpg +Places365_test_00296971.jpg +Places365_test_00296984.jpg +Places365_test_00296987.jpg +Places365_test_00296992.jpg +Places365_test_00297000.jpg +Places365_test_00297003.jpg +Places365_test_00297005.jpg +Places365_test_00297011.jpg +Places365_test_00297012.jpg +Places365_test_00297056.jpg +Places365_test_00297058.jpg +Places365_test_00297064.jpg +Places365_test_00297065.jpg +Places365_test_00297070.jpg +Places365_test_00297075.jpg +Places365_test_00297078.jpg +Places365_test_00297082.jpg +Places365_test_00297094.jpg +Places365_test_00297102.jpg +Places365_test_00297106.jpg +Places365_test_00297112.jpg +Places365_test_00297121.jpg +Places365_test_00297141.jpg +Places365_test_00297155.jpg +Places365_test_00297161.jpg +Places365_test_00297163.jpg +Places365_test_00297174.jpg +Places365_test_00297181.jpg +Places365_test_00297231.jpg +Places365_test_00297238.jpg +Places365_test_00297240.jpg +Places365_test_00297262.jpg +Places365_test_00297265.jpg +Places365_test_00297277.jpg +Places365_test_00297280.jpg +Places365_test_00297293.jpg +Places365_test_00297299.jpg +Places365_test_00297314.jpg +Places365_test_00297321.jpg +Places365_test_00297371.jpg +Places365_test_00297377.jpg +Places365_test_00297392.jpg +Places365_test_00297401.jpg +Places365_test_00297402.jpg +Places365_test_00297403.jpg +Places365_test_00297410.jpg +Places365_test_00297423.jpg +Places365_test_00297450.jpg +Places365_test_00297455.jpg +Places365_test_00297486.jpg +Places365_test_00297490.jpg +Places365_test_00297503.jpg +Places365_test_00297506.jpg +Places365_test_00297507.jpg +Places365_test_00297509.jpg +Places365_test_00297530.jpg +Places365_test_00297531.jpg +Places365_test_00297547.jpg +Places365_test_00297552.jpg +Places365_test_00297554.jpg +Places365_test_00297555.jpg +Places365_test_00297626.jpg +Places365_test_00297654.jpg +Places365_test_00297664.jpg +Places365_test_00297667.jpg +Places365_test_00297685.jpg +Places365_test_00297694.jpg +Places365_test_00297697.jpg +Places365_test_00297713.jpg +Places365_test_00297716.jpg +Places365_test_00297726.jpg +Places365_test_00297738.jpg +Places365_test_00297739.jpg +Places365_test_00297740.jpg +Places365_test_00297768.jpg +Places365_test_00297784.jpg +Places365_test_00297798.jpg +Places365_test_00297800.jpg +Places365_test_00297803.jpg +Places365_test_00297835.jpg +Places365_test_00297852.jpg +Places365_test_00297862.jpg +Places365_test_00297869.jpg +Places365_test_00297870.jpg +Places365_test_00297880.jpg +Places365_test_00297899.jpg +Places365_test_00297909.jpg +Places365_test_00297917.jpg +Places365_test_00297919.jpg +Places365_test_00297923.jpg +Places365_test_00297936.jpg +Places365_test_00297941.jpg +Places365_test_00297942.jpg +Places365_test_00297953.jpg +Places365_test_00297993.jpg +Places365_test_00297995.jpg +Places365_test_00297997.jpg +Places365_test_00297998.jpg +Places365_test_00298000.jpg +Places365_test_00298025.jpg +Places365_test_00298038.jpg +Places365_test_00298055.jpg +Places365_test_00298071.jpg +Places365_test_00298074.jpg +Places365_test_00298078.jpg +Places365_test_00298090.jpg +Places365_test_00298094.jpg +Places365_test_00298128.jpg +Places365_test_00298130.jpg +Places365_test_00298145.jpg +Places365_test_00298156.jpg +Places365_test_00298159.jpg +Places365_test_00298163.jpg +Places365_test_00298177.jpg +Places365_test_00298194.jpg +Places365_test_00298195.jpg +Places365_test_00298200.jpg +Places365_test_00298221.jpg +Places365_test_00298222.jpg +Places365_test_00298242.jpg +Places365_test_00298252.jpg +Places365_test_00298278.jpg +Places365_test_00298288.jpg +Places365_test_00298292.jpg +Places365_test_00298301.jpg +Places365_test_00298302.jpg +Places365_test_00298313.jpg +Places365_test_00298314.jpg +Places365_test_00298325.jpg +Places365_test_00298331.jpg +Places365_test_00298339.jpg +Places365_test_00298358.jpg +Places365_test_00298366.jpg +Places365_test_00298384.jpg +Places365_test_00298388.jpg +Places365_test_00298391.jpg +Places365_test_00298392.jpg +Places365_test_00298395.jpg +Places365_test_00298411.jpg +Places365_test_00298444.jpg +Places365_test_00298462.jpg +Places365_test_00298474.jpg +Places365_test_00298478.jpg +Places365_test_00298484.jpg +Places365_test_00298486.jpg +Places365_test_00298501.jpg +Places365_test_00298504.jpg +Places365_test_00298506.jpg +Places365_test_00298517.jpg +Places365_test_00298539.jpg +Places365_test_00298548.jpg +Places365_test_00298564.jpg +Places365_test_00298572.jpg +Places365_test_00298573.jpg +Places365_test_00298579.jpg +Places365_test_00298621.jpg +Places365_test_00298661.jpg +Places365_test_00298669.jpg +Places365_test_00298671.jpg +Places365_test_00298685.jpg +Places365_test_00298693.jpg +Places365_test_00298728.jpg +Places365_test_00298746.jpg +Places365_test_00298750.jpg +Places365_test_00298752.jpg +Places365_test_00298753.jpg +Places365_test_00298754.jpg +Places365_test_00298759.jpg +Places365_test_00298773.jpg +Places365_test_00298777.jpg +Places365_test_00298779.jpg +Places365_test_00298782.jpg +Places365_test_00298784.jpg +Places365_test_00298795.jpg +Places365_test_00298799.jpg +Places365_test_00298807.jpg +Places365_test_00298813.jpg +Places365_test_00298814.jpg +Places365_test_00298815.jpg +Places365_test_00298821.jpg +Places365_test_00298830.jpg +Places365_test_00298845.jpg +Places365_test_00298869.jpg +Places365_test_00298879.jpg +Places365_test_00298894.jpg +Places365_test_00298969.jpg +Places365_test_00298981.jpg +Places365_test_00298992.jpg +Places365_test_00298993.jpg +Places365_test_00298994.jpg +Places365_test_00298999.jpg +Places365_test_00299027.jpg +Places365_test_00299028.jpg +Places365_test_00299057.jpg +Places365_test_00299060.jpg +Places365_test_00299064.jpg +Places365_test_00299067.jpg +Places365_test_00299091.jpg +Places365_test_00299092.jpg +Places365_test_00299106.jpg +Places365_test_00299118.jpg +Places365_test_00299121.jpg +Places365_test_00299133.jpg +Places365_test_00299136.jpg +Places365_test_00299142.jpg +Places365_test_00299149.jpg +Places365_test_00299158.jpg +Places365_test_00299160.jpg +Places365_test_00299173.jpg +Places365_test_00299182.jpg +Places365_test_00299186.jpg +Places365_test_00299207.jpg +Places365_test_00299219.jpg +Places365_test_00299220.jpg +Places365_test_00299221.jpg +Places365_test_00299224.jpg +Places365_test_00299237.jpg +Places365_test_00299238.jpg +Places365_test_00299289.jpg +Places365_test_00299304.jpg +Places365_test_00299320.jpg +Places365_test_00299321.jpg +Places365_test_00299325.jpg +Places365_test_00299333.jpg +Places365_test_00299338.jpg +Places365_test_00299350.jpg +Places365_test_00299399.jpg +Places365_test_00299403.jpg +Places365_test_00299407.jpg +Places365_test_00299440.jpg +Places365_test_00299459.jpg +Places365_test_00299472.jpg +Places365_test_00299491.jpg +Places365_test_00299493.jpg +Places365_test_00299507.jpg +Places365_test_00299523.jpg +Places365_test_00299533.jpg +Places365_test_00299535.jpg +Places365_test_00299540.jpg +Places365_test_00299562.jpg +Places365_test_00299570.jpg +Places365_test_00299581.jpg +Places365_test_00299613.jpg +Places365_test_00299626.jpg +Places365_test_00299635.jpg +Places365_test_00299648.jpg +Places365_test_00299649.jpg +Places365_test_00299651.jpg +Places365_test_00299653.jpg +Places365_test_00299654.jpg +Places365_test_00299656.jpg +Places365_test_00299666.jpg +Places365_test_00299677.jpg +Places365_test_00299681.jpg +Places365_test_00299686.jpg +Places365_test_00299692.jpg +Places365_test_00299696.jpg +Places365_test_00299698.jpg +Places365_test_00299716.jpg +Places365_test_00299722.jpg +Places365_test_00299725.jpg +Places365_test_00299737.jpg +Places365_test_00299753.jpg +Places365_test_00299764.jpg +Places365_test_00299766.jpg +Places365_test_00299767.jpg +Places365_test_00299794.jpg +Places365_test_00299828.jpg +Places365_test_00299838.jpg +Places365_test_00299894.jpg +Places365_test_00299897.jpg +Places365_test_00299908.jpg +Places365_test_00299910.jpg +Places365_test_00299914.jpg +Places365_test_00299917.jpg +Places365_test_00299936.jpg +Places365_test_00299949.jpg +Places365_test_00299962.jpg +Places365_test_00299963.jpg +Places365_test_00299980.jpg +Places365_test_00299984.jpg +Places365_test_00299986.jpg +Places365_test_00299989.jpg +Places365_test_00299995.jpg +Places365_test_00300001.jpg +Places365_test_00300005.jpg +Places365_test_00300049.jpg +Places365_test_00300062.jpg +Places365_test_00300071.jpg +Places365_test_00300091.jpg +Places365_test_00300100.jpg +Places365_test_00300136.jpg +Places365_test_00300164.jpg +Places365_test_00300191.jpg +Places365_test_00300194.jpg +Places365_test_00300213.jpg +Places365_test_00300227.jpg +Places365_test_00300236.jpg +Places365_test_00300245.jpg +Places365_test_00300269.jpg +Places365_test_00300276.jpg +Places365_test_00300305.jpg +Places365_test_00300307.jpg +Places365_test_00300311.jpg +Places365_test_00300316.jpg +Places365_test_00300337.jpg +Places365_test_00300359.jpg +Places365_test_00300360.jpg +Places365_test_00300366.jpg +Places365_test_00300381.jpg +Places365_test_00300391.jpg +Places365_test_00300411.jpg +Places365_test_00300416.jpg +Places365_test_00300420.jpg +Places365_test_00300422.jpg +Places365_test_00300433.jpg +Places365_test_00300457.jpg +Places365_test_00300461.jpg +Places365_test_00300481.jpg +Places365_test_00300493.jpg +Places365_test_00300507.jpg +Places365_test_00300508.jpg +Places365_test_00300509.jpg +Places365_test_00300540.jpg +Places365_test_00300547.jpg +Places365_test_00300552.jpg +Places365_test_00300567.jpg +Places365_test_00300583.jpg +Places365_test_00300617.jpg +Places365_test_00300630.jpg +Places365_test_00300678.jpg +Places365_test_00300683.jpg +Places365_test_00300695.jpg +Places365_test_00300707.jpg +Places365_test_00300713.jpg +Places365_test_00300732.jpg +Places365_test_00300753.jpg +Places365_test_00300754.jpg +Places365_test_00300755.jpg +Places365_test_00300763.jpg +Places365_test_00300764.jpg +Places365_test_00300769.jpg +Places365_test_00300772.jpg +Places365_test_00300782.jpg +Places365_test_00300799.jpg +Places365_test_00300805.jpg +Places365_test_00300817.jpg +Places365_test_00300818.jpg +Places365_test_00300821.jpg +Places365_test_00300822.jpg +Places365_test_00300823.jpg +Places365_test_00300844.jpg +Places365_test_00300905.jpg +Places365_test_00300912.jpg +Places365_test_00300928.jpg +Places365_test_00300930.jpg +Places365_test_00301016.jpg +Places365_test_00301044.jpg +Places365_test_00301053.jpg +Places365_test_00301054.jpg +Places365_test_00301060.jpg +Places365_test_00301063.jpg +Places365_test_00301075.jpg +Places365_test_00301084.jpg +Places365_test_00301099.jpg +Places365_test_00301102.jpg +Places365_test_00301110.jpg +Places365_test_00301132.jpg +Places365_test_00301136.jpg +Places365_test_00301150.jpg +Places365_test_00301156.jpg +Places365_test_00301166.jpg +Places365_test_00301167.jpg +Places365_test_00301173.jpg +Places365_test_00301177.jpg +Places365_test_00301187.jpg +Places365_test_00301206.jpg +Places365_test_00301216.jpg +Places365_test_00301241.jpg +Places365_test_00301250.jpg +Places365_test_00301252.jpg +Places365_test_00301266.jpg +Places365_test_00301269.jpg +Places365_test_00301282.jpg +Places365_test_00301304.jpg +Places365_test_00301306.jpg +Places365_test_00301313.jpg +Places365_test_00301323.jpg +Places365_test_00301329.jpg +Places365_test_00301337.jpg +Places365_test_00301341.jpg +Places365_test_00301357.jpg +Places365_test_00301374.jpg +Places365_test_00301379.jpg +Places365_test_00301394.jpg +Places365_test_00301398.jpg +Places365_test_00301402.jpg +Places365_test_00301410.jpg +Places365_test_00301416.jpg +Places365_test_00301428.jpg +Places365_test_00301432.jpg +Places365_test_00301439.jpg +Places365_test_00301440.jpg +Places365_test_00301463.jpg +Places365_test_00301473.jpg +Places365_test_00301523.jpg +Places365_test_00301546.jpg +Places365_test_00301547.jpg +Places365_test_00301550.jpg +Places365_test_00301591.jpg +Places365_test_00301592.jpg +Places365_test_00301599.jpg +Places365_test_00301616.jpg +Places365_test_00301630.jpg +Places365_test_00301635.jpg +Places365_test_00301637.jpg +Places365_test_00301647.jpg +Places365_test_00301648.jpg +Places365_test_00301649.jpg +Places365_test_00301678.jpg +Places365_test_00301686.jpg +Places365_test_00301710.jpg +Places365_test_00301711.jpg +Places365_test_00301712.jpg +Places365_test_00301731.jpg +Places365_test_00301733.jpg +Places365_test_00301751.jpg +Places365_test_00301798.jpg +Places365_test_00301801.jpg +Places365_test_00301803.jpg +Places365_test_00301824.jpg +Places365_test_00301830.jpg +Places365_test_00301833.jpg +Places365_test_00301835.jpg +Places365_test_00301836.jpg +Places365_test_00301846.jpg +Places365_test_00301852.jpg +Places365_test_00301858.jpg +Places365_test_00301864.jpg +Places365_test_00301868.jpg +Places365_test_00301874.jpg +Places365_test_00301946.jpg +Places365_test_00301956.jpg +Places365_test_00301958.jpg +Places365_test_00301972.jpg +Places365_test_00301987.jpg +Places365_test_00301995.jpg +Places365_test_00302005.jpg +Places365_test_00302053.jpg +Places365_test_00302054.jpg +Places365_test_00302066.jpg +Places365_test_00302072.jpg +Places365_test_00302082.jpg +Places365_test_00302089.jpg +Places365_test_00302093.jpg +Places365_test_00302094.jpg +Places365_test_00302098.jpg +Places365_test_00302101.jpg +Places365_test_00302110.jpg +Places365_test_00302122.jpg +Places365_test_00302130.jpg +Places365_test_00302167.jpg +Places365_test_00302198.jpg +Places365_test_00302210.jpg +Places365_test_00302211.jpg +Places365_test_00302213.jpg +Places365_test_00302240.jpg +Places365_test_00302256.jpg +Places365_test_00302294.jpg +Places365_test_00302308.jpg +Places365_test_00302311.jpg +Places365_test_00302324.jpg +Places365_test_00302336.jpg +Places365_test_00302347.jpg +Places365_test_00302357.jpg +Places365_test_00302365.jpg +Places365_test_00302404.jpg +Places365_test_00302410.jpg +Places365_test_00302416.jpg +Places365_test_00302424.jpg +Places365_test_00302470.jpg +Places365_test_00302474.jpg +Places365_test_00302477.jpg +Places365_test_00302479.jpg +Places365_test_00302480.jpg +Places365_test_00302499.jpg +Places365_test_00302500.jpg +Places365_test_00302506.jpg +Places365_test_00302514.jpg +Places365_test_00302519.jpg +Places365_test_00302534.jpg +Places365_test_00302553.jpg +Places365_test_00302571.jpg +Places365_test_00302577.jpg +Places365_test_00302578.jpg +Places365_test_00302585.jpg +Places365_test_00302609.jpg +Places365_test_00302665.jpg +Places365_test_00302689.jpg +Places365_test_00302741.jpg +Places365_test_00302746.jpg +Places365_test_00302747.jpg +Places365_test_00302750.jpg +Places365_test_00302761.jpg +Places365_test_00302773.jpg +Places365_test_00302780.jpg +Places365_test_00302784.jpg +Places365_test_00302787.jpg +Places365_test_00302799.jpg +Places365_test_00302809.jpg +Places365_test_00302823.jpg +Places365_test_00302844.jpg +Places365_test_00302845.jpg +Places365_test_00302854.jpg +Places365_test_00302866.jpg +Places365_test_00302895.jpg +Places365_test_00302912.jpg +Places365_test_00302922.jpg +Places365_test_00302967.jpg +Places365_test_00302975.jpg +Places365_test_00302993.jpg +Places365_test_00303009.jpg +Places365_test_00303027.jpg +Places365_test_00303035.jpg +Places365_test_00303043.jpg +Places365_test_00303054.jpg +Places365_test_00303058.jpg +Places365_test_00303059.jpg +Places365_test_00303061.jpg +Places365_test_00303070.jpg +Places365_test_00303082.jpg +Places365_test_00303091.jpg +Places365_test_00303095.jpg +Places365_test_00303104.jpg +Places365_test_00303105.jpg +Places365_test_00303119.jpg +Places365_test_00303122.jpg +Places365_test_00303135.jpg +Places365_test_00303167.jpg +Places365_test_00303171.jpg +Places365_test_00303172.jpg +Places365_test_00303180.jpg +Places365_test_00303188.jpg +Places365_test_00303191.jpg +Places365_test_00303195.jpg +Places365_test_00303200.jpg +Places365_test_00303223.jpg +Places365_test_00303224.jpg +Places365_test_00303243.jpg +Places365_test_00303256.jpg +Places365_test_00303260.jpg +Places365_test_00303265.jpg +Places365_test_00303299.jpg +Places365_test_00303313.jpg +Places365_test_00303315.jpg +Places365_test_00303328.jpg +Places365_test_00303342.jpg +Places365_test_00303368.jpg +Places365_test_00303369.jpg +Places365_test_00303375.jpg +Places365_test_00303376.jpg +Places365_test_00303378.jpg +Places365_test_00303380.jpg +Places365_test_00303383.jpg +Places365_test_00303401.jpg +Places365_test_00303409.jpg +Places365_test_00303417.jpg +Places365_test_00303418.jpg +Places365_test_00303420.jpg +Places365_test_00303433.jpg +Places365_test_00303450.jpg +Places365_test_00303453.jpg +Places365_test_00303482.jpg +Places365_test_00303493.jpg +Places365_test_00303501.jpg +Places365_test_00303506.jpg +Places365_test_00303514.jpg +Places365_test_00303516.jpg +Places365_test_00303519.jpg +Places365_test_00303533.jpg +Places365_test_00303550.jpg +Places365_test_00303555.jpg +Places365_test_00303585.jpg +Places365_test_00303590.jpg +Places365_test_00303600.jpg +Places365_test_00303603.jpg +Places365_test_00303614.jpg +Places365_test_00303616.jpg +Places365_test_00303656.jpg +Places365_test_00303657.jpg +Places365_test_00303661.jpg +Places365_test_00303664.jpg +Places365_test_00303695.jpg +Places365_test_00303704.jpg +Places365_test_00303706.jpg +Places365_test_00303710.jpg +Places365_test_00303723.jpg +Places365_test_00303725.jpg +Places365_test_00303731.jpg +Places365_test_00303734.jpg +Places365_test_00303735.jpg +Places365_test_00303749.jpg +Places365_test_00303779.jpg +Places365_test_00303813.jpg +Places365_test_00303817.jpg +Places365_test_00303832.jpg +Places365_test_00303847.jpg +Places365_test_00303850.jpg +Places365_test_00303853.jpg +Places365_test_00303857.jpg +Places365_test_00303864.jpg +Places365_test_00303866.jpg +Places365_test_00303869.jpg +Places365_test_00303870.jpg +Places365_test_00303877.jpg +Places365_test_00303884.jpg +Places365_test_00303906.jpg +Places365_test_00303916.jpg +Places365_test_00303938.jpg +Places365_test_00303969.jpg +Places365_test_00303986.jpg +Places365_test_00303987.jpg +Places365_test_00304002.jpg +Places365_test_00304010.jpg +Places365_test_00304012.jpg +Places365_test_00304017.jpg +Places365_test_00304028.jpg +Places365_test_00304038.jpg +Places365_test_00304045.jpg +Places365_test_00304053.jpg +Places365_test_00304056.jpg +Places365_test_00304058.jpg +Places365_test_00304062.jpg +Places365_test_00304064.jpg +Places365_test_00304071.jpg +Places365_test_00304086.jpg +Places365_test_00304089.jpg +Places365_test_00304142.jpg +Places365_test_00304146.jpg +Places365_test_00304157.jpg +Places365_test_00304164.jpg +Places365_test_00304191.jpg +Places365_test_00304216.jpg +Places365_test_00304218.jpg +Places365_test_00304227.jpg +Places365_test_00304245.jpg +Places365_test_00304248.jpg +Places365_test_00304262.jpg +Places365_test_00304273.jpg +Places365_test_00304310.jpg +Places365_test_00304318.jpg +Places365_test_00304319.jpg +Places365_test_00304334.jpg +Places365_test_00304364.jpg +Places365_test_00304384.jpg +Places365_test_00304413.jpg +Places365_test_00304419.jpg +Places365_test_00304434.jpg +Places365_test_00304435.jpg +Places365_test_00304448.jpg +Places365_test_00304472.jpg +Places365_test_00304477.jpg +Places365_test_00304485.jpg +Places365_test_00304502.jpg +Places365_test_00304557.jpg +Places365_test_00304573.jpg +Places365_test_00304589.jpg +Places365_test_00304598.jpg +Places365_test_00304612.jpg +Places365_test_00304624.jpg +Places365_test_00304628.jpg +Places365_test_00304637.jpg +Places365_test_00304644.jpg +Places365_test_00304656.jpg +Places365_test_00304660.jpg +Places365_test_00304662.jpg +Places365_test_00304666.jpg +Places365_test_00304677.jpg +Places365_test_00304710.jpg +Places365_test_00304723.jpg +Places365_test_00304741.jpg +Places365_test_00304742.jpg +Places365_test_00304746.jpg +Places365_test_00304756.jpg +Places365_test_00304772.jpg +Places365_test_00304777.jpg +Places365_test_00304783.jpg +Places365_test_00304794.jpg +Places365_test_00304798.jpg +Places365_test_00304799.jpg +Places365_test_00304802.jpg +Places365_test_00304804.jpg +Places365_test_00304812.jpg +Places365_test_00304818.jpg +Places365_test_00304868.jpg +Places365_test_00304871.jpg +Places365_test_00304882.jpg +Places365_test_00304885.jpg +Places365_test_00304901.jpg +Places365_test_00304904.jpg +Places365_test_00304905.jpg +Places365_test_00304927.jpg +Places365_test_00304934.jpg +Places365_test_00304946.jpg +Places365_test_00304949.jpg +Places365_test_00304955.jpg +Places365_test_00304978.jpg +Places365_test_00304983.jpg +Places365_test_00304984.jpg +Places365_test_00304994.jpg +Places365_test_00304995.jpg +Places365_test_00304997.jpg +Places365_test_00305001.jpg +Places365_test_00305004.jpg +Places365_test_00305020.jpg +Places365_test_00305021.jpg +Places365_test_00305034.jpg +Places365_test_00305045.jpg +Places365_test_00305058.jpg +Places365_test_00305075.jpg +Places365_test_00305085.jpg +Places365_test_00305090.jpg +Places365_test_00305094.jpg +Places365_test_00305103.jpg +Places365_test_00305118.jpg +Places365_test_00305119.jpg +Places365_test_00305121.jpg +Places365_test_00305139.jpg +Places365_test_00305150.jpg +Places365_test_00305176.jpg +Places365_test_00305188.jpg +Places365_test_00305198.jpg +Places365_test_00305208.jpg +Places365_test_00305210.jpg +Places365_test_00305217.jpg +Places365_test_00305232.jpg +Places365_test_00305266.jpg +Places365_test_00305271.jpg +Places365_test_00305280.jpg +Places365_test_00305294.jpg +Places365_test_00305323.jpg +Places365_test_00305328.jpg +Places365_test_00305331.jpg +Places365_test_00305342.jpg +Places365_test_00305344.jpg +Places365_test_00305356.jpg +Places365_test_00305362.jpg +Places365_test_00305364.jpg +Places365_test_00305382.jpg +Places365_test_00305402.jpg +Places365_test_00305409.jpg +Places365_test_00305411.jpg +Places365_test_00305429.jpg +Places365_test_00305453.jpg +Places365_test_00305471.jpg +Places365_test_00305472.jpg +Places365_test_00305497.jpg +Places365_test_00305507.jpg +Places365_test_00305516.jpg +Places365_test_00305523.jpg +Places365_test_00305532.jpg +Places365_test_00305541.jpg +Places365_test_00305584.jpg +Places365_test_00305592.jpg +Places365_test_00305594.jpg +Places365_test_00305621.jpg +Places365_test_00305682.jpg +Places365_test_00305684.jpg +Places365_test_00305685.jpg +Places365_test_00305689.jpg +Places365_test_00305697.jpg +Places365_test_00305709.jpg +Places365_test_00305713.jpg +Places365_test_00305730.jpg +Places365_test_00305733.jpg +Places365_test_00305743.jpg +Places365_test_00305782.jpg +Places365_test_00305796.jpg +Places365_test_00305842.jpg +Places365_test_00305843.jpg +Places365_test_00305868.jpg +Places365_test_00305870.jpg +Places365_test_00305895.jpg +Places365_test_00305899.jpg +Places365_test_00305900.jpg +Places365_test_00305923.jpg +Places365_test_00305924.jpg +Places365_test_00305931.jpg +Places365_test_00305933.jpg +Places365_test_00305937.jpg +Places365_test_00305946.jpg +Places365_test_00305951.jpg +Places365_test_00305955.jpg +Places365_test_00305961.jpg +Places365_test_00305983.jpg +Places365_test_00305984.jpg +Places365_test_00305994.jpg +Places365_test_00305996.jpg +Places365_test_00306001.jpg +Places365_test_00306005.jpg +Places365_test_00306008.jpg +Places365_test_00306010.jpg +Places365_test_00306016.jpg +Places365_test_00306026.jpg +Places365_test_00306031.jpg +Places365_test_00306033.jpg +Places365_test_00306040.jpg +Places365_test_00306052.jpg +Places365_test_00306053.jpg +Places365_test_00306057.jpg +Places365_test_00306061.jpg +Places365_test_00306079.jpg +Places365_test_00306112.jpg +Places365_test_00306139.jpg +Places365_test_00306143.jpg +Places365_test_00306147.jpg +Places365_test_00306177.jpg +Places365_test_00306179.jpg +Places365_test_00306196.jpg +Places365_test_00306203.jpg +Places365_test_00306211.jpg +Places365_test_00306216.jpg +Places365_test_00306225.jpg +Places365_test_00306227.jpg +Places365_test_00306233.jpg +Places365_test_00306236.jpg +Places365_test_00306251.jpg +Places365_test_00306266.jpg +Places365_test_00306277.jpg +Places365_test_00306301.jpg +Places365_test_00306327.jpg +Places365_test_00306328.jpg +Places365_test_00306336.jpg +Places365_test_00306343.jpg +Places365_test_00306344.jpg +Places365_test_00306359.jpg +Places365_test_00306369.jpg +Places365_test_00306385.jpg +Places365_test_00306389.jpg +Places365_test_00306418.jpg +Places365_test_00306430.jpg +Places365_test_00306433.jpg +Places365_test_00306449.jpg +Places365_test_00306452.jpg +Places365_test_00306462.jpg +Places365_test_00306463.jpg +Places365_test_00306470.jpg +Places365_test_00306473.jpg +Places365_test_00306476.jpg +Places365_test_00306482.jpg +Places365_test_00306501.jpg +Places365_test_00306502.jpg +Places365_test_00306503.jpg +Places365_test_00306512.jpg +Places365_test_00306519.jpg +Places365_test_00306524.jpg +Places365_test_00306530.jpg +Places365_test_00306535.jpg +Places365_test_00306536.jpg +Places365_test_00306538.jpg +Places365_test_00306545.jpg +Places365_test_00306558.jpg +Places365_test_00306561.jpg +Places365_test_00306572.jpg +Places365_test_00306587.jpg +Places365_test_00306643.jpg +Places365_test_00306645.jpg +Places365_test_00306646.jpg +Places365_test_00306648.jpg +Places365_test_00306657.jpg +Places365_test_00306662.jpg +Places365_test_00306675.jpg +Places365_test_00306680.jpg +Places365_test_00306690.jpg +Places365_test_00306728.jpg +Places365_test_00306740.jpg +Places365_test_00306754.jpg +Places365_test_00306757.jpg +Places365_test_00306769.jpg +Places365_test_00306789.jpg +Places365_test_00306791.jpg +Places365_test_00306803.jpg +Places365_test_00306804.jpg +Places365_test_00306815.jpg +Places365_test_00306824.jpg +Places365_test_00306855.jpg +Places365_test_00306869.jpg +Places365_test_00306879.jpg +Places365_test_00306897.jpg +Places365_test_00306902.jpg +Places365_test_00306903.jpg +Places365_test_00306904.jpg +Places365_test_00306908.jpg +Places365_test_00306937.jpg +Places365_test_00306946.jpg +Places365_test_00306948.jpg +Places365_test_00306960.jpg +Places365_test_00306977.jpg +Places365_test_00306984.jpg +Places365_test_00307004.jpg +Places365_test_00307059.jpg +Places365_test_00307065.jpg +Places365_test_00307075.jpg +Places365_test_00307083.jpg +Places365_test_00307095.jpg +Places365_test_00307096.jpg +Places365_test_00307103.jpg +Places365_test_00307111.jpg +Places365_test_00307113.jpg +Places365_test_00307119.jpg +Places365_test_00307121.jpg +Places365_test_00307127.jpg +Places365_test_00307160.jpg +Places365_test_00307164.jpg +Places365_test_00307165.jpg +Places365_test_00307168.jpg +Places365_test_00307188.jpg +Places365_test_00307190.jpg +Places365_test_00307192.jpg +Places365_test_00307194.jpg +Places365_test_00307206.jpg +Places365_test_00307215.jpg +Places365_test_00307231.jpg +Places365_test_00307237.jpg +Places365_test_00307238.jpg +Places365_test_00307243.jpg +Places365_test_00307249.jpg +Places365_test_00307256.jpg +Places365_test_00307310.jpg +Places365_test_00307312.jpg +Places365_test_00307315.jpg +Places365_test_00307324.jpg +Places365_test_00307332.jpg +Places365_test_00307342.jpg +Places365_test_00307343.jpg +Places365_test_00307346.jpg +Places365_test_00307376.jpg +Places365_test_00307377.jpg +Places365_test_00307393.jpg +Places365_test_00307412.jpg +Places365_test_00307431.jpg +Places365_test_00307442.jpg +Places365_test_00307443.jpg +Places365_test_00307475.jpg +Places365_test_00307482.jpg +Places365_test_00307484.jpg +Places365_test_00307502.jpg +Places365_test_00307509.jpg +Places365_test_00307515.jpg +Places365_test_00307524.jpg +Places365_test_00307547.jpg +Places365_test_00307559.jpg +Places365_test_00307561.jpg +Places365_test_00307580.jpg +Places365_test_00307584.jpg +Places365_test_00307586.jpg +Places365_test_00307591.jpg +Places365_test_00307652.jpg +Places365_test_00307656.jpg +Places365_test_00307662.jpg +Places365_test_00307705.jpg +Places365_test_00307707.jpg +Places365_test_00307710.jpg +Places365_test_00307719.jpg +Places365_test_00307722.jpg +Places365_test_00307728.jpg +Places365_test_00307733.jpg +Places365_test_00307739.jpg +Places365_test_00307744.jpg +Places365_test_00307773.jpg +Places365_test_00307795.jpg +Places365_test_00307801.jpg +Places365_test_00307809.jpg +Places365_test_00307814.jpg +Places365_test_00307827.jpg +Places365_test_00307832.jpg +Places365_test_00307836.jpg +Places365_test_00307844.jpg +Places365_test_00307853.jpg +Places365_test_00307857.jpg +Places365_test_00307874.jpg +Places365_test_00307900.jpg +Places365_test_00307908.jpg +Places365_test_00307919.jpg +Places365_test_00307923.jpg +Places365_test_00307928.jpg +Places365_test_00307929.jpg +Places365_test_00307942.jpg +Places365_test_00307952.jpg +Places365_test_00307953.jpg +Places365_test_00307961.jpg +Places365_test_00307962.jpg +Places365_test_00307965.jpg +Places365_test_00307967.jpg +Places365_test_00307970.jpg +Places365_test_00307971.jpg +Places365_test_00307980.jpg +Places365_test_00307990.jpg +Places365_test_00307995.jpg +Places365_test_00308001.jpg +Places365_test_00308019.jpg +Places365_test_00308021.jpg +Places365_test_00308022.jpg +Places365_test_00308033.jpg +Places365_test_00308062.jpg +Places365_test_00308065.jpg +Places365_test_00308078.jpg +Places365_test_00308083.jpg +Places365_test_00308098.jpg +Places365_test_00308102.jpg +Places365_test_00308107.jpg +Places365_test_00308113.jpg +Places365_test_00308123.jpg +Places365_test_00308124.jpg +Places365_test_00308137.jpg +Places365_test_00308189.jpg +Places365_test_00308191.jpg +Places365_test_00308212.jpg +Places365_test_00308223.jpg +Places365_test_00308232.jpg +Places365_test_00308246.jpg +Places365_test_00308258.jpg +Places365_test_00308301.jpg +Places365_test_00308302.jpg +Places365_test_00308327.jpg +Places365_test_00308333.jpg +Places365_test_00308337.jpg +Places365_test_00308381.jpg +Places365_test_00308393.jpg +Places365_test_00308400.jpg +Places365_test_00308433.jpg +Places365_test_00308442.jpg +Places365_test_00308450.jpg +Places365_test_00308458.jpg +Places365_test_00308484.jpg +Places365_test_00308498.jpg +Places365_test_00308519.jpg +Places365_test_00308544.jpg +Places365_test_00308556.jpg +Places365_test_00308558.jpg +Places365_test_00308565.jpg +Places365_test_00308567.jpg +Places365_test_00308578.jpg +Places365_test_00308606.jpg +Places365_test_00308614.jpg +Places365_test_00308617.jpg +Places365_test_00308620.jpg +Places365_test_00308629.jpg +Places365_test_00308640.jpg +Places365_test_00308653.jpg +Places365_test_00308657.jpg +Places365_test_00308665.jpg +Places365_test_00308675.jpg +Places365_test_00308691.jpg +Places365_test_00308698.jpg +Places365_test_00308704.jpg +Places365_test_00308711.jpg +Places365_test_00308712.jpg +Places365_test_00308721.jpg +Places365_test_00308724.jpg +Places365_test_00308730.jpg +Places365_test_00308734.jpg +Places365_test_00308755.jpg +Places365_test_00308756.jpg +Places365_test_00308759.jpg +Places365_test_00308765.jpg +Places365_test_00308769.jpg +Places365_test_00308792.jpg +Places365_test_00308816.jpg +Places365_test_00308836.jpg +Places365_test_00308851.jpg +Places365_test_00308854.jpg +Places365_test_00308884.jpg +Places365_test_00308892.jpg +Places365_test_00308896.jpg +Places365_test_00308909.jpg +Places365_test_00308929.jpg +Places365_test_00308939.jpg +Places365_test_00308947.jpg +Places365_test_00308951.jpg +Places365_test_00308958.jpg +Places365_test_00308960.jpg +Places365_test_00309032.jpg +Places365_test_00309045.jpg +Places365_test_00309056.jpg +Places365_test_00309064.jpg +Places365_test_00309083.jpg +Places365_test_00309102.jpg +Places365_test_00309111.jpg +Places365_test_00309129.jpg +Places365_test_00309152.jpg +Places365_test_00309154.jpg +Places365_test_00309155.jpg +Places365_test_00309167.jpg +Places365_test_00309169.jpg +Places365_test_00309180.jpg +Places365_test_00309206.jpg +Places365_test_00309207.jpg +Places365_test_00309225.jpg +Places365_test_00309236.jpg +Places365_test_00309242.jpg +Places365_test_00309259.jpg +Places365_test_00309268.jpg +Places365_test_00309285.jpg +Places365_test_00309287.jpg +Places365_test_00309311.jpg +Places365_test_00309314.jpg +Places365_test_00309318.jpg +Places365_test_00309344.jpg +Places365_test_00309355.jpg +Places365_test_00309362.jpg +Places365_test_00309365.jpg +Places365_test_00309371.jpg +Places365_test_00309398.jpg +Places365_test_00309417.jpg +Places365_test_00309456.jpg +Places365_test_00309464.jpg +Places365_test_00309466.jpg +Places365_test_00309474.jpg +Places365_test_00309503.jpg +Places365_test_00309529.jpg +Places365_test_00309538.jpg +Places365_test_00309543.jpg +Places365_test_00309546.jpg +Places365_test_00309550.jpg +Places365_test_00309558.jpg +Places365_test_00309565.jpg +Places365_test_00309572.jpg +Places365_test_00309590.jpg +Places365_test_00309613.jpg +Places365_test_00309616.jpg +Places365_test_00309617.jpg +Places365_test_00309620.jpg +Places365_test_00309623.jpg +Places365_test_00309631.jpg +Places365_test_00309634.jpg +Places365_test_00309647.jpg +Places365_test_00309655.jpg +Places365_test_00309673.jpg +Places365_test_00309676.jpg +Places365_test_00309692.jpg +Places365_test_00309694.jpg +Places365_test_00309702.jpg +Places365_test_00309743.jpg +Places365_test_00309744.jpg +Places365_test_00309761.jpg +Places365_test_00309772.jpg +Places365_test_00309789.jpg +Places365_test_00309817.jpg +Places365_test_00309839.jpg +Places365_test_00309840.jpg +Places365_test_00309875.jpg +Places365_test_00309879.jpg +Places365_test_00309883.jpg +Places365_test_00309889.jpg +Places365_test_00309896.jpg +Places365_test_00309914.jpg +Places365_test_00309917.jpg +Places365_test_00309935.jpg +Places365_test_00309942.jpg +Places365_test_00309945.jpg +Places365_test_00309947.jpg +Places365_test_00309959.jpg +Places365_test_00309972.jpg +Places365_test_00309998.jpg +Places365_test_00309999.jpg +Places365_test_00310014.jpg +Places365_test_00310031.jpg +Places365_test_00310041.jpg +Places365_test_00310052.jpg +Places365_test_00310054.jpg +Places365_test_00310056.jpg +Places365_test_00310061.jpg +Places365_test_00310064.jpg +Places365_test_00310069.jpg +Places365_test_00310070.jpg +Places365_test_00310074.jpg +Places365_test_00310108.jpg +Places365_test_00310112.jpg +Places365_test_00310122.jpg +Places365_test_00310127.jpg +Places365_test_00310137.jpg +Places365_test_00310146.jpg +Places365_test_00310166.jpg +Places365_test_00310212.jpg +Places365_test_00310217.jpg +Places365_test_00310229.jpg +Places365_test_00310234.jpg +Places365_test_00310240.jpg +Places365_test_00310241.jpg +Places365_test_00310250.jpg +Places365_test_00310259.jpg +Places365_test_00310260.jpg +Places365_test_00310264.jpg +Places365_test_00310266.jpg +Places365_test_00310281.jpg +Places365_test_00310282.jpg +Places365_test_00310307.jpg +Places365_test_00310330.jpg +Places365_test_00310366.jpg +Places365_test_00310372.jpg +Places365_test_00310373.jpg +Places365_test_00310399.jpg +Places365_test_00310400.jpg +Places365_test_00310421.jpg +Places365_test_00310481.jpg +Places365_test_00310498.jpg +Places365_test_00310507.jpg +Places365_test_00310513.jpg +Places365_test_00310525.jpg +Places365_test_00310555.jpg +Places365_test_00310564.jpg +Places365_test_00310572.jpg +Places365_test_00310614.jpg +Places365_test_00310620.jpg +Places365_test_00310624.jpg +Places365_test_00310631.jpg +Places365_test_00310639.jpg +Places365_test_00310642.jpg +Places365_test_00310648.jpg +Places365_test_00310655.jpg +Places365_test_00310662.jpg +Places365_test_00310681.jpg +Places365_test_00310696.jpg +Places365_test_00310727.jpg +Places365_test_00310731.jpg +Places365_test_00310734.jpg +Places365_test_00310740.jpg +Places365_test_00310747.jpg +Places365_test_00310752.jpg +Places365_test_00310753.jpg +Places365_test_00310764.jpg +Places365_test_00310784.jpg +Places365_test_00310785.jpg +Places365_test_00310830.jpg +Places365_test_00310843.jpg +Places365_test_00310847.jpg +Places365_test_00310867.jpg +Places365_test_00310904.jpg +Places365_test_00310905.jpg +Places365_test_00310933.jpg +Places365_test_00310935.jpg +Places365_test_00310941.jpg +Places365_test_00310946.jpg +Places365_test_00310986.jpg +Places365_test_00310990.jpg +Places365_test_00310998.jpg +Places365_test_00311039.jpg +Places365_test_00311055.jpg +Places365_test_00311056.jpg +Places365_test_00311061.jpg +Places365_test_00311101.jpg +Places365_test_00311108.jpg +Places365_test_00311144.jpg +Places365_test_00311167.jpg +Places365_test_00311171.jpg +Places365_test_00311182.jpg +Places365_test_00311188.jpg +Places365_test_00311212.jpg +Places365_test_00311227.jpg +Places365_test_00311232.jpg +Places365_test_00311243.jpg +Places365_test_00311250.jpg +Places365_test_00311258.jpg +Places365_test_00311298.jpg +Places365_test_00311299.jpg +Places365_test_00311302.jpg +Places365_test_00311343.jpg +Places365_test_00311354.jpg +Places365_test_00311356.jpg +Places365_test_00311375.jpg +Places365_test_00311379.jpg +Places365_test_00311387.jpg +Places365_test_00311392.jpg +Places365_test_00311425.jpg +Places365_test_00311427.jpg +Places365_test_00311431.jpg +Places365_test_00311453.jpg +Places365_test_00311472.jpg +Places365_test_00311495.jpg +Places365_test_00311504.jpg +Places365_test_00311510.jpg +Places365_test_00311545.jpg +Places365_test_00311569.jpg +Places365_test_00311603.jpg +Places365_test_00311626.jpg +Places365_test_00311638.jpg +Places365_test_00311641.jpg +Places365_test_00311650.jpg +Places365_test_00311657.jpg +Places365_test_00311660.jpg +Places365_test_00311664.jpg +Places365_test_00311665.jpg +Places365_test_00311675.jpg +Places365_test_00311689.jpg +Places365_test_00311693.jpg +Places365_test_00311699.jpg +Places365_test_00311700.jpg +Places365_test_00311717.jpg +Places365_test_00311722.jpg +Places365_test_00311727.jpg +Places365_test_00311731.jpg +Places365_test_00311738.jpg +Places365_test_00311749.jpg +Places365_test_00311751.jpg +Places365_test_00311772.jpg +Places365_test_00311786.jpg +Places365_test_00311790.jpg +Places365_test_00311791.jpg +Places365_test_00311792.jpg +Places365_test_00311805.jpg +Places365_test_00311825.jpg +Places365_test_00311840.jpg +Places365_test_00311879.jpg +Places365_test_00311912.jpg +Places365_test_00311914.jpg +Places365_test_00311915.jpg +Places365_test_00311930.jpg +Places365_test_00311951.jpg +Places365_test_00311955.jpg +Places365_test_00311992.jpg +Places365_test_00312007.jpg +Places365_test_00312032.jpg +Places365_test_00312044.jpg +Places365_test_00312054.jpg +Places365_test_00312056.jpg +Places365_test_00312057.jpg +Places365_test_00312061.jpg +Places365_test_00312073.jpg +Places365_test_00312078.jpg +Places365_test_00312098.jpg +Places365_test_00312112.jpg +Places365_test_00312113.jpg +Places365_test_00312114.jpg +Places365_test_00312124.jpg +Places365_test_00312136.jpg +Places365_test_00312140.jpg +Places365_test_00312145.jpg +Places365_test_00312205.jpg +Places365_test_00312209.jpg +Places365_test_00312212.jpg +Places365_test_00312218.jpg +Places365_test_00312231.jpg +Places365_test_00312241.jpg +Places365_test_00312250.jpg +Places365_test_00312252.jpg +Places365_test_00312254.jpg +Places365_test_00312269.jpg +Places365_test_00312273.jpg +Places365_test_00312293.jpg +Places365_test_00312300.jpg +Places365_test_00312302.jpg +Places365_test_00312307.jpg +Places365_test_00312314.jpg +Places365_test_00312316.jpg +Places365_test_00312318.jpg +Places365_test_00312322.jpg +Places365_test_00312323.jpg +Places365_test_00312352.jpg +Places365_test_00312353.jpg +Places365_test_00312354.jpg +Places365_test_00312355.jpg +Places365_test_00312381.jpg +Places365_test_00312388.jpg +Places365_test_00312430.jpg +Places365_test_00312435.jpg +Places365_test_00312440.jpg +Places365_test_00312463.jpg +Places365_test_00312492.jpg +Places365_test_00312498.jpg +Places365_test_00312508.jpg +Places365_test_00312533.jpg +Places365_test_00312583.jpg +Places365_test_00312627.jpg +Places365_test_00312641.jpg +Places365_test_00312642.jpg +Places365_test_00312654.jpg +Places365_test_00312661.jpg +Places365_test_00312681.jpg +Places365_test_00312695.jpg +Places365_test_00312700.jpg +Places365_test_00312701.jpg +Places365_test_00312704.jpg +Places365_test_00312727.jpg +Places365_test_00312734.jpg +Places365_test_00312740.jpg +Places365_test_00312749.jpg +Places365_test_00312752.jpg +Places365_test_00312756.jpg +Places365_test_00312763.jpg +Places365_test_00312765.jpg +Places365_test_00312771.jpg +Places365_test_00312777.jpg +Places365_test_00312781.jpg +Places365_test_00312803.jpg +Places365_test_00312808.jpg +Places365_test_00312816.jpg +Places365_test_00312825.jpg +Places365_test_00312833.jpg +Places365_test_00312834.jpg +Places365_test_00312835.jpg +Places365_test_00312852.jpg +Places365_test_00312859.jpg +Places365_test_00312869.jpg +Places365_test_00312895.jpg +Places365_test_00312913.jpg +Places365_test_00312926.jpg +Places365_test_00312934.jpg +Places365_test_00312961.jpg +Places365_test_00312969.jpg +Places365_test_00312973.jpg +Places365_test_00312982.jpg +Places365_test_00312987.jpg +Places365_test_00312993.jpg +Places365_test_00313005.jpg +Places365_test_00313032.jpg +Places365_test_00313035.jpg +Places365_test_00313040.jpg +Places365_test_00313043.jpg +Places365_test_00313048.jpg +Places365_test_00313062.jpg +Places365_test_00313064.jpg +Places365_test_00313079.jpg +Places365_test_00313080.jpg +Places365_test_00313099.jpg +Places365_test_00313102.jpg +Places365_test_00313115.jpg +Places365_test_00313116.jpg +Places365_test_00313127.jpg +Places365_test_00313129.jpg +Places365_test_00313138.jpg +Places365_test_00313140.jpg +Places365_test_00313150.jpg +Places365_test_00313155.jpg +Places365_test_00313161.jpg +Places365_test_00313168.jpg +Places365_test_00313179.jpg +Places365_test_00313185.jpg +Places365_test_00313189.jpg +Places365_test_00313199.jpg +Places365_test_00313206.jpg +Places365_test_00313207.jpg +Places365_test_00313218.jpg +Places365_test_00313226.jpg +Places365_test_00313233.jpg +Places365_test_00313244.jpg +Places365_test_00313278.jpg +Places365_test_00313287.jpg +Places365_test_00313288.jpg +Places365_test_00313291.jpg +Places365_test_00313292.jpg +Places365_test_00313293.jpg +Places365_test_00313304.jpg +Places365_test_00313316.jpg +Places365_test_00313321.jpg +Places365_test_00313333.jpg +Places365_test_00313350.jpg +Places365_test_00313362.jpg +Places365_test_00313381.jpg +Places365_test_00313383.jpg +Places365_test_00313399.jpg +Places365_test_00313400.jpg +Places365_test_00313418.jpg +Places365_test_00313420.jpg +Places365_test_00313421.jpg +Places365_test_00313442.jpg +Places365_test_00313447.jpg +Places365_test_00313449.jpg +Places365_test_00313461.jpg +Places365_test_00313462.jpg +Places365_test_00313471.jpg +Places365_test_00313479.jpg +Places365_test_00313486.jpg +Places365_test_00313492.jpg +Places365_test_00313498.jpg +Places365_test_00313512.jpg +Places365_test_00313515.jpg +Places365_test_00313520.jpg +Places365_test_00313528.jpg +Places365_test_00313541.jpg +Places365_test_00313550.jpg +Places365_test_00313595.jpg +Places365_test_00313618.jpg +Places365_test_00313619.jpg +Places365_test_00313642.jpg +Places365_test_00313676.jpg +Places365_test_00313682.jpg +Places365_test_00313686.jpg +Places365_test_00313704.jpg +Places365_test_00313746.jpg +Places365_test_00313749.jpg +Places365_test_00313786.jpg +Places365_test_00313787.jpg +Places365_test_00313814.jpg +Places365_test_00313822.jpg +Places365_test_00313848.jpg +Places365_test_00313860.jpg +Places365_test_00313861.jpg +Places365_test_00313873.jpg +Places365_test_00313883.jpg +Places365_test_00313912.jpg +Places365_test_00313956.jpg +Places365_test_00313958.jpg +Places365_test_00313997.jpg +Places365_test_00314003.jpg +Places365_test_00314024.jpg +Places365_test_00314039.jpg +Places365_test_00314041.jpg +Places365_test_00314063.jpg +Places365_test_00314068.jpg +Places365_test_00314072.jpg +Places365_test_00314075.jpg +Places365_test_00314084.jpg +Places365_test_00314116.jpg +Places365_test_00314142.jpg +Places365_test_00314168.jpg +Places365_test_00314177.jpg +Places365_test_00314178.jpg +Places365_test_00314179.jpg +Places365_test_00314184.jpg +Places365_test_00314189.jpg +Places365_test_00314215.jpg +Places365_test_00314236.jpg +Places365_test_00314246.jpg +Places365_test_00314248.jpg +Places365_test_00314258.jpg +Places365_test_00314264.jpg +Places365_test_00314270.jpg +Places365_test_00314288.jpg +Places365_test_00314294.jpg +Places365_test_00314296.jpg +Places365_test_00314307.jpg +Places365_test_00314312.jpg +Places365_test_00314325.jpg +Places365_test_00314328.jpg +Places365_test_00314344.jpg +Places365_test_00314349.jpg +Places365_test_00314381.jpg +Places365_test_00314430.jpg +Places365_test_00314454.jpg +Places365_test_00314460.jpg +Places365_test_00314473.jpg +Places365_test_00314486.jpg +Places365_test_00314514.jpg +Places365_test_00314515.jpg +Places365_test_00314516.jpg +Places365_test_00314517.jpg +Places365_test_00314518.jpg +Places365_test_00314524.jpg +Places365_test_00314544.jpg +Places365_test_00314554.jpg +Places365_test_00314562.jpg +Places365_test_00314566.jpg +Places365_test_00314569.jpg +Places365_test_00314596.jpg +Places365_test_00314606.jpg +Places365_test_00314621.jpg +Places365_test_00314627.jpg +Places365_test_00314641.jpg +Places365_test_00314656.jpg +Places365_test_00314657.jpg +Places365_test_00314690.jpg +Places365_test_00314696.jpg +Places365_test_00314723.jpg +Places365_test_00314726.jpg +Places365_test_00314742.jpg +Places365_test_00314754.jpg +Places365_test_00314759.jpg +Places365_test_00314762.jpg +Places365_test_00314778.jpg +Places365_test_00314819.jpg +Places365_test_00314827.jpg +Places365_test_00314832.jpg +Places365_test_00314835.jpg +Places365_test_00314847.jpg +Places365_test_00314852.jpg +Places365_test_00314890.jpg +Places365_test_00314892.jpg +Places365_test_00314913.jpg +Places365_test_00314915.jpg +Places365_test_00314922.jpg +Places365_test_00314928.jpg +Places365_test_00314936.jpg +Places365_test_00314949.jpg +Places365_test_00314958.jpg +Places365_test_00314965.jpg +Places365_test_00314974.jpg +Places365_test_00315003.jpg +Places365_test_00315006.jpg +Places365_test_00315012.jpg +Places365_test_00315020.jpg +Places365_test_00315024.jpg +Places365_test_00315032.jpg +Places365_test_00315034.jpg +Places365_test_00315039.jpg +Places365_test_00315044.jpg +Places365_test_00315077.jpg +Places365_test_00315086.jpg +Places365_test_00315089.jpg +Places365_test_00315090.jpg +Places365_test_00315103.jpg +Places365_test_00315106.jpg +Places365_test_00315117.jpg +Places365_test_00315124.jpg +Places365_test_00315134.jpg +Places365_test_00315138.jpg +Places365_test_00315141.jpg +Places365_test_00315150.jpg +Places365_test_00315154.jpg +Places365_test_00315157.jpg +Places365_test_00315170.jpg +Places365_test_00315192.jpg +Places365_test_00315239.jpg +Places365_test_00315241.jpg +Places365_test_00315250.jpg +Places365_test_00315251.jpg +Places365_test_00315254.jpg +Places365_test_00315262.jpg +Places365_test_00315264.jpg +Places365_test_00315270.jpg +Places365_test_00315274.jpg +Places365_test_00315277.jpg +Places365_test_00315282.jpg +Places365_test_00315301.jpg +Places365_test_00315307.jpg +Places365_test_00315333.jpg +Places365_test_00315334.jpg +Places365_test_00315340.jpg +Places365_test_00315341.jpg +Places365_test_00315350.jpg +Places365_test_00315361.jpg +Places365_test_00315372.jpg +Places365_test_00315421.jpg +Places365_test_00315430.jpg +Places365_test_00315441.jpg +Places365_test_00315446.jpg +Places365_test_00315453.jpg +Places365_test_00315454.jpg +Places365_test_00315457.jpg +Places365_test_00315458.jpg +Places365_test_00315462.jpg +Places365_test_00315464.jpg +Places365_test_00315467.jpg +Places365_test_00315478.jpg +Places365_test_00315490.jpg +Places365_test_00315493.jpg +Places365_test_00315495.jpg +Places365_test_00315503.jpg +Places365_test_00315529.jpg +Places365_test_00315552.jpg +Places365_test_00315566.jpg +Places365_test_00315602.jpg +Places365_test_00315604.jpg +Places365_test_00315609.jpg +Places365_test_00315612.jpg +Places365_test_00315619.jpg +Places365_test_00315632.jpg +Places365_test_00315644.jpg +Places365_test_00315653.jpg +Places365_test_00315662.jpg +Places365_test_00315670.jpg +Places365_test_00315672.jpg +Places365_test_00315692.jpg +Places365_test_00315731.jpg +Places365_test_00315740.jpg +Places365_test_00315741.jpg +Places365_test_00315765.jpg +Places365_test_00315782.jpg +Places365_test_00315801.jpg +Places365_test_00315816.jpg +Places365_test_00315829.jpg +Places365_test_00315845.jpg +Places365_test_00315897.jpg +Places365_test_00315904.jpg +Places365_test_00315907.jpg +Places365_test_00315908.jpg +Places365_test_00315909.jpg +Places365_test_00315927.jpg +Places365_test_00315958.jpg +Places365_test_00315959.jpg +Places365_test_00315961.jpg +Places365_test_00315971.jpg +Places365_test_00315976.jpg +Places365_test_00315988.jpg +Places365_test_00315993.jpg +Places365_test_00315994.jpg +Places365_test_00316001.jpg +Places365_test_00316002.jpg +Places365_test_00316003.jpg +Places365_test_00316028.jpg +Places365_test_00316030.jpg +Places365_test_00316035.jpg +Places365_test_00316036.jpg +Places365_test_00316037.jpg +Places365_test_00316073.jpg +Places365_test_00316096.jpg +Places365_test_00316104.jpg +Places365_test_00316108.jpg +Places365_test_00316134.jpg +Places365_test_00316168.jpg +Places365_test_00316171.jpg +Places365_test_00316189.jpg +Places365_test_00316198.jpg +Places365_test_00316206.jpg +Places365_test_00316216.jpg +Places365_test_00316217.jpg +Places365_test_00316218.jpg +Places365_test_00316221.jpg +Places365_test_00316225.jpg +Places365_test_00316232.jpg +Places365_test_00316233.jpg +Places365_test_00316236.jpg +Places365_test_00316242.jpg +Places365_test_00316243.jpg +Places365_test_00316244.jpg +Places365_test_00316254.jpg +Places365_test_00316264.jpg +Places365_test_00316269.jpg +Places365_test_00316271.jpg +Places365_test_00316273.jpg +Places365_test_00316275.jpg +Places365_test_00316283.jpg +Places365_test_00316287.jpg +Places365_test_00316288.jpg +Places365_test_00316296.jpg +Places365_test_00316298.jpg +Places365_test_00316300.jpg +Places365_test_00316307.jpg +Places365_test_00316314.jpg +Places365_test_00316315.jpg +Places365_test_00316332.jpg +Places365_test_00316337.jpg +Places365_test_00316355.jpg +Places365_test_00316361.jpg +Places365_test_00316367.jpg +Places365_test_00316404.jpg +Places365_test_00316435.jpg +Places365_test_00316438.jpg +Places365_test_00316470.jpg +Places365_test_00316475.jpg +Places365_test_00316480.jpg +Places365_test_00316536.jpg +Places365_test_00316541.jpg +Places365_test_00316561.jpg +Places365_test_00316593.jpg +Places365_test_00316631.jpg +Places365_test_00316634.jpg +Places365_test_00316644.jpg +Places365_test_00316665.jpg +Places365_test_00316671.jpg +Places365_test_00316695.jpg +Places365_test_00316698.jpg +Places365_test_00316703.jpg +Places365_test_00316709.jpg +Places365_test_00316727.jpg +Places365_test_00316728.jpg +Places365_test_00316732.jpg +Places365_test_00316757.jpg +Places365_test_00316770.jpg +Places365_test_00316792.jpg +Places365_test_00316817.jpg +Places365_test_00316821.jpg +Places365_test_00316823.jpg +Places365_test_00316835.jpg +Places365_test_00316855.jpg +Places365_test_00316862.jpg +Places365_test_00316926.jpg +Places365_test_00316931.jpg +Places365_test_00316935.jpg +Places365_test_00316936.jpg +Places365_test_00316940.jpg +Places365_test_00316942.jpg +Places365_test_00316956.jpg +Places365_test_00316960.jpg +Places365_test_00316964.jpg +Places365_test_00316973.jpg +Places365_test_00316974.jpg +Places365_test_00316986.jpg +Places365_test_00317001.jpg +Places365_test_00317006.jpg +Places365_test_00317012.jpg +Places365_test_00317020.jpg +Places365_test_00317030.jpg +Places365_test_00317056.jpg +Places365_test_00317060.jpg +Places365_test_00317062.jpg +Places365_test_00317071.jpg +Places365_test_00317079.jpg +Places365_test_00317081.jpg +Places365_test_00317085.jpg +Places365_test_00317116.jpg +Places365_test_00317155.jpg +Places365_test_00317182.jpg +Places365_test_00317190.jpg +Places365_test_00317196.jpg +Places365_test_00317219.jpg +Places365_test_00317220.jpg +Places365_test_00317224.jpg +Places365_test_00317242.jpg +Places365_test_00317260.jpg +Places365_test_00317299.jpg +Places365_test_00317342.jpg +Places365_test_00317356.jpg +Places365_test_00317366.jpg +Places365_test_00317374.jpg +Places365_test_00317375.jpg +Places365_test_00317377.jpg +Places365_test_00317390.jpg +Places365_test_00317410.jpg +Places365_test_00317412.jpg +Places365_test_00317431.jpg +Places365_test_00317443.jpg +Places365_test_00317448.jpg +Places365_test_00317451.jpg +Places365_test_00317453.jpg +Places365_test_00317472.jpg +Places365_test_00317479.jpg +Places365_test_00317480.jpg +Places365_test_00317492.jpg +Places365_test_00317528.jpg +Places365_test_00317531.jpg +Places365_test_00317534.jpg +Places365_test_00317539.jpg +Places365_test_00317566.jpg +Places365_test_00317596.jpg +Places365_test_00317598.jpg +Places365_test_00317603.jpg +Places365_test_00317647.jpg +Places365_test_00317650.jpg +Places365_test_00317652.jpg +Places365_test_00317657.jpg +Places365_test_00317680.jpg +Places365_test_00317682.jpg +Places365_test_00317695.jpg +Places365_test_00317718.jpg +Places365_test_00317733.jpg +Places365_test_00317735.jpg +Places365_test_00317744.jpg +Places365_test_00317758.jpg +Places365_test_00317775.jpg +Places365_test_00317781.jpg +Places365_test_00317785.jpg +Places365_test_00317786.jpg +Places365_test_00317792.jpg +Places365_test_00317833.jpg +Places365_test_00317834.jpg +Places365_test_00317843.jpg +Places365_test_00317858.jpg +Places365_test_00317864.jpg +Places365_test_00317876.jpg +Places365_test_00317880.jpg +Places365_test_00317881.jpg +Places365_test_00317889.jpg +Places365_test_00317892.jpg +Places365_test_00317913.jpg +Places365_test_00317919.jpg +Places365_test_00317922.jpg +Places365_test_00317926.jpg +Places365_test_00317948.jpg +Places365_test_00317953.jpg +Places365_test_00317958.jpg +Places365_test_00317961.jpg +Places365_test_00317965.jpg +Places365_test_00317967.jpg +Places365_test_00317986.jpg +Places365_test_00318003.jpg +Places365_test_00318005.jpg +Places365_test_00318008.jpg +Places365_test_00318095.jpg +Places365_test_00318097.jpg +Places365_test_00318099.jpg +Places365_test_00318109.jpg +Places365_test_00318114.jpg +Places365_test_00318115.jpg +Places365_test_00318121.jpg +Places365_test_00318122.jpg +Places365_test_00318130.jpg +Places365_test_00318143.jpg +Places365_test_00318155.jpg +Places365_test_00318158.jpg +Places365_test_00318162.jpg +Places365_test_00318191.jpg +Places365_test_00318200.jpg +Places365_test_00318204.jpg +Places365_test_00318221.jpg +Places365_test_00318222.jpg +Places365_test_00318242.jpg +Places365_test_00318243.jpg +Places365_test_00318247.jpg +Places365_test_00318248.jpg +Places365_test_00318265.jpg +Places365_test_00318284.jpg +Places365_test_00318289.jpg +Places365_test_00318302.jpg +Places365_test_00318338.jpg +Places365_test_00318340.jpg +Places365_test_00318341.jpg +Places365_test_00318361.jpg +Places365_test_00318367.jpg +Places365_test_00318390.jpg +Places365_test_00318414.jpg +Places365_test_00318434.jpg +Places365_test_00318448.jpg +Places365_test_00318451.jpg +Places365_test_00318458.jpg +Places365_test_00318459.jpg +Places365_test_00318467.jpg +Places365_test_00318468.jpg +Places365_test_00318471.jpg +Places365_test_00318473.jpg +Places365_test_00318481.jpg +Places365_test_00318492.jpg +Places365_test_00318513.jpg +Places365_test_00318518.jpg +Places365_test_00318542.jpg +Places365_test_00318553.jpg +Places365_test_00318557.jpg +Places365_test_00318558.jpg +Places365_test_00318560.jpg +Places365_test_00318586.jpg +Places365_test_00318588.jpg +Places365_test_00318596.jpg +Places365_test_00318599.jpg +Places365_test_00318602.jpg +Places365_test_00318603.jpg +Places365_test_00318605.jpg +Places365_test_00318615.jpg +Places365_test_00318644.jpg +Places365_test_00318651.jpg +Places365_test_00318655.jpg +Places365_test_00318670.jpg +Places365_test_00318673.jpg +Places365_test_00318675.jpg +Places365_test_00318676.jpg +Places365_test_00318701.jpg +Places365_test_00318714.jpg +Places365_test_00318719.jpg +Places365_test_00318732.jpg +Places365_test_00318739.jpg +Places365_test_00318763.jpg +Places365_test_00318769.jpg +Places365_test_00318775.jpg +Places365_test_00318796.jpg +Places365_test_00318798.jpg +Places365_test_00318817.jpg +Places365_test_00318819.jpg +Places365_test_00318829.jpg +Places365_test_00318837.jpg +Places365_test_00318839.jpg +Places365_test_00318851.jpg +Places365_test_00318871.jpg +Places365_test_00318896.jpg +Places365_test_00318898.jpg +Places365_test_00318912.jpg +Places365_test_00318920.jpg +Places365_test_00318930.jpg +Places365_test_00318935.jpg +Places365_test_00318954.jpg +Places365_test_00318964.jpg +Places365_test_00318975.jpg +Places365_test_00318989.jpg +Places365_test_00319035.jpg +Places365_test_00319048.jpg +Places365_test_00319053.jpg +Places365_test_00319057.jpg +Places365_test_00319058.jpg +Places365_test_00319075.jpg +Places365_test_00319081.jpg +Places365_test_00319090.jpg +Places365_test_00319096.jpg +Places365_test_00319109.jpg +Places365_test_00319115.jpg +Places365_test_00319116.jpg +Places365_test_00319121.jpg +Places365_test_00319122.jpg +Places365_test_00319137.jpg +Places365_test_00319144.jpg +Places365_test_00319159.jpg +Places365_test_00319169.jpg +Places365_test_00319184.jpg +Places365_test_00319210.jpg +Places365_test_00319214.jpg +Places365_test_00319244.jpg +Places365_test_00319252.jpg +Places365_test_00319259.jpg +Places365_test_00319268.jpg +Places365_test_00319274.jpg +Places365_test_00319277.jpg +Places365_test_00319297.jpg +Places365_test_00319306.jpg +Places365_test_00319317.jpg +Places365_test_00319331.jpg +Places365_test_00319335.jpg +Places365_test_00319355.jpg +Places365_test_00319361.jpg +Places365_test_00319402.jpg +Places365_test_00319407.jpg +Places365_test_00319414.jpg +Places365_test_00319425.jpg +Places365_test_00319443.jpg +Places365_test_00319451.jpg +Places365_test_00319462.jpg +Places365_test_00319472.jpg +Places365_test_00319481.jpg +Places365_test_00319485.jpg +Places365_test_00319495.jpg +Places365_test_00319499.jpg +Places365_test_00319502.jpg +Places365_test_00319528.jpg +Places365_test_00319533.jpg +Places365_test_00319534.jpg +Places365_test_00319537.jpg +Places365_test_00319552.jpg +Places365_test_00319570.jpg +Places365_test_00319591.jpg +Places365_test_00319630.jpg +Places365_test_00319644.jpg +Places365_test_00319650.jpg +Places365_test_00319657.jpg +Places365_test_00319659.jpg +Places365_test_00319662.jpg +Places365_test_00319667.jpg +Places365_test_00319719.jpg +Places365_test_00319731.jpg +Places365_test_00319749.jpg +Places365_test_00319751.jpg +Places365_test_00319765.jpg +Places365_test_00319766.jpg +Places365_test_00319778.jpg +Places365_test_00319796.jpg +Places365_test_00319804.jpg +Places365_test_00319811.jpg +Places365_test_00319818.jpg +Places365_test_00319825.jpg +Places365_test_00319850.jpg +Places365_test_00319860.jpg +Places365_test_00319863.jpg +Places365_test_00319865.jpg +Places365_test_00319869.jpg +Places365_test_00319892.jpg +Places365_test_00319894.jpg +Places365_test_00319915.jpg +Places365_test_00319919.jpg +Places365_test_00319921.jpg +Places365_test_00319933.jpg +Places365_test_00319959.jpg +Places365_test_00319983.jpg +Places365_test_00320005.jpg +Places365_test_00320012.jpg +Places365_test_00320013.jpg +Places365_test_00320022.jpg +Places365_test_00320028.jpg +Places365_test_00320029.jpg +Places365_test_00320058.jpg +Places365_test_00320061.jpg +Places365_test_00320063.jpg +Places365_test_00320079.jpg +Places365_test_00320094.jpg +Places365_test_00320099.jpg +Places365_test_00320115.jpg +Places365_test_00320124.jpg +Places365_test_00320129.jpg +Places365_test_00320142.jpg +Places365_test_00320143.jpg +Places365_test_00320159.jpg +Places365_test_00320164.jpg +Places365_test_00320171.jpg +Places365_test_00320174.jpg +Places365_test_00320187.jpg +Places365_test_00320190.jpg +Places365_test_00320192.jpg +Places365_test_00320193.jpg +Places365_test_00320199.jpg +Places365_test_00320218.jpg +Places365_test_00320232.jpg +Places365_test_00320235.jpg +Places365_test_00320241.jpg +Places365_test_00320250.jpg +Places365_test_00320259.jpg +Places365_test_00320264.jpg +Places365_test_00320271.jpg +Places365_test_00320273.jpg +Places365_test_00320290.jpg +Places365_test_00320291.jpg +Places365_test_00320300.jpg +Places365_test_00320306.jpg +Places365_test_00320308.jpg +Places365_test_00320338.jpg +Places365_test_00320345.jpg +Places365_test_00320348.jpg +Places365_test_00320378.jpg +Places365_test_00320383.jpg +Places365_test_00320389.jpg +Places365_test_00320402.jpg +Places365_test_00320451.jpg +Places365_test_00320466.jpg +Places365_test_00320473.jpg +Places365_test_00320476.jpg +Places365_test_00320478.jpg +Places365_test_00320482.jpg +Places365_test_00320490.jpg +Places365_test_00320503.jpg +Places365_test_00320505.jpg +Places365_test_00320507.jpg +Places365_test_00320518.jpg +Places365_test_00320519.jpg +Places365_test_00320524.jpg +Places365_test_00320525.jpg +Places365_test_00320526.jpg +Places365_test_00320545.jpg +Places365_test_00320574.jpg +Places365_test_00320576.jpg +Places365_test_00320586.jpg +Places365_test_00320587.jpg +Places365_test_00320596.jpg +Places365_test_00320603.jpg +Places365_test_00320607.jpg +Places365_test_00320642.jpg +Places365_test_00320647.jpg +Places365_test_00320684.jpg +Places365_test_00320687.jpg +Places365_test_00320690.jpg +Places365_test_00320692.jpg +Places365_test_00320696.jpg +Places365_test_00320702.jpg +Places365_test_00320715.jpg +Places365_test_00320751.jpg +Places365_test_00320753.jpg +Places365_test_00320755.jpg +Places365_test_00320760.jpg +Places365_test_00320763.jpg +Places365_test_00320775.jpg +Places365_test_00320780.jpg +Places365_test_00320829.jpg +Places365_test_00320832.jpg +Places365_test_00320845.jpg +Places365_test_00320850.jpg +Places365_test_00320856.jpg +Places365_test_00320864.jpg +Places365_test_00320868.jpg +Places365_test_00320877.jpg +Places365_test_00320893.jpg +Places365_test_00320900.jpg +Places365_test_00320908.jpg +Places365_test_00320921.jpg +Places365_test_00320927.jpg +Places365_test_00320930.jpg +Places365_test_00320935.jpg +Places365_test_00320954.jpg +Places365_test_00320966.jpg +Places365_test_00320978.jpg +Places365_test_00320983.jpg +Places365_test_00320986.jpg +Places365_test_00320989.jpg +Places365_test_00320992.jpg +Places365_test_00320994.jpg +Places365_test_00320996.jpg +Places365_test_00320999.jpg +Places365_test_00321017.jpg +Places365_test_00321035.jpg +Places365_test_00321042.jpg +Places365_test_00321052.jpg +Places365_test_00321054.jpg +Places365_test_00321059.jpg +Places365_test_00321063.jpg +Places365_test_00321096.jpg +Places365_test_00321140.jpg +Places365_test_00321169.jpg +Places365_test_00321174.jpg +Places365_test_00321182.jpg +Places365_test_00321197.jpg +Places365_test_00321209.jpg +Places365_test_00321214.jpg +Places365_test_00321231.jpg +Places365_test_00321233.jpg +Places365_test_00321236.jpg +Places365_test_00321243.jpg +Places365_test_00321248.jpg +Places365_test_00321250.jpg +Places365_test_00321270.jpg +Places365_test_00321273.jpg +Places365_test_00321292.jpg +Places365_test_00321300.jpg +Places365_test_00321302.jpg +Places365_test_00321304.jpg +Places365_test_00321306.jpg +Places365_test_00321312.jpg +Places365_test_00321327.jpg +Places365_test_00321334.jpg +Places365_test_00321335.jpg +Places365_test_00321367.jpg +Places365_test_00321374.jpg +Places365_test_00321379.jpg +Places365_test_00321381.jpg +Places365_test_00321397.jpg +Places365_test_00321417.jpg +Places365_test_00321426.jpg +Places365_test_00321430.jpg +Places365_test_00321441.jpg +Places365_test_00321462.jpg +Places365_test_00321468.jpg +Places365_test_00321469.jpg +Places365_test_00321471.jpg +Places365_test_00321477.jpg +Places365_test_00321501.jpg +Places365_test_00321503.jpg +Places365_test_00321519.jpg +Places365_test_00321544.jpg +Places365_test_00321546.jpg +Places365_test_00321556.jpg +Places365_test_00321573.jpg +Places365_test_00321593.jpg +Places365_test_00321599.jpg +Places365_test_00321624.jpg +Places365_test_00321632.jpg +Places365_test_00321655.jpg +Places365_test_00321665.jpg +Places365_test_00321669.jpg +Places365_test_00321672.jpg +Places365_test_00321675.jpg +Places365_test_00321677.jpg +Places365_test_00321686.jpg +Places365_test_00321698.jpg +Places365_test_00321700.jpg +Places365_test_00321707.jpg +Places365_test_00321716.jpg +Places365_test_00321719.jpg +Places365_test_00321731.jpg +Places365_test_00321748.jpg +Places365_test_00321762.jpg +Places365_test_00321766.jpg +Places365_test_00321770.jpg +Places365_test_00321771.jpg +Places365_test_00321801.jpg +Places365_test_00321861.jpg +Places365_test_00321883.jpg +Places365_test_00321886.jpg +Places365_test_00321900.jpg +Places365_test_00321902.jpg +Places365_test_00321916.jpg +Places365_test_00321918.jpg +Places365_test_00321932.jpg +Places365_test_00321937.jpg +Places365_test_00321957.jpg +Places365_test_00321960.jpg +Places365_test_00321962.jpg +Places365_test_00321963.jpg +Places365_test_00321980.jpg +Places365_test_00321984.jpg +Places365_test_00321997.jpg +Places365_test_00322036.jpg +Places365_test_00322047.jpg +Places365_test_00322059.jpg +Places365_test_00322068.jpg +Places365_test_00322070.jpg +Places365_test_00322073.jpg +Places365_test_00322111.jpg +Places365_test_00322118.jpg +Places365_test_00322158.jpg +Places365_test_00322159.jpg +Places365_test_00322165.jpg +Places365_test_00322177.jpg +Places365_test_00322182.jpg +Places365_test_00322190.jpg +Places365_test_00322196.jpg +Places365_test_00322215.jpg +Places365_test_00322221.jpg +Places365_test_00322253.jpg +Places365_test_00322263.jpg +Places365_test_00322267.jpg +Places365_test_00322289.jpg +Places365_test_00322312.jpg +Places365_test_00322316.jpg +Places365_test_00322323.jpg +Places365_test_00322335.jpg +Places365_test_00322362.jpg +Places365_test_00322376.jpg +Places365_test_00322401.jpg +Places365_test_00322419.jpg +Places365_test_00322462.jpg +Places365_test_00322483.jpg +Places365_test_00322500.jpg +Places365_test_00322513.jpg +Places365_test_00322524.jpg +Places365_test_00322541.jpg +Places365_test_00322550.jpg +Places365_test_00322567.jpg +Places365_test_00322572.jpg +Places365_test_00322581.jpg +Places365_test_00322588.jpg +Places365_test_00322606.jpg +Places365_test_00322609.jpg +Places365_test_00322610.jpg +Places365_test_00322623.jpg +Places365_test_00322627.jpg +Places365_test_00322636.jpg +Places365_test_00322640.jpg +Places365_test_00322642.jpg +Places365_test_00322648.jpg +Places365_test_00322662.jpg +Places365_test_00322684.jpg +Places365_test_00322692.jpg +Places365_test_00322695.jpg +Places365_test_00322737.jpg +Places365_test_00322763.jpg +Places365_test_00322775.jpg +Places365_test_00322796.jpg +Places365_test_00322816.jpg +Places365_test_00322825.jpg +Places365_test_00322864.jpg +Places365_test_00322868.jpg +Places365_test_00322872.jpg +Places365_test_00322878.jpg +Places365_test_00322885.jpg +Places365_test_00322892.jpg +Places365_test_00322902.jpg +Places365_test_00322918.jpg +Places365_test_00322919.jpg +Places365_test_00322921.jpg +Places365_test_00322933.jpg +Places365_test_00322934.jpg +Places365_test_00322936.jpg +Places365_test_00322938.jpg +Places365_test_00322943.jpg +Places365_test_00322953.jpg +Places365_test_00322965.jpg +Places365_test_00322993.jpg +Places365_test_00322996.jpg +Places365_test_00323000.jpg +Places365_test_00323009.jpg +Places365_test_00323012.jpg +Places365_test_00323041.jpg +Places365_test_00323049.jpg +Places365_test_00323065.jpg +Places365_test_00323070.jpg +Places365_test_00323081.jpg +Places365_test_00323083.jpg +Places365_test_00323088.jpg +Places365_test_00323094.jpg +Places365_test_00323114.jpg +Places365_test_00323123.jpg +Places365_test_00323152.jpg +Places365_test_00323175.jpg +Places365_test_00323189.jpg +Places365_test_00323207.jpg +Places365_test_00323215.jpg +Places365_test_00323226.jpg +Places365_test_00323236.jpg +Places365_test_00323255.jpg +Places365_test_00323256.jpg +Places365_test_00323258.jpg +Places365_test_00323260.jpg +Places365_test_00323285.jpg +Places365_test_00323294.jpg +Places365_test_00323296.jpg +Places365_test_00323298.jpg +Places365_test_00323315.jpg +Places365_test_00323323.jpg +Places365_test_00323333.jpg +Places365_test_00323346.jpg +Places365_test_00323358.jpg +Places365_test_00323366.jpg +Places365_test_00323376.jpg +Places365_test_00323377.jpg +Places365_test_00323381.jpg +Places365_test_00323389.jpg +Places365_test_00323392.jpg +Places365_test_00323403.jpg +Places365_test_00323404.jpg +Places365_test_00323405.jpg +Places365_test_00323415.jpg +Places365_test_00323423.jpg +Places365_test_00323461.jpg +Places365_test_00323473.jpg +Places365_test_00323495.jpg +Places365_test_00323496.jpg +Places365_test_00323539.jpg +Places365_test_00323554.jpg +Places365_test_00323565.jpg +Places365_test_00323593.jpg +Places365_test_00323594.jpg +Places365_test_00323601.jpg +Places365_test_00323606.jpg +Places365_test_00323608.jpg +Places365_test_00323623.jpg +Places365_test_00323629.jpg +Places365_test_00323639.jpg +Places365_test_00323644.jpg +Places365_test_00323659.jpg +Places365_test_00323660.jpg +Places365_test_00323675.jpg +Places365_test_00323699.jpg +Places365_test_00323704.jpg +Places365_test_00323709.jpg +Places365_test_00323717.jpg +Places365_test_00323755.jpg +Places365_test_00323762.jpg +Places365_test_00323783.jpg +Places365_test_00323788.jpg +Places365_test_00323804.jpg +Places365_test_00323826.jpg +Places365_test_00323827.jpg +Places365_test_00323836.jpg +Places365_test_00323837.jpg +Places365_test_00323848.jpg +Places365_test_00323883.jpg +Places365_test_00323884.jpg +Places365_test_00323893.jpg +Places365_test_00323900.jpg +Places365_test_00323920.jpg +Places365_test_00323923.jpg +Places365_test_00323924.jpg +Places365_test_00323933.jpg +Places365_test_00323937.jpg +Places365_test_00323966.jpg +Places365_test_00324013.jpg +Places365_test_00324043.jpg +Places365_test_00324063.jpg +Places365_test_00324070.jpg +Places365_test_00324073.jpg +Places365_test_00324080.jpg +Places365_test_00324106.jpg +Places365_test_00324123.jpg +Places365_test_00324138.jpg +Places365_test_00324140.jpg +Places365_test_00324146.jpg +Places365_test_00324148.jpg +Places365_test_00324151.jpg +Places365_test_00324158.jpg +Places365_test_00324168.jpg +Places365_test_00324181.jpg +Places365_test_00324194.jpg +Places365_test_00324227.jpg +Places365_test_00324238.jpg +Places365_test_00324259.jpg +Places365_test_00324272.jpg +Places365_test_00324274.jpg +Places365_test_00324293.jpg +Places365_test_00324294.jpg +Places365_test_00324300.jpg +Places365_test_00324307.jpg +Places365_test_00324308.jpg +Places365_test_00324310.jpg +Places365_test_00324315.jpg +Places365_test_00324318.jpg +Places365_test_00324330.jpg +Places365_test_00324331.jpg +Places365_test_00324336.jpg +Places365_test_00324345.jpg +Places365_test_00324363.jpg +Places365_test_00324367.jpg +Places365_test_00324373.jpg +Places365_test_00324389.jpg +Places365_test_00324394.jpg +Places365_test_00324406.jpg +Places365_test_00324419.jpg +Places365_test_00324420.jpg +Places365_test_00324448.jpg +Places365_test_00324489.jpg +Places365_test_00324491.jpg +Places365_test_00324543.jpg +Places365_test_00324546.jpg +Places365_test_00324551.jpg +Places365_test_00324554.jpg +Places365_test_00324560.jpg +Places365_test_00324585.jpg +Places365_test_00324587.jpg +Places365_test_00324600.jpg +Places365_test_00324622.jpg +Places365_test_00324623.jpg +Places365_test_00324642.jpg +Places365_test_00324654.jpg +Places365_test_00324664.jpg +Places365_test_00324702.jpg +Places365_test_00324712.jpg +Places365_test_00324724.jpg +Places365_test_00324728.jpg +Places365_test_00324749.jpg +Places365_test_00324779.jpg +Places365_test_00324781.jpg +Places365_test_00324785.jpg +Places365_test_00324798.jpg +Places365_test_00324836.jpg +Places365_test_00324840.jpg +Places365_test_00324862.jpg +Places365_test_00324863.jpg +Places365_test_00324869.jpg +Places365_test_00324908.jpg +Places365_test_00324921.jpg +Places365_test_00324948.jpg +Places365_test_00324950.jpg +Places365_test_00324970.jpg +Places365_test_00324973.jpg +Places365_test_00324995.jpg +Places365_test_00324996.jpg +Places365_test_00325018.jpg +Places365_test_00325019.jpg +Places365_test_00325025.jpg +Places365_test_00325053.jpg +Places365_test_00325072.jpg +Places365_test_00325080.jpg +Places365_test_00325084.jpg +Places365_test_00325087.jpg +Places365_test_00325089.jpg +Places365_test_00325090.jpg +Places365_test_00325100.jpg +Places365_test_00325108.jpg +Places365_test_00325109.jpg +Places365_test_00325140.jpg +Places365_test_00325175.jpg +Places365_test_00325188.jpg +Places365_test_00325190.jpg +Places365_test_00325199.jpg +Places365_test_00325206.jpg +Places365_test_00325222.jpg +Places365_test_00325236.jpg +Places365_test_00325246.jpg +Places365_test_00325265.jpg +Places365_test_00325275.jpg +Places365_test_00325277.jpg +Places365_test_00325285.jpg +Places365_test_00325300.jpg +Places365_test_00325316.jpg +Places365_test_00325320.jpg +Places365_test_00325325.jpg +Places365_test_00325350.jpg +Places365_test_00325353.jpg +Places365_test_00325354.jpg +Places365_test_00325359.jpg +Places365_test_00325362.jpg +Places365_test_00325372.jpg +Places365_test_00325382.jpg +Places365_test_00325392.jpg +Places365_test_00325396.jpg +Places365_test_00325399.jpg +Places365_test_00325418.jpg +Places365_test_00325429.jpg +Places365_test_00325436.jpg +Places365_test_00325466.jpg +Places365_test_00325473.jpg +Places365_test_00325478.jpg +Places365_test_00325494.jpg +Places365_test_00325499.jpg +Places365_test_00325500.jpg +Places365_test_00325502.jpg +Places365_test_00325523.jpg +Places365_test_00325556.jpg +Places365_test_00325570.jpg +Places365_test_00325576.jpg +Places365_test_00325599.jpg +Places365_test_00325604.jpg +Places365_test_00325635.jpg +Places365_test_00325648.jpg +Places365_test_00325652.jpg +Places365_test_00325656.jpg +Places365_test_00325662.jpg +Places365_test_00325683.jpg +Places365_test_00325693.jpg +Places365_test_00325695.jpg +Places365_test_00325713.jpg +Places365_test_00325725.jpg +Places365_test_00325741.jpg +Places365_test_00325743.jpg +Places365_test_00325763.jpg +Places365_test_00325775.jpg +Places365_test_00325794.jpg +Places365_test_00325802.jpg +Places365_test_00325807.jpg +Places365_test_00325808.jpg +Places365_test_00325813.jpg +Places365_test_00325824.jpg +Places365_test_00325827.jpg +Places365_test_00325832.jpg +Places365_test_00325834.jpg +Places365_test_00325839.jpg +Places365_test_00325841.jpg +Places365_test_00325864.jpg +Places365_test_00325873.jpg +Places365_test_00325893.jpg +Places365_test_00325903.jpg +Places365_test_00325912.jpg +Places365_test_00325916.jpg +Places365_test_00325924.jpg +Places365_test_00325925.jpg +Places365_test_00325929.jpg +Places365_test_00325962.jpg +Places365_test_00325963.jpg +Places365_test_00325964.jpg +Places365_test_00325973.jpg +Places365_test_00325982.jpg +Places365_test_00325985.jpg +Places365_test_00326009.jpg +Places365_test_00326013.jpg +Places365_test_00326019.jpg +Places365_test_00326026.jpg +Places365_test_00326027.jpg +Places365_test_00326028.jpg +Places365_test_00326031.jpg +Places365_test_00326035.jpg +Places365_test_00326043.jpg +Places365_test_00326051.jpg +Places365_test_00326070.jpg +Places365_test_00326073.jpg +Places365_test_00326091.jpg +Places365_test_00326099.jpg +Places365_test_00326102.jpg +Places365_test_00326116.jpg +Places365_test_00326121.jpg +Places365_test_00326152.jpg +Places365_test_00326154.jpg +Places365_test_00326171.jpg +Places365_test_00326193.jpg +Places365_test_00326197.jpg +Places365_test_00326200.jpg +Places365_test_00326210.jpg +Places365_test_00326225.jpg +Places365_test_00326230.jpg +Places365_test_00326238.jpg +Places365_test_00326242.jpg +Places365_test_00326253.jpg +Places365_test_00326257.jpg +Places365_test_00326266.jpg +Places365_test_00326268.jpg +Places365_test_00326271.jpg +Places365_test_00326312.jpg +Places365_test_00326313.jpg +Places365_test_00326323.jpg +Places365_test_00326332.jpg +Places365_test_00326339.jpg +Places365_test_00326341.jpg +Places365_test_00326342.jpg +Places365_test_00326343.jpg +Places365_test_00326352.jpg +Places365_test_00326358.jpg +Places365_test_00326361.jpg +Places365_test_00326371.jpg +Places365_test_00326385.jpg +Places365_test_00326399.jpg +Places365_test_00326412.jpg +Places365_test_00326413.jpg +Places365_test_00326440.jpg +Places365_test_00326441.jpg +Places365_test_00326451.jpg +Places365_test_00326464.jpg +Places365_test_00326484.jpg +Places365_test_00326493.jpg +Places365_test_00326501.jpg +Places365_test_00326511.jpg +Places365_test_00326514.jpg +Places365_test_00326518.jpg +Places365_test_00326522.jpg +Places365_test_00326525.jpg +Places365_test_00326539.jpg +Places365_test_00326543.jpg +Places365_test_00326566.jpg +Places365_test_00326573.jpg +Places365_test_00326583.jpg +Places365_test_00326585.jpg +Places365_test_00326597.jpg +Places365_test_00326598.jpg +Places365_test_00326621.jpg +Places365_test_00326625.jpg +Places365_test_00326636.jpg +Places365_test_00326640.jpg +Places365_test_00326654.jpg +Places365_test_00326659.jpg +Places365_test_00326686.jpg +Places365_test_00326687.jpg +Places365_test_00326691.jpg +Places365_test_00326698.jpg +Places365_test_00326704.jpg +Places365_test_00326709.jpg +Places365_test_00326725.jpg +Places365_test_00326737.jpg +Places365_test_00326738.jpg +Places365_test_00326742.jpg +Places365_test_00326771.jpg +Places365_test_00326772.jpg +Places365_test_00326778.jpg +Places365_test_00326791.jpg +Places365_test_00326800.jpg +Places365_test_00326802.jpg +Places365_test_00326804.jpg +Places365_test_00326813.jpg +Places365_test_00326827.jpg +Places365_test_00326837.jpg +Places365_test_00326841.jpg +Places365_test_00326882.jpg +Places365_test_00326892.jpg +Places365_test_00326920.jpg +Places365_test_00326944.jpg +Places365_test_00326948.jpg +Places365_test_00326950.jpg +Places365_test_00326955.jpg +Places365_test_00326968.jpg +Places365_test_00326994.jpg +Places365_test_00326996.jpg +Places365_test_00327037.jpg +Places365_test_00327077.jpg +Places365_test_00327110.jpg +Places365_test_00327121.jpg +Places365_test_00327132.jpg +Places365_test_00327142.jpg +Places365_test_00327143.jpg +Places365_test_00327155.jpg +Places365_test_00327157.jpg +Places365_test_00327165.jpg +Places365_test_00327195.jpg +Places365_test_00327203.jpg +Places365_test_00327211.jpg +Places365_test_00327220.jpg +Places365_test_00327224.jpg +Places365_test_00327231.jpg +Places365_test_00327244.jpg +Places365_test_00327254.jpg +Places365_test_00327265.jpg +Places365_test_00327275.jpg +Places365_test_00327281.jpg +Places365_test_00327285.jpg +Places365_test_00327291.jpg +Places365_test_00327292.jpg +Places365_test_00327293.jpg +Places365_test_00327361.jpg +Places365_test_00327368.jpg +Places365_test_00327371.jpg +Places365_test_00327392.jpg +Places365_test_00327396.jpg +Places365_test_00327412.jpg +Places365_test_00327414.jpg +Places365_test_00327421.jpg +Places365_test_00327422.jpg +Places365_test_00327434.jpg +Places365_test_00327465.jpg +Places365_test_00327468.jpg +Places365_test_00327470.jpg +Places365_test_00327472.jpg +Places365_test_00327493.jpg +Places365_test_00327499.jpg +Places365_test_00327500.jpg +Places365_test_00327509.jpg +Places365_test_00327515.jpg +Places365_test_00327538.jpg +Places365_test_00327548.jpg +Places365_test_00327549.jpg +Places365_test_00327557.jpg +Places365_test_00327566.jpg +Places365_test_00327586.jpg +Places365_test_00327620.jpg +Places365_test_00327636.jpg +Places365_test_00327675.jpg +Places365_test_00327685.jpg +Places365_test_00327686.jpg +Places365_test_00327708.jpg +Places365_test_00327721.jpg +Places365_test_00327722.jpg +Places365_test_00327728.jpg +Places365_test_00327744.jpg +Places365_test_00327746.jpg +Places365_test_00327770.jpg +Places365_test_00327781.jpg +Places365_test_00327792.jpg +Places365_test_00327795.jpg +Places365_test_00327799.jpg +Places365_test_00327814.jpg +Places365_test_00327821.jpg +Places365_test_00327828.jpg +Places365_test_00327848.jpg +Places365_test_00327853.jpg +Places365_test_00327860.jpg +Places365_test_00327877.jpg +Places365_test_00327890.jpg +Places365_test_00327894.jpg +Places365_test_00327920.jpg +Places365_test_00327928.jpg +Places365_test_00327932.jpg +Places365_test_00327938.jpg +Places365_test_00327950.jpg +Places365_test_00327952.jpg +Places365_test_00327955.jpg +Places365_test_00327957.jpg +Places365_test_00327958.jpg +Places365_test_00327965.jpg +Places365_test_00327969.jpg +Places365_test_00327976.jpg +Places365_test_00328002.jpg +Places365_test_00328012.jpg +Places365_test_00328014.jpg +Places365_test_00328041.jpg +Places365_test_00328065.jpg +Places365_test_00328076.jpg +Places365_test_00328104.jpg +Places365_test_00328106.jpg +Places365_test_00328122.jpg +Places365_test_00328131.jpg +Places365_test_00328152.jpg +Places365_test_00328157.jpg +Places365_test_00328161.jpg +Places365_test_00328221.jpg +Places365_test_00328230.jpg +Places365_test_00328238.jpg +Places365_test_00328241.jpg +Places365_test_00328243.jpg +Places365_test_00328256.jpg +Places365_test_00328263.jpg +Places365_test_00328295.jpg +Places365_test_00328308.jpg +Places365_test_00328316.jpg +Places365_test_00328325.jpg +Places365_test_00328326.jpg +Places365_test_00328328.jpg +Places365_test_00328334.jpg +Places365_test_00328339.jpg +Places365_test_00328342.jpg +Places365_test_00328343.jpg +Places365_test_00328344.jpg +Places365_test_00328352.jpg +Places365_test_00328354.jpg +Places365_test_00328360.jpg +Places365_test_00328369.jpg +Places365_test_00328373.jpg +Places365_test_00328389.jpg +Places365_test_00328404.jpg +Places365_test_00328424.jpg +Places365_test_00328425.jpg +Places365_test_00328466.jpg +Places365_test_00328477.jpg +Places365_test_00328482.jpg +Places365_test_00328485.jpg +Places365_test_00328486.jpg +Places365_test_00328489.jpg +Places365_test_00328499.jpg diff --git a/lama/configs/training/ablv2_work.yaml b/lama/configs/training/ablv2_work.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e9ad7136c13b1056e98996292470315072c8f7f2 --- /dev/null +++ b/lama/configs/training/ablv2_work.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_ffc075.yaml b/lama/configs/training/ablv2_work_ffc075.yaml new file mode 100644 index 0000000000000000000000000000000000000000..356273e9306a81747a57ed9f3d065aefde526835 --- /dev/null +++ b/lama/configs/training/ablv2_work_ffc075.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: ffc_resnet_075 + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_md.yaml b/lama/configs/training/ablv2_work_md.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ecd991e6d6e78470886d03625cabad2141f43701 --- /dev/null +++ b/lama/configs/training/ablv2_work_md.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_multidilated_catin_4dil_9b + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_benchmark + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_fm.yaml b/lama/configs/training/ablv2_work_no_fm.yaml new file mode 100644 index 0000000000000000000000000000000000000000..aef5d9714ed03db427d774aa3f7985544e0587ec --- /dev/null +++ b/lama/configs/training/ablv2_work_no_fm.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 0 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: mlp-mow-final + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_segmpl.yaml b/lama/configs/training/ablv2_work_no_segmpl.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f86e55091dc3f73affed5eefeea8cbb336233689 --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 0 +# weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_segmpl_csdilirpl.yaml b/lama/configs/training/ablv2_work_no_segmpl_csdilirpl.yaml new file mode 100644 index 0000000000000000000000000000000000000000..41a3e45c5d0dfbee63fc140284def65e95c0c401 --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl_csdilirpl.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 1 + segmentation: false + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_benchmark + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_segmpl_csdilirpl_celeba_csdilirpl1_new.yaml b/lama/configs/training/ablv2_work_no_segmpl_csdilirpl_celeba_csdilirpl1_new.yaml new file mode 100644 index 0000000000000000000000000000000000000000..70b5244bf91850fae13dd4177788da8c7e94728a --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl_csdilirpl_celeba_csdilirpl1_new.yaml @@ -0,0 +1,35 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + segm_pl: + weight: 1 + imagenet_weights: true + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides \ No newline at end of file diff --git a/lama/configs/training/ablv2_work_no_segmpl_csirpl.yaml b/lama/configs/training/ablv2_work_no_segmpl_csirpl.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a17a4b16c8193f11c15e49ca90fcf459c7befafe --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl_csirpl.yaml @@ -0,0 +1,37 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 0.3 + arch_encoder: 'resnet50' + segmentation: false + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_segmpl_csirpl_celeba_csirpl03_new.yaml b/lama/configs/training/ablv2_work_no_segmpl_csirpl_celeba_csirpl03_new.yaml new file mode 100644 index 0000000000000000000000000000000000000000..475d1ee883edd42b40a25f174133f819c0b4834e --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl_csirpl_celeba_csirpl03_new.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + segm_pl: + weight: 0.3 + arch_encoder: resnet50 + imagenet_weights: true + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_segmpl_vgg.yaml b/lama/configs/training/ablv2_work_no_segmpl_vgg.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a85e8226491fd8d05c87df239fd43cf1621411b5 --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl_vgg.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0.03 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 0 +# weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_no_segmpl_vgg_celeba_l2_vgg003_new.yaml b/lama/configs/training/ablv2_work_no_segmpl_vgg_celeba_l2_vgg003_new.yaml new file mode 100644 index 0000000000000000000000000000000000000000..c8b1ca293d4771172590aaf6bc417a577123df43 --- /dev/null +++ b/lama/configs/training/ablv2_work_no_segmpl_vgg_celeba_l2_vgg003_new.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0.03 + kwargs: + metric: l2 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + segm_pl: + weight: 0 + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_nodil_segmpl.yaml b/lama/configs/training/ablv2_work_nodil_segmpl.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a18947cd2efb00c11512a664ec91a2da0f99e427 --- /dev/null +++ b/lama/configs/training/ablv2_work_nodil_segmpl.yaml @@ -0,0 +1,37 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + arch_encoder: resnet50 + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/ablv2_work_small_holes.yaml b/lama/configs/training/ablv2_work_small_holes.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cbf8a5de52b268fba17f9b2b8e2c020f33fd1b8a --- /dev/null +++ b/lama/configs/training/ablv2_work_small_holes.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: True + store_discr_outputs_for_vis: True + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: True + allow_scale_mask: True + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-02-thin-bb + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/big-lama-celeba.yaml b/lama/configs/training/big-lama-celeba.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7fb3140153b89be6a002e9bf418e844a0eb87db3 --- /dev/null +++ b/lama/configs/training/big-lama-celeba.yaml @@ -0,0 +1,55 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +generator: + kind: ffc_resnet + input_nc: 4 + output_nc: 3 + ngf: 64 + n_downsampling: 3 + n_blocks: 18 + add_out_act: sigmoid + init_conv_kwargs: + ratio_gin: 0 + ratio_gout: 0 + enable_lfu: false + downsample_conv_kwargs: + ratio_gin: ${generator.init_conv_kwargs.ratio_gout} + ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin} + enable_lfu: false + resnet_conv_kwargs: + ratio_gin: 0.75 + ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin} + enable_lfu: false + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides diff --git a/lama/configs/training/big-lama-regular-celeba.yaml b/lama/configs/training/big-lama-regular-celeba.yaml new file mode 100644 index 0000000000000000000000000000000000000000..616a89c3956f11f68c9fc2605c1c0a1482603294 --- /dev/null +++ b/lama/configs/training/big-lama-regular-celeba.yaml @@ -0,0 +1,45 @@ +run_title: '' + +generator: + kind: pix2pixhd_global + input_nc: 4 + output_nc: 3 + ngf: 64 + n_downsampling: 3 + n_blocks: 15 + conv_kind: default + add_out_act: sigmoid + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides \ No newline at end of file diff --git a/lama/configs/training/big-lama-regular.yaml b/lama/configs/training/big-lama-regular.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4bf21fc54e0027dc226a11653c7bd7bd7bcf0983 --- /dev/null +++ b/lama/configs/training/big-lama-regular.yaml @@ -0,0 +1,45 @@ +run_title: '' + +generator: + kind: pix2pixhd_global + input_nc: 4 + output_nc: 3 + ngf: 64 + n_downsampling: 3 + n_blocks: 15 + conv_kind: default + add_out_act: sigmoid + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides \ No newline at end of file diff --git a/lama/configs/training/big-lama.yaml b/lama/configs/training/big-lama.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f2997757786e62937f0c046a9af1b65e5140c1f3 --- /dev/null +++ b/lama/configs/training/big-lama.yaml @@ -0,0 +1,55 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +generator: + kind: ffc_resnet + input_nc: 4 + output_nc: 3 + ngf: 64 + n_downsampling: 3 + n_blocks: 18 + add_out_act: sigmoid + init_conv_kwargs: + ratio_gin: 0 + ratio_gout: 0 + enable_lfu: false + downsample_conv_kwargs: + ratio_gin: ${generator.init_conv_kwargs.ratio_gout} + ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin} + enable_lfu: false + resnet_conv_kwargs: + ratio_gin: 0.75 + ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin} + enable_lfu: false + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/data/abl-02-thin-bb.yaml b/lama/configs/training/data/abl-02-thin-bb.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cc1324aa83699c3468e7c30f5a66108b246585ff --- /dev/null +++ b/lama/configs/training/data/abl-02-thin-bb.yaml @@ -0,0 +1,115 @@ +# @package _group_ + +# try to resemble mask generation of DeepFill v2 +# official tf version: https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py#L168 +# pytorch version: https://github.com/zhaoyuzhi/deepfillv2/blob/62dad2c601400e14d79f4d1e090c2effcb9bf3eb/deepfillv2/dataset.py#L40 +# another unofficial pytorch version: https://github.com/avalonstrel/GatedConvolution/blob/master/config/inpaint.yml +# they are a bit different, official version has slightly larger masks + +batch_size: 10 +val_batch_size: 2 +num_workers: 3 + +train: + indir: ${location.data_root_dir}/train + out_size: 256 + + mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator + irregular_proba: 1 + irregular_kwargs: + max_angle: 4 + max_len: 80 # math.sqrt(H*H+W*W) / 8 + math.sqrt(H*H+W*W) / 16 https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py#L189 + max_width: 40 + max_times: 12 + min_times: 4 + + box_proba: 1 + box_kwargs: + margin: 0 + bbox_min_size: 30 + bbox_max_size: 128 + max_times: 1 + min_times: 1 + + segm_proba: 0 # not working yet due to RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method + + transform_variant: default + dataloader_kwargs: + batch_size: ${data.batch_size} + shuffle: True + num_workers: ${data.num_workers} + +val: + indir: ${location.data_root_dir}/val + img_suffix: .png + dataloader_kwargs: + batch_size: ${data.val_batch_size} + shuffle: False + num_workers: ${data.num_workers} + +#extra_val: +# random_thin_256: +# indir: ${location.data_root_dir}/extra_val/random_thin_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_medium_256: +# indir: ${location.data_root_dir}/extra_val/random_medium_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thick_256: +# indir: ${location.data_root_dir}/extra_val/random_thick_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thin_512: +# indir: ${location.data_root_dir}/extra_val/random_thin_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_medium_512: +# indir: ${location.data_root_dir}/extra_val/random_medium_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thick_512: +# indir: ${location.data_root_dir}/extra_val/random_thick_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# segm_256: +# indir: ${location.data_root_dir}/extra_val/segm_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# segm_512: +# indir: ${location.data_root_dir}/extra_val/segm_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} + +visual_test: + indir: ${location.data_root_dir}/visual_test + img_suffix: _input.png + pad_out_to_modulo: 32 + dataloader_kwargs: + batch_size: 1 + shuffle: False + num_workers: ${data.num_workers} diff --git a/lama/configs/training/data/abl-04-256-mh-dist-celeba.yaml b/lama/configs/training/data/abl-04-256-mh-dist-celeba.yaml new file mode 100644 index 0000000000000000000000000000000000000000..6f5f6ded427fec0f839feaee9e331c5481d263bf --- /dev/null +++ b/lama/configs/training/data/abl-04-256-mh-dist-celeba.yaml @@ -0,0 +1,43 @@ +# @package _group_ + +batch_size: 5 +val_batch_size: 3 +num_workers: 3 + +train: + indir: ${location.data_root_dir}/train_256 + out_size: 256 + mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator + irregular_proba: 1 + irregular_kwargs: + max_angle: 4 + max_len: 200 + max_width: 100 + max_times: 5 + min_times: 1 + + box_proba: 1 + box_kwargs: + margin: 10 + bbox_min_size: 30 + bbox_max_size: 150 + max_times: 4 + min_times: 1 + + segm_proba: 0 + + transform_variant: no_augs + dataloader_kwargs: + batch_size: ${data.batch_size} + shuffle: True + num_workers: ${data.num_workers} + +val: + indir: ${location.data_root_dir}/val_256 + img_suffix: .png + dataloader_kwargs: + batch_size: ${data.val_batch_size} + shuffle: False + num_workers: ${data.num_workers} + +visual_test: null diff --git a/lama/configs/training/data/abl-04-256-mh-dist-web.yaml b/lama/configs/training/data/abl-04-256-mh-dist-web.yaml new file mode 100644 index 0000000000000000000000000000000000000000..971c19886c29a213b252c266bcdbae8e3538d87b --- /dev/null +++ b/lama/configs/training/data/abl-04-256-mh-dist-web.yaml @@ -0,0 +1,110 @@ +# @package _group_ + +batch_size: 10 +val_batch_size: 2 +num_workers: 3 + +train: + kind: default_web + shuffle_buffer: 200 + indir: ${location.data_root_dir}/train_standard/part{00000..00039}.tar + out_size: 256 + mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator + irregular_proba: 1 + irregular_kwargs: + max_angle: 4 + max_len: 200 + max_width: 100 + max_times: 5 + min_times: 1 + + box_proba: 1 + box_kwargs: + margin: 10 + bbox_min_size: 30 + bbox_max_size: 150 + max_times: 4 + min_times: 1 + + segm_proba: 0 + + transform_variant: distortions + dataloader_kwargs: + batch_size: ${data.batch_size} + shuffle: True + num_workers: ${data.num_workers} + +val: + indir: ${location.data_root_dir}/val + img_suffix: .png + dataloader_kwargs: + batch_size: ${data.val_batch_size} + shuffle: False + num_workers: ${data.num_workers} + +#extra_val: +# random_thin_256: +# indir: ${location.data_root_dir}/final_extra_val/random_thin_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_medium_256: +# indir: ${location.data_root_dir}/final_extra_val/random_medium_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thick_256: +# indir: ${location.data_root_dir}/final_extra_val/random_thick_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thin_512: +# indir: ${location.data_root_dir}/final_extra_val/random_thin_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_medium_512: +# indir: ${location.data_root_dir}/final_extra_val/random_medium_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thick_512: +# indir: ${location.data_root_dir}/final_extra_val/random_thick_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# segm_256: +# indir: ${location.data_root_dir}/final_extra_val/segm_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# segm_512: +# indir: ${location.data_root_dir}/final_extra_val/segm_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} + +visual_test: + indir: ${location.data_root_dir}/visual_test + img_suffix: _input.png + pad_out_to_modulo: 32 + dataloader_kwargs: + batch_size: 1 + shuffle: False + num_workers: ${data.num_workers} diff --git a/lama/configs/training/data/abl-04-256-mh-dist.yaml b/lama/configs/training/data/abl-04-256-mh-dist.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a47cd86f52692ab49834cef687ddf7a25f40564f --- /dev/null +++ b/lama/configs/training/data/abl-04-256-mh-dist.yaml @@ -0,0 +1,108 @@ +# @package _group_ + +batch_size: 10 +val_batch_size: 2 +num_workers: 3 + +train: + indir: ${location.data_root_dir}/train + out_size: 256 + mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator + irregular_proba: 1 + irregular_kwargs: + max_angle: 4 + max_len: 200 + max_width: 100 + max_times: 5 + min_times: 1 + + box_proba: 1 + box_kwargs: + margin: 10 + bbox_min_size: 30 + bbox_max_size: 150 + max_times: 4 + min_times: 1 + + segm_proba: 0 + + transform_variant: distortions + dataloader_kwargs: + batch_size: ${data.batch_size} + shuffle: True + num_workers: ${data.num_workers} + +val: + indir: ${location.data_root_dir}/val + img_suffix: .png + dataloader_kwargs: + batch_size: ${data.val_batch_size} + shuffle: False + num_workers: ${data.num_workers} + +#extra_val: +# random_thin_256: +# indir: ${location.data_root_dir}/extra_val/random_thin_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_medium_256: +# indir: ${location.data_root_dir}/extra_val/random_medium_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thick_256: +# indir: ${location.data_root_dir}/extra_val/random_thick_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thin_512: +# indir: ${location.data_root_dir}/extra_val/random_thin_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_medium_512: +# indir: ${location.data_root_dir}/extra_val/random_medium_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# random_thick_512: +# indir: ${location.data_root_dir}/extra_val/random_thick_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# segm_256: +# indir: ${location.data_root_dir}/extra_val/segm_256 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} +# segm_512: +# indir: ${location.data_root_dir}/extra_val/segm_512 +# img_suffix: .png +# dataloader_kwargs: +# batch_size: ${data.val_batch_size} +# shuffle: False +# num_workers: ${data.num_workers} + +visual_test: + indir: ${location.data_root_dir}/visual_test + img_suffix: .png + pad_out_to_modulo: 32 + dataloader_kwargs: + batch_size: 1 + shuffle: False + num_workers: ${data.num_workers} diff --git a/lama/configs/training/discriminator/pix2pixhd_nlayer.yaml b/lama/configs/training/discriminator/pix2pixhd_nlayer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..990dec14f515afc17585acdca4105fc6ae1be550 --- /dev/null +++ b/lama/configs/training/discriminator/pix2pixhd_nlayer.yaml @@ -0,0 +1,5 @@ +# @package _group_ +kind: pix2pixhd_nlayer +input_nc: 3 +ndf: 64 +n_layers: 4 diff --git a/lama/configs/training/evaluator/default_inpainted.yaml b/lama/configs/training/evaluator/default_inpainted.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ee35b7ad97b442ae1c5903e6be2bfacdcd87a9a0 --- /dev/null +++ b/lama/configs/training/evaluator/default_inpainted.yaml @@ -0,0 +1,4 @@ +# @package _group_ +kind: default +inpainted_key: inpainted # if you want to evaluate before blending with original image by mask, set predicted_image +integral_kind: ssim_fid100_f1 diff --git a/lama/configs/training/generator/ffc_resnet_075.yaml b/lama/configs/training/generator/ffc_resnet_075.yaml new file mode 100644 index 0000000000000000000000000000000000000000..34667858c8ae50bb9b17adffa40f2bc3bacc6b44 --- /dev/null +++ b/lama/configs/training/generator/ffc_resnet_075.yaml @@ -0,0 +1,23 @@ +# @package _group_ +kind: ffc_resnet +input_nc: 4 +output_nc: 3 +ngf: 64 +n_downsampling: 3 +n_blocks: 9 +add_out_act: sigmoid + +init_conv_kwargs: + ratio_gin: 0 + ratio_gout: 0 + enable_lfu: False + +downsample_conv_kwargs: + ratio_gin: ${generator.init_conv_kwargs.ratio_gout} + ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin} + enable_lfu: False + +resnet_conv_kwargs: + ratio_gin: 0.75 + ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin} + enable_lfu: False diff --git a/lama/configs/training/generator/pix2pixhd_global.yaml b/lama/configs/training/generator/pix2pixhd_global.yaml new file mode 100644 index 0000000000000000000000000000000000000000..eed71c778ef8c466abeaac7a64b2e981387f2f6f --- /dev/null +++ b/lama/configs/training/generator/pix2pixhd_global.yaml @@ -0,0 +1,8 @@ +# @package _group_ +kind: pix2pixhd_global +input_nc: 4 +output_nc: 3 +ngf: 64 +n_downsampling: 3 +n_blocks: 9 +conv_kind: default \ No newline at end of file diff --git a/lama/configs/training/generator/pix2pixhd_global_sigmoid.yaml b/lama/configs/training/generator/pix2pixhd_global_sigmoid.yaml new file mode 100644 index 0000000000000000000000000000000000000000..0fbe0c041e4281d31e061b8e1546bc3b39058152 --- /dev/null +++ b/lama/configs/training/generator/pix2pixhd_global_sigmoid.yaml @@ -0,0 +1,9 @@ +# @package _group_ +kind: pix2pixhd_global +input_nc: 4 +output_nc: 3 +ngf: 64 +n_downsampling: 3 +n_blocks: 9 +conv_kind: default +add_out_act: sigmoid diff --git a/lama/configs/training/generator/pix2pixhd_multidilated_catin_4dil_9b.yaml b/lama/configs/training/generator/pix2pixhd_multidilated_catin_4dil_9b.yaml new file mode 100644 index 0000000000000000000000000000000000000000..781ae95605815a11e38625f7d51b4cd43ff63c8a --- /dev/null +++ b/lama/configs/training/generator/pix2pixhd_multidilated_catin_4dil_9b.yaml @@ -0,0 +1,12 @@ +# @package _group_ +kind: pix2pixhd_multidilated +input_nc: 4 +output_nc: 3 +ngf: 64 +n_downsampling: 3 +n_blocks: 9 +conv_kind: default +add_out_act: sigmoid +multidilation_kwargs: + comb_mode: cat_in + dilation_num: 4 diff --git a/lama/configs/training/hydra/no_time.yaml b/lama/configs/training/hydra/no_time.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4ade84a4ce2288f8e08b11b24cbc3e1b6681aee5 --- /dev/null +++ b/lama/configs/training/hydra/no_time.yaml @@ -0,0 +1,6 @@ +# @package _group_ +run: + dir: ${location.out_root_dir}/${env:USER}_${hydra:job.name}_${hydra:job.config_name}_${run_title} +sweep: + dir: ${hydra:run.dir}_sweep + subdir: ${hydra.job.num} diff --git a/lama/configs/training/hydra/overrides.yaml b/lama/configs/training/hydra/overrides.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a305d3b63af797330a2cac23c6209cccdcfe765b --- /dev/null +++ b/lama/configs/training/hydra/overrides.yaml @@ -0,0 +1,6 @@ +# @package _group_ +run: + dir: ${location.out_root_dir}/${env:USER}_${now:%Y-%m-%d_%H-%M-%S}_${hydra:job.name}_${hydra:job.config_name}_${run_title} +sweep: + dir: ${hydra:run.dir}_sweep + subdir: ${hydra.job.num} diff --git a/lama/configs/training/lama-fourier-celeba.yaml b/lama/configs/training/lama-fourier-celeba.yaml new file mode 100644 index 0000000000000000000000000000000000000000..30850a96a62370fc21cdfded3fe7d71529e083f2 --- /dev/null +++ b/lama/configs/training/lama-fourier-celeba.yaml @@ -0,0 +1,35 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - generator: ffc_resnet_075 + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides \ No newline at end of file diff --git a/lama/configs/training/lama-fourier.yaml b/lama/configs/training/lama-fourier.yaml new file mode 100644 index 0000000000000000000000000000000000000000..ff37f79fd2ce8e395b12ddc69985f00907d95b7d --- /dev/null +++ b/lama/configs/training/lama-fourier.yaml @@ -0,0 +1,35 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: ffc_resnet_075 + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides \ No newline at end of file diff --git a/lama/configs/training/lama-regular-celeba.yaml b/lama/configs/training/lama-regular-celeba.yaml new file mode 100644 index 0000000000000000000000000000000000000000..3e3800491d97f5b41cbab5a232552dcd77be5f27 --- /dev/null +++ b/lama/configs/training/lama-regular-celeba.yaml @@ -0,0 +1,35 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: celeba + - data: abl-04-256-mh-dist-celeba + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final_celeba + - hydra: overrides diff --git a/lama/configs/training/lama-regular.yaml b/lama/configs/training/lama-regular.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2e235f02dc99beb6b5629aa02aa8d1d2ae5a63f6 --- /dev/null +++ b/lama/configs/training/lama-regular.yaml @@ -0,0 +1,35 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-04-256-mh-dist + - generator: pix2pixhd_global_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides diff --git a/lama/configs/training/lama_small_train_masks.yaml b/lama/configs/training/lama_small_train_masks.yaml new file mode 100644 index 0000000000000000000000000000000000000000..b81851657adcad1ec2f883b1e2d91c55283b83d7 --- /dev/null +++ b/lama/configs/training/lama_small_train_masks.yaml @@ -0,0 +1,36 @@ +run_title: '' + +training_model: + kind: default + visualize_each_iters: 1000 + concat_mask: true + store_discr_outputs_for_vis: true + +losses: + l1: + weight_missing: 0 + weight_known: 10 + perceptual: + weight: 0 + adversarial: + kind: r1 + weight: 10 + gp_coef: 0.001 + mask_as_fake_target: true + allow_scale_mask: true + feature_matching: + weight: 100 + resnet_pl: + weight: 30 + weights_path: ${env:TORCH_HOME} + +defaults: + - location: docker + - data: abl-02-thin-bb + - generator: pix2pixhd_sigmoid + - discriminator: pix2pixhd_nlayer + - optimizers: default_optimizers + - visualizer: directory + - evaluator: default_inpainted + - trainer: any_gpu_large_ssim_ddp_final + - hydra: overrides \ No newline at end of file diff --git a/lama/configs/training/location/celeba_example.yaml b/lama/configs/training/location/celeba_example.yaml new file mode 100644 index 0000000000000000000000000000000000000000..22a02c2165329b21255f909801510b44b6461283 --- /dev/null +++ b/lama/configs/training/location/celeba_example.yaml @@ -0,0 +1,5 @@ +# @package _group_ +data_root_dir: /home/user/lama/celeba-hq-dataset/ +out_root_dir: /home/user/lama/experiments/ +tb_dir: /home/user/lama/tb_logs/ +pretrained_models: /home/user/lama/ diff --git a/lama/configs/training/location/docker.yaml b/lama/configs/training/location/docker.yaml new file mode 100644 index 0000000000000000000000000000000000000000..476fd420141310ab805b701b5666c41bdea3e4f8 --- /dev/null +++ b/lama/configs/training/location/docker.yaml @@ -0,0 +1,5 @@ +# @package _group_ +data_root_dir: /data/data +out_root_dir: /data/experiments +tb_dir: /data/tb_logs +pretrained_models: /some_path diff --git a/lama/configs/training/location/places_example.yaml b/lama/configs/training/location/places_example.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8143df4df53ee70623c8b82e98f4c18485d78903 --- /dev/null +++ b/lama/configs/training/location/places_example.yaml @@ -0,0 +1,5 @@ +# @package _group_ +data_root_dir: /home/user/inpainting-lama/places_standard_dataset/ +out_root_dir: /home/user/inpainting-lama/experiments +tb_dir: /home/user/inpainting-lama/tb_logs +pretrained_models: /home/user/inpainting-lama/ diff --git a/lama/configs/training/optimizers/default_optimizers.yaml b/lama/configs/training/optimizers/default_optimizers.yaml new file mode 100644 index 0000000000000000000000000000000000000000..496827a1b234d54692ddc71bf752d49e10378005 --- /dev/null +++ b/lama/configs/training/optimizers/default_optimizers.yaml @@ -0,0 +1,7 @@ +# @package _group_ +generator: + kind: adam + lr: 0.001 +discriminator: + kind: adam + lr: 0.0001 diff --git a/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final.yaml b/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bcf1a4038f74f5d9a3fcabd08b0dae818561d0ee --- /dev/null +++ b/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final.yaml @@ -0,0 +1,31 @@ +# @package _group_ +kwargs: + gpus: -1 + accelerator: ddp + max_epochs: 40 + gradient_clip_val: 1 + log_gpu_memory: None # set to min_max or all for debug + limit_train_batches: 25000 + val_check_interval: ${trainer.kwargs.limit_train_batches} + # fast_dev_run: True # uncomment for faster debug + # track_grad_norm: 2 # uncomment to track L2 gradients norm + log_every_n_steps: 250 + precision: 32 +# precision: 16 +# amp_backend: native +# amp_level: O1 + # resume_from_checkpoint: path # override via command line trainer.resume_from_checkpoint=path_to_checkpoint + terminate_on_nan: False + # auto_scale_batch_size: True # uncomment to find largest batch size + check_val_every_n_epoch: 1 + num_sanity_val_steps: 8 +# limit_val_batches: 1000000 + replace_sampler_ddp: False + +checkpoint_kwargs: + verbose: True + save_top_k: 5 + save_last: True + period: 1 + monitor: val_ssim_fid100_f1_total_mean + mode: max \ No newline at end of file diff --git a/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final_benchmark.yaml b/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final_benchmark.yaml new file mode 100644 index 0000000000000000000000000000000000000000..92757bd0be2e383c2b25d93e4e8f926d8b021068 --- /dev/null +++ b/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final_benchmark.yaml @@ -0,0 +1,32 @@ +# @package _group_ +kwargs: + gpus: -1 + accelerator: ddp + max_epochs: 40 + gradient_clip_val: 1 + log_gpu_memory: None # set to min_max or all for debug + limit_train_batches: 25000 + val_check_interval: ${trainer.kwargs.limit_train_batches} + # fast_dev_run: True # uncomment for faster debug + # track_grad_norm: 2 # uncomment to track L2 gradients norm + log_every_n_steps: 250 + precision: 32 +# precision: 16 +# amp_backend: native +# amp_level: O1 + # resume_from_checkpoint: path # override via command line trainer.resume_from_checkpoint=path_to_checkpoint + terminate_on_nan: False + # auto_scale_batch_size: True # uncomment to find largest batch size + check_val_every_n_epoch: 1 + num_sanity_val_steps: 8 +# limit_val_batches: 1000000 + replace_sampler_ddp: False + benchmark: True + +checkpoint_kwargs: + verbose: True + save_top_k: 5 + save_last: True + period: 1 + monitor: val_ssim_fid100_f1_total_mean + mode: max diff --git a/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final_celeba.yaml b/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final_celeba.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e8730ba423936144a0934824f12bb364b3c0694d --- /dev/null +++ b/lama/configs/training/trainer/any_gpu_large_ssim_ddp_final_celeba.yaml @@ -0,0 +1,22 @@ +# @package _group_ +kwargs: + gpus: -1 + accelerator: ddp + max_epochs: 40 + gradient_clip_val: 1 + log_gpu_memory: None + limit_train_batches: 25000 + val_check_interval: 2600 + log_every_n_steps: 250 + precision: 32 + terminate_on_nan: False + check_val_every_n_epoch: 1 + num_sanity_val_steps: 8 + replace_sampler_ddp: False +checkpoint_kwargs: + verbose: True + save_top_k: 5 + save_last: True + period: 1 + monitor: val_ssim_fid100_f1_total_mean + mode: max \ No newline at end of file diff --git a/lama/configs/training/visualizer/directory.yaml b/lama/configs/training/visualizer/directory.yaml new file mode 100644 index 0000000000000000000000000000000000000000..b68d5ea463cc1c25c4dfd0bc0d164c2fbd5d6ab4 --- /dev/null +++ b/lama/configs/training/visualizer/directory.yaml @@ -0,0 +1,12 @@ +# @package _group_ +kind: directory +outdir: samples +key_order: + - image + - predicted_image + - discr_output_fake + - discr_output_real + - inpainted +rescale_keys: + - discr_output_fake + - discr_output_real diff --git a/lama/docker/1_generate_masks_from_raw_images.sh b/lama/docker/1_generate_masks_from_raw_images.sh new file mode 100644 index 0000000000000000000000000000000000000000..31af5f9efd3b725d95db7aa0a390033239f4b0e5 --- /dev/null +++ b/lama/docker/1_generate_masks_from_raw_images.sh @@ -0,0 +1,31 @@ +#!/usr/bin/env bash + + +if (( $# < 3 )) +then + echo "Usage: $0 config_name input_images_dir image_mask_dataset_out_dir [other args to gen_mask_dataset.py]" + exit 1 +fi + +CURDIR="$(dirname $0)" +SRCDIR="$CURDIR/.." +SRCDIR="$(realpath $SRCDIR)" + +CONFIG_LOCAL_PATH="$(realpath $1)" +INPUT_LOCAL_DIR="$(realpath $2)" +OUTPUT_LOCAL_DIR="$(realpath $3)" +shift 3 + +mkdir -p "$OUTPUT_LOCAL_DIR" + +docker run \ + -v "$SRCDIR":/home/user/project \ + -v "$CONFIG_LOCAL_PATH":/data/config.yaml \ + -v "$INPUT_LOCAL_DIR":/data/input \ + -v "$OUTPUT_LOCAL_DIR":/data/output \ + -u $(id -u):$(id -g) \ + --name="lama-mask-gen" \ + --rm \ + windj007/lama \ + /home/user/project/bin/gen_mask_dataset.py \ + /data/config.yaml /data/input /data/output $@ diff --git a/lama/docker/2_predict_with_gpu.sh b/lama/docker/2_predict_with_gpu.sh new file mode 100644 index 0000000000000000000000000000000000000000..60c6d4e4f721fefd7887c47327f415cc074bbe58 --- /dev/null +++ b/lama/docker/2_predict_with_gpu.sh @@ -0,0 +1,36 @@ +#!/usr/bin/env bash + + +if (( $# < 3 )) +then + echo "Usage: $0 model_dir input_dir output_dir [other arguments to predict.py]" + exit 1 +fi + +CURDIR="$(dirname $0)" +SRCDIR="$CURDIR/.." +SRCDIR="$(realpath $SRCDIR)" + +MODEL_LOCAL_DIR="$(realpath $1)" +INPUT_LOCAL_DIR="$(realpath $2)" +OUTPUT_LOCAL_DIR="$(realpath $3)" +shift 3 + +mkdir -p "$OUTPUT_LOCAL_DIR" + +docker run \ + -v "$SRCDIR":/home/user/project \ + -v "$MODEL_LOCAL_DIR":/data/checkpoint \ + -v "$INPUT_LOCAL_DIR":/data/input \ + -v "$OUTPUT_LOCAL_DIR":/data/output \ + -u $(id -u):$(id -g) \ + --gpus all \ + --name="lama-predict" \ + --rm \ + windj007/lama \ + /home/user/project/bin/predict.py \ + model.path=/data/checkpoint \ + indir=/data/input \ + outdir=/data/output \ + dataset.img_suffix=.png \ + $@ diff --git a/lama/docker/3_evaluate.sh b/lama/docker/3_evaluate.sh new file mode 100644 index 0000000000000000000000000000000000000000..c25bc9eab47b7393a8e8421b46e5d3104cf96484 --- /dev/null +++ b/lama/docker/3_evaluate.sh @@ -0,0 +1,35 @@ +#!/usr/bin/env bash + + +if (( $# < 3 )) +then + echo "Usage: $0 original_dataset_dir predictions_dir output_dir [other arguments to evaluate_predicts.py]" + exit 1 +fi + +CURDIR="$(dirname $0)" +SRCDIR="$CURDIR/.." +SRCDIR="$(realpath $SRCDIR)" + +ORIG_DATASET_LOCAL_DIR="$(realpath $1)" +PREDICTIONS_LOCAL_DIR="$(realpath $2)" +OUTPUT_LOCAL_DIR="$(realpath $3)" +shift 3 + +mkdir -p "$OUTPUT_LOCAL_DIR" + +docker run \ + -v "$SRCDIR":/home/user/project \ + -v "$ORIG_DATASET_LOCAL_DIR":/data/orig_dataset \ + -v "$PREDICTIONS_LOCAL_DIR":/data/predictions \ + -v "$OUTPUT_LOCAL_DIR":/data/output \ + -u $(id -u):$(id -g) \ + --name="lama-eval" \ + --rm \ + windj007/lama \ + /home/user/project/bin/evaluate_predicts.py \ + /home/user/project/configs/eval2_cpu.yaml \ + /data/orig_dataset \ + /data/predictions \ + /data/output/metrics.yaml \ + $@ diff --git a/lama/docker/Dockerfile b/lama/docker/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..9d3077836a0b314458d9156e804bc2bd93f23cd9 --- /dev/null +++ b/lama/docker/Dockerfile @@ -0,0 +1,38 @@ +FROM nvidia/cuda:10.2-runtime-ubuntu18.04 + +RUN apt-get update && \ + apt-get upgrade -y && \ + apt-get install -y wget mc tmux nano build-essential rsync libgl1 + +ARG USERNAME=user +RUN apt-get install -y sudo && \ + addgroup --gid 1000 $USERNAME && \ + adduser --uid 1000 --gid 1000 --disabled-password --gecos '' $USERNAME && \ + adduser $USERNAME sudo && \ + echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers && \ + USER=$USERNAME && \ + GROUP=$USERNAME + +USER $USERNAME:$USERNAME +WORKDIR "/home/$USERNAME" +ENV PATH="/home/$USERNAME/miniconda3/bin:/home/$USERNAME/.local/bin:${PATH}" +ENV PYTHONPATH="/home/$USERNAME/project" + +RUN wget -O /tmp/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh && \ + echo "536817d1b14cb1ada88900f5be51ce0a5e042bae178b5550e62f61e223deae7c /tmp/miniconda.sh" > /tmp/miniconda.sh.sha256 && \ + sha256sum --check --status < /tmp/miniconda.sh.sha256 && \ + bash /tmp/miniconda.sh -bt -p "/home/$USERNAME/miniconda3" && \ + rm /tmp/miniconda.sh && \ + conda build purge && \ + conda init + +RUN pip install -U pip +RUN pip install numpy scipy torch==1.8.1 torchvision opencv-python tensorflow joblib matplotlib pandas \ + albumentations==0.5.2 pytorch-lightning==1.2.9 tabulate easydict==1.9.0 kornia==0.5.0 webdataset \ + packaging gpustat tqdm pyyaml hydra-core==1.1.0.dev6 scikit-learn==0.24.2 tabulate +RUN pip install scikit-image==0.17.2 + +ENV TORCH_HOME="/home/$USERNAME/.torch" + +ADD entrypoint.sh /home/$USERNAME/.local/bin/entrypoint.sh +ENTRYPOINT [ "entrypoint.sh" ] diff --git a/lama/docker/Dockerfile-cuda111 b/lama/docker/Dockerfile-cuda111 new file mode 100644 index 0000000000000000000000000000000000000000..7cc8ab81990714a83dd410b07fe44d5e38717812 --- /dev/null +++ b/lama/docker/Dockerfile-cuda111 @@ -0,0 +1,39 @@ +FROM nvidia/cuda:11.1-runtime-ubuntu18.04 + +RUN apt-get update && \ + apt-get upgrade -y && \ + apt-get install -y wget mc tmux nano build-essential rsync libgl1 + +ARG USERNAME=user +RUN apt-get install -y sudo && \ + addgroup --gid 1000 $USERNAME && \ + adduser --uid 1000 --gid 1000 --disabled-password --gecos '' $USERNAME && \ + adduser $USERNAME sudo && \ + echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers && \ + USER=$USERNAME && \ + GROUP=$USERNAME + +USER $USERNAME:$USERNAME +WORKDIR "/home/$USERNAME" +ENV PATH="/home/$USERNAME/miniconda3/bin:/home/$USERNAME/.local/bin:${PATH}" +ENV PYTHONPATH="/home/$USERNAME/project" + +RUN wget -O /tmp/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh && \ + echo "536817d1b14cb1ada88900f5be51ce0a5e042bae178b5550e62f61e223deae7c /tmp/miniconda.sh" > /tmp/miniconda.sh.sha256 && \ + sha256sum --check --status < /tmp/miniconda.sh.sha256 && \ + bash /tmp/miniconda.sh -bt -p "/home/$USERNAME/miniconda3" && \ + rm /tmp/miniconda.sh && \ + conda build purge && \ + conda init + +RUN pip install -U pip +RUN pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html +RUN pip install numpy scipy opencv-python tensorflow joblib matplotlib pandas \ + albumentations==0.5.2 pytorch-lightning==1.2.9 tabulate easydict==1.9.0 kornia==0.5.0 webdataset \ + packaging gpustat tqdm pyyaml hydra-core==1.1.0.dev6 scikit-learn==0.24.2 tabulate +RUN pip install scikit-image==0.17.2 + +ENV TORCH_HOME="/home/$USERNAME/.torch" + +ADD entrypoint.sh /home/$USERNAME/.local/bin/entrypoint.sh +ENTRYPOINT [ "entrypoint.sh" ] diff --git a/lama/docker/build-cuda111.sh b/lama/docker/build-cuda111.sh new file mode 100644 index 0000000000000000000000000000000000000000..ec9e752e1fb6b9a53625d0f11ea12455d80cbae4 --- /dev/null +++ b/lama/docker/build-cuda111.sh @@ -0,0 +1,5 @@ +#!/bin/bash + +BASEDIR="$(dirname $0)" + +docker build -t windj007/lama:cuda111 -f "$BASEDIR/Dockerfile-cuda111" "$BASEDIR" diff --git a/lama/docker/build.sh b/lama/docker/build.sh new file mode 100644 index 0000000000000000000000000000000000000000..8ae0955fc8c9ee50f55532ae9b81ef5c0aceb325 --- /dev/null +++ b/lama/docker/build.sh @@ -0,0 +1,5 @@ +#!/bin/bash + +BASEDIR="$(dirname $0)" + +docker build -t windj007/lama -f "$BASEDIR/Dockerfile" "$BASEDIR" diff --git a/lama/docker/entrypoint.sh b/lama/docker/entrypoint.sh new file mode 100644 index 0000000000000000000000000000000000000000..30f32b7b88b71d442e3627fcd7d0db86d1c89962 --- /dev/null +++ b/lama/docker/entrypoint.sh @@ -0,0 +1,3 @@ +#!/bin/bash + +exec $@ diff --git a/lama/fetch_data/celebahq_dataset_prepare.sh b/lama/fetch_data/celebahq_dataset_prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..79a04aff4251356835b2c768637705de5a4496b8 --- /dev/null +++ b/lama/fetch_data/celebahq_dataset_prepare.sh @@ -0,0 +1,37 @@ +mkdir celeba-hq-dataset + +unzip data256x256.zip -d celeba-hq-dataset/ + +# Reindex +for i in `echo {00001..30000}` +do + mv 'celeba-hq-dataset/data256x256/'$i'.jpg' 'celeba-hq-dataset/data256x256/'$[10#$i - 1]'.jpg' +done + + +# Split: split train -> train & val +cat fetch_data/train_shuffled.flist | shuf > celeba-hq-dataset/temp_train_shuffled.flist +cat celeba-hq-dataset/temp_train_shuffled.flist | head -n 2000 > celeba-hq-dataset/val_shuffled.flist +cat celeba-hq-dataset/temp_train_shuffled.flist | tail -n +2001 > celeba-hq-dataset/train_shuffled.flist +cat fetch_data/val_shuffled.flist > celeba-hq-dataset/visual_test_shuffled.flist + +mkdir celeba-hq-dataset/train_256/ +mkdir celeba-hq-dataset/val_source_256/ +mkdir celeba-hq-dataset/visual_test_source_256/ + +cat celeba-hq-dataset/train_shuffled.flist | xargs -I {} mv celeba-hq-dataset/data256x256/{} celeba-hq-dataset/train_256/ +cat celeba-hq-dataset/val_shuffled.flist | xargs -I {} mv celeba-hq-dataset/data256x256/{} celeba-hq-dataset/val_source_256/ +cat celeba-hq-dataset/visual_test_shuffled.flist | xargs -I {} mv celeba-hq-dataset/data256x256/{} celeba-hq-dataset/visual_test_source_256/ + + +# create location config celeba.yaml +PWD=$(pwd) +DATASET=${PWD}/celeba-hq-dataset +CELEBA=${PWD}/configs/training/location/celeba.yaml + +touch $CELEBA +echo "# @package _group_" >> $CELEBA +echo "data_root_dir: ${DATASET}/" >> $CELEBA +echo "out_root_dir: ${PWD}/experiments/" >> $CELEBA +echo "tb_dir: ${PWD}/tb_logs/" >> $CELEBA +echo "pretrained_models: ${PWD}/" >> $CELEBA diff --git a/lama/fetch_data/celebahq_gen_masks.sh b/lama/fetch_data/celebahq_gen_masks.sh new file mode 100644 index 0000000000000000000000000000000000000000..7c45e7ff822533cfdff1177223b4f4d269fb7098 --- /dev/null +++ b/lama/fetch_data/celebahq_gen_masks.sh @@ -0,0 +1,29 @@ +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thick_256.yaml \ +celeba-hq-dataset/val_source_256/ \ +celeba-hq-dataset/val_256/random_thick_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thin_256.yaml \ +celeba-hq-dataset/val_source_256/ \ +celeba-hq-dataset/val_256/random_thin_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_medium_256.yaml \ +celeba-hq-dataset/val_source_256/ \ +celeba-hq-dataset/val_256/random_medium_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thick_256.yaml \ +celeba-hq-dataset/visual_test_source_256/ \ +celeba-hq-dataset/visual_test_256/random_thick_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thin_256.yaml \ +celeba-hq-dataset/visual_test_source_256/ \ +celeba-hq-dataset/visual_test_256/random_thin_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_medium_256.yaml \ +celeba-hq-dataset/visual_test_source_256/ \ +celeba-hq-dataset/visual_test_256/random_medium_256/ diff --git a/lama/fetch_data/eval_sampler.py b/lama/fetch_data/eval_sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..0c5c2bb999ff0d8a1bd4c4d662f0e9c23adb2071 --- /dev/null +++ b/lama/fetch_data/eval_sampler.py @@ -0,0 +1,20 @@ +import os +import random + +val_files_path = os.path.abspath('.') + '/places_standard_dataset/original/val/' +list_of_random_val_files = os.path.abspath('.') + '/places_standard_dataset/original/eval_random_files.txt' +val_files = [val_files_path + image for image in os.listdir(val_files_path)] + +print(f'Sampling 30000 images out of {len(val_files)} images in {val_files_path}' + \ + f'and put their paths to {list_of_random_val_files}') + +print('In our paper we evaluate trained models on these 30k sampled (mask,image) pairs in our paper (check Sup. mat.)') + +random.shuffle(val_files) +val_files_random = val_files[0:30000] + +with open(list_of_random_val_files, 'w') as fw: + for filename in val_files_random: + fw.write(filename+'\n') +print('...done') + diff --git a/lama/fetch_data/places_challenge_train_download.sh b/lama/fetch_data/places_challenge_train_download.sh new file mode 100644 index 0000000000000000000000000000000000000000..20aab8ba6286e5a97b9e4eb54a77533a4ce2b57a --- /dev/null +++ b/lama/fetch_data/places_challenge_train_download.sh @@ -0,0 +1,14 @@ +mkdir places_challenge_dataset + + +declare -a TARPARTS +for i in {a..z} +do + TARPARTS[${#TARPARTS[@]}]="http://data.csail.mit.edu/places/places365/train_large_split/${i}.tar" +done +ls +printf "%s\n" "${TARPARTS[@]}" > places_challenge_dataset/places365_train.txt + +cd places_challenge_dataset/ +xargs -a places365_train.txt -n 1 -P 8 wget [...] +ls *.tar | xargs -i tar xvf {} diff --git a/lama/fetch_data/places_standard_evaluation_prepare_data.sh b/lama/fetch_data/places_standard_evaluation_prepare_data.sh new file mode 100644 index 0000000000000000000000000000000000000000..326b94c8891f469f32c0582ff352066881db836d --- /dev/null +++ b/lama/fetch_data/places_standard_evaluation_prepare_data.sh @@ -0,0 +1,52 @@ +# 0. folder preparation +mkdir -p places_standard_dataset/evaluation/hires/ +mkdir -p places_standard_dataset/evaluation/random_thick_512/ +mkdir -p places_standard_dataset/evaluation/random_thin_512/ +mkdir -p places_standard_dataset/evaluation/random_medium_512/ +mkdir -p places_standard_dataset/evaluation/random_thick_256/ +mkdir -p places_standard_dataset/evaluation/random_thin_256/ +mkdir -p places_standard_dataset/evaluation/random_medium_256/ + +# 1. sample 30000 new images +OUT=$(python3 fetch_data/eval_sampler.py) +echo ${OUT} + +FILELIST=$(cat places_standard_dataset/original/eval_random_files.txt) +for i in $FILELIST +do + $(cp ${i} places_standard_dataset/evaluation/hires/) +done + + +# 2. generate all kinds of masks + +# all 512 +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thick_512.yaml \ +places_standard_dataset/evaluation/hires \ +places_standard_dataset/evaluation/random_thick_512/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thin_512.yaml \ +places_standard_dataset/evaluation/hires \ +places_standard_dataset/evaluation/random_thin_512/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_medium_512.yaml \ +places_standard_dataset/evaluation/hires \ +places_standard_dataset/evaluation/random_medium_512/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thick_256.yaml \ +places_standard_dataset/evaluation/hires \ +places_standard_dataset/evaluation/random_thick_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thin_256.yaml \ +places_standard_dataset/evaluation/hires \ +places_standard_dataset/evaluation/random_thin_256/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_medium_256.yaml \ +places_standard_dataset/evaluation/hires \ +places_standard_dataset/evaluation/random_medium_256/ diff --git a/lama/fetch_data/places_standard_test_val_gen_masks.sh b/lama/fetch_data/places_standard_test_val_gen_masks.sh new file mode 100644 index 0000000000000000000000000000000000000000..8f458024c6e1195ea1ace07be32c056a3f3fc4e0 --- /dev/null +++ b/lama/fetch_data/places_standard_test_val_gen_masks.sh @@ -0,0 +1,13 @@ +mkdir -p places_standard_dataset/val/ +mkdir -p places_standard_dataset/visual_test/ + + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thick_512.yaml \ +places_standard_dataset/val_hires/ \ +places_standard_dataset/val/ + +python3 bin/gen_mask_dataset.py \ +$(pwd)/configs/data_gen/random_thick_512.yaml \ +places_standard_dataset/visual_test_hires/ \ +places_standard_dataset/visual_test/ \ No newline at end of file diff --git a/lama/fetch_data/places_standard_test_val_prepare.sh b/lama/fetch_data/places_standard_test_val_prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..ad3b208784bc552551cec7ef41f40b9005ea5b1a --- /dev/null +++ b/lama/fetch_data/places_standard_test_val_prepare.sh @@ -0,0 +1,5 @@ +mkdir -p places_standard_dataset/original/test/ +tar -xvf test_large.tar -C places_standard_dataset/original/test/ + +mkdir -p places_standard_dataset/original/val/ +tar -xvf val_large.tar -C places_standard_dataset/original/val/ diff --git a/lama/fetch_data/places_standard_test_val_sample.sh b/lama/fetch_data/places_standard_test_val_sample.sh new file mode 100644 index 0000000000000000000000000000000000000000..9cd13d4251b077b0eea200952cdca611ff73063a --- /dev/null +++ b/lama/fetch_data/places_standard_test_val_sample.sh @@ -0,0 +1,22 @@ +mkdir -p places_standard_dataset/val_hires/ +mkdir -p places_standard_dataset/visual_test_hires/ + + +# randomly sample images for test and vis +OUT=$(python3 fetch_data/sampler.py) +echo ${OUT} + +FILELIST=$(cat places_standard_dataset/original/test_random_files.txt) + +for i in $FILELIST +do + $(cp ${i} places_standard_dataset/val_hires/) +done + +FILELIST=$(cat places_standard_dataset/original/val_random_files.txt) + +for i in $FILELIST +do + $(cp ${i} places_standard_dataset/visual_test_hires/) +done + diff --git a/lama/fetch_data/places_standard_train_prepare.sh b/lama/fetch_data/places_standard_train_prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..707541b0b52ddcdaaed2005fdc8257bac2bd798f --- /dev/null +++ b/lama/fetch_data/places_standard_train_prepare.sh @@ -0,0 +1,16 @@ +mkdir -p places_standard_dataset/train + +# untar without folder structure +tar -xvf train_large_places365standard.tar -C places_standard_dataset/train + +# create location config places.yaml +PWD=$(pwd) +DATASET=${PWD}/places_standard_dataset +PLACES=${PWD}/configs/training/location/places_standard.yaml + +touch $PLACES +echo "# @package _group_" >> $PLACES +echo "data_root_dir: ${DATASET}/" >> $PLACES +echo "out_root_dir: ${PWD}/experiments/" >> $PLACES +echo "tb_dir: ${PWD}/tb_logs/" >> $PLACES +echo "pretrained_models: ${PWD}/" >> $PLACES diff --git a/lama/fetch_data/sampler.py b/lama/fetch_data/sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..5289e966a087909e499086700c123fabb5228bd6 --- /dev/null +++ b/lama/fetch_data/sampler.py @@ -0,0 +1,42 @@ +import os +import random + +test_files_path = os.path.abspath('.') + '/places_standard_dataset/original/test/' +list_of_random_test_files = os.path.abspath('.') + '/places_standard_dataset/original/test_random_files.txt' + +test_files = [ + test_files_path + image for image in os.listdir(test_files_path) +] + +print(f'Sampling 2000 images out of {len(test_files)} images in {test_files_path}' + \ + f'and put their paths to {list_of_random_test_files}') +print('Our training procedure will pick best checkpoints according to metrics, computed on these images.') + +random.shuffle(test_files) +test_files_random = test_files[0:2000] +with open(list_of_random_test_files, 'w') as fw: + for filename in test_files_random: + fw.write(filename+'\n') +print('...done') + + +# -------------------------------- + +val_files_path = os.path.abspath('.') + '/places_standard_dataset/original/val/' +list_of_random_val_files = os.path.abspath('.') + '/places_standard_dataset/original/val_random_files.txt' + +val_files = [ + val_files_path + image for image in os.listdir(val_files_path) +] + +print(f'Sampling 100 images out of {len(val_files)} in {val_files_path} ' + \ + f'and put their paths to {list_of_random_val_files}') +print('We use these images for visual check up of evolution of inpainting algorithm epoch to epoch' ) + +random.shuffle(val_files) +val_files_random = val_files[0:100] +with open(list_of_random_val_files, 'w') as fw: + for filename in val_files_random: + fw.write(filename+'\n') +print('...done') + diff --git a/lama/fetch_data/train_shuffled.flist b/lama/fetch_data/train_shuffled.flist new file mode 100644 index 0000000000000000000000000000000000000000..1f95b18c000e3b5b840d107971de6d1f454a7713 --- /dev/null +++ b/lama/fetch_data/train_shuffled.flist @@ -0,0 +1,28000 @@ +27049.jpg +17547.jpg +23248.jpg +29613.jpg +7055.jpg +21404.jpg +8928.jpg +3579.jpg +10811.jpg +14556.jpg +15131.jpg +15634.jpg +15805.jpg +1043.jpg +22433.jpg +14652.jpg +15942.jpg +16587.jpg +7641.jpg +4943.jpg +26975.jpg +15746.jpg +5382.jpg +23459.jpg +24104.jpg +6964.jpg +12555.jpg +11762.jpg +11977.jpg +14251.jpg +29810.jpg +28323.jpg +849.jpg +20543.jpg +44.jpg +9347.jpg +28557.jpg +28344.jpg +8645.jpg +25718.jpg +7276.jpg +12631.jpg +6590.jpg +16221.jpg +27425.jpg +11434.jpg +4346.jpg +5436.jpg +6978.jpg +24833.jpg +16268.jpg +16593.jpg +3219.jpg +20812.jpg +12628.jpg +14987.jpg +5583.jpg +23479.jpg +17235.jpg +24650.jpg +23115.jpg +2773.jpg +3116.jpg +8759.jpg +22297.jpg +3471.jpg +27254.jpg +28922.jpg +29154.jpg +13172.jpg +11186.jpg +28396.jpg +9016.jpg +568.jpg +1777.jpg +10695.jpg +10164.jpg +10571.jpg +5349.jpg +13215.jpg +13390.jpg +4166.jpg +29336.jpg +2024.jpg +20913.jpg +27210.jpg +4701.jpg +4854.jpg +1485.jpg +17527.jpg +14392.jpg +26456.jpg +28991.jpg +13485.jpg +18078.jpg +13364.jpg +24403.jpg +6121.jpg +4906.jpg +14398.jpg +16473.jpg +22690.jpg +5158.jpg +15334.jpg +16997.jpg +21671.jpg +6889.jpg +7961.jpg +26533.jpg +15912.jpg +1192.jpg +24039.jpg +19974.jpg +21681.jpg +28138.jpg +3931.jpg +28422.jpg +21992.jpg +24027.jpg +13693.jpg +15981.jpg +10526.jpg +22912.jpg +4532.jpg +9729.jpg +25346.jpg +28048.jpg +14376.jpg +8079.jpg +5498.jpg +11225.jpg +22147.jpg +22730.jpg +19218.jpg +11602.jpg +14810.jpg +10555.jpg +6838.jpg +13727.jpg +5077.jpg +21958.jpg +10682.jpg +28509.jpg +26434.jpg +2965.jpg +28477.jpg +4452.jpg +18846.jpg +25066.jpg +20679.jpg +13310.jpg +9574.jpg +28880.jpg +9806.jpg +3154.jpg +13916.jpg +18807.jpg +26890.jpg +21990.jpg +6871.jpg +27561.jpg +19997.jpg +15729.jpg +26522.jpg +23355.jpg +9875.jpg +16077.jpg +28500.jpg +29541.jpg +27219.jpg +22021.jpg +798.jpg +9482.jpg +4149.jpg +5193.jpg +27739.jpg +12289.jpg +19934.jpg +27730.jpg +10847.jpg +16216.jpg +22142.jpg +24384.jpg +26164.jpg +22856.jpg +5679.jpg +18605.jpg +4219.jpg +12398.jpg +13897.jpg +7450.jpg +5532.jpg +19161.jpg +9769.jpg +24700.jpg +21189.jpg +5246.jpg +14242.jpg +4333.jpg +8442.jpg +3877.jpg +5348.jpg +11820.jpg +23529.jpg +7087.jpg +10542.jpg +13921.jpg +8089.jpg +3086.jpg +15355.jpg +7047.jpg +16284.jpg +17638.jpg +4727.jpg +77.jpg +19419.jpg +27346.jpg +23417.jpg +19936.jpg +7111.jpg +5.jpg +21222.jpg +23065.jpg +1482.jpg +3296.jpg +4945.jpg +28734.jpg +25672.jpg +7134.jpg +275.jpg +27232.jpg +11637.jpg +29706.jpg +3167.jpg +18233.jpg +11780.jpg +17834.jpg +5954.jpg +27869.jpg +2989.jpg +21593.jpg +28322.jpg +18978.jpg +3697.jpg +28931.jpg +5379.jpg +21834.jpg +29686.jpg +22143.jpg +2941.jpg +20233.jpg +2987.jpg +766.jpg +14382.jpg +7095.jpg +9981.jpg +11016.jpg +15635.jpg +8418.jpg +27449.jpg +8106.jpg +10169.jpg +11712.jpg +14029.jpg +20635.jpg +1435.jpg +18321.jpg +5908.jpg +28779.jpg +759.jpg +9429.jpg +28992.jpg +18955.jpg +21156.jpg +13630.jpg +11548.jpg +10136.jpg +14775.jpg +1406.jpg +16323.jpg +26621.jpg +15224.jpg +3947.jpg +6952.jpg +29137.jpg +442.jpg +15407.jpg +3241.jpg +23156.jpg +12934.jpg +860.jpg +24174.jpg +5176.jpg +2924.jpg +16922.jpg +5563.jpg +17647.jpg +8865.jpg +8176.jpg +27.jpg +23579.jpg +26290.jpg +18216.jpg +28403.jpg +29196.jpg +7817.jpg +5890.jpg +27444.jpg +2731.jpg +16568.jpg +25754.jpg +22331.jpg +5304.jpg +3140.jpg +5902.jpg +129.jpg +20485.jpg +7639.jpg +21202.jpg +8021.jpg +22624.jpg +29946.jpg +28458.jpg +333.jpg +3897.jpg +9903.jpg +14203.jpg +25550.jpg +28412.jpg +8789.jpg +18858.jpg +27505.jpg +18773.jpg +1446.jpg +2110.jpg +25796.jpg +6169.jpg +23585.jpg +3459.jpg +26554.jpg +22174.jpg +22326.jpg +24526.jpg +24895.jpg +13351.jpg +15032.jpg +1859.jpg +6928.jpg +29027.jpg +17388.jpg +29497.jpg +5889.jpg +15954.jpg +24872.jpg +18327.jpg +22322.jpg +15641.jpg +6439.jpg +6691.jpg +22688.jpg +4179.jpg +18356.jpg +3852.jpg +6751.jpg +1187.jpg +17583.jpg +23226.jpg +22402.jpg +24936.jpg +21839.jpg +5115.jpg +13907.jpg +5730.jpg +16493.jpg +22437.jpg +29733.jpg +15134.jpg +279.jpg +2296.jpg +15691.jpg +16007.jpg +23792.jpg +5866.jpg +5769.jpg +3264.jpg +10859.jpg +14840.jpg +8201.jpg +29321.jpg +12305.jpg +24327.jpg +3299.jpg +27937.jpg +25534.jpg +26470.jpg +11062.jpg +12158.jpg +19675.jpg +7950.jpg +1902.jpg +19809.jpg +21874.jpg +3304.jpg +28166.jpg +14471.jpg +9687.jpg +29033.jpg +25973.jpg +3552.jpg +27777.jpg +27584.jpg +12170.jpg +10957.jpg +4354.jpg +26379.jpg +8997.jpg +20711.jpg +21169.jpg +19663.jpg +1434.jpg +28563.jpg +5154.jpg +22409.jpg +24664.jpg +3770.jpg +12184.jpg +10460.jpg +18418.jpg +25597.jpg +7449.jpg +20335.jpg +24587.jpg +23102.jpg +3511.jpg +8946.jpg +16062.jpg +26359.jpg +24059.jpg +15079.jpg +18213.jpg +6932.jpg +24194.jpg +28728.jpg +22969.jpg +14698.jpg +25690.jpg +9656.jpg +2295.jpg +27963.jpg +16704.jpg +5276.jpg +28862.jpg +15197.jpg +814.jpg +26779.jpg +12051.jpg +8781.jpg +17606.jpg +2085.jpg +27804.jpg +12038.jpg +29233.jpg +29091.jpg +21502.jpg +29590.jpg +21296.jpg +26267.jpg +14959.jpg +25164.jpg +13134.jpg +4865.jpg +6878.jpg +14143.jpg +23872.jpg +11671.jpg +16254.jpg +19159.jpg +1854.jpg +3017.jpg +22937.jpg +14574.jpg +29642.jpg +13140.jpg +22186.jpg +23652.jpg +7240.jpg +23073.jpg +20070.jpg +2485.jpg +18125.jpg +11058.jpg +2193.jpg +1246.jpg +11681.jpg +11278.jpg +25688.jpg +27325.jpg +164.jpg +7930.jpg +18776.jpg +27264.jpg +19110.jpg +16383.jpg +8604.jpg +4541.jpg +5408.jpg +16008.jpg +18766.jpg +6001.jpg +16599.jpg +29370.jpg +22965.jpg +9578.jpg +28144.jpg +20752.jpg +3891.jpg +26486.jpg +367.jpg +5689.jpg +5694.jpg +784.jpg +18359.jpg +8101.jpg +21638.jpg +22908.jpg +29515.jpg +24238.jpg +27690.jpg +2008.jpg +27885.jpg +6827.jpg +7380.jpg +506.jpg +24603.jpg +24943.jpg +11822.jpg +22813.jpg +11334.jpg +27340.jpg +25012.jpg +18608.jpg +11633.jpg +27705.jpg +9845.jpg +21692.jpg +25246.jpg +29402.jpg +20906.jpg +9446.jpg +19310.jpg +12160.jpg +18521.jpg +18513.jpg +9593.jpg +26271.jpg +4839.jpg +16620.jpg +16489.jpg +1550.jpg +5645.jpg +3856.jpg +16331.jpg +3441.jpg +24132.jpg +28156.jpg +22002.jpg +14803.jpg +18511.jpg +1483.jpg +28598.jpg +29796.jpg +11926.jpg +10986.jpg +17691.jpg +28093.jpg +10352.jpg +20304.jpg +12539.jpg +16703.jpg +19548.jpg +1333.jpg +9372.jpg +25906.jpg +24583.jpg +24792.jpg +21568.jpg +6646.jpg +29070.jpg +17035.jpg +732.jpg +19407.jpg +17404.jpg +28920.jpg +4946.jpg +23558.jpg +12925.jpg +3668.jpg +12612.jpg +12259.jpg +17711.jpg +21894.jpg +19457.jpg +23680.jpg +21334.jpg +22347.jpg +14486.jpg +23974.jpg +10369.jpg +28831.jpg +10815.jpg +12755.jpg +9557.jpg +5120.jpg +2124.jpg +25779.jpg +439.jpg +10077.jpg +4520.jpg +21108.jpg +17287.jpg +18086.jpg +9122.jpg +23519.jpg +9391.jpg +8028.jpg +3077.jpg +12944.jpg +29105.jpg +27077.jpg +23425.jpg +26990.jpg +14199.jpg +1772.jpg +23146.jpg +4609.jpg +8599.jpg +536.jpg +5978.jpg +2817.jpg +24969.jpg +11499.jpg +10855.jpg +12313.jpg +4365.jpg +18254.jpg +26585.jpg +16809.jpg +8861.jpg +29454.jpg +5224.jpg +7909.jpg +15921.jpg +1986.jpg +19112.jpg +25915.jpg +19739.jpg +23795.jpg +28642.jpg +8881.jpg +22476.jpg +7754.jpg +300.jpg +2493.jpg +8336.jpg +4356.jpg +12301.jpg +11660.jpg +3427.jpg +24722.jpg +16218.jpg +5047.jpg +2894.jpg +15292.jpg +1832.jpg +27946.jpg +1844.jpg +21792.jpg +8025.jpg +2217.jpg +21101.jpg +14774.jpg +12025.jpg +8061.jpg +7492.jpg +1127.jpg +9540.jpg +6854.jpg +11900.jpg +16441.jpg +5111.jpg +27835.jpg +24480.jpg +16853.jpg +7362.jpg +17517.jpg +2497.jpg +14055.jpg +22353.jpg +29478.jpg +15793.jpg +4336.jpg +14296.jpg +7857.jpg +13198.jpg +22672.jpg +7674.jpg +15861.jpg +18483.jpg +21137.jpg +6620.jpg +7783.jpg +28658.jpg +24623.jpg +24129.jpg +17182.jpg +4169.jpg +7388.jpg +26268.jpg +1372.jpg +27429.jpg +19137.jpg +12241.jpg +23017.jpg +16150.jpg +25946.jpg +10353.jpg +6634.jpg +13184.jpg +2536.jpg +26111.jpg +1629.jpg +22873.jpg +20244.jpg +8287.jpg +25240.jpg +18375.jpg +892.jpg +10998.jpg +21029.jpg +9701.jpg +531.jpg +17939.jpg +28953.jpg +6223.jpg +5820.jpg +28911.jpg +1295.jpg +7092.jpg +15161.jpg +22513.jpg +15720.jpg +19642.jpg +10823.jpg +27161.jpg +27895.jpg +21616.jpg +26021.jpg +4456.jpg +23886.jpg +18328.jpg +22604.jpg +6898.jpg +28193.jpg +13555.jpg +22754.jpg +12942.jpg +4029.jpg +21658.jpg +24270.jpg +7136.jpg +4974.jpg +17167.jpg +1894.jpg +15864.jpg +23092.jpg +4153.jpg +7755.jpg +2663.jpg +21474.jpg +19243.jpg +19546.jpg +28848.jpg +2648.jpg +29696.jpg +11833.jpg +28517.jpg +8122.jpg +1525.jpg +7204.jpg +13739.jpg +26786.jpg +29615.jpg +19309.jpg +28137.jpg +23722.jpg +8009.jpg +24284.jpg +25869.jpg +22164.jpg +17919.jpg +15340.jpg +28501.jpg +14740.jpg +25045.jpg +14526.jpg +12437.jpg +18331.jpg +11210.jpg +2007.jpg +29190.jpg +864.jpg +9420.jpg +15362.jpg +22771.jpg +1659.jpg +3190.jpg +8824.jpg +8325.jpg +19953.jpg +25520.jpg +27591.jpg +18775.jpg +16488.jpg +13281.jpg +9257.jpg +13188.jpg +27859.jpg +61.jpg +27653.jpg +29533.jpg +13950.jpg +8528.jpg +8045.jpg +5473.jpg +29872.jpg +25943.jpg +22172.jpg +28343.jpg +9225.jpg +10687.jpg +27947.jpg +19712.jpg +10929.jpg +16110.jpg +24100.jpg +11089.jpg +15931.jpg +7840.jpg +24882.jpg +16270.jpg +28293.jpg +23116.jpg +12669.jpg +25810.jpg +1514.jpg +23678.jpg +24937.jpg +1149.jpg +10007.jpg +20571.jpg +24200.jpg +10118.jpg +13127.jpg +14658.jpg +18624.jpg +25086.jpg +24734.jpg +26403.jpg +19955.jpg +12349.jpg +13391.jpg +6005.jpg +9727.jpg +10583.jpg +10446.jpg +12729.jpg +5271.jpg +25863.jpg +25982.jpg +13083.jpg +4902.jpg +15823.jpg +20877.jpg +19880.jpg +14258.jpg +10592.jpg +26835.jpg +7365.jpg +7606.jpg +494.jpg +29554.jpg +6.jpg +8494.jpg +4057.jpg +13116.jpg +4596.jpg +17262.jpg +19708.jpg +19210.jpg +29841.jpg +11993.jpg +9006.jpg +10087.jpg +2820.jpg +25106.jpg +25354.jpg +26623.jpg +19937.jpg +22549.jpg +26700.jpg +26305.jpg +2272.jpg +7530.jpg +16307.jpg +28689.jpg +26204.jpg +19278.jpg +16532.jpg +15400.jpg +11581.jpg +28104.jpg +6338.jpg +9156.jpg +9877.jpg +7013.jpg +13261.jpg +5928.jpg +12764.jpg +544.jpg +20567.jpg +24198.jpg +16212.jpg +6608.jpg +25619.jpg +17732.jpg +4257.jpg +25885.jpg +25000.jpg +920.jpg +22399.jpg +14468.jpg +4207.jpg +28758.jpg +15985.jpg +14207.jpg +10004.jpg +4308.jpg +22471.jpg +7093.jpg +13929.jpg +13806.jpg +24293.jpg +27111.jpg +1025.jpg +11527.jpg +2506.jpg +29530.jpg +8692.jpg +26642.jpg +22415.jpg +29466.jpg +13249.jpg +19123.jpg +790.jpg +7890.jpg +21162.jpg +27285.jpg +7537.jpg +19286.jpg +29461.jpg +13893.jpg +9736.jpg +3676.jpg +21040.jpg +6847.jpg +29031.jpg +21749.jpg +23186.jpg +4246.jpg +4386.jpg +3084.jpg +14147.jpg +4547.jpg +19376.jpg +4362.jpg +22815.jpg +27789.jpg +24547.jpg +17364.jpg +8427.jpg +4239.jpg +1822.jpg +1643.jpg +7044.jpg +649.jpg +17559.jpg +21473.jpg +28907.jpg +10691.jpg +2287.jpg +21838.jpg +28024.jpg +2997.jpg +152.jpg +20585.jpg +25489.jpg +18583.jpg +26490.jpg +20276.jpg +28781.jpg +4841.jpg +27396.jpg +9880.jpg +22899.jpg +12358.jpg +5533.jpg +14370.jpg +26801.jpg +19593.jpg +4553.jpg +6176.jpg +28661.jpg +27130.jpg +15537.jpg +16576.jpg +28485.jpg +16680.jpg +14101.jpg +23925.jpg +3930.jpg +18741.jpg +6366.jpg +20597.jpg +1234.jpg +18191.jpg +19566.jpg +23622.jpg +28909.jpg +13601.jpg +16804.jpg +778.jpg +17565.jpg +22749.jpg +23530.jpg +29888.jpg +17279.jpg +3536.jpg +15737.jpg +8409.jpg +14256.jpg +5713.jpg +27882.jpg +22477.jpg +14048.jpg +12948.jpg +16971.jpg +21425.jpg +25206.jpg +23483.jpg +11118.jpg +19691.jpg +576.jpg +24793.jpg +5215.jpg +25416.jpg +17183.jpg +16047.jpg +1203.jpg +8856.jpg +14088.jpg +5229.jpg +27464.jpg +9036.jpg +5558.jpg +12842.jpg +8066.jpg +13097.jpg +3800.jpg +24707.jpg +7937.jpg +1324.jpg +24498.jpg +7284.jpg +13653.jpg +1683.jpg +10242.jpg +28785.jpg +23171.jpg +24856.jpg +20218.jpg +6927.jpg +5943.jpg +22303.jpg +9542.jpg +9867.jpg +14113.jpg +17246.jpg +22466.jpg +13237.jpg +18031.jpg +28235.jpg +24135.jpg +28674.jpg +29947.jpg +6345.jpg +5996.jpg +16865.jpg +7173.jpg +8531.jpg +8071.jpg +10268.jpg +6470.jpg +23523.jpg +8339.jpg +5037.jpg +20670.jpg +7706.jpg +8313.jpg +14599.jpg +20886.jpg +3397.jpg +11752.jpg +8056.jpg +19942.jpg +6692.jpg +11875.jpg +4205.jpg +6109.jpg +18745.jpg +16433.jpg +28453.jpg +2964.jpg +19347.jpg +9825.jpg +5012.jpg +4496.jpg +16748.jpg +6452.jpg +5451.jpg +5803.jpg +17232.jpg +13153.jpg +6805.jpg +13684.jpg +15938.jpg +128.jpg +4303.jpg +28106.jpg +2410.jpg +24020.jpg +14584.jpg +18923.jpg +27398.jpg +11924.jpg +24192.jpg +10309.jpg +6096.jpg +10616.jpg +10191.jpg +16639.jpg +10019.jpg +1396.jpg +26491.jpg +20078.jpg +24440.jpg +6217.jpg +3171.jpg +10539.jpg +25228.jpg +3392.jpg +19228.jpg +20357.jpg +6348.jpg +15591.jpg +12508.jpg +27785.jpg +12735.jpg +21233.jpg +5594.jpg +14214.jpg +11228.jpg +24216.jpg +12386.jpg +26672.jpg +29732.jpg +11185.jpg +17087.jpg +23512.jpg +18917.jpg +4156.jpg +2441.jpg +14944.jpg +22381.jpg +29766.jpg +15504.jpg +29697.jpg +23505.jpg +15053.jpg +9061.jpg +15667.jpg +16537.jpg +13551.jpg +17873.jpg +22371.jpg +29103.jpg +27385.jpg +26753.jpg +3760.jpg +21727.jpg +2107.jpg +16995.jpg +15163.jpg +15626.jpg +9746.jpg +93.jpg +28595.jpg +23328.jpg +20914.jpg +20383.jpg +17947.jpg +15600.jpg +9690.jpg +22615.jpg +14394.jpg +6471.jpg +17200.jpg +13769.jpg +2718.jpg +12996.jpg +27712.jpg +10842.jpg +27984.jpg +620.jpg +28120.jpg +4748.jpg +22490.jpg +12036.jpg +2346.jpg +3863.jpg +1197.jpg +1066.jpg +17429.jpg +7188.jpg +21076.jpg +19894.jpg +22769.jpg +11418.jpg +14670.jpg +26844.jpg +20275.jpg +12377.jpg +18915.jpg +3899.jpg +20673.jpg +15274.jpg +23199.jpg +17726.jpg +25445.jpg +21713.jpg +22037.jpg +1096.jpg +16548.jpg +23890.jpg +792.jpg +10221.jpg +18564.jpg +17111.jpg +24694.jpg +17553.jpg +17677.jpg +23863.jpg +2391.jpg +24490.jpg +5103.jpg +5758.jpg +29145.jpg +4426.jpg +27165.jpg +18008.jpg +7522.jpg +19966.jpg +9627.jpg +9228.jpg +18033.jpg +3902.jpg +19834.jpg +17163.jpg +3288.jpg +4321.jpg +23779.jpg +10276.jpg +3842.jpg +18778.jpg +27782.jpg +7174.jpg +19957.jpg +11567.jpg +20666.jpg +28789.jpg +24217.jpg +1175.jpg +9723.jpg +23761.jpg +10538.jpg +9139.jpg +19679.jpg +20453.jpg +10488.jpg +19581.jpg +11881.jpg +19163.jpg +27420.jpg +23541.jpg +18585.jpg +5780.jpg +9011.jpg +3757.jpg +697.jpg +23057.jpg +27585.jpg +21260.jpg +3948.jpg +8135.jpg +18648.jpg +668.jpg +23843.jpg +13371.jpg +29673.jpg +27030.jpg +6414.jpg +23973.jpg +2224.jpg +7644.jpg +2250.jpg +25516.jpg +23877.jpg +5466.jpg +16051.jpg +1264.jpg +22926.jpg +13.jpg +6903.jpg +29785.jpg +9589.jpg +22440.jpg +12580.jpg +20977.jpg +21454.jpg +22712.jpg +19771.jpg +27024.jpg +1421.jpg +547.jpg +11698.jpg +24069.jpg +16906.jpg +3566.jpg +11020.jpg +12563.jpg +9449.jpg +29234.jpg +20662.jpg +16028.jpg +6977.jpg +22118.jpg +17038.jpg +7825.jpg +25361.jpg +21153.jpg +11543.jpg +18904.jpg +27204.jpg +25167.jpg +7600.jpg +11644.jpg +10798.jpg +29474.jpg +19185.jpg +5892.jpg +4230.jpg +22838.jpg +8445.jpg +21282.jpg +23217.jpg +25329.jpg +21333.jpg +19535.jpg +29503.jpg +24204.jpg +564.jpg +18575.jpg +4044.jpg +4542.jpg +1639.jpg +27051.jpg +17079.jpg +28287.jpg +18215.jpg +2734.jpg +14075.jpg +19794.jpg +14818.jpg +27867.jpg +27614.jpg +5062.jpg +28730.jpg +9451.jpg +1863.jpg +19740.jpg +27287.jpg +18169.jpg +16841.jpg +17658.jpg +2809.jpg +9268.jpg +1195.jpg +3265.jpg +29152.jpg +12871.jpg +6741.jpg +10664.jpg +24934.jpg +20705.jpg +25666.jpg +13221.jpg +17261.jpg +20623.jpg +8594.jpg +22886.jpg +7315.jpg +4643.jpg +13803.jpg +11734.jpg +4753.jpg +4549.jpg +19253.jpg +19578.jpg +21678.jpg +1585.jpg +21336.jpg +10706.jpg +7394.jpg +1738.jpg +29750.jpg +14167.jpg +3364.jpg +22184.jpg +3263.jpg +7437.jpg +22607.jpg +6084.jpg +19592.jpg +19837.jpg +10981.jpg +1400.jpg +11921.jpg +24483.jpg +1804.jpg +1107.jpg +28551.jpg +19866.jpg +575.jpg +24008.jpg +20168.jpg +29815.jpg +10635.jpg +21684.jpg +6194.jpg +15438.jpg +27757.jpg +23562.jpg +24108.jpg +19485.jpg +15311.jpg +14160.jpg +26472.jpg +15088.jpg +29654.jpg +16676.jpg +21073.jpg +15533.jpg +29195.jpg +13490.jpg +5521.jpg +2666.jpg +3970.jpg +27794.jpg +20028.jpg +4355.jpg +26361.jpg +24305.jpg +21293.jpg +2244.jpg +12728.jpg +91.jpg +28444.jpg +2785.jpg +17218.jpg +5935.jpg +14058.jpg +6995.jpg +4287.jpg +16829.jpg +11475.jpg +15223.jpg +9822.jpg +10603.jpg +17894.jpg +27504.jpg +11441.jpg +15773.jpg +28298.jpg +29140.jpg +6908.jpg +21027.jpg +21654.jpg +17613.jpg +29501.jpg +6891.jpg +1472.jpg +20864.jpg +28971.jpg +2701.jpg +29890.jpg +13019.jpg +16877.jpg +21644.jpg +20387.jpg +18202.jpg +12028.jpg +9625.jpg +13814.jpg +16944.jpg +16907.jpg +21811.jpg +11229.jpg +7885.jpg +24836.jpg +18567.jpg +17148.jpg +26444.jpg +15969.jpg +9949.jpg +19742.jpg +7150.jpg +12703.jpg +21447.jpg +6883.jpg +24620.jpg +14648.jpg +15219.jpg +13628.jpg +7372.jpg +19214.jpg +16313.jpg +14628.jpg +8146.jpg +11514.jpg +28252.jpg +27427.jpg +8044.jpg +23600.jpg +15072.jpg +13848.jpg +21256.jpg +56.jpg +1388.jpg +26407.jpg +15686.jpg +23913.jpg +15064.jpg +10659.jpg +26279.jpg +23303.jpg +1716.jpg +21864.jpg +7497.jpg +3439.jpg +10560.jpg +5766.jpg +4441.jpg +27880.jpg +28877.jpg +25668.jpg +13378.jpg +28890.jpg +21482.jpg +28010.jpg +11653.jpg +23388.jpg +20172.jpg +14676.jpg +513.jpg +18214.jpg +954.jpg +11094.jpg +16686.jpg +1870.jpg +18056.jpg +7892.jpg +9776.jpg +20404.jpg +229.jpg +13656.jpg +3410.jpg +6754.jpg +23155.jpg +17924.jpg +5076.jpg +14425.jpg +3982.jpg +10602.jpg +28955.jpg +21138.jpg +12270.jpg +9179.jpg +14261.jpg +7116.jpg +23613.jpg +26451.jpg +9305.jpg +5110.jpg +13865.jpg +17966.jpg +21299.jpg +20626.jpg +17482.jpg +16598.jpg +14054.jpg +17128.jpg +28446.jpg +23334.jpg +335.jpg +28234.jpg +15511.jpg +13399.jpg +14864.jpg +2526.jpg +9537.jpg +19248.jpg +13758.jpg +10069.jpg +18943.jpg +1486.jpg +28019.jpg +22072.jpg +20912.jpg +10024.jpg +15804.jpg +24875.jpg +5882.jpg +8354.jpg +21955.jpg +29098.jpg +3451.jpg +251.jpg +26879.jpg +26465.jpg +628.jpg +15100.jpg +13792.jpg +29616.jpg +27428.jpg +15846.jpg +14695.jpg +22698.jpg +18582.jpg +23321.jpg +21141.jpg +20436.jpg +20314.jpg +3281.jpg +26163.jpg +17443.jpg +1438.jpg +22552.jpg +12402.jpg +28361.jpg +29701.jpg +17934.jpg +20613.jpg +25731.jpg +7367.jpg +24303.jpg +24032.jpg +27566.jpg +19036.jpg +11043.jpg +15774.jpg +25469.jpg +28961.jpg +17377.jpg +22526.jpg +11428.jpg +12205.jpg +25963.jpg +1378.jpg +2784.jpg +1593.jpg +20891.jpg +21026.jpg +25317.jpg +11247.jpg +8529.jpg +15235.jpg +25348.jpg +23784.jpg +3347.jpg +937.jpg +16943.jpg +22170.jpg +14389.jpg +21396.jpg +7228.jpg +2949.jpg +24581.jpg +2835.jpg +14885.jpg +5452.jpg +29611.jpg +5658.jpg +3148.jpg +10147.jpg +2822.jpg +14793.jpg +29908.jpg +15065.jpg +25179.jpg +9468.jpg +6740.jpg +2670.jpg +28174.jpg +10680.jpg +18244.jpg +8615.jpg +11144.jpg +9680.jpg +17534.jpg +10797.jpg +9502.jpg +15405.jpg +27917.jpg +20079.jpg +2422.jpg +8036.jpg +21693.jpg +20225.jpg +8744.jpg +14908.jpg +5989.jpg +15570.jpg +26048.jpg +25189.jpg +28660.jpg +7687.jpg +28226.jpg +12584.jpg +25231.jpg +3905.jpg +3719.jpg +24316.jpg +3050.jpg +23846.jpg +1051.jpg +3853.jpg +7535.jpg +21529.jpg +18180.jpg +4806.jpg +15900.jpg +21561.jpg +23515.jpg +6819.jpg +10272.jpg +23276.jpg +14747.jpg +14809.jpg +7941.jpg +8443.jpg +27031.jpg +19256.jpg +15736.jpg +15547.jpg +21124.jpg +11560.jpg +13795.jpg +16980.jpg +29655.jpg +17597.jpg +6747.jpg +421.jpg +24346.jpg +13947.jpg +5589.jpg +23994.jpg +27941.jpg +20289.jpg +17766.jpg +19668.jpg +8232.jpg +25895.jpg +29972.jpg +7034.jpg +20926.jpg +5827.jpg +6821.jpg +18406.jpg +24288.jpg +14688.jpg +29112.jpg +5815.jpg +24675.jpg +11596.jpg +22412.jpg +9214.jpg +25757.jpg +5567.jpg +5875.jpg +29580.jpg +20589.jpg +496.jpg +25448.jpg +12022.jpg +24676.jpg +19127.jpg +11008.jpg +19611.jpg +5648.jpg +28127.jpg +22266.jpg +23963.jpg +18898.jpg +18650.jpg +10619.jpg +28804.jpg +23901.jpg +26571.jpg +25529.jpg +18851.jpg +16322.jpg +25016.jpg +11500.jpg +10256.jpg +6281.jpg +2870.jpg +17632.jpg +2256.jpg +14926.jpg +1285.jpg +23185.jpg +15502.jpg +13350.jpg +2202.jpg +8841.jpg +4660.jpg +11102.jpg +24016.jpg +9545.jpg +27199.jpg +27907.jpg +13109.jpg +13055.jpg +5303.jpg +7959.jpg +28033.jpg +7969.jpg +14744.jpg +4985.jpg +23815.jpg +25514.jpg +11828.jpg +16053.jpg +7001.jpg +20633.jpg +12087.jpg +5886.jpg +19498.jpg +10264.jpg +12531.jpg +17007.jpg +5581.jpg +4148.jpg +15829.jpg +9764.jpg +9757.jpg +25085.jpg +20195.jpg +16130.jpg +9476.jpg +22806.jpg +19956.jpg +11207.jpg +13037.jpg +22744.jpg +9598.jpg +21734.jpg +14288.jpg +22102.jpg +29685.jpg +21510.jpg +10553.jpg +16637.jpg +20422.jpg +14943.jpg +25806.jpg +13161.jpg +1257.jpg +12991.jpg +14287.jpg +23003.jpg +14675.jpg +19249.jpg +12880.jpg +29546.jpg +24067.jpg +6737.jpg +22276.jpg +24610.jpg +3812.jpg +6989.jpg +27139.jpg +19212.jpg +15521.jpg +15717.jpg +10422.jpg +6172.jpg +17436.jpg +15496.jpg +15661.jpg +26908.jpg +10474.jpg +4377.jpg +4975.jpg +23835.jpg +12581.jpg +13639.jpg +24745.jpg +8702.jpg +15763.jpg +20873.jpg +5606.jpg +9403.jpg +11244.jpg +7094.jpg +17177.jpg +6485.jpg +26027.jpg +1047.jpg +7557.jpg +13832.jpg +11317.jpg +19288.jpg +9809.jpg +28351.jpg +7433.jpg +24400.jpg +22065.jpg +24750.jpg +11884.jpg +5522.jpg +10335.jpg +142.jpg +17108.jpg +19796.jpg +24426.jpg +19659.jpg +3631.jpg +29178.jpg +2320.jpg +11727.jpg +3529.jpg +21407.jpg +9384.jpg +20029.jpg +10419.jpg +16785.jpg +25902.jpg +11250.jpg +28910.jpg +10565.jpg +9955.jpg +10423.jpg +435.jpg +17782.jpg +10247.jpg +749.jpg +14852.jpg +6015.jpg +13212.jpg +14510.jpg +28054.jpg +5013.jpg +2242.jpg +11116.jpg +6582.jpg +21389.jpg +4822.jpg +3683.jpg +15322.jpg +2549.jpg +27844.jpg +17868.jpg +20243.jpg +17610.jpg +12373.jpg +22362.jpg +19930.jpg +29127.jpg +20664.jpg +28290.jpg +1858.jpg +24643.jpg +22398.jpg +5869.jpg +14714.jpg +16694.jpg +16985.jpg +5415.jpg +16891.jpg +16184.jpg +24473.jpg +1263.jpg +10678.jpg +12864.jpg +13683.jpg +740.jpg +3901.jpg +29090.jpg +6893.jpg +29809.jpg +21095.jpg +23791.jpg +16491.jpg +18117.jpg +10343.jpg +7721.jpg +25656.jpg +13759.jpg +4878.jpg +6343.jpg +21453.jpg +14216.jpg +27131.jpg +10029.jpg +8191.jpg +6105.jpg +3933.jpg +9246.jpg +28904.jpg +23596.jpg +23871.jpg +6534.jpg +9716.jpg +4340.jpg +24634.jpg +21686.jpg +7299.jpg +26213.jpg +10168.jpg +13813.jpg +19711.jpg +16450.jpg +1134.jpg +22848.jpg +26109.jpg +23077.jpg +12485.jpg +3129.jpg +26281.jpg +27890.jpg +18198.jpg +22784.jpg +23950.jpg +28165.jpg +15380.jpg +4245.jpg +16962.jpg +7075.jpg +14043.jpg +1305.jpg +12675.jpg +3268.jpg +20405.jpg +9037.jpg +29349.jpg +13057.jpg +10922.jpg +11199.jpg +18698.jpg +10017.jpg +20305.jpg +26569.jpg +27181.jpg +8876.jpg +7988.jpg +24766.jpg +13917.jpg +17054.jpg +22004.jpg +9279.jpg +21276.jpg +13311.jpg +12332.jpg +12037.jpg +11897.jpg +24444.jpg +15507.jpg +1956.jpg +894.jpg +19272.jpg +6665.jpg +27447.jpg +8983.jpg +4875.jpg +3205.jpg +10888.jpg +24523.jpg +5285.jpg +16606.jpg +15217.jpg +17445.jpg +20139.jpg +15348.jpg +22203.jpg +12089.jpg +7528.jpg +3638.jpg +3078.jpg +22097.jpg +23617.jpg +11635.jpg +15919.jpg +14086.jpg +24285.jpg +3183.jpg +12381.jpg +11252.jpg +7215.jpg +20828.jpg +21185.jpg +20061.jpg +29641.jpg +23544.jpg +20621.jpg +26508.jpg +12873.jpg +21469.jpg +462.jpg +2700.jpg +8417.jpg +14765.jpg +9494.jpg +4855.jpg +13128.jpg +23209.jpg +18535.jpg +27517.jpg +7998.jpg +13610.jpg +26664.jpg +10697.jpg +20901.jpg +7454.jpg +22396.jpg +18516.jpg +9392.jpg +15069.jpg +17142.jpg +15346.jpg +2863.jpg +3875.jpg +10689.jpg +11739.jpg +15123.jpg +11751.jpg +22829.jpg +23113.jpg +27731.jpg +4241.jpg +15047.jpg +15795.jpg +22655.jpg +12330.jpg +9455.jpg +20272.jpg +10283.jpg +13125.jpg +24616.jpg +12403.jpg +19440.jpg +17475.jpg +18970.jpg +29581.jpg +900.jpg +14687.jpg +4431.jpg +13859.jpg +15086.jpg +24140.jpg +26369.jpg +16394.jpg +2838.jpg +4264.jpg +10072.jpg +3999.jpg +28183.jpg +8527.jpg +8817.jpg +23688.jpg +6017.jpg +11756.jpg +3603.jpg +3696.jpg +29341.jpg +23091.jpg +368.jpg +16238.jpg +2527.jpg +6632.jpg +12167.jpg +927.jpg +1070.jpg +8041.jpg +25325.jpg +3570.jpg +21248.jpg +10134.jpg +8000.jpg +16453.jpg +678.jpg +28408.jpg +15029.jpg +18677.jpg +28211.jpg +10455.jpg +14507.jpg +16132.jpg +29492.jpg +28213.jpg +23966.jpg +28188.jpg +26186.jpg +18367.jpg +478.jpg +1884.jpg +1591.jpg +9127.jpg +23868.jpg +8784.jpg +4277.jpg +4578.jpg +6390.jpg +22537.jpg +14994.jpg +13005.jpg +17315.jpg +11783.jpg +21668.jpg +22794.jpg +17072.jpg +17719.jpg +29675.jpg +2003.jpg +24644.jpg +1950.jpg +5414.jpg +413.jpg +1019.jpg +3351.jpg +9801.jpg +10774.jpg +20997.jpg +5392.jpg +11845.jpg +14235.jpg +10775.jpg +22094.jpg +22643.jpg +7157.jpg +20111.jpg +7030.jpg +573.jpg +28830.jpg +3063.jpg +18013.jpg +24678.jpg +22980.jpg +9068.jpg +20990.jpg +1994.jpg +2576.jpg +9925.jpg +24782.jpg +27370.jpg +22888.jpg +24113.jpg +25927.jpg +14458.jpg +21998.jpg +4800.jpg +24155.jpg +5708.jpg +11069.jpg +4521.jpg +20181.jpg +11469.jpg +14769.jpg +20341.jpg +12724.jpg +25429.jpg +29015.jpg +3615.jpg +21554.jpg +27681.jpg +7370.jpg +6994.jpg +14051.jpg +22028.jpg +2682.jpg +19683.jpg +7954.jpg +15240.jpg +947.jpg +15744.jpg +15304.jpg +1574.jpg +15013.jpg +25043.jpg +21968.jpg +17344.jpg +13348.jpg +9168.jpg +18782.jpg +27293.jpg +26386.jpg +10030.jpg +18325.jpg +23951.jpg +16460.jpg +13179.jpg +29532.jpg +4019.jpg +17036.jpg +12933.jpg +24606.jpg +11980.jpg +6445.jpg +3444.jpg +23290.jpg +4691.jpg +17763.jpg +19833.jpg +20713.jpg +29121.jpg +8858.jpg +18162.jpg +10084.jpg +25738.jpg +25707.jpg +3498.jpg +29773.jpg +19877.jpg +19766.jpg +11985.jpg +2451.jpg +8563.jpg +15196.jpg +27656.jpg +29639.jpg +1606.jpg +16766.jpg +3335.jpg +23967.jpg +1449.jpg +7350.jpg +9576.jpg +10466.jpg +18901.jpg +16174.jpg +17775.jpg +20290.jpg +22000.jpg +18764.jpg +24121.jpg +21680.jpg +15276.jpg +11922.jpg +22089.jpg +54.jpg +13044.jpg +25952.jpg +4533.jpg +28441.jpg +8297.jpg +25019.jpg +15827.jpg +5777.jpg +10623.jpg +21083.jpg +11282.jpg +19682.jpg +11012.jpg +3704.jpg +1923.jpg +22534.jpg +21047.jpg +12317.jpg +21046.jpg +26471.jpg +5572.jpg +14467.jpg +22997.jpg +16138.jpg +4372.jpg +6681.jpg +19197.jpg +13107.jpg +26798.jpg +3109.jpg +28200.jpg +9977.jpg +14453.jpg +11883.jpg +29996.jpg +5038.jpg +20688.jpg +22658.jpg +22354.jpg +4949.jpg +14856.jpg +16203.jpg +27331.jpg +2276.jpg +20332.jpg +14914.jpg +16559.jpg +19491.jpg +26758.jpg +8356.jpg +24158.jpg +7750.jpg +25225.jpg +20733.jpg +13027.jpg +23021.jpg +13164.jpg +27879.jpg +5534.jpg +24507.jpg +25650.jpg +21631.jpg +22153.jpg +10494.jpg +25899.jpg +22397.jpg +26147.jpg +27864.jpg +11597.jpg +2162.jpg +27994.jpg +11814.jpg +1679.jpg +20036.jpg +13435.jpg +23317.jpg +20295.jpg +12337.jpg +7052.jpg +11265.jpg +23816.jpg +4713.jpg +8596.jpg +11741.jpg +5074.jpg +9942.jpg +1761.jpg +19168.jpg +3114.jpg +18087.jpg +3325.jpg +9683.jpg +21721.jpg +12451.jpg +14980.jpg +1607.jpg +26901.jpg +24193.jpg +16139.jpg +6353.jpg +27538.jpg +21219.jpg +14723.jpg +17772.jpg +7033.jpg +10140.jpg +20267.jpg +889.jpg +16187.jpg +28329.jpg +24126.jpg +8285.jpg +8305.jpg +24263.jpg +28790.jpg +17968.jpg +11674.jpg +27276.jpg +23482.jpg +20165.jpg +24347.jpg +13432.jpg +10857.jpg +21995.jpg +5511.jpg +3429.jpg +5091.jpg +18543.jpg +25710.jpg +20963.jpg +2185.jpg +6291.jpg +17881.jpg +8515.jpg +18011.jpg +21789.jpg +13958.jpg +19444.jpg +1297.jpg +12207.jpg +15748.jpg +111.jpg +6421.jpg +9302.jpg +26724.jpg +10653.jpg +27878.jpg +3817.jpg +22523.jpg +24049.jpg +15472.jpg +18779.jpg +15871.jpg +893.jpg +1733.jpg +20992.jpg +1365.jpg +7432.jpg +18040.jpg +25535.jpg +21494.jpg +25518.jpg +12945.jpg +4832.jpg +8617.jpg +15314.jpg +26059.jpg +23621.jpg +21821.jpg +14950.jpg +432.jpg +13862.jpg +4755.jpg +5383.jpg +28914.jpg +9013.jpg +10307.jpg +21106.jpg +7361.jpg +14990.jpg +12632.jpg +29329.jpg +16741.jpg +3334.jpg +14922.jpg +6959.jpg +26393.jpg +13965.jpg +13084.jpg +18073.jpg +6253.jpg +28438.jpg +24755.jpg +21462.jpg +4905.jpg +20927.jpg +18619.jpg +4107.jpg +17700.jpg +29156.jpg +27857.jpg +2384.jpg +4469.jpg +21810.jpg +26301.jpg +22472.jpg +20896.jpg +7022.jpg +25693.jpg +9812.jpg +25785.jpg +26653.jpg +18317.jpg +29083.jpg +18139.jpg +7005.jpg +26843.jpg +23098.jpg +19026.jpg +3298.jpg +647.jpg +1510.jpg +26045.jpg +28003.jpg +18719.jpg +7396.jpg +13021.jpg +602.jpg +12120.jpg +26467.jpg +8605.jpg +18305.jpg +599.jpg +27979.jpg +20096.jpg +14311.jpg +17648.jpg +3581.jpg +27415.jpg +23867.jpg +13825.jpg +25265.jpg +24926.jpg +28102.jpg +18628.jpg +28835.jpg +11431.jpg +21501.jpg +25890.jpg +12597.jpg +4385.jpg +22753.jpg +7926.jpg +15520.jpg +26651.jpg +10265.jpg +4693.jpg +21732.jpg +298.jpg +6453.jpg +20919.jpg +10901.jpg +23715.jpg +19515.jpg +17895.jpg +7035.jpg +5526.jpg +1188.jpg +13733.jpg +26362.jpg +23692.jpg +20910.jpg +26367.jpg +19852.jpg +6364.jpg +2680.jpg +25793.jpg +29407.jpg +16437.jpg +29388.jpg +18065.jpg +26207.jpg +15788.jpg +10629.jpg +11007.jpg +27236.jpg +15137.jpg +3809.jpg +29738.jpg +17937.jpg +14035.jpg +28248.jpg +2492.jpg +28197.jpg +20512.jpg +2883.jpg +294.jpg +23750.jpg +1010.jpg +27632.jpg +22713.jpg +25781.jpg +3958.jpg +22618.jpg +12762.jpg +18708.jpg +18675.jpg +15178.jpg +11547.jpg +9389.jpg +29221.jpg +7711.jpg +1350.jpg +22855.jpg +21953.jpg +21171.jpg +23725.jpg +20712.jpg +1627.jpg +8364.jpg +23853.jpg +29794.jpg +5002.jpg +26886.jpg +24212.jpg +23499.jpg +4008.jpg +15750.jpg +19617.jpg +1746.jpg +21805.jpg +11211.jpg +18472.jpg +19884.jpg +11566.jpg +21400.jpg +28807.jpg +18774.jpg +28616.jpg +1971.jpg +4519.jpg +7664.jpg +17253.jpg +13393.jpg +12819.jpg +358.jpg +16724.jpg +18316.jpg +25440.jpg +9095.jpg +2132.jpg +28207.jpg +28426.jpg +7010.jpg +27888.jpg +13030.jpg +8828.jpg +16590.jpg +12846.jpg +5259.jpg +9348.jpg +7405.jpg +548.jpg +21184.jpg +28716.jpg +26253.jpg +3613.jpg +12715.jpg +4056.jpg +22933.jpg +22254.jpg +1518.jpg +20789.jpg +27015.jpg +4813.jpg +345.jpg +14092.jpg +26610.jpg +17097.jpg +6804.jpg +3168.jpg +28416.jpg +28100.jpg +26487.jpg +5900.jpg +14148.jpg +25926.jpg +17463.jpg +11338.jpg +15289.jpg +11641.jpg +27246.jpg +7015.jpg +29764.jpg +7041.jpg +20491.jpg +3700.jpg +22529.jpg +25687.jpg +1714.jpg +15458.jpg +15556.jpg +28170.jpg +10458.jpg +23807.jpg +27964.jpg +10545.jpg +15607.jpg +20415.jpg +22573.jpg +3036.jpg +11585.jpg +2122.jpg +18164.jpg +7256.jpg +22421.jpg +18599.jpg +16412.jpg +11309.jpg +29205.jpg +202.jpg +21243.jpg +8385.jpg +12849.jpg +16176.jpg +23823.jpg +3731.jpg +21564.jpg +6864.jpg +24996.jpg +9151.jpg +27310.jpg +3067.jpg +10761.jpg +28217.jpg +22901.jpg +2237.jpg +273.jpg +27376.jpg +10556.jpg +29306.jpg +19244.jpg +13563.jpg +29270.jpg +18392.jpg +7555.jpg +23480.jpg +5069.jpg +26718.jpg +16090.jpg +16255.jpg +1640.jpg +12890.jpg +3522.jpg +8519.jpg +24709.jpg +6030.jpg +28882.jpg +8506.jpg +19229.jpg +28525.jpg +17305.jpg +18381.jpg +13599.jpg +19432.jpg +19190.jpg +16632.jpg +779.jpg +8027.jpg +26606.jpg +29053.jpg +13822.jpg +17850.jpg +26641.jpg +11235.jpg +1275.jpg +17541.jpg +10354.jpg +9197.jpg +25959.jpg +6042.jpg +20259.jpg +8590.jpg +9103.jpg +15930.jpg +15004.jpg +13280.jpg +29481.jpg +8813.jpg +26730.jpg +22337.jpg +11169.jpg +179.jpg +13750.jpg +24974.jpg +6802.jpg +29238.jpg +624.jpg +1256.jpg +11523.jpg +14381.jpg +29518.jpg +10992.jpg +9733.jpg +6739.jpg +6490.jpg +23839.jpg +17836.jpg +28244.jpg +27231.jpg +5057.jpg +3754.jpg +13625.jpg +3260.jpg +8632.jpg +10182.jpg +19898.jpg +21158.jpg +3488.jpg +11465.jpg +14168.jpg +11190.jpg +4651.jpg +6380.jpg +23989.jpg +16656.jpg +16349.jpg +11471.jpg +27609.jpg +14355.jpg +19855.jpg +5242.jpg +15320.jpg +28364.jpg +28756.jpg +10639.jpg +17589.jpg +7515.jpg +23802.jpg +3044.jpg +28859.jpg +12607.jpg +20859.jpg +18105.jpg +21704.jpg +22583.jpg +26978.jpg +18239.jpg +2298.jpg +14245.jpg +902.jpg +28423.jpg +5783.jpg +22332.jpg +19016.jpg +21611.jpg +21557.jpg +5843.jpg +19599.jpg +15201.jpg +14280.jpg +5199.jpg +24042.jpg +29765.jpg +4409.jpg +4394.jpg +22294.jpg +1741.jpg +2442.jpg +28089.jpg +5759.jpg +12594.jpg +5454.jpg +10333.jpg +10701.jpg +9162.jpg +6427.jpg +28941.jpg +28685.jpg +13472.jpg +9038.jpg +19207.jpg +4314.jpg +12939.jpg +20709.jpg +909.jpg +2395.jpg +22536.jpg +25988.jpg +15184.jpg +16531.jpg +17790.jpg +5385.jpg +15662.jpg +15359.jpg +15958.jpg +4604.jpg +22999.jpg +493.jpg +26504.jpg +21997.jpg +19251.jpg +27465.jpg +11524.jpg +12476.jpg +8681.jpg +1648.jpg +15271.jpg +15523.jpg +6670.jpg +2324.jpg +11261.jpg +12525.jpg +22579.jpg +20242.jpg +27518.jpg +27636.jpg +7271.jpg +24739.jpg +24471.jpg +29260.jpg +6929.jpg +29399.jpg +4920.jpg +3924.jpg +19420.jpg +26648.jpg +27397.jpg +15860.jpg +27028.jpg +2640.jpg +1288.jpg +23350.jpg +29713.jpg +7686.jpg +26038.jpg +20296.jpg +9693.jpg +24726.jpg +23307.jpg +3577.jpg +8487.jpg +3637.jpg +21905.jpg +15042.jpg +27262.jpg +15529.jpg +23942.jpg +14130.jpg +25744.jpg +831.jpg +1395.jpg +26062.jpg +16428.jpg +28182.jpg +24549.jpg +5723.jpg +3625.jpg +11083.jpg +8334.jpg +24602.jpg +12975.jpg +25655.jpg +29291.jpg +28821.jpg +28515.jpg +11754.jpg +1528.jpg +21798.jpg +19233.jpg +4525.jpg +5025.jpg +12172.jpg +27928.jpg +2748.jpg +10381.jpg +20439.jpg +5180.jpg +7419.jpg +27669.jpg +2038.jpg +27704.jpg +8921.jpg +29506.jpg +15959.jpg +6791.jpg +16550.jpg +6193.jpg +23781.jpg +4916.jpg +21576.jpg +21527.jpg +29009.jpg +29557.jpg +22061.jpg +11386.jpg +6136.jpg +19481.jpg +22225.jpg +22659.jpg +9172.jpg +7053.jpg +12102.jpg +7785.jpg +1181.jpg +381.jpg +1097.jpg +6046.jpg +23814.jpg +7264.jpg +13660.jpg +26180.jpg +22789.jpg +17037.jpg +16544.jpg +21584.jpg +1799.jpg +24962.jpg +2862.jpg +944.jpg +15629.jpg +21634.jpg +10975.jpg +28097.jpg +1225.jpg +28483.jpg +24209.jpg +16104.jpg +21698.jpg +14596.jpg +9844.jpg +3554.jpg +2909.jpg +8616.jpg +20844.jpg +984.jpg +20266.jpg +2726.jpg +4197.jpg +13510.jpg +21736.jpg +7589.jpg +13767.jpg +19227.jpg +15676.jpg +5235.jpg +27745.jpg +29879.jpg +3425.jpg +16192.jpg +23278.jpg +27194.jpg +21326.jpg +5046.jpg +27351.jpg +25775.jpg +21972.jpg +8022.jpg +23183.jpg +14274.jpg +11377.jpg +5475.jpg +20199.jpg +29759.jpg +6814.jpg +6218.jpg +13999.jpg +18464.jpg +4243.jpg +28925.jpg +16885.jpg +24876.jpg +12515.jpg +11515.jpg +24435.jpg +14371.jpg +26982.jpg +199.jpg +12216.jpg +29807.jpg +23495.jpg +6331.jpg +10600.jpg +4763.jpg +7063.jpg +7564.jpg +28588.jpg +528.jpg +25832.jpg +21747.jpg +21254.jpg +28817.jpg +1429.jpg +12893.jpg +9792.jpg +11178.jpg +5505.jpg +28939.jpg +3416.jpg +665.jpg +12042.jpg +12825.jpg +5891.jpg +29244.jpg +9219.jpg +8254.jpg +28257.jpg +28481.jpg +1329.jpg +2239.jpg +12300.jpg +14892.jpg +22408.jpg +26251.jpg +9897.jpg +10675.jpg +16626.jpg +901.jpg +29708.jpg +8886.jpg +9866.jpg +18594.jpg +1011.jpg +7191.jpg +28810.jpg +21917.jpg +18491.jpg +20256.jpg +13426.jpg +22920.jpg +14239.jpg +21697.jpg +1062.jpg +22467.jpg +3983.jpg +1260.jpg +21038.jpg +20917.jpg +25536.jpg +22176.jpg +22075.jpg +11910.jpg +14776.jpg +23476.jpg +23899.jpg +703.jpg +28131.jpg +14369.jpg +2519.jpg +23191.jpg +8787.jpg +8479.jpg +10439.jpg +29741.jpg +22111.jpg +22601.jpg +11111.jpg +23937.jpg +5518.jpg +23070.jpg +23150.jpg +1861.jpg +16574.jpg +11468.jpg +8927.jpg +20781.jpg +23490.jpg +25742.jpg +25049.jpg +9553.jpg +935.jpg +28187.jpg +23182.jpg +222.jpg +2368.jpg +13539.jpg +17143.jpg +10737.jpg +29871.jpg +15012.jpg +27630.jpg +19532.jpg +4345.jpg +6266.jpg +5093.jpg +20687.jpg +29184.jpg +8090.jpg +4751.jpg +16442.jpg +16119.jpg +24869.jpg +19191.jpg +19250.jpg +13165.jpg +18462.jpg +2775.jpg +28655.jpg +1424.jpg +9526.jpg +3525.jpg +9566.jpg +27177.jpg +17464.jpg +14290.jpg +26996.jpg +823.jpg +11753.jpg +8423.jpg +23072.jpg +23039.jpg +27468.jpg +10920.jpg +14509.jpg +25211.jpg +24218.jpg +363.jpg +2571.jpg +27215.jpg +29175.jpg +8777.jpg +21688.jpg +19274.jpg +20802.jpg +15822.jpg +16411.jpg +15256.jpg +18390.jpg +28696.jpg +11700.jpg +13898.jpg +1233.jpg +13626.jpg +20013.jpg +24789.jpg +2052.jpg +19406.jpg +23638.jpg +13304.jpg +28317.jpg +4749.jpg +26296.jpg +16625.jpg +9724.jpg +12131.jpg +16369.jpg +6848.jpg +20031.jpg +3470.jpg +4575.jpg +10745.jpg +11776.jpg +20699.jpg +20794.jpg +698.jpg +18470.jpg +191.jpg +17592.jpg +9496.jpg +1857.jpg +3252.jpg +19811.jpg +16892.jpg +29278.jpg +22107.jpg +21332.jpg +14335.jpg +21574.jpg +1146.jpg +23896.jpg +11356.jpg +19005.jpg +9374.jpg +3670.jpg +7195.jpg +14297.jpg +23927.jpg +20580.jpg +18380.jpg +17121.jpg +13535.jpg +9519.jpg +19846.jpg +12336.jpg +6016.jpg +16706.jpg +4938.jpg +11867.jpg +7107.jpg +20858.jpg +7153.jpg +13135.jpg +10232.jpg +23366.jpg +1760.jpg +4319.jpg +29803.jpg +29280.jpg +4090.jpg +19296.jpg +2343.jpg +18550.jpg +20609.jpg +19743.jpg +6237.jpg +23742.jpg +17951.jpg +26525.jpg +10486.jpg +26315.jpg +28222.jpg +27374.jpg +29624.jpg +23011.jpg +22942.jpg +18319.jpg +4981.jpg +28597.jpg +11342.jpg +1147.jpg +15299.jpg +14513.jpg +18612.jpg +5560.jpg +15453.jpg +25844.jpg +20505.jpg +853.jpg +2524.jpg +11321.jpg +26425.jpg +17165.jpg +3479.jpg +7811.jpg +4422.jpg +15891.jpg +21785.jpg +25538.jpg +1116.jpg +28845.jpg +9974.jpg +6807.jpg +15356.jpg +18471.jpg +16162.jpg +25296.jpg +28332.jpg +23389.jpg +1493.jpg +15070.jpg +15239.jpg +3423.jpg +26352.jpg +24922.jpg +13451.jpg +22679.jpg +1382.jpg +14550.jpg +29446.jpg +15037.jpg +364.jpg +18046.jpg +13616.jpg +25021.jpg +21383.jpg +9556.jpg +5092.jpg +27694.jpg +16290.jpg +26611.jpg +3120.jpg +12141.jpg +27954.jpg +14038.jpg +24376.jpg +17066.jpg +29102.jpg +6985.jpg +28579.jpg +28805.jpg +15539.jpg +8220.jpg +19489.jpg +27366.jpg +26424.jpg +29800.jpg +2635.jpg +16857.jpg +10105.jpg +5400.jpg +2590.jpg +14183.jpg +27914.jpg +18002.jpg +4015.jpg +23094.jpg +29650.jpg +7231.jpg +517.jpg +16589.jpg +9907.jpg +6419.jpg +3302.jpg +18814.jpg +25874.jpg +8774.jpg +24460.jpg +23187.jpg +14760.jpg +17952.jpg +27190.jpg +1937.jpg +18161.jpg +25059.jpg +7690.jpg +27188.jpg +27873.jpg +3230.jpg +24590.jpg +15812.jpg +17226.jpg +1418.jpg +22165.jpg +23238.jpg +17203.jpg +603.jpg +15166.jpg +15948.jpg +10299.jpg +14413.jpg +4721.jpg +4550.jpg +4337.jpg +25939.jpg +22723.jpg +11791.jpg +12471.jpg +37.jpg +20223.jpg +22049.jpg +17168.jpg +5416.jpg +12986.jpg +27436.jpg +5677.jpg +7771.jpg +26085.jpg +17161.jpg +20018.jpg +4265.jpg +192.jpg +9089.jpg +9386.jpg +22404.jpg +23329.jpg +25047.jpg +28546.jpg +8103.jpg +4470.jpg +10759.jpg +25884.jpg +22465.jpg +7494.jpg +9895.jpg +24772.jpg +10954.jpg +13543.jpg +6583.jpg +1457.jpg +12951.jpg +11037.jpg +20469.jpg +13900.jpg +9640.jpg +2803.jpg +16075.jpg +20309.jpg +11366.jpg +26119.jpg +24064.jpg +1375.jpg +13990.jpg +7895.jpg +28690.jpg +2335.jpg +14597.jpg +25951.jpg +13392.jpg +20201.jpg +18746.jpg +28389.jpg +24242.jpg +8234.jpg +9008.jpg +29338.jpg +1880.jpg +4221.jpg +29110.jpg +9287.jpg +24888.jpg +126.jpg +21186.jpg +27448.jpg +2057.jpg +20508.jpg +23665.jpg +3894.jpg +15168.jpg +6111.jpg +20202.jpg +3426.jpg +23120.jpg +24852.jpg +17033.jpg +20103.jpg +23428.jpg +14299.jpg +18980.jpg +28894.jpg +762.jpg +29225.jpg +4752.jpg +3125.jpg +16332.jpg +3394.jpg +24988.jpg +7101.jpg +14560.jpg +14773.jpg +19795.jpg +27729.jpg +26953.jpg +19263.jpg +452.jpg +3012.jpg +1823.jpg +4154.jpg +23831.jpg +27595.jpg +18710.jpg +17715.jpg +16668.jpg +9311.jpg +22257.jpg +26221.jpg +12483.jpg +21742.jpg +29627.jpg +24344.jpg +9885.jpg +26519.jpg +22209.jpg +7627.jpg +6221.jpg +8736.jpg +11799.jpg +25313.jpg +2478.jpg +6127.jpg +24250.jpg +16905.jpg +6794.jpg +3104.jpg +8935.jpg +3073.jpg +13606.jpg +20869.jpg +19167.jpg +973.jpg +23918.jpg +13324.jpg +4904.jpg +26994.jpg +22096.jpg +2169.jpg +825.jpg +6365.jpg +19445.jpg +5709.jpg +16395.jpg +25584.jpg +4825.jpg +14716.jpg +7046.jpg +1423.jpg +20792.jpg +17312.jpg +20478.jpg +10068.jpg +8271.jpg +168.jpg +5294.jpg +27272.jpg +633.jpg +4138.jpg +15695.jpg +23344.jpg +5784.jpg +1314.jpg +1232.jpg +16817.jpg +29229.jpg +28884.jpg +19034.jpg +9856.jpg +24760.jpg +17124.jpg +9357.jpg +18457.jpg +27893.jpg +14187.jpg +2092.jpg +19140.jpg +3562.jpg +27136.jpg +15826.jpg +6138.jpg +14103.jpg +4612.jpg +9732.jpg +6851.jpg +10464.jpg +21931.jpg +16915.jpg +19557.jpg +22858.jpg +15516.jpg +4447.jpg +2905.jpg +7263.jpg +16359.jpg +14483.jpg +8411.jpg +13118.jpg +26717.jpg +2399.jpg +11896.jpg +16415.jpg +17064.jpg +17685.jpg +19598.jpg +3057.jpg +18693.jpg +2632.jpg +21375.jpg +21252.jpg +3311.jpg +26264.jpg +21354.jpg +1244.jpg +29802.jpg +11963.jpg +24928.jpg +3098.jpg +5743.jpg +7170.jpg +4101.jpg +8342.jpg +21830.jpg +29051.jpg +1103.jpg +1377.jpg +27020.jpg +24719.jpg +17275.jpg +19710.jpg +20188.jpg +6675.jpg +8573.jpg +9405.jpg +4545.jpg +7907.jpg +11346.jpg +12129.jpg +9682.jpg +981.jpg +2133.jpg +6558.jpg +23977.jpg +19627.jpg +23143.jpg +24028.jpg +4444.jpg +7729.jpg +8524.jpg +6116.jpg +8800.jpg +14190.jpg +23724.jpg +5895.jpg +17264.jpg +4894.jpg +11508.jpg +16812.jpg +6507.jpg +20280.jpg +17997.jpg +13447.jpg +150.jpg +3782.jpg +453.jpg +8029.jpg +23045.jpg +27606.jpg +18372.jpg +8575.jpg +18222.jpg +2301.jpg +28400.jpg +20411.jpg +6274.jpg +9328.jpg +635.jpg +26627.jpg +12896.jpg +16213.jpg +29524.jpg +26893.jpg +1739.jpg +6432.jpg +7124.jpg +14817.jpg +22403.jpg +3273.jpg +8497.jpg +25851.jpg +27483.jpg +12280.jpg +18534.jpg +8926.jpg +9463.jpg +842.jpg +14935.jpg +29448.jpg +22263.jpg +15528.jpg +28254.jpg +23442.jpg +27022.jpg +28641.jpg +16702.jpg +23905.jpg +27442.jpg +29189.jpg +15914.jpg +21677.jpg +9361.jpg +28196.jpg +26518.jpg +12441.jpg +3839.jpg +7997.jpg +13433.jpg +1562.jpg +8322.jpg +10224.jpg +10414.jpg +17916.jpg +5601.jpg +24697.jpg +7411.jpg +1258.jpg +4309.jpg +24748.jpg +25405.jpg +15171.jpg +25194.jpg +27092.jpg +12760.jpg +13483.jpg +10715.jpg +19614.jpg +3132.jpg +10854.jpg +27992.jpg +3556.jpg +11091.jpg +4585.jpg +5829.jpg +6457.jpg +10951.jpg +25667.jpg +12034.jpg +19077.jpg +8136.jpg +1473.jpg +16288.jpg +4009.jpg +6950.jpg +228.jpg +11501.jpg +27853.jpg +18004.jpg +18994.jpg +10405.jpg +24672.jpg +19490.jpg +12497.jpg +22445.jpg +22212.jpg +19433.jpg +4561.jpg +23642.jpg +15249.jpg +20903.jpg +4734.jpg +14226.jpg +19171.jpg +8461.jpg +807.jpg +22565.jpg +1600.jpg +14955.jpg +27350.jpg +19246.jpg +9459.jpg +14428.jpg +25379.jpg +11945.jpg +17265.jpg +16072.jpg +28863.jpg +19381.jpg +15275.jpg +24512.jpg +13102.jpg +11693.jpg +13525.jpg +14947.jpg +19826.jpg +16831.jpg +16903.jpg +18048.jpg +10212.jpg +22847.jpg +3516.jpg +12254.jpg +24955.jpg +5412.jpg +28559.jpg +7982.jpg +4478.jpg +7273.jpg +20674.jpg +29432.jpg +28513.jpg +26371.jpg +4440.jpg +13263.jpg +133.jpg +8105.jpg +23331.jpg +6314.jpg +24300.jpg +10763.jpg +14876.jpg +18480.jpg +2186.jpg +17193.jpg +11065.jpg +23772.jpg +11401.jpg +11373.jpg +27863.jpg +1402.jpg +9963.jpg +2936.jpg +2885.jpg +15968.jpg +14220.jpg +27387.jpg +19344.jpg +3559.jpg +19595.jpg +17948.jpg +10496.jpg +2264.jpg +13942.jpg +26977.jpg +4662.jpg +24740.jpg +16251.jpg +4235.jpg +11293.jpg +12808.jpg +12527.jpg +21041.jpg +7547.jpg +23559.jpg +12031.jpg +18433.jpg +915.jpg +25458.jpg +21539.jpg +6166.jpg +968.jpg +27698.jpg +16492.jpg +489.jpg +24871.jpg +29256.jpg +24785.jpg +16199.jpg +4185.jpg +28382.jpg +12065.jpg +2856.jpg +7429.jpg +1589.jpg +28795.jpg +16679.jpg +20397.jpg +7239.jpg +22864.jpg +190.jpg +6069.jpg +1366.jpg +6460.jpg +10873.jpg +12094.jpg +16863.jpg +16511.jpg +12225.jpg +10048.jpg +26603.jpg +29566.jpg +13464.jpg +15690.jpg +7613.jpg +25601.jpg +16677.jpg +23281.jpg +29819.jpg +24540.jpg +8043.jpg +14781.jpg +22506.jpg +20384.jpg +14847.jpg +6013.jpg +24941.jpg +3667.jpg +9441.jpg +21783.jpg +24410.jpg +10892.jpg +20716.jpg +8504.jpg +6769.jpg +22485.jpg +13283.jpg +3874.jpg +28823.jpg +16388.jpg +12875.jpg +7217.jpg +9440.jpg +1362.jpg +17378.jpg +13360.jpg +705.jpg +25302.jpg +26295.jpg +5842.jpg +9506.jpg +17636.jpg +23456.jpg +21717.jpg +29298.jpg +18821.jpg +18790.jpg +5530.jpg +8808.jpg +23936.jpg +21338.jpg +3040.jpg +26880.jpg +12560.jpg +23833.jpg +11763.jpg +25044.jpg +22714.jpg +18320.jpg +25705.jpg +17745.jpg +29369.jpg +5716.jpg +7643.jpg +12432.jpg +29911.jpg +1586.jpg +225.jpg +8855.jpg +29612.jpg +26807.jpg +8065.jpg +997.jpg +19758.jpg +24043.jpg +12379.jpg +497.jpg +3541.jpg +7862.jpg +8222.jpg +5653.jpg +16160.jpg +8532.jpg +19991.jpg +458.jpg +22932.jpg +14487.jpg +21533.jpg +21351.jpg +15343.jpg +18547.jpg +18490.jpg +28394.jpg +13434.jpg +17507.jpg +16054.jpg +924.jpg +10997.jpg +10329.jpg +22699.jpg +7404.jpg +25774.jpg +3240.jpg +2266.jpg +8400.jpg +29620.jpg +7269.jpg +12727.jpg +25025.jpg +12335.jpg +24573.jpg +18918.jpg +25862.jpg +28688.jpg +21247.jpg +29668.jpg +28014.jpg +23683.jpg +23263.jpg +1078.jpg +13860.jpg +23557.jpg +18874.jpg +9836.jpg +17192.jpg +2840.jpg +1467.jpg +20374.jpg +5080.jpg +11997.jpg +10910.jpg +19786.jpg +18818.jpg +27601.jpg +12490.jpg +15376.jpg +23825.jpg +23015.jpg +19913.jpg +23079.jpg +20455.jpg +18168.jpg +11555.jpg +29228.jpg +21418.jpg +3641.jpg +14420.jpg +16249.jpg +12014.jpg +9135.jpg +17709.jpg +6442.jpg +554.jpg +7172.jpg +5340.jpg +29441.jpg +18686.jpg +12350.jpg +16719.jpg +23726.jpg +16123.jpg +11219.jpg +14044.jpg +4406.jpg +365.jpg +11748.jpg +7512.jpg +16309.jpg +17317.jpg +5216.jpg +17825.jpg +28523.jpg +2025.jpg +18265.jpg +5568.jpg +11017.jpg +9196.jpg +23774.jpg +1384.jpg +12706.jpg +13762.jpg +13673.jpg +18577.jpg +12056.jpg +27454.jpg +29360.jpg +10577.jpg +10410.jpg +29793.jpg +2600.jpg +21689.jpg +23956.jpg +12417.jpg +7186.jpg +18178.jpg +14827.jpg +26284.jpg +155.jpg +24783.jpg +6064.jpg +10748.jpg +690.jpg +20949.jpg +13285.jpg +10311.jpg +8620.jpg +15963.jpg +2814.jpg +8387.jpg +5345.jpg +19688.jpg +9109.jpg +5714.jpg +23728.jpg +17467.jpg +15353.jpg +26773.jpg +1475.jpg +11958.jpg +996.jpg +22093.jpg +18999.jpg +9814.jpg +24439.jpg +10177.jpg +12426.jpg +828.jpg +9131.jpg +28337.jpg +29939.jpg +28085.jpg +19947.jpg +8345.jpg +6771.jpg +22776.jpg +4413.jpg +23474.jpg +46.jpg +2741.jpg +21263.jpg +8367.jpg +2450.jpg +6877.jpg +7962.jpg +18155.jpg +26638.jpg +19091.jpg +29300.jpg +24796.jpg +29101.jpg +14448.jpg +23587.jpg +10809.jpg +19690.jpg +21179.jpg +2160.jpg +23055.jpg +992.jpg +15905.jpg +1981.jpg +19501.jpg +9052.jpg +12623.jpg +302.jpg +22746.jpg +6247.jpg +29930.jpg +21199.jpg +7098.jpg +162.jpg +10395.jpg +26210.jpg +3949.jpg +11000.jpg +14758.jpg +20611.jpg +6256.jpg +2994.jpg +9024.jpg +13724.jpg +9641.jpg +23405.jpg +26161.jpg +5632.jpg +4446.jpg +8246.jpg +25.jpg +6760.jpg +19539.jpg +25461.jpg +22905.jpg +18018.jpg +16801.jpg +21884.jpg +20665.jpg +17728.jpg +18735.jpg +15060.jpg +19153.jpg +16360.jpg +23240.jpg +12792.jpg +4408.jpg +27048.jpg +17491.jpg +28581.jpg +25974.jpg +18421.jpg +18614.jpg +8878.jpg +10399.jpg +24237.jpg +3153.jpg +25141.jpg +27999.jpg +17529.jpg +24717.jpg +29028.jpg +27600.jpg +10955.jpg +16839.jpg +3207.jpg +4201.jpg +17430.jpg +26804.jpg +1763.jpg +27776.jpg +5332.jpg +10670.jpg +27652.jpg +10912.jpg +9767.jpg +18702.jpg +7634.jpg +26853.jpg +21218.jpg +6293.jpg +2896.jpg +1007.jpg +10651.jpg +7691.jpg +14466.jpg +2014.jpg +4305.jpg +13461.jpg +19814.jpg +7987.jpg +17115.jpg +8429.jpg +16424.jpg +26688.jpg +24964.jpg +17208.jpg +2767.jpg +26696.jpg +6074.jpg +1808.jpg +19512.jpg +14408.jpg +14310.jpg +19366.jpg +5540.jpg +18626.jpg +21374.jpg +20269.jpg +19865.jpg +17062.jpg +14923.jpg +6232.jpg +2721.jpg +26226.jpg +25029.jpg +24050.jpg +19741.jpg +8869.jpg +19553.jpg +23556.jpg +12772.jpg +14320.jpg +17839.jpg +8521.jpg +10031.jpg +13259.jpg +9241.jpg +20563.jpg +29660.jpg +7888.jpg +22202.jpg +267.jpg +13960.jpg +14850.jpg +13798.jpg +29395.jpg +7823.jpg +22434.jpg +22876.jpg +9761.jpg +25424.jpg +12913.jpg +25944.jpg +26364.jpg +19488.jpg +15579.jpg +21340.jpg +20522.jpg +26970.jpg +8150.jpg +25462.jpg +25776.jpg +10607.jpg +19656.jpg +29586.jpg +6518.jpg +23662.jpg +21672.jpg +13389.jpg +14349.jpg +28982.jpg +18257.jpg +8786.jpg +19113.jpg +20148.jpg +25258.jpg +2617.jpg +18816.jpg +12718.jpg +22325.jpg +22407.jpg +18364.jpg +25596.jpg +14962.jpg +23360.jpg +28264.jpg +325.jpg +2657.jpg +12238.jpg +10840.jpg +6778.jpg +2628.jpg +19748.jpg +24511.jpg +12004.jpg +6187.jpg +15371.jpg +11388.jpg +2599.jpg +27900.jpg +28180.jpg +10640.jpg +15918.jpg +25493.jpg +5491.jpg +14264.jpg +10492.jpg +10190.jpg +20895.jpg +6110.jpg +19152.jpg +24539.jpg +24045.jpg +1352.jpg +28334.jpg +11358.jpg +2189.jpg +29832.jpg +2661.jpg +11552.jpg +20850.jpg +1672.jpg +13177.jpg +26987.jpg +4670.jpg +3191.jpg +6066.jpg +16367.jpg +22120.jpg +13088.jpg +7344.jpg +945.jpg +25566.jpg +16806.jpg +16567.jpg +16612.jpg +19915.jpg +27692.jpg +24442.jpg +11823.jpg +278.jpg +16145.jpg +23461.jpg +7363.jpg +6357.jpg +15706.jpg +22796.jpg +26208.jpg +6235.jpg +24728.jpg +23749.jpg +4895.jpg +24870.jpg +20476.jpg +20627.jpg +22079.jpg +21301.jpg +12774.jpg +23212.jpg +19285.jpg +3927.jpg +8846.jpg +7471.jpg +21118.jpg +12066.jpg +19762.jpg +17953.jpg +21154.jpg +8503.jpg +26799.jpg +14824.jpg +13674.jpg +28985.jpg +21251.jpg +1340.jpg +23177.jpg +11983.jpg +27501.jpg +17295.jpg +8338.jpg +3811.jpg +9535.jpg +12421.jpg +6407.jpg +2255.jpg +18456.jpg +9130.jpg +10503.jpg +18663.jpg +28572.jpg +1444.jpg +20153.jpg +15937.jpg +24681.jpg +10015.jpg +13593.jpg +5745.jpg +14593.jpg +25182.jpg +26438.jpg +16210.jpg +25993.jpg +1610.jpg +767.jpg +21652.jpg +15247.jpg +29538.jpg +26270.jpg +14464.jpg +28990.jpg +29323.jpg +17863.jpg +22524.jpg +318.jpg +25396.jpg +15947.jpg +13963.jpg +19449.jpg +20656.jpg +9973.jpg +3013.jpg +8803.jpg +6843.jpg +19404.jpg +24560.jpg +24420.jpg +29552.jpg +25284.jpg +17756.jpg +12473.jpg +20228.jpg +17260.jpg +21856.jpg +24720.jpg +22970.jpg +18983.jpg +20606.jpg +10665.jpg +29958.jpg +19340.jpg +28073.jpg +19003.jpg +380.jpg +5370.jpg +17424.jpg +701.jpg +9859.jpg +1101.jpg +16414.jpg +17872.jpg +258.jpg +7705.jpg +7619.jpg +17645.jpg +22774.jpg +71.jpg +12852.jpg +21984.jpg +25036.jpg +28640.jpg +7089.jpg +29173.jpg +29435.jpg +9918.jpg +12914.jpg +18147.jpg +26874.jpg +12831.jpg +4587.jpg +7603.jpg +27256.jpg +12453.jpg +12053.jpg +11350.jpg +17242.jpg +17175.jpg +9863.jpg +25095.jpg +1800.jpg +4214.jpg +22741.jpg +26005.jpg +24867.jpg +3727.jpg +23522.jpg +11445.jpg +6122.jpg +9040.jpg +23175.jpg +5894.jpg +21915.jpg +15854.jpg +3604.jpg +3322.jpg +12708.jpg +18314.jpg +390.jpg +16456.jpg +102.jpg +8684.jpg +13536.jpg +23926.jpg +18927.jpg +28932.jpg +2712.jpg +2689.jpg +2565.jpg +1353.jpg +11492.jpg +9926.jpg +18400.jpg +15771.jpg +6521.jpg +4069.jpg +26498.jpg +9560.jpg +2642.jpg +29406.jpg +29096.jpg +8610.jpg +28691.jpg +2934.jpg +27953.jpg +5059.jpg +25969.jpg +15227.jpg +14121.jpg +26346.jpg +890.jpg +14378.jpg +27559.jpg +18678.jpg +19732.jpg +17114.jpg +3235.jpg +2135.jpg +3445.jpg +57.jpg +20394.jpg +4509.jpg +23928.jpg +12886.jpg +12469.jpg +3788.jpg +799.jpg +25105.jpg +3056.jpg +17207.jpg +20718.jpg +19105.jpg +6466.jpg +21596.jpg +3160.jpg +18520.jpg +25153.jpg +29319.jpg +22599.jpg +12311.jpg +13876.jpg +1460.jpg +20879.jpg +904.jpg +13962.jpg +18307.jpg +15559.jpg +18458.jpg +12517.jpg +4919.jpg +17171.jpg +16030.jpg +29396.jpg +28152.jpg +1361.jpg +23371.jpg +26076.jpg +3130.jpg +14863.jpg +20006.jpg +11932.jpg +18900.jpg +21441.jpg +16895.jpg +24145.jpg +7738.jpg +1628.jpg +22875.jpg +12023.jpg +17494.jpg +27311.jpg +1653.jpg +2069.jpg +5251.jpg +26342.jpg +15842.jpg +27943.jpg +17994.jpg +20279.jpg +24545.jpg +13276.jpg +709.jpg +25089.jpg +29309.jpg +161.jpg +13575.jpg +2521.jpg +13905.jpg +8537.jpg +27922.jpg +6717.jpg +6502.jpg +12182.jpg +16317.jpg +12475.jpg +4281.jpg +25093.jpg +25103.jpg +24131.jpg +16720.jpg +15387.jpg +15810.jpg +18600.jpg +16020.jpg +28041.jpg +22171.jpg +22369.jpg +18948.jpg +19136.jpg +13080.jpg +14388.jpg +10145.jpg +15619.jpg +26681.jpg +12549.jpg +7615.jpg +15719.jpg +22175.jpg +4192.jpg +7908.jpg +24613.jpg +7616.jpg +14202.jpg +16237.jpg +15421.jpg +18879.jpg +28096.jpg +24248.jpg +8406.jpg +28420.jpg +19311.jpg +6724.jpg +7074.jpg +15397.jpg +29693.jpg +28044.jpg +19147.jpg +26765.jpg +28908.jpg +26723.jpg +9754.jpg +25569.jpg +29964.jpg +18339.jpg +12284.jpg +8050.jpg +26516.jpg +10688.jpg +7556.jpg +24307.jpg +22053.jpg +20534.jpg +24704.jpg +25875.jpg +10902.jpg +27993.jpg +7478.jpg +21331.jpg +16996.jpg +9971.jpg +24282.jpg +1728.jpg +16350.jpg +27433.jpg +27717.jpg +24571.jpg +14419.jpg +15122.jpg +11075.jpg +3348.jpg +28593.jpg +23658.jpg +11223.jpg +9467.jpg +25500.jpg +9266.jpg +10871.jpg +29574.jpg +2482.jpg +3686.jpg +26545.jpg +19132.jpg +13945.jpg +9211.jpg +20830.jpg +8112.jpg +8675.jpg +14862.jpg +10924.jpg +12277.jpg +14068.jpg +24197.jpg +22982.jpg +25713.jpg +28797.jpg +24597.jpg +15568.jpg +612.jpg +6968.jpg +6852.jpg +26678.jpg +12117.jpg +4031.jpg +14610.jpg +18813.jpg +8464.jpg +18587.jpg +22611.jpg +22778.jpg +19262.jpg +24206.jpg +18051.jpg +7502.jpg +24757.jpg +12293.jpg +19839.jpg +12691.jpg +23808.jpg +21979.jpg +20060.jpg +1570.jpg +16731.jpg +5753.jpg +9657.jpg +21285.jpg +9301.jpg +7241.jpg +2834.jpg +29286.jpg +24434.jpg +22029.jpg +12827.jpg +16973.jpg +19386.jpg +15904.jpg +23411.jpg +6579.jpg +21012.jpg +636.jpg +22671.jpg +22348.jpg +23660.jpg +24085.jpg +29984.jpg +23693.jpg +10346.jpg +10404.jpg +2984.jpg +9805.jpg +19316.jpg +14262.jpg +4798.jpg +29923.jpg +25395.jpg +14925.jpg +5443.jpg +7894.jpg +23095.jpg +21231.jpg +22787.jpg +29936.jpg +26072.jpg +2488.jpg +6393.jpg +3418.jpg +25913.jpg +12467.jpg +8496.jpg +23488.jpg +107.jpg +19602.jpg +23325.jpg +12559.jpg +9161.jpg +15531.jpg +9623.jpg +8171.jpg +19718.jpg +8544.jpg +22154.jpg +6892.jpg +21636.jpg +3786.jpg +10365.jpg +21870.jpg +19875.jpg +28699.jpg +21091.jpg +26865.jpg +22041.jpg +3920.jpg +15148.jpg +23525.jpg +24009.jpg +25960.jpg +785.jpg +17858.jpg +21600.jpg +4829.jpg +11607.jpg +20113.jpg +14910.jpg +21755.jpg +7313.jpg +4804.jpg +28139.jpg +28124.jpg +14461.jpg +1753.jpg +1875.jpg +29665.jpg +24187.jpg +9465.jpg +27320.jpg +12309.jpg +2733.jpg +816.jpg +8011.jpg +23243.jpg +16526.jpg +27147.jpg +15569.jpg +3596.jpg +19555.jpg +297.jpg +12761.jpg +7122.jpg +25201.jpg +12759.jpg +1930.jpg +10104.jpg +10447.jpg +9899.jpg +14552.jpg +14625.jpg +25723.jpg +12586.jpg +23467.jpg +21828.jpg +22700.jpg +23822.jpg +5944.jpg +27086.jpg +9375.jpg +23748.jpg +12399.jpg +5084.jpg +1161.jpg +9159.jpg +11539.jpg +5212.jpg +154.jpg +20988.jpg +18877.jpg +9749.jpg +9665.jpg +10338.jpg +9146.jpg +12807.jpg +16396.jpg +17981.jpg +6079.jpg +8542.jpg +13671.jpg +2723.jpg +457.jpg +2027.jpg +3975.jpg +18963.jpg +20897.jpg +26211.jpg +21000.jpg +27624.jpg +27216.jpg +9406.jpg +6296.jpg +13757.jpg +13144.jpg +17047.jpg +27621.jpg +4872.jpg +26920.jpg +9980.jpg +26543.jpg +20451.jpg +27412.jpg +27522.jpg +10547.jpg +24450.jpg +28600.jpg +16735.jpg +24747.jpg +3618.jpg +14421.jpg +3261.jpg +28397.jpg +14255.jpg +5070.jpg +2414.jpg +13689.jpg +29843.jpg +12667.jpg +2686.jpg +8835.jpg +27073.jpg +5845.jpg +13742.jpg +18515.jpg +2127.jpg +18196.jpg +25994.jpg +9204.jpg +23112.jpg +1864.jpg +10079.jpg +17931.jpg +7051.jpg +3652.jpg +18652.jpg +27682.jpg +9274.jpg +17414.jpg +23054.jpg +7121.jpg +13337.jpg +26480.jpg +12877.jpg +9318.jpg +14572.jpg +26114.jpg +14027.jpg +21035.jpg +17004.jpg +8546.jpg +25501.jpg +21899.jpg +11194.jpg +27957.jpg +16507.jpg +13784.jpg +17599.jpg +23654.jpg +15173.jpg +20964.jpg +7078.jpg +8649.jpg +23567.jpg +29749.jpg +14957.jpg +16056.jpg +13800.jpg +20575.jpg +26984.jpg +755.jpg +2105.jpg +12550.jpg +22051.jpg +8131.jpg +1031.jpg +20506.jpg +14254.jpg +221.jpg +11556.jpg +23225.jpg +25512.jpg +10194.jpg +7238.jpg +16937.jpg +6284.jpg +11682.jpg +5691.jpg +19473.jpg +2772.jpg +26042.jpg +16989.jpg +1273.jpg +3365.jpg +12830.jpg +14976.jpg +8679.jpg +8253.jpg +17093.jpg +7587.jpg +7847.jpg +26105.jpg +5391.jpg +15203.jpg +13512.jpg +12329.jpg +24624.jpg +972.jpg +4663.jpg +12394.jpg +23645.jpg +25011.jpg +23758.jpg +14694.jpg +22548.jpg +28988.jpg +11571.jpg +24117.jpg +13318.jpg +29734.jpg +11129.jpg +5209.jpg +13621.jpg +13275.jpg +17516.jpg +8686.jpg +12059.jpg +5531.jpg +22588.jpg +23712.jpg +18531.jpg +25882.jpg +5314.jpg +2507.jpg +7633.jpg +25245.jpg +18656.jpg +22442.jpg +20509.jpg +5128.jpg +14997.jpg +20579.jpg +2006.jpg +6850.jpg +2300.jpg +6798.jpg +16082.jpg +955.jpg +18026.jpg +10219.jpg +21706.jpg +28284.jpg +6312.jpg +10261.jpg +17393.jpg +2709.jpg +15450.jpg +15479.jpg +12316.jpg +6301.jpg +552.jpg +5808.jpg +9041.jpg +21815.jpg +28328.jpg +19684.jpg +10872.jpg +9972.jpg +26720.jpg +6241.jpg +17888.jpg +21841.jpg +7635.jpg +9606.jpg +29025.jpg +19556.jpg +7179.jpg +38.jpg +18021.jpg +18205.jpg +8674.jpg +9193.jpg +23085.jpg +9662.jpg +25070.jpg +26351.jpg +2374.jpg +9726.jpg +10220.jpg +25835.jpg +22140.jpg +1039.jpg +3900.jpg +16505.jpg +15056.jpg +26373.jpg +9320.jpg +4760.jpg +17813.jpg +2380.jpg +21357.jpg +14182.jpg +4907.jpg +8115.jpg +21763.jpg +18420.jpg +3253.jpg +3771.jpg +3409.jpg +9173.jpg +10900.jpg +24925.jpg +8205.jpg +25128.jpg +13835.jpg +2802.jpg +21077.jpg +28404.jpg +16861.jpg +16882.jpg +1889.jpg +4301.jpg +14753.jpg +25356.jpg +21255.jpg +446.jpg +7483.jpg +19176.jpg +11634.jpg +5362.jpg +13091.jpg +12173.jpg +16092.jpg +1594.jpg +22016.jpg +8513.jpg +18791.jpg +24716.jpg +26388.jpg +3369.jpg +22663.jpg +12570.jpg +13000.jpg +21266.jpg +13213.jpg +28974.jpg +9128.jpg +25921.jpg +2141.jpg +26922.jpg +20740.jpg +13572.jpg +23251.jpg +10303.jpg +4317.jpg +22578.jpg +3548.jpg +29778.jpg +6480.jpg +2465.jpg +16465.jpg +17566.jpg +7357.jpg +4369.jpg +10755.jpg +28570.jpg +14161.jpg +9366.jpg +25237.jpg +18695.jpg +19525.jpg +21787.jpg +11478.jpg +22709.jpg +7414.jpg +17292.jpg +29873.jpg +8138.jpg +13297.jpg +6897.jpg +2810.jpg +1938.jpg +23362.jpg +22678.jpg +14613.jpg +5510.jpg +5484.jpg +16843.jpg +21959.jpg +23123.jpg +9592.jpg +21187.jpg +16289.jpg +9846.jpg +13333.jpg +2751.jpg +10427.jpg +28457.jpg +14945.jpg +21760.jpg +299.jpg +9045.jpg +3139.jpg +21246.jpg +3360.jpg +12062.jpg +13854.jpg +18357.jpg +18341.jpg +26945.jpg +10960.jpg +10686.jpg +18190.jpg +655.jpg +11280.jpg +2556.jpg +24777.jpg +1471.jpg +18528.jpg +25814.jpg +17110.jpg +9209.jpg +23651.jpg +19001.jpg +22689.jpg +28095.jpg +6999.jpg +3292.jpg +613.jpg +29311.jpg +27014.jpg +27547.jpg +16182.jpg +3316.jpg +1325.jpg +22070.jpg +19728.jpg +3990.jpg +9791.jpg +1788.jpg +25563.jpg +14116.jpg +2578.jpg +14390.jpg +29990.jpg +2099.jpg +28461.jpg +7523.jpg +25721.jpg +20544.jpg +22283.jpg +6815.jpg +21833.jpg +24781.jpg +29408.jpg +25367.jpg +28808.jpg +11387.jpg +23096.jpg +23573.jpg +558.jpg +11662.jpg +8082.jpg +7753.jpg +16738.jpg +7011.jpg +20074.jpg +7597.jpg +21203.jpg +15610.jpg +9580.jpg +29475.jpg +1169.jpg +24319.jpg +10091.jpg +14505.jpg +20365.jpg +5405.jpg +25819.jpg +27217.jpg +14689.jpg +26929.jpg +14639.jpg +16259.jpg +27592.jpg +20841.jpg +28126.jpg +264.jpg +3481.jpg +25990.jpg +2104.jpg +1919.jpg +11829.jpg +7725.jpg +6461.jpg +19980.jpg +7445.jpg +17462.jpg +23894.jpg +26566.jpg +10153.jpg +4718.jpg +25767.jpg +1428.jpg +11011.jpg +25904.jpg +13181.jpg +15809.jpg +17826.jpg +18750.jpg +13073.jpg +17882.jpg +9336.jpg +28312.jpg +29621.jpg +485.jpg +5372.jpg +26060.jpg +6055.jpg +7794.jpg +17574.jpg +15966.jpg +27359.jpg +24598.jpg +16454.jpg +7581.jpg +8811.jpg +4995.jpg +18876.jpg +27034.jpg +19654.jpg +19321.jpg +20198.jpg +15733.jpg +25546.jpg +7501.jpg +24711.jpg +23733.jpg +10034.jpg +11295.jpg +15089.jpg +12039.jpg +7614.jpg +17057.jpg +26969.jpg +16058.jpg +18106.jpg +25122.jpg +19935.jpg +29829.jpg +29337.jpg +11642.jpg +160.jpg +9383.jpg +20376.jpg +28176.jpg +276.jpg +14159.jpg +5833.jpg +7135.jpg +15817.jpg +15183.jpg +8825.jpg +138.jpg +8893.jpg +29905.jpg +25820.jpg +16474.jpg +1750.jpg +19459.jpg +1272.jpg +2671.jpg +16827.jpg +9695.jpg +16897.jpg +3872.jpg +28082.jpg +11717.jpg +11341.jpg +26527.jpg +1193.jpg +22395.jpg +27345.jpg +15535.jpg +15584.jpg +27754.jpg +9615.jpg +2268.jpg +3213.jpg +8250.jpg +26951.jpg +13567.jpg +19613.jpg +3681.jpg +2016.jpg +16952.jpg +22758.jpg +2490.jpg +13807.jpg +13227.jpg +19148.jpg +21431.jpg +12458.jpg +12530.jpg +28952.jpg +25790.jpg +2322.jpg +14766.jpg +24025.jpg +21080.jpg +8920.jpg +2551.jpg +24839.jpg +21844.jpg +7144.jpg +11672.jpg +1185.jpg +6177.jpg +9707.jpg +8320.jpg +22836.jpg +9950.jpg +10364.jpg +19818.jpg +21486.jpg +26912.jpg +10518.jpg +9002.jpg +6953.jpg +28154.jpg +10717.jpg +28575.jpg +16064.jpg +12512.jpg +12243.jpg +7715.jpg +6080.jpg +24625.jpg +13163.jpg +9547.jpg +27099.jpg +25949.jpg +25137.jpg +28584.jpg +5131.jpg +5317.jpg +18800.jpg +11359.jpg +22897.jpg +12995.jpg +1294.jpg +20634.jpg +19707.jpg +22333.jpg +11775.jpg +5418.jpg +733.jpg +19114.jpg +24536.jpg +8741.jpg +8085.jpg +14812.jpg +20814.jpg +28146.jpg +26899.jpg +29276.jpg +27259.jpg +7375.jpg +28249.jpg +29362.jpg +19638.jpg +21272.jpg +2730.jpg +718.jpg +9839.jpg +15154.jpg +7927.jpg +19694.jpg +11399.jpg +22835.jpg +9626.jpg +12861.jpg +26692.jpg +26793.jpg +14717.jpg +26172.jpg +16753.jpg +12298.jpg +14620.jpg +5735.jpg +17721.jpg +9432.jpg +10378.jpg +14020.jpg +722.jpg +22651.jpg +6781.jpg +23883.jpg +4548.jpg +17970.jpg +5913.jpg +4939.jpg +19825.jpg +5042.jpg +18287.jpg +13100.jpg +305.jpg +11423.jpg +25907.jpg +23353.jpg +1917.jpg +10166.jpg +27886.jpg +28175.jpg +2310.jpg +17762.jpg +741.jpg +7518.jpg +10056.jpg +18137.jpg +17032.jpg +24548.jpg +25294.jpg +1625.jpg +4586.jpg +18653.jpg +39.jpg +13206.jpg +3549.jpg +11410.jpg +19254.jpg +16291.jpg +12737.jpg +9735.jpg +20931.jpg +23031.jpg +29171.jpg +3137.jpg +13903.jpg +25068.jpg +18654.jpg +25003.jpg +26679.jpg +7680.jpg +14395.jpg +25373.jpg +21621.jpg +4971.jpg +22062.jpg +23754.jpg +18606.jpg +17156.jpg +15862.jpg +18058.jpg +19361.jpg +22770.jpg +10251.jpg +18085.jpg +13511.jpg +15018.jpg +15174.jpg +24642.jpg +22949.jpg +8500.jpg +10386.jpg +22948.jpg +21434.jpg +12809.jpg +23228.jpg +6262.jpg +11565.jpg +24012.jpg +2589.jpg +23856.jpg +5699.jpg +4712.jpg +1793.jpg +15920.jpg +20461.jpg +29076.jpg +15486.jpg +18838.jpg +18044.jpg +3420.jpg +17698.jpg +7881.jpg +8032.jpg +7102.jpg +28017.jpg +14176.jpg +21056.jpg +18633.jpg +9887.jpg +2892.jpg +3546.jpg +23548.jpg +10097.jpg +17461.jpg +24451.jpg +16586.jpg +11849.jpg +23162.jpg +13640.jpg +2667.jpg +9154.jpg +25371.jpg +9027.jpg +25841.jpg +15330.jpg +13883.jpg +11039.jpg +17137.jpg +20285.jpg +28255.jpg +6657.jpg +19173.jpg +17166.jpg +27828.jpg +1476.jpg +28724.jpg +11561.jpg +16894.jpg +6966.jpg +12503.jpg +17557.jpg +24698.jpg +11201.jpg +11421.jpg +12171.jpg +16628.jpg +3659.jpg +20842.jpg +15221.jpg +1698.jpg +28776.jpg +13347.jpg +19409.jpg +1071.jpg +5427.jpg +11375.jpg +26489.jpg +474.jpg +10732.jpg +25065.jpg +11374.jpg +27439.jpg +21456.jpg +25207.jpg +11166.jpg +20430.jpg +10314.jpg +11140.jpg +800.jpg +1780.jpg +3398.jpg +22024.jpg +25239.jpg +104.jpg +23423.jpg +3929.jpg +12446.jpg +1261.jpg +12354.jpg +6500.jpg +15605.jpg +13456.jpg +11815.jpg +29723.jpg +4524.jpg +9775.jpg +17109.jpg +24861.jpg +15253.jpg +11018.jpg +22420.jpg +11649.jpg +11851.jpg +2334.jpg +23620.jpg +3414.jpg +27178.jpg +994.jpg +5469.jpg +27562.jpg +10989.jpg +17854.jpg +3499.jpg +8144.jpg +12700.jpg +6633.jpg +26034.jpg +6806.jpg +10083.jpg +18217.jpg +13663.jpg +13386.jpg +7716.jpg +23969.jpg +12673.jpg +14582.jpg +11988.jpg +29077.jpg +27301.jpg +21491.jpg +27551.jpg +17003.jpg +26082.jpg +19979.jpg +12610.jpg +24718.jpg +5397.jpg +4218.jpg +3147.jpg +16127.jpg +17437.jpg +1557.jpg +7887.jpg +10931.jpg +6347.jpg +469.jpg +205.jpg +19769.jpg +18469.jpg +18389.jpg +5857.jpg +20642.jpg +15447.jpg +20184.jpg +2717.jpg +17042.jpg +25321.jpg +26822.jpg +12501.jpg +25450.jpg +8143.jpg +21089.jpg +17840.jpg +14562.jpg +19441.jpg +8147.jpg +12636.jpg +24594.jpg +20602.jpg +7146.jpg +14531.jpg +5603.jpg +14459.jpg +7588.jpg +23527.jpg +7912.jpg +5149.jpg +3266.jpg +2382.jpg +20205.jpg +11467.jpg +2703.jpg +14904.jpg +13873.jpg +27955.jpg +25741.jpg +13659.jpg +18808.jpg +1145.jpg +11593.jpg +1965.jpg +22715.jpg +6920.jpg +21157.jpg +17708.jpg +1018.jpg +2351.jpg +27913.jpg +4508.jpg +14270.jpg +19411.jpg +20212.jpg +24191.jpg +10743.jpg +28542.jpg +27733.jpg +23432.jpg +4950.jpg +13052.jpg +6062.jpg +7162.jpg +18450.jpg +9084.jpg +4702.jpg +24958.jpg +3177.jpg +14663.jpg +21700.jpg +13089.jpg +664.jpg +877.jpg +26409.jpg +17804.jpg +26757.jpg +26736.jpg +26329.jpg +26789.jpg +13841.jpg +7149.jpg +21517.jpg +1060.jpg +26713.jpg +27335.jpg +15107.jpg +13725.jpg +9362.jpg +14617.jpg +20943.jpg +35.jpg +1397.jpg +26360.jpg +4741.jpg +11019.jpg +27618.jpg +25172.jpg +14837.jpg +4969.jpg +9982.jpg +20878.jpg +17672.jpg +18348.jpg +10152.jpg +1454.jpg +17568.jpg +17870.jpg +8396.jpg +3716.jpg +10432.jpg +20297.jpg +16045.jpg +27389.jpg +18329.jpg +19170.jpg +28994.jpg +20827.jpg +16754.jpg +4884.jpg +22665.jpg +8749.jpg +22531.jpg +5520.jpg +19698.jpg +6273.jpg +11889.jpg +11047.jpg +25460.jpg +15303.jpg +6034.jpg +18489.jpg +12496.jpg +399.jpg +28086.jpg +29019.jpg +19857.jpg +9669.jpg +8742.jpg +26632.jpg +19687.jpg +8794.jpg +18478.jpg +18014.jpg +6708.jpg +2291.jpg +26309.jpg +24564.jpg +26601.jpg +24337.jpg +23122.jpg +14829.jpg +18574.jpg +27498.jpg +7096.jpg +3672.jpg +11835.jpg +14164.jpg +22725.jpg +22220.jpg +22707.jpg +2899.jpg +12556.jpg +13796.jpg +18338.jpg +16912.jpg +11761.jpg +26419.jpg +555.jpg +7645.jpg +21565.jpg +3763.jpg +28726.jpg +21239.jpg +4424.jpg +27055.jpg +14654.jpg +18836.jpg +28608.jpg +26563.jpg +1795.jpg +28456.jpg +11942.jpg +20587.jpg +22530.jpg +6463.jpg +5054.jpg +25443.jpg +28489.jpg +11643.jpg +6756.jpg +903.jpg +1442.jpg +14163.jpg +17112.jpg +11298.jpg +2550.jpg +17248.jpg +7689.jpg +11340.jpg +2477.jpg +7814.jpg +15470.jpg +19401.jpg +7700.jpg +14281.jpg +24574.jpg +5930.jpg +1162.jpg +10677.jpg +1054.jpg +8915.jpg +12224.jpg +3206.jpg +7016.jpg +1168.jpg +13245.jpg +879.jpg +18611.jpg +26733.jpg +17386.jpg +21897.jpg +16074.jpg +12321.jpg +28973.jpg +16036.jpg +7189.jpg +25833.jpg +21928.jpg +12149.jpg +22498.jpg +5552.jpg +14079.jpg +28371.jpg +26070.jpg +10304.jpg +8908.jpg +22194.jpg +26335.jpg +20500.jpg +4767.jpg +3300.jpg +7333.jpg +25989.jpg +24542.jpg +14016.jpg +9601.jpg +21819.jpg +19120.jpg +21660.jpg +14014.jpg +15140.jpg +29345.jpg +4621.jpg +5419.jpg +14576.jpg +910.jpg +16329.jpg +3150.jpg +8343.jpg +5339.jpg +11432.jpg +8436.jpg +26677.jpg +11473.jpg +18997.jpg +13168.jpg +3747.jpg +11810.jpg +23741.jpg +4382.jpg +17266.jpg +12361.jpg +19225.jpg +12050.jpg +17176.jpg +28414.jpg +24309.jpg +6164.jpg +5557.jpg +17622.jpg +11146.jpg +8189.jpg +6473.jpg +20868.jpg +20391.jpg +15143.jpg +15192.jpg +21966.jpg +26128.jpg +10115.jpg +6685.jpg +26618.jpg +20129.jpg +26212.jpg +13631.jpg +20731.jpg +6149.jpg +28799.jpg +13995.jpg +25629.jpg +27407.jpg +24686.jpg +18682.jpg +11557.jpg +23151.jpg +15574.jpg +19211.jpg +8944.jpg +29183.jpg +17889.jpg +1887.jpg +17343.jpg +7253.jpg +17707.jpg +19664.jpg +15897.jpg +15731.jpg +2839.jpg +14668.jpg +8713.jpg +11631.jpg +17123.jpg +25438.jpg +18484.jpg +1252.jpg +4135.jpg +27620.jpg +20560.jpg +16157.jpg +14946.jpg +13983.jpg +26682.jpg +17569.jpg +21581.jpg +17649.jpg +13065.jpg +988.jpg +27334.jpg +11638.jpg +15542.jpg +26762.jpg +12561.jpg +22610.jpg +7496.jpg +23386.jpg +6020.jpg +12892.jpg +6180.jpg +5762.jpg +10710.jpg +3728.jpg +10817.jpg +26502.jpg +2365.jpg +7272.jpg +385.jpg +13187.jpg +16909.jpg +2371.jpg +6094.jpg +21590.jpg +20837.jpg +28445.jpg +5968.jpg +25630.jpg +406.jpg +29709.jpg +2512.jpg +23268.jpg +8456.jpg +25698.jpg +19817.jpg +24847.jpg +11841.jpg +3991.jpg +19431.jpg +12215.jpg +9222.jpg +16670.jpg +24533.jpg +19802.jpg +21639.jpg +25995.jpg +17528.jpg +20164.jpg +17278.jpg +16803.jpg +6642.jpg +19573.jpg +4590.jpg +19298.jpg +25673.jpg +19995.jpg +25998.jpg +4653.jpg +29986.jpg +8181.jpg +15077.jpg +1984.jpg +13920.jpg +19044.jpg +1991.jpg +6395.jpg +27770.jpg +274.jpg +18029.jpg +6629.jpg +15951.jpg +8035.jpg +21387.jpg +4787.jpg +12990.jpg +583.jpg +17354.jpg +14120.jpg +14095.jpg +13336.jpg +17769.jpg +6626.jpg +24741.jpg +26565.jpg +16862.jpg +6564.jpg +29861.jpg +7734.jpg +13066.jpg +1766.jpg +7287.jpg +3973.jpg +12070.jpg +27801.jpg +25624.jpg +25277.jpg +10549.jpg +163.jpg +27221.jpg +14558.jpg +3088.jpg +10040.jpg +23528.jpg +23142.jpg +13546.jpg +28596.jpg +2469.jpg +29326.jpg +4436.jpg +15714.jpg +24151.jpg +27808.jpg +29342.jpg +12733.jpg +13745.jpg +5321.jpg +22849.jpg +600.jpg +5862.jpg +28117.jpg +28078.jpg +1904.jpg +11.jpg +27451.jpg +27025.jpg +29746.jpg +23.jpg +4556.jpg +26796.jpg +688.jpg +27035.jpg +6967.jpg +24823.jpg +18043.jpg +9616.jpg +16416.jpg +21618.jpg +11871.jpg +19841.jpg +20806.jpg +17577.jpg +10172.jpg +8251.jpg +14050.jpg +27039.jpg +13471.jpg +16494.jpg +23992.jpg +7298.jpg +25129.jpg +2149.jpg +23013.jpg +3792.jpg +1376.jpg +26101.jpg +11890.jpg +18143.jpg +9941.jpg +12800.jpg +13584.jpg +5244.jpg +18107.jpg +2359.jpg +2683.jpg +7651.jpg +6858.jpg +22074.jpg +14000.jpg +11393.jpg +4750.jpg +15874.jpg +24484.jpg +10417.jpg +19871.jpg +20022.jpg +3555.jpg +3025.jpg +10297.jpg +20572.jpg +25533.jpg +21935.jpg +13138.jpg +23108.jpg +24381.jpg +2906.jpg +3797.jpg +25283.jpg +15118.jpg +11559.jpg +3289.jpg +8868.jpg +6389.jpg +12310.jpg +4915.jpg +29891.jpg +8093.jpg +6251.jpg +17573.jpg +28772.jpg +23485.jpg +1383.jpg +22496.jpg +13294.jpg +11189.jpg +29391.jpg +6923.jpg +20614.jpg +24579.jpg +25999.jpg +26343.jpg +1072.jpg +19752.jpg +27565.jpg +12134.jpg +25436.jpg +19187.jpg +5673.jpg +14174.jpg +15338.jpg +28391.jpg +29065.jpg +16837.jpg +24591.jpg +26616.jpg +11014.jpg +11104.jpg +16021.jpg +7692.jpg +19087.jpg +28571.jpg +29817.jpg +6011.jpg +621.jpg +20974.jpg +25909.jpg +2728.jpg +3528.jpg +20086.jpg +3703.jpg +1230.jpg +3998.jpg +26935.jpg +5090.jpg +12151.jpg +21794.jpg +20942.jpg +3482.jpg +8341.jpg +10622.jpg +24296.jpg +25565.jpg +7435.jpg +5107.jpg +21008.jpg +1360.jpg +2511.jpg +6120.jpg +6292.jpg +22204.jpg +17428.jpg +26909.jpg +17000.jpg +3633.jpg +999.jpg +934.jpg +3662.jpg +2383.jpg +20315.jpg +20053.jpg +24302.jpg +10813.jpg +18074.jpg +2798.jpg +23864.jpg +4881.jpg +29762.jpg +8558.jpg +3639.jpg +15132.jpg +9058.jpg +10921.jpg +23554.jpg +15096.jpg +29365.jpg +27062.jpg +13050.jpg +4516.jpg +3462.jpg +2983.jpg +25238.jpg +6413.jpg +23960.jpg +4678.jpg +7227.jpg +13548.jpg +27394.jpg +22646.jpg +1782.jpg +9740.jpg +26938.jpg +21750.jpg +12672.jpg +7561.jpg +25232.jpg +22986.jpg +11595.jpg +19639.jpg +9765.jpg +16060.jpg +17815.jpg +13726.jpg +18246.jpg +18334.jpg +26075.jpg +323.jpg +19528.jpg +26828.jpg +7474.jpg +4127.jpg +3393.jpg +28508.jpg +8256.jpg +16975.jpg +10626.jpg +248.jpg +706.jpg +26749.jpg +10672.jpg +10692.jpg +17187.jpg +7493.jpg +20822.jpg +16387.jpg +4640.jpg +22608.jpg +27206.jpg +4454.jpg +23701.jpg +10476.jpg +28549.jpg +3544.jpg +445.jpg +8314.jpg +9522.jpg +25568.jpg +26619.jpg +27944.jpg +2594.jpg +16873.jpg +10786.jpg +26294.jpg +18136.jpg +9267.jpg +2073.jpg +662.jpg +21111.jpg +28493.jpg +5738.jpg +2401.jpg +12308.jpg +8455.jpg +23985.jpg +18631.jpg +25513.jpg +15759.jpg +8118.jpg +18251.jpg +10295.jpg +27275.jpg +22380.jpg +24404.jpg +14037.jpg +8806.jpg +24286.jpg +15395.jpg +4396.jpg +4483.jpg +29542.jpg +25977.jpg +16842.jpg +9499.jpg +22907.jpg +20588.jpg +20221.jpg +23231.jpg +23915.jpg +25917.jpg +21049.jpg +1242.jpg +6890.jpg +1296.jpg +19938.jpg +17890.jpg +23962.jpg +4815.jpg +17116.jpg +19672.jpg +8977.jpg +99.jpg +19534.jpg +15551.jpg +19514.jpg +22587.jpg +28125.jpg +22127.jpg +26650.jpg +2421.jpg +22872.jpg +17217.jpg +26450.jpg +23492.jpg +28999.jpg +21475.jpg +20477.jpg +14911.jpg +19064.jpg +11217.jpg +3630.jpg +26831.jpg +21715.jpg +27978.jpg +10347.jpg +21390.jpg +17289.jpg +20889.jpg +6538.jpg +15040.jpg +8918.jpg +14025.jpg +21353.jpg +20253.jpg +13527.jpg +23384.jpg +29517.jpg +23302.jpg +23813.jpg +25532.jpg +26376.jpg +29451.jpg +17627.jpg +8476.jpg +15621.jpg +1696.jpg +2627.jpg +16826.jpg +15749.jpg +3336.jpg +7682.jpg +1171.jpg +7031.jpg +12130.jpg +19247.jpg +24091.jpg +12285.jpg +3534.jpg +29212.jpg +17340.jpg +11179.jpg +20316.jpg +21712.jpg +1313.jpg +6091.jpg +3262.jpg +8099.jpg +18335.jpg +28529.jpg +11767.jpg +17005.jpg +905.jpg +11679.jpg +24910.jpg +20044.jpg +4465.jpg +1878.jpg +1479.jpg +13886.jpg +11850.jpg +6662.jpg +3827.jpg +25671.jpg +27094.jpg +11306.jpg +27218.jpg +22975.jpg +11786.jpg +21696.jpg +21524.jpg +24083.jpg +2369.jpg +2198.jpg +21225.jpg +22832.jpg +10449.jpg +16675.jpg +15099.jpg +9177.jpg +29219.jpg +10110.jpg +1499.jpg +14555.jpg +20115.jpg +20702.jpg +16838.jpg +4694.jpg +20750.jpg +19010.jpg +20005.jpg +23769.jpg +14137.jpg +4785.jpg +1216.jpg +1307.jpg +15339.jpg +12276.jpg +7790.jpg +4258.jpg +8457.jpg +23230.jpg +14061.jpg +19383.jpg +25270.jpg +3725.jpg +6095.jpg +27332.jpg +1918.jpg +22098.jpg +4474.jpg +1978.jpg +5182.jpg +593.jpg +19977.jpg +13020.jpg +9978.jpg +8637.jpg +3021.jpg +686.jpg +11305.jpg +6832.jpg +917.jpg +11154.jpg +27377.jpg +651.jpg +12006.jpg +7622.jpg +3707.jpg +5417.jpg +18968.jpg +1773.jpg +919.jpg +8980.jpg +27088.jpg +15505.jpg +7383.jpg +9373.jpg +15530.jpg +1282.jpg +26292.jpg +23923.jpg +29997.jpg +3402.jpg +11962.jpg +8113.jpg +12998.jpg +28059.jpg +7025.jpg +13366.jpg +23380.jpg +24998.jpg +11183.jpg +5141.jpg +18066.jpg +12360.jpg +22386.jpg +25132.jpg +7088.jpg +480.jpg +3186.jpg +499.jpg +8098.jpg +23265.jpg +3888.jpg +18748.jpg +16085.jpg +19070.jpg +24213.jpg +15017.jpg +12491.jpg +29200.jpg +9435.jpg +7352.jpg +14312.jpg +7323.jpg +18112.jpg +10467.jpg +8039.jpg +14363.jpg +8268.jpg +16321.jpg +1926.jpg +12685.jpg +4233.jpg +2448.jpg +29897.jpg +28893.jpg +1619.jpg +26259.jpg +20007.jpg +25677.jpg +8114.jpg +21039.jpg +13588.jpg +21442.jpg +23364.jpg +26240.jpg +15427.jpg +4030.jpg +10425.jpg +27927.jpg +20262.jpg +28729.jpg +8247.jpg +12274.jpg +28921.jpg +16191.jpg +15972.jpg +1571.jpg +5032.jpg +25991.jpg +9281.jpg +7416.jpg +976.jpg +24258.jpg +26748.jpg +12804.jpg +5376.jpg +4045.jpg +12093.jpg +10507.jpg +4266.jpg +23666.jpg +25216.jpg +6544.jpg +22818.jpg +22941.jpg +22426.jpg +13282.jpg +16177.jpg +9286.jpg +28986.jpg +25894.jpg +18584.jpg +4297.jpg +28346.jpg +23149.jpg +16243.jpg +14248.jpg +24732.jpg +7510.jpg +7829.jpg +22419.jpg +12237.jpg +4203.jpg +9273.jpg +11612.jpg +13011.jpg +1178.jpg +21613.jpg +25013.jpg +27915.jpg +20257.jpg +22819.jpg +13288.jpg +26326.jpg +25468.jpg +13857.jpg +2269.jpg +18571.jpg +7671.jpg +17590.jpg +25683.jpg +22391.jpg +15800.jpg +6571.jpg +13334.jpg +4714.jpg +8665.jpg +6523.jpg +8796.jpg +8948.jpg +3039.jpg +29418.jpg +14651.jpg +1789.jpg +2884.jpg +27344.jpg +3362.jpg +6916.jpg +27038.jpg +14180.jpg +26846.jpg +4181.jpg +28627.jpg +2743.jpg +1392.jpg +8843.jpg +27026.jpg +906.jpg +2111.jpg +9310.jpg +20554.jpg +12702.jpg +5655.jpg +2980.jpg +24553.jpg +25975.jpg +28464.jpg +11205.jpg +9291.jpg +3172.jpg +25161.jpg +15518.jpg +12625.jpg +28314.jpg +27616.jpg +29049.jpg +19172.jpg +645.jpg +13694.jpg +27486.jpg +6784.jpg +22452.jpg +7200.jpg +886.jpg +5809.jpg +182.jpg +24703.jpg +15209.jpg +29084.jpg +29468.jpg +26689.jpg +5277.jpg +20003.jpg +29052.jpg +5163.jpg +9256.jpg +6140.jpg +8819.jpg +28141.jpg +28684.jpg +18844.jpg +6424.jpg +7198.jpg +26662.jpg +13504.jpg +10613.jpg +26054.jpg +28738.jpg +9353.jpg +22486.jpg +29899.jpg +18167.jpg +6907.jpg +17152.jpg +24776.jpg +17525.jpg +3609.jpg +14478.jpg +15449.jpg +22726.jpg +11056.jpg +16480.jpg +15363.jpg +26599.jpg +10751.jpg +16189.jpg +18055.jpg +9995.jpg +13731.jpg +6547.jpg +17694.jpg +12414.jpg +16146.jpg +15127.jpg +5461.jpg +8579.jpg +13794.jpg +16982.jpg +2204.jpg +16305.jpg +1730.jpg +8990.jpg +28439.jpg +20603.jpg +8158.jpg +4338.jpg +24828.jpg +12114.jpg +10132.jpg +25219.jpg +728.jpg +13032.jpg +923.jpg +21965.jpg +29004.jpg +27897.jpg +14637.jpg +21512.jpg +29806.jpg +8851.jpg +29652.jpg +28088.jpg +21733.jpg +1035.jpg +14062.jpg +25139.jpg +12221.jpg +23203.jpg +29776.jpg +18282.jpg +16385.jpg +28308.jpg +10519.jpg +25204.jpg +20492.jpg +7897.jpg +13242.jpg +14681.jpg +3284.jpg +12540.jpg +19905.jpg +12449.jpg +6139.jpg +19095.jpg +6636.jpg +26751.jpg +19050.jpg +25315.jpg +22964.jpg +9939.jpg +22314.jpg +16205.jpg +11153.jpg +29689.jpg +19291.jpg +4555.jpg +17498.jpg +21609.jpg +8625.jpg +4952.jpg +15599.jpg +4503.jpg +28045.jpg +13607.jpg +9960.jpg +20902.jpg +26416.jpg +21043.jpg +8853.jpg +26200.jpg +27414.jpg +12895.jpg +19049.jpg +4292.jpg +11911.jpg +11100.jpg +25177.jpg +5682.jpg +951.jpg +12234.jpg +12756.jpg +16190.jpg +24911.jpg +4077.jpg +22056.jpg +8874.jpg +8668.jpg +7168.jpg +28245.jpg +10703.jpg +12602.jpg +27193.jpg +3200.jpg +10092.jpg +17190.jpg +17950.jpg +16619.jpg +24153.jpg +27143.jpg +8818.jpg +15230.jpg +6285.jpg +29782.jpg +597.jpg +3518.jpg +7420.jpg +20960.jpg +16183.jpg +10969.jpg +23862.jpg +9865.jpg +25220.jpg +13415.jpg +18519.jpg +4716.jpg +27124.jpg +18250.jpg +22453.jpg +6430.jpg +11916.jpg +6773.jpg +19372.jpg +210.jpg +18960.jpg +15452.jpg +887.jpg +28929.jpg +14942.jpg +21547.jpg +12246.jpg +20321.jpg +1229.jpg +25605.jpg +5204.jpg +18343.jpg +25421.jpg +9934.jpg +12253.jpg +5058.jpg +22586.jpg +8321.jpg +2951.jpg +16256.jpg +11801.jpg +27574.jpg +11138.jpg +2761.jpg +23463.jpg +17561.jpg +17012.jpg +11730.jpg +12413.jpg +16571.jpg +16390.jpg +1538.jpg +12898.jpg +15385.jpg +25383.jpg +14622.jpg +12801.jpg +12145.jpg +19644.jpg +27005.jpg +1959.jpg +7495.jpg +29207.jpg +6118.jpg +1455.jpg +6308.jpg +14141.jpg +21264.jpg +5811.jpg +9614.jpg +28092.jpg +10890.jpg +25868.jpg +4347.jpg +18988.jpg +12484.jpg +1503.jpg +3486.jpg +6162.jpg +5543.jpg +15836.jpg +23242.jpg +12565.jpg +472.jpg +3675.jpg +3319.jpg +9881.jpg +26037.jpg +25304.jpg +18019.jpg +11267.jpg +9003.jpg +11209.jpg +25838.jpg +3997.jpg +5578.jpg +8614.jpg +1399.jpg +22823.jpg +8383.jpg +28771.jpg +1284.jpg +22962.jpg +24705.jpg +3170.jpg +2685.jpg +13202.jpg +4435.jpg +7084.jpg +4311.jpg +10001.jpg +11175.jpg +26162.jpg +6939.jpg +19696.jpg +5856.jpg +25166.jpg +23237.jpg +20189.jpg +20565.jpg +29661.jpg +3196.jpg +18211.jpg +5185.jpg +2218.jpg +19922.jpg +22686.jpg +29507.jpg +14608.jpg +9342.jpg +2962.jpg +20507.jpg +12510.jpg +26526.jpg +10766.jpg +26187.jpg +25208.jpg +8567.jpg +3718.jpg +18157.jpg +6824.jpg +15824.jpg +24351.jpg +29230.jpg +20570.jpg +16046.jpg +8911.jpg +3354.jpg +3773.jpg +15895.jpg +11827.jpg +7748.jpg +17511.jpg +5997.jpg +12127.jpg +59.jpg +3203.jpg +13383.jpg +23625.jpg +21330.jpg +24291.jpg +29412.jpg +22470.jpg +13462.jpg +5116.jpg +1300.jpg +22446.jpg +7629.jpg +18514.jpg +14642.jpg +2349.jpg +283.jpg +17055.jpg +29476.jpg +5685.jpg +24558.jpg +11171.jpg +18949.jpg +28151.jpg +26860.jpg +20435.jpg +19721.jpg +23759.jpg +16233.jpg +22306.jpg +27318.jpg +16822.jpg +18930.jpg +27446.jpg +27233.jpg +20248.jpg +13442.jpg +17157.jpg +19730.jpg +20657.jpg +2293.jpg +28098.jpg +596.jpg +25505.jpg +17133.jpg +25664.jpg +4196.jpg +29789.jpg +12105.jpg +13476.jpg +29037.jpg +21711.jpg +8552.jpg +21876.jpg +25879.jpg +7562.jpg +6044.jpg +465.jpg +17759.jpg +15782.jpg +6924.jpg +2118.jpg +1568.jpg +21210.jpg +29600.jpg +3184.jpg +2978.jpg +27267.jpg +16534.jpg +11960.jpg +27373.jpg +805.jpg +23399.jpg +7625.jpg +29302.jpg +26635.jpg +29066.jpg +23799.jpg +8656.jpg +15896.jpg +15284.jpg +13251.jpg +10103.jpg +14431.jpg +19000.jpg +5138.jpg +29032.jpg +11238.jpg +28203.jpg +13326.jpg +27456.jpg +13686.jpg +2306.jpg +11449.jpg +11457.jpg +17230.jpg +10020.jpg +5041.jpg +29424.jpg +4860.jpg +19427.jpg +5958.jpg +7718.jpg +11691.jpg +20133.jpg +18497.jpg +11575.jpg +22511.jpg +1638.jpg +24788.jpg +16655.jpg +3494.jpg +5960.jpg +27271.jpg +12165.jpg +7533.jpg +5545.jpg +26106.jpg +29722.jpg +25058.jpg +20424.jpg +28497.jpg +22084.jpg +3520.jpg +20330.jpg +21468.jpg +14361.jpg +25377.jpg +21743.jpg +26206.jpg +11109.jpg +22940.jpg +19180.jpg +16605.jpg +8179.jpg +3928.jpg +19775.jpg +7815.jpg +1985.jpg +19219.jpg +9223.jpg +12356.jpg +5033.jpg +14565.jpg +25370.jpg +19765.jpg +24035.jpg +11176.jpg +10348.jpg +10780.jpg +9192.jpg +22966.jpg +28822.jpg +16280.jpg +5961.jpg +24007.jpg +16005.jpg +5377.jpg +26816.jpg +2602.jpg +2462.jpg +21657.jpg +20516.jpg +12397.jpg +14789.jpg +8854.jpg +5635.jpg +19524.jpg +19759.jpg +10721.jpg +29971.jpg +13267.jpg +26429.jpg +17954.jpg +17084.jpg +22810.jpg +22344.jpg +2134.jpg +15855.jpg +9649.jpg +3187.jpg +13489.jpg +10111.jpg +2606.jpg +16094.jpg +13078.jpg +4288.jpg +27458.jpg +2985.jpg +17469.jpg +22896.jpg +7026.jpg +26832.jpg +11315.jpg +27830.jpg +27244.jpg +1740.jpg +20160.jpg +12989.jpg +1356.jpg +28430.jpg +11308.jpg +5456.jpg +10808.jpg +18990.jpg +24232.jpg +17996.jpg +13782.jpg +1154.jpg +7637.jpg +18921.jpg +11287.jpg +6277.jpg +18596.jpg +12137.jpg +9060.jpg +21386.jpg +28816.jpg +2631.jpg +15319.jpg +27798.jpg +20229.jpg +27488.jpg +8270.jpg +21366.jpg +3726.jpg +11285.jpg +22168.jpg +7728.jpg +23131.jpg +8235.jpg +25954.jpg +19451.jpg +8906.jpg +26198.jpg +25150.jpg +12213.jpg +16780.jpg +18309.jpg +4096.jpg +25811.jpg +7176.jpg +24902.jpg +12226.jpg +20962.jpg +25736.jpg +23311.jpg +9053.jpg +12057.jpg +27594.jpg +3526.jpg +9943.jpg +2577.jpg +24768.jpg +754.jpg +10406.jpg +3724.jpg +26574.jpg +17117.jpg +24657.jpg +7898.jpg +11606.jpg +5375.jpg +3889.jpg +28736.jpg +25061.jpg +26923.jpg +2777.jpg +21188.jpg +2262.jpg +17141.jpg +3868.jpg +24225.jpg +867.jpg +16248.jpg +21496.jpg +2097.jpg +8372.jpg +5500.jpg +19646.jpg +28695.jpg +5772.jpg +23121.jpg +2641.jpg +19888.jpg +25617.jpg +19968.jpg +21822.jpg +29085.jpg +27647.jpg +19204.jpg +17374.jpg +26613.jpg +11044.jpg +938.jpg +6822.jpg +20795.jpg +25680.jpg +12543.jpg +26090.jpg +5192.jpg +7980.jpg +27910.jpg +22360.jpg +6955.jpg +20283.jpg +28150.jpg +20805.jpg +8243.jpg +9488.jpg +13570.jpg +8849.jpg +27067.jpg +10192.jpg +24632.jpg +28206.jpg +19768.jpg +6083.jpg +12197.jpg +22160.jpg +28172.jpg +6192.jpg +20196.jpg +16782.jpg +5836.jpg +5232.jpg +3258.jpg +25745.jpg +23487.jpg +22906.jpg +8690.jpg +4068.jpg +15615.jpg +495.jpg +9368.jpg +8738.jpg +21437.jpg +21417.jpg +5366.jpg +974.jpg +4322.jpg +25439.jpg +17422.jpg +22617.jpg +6330.jpg +9393.jpg +5280.jpg +23533.jpg +18120.jpg +10610.jpg +11325.jpg +29838.jpg +19.jpg +22256.jpg +20650.jpg +2757.jpg +21827.jpg +24667.jpg +3932.jpg +10514.jpg +15066.jpg +20924.jpg +3582.jpg +24633.jpg +27211.jpg +29047.jpg +11976.jpg +18804.jpg +25696.jpg +26771.jpg +23036.jpg +9015.jpg +18377.jpg +4655.jpg +22015.jpg +16761.jpg +15150.jpg +1729.jpg +18.jpg +16026.jpg +29705.jpg +26288.jpg +19308.jpg +4142.jpg +10249.jpg +4762.jpg +15481.jpg +5948.jpg +24892.jpg +23352.jpg +19549.jpg +1221.jpg +22594.jpg +11113.jpg +24596.jpg +20701.jpg +2054.jpg +3684.jpg +4173.jpg +21598.jpg +9297.jpg +29164.jpg +21627.jpg +23140.jpg +28.jpg +15758.jpg +23099.jpg +5493.jpg +11281.jpg +3833.jpg +3042.jpg +9591.jpg +3314.jpg +12999.jpg +21059.jpg +13924.jpg +96.jpg +28881.jpg +6988.jpg +2474.jpg +15000.jpg +21324.jpg +5776.jpg +20890.jpg +16893.jpg +4953.jpg +25022.jpg +26458.jpg +27760.jpg +15633.jpg +18212.jpg +6628.jpg +18834.jpg +13190.jpg +16725.jpg +10298.jpg +27304.jpg +4040.jpg +10521.jpg +26432.jpg +25508.jpg +3960.jpg +80.jpg +12901.jpg +10138.jpg +21887.jpg +4046.jpg +21624.jpg +14019.jpg +12147.jpg +2990.jpg +20813.jpg +13633.jpg +14633.jpg +13923.jpg +4723.jpg +5088.jpg +27996.jpg +15439.jpg +6880.jpg +1630.jpg +12850.jpg +12688.jpg +9460.jpg +1657.jpg +10943.jpg +259.jpg +15525.jpg +18042.jpg +11162.jpg +9269.jpg +3938.jpg +22134.jpg +1767.jpg +5399.jpg +10791.jpg +27102.jpg +5205.jpg +25758.jpg +14514.jpg +25190.jpg +311.jpg +12876.jpg +7321.jpg +29416.jpg +2261.jpg +1577.jpg +8896.jpg +11545.jpg +14711.jpg +22284.jpg +16143.jpg +16406.jpg +12303.jpg +11390.jpg +6265.jpg +5874.jpg +19056.jpg +3476.jpg +24365.jpg +15264.jpg +24508.jpg +8357.jpg +1367.jpg +17644.jpg +25180.jpg +20948.jpg +15117.jpg +28589.jpg +21259.jpg +27057.jpg +20239.jpg +6367.jpg +5528.jpg +14739.jpg +6160.jpg +8760.jpg +17214.jpg +9421.jpg +15466.jpg +8263.jpg +17743.jpg +26615.jpg +21110.jpg +25305.jpg +28938.jpg +26056.jpg +23229.jpg +7438.jpg +11616.jpg +2100.jpg +18725.jpg +159.jpg +20123.jpg +9784.jpg +28042.jpg +6589.jpg +19885.jpg +16445.jpg +9304.jpg +11697.jpg +28949.jpg +23626.jpg +25488.jpg +11622.jpg +1999.jpg +1498.jpg +3558.jpg +2904.jpg +11898.jpg +6887.jpg +9242.jpg +16864.jpg +12193.jpg +24386.jpg +20484.jpg +16540.jpg +22069.jpg +2967.jpg +8761.jpg +24907.jpg +14830.jpg +14076.jpg +18992.jpg +8008.jpg +24283.jpg +3942.jpg +25557.jpg +19038.jpg +5126.jpg +14653.jpg +10632.jpg +26079.jpg +6131.jpg +27753.jpg +27151.jpg +8979.jpg +24096.jpg +15831.jpg +9096.jpg +14030.jpg +962.jpg +17002.jpg +18229.jpg +12376.jpg +28755.jpg +23975.jpg +25840.jpg +6980.jpg +12773.jpg +2668.jpg +2850.jpg +4978.jpg +17749.jpg +7461.jpg +25554.jpg +1119.jpg +19670.jpg +16954.jpg +27431.jpg +23296.jpg +25504.jpg +2177.jpg +19126.jpg +8459.jpg +13355.jpg +11573.jpg +21345.jpg +15843.jpg +13204.jpg +20174.jpg +26961.jpg +27327.jpg +19725.jpg +7676.jpg +507.jpg +27006.jpg +17519.jpg +29798.jpg +17522.jpg +18172.jpg +702.jpg +23632.jpg +19878.jpg +24318.jpg +17650.jpg +21949.jpg +1408.jpg +27603.jpg +29279.jpg +13712.jpg +4557.jpg +23169.jpg +18447.jpg +15596.jpg +6315.jpg +14185.jpg +17288.jpg +11327.jpg +28401.jpg +386.jpg +684.jpg +20051.jpg +14267.jpg +196.jpg +18795.jpg +22616.jpg +1045.jpg +26176.jpg +11554.jpg +13943.jpg +19351.jpg +7740.jpg +3650.jpg +23719.jpg +17892.jpg +21270.jpg +14779.jpg +25282.jpg +14295.jpg +22078.jpg +18330.jpg +24814.jpg +27107.jpg +7351.jpg +16443.jpg +918.jpg +8153.jpg +10773.jpg +16293.jpg +27555.jpg +2341.jpg +15104.jpg +27678.jpg +16296.jpg +1836.jpg +19275.jpg +8260.jpg +19388.jpg +20851.jpg +4967.jpg +5972.jpg +23173.jpg +14087.jpg +20420.jpg +29434.jpg +21916.jpg +15482.jpg +10707.jpg +18699.jpg +10296.jpg +12786.jpg +25940.jpg +20380.jpg +20885.jpg +8680.jpg +26578.jpg +22040.jpg +26752.jpg +25226.jpg +4250.jpg +2165.jpg +5749.jpg +27977.jpg +29985.jpg +4360.jpg +27403.jpg +4688.jpg +21102.jpg +3464.jpg +796.jpg +6498.jpg +3345.jpg +29115.jpg +13475.jpg +1179.jpg +26228.jpg +29182.jpg +5485.jpg +18662.jpg +25033.jpg +18796.jpg +12599.jpg +22494.jpg +24396.jpg +3646.jpg +14715.jpg +18847.jpg +25714.jpg +15982.jpg +921.jpg +25679.jpg +11480.jpg +16726.jpg +6254.jpg +23010.jpg +27773.jpg +23655.jpg +15102.jpg +407.jpg +16926.jpg +25747.jpg +1215.jpg +8277.jpg +8018.jpg +11241.jpg +10387.jpg +10877.jpg +20008.jpg +2081.jpg +9940.jpg +24712.jpg +2265.jpg +19260.jpg +16038.jpg +26581.jpg +22767.jpg +5959.jpg +3699.jpg +3826.jpg +2711.jpg +12363.jpg +14430.jpg +5174.jpg +14253.jpg +21818.jpg +7171.jpg +5147.jpg +6680.jpg +20170.jpg +24196.jpg +14339.jpg +23224.jpg +13079.jpg +2545.jpg +3862.jpg +11542.jpg +9554.jpg +6057.jpg +12177.jpg +28733.jpg +17765.jpg +29931.jpg +9447.jpg +20247.jpg +19572.jpg +19597.jpg +24184.jpg +17030.jpg +25408.jpg +8307.jpg +25964.jpg +14232.jpg +9217.jpg +27060.jpg +3597.jpg +4707.jpg +6406.jpg +2634.jpg +7343.jpg +10961.jpg +21191.jpg +10802.jpg +9080.jpg +8937.jpg +29874.jpg +17639.jpg +28960.jpg +6368.jpg +12854.jpg +1675.jpg +29537.jpg +8266.jpg +13025.jpg +27053.jpg +2698.jpg +20429.jpg +16695.jpg +21317.jpg +24395.jpg +22059.jpg +8975.jpg +14917.jpg +16769.jpg +4223.jpg +3135.jpg +17955.jpg +6222.jpg +9878.jpg +15490.jpg +4037.jpg +15315.jpg +6214.jpg +27597.jpg +13783.jpg +18207.jpg +18658.jpg +17311.jpg +2645.jpg +306.jpg +21325.jpg +23359.jpg +1515.jpg +19281.jpg +13855.jpg +19358.jpg +12630.jpg +2190.jpg +24733.jpg +27047.jpg +26175.jpg +10620.jpg +13988.jpg +12671.jpg +14822.jpg +7327.jpg +2811.jpg +12866.jpg +17221.jpg +8717.jpg +7329.jpg +9850.jpg +12795.jpg +20683.jpg +3736.jpg +29340.jpg +4942.jpg +17884.jpg +25316.jpg +6252.jpg +15739.jpg +16539.jpg +29455.jpg +2948.jpg +12652.jpg +6840.jpg +369.jpg +1342.jpg +13718.jpg +7784.jpg +27042.jpg +22765.jpg +29243.jpg +10628.jpg +15734.jpg +9830.jpg +5626.jpg +22008.jpg +18665.jpg +19678.jpg +9819.jpg +26399.jpg +28011.jpg +5846.jpg +27506.jpg +4177.jpg +4039.jpg +10895.jpg +6786.jpg +25028.jpg +25880.jpg +26625.jpg +8173.jpg +21356.jpg +840.jpg +7431.jpg +21439.jpg +18259.jpg +20049.jpg +4820.jpg +6752.jpg +17088.jpg +26746.jpg +958.jpg +3617.jpg +11151.jpg +27076.jpg +11184.jpg +25094.jpg +11198.jpg +18809.jpg +13878.jpg +19619.jpg +25456.jpg +20154.jpg +13985.jpg +18517.jpg +7745.jpg +16487.jpg +13341.jpg +19919.jpg +5916.jpg +5354.jpg +14474.jpg +23513.jpg +11232.jpg +23261.jpg +25752.jpg +28007.jpg +5953.jpg +23821.jpg +12272.jpg +19086.jpg +20695.jpg +27101.jpg +3666.jpg +28103.jpg +6830.jpg +3342.jpg +14884.jpg +23753.jpg +25579.jpg +5697.jpg +3914.jpg +9170.jpg +22483.jpg +3507.jpg +1613.jpg +6674.jpg +28965.jpg +23394.jpg +14600.jpg +9922.jpg +15242.jpg +8512.jpg +29379.jpg +16960.jpg +25087.jpg +14497.jpg +2974.jpg +16934.jpg +24915.jpg +4073.jpg +13063.jpg +12392.jpg +25669.jpg +14217.jpg +29210.jpg +28528.jpg +29781.jpg +7177.jpg +19665.jpg +17796.jpg +10014.jpg +20754.jpg +16687.jpg +19341.jpg +21632.jpg +3015.jpg +15295.jpg +25118.jpg +12294.jpg +7338.jpg +18366.jpg +347.jpg +25956.jpg +835.jpg +14366.jpg +25335.jpg +15007.jpg +17936.jpg +20094.jpg +24912.jpg +17215.jpg +15847.jpg +17643.jpg +1207.jpg +14132.jpg +13902.jpg +9827.jpg +22436.jpg +4529.jpg +1494.jpg +14110.jpg +6451.jpg +23078.jpg +18661.jpg +3421.jpg +3320.jpg +7279.jpg +24154.jpg +11549.jpg +3993.jpg +18410.jpg +24980.jpg +13266.jpg +682.jpg +5356.jpg +20067.jpg +16683.jpg +6506.jpg +25018.jpg +3539.jpg +3254.jpg +1712.jpg +21034.jpg +26057.jpg +26916.jpg +13737.jpg +26457.jpg +28900.jpg +9904.jpg +21004.jpg +29442.jpg +1099.jpg +14612.jpg +24806.jpg +27791.jpg +343.jpg +26895.jpg +14325.jpg +2460.jpg +17693.jpg +14457.jpg +7722.jpg +22375.jpg +17908.jpg +22025.jpg +9510.jpg +17596.jpg +13488.jpg +13271.jpg +2552.jpg +27675.jpg +9408.jpg +10180.jpg +1155.jpg +2408.jpg +21355.jpg +11360.jpg +21784.jpg +23349.jpg +21530.jpg +26131.jpg +15776.jpg +1245.jpg +16303.jpg +2360.jpg +21241.jpg +29974.jpg +27361.jpg +21645.jpg +24429.jpg +24803.jpg +16755.jpg +4695.jpg +14930.jpg +23188.jpg +28466.jpg +25351.jpg +16420.jpg +5569.jpg +29549.jpg +2390.jpg +16353.jpg +7391.jpg +1960.jpg +14756.jpg +24737.jpg +11838.jpg +758.jpg +24477.jpg +25537.jpg +24427.jpg +28934.jpg +9198.jpg +8816.jpg +13353.jpg +6152.jpg +3356.jpg +29975.jpg +21209.jpg +27765.jpg +3294.jpg +28162.jpg +16551.jpg +14418.jpg +22987.jpg +25123.jpg +12758.jpg +12677.jpg +26313.jpg +1336.jpg +23215.jpg +21777.jpg +13986.jpg +5678.jpg +10852.jpg +4720.jpg +8395.jpg +23280.jpg +13115.jpg +17630.jpg +10312.jpg +7270.jpg +20087.jpg +29790.jpg +18556.jpg +11070.jpg +9240.jpg +17949.jpg +7893.jpg +19729.jpg +21757.jpg +25784.jpg +25870.jpg +11904.jpg +12816.jpg +25134.jpg +13316.jpg +4016.jpg +7762.jpg +2522.jpg +3169.jpg +5620.jpg +20293.jpg +2945.jpg +10208.jpg +10996.jpg +1664.jpg +5305.jpg +19709.jpg +29761.jpg +17269.jpg +28105.jpg +3457.jpg +6488.jpg +13120.jpg +5468.jpg +15952.jpg +23995.jpg +317.jpg +3083.jpg +24674.jpg +5937.jpg +1500.jpg +8086.jpg +1703.jpg +6780.jpg +16059.jpg +23452.jpg +17712.jpg +22673.jpg +26535.jpg +12684.jpg +12603.jpg +10948.jpg +29658.jpg +11001.jpg +13007.jpg +6560.jpg +8054.jpg +14237.jpg +19200.jpg +14673.jpg +15772.jpg +22720.jpg +1151.jpg +12026.jpg +21068.jpg +6229.jpg +9832.jpg +9720.jpg +19513.jpg +28945.jpg +9026.jpg +20011.jpg +21406.jpg +21570.jpg +11765.jpg +27646.jpg +1699.jpg +2225.jpg +5995.jpg +14197.jpg +7592.jpg +27604.jpg +14794.jpg +2145.jpg +8010.jpg +29811.jpg +10983.jpg +24144.jpg +25612.jpg +9254.jpg +15946.jpg +19092.jpg +29610.jpg +2379.jpg +22592.jpg +16940.jpg +1900.jpg +24528.jpg +13377.jpg +16697.jpg +5817.jpg +2415.jpg +13257.jpg +3985.jpg +13776.jpg +21573.jpg +4709.jpg +3748.jpg +9314.jpg +25599.jpg +29217.jpg +2473.jpg +2868.jpg +8140.jpg +17326.jpg +8267.jpg +20342.jpg +17212.jpg +10739.jpg +24883.jpg +27875.jpg +2252.jpg +20628.jpg +24535.jpg +9847.jpg +24504.jpg +29092.jpg +14893.jpg +7233.jpg +23424.jpg +24963.jpg +5260.jpg +9861.jpg +22240.jpg +25860.jpg +3798.jpg +2659.jpg +6516.jpg +224.jpg +6170.jpg +2102.jpg +20421.jpg +23299.jpg +10994.jpg +27660.jpg +2136.jpg +23633.jpg +16015.jpg +16689.jpg +9992.jpg +10367.jpg +26989.jpg +3969.jpg +12654.jpg +12936.jpg +12638.jpg +27523.jpg +10939.jpg +11968.jpg +1219.jpg +8077.jpg +7229.jpg +11733.jpg +24654.jpg +22117.jpg +22963.jpg +12645.jpg +11946.jpg +11494.jpg +10053.jpg +18694.jpg +3188.jpg +2819.jpg +17257.jpg +17601.jpg +14348.jpg +13191.jpg +14003.jpg +12.jpg +26258.jpg +8332.jpg +12150.jpg +13234.jpg +9783.jpg +18733.jpg +15185.jpg +9579.jpg +22675.jpg +9721.jpg +13654.jpg +987.jpg +6587.jpg +4306.jpg +7304.jpg +2501.jpg +24244.jpg +14679.jpg +14978.jpg +6101.jpg +28673.jpg +20690.jpg +22449.jpg +848.jpg +6606.jpg +3214.jpg +23201.jpg +12325.jpg +26383.jpg +22092.jpg +8762.jpg +21136.jpg +22334.jpg +9081.jpg +2729.jpg +24332.jpg +1584.jpg +12644.jpg +20371.jpg +4805.jpg +15766.jpg +19297.jpg +13416.jpg +1492.jpg +17293.jpg +25256.jpg +13189.jpg +1063.jpg +29592.jpg +3940.jpg +16968.jpg +9504.jpg +5410.jpg +2373.jpg +18350.jpg +235.jpg +20681.jpg +14690.jpg +5071.jpg +12465.jpg +14768.jpg +20530.jpg +20499.jpg +29274.jpg +18848.jpg +11507.jpg +12306.jpg +16883.jpg +9888.jpg +3575.jpg +4433.jpg +23047.jpg +17551.jpg +28315.jpg +26552.jpg +9277.jpg +14512.jpg +26947.jpg +21230.jpg +11013.jpg +25593.jpg +16671.jpg +17150.jpg +1621.jpg +10065.jpg +14114.jpg +2787.jpg +17682.jpg +2012.jpg +22126.jpg +401.jpg +23797.jpg +1028.jpg +20353.jpg +3864.jpg +720.jpg +20339.jpg +29377.jpg +5672.jpg +10850.jpg +7844.jpg +20756.jpg +9483.jpg +13880.jpg +27906.jpg +9916.jpg +4145.jpg +21768.jpg +6099.jpg +16836.jpg +16701.jpg +18509.jpg +27638.jpg +28969.jpg +21459.jpg +3007.jpg +24607.jpg +16711.jpg +4879.jpg +13650.jpg +15205.jpg +16057.jpg +24463.jpg +9461.jpg +26781.jpg +6019.jpg +18448.jpg +15280.jpg +29470.jpg +21010.jpg +10277.jpg +2059.jpg +7012.jpg +4.jpg +20331.jpg +3945.jpg +562.jpg +3657.jpg +20069.jpg +20210.jpg +17957.jpg +139.jpg +6704.jpg +20014.jpg +24301.jpg +6202.jpg +12822.jpg +4634.jpg +28220.jpg +1084.jpg +11930.jpg +21346.jpg +25486.jpg +510.jpg +7400.jpg +1581.jpg +26396.jpg +18965.jpg +23909.jpg +16730.jpg +26220.jpg +1186.jpg +3026.jpg +22722.jpg +13279.jpg +7869.jpg +985.jpg +21399.jpg +22378.jpg +11688.jpg +20211.jpg +24496.jpg +19240.jpg +11695.jpg +27912.jpg +17845.jpg +13374.jpg +9165.jpg +8658.jpg +17661.jpg +18177.jpg +20651.jpg +1211.jpg +28569.jpg +28051.jpg +9055.jpg +4737.jpg +12681.jpg +3503.jpg +24123.jpg +25822.jpg +25280.jpg +5153.jpg +13417.jpg +22816.jpg +16653.jpg +19467.jpg +10150.jpg +26110.jpg +15244.jpg +9634.jpg +12018.jpg +8186.jpg +24854.jpg +23133.jpg +1943.jpg +379.jpg +16896.jpg +20454.jpg +4560.jpg +18819.jpg +22373.jpg +28564.jpg +15044.jpg +2174.jpg +24815.jpg +1623.jpg +23163.jpg +12606.jpg +3276.jpg +27833.jpg +28130.jpg +15212.jpg +18925.jpg +26921.jpg +3766.jpg +22968.jpg +3249.jpg +15692.jpg +8151.jpg +1907.jpg +26282.jpg +18911.jpg +23526.jpg +4781.jpg +13376.jpg +27575.jpg +415.jpg +1274.jpg +9883.jpg +2575.jpg +21277.jpg +27125.jpg +16345.jpg +15922.jpg +27098.jpg +396.jpg +15493.jpg +29596.jpg +27803.jpg +9144.jpg +10245.jpg +9789.jpg +1090.jpg +29422.jpg +29002.jpg +21610.jpg +27503.jpg +12333.jpg +23398.jpg +9997.jpg +25898.jpg +28070.jpg +2077.jpg +16875.jpg +6495.jpg +7524.jpg +21159.jpg +10334.jpg +28763.jpg +7672.jpg +26950.jpg +4062.jpg +16633.jpg +2530.jpg +8202.jpg +6035.jpg +8831.jpg +9019.jpg +2126.jpg +10805.jpg +18787.jpg +3371.jpg +13919.jpg +11536.jpg +17975.jpg +14968.jpg +9648.jpg +16627.jpg +9772.jpg +14921.jpg +14219.jpg +6935.jpg +13262.jpg +22677.jpg +10223.jpg +4324.jpg +14538.jpg +8154.jpg +8807.jpg +13474.jpg +13260.jpg +361.jpg +13755.jpg +22311.jpg +1995.jpg +16381.jpg +11716.jpg +19798.jpg +11558.jpg +26830.jpg +10181.jpg +23946.jpg +17587.jpg +16736.jpg +8673.jpg +5911.jpg +12537.jpg +26400.jpg +12637.jpg +23850.jpg +11742.jpg +13569.jpg +25602.jpg +1830.jpg +6304.jpg +932.jpg +25777.jpg +13278.jpg +808.jpg +29459.jpg +24842.jpg +2158.jpg +28269.jpg +10129.jpg +1720.jpg +17169.jpg +8226.jpg +8370.jpg +8970.jpg +9224.jpg +15074.jpg +4211.jpg +12566.jpg +15200.jpg +2875.jpg +17321.jpg +11984.jpg +4535.jpg +27329.jpg +6068.jpg +21058.jpg +2652.jpg +12568.jpg +12404.jpg +12826.jpg +10497.jpg +4315.jpg +25631.jpg +22602.jpg +23929.jpg +3527.jpg +8584.jpg +9530.jpg +23157.jpg +11133.jpg +26312.jpg +29877.jpg +20771.jpg +28034.jpg +7277.jpg +8048.jpg +18867.jpg +18720.jpg +2797.jpg +29111.jpg +25009.jpg +25269.jpg +19585.jpg +26157.jpg +9350.jpg +14604.jpg +28686.jpg +2067.jpg +18979.jpg +23138.jpg +29106.jpg +15034.jpg +15497.jpg +5358.jpg +11755.jpg +15305.jpg +10551.jpg +15370.jpg +1869.jpg +3858.jpg +15149.jpg +1797.jpg +3064.jpg +3680.jpg +26254.jpg +8958.jpg +9064.jpg +5476.jpg +8772.jpg +8303.jpg +10342.jpg +1812.jpg +27105.jpg +12858.jpg +1682.jpg +26146.jpg +12902.jpg +13638.jpg +2655.jpg +1416.jpg +17754.jpg +11668.jpg +7798.jpg +26942.jpg +1201.jpg +6776.jpg +20270.jpg +2889.jpg +19560.jpg +24866.jpg +19069.jpg +21465.jpg +6688.jpg +9513.jpg +19389.jpg +560.jpg +12608.jpg +19439.jpg +19810.jpg +2179.jpg +16984.jpg +28429.jpg +29608.jpg +22480.jpg +13935.jpg +14898.jpg +5504.jpg +7202.jpg +5705.jpg +2903.jpg +5536.jpg +10186.jpg +29577.jpg +25903.jpg +7934.jpg +6409.jpg +26914.jpg +26721.jpg +19089.jpg +18591.jpg +21369.jpg +23931.jpg +28002.jpg +26708.jpg +17593.jpg +2518.jpg +9028.jpg +25310.jpg +19118.jpg +29859.jpg +17641.jpg +822.jpg +18197.jpg +20989.jpg +7631.jpg +5663.jpg +15799.jpg +21261.jpg +24971.jpg +23106.jpg +13538.jpg +21796.jpg +17794.jpg +18890.jpg +13222.jpg +5805.jpg +13467.jpg +21190.jpg +2764.jpg +8834.jpg +22215.jpg +27266.jpg +10473.jpg +24973.jpg +29981.jpg +4293.jpg +25900.jpg +15745.jpg +10142.jpg +18756.jpg +18825.jpg +5295.jpg +19804.jpg +25701.jpg +17879.jpg +19620.jpg +19700.jpg +23005.jpg +29169.jpg +27716.jpg +20899.jpg +28681.jpg +20887.jpg +2213.jpg +4425.jpg +27727.jpg +14656.jpg +24880.jpg +6678.jpg +11972.jpg +22356.jpg +28142.jpg +22642.jpg +16581.jpg +27078.jpg +28712.jpg +22790.jpg +1654.jpg +6398.jpg +19933.jpg +9587.jpg +10572.jpg +12844.jpg +26354.jpg +10379.jpg +29989.jpg +3136.jpg +21589.jpg +2078.jpg +15191.jpg +9207.jpg +27586.jpg +14314.jpg +16016.jpg +12032.jpg +2828.jpg +21910.jpg +10500.jpg +2523.jpg +692.jpg +29464.jpg +21520.jpg +12188.jpg +14356.jpg +26304.jpg +21211.jpg +5365.jpg +6351.jpg +748.jpg +29224.jpg +23004.jpg +28496.jpg +19155.jpg +24976.jpg +26761.jpg +28940.jpg +22685.jpg +28410.jpg +28190.jpg +5906.jpg +28336.jpg +18166.jpg +913.jpg +14211.jpg +15093.jpg +27336.jpg +26322.jpg +12328.jpg +13339.jpg +8840.jpg +17722.jpg +16641.jpg +10046.jpg +760.jpg +194.jpg +21435.jpg +18017.jpg +27872.jpg +15467.jpg +12220.jpg +9824.jpg +15095.jpg +10588.jpg +2483.jpg +12016.jpg +22173.jpg +23535.jpg +9338.jpg +23636.jpg +29622.jpg +9882.jpg +27903.jpg +3245.jpg +14887.jpg +1440.jpg +1642.jpg +4042.jpg +7390.jpg +11029.jpg +21988.jpg +17357.jpg +28281.jpg +2240.jpg +23667.jpg +9734.jpg +25010.jpg +1697.jpg +23811.jpg +18724.jpg +6286.jpg +9166.jpg +26001.jpg +20462.jpg +15519.jpg +24608.jpg +1756.jpg +22090.jpg +7068.jpg +11446.jpg +2992.jpg +15296.jpg +18503.jpg +2801.jpg +5858.jpg +23993.jpg +18430.jpg +19331.jpg +26169.jpg +17736.jpg +4614.jpg +15052.jpg +19994.jpg +23586.jpg +16859.jpg +911.jpg +5800.jpg +5234.jpg +13382.jpg +26363.jpg +23141.jpg +11580.jpg +24314.jpg +3795.jpg +22444.jpg +183.jpg +27582.jpg +4808.jpg +11736.jpg +14667.jpg +27911.jpg +7209.jpg +2931.jpg +21362.jpg +22879.jpg +8725.jpg +28722.jpg +28844.jpg +4883.jpg +12534.jpg +20360.jpg +3944.jpg +3052.jpg +18440.jpg +23606.jpg +19151.jpg +23107.jpg +239.jpg +20294.jpg +4722.jpg +1267.jpg +28870.jpg +21196.jpg +20182.jpg +4576.jpg +28246.jpg +6718.jpg +8360.jpg +29602.jpg +10255.jpg +29449.jpg +13665.jpg +2049.jpg +15138.jpg +14234.jpg +29563.jpg +13646.jpg +5791.jpg +29896.jpg +20366.jpg +22998.jpg +153.jpg +10380.jpg +8950.jpg +5775.jpg +22460.jpg +9890.jpg +13379.jpg +29284.jpg +11330.jpg +17384.jpg +10066.jpg +4644.jpg +26973.jpg +3185.jpg +3181.jpg +4296.jpg +8311.jpg +21464.jpg +23436.jpg +15614.jpg +11600.jpg +9817.jpg +4896.jpg +27435.jpg +3166.jpg +8945.jpg +21268.jpg +10837.jpg +2051.jpg +12863.jpg +12209.jpg +19397.jpg +10036.jpg +11488.jpg +24408.jpg +27599.jpg +14465.jpg +13868.jpg +9390.jpg +26593.jpg +23471.jpg +18982.jpg +12157.jpg +14902.jpg +7337.jpg +25578.jpg +17842.jpg +28491.jpg +18412.jpg +8262.jpg +10562.jpg +11683.jpg +13092.jpg +12650.jpg +27294.jpg +27876.jpg +13295.jpg +23860.jpg +19882.jpg +4992.jpg +14210.jpg +19889.jpg +14641.jpg +17812.jpg +24019.jpg +16964.jpg +23119.jpg +29313.jpg +29669.jpg +25595.jpg +16274.jpg +27071.jpg +14188.jpg +3142.jpg +4427.jpg +27763.jpg +26726.jpg +1831.jpg +23940.jpg +23869.jpg +1341.jpg +25965.jpg +29073.jpg +21170.jpg +8206.jpg +18299.jpg +22073.jpg +9771.jpg +5938.jpg +23180.jpg +9807.jpg +22553.jpg +24517.jpg +3934.jpg +1016.jpg +1853.jpg +21602.jpg +21305.jpg +26030.jpg +11785.jpg +14301.jpg +28603.jpg +20766.jpg +26122.jpg +22272.jpg +29398.jpg +19680.jpg +29702.jpg +3008.jpg +7848.jpg +18285.jpg +24759.jpg +24778.jpg +2644.jpg +355.jpg +24280.jpg +24313.jpg +17322.jpg +13082.jpg +3107.jpg +17367.jpg +23958.jpg +28241.jpg +29667.jpg +13596.jpg +15762.jpg +13858.jpg +5272.jpg +3887.jpg +3512.jpg +4685.jpg +609.jpg +17880.jpg +27643.jpg +41.jpg +10540.jpg +13059.jpg +28946.jpg +25674.jpg +11905.jpg +11970.jpg +14588.jpg +8426.jpg +16490.jpg +23509.jpg +11925.jpg +29578.jpg +6228.jpg +2579.jpg +17823.jpg +24849.jpg +2529.jpg +19293.jpg +27546.jpg +21804.jpg +28983.jpg +6093.jpg +4581.jpg +9253.jpg +11496.jpg +11624.jpg +26121.jpg +1992.jpg +25795.jpg +13623.jpg +14580.jpg +23439.jpg +28827.jpg +2206.jpg +26772.jpg +9247.jpg +19416.jpg +25199.jpg +28573.jpg +12079.jpg +711.jpg +11380.jpg +13319.jpg +16956.jpg +9113.jpg +27208.jpg +4351.jpg +16180.jpg +19847.jpg +16990.jpg +27725.jpg +23130.jpg +16942.jpg +26235.jpg +13519.jpg +7584.jpg +14602.jpg +25517.jpg +15859.jpg +293.jpg +4159.jpg +15928.jpg +4899.jpg +23144.jpg +11239.jpg +17251.jpg +94.jpg +16140.jpg +2620.jpg +15434.jpg +26311.jpg +27693.jpg +15803.jpg +29822.jpg +6227.jpg +22187.jpg +8437.jpg +8635.jpg +8570.jpg +4279.jpg +1319.jpg +20369.jpg +17379.jpg +4423.jpg +6844.jpg +20460.jpg +20547.jpg +13699.jpg +20502.jpg +16870.jpg +5952.jpg +6250.jpg +8682.jpg +27513.jpg +7915.jpg +15116.jpg +12080.jpg +21791.jpg +24956.jpg +10323.jpg +10260.jpg +14024.jpg +17077.jpg +20287.jpg +27535.jpg +3743.jpg +8629.jpg +3995.jpg +27145.jpg +19586.jpg +5838.jpg +11159.jpg +23270.jpg +17898.jpg +28927.jpg +6834.jpg +27526.jpg +14434.jpg +11541.jpg +24961.jpg +10042.jpg +3517.jpg +12304.jpg +9212.jpg +28486.jpg +1469.jpg +7519.jpg +2159.jpg +10657.jpg +3368.jpg +1774.jpg +4893.jpg +10022.jpg +9512.jpg +14722.jpg +13413.jpg +16135.jpg +14026.jpg +18123.jpg +641.jpg +1407.jpg +14718.jpg +3936.jpg +521.jpg +19844.jpg +19499.jpg +21756.jpg +15124.jpg +16692.jpg +29423.jpg +14965.jpg +7428.jpg +14963.jpg +3313.jpg +2861.jpg +13274.jpg +1075.jpg +525.jpg +3620.jpg +19896.jpg +13961.jpg +24906.jpg +25327.jpg +9345.jpg +3692.jpg +18159.jpg +15231.jpg +4098.jpg +9651.jpg +15145.jpg +13067.jpg +1450.jpg +13779.jpg +25728.jpg +28825.jpg +6846.jpg +13328.jpg +27328.jpg +27367.jpg +6370.jpg +11260.jpg +21458.jpg +12191.jpg +17501.jpg +307.jpg +9945.jpg +22195.jpg +19565.jpg +7314.jpg +2849.jpg +14189.jpg +14598.jpg +11114.jpg +22884.jpg +12867.jpg +19292.jpg +2060.jpg +7077.jpg +15110.jpg +14664.jpg +16608.jpg +9681.jpg +13619.jpg +13547.jpg +10758.jpg +23288.jpg +29079.jpg +23019.jpg +20823.jpg +7110.jpg +4676.jpg +4799.jpg +19486.jpg +25541.jpg +21925.jpg +23826.jpg +13872.jpg +847.jpg +22031.jpg +475.jpg +28473.jpg +16976.jpg +9115.jpg +29949.jpg +26597.jpg +11381.jpg +8224.jpg +24486.jpg +11888.jpg +12248.jpg +8501.jpg +1487.jpg +23972.jpg +16272.jpg +3634.jpg +26008.jpg +3373.jpg +24024.jpg +5146.jpg +7056.jpg +9426.jpg +8608.jpg +18871.jpg +16181.jpg +7387.jpg +11414.jpg +28135.jpg +2851.jpg +17912.jpg +21507.jpg +15431.jpg +17830.jpg +23990.jpg +3255.jpg +21944.jpg +15282.jpg +2142.jpg +24566.jpg +17460.jpg +3283.jpg +12647.jpg +21628.jpg +5124.jpg +4210.jpg +20677.jpg +24829.jpg +23347.jpg +10746.jpg +27738.jpg +9946.jpg +18765.jpg +7925.jpg +27173.jpg +22226.jpg +16767.jpg +16106.jpg +20108.jpg +13183.jpg +1717.jpg +23379.jpg +1678.jpg +1911.jpg +18618.jpg +25626.jpg +5274.jpg +27126.jpg +22302.jpg +23755.jpg +9800.jpg +8064.jpg +18924.jpg +86.jpg +10179.jpg +14982.jpg +5936.jpg +2417.jpg +11505.jpg +21551.jpg +7371.jpg +20409.jpg +27180.jpg +12962.jpg +175.jpg +1892.jpg +17204.jpg +15767.jpg +12921.jpg +29089.jpg +14028.jpg +15935.jpg +8327.jpg +3789.jpg +3551.jpg +5965.jpg +27368.jpg +26092.jpg +29902.jpg +4880.jpg +23153.jpg +21335.jpg +3624.jpg +6894.jpg +14873.jpg +21378.jpg +17118.jpg +13700.jpg +19111.jpg +21625.jpg +7385.jpg +29508.jpg +27438.jpg +18731.jpg +11266.jpg +27904.jpg +19442.jpg +23375.jpg +29269.jpg +28294.jpg +5647.jpg +20349.jpg +4711.jpg +10064.jpg +11152.jpg +19390.jpg +5575.jpg +15708.jpg +28227.jpg +27579.jpg +27091.jpg +26948.jpg +6048.jpg +28963.jpg +23246.jpg +23800.jpg +14271.jpg +24116.jpg +10749.jpg +28076.jpg +22179.jpg +2592.jpg +19028.jpg +4054.jpg +14502.jpg +412.jpg +789.jpg +8203.jpg +11164.jpg +8448.jpg +23232.jpg +26668.jpg +19023.jpg +16732.jpg +17188.jpg +3468.jpg +16660.jpg +21614.jpg +12061.jpg +22247.jpg +5017.jpg +9751.jpg +25084.jpg +6236.jpg +23549.jpg +11964.jpg +15582.jpg +6008.jpg +679.jpg +23919.jpg +21971.jpg +15941.jpg +17075.jpg +1150.jpg +3784.jpg +19842.jpg +16165.jpg +13218.jpg +10804.jpg +6640.jpg +24348.jpg +16640.jpg +11378.jpg +19788.jpg +6242.jpg +5100.jpg +27622.jpg +21174.jpg +13516.jpg +6373.jpg +17555.jpg +20764.jpg +22922.jpg +27224.jpg +23438.jpg +20456.jpg +20434.jpg +17407.jpg +23847.jpg +25978.jpg +18530.jpg +2197.jpg +24436.jpg +20025.jpg +23639.jpg +26390.jpg +27887.jpg +12907.jpg +24652.jpg +5119.jpg +8940.jpg +5582.jpg +23939.jpg +21862.jpg +29562.jpg +9137.jpg +757.jpg +4232.jpg +3128.jpg +28537.jpg +2091.jpg +21683.jpg +17893.jpg +24453.jpg +11489.jpg +28273.jpg +9346.jpg +9722.jpg +1144.jpg +19923.jpg +2760.jpg +25477.jpg +477.jpg +7003.jpg +8204.jpg +13397.jpg +29375.jpg +5450.jpg +288.jpg +11903.jpg +19792.jpg +6742.jpg +17135.jpg +3584.jpg +3492.jpg +29281.jpg +15813.jpg +13338.jpg +24738.jpg +15710.jpg +26592.jpg +114.jpg +17761.jpg +13060.jpg +8888.jpg +18830.jpg +23714.jpg +13175.jpg +4262.jpg +4657.jpg +6383.jpg +22192.jpg +16315.jpg +13292.jpg +19784.jpg +14138.jpg +3103.jpg +25291.jpg +10409.jpg +23326.jpg +8588.jpg +6855.jpg +11455.jpg +23882.jpg +29821.jpg +21861.jpg +15740.jpg +18967.jpg +10016.jpg +22504.jpg +1615.jpg +13209.jpg +2.jpg +10537.jpg +2180.jpg +18119.jpg +16161.jpg +12642.jpg +1321.jpg +13675.jpg +12438.jpg +24531.jpg +15624.jpg +28792.jpg +22103.jpg +101.jpg +14853.jpg +2753.jpg +25040.jpg +20862.jpg +9218.jpg +13381.jpg +6698.jpg +21192.jpg +29584.jpg +1289.jpg +1601.jpg +12666.jpg +15010.jpg +16118.jpg +11402.jpg +3587.jpg +538.jpg +6146.jpg +3908.jpg +17397.jpg +14228.jpg +7595.jpg +22620.jpg +15769.jpg +9602.jpg +20638.jpg +5690.jpg +20987.jpg +17209.jpg +28462.jpg +11710.jpg +8095.jpg +29851.jpg +8449.jpg +7949.jpg +29721.jpg +2119.jpg +8526.jpg +19362.jpg +6875.jpg +11779.jpg +24945.jpg +7113.jpg +5922.jpg +17481.jpg +25475.jpg +933.jpg +11759.jpg +9889.jpg +9758.jpg +24018.jpg +1694.jpg +3504.jpg +15360.jpg +25968.jpg +28288.jpg +1814.jpg +21065.jpg +312.jpg +19799.jpg +23287.jpg +12783.jpg +11443.jpg +9105.jpg +25039.jpg +7032.jpg +10210.jpg +11510.jpg +16034.jpg +13891.jpg +2273.jpg +16816.jpg +27118.jpg +12185.jpg +7407.jpg +18887.jpg +5288.jpg +15924.jpg +11703.jpg +5336.jpg +28861.jpg +23301.jpg +18413.jpg +710.jpg +696.jpg +13622.jpg +27153.jpg +9869.jpg +8583.jpg +21666.jpg +1809.jpg +21780.jpg +27710.jpg +18057.jpg +29003.jpg +29223.jpg +6785.jpg +8671.jpg +26430.jpg +22953.jpg +5221.jpg +15658.jpg +13412.jpg +26573.jpg +21541.jpg +3850.jpg +22248.jpg +17701.jpg +22052.jpg +725.jpg +10457.jpg +17316.jpg +20617.jpg +2215.jpg +14224.jpg +12396.jpg +1112.jpg +26113.jpg +17006.jpg +18945.jpg +19268.jpg +7670.jpg +11088.jpg +26768.jpg +6970.jpg +9714.jpg +9647.jpg +22320.jpg +26654.jpg +17347.jpg +23205.jpg +25908.jpg +17061.jpg +19787.jpg +7836.jpg +6311.jpg +6873.jpg +2245.jpg +11009.jpg +25856.jpg +23518.jpg +17025.jpg +5877.jpg +21540.jpg +15907.jpg +19981.jpg +3043.jpg +12634.jpg +17537.jpg +14410.jpg +24589.jpg +21699.jpg +21278.jpg +24900.jpg +20985.jpg +23920.jpg +1906.jpg +3223.jpg +13217.jpg +24495.jpg +14324.jpg +26152.jpg +9216.jpg +8392.jpg +26557.jpg +9077.jpg +11053.jpg +13992.jpg +19071.jpg +16797.jpg +4484.jpg +10214.jpg +23313.jpg +14140.jpg +2569.jpg +29875.jpg +2774.jpg +27478.jpg +9092.jpg +19458.jpg +13031.jpg +22251.jpg +15133.jpg +4316.jpg +15233.jpg +9025.jpg +27558.jpg +18292.jpg +14157.jpg +13871.jpg +10642.jpg +5608.jpg +16200.jpg +17291.jpg +14070.jpg +6553.jpg +15119.jpg +4275.jpg +21436.jpg +29268.jpg +26405.jpg +29980.jpg +19269.jpg +15389.jpg +11971.jpg +7758.jpg +11929.jpg +3122.jpg +9811.jpg +2509.jpg +15654.jpg +2096.jpg +15005.jpg +14842.jpg +19477.jpg +26546.jpg +12353.jpg +24399.jpg +9989.jpg +9987.jpg +4378.jpg +18706.jpg +170.jpg +1688.jpg +18789.jpg +1491.jpg +29659.jpg +14595.jpg +5296.jpg +23571.jpg +19158.jpg +6600.jpg +15033.jpg +5496.jpg +15844.jpg +10781.jpg +17572.jpg +10788.jpg +844.jpg +18482.jpg +12146.jpg +19169.jpg +8895.jpg +29322.jpg +16814.jpg +15190.jpg +12323.jpg +28340.jpg +4999.jpg +8994.jpg +17533.jpg +8408.jpg +11328.jpg +7159.jpg +14772.jpg +8401.jpg +15436.jpg +23829.jpg +26500.jpg +12853.jpg +29272.jpg +12983.jpg +17034.jpg +26892.jpg +5371.jpg +5323.jpg +10513.jpg +5703.jpg +6325.jpg +20938.jpg +10913.jpg +25079.jpg +21444.jpg +19503.jpg +27426.jpg +21098.jpg +16267.jpg +29097.jpg +10438.jpg +22216.jpg +29867.jpg +13824.jpg +12947.jpg +19867.jpg +23798.jpg +27839.jpg +10578.jpg +7995.jpg +4933.jpg +7100.jpg +11520.jpg +11322.jpg +19128.jpg +11619.jpg +9272.jpg +4564.jpg +4620.jpg +4234.jpg +3661.jpg +14158.jpg +22441.jpg +23501.jpg +25382.jpg +17651.jpg +17164.jpg +14539.jpg +14397.jpg +27460.jpg +11708.jpg +1000.jpg +27324.jpg +22340.jpg +21983.jpg +17676.jpg +19785.jpg +29607.jpg +4488.jpg +4304.jpg +19650.jpg +11021.jpg +6701.jpg +11726.jpg +23601.jpg +28550.jpg +24491.jpg +29678.jpg +24317.jpg +10770.jpg +6624.jpg +27096.jpg +28806.jpg +2154.jpg +20644.jpg +387.jpg +11112.jpg +19893.jpg +15572.jpg +11066.jpg +3328.jpg +5887.jpg +28531.jpg +14105.jpg +17234.jpg +19125.jpg +24072.jpg +21926.jpg +15757.jpg +28768.jpg +13708.jpg +21854.jpg +19881.jpg +15087.jpg +11213.jpg +1580.jpg +12887.jpg +20945.jpg +25163.jpg +23320.jpg +15636.jpg +18268.jpg +25658.jpg +5871.jpg +21484.jpg +1886.jpg +1820.jpg +1794.jpg +26249.jpg +13632.jpg +25615.jpg +27825.jpg +14056.jpg +25322.jpg +29760.jpg +9334.jpg +12686.jpg +18485.jpg +6609.jpg +4793.jpg +10162.jpg +28068.jpg +13595.jpg +16438.jpg +11891.jpg +18304.jpg +26118.jpg +8306.jpg +11272.jpg +11623.jpg +11770.jpg +29626.jpg +26838.jpg +25292.jpg +29498.jpg +9706.jpg +14059.jpg +5434.jpg +7694.jpg +18826.jpg +3981.jpg +12778.jpg +5650.jpg +27756.jpg +24629.jpg +24391.jpg +20062.jpg +6043.jpg +10839.jpg +23510.jpg +28701.jpg +6054.jpg +19537.jpg +11570.jpg +12943.jpg +2315.jpg +6823.jpg +773.jpg +1807.jpg +29967.jpg +18437.jpg +16786.jpg +2886.jpg +15216.jpg +8482.jpg +28149.jpg +5754.jpg +26823.jpg +13705.jpg +21232.jpg +20438.jpg +17564.jpg +26433.jpg +20301.jpg +13533.jpg +18269.jpg +10141.jpg +26026.jpg +7693.jpg +3285.jpg +7910.jpg +26926.jpg +25930.jpg +6554.jpg +8348.jpg +11368.jpg +11371.jpg +21938.jpg +18126.jpg +11411.jpg +5105.jpg +1404.jpg +17411.jpg +2486.jpg +26129.jpg +7938.jpg +6946.jpg +7458.jpg +11618.jpg +28295.jpg +22450.jpg +15934.jpg +20406.jpg +8982.jpg +6709.jpg +1587.jpg +16459.jpg +27677.jpg +3656.jpg +1125.jpg +11255.jpg +16516.jpg +17090.jpg +11805.jpg +2613.jpg +24040.jpg +24278.jpg +28833.jpg +14129.jpg +10088.jpg +17236.jpg +29609.jpg +5793.jpg +28718.jpg +17816.jpg +14609.jpg +29564.jpg +12701.jpg +11800.jpg +28390.jpg +26541.jpg +27470.jpg +20378.jpg +24157.jpg +19874.jpg +19520.jpg +13505.jpg +1153.jpg +11447.jpg +6611.jpg +24889.jpg +9250.jpg +29411.jpg +9206.jpg +10810.jpg +14567.jpg +15681.jpg +12793.jpg +14124.jpg +5904.jpg +5595.jpg +29226.jpg +9780.jpg +6052.jpg +23996.jpg +2763.jpg +11136.jpg +3510.jpg +1569.jpg +27225.jpg +15777.jpg +11572.jpg +750.jpg +13648.jpg +5596.jpg +19222.jpg +22687.jpg +11796.jpg +10440.jpg +29344.jpg +2660.jpg +22995.jpg +3509.jpg +25368.jpg +23455.jpg +8622.jpg +843.jpg +8973.jpg +23598.jpg +4325.jpg +8238.jpg +8931.jpg +20466.jpg +5389.jpg +5970.jpg +28240.jpg +21682.jpg +23174.jpg +3247.jpg +15586.jpg +25069.jpg +5962.jpg +28291.jpg +16033.jpg +352.jpg +7237.jpg +1687.jpg +27657.jpg +13452.jpg +4725.jpg +12888.jpg +6727.jpg +15652.jpg +14152.jpg +20616.jpg +214.jpg +14901.jpg +15285.jpg +21183.jpg +1355.jpg +14638.jpg +29767.jpg +27399.jpg +5087.jpg +2740.jpg +24946.jpg +459.jpg +26461.jpg +11172.jpg +28492.jpg +5619.jpg +11015.jpg +10674.jpg +1976.jpg +28459.jpg +1599.jpg +5868.jpg +13507.jpg +21067.jpg +15978.jpg +10420.jpg +18984.jpg +4543.jpg +25260.jpg +17351.jpg +29034.jpg +23776.jpg +16410.jpg +11291.jpg +5537.jpg +27858.jpg +22181.jpg +3977.jpg +6746.jpg +10696.jpg +26791.jpg +14518.jpg +28339.jpg +4987.jpg +23400.jpg +16065.jpg +15785.jpg +22514.jpg +5863.jpg +716.jpg +23194.jpg +22393.jpg +18762.jpg +13612.jpg +2996.jpg +17580.jpg +26067.jpg +24195.jpg +11866.jpg +20872.jpg +24879.jpg +3567.jpg +3968.jpg +7178.jpg +19929.jpg +7563.jpg +7058.jpg +18324.jpg +15506.jpg +17028.jpg +1637.jpg +15543.jpg +6811.jpg +29618.jpg +26659.jpg +18683.jpg +26427.jpg +20101.jpg +29099.jpg +13095.jpg +27410.jpg +20459.jpg +27934.jpg +19858.jpg +26397.jpg +29502.jpg +1027.jpg +11678.jpg +3321.jpg +15566.jpg +5884.jpg +26780.jpg +8350.jpg +15527.jpg +18441.jpg +29907.jpg +25794.jpg +21371.jpg +11292.jpg +27052.jpg +8257.jpg +7212.jpg +16565.jpg +16833.jpg +27628.jpg +14889.jpg +27665.jpg +15971.jpg +23316.jpg +20389.jpg +26769.jpg +16948.jpg +23154.jpg +10530.jpg +26783.jpg +17940.jpg +110.jpg +19326.jpg +25733.jpg +8422.jpg +3155.jpg +8560.jpg +10351.jpg +20348.jpg +16151.jpg +1920.jpg +11855.jpg +21710.jpg +11370.jpg +22704.jpg +22455.jpg +24753.jpg +18635.jpg +3702.jpg +15441.jpg +28753.jpg +2693.jpg +18130.jpg +7378.jpg +3134.jpg +3159.jpg +16999.jpg +26870.jpg +2423.jpg +16476.jpg +26620.jpg +9306.jpg +9050.jpg +13773.jpg +14524.jpg +18870.jpg +20474.jpg +4689.jpg +2032.jpg +2783.jpg +7567.jpg +14828.jpg +22469.jpg +14145.jpg +25739.jpg +316.jpg +4043.jpg +793.jpg +21778.jpg +23700.jpg +5814.jpg +24479.jpg +2048.jpg +14259.jpg +26320.jpg +13455.jpg +3379.jpg +15616.jpg +12378.jpg +22751.jpg +2475.jpg +21244.jpg +15156.jpg +11231.jpg +12930.jpg +11254.jpg +6719.jpg +22902.jpg +3102.jpg +27824.jpg +26117.jpg +14011.jpg +6010.jpg +18176.jpg +16645.jpg +21451.jpg +25352.jpg +4119.jpg +17.jpg +19493.jpg +4443.jpg +19261.jpg +7834.jpg +24846.jpg +2925.jpg +28210.jpg +8812.jpg +20936.jpg +5043.jpg +29948.jpg +20423.jpg +17417.jpg +24001.jpg +15238.jpg +28602.jpg +12836.jpg +28647.jpg +29979.jpg +19238.jpg +2629.jpg +11933.jpg +12805.jpg +12593.jpg +23696.jpg +7702.jpg +22739.jpg +27823.jpg +25195.jpg +16423.jpg +12266.jpg +20574.jpg +26015.jpg +8661.jpg +1636.jpg +557.jpg +881.jpg +4628.jpg +12641.jpg +4161.jpg +9048.jpg +16672.jpg +15352.jpg +8954.jpg +9063.jpg +22345.jpg +17329.jpg +22219.jpg +4538.jpg +1412.jpg +11813.jpg +4001.jpg +10200.jpg +25474.jpg +21518.jpg +2585.jpg +25459.jpg +2233.jpg +14422.jpg +29120.jpg +10821.jpg +19649.jpg +130.jpg +19582.jpg +24830.jpg +12899.jpg +22539.jpg +21466.jpg +23378.jpg +11068.jpg +9140.jpg +519.jpg +16361.jpg +9371.jpg +22349.jpg +9935.jpg +1508.jpg +14231.jpg +1916.jpg +5945.jpg +11168.jpg +4462.jpg +8857.jpg +7117.jpg +24816.jpg +19869.jpg +25592.jpg +4537.jpg +24635.jpg +17319.jpg +4089.jpg +25387.jpg +10165.jpg +1545.jpg +12460.jpg +8651.jpg +28514.jpg +22010.jpg +6797.jpg +23330.jpg +4740.jpg +16756.jpg +10011.jpg +10285.jpg +4160.jpg +23219.jpg +4565.jpg +12015.jpg +20946.jpg +29998.jpg +17069.jpg +19487.jpg +12464.jpg +29797.jpg +23584.jpg +20568.jpg +29172.jpg +11562.jpg +8439.jpg +3224.jpg +15109.jpg +29994.jpg +18891.jpg +11899.jpg +19317.jpg +2508.jpg +6574.jpg +4140.jpg +2922.jpg +6126.jpg +10782.jpg +9823.jpg +29048.jpg +8316.jpg +24509.jpg +382.jpg +11080.jpg +25119.jpg +22279.jpg +2181.jpg +27045.jpg +17642.jpg +8152.jpg +9551.jpg +28752.jpg +26575.jpg +648.jpg +12055.jpg +16652.jpg +16615.jpg +4367.jpg +2212.jpg +24308.jpg +3989.jpg +12885.jpg +22803.jpg +14010.jpg +8600.jpg +8769.jpg +6517.jpg +18507.jpg +10868.jpg +3209.jpg +21608.jpg +26710.jpg +27191.jpg +16707.jpg +5283.jpg +27545.jpg +14728.jpg +13846.jpg +5979.jpg +4816.jpg +19206.jpg +18541.jpg +26194.jpg +16263.jpg +18892.jpg +10356.jpg +24342.jpg +28798.jpg +5063.jpg +15498.jpg +2857.jpg +7021.jpg +9797.jpg +9014.jpg +25050.jpg +20180.jpg +15451.jpg +9017.jpg +23064.jpg +17406.jpg +9713.jpg +28498.jpg +19371.jpg +1131.jpg +24095.jpg +7731.jpg +17731.jpg +632.jpg +20364.jpg +837.jpg +14470.jpg +8219.jpg +15640.jpg +26140.jpg +2121.jpg +3898.jpg +2494.jpg +11082.jpg +26770.jpg +8628.jpg +8.jpg +17805.jpg +2971.jpg +22959.jpg +21175.jpg +28875.jpg +23618.jpg +10331.jpg +21526.jpg +2582.jpg +17387.jpg +3753.jpg +27466.jpg +16011.jpg +19032.jpg +3698.jpg +18256.jpg +19166.jpg +29305.jpg +7708.jpg +7324.jpg +23165.jpg +16186.jpg +11587.jpg +24413.jpg +27423.jpg +735.jpg +24514.jpg +28107.jpg +20978.jpg +13843.jpg +19640.jpg +28259.jpg +24374.jpg +20600.jpg +26291.jpg +7585.jpg +7577.jpg +27018.jpg +498.jpg +9142.jpg +5467.jpg +27487.jpg +6053.jpg +256.jpg +12697.jpg +23500.jpg +30.jpg +8379.jpg +8648.jpg +17729.jpg +2114.jpg +21131.jpg +14353.jpg +7061.jpg +7751.jpg +18405.jpg +360.jpg +16950.jpg +22188.jpg +11148.jpg +2982.jpg +9952.jpg +2062.jpg +19584.jpg +8349.jpg +14575.jpg +20911.jpg +4623.jpg +17318.jpg +29445.jpg +20001.jpg +24421.jpg +25635.jpg +29662.jpg +3614.jpg +3238.jpg +17757.jpg +25881.jpg +27200.jpg +24582.jpg +6004.jpg +13715.jpg +25081.jpg +804.jpg +24114.jpg +3845.jpg +1465.jpg +21372.jpg +15372.jpg +14021.jpg +4719.jpg +18640.jpg +1420.jpg +11369.jpg +25447.jpg +15351.jpg +28186.jpg +27990.jpg +21320.jpg +21951.jpg +20071.jpg +25288.jpg +7838.jpg +29264.jpg +3065.jpg +13299.jpg +27881.jpg +7793.jpg +4530.jpg +16301.jpg +7822.jpg +5130.jpg +16584.jpg +2437.jpg +13176.jpg +941.jpg +27382.jpg +4856.jpg +16334.jpg +23838.jpg +27926.jpg +28801.jpg +16363.jpg +13480.jpg +570.jpg +21973.jpg +10779.jpg +2254.jpg +24231.jpg +26551.jpg +2146.jpg +16650.jpg +22510.jpg +13075.jpg +72.jpg +20930.jpg +17943.jpg +13931.jpg +25369.jpg +22827.jpg +8073.jpg +8566.jpg +26000.jpg +26868.jpg +18009.jpg +26521.jpg +20545.jpg +6543.jpg +8330.jpg +1564.jpg +24227.jpg +19693.jpg +3277.jpg +26755.jpg +21316.jpg +24122.jpg +12651.jpg +12857.jpg +22352.jpg +10919.jpg +11781.jpg +9573.jpg +12365.jpg +15313.jpg +26806.jpg +16421.jpg +7658.jpg +3306.jpg +6943.jpg +12680.jpg +55.jpg +1862.jpg +25594.jpg +4595.jpg +20340.jpg +26033.jpg +20548.jpg +6158.jpg +29373.jpg +20557.jpg +14426.jpg +22625.jpg +18361.jpg +2779.jpg +5964.jpg +1895.jpg +22064.jpg +26229.jpg +16439.jpg +20437.jpg +23812.jpg +26790.jpg +22508.jpg +9635.jpg +10671.jpg +22359.jpg +18121.jpg +48.jpg +28319.jpg +8780.jpg +22463.jpg +25418.jpg +25174.jpg +16546.jpg +24817.jpg +8273.jpg +10008.jpg +631.jpg +16733.jpg +27230.jpg +136.jpg +21927.jpg +12738.jpg +1464.jpg +17308.jpg +10824.jpg +8166.jpg +8192.jpg +4100.jpg +25609.jpg +24336.jpg +6973.jpg +18616.jpg +17363.jpg +14919.jpg +1004.jpg +29161.jpg +8060.jpg +4088.jpg +28611.jpg +2461.jpg +22229.jpg +4481.jpg +6885.jpg +25441.jpg +5008.jpg +25264.jpg +21893.jpg +13306.jpg +16518.jpg +25608.jpg +18552.jpg +15420.jpg +23292.jpg +6731.jpg +372.jpg +26915.jpg +20840.jpg +25816.jpg +8968.jpg +25454.jpg +13402.jpg +28540.jpg +26314.jpg +26997.jpg +6282.jpg +22162.jpg +10704.jpg +2278.jpg +27783.jpg +22474.jpg +13009.jpg +12492.jpg +3964.jpg +20748.jpg +6475.jpg +10128.jpg +3759.jpg +22577.jpg +6735.jpg +29961.jpg +6082.jpg +25695.jpg +24710.jpg +3590.jpg +6565.jpg +2547.jpg +7303.jpg +6816.jpg +24222.jpg +13344.jpg +27152.jpg +19601.jpg +15402.jpg +4540.jpg +26547.jpg +22488.jpg +6545.jpg +20128.jpg +20333.jpg +15991.jpg +15152.jpg +4562.jpg +592.jpg +1834.jpg +23842.jpg +4926.jpg +19374.jpg +25682.jpg +12027.jpg +7677.jpg +26513.jpg +23965.jpg +3070.jpg +20652.jpg +6159.jpg +25808.jpg +2515.jpg +1269.jpg +10196.jpg +2943.jpg +1091.jpg +17394.jpg +18703.jpg +28865.jpg +12261.jpg +24843.jpg +5727.jpg +4827.jpg +19098.jpg +19079.jpg +321.jpg +28006.jpg +319.jpg +16089.jpg +5404.jpg +14857.jpg +11986.jpg +8452.jpg +2674.jpg +10274.jpg +27908.jpg +7322.jpg +13704.jpg +29558.jpg +8353.jpg +26754.jpg +18297.jpg +4489.jpg +25020.jpg +25934.jpg +20381.jpg +285.jpg +16481.jpg +1182.jpg +8416.jpg +14525.jpg +3339.jpg +25574.jpg +12799.jpg +11886.jpg +21663.jpg +20206.jpg +19506.jpg +18697.jpg +16527.jpg +12660.jpg +2348.jpg +15041.jpg +24312.jpg +16562.jpg +28874.jpg +17720.jpg +12529.jpg +5253.jpg +23610.jpg +4826.jpg +10445.jpg +10479.jpg +24362.jpg +23875.jpg +4183.jpg +29664.jpg +23376.jpg +22695.jpg +28479.jpg +16533.jpg +14811.jpg +18340.jpg +1963.jpg +10082.jpg +8557.jpg +6467.jpg +3903.jpg +22218.jpg +23590.jpg +14045.jpg +15590.jpg +10727.jpg +23752.jpg +4022.jpg +12450.jpg +9550.jpg +18122.jpg +13801.jpg +25598.jpg +16343.jpg +1299.jpg +9034.jpg +19234.jpg +8130.jpg +20299.jpg +27269.jpg +19085.jpg +417.jpg +23434.jpg +14986.jpg +9169.jpg +21556.jpg +8554.jpg +19106.jpg +27184.jpg +23117.jpg +18118.jpg +2140.jpg +322.jpg +10991.jpg +589.jpg +14475.jpg +4200.jpg +420.jpg +9.jpg +12264.jpg +20068.jpg +17056.jpg +2954.jpg +26509.jpg +873.jpg +16604.jpg +29529.jpg +3790.jpg +8951.jpg +12315.jpg +11535.jpg +15664.jpg +18095.jpg +12709.jpg +22290.jpg +7008.jpg +19314.jpg +15603.jpg +16696.jpg +26316.jpg +9514.jpg +26276.jpg +22427.jpg +7265.jpg +29486.jpg +7473.jpg +20782.jpg +2080.jpg +19600.jpg +29109.jpg +25187.jpg +4237.jpg +18763.jpg +28355.jpg +4259.jpg +21579.jpg +7764.jpg +27530.jpg +16142.jpg +2044.jpg +17127.jpg +25055.jpg +3778.jpg +13317.jpg +27278.jpg +9398.jpg +3385.jpg +12279.jpg +2601.jpg +11072.jpg +20922.jpg +9773.jpg +1885.jpg +27375.jpg +12339.jpg +8107.jpg +16869.jpg +9884.jpg +25107.jpg +19239.jpg +29559.jpg +26255.jpg +7578.jpg +29830.jpg +4399.jpg +424.jpg +14009.jpg +4195.jpg +29751.jpg +15236.jpg +27840.jpg +16340.jpg +16815.jpg +20967.jpg +17944.jpg +2831.jpg +1.jpg +24261.jpg +29072.jpg +15228.jpg +22867.jpg +25358.jpg +11493.jpg +1734.jpg +29265.jpg +17687.jpg +14123.jpg +2271.jpg +20523.jpg +7120.jpg +6455.jpg +26795.jpg +25834.jpg +17173.jpg +23227.jpg +8428.jpg +21779.jpg +16115.jpg +28225.jpg +27421.jpg +13049.jpg +4020.jpg +29865.jpg +28503.jpg +20441.jpg +29095.jpg +3543.jpg +15715.jpg +6151.jpg +27780.jpg +3589.jpg +8359.jpg +7612.jpg +206.jpg +15241.jpg +25251.jpg +6408.jpg +19965.jpg +26652.jpg +22057.jpg +22828.jpg +24079.jpg +18391.jpg +25453.jpg +25274.jpg +16039.jpg +3926.jpg +10964.jpg +11248.jpg +3149.jpg +14764.jpg +12904.jpg +3326.jpg +20144.jpg +13513.jpg +14326.jpg +3563.jpg +29188.jpg +18277.jpg +42.jpg +20395.jpg +12136.jpg +16588.jpg +23271.jpg +11470.jpg +22564.jpg +27868.jpg +20105.jpg +18935.jpg +26025.jpg +29287.jpg +24014.jpg +7620.jpg +25168.jpg +27512.jpg +10411.jpg +12848.jpg +20689.jpg +15424.jpg +1448.jpg +24179.jpg +26774.jpg +1129.jpg +18853.jpg +23319.jpg +8165.jpg +27095.jpg +18875.jpg +3094.jpg +8092.jpg +13369.jpg +1915.jpg +21309.jpg +10591.jpg +4757.jpg +10317.jpg +27122.jpg +27302.jpg +27661.jpg +19616.jpg +19985.jpg +11731.jpg +11453.jpg +26214.jpg +5488.jpg +20551.jpg +3195.jpg +25247.jpg +1386.jpg +12906.jpg +6021.jpg +18864.jpg +4618.jpg +8091.jpg +1909.jpg +29143.jpg +487.jpg +3685.jpg +18894.jpg +25936.jpg +17446.jpg +3075.jpg +1089.jpg +28133.jpg +15723.jpg +28672.jpg +4775.jpg +21723.jpg +7083.jpg +17674.jpg +16194.jpg +28032.jpg +26740.jpg +15006.jpg +141.jpg +22319.jpg +6089.jpg +28231.jpg +17125.jpg +5839.jpg +269.jpg +2079.jpg +17147.jpg +3821.jpg +10075.jpg +16515.jpg +14096.jpg +23589.jpg +14542.jpg +11242.jpg +18545.jpg +20426.jpg +6305.jpg +1650.jpg +29791.jpg +8340.jpg +16400.jpg +19939.jpg +23854.jpg +12116.jpg +28947.jpg +2372.jpg +28704.jpg +26063.jpg +26488.jpg +13477.jpg +22882.jpg +21348.jpg +1085.jpg +10860.jpg +10893.jpg +10803.jpg +11651.jpg +13892.jpg +19422.jpg +8213.jpg +21626.jpg +12717.jpg +23282.jpg +17433.jpg +7281.jpg +14751.jpg +11576.jpg +1553.jpg +23695.jpg +4674.jpg +25171.jpg +6548.jpg +3178.jpg +10724.jpg +15834.jpg +27548.jpg +2330.jpg +22544.jpg +674.jpg +26170.jpg +20345.jpg +20009.jpg +15321.jpg +12780.jpg +17418.jpg +3911.jpg +3161.jpg +13901.jpg +9073.jpg +11092.jpg +10270.jpg +16091.jpg +14520.jpg +3744.jpg +24501.jpg +6503.jpg +11655.jpg +16582.jpg +29511.jpg +7364.jpg +19335.jpg +29801.jpg +18416.jpg +21960.jpg +24896.jpg +12233.jpg +1603.jpg +6369.jpg +1172.jpg +19009.jpg +11233.jpg +11675.jpg +5615.jpg +5828.jpg +1631.jpg +4299.jpg +4125.jpg +10709.jpg +24088.jpg +9079.jpg +587.jpg +12668.jpg +23764.jpg +29863.jpg +17151.jpg +21825.jpg +5517.jpg +8697.jpg +5687.jpg +3080.jpg +17548.jpg +29943.jpg +21920.jpg +13687.jpg +14797.jpg +6715.jpg +6591.jpg +5994.jpg +20066.jpg +22495.jpg +10493.jpg +14136.jpg +11956.jpg +15649.jpg +1415.jpg +11750.jpg +4669.jpg +27009.jpg +3473.jpg +337.jpg +28275.jpg +25730.jpg +8802.jpg +13315.jpg +13979.jpg +427.jpg +2762.jpg +13404.jpg +22797.jpg +15936.jpg +29480.jpg +19011.jpg +20098.jpg +7002.jpg +198.jpg +26866.jpg +29756.jpg +5357.jpg +3055.jpg +18345.jpg +27580.jpg +15309.jpg +20675.jpg +10647.jpg +9583.jpg +19993.jpg +27473.jpg +6318.jpg +20055.jpg +22928.jpg +25324.jpg +18555.jpg +27719.jpg +24380.jpg +14318.jpg +6279.jpg +26818.jpg +15581.jpg +3621.jpg +20493.jpg +7278.jpg +2972.jpg +20532.jpg +3729.jpg +15432.jpg +24208.jpg +16397.jpg +10769.jpg +9991.jpg +9509.jpg +29007.jpg +19177.jpg +454.jpg +26482.jpg +12107.jpg +6391.jpg +2979.jpg +15856.jpg +21361.jpg +11951.jpg +21121.jpg +24818.jpg +10889.jpg +13959.jpg +28272.jpg +29651.jpg +9788.jpg +7809.jpg +25941.jpg +724.jpg +11297.jpg +15976.jpg +4329.jpg +4395.jpg +23855.jpg +22230.jpg +13226.jpg +28258.jpg +6097.jpg +26123.jpg +22136.jpg +11657.jpg +20549.jpg +19018.jpg +8346.jpg +18132.jpg +12969.jpg +7106.jpg +28555.jpg +19594.jpg +19143.jpg +10799.jpg +6694.jpg +24375.jpg +5049.jpg +24565.jpg +27576.jpg +11076.jpg +6106.jpg +26962.jpg +21061.jpg +23653.jpg +1689.jpg +22559.jpg +17478.jpg +19568.jpg +2946.jpg +17680.jpg +19201.jpg +2152.jpg +25783.jpg +5837.jpg +28433.jpg +22502.jpg +13248.jpg +5854.jpg +22909.jpg +26297.jpg +19845.jpg +22030.jpg +25140.jpg +18913.jpg +21605.jpg +25417.jpg +28123.jpg +17664.jpg +22956.jpg +13247.jpg +22499.jpg +3816.jpg +11948.jpg +21508.jpg +7993.jpg +14250.jpg +24938.jpg +25760.jpg +28136.jpg +9312.jpg +546.jpg +13657.jpg +15563.jpg +20127.jpg +13968.jpg +20393.jpg +10952.jpg +26068.jpg +25347.jpg +4401.jpg +11142.jpg +23259.jpg +9858.jpg +14729.jpg +3404.jpg +16840.jpg +29308.jpg +22243.jpg +4060.jpg +12687.jpg +6655.jpg +25353.jpg +10829.jpg +6631.jpg +20829.jpg +28662.jpg +27573.jpg +3375.jpg +26885.jpg +9355.jpg +27003.jpg +10248.jpg +16408.jpg +694.jpg +4189.jpg +12524.jpg +5353.jpg +22130.jpg +27406.jpg +6449.jpg +21236.jpg +22042.jpg +15307.jpg +9000.jpg +481.jpg +26802.jpg +9704.jpg +4572.jpg +26553.jpg +28470.jpg +23543.jpg +26560.jpg +615.jpg +26415.jpg +14784.jpg +25404.jpg +26098.jpg +11647.jpg +8882.jpg +7487.jpg +21724.jpg +4619.jpg +21923.jpg +22589.jpg +27778.jpg +19048.jpg +16116.jpg +15398.jpg +9931.jpg +17146.jpg +5494.jpg +1964.jpg +13501.jpg +25716.jpg +22358.jpg +28671.jpg +29359.jpg +4252.jpg +6487.jpg +15440.jpg +28480.jpg +2130.jpg +15818.jpg +1315.jpg +19301.jpg +10884.jpg +9902.jpg +20490.jpg +16156.jpg +4147.jpg +916.jpg +5312.jpg +26841.jpg +25544.jpg +17096.jpg +15725.jpg +23315.jpg +3855.jpg +693.jpg +25027.jpg +2489.jpg +20692.jpg +10627.jpg +3540.jpg +7611.jpg +13577.jpg +25233.jpg +12765.jpg +13730.jpg +18529.jpg +17009.jpg +29064.jpg +4228.jpg +3225.jpg +26711.jpg +2098.jpg +8084.jpg +9114.jpg +14964.jpg +9619.jpg +29380.jpg +8196.jpg +17570.jpg +9377.jpg +26138.jpg +13394.jpg +22752.jpg +16425.jpg +15657.jpg +5622.jpg +9920.jpg +18454.jpg +28942.jpg +13587.jpg +1775.jpg +7974.jpg +13349.jpg +22454.jpg +12192.jpg +22839.jpg +7485.jpg +8293.jpg +2647.jpg +6757.jpg +28325.jpg +19720.jpg +5000.jpg +29919.jpg +17725.jpg +2679.jpg +23184.jpg +23206.jpg +5525.jpg +26366.jpg +20132.jpg +24355.jpg +18424.jpg +14146.jpg +18465.jpg +10966.jpg +17806.jpg +6007.jpg +2236.jpg +19075.jpg +2429.jpg +24267.jpg +18234.jpg +12258.jpg +29587.jpg +29922.jpg +2290.jpg +1338.jpg +9343.jpg +27846.jpg +4357.jpg +22939.jpg +22236.jpg +7413.jpg +6586.jpg +11302.jpg +11996.jpg +15495.jpg +20738.jpg +20624.jpg +21812.jpg +26151.jpg +27064.jpg +8109.jpg +2758.jpg +11462.jpg +29818.jpg +9637.jpg +8561.jpg +9668.jpg +16623.jpg +1228.jpg +11182.jpg +12624.jpg +15202.jpg +24851.jpg +29536.jpg +13486.jpg +15939.jpg +3399.jpg +29227.jpg +19667.jpg +24224.jpg +23103.jpg +7883.jpg +7570.jpg +21623.jpg +1509.jpg +25248.jpg +11512.jpg +26437.jpg +10760.jpg +28460.jpg +4364.jpg +18632.jpg +17901.jpg +17301.jpg +29966.jpg +29959.jpg +7498.jpg +27557.jpg +29987.jpg +7132.jpg +6306.jpg +8586.jpg +17962.jpg +26881.jpg +14438.jpg +29400.jpg +15548.jpg +10293.jpg +14440.jpg +5824.jpg +15383.jpg +6334.jpg +12643.jpg +3717.jpg +23983.jpg +18146.jpg +22710.jpg +15491.jpg +23472.jpg +6859.jpg +6335.jpg +29484.jpg +23503.jpg +22983.jpg +26100.jpg +26956.jpg +4774.jpg +8019.jpg +17376.jpg +11949.jpg +7520.jpg +4928.jpg +5628.jpg +9035.jpg +21853.jpg +12493.jpg +13914.jpg +18700.jpg +27265.jpg +5007.jpg +20939.jpg +9872.jpg +4065.jpg +18097.jpg +1944.jpg +25662.jpg +10315.jpg +9611.jpg +5346.jpg +6072.jpg +6703.jpg +13850.jpg +2363.jpg +15408.jpg +22555.jpg +18905.jpg +10394.jpg +4276.jpg +28873.jpg +11040.jpg +13497.jpg +21548.jpg +17130.jpg +15801.jpg +22148.jpg +19115.jpg +5424.jpg +26344.jpg +14541.jpg +18283.jpg +22060.jpg +22104.jpg +25319.jpg +15911.jpg +3175.jpg +23608.jpg +24659.jpg +19399.jpg +16451.jpg +19455.jpg +7696.jpg +1522.jpg +13024.jpg +23049.jpg +5515.jpg +29531.jpg +623.jpg +28762.jpg +1935.jpg +3829.jpg +5756.jpg +11843.jpg +13233.jpg +11034.jpg +12164.jpg +10646.jpg +21659.jpg +14439.jpg +19523.jpg +21382.jpg +26588.jpg +10833.jpg +22464.jpg +24754.jpg +18298.jpg +4738.jpg +12071.jpg +21669.jpg +13706.jpg +23539.jpg +23244.jpg +21031.jpg +5441.jpg +13099.jpg +25722.jpg +262.jpg +9067.jpg +26809.jpg +846.jpg +28318.jpg +20947.jpg +1867.jpg +13991.jpg +27453.jpg +19749.jpg +1996.jpg +25336.jpg +6272.jpg +29799.jpg +26716.jpg +518.jpg +6879.jpg +10376.jpg +25330.jpg +23494.jpg +27899.jpg +28348.jpg +24026.jpg +23634.jpg +329.jpg +25394.jpg +2457.jpg +22792.jpg +6969.jpg +2387.jpg +995.jpg +17928.jpg +10389.jpg +10258.jpg +14284.jpg +24447.jpg +5695.jpg +5584.jpg +14757.jpg +28787.jpg +16577.jpg +1748.jpg +12743.jpg +22242.jpg +22591.jpg +20641.jpg +3835.jpg +11165.jpg +24773.jpg +1806.jpg +14495.jpg +21423.jpg +17852.jpg +22020.jpg +18786.jpg +2818.jpg +7812.jpg +12244.jpg +10390.jpg +2263.jpg +17910.jpg +27226.jpg +9679.jpg +18395.jpg +13322.jpg +1605.jpg +118.jpg +27000.jpg +9087.jpg +20525.jpg +7486.jpg +295.jpg +7772.jpg +5980.jpg +17201.jpg +14763.jpg +26857.jpg +12919.jpg +22800.jpg +24841.jpg +22569.jpg +25858.jpg +6197.jpg +21443.jpg +8518.jpg +5086.jpg +13829.jpg +17669.jpg +1312.jpg +25309.jpg +11048.jpg +8986.jpg +8031.jpg +11531.jpg +22772.jpg +29327.jpg +17070.jpg +9753.jpg +967.jpg +6283.jpg +17290.jpg +17098.jpg +11059.jpg +10875.jpg +26095.jpg +3814.jpg +5266.jpg +24884.jpg +19332.jpg +1189.jpg +26540.jpg +7737.jpg +28577.jpg +19076.jpg +21519.jpg +11578.jpg +28080.jpg +8329.jpg +1921.jpg +7534.jpg +24868.jpg +18184.jpg +14534.jpg +12767.jpg +11055.jpg +8237.jpg +6107.jpg +3097.jpg +27430.jpg +23413.jpg +5796.jpg +482.jpg +5181.jpg +23508.jpg +9091.jpg +5429.jpg +5072.jpg +10528.jpg +12558.jpg +10051.jpg +19495.jpg +1980.jpg +6672.jpg +5338.jpg +3694.jpg +2420.jpg +24930.jpg +8002.jpg +7187.jpg +26435.jpg +20876.jpg +3841.jpg +12074.jpg +27800.jpg +19141.jpg +607.jpg +19519.jpg +330.jpg +6183.jpg +19192.jpg +24394.jpg +4930.jpg +13491.jpg +3818.jpg +713.jpg +2859.jpg +7360.jpg +20054.jpg +19580.jpg +27240.jpg +10313.jpg +19097.jpg +27969.jpg +19521.jpg +16229.jpg +19900.jpg +22635.jpg +18527.jpg +18501.jpg +12796.jpg +1737.jpg +25769.jpg +3636.jpg +25861.jpg +12814.jpg +29292.jpg +14331.jpg +14548.jpg +26019.jpg +12314.jpg +10403.jpg +4453.jpg +17964.jpg +18152.jpg +2028.jpg +15848.jpg +1292.jpg +20481.jpg +23178.jpg +17915.jpg +1140.jpg +3433.jpg +11268.jpg +13498.jpg +24627.jpg +6003.jpg +574.jpg +7065.jpg +18991.jpg +4874.jpg +11173.jpg +27539.jpg +4934.jpg +6572.jpg +6204.jpg +17703.jpg +18053.jpg +10776.jpg +4099.jpg +23289.jpg +17616.jpg +4858.jpg +26999.jpg +21288.jpg +9871.jpg +19059.jpg +29129.jpg +4194.jpg +23848.jpg +5208.jpg +5514.jpg +29440.jpg +18353.jpg +18103.jpg +28129.jpg +20388.jpg +8507.jpg +26022.jpg +3401.jpg +29847.jpg +10550.jpg +20788.jpg +9584.jpg +20480.jpg +22213.jpg +7749.jpg +28338.jpg +12461.jpg +13155.jpg +27087.jpg +2419.jpg +21242.jpg +13746.jpg +29020.jpg +975.jpg +3290.jpg +9744.jpg +2216.jpg +29235.jpg +26468.jpg +19821.jpg +18709.jpg +18715.jpg +13552.jpg +10636.jpg +5876.jpg +24275.jpg +26299.jpg +12362.jpg +29232.jpg +14266.jpg +26209.jpg +27768.jpg +6257.jpg +13926.jpg +18794.jpg +11744.jpg +9369.jpg +6738.jpg +18020.jpg +5472.jpg +18498.jpg +26556.jpg +26903.jpg +10197.jpg +13352.jpg +25434.jpg +23563.jpg +27413.jpg +25261.jpg +17618.jpg +989.jpg +2736.jpg +2543.jpg +26785.jpg +22201.jpg +25726.jpg +19660.jpg +9436.jpg +18570.jpg +6450.jpg +27781.jpg +9766.jpg +19904.jpg +4323.jpg +12433.jpg +22960.jpg +957.jpg +4742.jpg +19322.jpg +29312.jpg +10122.jpg +12656.jpg +29107.jpg +21385.jpg +13224.jpg +3523.jpg +21485.jpg +670.jpg +6300.jpg +15877.jpg +4500.jpg +27577.jpg +17523.jpg +25825.jpg +29376.jpg +7666.jpg +529.jpg +15868.jpg +178.jpg +5411.jpg +25712.jpg +6641.jpg +7684.jpg +6462.jpg +17614.jpg +7504.jpg +6581.jpg +15428.jpg +17398.jpg +21402.jpg +20179.jpg +11086.jpg +28643.jpg +7104.jpg +3626.jpg +7964.jpg +7355.jpg +9608.jpg +19964.jpg +28793.jpg +15027.jpg +28832.jpg +83.jpg +14799.jpg +7978.jpg +3388.jpg +18459.jpg +3879.jpg +27129.jpg +18659.jpg +17456.jpg +17817.jpg +28828.jpg +23306.jpg +10649.jpg +22563.jpg +14650.jpg +13272.jpg +6956.jpg +6541.jpg +1142.jpg +7169.jpg +6972.jpg +14680.jpg +23035.jpg +13605.jpg +14142.jpg +5823.jpg +26729.jpg +28079.jpg +24653.jpg +28395.jpg +3337.jpg +745.jpg +3950.jpg +18477.jpg +5946.jpg +27852.jpg +17609.jpg +1626.jpg +28443.jpg +26670.jpg +24820.jpg +26937.jpg +13147.jpg +18323.jpg +20526.jpg +3972.jpg +19701.jpg +22374.jpg +26572.jpg +29013.jpg +5850.jpg +15752.jpg +2376.jpg +16336.jpg +9741.jpg +11704.jpg +8296.jpg +13720.jpg +11620.jpg +2769.jpg +24265.jpg +19755.jpg +3344.jpg +7156.jpg +6601.jpg +14173.jpg +17540.jpg +27369.jpg +19400.jpg +17615.jpg +20524.jpg +13006.jpg +11101.jpg +5544.jpg +9248.jpg +28306.jpg +23213.jpg +11357.jpg +9970.jpg +18936.jpg +24683.jpg +9051.jpg +11636.jpg +990.jpg +20114.jpg +14912.jpg +15620.jpg +8633.jpg +17153.jpg +26107.jpg +24015.jpg +27247.jpg +29666.jpg +23917.jpg +26065.jpg +19329.jpg +1417.jpg +23001.jpg +6294.jpg +29547.jpg +16718.jpg +6161.jpg +4466.jpg +20555.jpg +17905.jpg +15101.jpg +1217.jpg +20157.jpg +27255.jpg +14169.jpg +26827.jpg +21930.jpg +9448.jpg +6142.jpg +27479.jpg +9182.jpg +1532.jpg +8963.jpg +9999.jpg +26704.jpg +29940.jpg +0.jpg +8523.jpg +15577.jpg +52.jpg +21881.jpg +10822.jpg +23009.jpg +3068.jpg +28773.jpg +20576.jpg +11294.jpg +8088.jpg +29166.jpg +19324.jpg +16659.jpg +12961.jpg +751.jpg +24903.jpg +10544.jpg +16729.jpg +1077.jpg +6866.jpg +19313.jpg +25272.jpg +2046.jpg +15302.jpg +26411.jpg +29632.jpg +27469.jpg +23443.jpg +13522.jpg +7341.jpg +9443.jpg +6002.jpg +22372.jpg +26656.jpg +20982.jpg +16860.jpg +23568.jpg +18072.jpg +19131.jpg +1158.jpg +10605.jpg +1102.jpg +11035.jpg +21128.jpg +11990.jpg +26007.jpg +11413.jpg +9112.jpg +3092.jpg +1947.jpg +17149.jpg +16365.jpg +15821.jpg +2035.jpg +2970.jpg +29159.jpg +6270.jpg +12611.jpg +4283.jpg +3041.jpg +10062.jpg +4783.jpg +29141.jpg +16834.jpg +18054.jpg +18062.jpg +6529.jpg +8880.jpg +27967.jpg +18506.jpg +16876.jpg +6415.jpg +9020.jpg +18036.jpg +11220.jpg +4070.jpg +25925.jpg +18475.jpg +9548.jpg +5407.jpg +7963.jpg +2907.jpg +6622.jpg +13957.jpg +15792.jpg +28864.jpg +2544.jpg +9495.jpg +26959.jpg +22406.jpg +15611.jpg +20513.jpg +3165.jpg +20798.jpg +14859.jpg +26825.jpg +17713.jpg +6230.jpg +14594.jpg +13015.jpg +12001.jpg +11503.jpg +25490.jpg +22557.jpg +17277.jpg +20586.jpg +19902.jpg +24990.jpg +5616.jpg +20612.jpg +17271.jpg +2123.jpg +16341.jpg +9742.jpg +21084.jpg +11279.jpg +28997.jpg +6663.jpg +1925.jpg +23771.jpg +21235.jpg +28624.jpg +8280.jpg +28586.jpg +6226.jpg +27186.jpg +9666.jpg +463.jpg +7845.jpg +24626.jpg +27748.jpg +16278.jpg +22533.jpg +10596.jpg +6744.jpg +10573.jpg +20863.jpg +21100.jpg +9938.jpg +10832.jpg +17140.jpg +3301.jpg +27401.jpg +10226.jpg +13231.jpg +18388.jpg +6743.jpg +27416.jpg +24086.jpg +7675.jpg +14364.jpg +29491.jpg +27569.jpg +9074.jpg +13277.jpg +17777.jpg +4224.jpg +3606.jpg +1932.jpg +1044.jpg +14303.jpg +15367.jpg +16452.jpg +2389.jpg +23041.jpg +16740.jpg +15945.jpg +6684.jpg +11569.jpg +10070.jpg +20604.jpg +7525.jpg +26537.jpg +16634.jpg +20208.jpg +29968.jpg +12286.jpg +15598.jpg +14409.jpg +18151.jpg +12048.jpg +26242.jpg +3860.jpg +2128.jpg +5240.jpg +26810.jpg +15135.jpg +2837.jpg +21123.jpg +27493.jpg +20173.jpg +28720.jpg +10370.jpg +13291.jpg +3955.jpg +23403.jpg +9596.jpg +10625.jpg +15883.jpg +25402.jpg +5148.jpg +28279.jpg +6835.jpg +18959.jpg +23410.jpg +18435.jpg +27251.jpg +8960.jpg +21661.jpg +28778.jpg +27201.jpg +16197.jpg +11436.jpg +24858.jpg +23661.jpg +21217.jpg +22924.jpg +7470.jpg +27070.jpg +14424.jpg +25704.jpg +11848.jpg +22390.jpg +22627.jpg +17510.jpg +23052.jpg +3059.jpg +21463.jpg +18284.jpg +492.jpg +27936.jpg +14360.jpg +12187.jpg +29889.jpg +24835.jpg +6910.jpg +10950.jpg +15524.jpg +4984.jpg +11135.jpg +15642.jpg +14166.jpg +5273.jpg +6918.jpg +3600.jpg +4584.jpg +23851.jpg +13940.jpg +13738.jpg +3994.jpg +19312.jpg +14309.jpg +28067.jpg +20039.jpg +13613.jpg +28005.jpg +5413.jpg +965.jpg +926.jpg +14488.jpg +21952.jpg +5934.jpg +553.jpg +9650.jpg +11885.jpg +1771.jpg +1212.jpg +4084.jpg +14484.jpg +24037.jpg +19428.jpg +17744.jpg +19375.jpg +3593.jpg +20861.jpg +14229.jpg +18374.jpg +27170.jpg +1533.jpg +29844.jpg +24044.jpg +16482.jpg +931.jpg +22033.jpg +21286.jpg +425.jpg +8611.jpg +24057.jpg +18803.jpg +17695.jpg +4990.jpg +28534.jpg +10368.jpg +6922.jpg +1702.jpg +591.jpg +7440.jpg +17634.jpg +17793.jpg +16168.jpg +28237.jpg +29643.jpg +20857.jpg +24080.jpg +13781.jpg +26624.jpg +19906.jpg +21740.jpg +12509.jpg +743.jpg +7602.jpg +7340.jpg +7308.jpg +14836.jpg +6799.jpg +28463.jpg +5125.jpg +3069.jpg +25828.jpg +17210.jpg +27593.jpg +15024.jpg +8517.jpg +24761.jpg +14225.jpg +16794.jpg +13889.jpg +25871.jpg +5196.jpg +29427.jpg +5696.jpg +964.jpg +17497.jpg +2316.jpg +13529.jpg +10744.jpg +17502.jpg +5458.jpg +25702.jpg +5422.jpg +5173.jpg +20884.jpg +25451.jpg +16607.jpg +21314.jpg +15075.jpg +29727.jpg +23884.jpg +9570.jpg +27300.jpg +9810.jpg +17575.jpg +15893.jpg +26520.jpg +5431.jpg +10175.jpg +7194.jpg +27326.jpg +25075.jpg +15840.jpg +7966.jpg +9588.jpg +15206.jpg +1707.jpg +15903.jpg +15258.jpg +22733.jpg +12911.jpg +25159.jpg +17144.jpg +28788.jpg +9454.jpg +14193.jpg +3745.jpg +12562.jpg +20737.jpg +26930.jpg +29644.jpg +10532.jpg +15688.jpg +26244.jpg +25212.jpg +20271.jpg +12364.jpg +5656.jpg +24701.jpg +18113.jpg +914.jpg +28826.jpg +3828.jpg +4209.jpg +25645.jpg +26891.jpg +29825.jpg +16188.jpg +11061.jpg +16348.jpg +25942.jpg +14816.jpg +6268.jpg +4176.jpg +27793.jpg +20694.jpg +4334.jpg +2017.jpg +11128.jpg +4927.jpg +6512.jpg +870.jpg +9759.jpg +24219.jpg +18590.jpg +16207.jpg +1184.jpg +12252.jpg +7797.jpg +15950.jpg +28437.jpg +20479.jpg +28177.jpg +27752.jpg +13703.jpg +24397.jpg +384.jpg +16727.jpg +29316.jpg +21629.jpg +28065.jpg +18882.jpg +23356.jpg +12312.jpg +20843.jpg +27670.jpg +18840.jpg +9652.jpg +1882.jpg +26224.jpg +8016.jpg +9717.jpg +9229.jpg +7882.jpg +8139.jpg +18684.jpg +2191.jpg +28495.jpg +9994.jpg +2087.jpg +272.jpg +1026.jpg +7590.jpg +14635.jpg +10669.jpg +6123.jpg +16955.jpg +22783.jpg +2913.jpg +19030.jpg +26976.jpg +15575.jpg +7580.jpg +455.jpg +16250.jpg +20390.jpg +20125.jpg +13243.jpg +25780.jpg +25476.jpg +26604.jpg +15325.jpg +20311.jpg +11973.jpg +1993.jpg +22357.jpg +21982.jpg +5912.jpg +23197.jpg +25142.jpg +26247.jpg +6881.jpg +12923.jpg +21656.jpg +24894.jpg +16458.jpg +22528.jpg +17855.jpg +14155.jpg +2993.jpg +29771.jpg +22324.jpg +7288.jpg +13956.jpg +20235.jpg +29214.jpg +11367.jpg +124.jpg +24723.jpg +7768.jpg +880.jpg +15833.jpg +7655.jpg +22880.jpg +11746.jpg +7880.jpg +19220.jpg +769.jpg +24972.jpg +11195.jpg +29133.jpg +12993.jpg +26024.jpg +18342.jpg +8198.jpg +13481.jpg +27836.jpg +16169.jpg +27812.jpg +24874.jpg +22750.jpg +23502.jpg +1237.jpg +10570.jpg +14678.jpg +1660.jpg +2203.jpg +17191.jpg +7630.jpg +9263.jpg +147.jpg +10535.jpg +19100.jpg +7884.jpg +27619.jpg +22878.jpg +8522.jpg +11490.jpg +12516.jpg +9979.jpg +28954.jpg +25997.jpg +20313.jpg +7624.jpg +14894.jpg +27769.jpg +15886.jpg +12100.jpg +19868.jpg +18938.jpg +12212.jpg +18732.jpg +23836.jpg +23560.jpg +3885.jpg +19790.jpg +20696.jpg +10926.jpg +11804.jpg +5574.jpg +27920.jpg +4843.jpg +1972.jpg +9517.jpg +978.jpg +25638.jpg +10095.jpg +21432.jpg +12162.jpg +25426.jpg +7861.jpg +29783.jpg +8964.jpg +18721.jpg +8947.jpg +3387.jpg +12430.jpg +4097.jpg +28238.jpg +29657.jpg +4795.jpg +1934.jpg +23564.jpg +6960.jpg +15413.jpg +14869.jpg +7732.jpg +23042.jpg +29779.jpg +13342.jpg +16910.jpg +26966.jpg +6482.jpg +16080.jpg +2559.jpg +17450.jpg +12843.jpg +12075.jpg +17690.jpg +14134.jpg +17244.jpg +14351.jpg +3832.jpg +8398.jpg +23796.jpg +18434.jpg +28362.jpg +20447.jpg +939.jpg +2138.jpg +5562.jpg +3248.jpg +16372.jpg +27372.jpg +22368.jpg +17051.jpg +20865.jpg +14692.jpg +25135.jpg +27645.jpg +4479.jpg +24805.jpg +22691.jpg +991.jpg +8929.jpg +15940.jpg +16173.jpg +660.jpg +21765.jpg +10215.jpg +12557.jpg +10645.jpg +18820.jpg +14579.jpg +7507.jpg +10234.jpg +12384.jpg +27283.jpg +24338.jpg +22137.jpg +5704.jpg +3909.jpg +18247.jpg +11038.jpg +9777.jpg +27243.jpg +28902.jpg +25792.jpg +22894.jpg +12889.jpg +2377.jpg +18290.jpg +27046.jpg +18728.jpg +253.jpg +151.jpg +2952.jpg +28605.jpg +11391.jpg +20159.jpg +6410.jpg +1053.jpg +25376.jpg +11504.jpg +19306.jpg +16201.jpg +13345.jpg +19134.jpg +9344.jpg +11344.jpg +3372.jpg +1110.jpg +12214.jpg +7499.jpg +8432.jpg +3721.jpg +11355.jpg +5806.jpg +16986.jpg +10862.jpg +27519.jpg +26370.jpg +21226.jpg +22626.jpg +29595.jpg +22693.jpg +9330.jpg +24164.jpg +9604.jpg +14988.jpg +10027.jpg +6976.jpg +26663.jpg +28883.jpg +9739.jpg +23381.jpg +25235.jpg +616.jpg +14800.jpg +17401.jpg +25056.jpg +6810.jpg +26591.jpg +19669.jpg +6102.jpg +5642.jpg +27500.jpg +16283.jpg +14998.jpg +27123.jpg +20538.jpg +8454.jpg +19831.jpg +24423.jpg +9675.jpg +12346.jpg +3688.jpg +29307.jpg +1253.jpg +13169.jpg +5974.jpg +8842.jpg +10108.jpg +8301.jpg +5501.jpg +23465.jpg +21909.jpg +18504.jpg +12600.jpg +17675.jpg +10174.jpg +8446.jpg +19002.jpg +9046.jpg +23647.jpg +14433.jpg +12009.jpg +24786.jpg +24687.jpg +10937.jpg +2168.jpg +22156.jpg +19174.jpg +13754.jpg +22917.jpg +4900.jpg +17268.jpg +12582.jpg +24029.jpg +11938.jpg +12900.jpg +11487.jpg +28299.jpg +9661.jpg +20038.jpg +2109.jpg +6576.jpg +14706.jpg +26712.jpg +29913.jpg +11339.jpg +7441.jpg +20622.jpg +9100.jpg +20354.jpg +11802.jpg +7942.jpg +17629.jpg +2902.jpg +26876.jpg +23159.jpg +8371.jpg +18084.jpg +19522.jpg +6174.jpg +3058.jpg +4437.jpg +10131.jpg +3772.jpg +16773.jpg +13579.jpg +434.jpg +29147.jpg +6012.jpg +14825.jpg +6289.jpg +25802.jpg +3450.jpg +28623.jpg +20346.jpg +9185.jpg +29774.jpg +29001.jpg +12802.jpg +26483.jpg +13503.jpg +2331.jpg +739.jpg +24372.jpg +29695.jpg +29976.jpg +3953.jpg +12505.jpg +18023.jpg +28747.jpg +16499.jpg +27347.jpg +28782.jpg +783.jpg +24569.jpg +18245.jpg +4602.jpg +1620.jpg +26530.jpg +8904.jpg +1821.jpg +18209.jpg +5256.jpg +3489.jpg +22273.jpg +15726.jpg +17297.jpg +15755.jpg +4534.jpg +18488.jpg +8790.jpg +19873.jpg +1749.jpg +7720.jpg +6418.jpg +4682.jpg +13590.jpg +6492.jpg +15457.jpg +6216.jpg +2566.jpg +14861.jpg +19870.jpg +2129.jpg +19182.jpg +17186.jpg +21097.jpg +6639.jpg +4647.jpg +24176.jpg +18939.jpg +12803.jpg +3001.jpg +5239.jpg +25214.jpg +23968.jpg +18363.jpg +19671.jpg +17105.jpg +15894.jpg +28980.jpg +21583.jpg +24840.jpg +27172.jpg +21274.jpg +7667.jpg +1191.jpg +29638.jpg +27532.jpg +18315.jpg +11024.jpg +16712.jpg +2781.jpg +20783.jpg +17730.jpg +16067.jpg +4133.jpg +12196.jpg +13068.jpg +7940.jpg +5770.jpg +21223.jpg +19283.jpg +7376.jpg +12067.jpg +18452.jpg +28770.jpg +8110.jpg +10863.jpg +18313.jpg +17442.jpg +7877.jpg +12019.jpg +15665.jpg +3538.jpg +3202.jpg +16958.jpg +10699.jpg +17991.jpg +4700.jpg +10879.jpg +21687.jpg +287.jpg +11216.jpg +7701.jpg +28591.jpg +26745.jpg +197.jpg +16164.jpg +24000.jpg +8168.jpg +6246.jpg +22199.jpg +29647.jpg +10956.jpg +4081.jpg +15459.jpg +17243.jpg +24715.jpg +17808.jpg +9010.jpg +15892.jpg +28378.jpg +13710.jpg +26967.jpg +29042.jpg +23222.jpg +563.jpg +1556.jpg +15867.jpg +15567.jpg +10371.jpg +10609.jpg +4370.jpg +11999.jpg +26983.jpg +20163.jpg +15257.jpg +26928.jpg +17875.jpg +13466.jpg +3096.jpg +13812.jpg +22316.jpg +22636.jpg +21240.jpg +27227.jpg +20467.jpg +15790.jpg +13894.jpg +19429.jpg +25699.jpg +24970.jpg +29266.jpg +28574.jpg +6061.jpg +24148.jpg +855.jpg +27220.jpg +17049.jpg +20414.jpg +21882.jpg +24252.jpg +15084.jpg +16266.jpg +2030.jpg +6546.jpg +10012.jpg +7608.jpg +8723.jpg +10973.jpg +15545.jpg +23578.jpg +16295.jpg +6528.jpg +15022.jpg +16888.jpg +19967.jpg +21933.jpg +12648.jpg +5802.jpg +18070.jpg +3089.jpg +4067.jpg +17361.jpg +8134.jpg +10218.jpg +25646.jpg +13216.jpg +5859.jpg +23703.jpg +16358.jpg +24021.jpg +4603.jpg +12418.jpg +28803.jpg +28543.jpg +16810.jpg +17078.jpg +29251.jpg +9779.jpg +28901.jpg +25786.jpg +23498.jpg +5113.jpg +21398.jpg +26815.jpg +13146.jpg +26861.jpg +25234.jpg +143.jpg +26927.jpg +22497.jpg +27149.jpg +3794.jpg +13688.jpg +598.jpg +25127.jpg +20976.jpg +653.jpg +15500.jpg +12143.jpg +15562.jpg +4673.jpg +9155.jpg +21562.jpg +18685.jpg +3531.jpg +27758.jpg +21509.jpg +858.jpg +10531.jpg +10557.jpg +3838.jpg +6975.jpg +22159.jpg +3349.jpg +19088.jpg +13048.jpg +12125.jpg +23790.jpg +1888.jpg +18446.jpg +13152.jpg +9181.jpg +12126.jpg +9828.jpg +9874.jpg +29320.jpg +29236.jpg +19859.jpg +28372.jpg +16027.jpg +13040.jpg +11299.jpg +14293.jpg +18692.jpg +27811.jpg +15051.jpg +9125.jpg +26608.jpg +4187.jpg +19574.jpg +13239.jpg +4770.jpg +13492.jpg +473.jpg +20636.jpg +17274.jpg +28476.jpg +4951.jpg +2164.jpg +16354.jpg +24515.jpg +1970.jpg +8743.jpg +27952.jpg +17624.jpg +2431.jpg +26066.jpg +16714.jpg +1961.jpg +18899.jpg +11639.jpg +1152.jpg +10512.jpg +23743.jpg +11424.jpg +20954.jpg +2400.jpg +12115.jpg +6532.jpg +1309.jpg +8049.jpg +24567.jpg +14379.jpg +25911.jpg +28421.jpg +20966.jpg +691.jpg +8276.jpg +5878.jpg +13890.jpg +6728.jpg +11953.jpg +14496.jpg +8619.jpg +27106.jpg +11707.jpg +13749.jpg +5252.jpg +17828.jpg +20077.jpg +11719.jpg +16306.jpg +14022.jpg +9794.jpg +28618.jpg +4857.jpg +169.jpg +20258.jpg +15557.jpg +27016.jpg +23486.jpg +4868.jpg +24691.jpg +12202.jpg +960.jpg +21234.jpg +23391.jpg +18958.jpg +11920.jpg +27093.jpg +6917.jpg +16342.jpg +9654.jpg +2033.jpg +19396.jpg +10013.jpg +1871.jpg +20725.jpg +5132.jpg +3431.jpg +8391.jpg +29523.jpg +19543.jpg +14283.jpg +17974.jpg +14516.jpg +21650.jpg +9698.jpg +9747.jpg +26377.jpg +10876.jpg +5289.jpg +13380.jpg +22278.jpg +10806.jpg +22574.jpg +25515.jpg +24724.jpg +19299.jpg +7444.jpg +10213.jpg +27892.jpg +15837.jpg +19398.jpg +15262.jpg +13938.jpg +29198.jpg +5297.jpg +15204.jpg +4332.jpg +27357.jpg +14122.jpg +17027.jpg +25922.jpg +6433.jpg +10505.jpg +19604.jpg +16422.jpg +20793.jpg +4113.jpg +29390.jpg +26052.jpg +28759.jpg +28025.jpg +13459.jpg +17789.jpg +3331.jpg +28533.jpg +23137.jpg +27274.jpg +9407.jpg +5386.jpg +10402.jpg +26327.jpg +12970.jpg +21279.jpg +29752.jpg +27598.jpg +23834.jpg +24669.jpg +16055.jpg +16125.jpg +25110.jpg +15802.jpg +6661.jpg +28615.jpg +14913.jpg +24297.jpg +1732.jpg +12992.jpg +18201.jpg +26088.jpg +5905.jpg +9069.jpg +2375.jpg +19861.jpg +12095.jpg +10005.jpg +4965.jpg +26325.jpg +9059.jpg +12821.jpg +12043.jpg +19054.jpg +681.jpg +6271.jpg +13182.jpg +27309.jpg +8810.jpg +22761.jpg +18015.jpg +1463.jpg +20092.jpg +4876.jpg +27499.jpg +23111.jpg +29720.jpg +10130.jpg +20156.jpg +1159.jpg +18812.jpg +25801.jpg +1516.jpg +17334.jpg +9624.jpg +25386.jpg +13649.jpg +23698.jpg +18625.jpg +21934.jpg +13156.jpg +17857.jpg +25158.jpg +15587.jpg +24959.jpg +1736.jpg +11840.jpg +1055.jpg +23895.jpg +26441.jpg +3461.jpg +12073.jpg +11836.jpg +3830.jpg +2558.jpg +29075.jpg +27819.jpg +12405.jpg +7081.jpg +20240.jpg +29928.jpg +29414.jpg +18944.jpg +6872.jpg +27296.jpg +3333.jpg +29646.jpg +19747.jpg +29916.jpg +25092.jpg +12979.jpg +22866.jpg +26091.jpg +17971.jpg +22656.jpg +14230.jpg +4467.jpg +4571.jpg +11705.jpg +20871.jpg +7417.jpg +8666.jpg +14001.jpg +27090.jpg +1379.jpg +22914.jpg +26931.jpg +14469.jpg +8244.jpg +22017.jpg +13580.jpg +28064.jpg +3475.jpg +22868.jpg +12981.jpg +12123.jpg +10980.jpg +9457.jpg +25300.jpg +13253.jpg +12008.jpg +17820.jpg +18523.jpg +6323.jpg +8729.jpg +10480.jpg +16405.jpg +1381.jpg +21857.jpg +5486.jpg +22871.jpg +14918.jpg +21166.jpg +5258.jpg +29419.jpg +21030.jpg +23845.jpg +29866.jpg +21865.jpg +12278.jpg +2537.jpg +15685.jpg +8972.jpg +19509.jpg +9617.jpg +8183.jpg +1032.jpg +5860.jpg +7379.jpg +14006.jpg +14386.jpg +20880.jpg +2299.jpg +8180.jpg +16378.jpg +19013.jpg +4254.jpg +23787.jpg +23069.jpg +4007.jpg +5440.jpg +5001.jpg +8900.jpg +15999.jpg +29465.jpg +1224.jpg +22235.jpg +9378.jpg +23547.jpg +6991.jpg +12466.jpg +6818.jpg +11797.jpg +28928.jpg +2039.jpg +12845.jpg +2458.jpg +14077.jpg +2086.jpg +11132.jpg +21987.jpg +14162.jpg +29392.jpg +5748.jpg +22339.jpg +92.jpg +29635.jpg +14732.jpg +23789.jpg +23007.jpg +6962.jpg +15730.jpg +19352.jpg +21993.jpg +21685.jpg +25400.jpg +13387.jpg +28607.jpg +27932.jpg +25307.jpg +25919.jpg +12622.jpg +17285.jpg +4414.jpg +5623.jpg +10617.jpg +25223.jpg +16088.jpg +16709.jpg +25627.jpg +17956.jpg +16239.jpg +1781.jpg +23235.jpg +14064.jpg +22321.jpg +3282.jpg +1441.jpg +4911.jpg +13778.jpg +14821.jpg +18373.jpg +24180.jpg +4512.jpg +12331.jpg +22900.jpg +13984.jpg +3095.jpg +17355.jpg +24369.jpg +16752.jpg +29385.jpg +3801.jpg +19629.jpg +131.jpg +803.jpg +2845.jpg +12163.jpg +12299.jpg +25864.jpg +23959.jpg +5016.jpg +28930.jpg +12210.jpg +2042.jpg +6203.jpg +13839.jpg +28915.jpg +12110.jpg +10886.jpg +25001.jpg +7258.jpg +3338.jpg +10287.jpg +27718.jpg +26181.jpg +2495.jpg +3483.jpg +22161.jpg +26002.jpg +255.jpg +26078.jpg +9450.jpg +1462.jpg +7999.jpg +19195.jpg +12245.jpg +7023.jpg +27649.jpg +8055.jpg +18857.jpg +19279.jpg +3610.jpg +15625.jpg +20777.jpg +9437.jpg +7992.jpg +16226.jpg +19666.jpg +392.jpg +16502.jpg +14699.jpg +13093.jpg +27949.jpg +23629.jpg +10429.jpg +9841.jpg +14798.jpg +29548.jpg +9249.jpg +25611.jpg +29271.jpg +16170.jpg +23904.jpg +9326.jpg +9351.jpg +24090.jpg +17628.jpg +12585.jpg +12596.jpg +20382.jpg +26946.jpg +21269.jpg +9066.jpg +11588.jpg +18622.jpg +24860.jpg +15073.jpg +24899.jpg +9575.jpg +14365.jpg +9607.jpg +15055.jpg +14577.jpg +1316.jpg +17213.jpg +29777.jpg +16981.jpg +21633.jpg +24951.jpg +29555.jpg +25521.jpg +15094.jpg +24663.jpg +17060.jpg +20337.jpg +3980.jpg +22954.jpg +3602.jpg +26524.jpg +29151.jpg +8123.jpg +20760.jpg +1783.jpg +21703.jpg +14406.jpg +28447.jpg +17335.jpg +23932.jpg +25831.jpg +24110.jpg +21795.jpg +28469.jpg +19590.jpg +29717.jpg +4010.jpg +25725.jpg +185.jpg +5114.jpg +1403.jpg +29176.jpg +15617.jpg +21063.jpg +25403.jpg +15993.jpg +24210.jpg +28321.jpg +4817.jpg +9062.jpg +3705.jpg +20790.jpg +11002.jpg +28147.jpg +13578.jpg +19969.jpg +4199.jpg +29719.jpg +8240.jpg +16172.jpg +10896.jpg +2516.jpg +24798.jpg +28402.jpg +11145.jpg +8397.jpg +17747.jpg +14416.jpg +28996.jpg +14490.jpg +10000.jpg +11831.jpg +303.jpg +13641.jpg +11914.jpg +15727.jpg +9404.jpg +1718.jpg +28471.jpg +20774.jpg +28819.jpg +24832.jpg +7114.jpg +28764.jpg +14553.jpg +19829.jpg +13571.jpg +1667.jpg +4924.jpg +13620.jpg +27237.jpg +24800.jpg +27986.jpg +16086.jpg +1012.jpg +2065.jpg +8974.jpg +14851.jpg +8337.jpg +6124.jpg +12046.jpg +11842.jpg +17861.jpg +9473.jpg +11743.jpg +23374.jpg +16076.jpg +17768.jpg +9329.jpg +9527.jpg +27390.jpg +5287.jpg +26728.jpg +7782.jpg +6931.jpg +24932.jpg +18311.jpg +14442.jpg +1226.jpg +21168.jpg +10339.jpg +12429.jpg +8164.jpg +16661.jpg +1555.jpg +18681.jpg +18861.jpg +19545.jpg +315.jpg +13911.jpg +23943.jpg +5320.jpg +10905.jpg +29573.jpg +8647.jpg +25380.jpg +20251.jpg +16380.jpg +5662.jpg +3390.jpg +29404.jpg +10740.jpg +14783.jpg +19803.jpg +16923.jpg +15076.jpg +3090.jpg +8033.jpg +9303.jpg +25878.jpg +5106.jpg +27277.jpg +19338.jpg +13121.jpg +18947.jpg +4471.jpg +16698.jpg +20598.jpg +23619.jpg +14179.jpg +12589.jpg +15808.jpg +16285.jpg +20249.jpg +22951.jpg +21212.jpg +27214.jpg +4986.jpg +13842.jpg +16651.jpg +8724.jpg +13685.jpg +16669.jpg +17081.jpg +787.jpg +11078.jpg +20413.jpg +15368.jpg +19448.jpg +4546.jpg +15601.jpg +8538.jpg +25311.jpg +1512.jpg +2274.jpg +28363.jpg +7760.jpg +6341.jpg +6580.jpg +2403.jpg +8377.jpg +21377.jpg +2009.jpg +20085.jpg +13629.jpg +19385.jpg +23998.jpg +10595.jpg +17739.jpg +18704.jpg +29835.jpg +839.jpg +6669.jpg +19793.jpg +4606.jpg +26150.jpg +3287.jpg +5172.jpg +12518.jpg +15091.jpg +11598.jpg +8440.jpg +23034.jpg +17979.jpg +4761.jpg +10589.jpg +9796.jpg +6561.jpg +17866.jpg +24321.jpg +17635.jpg +22183.jpg +15172.jpg +9951.jpg +28467.jpg +26476.jpg +29640.jpg +7663.jpg +21036.jpg +1546.jpg +29378.jpg +27714.jpg +17223.jpg +14017.jpg +26567.jpg +17983.jpg +11188.jpg +14590.jpg +23395.jpg +20739.jpg +18439.jpg +18726.jpg +16471.jpg +19099.jpg +3740.jpg +14960.jpg +24890.jpg +29792.jpg +15732.jpg +4286.jpg +17162.jpg +27384.jpg +23745.jpg +3448.jpg +5556.jpg +5082.jpg +14082.jpg +23083.jpg +19781.jpg +15541.jpg +5145.jpg +10267.jpg +21055.jpg +11774.jpg +14033.jpg +21445.jpg +17104.jpg +11919.jpg +1847.jpg +18687.jpg +14307.jpg +3060.jpg +24233.jpg +15054.jpg +2004.jpg +25985.jpg +11528.jpg +25766.jpg +16356.jpg +25729.jpg +13069.jpg +18461.jpg +19989.jpg +6957.jpg +2935.jpg +11830.jpg +2854.jpg +6524.jpg +3270.jpg +27258.jpg +24002.jpg +27802.jpg +11498.jpg +12010.jpg +8013.jpg +4025.jpg +3751.jpg +18856.jpg +5064.jpg +25867.jpg +28635.jpg +4599.jpg +19699.jpg +6552.jpg +29729.jpg +14745.jpg +11354.jpg +22131.jpg +4307.jpg +8228.jpg +2153.jpg +22125.jpg +21069.jpg +2226.jpg +10330.jpg +5638.jpg +2425.jpg +5286.jpg +4208.jpg +27567.jpg +29870.jpg +12908.jpg +18007.jpg +22661.jpg +10325.jpg +7566.jpg +342.jpg +7695.jpg +12891.jpg +2715.jpg +17579.jpg +7586.jpg +15514.jpg +3208.jpg +8355.jpg +14815.jpg +11601.jpg +9621.jpg +21545.jpg +15327.jpg +20811.jpg +24981.jpg +11139.jpg +20867.jpg +13743.jpg +9201.jpg +13017.jpg +19417.jpg +9097.jpg +21601.jpg +20089.jpg +11684.jpg +23780.jpg +672.jpg +19583.jpg +5855.jpg +27662.jpg +23542.jpg +14841.jpg +29249.jpg +14181.jpg +21875.jpg +15105.jpg +1989.jpg +28202.jpg +27671.jpg +22648.jpg +14304.jpg +23765.jpg +11394.jpg +768.jpg +16573.jpg +23663.jpg +4850.jpg +22764.jpg +12186.jpg +254.jpg +8733.jpg +22743.jpg +17474.jpg +11790.jpg +28440.jpg +2392.jpg +20605.jpg +28568.jpg +20403.jpg +16461.jpg +28933.jpg +21229.jpg +7127.jpg +23537.jpg +5710.jpg +25295.jpg +1298.jpg +19978.jpg +13772.jpg +10205.jpg +17619.jpg +26230.jpg +28301.jpg +19928.jpg +14557.jpg +12564.jpg +15357.jpg +24402.jpg +3580.jpg +26523.jpg +12084.jpg +9821.jpg +26136.jpg +3690.jpg +7267.jpg +11337.jpg +20527.jpg +29384.jpg +17179.jpg +6029.jpg +13987.jpg +24521.jpg +22946.jpg +15901.jpg +13273.jpg +4226.jpg +16524.jpg +29447.jpg +28008.jpg +26854.jpg +10836.jpg +18114.jpg +8278.jpg +19633.jpg +25857.jpg +25115.jpg +8860.jpg +11901.jpg +26035.jpg +21115.jpg +23024.jpg +354.jpg +24352.jpg +24646.jpg +10652.jpg +21249.jpg +1805.jpg +17307.jpg +14504.jpg +27083.jpg +4238.jpg +29804.jpg +16771.jpg +29318.jpg +8644.jpg +16603.jpg +29955.jpg +18481.jpg +16618.jpg +16330.jpg +11420.jpg +2813.jpg +21103.jpg +5166.jpg +19610.jpg +20994.jpg +20518.jpg +2581.jpg +12086.jpg +15960.jpg +3746.jpg +15742.jpg +23840.jpg +14702.jpg +659.jpg +7593.jpg +5910.jpg +348.jpg +4124.jpg +1123.jpg +27156.jpg +12436.jpg +10198.jpg +15067.jpg +27112.jpg +103.jpg +8279.jpg +9136.jpg +6557.jpg +16095.jpg +20820.jpg +13560.jpg +25471.jpg +12103.jpg +8815.jpg +10374.jpg +24991.jpg +2927.jpg +13373.jpg +21665.jpg +3133.jpg +2517.jpg +14085.jpg +8030.jpg +12391.jpg +11758.jpg +26863.jpg +8318.jpg +22702.jpg +26968.jpg +26097.jpg +27629.jpg +9086.jpg +23310.jpg +17155.jpg +29204.jpg +13264.jpg +26936.jpg +2148.jpg +22623.jpg +4966.jpg +12980.jpg +12054.jpg +8551.jpg +98.jpg +20929.jpg +7943.jpg +7935.jpg +15728.jpg +9568.jpg +22841.jpg +24822.jpg +24130.jpg +8693.jpg +8653.jpg +23889.jpg +781.jpg +28062.jpg +18417.jpg +25589.jpg +2144.jpg +13495.jpg +10093.jpg +22779.jpg +29295.jpg +1113.jpg +1380.jpg +18643.jpg +11439.jpg +6045.jpg +2326.jpg +12698.jpg +18916.jpg +17403.jpg +238.jpg +15560.jpg +13041.jpg +25883.jpg +16318.jpg +6456.jpg +2940.jpg +8223.jpg +5831.jpg +8612.jpg +2510.jpg +16193.jpg +5955.jpg +15589.jpg +7831.jpg +17479.jpg +20102.jpg +18131.jpg +18047.jpg +1210.jpg +20874.jpg +25573.jpg +14128.jpg +5011.jpg +13909.jpg +4922.jpg +27245.jpg +14156.jpg +2406.jpg +6696.jpg +14060.jpg +12878.jpg +10800.jpg +14306.jpg +19864.jpg +25542.jpg +2910.jpg +9380.jpg +25060.jpg +1495.jpg +4473.jpg +23546.jpg +4330.jpg +1136.jpg +10127.jpg +9121.jpg +10222.jpg +6809.jpg +20514.jpg +8249.jpg +6993.jpg +24690.jpg +20126.jpg +9959.jpg +8535.jpg +14870.jpg +2229.jpg +28665.jpg +6584.jpg +21245.jpg +10187.jpg +10849.jpg +3003.jpg +8525.jpg +17348.jpg +22854.jpg +23339.jpg +18100.jpg +5236.jpg +10778.jpg +1612.jpg +22934.jpg +6774.jpg +22543.jpg +26871.jpg +10039.jpg +3006.jpg +21800.jpg +16042.jpg +5075.jpg +5085.jpg +16154.jpg +27792.jpg +16144.jpg +16988.jpg +982.jpg +15650.jpg +22245.jpg +8508.jpg +10660.jpg +24948.jpg +11027.jpg +19536.jpg +14691.jpg +1451.jpg +19037.jpg +22874.jpg +9382.jpg +15462.jpg +22289.jpg +24041.jpg +29317.jpg +23262.jpg +9283.jpg +5010.jpg +18673.jpg +11240.jpg +3979.jpg +25567.jpg +2805.jpg +29168.jpg +1855.jpg +10112.jpg +2696.jpg +17764.jpg +16310.jpg +16483.jpg +21250.jpg +1608.jpg +9927.jpg +7816.jpg +2472.jpg +27185.jpg +16496.jpg +7979.jpg +26481.jpg +14373.jpg +19832.jpg +18276.jpg +16141.jpg +27282.jpg +11816.jpg +26347.jpg +4392.jpg +25314.jpg +7778.jpg +13287.jpg +4828.jpg +24563.jpg +16949.jpg +6562.jpg +15009.jpg +29945.jpg +23734.jpg +8884.jpg +17485.jpg +2350.jpg +20909.jpg +12705.jpg +28876.jpg +26031.jpg +20162.jpg +9712.jpg +12208.jpg +27241.jpg +3435.jpg +25449.jpg +20268.jpg +25763.jpg +20932.jpg +23646.jpg +2282.jpg +25410.jpg +26331.jpg +22799.jpg +6750.jpg +29763.jpg +10289.jpg +2356.jpg +3859.jpg +21855.jpg +12005.jpg +20020.jpg +18271.jpg +7210.jpg +1611.jpg +8478.jpg +29876.jpg +26454.jpg +14276.jpg +11882.jpg +28856.jpg +13300.jpg +24488.jpg +10393.jpg +26904.jpg +1530.jpg +26261.jpg +16386.jpg +13912.jpg +88.jpg +4936.jpg +2200.jpg +12731.jpg +29551.jpg +21620.jpg +12190.jpg +8981.jpg +3082.jpg +20116.jpg +26661.jpg +26965.jpg +6163.jpg +19465.jpg +20573.jpg +5794.jpg +8941.jpg +6983.jpg +1998.jpg +14323.jpg +3765.jpg +25209.jpg +537.jpg +4438.jpg +21300.jpg +7648.jpg +9586.jpg +13053.jpg +6360.jpg +5924.jpg +11589.jpg +25342.jpg +7137.jpg +438.jpg +2307.jpg +15374.jpg +14974.jpg +5659.jpg +15689.jpg +21409.jpg +24053.jpg +3002.jpg +13470.jpg +7724.jpg +23135.jpg +26248.jpg +4577.jpg +16776.jpg +15553.jpg +9106.jpg +18035.jpg +8754.jpg +17930.jpg +4786.jpg +7628.jpg +8462.jpg +24128.jpg +21007.jpg +16227.jpg +3176.jpg +19179.jpg +18486.jpg +10372.jpg +27284.jpg +3608.jpg +1929.jpg +20581.jpg +226.jpg +26694.jpg +12227.jpg +1456.jpg +6899.jpg +20852.jpg +10305.jpg +34.jpg +11099.jpg +6416.jpg +898.jpg +26447.jpg +4527.jpg +19576.jpg +8650.jpg +24142.jpg +14646.jpg +3443.jpg +17662.jpg +16596.jpg +12869.jpg +14446.jpg +28746.jpg +24985.jpg +21758.jpg +21866.jpg +4962.jpg +11203.jpg +19816.jpg +4526.jpg +24765.jpg +11158.jpg +11301.jpg +2151.jpg +7090.jpg +19895.jpg +7863.jpg +4583.jpg +8778.jpg +3951.jpg +14455.jpg +22674.jpg +28871.jpg +22146.jpg +9508.jpg +29862.jpg +1076.jpg +5539.jpg +20398.jpg +15606.jpg +320.jpg +16939.jpg +12013.jpg +2253.jpg +24199.jpg +25889.jpg +20083.jpg +29519.jpg +2871.jpg +17202.jpg +17679.jpg +19464.jpg +13789.jpg +12494.jpg +4150.jpg +2347.jpg +827.jpg +6411.jpg +18985.jpg +13425.jpg +8290.jpg +25876.jpg +13321.jpg +2654.jpg +7636.jpg +18649.jpg +19674.jpg +29883.jpg +4650.jpg +8907.jpg +19443.jpg +19384.jpg +24769.jpg +27674.jpg +15164.jpg +9837.jpg +22135.jpg +16497.jpg +9107.jpg +27163.jpg +26695.jpg +14336.jpg +7610.jpg +29978.jpg +22068.jpg +15243.jpg +9221.jpg +13785.jpg +2609.jpg +23866.jpg +27663.jpg +17399.jpg +13714.jpg +218.jpg +5848.jpg +5040.jpg +26160.jpg +13042.jpg +26446.jpg +19853.jpg +4536.jpg +2933.jpg +5586.jpg +9565.jpg +8481.jpg +11729.jpg +9243.jpg +28018.jpg +13760.jpg +9158.jpg +3635.jpg +7891.jpg +3599.jpg +20336.jpg +25375.jpg +14937.jpg +23679.jpg +21858.jpg +3831.jpg +9395.jpg +3533.jpg +23491.jpg +6748.jpg +281.jpg +28937.jpg +17571.jpg +26023.jpg +6679.jpg +10155.jpg +11036.jpg +12434.jpg +1083.jpg +27113.jpg +28578.jpg +2677.jpg +12959.jpg +4048.jpg +28587.jpg +23740.jpg +17405.jpg +19860.jpg +29795.jpg +27883.jpg +23412.jpg +201.jpg +17089.jpg +10478.jpg +10490.jpg +11689.jpg +6201.jpg +16917.jpg +16790.jpg +15988.jpg +29259.jpg +9116.jpg +21213.jpg +13870.jpg +24505.jpg +28906.jpg +18811.jpg +26332.jpg +22144.jpg +15814.jpg +22087.jpg +11284.jpg +2919.jpg +6186.jpg +11594.jpg +3691.jpg +14201.jpg +13826.jpg +21289.jpg +8067.jpg +9962.jpg +28617.jpg +15324.jpg +2297.jpg +28195.jpg +12879.jpg +6677.jpg +2656.jpg +11071.jpg +25663.jpg +24454.jpg +10928.jpg +9507.jpg +15165.jpg +4956.jpg +3286.jpg +1572.jpg +13250.jpg +19800.jpg +11788.jpg +29443.jpg +20303.jpg +20277.jpg +14647.jpg +8705.jpg +26855.jpg +28074.jpg +13972.jpg +22793.jpg +11274.jpg +26582.jpg +28484.jpg +16855.jpg +4807.jpg +5765.jpg +14345.jpg +11085.jpg +27089.jpg +17120.jpg +483.jpg +20494.jpg +26701.jpg +6382.jpg +27263.jpg +3210.jpg +17129.jpg +28841.jpg +4151.jpg +13407.jpg +27485.jpg +13791.jpg +20220.jpg +4104.jpg +14805.jpg +8435.jpg +17751.jpg +3508.jpg +24913.jpg +4000.jpg +22458.jpg +29261.jpg +15806.jpg +23803.jpg +26501.jpg +27492.jpg +15170.jpg +14165.jpg +16813.jpg +8591.jpg +27945.jpg +4937.jpg +4405.jpg +19150.jpg +18754.jpg +3131.jpg +4846.jpg +8797.jpg +7207.jpg +9255.jpg +14752.jpg +4403.jpg +3848.jpg +18426.jpg +8755.jpg +15011.jpg +16148.jpg +29275.jpg +13565.jpg +16543.jpg +20187.jpg +15480.jpg +24407.jpg +29114.jpg +18592.jpg +26345.jpg +19336.jpg +10702.jpg +15234.jpg +20040.jpg +24133.jpg +9123.jpg +9298.jpg +17988.jpg +18639.jpg +17160.jpg +16535.jpg +2690.jpg +359.jpg +23198.jpg +18346.jpg +350.jpg +25357.jpg +27164.jpg +9470.jpg +565.jpg +23699.jpg +9816.jpg +9381.jpg +15765.jpg +7726.jpg +19686.jpg +5319.jpg +20084.jpg +21127.jpg +10756.jpg +8057.jpg +26690.jpg +2790.jpg +23945.jpg +863.jpg +21603.jpg +11663.jpg +28262.jpg +3805.jpg +21344.jpg +8913.jpg +16370.jpg +11437.jpg +23323.jpg +28482.jpg +3383.jpg +19236.jpg +19402.jpg +23129.jpg +24134.jpg +12812.jpg +23084.jpg +19835.jpg +25323.jpg +2959.jpg +25530.jpg +105.jpg +17195.jpg +14444.jpg +18479.jpg +6210.jpg +9078.jpg +16286.jpg +19004.jpg +12368.jpg +17604.jpg +15489.jpg +24006.jpg +16112.jpg +17358.jpg +15956.jpg +27563.jpg +6112.jpg +6501.jpg +9397.jpg +3192.jpg +11902.jpg +12601.jpg +14462.jpg +7617.jpg +13201.jpg +17419.jpg +14704.jpg +19258.jpg +8239.jpg +8548.jpg +9900.jpg +21155.jpg +20178.jpg +4269.jpg +10437.jpg +18737.jpg +19334.jpg +21347.jpg +6856.jpg +6531.jpg +21826.jpg +12569.jpg +12049.jpg +7604.jpg +16464.jpg +17938.jpg +20928.jpg +27004.jpg +16069.jpg +11936.jpg +21739.jpg +21522.jpg +13827.jpg +18862.jpg +1368.jpg +21112.jpg +10866.jpg +28335.jpg +21341.jpg +6911.jpg +26338.jpg +26089.jpg +402.jpg +14429.jpg +22244.jpg +11687.jpg +24066.jpg +7140.jpg +25823.jpg +13081.jpg +16793.jpg +1505.jpg +13853.jpg +8102.jpg +10471.jpg +29350.jpg +9752.jpg +4574.jpg +19337.jpg +8419.jpg +22157.jpg +13051.jpg +11584.jpg +13440.jpg +2562.jpg +3912.jpg +5083.jpg +16979.jpg +7250.jpg +28766.jpg +18236.jpg +16308.jpg +2860.jpg +1308.jpg +15756.jpg +20088.jpg +24392.jpg +10025.jpg +4417.jpg +6479.jpg +12435.jpg +26339.jpg +10818.jpg +7105.jpg +15471.jpg +2998.jpg +29495.jpg +29882.jpg +7246.jpg +26944.jpg +8076.jpg +26013.jpg +23066.jpg +21438.jpg +17063.jpg +21302.jpg +27862.jpg +8879.jpg +9694.jpg +3032.jpg +9376.jpg +17299.jpg +16585.jpg +5290.jpg +17554.jpg +7681.jpg +22132.jpg +17508.jpg +12198.jpg +2961.jpg +14127.jpg +5550.jpg +25681.jpg +24537.jpg +9337.jpg +8873.jpg +24181.jpg +10278.jpg +10708.jpg +23337.jpg +8294.jpg +13856.jpg +13933.jpg +10676.jpg +5269.jpg +22327.jpg +10418.jpg +27807.jpg +24550.jpg +3578.jpg +18194.jpg +15153.jpg +8326.jpg +19897.jpg +7399.jpg +20052.jpg +24713.jpg +7211.jpg +7765.jpg +28868.jpg +23954.jpg +4129.jpg +25543.jpg +3478.jpg +11120.jpg +8324.jpg +25131.jpg +4511.jpg +21257.jpg +16462.jpg +10971.jpg +5751.jpg +27187.jpg +27884.jpg +16538.jpg +12924.jpg +24494.jpg +21888.jpg +16478.jpg +29598.jpg +17819.jpg +12455.jpg +7699.jpg +6428.jpg +17505.jpg +23372.jpg +24556.jpg +5849.jpg +26041.jpg +5394.jpg +17258.jpg +24253.jpg +9098.jpg +8006.jpg +22401.jpg +7985.jpg +25887.jpg +14735.jpg +9292.jpg +9167.jpg +26233.jpg +1632.jpg +26586.jpg +18560.jpg +7057.jpg +423.jpg +11483.jpg +19424.jpg +5971.jpg +2866.jpg +7598.jpg +4697.jpg +27805.jpg +25547.jpg +10454.jpg +9327.jpg +11966.jpg +20734.jpg +20458.jpg +3309.jpg +16282.jpg +9493.jpg +28472.jpg +1430.jpg +22475.jpg +21258.jpg +25877.jpg +27651.jpg +3880.jpg +24378.jpg +10126.jpg +2034.jpg +6644.jpg +12257.jpg +12788.jpg +14341.jpg +20775.jpg +24249.jpg +28506.jpg +23284.jpg +6088.jpg +19914.jpg +29914.jpg +6185.jpg +4675.jpg +23713.jpg +25470.jpg +14669.jpg +15627.jpg +4063.jpg +15578.jpg +4472.jpg +2294.jpg +22217.jpg +16901.jpg +25420.jpg +22889.jpg +4635.jpg +7409.jpg +6483.jpg +618.jpg +1331.jpg +21132.jpg +9108.jpg +13012.jpg +4163.jpg +17515.jpg +27330.jpg +25842.jpg +18909.jpg +18225.jpg +22430.jpg +16198.jpg +5896.jpg +28000.jpg +13214.jpg +6906.jpg +14257.jpg +22811.jpg +12985.jpg +6759.jpg +13564.jpg +2986.jpg +24022.jpg +58.jpg +25181.jpg +21664.jpg +20553.jpg +25332.jpg +28374.jpg +14659.jpg +15943.jpg +7070.jpg +8836.jpg +4464.jpg +1209.jpg +25950.jpg +25708.jpg +17500.jpg +1543.jpg +23783.jpg +1563.jpg +14741.jpg +24601.jpg +8805.jpg +12927.jpg +1042.jpg +8335.jpg +14570.jpg +16338.jpg +25414.jpg +5030.jpg +16967.jpg +4616.jpg +23258.jpg +7707.jpg +21950.jpg +8488.jpg +6484.jpg +6436.jpg +27146.jpg +27939.jpg +27081.jpg +27496.jpg +18554.jpg +8007.jpg +23283.jpg +9644.jpg +10662.jpg +17053.jpg +22265.jpg +27744.jpg +5670.jpg +18646.jpg +16466.jpg +4736.jpg +22657.jpg +12351.jpg +22222.jpg +23670.jpg +8117.jpg +15417.jpg +511.jpg +4387.jpg +20539.jpg +9424.jpg +6340.jpg +14321.jpg +5852.jpg +6768.jpg +11300.jpg +16418.jpg +1411.jpg +12357.jpg +20306.jpg +28292.jpg +14705.jpg +3922.jpg +28411.jpg +18396.jpg +24357.jpg +8889.jpg +6933.jpg +9260.jpg +27297.jpg +23234.jpg +25406.jpg +14726.jpg +7152.jpg +17103.jpg +2041.jpg +6213.jpg +26356.jpg +21831.jpg +1337.jpg +11669.jpg +12229.jpg +12096.jpg +16434.jpg +21144.jpg +7679.jpg +15807.jpg +13043.jpg +20856.jpg +18393.jpg +23720.jpg +19290.jpg +16475.jpg +5031.jpg +11599.jpg +23609.jpg +27774.jpg +2249.jpg +29452.jpg +3415.jpg +17085.jpg +8706.jpg +4812.jpg +19065.jpg +25826.jpg +25306.jpg +27338.jpg +15646.jpg +3682.jpg +16107.jpg +10794.jpg +29241.jpg +14561.jpg +14436.jpg +24978.jpg +7531.jpg +20392.jpg +28304.jpg +29628.jpg +8626.jpg +7071.jpg +16105.jpg +27056.jpg +3242.jpg +25996.jpg +21555.jpg +24010.jpg +4863.jpg +6839.jpg +14882.jpg +8685.jpg +5228.jpg +21542.jpg +13148.jpg +7467.jpg +20762.jpg +18860.jpg +10301.jpg +5790.jpg +13286.jpg +27404.jpg +26784.jpg +19516.jpg +17723.jpg +10764.jpg +15544.jpg +6826.jpg +16153.jpg +8215.jpg +17545.jpg +23777.jpg +29927.jpg +20958.jpg +23433.jpg +26479.jpg +1801.jpg +28198.jpg +17897.jpg +29117.jpg +8771.jpg +6377.jpg +8984.jpg +17594.jpg +25482.jpg +9671.jpg +707.jpg +29367.jpg +8707.jpg +3882.jpg +12798.jpg +16261.jpg +29439.jpg +15927.jpg +1433.jpg +6867.jpg +5880.jpg +13039.jpg +3144.jpg +7103.jpg +400.jpg +7348.jpg +22336.jpg +25203.jpg +23955.jpg +13541.jpg +28380.jpg +2418.jpg +29078.jpg +23997.jpg +9322.jpg +7746.jpg +29167.jpg +2605.jpg +25491.jpg +14407.jpg +17598.jpg +12255.jpg +8376.jpg +10718.jpg +23300.jpg +14222.jpg +25425.jpg +20370.jpg +13896.jpg +25430.jpg +7542.jpg +28512.jpg +14332.jpg +14806.jpg +936.jpg +8939.jpg +10018.jpg +26394.jpg +5318.jpg +28115.jpg +24175.jpg +29201.jpg +13980.jpg +28956.jpg +2651.jpg +5367.jpg +11163.jpg +12571.jpg +4374.jpg +26099.jpg +1784.jpg +29528.jpg +25633.jpg +4049.jpg +29747.jpg +726.jpg +13162.jpg +20510.jpg +11521.jpg +3035.jpg +16508.jpg +8298.jpg +19463.jpg +8333.jpg +21476.jpg +4831.jpg +5108.jpg +20971.jpg +28860.jpg +20238.jpg +7358.jpg +26237.jpg +13818.jpg +13446.jpg +15232.jpg +4998.jpg +25197.jpg +18742.jpg +3406.jpg +27655.jpg +28009.jpg +6961.jpg +2742.jpg +14787.jpg +28998.jpg +29991.jpg +25983.jpg +22438.jpg +8195.jpg +22647.jpg +25561.jpg +8003.jpg +8431.jpg +12122.jpg +28622.jpg +6269.jpg +26906.jpg +18495.jpg +10869.jpg +19058.jpg +3227.jpg +28964.jpg +29174.jpg +2428.jpg +7302.jpg +29462.jpg +249.jpg +8747.jpg +10945.jpg +6654.jpg +27849.jpg +10965.jpg +11862.jpg +24262.jpg +1742.jpg +10121.jpg +6766.jpg +16721.jpg +5879.jpg +4445.jpg +27634.jpg +26324.jpg +11673.jpg +20979.jpg +23686.jpg +5657.jpg +112.jpg +22292.jpg +7554.jpg +2872.jpg +29918.jpg +20351.jpg +1979.jpg +13561.jpg +2580.jpg +13752.jpg +24169.jpg +2340.jpg +6392.jpg +22978.jpg +1839.jpg +1597.jpg +27196.jpg +25755.jpg +26858.jpg +16389.jpg +12664.jpg +28357.jpg +3906.jpg +22808.jpg +6729.jpg +27708.jpg +20973.jpg +11343.jpg +14966.jpg +15277.jpg +26589.jpg +21655.jpg +11289.jpg +14265.jpg +18669.jpg +2214.jpg +16868.jpg +28879.jpg +16120.jpg +5813.jpg +10936.jpg +15487.jpg +26293.jpg +29543.jpg +16913.jpg +5184.jpg +18572.jpg +8832.jpg +15623.jpg +24373.jpg +7248.jpg +16970.jpg +21846.jpg +19988.jpg +19607.jpg +1094.jpg +542.jpg +25229.jpg +19838.jpg +17716.jpg +2917.jpg +21032.jpg +1778.jpg +23295.jpg +6730.jpg +22113.jpg +6240.jpg +29754.jpg +15189.jpg +16992.jpg +5463.jpg +19554.jpg +14891.jpg +21595.jpg +8390.jpg +15301.jpg +569.jpg +15269.jpg +26058.jpg +23775.jpg +21859.jpg +13729.jpg +2211.jpg +7402.jpg +12903.jpg +29038.jpg +24885.jpg +17963.jpg +20849.jpg +15770.jpg +11096.jpg +25724.jpg +157.jpg +18910.jpg +10151.jpg +27896.jpg +9232.jpg +5241.jpg +15208.jpg +4165.jpg +25641.jpg +6683.jpg +1939.jpg +5999.jpg +14172.jpg +8463.jpg +19615.jpg +24425.jpg +10327.jpg +18000.jpg +9505.jpg +7788.jpg +6058.jpg +17390.jpg +29124.jpg +16872.jpg +6504.jpg +11134.jpg +23595.jpg +29.jpg +19315.jpg +19983.jpg +13443.jpg +27174.jpg +13323.jpg +595.jpg +21709.jpg +17792.jpg +22865.jpg +29248.jpg +2196.jpg +3791.jpg +26189.jpg +11349.jpg +12267.jpg +2281.jpg +15558.jpg +23767.jpg +8404.jpg +26218.jpg +9471.jpg +7175.jpg +26607.jpg +7500.jpg +9842.jpg +23569.jpg +5301.jpg +21294.jpg +17283.jpg +26051.jpg +2882.jpg +21283.jpg +11913.jpg +4539.jpg +16279.jpg +13747.jpg +8838.jpg +772.jpg +5982.jpg +23308.jpg +25897.jpg +12883.jpg +13692.jpg +9088.jpg +3438.jpg +29692.jpg +646.jpg +29382.jpg +731.jpg +13930.jpg +9497.jpg +451.jpg +8252.jpg +533.jpg +12976.jpg +24636.jpg +4580.jpg +20433.jpg +22852.jpg +15902.jpg +8785.jpg +22558.jpg +10897.jpg +8585.jpg +8319.jpg +16807.jpg +3355.jpg +18845.jpg +23879.jpg +9043.jpg +16355.jpg +21460.jpg +504.jpg +21878.jpg +9532.jpg +14506.jpg +1816.jpg +21023.jpg +18743.jpg +24621.jpg +23250.jpg +404.jpg +17620.jpg +19109.jpg +22167.jpg +16904.jpg +22264.jpg +5479.jpg +20653.jpg +21975.jpg +11923.jpg +604.jpg +1504.jpg +29950.jpg +6437.jpg +17544.jpg +11760.jpg +11459.jpg +18128.jpg +11474.jpg +5950.jpg +6219.jpg +16737.jpg +10525.jpg +25339.jpg +14402.jpg +10465.jpg +5579.jpg +3115.jpg +16916.jpg +16852.jpg +26219.jpg +1573.jpg +8571.jpg +19547.jpg +26173.jpg +2043.jpg +25618.jpg +1851.jpg +16222.jpg +959.jpg +2776.jpg +26782.jpg +27408.jpg +9110.jpg +8623.jpg +19300.jpg +26702.jpg +27581.jpg +7832.jpg +3896.jpg +9778.jpg +27809.jpg +1990.jpg +8829.jpg +874.jpg +6726.jpg +16121.jpg +4416.jpg +777.jpg +6720.jpg +10887.jpg +22705.jpg +1542.jpg +3233.jpg +12044.jpg +19567.jpg +22633.jpg +9710.jpg +11174.jpg +20730.jpg +23318.jpg +16951.jpg +26852.jpg +9352.jpg +12395.jpg +1715.jpg +20401.jpg +29383.jpg +6762.jpg +28943.jpg +18253.jpg +14065.jpg +15987.jpg +20112.jpg +1967.jpg +23970.jpg +6049.jpg +15791.jpg +3274.jpg +18691.jpg +12679.jpg +13682.jpg +28366.jpg +25398.jpg +11262.jpg +25839.jpg +22667.jpg +13108.jpg +18115.jpg +20119.jpg +22009.jpg +20373.jpg +29426.jpg +4032.jpg +16762.jpg +29853.jpg +10594.jpg +27072.jpg +11296.jpg +12412.jpg +15595.jpg +24813.jpg +29993.jpg +10.jpg +21167.jpg +10382.jpg +14731.jpg +9958.jpg +27626.jpg +28261.jpg +29854.jpg +29433.jpg +29488.jpg +4174.jpg +14547.jpg +12128.jpg +14359.jpg +4518.jpg +4420.jpg +3802.jpg +24524.jpg +7443.jpg +7048.jpg +15885.jpg +18186.jpg +19529.jpg +4432.jpg +21970.jpg +23166.jpg +22503.jpg +12626.jpg +19304.jpg +3895.jpg +19496.jpg +23189.jpg +19623.jpg +13062.jpg +14042.jpg +11696.jpg +6401.jpg +6689.jpg +26462.jpg +1602.jpg +349.jpg +23056.jpg +9188.jpg +1259.jpg +27743.jpg +14533.jpg +23257.jpg +21.jpg +21560.jpg +4379.jpg +351.jpg +10643.jpg +26626.jpg +22451.jpg +26715.jpg +26167.jpg +18460.jpg +3278.jpg +4889.jpg +23431.jpg +29242.jpg +17101.jpg +5223.jpg +3884.jpg +19655.jpg +829.jpg +12371.jpg +11876.jpg +3250.jpg +1357.jpg +20541.jpg +6637.jpg +6489.jpg +20722.jpg +7956.jpg +3849.jpg +22417.jpg +19625.jpg +22575.jpg +6047.jpg +1213.jpg +21368.jpg +14953.jpg +12099.jpg +11532.jpg +16665.jpg +18242.jpg +13761.jpg +21019.jpg +22231.jpg +10211.jpg +19982.jpg +10741.jpg +6625.jpg +23880.jpg +19223.jpg +21967.jpg +4327.jpg +1527.jpg +16124.jpg +15910.jpg +15342.jpg +16938.jpg +8269.jpg +14709.jpg +7791.jpg +15260.jpg +21323.jpg +3822.jpg +8688.jpg +7936.jpg +1835.jpg +25035.jpg +24628.jpg +27363.jpg +21849.jpg +377.jpg +24502.jpg +14537.jpg +18092.jpg +2071.jpg +7713.jpg +940.jpg +26436.jpg +4381.jpg +4605.jpg +25660.jpg +16751.jpg +23322.jpg +21869.jpg +19946.jpg +6585.jpg +27683.jpg +24527.jpg +3576.jpg +28843.jpg +29736.jpg +20046.jpg +4890.jpg +7551.jpg +6349.jpg +10621.jpg +1988.jpg +2319.jpg +9428.jpg +1180.jpg +18110.jpg +9886.jpg +8902.jpg +9358.jpg +9190.jpg +22274.jpg +5055.jpg +27534.jpg +14015.jpg +10137.jpg +6212.jpg +24371.jpg +19630.jpg +11130.jpg +2210.jpg +12427.jpg +24752.jpg +26188.jpg +24790.jpg +2746.jpg +502.jpg +26993.jpg +6039.jpg +25120.jpg +5681.jpg +7846.jpg +22921.jpg +29163.jpg +29273.jpg +23597.jpg +29479.jpg +18280.jpg +18951.jpg +20724.jpg +4729.jpg +16994.jpg +13229.jpg +3501.jpg +11865.jpg +14967.jpg +8642.jpg +10054.jpg +17298.jpg +24586.jpg +8788.jpg +23768.jpg +17245.jpg +10300.jpg +5081.jpg +3674.jpg +18885.jpg +14677.jpg +10569.jpg +25178.jpg +3815.jpg +25697.jpg +21430.jpg +21267.jpg +13002.jpg +26250.jpg +2891.jpg +7594.jpg +652.jpg +16768.jpg +9258.jpg +22286.jpg +4006.jpg +5614.jpg +18148.jpg +4391.jpg +28061.jpg +7727.jpg +12375.jpg +12926.jpg +4705.jpg +4811.jpg +28851.jpg +26848.jpg +18551.jpg +19976.jpg +1815.jpg +17314.jpg +5233.jpg +2531.jpg +15182.jpg +541.jpg +868.jpg +3752.jpg +28796.jpg +25972.jpg +19360.jpg +10006.jpg +19188.jpg +20791.jpg +23888.jpg +18370.jpg +7983.jpg +26391.jpg +11382.jpg +18415.jpg +13603.jpg +13403.jpg +1552.jpg +14367.jpg +10246.jpg +2439.jpg +23770.jpg +20540.jpg +21195.jpg +11666.jpg +6790.jpg +18926.jpg +2305.jpg +1222.jpg +7787.jpg +29935.jpg +24916.jpg +8477.jpg +12528.jpg +871.jpg +18408.jpg +19735.jpg +22576.jpg +8624.jpg +8719.jpg +1690.jpg +12752.jpg +11661.jpg +22091.jpg +20385.jpg +26380.jpg +17139.jpg +10510.jpg +5646.jpg +17349.jpg +7309.jpg +13197.jpg +5009.jpg +26402.jpg +28267.jpg +3823.jpg +14686.jpg +18279.jpg +24445.jpg +4026.jpg +23687.jpg +27816.jpg +7859.jpg +16018.jpg +3876.jpg +23746.jpg +9700.jpg +5577.jpg +22840.jpg +9770.jpg +19764.jpg +10584.jpg +5899.jpg +17773.jpg +383.jpg +13103.jpg +19772.jpg +23145.jpg +7646.jpg +25008.jpg +6469.jpg +6817.jpg +24106.jpg +11880.jpg +26528.jpg +24125.jpg +1953.jpg +16781.jpg +26985.jpg +7133.jpg +6676.jpg +22083.jpg +8023.jpg +15540.jpg +6299.jpg +21731.jpg +23876.jpg +813.jpg +14888.jpg +22253.jpg +4582.jpg +12782.jpg +12296.jpg +18761.jpg +29653.jpg +14080.jpg +11918.jpg +10909.jpg +26239.jpg +5983.jpg +24947.jpg +26550.jpg +15078.jpg +5152.jpg +7860.jpg +89.jpg +18022.jpg +16327.jpg +16070.jpg +3776.jpg +20446.jpg +28735.jpg +26280.jpg +24272.jpg +25006.jpg +8052.jpg +27032.jpg +28633.jpg +21885.jpg +15698.jpg +19756.jpg +10977.jpg +22038.jpg +10925.jpg +9524.jpg +9227.jpg +25616.jpg +14391.jpg +28233.jpg +10324.jpg +6145.jpg +15953.jpg +23026.jpg +11656.jpg +29144.jpg +3865.jpg +3886.jpg +14748.jpg +17008.jpg +13573.jpg +26133.jpg +9171.jpg +2184.jpg +14970.jpg +7455.jpg +18255.jpg +2938.jpg +23534.jpg +27605.jpg +6303.jpg +6404.jpg +5368.jpg +21945.jpg +6619.jpg +24119.jpg +18476.jpg +14627.jpg +28159.jpg +21394.jpg +7451.jpg +10028.jpg +9919.jpg +14200.jpg +28748.jpg +13941.jpg +7468.jpg +13925.jpg +20647.jpg +12769.jpg +5573.jpg +20100.jpg +22570.jpg +15832.jpg +20663.jpg +20016.jpg +3014.jpg +6426.jpg +19430.jpg +19453.jpg +29527.jpg +29119.jpg +29197.jpg +20646.jpg +3793.jpg +9976.jpg +15679.jpg +25165.jpg +14802.jpg +2321.jpg +24706.jpg +699.jpg +26165.jpg +11398.jpg +332.jpg +28316.jpg +5636.jpg +26549.jpg +556.jpg +7854.jpg +19124.jpg +18872.jpg +3318.jpg +12833.jpg +25628.jpg +4558.jpg +2944.jpg +22721.jpg +21814.jpg +29886.jpg +14932.jpg +7109.jpg +1723.jpg +23422.jpg +25581.jpg +25401.jpg +14883.jpg +10990.jpg +6578.jpg +10316.jpg +22904.jpg +18792.jpg +20625.jpg +23711.jpg +4887.jpg +14223.jpg +15613.jpg +524.jpg +25813.jpg +2182.jpg +12609.jpg +23766.jpg +29780.jpg +27658.jpg +9208.jpg +23898.jpg +26245.jpg +11067.jpg +27673.jpg +17724.jpg +14603.jpg +15445.jpg +26334.jpg +16043.jpg +11137.jpg +21297.jpg +18189.jpg +9774.jpg +2719.jpg +27133.jpg +16517.jpg +9202.jpg +10291.jpg +13441.jpg +7621.jpg +23176.jpg +23274.jpg +22246.jpg +22736.jpg +12797.jpg +9199.jpg +6638.jpg +22584.jpg +7952.jpg +12629.jpg +26196.jpg +644.jpg +14649.jpg +20700.jpg +16037.jpg +19726.jpg +394.jpg +27080.jpg +4339.jpg +24639.jpg +2056.jpg +9458.jpg +22621.jpg +1905.jpg +9492.jpg +6205.jpg +27668.jpg +25268.jpg +15341.jpg +1663.jpg +24320.jpg +11940.jpg +15390.jpg +20815.jpg +9180.jpg +608.jpg +16572.jpg +13821.jpg +15396.jpg +5588.jpg +27837.jpg +20846.jpg +5139.jpg +26080.jpg +27471.jpg +11304.jpg +6706.jpg +16114.jpg +8414.jpg +17412.jpg +5186.jpg +29493.jpg +8421.jpg +16265.jpg +22817.jpg +19970.jpg +21694.jpg +5844.jpg +16292.jpg +22149.jpg +8368.jpg +11237.jpg +27234.jpg +22795.jpg +6664.jpg +24530.jpg +27965.jpg +7739.jpg +20875.jpg +26737.jpg +14672.jpg +13993.jpg +1174.jpg +9021.jpg +23538.jpg +11336.jpg +4027.jpg +1262.jpg +8323.jpg +23921.jpg +2405.jpg +1166.jpg +27666.jpg +21786.jpg +5213.jpg +15787.jpg +26285.jpg +17432.jpg +23363.jpg +22197.jpg +491.jpg +122.jpg +8562.jpg +14586.jpg +27365.jpg +24966.jpg +25183.jpg +13869.jpg +11892.jpg +19886.jpg +216.jpg +29952.jpg +6208.jpg +2045.jpg +17043.jpg +18060.jpg +27235.jpg +21025.jpg +28867.jpg +6656.jpg +26156.jpg +2470.jpg +26077.jpg +11332.jpg +2484.jpg +7356.jpg +29057.jpg +25610.jpg +2230.jpg +24031.jpg +12454.jpg +12077.jpg +16799.jpg +21586.jpg +18012.jpg +11212.jpg +24052.jpg +8720.jpg +2737.jpg +7773.jpg +16987.jpg +14545.jpg +2504.jpg +2786.jpg +11407.jpg +11031.jpg +29941.jpg +28450.jpg +4428.jpg +14835.jpg +5455.jpg +27861.jpg +28027.jpg +10906.jpg +22512.jpg +2235.jpg +23419.jpg +22364.jpg +7947.jpg +23062.jpg +11974.jpg +25961.jpg +8844.jpg +21064.jpg +12920.jpg +25215.jpg +824.jpg +22979.jpg +14178.jpg +9251.jpg +11724.jpg +16230.jpg +4086.jpg +12040.jpg +19883.jpg +6536.jpg +21359.jpg +9132.jpg +20800.jpg +27983.jpg +5308.jpg +6425.jpg +14198.jpg +10385.jpg +12431.jpg +27001.jpg +20452.jpg +8581.jpg +17987.jpg +20010.jpg +22114.jpg +2966.jpg +26017.jpg +26389.jpg +10730.jpg +25149.jpg +639.jpg +15406.jpg +1617.jpg +9673.jpg +24360.jpg +17536.jpg +14949.jpg +15375.jpg +7851.jpg +20399.jpg +21769.jpg +15913.jpg +7318.jpg +20496.jpg +10856.jpg +9104.jpg +18868.jpg +28896.jpg +24349.jpg +24383.jpg +12757.jpg +7545.jpg +10430.jpg +4683.jpg +18500.jpg +23192.jpg +29992.jpg +2604.jpg +9365.jpg +13799.jpg +22501.jpg +26686.jpg +19848.jpg +2676.jpg +12932.jpg +21313.jpg +26328.jpg +24762.jpg +11615.jpg +15412.jpg +27027.jpg +353.jpg +4724.jpg +17563.jpg +26992.jpg +16178.jpg +22903.jpg +27189.jpg +6476.jpg +1301.jpg +10235.jpg +18182.jpg +26590.jpg +17107.jpg +18467.jpg +7255.jpg +18312.jpg +7653.jpg +20717.jpg +5551.jpg +12572.jpg +23820.jpg +6617.jpg +24898.jpg +6287.jpg +24908.jpg +17532.jpg +5804.jpg +2317.jpg +19782.jpg +2662.jpg +10477.jpg +27749.jpg +27648.jpg +23181.jpg +9643.jpg +22696.jpg +20918.jpg +2570.jpg +5067.jpg +24101.jpg +26116.jpg +27239.jpg +10796.jpg +4132.jpg +9620.jpg +24005.jpg +8718.jpg +24992.jpg +8722.jpg +19146.jpg +29579.jpg +13210.jpg +15724.jpg +21011.jpg +12690.jpg +25037.jpg +13223.jpg +18474.jpg +8565.jpg +2468.jpg +1724.jpg +5421.jpg +1983.jpg +8438.jpg +5156.jpg +14285.jpg +5433.jpg +9956.jpg +24568.jpg +24416.jpg +4552.jpg +11003.jpg +25428.jpg +8652.jpg +27889.jpg +25577.jpg +28811.jpg +15473.jpg +8639.jpg +6063.jpg +7213.jpg +24475.jpg +16845.jpg +15112.jpg +29386.jpg +26108.jpg +17512.jpg +3108.jpg +25480.jpg +25639.jpg +7933.jpg +13643.jpg +22066.jpg +26824.jpg +25200.jpg +26743.jpg +18623.jpg +26223.jpg +12683.jpg +27931.jpg +10400.jpg +27461.jpg +8792.jpg +3432.jpg +20431.jpg +2844.jpg +17673.jpg +15653.jpg +2456.jpg +21358.jpg +24060.jpg +21216.jpg +22640.jpg +8909.jpg +3840.jpg +3163.jpg +4732.jpg +14995.jpg +14492.jpg +4494.jpg +4051.jpg +15594.jpg +20171.jpg +26869.jpg +13562.jpg +7924.jpg +23067.jpg +20047.jpg +27250.jpg +13313.jpg +15443.jpg +28683.jpg +4568.jpg +29450.jpg +7752.jpg +14623.jpg +10485.jpg +24271.jpg +13797.jpg +27386.jpg +29080.jpg +6556.jpg +27715.jpg +25487.jpg +14727.jpg +16941.jpg +26029.jpg +26805.jpg +16224.jpg +3204.jpg +24048.jpg +12024.jpg +20640.jpg +830.jpg +10067.jpg +20483.jpg +5066.jpg +23214.jpg +11605.jpg +8952.jpg +850.jpg +25496.jpg +13518.jpg +8242.jpg +3996.jpg +6000.jpg +18977.jpg +17867.jpg +16426.jpg +21691.jpg +11458.jpg +8373.jpg +12251.jpg +15160.jpg +11275.jpg +8068.jpg +7020.jpg +27700.jpg +13026.jpg +22612.jpg +10043.jpg +20407.jpg +2800.jpg +23023.jpg +10942.jpg +717.jpg +12523.jpg +952.jpg +5098.jpg +8753.jpg +29544.jpg +10469.jpg +2452.jpg +21591.jpg +5931.jpg +1156.jpg +3467.jpg +23454.jpg +6496.jpg +520.jpg +1247.jpg +2534.jpg +6379.jpg +656.jpg +19226.jpg +26174.jpg +28035.jpg +3971.jpg +15210.jpg +15483.jpg +20090.jpg +7703.jpg +17044.jpg +11073.jpg +12194.jpg +6996.jpg +10793.jpg +22158.jpg +19971.jpg +4310.jpg +12017.jpg +18723.jpg +744.jpg +8672.jpg +3376.jpg +15711.jpg +17199.jpg +21809.jpg +4681.jpg +22598.jpg +28230.jpg +22669.jpg +5178.jpg +11263.jpg +5676.jpg +6668.jpg +14387.jpg +11451.jpg +1461.jpg +7968.jpg +17408.jpg +14951.jpg +16232.jpg +29742.jpg +18116.jpg +9308.jpg +11365.jpg +17488.jpg +10340.jpg +22252.jpg +19019.jpg +11738.jpg +26047.jpg +28349.jpg +5700.jpg +29606.jpg +12256.jpg +19393.jpg +16749.jpg +23088.jpg +6394.jpg +18598.jpg +12419.jpg +12719.jpg +29040.jpg +28649.jpg +8910.jpg +14906.jpg +4563.jpg +9763.jpg +29162.jpg +19808.jpg +29929.jpg +622.jpg +14277.jpg +11574.jpg +23241.jpg +3992.jpg +13119.jpg +9964.jpg +18127.jpg +23075.jpg +29858.jpg +2799.jpg +11227.jpg +18156.jpg +2699.jpg +29921.jpg +8468.jpg +15915.jpg +19213.jpg +23580.jpg +1427.jpg +25478.jpg +429.jpg +10684.jpg +7490.jpg +25750.jpg +16324.jpg +9582.jpg +19950.jpg +20216.jpg +11909.jpg +10864.jpg +20408.jpg +21911.jpg +25463.jpg +24749.jpg +19014.jpg +16957.jpg +5177.jpg +24422.jpg +2999.jpg +9947.jpg +6493.jpg +25076.jpg +16847.jpg +1692.jpg +28802.jpg +15503.jpg +19320.jpg +5629.jpg +17822.jpg +11947.jpg +1165.jpg +6588.jpg +5189.jpg +5728.jpg +23012.jpg +25762.jpg +20779.jpg +15114.jpg +9333.jpg +13058.jpg +21470.jpg +8746.jpg +18094.jpg +13763.jpg +19046.jpg +20048.jpg +25444.jpg +22082.jpg +27100.jpg +27735.jpg +12984.jpg +19822.jpg +26046.jpg +26274.jpg +21062.jpg +29006.jpg +176.jpg +12997.jpg +24492.jpg +15120.jpg +28631.jpg +4551.jpg +4885.jpg +13647.jpg +27074.jpg +1646.jpg +29970.jpg +18971.jpg +24328.jpg +23148.jpg +4903.jpg +18777.jpg +22805.jpg +17552.jpg +1645.jpg +20744.jpg +1351.jpg +12462.jpg +1387.jpg +27041.jpg +2873.jpg +23450.jpg +26398.jpg +23044.jpg +966.jpg +21597.jpg +25958.jpg +2649.jpg +28621.jpg +27303.jpg +18881.jpg +27516.jpg +7918.jpg +8209.jpg +5497.jpg +8480.jpg +15705.jpg +7045.jpg +21373.jpg +17385.jpg +12533.jpg +17346.jpg +21880.jpg +9340.jpg +29735.jpg +18133.jpg +7605.jpg +13090.jpg +17136.jpg +26084.jpg +19634.jpg +12881.jpg +16071.jpg +4544.jpg +18629.jpg +4658.jpg +13420.jpg +9270.jpg +13211.jpg +17396.jpg +26278.jpg +14521.jpg +26707.jpg +5797.jpg +14846.jpg +26272.jpg +6627.jpg +20495.jpg +10999.jpg +12069.jpg +2812.jpg +6474.jpg +5661.jpg +3574.jpg +21022.jpg +17562.jpg +10428.jpg +24957.jpg +19703.jpg +3220.jpg +17637.jpg +2424.jpg +7054.jpg +23520.jpg +22443.jpg +5644.jpg +12290.jpg +13004.jpg +2646.jpg +29356.jpg +11363.jpg +23314.jpg +15268.jpg +17809.jpg +12154.jpg +1093.jpg +24572.jpg +23040.jpg +6767.jpg +21020.jpg +16328.jpg +17341.jpg +7548.jpg +8475.jpg +19041.jpg +3561.jpg +16368.jpg +7685.jpg +8922.jpg +22885.jpg +6567.jpg +21392.jpg +9363.jpg +16325.jpg +15082.jpg +23592.jpg +29240.jpg +2968.jpg +9531.jpg +8820.jpg +771.jpg +6577.jpg +10360.jpg +15879.jpg +10522.jpg +14952.jpg +6006.jpg +12915.jpg +859.jpg +26499.jpg +13309.jpg +21006.jpg +19414.jpg +15852.jpg +13085.jpg +11778.jpg +12139.jpg +22023.jpg +10434.jpg +17521.jpg +7421.jpg +1200.jpg +25962.jpg +23650.jpg +12828.jpg +16579.jpg +10109.jpg +16413.jpg +26897.jpg +9417.jpg +27273.jpg +28055.jpg +19736.jpg +28510.jpg +13666.jpg +15130.jpg +14697.jpg +15349.jpg +23393.jpg +17922.jpg +18252.jpg +29937.jpg +1641.jpg +24499.jpg +29218.jpg +21924.jpg +26266.jpg +17372.jpg +20000.jpg +13928.jpg +17353.jpg +25374.jpg +5329.jpg +13939.jpg +25971.jpg +18767.jpg +11320.jpg +11090.jpg +20278.jpg +14720.jpg +9022.jpg +22560.jpg +16401.jpg +6206.jpg +19564.jpg +23861.jpg +26584.jpg +12946.jpg +27935.jpg +18672.jpg +2199.jpg +13966.jpg +21082.jpg +8533.jpg +19436.jpg +11864.jpg +15002.jpg +8037.jpg +21766.jpg +29725.jpg +8211.jpg +25526.jpg +29504.jpg +18601.jpg +27572.jpg +9433.jpg +27740.jpg +13952.jpg +13971.jpg +23778.jpg +68.jpg +17197.jpg +22418.jpg +19119.jpg +277.jpg +5188.jpg +24838.jpg +7852.jpg +21307.jpg +1507.jpg +4242.jpg +10599.jpg +26898.jpg +10125.jpg +946.jpg +1578.jpg +12366.jpg +11221.jpg +16610.jpg +17640.jpg +22133.jpg +26087.jpg +13844.jpg +11030.jpg +13145.jpg +18995.jpg +16035.jpg +15555.jpg +22206.jpg +15741.jpg +5161.jpg +11967.jpg +23449.jpg +1686.jpg +5718.jpg +23536.jpg +19462.jpg +22456.jpg +943.jpg +25255.jpg +25527.jpg +7457.jpg +4291.jpg +4411.jpg +20227.jpg +29884.jpg +27472.jpg +9474.jpg +28709.jpg +15414.jpg +22603.jpg +3810.jpg +5976.jpg +8026.jpg +9737.jpg +12109.jpg +13478.jpg +17489.jpg +10217.jpg +11965.jpg +28305.jpg +26986.jpg +18783.jpg +8607.jpg +27980.jpg +25412.jpg +1850.jpg +6965.jpg +11103.jpg +11046.jpg +10637.jpg +6275.jpg +534.jpg +28886.jpg +27898.jpg +17848.jpg +18274.jpg +5170.jpg +16681.jpg +2981.jpg +9612.jpg +27827.jpg +1874.jpg +28530.jpg +29185.jpg +1005.jpg +24541.jpg +12222.jpg +2353.jpg +18473.jpg +10903.jpg +27686.jpg +16918.jpg +15678.jpg +28239.jpg +13327.jpg +8917.jpg +13101.jpg +27702.jpg +8283.jpg +12002.jpg +26448.jpg +13076.jpg +25130.jpg +11126.jpg +4298.jpg +21467.jpg +23387.jpg +24093.jpg +23903.jpg +14275.jpg +26583.jpg +20535.jpg +13241.jpg +27141.jpg +16921.jpg +21587.jpg +8553.jpg +17913.jpg +19078.jpg +10685.jpg +5316.jpg +2584.jpg +7553.jpg +806.jpg +27759.jpg +22985.jpg +8175.jpg +6081.jpg +29787.jpg +12262.jpg +15378.jpg +3917.jpg +15713.jpg +25467.jpg +15261.jpg +20241.jpg +15115.jpg +11425.jpg +13756.jpg +5361.jpg +4983.jpg +16521.jpg +10461.jpg +9145.jpg +28320.jpg +3257.jpg +16357.jpg +9422.jpg +31.jpg +2260.jpg +16344.jpg +14515.jpg +17185.jpg +23648.jpg +24661.jpg +11395.jpg +29614.jpg +22938.jpg +24411.jpg +11372.jpg +22540.jpg +4021.jpg +15552.jpg +20368.jpg +20996.jpg +4350.jpg +11150.jpg +29324.jpg +24364.jpg +24844.jpg +5435.jpg +3907.jpg +25188.jpg +11941.jpg +15019.jpg +27349.jpg +28268.jpg +27491.jpg +26431.jpg +16819.jpg +7975.jpg +729.jpg +6468.jpg +20714.jpg +671.jpg +8782.jpg +19369.jpg +11516.jpg +9715.jpg +17154.jpg +6599.jpg +29094.jpg +6828.jpg +16844.jpg +4636.jpg +3079.jpg +10881.jpg +21304.jpg +26225.jpg +22893.jpg +20442.jpg +4797.jpg +12409.jpg +1957.jpg +1271.jpg +22121.jpg +28809.jpg +7155.jpg +11348.jpg +12912.jpg +25281.jpg +9646.jpg +11982.jpg +11667.jpg +20359.jpg +11694.jpg +5792.jpg +25824.jpg +4118.jpg +29788.jpg +20968.jpg +19774.jpg +13884.jpg +14400.jpg +28582.jpg +20517.jpg +12268.jpg +12239.jpg +1059.jpg +19912.jpg +27321.jpg +11847.jpg +1190.jpg +3749.jpg +28173.jpg +12076.jpg +19677.jpg +24510.jpg +14780.jpg +17452.jpg +10870.jpg +10357.jpg +20721.jpg +29487.jpg +22006.jpg +4256.jpg +13874.jpg +10383.jpg +3091.jpg +16631.jpg +10055.jpg +21057.jpg +29046.jpg +25859.jpg +29458.jpg +20999.jpg +12047.jpg +25222.jpg +6509.jpg +27157.jpg +25112.jpg +7476.jpg +20344.jpg +24554.jpg +11777.jpg +1436.jpg +3623.jpg +15917.jpg +16435.jpg +1848.jpg +12082.jpg +8687.jpg +25706.jpg +6220.jpg +8539.jpg +17659.jpg +18318.jpg +851.jpg +8289.jpg +25582.jpg +17883.jpg +22742.jpg +27356.jpg +27721.jpg +25337.jpg +8447.jpg +7349.jpg +20765.jpg +21667.jpg +12694.jpg +5604.jpg +1951.jpg +2833.jpg +15499.jpg +23109.jpg +6596.jpg +18536.jpg +4772.jpg +13129.jpg +11259.jpg +8867.jpg +14737.jpg +21197.jpg +21401.jpg +10828.jpg +8046.jpg +28383.jpg +2325.jpg +3419.jpg +6168.jpg +15779.jpg +535.jpg +875.jpg +3737.jpg +17667.jpg +8141.jpg +10495.jpg +8987.jpg +29663.jpg +9790.jpg +22193.jpg +26660.jpg +6721.jpg +1065.jpg +4075.jpg +15283.jpg +28693.jpg +14052.jpg +24326.jpg +14503.jpg +16012.jpg +16580.jpg +11627.jpg +167.jpg +24645.jpg +18369.jpg +7430.jpg +12338.jpg +5785.jpg +18573.jpg +28723.jpg +2795.jpg +12463.jpg +17920.jpg +2280.jpg +27736.jpg +7767.jpg +23167.jpg +29430.jpg +27079.jpg +4871.jpg +17459.jpg +18863.jpg +18382.jpg +18010.jpg +21017.jpg +209.jpg +29674.jpg +6505.jpg +29314.jpg +7245.jpg +4260.jpg +27450.jpg +18634.jpg +20528.jpg +28037.jpg +21053.jpg +15962.jpg +25221.jpg +26817.jpg +1343.jpg +24078.jpg +24977.jpg +7029.jpg +14316.jpg +24334.jpg +23087.jpg +19559.jpg +21099.jpg +21902.jpg +9838.jpg +2288.jpg +28199.jpg +8837.jpg +25576.jpg +27150.jpg +27400.jpg +11994.jpg +29520.jpg +5986.jpg +14909.jpg +3455.jpg +27633.jpg +15419.jpg +2880.jpg +15983.jpg +20599.jpg +12837.jpg +5693.jpg +26988.jpg +15510.jpg +10848.jpg +24178.jpg +6465.jpg +17655.jpg +6327.jpg +2619.jpg +29438.jpg +12372.jpg +2789.jpg +514.jpg +6225.jpg +29824.jpg +6645.jpg +23744.jpg +7796.jpg +27923.jpg +17791.jpg +9521.jpg +26850.jpg +18243.jpg +8236.jpg +17280.jpg +215.jpg +9558.jpg +8756.jpg +1945.jpg +25278.jpg +13367.jpg +18204.jpg +1477.jpg +26676.jpg +21221.jpg +16276.jpg +2540.jpg +20386.jpg +21980.jpg +9230.jpg +1326.jpg +15761.jpg +20264.jpg +27166.jpg +14961.jpg +11856.jpg +22595.jpg +2969.jpg +17717.jpg +13159.jpg +5331.jpg +11626.jpg +20680.jpg +25603.jpg +3081.jpg +9082.jpg +12078.jpg +27973.jpg +25727.jpg +20082.jpg +25048.jpg +27850.jpg +29710.jpg +17296.jpg +12271.jpg +1903.jpg +22824.jpg +7243.jpg +21651.jpg +4074.jpg +5099.jpg +4898.jpg +15125.jpg +6128.jpg +7712.jpg +1665.jpg +20117.jpg +18835.jpg +28548.jpg +8185.jpg +26687.jpg +9370.jpg +14839.jpg +16823.jpg +3105.jpg +24984.jpg +19744.jpg +20821.jpg +26820.jpg +26568.jpg +22718.jpg +10002.jpg +5835.jpg +5135.jpg +13484.jpg +16609.jpg +14508.jpg +634.jpg +12832.jpg +20131.jpg +18989.jpg +1277.jpg +16802.jpg +21370.jpg +19561.jpg +145.jpg +17001.jpg +22798.jpg +17473.jpg +29682.jpg +26562.jpg +15593.jpg +25217.jpg +270.jpg +1474.jpg +8556.jpg +3400.jpg +8712.jpg +22233.jpg +27818.jpg +18713.jpg +8493.jpg +207.jpg +5867.jpg +18411.jpg +17612.jpg +6695.jpg +27228.jpg +27353.jpg +25030.jpg +25912.jpg +1722.jpg +27650.jpg +25992.jpg +29960.jpg +7320.jpg +20291.jpg +16983.jpg +60.jpg +15522.jpg +23669.jpg +15085.jpg +26902.jpg +17911.jpg +2824.jpg +29222.jpg +2314.jpg +23599.jpg +14703.jpg +20797.jpg +18869.jpg +9572.jpg +3446.jpg +7208.jpg +3030.jpg +27497.jpg +4274.jpg +25827.jpg +17798.jpg +14563.jpg +20224.jpg +4989.jpg +28707.jpg +14954.jpg +200.jpg +16613.jpg +22141.jpg +19144.jpg +26086.jpg +24465.jpg +314.jpg +29969.jpg +8822.jpg +8883.jpg +23068.jpg +134.jpg +19325.jpg +4244.jpg +14445.jpg +17402.jpg +8985.jpg +23583.jpg +11592.jpg +6945.jpg +15045.jpg +23239.jpg +4824.jpg +26787.jpg +115.jpg +22315.jpg +10397.jpg +17238.jpg +25242.jpg +18397.jpg +20758.jpg +25343.jpg +10185.jpg +12183.jpg +3244.jpg +14477.jpg +7017.jpg +23641.jpg +18716.jpg +15648.jpg +21365.jpg +19972.jpg +18005.jpg +12633.jpg +14067.jpg +29753.jpg +26564.jpg +8728.jpg +8100.jpg +23264.jpg +19940.jpg +12956.jpg +16134.jpg +24873.jpg +21381.jpg +22637.jpg +14897.jpg +29881.jpg +21505.jpg +1220.jpg +21016.jpg +7508.jpg +3020.jpg +3317.jpg +22169.jpg +9394.jpg +18193.jpg +4626.jpg +19266.jpg +24255.jpg +28289.jpg +19466.jpg +21622.jpg +21281.jpg +12058.jpg +24274.jpg +9913.jpg +27925.jpg +5612.jpg +24171.jpg +6526.jpg +26357.jpg +12292.jpg +9410.jpg +24166.jpg +24544.jpg +14788.jpg +20147.jpg +28359.jpg +28601.jpg +627.jpg +13658.jpg +21094.jpg +12445.jpg +18195.jpg +13582.jpg +10101.jpg +5191.jpg +12111.jpg +6825.jpg +23000.jpg +15198.jpg +13954.jpg +17653.jpg +17958.jpg +16874.jpg +4913.jpg +29775.jpg +10604.jpg +18487.jpg +5763.jpg +25409.jpg +22036.jpg +25815.jpg +5499.jpg +13967.jpg +2228.jpg +3595.jpg +17181.jpg +13018.jpg +8726.jpg +11243.jpg +20032.jpg +20706.jpg +23577.jpg +19961.jpg +18030.jpg +25920.jpg +13406.jpg +16001.jpg +18142.jpg +27571.jpg +16699.jpg +11416.jpg +3000.jpg +15618.jpg +23964.jpg +16575.jpg +27527.jpg +268.jpg +23631.jpg +4231.jpg +14777.jpg +26622.jpg +3295.jpg +23938.jpg +23574.jpg +15141.jpg +3315.jpg +9917.jpg +15477.jpg +9295.jpg +5420.jpg +13174.jpg +16245.jpg +17338.jpg +11249.jpg +4517.jpg +23168.jpg +13611.jpg +24304.jpg +11908.jpg +23902.jpg +5482.jpg +12977.jpg +3231.jpg +19035.jpg +17869.jpg +5222.jpg +21919.jpg +22716.jpg +7813.jpg +418.jpg +26813.jpg +9868.jpg +6481.jpg +3051.jpg +26734.jpg +6196.jpg +2710.jpg +27902.jpg +15841.jpg +9439.jpg +14640.jpg +21003.jpg +6087.jpg +22814.jpg +21215.jpg +29372.jpg +23179.jpg +8714.jpg +1459.jpg +23637.jpg +969.jpg +24819.jpg +4656.jpg +10667.jpg +4116.jpg +10176.jpg +13331.jpg +3297.jpg +26064.jpg +7143.jpg +19193.jpg +10021.jpg +4451.jpg +14532.jpg +8530.jpg +19492.jpg +21481.jpg +26826.jpg +4917.jpg +26766.jpg +3156.jpg +19484.jpg +12106.jpg +3519.jpg +9415.jpg +24054.jpg +9349.jpg +5949.jpg +4912.jpg +763.jpg +28114.jpg +19476.jpg +22846.jpg +584.jpg +4130.jpg +3890.jpg +22509.jpg +5306.jpg +27831.jpg +19879.jpg +21695.jpg +1371.jpg +3197.jpg +6615.jpg +24989.jpg +14823.jpg +13396.jpg +26667.jpg +20980.jpg +1824.jpg +17758.jpg +73.jpg +10693.jpg +12791.jpg +25411.jpg +18953.jpg +22109.jpg +6888.jpg +761.jpg +8938.jpg +5263.jpg +15364.jpg +26449.jpg +6137.jpg +26413.jpg +15682.jpg +18839.jpg +15990.jpg +721.jpg +8715.jpg +5529.jpg +408.jpg +21504.jpg +27160.jpg +16013.jpg +27894.jpg +21380.jpg +14362.jpg +17369.jpg +19778.jpg +3126.jpg +27290.jpg +27531.jpg +13419.jpg +2338.jpg +21497.jpg +25829.jpg +16871.jpg +9539.jpg +4182.jpg +4921.jpg +29823.jpg +13207.jpg +15644.jpg +21912.jpg +97.jpg +12231.jpg +9930.jpg +85.jpg +16417.jpg +19807.jpg +6519.jpg +25847.jpg +2830.jpg +14002.jpg +5921.jpg +11472.jpg +3664.jpg +4746.jpg +24682.jpg +10614.jpg +3883.jpg +21647.jpg +27043.jpg +3530.jpg +12653.jpg +2430.jpg +4696.jpg +3465.jpg +8801.jpg +21515.jpg +19328.jpg +7024.jpg +13867.jpg +27509.jpg +19856.jpg +2285.jpg +24714.jpg +19380.jpg +5015.jpg +19454.jpg +1339.jpg +16175.jpg +12367.jpg +5559.jpg +19270.jpg +1669.jpg +16649.jpg +20956.jpg +21552.jpg +11625.jpg +25372.jpg +5671.jpg +4910.jpg +11307.jpg +17240.jpg +16364.jpg +6926.jpg +9563.jpg +2638.jpg +13357.jpg +23786.jpg +132.jpg +22039.jpg +22973.jpg +8159.jpg +27956.jpg +25359.jpg +19824.jpg +12388.jpg +13500.jpg +12424.jpg +15444.jpg +11303.jpg +10765.jpg +17926.jpg +22382.jpg +4253.jpg +4128.jpg +29594.jpg +4131.jpg +25392.jpg +22681.jpg +9480.jpg +13602.jpg +11628.jpg +18655.jpg +3087.jpg +12742.jpg +9738.jpg +1912.jpg +1520.jpg +25540.jpg +1537.jpg +17499.jpg +24472.jpg +26631.jpg +3767.jpg +19916.jpg +5798.jpg +27644.jpg +22034.jpg +16592.jpg +3775.jpg +5197.jpg +3437.jpg +20908.jpg +21702.jpg +4821.jpg +19259.jpg +2393.jpg +6753.jpg +5731.jpg +27307.jpg +21493.jpg +16333.jpg +22731.jpg +7373.jpg +12689.jpg +6144.jpg +24695.jpg +19647.jpg +7283.jpg +8704.jpg +1067.jpg +12448.jpg +19029.jpg +23126.jpg +8184.jpg +10207.jpg +6863.jpg +1708.jpg +28613.jpg +28451.jpg +28384.jpg +7872.jpg +22255.jpg +18987.jpg +5810.jpg +6650.jpg +5395.jpg +26130.jpg +11837.jpg +11180.jpg +2339.jpg +2270.jpg +10294.jpg +15666.jpg +3453.jpg +815.jpg +8148.jpg +21615.jpg +5542.jpg +21771.jpg +20073.jpg +6322.jpg +8434.jpg +10116.jpg +25157.jpg +1526.jpg +3506.jpg +121.jpg +14820.jpg +265.jpg +29895.jpg +4972.jpg +13493.jpg +24940.jpg +2588.jpg +24986.jpg +9195.jpg +1058.jpg +5352.jpg +13597.jpg +23881.jpg +6245.jpg +22088.jpg +22050.jpg +26378.jpg +605.jpg +27701.jpg +18432.jpg +29366.jpg +22556.jpg +3484.jpg +8015.jpg +6458.jpg +23493.jpg +23392.jpg +1549.jpg +13056.jpg +8634.jpg +8081.jpg +1969.jpg +11860.jpg +26184.jpg +7901.jpg +7683.jpg +13828.jpg +17022.jpg +17824.jpg +9367.jpg +18263.jpg +5625.jpg +15425.jpg +19357.jpg +2066.jpg +28664.jpg +15062.jpg +20727.jpg +27564.jpg +11115.jpg +6948.jpg +15158.jpg +28313.jpg +12140.jpg +2691.jpg +21572.jpg +22241.jpg +18644.jpg +10845.jpg +1327.jpg +29490.jpg +22269.jpg +11033.jpg +17048.jpg +26185.jpg +17710.jpg +15828.jpg +14399.jpg +26837.jpg +22676.jpg +13460.jpg +21164.jpg +22223.jpg +29069.jpg +8485.jpg +25692.jpg +15463.jpg +181.jpg +24543.jpg +26851.jpg +10976.jpg +6320.jpg +17458.jpg +8259.jpg +17229.jpg +26321.jpg +5870.jpg +6154.jpg +20.jpg +27050.jpg +11052.jpg +17380.jpg +18729.jpg +7076.jpg +14135.jpg +20175.jpg +14750.jpg +29550.jpg +26141.jpg +24975.jpg +8708.jpg +15300.jpg +1349.jpg +23275.jpg +7085.jpg +5737.jpg +22227.jpg +22338.jpg +25073.jpg +2852.jpg +2514.jpg +14826.jpg +27529.jpg +12748.jpg +895.jpg +15403.jpg +13655.jpg +29358.jpg +19927.jpg +10867.jpg +5028.jpg +25600.jpg +3500.jpg +4055.jpg +19265.jpg +12522.jpg +26747.jpg +14792.jpg +18524.jpg +29631.jpg +1241.jpg +4487.jpg +28700.jpg +15246.jpg +20757.jpg +18727.jpg +26477.jpg +18289.jpg +2916.jpg +25632.jpg +19531.jpg +26939.jpg +654.jpg +897.jpg +12872.jpg +19446.jpg +7312.jpg +14046.jpg +26286.jpg +14473.jpg +3607.jpg +5637.jpg +15290.jpg +398.jpg +6381.jpg +486.jpg +13534.jpg +9728.jpg +18463.jpg +3612.jpg +6594.jpg +22719.jpg +24771.jpg +12712.jpg +4014.jpg +15944.jpg +260.jpg +28263.jpg +19377.jpg +5641.jpg +1877.jpg +523.jpg +6026.jpg +28342.jpg +11187.jpg +24655.jpg +18736.jpg +7761.jpg +410.jpg +3382.jpg +1239.jpg +13805.jpg +313.jpg +23348.jpg +27612.jpg +10038.jpg +20141.jpg +5470.jpg +5298.jpg +2988.jpg +4559.jpg +4840.jpg +17699.jpg +261.jpg +12189.jpg +26776.jpg +13454.jpg +29513.jpg +156.jpg +4463.jpg +9815.jpg +4932.jpg +8193.jpg +18544.jpg +25715.jpg +20591.jpg +7268.jpg +6925.jpg +4106.jpg +28853.jpg +14589.jpg +10564.jpg +12142.jpg +1776.jpg +2505.jpg +14244.jpg +23723.jpg +21478.jpg +3693.jpg +9423.jpg +2147.jpg +17255.jpg +2467.jpg +27008.jpg +10049.jpg +29191.jpg +26246.jpg +6018.jpg +6511.jpg +13748.jpg +14813.jpg +15673.jpg +11613.jpg +18751.jpg +6060.jpg +28824.jpg +21836.jpg +23101.jpg +7395.jpg +10917.jpg +10184.jpg +27556.jpg +6775.jpg +11107.jpg +854.jpg +16498.jpg +17231.jpg +15222.jpg +10585.jpg +23727.jpg +27202.jpg +6942.jpg +24764.jpg +21074.jpg +27205.jpg +4886.jpg +26579.jpg +7596.jpg +4617.jpg +28732.jpg +69.jpg +7154.jpg +20564.jpg +22043.jpg +5516.jpg +3113.jpg +24917.jpg +12203.jpg +7469.jpg +15534.jpg +27866.jpg +24234.jpg +26637.jpg +11773.jpg +6630.jpg +18920.jpg +26580.jpg +29160.jpg +3019.jpg +3513.jpg +27856.jpg +25748.jpg +26308.jpg +9672.jpg +8732.jpg +22545.jpg +10655.jpg +2705.jpg +26287.jpg +17837.jpg +6958.jpg +27392.jpg +14636.jpg +15909.jpg +17704.jpg +9528.jpg +27010.jpg +24433.jpg +14528.jpg +12917.jpg +1810.jpg +4285.jpg +11482.jpg +13302.jpg +9581.jpg +10916.jpg +16936.jpg +3072.jpg +21847.jpg +2513.jpg +11713.jpg +21537.jpg +20759.jpg +27762.jpg +1206.jpg +15326.jpg +29496.jpg +29634.jpg +376.jpg +27549.jpg +27476.jpg +6288.jpg +4222.jpg +10938.jpg +8933.jpg +10648.jpg +22361.jpg +15873.jpg +237.jpg +16206.jpg +11530.jpg +23195.jpg +9259.jpg +7944.jpg +8388.jpg +13719.jpg +5988.jpg +7996.jpg +26139.jpg +21088.jpg +2853.jpg +21310.jpg +12072.jpg +5502.jpg +11004.jpg +28846.jpg +8971.jpg +19996.jpg +559.jpg +4108.jpg +19460.jpg +26423.jpg +25419.jpg +14643.jpg +17595.jpg +12472.jpg +28084.jpg +25984.jpg +24824.jpg +22429.jpg +22851.jpg +21070.jpg +10899.jpg +3954.jpg +6050.jpg +11419.jpg +15588.jpg +10308.jpg +10413.jpg +5990.jpg +12481.jpg +13634.jpg +14791.jpg +28310.jpg +1332.jpg +21318.jpg +19387.jpg +10527.jpg +16129.jpg +29670.jpg +14031.jpg +13150.jpg +8555.jpg +4225.jpg +28541.jpg +17138.jpg +3310.jpg +18090.jpg +24570.jpg +12521.jpg +25549.jpg +19133.jpg +17216.jpg +12119.jpg +14057.jpg +25340.jpg +14903.jpg +2001.jpg +20427.jpg +6649.jpg +24356.jpg +12882.jpg +26205.jpg +24109.jpg +11550.jpg +20200.jpg +4625.jpg +7488.jpg +6535.jpg +22862.jpg +28820.jpg +25053.jpg +2546.jpg +13804.jpg +19157.jpg +17546.jpg +10911.jpg +29845.jpg +6077.jpg +27766.jpg +7971.jpg +3861.jpg +18893.jpg +9163.jpg +16431.jpg +26925.jpg +26856.jpg +23343.jpg +18937.jpg +21312.jpg +13438.jpg +8492.jpg +3045.jpg +5200.jpg +4083.jpg +9491.jpg +15889.jpg +18059.jpg +18962.jpg +18183.jpg +7827.jpg +3112.jpg +2568.jpg +22892.jpg +29860.jpg +21961.jpg +6951.jpg +28948.jpg +15162.jpg +7714.jpg +189.jpg +27252.jpg +28967.jpg +11196.jpg +1819.jpg +19773.jpg +23286.jpg +14186.jpg +1798.jpg +9523.jpg +4801.jpg +20561.jpg +5489.jpg +23346.jpg +22694.jpg +1177.jpg +28566.jpg +23941.jpg +3100.jpg +15474.jpg +6795.jpg +5506.jpg +11042.jpg +13976.jpg +28066.jpg +20925.jpg +25213.jpg +3005.jpg +5237.jpg +6915.jpg +10946.jpg +12745.jpg +10923.jpg +15906.jpg +29193.jpg +13887.jpg +18707.jpg +8795.jpg +1901.jpg +24503.jpg +17741.jpg +6710.jpg +16713.jpg +21044.jpg +19776.jpg +24092.jpg +9498.jpg +296.jpg +16536.jpg +21701.jpg +17018.jpg +21393.jpg +3422.jpg +10683.jpg +9271.jpg +17567.jpg +24448.jpg +7050.jpg +4120.jpg +23050.jpg +20596.jpg +25301.jpg +27128.jpg +7222.jpg +10504.jpg +17174.jpg +4686.jpg +7160.jpg +1133.jpg +6613.jpg +20742.jpg +13411.jpg +20095.jpg +15501.jpg +25591.jpg +27989.jpg +28283.jpg +3962.jpg +20761.jpg +19199.jpg +4349.jpg +29130.jpg +21480.jpg +26714.jpg +16811.jpg +13312.jpg +16440.jpg +16209.jpg +4756.jpg +11234.jpg +22853.jpg +11937.jpg +25363.jpg +17899.jpg +28646.jpg +14451.jpg +10050.jpg +17333.jpg +2438.jpg +3921.jpg +17320.jpg +7027.jpg +4649.jpg +21343.jpg +5585.jpg +24406.jpg +18657.jpg +1330.jpg +16463.jpg +1437.jpg +26788.jpg +18964.jpg +26145.jpg +22991.jpg +28031.jpg +24115.jpg +3256.jpg +18823.jpg +28895.jpg +12385.jpg +4485.jpg +20860.jpg +14456.jpg +14644.jpg +9464.jpg +7335.jpg +15637.jpg +7903.jpg +21042.jpg +29591.jpg +29299.jpg +21352.jpg +4419.jpg +419.jpg +5593.jpg +2178.jpg +3935.jpg +18402.jpg +11155.jpg +20787.jpg +29516.jpg +4003.jpg +1484.jpg +23200.jpg +28590.jpg +9419.jpg +22310.jpg +23025.jpg +15704.jpg +28784.jpg +26234.jpg +17440.jpg +18425.jpg +12695.jpg +676.jpg +8178.jpg +9101.jpg +17102.jpg +17849.jpg +18326.jpg +6157.jpg +24513.jpg +12211.jpg +23158.jpg +18526.jpg +8773.jpg +18903.jpg +22664.jpg +9313.jpg +24215.jpg +12542.jpg +28030.jpg +11981.jpg +29813.jpg +29413.jpg +19474.jpg +13010.jpg +13600.jpg +15214.jpg +20515.jpg +8128.jpg +8425.jpg +9911.jpg +980.jpg +24152.jpg +11604.jpg +3502.jpg +11218.jpg +20252.jpg +24168.jpg +20975.jpg +23397.jpg +28697.jpg +1021.jpg +16523.jpg +20347.jpg +12929.jpg +27659.jpg +9577.jpg +13335.jpg +12958.jpg +19733.jpg +22207.jpg +15036.jpg +14684.jpg +21165.jpg +22971.jpg +20590.jpg +24431.jpg +22330.jpg +4982.jpg +25872.jpg +20334.jpg +18306.jpg +12646.jpg +18185.jpg +26004.jpg +5265.jpg +776.jpg +16993.jpg +23524.jpg +19017.jpg +1928.jpg +19805.jpg +4528.jpg +28358.jpg +23659.jpg +5096.jpg +26963.jpg +6041.jpg +5861.jpg +19327.jpg +2630.jpg +4363.jpg +3851.jpg +10783.jpg +26594.jpg +16742.jpg +7837.jpg +25133.jpg +16225.jpg +5598.jpg +10157.jpg +20475.jpg +12965.jpg +1779.jpg +13866.jpg +21813.jpg +2361.jpg +26759.jpg +6550.jpg +6904.jpg +8484.jpg +12616.jpg +22519.jpg +23358.jpg +2807.jpg +17472.jpg +3456.jpg +16808.jpg +8847.jpg +22821.jpg +4353.jpg +8891.jpg +8549.jpg +6800.jpg +20550.jpg +11553.jpg +6515.jpg +11732.jpg +20772.jpg +4592.jpg +5238.jpg +7855.jpg +15211.jpg +11894.jpg +19552.jpg +6593.jpg +2163.jpg +29023.jpg +29827.jpg +1747.jpg +13977.jpg +1432.jpg +8001.jpg +13668.jpg +29082.jpg +8389.jpg +26375.jpg +5774.jpg +14786.jpg +5925.jpg +8752.jpg +18241.jpg +17426.jpg +449.jpg +28419.jpg +15155.jpg +7914.jpg +10754.jpg +23277.jpg +10271.jpg +10284.jpg +15550.jpg +2120.jpg +7733.jpg +7560.jpg +20183.jpg +5795.jpg +28815.jpg +5740.jpg +15775.jpg +6454.jpg +26960.jpg +22355.jpg +24102.jpg +10250.jpg +16374.jpg +22525.jpg +19067.jpg +16.jpg +19731.jpg +26126.jpg +23440.jpg +29355.jpg +28347.jpg +4687.jpg +27608.jpg +11564.jpg +5587.jpg +1674.jpg +7006.jpg +18368.jpg +25452.jpg +28714.jpg +18300.jpg +24266.jpg +23427.jpg +28171.jpg +14985.jpg +1828.jpg +27257.jpg +1373.jpg +12480.jpg +3016.jpg +16099.jpg +6796.jpg +5512.jpg +19963.jpg +8172.jpg +22649.jpg +6555.jpg +25564.jpg +2166.jpg +9401.jpg +1676.jpg +18973.jpg +17581.jpg +21414.jpg +16041.jpg +18027.jpg +14900.jpg +1883.jpg +658.jpg +14454.jpg +8798.jpg +8511.jpg +26872.jpg +8291.jpg +5570.jpg +29263.jpg +26836.jpg +6597.jpg +1426.jpg +11757.jpg +15293.jpg +9933.jpg +29131.jpg +24268.jpg +3658.jpg +6346.jpg +5350.jpg +18261.jpg +25804.jpg +14989.jpg +7865.jpg +4703.jpg +28898.jpg +76.jpg +3076.jpg +23673.jpg +26385.jpg +27685.jpg +28526.jpg +25155.jpg +10747.jpg +20763.jpg +884.jpg +28775.jpg +13479.jpg +27467.jpg +8631.jpg +3585.jpg +28638.jpg +10280.jpg +5527.jpg +20037.jpg +13768.jpg +18096.jpg +23603.jpg +28725.jpg +17050.jpg +7736.jpg +17797.jpg +22108.jpg +17100.jpg +3591.jpg +16798.jpg +27637.jpg +25735.jpg +1843.jpg +3956.jpg +27116.jpg +17313.jpg +17917.jpg +18140.jpg +1098.jpg +11435.jpg +950.jpg +29500.jpg +14933.jpg +26197.jpg +8472.jpg +730.jpg +9153.jpg +14958.jpg +17059.jpg +7742.jpg +7482.jpg +17454.jpg +27355.jpg +1658.jpg +18436.jpg +21534.jpg +14696.jpg +15651.jpg +25854.jpg +26842.jpg +22119.jpg +26834.jpg +16375.jpg +22370.jpg +19255.jpg +2238.jpg +5078.jpg +20136.jpg +979.jpg +11466.jpg +20204.jpg +24685.jpg +22535.jpg +747.jpg +4236.jpg +22732.jpg +19343.jpg +6350.jpg +20035.jpg +10541.jpg +19518.jpg +22342.jpg +1958.jpg +16908.jpg +3537.jpg +5688.jpg +21550.jpg +29277.jpg +10375.jpg +14498.jpg +13430.jpg +6150.jpg +20440.jpg +10483.jpg +25162.jpg +23948.jpg +25423.jpg +21306.jpg +22277.jpg +22392.jpg +19862.jpg +22384.jpg +21311.jpg +17196.jpg +12447.jpg +25144.jpg +29026.jpg +27440.jpg +28118.jpg +12839.jpg +5782.jpg +24062.jpg +19632.jpg +14069.jpg +12452.jpg +6755.jpg +8699.jpg +19482.jpg +21907.jpg +16467.jpg +10401.jpg +12468.jpg +15337.jpg +19526.jpg +5155.jpg +10391.jpg +20193.jpg +25397.jpg +125.jpg +137.jpg +23204.jpg +18757.jpg +9835.jpg +19508.jpg +5409.jpg +9083.jpg +6779.jpg +9359.jpg +20952.jpg +3866.jpg +22155.jpg +24390.jpg +18187.jpg +20546.jpg +116.jpg +4126.jpg +10807.jpg +7282.jpg +18264.jpg +2075.jpg +11506.jpg +18052.jpg +4240.jpg +10716.jpg +11143.jpg +3711.jpg +26318.jpg +212.jpg +27570.jpg +19277.jpg +5079.jpg +29471.jpg +8120.jpg +16277.jpg +14564.jpg +8358.jpg +26381.jpg +18220.jpg +24497.jpg +16569.jpg +7446.jpg +14073.jpg +2068.jpg +6290.jpg +23396.jpg +4666.jpg +16258.jpg +13927.jpg +14527.jpg +4862.jpg +10366.jpg +26646.jpg +28741.jpg +1719.jpg +2116.jpg +6302.jpg +13815.jpg +4668.jpg +6261.jpg +8799.jpg +16747.jpg +14125.jpg +16828.jpg +3215.jpg +53.jpg +28468.jpg +1243.jpg +13888.jpg +23097.jpg +742.jpg +4615.jpg +23514.jpg +26303.jpg +26382.jpg +17453.jpg +7873.jpg +28110.jpg +10536.jpg +21206.jpg +13453.jpg +27848.jpg +10970.jpg +2842.jpg +4110.jpg +5102.jpg +7285.jpg +20661.jpg +28989.jpg +2614.jpg +28029.jpg +24097.jpg +12722.jpg +19840.jpg +20749.jpg +17392.jpg +26722.jpg +11502.jpg +20751.jpg +5378.jpg +29403.jpg +409.jpg +28962.jpg +24230.jpg +17843.jpg +4594.jpg +956.jpg +9261.jpg +23694.jpg +18384.jpg +25057.jpg +23342.jpg +1770.jpg +9711.jpg +2061.jpg +21832.jpg +15278.jpg +18797.jpg +24468.jpg +23029.jpg +8821.jpg +15237.jpg +28576.jpg +14721.jpg +26536.jpg +2713.jpg +14063.jpg +5053.jpg +17856.jpg +16287.jpg +13716.jpg +18738.jpg +17714.jpg +28745.jpg +5939.jpg +10081.jpg +2192.jpg +18637.jpg +19237.jpg +7235.jpg +27138.jpg +3532.jpg +3307.jpg +18075.jpg +19910.jpg +5733.jpg +23457.jpg +8126.jpg +17678.jpg +22489.jpg +21648.jpg +19715.jpg +3913.jpg +3332.jpg +25184.jpg +8923.jpg +27405.jpg +24967.jpg +1020.jpg +21571.jpg +9969.jpg +25866.jpg +500.jpg +25435.jpg +9803.jpg +29041.jpg +26496.jpg +22432.jpg +21471.jpg +21045.jpg +7803.jpg +28209.jpg +25651.jpg +24013.jpg +373.jpg +7374.jpg +6129.jpg +3271.jpg +20658.jpg +19517.jpg +21607.jpg +29509.jpg +7911.jpg +13113.jpg +22831.jpg +13409.jpg +26503.jpg +20470.jpg +18403.jpg +4779.jpg +3497.jpg +14867.jpg +27541.jpg +24149.jpg +9009.jpg +20819.jpg +16052.jpg +6699.jpg +10515.jpg +2704.jpg +2583.jpg +6378.jpg +20542.jpg +10114.jpg +6435.jpg +18889.jpg +19944.jpg +18722.jpg +213.jpg +28680.jpg +26964.jpg +4448.jpg +25686.jpg +3228.jpg +7866.jpg +6344.jpg +1655.jpg +19606.jpg +14767.jpg +18219.jpg +7856.jpg +20799.jpg +25071.jpg +18160.jpg +13400.jpg +4610.jpg +17746.jpg +11197.jpg +18398.jpg +2005.jpg +21896.jpg +17389.jpg +19051.jpg +7743.jpg +19653.jpg +23033.jpg +3447.jpg +19621.jpg +26227.jpg +22439.jpg +24853.jpg +11907.jpg +12574.jpg +7780.jpg +5885.jpg +17019.jpg +21284.jpg +19890.jpg +10679.jpg +18235.jpg +9731.jpg +11939.jpg +13944.jpg +1502.jpg +21161.jpg +22561.jpg +28056.jpg +10481.jpg +23298.jpg +3665.jpg +11161.jpg +11957.jpg +15294.jpg +12495.jpg +12950.jpg +24241.jpg +11352.jpg +19587.jpg +22680.jpg +3189.jpg +7225.jpg +4407.jpg +29623.jpg +25254.jpg +15373.jpg +23930.jpg +19012.jpg +1622.jpg +29737.jpg +12935.jpg +15098.jpg +21720.jpg +18667.jpg +5034.jpg +4204.jpg +18954.jpg +7904.jpg +5722.jpg +12787.jpg +6713.jpg +3417.jpg +20465.jpg +14047.jpg +5523.jpg +19073.jpg +1117.jpg +10894.jpg +17332.jpg +15484.jpg +20323.jpg +18291.jpg +370.jpg +6260.jpg +15908.jpg +5898.jpg +19903.jpg +14866.jpg +17985.jpg +338.jpg +7392.jpg +25072.jpg +786.jpg +22298.jpg +2284.jpg +8284.jpg +23211.jpg +9818.jpg +3093.jpg +9567.jpg +21079.jpg +11438.jpg +10096.jpg +26725.jpg +13314.jpg +29910.jpg +21078.jpg +20645.jpg +28814.jpg +817.jpg +617.jpg +8577.jpg +28760.jpg +27033.jpg +1422.jpg +5140.jpg +29333.jpg +301.jpg +4909.jpg +25803.jpg +19612.jpg +14375.jpg +18310.jpg +14177.jpg +8875.jpg +10789.jpg +20034.jpg +15608.jpg +26697.jpg +18228.jpg +4859.jpg +15016.jpg +24359.jpg +6635.jpg +25097.jpg +3846.jpg +24023.jpg +8155.jpg +17039.jpg +28184.jpg +26596.jpg +1183.jpg +1196.jpg +28090.jpg +1143.jpg +12657.jpg +8420.jpg +27313.jpg +29409.jpg +20237.jpg +2188.jpg +12794.jpg +11975.jpg +4506.jpg +1588.jpg +26558.jpg +8757.jpg +28656.jpg +17254.jpg +13904.jpg +4573.jpg +19948.jpg +14241.jpg +24367.jpg +9186.jpg +17980.jpg +18267.jpg +1056.jpg +28993.jpg +22943.jpg +19208.jpg +28757.jpg +7678.jpg +12817.jpg +6397.jpg +24482.jpg +14618.jpg +22145.jpg +23484.jpg +14738.jpg +24464.jpg +26995.jpg +9012.jpg +14993.jpg +3352.jpg +14712.jpg +11650.jpg +10524.jpg +19224.jpg +14368.jpg +25169.jpg +10726.jpg +7984.jpg +20024.jpg +16657.jpg +16495.jpg +17738.jpg +29381.jpg +9418.jpg +15986.jpg +4733.jpg +5245.jpg +3616.jpg +12444.jpg +7810.jpg +3871.jpg +28424.jpg +7759.jpg +20904.jpg +2021.jpg +6783.jpg +2426.jpg +5640.jpg +9957.jpg +27550.jpg +2735.jpg +4284.jpg +22834.jpg +8520.jpg +12288.jpg +23435.jpg +17576.jpg +5373.jpg +17560.jpg +16570.jpg +27484.jpg +14634.jpg +5712.jpg +1022.jpg +15248.jpg +12199.jpg +4053.jpg +18817.jpg +15142.jpg +2170.jpg +17132.jpg +271.jpg +26887.jpg +17466.jpg +23897.jpg +14578.jpg +14927.jpg +19350.jpg +15517.jpg +14081.jpg +19138.jpg +12874.jpg +3162.jpg +2445.jpg +22123.jpg +24525.jpg +8272.jpg +26649.jpg +25980.jpg +17550.jpg +2658.jpg +28504.jpg +5929.jpg +11351.jpg +26485.jpg +18108.jpg +27948.jpg +2232.jpg +5561.jpg +12236.jpg +29833.jpg +2388.jpg +9005.jpg +11397.jpg +9364.jpg +18423.jpg +9388.jpg +10337.jpg +2040.jpg +7354.jpg +20322.jpg +8833.jpg +24099.jpg +29203.jpg +437.jpg +18111.jpg +12967.jpg +9414.jpg +362.jpg +19323.jpg +26341.jpg +2156.jpg +17530.jpg +21122.jpg +26453.jpg +11319.jpg +24173.jpg +4923.jpg +21146.jpg +17490.jpg +4087.jpg +20194.jpg +10470.jpg +26412.jpg +28229.jpg +25285.jpg +466.jpg +62.jpg +7516.jpg +16898.jpg +29489.jpg +5374.jpg +7465.jpg +13790.jpg +28143.jpg +22285.jpg +29245.jpg +1559.jpg +2409.jpg +4458.jpg +24658.jpg +20402.jpg +21867.jpg +26640.jpg +24087.jpg +10306.jpg +15287.jpg +19652.jpg +11832.jpg +5136.jpg +15448.jpg +24063.jpg +2955.jpg +13385.jpg +10661.jpg +9018.jpg +15965.jpg +16664.jpg +14871.jpg +4109.jpg +753.jpg +2108.jpg +25175.jpg +5651.jpg +5639.jpg +29648.jpg +5045.jpg +6024.jpg +8589.jpg +29569.jpg +12931.jpg +16004.jpg +24767.jpg +12587.jpg +2095.jpg +10230.jpg +149.jpg +14499.jpg +2586.jpg +527.jpg +2471.jpg +16271.jpg +29325.jpg +21072.jpg +13594.jpg +4121.jpg +29364.jpg +539.jpg +13614.jpg +22077.jpg +19319.jpg +19273.jpg +13296.jpg +28957.jpg +8227.jpg +12389.jpg +6770.jpg +16079.jpg +6765.jpg +19241.jpg +24156.jpg +27703.jpg +6310.jpg +29393.jpg +23760.jpg +217.jpg +18494.jpg +16500.jpg +23824.jpg +1033.jpg +18281.jpg +19843.jpg +23809.jpg +2618.jpg +17375.jpg +2074.jpg +11728.jpg +28448.jpg +8877.jpg +8655.jpg +16501.jpg +8058.jpg +13185.jpg +20396.jpg +18850.jpg +24807.jpg +8934.jpg +7082.jpg +17737.jpg +17095.jpg +12033.jpg +12841.jpg +25586.jpg +15995.jpg +2103.jpg +4810.jpg +2725.jpg +4188.jpg +7286.jpg +2963.jpg +26103.jpg +22299.jpg +2665.jpg +4819.jpg +22913.jpg +22124.jpg +11629.jpg +3695.jpg +15038.jpg +28369.jpg +23341.jpg +20122.jpg +14874.jpg +14743.jpg +26199.jpg +14621.jpg +17784.jpg +10963.jpg +24295.jpg +11517.jpg +10073.jpg +14338.jpg +22262.jpg +27631.jpg +25136.jpg +16961.jpg +3366.jpg +26142.jpg +19447.jpg +24310.jpg +8470.jpg +3412.jpg +19827.jpg +25360.jpg +10509.jpg +2796.jpg +11427.jpg +18041.jpg +16392.jpg +8763.jpg +27970.jpg +26991.jpg +21974.jpg +28632.jpg +22105.jpg +26821.jpg +13669.jpg +24240.jpg +24506.jpg +20854.jpg +26442.jpg +25116.jpg +12488.jpg +13540.jpg +27381.jpg +22448.jpg +2956.jpg +13970.jpg +12347.jpg +16068.jpg +11540.jpg +1135.jpg +22547.jpg +26814.jpg +6376.jpg +21637.jpg +22032.jpg +11026.jpg +5984.jpg +14117.jpg +4818.jpg +22994.jpg +10424.jpg +28352.jpg +29087.jpg +4164.jpg +23409.jpg +19479.jpg +12474.jpg +7795.jpg +16646.jpg +23236.jpg +20704.jpg +8190.jpg +28398.jpg +526.jpg +19231.jpg +4348.jpg +12954.jpg +5142.jpg +4134.jpg +4217.jpg +4514.jpg +25507.jpg +16444.jpg +10158.jpg +21500.jpg +3033.jpg +6167.jpg +6108.jpg +19791.jpg +22258.jpg +8669.jpg +1057.jpg +2911.jpg +25607.jpg +14924.jpg +27114.jpg +4198.jpg +12153.jpg +7000.jpg +24671.jpg +4216.jpg +24708.jpg +17526.jpg +12741.jpg +7526.jpg +24993.jpg +21201.jpg +10785.jpg +21735.jpg +8559.jpg +1037.jpg +14089.jpg +9485.jpg +14896.jpg +22682.jpg +685.jpg +12088.jpg +4393.jpg +21890.jpg +25279.jpg +26340.jpg +4041.jpg +26374.jpg +10189.jpg +2864.jpg +29699.jpg +18642.jpg +17631.jpg +4343.jpg +16765.jpg +12682.jpg +7514.jpg +28432.jpg +21033.jpg +18563.jpg +4402.jpg +5309.jpg +8415.jpg +2112.jpg +4882.jpg +12206.jpg +27393.jpg +18630.jpg +1104.jpg +8664.jpg +23420.jpg +4778.jpg +6307.jpg +8424.jpg +6316.jpg +444.jpg +2094.jpg +20824.jpg +26323.jpg +25262.jpg +25689.jpg +17993.jpg +18539.jpg +14396.jpg +456.jpg +24251.jpg +25389.jpg +24161.jpg +14347.jpg +21198.jpg +15426.jpg +16991.jpg +12579.jpg +7203.jpg +24259.jpg +14536.jpg +28520.jpg +21873.jpg +6100.jpg +7541.jpg +11935.jpg +26510.jpg +7099.jpg +9555.jpg +19461.jpg +21753.jpg +3485.jpg +24983.jpg +20080.jpg +28393.jpg +27135.jpg +280.jpg +6905.jpg +310.jpg +14291.jpg +1952.jpg +2289.jpg +27288.jpg +26094.jpg +6551.jpg +27379.jpg +27291.jpg +9862.jpg +26410.jpg +11403.jpg +4637.jpg +25849.jpg +19217.jpg +17300.jpg +16407.jpg +4570.jpg +22112.jpg +17696.jpg +2921.jpg +6849.jpg +7112.jpg +19813.jpg +18333.jpg +23987.jpg +2930.jpg +18565.jpg +10933.jpg +18902.jpg +2385.jpg +14008.jpg +20472.jpg +13368.jpg +5901.jpg +17671.jpg +26756.jpg +21384.jpg +19438.jpg +28715.jpg +19757.jpg +19676.jpg +25966.jpg +19437.jpg +4136.jpg +15111.jpg +2564.jpg +25023.jpg +5720.jpg +2031.jpg +4853.jpg +5333.jpg +27511.jpg +2362.jpg +9033.jpg +17020.jpg +9658.jpg +25146.jpg +28918.jpg +5328.jpg +29231.jpg +2865.jpg +22468.jpg +15703.jpg +7126.jpg +14233.jpg +1006.jpg +18303.jpg +25923.jpg +4328.jpg +16179.jpg +28521.jpg +27281.jpg +27388.jpg +17665.jpg +16215.jpg +19202.jpg +5437.jpg +8264.jpg +28926.jpg +27054.jpg +15622.jpg +23247.jpg +7423.jpg +21900.jpg +11177.jpg +2082.jpg +21903.jpg +11121.jpg +16796.jpg +12776.jpg +21679.jpg +8005.jpg +20708.jpg +19090.jpg +7878.jpg +9157.jpg +26775.jpg +7920.jpg +8568.jpg +15786.jpg +23582.jpg +29510.jpg +29973.jpg +6981.jpg +5741.jpg +21770.jpg +12181.jpg +24107.jpg +27066.jpg +23249.jpg +5726.jpg +8662.jpg +22600.jpg +8265.jpg +18801.jpg +5940.jpg +19117.jpg +2491.jpg +28800.jpg +1041.jpg +11364.jpg +21176.jpg +23441.jpg +12545.jpg +21963.jpg +22387.jpg +21181.jpg +9636.jpg +8412.jpg +17225.jpg +1414.jpg +29855.jpg +13677.jpg +11005.jpg +22461.jpg +650.jpg +15997.jpg +12583.jpg +14972.jpg +14833.jpg +29603.jpg +16083.jpg +17941.jpg +22734.jpg +6938.jpg +2794.jpg +3708.jpg +6829.jpg +5923.jpg +13359.jpg +16509.jpg +17742.jpg +7292.jpg +11806.jpg +13200.jpg +28737.jpg +8701.jpg +15193.jpg +13975.jpg +29374.jpg +27411.jpg +21937.jpg +18512.jpg +336.jpg +18717.jpg +26137.jpg +24401.jpg +20620.jpg +16764.jpg +3023.jpg +19737.jpg +23335.jpg +29139.jpg +22830.jpg +5744.jpg +3291.jpg +8541.jpg +2416.jpg +19053.jpg +1310.jpg +12785.jpg +13834.jpg +23053.jpg +21452.jpg +15513.jpg +4505.jpg +24614.jpg +17076.jpg +15492.jpg +18758.jpg +14170.jpg +12535.jpg +26414.jpg +24190.jpg +3243.jpg +16029.jpg +25524.jpg +25843.jpg +25108.jpg +13094.jpg +3363.jpg +21675.jpg +13329.jpg +19801.jpg +1480.jpg +8839.jpg +11383.jpg +11345.jpg +6595.jpg +13845.jpg +20197.jpg +8188.jpg +12428.jpg +17029.jpg +9879.jpg +24811.jpg +13117.jpg +2557.jpg +4191.jpg +29768.jpg +17995.jpg +9674.jpg +13937.jpg +8912.jpg +2821.jpg +4579.jpg +29334.jpg +6886.jpg +715.jpg +27790.jpg +25080.jpg +1347.jpg +19103.jpg +16513.jpg +29353.jpg +12855.jpg +20951.jpg +20669.jpg +3750.jpg +4835.jpg +25970.jpg +949.jpg +24779.jpg +6337.jpg +20728.jpg +4501.jpg +15923.jpg +1529.jpg +7558.jpg +8776.jpg +680.jpg +15645.jpg +28499.jpg +28524.jpg +26666.jpg +1419.jpg +5624.jpg +15409.jpg +24073.jpg +10787.jpg +10326.jpg +28743.jpg +4341.jpg +25388.jpg +7426.jpg +26217.jpg +14657.jpg +10587.jpg +18593.jpg +21194.jpg +22931.jpg +11064.jpg +10878.jpg +6592.jpg +20959.jpg +11709.jpg +17435.jpg +11610.jpg +13395.jpg +10554.jpg +9148.jpg +24033.jpg +9762.jpg +16294.jpg +27434.jpg +11400.jpg +3173.jpg +1704.jpg +26764.jpg +22493.jpg +13468.jpg +5706.jpg +23944.jpg +16044.jpg +13126.jpg +18394.jpg +2207.jpg +20504.jpg +20870.jpg +15177.jpg +11023.jpg +10063.jpg +19130.jpg +2259.jpg +1743.jpg +1281.jpg +11311.jpg +7609.jpg +20898.jpg +23100.jpg +27933.jpg +10914.jpg +13680.jpg +1726.jpg +21553.jpg +13424.jpg +9843.jpg +17486.jpg +26636.jpg +19450.jpg +16100.jpg +17094.jpg +25170.jpg +6396.jpg +9944.jpg +4960.jpg +26873.jpg +13450.jpg +17068.jpg +5337.jpg +6842.jpg +1662.jpg +8710.jpg +13136.jpg +20328.jpg +27176.jpg +18453.jpg +780.jpg +23628.jpg +7916.jpg +6259.jpg +8156.jpg +24146.jpg +9245.jpg +9544.jpg +23020.jpg +22139.jpg +18981.jpg +26709.jpg +17031.jpg +4267.jpg +29063.jpg +8536.jpg +17336.jpg +26475.jpg +1521.jpg +21413.jpg +29568.jpg +24417.jpg +13346.jpg +23357.jpg +10979.jpg +11735.jpg +11917.jpg +17929.jpg +9520.jpg +309.jpg +8593.jpg +9290.jpg +18674.jpg +13254.jpg +5834.jpg +581.jpg +22346.jpg +20274.jpg +4058.jpg +12751.jpg +13576.jpg +10608.jpg +7819.jpg +10858.jpg +29043.jpg +1652.jpg +7868.jpg +21133.jpg +4731.jpg +29679.jpg +25552.jpg +10563.jpg +23729.jpg +25250.jpg +1962.jpg +17359.jpg +22809.jpg +19806.jpg +3127.jpg +14485.jpg +23252.jpg +666.jpg +8299.jpg +27068.jpg +1073.jpg +220.jpg +19651.jpg +26981.jpg +29680.jpg +1048.jpg +79.jpg +24660.jpg +2650.jpg +14674.jpg +11749.jpg +25297.jpg +9688.jpg +16097.jpg +6036.jpg +15797.jpg +19348.jpg +9786.jpg +29816.jpg +12552.jpg +28455.jpg +15870.jpg +15347.jpg +23676.jpg +27343.jpg +20801.jpg +20273.jpg +21018.jpg +2695.jpg +4066.jpg +2890.jpg +7062.jpg +4973.jpg +23957.jpg +4803.jpg +27295.jpg +29739.jpg +10146.jpg +3988.jpg +22580.jpg +12551.jpg +22551.jpg +10281.jpg +3632.jpg +25015.jpg +15071.jpg +16881.jpg +19178.jpg +27154.jpg +25024.jpg +28164.jpg +16902.jpg +12440.jpg +21728.jpg +26074.jpg +9049.jpg +26875.jpg +18883.jpg +24756.jpg +19562.jpg +14979.jpg +9998.jpg +8897.jpg +12011.jpg +18676.jpg +15881.jpg +25665.jpg +26506.jpg +20045.jpg +13421.jpg +12868.jpg +28145.jpg +20697.jpg +5089.jpg +18238.jpg +14981.jpg +22945.jpg +1458.jpg +24647.jpg +29954.jpg +23496.jpg +2912.jpg +27029.jpg +25479.jpg +27305.jpg +21071.jpg +21843.jpg +19887.jpg +19063.jpg +26115.jpg +28786.jpg +22891.jpg +23689.jpg +6909.jpg +25621.jpg +11818.jpg +21420.jpg +24254.jpg +18449.jpg +4851.jpg +6808.jpg +10728.jpg +26882.jpg +27168.jpg +3679.jpg +23402.jpg +16552.jpg +16787.jpg +14724.jpg +8124.jpg +2398.jpg +4410.jpg +29254.jpg +16530.jpg +12862.jpg +8365.jpg +9210.jpg +11630.jpg +4957.jpg +17865.jpg +22527.jpg +4093.jpg +18578.jpg +3873.jpg +25647.jpg +10319.jpg +3018.jpg +6865.jpg +18975.jpg +8161.jpg +8145.jpg +15571.jpg +22323.jpg +5985.jpg +18510.jpg +23354.jpg +18206.jpg +25326.jpg +23233.jpg +19008.jpg +9430.jpg +405.jpg +19497.jpg +19702.jpg +11200.jpg +15090.jpg +2155.jpg +19987.jpg +5313.jpg +11617.jpg +15639.jpg +10450.jpg +14868.jpg +15485.jpg +13514.jpg +14018.jpg +23817.jpg +17484.jpg +18914.jpg +10229.jpg +12941.jpg +8499.jpg +22777.jpg +20715.jpg +5513.jpg +21449.jpg +4011.jpg +2444.jpg +7300.jpg +20072.jpg +23910.jpg +23737.jpg +15702.jpg +9379.jpg +21722.jpg +22542.jpg +10891.jpg +19183.jpg +22288.jpg +27249.jpg +23507.jpg +8169.jpg +20833.jpg +22081.jpg +18638.jpg +6332.jpg +28053.jpg +25114.jpg +18262.jpg +24520.jpg +7730.jpg +27732.jpg +4908.jpg +10987.jpg +16965.jpg +9755.jpg +6386.jpg +14890.jpg +5036.jpg +1122.jpg +29202.jpg +17468.jpg +26706.jpg +22019.jpg +3329.jpg +19184.jpg +5381.jpg +20965.jpg +820.jpg +21913.jpg +24532.jpg +25331.jpg +1176.jpg +19643.jpg +26833.jpg +5344.jpg +23464.jpg +10499.jpg +25585.jpg +17480.jpg +24170.jpg +26443.jpg +8108.jpg +16933.jpg +1029.jpg +14108.jpg +20720.jpg +15693.jpg +7066.jpg +23593.jpg +4390.jpg +3514.jpg +16757.jpg +16591.jpg +23481.jpg +15188.jpg +5137.jpg +13506.jpg +16447.jpg +15580.jpg +13589.jpg +18003.jpg +27841.jpg +6429.jpg +5457.jpg +7389.jpg +2897.jpg +18286.jpg +426.jpg +9339.jpg +22981.jpg +28122.jpg +10239.jpg +6356.jpg +2684.jpg +5917.jpg +18855.jpg +10750.jpg +3193.jpg +27755.jpg +6215.jpg +9909.jpg +13964.jpg +8991.jpg +29417.jpg +28562.jpg +27182.jpg +23404.jpg +20671.jpg +16658.jpg +5243.jpg +18431.jpg +27589.jpg +10962.jpg +7295.jpg +3028.jpg +9075.jpg +19945.jpg +1276.jpg +550.jpg +15656.jpg +2615.jpg +13793.jpg +24476.jpg +6402.jpg +15028.jpg +25506.jpg +25391.jpg +7889.jpg +27457.jpg +1369.jpg +27084.jpg +27998.jpg +23028.jpg +25768.jpg +15825.jpg +19704.jpg +1391.jpg +27148.jpg +3395.jpg +9597.jpg +17904.jpg +7079.jpg +7439.jpg +10700.jpg +144.jpg +10173.jpg +5428.jpg +6336.jpg +19061.jpg +3377.jpg +12732.jpg +2435.jpg +29846.jpg +3986.jpg +27058.jpg +7196.jpg +17602.jpg +7190.jpg +20265.jpg +5426.jpg +4852.jpg +24677.jpg +24185.jpg +13882.jpg +9793.jpg +4061.jpg +16978.jpg +9536.jpg +27997.jpg +10384.jpg +17767.jpg +26241.jpg +3054.jpg +4064.jpg +16457.jpg +18966.jpg +8691.jpg +7575.jpg +3180.jpg +18759.jpg +8592.jpg +17779.jpg +21761.jpg +29711.jpg +1534.jpg +821.jpg +26256.jpg +12707.jpg +1701.jpg +9093.jpg +247.jpg +1218.jpg +18444.jpg +14746.jpg +12382.jpg +25385.jpg +25756.jpg +11149.jpg +17633.jpg +14977.jpg +22989.jpg +20288.jpg +23709.jpg +15979.jpg +17362.jpg +11408.jpg +27508.jpg +5674.jpg +5847.jpg +8433.jpg +3323.jpg +22650.jpg +9490.jpg +11404.jpg +10502.jpg +18077.jpg +21051.jpg +23818.jpg +14032.jpg +1803.jpg +16247.jpg +2829.jpg +11839.jpg +14106.jpg +7039.jpg +40.jpg +1744.jpg +20059.jpg +7951.jpg +8460.jpg +2397.jpg +15147.jpg +7183.jpg +21851.jpg +17832.jpg +3405.jpg +28813.jpg +6125.jpg +11412.jpg +5201.jpg +29093.jpg +29282.jpg +13637.jpg +17282.jpg +2464.jpg +14131.jpg +2480.jpg +2525.jpg +28286.jpg +4018.jpg +20769.jpg +24172.jpg +17887.jpg +15059.jpg +11534.jpg +1002.jpg +9932.jpg +12442.jpg +10061.jpg +11869.jpg +27991.jpg +19724.jpg +1364.jpg +29150.jpg +22860.jpg +14354.jpg +9039.jpg +25539.jpg +5535.jpg +17227.jpg +16621.jpg +794.jpg +24183.jpg +2595.jpg +5822.jpg +19042.jpg +15336.jpg +28742.jpg +8540.jpg +22759.jpg +21544.jpg +26570.jpg +28727.jpg +6478.jpg +28519.jpg +28250.jpg +29387.jpg +11269.jpg +4033.jpg +5909.jpg +16832.jpg +26532.jpg +15798.jpg +10290.jpg +14569.jpg +21729.jpg +28454.jpg +10598.jpg +640.jpg +18931.jpg +9462.jpg +23253.jpg +26645.jpg +17976.jpg +29122.jpg +8863.jpg +4050.jpg +7199.jpg +28975.jpg +26044.jpg +10586.jpg +10443.jpg +543.jpg +19836.jpg +24143.jpg +10188.jpg +17795.jpg +9150.jpg +6986.jpg +20149.jpg +12478.jpg +17706.jpg +19472.jpg +29698.jpg +21140.jpg +22224.jpg +29290.jpg +8770.jpg +6104.jpg +20064.jpg +29894.jpg +28251.jpg +4554.jpg +27140.jpg +23458.jpg +29840.jpg +1785.jpg +5291.jpg +2846.jpg +22785.jpg +25287.jpg +18409.jpg +9164.jpg +5359.jpg +26600.jpg +19753.jpg +15025.jpg +20893.jpg +6902.jpg +8848.jpg +23210.jpg +11787.jpg +5315.jpg +13982.jpg +27017.jpg +23570.jpg +7886.jpg +21224.jpg +18383.jpg +26684.jpg +7977.jpg +11484.jpg +3804.jpg +27474.jpg +10408.jpg +10193.jpg +24538.jpg +16682.jpg +9697.jpg +9178.jpg +16972.jpg +24345.jpg +16959.jpg +4036.jpg +8004.jpg +25437.jpg +13721.jpg +6178.jpg +23906.jpg +3892.jpg +25290.jpg +6258.jpg +5607.jpg +18770.jpg +18772.jpg +19160.jpg +20326.jpg +19931.jpg +4376.jpg +27640.jpg +6539.jpg +17771.jpg +21816.jpg +8281.jpg +6711.jpg +21295.jpg +1649.jpg +28919.jpg +17588.jpg +14523.jpg +5915.jpg +21364.jpg +24003.jpg +17270.jpg +28282.jpg +18518.jpg +21835.jpg +22018.jpg +21227.jpg +6940.jpg +22988.jpg +4491.jpg +8768.jpg +14619.jpg +24452.jpg +21538.jpg +23416.jpg +21877.jpg +17170.jpg +24011.jpg +1335.jpg +5634.jpg +8450.jpg +5175.jpg +24236.jpg +11257.jpg +12369.jpg +2026.jpg +12406.jpg +24865.jpg +24414.jpg +5951.jpg +20741.jpg +27672.jpg +14449.jpg +25259.jpg +28518.jpg +13662.jpg +18508.jpg +2090.jpg +9645.jpg +27560.jpg +9285.jpg +14384.jpg +24350.jpg +2929.jpg +28277.jpg +5478.jpg +19215.jpg +23369.jpg +28702.jpg +856.jpg +16830.jpg +28852.jpg +19370.jpg +3236.jpg +14661.jpg +19418.jpg +17684.jpg +25483.jpg +27525.jpg +8034.jpg +7398.jpg +4261.jpg +797.jpg +10663.jpg +20042.jpg +2923.jpg +1163.jpg +25495.jpg +21617.jpg +14196.jpg +24075.jpg +20443.jpg +27108.jpg +23082.jpg +26614.jpg +14195.jpg +29505.jpg +26878.jpg +8735.jpg +23245.jpg +17969.jpg +9864.jpg +6448.jpg +8574.jpg +21797.jpg +29522.jpg +18558.jpg +1693.jpg +19257.jpg +20519.jpg +16775.jpg +1266.jpg +21054.jpg +19962.jpg +26587.jpg +26555.jpg +28644.jpg +15429.jpg +9543.jpg +19973.jpg +24065.jpg +25551.jpg +18613.jpg +27784.jpg +25312.jpg +637.jpg +14112.jpg +16073.jpg +13617.jpg +12423.jpg +6114.jpg +5160.jpg +2707.jpg +4941.jpg +11979.jpg +4836.jpg +27635.jpg +13139.jpg +2587.jpg +16022.jpg +13788.jpg +1974.jpg +21558.jpg +24794.jpg +2246.jpg +23170.jpg +16779.jpg +10407.jpg +11817.jpg +25031.jpg +27929.jpg +21173.jpg +1576.jpg +24461.jpg +23607.jpg +18038.jpg +4318.jpg +23161.jpg +17748.jpg +1255.jpg +23873.jpg +7218.jpg +21005.jpg +6792.jpg +17250.jpg +15218.jpg +7141.jpg +20584.jpg +2089.jpg +25929.jpg +29482.jpg +12884.jpg +10904.jpg +19541.jpg +1592.jpg +3647.jpg +3706.jpg +27007.jpg +9638.jpg +23616.jpg +21126.jpg +180.jpg +10085.jpg +13157.jpg +17496.jpg +13817.jpg +26561.jpg +9691.jpg +6359.jpg +29553.jpg +25817.jpg +29000.jpg +21130.jpg +12918.jpg +2047.jpg +15306.jpg +23134.jpg +29684.jpg +11060.jpg +29330.jpg +4773.jpg +11230.jpg +10448.jpg +24787.jpg +5786.jpg +5819.jpg +17284.jpg +19921.jpg +29728.jpg +3279.jpg +17381.jpg +24430.jpg +12968.jpg +1751.jpg +23988.jpg +18734.jpg +24389.jpg +7521.jpg +1891.jpg +21929.jpg +4866.jpg +21114.jpg +14934.jpg +14683.jpg +21566.jpg +5335.jpg +26336.jpg +23717.jpg +8059.jpg +29534.jpg +5503.jpg +18064.jpg +21172.jpg +10489.jpg +8212.jpg +19060.jpg +20643.jpg +5439.jpg +14151.jpg +26010.jpg +16002.jpg +17900.jpg +24370.jpg +22221.jpg +7425.jpg +10463.jpg +20255.jpg +20482.jpg +14100.jpg +28192.jpg +7086.jpg +7517.jpg +20855.jpg +7994.jpg +5600.jpg +13949.jpg +17660.jpg +15573.jpg +28692.jpg +21964.jpg +1787.jpg +16932.jpg +912.jpg +9639.jpg +20660.jpg +3806.jpg +10508.jpg +4873.jpg +530.jpg +29619.jpg +18828.jpg +14435.jpg +29044.jpg +1445.jpg +11961.jpg +1088.jpg +8288.jpg +22205.jpg +5508.jpg +8282.jpg +11271.jpg +26306.jpg +26348.jpg +84.jpg +14587.jpg +25788.jpg +22974.jpg +26104.jpg +27578.jpg +25241.jpg +19165.jpg +14854.jpg +16858.jpg +19346.jpg +3280.jpg +12504.jpg +17249.jpg +8047.jpg +6339.jpg +4955.jpg +17131.jpg +1558.jpg +28169.jpg +2402.jpg +17871.jpg +14317.jpg +566.jpg +24220.jpg +29965.jpg +2487.jpg +683.jpg +6231.jpg +14845.jpg +6896.jpg +23437.jpg +7381.jpg +24670.jpg +25782.jpg +19751.jpg +1431.jpg +2194.jpg +8962.jpg +11603.jpg +23104.jpg +19713.jpg +27213.jpg +15735.jpg +1198.jpg +21415.jpg +29213.jpg +11878.jpg +2115.jpg +25571.jpg +26353.jpg +9307.jpg +6103.jpg +7145.jpg +232.jpg +12766.jpg +14358.jpg +5914.jpg +8595.jpg +6184.jpg +1363.jpg +2176.jpg +27905.jpg +14374.jpg +9692.jpg +29208.jpg +18553.jpg +16455.jpg +9849.jpg +18296.jpg +28657.jpg +28854.jpg +28326.jpg +28043.jpg +22.jpg +14333.jpg +21303.jpg +1826.jpg +8998.jpg +11959.jpg +10026.jpg +13627.jpg +28527.jpg +17504.jpg +18878.jpg +19221.jpg +25249.jpg +23477.jpg +20537.jpg +11772.jpg +9444.jpg +9475.jpg +14519.jpg +16643.jpg +14238.jpg +17145.jpg +18067.jpg +4248.jpg +28924.jpg +5967.jpg +26497.jpg +26043.jpg +16352.jpg +21148.jpg +27764.jpg +21918.jpg +16788.jpg +16252.jpg +20511.jpg +8177.jpg +29934.jpg +24562.jpg +20329.jpg +16061.jpg +25098.jpg +13354.jpg +15565.jpg +17286.jpg +12063.jpg +18974.jpg +12052.jpg +22270.jpg +5987.jpg +2827.jpg +24593.jpg +22935.jpg +15345.jpg +12704.jpg +10058.jpg +21991.jpg +3923.jpg +177.jpg +26839.jpg +28592.jpg +29296.jpg +11077.jpg +13502.jpg +10574.jpg +27127.jpg +18492.jpg +1317.jpg +12479.jpg +16636.jpg +2187.jpg +9798.jpg +20325.jpg +12408.jpg +16163.jpg +10435.jpg +23732.jpg +250.jpg +14102.jpg +3413.jpg +29246.jpg +22802.jpg +14221.jpg +1139.jpg +9966.jpg +14543.jpg +5669.jpg +5666.jpg +10993.jpg +8814.jpg +28565.jpg +20810.jpg +14423.jpg +2926.jpg +22568.jpg +5206.jpg +25979.jpg +23061.jpg +25914.jpg +26406.jpg +18896.jpg +5736.jpg +11167.jpg +10967.jpg +17718.jpg +20019.jpg +17470.jpg +12693.jpg +13195.jpg +22304.jpg +29909.jpg +25637.jpg +4335.jpg +10459.jpg +15875.jpg +19068.jpg +23849.jpg +6295.jpg +26333.jpg +21957.jpg +29604.jpg +25644.jpg +22845.jpg +21762.jpg +25548.jpg +14877.jpg +1141.jpg +3769.jpg +20219.jpg +21640.jpg +1624.jpg +16945.jpg +148.jpg +20015.jpg +24904.jpg +23949.jpg +13559.jpg +7275.jpg +6148.jpg +17198.jpg +7552.jpg +12894.jpg +25446.jpg +4979.jpg +20145.jpg +1727.jpg +26598.jpg +28435.jpg +21472.jpg +13445.jpg +18344.jpg +7662.jpg +14878.jpg +19571.jpg +22729.jpg +5927.jpg +10552.jpg +10795.jpg +28409.jpg +24546.jpg +25473.jpg +1706.jpg +22639.jpg +28367.jpg +18445.jpg +14053.jpg +551.jpg +23273.jpg +9802.jpg +8149.jpg +25590.jpg +1443.jpg +16684.jpg +6499.jpg +3029.jpg +11041.jpg +9500.jpg +2432.jpg +26577.jpg +16734.jpg +20473.jpg +5029.jpg +15887.jpg +19589.jpg +11236.jpg +23785.jpg +5307.jpg +24599.jpg +25077.jpg +9409.jpg +1544.jpg +25320.jpg +23986.jpg +7821.jpg +20745.jpg +18604.jpg +11978.jpg +23976.jpg +4418.jpg +19082.jpg +16376.jpg +20703.jpg +14302.jpg +2352.jpg +4439.jpg +5711.jpg +23739.jpg +3047.jpg +2881.jpg +16152.jpg +18158.jpg +21498.jpg +1138.jpg +4935.jpg +18569.jpg +29957.jpg +4838.jpg +14975.jpg +2446.jpg +14770.jpg +2502.jpg +5816.jpg +9134.jpg +12320.jpg +24952.jpg +17224.jpg +27607.jpg +10654.jpg +10336.jpg +1132.jpg +12345.jpg +2752.jpg +2928.jpg +11807.jpg +4326.jpg +6540.jpg +4888.jpg +16791.jpg +29494.jpg +25848.jpg +29255.jpg +26040.jpg +9187.jpg +7967.jpg +9689.jpg +3553.jpg +3807.jpg +10487.jpg +25643.jpg +17439.jpg +23565.jpg +22748.jpg +8394.jpg +5627.jpg +7569.jpg +1881.jpg +3408.jpg +9893.jpg +4744.jpg +23008.jpg +11326.jpg +10275.jpg +29128.jpg +11706.jpg +9120.jpg +22190.jpg +23810.jpg +2205.jpg +16974.jpg +27737.jpg +8375.jpg +9915.jpg +6937.jpg +15592.jpg +1893.jpg +19854.jpg +5123.jpg +28163.jpg +28505.jpg +6371.jpg +27815.jpg +23406.jpg +488.jpg +24137.jpg +15722.jpg +26428.jpg +4152.jpg +9189.jpg +8809.jpg +27019.jpg +10826.jpg +9226.jpg +6388.jpg +12240.jpg +2386.jpg +16017.jpg +9174.jpg +29583.jpg +7656.jpg +19096.jpg +25099.jpg +16314.jpg +18466.jpg +22788.jpg +10846.jpg +2412.jpg +27813.jpg +23908.jpg +20489.jpg +22877.jpg +14940.jpg +18668.jpg +17539.jpg +1829.jpg +3734.jpg +19378.jpg +10350.jpg +16969.jpg +2995.jpg +5187.jpg +19717.jpg +9152.jpg +24666.jpg +17787.jpg +6700.jpg +27494.jpg +14832.jpg +11222.jpg +580.jpg +14041.jpg +27409.jpg +1931.jpg +19510.jpg +15354.jpg +17608.jpg +8127.jpg +22857.jpg +8667.jpg +5973.jpg +22859.jpg +23426.jpg +3141.jpg +1922.jpg +28365.jpg +1583.jpg +27308.jpg +4970.jpg +17891.jpg +12030.jpg +14559.jpg +23697.jpg +23190.jpg +2611.jpg +2888.jpg +21840.jpg +1745.jpg +19081.jpg +10262.jpg +19609.jpg +8162.jpg +25427.jpg +3038.jpg +8543.jpg +19662.jpg +25111.jpg +8955.jpg +12152.jpg +28995.jpg +2792.jpg +27966.jpg +12514.jpg +6861.jpg +25366.jpg +2991.jpg +17017.jpg +11318.jpg +7955.jpg +3915.jpg +2879.jpg +28897.jpg +24555.jpg +10742.jpg +6309.jpg +1013.jpg +334.jpg +27711.jpg +10634.jpg +3216.jpg +9293.jpg +25684.jpg +10201.jpg +26464.jpg +11658.jpg +24979.jpg +11362.jpg +13566.jpg +17760.jpg +10516.jpg +25746.jpg +26884.jpg +3847.jpg +19145.jpg +7294.jpg +25562.jpg +24791.jpg +13180.jpg +9670.jpg +7462.jpg +29420.jpg +27158.jpg +6853.jpg +29135.jpg +29757.jpg +28858.jpg +27061.jpg +10705.jpg +14066.jpg +2292.jpg +5725.jpg +15526.jpg +22076.jpg +8072.jpg +14090.jpg +8502.jpg +7867.jpg +19122.jpg +25192.jpg +22341.jpg +15815.jpg +17799.jpg +27596.jpg +3106.jpg +13531.jpg +22366.jpg +19181.jpg +2553.jpg +6329.jpg +12604.jpg +15379.jpg +7475.jpg +22376.jpg +25509.jpg +18181.jpg +27059.jpg +12045.jpg +28108.jpg +461.jpg +20707.jpg +5941.jpg +10441.jpg +6990.jpg +9442.jpg +19452.jpg +10940.jpg +26055.jpg +4690.jpg +15113.jpg +7970.jpg +4480.jpg +29769.jpg +26665.jpg +18069.jpg +12422.jpg +24292.jpg +24443.jpg +12081.jpg +4869.jpg +14023.jpg +5282.jpg +23255.jpg +29148.jpg +27198.jpg +3201.jpg +24287.jpg +18568.jpg +1208.jpg +1941.jpg +27021.jpg +12108.jpg +23934.jpg +19815.jpg +6841.jpg +18098.jpg +14905.jpg +29605.jpg +582.jpg +21860.jpg +17074.jpg +13837.jpg +10195.jpg +16931.jpg +21580.jpg +6651.jpg +27103.jpg +24441.jpg +21066.jpg +13269.jpg +12971.jpg +16772.jpg +10844.jpg +17989.jpg +26634.jpg +7125.jpg +2826.jpg +19706.jpg +29926.jpg +11119.jpg +29477.jpg +17827.jpg +8989.jpg +4400.jpg +6141.jpg +13114.jpg +866.jpg +13899.jpg +28561.jpg +3454.jpg +14441.jpg +1842.jpg +21790.jpg +809.jpg +12775.jpg +19591.jpg +12355.jpg +25604.jpg +23511.jpg +17605.jpg +18163.jpg +29567.jpg +18260.jpg +195.jpg +13170.jpg +24353.jpg +9961.jpg +24954.jpg +7899.jpg +19083.jpg +17438.jpg +10080.jpg +11156.jpg +1997.jpg +15925.jpg +14450.jpg +27847.jpg +67.jpg +22944.jpg +15760.jpg +20601.jpg +19761.jpg +10719.jpg +11124.jpg +22782.jpg +13635.jpg +27871.jpg +11329.jpg +11714.jpg +17219.jpg +29029.jpg +15437.jpg +10898.jpg +13820.jpg +20529.jpg +2427.jpg +1531.jpg +24604.jpg +8275.jpg +13193.jpg +12538.jpg +27144.jpg +22766.jpg +28970.jpg +2681.jpg +1735.jpg +1318.jpg +28004.jpg +23844.jpg +15252.jpg +18145.jpg +16800.jpg +13520.jpg +3542.jpg +15456.jpg +15961.jpg +12720.jpg +15263.jpg +9985.jpg +28253.jpg +17126.jpg +12649.jpg +23470.jpg +22837.jpg +24437.jpg +26127.jpg +15103.jpg +25054.jpg +29839.jpg +21606.jpg +26473.jpg +5293.jpg +1105.jpg +18258.jpg +16185.jpg +8775.jpg +28539.jpg +14305.jpg +28094.jpg +2596.jpg +7018.jpg +22843.jpg +11873.jpg +25074.jpg +29058.jpg +3653.jpg +14875.jpg +12655.jpg +3212.jpg +11792.jpg +13732.jpg +4502.jpg +10641.jpg +5390.jpg +10060.jpg +16963.jpg +16519.jpg +3182.jpg +17352.jpg +20836.jpg +12060.jpg +344.jpg +29601.jpg +20152.jpg +20487.jpg +20302.jpg +17421.jpg +11664.jpg +24924.jpg +24111.jpg +14831.jpg +3774.jpg +10885.jpg +15365.jpg +14630.jpg +12217.jpg +12676.jpg +21773.jpg +20021.jpg +11725.jpg +25273.jpg +10982.jpg +23581.jpg +20900.jpg +18104.jpg +15677.jpg +18718.jpg +20445.jpg +26283.jpg +3143.jpg +12957.jpg +6491.jpg +21152.jpg +27175.jpg +7339.jpg +24290.jpg +11095.jpg +10784.jpg +7331.jpg +5789.jpg +19850.jpg +4320.jpg +15298.jpg +24363.jpg +13225.jpg +18941.jpg +12860.jpg +20735.jpg +15880.jpg +4295.jpg +10723.jpg +11097.jpg +10908.jpg +12723.jpg +22363.jpg +12721.jpg +5992.jpg +21113.jpg +29677.jpg +19232.jpg +21376.jpg +17909.jpg +16925.jpg +18336.jpg +5591.jpg +14215.jpg +25275.jpg +11690.jpg +28767.jpg +28668.jpg +12020.jpg +8576.jpg +25498.jpg +64.jpg +22708.jpg +15975.jpg +10123.jpg +6085.jpg +4455.jpg +22697.jpg +28296.jpg +27380.jpg +5597.jpg +25503.jpg +18231.jpg +25344.jpg +11868.jpg +2117.jpg +1124.jpg +22596.jpg +23294.jpg +27724.jpg +28039.jpg +4082.jpg +26.jpg +2957.jpg +22825.jpg +10958.jpg +19205.jpg +4412.jpg +27602.jpg +13667.jpg +6947.jpg +29560.jpg +20464.jpg +25338.jpg +8925.jpg +18144.jpg +10135.jpg +27167.jpg +13436.jpg +7201.jpg +9929.jpg +27292.jpg +13232.jpg +11452.jpg +26260.jpg +18407.jpg +21513.jpg +17543.jpg +12265.jpg +4144.jpg +21037.jpg +23832.jpg +19047.jpg +14236.jpg +17158.jpg +10266.jpg +14432.jpg +8407.jpg +208.jpg +2621.jpg +21125.jpg +25364.jpg +819.jpg +2010.jpg +14749.jpg +20615.jpg +29237.jpg +12987.jpg +18969.jpg +29469.jpg +4302.jpg +13557.jpg +18080.jpg +2975.jpg +16195.jpg +26949.jpg +28247.jpg +3565.jpg +18249.jpg +23401.jpg +11206.jpg +5609.jpg +12090.jpg +5621.jpg +15046.jpg +2336.jpg +26093.jpg +24744.jpg +7410.jpg +28388.jpg +20300.jpg +571.jpg +8210.jpg +28265.jpg +17914.jpg +19624.jpg +29371.jpg +29892.jpg +17091.jpg +12250.jpg +3605.jpg +16545.jpg +7744.jpg +4421.jpg +17578.jpg +2454.jpg +13036.jpg +27065.jpg +15468.jpg +29617.jpg +28385.jpg +18079.jpg +4004.jpg +17205.jpg +476.jpg +26215.jpg +9986.jpg +2328.jpg +7325.jpg +15872.jpg +4954.jpg +20594.jpg +22654.jpg +21290.jpg +4861.jpg +20110.jpg +6244.jpg +20177.jpg +661.jpg +8351.jpg +22762.jpg +15738.jpg +19339.jpg +27930.jpg +21523.jpg +17492.jpg +11737.jpg +17623.jpg +18294.jpg +3673.jpg +11353.jpg +18753.jpg +7328.jpg +7879.jpg +28161.jpg +10520.jpg +3117.jpg +4654.jpg +8255.jpg +4569.jpg +13709.jpg +26124.jpg +24725.jpg +11529.jpg +3715.jpg +5969.jpg +9452.jpg +28849.jpg +9896.jpg +18802.jpg +26629.jpg +11954.jpg +8870.jpg +29192.jpg +26166.jpg +18670.jpg +4255.jpg +6447.jpg +6764.jpg +18109.jpg +12714.jpg +15316.jpg +8976.jpg +13465.jpg +7262.jpg +20468.jpg +24731.jpg +15630.jpg +15157.jpg +7981.jpg +26792.jpg +10593.jpg +17476.jpg +3353.jpg +11632.jpg +6604.jpg +7434.jpg +578.jpg +15716.jpg +7148.jpg +14344.jpg +21842.jpg +6444.jpg +17810.jpg +25041.jpg +27821.jpg +27212.jpg +7456.jpg +11721.jpg +12489.jpg +16578.jpg +13289.jpg +8129.jpg +24746.jpg +12000.jpg +28406.jpg +16638.jpg +8362.jpg +4622.jpg +22861.jpg +18179.jpg +5023.jpg +5920.jpg +16520.jpg +3061.jpg +19823.jpg +28567.jpg +4498.jpg +10511.jpg +15063.jpg +28392.jpg +11106.jpg +23561.jpg +25088.jpg +17542.jpg +25812.jpg +12295.jpg +13469.jpg +14334.jpg +20957.jpg +11226.jpg +108.jpg +16101.jpg +16760.jpg +9511.jpg +25205.jpg +29483.jpg +25286.jpg +26693.jpg +1898.jpg +1164.jpg +5330.jpg +17172.jpg +9901.jpg +12486.jpg +21104.jpg +20923.jpg +19102.jpg +5448.jpg +13363.jpg +4593.jpg +11253.jpg +21479.jpg +21612.jpg +16700.jpg +26372.jpg +20556.jpg +8711.jpg +3878.jpg +21806.jpg +19395.jpg +10812.jpg +9065.jpg +17356.jpg +21947.jpg +16783.jpg +7571.jpg +18502.jpg +1328.jpg +26009.jpg +3943.jpg +3738.jpg +12021.jpg +836.jpg +26192.jpg +28040.jpg +1684.jpg +28452.jpg +17514.jpg +18154.jpg +21599.jpg +19072.jpg +630.jpg +14111.jpg +13132.jpg +9481.jpg +23640.jpg +19570.jpg +5210.jpg +24214.jpg +15784.jpg +173.jpg +24343.jpg +5214.jpg +20582.jpg +6725.jpg +21914.jpg +26777.jpg +15057.jpg +15454.jpg +3568.jpg +12370.jpg +25753.jpg +27314.jpg +10831.jpg +11764.jpg +6076.jpg +27958.jpg +28376.jpg +28659.jpg +29938.jpg +21273.jpg +19635.jpg +4996.jpg +7789.jpg +11652.jpg +28415.jpg +1283.jpg +12526.jpg +13235.jpg +14754.jpg +22007.jpg +23038.jpg +4940.jpg +24795.jpg +15159.jpg +1401.jpg +16690.jpg +14107.jpg +16929.jpg +23208.jpg +66.jpg +6869.jpg +16024.jpg +12359.jpg +24595.jpg +28869.jpg +21349.jpg +11389.jpg +7808.jpg +20118.jpg +21220.jpg +10442.jpg +22487.jpg +11283.jpg +18149.jpg +15097.jpg +4638.jpg +6403.jpg +586.jpg +28547.jpg +5360.jpg +7741.jpg +28387.jpg +11931.jpg +22572.jpg +26544.jpg +4079.jpg +23672.jpg +28058.jpg +2876.jpg +11950.jpg +7369.jpg +13111.jpg +5363.jpg +9854.jpg +24905.jpg +3463.jpg +11125.jpg +20222.jpg +4624.jpg +7929.jpg +7853.jpg +22641.jpg +12166.jpg +20686.jpg +29932.jpg +14313.jpg +6716.jpg +28425.jpg +4632.jpg +17907.jpg +19603.jpg +7459.jpg +22250.jpg +23408.jpg +27664.jpg +19657.jpg +18768.jpg +1095.jpg +12487.jpg +23466.jpg +16479.jpg +28682.jpg +9200.jpg +25558.jpg +13549.jpg +28224.jpg +8550.jpg +4892.jpg +27142.jpg +28619.jpg +24277.jpg +10106.jpg +23451.jpg +10199.jpg +2788.jpg +23218.jpg +18150.jpg +18210.jpg +19754.jpg +10345.jpg +29211.jpg +29010.jpg +2918.jpg +230.jpg +29456.jpg +19425.jpg +14247.jpg +27627.jpg +22582.jpg +25299.jpg +22500.jpg +26849.jpg +6056.jpg +11057.jpg +21922.jpg +14383.jpg +6542.jpg +17024.jpg +5150.jpg +17778.jpg +27713.jpg +1286.jpg +27109.jpg +7097.jpg +16244.jpg +28280.jpg +19284.jpg +1250.jpg +22462.jpg +3651.jpg +25318.jpg +16947.jpg +29683.jpg +29008.jpg +6297.jpg +27521.jpg +8163.jpg +10377.jpg +28708.jpg +861.jpg +22585.jpg +13437.jpg +8850.jpg +17434.jpg +9282.jpg +18880.jpg +6014.jpg +28368.jpg +16484.jpg +16667.jpg +2394.jpg +22305.jpg +13586.jpg +7336.jpg +14346.jpg +18386.jpg +1540.jpg +18270.jpg +6494.jpg +13154.jpg +28950.jpg +15789.jpg +13879.jpg +16555.jpg +20607.jpg +18076.jpg +1024.jpg +26039.jpg +9743.jpg +26445.jpg +8643.jpg +13070.jpg +22881.jpg +24612.jpg +23893.jpg +2739.jpg +19626.jpg +11157.jpg +19330.jpg +28109.jpg +14804.jpg +27481.jpg +27253.jpg +17410.jpg +21087.jpg +13642.jpg +25659.jpg +2173.jpg +29429.jpg +15126.jpg +29104.jpg +2958.jpg +9296.jpg +14838.jpg +15683.jpg +7477.jpg +21052.jpg +20655.jpg +19307.jpg +17211.jpg +11028.jpg +8312.jpg +1792.jpg +29339.jpg +3496.jpg +8069.jpg +5183.jpg +15250.jpg +13143.jpg +22812.jpg +20343.jpg +21559.jpg +13877.jpg +21388.jpg +7224.jpg +9552.jpg +29525.jpg +6914.jpg +1796.jpg +12627.jpg +27364.jpg +2312.jpg +8080.jpg +28654.jpg +18355.jpg +23125.jpg +5194.jpg +24877.jpg +3925.jpg +18089.jpg +22870.jpg +28478.jpg +3381.jpg +22411.jpg +19986.jpg +2221.jpg +12500.jpg +20207.jpg +9469.jpg +6363.jpg +12592.jpg +25422.jpg +21440.jpg +2209.jpg +29351.jpg +43.jpg +21802.jpg +27432.jpg +7623.jpg +18785.jpg +19618.jpg +3648.jpg +25042.jpg +11276.jpg +3649.jpg +14412.jpg +24585.jpg +11006.jpg +27544.jpg +23615.jpg +324.jpg +5547.jpg +16131.jpg +21135.jpg +21238.jpg +236.jpg +12482.jpg +28111.jpg +26673.jpg +17978.jpg +27040.jpg +25935.jpg +25787.jpg +7393.jpg +15186.jpg +13252.jpg +17267.jpg +5734.jpg +11789.jpg +22916.jpg +12544.jpg +13003.jpg +26275.jpg +4759.jpg +19356.jpg +2869.jpg +4629.jpg +23370.jpg +23566.jpg +13955.jpg +11955.jpg +6358.jpg +24942.jpg +26178.jpg +17531.jpg +21588.jpg +17395.jpg +29059.jpg +6385.jpg +16691.jpg +18934.jpg +20327.jpg +15778.jpg +25652.jpg +27459.jpg +23605.jpg +6156.jpg +21424.jpg +22842.jpg +15561.jpg +15967.jpg +2248.jpg +4588.jpg +1673.jpg +27985.jpg +1840.jpg +470.jpg +13765.jpg +15469.jpg +14243.jpg +21116.jpg +21287.jpg +19872.jpg +24743.jpg +4959.jpg +25614.jpg +25661.jpg +10431.jpg +9831.jpg +9234.jpg +9659.jpg +14730.jpg +17811.jpg +27854.jpg +15358.jpg +21745.jpg +8344.jpg +20065.jpg +24419.jpg +464.jpg +13840.jpg +21150.jpg +19084.jpg +20358.jpg +1199.jpg +20281.jpg +16159.jpg +12613.jpg +9030.jpg +3199.jpg +2327.jpg +22234.jpg +11277.jpg +4141.jpg +5268.jpg +28599.jpg +4645.jpg +21921.jpg +29022.jpg +25362.jpg +10358.jpg +8750.jpg +22011.jpg +24004.jpg +27568.jpg +5474.jpg +7763.jpg +6400.jpg +17803.jpg +17906.jpg +948.jpg +18842.jpg +26639.jpg +1489.jpg +970.jpg +3275.jpg +13895.jpg +1334.jpg +24188.jpg +27972.jpg +606.jpg +18976.jpg +3627.jpg +21350.jpg +7668.jpg +3066.jpg +22958.jpg +6188.jpg +15129.jpg +26452.jpg +25113.jpg +16432.jpg +20134.jpg +12840.jpg +28553.jpg +4976.jpg +7576.jpg +4627.jpg +8174.jpg +19287.jpg +23757.jpg +13205.jpg +15043.jpg +14403.jpg +11795.jpg +26800.jpg +6987.jpg +25749.jpg +17860.jpg +3803.jpg +12003.jpg +49.jpg +21109.jpg +12374.jpg +1118.jpg +21428.jpg +6298.jpg +26365.jpg +27855.jpg +2939.jpg +24281.jpg +15747.jpg +3796.jpg +16648.jpg +13016.jpg +18360.jpg +6143.jpg +9677.jpg +5903.jpg +9965.jpg +15465.jpg +540.jpg +11147.jpg +15835.jpg +28847.jpg +23105.jpg +11123.jpg +11442.jpg +20796.jpg +29199.jpg +8393.jpg +8995.jpg +2037.jpg +5686.jpg +8689.jpg +7649.jpg +3350.jpg +25303.jpg +24689.jpg +13186.jpg +5230.jpg +20120.jpg +23291.jpg +25026.jpg +26493.jpg +22013.jpg +21204.jpg +11110.jpg +8597.jpg +15265.jpg +12155.jpg +10117.jpg +33.jpg +2847.jpg +9332.jpg +27684.jpg +9047.jpg +7130.jpg +28604.jpg +24339.jpg +10790.jpg +2019.jpg +14039.jpg +16600.jpg +29885.jpg +234.jpg +24289.jpg +16404.jpg +4507.jpg +611.jpg +21872.jpg +25002.jpg +28205.jpg +10517.jpg +5250.jpg +5157.jpg +5164.jpg +1849.jpg +6412.jpg +24298.jpg +2895.jpg +15585.jpg +15478.jpg +15003.jpg +6732.jpg +2597.jpg +28951.jpg +28324.jpg +18414.jpg +15865.jpg +21531.jpg +3049.jpg +4745.jpg +8451.jpg +11509.jpg +28891.jpg +9111.jpg +257.jpg +11122.jpg +28356.jpg +14213.jpg +3547.jpg +26011.jpg +9834.jpg +26096.jpg +5217.jpg +5781.jpg +5787.jpg +27742.jpg +4397.jpg +5546.jpg +18428.jpg +18451.jpg +4158.jpg +2113.jpg +2308.jpg +12736.jpg +3710.jpg +26036.jpg +22518.jpg +3714.jpg +9840.jpg +27610.jpg +27117.jpg +1452.jpg +9595.jpg +1254.jpg +22756.jpg +6647.jpg +3701.jpg +24775.jpg +15281.jpg +5020.jpg +20631.jpg +18576.jpg +18221.jpg +23644.jpg +8698.jpg +657.jpg +19892.jpg +13864.jpg +4708.jpg +29571.jpg +4661.jpg +7014.jpg +2574.jpg +2201.jpg +25152.jpg +29731.jpg +9664.jpg +888.jpg +28675.jpg +16430.jpg +7009.jpg +21391.jpg +11376.jpg +16777.jpg +6209.jpg +24763.jpg +1651.jpg +12546.jpg +19413.jpg +17487.jpg +10071.jpg +8229.jpg +4914.jpg +5129.jpg +24630.jpg +22012.jpg +23979.jpg +17451.jpg +3586.jpg +18208.jpg +17524.jpg +6090.jpg +17415.jpg +17014.jpg +14865.jpg +8721.jpg +25007.jpg +12415.jpg +22791.jpg +2563.jpg +15780.jpg +16820.jpg +26862.jpg +25852.jpg +25967.jpg +2413.jpg +17252.jpg +25345.jpg +1614.jpg +7989.jpg +10601.jpg +6361.jpg +2825.jpg +20639.jpg +184.jpg +2459.jpg +2381.jpg +22422.jpg +18841.jpg +24211.jpg +971.jpg +7632.jpg +9905.jpg +13064.jpg +2561.jpg +7291.jpg +4704.jpg +5039.jpg +12988.jpg +19349.jpg +12955.jpg +18957.jpg +19951.jpg +20853.jpg +15384.jpg +1030.jpg +15751.jpg +20944.jpg +5618.jpg +7123.jpg +15245.jpg +7818.jpg +20230.jpg +15509.jpg +9054.jpg +1519.jpg +14192.jpg +18831.jpg +594.jpg +28981.jpg +23602.jpg +7274.jpg +6497.jpg +2937.jpg +27761.jpg +16449.jpg +8399.jpg +5956.jpg +27942.jpg +21096.jpg +14991.jpg +9569.jpg +14463.jpg +27119.jpg +11893.jpg +11808.jpg +26602.jpg +9032.jpg +16316.jpg +8730.jpg +16231.jpg +26120.jpg +24559.jpg +515.jpg +14941.jpg +14329.jpg +6233.jpg +5610.jpg +23763.jpg +2434.jpg +14785.jpg +4294.jpg +13819.jpg +21714.jpg +7142.jpg +10861.jpg +20809.jpg +1115.jpg +736.jpg +45.jpg +29463.jpg +20023.jpg +5326.jpg +4830.jpg +26349.jpg +4531.jpg +4146.jpg +15536.jpg +21604.jpg +29748.jpg +27625.jpg +8230.jpg +22930.jpg +8871.jpg +3124.jpg +20463.jpg +20998.jpg +727.jpg +5446.jpg +13028.jpg +21329.jpg +29425.jpg +21730.jpg +20817.jpg +23058.jpg +1009.jpg +27490.jpg +3941.jpg +20350.jpg +8731.jpg +22425.jpg +10752.jpg +28153.jpg +16617.jpg +5724.jpg +11312.jpg +23624.jpg +13077.jpg +11245.jpg +6787.jpg +1955.jpg +12779.jpg +2440.jpg +15675.jpg +24837.jpg +24729.jpg +14843.jpg +15136.jpg +20320.jpg +4659.jpg +5190.jpg +5853.jpg +24177.jpg +11415.jpg +13946.jpg +4845.jpg +29857.jpg +601.jpg +1214.jpg +4059.jpg +16262.jpg +13203.jpg +21081.jpg +2749.jpg +21342.jpg +20093.jpg +13398.jpg +2161.jpg +36.jpg +20629.jpg +4730.jpg +15226.jpg +5692.jpg +26484.jpg +13713.jpg +18429.jpg +4776.jpg +233.jpg +24933.jpg +22745.jpg +18124.jpg +27445.jpg +18886.jpg +16878.jpg +17134.jpg +9685.jpg +2171.jpg +24859.jpg +2554.jpg +4460.jpg +642.jpg +2342.jpg +20533.jpg +27514.jpg +7511.jpg +9953.jpg +8466.jpg +18747.jpg +2977.jpg +6860.jpg +19468.jpg +13236.jpg +10253.jpg +17549.jpg +21751.jpg +11361.jpg +5398.jpg +27722.jpg +17844.jpg +10227.jpg +3221.jpg +27537.jpg +6930.jpg +16384.jpg +26974.jpg +1394.jpg +15820.jpg +19470.jpg +28667.jpg +16409.jpg +1238.jpg +6326.jpg +12770.jpg +29585.jpg +1709.jpg +7216.jpg +21567.jpg +20778.jpg +24118.jpg +15933.jpg +9936.jpg +11181.jpg +15970.jpg +12223.jpg +834.jpg +21642.jpg +9663.jpg +5566.jpg +14929.jpg +5605.jpg +20286.jpg +15308.jpg +4115.jpg +16023.jpg +4754.jpg +13624.jpg +14380.jpg +22200.jpg +22365.jpg +6317.jpg +9853.jpg +9400.jpg +27706.jpg +27441.jpg +14551.jpg +11477.jpg +22614.jpg +610.jpg +28201.jpg +21411.jpg +3312.jpg +17783.jpg +4768.jpg +19550.jpg +7626.jpg +11582.jpg +28194.jpg +2023.jpg +15297.jpg +5355.jpg +20894.jpg +21143.jpg +6934.jpg +2901.jpg +29153.jpg +21752.jpg +3777.jpg +28330.jpg +27104.jpg +22280.jpg +19305.jpg +24742.jpg +10273.jpg +9160.jpg +27959.jpg +18946.jpg +374.jpg +18666.jpg +9149.jpg +27741.jpg +7806.jpg +3598.jpg +24901.jpg +28214.jpg +22282.jpg +15146.jpg +3768.jpg +13268.jpg +5771.jpg +22826.jpg +12228.jpg +20983.jpg +4728.jpg +18082.jpg +1167.jpg +15515.jpg +2436.jpg +3367.jpg +20719.jpg +3870.jpg +21490.jpg +9921.jpg +29405.jpg +13833.jpg +22317.jpg +24500.jpg +12507.jpg +2745.jpg +4023.jpg +10076.jpg +8200.jpg +11444.jpg +187.jpg +4449.jpg +16049.jpg +15273.jpg +24758.jpg +17973.jpg +10731.jpg +4251.jpg +24203.jpg +24944.jpg +21976.jpg +13110.jpg +11722.jpg +12169.jpg +17021.jpg +14109.jpg +7197.jpg +10344.jpg +1120.jpg +12104.jpg +19705.jpg +22898.jpg +9699.jpg +28769.jpg +28418.jpg +20444.jpg +2055.jpg +20654.jpg +25218.jpg +5300.jpg +3386.jpg +11456.jpg +13340.jpg +11460.jpg +27787.jpg +2520.jpg +26193.jpg +20888.jpg +12420.jpg +770.jpg +19426.jpg +15318.jpg +11526.jpg +3305.jpg +2367.jpg +12605.jpg +9851.jpg +26741.jpg +21292.jpg +23444.jpg +13290.jpg +27137.jpg +24611.jpg +512.jpg +23497.jpg +20017.jpg +26006.jpg +11648.jpg +25888.jpg +3099.jpg +27063.jpg +9071.jpg +11385.jpg +22414.jpg +22208.jpg +4631.jpg +19392.jpg +11853.jpg +10681.jpg +7543.jpg +15929.jpg +13061.jpg +4715.jpg +15251.jpg +16220.jpg +17591.jpg +2738.jpg +23030.jpg +22239.jpg +7618.jpg +10170.jpg +3158.jpg +5613.jpg +5888.jpg +7839.jpg +2175.jpg +4680.jpg +15819.jpg +28637.jpg +8737.jpg +16561.jpg +14460.jpg +4434.jpg +23630.jpg +12282.jpg +5919.jpg +2610.jpg +2313.jpg +28026.jpg +4739.jpg +19692.jpg +29808.jpg +12806.jpg +16208.jpg +26408.jpg +20146.jpg +4263.jpg +21641.jpg +25830.jpg +14928.jpg +16382.jpg +16674.jpg +16257.jpg +19094.jpg +21868.jpg +20486.jpg +23885.jpg +14337.jpg +25442.jpg +24893.jpg +29331.jpg +28218.jpg +15333.jpg +19062.jpg +11887.jpg +28842.jpg +19235.jpg +14938.jpg +18365.jpg +6723.jpg +17586.jpg +25837.jpg +18034.jpg +5471.jpg +6912.jpg +841.jpg +26440.jpg +15332.jpg +18371.jpg +11264.jpg +22781.jpg +29700.jpg +1973.jpg +5830.jpg +9571.jpg +29436.jpg +24920.jpg +15863.jpg +22044.jpg +14004.jpg +13105.jpg +14819.jpg +16890.jpg +26417.jpg +13618.jpg +812.jpg +17800.jpg +20002.jpg +23118.jpg +171.jpg +2258.jpg +6238.jpg +27524.jpg +22631.jpg +15697.jpg +24577.jpg +27667.jpg +7536.jpg +4312.jpg +23048.jpg +7301.jpg +19958.jpg +17668.jpg +15195.jpg +10133.jpg +17058.jpg +9445.jpg +17877.jpg +12513.jpg +14736.jpg +21145.jpg +5021.jpg +16998.jpg +8187.jpg +6690.jpg +6605.jpg +10468.jpg +26630.jpg +18922.jpg +13246.jpg +15026.jpg +24315.jpg +21737.jpg +12739.jpg +1517.jpg +27746.jpg +5918.jpg +2072.jpg +5198.jpg +7607.jpg +14153.jpg +9503.jpg +23297.jpg +23475.jpg +414.jpg +27520.jpg +4170.jpg +19636.jpg +20419.jpg +21271.jpg +29944.jpg +14685.jpg +21060.jpg +28711.jpg +7221.jpg +28913.jpg +23076.jpg +20916.jpg +2000.jpg +25955.jpg +8208.jpg +16935.jpg +13308.jpg +14268.jpg +10003.jpg +9070.jpg +13544.jpg +13775.jpg +18873.jpg +12400.jpg +2223.jpg +23706.jpg +27371.jpg +10978.jpg +20142.jpg +14249.jpg +21577.jpg +10880.jpg +12789.jpg +9456.jpg +21322.jpg +6868.jpg +24619.jpg +20317.jpg +27443.jpg +7310.jpg +8474.jpg +26494.jpg +6375.jpg +24878.jpg +27242.jpg +2449.jpg +4398.jpg +24891.jpg +25719.jpg +23611.jpg +1038.jpg +16032.jpg +20672.jpg +8483.jpg +2750.jpg +1227.jpg +1705.jpg +16006.jpg +24221.jpg +11747.jpg +21397.jpg +21801.jpg +25147.jpg +3031.jpg +11170.jpg +16547.jpg +17903.jpg +28978.jpg +26289.jpg +3024.jpg +23978.jpg +801.jpg +27554.jpg +27623.jpg +8361.jpg +18068.jpg +12952.jpg +16866.jpg +21516.jpg +3987.jpg +3946.jpg +21050.jpg +10882.jpg +2267.jpg +27341.jpg +13499.jpg +10023.jpg +7864.jpg +29036.jpg +13137.jpg +6782.jpg +6820.jpg +21895.jpg +28185.jpg +10421.jpg +5991.jpg +9478.jpg +4980.jpg +28050.jpg +5966.jpg +20729.jpg +4178.jpg +2732.jpg +26917.jpg +13989.jpg +20826.jpg +28719.jpg +4227.jpg +11522.jpg +26952.jpg +5757.jpg +7158.jpg +11379.jpg +25981.jpg +18671.jpg +27995.jpg +4847.jpg +5281.jpg +10143.jpg +28612.jpg +18273.jpg +18645.jpg +23430.jpg +20263.jpg +8142.jpg +25613.jpg +18455.jpg +8683.jpg +19353.jpg +27489.jpg +12824.jpg +12639.jpg +16784.jpg +29906.jpg +14992.jpg +1762.jpg +26674.jpg +17447.jpg +27312.jpg +21503.jpg +9176.jpg +21989.jpg +18378.jpg +14149.jpg +12118.jpg +7326.jpg +3119.jpg +1899.jpg +4344.jpg +24167.jpg +20920.jpg +15369.jpg +8469.jpg +12823.jpg +12964.jpg +24279.jpg +24929.jpg +2357.jpg +15680.jpg +19135.jpg +27322.jpg +6263.jpg +21759.jpg +9276.jpg +5549.jpg +28116.jpg +21879.jpg +21360.jpg +4958.jpg +7591.jpg +21799.jpg +20592.jpg +20569.jpg +19033.jpg +7219.jpg +26612.jpg +5003.jpg +9385.jpg +12696.jpg +22993.jpg +10711.jpg +13307.jpg +18562.jpg +1106.jpg +10355.jpg +20866.jpg +17821.jpg +25143.jpg +24325.jpg +24529.jpg +10332.jpg +2311.jpg +1069.jpg +12928.jpg +13448.jpg +15609.jpg +26742.jpg +10582.jpg +22597.jpg +14796.jpg +13744.jpg +16886.jpg +4249.jpg +24418.jpg +450.jpg +17770.jpg +24257.jpg +6568.jpg +14615.jpg +10120.jpg +6777.jpg +4415.jpg +15446.jpg +2411.jpg +17786.jpg +22100.jpg +17016.jpg +3474.jpg +5035.jpg +4366.jpg +19415.jpg +3027.jpg +7184.jpg +3961.jpg +16298.jpg +28071.jpg +5460.jpg +24112.jpg +28407.jpg +22423.jpg +2702.jpg +1322.jpg +4837.jpg +24516.jpg +6211.jpg +23707.jpg +12615.jpg +23377.jpg +10558.jpg +17247.jpg +428.jpg +19020.jpg +100.jpg +431.jpg +5668.jpg +23857.jpg +12813.jpg +8598.jpg +9341.jpg +20786.jpg +2724.jpg +231.jpg +21495.jpg +12232.jpg +17339.jpg +24182.jpg +6022.jpg +2227.jpg +16235.jpg +22590.jpg +471.jpg +23361.jpg +10947.jpg +14855.jpg +47.jpg +27723.jpg +21978.jpg +907.jpg +16558.jpg +23731.jpg +14999.jpg +19107.jpg +12710.jpg +2443.jpg +21525.jpg +20961.jpg +28984.jpg +13831.jpg +13847.jpg +26073.jpg +24886.jpg +28228.jpg +4289.jpg +28278.jpg +14184.jpg +3723.jpg +7599.jpg +14713.jpg +2251.jpg +2447.jpg +1511.jpg +3978.jpg +8381.jpg +4359.jpg +4589.jpg +29165.jpg +9534.jpg +65.jpg +8413.jpg +22014.jpg +8823.jpg +752.jpg +16900.jpg +20004.jpg +8618.jpg +17670.jpg +5402.jpg +9252.jpg +27552.jpg +9335.jpg +17272.jpg +26797.jpg +12176.jpg +20050.jpg +5438.jpg +203.jpg +2976.jpg +16529.jpg +6618.jpg +1081.jpg +4864.jpg +13509.jpg +25160.jpg +4313.jpg +3820.jpg +16556.jpg +15998.jpg +1609.jpg +27036.jpg +19716.jpg +23545.jpg +6761.jpg +6610.jpg +8949.jpg +7347.jpg +6132.jpg +29258.jpg +12588.jpg +25523.jpg +21021.jpg +13131.jpg +1977.jpg +4497.jpg +20161.jpg +29589.jpg +28698.jpg +3218.jpg +22925.jpg +14206.jpg +2672.jpg +8866.jpg +7917.jpg +27011.jpg +3619.jpg +2496.jpg +15008.jpg +9278.jpg +15476.jpg +18559.jpg +10498.jpg +12577.jpg +19941.jpg +15144.jpg +8932.jpg +29180.jpg +1001.jpg +19475.jpg +25622.jpg +29394.jpg +16472.jpg +16503.jpg +23991.jpg +15671.jpg +23852.jpg +4186.jpg +3976.jpg +13370.jpg +15410.jpg +6324.jpg +14273.jpg +21298.jpg +14920.jpg +28052.jpg +12390.jpg +28399.jpg +20056.jpg +7539.jpg +12401.jpg +12974.jpg +5480.jpg +16887.jpg +23540.jpg +388.jpg +26439.jpg +20361.jpg +3843.jpg +15628.jpg +1049.jpg +10035.jpg +13035.jpg +12520.jpg +18232.jpg +14282.jpg +10237.jpg +25987.jpg +28038.jpg +4035.jpg +7481.jpg +7447.jpg +17885.jpg +4247.jpg +24696.jpg +930.jpg +15850.jpg +15996.jpg +18852.jpg +13123.jpg +12204.jpg +23152.jpg +2836.jpg +8959.jpg +14352.jpg +4641.jpg +20531.jpg +14083.jpg +9360.jpg +19819.jpg +1845.jpg +23060.jpg +9300.jpg +2220.jpg +20905.jpg +14611.jpg +9265.jpg +8402.jpg +28650.jpg +11784.jpg +8078.jpg +8510.jpg +13414.jpg +26018.jpg +18226.jpg +28256.jpg +24640.jpg +12498.jpg +1841.jpg +12576.jpg +27337.jpg +19093.jpg +20685.jpg +17365.jpg +23550.jpg +9705.jpg +26913.jpg +19302.jpg +24127.jpg +16854.jpg +6028.jpg +26972.jpg +23193.jpg +22328.jpg +25090.jpg +29158.jpg +24831.jpg +22478.jpg +19990.jpg +14707.jpg +3687.jpg +27772.jpg +5947.jpg +17986.jpg +16705.jpg +3573.jpg +27851.jpg +8308.jpg +16066.jpg +10985.jpg +1017.jpg +8012.jpg +18557.jpg +26307.jpg +11491.jpg +19917.jpg +6575.jpg +5171.jpg +1876.jpg +27974.jpg +21940.jpg +14848.jpg +8465.jpg +29995.jpg +29772.jpg +18295.jpg +24584.jpg +1302.jpg +14969.jpg +25892.jpg +27924.jpg +24600.jpg +2950.jpg +19779.jpg +18135.jpg +29262.jpg +14204.jpg +21748.jpg +28204.jpg +3984.jpg +4457.jpg +6971.jpg +6059.jpg +19579.jpg +22329.jpg +9546.jpg +12916.jpg +21985.jpg +12548.jpg +17984.jpg +5311.jpg +20986.jpg +11879.jpg +14427.jpg +2337.jpg +5631.jpg +25737.jpg +23576.jpg +4459.jpg +3844.jpg +13439.jpg +9898.jpg +18907.jpg +7965.jpg +3569.jpg +25407.jpg +13951.jpg +15312.jpg +29146.jpg +5654.jpg +17774.jpg +9031.jpg +3434.jpg +4780.jpg +17281.jpg +4012.jpg +27280.jpg +5883.jpg +6623.jpg +10816.jpg +12746.jpg +5665.jpg +29925.jpg +19949.jpg +5101.jpg +18942.jpg +26812.jpg +19908.jpg +27679.jpg +15461.jpg +18537.jpg +16103.jpg +9590.jpg +21086.jpg +20091.jpg +15464.jpg +12348.jpg +4672.jpg +6384.jpg +1758.jpg +896.jpg +21673.jpg +10729.jpg +14071.jpg +29354.jpg +20578.jpg +6745.jpg +3074.jpg +29716.jpg +6984.jpg +13444.jpg +13615.jpg +29951.jpg +1866.jpg +15643.jpg +9829.jpg +10362.jpg +23074.jpg +1634.jpg +29088.jpg +19271.jpg +14629.jpg +28585.jpg +18610.jpg +10292.jpg +29283.jpg +1311.jpg +7661.jpg +29186.jpg +908.jpg +16594.jpg +20246.jpg +15980.jpg +15382.jpg +13953.jpg +25640.jpg +24311.jpg +12553.jpg +26763.jpg +28987.jpg +23674.jpg +4849.jpg +12263.jpg +127.jpg +20995.jpg +7236.jpg +1833.jpg +3226.jpg +24478.jpg +17846.jpg +10254.jpg +8199.jpg +18627.jpg +23304.jpg +6477.jpg +14984.jpg +21105.jpg +12283.jpg +22804.jpg +20307.jpg +8905.jpg +21427.jpg +3571.jpg +12834.jpg +15612.jpg +3678.jpg +10722.jpg +23447.jpg +669.jpg +21956.jpg +25657.jpg +13591.jpg +20261.jpg +29288.jpg +17325.jpg +24276.jpg +21674.jpg +16214.jpg +6870.jpg +29745.jpg +12851.jpg +12966.jpg +5554.jpg +21514.jpg +11290.jpg +17750.jpg +25685.jpg +12661.jpg +1501.jpg +20107.jpg +4013.jpg +29963.jpg +18589.jpg +10673.jpg +6559.jpg +158.jpg +2541.jpg +21719.jpg +13106.jpg +22071.jpg +21085.jpg +16745.jpg +29712.jpg +10698.jpg +16403.jpg +10392.jpg +22067.jpg +8758.jpg +21410.jpg +18993.jpg +10010.jpg +2598.jpg +1303.jpg +20747.jpg +12340.jpg +1291.jpg +17423.jpg +16260.jpg +7766.jpg +2503.jpg +10972.jpg +23705.jpg +9434.jpg +27981.jpg +6486.jpg +3965.jpg +4523.jpg +24017.jpg +20773.jpg +18597.jpg +26767.jpg +14860.jpg +23521.jpg +5127.jpg +2476.jpg +27012.jpg +29086.jpg +16427.jpg +19434.jpg +7756.jpg +7460.jpg +2455.jpg +8636.jpg +8734.jpg +9529.jpg +1466.jpg +20691.jpg +20450.jpg +8547.jpg +27696.jpg +10491.jpg +10074.jpg +2567.jpg +4486.jpg +3655.jpg +3893.jpg +13753.jpg +4095.jpg +28777.jpg +304.jpg +26644.jpg +7091.jpg +4791.jpg +3487.jpg +2768.jpg +14115.jpg +9233.jpg +18248.jpg +6974.jpg +22228.jpg +14252.jpg +24812.jpg +18499.jpg +16429.jpg +28474.jpg +9975.jpg +2195.jpg +21408.jpg +14606.jpg +17477.jpg +28916.jpg +15108.jpg +4790.jpg +1478.jpg +2759.jpg +14936.jpg +29868.jpg +26216.jpg +7902.jpg +4794.jpg +7180.jpg +4510.jpg +211.jpg +11022.jpg +1813.jpg +21506.jpg +11214.jpg +25399.jpg +5907.jpg +29645.jpg +16014.jpg +25415.jpg +29343.jpg +2234.jpg +8898.jpg +23657.jpg +24968.jpg +21848.jpg +16899.jpg +10738.jpg +29467.jpg +20755.jpg +11433.jpg +17011.jpg +23220.jpg +9264.jpg +10433.jpg +15399.jpg +16977.jpg +29903.jpg +23830.jpg +11084.jpg +10032.jpg +16300.jpg +27962.jpg +2692.jpg +28923.jpg +24341.jpg +29055.jpg +21942.jpg +21433.jpg +27588.jpg +11766.jpg +1280.jpg +24982.jpg +21943.jpg +13240.jpg +14795.jpg +26012.jpg +19738.jpg +13645.jpg +826.jpg +12662.jpg +15128.jpg +14782.jpg +2532.jpg +5881.jpg +24863.jpg +2607.jpg +28630.jpg +24235.jpg +1561.jpg +6537.jpg +11711.jpg +18173.jpg +18781.jpg +27641.jpg +17409.jpg +4771.jpg +24855.jpg +29724.jpg +11591.jpg +24995.jpg +13405.jpg +2744.jpg +29540.jpg +9891.jpg +7345.jpg +27207.jpg +1896.jpg +7770.jpg +9090.jpg +28614.jpg +7004.jpg +3358.jpg +25466.jpg +23805.jpg +10089.jpg +1873.jpg +4646.jpg +19408.jpg +1052.jpg +3194.jpg +13167.jpg +3010.jpg +5897.jpg +29561.jpg +17323.jpg +28677.jpg +26368.jpg +16166.jpg +5507.jpg +8053.jpg +14549.jpg +21738.jpg +7448.jpg +9324.jpg +24246.jpg +19022.jpg +17503.jpg +7792.jpg +15207.jpg +20471.jpg +7986.jpg +20767.jpg +3712.jpg +19142.jpg +10995.jpg +15039.jpg +14481.jpg +5660.jpg +16398.jpg +21670.jpg +15830.jpg +4404.jpg +14093.jpg +26243.jpg +24038.jpg +4137.jpg +395.jpg +19264.jpg +7647.jpg +21193.jpg +15672.jpg +21147.jpg +10113.jpg +22128.jpg +25004.jpg +20710.jpg +18037.jpg +26191.jpg +25365.jpg +1490.jpg +6667.jpg +12287.jpg +10543.jpg +2064.jpg +8969.jpg +21546.jpg +9317.jpg +18793.jpg +1872.jpg +18240.jpg +15267.jpg +7163.jpg +22367.jpg +3857.jpg +24965.jpg +24804.jpg +13325.jpg +16642.jpg +25472.jpg +12619.jpg +7559.jpg +24294.jpg +4948.jpg +22377.jpg +24331.jpg +18617.jpg +27002.jpg +2877.jpg +5698.jpg +19999.jpg +13583.jpg +7280.jpg +1897.jpg +22047.jpg +10561.jpg +20682.jpg +26703.jpg +29999.jpg +26171.jpg +15187.jpg +10436.jpg +20768.jpg +667.jpg +11204.jpg +737.jpg +16000.jpg +3594.jpg +23032.jpg +21151.jpg +5761.jpg +14666.jpg +5851.jpg +4380.jpg +12470.jpg +24243.jpg +24802.jpg +14005.jpg +6616.jpg +13644.jpg +13661.jpg +460.jpg +1036.jpg +10098.jpg +17556.jpg +24637.jpg +838.jpg +24921.jpg +8899.jpg +2257.jpg +16930.jpg +12815.jpg +11093.jpg +5832.jpg +10615.jpg +21635.jpg +16818.jpg +23128.jpg +23887.jpg +29138.jpg +27333.jpg +10119.jpg +13104.jpg +26512.jpg +27688.jpg +25850.jpg +14278.jpg +18986.jpg +11454.jpg +3755.jpg +16629.jpg +28694.jpg +18223.jpg +20367.jpg +6153.jpg +6135.jpg +26330.jpg +22054.jpg +12674.jpg +4442.jpg +8094.jpg +5122.jpg +29852.jpg +27132.jpg +16040.jpg +8042.jpg +5052.jpg +4092.jpg +14530.jpg +11826.jpg +27238.jpg +17923.jpg +27097.jpg +26735.jpg +14417.jpg +25948.jpg +28935.jpg +17483.jpg +22063.jpg +18822.jpg +10216.jpg +29575.jpg +14719.jpg +20816.jpg +25109.jpg +14246.jpg +27422.jpg +6200.jpg +29784.jpg +5702.jpg +12595.jpg +7549.jpg +16750.jpg +19410.jpg +2973.jpg +23269.jpg +14881.jpg +90.jpg +22296.jpg +10865.jpg +9781.jpg +11081.jpg +4597.jpg +20284.jpg +8104.jpg +27982.jpg +833.jpg +17902.jpg +11310.jpg +13998.jpg +10753.jpg +22554.jpg +23216.jpg +20950.jpg +19303.jpg +4280.jpg +21582.jpg +19954.jpg +15597.jpg +12200.jpg +11811.jpg +1497.jpg +16109.jpg +19722.jpg +8996.jpg +25494.jpg +17493.jpg +10968.jpg +18752.jpg +25198.jpg +5248.jpg +11991.jpg +21477.jpg +23892.jpg +15361.jpg +5444.jpg +10318.jpg +7781.jpg +21327.jpg +16622.jpg +28511.jpg +6374.jpg +20260.jpg +695.jpg +10243.jpg +11324.jpg +10206.jpg +20099.jpg +7406.jpg +24150.jpg +8509.jpg +20577.jpg +20637.jpg +25484.jpg +9289.jpg +28648.jpg +3967.jpg +14844.jpg +26542.jpg +391.jpg +6464.jpg +13013.jpg +29136.jpg +29118.jpg +24826.jpg +13356.jpg +18950.jpg +22644.jpg +8467.jpg +9044.jpg +7843.jpg +17328.jpg +6372.jpg +2932.jpg +15167.jpg +14405.jpg +21489.jpg +21120.jpg +25350.jpg +29956.jpg +13196.jpg +5519.jpg +11944.jpg +26201.jpg +6845.jpg +3640.jpg +7436.jpg +252.jpg +5548.jpg +19040.jpg +16337.jpg +14126.jpg +9453.jpg +1344.jpg +12835.jpg +19186.jpg +8382.jpg +24487.jpg +3411.jpg +19661.jpg +28958.jpg +17425.jpg +18602.jpg +8486.jpg +16583.jpg +19423.jpg +18083.jpg +18293.jpg +2011.jpg +28434.jpg +3671.jpg +10735.jpg +22473.jpg +13149.jpg +15655.jpg +14834.jpg +11288.jpg +29880.jpg +12591.jpg +20883.jpg +26867.jpg +14343.jpg +10529.jpg +13244.jpg +19162.jpg +8038.jpg +8017.jpg +8070.jpg +28072.jpg +1108.jpg +29134.jpg +16391.jpg +21048.jpg +29071.jpg +3357.jpg +29988.jpg +15955.jpg +21328.jpg +876.jpg +24030.jpg +22505.jpg +21024.jpg +11723.jpg +26900.jpg +795.jpg +2283.jpg +25855.jpg +8248.jpg +17368.jpg +19533.jpg +24094.jpg +24848.jpg +4706.jpg +6067.jpg +14899.jpg +29472.jpg +8978.jpg +7550.jpg +4515.jpg +24857.jpg +3535.jpg +17621.jpg +12922.jpg +22005.jpg +10159.jpg +7290.jpg +7038.jpg +4215.jpg +4796.jpg +19456.jpg +23953.jpg +22895.jpg +4789.jpg +9309.jpg +23390.jpg +19851.jpg +10171.jpg +714.jpg +9538.jpg +2593.jpg +9275.jpg +15984.jpg +22634.jpg +23788.jpg +9402.jpg +25772.jpg +26905.jpg +5207.jpg +3741.jpg +10178.jpg +3762.jpg +28168.jpg +1050.jpg +17841.jpg +29021.jpg +20356.jpg +26032.jpg +20377.jpg +5211.jpg +5664.jpg +8020.jpg +1513.jpg +6979.jpg +26231.jpg +20770.jpg +28297.jpg +9708.jpg +18832.jpg +28091.jpg +5310.jpg +23071.jpg +10546.jpg +3151.jpg +3834.jpg +28976.jpg +23793.jpg +4664.jpg +4607.jpg +10792.jpg +12425.jpg +9813.jpg +22976.jpg +28749.jpg +403.jpg +6831.jpg +17656.jpg +2143.jpg +23207.jpg +7415.jpg +10820.jpg +12439.jpg +4522.jpg +12247.jpg +19538.jpg +21708.jpg +13678.jpg +10456.jpg +15350.jpg +25559.jpg +1565.jpg +15670.jpg +3378.jpg +27159.jpg +14144.jpg +18525.jpg +16133.jpg +15957.jpg +27507.jpg +16063.jpg +16003.jpg +15932.jpg +15020.jpg +25378.jpg +15811.jpg +5729.jpg +13978.jpg +4105.jpg +19382.jpg +25176.jpg +12781.jpg +15768.jpg +24931.jpg +11676.jpg +4769.jpg +2286.jpg +12670.jpg +24459.jpg +29704.jpg +28189.jpg +18651.jpg +13664.jpg +27874.jpg +23532.jpg +15254.jpg +22684.jpg +8578.jpg +28857.jpg +16304.jpg +12978.jpg +8214.jpg +24228.jpg +18522.jpg +26514.jpg +9042.jpg +14693.jpg +24481.jpg +1975.jpg +28266.jpg +1818.jpg +27402.jpg +29570.jpg +23418.jpg +22281.jpg +13054.jpg +28428.jpg +5649.jpg +1126.jpg +26061.jpg +23747.jpg +18218.jpg +29485.jpg +22706.jpg +28179.jpg +28765.jpg +24393.jpg +25173.jpg +21291.jpg +5977.jpg +8641.jpg +8914.jpg +953.jpg +21528.jpg +15718.jpg +20676.jpg +17382.jpg +15884.jpg +6065.jpg +7115.jpg +10204.jpg +12532.jpg +15061.jpg +18548.jpg +29565.jpg +14452.jpg +29301.jpg +21578.jpg +1656.jpg +3449.jpg +2791.jpg +25349.jpg +14591.jpg +2942.jpg +25759.jpg +27115.jpg +29421.jpg +8716.jpg +26954.jpg +1074.jpg +140.jpg +782.jpg +292.jpg +4504.jpg +1949.jpg +29629.jpg +23614.jpg +12519.jpg +3854.jpg +78.jpg +24455.jpg +9990.jpg +1170.jpg +16236.jpg +7181.jpg +25734.jpg +12273.jpg +6508.jpg +17692.jpg +9799.jpg +3272.jpg +25063.jpg +15225.jpg +28386.jpg +8051.jpg +9215.jpg +17925.jpg +16856.jpg +20818.jpg +3515.jpg +8274.jpg +284.jpg +27611.jpg +28905.jpg +23336.jpg +8740.jpg +26392.jpg +2688.jpg +22293.jpg +9750.jpg +21718.jpg +7747.jpg +5218.jpg +17935.jpg +6199.jpg +23668.jpg +27617.jpg +2279.jpg +13861.jpg +50.jpg +24138.jpg +9820.jpg +8352.jpg +12179.jpg +21014.jpg +13934.jpg +7452.jpg +25096.jpg +10259.jpg +8872.jpg +9924.jpg +20907.jpg +23874.jpg +7296.jpg +28309.jpg +5403.jpg +29514.jpg +12416.jpg +3739.jpg +27699.jpg +22191.jpg +16312.jpg +27820.jpg +11405.jpg +22379.jpg +21499.jpg +27452.jpg +1647.jpg +28839.jpg +18688.jpg +19189.jpg +119.jpg +8505.jpg +23046.jpg +25703.jpg +2058.jpg +6982.jpg +19901.jpg +23139.jpg +14340.jpg +22801.jpg +14814.jpg +16884.jpg +26979.jpg +6614.jpg +13008.jpg +13723.jpg +27482.jpg +26539.jpg +13034.jpg +15721.jpg +25957.jpg +1811.jpg +24089.jpg +6900.jpg +8845.jpg +20318.jpg +9622.jpg +27587.jpg +27720.jpg +10830.jpg +28134.jpg +1223.jpg +28160.jpg +29707.jpg +9007.jpg +25124.jpg +27502.jpg +18579.jpg +2396.jpg +9826.jpg +25916.jpg +28554.jpg +21948.jpg +17026.jpg +7704.jpg +6267.jpg +25298.jpg +12269.jpg +9129.jpg +23858.jpg +21142.jpg +484.jpg +5981.jpg +19767.jpg +7710.jpg +2172.jpg +11331.jpg +22259.jpg +28221.jpg +27339.jpg +12456.jpg +21395.jpg +1754.jpg +11191.jpg +5442.jpg +25328.jpg +16234.jpg +24727.jpg +10398.jpg +5481.jpg +4038.jpg +11771.jpg +810.jpg +9630.jpg +6405.jpg +8207.jpg +5750.jpg +7072.jpg +2855.jpg +18301.jpg +29912.jpg +17457.jpg +9325.jpg +4891.jpg +15068.jpg +5292.jpg +13284.jpg +13496.jpg +20106.jpg +11406.jpg +28013.jpg +3380.jpg +5388.jpg +22110.jpg +8295.jpg +24329.jpg +673.jpg +27697.jpg +6070.jpg +28001.jpg +23338.jpg +1757.jpg +28354.jpg +12459.jpg +6733.jpg +1838.jpg +22035.jpg +24186.jpg +22807.jpg +26845.jpg +17119.jpg +12598.jpg +2694.jpg +5095.jpg +3407.jpg +23664.jpg +24927.jpg +12219.jpg +7503.jpg +5026.jpg +16275.jpg +8659.jpg +19242.jpg +1966.jpg +16448.jpg +1003.jpg +21421.jpg +25465.jpg +3428.jpg +28353.jpg +9709.jpg +19209.jpg +24887.jpg +13022.jpg +26933.jpg +7953.jpg +14098.jpg +29917.jpg +29285.jpg +19359.jpg +3939.jpg +7801.jpg +10720.jpg +26016.jpg +9954.jpg +24721.jpg +15366.jpg +7305.jpg +28057.jpg +7.jpg +25185.jpg +1940.jpg +24432.jpg +19760.jpg +29630.jpg +21986.jpg +25308.jpg +20012.jpg +9848.jpg +16611.jpg +16914.jpg +18749.jpg +27480.jpg +16477.jpg +8627.jpg +12121.jpg +17023.jpg +18810.jpg +10506.jpg +3179.jpg +25743.jpg +16851.jpg +19932.jpg +27075.jpg +11646.jpg +23681.jpg +24388.jpg +19960.jpg +20234.jpg +28148.jpg +28606.jpg +7565.jpg +28636.jpg +20150.jpg +9354.jpg +2778.jpg +5387.jpg +7424.jpg +10078.jpg +14372.jpg +13208.jpg +25700.jpg +22152.jpg +21646.jpg +6319.jpg +7709.jpg +16299.jpg +1236.jpg +1079.jpg +26421.jpg +16269.jpg +23022.jpg +16048.jpg +14601.jpg +29074.jpg +4383.jpg +29039.jpg +3730.jpg +13173.jpg +7147.jpg +6173.jpg +26148.jpg +7043.jpg +13701.jpg +9099.jpg +7484.jpg +19367.jpg +6033.jpg +3545.jpg +3493.jpg +9331.jpg +18843.jpg +1713.jpg +26675.jpg +18866.jpg +9516.jpg +17370.jpg +19645.jpg +7037.jpg +24047.jpg +21969.jpg +9518.jpg +8495.jpg +14529.jpg +24864.jpg +14631.jpg +16553.jpg +15882.jpg +14476.jpg +10559.jpg +23460.jpg +5701.jpg +6992.jpg +23407.jpg +29035.jpg +7669.jpg +4931.jpg +17927.jpg +6697.jpg +23196.jpg +20104.jpg +17178.jpg +24470.jpg +25230.jpg +11834.jpg +1644.jpg +10581.jpg +24226.jpg +18897.jpg +10935.jpg +11803.jpg +5841.jpg +1860.jpg +11812.jpg +23446.jpg +26387.jpg +6884.jpg +18815.jpg +1982.jpg +6837.jpg +852.jpg +27195.jpg +12407.jpg +26657.jpg +26134.jpg +19007.jpg +244.jpg +20151.jpg +28626.jpg +4710.jpg +21182.jpg +25485.jpg +27832.jpg +2243.jpg +28260.jpg +24223.jpg +291.jpg +8380.jpg +18760.jpg +10851.jpg +10953.jpg +16759.jpg +13133.jpg +366.jpg +21511.jpg +15199.jpg +19530.jpg +13372.jpg +7040.jpg +29017.jpg +18468.jpg +5267.jpg +7946.jpg +12590.jpg +12897.jpg +10244.jpg +4765.jpg +24136.jpg +28594.jpg +15001.jpg +24061.jpg +16635.jpg +18603.jpg +8096.jpg +24147.jpg +2765.jpg +9138.jpg +23086.jpg +17625.jpg +7835.jpg +4698.jpg +23260.jpg +8300.jpg +22670.jpg +21619.jpg +28731.jpg +4078.jpg +12195.jpg +689.jpg +3452.jpg +4229.jpg +8286.jpg +29030.jpg +7990.jpg +28236.jpg +4848.jpg +26262.jpg +7820.jpg +21488.jpg +13918.jpg +4897.jpg +6280.jpg +5449.jpg +7306.jpg +15604.jpg +17990.jpg +26081.jpg +13255.jpg +22520.jpg +29694.jpg +3643.jpg +16770.jpg +13458.jpg +29688.jpg +13816.jpg +24665.jpg +1293.jpg +6086.jpg +23555.jpg +7293.jpg +29293.jpg +15845.jpg +22163.jpg +17013.jpg +18170.jpg +17864.jpg +27023.jpg +28379.jpg +10825.jpg +12909.jpg +28436.jpg +28653.jpg +5134.jpg +25126.jpg +23473.jpg +19891.jpg +29744.jpg +24229.jpg +27209.jpg +2560.jpg +7579.jpg +5667.jpg +223.jpg +6693.jpg +7049.jpg +28774.jpg +18540.jpg +18099.jpg +1393.jpg +9323.jpg +11215.jpg +2015.jpg +25764.jpg +16821.jpg +23682.jpg +8603.jpg +26395.jpg +25583.jpg +8233.jpg +7601.jpg +9559.jpg +16614.jpg +22309.jpg +3110.jpg +6190.jpg +24051.jpg +6789.jpg +10714.jpg +21767.jpg +977.jpg +21643.jpg +16946.jpg +7185.jpg +9562.jpg +8936.jpg +5325.jpg +17366.jpg +19052.jpg +23591.jpg +18006.jpg +28628.jpg +1802.jpg +18192.jpg +4844.jpg +27279.jpg +14118.jpg +27121.jpg +10139.jpg +10160.jpg +17360.jpg +13087.jpg +28417.jpg +1968.jpg +18561.jpg +21379.jpg +339.jpg +29499.jpg +3341.jpg +18153.jpg +22550.jpg +17600.jpg +26727.jpg +20058.jpg +16436.jpg +12098.jpg +15989.jpg +10944.jpg +5255.jpg +13681.jpg +24207.jpg +24799.jpg +28620.jpg +28132.jpg +3713.jpg +17455.jpg +22701.jpg +23327.jpg +12960.jpg +2481.jpg +3327.jpg +8956.jpg +327.jpg +11392.jpg +16486.jpg +10144.jpg +26463.jpg +4867.jpg +7192.jpg +4692.jpg +20081.jpg +12101.jpg +29067.jpg +1548.jpg +23649.jpg +993.jpg +19727.jpg +5225.jpg +28119.jpg +11258.jpg +24845.jpg +1670.jpg +4017.jpg +18884.jpg +10057.jpg +22763.jpg +6895.jpg +16379.jpg +20379.jpg +6566.jpg +20552.jpg +28703.jpg +3440.jpg +9894.jpg +22312.jpg +13568.jpg +26548.jpg +2344.jpg +4342.jpg +29389.jpg +1496.jpg +6666.jpg +4823.jpg +25481.jpg +862.jpg +13711.jpg +23383.jpg +17886.jpg +21446.jpg +21774.jpg +5324.jpg +7230.jpg +18859.jpg +1691.jpg +16446.jpg +13973.jpg +24071.jpg +11518.jpg +14194.jpg +20226.jpg +9143.jpg +18780.jpg +2878.jpg +12963.jpg +1914.jpg +9231.jpg +26014.jpg +18200.jpg +10533.jpg +9785.jpg +25653.jpg +13422.jpg +24808.jpg +24306.jpg +1908.jpg +22189.jpg +4944.jpg +18227.jpg +13997.jpg +10606.jpg +14078.jpg +11054.jpg +26605.jpg +20501.jpg +1148.jpg +17727.jpg +21207.jpg +14315.jpg +3756.jpg +26154.jpg +626.jpg +7769.jpg +16136.jpg +22541.jpg +29315.jpg +14771.jpg +21262.jpg +11323.jpg +22955.jpg +20726.jpg +10734.jpg +29837.jpg +16663.jpg +4591.jpg +20033.jpg +13974.jpg +12113.jpg +3824.jpg +29834.jpg +14522.jpg +18129.jpg +14208.jpg +7408.jpg +16693.jpg +26811.jpg +23202.jpg +7289.jpg +9782.jpg +5004.jpg +14049.jpg +6113.jpg +20698.jpg +13604.jpg +19540.jpg +2063.jpg +4809.jpg +22606.jpg +25798.jpg +16911.jpg +5683.jpg +17862.jpg +28021.jpg +27352.jpg +17626.jpg +8444.jpg +25986.jpg +25046.jpg +12768.jpg +24449.jpg +15949.jpg +15259.jpg +27707.jpg +20562.jpg +7346.jpg +18174.jpg +12747.jpg +22927.jpg +10045.jpg +12716.jpg +21448.jpg +13836.jpg +16849.jpg +7060.jpg +15926.jpg +29457.jpg +10949.jpg +6687.jpg +8751.jpg +17977.jpg +6772.jpg +6031.jpg +1879.jpg +29332.jpg +503.jpg +29676.jpg +11417.jpg +6671.jpg +15049.jpg +3085.jpg +10100.jpg +1752.jpg +7403.jpg +14034.jpg +5068.jpg +20030.jpg +22428.jpg +21901.jpg +14007.jpg +28475.jpg +18332.jpg +21883.jpg +7573.jpg +10462.jpg +25052.jpg +12307.jpg +21107.jpg +9315.jpg +17309.jpg +16050.jpg +19596.jpg +17324.jpg +5767.jpg +14298.jpg +1595.jpg +17184.jpg +13702.jpg +10974.jpg +7582.jpg +28552.jpg +27540.jpg +17373.jpg +11586.jpg +26647.jpg +8489.jpg +13670.jpg +20984.jpg +11422.jpg +27971.jpg +1064.jpg +22923.jpg +6075.jpg +28866.jpg +1157.jpg +9745.jpg +17972.jpg +20250.jpg +16624.jpg +10263.jpg +28979.jpg +16867.jpg +19252.jpg +12658.jpg +16564.jpg +24641.jpg +9876.jpg +14479.jpg +2354.jpg +14879.jpg +15853.jpg +23266.jpg +6098.jpg +24068.jpg +3384.jpg +7650.jpg +19154.jpg +17607.jpg +28271.jpg +12905.jpg +27515.jpg +22755.jpg +3269.jpg +8241.jpg +9425.jpg +15139.jpg +24618.jpg +14094.jpg +9431.jpg +19057.jpg +9702.jpg +21981.jpg +25154.jpg +857.jpg +26269.jpg +28465.jpg +5633.jpg +21337.jpg +6707.jpg +5022.jpg +5027.jpg +28046.jpg +5487.jpg +23984.jpg +11051.jpg +22394.jpg +12352.jpg +1015.jpg +21339.jpg +25519.jpg +17538.jpg +26317.jpg +6328.jpg +5151.jpg +18188.jpg +27037.jpg +29691.jpg +13265.jpg +2633.jpg +723.jpg +27987.jpg +23762.jpg +16320.jpg +1759.jpg +11270.jpg +29805.jpg +21575.jpg +12178.jpg +26894.jpg +3048.jpg +19469.jpg +11874.jpg +11563.jpg +20678.jpg +15386.jpg +18998.jpg +23517.jpg +15331.jpg +28522.jpg +21936.jpg +29828.jpg +13033.jpg +25873.jpg +18071.jpg +18171.jpg +5779.jpg +245.jpg +14872.jpg +26420.jpg +5801.jpg +8988.jpg +18829.jpg +25413.jpg +18347.jpg +19194.jpg +27788.jpg +1194.jpg +20785.jpg +19363.jpg +28829.jpg +20784.jpg +26699.jpg +21939.jpg +6901.jpg +7463.jpg +21764.jpg +21535.jpg +4493.jpg +21092.jpg +11870.jpg +5270.jpg +1560.jpg +11396.jpg +10801.jpg +11701.jpg +14074.jpg +25271.jpg +16549.jpg +21829.jpg +19719.jpg +19354.jpg +28634.jpg +19421.jpg +29062.jpg +25901.jpg +8646.jpg +13141.jpg +20566.jpg +27750.jpg +7923.jpg +3062.jpg +24.jpg +26998.jpg +24269.jpg +629.jpg +14540.jpg +7513.jpg +2708.jpg +28360.jpg +11989.jpg +9094.jpg +19569.jpg +23489.jpg +14939.jpg +7698.jpg +27362.jpg +28375.jpg +7119.jpg +17331.jpg +21205.jpg +1825.jpg +18827.jpg +2953.jpg +21532.jpg +24576.jpg +12790.jpg +5680.jpg +21962.jpg +22820.jpg +22521.jpg +17831.jpg +5112.jpg +3477.jpg +17263.jpg +26355.jpg +24076.jpg +11640.jpg +25642.jpg +14489.jpg +10575.jpg +7164.jpg +983.jpg +15659.jpg +12092.jpg +15180.jpg +1447.jpg +4492.jpg +1954.jpg +15021.jpg +20400.jpg +20282.jpg +7342.jpg +19812.jpg +24850.jpg +4490.jpg +15433.jpg +13332.jpg +13199.jpg +12665.jpg +21746.jpg +9912.jpg +26669.jpg +27317.jpg +5396.jpg +5773.jpg +28545.jpg +27806.jpg +3869.jpg +29849.jpg +22122.jpg +11430.jpg +5019.jpg +8194.jpg +7870.jpg +2101.jpg +24605.jpg +532.jpg +9001.jpg +28744.jpg +14701.jpg +22055.jpg +27162.jpg +12035.jpg +20934.jpg +28652.jpg +25553.jpg +24953.jpg +7080.jpg +19364.jpg +13517.jpg +15175.jpg +24809.jpg +13526.jpg +74.jpg +26460.jpg +6660.jpg +113.jpg +2219.jpg +19502.jpg +13908.jpg +2832.jpg +13158.jpg +23516.jpg +4361.jpg +7028.jpg +6659.jpg +23907.jpg +16311.jpg +16848.jpg +9412.jpg +9399.jpg +9655.jpg +4766.jpg +3937.jpg +8703.jpg +25771.jpg +5261.jpg +16708.jpg +23267.jpg +10841.jpg +3572.jpg +13130.jpg +25091.jpg +25711.jpg +20363.jpg +10415.jpg +29460.jpg +10183.jpg +7665.jpg +12578.jpg +17206.jpg +18101.jpg +28535.jpg +1535.jpg +9632.jpg +29539.jpg +5495.jpg +23345.jpg +1635.jpg +18401.jpg +572.jpg +14091.jpg +18833.jpg +20319.jpg +24485.jpg +28639.jpg +28373.jpg +663.jpg +18888.jpg +14682.jpg +4450.jpg +29444.jpg +188.jpg +8924.jpg +22977.jpg +13524.jpg +26517.jpg +4901.jpg +27360.jpg +5220.jpg +18806.jpg +25227.jpg +24382.jpg +8783.jpg +22703.jpg +20192.jpg +1370.jpg +21280.jpg +16084.jpg +19355.jpg +4190.jpg +11665.jpg +2747.jpg +17471.jpg +15310.jpg +10279.jpg +5963.jpg +25005.jpg +12614.jpg +8885.jpg +19294.jpg +6078.jpg +16846.jpg +17781.jpg +24245.jpg +8014.jpg +15328.jpg +10633.jpg +21889.jpg +882.jpg +4677.jpg +28442.jpg +8062.jpg +21776.jpg +21808.jpg +26263.jpg +4929.jpg +22150.jpg +28020.jpg +28717.jpg +11872.jpg +20847.jpg +27383.jpg +24239.jpg +28012.jpg +3910.jpg +18028.jpg +3689.jpg +1265.jpg +8125.jpg +26028.jpg +11479.jpg +10874.jpg +25886.jpg +24457.jpg +12387.jpg +22046.jpg +23421.jpg +27462.jpg +17965.jpg +20109.jpg +25062.jpg +19770.jpg +15488.jpg +6224.jpg +6563.jpg +14099.jpg +17584.jpg +19024.jpg +9213.jpg +18438.jpg +885.jpg +29814.jpg +1666.jpg +19697.jpg +12249.jpg +10668.jpg +7779.jpg +21726.jpg +19483.jpg +12148.jpg +11621.jpg +5364.jpg +4028.jpg +20743.jpg +25709.jpg +11861.jpg +9852.jpg +1279.jpg +22666.jpg +7973.jpg +22185.jpg +18093.jpg +942.jpg +6234.jpg +19121.jpg +16647.jpg +4788.jpg +6803.jpg +22662.jpg +25575.jpg +25266.jpg +11098.jpg +29068.jpg +9133.jpg +29415.jpg +24205.jpg +21569.jpg +9600.jpg +10161.jpg +21536.jpg +8453.jpg +27728.jpg +24693.jpg +3918.jpg +19405.jpg +16155.jpg +3720.jpg +11314.jpg +15317.jpg +5826.jpg +5118.jpg +27319.jpg +2125.jpg +5602.jpg +7353.jpg +1765.jpg +18322.jpg +4642.jpg +28791.jpg +25528.jpg +13545.jpg +3783.jpg +1725.jpg +2022.jpg +11079.jpg +28959.jpg +13802.jpg +10930.jpg +13550.jpg +11486.jpg +9244.jpg +24668.jpg +16149.jpg +1130.jpg +3785.jpg +1596.jpg +15546.jpg +3101.jpg +20972.jpg +28558.jpg +25078.jpg +18025.jpg +28036.jpg +2756.jpg +6936.jpg +10501.jpg +16514.jpg +29368.jpg +19342.jpg +16362.jpg +27918.jpg +3952.jpg +18352.jpg +10321.jpg +2639.jpg +21592.jpg +7220.jpg +14500.jpg +5219.jpg +1769.jpg +1590.jpg +16253.jpg +18798.jpg +22918.jpg +15632.jpg +23090.jpg +22383.jpg +29253.jpg +25928.jpg +14227.jpg +13722.jpg +15418.jpg +3963.jpg +13384.jpg +21754.jpg +19658.jpg +5133.jpg +21426.jpg +20417.jpg +3480.jpg +11692.jpg +27795.jpg +3430.jpg +28794.jpg +12573.jpg +17294.jpg +8793.jpg +27810.jpg +18919.jpg +15647.jpg +8245.jpg +12235.jpg +13774.jpg +16557.jpg +28494.jpg +20158.jpg +18755.jpg +13751.jpg +5351.jpg +3505.jpg +15857.jpg +22484.jpg +28610.jpg +2780.jpg +4630.jpg +22780.jpg +10484.jpg +5051.jpg +5707.jpg +11915.jpg +27348.jpg +19203.jpg +22717.jpg +23285.jpg +28887.jpg +6354.jpg +23718.jpg +22267.jpg +25555.jpg +15081.jpg +17752.jpg +28157.jpg +11686.jpg +13365.jpg +5755.jpg +14607.jpg +15213.jpg +24446.jpg +13915.jpg +22593.jpg +12344.jpg +13542.jpg +24702.jpg +29820.jpg +29310.jpg +14916.jpg +26617.jpg +22850.jpg +29054.jpg +11608.jpg +2378.jpg +15754.jpg +29209.jpg +3037.jpg +29714.jpg +8369.jpg +29850.jpg +11857.jpg +22947.jpg +14191.jpg +22003.jpg +2612.jpg +25267.jpg +7165.jpg +5165.jpg +29252.jpg +24377.jpg +4389.jpg +13142.jpg +16789.jpg +28507.jpg +1711.jpg +6603.jpg +19959.jpg +15286.jpg +1205.jpg +19494.jpg +9870.jpg +23037.jpg +8582.jpg +23684.jpg +12411.jpg +4743.jpg +16319.jpg +1755.jpg +7129.jpg +7242.jpg +13258.jpg +25675.jpg +1566.jpg +15890.jpg +20892.jpg +25809.jpg +12620.jpg +25100.jpg +11108.jpg +775.jpg +625.jpg +308.jpg +4567.jpg +1109.jpg +6763.jpg +13981.jpg +9605.jpg +22984.jpg +82.jpg +10819.jpg +9855.jpg +5760.jpg +23837.jpg +13651.jpg +3396.jpg +10548.jpg +27814.jpg +719.jpg +2636.jpg +490.jpg +14907.jpg +15323.jpg +17652.jpg +14742.jpg +22385.jpg +6919.jpg +20776.jpg +5347.jpg +10033.jpg +4961.jpg +7652.jpg +22728.jpg +22085.jpg +25384.jpg +28208.jpg +25193.jpg +16889.jpg +4094.jpg +4167.jpg +28966.jpg +25606.jpg +27695.jpg +26143.jpg +17603.jpg +8221.jpg +11659.jpg +8709.jpg +12818.jpg +19480.jpg +29239.jpg +22275.jpg +5524.jpg +21863.jpg +23656.jpg +15344.jpg +8804.jpg +11025.jpg +21824.jpg +19373.jpg +27533.jpg +6195.jpg +11992.jpg +19280.jpg +11809.jpg +17015.jpg +3645.jpg +2653.jpg +20137.jpg +27826.jpg +19129.jpg +6387.jpg +16717.jpg +16010.jpg +6278.jpg +15631.jpg +14734.jpg +20457.jpg +10725.jpg +22822.jpg +15964.jpg +18647.jpg +2706.jpg +26020.jpg +17785.jpg +24735.jpg +8957.jpg +7642.jpg +22491.jpg +14592.jpg +25253.jpg +12870.jpg +21954.jpg +26896.jpg +10984.jpg +11969.jpg +5117.jpg +12750.jpg +15532.jpg +27909.jpg +1111.jpg +19797.jpg +2318.jpg +6652.jpg +9238.jpg +17082.jpg +106.jpg +24810.jpg +16399.jpg +1604.jpg +18337.jpg +17449.jpg +26877.jpg +1946.jpg +3436.jpg +11131.jpg +9760.jpg +5459.jpg +5926.jpg +20143.jpg +26940.jpg +28087.jpg +29904.jpg +21817.jpg +27197.jpg +28651.jpg +17918.jpg +10915.jpg +9908.jpg +21403.jpg +10444.jpg +15781.jpg +25932.jpg +22619.jpg +14012.jpg +13553.jpg +16528.jpg +16602.jpg +10202.jpg +14472.jpg +25818.jpg +24034.jpg +5933.jpg +26495.jpg +13238.jpg +9124.jpg +22400.jpg +23623.jpg +26847.jpg +11461.jpg +891.jpg +7921.jpg +29962.jpg +24994.jpg +27229.jpg +6276.jpg +7067.jpg +29453.jpg +28676.jpg +9860.jpg +712.jpg +2867.jpg +13423.jpg +27676.jpg +20057.jpg +29363.jpg +19500.jpg +20595.jpg +19695.jpg +1092.jpg +2370.jpg +1523.jpg +17654.jpg +8745.jpg +2898.jpg +21908.jpg +16850.jpg +27916.jpg +28850.jpg +4968.jpg +26840.jpg +422.jpg +1567.jpg +10630.jpg +8700.jpg +433.jpg +27940.jpg +5226.jpg +23736.jpg +26273.jpg +20076.jpg +5257.jpg +16171.jpg +22350.jpg +6658.jpg +25464.jpg +7422.jpg +24162.jpg +734.jpg +12567.jpg +6071.jpg +16204.jpg +15794.jpg +18442.jpg +12242.jpg +8471.jpg +6051.jpg +25947.jpg +1924.jpg +26053.jpg +19230.jpg +10320.jpg +26511.jpg +1346.jpg +5462.jpg +1616.jpg +24474.jpg +791.jpg +26529.jpg +23916.jpg +9119.jpg +8676.jpg +17046.jpg +2754.jpg +9191.jpg +9561.jpg +2208.jpg +21013.jpg +2050.jpg +26808.jpg +9466.jpg +21237.jpg +11906.jpg +17666.jpg +7826.jpg +18620.jpg +19175.jpg +10597.jpg +18607.jpg +29170.jpg +10452.jpg +10107.jpg +27203.jpg +4782.jpg +14665.jpg +29206.jpg +5864.jpg +10712.jpg +12201.jpg +1439.jpg +13698.jpg +8410.jpg +8930.jpg +8545.jpg +8943.jpg +5168.jpg +20970.jpg +20190.jpg +10757.jpg +28750.jpg +1618.jpg +20140.jpg +5262.jpg +17851.jpg +3660.jpg +6198.jpg +10590.jpg +27822.jpg +10762.jpg +4566.jpg +961.jpg +28274.jpg +26910.jpg +5821.jpg +1374.jpg +6446.jpg +23794.jpg +21090.jpg +23272.jpg +12132.jpg +4611.jpg +7234.jpg +577.jpg +27155.jpg +29582.jpg +9183.jpg +27437.jpg +11251.jpg +219.jpg +17194.jpg +25525.jpg +6441.jpg +16919.jpg +8695.jpg +1506.jpg +13838.jpg +5617.jpg +24424.jpg +15392.jpg +12692.jpg +5384.jpg +15030.jpg +6119.jpg +389.jpg +7948.jpg +1936.jpg +14733.jpg +2345.jpg +1160.jpg +15255.jpg +3198.jpg +7833.jpg +11485.jpg +27691.jpg +18203.jpg +18091.jpg +8953.jpg +11793.jpg +2533.jpg +27590.jpg +11525.jpg +23716.jpg +2770.jpg +28212.jpg +6207.jpg +25924.jpg +23806.jpg +13098.jpg +2555.jpg +15674.jpg +19577.jpg +289.jpg +6434.jpg +21001.jpg +9968.jpg +9477.jpg +5872.jpg +24575.jpg +18730.jpg +146.jpg +8678.jpg +28075.jpg +15494.jpg +27775.jpg +16211.jpg +9967.jpg +2332.jpg +4072.jpg +29113.jpg +6788.jpg +25918.jpg +3146.jpg +14104.jpg +24918.jpg +20245.jpg +5065.jpg +393.jpg +25104.jpg +20941.jpg +12829.jpg +29848.jpg +3234.jpg +2364.jpg +19984.jpg +14573.jpg +25572.jpg +29247.jpg +21999.jpg +11852.jpg +23914.jpg +19714.jpg +13652.jpg +1278.jpg +7166.jpg +8111.jpg +26404.jpg +15783.jpg +24519.jpg +16297.jpg +27543.jpg +28303.jpg +7906.jpg +26691.jpg +70.jpg +15663.jpg +9613.jpg +17874.jpg +16710.jpg +28977.jpg +27961.jpg +2302.jpg +7319.jpg +1681.jpg +9633.jpg +20209.jpg +28121.jpg +10231.jpg +20667.jpg +2002.jpg +20075.jpg +27976.jpg +1359.jpg +7697.jpg +29878.jpg +9299.jpg +2084.jpg +11192.jpg +15031.jpg +1014.jpg +9525.jpg +17585.jpg +27342.jpg +11720.jpg +24340.jpg +10282.jpg +12640.jpg +20838.jpg +8074.jpg +26422.jpg +27268.jpg +7654.jpg +12161.jpg +4172.jpg +3677.jpg +27315.jpg +8739.jpg +4639.jpg +1837.jpg +2716.jpg +28112.jpg +12318.jpg +27542.jpg +10236.jpg +29297.jpg +23312.jpg +26633.jpg +28350.jpg +29431.jpg +23924.jpg +6570.jpg +1575.jpg +10576.jpg +25038.jpg +18799.jpg +8894.jpg +24648.jpg +21075.jpg +16616.jpg +12041.jpg +21319.jpg +29758.jpg +2277.jpg +27044.jpg +19723.jpg +16167.jpg +2535.jpg +9117.jpg +2841.jpg +28405.jpg +10363.jpg +8621.jpg +13672.jpg +22737.jpg +28872.jpg +29056.jpg +24617.jpg +2771.jpg +23332.jpg +27877.jpg +26883.jpg +22482.jpg +7945.jpg +10838.jpg +24960.jpg +11952.jpg +19542.jpg +27747.jpg +19403.jpg +13521.jpg +28968.jpg +3174.jpg +21630.jpg +2131.jpg +5799.jpg +16281.jpg +5279.jpg +7529.jpg +27013.jpg +3764.jpg +20063.jpg +29303.jpg +5483.jpg +10690.jpg +28060.jpg +29125.jpg +17106.jpg +16722.jpg +20310.jpg +21450.jpg +25770.jpg +23870.jpg +14708.jpg +7804.jpg +4667.jpg +14084.jpg +22919.jpg +11497.jpg +2463.jpg +29656.jpg +16240.jpg +26153.jpg +24398.jpg +17239.jpg +10566.jpg +29672.jpg +7205.jpg +28609.jpg +13994.jpg +18049.jpg +26071.jpg +26705.jpg +12726.jpg +7108.jpg +17788.jpg +6130.jpg +25836.jpg +13293.jpg +2407.jpg +522.jpg +16688.jpg +21419.jpg +24774.jpg +22581.jpg +3053.jpg +5056.jpg +8580.jpg +13764.jpg +1390.jpg +9239.jpg +14292.jpg +2625.jpg +774.jpg +21977.jpg +27316.jpg +16242.jpg +5343.jpg +20498.jpg +7261.jpg +371.jpg +8942.jpg +1868.jpg +5005.jpg +15.jpg +15858.jpg +29983.jpg +24335.jpg +14655.jpg +10052.jpg +13676.jpg +8498.jpg +20186.jpg +13298.jpg +135.jpg +13881.jpg +746.jpg +7928.jpg +29328.jpg +23018.jpg +21793.jpg +25805.jpg +10534.jpg +18912.jpg +5812.jpg +9141.jpg +2714.jpg +29703.jpg +16126.jpg +29060.jpg +17441.jpg +4052.jpg +22271.jpg +23900.jpg +12012.jpg +22911.jpg +18237.jpg +29005.jpg +27919.jpg +28216.jpg +24770.jpg +20807.jpg +28761.jpg +9288.jpg +2782.jpg +4513.jpg +27829.jpg +8063.jpg +8441.jpg +3780.jpg +290.jpg +18387.jpg +3232.jpg +10059.jpg +23132.jpg +25931.jpg +20835.jpg +13074.jpg +6801.jpg +27528.jpg +614.jpg +10094.jpg +1790.jpg +6686.jpg +3959.jpg +19379.jpg +4091.jpg +9660.jpg +14212.jpg +10631.jpg +22957.jpg +22178.jpg +28449.jpg +2947.jpg +18349.jpg +10843.jpg +7359.jpg +22198.jpg +23710.jpg +15512.jpg +9948.jpg +4476.jpg +1270.jpg +29352.jpg +5739.jpg +29157.jpg +14260.jpg +23478.jpg +26300.jpg +19289.jpg +26159.jpg +8670.jpg +18849.jpg +9541.jpg +24914.jpg +13875.jpg +20845.jpg +16158.jpg +10835.jpg +10932.jpg +18908.jpg +28678.jpg +29924.jpg +9725.jpg +4963.jpg +21898.jpg +7059.jpg +3495.jpg +246.jpg +1114.jpg +17967.jpg +27261.jpg +23952.jpg +865.jpg +4842.jpg +8993.jpg +17853.jpg +29671.jpg +6417.jpg +15435.jpg +3642.jpg +27891.jpg +17992.jpg +13515.jpg +9618.jpg +12334.jpg +20803.jpg +29437.jpg +16122.jpg +28834.jpg +5231.jpg +11273.jpg +12180.jpg +24458.jpg +27289.jpg +18308.jpg +2920.jpg +14350.jpg +8862.jpg +14279.jpg +17814.jpg +28099.jpg +7505.jpg +28538.jpg +16928.jpg +8075.jpg +6342.jpg +22950.jpg +19043.jpg +1948.jpg +14482.jpg +14072.jpg +4499.jpg +443.jpg +29149.jpg +26934.jpg +21594.jpg +5048.jpg +15048.jpg +4977.jpg +3957.jpg +12393.jpg +2766.jpg +411.jpg +21886.jpg +10959.jpg +16805.jpg +17086.jpg +5719.jpg +4300.jpg +28663.jpg +24730.jpg +10233.jpg +12511.jpg +3916.jpg +4168.jpg +1768.jpg +5592.jpg +29346.jpg +12838.jpg +11032.jpg +24385.jpg +6255.jpg +14328.jpg +9787.jpg +5590.jpg +8564.jpg +17942.jpg +7717.jpg +20425.jpg +15058.jpg +11511.jpg +16542.jpg +28580.jpg +3138.jpg +243.jpg +23333.jpg +1764.jpg +8430.jpg +29831.jpg +6643.jpg +14632.jpg +18636.jpg +27687.jpg +8660.jpg +18566.jpg +14517.jpg +1304.jpg +26819.jpg +3521.jpg +16601.jpg +14139.jpg +3919.jpg +16744.jpg +16093.jpg +27921.jpg +27654.jpg +8890.jpg +24361.jpg +10482.jpg +20298.jpg +18740.jpg +10044.jpg +17052.jpg +13528.jpg +6862.jpg +1008.jpg +10286.jpg +15669.jpg +9411.jpg +27179.jpg +22863.jpg +7244.jpg +24919.jpg +19104.jpg +26179.jpg +22869.jpg +5144.jpg +4117.jpg +23859.jpg +19245.jpg +22318.jpg +20780.jpg +25293.jpg +15838.jpg +20921.jpg +2053.jpg +25937.jpg +26680.jpg +13922.jpg +14494.jpg +12749.jpg +12135.jpg +18505.jpg +26864.jpg +24692.jpg +12937.jpg +24462.jpg +22630.jpg +27418.jpg +3359.jpg +3152.jpg +24324.jpg +17310.jpg +8302.jpg +2036.jpg +26609.jpg +7466.jpg +8097.jpg +26265.jpg +2304.jpg +17122.jpg +22196.jpg +10941.jpg +2500.jpg +7232.jpg +18581.jpg +19750.jpg +123.jpg +4157.jpg +5840.jpg +28427.jpg +1425.jpg +28370.jpg +22668.jpg +4080.jpg +19039.jpg +15388.jpg +11224.jpg +11160.jpg +7841.jpg +23221.jpg +13358.jpg +8766.jpg +20338.jpg +23685.jpg +4613.jpg +25117.jpg +28838.jpg +6954.jpg +11384.jpg +12383.jpg +28754.jpg +13770.jpg +8569.jpg +28818.jpg +29715.jpg +28223.jpg +12847.jpg +20520.jpg +12771.jpg +15973.jpg +447.jpg +21275.jpg +440.jpg +516.jpg +23172.jpg +22301.jpg +25257.jpg +3157.jpg +15121.jpg +32.jpg +11208.jpg +17982.jpg +14624.jpg +20559.jpg +27475.jpg +17416.jpg +7931.jpg +25499.jpg +25905.jpg +7479.jpg +1204.jpg +5565.jpg +23841.jpg +26685.jpg +2643.jpg +18865.jpg +109.jpg +25976.jpg +7257.jpg +25236.jpg +15229.jpg +4870.jpg +18696.jpg +14272.jpg +95.jpg +13863.jpg +18549.jpg +11927.jpg +17617.jpg +4143.jpg +29061.jpg +357.jpg +12663.jpg +24673.jpg +12159.jpg +22775.jpg +7193.jpg +17400.jpg +1942.jpg +24368.jpg +14414.jpg +25341.jpg +1731.jpg +15849.jpg +25891.jpg +17780.jpg +24256.jpg +9910.jpg +10650.jpg +3974.jpg +17733.jpg +24615.jpg +25800.jpg +27260.jpg +11745.jpg +26595.jpg +26534.jpg +10037.jpg +13948.jpg +29187.jpg +16666.jpg +4495.jpg +18081.jpg +6040.jpg +23980.jpg +18278.jpg +25522.jpg +15866.jpg +28345.jpg +17383.jpg +6941.jpg +23773.jpg +17113.jpg +17835.jpg +29982.jpg +5611.jpg +23704.jpg +13072.jpg +21405.jpg +7799.jpg +9284.jpg +14700.jpg +17099.jpg +16393.jpg +416.jpg +8473.jpg +3654.jpg +23819.jpg +20432.jpg +5717.jpg +15576.jpg +26112.jpg +3303.jpg +9610.jpg +23553.jpg +10736.jpg +23351.jpg +15712.jpg +17802.jpg +9029.jpg +28721.jpg +16217.jpg +24412.jpg +10883.jpg +5014.jpg +4375.jpg +4814.jpg +13096.jpg +20693.jpg +11105.jpg +28629.jpg +2231.jpg +6189.jpg +23922.jpg +11476.jpg +27817.jpg +3819.jpg +19365.jpg +14761.jpg +1846.jpg +13410.jpg +3466.jpg +12068.jpg +7723.jpg +8119.jpg +10927.jpg +13508.jpg +1034.jpg +29108.jpg +22738.jpg +10102.jpg +14605.jpg +6749.jpg +5143.jpg +3391.jpg +7842.jpg +883.jpg +4665.jpg +2900.jpg +9564.jpg +20176.jpg +1398.jpg +28899.jpg +25623.jpg +21845.jpg +11141.jpg +22990.jpg +27870.jpg +1910.jpg +23127.jpg +51.jpg +7824.jpg +29179.jpg +21028.jpg +24518.jpg +16597.jpg +23414.jpg +16630.jpg +21208.jpg +8677.jpg +21946.jpg +15694.jpg +28276.jpg +10349.jpg +16739.jpg +19368.jpg +11568.jpg +16715.jpg +15179.jpg +23429.jpg +15475.jpg +3034.jpg +17071.jpg +928.jpg +13473.jpg +16366.jpg +18165.jpg +9808.jpg +17010.jpg +22538.jpg +28710.jpg +15035.jpg +27613.jpg +441.jpg +6037.jpg +25797.jpg +15796.jpg +1685.jpg +5599.jpg +5322.jpg +22972.jpg +13696.jpg +3164.jpg +3071.jpg +11844.jpg +8167.jpg +24036.jpg +21725.jpg +11074.jpg +11579.jpg +7007.jpg +21461.jpg +8791.jpg +25865.jpg +20312.jpg +20969.jpg +23828.jpg +11538.jpg +22416.jpg +6165.jpg +22567.jpg +12410.jpg +29953.jpg +2572.jpg +13885.jpg +5061.jpg +18586.jpg +20832.jpg +24264.jpg +13045.jpg +9085.jpg +2697.jpg +11895.jpg +18385.jpg +28215.jpg +29812.jpg +29898.jpg +24273.jpg +24098.jpg +26183.jpg +1046.jpg +7386.jpg +23531.jpg +22638.jpg +28705.jpg +13494.jpg +9319.jpg +16147.jpg +20041.jpg +1268.jpg +6115.jpg +11768.jpg +2815.jpg +1539.jpg +25620.jpg +16346.jpg +20308.jpg +12218.jpg +8864.jpg +26531.jpg +11934.jpg +561.jpg +15701.jpg +27110.jpg +7307.jpg +7960.jpg +4112.jpg +16326.jpg +4213.jpg +240.jpg +17681.jpg +20488.jpg +7226.jpg +1354.jpg +28302.jpg +10426.jpg +3628.jpg +25846.jpg +4368.jpg +10907.jpg +22517.jpg +22138.jpg +13431.jpg +4784.jpg +25101.jpg +11063.jpg +22459.jpg +11987.jpg +9501.jpg +16081.jpg +28740.jpg +16108.jpg +29942.jpg +8133.jpg +17829.jpg +26941.jpg +22115.jpg +7167.jpg +23635.jpg +7382.jpg +9438.jpg +11050.jpg +16953.jpg +3217.jpg +15869.jpg +8852.jpg +7805.jpg +22915.jpg +20915.jpg +6355.jpg +20418.jpg +18621.jpg +4123.jpg +2150.jpg +27306.jpg +430.jpg +13852.jpg +17686.jpg +2755.jpg +2637.jpg +10148.jpg +14040.jpg +17327.jpg +2013.jpg +21837.jpg +28167.jpg +16644.jpg +505.jpg +24688.jpg +21932.jpg +26760.jpg +29718.jpg +3583.jpg +22929.jpg +16763.jpg +802.jpg +18302.jpg +26803.jpg +7377.jpg +9594.jpg +11995.jpg +588.jpg +13375.jpg +1173.jpg +14447.jpg +20026.jpg +7583.jpg +17304.jpg +13270.jpg +12972.jpg +18788.jpg +17611.jpg +15974.jpg +21117.jpg +25717.jpg +24680.jpg +3560.jpg +1100.jpg +22410.jpg +7896.jpg +24056.jpg +29250.jpg +26719.jpg +23415.jpg +8490.jpg +1087.jpg +16098.jpg +14327.jpg +23738.jpg +26658.jpg +5393.jpg +26732.jpg +6944.jpg +5327.jpg +397.jpg +7042.jpg +18854.jpg +3118.jpg +2573.jpg +8903.jpg +8638.jpg +24330.jpg +27642.jpg +4726.jpg +2247.jpg +23110.jpg +15684.jpg +15564.jpg +1791.jpg +2542.jpg +10988.jpg +6648.jpg +10373.jpg +15335.jpg +5104.jpg +5050.jpg +3211.jpg +15106.jpg +17273.jpg +13554.jpg +26731.jpg +1852.jpg +28837.jpg +16019.jpg +4103.jpg +16774.jpg +14342.jpg +24405.jpg +8609.jpg +29526.jpg +9928.jpg +2303.jpg +25588.jpg +16102.jpg +5249.jpg +16096.jpg +8859.jpg +26257.jpg +2915.jpg +28311.jpg +17961.jpg +22760.jpg +14097.jpg +11645.jpg +16196.jpg +22413.jpg +20355.jpg +11685.jpg +17998.jpg +13777.jpg +27968.jpg +7128.jpg +1348.jpg +7384.jpg +3709.jpg +28669.jpg +26125.jpg +18016.jpg +20659.jpg +5018.jpg +29397.jpg +1786.jpg +25276.jpg +19975.jpg +7506.jpg +16522.jpg +8901.jpg +11912.jpg +9184.jpg +27286.jpg +7546.jpg +22936.jpg +17933.jpg +12536.jpg +17189.jpg +619.jpg +24561.jpg +28022.jpg +18376.jpg +13160.jpg +26478.jpg +14511.jpg +6758.jpg +12156.jpg +8258.jpg +10225.jpg +4477.jpg +5998.jpg +25845.jpg +10203.jpg +7919.jpg +20027.jpg +11316.jpg +27082.jpg +21228.jpg +22166.jpg +28878.jpg +1405.jpg +24935.jpg +14013.jpg +509.jpg +15215.jpg +20043.jpg +6362.jpg +28327.jpg +29556.jpg +16485.jpg +15092.jpg +6612.jpg +11335.jpg +4273.jpg +22180.jpg +11670.jpg +8764.jpg +8121.jpg +7527.jpg +22232.jpg +24557.jpg +28544.jpg +27134.jpg +29915.jpg +20825.jpg +18546.jpg +28487.jpg +16510.jpg +13717.jpg +5675.jpg +8694.jpg +14614.jpg +5764.jpg +24656.jpg +20324.jpg +25765.jpg +16470.jpg +340.jpg +5073.jpg +16219.jpg +5447.jpg +21649.jpg +14971.jpg +15508.jpg +28812.jpg +13766.jpg +12083.jpg +1680.jpg +18351.jpg +19391.jpg +16746.jpg +1231.jpg +18032.jpg +4024.jpg +8516.jpg +11609.jpg +21807.jpg +10396.jpg +9057.jpg +25156.jpg +6510.jpg +18102.jpg +2309.jpg +28687.jpg +13343.jpg +7871.jpg +11440.jpg +23027.jpg +21492.jpg +17041.jpg +23961.jpg +22099.jpg +1856.jpg +28625.jpg +6472.jpg +24358.jpg +20753.jpg +708.jpg +27323.jpg +21690.jpg +13428.jpg +14566.jpg +11464.jpg +18739.jpg +13320.jpg +13192.jpg +21487.jpg +24467.jpg +11928.jpg +5807.jpg +8216.jpg +5932.jpg +3324.jpg +13408.jpg +1890.jpg +25625.jpg +25151.jpg +6714.jpg +25457.jpg +24415.jpg +16402.jpg +29743.jpg +925.jpg +19471.jpg +10041.jpg +12811.jpg +25243.jpg +19295.jpg +11614.jpg +28666.jpg +24923.jpg +19780.jpg +20937.jpg +22435.jpg +29181.jpg +5162.jpg +8309.jpg +22249.jpg +18595.jpg +2404.jpg +22516.jpg +19006.jpg +25654.jpg +15638.jpg +29116.jpg +13362.jpg +10412.jpg +3374.jpg +25148.jpg +5873.jpg +20583.jpg +10209.jpg +18138.jpg +23136.jpg +21160.jpg +4155.jpg +20292.jpg +25191.jpg +18956.jpg +9487.jpg +567.jpg +17495.jpg +9321.jpg +26889.jpg +4601.jpg +9147.jpg +5742.jpg +6607.jpg +17045.jpg +13482.jpg +14308.jpg +3491.jpg +15660.jpg +15194.jpg +1080.jpg +14289.jpg +11010.jpg +4475.jpg +27069.jpg +579.jpg +14493.jpg +8405.jpg +6175.jpg +7509.jpg +22058.jpg +3611.jpg +18712.jpg +8727.jpg +26319.jpg +6921.jpg +1061.jpg +23367.jpg +18496.jpg +13112.jpg +23124.jpg +2106.jpg +7800.jpg +24552.jpg +3867.jpg +10086.jpg +24165.jpg +23365.jpg +16920.jpg +18805.jpg +15696.jpg +25945.jpg +29625.jpg +24534.jpg +8827.jpg +5564.jpg +25202.jpg +2687.jpg +25492.jpg +26358.jpg +7311.jpg +12810.jpg +10124.jpg +11769.jpg +29681.jpg +9684.jpg +5121.jpg +16031.jpg +5555.jpg +29335.jpg +4371.jpg +8572.jpg +7412.jpg +12618.jpg +9628.jpg +3722.jpg +29649.jpg +10416.jpg +19021.jpg +28069.jpg +12322.jpg +5380.jpg +20428.jpg +18427.jpg +26302.jpg +14330.jpg +13707.jpg +11680.jpg +9203.jpg +8657.jpg +6602.jpg +7688.jpg +15994.jpg +6712.jpg +20618.jpg +29588.jpg +2029.jpg +13811.jpg +4085.jpg +10934.jpg +18769.jpg +14895.jpg +13636.jpg +17657.jpg +22214.jpg +21009.jpg +326.jpg +7976.jpg +29177.jpg +6313.jpg +6321.jpg +18422.jpg +2608.jpg +11858.jpg +28083.jpg +13581.jpg +4270.jpg +1582.jpg +27424.jpg +18906.jpg +4684.jpg diff --git a/lama/fetch_data/val_shuffled.flist b/lama/fetch_data/val_shuffled.flist new file mode 100644 index 0000000000000000000000000000000000000000..76a83d0ef5d62e2d6a054b1e0f62b20efdf6ffd3 --- /dev/null +++ b/lama/fetch_data/val_shuffled.flist @@ -0,0 +1,2000 @@ +25531.jpg +15329.jpg +23340.jpg +29014.jpg +29920.jpg +193.jpg +24466.jpg +29690.jpg +27615.jpg +3813.jpg +25896.jpg +27553.jpg +5825.jpg +16241.jpg +8748.jpg +14401.jpg +26190.jpg +2806.jpg +28502.jpg +22740.jpg +6243.jpg +20684.jpg +4633.jpg +18533.jpg +5975.jpg +3011.jpg +9515.jpg +21015.jpg +2675.jpg +27938.jpg +4139.jpg +5264.jpg +19139.jpg +22291.jpg +13532.jpg +22967.jpg +16879.jpg +14858.jpg +13361.jpg +20503.jpg +4918.jpg +7673.jpg +24784.jpg +9804.jpg +29194.jpg +14571.jpg +25455.jpg +20215.jpg +22844.jpg +10310.jpg +11117.jpg +6423.jpg +24124.jpg +5334.jpg +14209.jpg +10580.jpg +20448.jpg +25933.jpg +10475.jpg +29401.jpg +14880.jpg +29572.jpg +24299.jpg +14849.jpg +15898.jpg +26683.jpg +27901.jpg +22515.jpg +14501.jpg +4482.jpg +12281.jpg +15377.jpg +3588.jpg +2624.jpg +7830.jpg +28490.jpg +18928.jpg +18354.jpg +5509.jpg +28113.jpg +25761.jpg +14300.jpg +20736.jpg +23043.jpg +11544.jpg +7427.jpg +9484.jpg +4699.jpg +2323.jpg +7464.jpg +6133.jpg +22237.jpg +18272.jpg +7266.jpg +19435.jpg +10453.jpg +1668.jpg +9416.jpg +29836.jpg +22086.jpg +22660.jpg +10523.jpg +13830.jpg +4271.jpg +26168.jpg +26149.jpg +27779.jpg +19789.jpg +17847.jpg +15977.jpg +3111.jpg +20933.jpg +4358.jpg +13418.jpg +899.jpg +25720.jpg +20882.jpg +28191.jpg +15554.jpg +14915.jpg +6998.jpg +8137.jpg +13849.jpg +26971.jpg +22313.jpg +11590.jpg +5464.jpg +18972.jpg +25224.jpg +3629.jpg +12138.jpg +16128.jpg +16117.jpg +21457.jpg +23551.jpg +6913.jpg +5430.jpg +27417.jpg +2623.jpg +19216.jpg +24082.jpg +19648.jpg +9472.jpg +21163.jpg +26236.jpg +10361.jpg +12007.jpg +4202.jpg +15381.jpg +13787.jpg +7532.jpg +18609.jpg +18061.jpg +14218.jpg +20203.jpg +18705.jpg +1677.jpg +16723.jpg +963.jpg +22129.jpg +282.jpg +27726.jpg +19544.jpg +3346.jpg +10322.jpg +22343.jpg +19820.jpg +9857.jpg +21429.jpg +7572.jpg +1306.jpg +2093.jpg +4598.jpg +26177.jpg +9056.jpg +356.jpg +4671.jpg +6431.jpg +15401.jpg +13996.jpg +28413.jpg +22883.jpg +23445.jpg +28516.jpg +15707.jpg +5553.jpg +16377.jpg +29755.jpg +14616.jpg +4220.jpg +22238.jpg +18952.jpg +4430.jpg +29545.jpg +28783.jpg +15916.jpg +3460.jpg +18230.jpg +20135.jpg +11333.jpg +7491.jpg +29011.jpg +12713.jpg +24662.jpg +5401.jpg +26238.jpg +25821.jpg +28300.jpg +13740.jpg +11859.jpg +8160.jpg +22532.jpg +15430.jpg +18362.jpg +20993.jpg +8384.jpg +286.jpg +21483.jpg +2673.jpg +28270.jpg +28232.jpg +8331.jpg +29215.jpg +3524.jpg +7254.jpg +6949.jpg +10772.jpg +467.jpg +15709.jpg +28840.jpg +13808.jpg +24862.jpg +21129.jpg +24070.jpg +29012.jpg +11463.jpg +25778.jpg +11256.jpg +21134.jpg +19588.jpg +11854.jpg +25938.jpg +21367.jpg +11202.jpg +14263.jpg +5094.jpg +16302.jpg +8830.jpg +9914.jpg +29900.jpg +12763.jpg +14175.jpg +26744.jpg +19563.jpg +6399.jpg +17558.jpg +6422.jpg +16078.jpg +10228.jpg +29348.jpg +13219.jpg +12784.jpg +23063.jpg +13171.jpg +756.jpg +7418.jpg +1453.jpg +17448.jpg +9686.jpg +8374.jpg +8182.jpg +120.jpg +23305.jpg +18784.jpg +738.jpg +6833.jpg +20808.jpg +13585.jpg +25789.jpg +4947.jpg +20558.jpg +20232.jpg +11583.jpg +29018.jpg +1721.jpg +24428.jpg +12097.jpg +9280.jpg +12754.jpg +29081.jpg +25676.jpg +1023.jpg +17688.jpg +2167.jpg +4792.jpg +25381.jpg +19925.jpg +16678.jpg +3046.jpg +25252.jpg +1695.jpg +18404.jpg +27455.jpg +13691.jpg +27845.jpg +7334.jpg +25082.jpg +14996.jpg +22447.jpg +29347.jpg +9413.jpg +22308.jpg +26559.jpg +20881.jpg +3564.jpg +26643.jpg +28243.jpg +17999.jpg +26505.jpg +677.jpg +28219.jpg +17818.jpg +9004.jpg +7249.jpg +16685.jpg +10047.jpg +13303.jpg +18929.jpg +19734.jpg +28670.jpg +22307.jpg +13178.jpg +172.jpg +5341.jpg +7401.jpg +15288.jpg +23114.jpg +28885.jpg +15279.jpg +22724.jpg +18288.jpg +7453.jpg +2843.jpg +27171.jpg +22622.jpg +14886.jpg +10154.jpg +17083.jpg +1913.jpg +13228.jpg +13530.jpg +18443.jpg +24159.jpg +15404.jpg +8916.jpg +22629.jpg +7719.jpg +9653.jpg +9609.jpg +1287.jpg +29216.jpg +21906.jpg +11045.jpg +7118.jpg +18580.jpg +16560.jpg +22027.jpg +12133.jpg +17932.jpg +13230.jpg +22613.jpg +10241.jpg +174.jpg +11495.jpg +15549.jpg +3293.jpg +29869.jpg +21803.jpg +25196.jpg +15272.jpg +20214.jpg +9175.jpg +7568.jpg +24834.jpg +7540.jpg +11819.jpg +17506.jpg +23675.jpg +15816.jpg +12506.jpg +6857.jpg +12457.jpg +12144.jpg +19015.jpg +29024.jpg +19876.jpg +18940.jpg +25853.jpg +22952.jpg +8640.jpg +81.jpg +26222.jpg +22492.jpg +1320.jpg +549.jpg +23981.jpg +22757.jpg +16025.jpg +4764.jpg +3442.jpg +22645.jpg +2538.jpg +9923.jpg +17080.jpg +27639.jpg +7757.jpg +1865.jpg +11702.jpg +9988.jpg +11429.jpg +24046.jpg +7182.jpg +26538.jpg +22101.jpg +16113.jpg +5721.jpg +14.jpg +17520.jpg +12064.jpg +2669.jpg +26202.jpg +12678.jpg +25649.jpg +23368.jpg +28016.jpg +9023.jpg +15266.jpg +23947.jpg +20593.jpg +22652.jpg +16595.jpg +1389.jpg +6812.jpg +16566.jpg +3424.jpg +22431.jpg +1082.jpg +3361.jpg +13932.jpg +3239.jpg +468.jpg +2183.jpg +7139.jpg +24592.jpg +17391.jpg +20416.jpg +10713.jpg +22022.jpg +436.jpg +24084.jpg +29142.jpg +8378.jpg +11537.jpg +23782.jpg +21782.jpg +17535.jpg +27709.jpg +5538.jpg +17420.jpg +21676.jpg +5254.jpg +22653.jpg +26492.jpg +26919.jpg +29521.jpg +19681.jpg +27223.jpg +23891.jpg +5179.jpg +5942.jpg +17302.jpg +22080.jpg +24780.jpg +6248.jpg +1481.jpg +19027.jpg +27960.jpg +1579.jpg +11347.jpg +12547.jpg +21892.jpg +7874.jpg +1235.jpg +17921.jpg +5732.jpg +24651.jpg +27395.jpg +11782.jpg +2366.jpg +479.jpg +12541.jpg +448.jpg +18664.jpg +3022.jpg +17180.jpg +8967.jpg +14807.jpg +24247.jpg +13969.jpg +10666.jpg +24827.jpg +11426.jpg +24801.jpg +2626.jpg +3779.jpg +17734.jpg +16111.jpg +29410.jpg +5643.jpg +19276.jpg +28713.jpg +3343.jpg +23373.jpg +26466.jpg +4991.jpg +6027.jpg +20608.jpg +3458.jpg +7659.jpg +17241.jpg +23588.jpg +2548.jpg +26252.jpg +14319.jpg +12326.jpg +23014.jpg +23604.jpg +2076.jpg +28888.jpg +5993.jpg +29887.jpg +26135.jpg +3663.jpg +26203.jpg +18141.jpg +28739.jpg +14286.jpg +4429.jpg +11087.jpg +17513.jpg +14415.jpg +21180.jpg +22116.jpg +14956.jpg +10252.jpg +15460.jpg +22335.jpg +5097.jpg +13771.jpg +8613.jpg +17945.jpg +5024.jpg +20217.jpg +23691.jpg +28532.jpg +21178.jpg +21904.jpg +6117.jpg +5159.jpg +9533.jpg +19074.jpg +27734.jpg +22405.jpg +10853.jpg +14240.jpg +10656.jpg +24081.jpg +4047.jpg +24379.jpg +7247.jpg +25587.jpg +4777.jpg +26932.jpg +1468.jpg +26401.jpg +590.jpg +4278.jpg +15839.jpg +7161.jpg +21543.jpg +2804.jpg +24469.jpg +24139.jpg +18660.jpg +2137.jpg +24609.jpg +4461.jpg +16673.jpg +22692.jpg +23594.jpg +9236.jpg +11824.jpg +17465.jpg +24999.jpg +638.jpg +23385.jpg +764.jpg +4717.jpg +5465.jpg +9629.jpg +6182.jpg +22388.jpg +2664.jpg +5571.jpg +24909.jpg +17306.jpg +12973.jpg +818.jpg +28936.jpg +12342.jpg +28101.jpg +17345.jpg +21149.jpg +8083.jpg +16468.jpg +19830.jpg +1927.jpg +1554.jpg +22992.jpg +18134.jpg +23911.jpg +21941.jpg +21871.jpg +7828.jpg +25560.jpg +9631.jpg +18001.jpg +15423.jpg +11798.jpg +21707.jpg +9235.jpg +5630.jpg +22095.jpg +6549.jpg +9676.jpg +14546.jpg +25773.jpg +9294.jpg +24322.jpg +27751.jpg +24260.jpg +25799.jpg +845.jpg +24679.jpg +5284.jpg +18050.jpg +19828.jpg +20362.jpg +15876.jpg +28912.jpg +17303.jpg +26738.jpg +21585.jpg +8999.jpg +7317.jpg +2539.jpg +20372.jpg +24456.jpg +23552.jpg +27183.jpg +22389.jpg +7223.jpg +19055.jpg +12982.jpg +19478.jpg +643.jpg +3267.jpg +26195.jpg +7574.jpg +22295.jpg +3837.jpg +24897.jpg +3733.jpg +10328.jpg +11049.jpg +29357.jpg +23448.jpg +7019.jpg +11533.jpg +20732.jpg +23677.jpg +7138.jpg +24074.jpg +13256.jpg +26778.jpg +16966.jpg +22481.jpg +13330.jpg +8087.jpg +26310.jpg +13574.jpg +16716.jpg +8919.jpg +25432.jpg +1598.jpg +1358.jpg +28377.jpg +21416.jpg +26576.jpg +9316.jpg +17838.jpg +16924.jpg +15176.jpg +12327.jpg +1488.jpg +20981.jpg +1086.jpg +12617.jpg +26182.jpg +5492.jpg +13014.jpg +23080.jpg +23999.jpg +18689.jpg +17330.jpg +12477.jpg +29045.jpg +16419.jpg +6459.jpg +22605.jpg +17518.jpg +8386.jpg +29428.jpg +15181.jpg +10156.jpg +18419.jpg +26698.jpg +25678.jpg +1249.jpg +19943.jpg +5747.jpg +24409.jpg +13388.jpg +24077.jpg +21781.jpg +10288.jpg +7489.jpg +25634.jpg +3836.jpg +16512.jpg +17040.jpg +22890.jpg +6171.jpg +24588.jpg +17755.jpg +20649.jpg +26003.jpg +27583.jpg +12175.jpg +29636.jpg +13122.jpg +12230.jpg +20668.jpg +21200.jpg +25556.jpg +869.jpg +13487.jpg +7657.jpg +6440.jpg +17259.jpg +2358.jpg +1547.jpg +19394.jpg +29637.jpg +27120.jpg +27951.jpg +18532.jpg +29123.jpg +4988.jpg +1470.jpg +18615.jpg +28181.jpg +16373.jpg +7775.jpg +27419.jpg +12302.jpg +5278.jpg +29535.jpg +11718.jpg +16273.jpg +26384.jpg +26132.jpg +28023.jpg +26232.jpg +6682.jpg +9718.jpg +14568.jpg +17946.jpg +29893.jpg +8587.jpg +12725.jpg +10733.jpg +27169.jpg +14404.jpg +2020.jpg +8696.jpg +6181.jpg +13046.jpg +16339.jpg +24055.jpg +11450.jpg +23468.jpg +9996.jpg +878.jpg +28047.jpg +17683.jpg +26515.jpg +19777.jpg +24580.jpg +4184.jpg +7480.jpg +16228.jpg +4877.jpg +14759.jpg +15393.jpg +27378.jpg +14801.jpg +16504.jpg +18933.jpg +25545.jpg +19196.jpg +17663.jpg +922.jpg +3644.jpg +18088.jpg +8654.jpg +3403.jpg +2914.jpg +25511.jpg +17233.jpg +6009.jpg +13305.jpg +25510.jpg +26277.jpg +22026.jpg +1551.jpg +22735.jpg +6191.jpg +11577.jpg +14725.jpg +12953.jpg +7922.jpg +22628.jpg +19689.jpg +10359.jpg +15015.jpg +24333.jpg +5865.jpg +7957.jpg +12085.jpg +4747.jpg +7538.jpg +11877.jpg +8767.jpg +788.jpg +5369.jpg +14385.jpg +266.jpg +6813.jpg +12174.jpg +13001.jpg +26958.jpg +22683.jpg +2808.jpg +3004.jpg +20449.jpg +23690.jpg +4331.jpg +27477.jpg +23254.jpg +13851.jpg +4373.jpg +14205.jpg +10451.jpg +17431.jpg +22727.jpg +2887.jpg +28892.jpg +24638.jpg +24058.jpg +13695.jpg +9730.jpg +7972.jpg +8310.jpg +18399.jpg +5778.jpg +23627.jpg +23147.jpg +9993.jpg +166.jpg +4993.jpg +28488.jpg +19031.jpg +9833.jpg +28178.jpg +17740.jpg +28341.jpg +8892.jpg +6032.jpg +17509.jpg +13166.jpg +4758.jpg +6573.jpg +14154.jpg +23006.jpg +1524.jpg +2591.jpg +14790.jpg +8304.jpg +22182.jpg +8217.jpg +19622.jpg +7913.jpg +8315.jpg +20723.jpg +18266.jpg +19763.jpg +14585.jpg +27248.jpg +9126.jpg +26102.jpg +1700.jpg +3557.jpg +19608.jpg +25751.jpg +87.jpg +6438.jpg +14119.jpg +22571.jpg +23279.jpg +19628.jpg +19909.jpg +2616.jpg +4114.jpg +9678.jpg +13780.jpg +8292.jpg +6147.jpg +12291.jpg +16778.jpg +8606.jpg +13592.jpg +5203.jpg +19992.jpg +19505.jpg +24120.jpg +8765.jpg +24438.jpg +16792.jpg +19745.jpg +23827.jpg +3761.jpg +7638.jpg +10568.jpg +14808.jpg +5893.jpg +29132.jpg +8514.jpg +13558.jpg +4268.jpg +19637.jpg +26957.jpg +15583.jpg +15080.jpg +10814.jpg +18275.jpg +5060.jpg +21788.jpg +11193.jpg +1710.jpg +5169.jpg +13697.jpg +13038.jpg +7939.jpg +3781.jpg +14491.jpg +28128.jpg +23933.jpg +22711.jpg +5477.jpg +23971.jpg +7297.jpg +17067.jpg +8602.jpg +26918.jpg +4111.jpg +20848.jpg +7958.jpg +15687.jpg +14755.jpg +15878.jpg +4180.jpg +23982.jpg +9489.jpg +25670.jpg +23751.jpg +4071.jpg +6073.jpg +15220.jpg +24631.jpg +1409.jpg +16137.jpg +11127.jpg +26911.jpg +9262.jpg +26337.jpg +7640.jpg +25125.jpg +25334.jpg +25502.jpg +16087.jpg +8347.jpg +21321.jpg +3251.jpg +28155.jpg +29267.jpg +4005.jpg +14660.jpg +29726.jpg +21775.jpg +5202.jpg +3966.jpg +15083.jpg +9937.jpg +7807.jpg +21705.jpg +12260.jpg +23164.jpg +11699.jpg +13537.jpg +7905.jpg +20375.jpg +16795.jpg +929.jpg +10918.jpg +9756.jpg +5109.jpg +2960.jpg +27358.jpg +12112.jpg +27495.jpg +5167.jpg +4272.jpg +4212.jpg +6333.jpg +25433.jpg +20138.jpg +21363.jpg +27988.jpg +25083.jpg +19899.jpg +12856.jpg +2479.jpg +18714.jpg +19282.jpg +18744.jpg +3145.jpg +7472.jpg +13736.jpg +6443.jpg +24551.jpg +27865.jpg +27860.jpg +13556.jpg +16469.jpg +29050.jpg +25431.jpg +8887.jpg +27391.jpg +25121.jpg +5490.jpg +12859.jpg +4468.jpg +26474.jpg +9102.jpg +9667.jpg +28903.jpg +17228.jpg +17222.jpg +18039.jpg +75.jpg +3881.jpg +22786.jpg +13427.jpg +9396.jpg +4388.jpg +16654.jpg +16835.jpg +13735.jpg +1248.jpg +19746.jpg +10827.jpg +8040.jpg +13679.jpg +28889.jpg +29687.jpg +4735.jpg +25064.jpg +12711.jpg +7259.jpg +19156.jpg +21253.jpg +20955.jpg +20831.jpg +27950.jpg +29901.jpg +29294.jpg +13910.jpg +1541.jpg +9427.jpg +24736.jpg +3758.jpg +13609.jpg +29220.jpg +23643.jpg +21177.jpg +23160.jpg +11821.jpg +10611.jpg +23089.jpg +24684.jpg +2222.jpg +3592.jpg +18824.jpg +19575.jpg +14583.jpg +27463.jpg +2848.jpg +26628.jpg +8491.jpg +26298.jpg +8225.jpg +8231.jpg +20191.jpg +7316.jpg +9719.jpg +24202.jpg +3389.jpg +28049.jpg +19918.jpg +22151.jpg +4102.jpg +3601.jpg +22910.jpg +18701.jpg +19998.jpg +26050.jpg +21139.jpg +8170.jpg +13598.jpg +24489.jpg +29786.jpg +21265.jpg +22106.jpg +23059.jpg +26955.jpg +20497.jpg +8458.jpg +22996.jpg +5445.jpg +23081.jpg +22457.jpg +26158.jpg +21891.jpg +3550.jpg +375.jpg +6239.jpg +20630.jpg +17350.jpg +2333.jpg +24160.jpg +6038.jpg +3799.jpg +26350.jpg +15416.jpg +2433.jpg +11519.jpg +8403.jpg +1137.jpg +7069.jpg +7849.jpg +17159.jpg +10658.jpg +19527.jpg +6179.jpg +24987.jpg +6736.jpg +3.jpg +24387.jpg +24189.jpg +7214.jpg +20632.jpg +6653.jpg +4608.jpg +2088.jpg +10618.jpg +18961.jpg +7876.jpg +13401.jpg +11677.jpg +24103.jpg +13457.jpg +1121.jpg +3669.jpg +22833.jpg +7073.jpg +18837.jpg +21820.jpg +19507.jpg +10341.jpg +19673.jpg +8261.jpg +18542.jpg +14150.jpg +5818.jpg +23309.jpg +341.jpg +27085.jpg +22268.jpg +20521.jpg +14535.jpg +2498.jpg +22479.jpg +27843.jpg +25580.jpg +687.jpg +832.jpg +12554.jpg +9873.jpg +29770.jpg +14581.jpg +19080.jpg +6134.jpg +331.jpg +23878.jpg +11246.jpg +19907.jpg +10099.jpg +17876.jpg +9072.jpg +6092.jpg +19863.jpg +872.jpg +3121.jpg +14393.jpg +20097.jpg +3259.jpg +3237.jpg +2355.jpg +3622.jpg +12734.jpg +11409.jpg +10302.jpg +3229.jpg +63.jpg +12324.jpg +25244.jpg +12575.jpg +26943.jpg +24997.jpg +8024.jpg +17705.jpg +14671.jpg +12502.jpg +25570.jpg +1987.jpg +1385.jpg +19783.jpg +14437.jpg +2499.jpg +28836.jpg +13523.jpg +25636.jpg +12699.jpg +7206.jpg +27192.jpg +11611.jpg +1040.jpg +11998.jpg +23721.jpg +18588.jpg +3330.jpg +12341.jpg +9118.jpg +22522.jpg +25732.jpg +3340.jpg +14554.jpg +3742.jpg +12443.jpg +24163.jpg +2622.jpg +27797.jpg +20124.jpg +22300.jpg +20155.jpg +20648.jpg +7735.jpg +16223.jpg +5044.jpg +6249.jpg +27834.jpg +7251.jpg +18771.jpg +12343.jpg +7442.jpg +3735.jpg +10694.jpg +22211.jpg +15602.jpg +21772.jpg +16563.jpg +10567.jpg +29289.jpg +9983.jpg +21308.jpg +12124.jpg +8197.jpg +16335.jpg +20619.jpg +10767.jpg +14133.jpg +11794.jpg +9984.jpg +17735.jpg +25138.jpg +7776.jpg +28028.jpg +10768.jpg +8992.jpg +14544.jpg +18045.jpg +20167.jpg +13728.jpg +5227.jpg +5006.jpg +15391.jpg +6793.jpg +20940.jpg +24141.jpg +25014.jpg +11551.jpg +23572.jpg +14973.jpg +4162.jpg +25102.jpg +29730.jpg +14931.jpg +19333.jpg +21422.jpg +1290.jpg +23804.jpg +3732.jpg +17702.jpg +7330.jpg +545.jpg +18679.jpg +6836.jpg +15023.jpg +4171.jpg +12940.jpg +21823.jpg +24522.jpg +17237.jpg +27680.jpg +23016.jpg +26069.jpg +18358.jpg +25893.jpg +4193.jpg +26459.jpg +3370.jpg +27510.jpg +27786.jpg +27771.jpg +24366.jpg +25393.jpg +9795.jpg +13463.jpg +23051.jpg +21119.jpg +5453.jpg +1933.jpg +15394.jpg +4175.jpg +18175.jpg +23708.jpg +19605.jpg +23671.jpg +29126.jpg +17697.jpg +22261.jpg +8826.jpg +20991.jpg +17833.jpg +11943.jpg +4964.jpg +28381.jpg +17689.jpg +4994.jpg +19267.jpg +10238.jpg +15538.jpg +18379.jpg +15743.jpg +7366.jpg +28333.jpg +25791.jpg +2858.jpg +19318.jpg +8965.jpg +28751.jpg +3472.jpg +17878.jpg +17220.jpg +4652.jpg +23801.jpg +6264.jpg +14377.jpg +26049.jpg +1817.jpg +5580.jpg +9356.jpg +12994.jpg +10009.jpg +23865.jpg +2453.jpg +29593.jpg +19641.jpg +6621.jpg +15899.jpg +21662.jpg +25355.jpg +16880.jpg +15992.jpg +19101.jpg +28140.jpg +2727.jpg +22287.jpg +13690.jpg +25807.jpg +18493.jpg +25691.jpg +28679.jpg +15270.jpg +2603.jpg +23324.jpg +12091.jpg +4034.jpg +25067.jpg +19066.jpg +7036.jpg +6722.jpg +10612.jpg +7368.jpg +24950.jpg +13194.jpg +10834.jpg +9748.jpg +18895.jpg +28431.jpg +5652.jpg +7151.jpg +25289.jpg +9642.jpg +29864.jpg +16351.jpg +10777.jpg +8663.jpg +6533.jpg +28536.jpg +14948.jpg +6673.jpg +4679.jpg +8961.jpg +24622.jpg +25145.jpg +14480.jpg +26426.jpg +11825.jpg +27299.jpg +28307.jpg +6530.jpg +24493.jpg +14983.jpg +21549.jpg +13086.jpg +16347.jpg +21002.jpg +21850.jpg +6025.jpg +4206.jpg +6876.jpg +13809.jpg +16554.jpg +12753.jpg +20953.jpg +20213.jpg +15422.jpg +5342.jpg +328.jpg +22632.jpg +20130.jpg +23462.jpg +20121.jpg +25390.jpg +1827.jpg +4997.jpg +8779.jpg +15753.jpg +13913.jpg +263.jpg +23612.jpg +5432.jpg +7332.jpg +22562.jpg +17960.jpg +1410.jpg +21093.jpg +11513.jpg +23756.jpg +26507.jpg +17776.jpg +704.jpg +1633.jpg +6963.jpg +21521.jpg +19920.jpg +4282.jpg +3787.jpg +16825.jpg +1068.jpg +28077.jpg +24105.jpg +11740.jpg +24578.jpg +2893.jpg +23382.jpg +29977.jpg +22768.jpg +24354.jpg +227.jpg +24649.jpg +28917.jpg +8534.jpg +14322.jpg +8363.jpg +11286.jpg +20410.jpg +6734.jpg +7544.jpg +6514.jpg +17859.jpg +2157.jpg +19198.jpg +8132.jpg +346.jpg +7660.jpg +28081.jpg +12740.jpg +165.jpg +21563.jpg +20834.jpg +26469.jpg +10472.jpg +28645.jpg +16541.jpg +17073.jpg +6420.jpg +24825.jpg +14662.jpg +13151.jpg +7252.jpg +18224.jpg +10579.jpg +20185.jpg +26980.jpg +18996.jpg +508.jpg +16506.jpg +23453.jpg +14411.jpg +13823.jpg +2083.jpg +5425.jpg +28706.jpg +9768.jpg +29512.jpg +16246.jpg +4802.jpg +14645.jpg +13029.jpg +25051.jpg +1202.jpg +19025.jpg +29016.jpg +21852.jpg +20169.jpg +21716.jpg +25032.jpg +19631.jpg +700.jpg +21412.jpg +15014.jpg +26750.jpg +22351.jpg +18199.jpg +9603.jpg +14357.jpg +7991.jpg +28780.jpg +4925.jpg +26907.jpg +10771.jpg +6522.jpg +10240.jpg +16371.jpg +22609.jpg +23504.jpg +5576.jpg +10090.jpg +8630.jpg +9205.jpg +17342.jpg +9599.jpg +22773.jpg +14294.jpg +19149.jpg +20804.jpg +23575.jpg +13047.jpg +14710.jpg +20236.jpg +10167.jpg +15764.jpg +19045.jpg +19511.jpg +27796.jpg +5746.jpg +10149.jpg +2329.jpg +6705.jpg +12621.jpg +20231.jpg +4384.jpg +22507.jpg +19345.jpg +26144.jpg +6598.jpg +6702.jpg +5541.jpg +204.jpg +23256.jpg +28944.jpg +9486.jpg +24797.jpg +19504.jpg +19558.jpg +12910.jpg +27799.jpg +986.jpg +17896.jpg +1128.jpg +25017.jpg +11654.jpg +25740.jpg +28556.jpg +5788.jpg +8366.jpg +5752.jpg +9892.jpg +26155.jpg +23735.jpg +17276.jpg +8601.jpg +13906.jpg +19926.jpg +15050.jpg +27689.jpg +14171.jpg +5768.jpg +3308.jpg +117.jpg +28560.jpg +9479.jpg +19412.jpg +1413.jpg +11313.jpg +29361.jpg +23002.jpg +6520.jpg +2823.jpg +8966.jpg +23506.jpg +4352.jpg +28242.jpg +1345.jpg +16743.jpg +27298.jpg +26888.jpg +16662.jpg +17427.jpg +12777.jpg +17337.jpg +12168.jpg +7900.jpg +1323.jpg +18538.jpg +28063.jpg +29100.jpg +29304.jpg +28583.jpg +3808.jpg +25497.jpg +19116.jpg +7858.jpg +24939.jpg +7131.jpg +13023.jpg +21455.jpg +19952.jpg +28158.jpg +29155.jpg +15455.jpg +16202.jpg +27536.jpg +24323.jpg +19924.jpg +13786.jpg +5247.jpg +15668.jpg +22887.jpg +2275.jpg +22177.jpg +15411.jpg +25648.jpg +19551.jpg +7850.jpg +15291.jpg +3009.jpg +17582.jpg +17413.jpg +8116.jpg +20536.jpg +13220.jpg +1671.jpg +6352.jpg +675.jpg +13449.jpg +3469.jpg +9387.jpg +18641.jpg +18932.jpg +12659.jpg +21741.jpg +23912.jpg +11715.jpg +21996.jpg +11481.jpg +16525.jpg +7875.jpg +24821.jpg +21994.jpg +28855.jpg +6513.jpg +20610.jpg +17807.jpg +11846.jpg +8157.jpg +18711.jpg +2874.jpg +21744.jpg +29599.jpg +9549.jpg +6525.jpg +7064.jpg +8218.jpg +19685.jpg +16264.jpg +2722.jpg +5275.jpg +15415.jpg +25333.jpg +241.jpg +2018.jpg +10269.jpg +2241.jpg +12319.jpg +12949.jpg +26859.jpg +14036.jpg +17753.jpg +26455.jpg +11448.jpg +25953.jpg +27838.jpg +26829.jpg +998.jpg +9076.jpg +7786.jpg +26655.jpg +242.jpg +585.jpg +3222.jpg +14762.jpg +12744.jpg +6527.jpg +12275.jpg +5299.jpg +17256.jpg +18680.jpg +19911.jpg +25694.jpg +13936.jpg +6155.jpg +9703.jpg +26671.jpg +25186.jpg +24699.jpg +17801.jpg +13124.jpg +14626.jpg +4076.jpg +29856.jpg +811.jpg +27975.jpg +17065.jpg +12938.jpg +13301.jpg +29473.jpg +13810.jpg +7802.jpg +378.jpg +7397.jpg +24881.jpg +15169.jpg +26739.jpg +23469.jpg +13734.jpg +9220.jpg +4002.jpg +5406.jpg +18690.jpg +11546.jpg +3123.jpg +12820.jpg +27842.jpg +20412.jpg +4648.jpg +17371.jpg +1661.jpg +3490.jpg +9906.jpg +20839.jpg +13071.jpg +22048.jpg +5423.jpg +22566.jpg +29576.jpg +25210.jpg +23223.jpg +22961.jpg +12865.jpg +24949.jpg +6997.jpg +9696.jpg +22424.jpg +14269.jpg +6874.jpg +1536.jpg +15888.jpg +23093.jpg +2678.jpg +17646.jpg +7777.jpg +21214.jpg +7774.jpg +26418.jpg +28015.jpg +20166.jpg +3825.jpg +24201.jpg +8317.jpg +14778.jpg +27354.jpg +12297.jpg +24751.jpg +22045.jpg +5715.jpg +16927.jpg +3904.jpg +22210.jpg +19164.jpg +16728.jpg +22001.jpg +29740.jpg +12380.jpg +22747.jpg +5195.jpg +20352.jpg +2816.jpg +5684.jpg +7932.jpg +29597.jpg +765.jpg +25263.jpg +26924.jpg +186.jpg +29633.jpg +1240.jpg +9237.jpg +25910.jpg +29842.jpg +28285.jpg +29933.jpg +20746.jpg +6882.jpg +19849.jpg +501.jpg +10624.jpg +10257.jpg +27767.jpg +9194.jpg +12635.jpg +10163.jpg +26083.jpg +14443.jpg +9585.jpg +4122.jpg +22546.jpg +29826.jpg +23702.jpg +8328.jpg +15442.jpg +13429.jpg +3246.jpg +11863.jpg +15700.jpg +5302.jpg +16824.jpg +13608.jpg +12499.jpg +12730.jpg +4290.jpg +2139.jpg +12029.jpg +29257.jpg +18063.jpg +20935.jpg +27222.jpg +18024.jpg +17092.jpg +19108.jpg +2908.jpg +22260.jpg +2070.jpg +16758.jpg +26794.jpg +4834.jpg +23293.jpg +5957.jpg +2793.jpg +15851.jpg +21315.jpg +16009.jpg +1251.jpg +10388.jpg +2466.jpg +10638.jpg +25034.jpg +15151.jpg +13741.jpg +27270.jpg +4833.jpg +6023.jpg +28972.jpg +7260.jpg +17444.jpg +15699.jpg +23730.jpg +20254.jpg +17959.jpg +21653.jpg +28331.jpg +10644.jpg +23935.jpg +4600.jpg +2720.jpg +6569.jpg +2528.jpg diff --git a/lama/models/ade20k/__init__.py b/lama/models/ade20k/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..773cfc4664eef45a4f6fe05bd3fe2aa2143fdb5c --- /dev/null +++ b/lama/models/ade20k/__init__.py @@ -0,0 +1 @@ +from .base import * \ No newline at end of file diff --git a/lama/models/ade20k/__pycache__/__init__.cpython-310.pyc b/lama/models/ade20k/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25f52030bf1c4afd4c3e263b58d5f4f27331503c Binary files /dev/null and b/lama/models/ade20k/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/models/ade20k/__pycache__/base.cpython-310.pyc b/lama/models/ade20k/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b2dcb2d9d69c0a9f7a69455d525c557ff687487 Binary files /dev/null and b/lama/models/ade20k/__pycache__/base.cpython-310.pyc differ diff --git a/lama/models/ade20k/__pycache__/mobilenet.cpython-310.pyc b/lama/models/ade20k/__pycache__/mobilenet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..344b4dd0bf429fa0c27df733b43e2cfe25d7ba7d Binary files /dev/null and b/lama/models/ade20k/__pycache__/mobilenet.cpython-310.pyc differ diff --git a/lama/models/ade20k/__pycache__/resnet.cpython-310.pyc b/lama/models/ade20k/__pycache__/resnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9345f78d666447c260ca793bfafc971f9a004620 Binary files /dev/null and b/lama/models/ade20k/__pycache__/resnet.cpython-310.pyc differ diff --git a/lama/models/ade20k/__pycache__/utils.cpython-310.pyc b/lama/models/ade20k/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07e5079f2330ff19000df9b6ea70d706c3a9dae7 Binary files /dev/null and b/lama/models/ade20k/__pycache__/utils.cpython-310.pyc differ diff --git a/lama/models/ade20k/base.py b/lama/models/ade20k/base.py new file mode 100644 index 0000000000000000000000000000000000000000..3764e5409011ad97d8285d5bb59b070eb9f9025f --- /dev/null +++ b/lama/models/ade20k/base.py @@ -0,0 +1,627 @@ +"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch""" + +import os + +import pandas as pd +import torch +import torch.nn as nn +import torch.nn.functional as F +from scipy.io import loadmat +from torch.nn.modules import BatchNorm2d + +from . import resnet +from . import mobilenet + + +NUM_CLASS = 150 +base_path = os.path.dirname(os.path.abspath(__file__)) # current file path +colors_path = os.path.join(base_path, 'color150.mat') +classes_path = os.path.join(base_path, 'object150_info.csv') + +segm_options = dict(colors=loadmat(colors_path)['colors'], + classes=pd.read_csv(classes_path),) + + +class NormalizeTensor: + def __init__(self, mean, std, inplace=False): + """Normalize a tensor image with mean and standard deviation. + .. note:: + This transform acts out of place by default, i.e., it does not mutates the input tensor. + See :class:`~torchvision.transforms.Normalize` for more details. + Args: + tensor (Tensor): Tensor image of size (C, H, W) to be normalized. + mean (sequence): Sequence of means for each channel. + std (sequence): Sequence of standard deviations for each channel. + inplace(bool,optional): Bool to make this operation inplace. + Returns: + Tensor: Normalized Tensor image. + """ + + self.mean = mean + self.std = std + self.inplace = inplace + + def __call__(self, tensor): + if not self.inplace: + tensor = tensor.clone() + + dtype = tensor.dtype + mean = torch.as_tensor(self.mean, dtype=dtype, device=tensor.device) + std = torch.as_tensor(self.std, dtype=dtype, device=tensor.device) + tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None]) + return tensor + + +# Model Builder +class ModelBuilder: + # custom weights initialization + @staticmethod + def weights_init(m): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + nn.init.kaiming_normal_(m.weight.data) + elif classname.find('BatchNorm') != -1: + m.weight.data.fill_(1.) + m.bias.data.fill_(1e-4) + + @staticmethod + def build_encoder(arch='resnet50dilated', fc_dim=512, weights=''): + pretrained = True if len(weights) == 0 else False + arch = arch.lower() + if arch == 'mobilenetv2dilated': + orig_mobilenet = mobilenet.__dict__['mobilenetv2'](pretrained=pretrained) + net_encoder = MobileNetV2Dilated(orig_mobilenet, dilate_scale=8) + elif arch == 'resnet18': + orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained) + net_encoder = Resnet(orig_resnet) + elif arch == 'resnet18dilated': + orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained) + net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) + elif arch == 'resnet50dilated': + orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) + net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) + elif arch == 'resnet50': + orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained) + net_encoder = Resnet(orig_resnet) + else: + raise Exception('Architecture undefined!') + + # encoders are usually pretrained + # net_encoder.apply(ModelBuilder.weights_init) + if len(weights) > 0: + print('Loading weights for net_encoder') + net_encoder.load_state_dict( + torch.load(weights, map_location=lambda storage, loc: storage), strict=False) + return net_encoder + + @staticmethod + def build_decoder(arch='ppm_deepsup', + fc_dim=512, num_class=NUM_CLASS, + weights='', use_softmax=False, drop_last_conv=False): + arch = arch.lower() + if arch == 'ppm_deepsup': + net_decoder = PPMDeepsup( + num_class=num_class, + fc_dim=fc_dim, + use_softmax=use_softmax, + drop_last_conv=drop_last_conv) + elif arch == 'c1_deepsup': + net_decoder = C1DeepSup( + num_class=num_class, + fc_dim=fc_dim, + use_softmax=use_softmax, + drop_last_conv=drop_last_conv) + else: + raise Exception('Architecture undefined!') + + net_decoder.apply(ModelBuilder.weights_init) + if len(weights) > 0: + print('Loading weights for net_decoder') + net_decoder.load_state_dict( + torch.load(weights, map_location=lambda storage, loc: storage), strict=False) + return net_decoder + + @staticmethod + def get_decoder(weights_path, arch_encoder, arch_decoder, fc_dim, drop_last_conv, *arts, **kwargs): + path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/decoder_epoch_20.pth') + return ModelBuilder.build_decoder(arch=arch_decoder, fc_dim=fc_dim, weights=path, use_softmax=True, drop_last_conv=drop_last_conv) + + @staticmethod + def get_encoder(weights_path, arch_encoder, arch_decoder, fc_dim, segmentation, + *arts, **kwargs): + if segmentation: + path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/encoder_epoch_20.pth') + else: + path = '' + return ModelBuilder.build_encoder(arch=arch_encoder, fc_dim=fc_dim, weights=path) + + +def conv3x3_bn_relu(in_planes, out_planes, stride=1): + return nn.Sequential( + nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False), + BatchNorm2d(out_planes), + nn.ReLU(inplace=True), + ) + + +class SegmentationModule(nn.Module): + def __init__(self, + weights_path, + num_classes=150, + arch_encoder="resnet50dilated", + drop_last_conv=False, + net_enc=None, # None for Default encoder + net_dec=None, # None for Default decoder + encode=None, # {None, 'binary', 'color', 'sky'} + use_default_normalization=False, + return_feature_maps=False, + return_feature_maps_level=3, # {0, 1, 2, 3} + return_feature_maps_only=True, + **kwargs, + ): + super().__init__() + self.weights_path = weights_path + self.drop_last_conv = drop_last_conv + self.arch_encoder = arch_encoder + if self.arch_encoder == "resnet50dilated": + self.arch_decoder = "ppm_deepsup" + self.fc_dim = 2048 + elif self.arch_encoder == "mobilenetv2dilated": + self.arch_decoder = "c1_deepsup" + self.fc_dim = 320 + else: + raise NotImplementedError(f"No such arch_encoder={self.arch_encoder}") + model_builder_kwargs = dict(arch_encoder=self.arch_encoder, + arch_decoder=self.arch_decoder, + fc_dim=self.fc_dim, + drop_last_conv=drop_last_conv, + weights_path=self.weights_path) + + self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + self.encoder = ModelBuilder.get_encoder(**model_builder_kwargs) if net_enc is None else net_enc + self.decoder = ModelBuilder.get_decoder(**model_builder_kwargs) if net_dec is None else net_dec + self.use_default_normalization = use_default_normalization + self.default_normalization = NormalizeTensor(mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225]) + + self.encode = encode + + self.return_feature_maps = return_feature_maps + + assert 0 <= return_feature_maps_level <= 3 + self.return_feature_maps_level = return_feature_maps_level + + def normalize_input(self, tensor): + if tensor.min() < 0 or tensor.max() > 1: + raise ValueError("Tensor should be 0..1 before using normalize_input") + return self.default_normalization(tensor) + + @property + def feature_maps_channels(self): + return 256 * 2**(self.return_feature_maps_level) # 256, 512, 1024, 2048 + + def forward(self, img_data, segSize=None): + if segSize is None: + raise NotImplementedError("Please pass segSize param. By default: (300, 300)") + + fmaps = self.encoder(img_data, return_feature_maps=True) + pred = self.decoder(fmaps, segSize=segSize) + + if self.return_feature_maps: + return pred, fmaps + # print("BINARY", img_data.shape, pred.shape) + return pred + + def multi_mask_from_multiclass(self, pred, classes): + def isin(ar1, ar2): + return (ar1[..., None] == ar2).any(-1).float() + return isin(pred, torch.LongTensor(classes).to(self.device)) + + @staticmethod + def multi_mask_from_multiclass_probs(scores, classes): + res = None + for c in classes: + if res is None: + res = scores[:, c] + else: + res += scores[:, c] + return res + + def predict(self, tensor, imgSizes=(-1,), # (300, 375, 450, 525, 600) + segSize=None): + """Entry-point for segmentation. Use this methods instead of forward + Arguments: + tensor {torch.Tensor} -- BCHW + Keyword Arguments: + imgSizes {tuple or list} -- imgSizes for segmentation input. + default: (300, 450) + original implementation: (300, 375, 450, 525, 600) + + """ + if segSize is None: + segSize = tensor.shape[-2:] + segSize = (tensor.shape[2], tensor.shape[3]) + with torch.no_grad(): + if self.use_default_normalization: + tensor = self.normalize_input(tensor) + scores = torch.zeros(1, NUM_CLASS, segSize[0], segSize[1]).to(self.device) + features = torch.zeros(1, self.feature_maps_channels, segSize[0], segSize[1]).to(self.device) + + result = [] + for img_size in imgSizes: + if img_size != -1: + img_data = F.interpolate(tensor.clone(), size=img_size) + else: + img_data = tensor.clone() + + if self.return_feature_maps: + pred_current, fmaps = self.forward(img_data, segSize=segSize) + else: + pred_current = self.forward(img_data, segSize=segSize) + + + result.append(pred_current) + scores = scores + pred_current / len(imgSizes) + + # Disclaimer: We use and aggregate only last fmaps: fmaps[3] + if self.return_feature_maps: + features = features + F.interpolate(fmaps[self.return_feature_maps_level], size=segSize) / len(imgSizes) + + _, pred = torch.max(scores, dim=1) + + if self.return_feature_maps: + return features + + return pred, result + + def get_edges(self, t): + edge = torch.cuda.ByteTensor(t.size()).zero_() + edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1]) + edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1]) + edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) + edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :]) + + if True: + return edge.half() + return edge.float() + + +# pyramid pooling, deep supervision +class PPMDeepsup(nn.Module): + def __init__(self, num_class=NUM_CLASS, fc_dim=4096, + use_softmax=False, pool_scales=(1, 2, 3, 6), + drop_last_conv=False): + super().__init__() + self.use_softmax = use_softmax + self.drop_last_conv = drop_last_conv + + self.ppm = [] + for scale in pool_scales: + self.ppm.append(nn.Sequential( + nn.AdaptiveAvgPool2d(scale), + nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), + BatchNorm2d(512), + nn.ReLU(inplace=True) + )) + self.ppm = nn.ModuleList(self.ppm) + self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) + + self.conv_last = nn.Sequential( + nn.Conv2d(fc_dim + len(pool_scales) * 512, 512, + kernel_size=3, padding=1, bias=False), + BatchNorm2d(512), + nn.ReLU(inplace=True), + nn.Dropout2d(0.1), + nn.Conv2d(512, num_class, kernel_size=1) + ) + self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) + self.dropout_deepsup = nn.Dropout2d(0.1) + + def forward(self, conv_out, segSize=None): + conv5 = conv_out[-1] + + input_size = conv5.size() + ppm_out = [conv5] + for pool_scale in self.ppm: + ppm_out.append(nn.functional.interpolate( + pool_scale(conv5), + (input_size[2], input_size[3]), + mode='bilinear', align_corners=False)) + ppm_out = torch.cat(ppm_out, 1) + + if self.drop_last_conv: + return ppm_out + else: + x = self.conv_last(ppm_out) + + if self.use_softmax: # is True during inference + x = nn.functional.interpolate( + x, size=segSize, mode='bilinear', align_corners=False) + x = nn.functional.softmax(x, dim=1) + return x + + # deep sup + conv4 = conv_out[-2] + _ = self.cbr_deepsup(conv4) + _ = self.dropout_deepsup(_) + _ = self.conv_last_deepsup(_) + + x = nn.functional.log_softmax(x, dim=1) + _ = nn.functional.log_softmax(_, dim=1) + + return (x, _) + + +class Resnet(nn.Module): + def __init__(self, orig_resnet): + super(Resnet, self).__init__() + + # take pretrained resnet, except AvgPool and FC + self.conv1 = orig_resnet.conv1 + self.bn1 = orig_resnet.bn1 + self.relu1 = orig_resnet.relu1 + self.conv2 = orig_resnet.conv2 + self.bn2 = orig_resnet.bn2 + self.relu2 = orig_resnet.relu2 + self.conv3 = orig_resnet.conv3 + self.bn3 = orig_resnet.bn3 + self.relu3 = orig_resnet.relu3 + self.maxpool = orig_resnet.maxpool + self.layer1 = orig_resnet.layer1 + self.layer2 = orig_resnet.layer2 + self.layer3 = orig_resnet.layer3 + self.layer4 = orig_resnet.layer4 + + def forward(self, x, return_feature_maps=False): + conv_out = [] + + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.maxpool(x) + + x = self.layer1(x); conv_out.append(x); + x = self.layer2(x); conv_out.append(x); + x = self.layer3(x); conv_out.append(x); + x = self.layer4(x); conv_out.append(x); + + if return_feature_maps: + return conv_out + return [x] + +# Resnet Dilated +class ResnetDilated(nn.Module): + def __init__(self, orig_resnet, dilate_scale=8): + super().__init__() + from functools import partial + + if dilate_scale == 8: + orig_resnet.layer3.apply( + partial(self._nostride_dilate, dilate=2)) + orig_resnet.layer4.apply( + partial(self._nostride_dilate, dilate=4)) + elif dilate_scale == 16: + orig_resnet.layer4.apply( + partial(self._nostride_dilate, dilate=2)) + + # take pretrained resnet, except AvgPool and FC + self.conv1 = orig_resnet.conv1 + self.bn1 = orig_resnet.bn1 + self.relu1 = orig_resnet.relu1 + self.conv2 = orig_resnet.conv2 + self.bn2 = orig_resnet.bn2 + self.relu2 = orig_resnet.relu2 + self.conv3 = orig_resnet.conv3 + self.bn3 = orig_resnet.bn3 + self.relu3 = orig_resnet.relu3 + self.maxpool = orig_resnet.maxpool + self.layer1 = orig_resnet.layer1 + self.layer2 = orig_resnet.layer2 + self.layer3 = orig_resnet.layer3 + self.layer4 = orig_resnet.layer4 + + def _nostride_dilate(self, m, dilate): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + # the convolution with stride + if m.stride == (2, 2): + m.stride = (1, 1) + if m.kernel_size == (3, 3): + m.dilation = (dilate // 2, dilate // 2) + m.padding = (dilate // 2, dilate // 2) + # other convoluions + else: + if m.kernel_size == (3, 3): + m.dilation = (dilate, dilate) + m.padding = (dilate, dilate) + + def forward(self, x, return_feature_maps=False): + conv_out = [] + + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.maxpool(x) + + x = self.layer1(x) + conv_out.append(x) + x = self.layer2(x) + conv_out.append(x) + x = self.layer3(x) + conv_out.append(x) + x = self.layer4(x) + conv_out.append(x) + + if return_feature_maps: + return conv_out + return [x] + +class MobileNetV2Dilated(nn.Module): + def __init__(self, orig_net, dilate_scale=8): + super(MobileNetV2Dilated, self).__init__() + from functools import partial + + # take pretrained mobilenet features + self.features = orig_net.features[:-1] + + self.total_idx = len(self.features) + self.down_idx = [2, 4, 7, 14] + + if dilate_scale == 8: + for i in range(self.down_idx[-2], self.down_idx[-1]): + self.features[i].apply( + partial(self._nostride_dilate, dilate=2) + ) + for i in range(self.down_idx[-1], self.total_idx): + self.features[i].apply( + partial(self._nostride_dilate, dilate=4) + ) + elif dilate_scale == 16: + for i in range(self.down_idx[-1], self.total_idx): + self.features[i].apply( + partial(self._nostride_dilate, dilate=2) + ) + + def _nostride_dilate(self, m, dilate): + classname = m.__class__.__name__ + if classname.find('Conv') != -1: + # the convolution with stride + if m.stride == (2, 2): + m.stride = (1, 1) + if m.kernel_size == (3, 3): + m.dilation = (dilate//2, dilate//2) + m.padding = (dilate//2, dilate//2) + # other convoluions + else: + if m.kernel_size == (3, 3): + m.dilation = (dilate, dilate) + m.padding = (dilate, dilate) + + def forward(self, x, return_feature_maps=False): + if return_feature_maps: + conv_out = [] + for i in range(self.total_idx): + x = self.features[i](x) + if i in self.down_idx: + conv_out.append(x) + conv_out.append(x) + return conv_out + + else: + return [self.features(x)] + + +# last conv, deep supervision +class C1DeepSup(nn.Module): + def __init__(self, num_class=150, fc_dim=2048, use_softmax=False, drop_last_conv=False): + super(C1DeepSup, self).__init__() + self.use_softmax = use_softmax + self.drop_last_conv = drop_last_conv + + self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1) + self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1) + + # last conv + self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) + self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) + + def forward(self, conv_out, segSize=None): + conv5 = conv_out[-1] + + x = self.cbr(conv5) + + if self.drop_last_conv: + return x + else: + x = self.conv_last(x) + + if self.use_softmax: # is True during inference + x = nn.functional.interpolate( + x, size=segSize, mode='bilinear', align_corners=False) + x = nn.functional.softmax(x, dim=1) + return x + + # deep sup + conv4 = conv_out[-2] + _ = self.cbr_deepsup(conv4) + _ = self.conv_last_deepsup(_) + + x = nn.functional.log_softmax(x, dim=1) + _ = nn.functional.log_softmax(_, dim=1) + + return (x, _) + + +# last conv +class C1(nn.Module): + def __init__(self, num_class=150, fc_dim=2048, use_softmax=False): + super(C1, self).__init__() + self.use_softmax = use_softmax + + self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1) + + # last conv + self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0) + + def forward(self, conv_out, segSize=None): + conv5 = conv_out[-1] + x = self.cbr(conv5) + x = self.conv_last(x) + + if self.use_softmax: # is True during inference + x = nn.functional.interpolate( + x, size=segSize, mode='bilinear', align_corners=False) + x = nn.functional.softmax(x, dim=1) + else: + x = nn.functional.log_softmax(x, dim=1) + + return x + + +# pyramid pooling +class PPM(nn.Module): + def __init__(self, num_class=150, fc_dim=4096, + use_softmax=False, pool_scales=(1, 2, 3, 6)): + super(PPM, self).__init__() + self.use_softmax = use_softmax + + self.ppm = [] + for scale in pool_scales: + self.ppm.append(nn.Sequential( + nn.AdaptiveAvgPool2d(scale), + nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False), + BatchNorm2d(512), + nn.ReLU(inplace=True) + )) + self.ppm = nn.ModuleList(self.ppm) + + self.conv_last = nn.Sequential( + nn.Conv2d(fc_dim+len(pool_scales)*512, 512, + kernel_size=3, padding=1, bias=False), + BatchNorm2d(512), + nn.ReLU(inplace=True), + nn.Dropout2d(0.1), + nn.Conv2d(512, num_class, kernel_size=1) + ) + + def forward(self, conv_out, segSize=None): + conv5 = conv_out[-1] + + input_size = conv5.size() + ppm_out = [conv5] + for pool_scale in self.ppm: + ppm_out.append(nn.functional.interpolate( + pool_scale(conv5), + (input_size[2], input_size[3]), + mode='bilinear', align_corners=False)) + ppm_out = torch.cat(ppm_out, 1) + + x = self.conv_last(ppm_out) + + if self.use_softmax: # is True during inference + x = nn.functional.interpolate( + x, size=segSize, mode='bilinear', align_corners=False) + x = nn.functional.softmax(x, dim=1) + else: + x = nn.functional.log_softmax(x, dim=1) + return x diff --git a/lama/models/ade20k/color150.mat b/lama/models/ade20k/color150.mat new file mode 100644 index 0000000000000000000000000000000000000000..c518b64fbbe899d4a8b2705f012eeba795339892 Binary files /dev/null and b/lama/models/ade20k/color150.mat differ diff --git a/lama/models/ade20k/mobilenet.py b/lama/models/ade20k/mobilenet.py new file mode 100644 index 0000000000000000000000000000000000000000..771ad62127f8e2f259e263eccce455990c9d463f --- /dev/null +++ b/lama/models/ade20k/mobilenet.py @@ -0,0 +1,154 @@ +""" +This MobileNetV2 implementation is modified from the following repository: +https://github.com/tonylins/pytorch-mobilenet-v2 +""" + +import torch.nn as nn +import math +from .utils import load_url +from .segm_lib.nn import SynchronizedBatchNorm2d + +BatchNorm2d = SynchronizedBatchNorm2d + + +__all__ = ['mobilenetv2'] + + +model_urls = { + 'mobilenetv2': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/mobilenet_v2.pth.tar', +} + + +def conv_bn(inp, oup, stride): + return nn.Sequential( + nn.Conv2d(inp, oup, 3, stride, 1, bias=False), + BatchNorm2d(oup), + nn.ReLU6(inplace=True) + ) + + +def conv_1x1_bn(inp, oup): + return nn.Sequential( + nn.Conv2d(inp, oup, 1, 1, 0, bias=False), + BatchNorm2d(oup), + nn.ReLU6(inplace=True) + ) + + +class InvertedResidual(nn.Module): + def __init__(self, inp, oup, stride, expand_ratio): + super(InvertedResidual, self).__init__() + self.stride = stride + assert stride in [1, 2] + + hidden_dim = round(inp * expand_ratio) + self.use_res_connect = self.stride == 1 and inp == oup + + if expand_ratio == 1: + self.conv = nn.Sequential( + # dw + nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), + BatchNorm2d(hidden_dim), + nn.ReLU6(inplace=True), + # pw-linear + nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + BatchNorm2d(oup), + ) + else: + self.conv = nn.Sequential( + # pw + nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), + BatchNorm2d(hidden_dim), + nn.ReLU6(inplace=True), + # dw + nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), + BatchNorm2d(hidden_dim), + nn.ReLU6(inplace=True), + # pw-linear + nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), + BatchNorm2d(oup), + ) + + def forward(self, x): + if self.use_res_connect: + return x + self.conv(x) + else: + return self.conv(x) + + +class MobileNetV2(nn.Module): + def __init__(self, n_class=1000, input_size=224, width_mult=1.): + super(MobileNetV2, self).__init__() + block = InvertedResidual + input_channel = 32 + last_channel = 1280 + interverted_residual_setting = [ + # t, c, n, s + [1, 16, 1, 1], + [6, 24, 2, 2], + [6, 32, 3, 2], + [6, 64, 4, 2], + [6, 96, 3, 1], + [6, 160, 3, 2], + [6, 320, 1, 1], + ] + + # building first layer + assert input_size % 32 == 0 + input_channel = int(input_channel * width_mult) + self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel + self.features = [conv_bn(3, input_channel, 2)] + # building inverted residual blocks + for t, c, n, s in interverted_residual_setting: + output_channel = int(c * width_mult) + for i in range(n): + if i == 0: + self.features.append(block(input_channel, output_channel, s, expand_ratio=t)) + else: + self.features.append(block(input_channel, output_channel, 1, expand_ratio=t)) + input_channel = output_channel + # building last several layers + self.features.append(conv_1x1_bn(input_channel, self.last_channel)) + # make it nn.Sequential + self.features = nn.Sequential(*self.features) + + # building classifier + self.classifier = nn.Sequential( + nn.Dropout(0.2), + nn.Linear(self.last_channel, n_class), + ) + + self._initialize_weights() + + def forward(self, x): + x = self.features(x) + x = x.mean(3).mean(2) + x = self.classifier(x) + return x + + def _initialize_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + elif isinstance(m, nn.Linear): + n = m.weight.size(1) + m.weight.data.normal_(0, 0.01) + m.bias.data.zero_() + + +def mobilenetv2(pretrained=False, **kwargs): + """Constructs a MobileNet_V2 model. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = MobileNetV2(n_class=1000, **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False) + return model \ No newline at end of file diff --git a/lama/models/ade20k/object150_info.csv b/lama/models/ade20k/object150_info.csv new file mode 100644 index 0000000000000000000000000000000000000000..fa6285ad6fdc69e5a92a4d84a901d56f40896eaa --- /dev/null +++ b/lama/models/ade20k/object150_info.csv @@ -0,0 +1,151 @@ +Idx,Ratio,Train,Val,Stuff,Name +1,0.1576,11664,1172,1,wall +2,0.1072,6046,612,1,building;edifice +3,0.0878,8265,796,1,sky +4,0.0621,9336,917,1,floor;flooring +5,0.0480,6678,641,0,tree +6,0.0450,6604,643,1,ceiling +7,0.0398,4023,408,1,road;route +8,0.0231,1906,199,0,bed +9,0.0198,4688,460,0,windowpane;window +10,0.0183,2423,225,1,grass +11,0.0181,2874,294,0,cabinet +12,0.0166,3068,310,1,sidewalk;pavement +13,0.0160,5075,526,0,person;individual;someone;somebody;mortal;soul +14,0.0151,1804,190,1,earth;ground +15,0.0118,6666,796,0,door;double;door +16,0.0110,4269,411,0,table +17,0.0109,1691,160,1,mountain;mount +18,0.0104,3999,441,0,plant;flora;plant;life +19,0.0104,2149,217,0,curtain;drape;drapery;mantle;pall +20,0.0103,3261,318,0,chair +21,0.0098,3164,306,0,car;auto;automobile;machine;motorcar +22,0.0074,709,75,1,water +23,0.0067,3296,315,0,painting;picture +24,0.0065,1191,106,0,sofa;couch;lounge +25,0.0061,1516,162,0,shelf +26,0.0060,667,69,1,house +27,0.0053,651,57,1,sea +28,0.0052,1847,224,0,mirror +29,0.0046,1158,128,1,rug;carpet;carpeting +30,0.0044,480,44,1,field +31,0.0044,1172,98,0,armchair +32,0.0044,1292,184,0,seat +33,0.0033,1386,138,0,fence;fencing +34,0.0031,698,61,0,desk +35,0.0030,781,73,0,rock;stone +36,0.0027,380,43,0,wardrobe;closet;press +37,0.0026,3089,302,0,lamp +38,0.0024,404,37,0,bathtub;bathing;tub;bath;tub +39,0.0024,804,99,0,railing;rail +40,0.0023,1453,153,0,cushion +41,0.0023,411,37,0,base;pedestal;stand +42,0.0022,1440,162,0,box +43,0.0022,800,77,0,column;pillar +44,0.0020,2650,298,0,signboard;sign +45,0.0019,549,46,0,chest;of;drawers;chest;bureau;dresser +46,0.0019,367,36,0,counter +47,0.0018,311,30,1,sand +48,0.0018,1181,122,0,sink +49,0.0018,287,23,1,skyscraper +50,0.0018,468,38,0,fireplace;hearth;open;fireplace +51,0.0018,402,43,0,refrigerator;icebox +52,0.0018,130,12,1,grandstand;covered;stand +53,0.0018,561,64,1,path +54,0.0017,880,102,0,stairs;steps +55,0.0017,86,12,1,runway +56,0.0017,172,11,0,case;display;case;showcase;vitrine +57,0.0017,198,18,0,pool;table;billiard;table;snooker;table +58,0.0017,930,109,0,pillow +59,0.0015,139,18,0,screen;door;screen +60,0.0015,564,52,1,stairway;staircase +61,0.0015,320,26,1,river +62,0.0015,261,29,1,bridge;span +63,0.0014,275,22,0,bookcase +64,0.0014,335,60,0,blind;screen +65,0.0014,792,75,0,coffee;table;cocktail;table +66,0.0014,395,49,0,toilet;can;commode;crapper;pot;potty;stool;throne +67,0.0014,1309,138,0,flower +68,0.0013,1112,113,0,book +69,0.0013,266,27,1,hill +70,0.0013,659,66,0,bench +71,0.0012,331,31,0,countertop +72,0.0012,531,56,0,stove;kitchen;stove;range;kitchen;range;cooking;stove +73,0.0012,369,36,0,palm;palm;tree +74,0.0012,144,9,0,kitchen;island +75,0.0011,265,29,0,computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system +76,0.0010,324,33,0,swivel;chair +77,0.0009,304,27,0,boat +78,0.0009,170,20,0,bar +79,0.0009,68,6,0,arcade;machine +80,0.0009,65,8,1,hovel;hut;hutch;shack;shanty +81,0.0009,248,25,0,bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle +82,0.0008,492,49,0,towel +83,0.0008,2510,269,0,light;light;source +84,0.0008,440,39,0,truck;motortruck +85,0.0008,147,18,1,tower +86,0.0008,583,56,0,chandelier;pendant;pendent +87,0.0007,533,61,0,awning;sunshade;sunblind +88,0.0007,1989,239,0,streetlight;street;lamp +89,0.0007,71,5,0,booth;cubicle;stall;kiosk +90,0.0007,618,53,0,television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box +91,0.0007,135,12,0,airplane;aeroplane;plane +92,0.0007,83,5,1,dirt;track +93,0.0007,178,17,0,apparel;wearing;apparel;dress;clothes +94,0.0006,1003,104,0,pole +95,0.0006,182,12,1,land;ground;soil +96,0.0006,452,50,0,bannister;banister;balustrade;balusters;handrail +97,0.0006,42,6,1,escalator;moving;staircase;moving;stairway +98,0.0006,307,31,0,ottoman;pouf;pouffe;puff;hassock +99,0.0006,965,114,0,bottle +100,0.0006,117,13,0,buffet;counter;sideboard +101,0.0006,354,35,0,poster;posting;placard;notice;bill;card +102,0.0006,108,9,1,stage +103,0.0006,557,55,0,van +104,0.0006,52,4,0,ship +105,0.0005,99,5,0,fountain +106,0.0005,57,4,1,conveyer;belt;conveyor;belt;conveyer;conveyor;transporter +107,0.0005,292,31,0,canopy +108,0.0005,77,9,0,washer;automatic;washer;washing;machine +109,0.0005,340,38,0,plaything;toy +110,0.0005,66,3,1,swimming;pool;swimming;bath;natatorium +111,0.0005,465,49,0,stool +112,0.0005,50,4,0,barrel;cask +113,0.0005,622,75,0,basket;handbasket +114,0.0005,80,9,1,waterfall;falls +115,0.0005,59,3,0,tent;collapsible;shelter +116,0.0005,531,72,0,bag +117,0.0005,282,30,0,minibike;motorbike +118,0.0005,73,7,0,cradle +119,0.0005,435,44,0,oven +120,0.0005,136,25,0,ball +121,0.0005,116,24,0,food;solid;food +122,0.0004,266,31,0,step;stair +123,0.0004,58,12,0,tank;storage;tank +124,0.0004,418,83,0,trade;name;brand;name;brand;marque +125,0.0004,319,43,0,microwave;microwave;oven +126,0.0004,1193,139,0,pot;flowerpot +127,0.0004,97,23,0,animal;animate;being;beast;brute;creature;fauna +128,0.0004,347,36,0,bicycle;bike;wheel;cycle +129,0.0004,52,5,1,lake +130,0.0004,246,22,0,dishwasher;dish;washer;dishwashing;machine +131,0.0004,108,13,0,screen;silver;screen;projection;screen +132,0.0004,201,30,0,blanket;cover +133,0.0004,285,21,0,sculpture +134,0.0004,268,27,0,hood;exhaust;hood +135,0.0003,1020,108,0,sconce +136,0.0003,1282,122,0,vase +137,0.0003,528,65,0,traffic;light;traffic;signal;stoplight +138,0.0003,453,57,0,tray +139,0.0003,671,100,0,ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin +140,0.0003,397,44,0,fan +141,0.0003,92,8,1,pier;wharf;wharfage;dock +142,0.0003,228,18,0,crt;screen +143,0.0003,570,59,0,plate +144,0.0003,217,22,0,monitor;monitoring;device +145,0.0003,206,19,0,bulletin;board;notice;board +146,0.0003,130,14,0,shower +147,0.0003,178,28,0,radiator +148,0.0002,504,57,0,glass;drinking;glass +149,0.0002,775,96,0,clock +150,0.0002,421,56,0,flag diff --git a/lama/models/ade20k/resnet.py b/lama/models/ade20k/resnet.py new file mode 100644 index 0000000000000000000000000000000000000000..394e6032b445ced619bb119ecd81ed9881c51bd5 --- /dev/null +++ b/lama/models/ade20k/resnet.py @@ -0,0 +1,181 @@ +"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch""" + +import math + +import torch.nn as nn +from torch.nn import BatchNorm2d + +from .utils import load_url + +__all__ = ['ResNet', 'resnet50'] + + +model_urls = { + 'resnet50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet50-imagenet.pth', +} + + +def conv3x3(in_planes, out_planes, stride=1): + "3x3 convolution with padding" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=1, bias=False) + + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(BasicBlock, self).__init__() + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = BatchNorm2d(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = BatchNorm2d(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None): + super(Bottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) + self.bn1 = BatchNorm2d(planes) + self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, + padding=1, bias=False) + self.bn2 = BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out += residual + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=1000): + self.inplanes = 128 + super(ResNet, self).__init__() + self.conv1 = conv3x3(3, 64, stride=2) + self.bn1 = BatchNorm2d(64) + self.relu1 = nn.ReLU(inplace=True) + self.conv2 = conv3x3(64, 64) + self.bn2 = BatchNorm2d(64) + self.relu2 = nn.ReLU(inplace=True) + self.conv3 = conv3x3(64, 128) + self.bn3 = BatchNorm2d(128) + self.relu3 = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7, stride=1) + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.relu1(self.bn1(self.conv1(x))) + x = self.relu2(self.bn2(self.conv2(x))) + x = self.relu3(self.bn3(self.conv3(x))) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + x = self.fc(x) + + return x + + +def resnet50(pretrained=False, **kwargs): + """Constructs a ResNet-50 model. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['resnet50']), strict=False) + return model + + +def resnet18(pretrained=False, **kwargs): + """Constructs a ResNet-18 model. + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + """ + model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) + if pretrained: + model.load_state_dict(load_url(model_urls['resnet18'])) + return model \ No newline at end of file diff --git a/lama/models/ade20k/segm_lib/nn/__init__.py b/lama/models/ade20k/segm_lib/nn/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..15c9159c8b2ffec05c386c43eef87add853ed777 --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/__init__.py @@ -0,0 +1,2 @@ +from .modules import * +from .parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to diff --git a/lama/models/ade20k/segm_lib/nn/__pycache__/__init__.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79970c7663debec19e363ef7dc887e50f3a6ea5c Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/modules/__init__.py b/lama/models/ade20k/segm_lib/nn/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..48871cdcdc882c903501ecc6d70fcb1b50bd7e9f --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/__init__.py @@ -0,0 +1,12 @@ +# -*- coding: utf-8 -*- +# File : __init__.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d +from .replicate import DataParallelWithCallback, patch_replication_callback diff --git a/lama/models/ade20k/segm_lib/nn/modules/__pycache__/__init__.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b44f202cda207a61334ebfc9098c11f2133eb539 Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/modules/__pycache__/batchnorm.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/batchnorm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a76025ea7564afa95d95aea5e3d19111f763984f Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/batchnorm.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/modules/__pycache__/comm.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/comm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c6484811dd3e0379d2dc4cf32448b196e584a35 Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/comm.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/modules/__pycache__/replicate.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/replicate.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5af53a3eaa7023a61d1d86e5452b8cd97868e92c Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/modules/__pycache__/replicate.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/modules/batchnorm.py b/lama/models/ade20k/segm_lib/nn/modules/batchnorm.py new file mode 100644 index 0000000000000000000000000000000000000000..96826be21496eb55da0e71720799548ef8aec8fc --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/batchnorm.py @@ -0,0 +1,329 @@ +# -*- coding: utf-8 -*- +# File : batchnorm.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import collections + +import torch +import torch.nn.functional as F + +from torch.nn.modules.batchnorm import _BatchNorm +from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast + +from .comm import SyncMaster + +__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d'] + + +def _sum_ft(tensor): + """sum over the first and last dimention""" + return tensor.sum(dim=0).sum(dim=-1) + + +def _unsqueeze_ft(tensor): + """add new dementions at the front and the tail""" + return tensor.unsqueeze(0).unsqueeze(-1) + + +_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size']) +_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std']) + + +class _SynchronizedBatchNorm(_BatchNorm): + def __init__(self, num_features, eps=1e-5, momentum=0.001, affine=True): + super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine) + + self._sync_master = SyncMaster(self._data_parallel_master) + + self._is_parallel = False + self._parallel_id = None + self._slave_pipe = None + + # customed batch norm statistics + self._moving_average_fraction = 1. - momentum + self.register_buffer('_tmp_running_mean', torch.zeros(self.num_features)) + self.register_buffer('_tmp_running_var', torch.ones(self.num_features)) + self.register_buffer('_running_iter', torch.ones(1)) + self._tmp_running_mean = self.running_mean.clone() * self._running_iter + self._tmp_running_var = self.running_var.clone() * self._running_iter + + def forward(self, input): + # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation. + if not (self._is_parallel and self.training): + return F.batch_norm( + input, self.running_mean, self.running_var, self.weight, self.bias, + self.training, self.momentum, self.eps) + + # Resize the input to (B, C, -1). + input_shape = input.size() + input = input.view(input.size(0), self.num_features, -1) + + # Compute the sum and square-sum. + sum_size = input.size(0) * input.size(2) + input_sum = _sum_ft(input) + input_ssum = _sum_ft(input ** 2) + + # Reduce-and-broadcast the statistics. + if self._parallel_id == 0: + mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size)) + else: + mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size)) + + # Compute the output. + if self.affine: + # MJY:: Fuse the multiplication for speed. + output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias) + else: + output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std) + + # Reshape it. + return output.view(input_shape) + + def __data_parallel_replicate__(self, ctx, copy_id): + self._is_parallel = True + self._parallel_id = copy_id + + # parallel_id == 0 means master device. + if self._parallel_id == 0: + ctx.sync_master = self._sync_master + else: + self._slave_pipe = ctx.sync_master.register_slave(copy_id) + + def _data_parallel_master(self, intermediates): + """Reduce the sum and square-sum, compute the statistics, and broadcast it.""" + intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device()) + + to_reduce = [i[1][:2] for i in intermediates] + to_reduce = [j for i in to_reduce for j in i] # flatten + target_gpus = [i[1].sum.get_device() for i in intermediates] + + sum_size = sum([i[1].sum_size for i in intermediates]) + sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce) + + mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size) + + broadcasted = Broadcast.apply(target_gpus, mean, inv_std) + + outputs = [] + for i, rec in enumerate(intermediates): + outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2]))) + + return outputs + + def _add_weighted(self, dest, delta, alpha=1, beta=1, bias=0): + """return *dest* by `dest := dest*alpha + delta*beta + bias`""" + return dest * alpha + delta * beta + bias + + def _compute_mean_std(self, sum_, ssum, size): + """Compute the mean and standard-deviation with sum and square-sum. This method + also maintains the moving average on the master device.""" + assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.' + mean = sum_ / size + sumvar = ssum - sum_ * mean + unbias_var = sumvar / (size - 1) + bias_var = sumvar / size + + self._tmp_running_mean = self._add_weighted(self._tmp_running_mean, mean.data, alpha=self._moving_average_fraction) + self._tmp_running_var = self._add_weighted(self._tmp_running_var, unbias_var.data, alpha=self._moving_average_fraction) + self._running_iter = self._add_weighted(self._running_iter, 1, alpha=self._moving_average_fraction) + + self.running_mean = self._tmp_running_mean / self._running_iter + self.running_var = self._tmp_running_var / self._running_iter + + return mean, bias_var.clamp(self.eps) ** -0.5 + + +class SynchronizedBatchNorm1d(_SynchronizedBatchNorm): + r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a + mini-batch. + + .. math:: + + y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta + + This module differs from the built-in PyTorch BatchNorm1d as the mean and + standard-deviation are reduced across all devices during training. + + For example, when one uses `nn.DataParallel` to wrap the network during + training, PyTorch's implementation normalize the tensor on each device using + the statistics only on that device, which accelerated the computation and + is also easy to implement, but the statistics might be inaccurate. + Instead, in this synchronized version, the statistics will be computed + over all training samples distributed on multiple devices. + + Note that, for one-GPU or CPU-only case, this module behaves exactly same + as the built-in PyTorch implementation. + + The mean and standard-deviation are calculated per-dimension over + the mini-batches and gamma and beta are learnable parameter vectors + of size C (where C is the input size). + + During training, this layer keeps a running estimate of its computed mean + and variance. The running sum is kept with a default momentum of 0.1. + + During evaluation, this running mean/variance is used for normalization. + + Because the BatchNorm is done over the `C` dimension, computing statistics + on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm + + Args: + num_features: num_features from an expected input of size + `batch_size x num_features [x width]` + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Default: 0.1 + affine: a boolean value that when set to ``True``, gives the layer learnable + affine parameters. Default: ``True`` + + Shape: + - Input: :math:`(N, C)` or :math:`(N, C, L)` + - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input) + + Examples: + >>> # With Learnable Parameters + >>> m = SynchronizedBatchNorm1d(100) + >>> # Without Learnable Parameters + >>> m = SynchronizedBatchNorm1d(100, affine=False) + >>> input = torch.autograd.Variable(torch.randn(20, 100)) + >>> output = m(input) + """ + + def _check_input_dim(self, input): + if input.dim() != 2 and input.dim() != 3: + raise ValueError('expected 2D or 3D input (got {}D input)' + .format(input.dim())) + super(SynchronizedBatchNorm1d, self)._check_input_dim(input) + + +class SynchronizedBatchNorm2d(_SynchronizedBatchNorm): + r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch + of 3d inputs + + .. math:: + + y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta + + This module differs from the built-in PyTorch BatchNorm2d as the mean and + standard-deviation are reduced across all devices during training. + + For example, when one uses `nn.DataParallel` to wrap the network during + training, PyTorch's implementation normalize the tensor on each device using + the statistics only on that device, which accelerated the computation and + is also easy to implement, but the statistics might be inaccurate. + Instead, in this synchronized version, the statistics will be computed + over all training samples distributed on multiple devices. + + Note that, for one-GPU or CPU-only case, this module behaves exactly same + as the built-in PyTorch implementation. + + The mean and standard-deviation are calculated per-dimension over + the mini-batches and gamma and beta are learnable parameter vectors + of size C (where C is the input size). + + During training, this layer keeps a running estimate of its computed mean + and variance. The running sum is kept with a default momentum of 0.1. + + During evaluation, this running mean/variance is used for normalization. + + Because the BatchNorm is done over the `C` dimension, computing statistics + on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm + + Args: + num_features: num_features from an expected input of + size batch_size x num_features x height x width + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Default: 0.1 + affine: a boolean value that when set to ``True``, gives the layer learnable + affine parameters. Default: ``True`` + + Shape: + - Input: :math:`(N, C, H, W)` + - Output: :math:`(N, C, H, W)` (same shape as input) + + Examples: + >>> # With Learnable Parameters + >>> m = SynchronizedBatchNorm2d(100) + >>> # Without Learnable Parameters + >>> m = SynchronizedBatchNorm2d(100, affine=False) + >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45)) + >>> output = m(input) + """ + + def _check_input_dim(self, input): + if input.dim() != 4: + raise ValueError('expected 4D input (got {}D input)' + .format(input.dim())) + super(SynchronizedBatchNorm2d, self)._check_input_dim(input) + + +class SynchronizedBatchNorm3d(_SynchronizedBatchNorm): + r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch + of 4d inputs + + .. math:: + + y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta + + This module differs from the built-in PyTorch BatchNorm3d as the mean and + standard-deviation are reduced across all devices during training. + + For example, when one uses `nn.DataParallel` to wrap the network during + training, PyTorch's implementation normalize the tensor on each device using + the statistics only on that device, which accelerated the computation and + is also easy to implement, but the statistics might be inaccurate. + Instead, in this synchronized version, the statistics will be computed + over all training samples distributed on multiple devices. + + Note that, for one-GPU or CPU-only case, this module behaves exactly same + as the built-in PyTorch implementation. + + The mean and standard-deviation are calculated per-dimension over + the mini-batches and gamma and beta are learnable parameter vectors + of size C (where C is the input size). + + During training, this layer keeps a running estimate of its computed mean + and variance. The running sum is kept with a default momentum of 0.1. + + During evaluation, this running mean/variance is used for normalization. + + Because the BatchNorm is done over the `C` dimension, computing statistics + on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm + or Spatio-temporal BatchNorm + + Args: + num_features: num_features from an expected input of + size batch_size x num_features x depth x height x width + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Default: 0.1 + affine: a boolean value that when set to ``True``, gives the layer learnable + affine parameters. Default: ``True`` + + Shape: + - Input: :math:`(N, C, D, H, W)` + - Output: :math:`(N, C, D, H, W)` (same shape as input) + + Examples: + >>> # With Learnable Parameters + >>> m = SynchronizedBatchNorm3d(100) + >>> # Without Learnable Parameters + >>> m = SynchronizedBatchNorm3d(100, affine=False) + >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10)) + >>> output = m(input) + """ + + def _check_input_dim(self, input): + if input.dim() != 5: + raise ValueError('expected 5D input (got {}D input)' + .format(input.dim())) + super(SynchronizedBatchNorm3d, self)._check_input_dim(input) diff --git a/lama/models/ade20k/segm_lib/nn/modules/comm.py b/lama/models/ade20k/segm_lib/nn/modules/comm.py new file mode 100644 index 0000000000000000000000000000000000000000..390548abaf542a85700aee56676801534ae87f89 --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/comm.py @@ -0,0 +1,131 @@ +# -*- coding: utf-8 -*- +# File : comm.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import queue +import collections +import threading + +__all__ = ['FutureResult', 'SlavePipe', 'SyncMaster'] + + +class FutureResult(object): + """A thread-safe future implementation. Used only as one-to-one pipe.""" + + def __init__(self): + self._result = None + self._lock = threading.Lock() + self._cond = threading.Condition(self._lock) + + def put(self, result): + with self._lock: + assert self._result is None, 'Previous result has\'t been fetched.' + self._result = result + self._cond.notify() + + def get(self): + with self._lock: + if self._result is None: + self._cond.wait() + + res = self._result + self._result = None + return res + + +_MasterRegistry = collections.namedtuple('MasterRegistry', ['result']) +_SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result']) + + +class SlavePipe(_SlavePipeBase): + """Pipe for master-slave communication.""" + + def run_slave(self, msg): + self.queue.put((self.identifier, msg)) + ret = self.result.get() + self.queue.put(True) + return ret + + +class SyncMaster(object): + """An abstract `SyncMaster` object. + + - During the replication, as the data parallel will trigger an callback of each module, all slave devices should + call `register(id)` and obtain an `SlavePipe` to communicate with the master. + - During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected, + and passed to a registered callback. + - After receiving the messages, the master device should gather the information and determine to message passed + back to each slave devices. + """ + + def __init__(self, master_callback): + """ + + Args: + master_callback: a callback to be invoked after having collected messages from slave devices. + """ + self._master_callback = master_callback + self._queue = queue.Queue() + self._registry = collections.OrderedDict() + self._activated = False + + def register_slave(self, identifier): + """ + Register an slave device. + + Args: + identifier: an identifier, usually is the device id. + + Returns: a `SlavePipe` object which can be used to communicate with the master device. + + """ + if self._activated: + assert self._queue.empty(), 'Queue is not clean before next initialization.' + self._activated = False + self._registry.clear() + future = FutureResult() + self._registry[identifier] = _MasterRegistry(future) + return SlavePipe(identifier, self._queue, future) + + def run_master(self, master_msg): + """ + Main entry for the master device in each forward pass. + The messages were first collected from each devices (including the master device), and then + an callback will be invoked to compute the message to be sent back to each devices + (including the master device). + + Args: + master_msg: the message that the master want to send to itself. This will be placed as the first + message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example. + + Returns: the message to be sent back to the master device. + + """ + self._activated = True + + intermediates = [(0, master_msg)] + for i in range(self.nr_slaves): + intermediates.append(self._queue.get()) + + results = self._master_callback(intermediates) + assert results[0][0] == 0, 'The first result should belongs to the master.' + + for i, res in results: + if i == 0: + continue + self._registry[i].result.put(res) + + for i in range(self.nr_slaves): + assert self._queue.get() is True + + return results[0][1] + + @property + def nr_slaves(self): + return len(self._registry) diff --git a/lama/models/ade20k/segm_lib/nn/modules/replicate.py b/lama/models/ade20k/segm_lib/nn/modules/replicate.py new file mode 100644 index 0000000000000000000000000000000000000000..9b97380d9c5fbe75c4b3583d3668ccd6a2848699 --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/replicate.py @@ -0,0 +1,94 @@ +# -*- coding: utf-8 -*- +# File : replicate.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import functools + +from torch.nn.parallel.data_parallel import DataParallel + +__all__ = [ + 'CallbackContext', + 'execute_replication_callbacks', + 'DataParallelWithCallback', + 'patch_replication_callback' +] + + +class CallbackContext(object): + pass + + +def execute_replication_callbacks(modules): + """ + Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. + + The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` + + Note that, as all modules are isomorphism, we assign each sub-module with a context + (shared among multiple copies of this module on different devices). + Through this context, different copies can share some information. + + We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback + of any slave copies. + """ + master_copy = modules[0] + nr_modules = len(list(master_copy.modules())) + ctxs = [CallbackContext() for _ in range(nr_modules)] + + for i, module in enumerate(modules): + for j, m in enumerate(module.modules()): + if hasattr(m, '__data_parallel_replicate__'): + m.__data_parallel_replicate__(ctxs[j], i) + + +class DataParallelWithCallback(DataParallel): + """ + Data Parallel with a replication callback. + + An replication callback `__data_parallel_replicate__` of each module will be invoked after being created by + original `replicate` function. + The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` + + Examples: + > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + # sync_bn.__data_parallel_replicate__ will be invoked. + """ + + def replicate(self, module, device_ids): + modules = super(DataParallelWithCallback, self).replicate(module, device_ids) + execute_replication_callbacks(modules) + return modules + + +def patch_replication_callback(data_parallel): + """ + Monkey-patch an existing `DataParallel` object. Add the replication callback. + Useful when you have customized `DataParallel` implementation. + + Examples: + > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) + > patch_replication_callback(sync_bn) + # this is equivalent to + > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + """ + + assert isinstance(data_parallel, DataParallel) + + old_replicate = data_parallel.replicate + + @functools.wraps(old_replicate) + def new_replicate(module, device_ids): + modules = old_replicate(module, device_ids) + execute_replication_callbacks(modules) + return modules + + data_parallel.replicate = new_replicate diff --git a/lama/models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py b/lama/models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py new file mode 100644 index 0000000000000000000000000000000000000000..a0f3b7e8889283db942e57991c21de735b45b52d --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py @@ -0,0 +1,56 @@ +# -*- coding: utf-8 -*- +# File : test_numeric_batchnorm.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. + +import unittest + +import torch +import torch.nn as nn +from torch.autograd import Variable + +from sync_batchnorm.unittest import TorchTestCase + + +def handy_var(a, unbias=True): + n = a.size(0) + asum = a.sum(dim=0) + as_sum = (a ** 2).sum(dim=0) # a square sum + sumvar = as_sum - asum * asum / n + if unbias: + return sumvar / (n - 1) + else: + return sumvar / n + + +class NumericTestCase(TorchTestCase): + def testNumericBatchNorm(self): + a = torch.rand(16, 10) + bn = nn.BatchNorm2d(10, momentum=1, eps=1e-5, affine=False) + bn.train() + + a_var1 = Variable(a, requires_grad=True) + b_var1 = bn(a_var1) + loss1 = b_var1.sum() + loss1.backward() + + a_var2 = Variable(a, requires_grad=True) + a_mean2 = a_var2.mean(dim=0, keepdim=True) + a_std2 = torch.sqrt(handy_var(a_var2, unbias=False).clamp(min=1e-5)) + # a_std2 = torch.sqrt(a_var2.var(dim=0, keepdim=True, unbiased=False) + 1e-5) + b_var2 = (a_var2 - a_mean2) / a_std2 + loss2 = b_var2.sum() + loss2.backward() + + self.assertTensorClose(bn.running_mean, a.mean(dim=0)) + self.assertTensorClose(bn.running_var, handy_var(a)) + self.assertTensorClose(a_var1.data, a_var2.data) + self.assertTensorClose(b_var1.data, b_var2.data) + self.assertTensorClose(a_var1.grad, a_var2.grad) + + +if __name__ == '__main__': + unittest.main() diff --git a/lama/models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py b/lama/models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py new file mode 100644 index 0000000000000000000000000000000000000000..763e134a3979031e05b7e9a00ea950d3ce829576 --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py @@ -0,0 +1,111 @@ +# -*- coding: utf-8 -*- +# File : test_sync_batchnorm.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. + +import unittest + +import torch +import torch.nn as nn +from torch.autograd import Variable + +from sync_batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, DataParallelWithCallback +from sync_batchnorm.unittest import TorchTestCase + + +def handy_var(a, unbias=True): + n = a.size(0) + asum = a.sum(dim=0) + as_sum = (a ** 2).sum(dim=0) # a square sum + sumvar = as_sum - asum * asum / n + if unbias: + return sumvar / (n - 1) + else: + return sumvar / n + + +def _find_bn(module): + for m in module.modules(): + if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, SynchronizedBatchNorm1d, SynchronizedBatchNorm2d)): + return m + + +class SyncTestCase(TorchTestCase): + def _syncParameters(self, bn1, bn2): + bn1.reset_parameters() + bn2.reset_parameters() + if bn1.affine and bn2.affine: + bn2.weight.data.copy_(bn1.weight.data) + bn2.bias.data.copy_(bn1.bias.data) + + def _checkBatchNormResult(self, bn1, bn2, input, is_train, cuda=False): + """Check the forward and backward for the customized batch normalization.""" + bn1.train(mode=is_train) + bn2.train(mode=is_train) + + if cuda: + input = input.cuda() + + self._syncParameters(_find_bn(bn1), _find_bn(bn2)) + + input1 = Variable(input, requires_grad=True) + output1 = bn1(input1) + output1.sum().backward() + input2 = Variable(input, requires_grad=True) + output2 = bn2(input2) + output2.sum().backward() + + self.assertTensorClose(input1.data, input2.data) + self.assertTensorClose(output1.data, output2.data) + self.assertTensorClose(input1.grad, input2.grad) + self.assertTensorClose(_find_bn(bn1).running_mean, _find_bn(bn2).running_mean) + self.assertTensorClose(_find_bn(bn1).running_var, _find_bn(bn2).running_var) + + def testSyncBatchNormNormalTrain(self): + bn = nn.BatchNorm1d(10) + sync_bn = SynchronizedBatchNorm1d(10) + + self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True) + + def testSyncBatchNormNormalEval(self): + bn = nn.BatchNorm1d(10) + sync_bn = SynchronizedBatchNorm1d(10) + + self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False) + + def testSyncBatchNormSyncTrain(self): + bn = nn.BatchNorm1d(10, eps=1e-5, affine=False) + sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + + bn.cuda() + sync_bn.cuda() + + self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True, cuda=True) + + def testSyncBatchNormSyncEval(self): + bn = nn.BatchNorm1d(10, eps=1e-5, affine=False) + sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + + bn.cuda() + sync_bn.cuda() + + self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False, cuda=True) + + def testSyncBatchNorm2DSyncTrain(self): + bn = nn.BatchNorm2d(10) + sync_bn = SynchronizedBatchNorm2d(10) + sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + + bn.cuda() + sync_bn.cuda() + + self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10, 16, 16), True, cuda=True) + + +if __name__ == '__main__': + unittest.main() diff --git a/lama/models/ade20k/segm_lib/nn/modules/unittest.py b/lama/models/ade20k/segm_lib/nn/modules/unittest.py new file mode 100644 index 0000000000000000000000000000000000000000..9716d035495097fb086ec050ab0bc9b76b9d28a0 --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/modules/unittest.py @@ -0,0 +1,29 @@ +# -*- coding: utf-8 -*- +# File : unittest.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import unittest + +import numpy as np +from torch.autograd import Variable + + +def as_numpy(v): + if isinstance(v, Variable): + v = v.data + return v.cpu().numpy() + + +class TorchTestCase(unittest.TestCase): + def assertTensorClose(self, a, b, atol=1e-3, rtol=1e-3): + npa, npb = as_numpy(a), as_numpy(b) + self.assertTrue( + np.allclose(npa, npb, atol=atol), + 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format(a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max()) + ) diff --git a/lama/models/ade20k/segm_lib/nn/parallel/__init__.py b/lama/models/ade20k/segm_lib/nn/parallel/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9df718a9ff272193230fd2cf6eb3f6098c87119d --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/parallel/__init__.py @@ -0,0 +1 @@ +from .data_parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to diff --git a/lama/models/ade20k/segm_lib/nn/parallel/__pycache__/__init__.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/parallel/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ccdb814477581f01e0b8af7455a9d7f38d2485a1 Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/parallel/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/parallel/__pycache__/data_parallel.cpython-310.pyc b/lama/models/ade20k/segm_lib/nn/parallel/__pycache__/data_parallel.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1f2c59e4257a55470ff8cfffc1a6f492f6f0d6ad Binary files /dev/null and b/lama/models/ade20k/segm_lib/nn/parallel/__pycache__/data_parallel.cpython-310.pyc differ diff --git a/lama/models/ade20k/segm_lib/nn/parallel/data_parallel.py b/lama/models/ade20k/segm_lib/nn/parallel/data_parallel.py new file mode 100644 index 0000000000000000000000000000000000000000..8b71f61e16f18b94c844304c0a24234c707fa67f --- /dev/null +++ b/lama/models/ade20k/segm_lib/nn/parallel/data_parallel.py @@ -0,0 +1,112 @@ +# -*- coding: utf8 -*- + +import torch.cuda as cuda +import torch.nn as nn +import torch +import collections +from torch.nn.parallel._functions import Gather + + +__all__ = ['UserScatteredDataParallel', 'user_scattered_collate', 'async_copy_to'] + + +def async_copy_to(obj, dev, main_stream=None): + if torch.is_tensor(obj): + v = obj.cuda(dev, non_blocking=True) + if main_stream is not None: + v.data.record_stream(main_stream) + return v + elif isinstance(obj, collections.Mapping): + return {k: async_copy_to(o, dev, main_stream) for k, o in obj.items()} + elif isinstance(obj, collections.Sequence): + return [async_copy_to(o, dev, main_stream) for o in obj] + else: + return obj + + +def dict_gather(outputs, target_device, dim=0): + """ + Gathers variables from different GPUs on a specified device + (-1 means the CPU), with dictionary support. + """ + def gather_map(outputs): + out = outputs[0] + if torch.is_tensor(out): + # MJY(20180330) HACK:: force nr_dims > 0 + if out.dim() == 0: + outputs = [o.unsqueeze(0) for o in outputs] + return Gather.apply(target_device, dim, *outputs) + elif out is None: + return None + elif isinstance(out, collections.Mapping): + return {k: gather_map([o[k] for o in outputs]) for k in out} + elif isinstance(out, collections.Sequence): + return type(out)(map(gather_map, zip(*outputs))) + return gather_map(outputs) + + +class DictGatherDataParallel(nn.DataParallel): + def gather(self, outputs, output_device): + return dict_gather(outputs, output_device, dim=self.dim) + + +class UserScatteredDataParallel(DictGatherDataParallel): + def scatter(self, inputs, kwargs, device_ids): + assert len(inputs) == 1 + inputs = inputs[0] + inputs = _async_copy_stream(inputs, device_ids) + inputs = [[i] for i in inputs] + assert len(kwargs) == 0 + kwargs = [{} for _ in range(len(inputs))] + + return inputs, kwargs + + +def user_scattered_collate(batch): + return batch + + +def _async_copy(inputs, device_ids): + nr_devs = len(device_ids) + assert type(inputs) in (tuple, list) + assert len(inputs) == nr_devs + + outputs = [] + for i, dev in zip(inputs, device_ids): + with cuda.device(dev): + outputs.append(async_copy_to(i, dev)) + + return tuple(outputs) + + +def _async_copy_stream(inputs, device_ids): + nr_devs = len(device_ids) + assert type(inputs) in (tuple, list) + assert len(inputs) == nr_devs + + outputs = [] + streams = [_get_stream(d) for d in device_ids] + for i, dev, stream in zip(inputs, device_ids, streams): + with cuda.device(dev): + main_stream = cuda.current_stream() + with cuda.stream(stream): + outputs.append(async_copy_to(i, dev, main_stream=main_stream)) + main_stream.wait_stream(stream) + + return outputs + + +"""Adapted from: torch/nn/parallel/_functions.py""" +# background streams used for copying +_streams = None + + +def _get_stream(device): + """Gets a background stream for copying between CPU and GPU""" + global _streams + if device == -1: + return None + if _streams is None: + _streams = [None] * cuda.device_count() + if _streams[device] is None: _streams[device] = cuda.Stream(device) + return _streams[device] diff --git a/lama/models/ade20k/segm_lib/utils/__init__.py b/lama/models/ade20k/segm_lib/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f8ffdc45ef50ae1cd744acba533805e58d5dfb53 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/__init__.py @@ -0,0 +1 @@ +from .th import * diff --git a/lama/models/ade20k/segm_lib/utils/data/__init__.py b/lama/models/ade20k/segm_lib/utils/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ef860eada4756bc6d12f894f1777c6aa5a23aaf7 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/data/__init__.py @@ -0,0 +1,3 @@ + +from .dataset import Dataset, TensorDataset, ConcatDataset +from .dataloader import DataLoader diff --git a/lama/models/ade20k/segm_lib/utils/data/dataloader.py b/lama/models/ade20k/segm_lib/utils/data/dataloader.py new file mode 100644 index 0000000000000000000000000000000000000000..9d54186679a9f0a11ddeef2738e16d9205e9ad12 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/data/dataloader.py @@ -0,0 +1,425 @@ +import torch +import torch.multiprocessing as multiprocessing +from torch._C import _set_worker_signal_handlers, \ + _remove_worker_pids, _error_if_any_worker_fails +try: + from torch._C import _set_worker_pids +except: + from torch._C import _update_worker_pids as _set_worker_pids +from .sampler import SequentialSampler, RandomSampler, BatchSampler +import signal +import collections +import re +import sys +import threading +import traceback +from torch._six import string_classes, int_classes +import numpy as np + +if sys.version_info[0] == 2: + import Queue as queue +else: + import queue + + +class ExceptionWrapper(object): + r"Wraps an exception plus traceback to communicate across threads" + + def __init__(self, exc_info): + self.exc_type = exc_info[0] + self.exc_msg = "".join(traceback.format_exception(*exc_info)) + + +_use_shared_memory = False +"""Whether to use shared memory in default_collate""" + + +def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id): + global _use_shared_memory + _use_shared_memory = True + + # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal + # module's handlers are executed after Python returns from C low-level + # handlers, likely when the same fatal signal happened again already. + # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1 + _set_worker_signal_handlers() + + torch.set_num_threads(1) + torch.manual_seed(seed) + np.random.seed(seed) + + if init_fn is not None: + init_fn(worker_id) + + while True: + r = index_queue.get() + if r is None: + break + idx, batch_indices = r + try: + samples = collate_fn([dataset[i] for i in batch_indices]) + except Exception: + data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) + else: + data_queue.put((idx, samples)) + + +def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id): + if pin_memory: + torch.cuda.set_device(device_id) + + while True: + try: + r = in_queue.get() + except Exception: + if done_event.is_set(): + return + raise + if r is None: + break + if isinstance(r[1], ExceptionWrapper): + out_queue.put(r) + continue + idx, batch = r + try: + if pin_memory: + batch = pin_memory_batch(batch) + except Exception: + out_queue.put((idx, ExceptionWrapper(sys.exc_info()))) + else: + out_queue.put((idx, batch)) + +numpy_type_map = { + 'float64': torch.DoubleTensor, + 'float32': torch.FloatTensor, + 'float16': torch.HalfTensor, + 'int64': torch.LongTensor, + 'int32': torch.IntTensor, + 'int16': torch.ShortTensor, + 'int8': torch.CharTensor, + 'uint8': torch.ByteTensor, +} + + +def default_collate(batch): + "Puts each data field into a tensor with outer dimension batch size" + + error_msg = "batch must contain tensors, numbers, dicts or lists; found {}" + elem_type = type(batch[0]) + if torch.is_tensor(batch[0]): + out = None + if _use_shared_memory: + # If we're in a background process, concatenate directly into a + # shared memory tensor to avoid an extra copy + numel = sum([x.numel() for x in batch]) + storage = batch[0].storage()._new_shared(numel) + out = batch[0].new(storage) + return torch.stack(batch, 0, out=out) + elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ + and elem_type.__name__ != 'string_': + elem = batch[0] + if elem_type.__name__ == 'ndarray': + # array of string classes and object + if re.search('[SaUO]', elem.dtype.str) is not None: + raise TypeError(error_msg.format(elem.dtype)) + + return torch.stack([torch.from_numpy(b) for b in batch], 0) + if elem.shape == (): # scalars + py_type = float if elem.dtype.name.startswith('float') else int + return numpy_type_map[elem.dtype.name](list(map(py_type, batch))) + elif isinstance(batch[0], int_classes): + return torch.LongTensor(batch) + elif isinstance(batch[0], float): + return torch.DoubleTensor(batch) + elif isinstance(batch[0], string_classes): + return batch + elif isinstance(batch[0], collections.Mapping): + return {key: default_collate([d[key] for d in batch]) for key in batch[0]} + elif isinstance(batch[0], collections.Sequence): + transposed = zip(*batch) + return [default_collate(samples) for samples in transposed] + + raise TypeError((error_msg.format(type(batch[0])))) + + +def pin_memory_batch(batch): + if torch.is_tensor(batch): + return batch.pin_memory() + elif isinstance(batch, string_classes): + return batch + elif isinstance(batch, collections.Mapping): + return {k: pin_memory_batch(sample) for k, sample in batch.items()} + elif isinstance(batch, collections.Sequence): + return [pin_memory_batch(sample) for sample in batch] + else: + return batch + + +_SIGCHLD_handler_set = False +"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one +handler needs to be set for all DataLoaders in a process.""" + + +def _set_SIGCHLD_handler(): + # Windows doesn't support SIGCHLD handler + if sys.platform == 'win32': + return + # can't set signal in child threads + if not isinstance(threading.current_thread(), threading._MainThread): + return + global _SIGCHLD_handler_set + if _SIGCHLD_handler_set: + return + previous_handler = signal.getsignal(signal.SIGCHLD) + if not callable(previous_handler): + previous_handler = None + + def handler(signum, frame): + # This following call uses `waitid` with WNOHANG from C side. Therefore, + # Python can still get and update the process status successfully. + _error_if_any_worker_fails() + if previous_handler is not None: + previous_handler(signum, frame) + + signal.signal(signal.SIGCHLD, handler) + _SIGCHLD_handler_set = True + + +class DataLoaderIter(object): + "Iterates once over the DataLoader's dataset, as specified by the sampler" + + def __init__(self, loader): + self.dataset = loader.dataset + self.collate_fn = loader.collate_fn + self.batch_sampler = loader.batch_sampler + self.num_workers = loader.num_workers + self.pin_memory = loader.pin_memory and torch.cuda.is_available() + self.timeout = loader.timeout + self.done_event = threading.Event() + + self.sample_iter = iter(self.batch_sampler) + + if self.num_workers > 0: + self.worker_init_fn = loader.worker_init_fn + self.index_queue = multiprocessing.SimpleQueue() + self.worker_result_queue = multiprocessing.SimpleQueue() + self.batches_outstanding = 0 + self.worker_pids_set = False + self.shutdown = False + self.send_idx = 0 + self.rcvd_idx = 0 + self.reorder_dict = {} + + base_seed = torch.LongTensor(1).random_(0, 2**31-1)[0] + self.workers = [ + multiprocessing.Process( + target=_worker_loop, + args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn, + base_seed + i, self.worker_init_fn, i)) + for i in range(self.num_workers)] + + if self.pin_memory or self.timeout > 0: + self.data_queue = queue.Queue() + if self.pin_memory: + maybe_device_id = torch.cuda.current_device() + else: + # do not initialize cuda context if not necessary + maybe_device_id = None + self.worker_manager_thread = threading.Thread( + target=_worker_manager_loop, + args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory, + maybe_device_id)) + self.worker_manager_thread.daemon = True + self.worker_manager_thread.start() + else: + self.data_queue = self.worker_result_queue + + for w in self.workers: + w.daemon = True # ensure that the worker exits on process exit + w.start() + + _set_worker_pids(id(self), tuple(w.pid for w in self.workers)) + _set_SIGCHLD_handler() + self.worker_pids_set = True + + # prime the prefetch loop + for _ in range(2 * self.num_workers): + self._put_indices() + + def __len__(self): + return len(self.batch_sampler) + + def _get_batch(self): + if self.timeout > 0: + try: + return self.data_queue.get(timeout=self.timeout) + except queue.Empty: + raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout)) + else: + return self.data_queue.get() + + def __next__(self): + if self.num_workers == 0: # same-process loading + indices = next(self.sample_iter) # may raise StopIteration + batch = self.collate_fn([self.dataset[i] for i in indices]) + if self.pin_memory: + batch = pin_memory_batch(batch) + return batch + + # check if the next sample has already been generated + if self.rcvd_idx in self.reorder_dict: + batch = self.reorder_dict.pop(self.rcvd_idx) + return self._process_next_batch(batch) + + if self.batches_outstanding == 0: + self._shutdown_workers() + raise StopIteration + + while True: + assert (not self.shutdown and self.batches_outstanding > 0) + idx, batch = self._get_batch() + self.batches_outstanding -= 1 + if idx != self.rcvd_idx: + # store out-of-order samples + self.reorder_dict[idx] = batch + continue + return self._process_next_batch(batch) + + next = __next__ # Python 2 compatibility + + def __iter__(self): + return self + + def _put_indices(self): + assert self.batches_outstanding < 2 * self.num_workers + indices = next(self.sample_iter, None) + if indices is None: + return + self.index_queue.put((self.send_idx, indices)) + self.batches_outstanding += 1 + self.send_idx += 1 + + def _process_next_batch(self, batch): + self.rcvd_idx += 1 + self._put_indices() + if isinstance(batch, ExceptionWrapper): + raise batch.exc_type(batch.exc_msg) + return batch + + def __getstate__(self): + # TODO: add limited pickling support for sharing an iterator + # across multiple threads for HOGWILD. + # Probably the best way to do this is by moving the sample pushing + # to a separate thread and then just sharing the data queue + # but signalling the end is tricky without a non-blocking API + raise NotImplementedError("DataLoaderIterator cannot be pickled") + + def _shutdown_workers(self): + try: + if not self.shutdown: + self.shutdown = True + self.done_event.set() + # if worker_manager_thread is waiting to put + while not self.data_queue.empty(): + self.data_queue.get() + for _ in self.workers: + self.index_queue.put(None) + # done_event should be sufficient to exit worker_manager_thread, + # but be safe here and put another None + self.worker_result_queue.put(None) + finally: + # removes pids no matter what + if self.worker_pids_set: + _remove_worker_pids(id(self)) + self.worker_pids_set = False + + def __del__(self): + if self.num_workers > 0: + self._shutdown_workers() + + +class DataLoader(object): + """ + Data loader. Combines a dataset and a sampler, and provides + single- or multi-process iterators over the dataset. + + Arguments: + dataset (Dataset): dataset from which to load the data. + batch_size (int, optional): how many samples per batch to load + (default: 1). + shuffle (bool, optional): set to ``True`` to have the data reshuffled + at every epoch (default: False). + sampler (Sampler, optional): defines the strategy to draw samples from + the dataset. If specified, ``shuffle`` must be False. + batch_sampler (Sampler, optional): like sampler, but returns a batch of + indices at a time. Mutually exclusive with batch_size, shuffle, + sampler, and drop_last. + num_workers (int, optional): how many subprocesses to use for data + loading. 0 means that the data will be loaded in the main process. + (default: 0) + collate_fn (callable, optional): merges a list of samples to form a mini-batch. + pin_memory (bool, optional): If ``True``, the data loader will copy tensors + into CUDA pinned memory before returning them. + drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, + if the dataset size is not divisible by the batch size. If ``False`` and + the size of dataset is not divisible by the batch size, then the last batch + will be smaller. (default: False) + timeout (numeric, optional): if positive, the timeout value for collecting a batch + from workers. Should always be non-negative. (default: 0) + worker_init_fn (callable, optional): If not None, this will be called on each + worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as + input, after seeding and before data loading. (default: None) + + .. note:: By default, each worker will have its PyTorch seed set to + ``base_seed + worker_id``, where ``base_seed`` is a long generated + by main process using its RNG. You may use ``torch.initial_seed()`` to access + this value in :attr:`worker_init_fn`, which can be used to set other seeds + (e.g. NumPy) before data loading. + + .. warning:: If ``spawn'' start method is used, :attr:`worker_init_fn` cannot be an + unpicklable object, e.g., a lambda function. + """ + + def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, + num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False, + timeout=0, worker_init_fn=None): + self.dataset = dataset + self.batch_size = batch_size + self.num_workers = num_workers + self.collate_fn = collate_fn + self.pin_memory = pin_memory + self.drop_last = drop_last + self.timeout = timeout + self.worker_init_fn = worker_init_fn + + if timeout < 0: + raise ValueError('timeout option should be non-negative') + + if batch_sampler is not None: + if batch_size > 1 or shuffle or sampler is not None or drop_last: + raise ValueError('batch_sampler is mutually exclusive with ' + 'batch_size, shuffle, sampler, and drop_last') + + if sampler is not None and shuffle: + raise ValueError('sampler is mutually exclusive with shuffle') + + if self.num_workers < 0: + raise ValueError('num_workers cannot be negative; ' + 'use num_workers=0 to disable multiprocessing.') + + if batch_sampler is None: + if sampler is None: + if shuffle: + sampler = RandomSampler(dataset) + else: + sampler = SequentialSampler(dataset) + batch_sampler = BatchSampler(sampler, batch_size, drop_last) + + self.sampler = sampler + self.batch_sampler = batch_sampler + + def __iter__(self): + return DataLoaderIter(self) + + def __len__(self): + return len(self.batch_sampler) diff --git a/lama/models/ade20k/segm_lib/utils/data/dataset.py b/lama/models/ade20k/segm_lib/utils/data/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..dcfbe5acaaa946ebecac789398c93cdfab182d55 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/data/dataset.py @@ -0,0 +1,118 @@ +import bisect +import warnings + +from torch._utils import _accumulate +from torch import randperm + + +class Dataset(object): + """An abstract class representing a Dataset. + + All other datasets should subclass it. All subclasses should override + ``__len__``, that provides the size of the dataset, and ``__getitem__``, + supporting integer indexing in range from 0 to len(self) exclusive. + """ + + def __getitem__(self, index): + raise NotImplementedError + + def __len__(self): + raise NotImplementedError + + def __add__(self, other): + return ConcatDataset([self, other]) + + +class TensorDataset(Dataset): + """Dataset wrapping data and target tensors. + + Each sample will be retrieved by indexing both tensors along the first + dimension. + + Arguments: + data_tensor (Tensor): contains sample data. + target_tensor (Tensor): contains sample targets (labels). + """ + + def __init__(self, data_tensor, target_tensor): + assert data_tensor.size(0) == target_tensor.size(0) + self.data_tensor = data_tensor + self.target_tensor = target_tensor + + def __getitem__(self, index): + return self.data_tensor[index], self.target_tensor[index] + + def __len__(self): + return self.data_tensor.size(0) + + +class ConcatDataset(Dataset): + """ + Dataset to concatenate multiple datasets. + Purpose: useful to assemble different existing datasets, possibly + large-scale datasets as the concatenation operation is done in an + on-the-fly manner. + + Arguments: + datasets (iterable): List of datasets to be concatenated + """ + + @staticmethod + def cumsum(sequence): + r, s = [], 0 + for e in sequence: + l = len(e) + r.append(l + s) + s += l + return r + + def __init__(self, datasets): + super(ConcatDataset, self).__init__() + assert len(datasets) > 0, 'datasets should not be an empty iterable' + self.datasets = list(datasets) + self.cumulative_sizes = self.cumsum(self.datasets) + + def __len__(self): + return self.cumulative_sizes[-1] + + def __getitem__(self, idx): + dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) + if dataset_idx == 0: + sample_idx = idx + else: + sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] + return self.datasets[dataset_idx][sample_idx] + + @property + def cummulative_sizes(self): + warnings.warn("cummulative_sizes attribute is renamed to " + "cumulative_sizes", DeprecationWarning, stacklevel=2) + return self.cumulative_sizes + + +class Subset(Dataset): + def __init__(self, dataset, indices): + self.dataset = dataset + self.indices = indices + + def __getitem__(self, idx): + return self.dataset[self.indices[idx]] + + def __len__(self): + return len(self.indices) + + +def random_split(dataset, lengths): + """ + Randomly split a dataset into non-overlapping new datasets of given lengths + ds + + Arguments: + dataset (Dataset): Dataset to be split + lengths (iterable): lengths of splits to be produced + """ + if sum(lengths) != len(dataset): + raise ValueError("Sum of input lengths does not equal the length of the input dataset!") + + indices = randperm(sum(lengths)) + return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)] diff --git a/lama/models/ade20k/segm_lib/utils/data/distributed.py b/lama/models/ade20k/segm_lib/utils/data/distributed.py new file mode 100644 index 0000000000000000000000000000000000000000..4ddc9640460aedc69b7817af71fdfa769d752520 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/data/distributed.py @@ -0,0 +1,58 @@ +import math +import torch +from .sampler import Sampler +from torch.distributed import get_world_size, get_rank + + +class DistributedSampler(Sampler): + """Sampler that restricts data loading to a subset of the dataset. + + It is especially useful in conjunction with + :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each + process can pass a DistributedSampler instance as a DataLoader sampler, + and load a subset of the original dataset that is exclusive to it. + + .. note:: + Dataset is assumed to be of constant size. + + Arguments: + dataset: Dataset used for sampling. + num_replicas (optional): Number of processes participating in + distributed training. + rank (optional): Rank of the current process within num_replicas. + """ + + def __init__(self, dataset, num_replicas=None, rank=None): + if num_replicas is None: + num_replicas = get_world_size() + if rank is None: + rank = get_rank() + self.dataset = dataset + self.num_replicas = num_replicas + self.rank = rank + self.epoch = 0 + self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) + self.total_size = self.num_samples * self.num_replicas + + def __iter__(self): + # deterministically shuffle based on epoch + g = torch.Generator() + g.manual_seed(self.epoch) + indices = list(torch.randperm(len(self.dataset), generator=g)) + + # add extra samples to make it evenly divisible + indices += indices[:(self.total_size - len(indices))] + assert len(indices) == self.total_size + + # subsample + offset = self.num_samples * self.rank + indices = indices[offset:offset + self.num_samples] + assert len(indices) == self.num_samples + + return iter(indices) + + def __len__(self): + return self.num_samples + + def set_epoch(self, epoch): + self.epoch = epoch diff --git a/lama/models/ade20k/segm_lib/utils/data/sampler.py b/lama/models/ade20k/segm_lib/utils/data/sampler.py new file mode 100644 index 0000000000000000000000000000000000000000..28e8dced4c0bd814be5c1461198dd5cf7cf73987 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/data/sampler.py @@ -0,0 +1,131 @@ +import torch + + +class Sampler(object): + """Base class for all Samplers. + + Every Sampler subclass has to provide an __iter__ method, providing a way + to iterate over indices of dataset elements, and a __len__ method that + returns the length of the returned iterators. + """ + + def __init__(self, data_source): + pass + + def __iter__(self): + raise NotImplementedError + + def __len__(self): + raise NotImplementedError + + +class SequentialSampler(Sampler): + """Samples elements sequentially, always in the same order. + + Arguments: + data_source (Dataset): dataset to sample from + """ + + def __init__(self, data_source): + self.data_source = data_source + + def __iter__(self): + return iter(range(len(self.data_source))) + + def __len__(self): + return len(self.data_source) + + +class RandomSampler(Sampler): + """Samples elements randomly, without replacement. + + Arguments: + data_source (Dataset): dataset to sample from + """ + + def __init__(self, data_source): + self.data_source = data_source + + def __iter__(self): + return iter(torch.randperm(len(self.data_source)).long()) + + def __len__(self): + return len(self.data_source) + + +class SubsetRandomSampler(Sampler): + """Samples elements randomly from a given list of indices, without replacement. + + Arguments: + indices (list): a list of indices + """ + + def __init__(self, indices): + self.indices = indices + + def __iter__(self): + return (self.indices[i] for i in torch.randperm(len(self.indices))) + + def __len__(self): + return len(self.indices) + + +class WeightedRandomSampler(Sampler): + """Samples elements from [0,..,len(weights)-1] with given probabilities (weights). + + Arguments: + weights (list) : a list of weights, not necessary summing up to one + num_samples (int): number of samples to draw + replacement (bool): if ``True``, samples are drawn with replacement. + If not, they are drawn without replacement, which means that when a + sample index is drawn for a row, it cannot be drawn again for that row. + """ + + def __init__(self, weights, num_samples, replacement=True): + self.weights = torch.DoubleTensor(weights) + self.num_samples = num_samples + self.replacement = replacement + + def __iter__(self): + return iter(torch.multinomial(self.weights, self.num_samples, self.replacement)) + + def __len__(self): + return self.num_samples + + +class BatchSampler(object): + """Wraps another sampler to yield a mini-batch of indices. + + Args: + sampler (Sampler): Base sampler. + batch_size (int): Size of mini-batch. + drop_last (bool): If ``True``, the sampler will drop the last batch if + its size would be less than ``batch_size`` + + Example: + >>> list(BatchSampler(range(10), batch_size=3, drop_last=False)) + [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] + >>> list(BatchSampler(range(10), batch_size=3, drop_last=True)) + [[0, 1, 2], [3, 4, 5], [6, 7, 8]] + """ + + def __init__(self, sampler, batch_size, drop_last): + self.sampler = sampler + self.batch_size = batch_size + self.drop_last = drop_last + + def __iter__(self): + batch = [] + for idx in self.sampler: + batch.append(idx) + if len(batch) == self.batch_size: + yield batch + batch = [] + if len(batch) > 0 and not self.drop_last: + yield batch + + def __len__(self): + if self.drop_last: + return len(self.sampler) // self.batch_size + else: + return (len(self.sampler) + self.batch_size - 1) // self.batch_size diff --git a/lama/models/ade20k/segm_lib/utils/th.py b/lama/models/ade20k/segm_lib/utils/th.py new file mode 100644 index 0000000000000000000000000000000000000000..fd336286028dc7b3ef6595e4448a4855b0d94263 --- /dev/null +++ b/lama/models/ade20k/segm_lib/utils/th.py @@ -0,0 +1,41 @@ +import torch +from torch.autograd import Variable +import numpy as np +import collections + +__all__ = ['as_variable', 'as_numpy', 'mark_volatile'] + +def as_variable(obj): + if isinstance(obj, Variable): + return obj + if isinstance(obj, collections.Sequence): + return [as_variable(v) for v in obj] + elif isinstance(obj, collections.Mapping): + return {k: as_variable(v) for k, v in obj.items()} + else: + return Variable(obj) + +def as_numpy(obj): + if isinstance(obj, collections.Sequence): + return [as_numpy(v) for v in obj] + elif isinstance(obj, collections.Mapping): + return {k: as_numpy(v) for k, v in obj.items()} + elif isinstance(obj, Variable): + return obj.data.cpu().numpy() + elif torch.is_tensor(obj): + return obj.cpu().numpy() + else: + return np.array(obj) + +def mark_volatile(obj): + if torch.is_tensor(obj): + obj = Variable(obj) + if isinstance(obj, Variable): + obj.no_grad = True + return obj + elif isinstance(obj, collections.Mapping): + return {k: mark_volatile(o) for k, o in obj.items()} + elif isinstance(obj, collections.Sequence): + return [mark_volatile(o) for o in obj] + else: + return obj diff --git a/lama/models/ade20k/utils.py b/lama/models/ade20k/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..2edd6a70a17f5eb4930dd94a12f9122b12e93bf6 --- /dev/null +++ b/lama/models/ade20k/utils.py @@ -0,0 +1,40 @@ +"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch""" + +import os +import sys + +import numpy as np +import torch + +try: + from urllib import urlretrieve +except ImportError: + from urllib.request import urlretrieve + + +def load_url(url, model_dir='./pretrained', map_location=None): + if not os.path.exists(model_dir): + os.makedirs(model_dir) + filename = url.split('/')[-1] + cached_file = os.path.join(model_dir, filename) + if not os.path.exists(cached_file): + sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file)) + urlretrieve(url, cached_file) + return torch.load(cached_file, map_location=map_location) + + +def color_encode(labelmap, colors, mode='RGB'): + labelmap = labelmap.astype('int') + labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3), + dtype=np.uint8) + for label in np.unique(labelmap): + if label < 0: + continue + labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \ + np.tile(colors[label], + (labelmap.shape[0], labelmap.shape[1], 1)) + + if mode == 'BGR': + return labelmap_rgb[:, :, ::-1] + else: + return labelmap_rgb diff --git a/lama/models/lpips_models/alex.pth b/lama/models/lpips_models/alex.pth new file mode 100644 index 0000000000000000000000000000000000000000..fa4067abc5d4da16a7204fd94776506e4868030e --- /dev/null +++ b/lama/models/lpips_models/alex.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:df73285e35b22355a2df87cdb6b70b343713b667eddbda73e1977e0c860835c0 +size 6009 diff --git a/lama/models/lpips_models/squeeze.pth b/lama/models/lpips_models/squeeze.pth new file mode 100644 index 0000000000000000000000000000000000000000..f892a84a130828b1c9e2e8156e84fc5a962c665d --- /dev/null +++ b/lama/models/lpips_models/squeeze.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4a5350f23600cb79923ce65bb07cbf57dca461329894153e05a1346bd531cf76 +size 10811 diff --git a/lama/models/lpips_models/vgg.pth b/lama/models/lpips_models/vgg.pth new file mode 100644 index 0000000000000000000000000000000000000000..f57dcf5cc764d61c8a460365847fb2137ff0a62d --- /dev/null +++ b/lama/models/lpips_models/vgg.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a78928a0af1e5f0fcb1f3b9e8f8c3a2a5a3de244d830ad5c1feddc79b8432868 +size 7289 diff --git a/lama/requirements.txt b/lama/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..1d6ff6457362e2163a0079843de672ee9711f7d8 --- /dev/null +++ b/lama/requirements.txt @@ -0,0 +1,20 @@ +pyyaml +tqdm +numpy +easydict==1.9.0 +scikit-image==0.17.2 +scikit-learn==0.24.2 +opencv-python +tensorflow +joblib +matplotlib +pandas +albumentations==0.5.2 +hydra-core==1.1.0 +pytorch-lightning==1.2.9 +tabulate +kornia==0.5.0 +webdataset +packaging +scikit-learn==0.24.2 +wldhx.yadisk-direct diff --git a/lama/saicinpainting/__init__.py b/lama/saicinpainting/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..212764ed1433c12cbd5a8f5dda93a7b0b8ab1f5c Binary files /dev/null and b/lama/saicinpainting/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/__pycache__/utils.cpython-310.pyc b/lama/saicinpainting/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28f89a66207c2d44b2fca2f80388df5e3403e9fe Binary files /dev/null and b/lama/saicinpainting/__pycache__/utils.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/__init__.py b/lama/saicinpainting/evaluation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1173520486cd3deacdb145815a1a1b0e2317c8e8 --- /dev/null +++ b/lama/saicinpainting/evaluation/__init__.py @@ -0,0 +1,33 @@ +import logging + +import torch + +from saicinpainting.evaluation.evaluator import InpaintingEvaluatorOnline, ssim_fid100_f1, lpips_fid100_f1 +from saicinpainting.evaluation.losses.base_loss import SSIMScore, LPIPSScore, FIDScore + + +def make_evaluator(kind='default', ssim=True, lpips=True, fid=True, integral_kind=None, **kwargs): + logging.info(f'Make evaluator {kind}') + device = "cuda" if torch.cuda.is_available() else "cpu" + metrics = {} + if ssim: + metrics['ssim'] = SSIMScore() + if lpips: + metrics['lpips'] = LPIPSScore() + if fid: + metrics['fid'] = FIDScore().to(device) + + if integral_kind is None: + integral_func = None + elif integral_kind == 'ssim_fid100_f1': + integral_func = ssim_fid100_f1 + elif integral_kind == 'lpips_fid100_f1': + integral_func = lpips_fid100_f1 + else: + raise ValueError(f'Unexpected integral_kind={integral_kind}') + + if kind == 'default': + return InpaintingEvaluatorOnline(scores=metrics, + integral_func=integral_func, + integral_title=integral_kind, + **kwargs) diff --git a/lama/saicinpainting/evaluation/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/evaluation/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a3d234bec71e965a27f2c9d047576a8479f2e4e Binary files /dev/null and b/lama/saicinpainting/evaluation/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/__pycache__/data.cpython-310.pyc b/lama/saicinpainting/evaluation/__pycache__/data.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6386120ec5a5722ff2378b1ccc6c27a18250326b Binary files /dev/null and b/lama/saicinpainting/evaluation/__pycache__/data.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/__pycache__/evaluator.cpython-310.pyc b/lama/saicinpainting/evaluation/__pycache__/evaluator.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb69e2d80fa77ae3c8c93fe1786f499353cac676 Binary files /dev/null and b/lama/saicinpainting/evaluation/__pycache__/evaluator.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/__pycache__/utils.cpython-310.pyc b/lama/saicinpainting/evaluation/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..200483a61398950f3adf39ea91273ac06b864920 Binary files /dev/null and b/lama/saicinpainting/evaluation/__pycache__/utils.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/data.py b/lama/saicinpainting/evaluation/data.py new file mode 100644 index 0000000000000000000000000000000000000000..f212cfdd3526534b35ab045d825896181236eaca --- /dev/null +++ b/lama/saicinpainting/evaluation/data.py @@ -0,0 +1,168 @@ +import glob +import os + +import cv2 +import PIL.Image as Image +import numpy as np + +from torch.utils.data import Dataset +import torch.nn.functional as F + + +def load_image(fname, mode='RGB', return_orig=False): + img = np.array(Image.open(fname).convert(mode)) + if img.ndim == 3: + img = np.transpose(img, (2, 0, 1)) + out_img = img.astype('float32') / 255 + if return_orig: + return out_img, img + else: + return out_img + + +def ceil_modulo(x, mod): + if x % mod == 0: + return x + return (x // mod + 1) * mod + + +def pad_img_to_modulo(img, mod): + channels, height, width = img.shape + out_height = ceil_modulo(height, mod) + out_width = ceil_modulo(width, mod) + return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric') + + +def pad_tensor_to_modulo(img, mod): + batch_size, channels, height, width = img.shape + out_height = ceil_modulo(height, mod) + out_width = ceil_modulo(width, mod) + return F.pad(img, pad=(0, out_width - width, 0, out_height - height), mode='reflect') + + +def scale_image(img, factor, interpolation=cv2.INTER_AREA): + if img.shape[0] == 1: + img = img[0] + else: + img = np.transpose(img, (1, 2, 0)) + + img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation) + + if img.ndim == 2: + img = img[None, ...] + else: + img = np.transpose(img, (2, 0, 1)) + return img + + +class InpaintingDataset(Dataset): + def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None): + self.datadir = datadir + self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, '**', '*mask*.png'), recursive=True))) + self.img_filenames = [fname.rsplit('_mask', 1)[0] + img_suffix for fname in self.mask_filenames] + self.pad_out_to_modulo = pad_out_to_modulo + self.scale_factor = scale_factor + + def __len__(self): + return len(self.mask_filenames) + + def __getitem__(self, i): + image = load_image(self.img_filenames[i], mode='RGB') + mask = load_image(self.mask_filenames[i], mode='L') + result = dict(image=image, mask=mask[None, ...]) + + if self.scale_factor is not None: + result['image'] = scale_image(result['image'], self.scale_factor) + result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) + + if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: + result['unpad_to_size'] = result['image'].shape[1:] + result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) + result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) + + return result + +class OurInpaintingDataset(Dataset): + def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None): + self.datadir = datadir + self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, 'mask', '**', '*mask*.png'), recursive=True))) + self.img_filenames = [os.path.join(self.datadir, 'img', os.path.basename(fname.rsplit('-', 1)[0].rsplit('_', 1)[0]) + '.png') for fname in self.mask_filenames] + self.pad_out_to_modulo = pad_out_to_modulo + self.scale_factor = scale_factor + + def __len__(self): + return len(self.mask_filenames) + + def __getitem__(self, i): + result = dict(image=load_image(self.img_filenames[i], mode='RGB'), + mask=load_image(self.mask_filenames[i], mode='L')[None, ...]) + + if self.scale_factor is not None: + result['image'] = scale_image(result['image'], self.scale_factor) + result['mask'] = scale_image(result['mask'], self.scale_factor) + + if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: + result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) + result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) + + return result + +class PrecomputedInpaintingResultsDataset(InpaintingDataset): + def __init__(self, datadir, predictdir, inpainted_suffix='_inpainted.jpg', **kwargs): + super().__init__(datadir, **kwargs) + if not datadir.endswith('/'): + datadir += '/' + self.predictdir = predictdir + self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix) + for fname in self.mask_filenames] + + def __getitem__(self, i): + result = super().__getitem__(i) + result['inpainted'] = load_image(self.pred_filenames[i]) + if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: + result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo) + return result + +class OurPrecomputedInpaintingResultsDataset(OurInpaintingDataset): + def __init__(self, datadir, predictdir, inpainted_suffix="png", **kwargs): + super().__init__(datadir, **kwargs) + if not datadir.endswith('/'): + datadir += '/' + self.predictdir = predictdir + self.pred_filenames = [os.path.join(predictdir, os.path.basename(os.path.splitext(fname)[0]) + f'_inpainted.{inpainted_suffix}') + for fname in self.mask_filenames] + # self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix) + # for fname in self.mask_filenames] + + def __getitem__(self, i): + result = super().__getitem__(i) + result['inpainted'] = self.file_loader(self.pred_filenames[i]) + + if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: + result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo) + return result + +class InpaintingEvalOnlineDataset(Dataset): + def __init__(self, indir, mask_generator, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None, **kwargs): + self.indir = indir + self.mask_generator = mask_generator + self.img_filenames = sorted(list(glob.glob(os.path.join(self.indir, '**', f'*{img_suffix}' ), recursive=True))) + self.pad_out_to_modulo = pad_out_to_modulo + self.scale_factor = scale_factor + + def __len__(self): + return len(self.img_filenames) + + def __getitem__(self, i): + img, raw_image = load_image(self.img_filenames[i], mode='RGB', return_orig=True) + mask = self.mask_generator(img, raw_image=raw_image) + result = dict(image=img, mask=mask) + + if self.scale_factor is not None: + result['image'] = scale_image(result['image'], self.scale_factor) + result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) + + if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: + result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) + result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) + return result \ No newline at end of file diff --git a/lama/saicinpainting/evaluation/evaluator.py b/lama/saicinpainting/evaluation/evaluator.py new file mode 100644 index 0000000000000000000000000000000000000000..43a1f6cf77603e230dbf5f432fb4181126e3c44a --- /dev/null +++ b/lama/saicinpainting/evaluation/evaluator.py @@ -0,0 +1,220 @@ +import logging +import math +from typing import Dict + +import numpy as np +import torch +import torch.nn as nn +import tqdm +from torch.utils.data import DataLoader + +from saicinpainting.evaluation.utils import move_to_device + +LOGGER = logging.getLogger(__name__) + + +class InpaintingEvaluator(): + def __init__(self, dataset, scores, area_grouping=True, bins=10, batch_size=32, device='cuda', + integral_func=None, integral_title=None, clamp_image_range=None): + """ + :param dataset: torch.utils.data.Dataset which contains images and masks + :param scores: dict {score_name: EvaluatorScore object} + :param area_grouping: in addition to the overall scores, allows to compute score for the groups of samples + which are defined by share of area occluded by mask + :param bins: number of groups, partition is generated by np.linspace(0., 1., bins + 1) + :param batch_size: batch_size for the dataloader + :param device: device to use + """ + self.scores = scores + self.dataset = dataset + + self.area_grouping = area_grouping + self.bins = bins + + self.device = torch.device(device) + + self.dataloader = DataLoader(self.dataset, shuffle=False, batch_size=batch_size) + + self.integral_func = integral_func + self.integral_title = integral_title + self.clamp_image_range = clamp_image_range + + def _get_bin_edges(self): + bin_edges = np.linspace(0, 1, self.bins + 1) + + num_digits = max(0, math.ceil(math.log10(self.bins)) - 1) + interval_names = [] + for idx_bin in range(self.bins): + start_percent, end_percent = round(100 * bin_edges[idx_bin], num_digits), \ + round(100 * bin_edges[idx_bin + 1], num_digits) + start_percent = '{:.{n}f}'.format(start_percent, n=num_digits) + end_percent = '{:.{n}f}'.format(end_percent, n=num_digits) + interval_names.append("{0}-{1}%".format(start_percent, end_percent)) + + groups = [] + for batch in self.dataloader: + mask = batch['mask'] + batch_size = mask.shape[0] + area = mask.to(self.device).reshape(batch_size, -1).mean(dim=-1) + bin_indices = np.searchsorted(bin_edges, area.detach().cpu().numpy(), side='right') - 1 + # corner case: when area is equal to 1, bin_indices should return bins - 1, not bins for that element + bin_indices[bin_indices == self.bins] = self.bins - 1 + groups.append(bin_indices) + groups = np.hstack(groups) + + return groups, interval_names + + def evaluate(self, model=None): + """ + :param model: callable with signature (image_batch, mask_batch); should return inpainted_batch + :return: dict with (score_name, group_type) as keys, where group_type can be either 'overall' or + name of the particular group arranged by area of mask (e.g. '10-20%') + and score statistics for the group as values. + """ + results = dict() + if self.area_grouping: + groups, interval_names = self._get_bin_edges() + else: + groups = None + + for score_name, score in tqdm.auto.tqdm(self.scores.items(), desc='scores'): + score.to(self.device) + with torch.no_grad(): + score.reset() + for batch in tqdm.auto.tqdm(self.dataloader, desc=score_name, leave=False): + batch = move_to_device(batch, self.device) + image_batch, mask_batch = batch['image'], batch['mask'] + if self.clamp_image_range is not None: + image_batch = torch.clamp(image_batch, + min=self.clamp_image_range[0], + max=self.clamp_image_range[1]) + if model is None: + assert 'inpainted' in batch, \ + 'Model is None, so we expected precomputed inpainting results at key "inpainted"' + inpainted_batch = batch['inpainted'] + else: + inpainted_batch = model(image_batch, mask_batch) + score(inpainted_batch, image_batch, mask_batch) + total_results, group_results = score.get_value(groups=groups) + + results[(score_name, 'total')] = total_results + if groups is not None: + for group_index, group_values in group_results.items(): + group_name = interval_names[group_index] + results[(score_name, group_name)] = group_values + + if self.integral_func is not None: + results[(self.integral_title, 'total')] = dict(mean=self.integral_func(results)) + + return results + + +def ssim_fid100_f1(metrics, fid_scale=100): + ssim = metrics[('ssim', 'total')]['mean'] + fid = metrics[('fid', 'total')]['mean'] + fid_rel = max(0, fid_scale - fid) / fid_scale + f1 = 2 * ssim * fid_rel / (ssim + fid_rel + 1e-3) + return f1 + + +def lpips_fid100_f1(metrics, fid_scale=100): + neg_lpips = 1 - metrics[('lpips', 'total')]['mean'] # invert, so bigger is better + fid = metrics[('fid', 'total')]['mean'] + fid_rel = max(0, fid_scale - fid) / fid_scale + f1 = 2 * neg_lpips * fid_rel / (neg_lpips + fid_rel + 1e-3) + return f1 + + + +class InpaintingEvaluatorOnline(nn.Module): + def __init__(self, scores, bins=10, image_key='image', inpainted_key='inpainted', + integral_func=None, integral_title=None, clamp_image_range=None): + """ + :param scores: dict {score_name: EvaluatorScore object} + :param bins: number of groups, partition is generated by np.linspace(0., 1., bins + 1) + :param device: device to use + """ + super().__init__() + LOGGER.info(f'{type(self)} init called') + self.scores = nn.ModuleDict(scores) + self.image_key = image_key + self.inpainted_key = inpainted_key + self.bins_num = bins + self.bin_edges = np.linspace(0, 1, self.bins_num + 1) + + num_digits = max(0, math.ceil(math.log10(self.bins_num)) - 1) + self.interval_names = [] + for idx_bin in range(self.bins_num): + start_percent, end_percent = round(100 * self.bin_edges[idx_bin], num_digits), \ + round(100 * self.bin_edges[idx_bin + 1], num_digits) + start_percent = '{:.{n}f}'.format(start_percent, n=num_digits) + end_percent = '{:.{n}f}'.format(end_percent, n=num_digits) + self.interval_names.append("{0}-{1}%".format(start_percent, end_percent)) + + self.groups = [] + + self.integral_func = integral_func + self.integral_title = integral_title + self.clamp_image_range = clamp_image_range + + LOGGER.info(f'{type(self)} init done') + + def _get_bins(self, mask_batch): + batch_size = mask_batch.shape[0] + area = mask_batch.view(batch_size, -1).mean(dim=-1).detach().cpu().numpy() + bin_indices = np.clip(np.searchsorted(self.bin_edges, area) - 1, 0, self.bins_num - 1) + return bin_indices + + def forward(self, batch: Dict[str, torch.Tensor]): + """ + Calculate and accumulate metrics for batch. To finalize evaluation and obtain final metrics, call evaluation_end + :param batch: batch dict with mandatory fields mask, image, inpainted (can be overriden by self.inpainted_key) + """ + result = {} + with torch.no_grad(): + image_batch, mask_batch, inpainted_batch = batch[self.image_key], batch['mask'], batch[self.inpainted_key] + if self.clamp_image_range is not None: + image_batch = torch.clamp(image_batch, + min=self.clamp_image_range[0], + max=self.clamp_image_range[1]) + self.groups.extend(self._get_bins(mask_batch)) + + for score_name, score in self.scores.items(): + result[score_name] = score(inpainted_batch, image_batch, mask_batch) + return result + + def process_batch(self, batch: Dict[str, torch.Tensor]): + return self(batch) + + def evaluation_end(self, states=None): + """:return: dict with (score_name, group_type) as keys, where group_type can be either 'overall' or + name of the particular group arranged by area of mask (e.g. '10-20%') + and score statistics for the group as values. + """ + LOGGER.info(f'{type(self)}: evaluation_end called') + + self.groups = np.array(self.groups) + + results = {} + for score_name, score in self.scores.items(): + LOGGER.info(f'Getting value of {score_name}') + cur_states = [s[score_name] for s in states] if states is not None else None + total_results, group_results = score.get_value(groups=self.groups, states=cur_states) + LOGGER.info(f'Getting value of {score_name} done') + results[(score_name, 'total')] = total_results + + for group_index, group_values in group_results.items(): + group_name = self.interval_names[group_index] + results[(score_name, group_name)] = group_values + + if self.integral_func is not None: + results[(self.integral_title, 'total')] = dict(mean=self.integral_func(results)) + + LOGGER.info(f'{type(self)}: reset scores') + self.groups = [] + for sc in self.scores.values(): + sc.reset() + LOGGER.info(f'{type(self)}: reset scores done') + + LOGGER.info(f'{type(self)}: evaluation_end done') + return results diff --git a/lama/saicinpainting/evaluation/losses/__init__.py b/lama/saicinpainting/evaluation/losses/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/evaluation/losses/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/evaluation/losses/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e209db39cf5017561cb721ce5f9d36b99f4cf02e Binary files /dev/null and b/lama/saicinpainting/evaluation/losses/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/losses/__pycache__/base_loss.cpython-310.pyc b/lama/saicinpainting/evaluation/losses/__pycache__/base_loss.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2f678ecd5040b4a95000bca1058324e84ce96288 Binary files /dev/null and b/lama/saicinpainting/evaluation/losses/__pycache__/base_loss.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/losses/__pycache__/lpips.cpython-310.pyc b/lama/saicinpainting/evaluation/losses/__pycache__/lpips.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ae4027a3bcdc8d5b8490178e1d7a03888780053 Binary files /dev/null and b/lama/saicinpainting/evaluation/losses/__pycache__/lpips.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/losses/__pycache__/ssim.cpython-310.pyc b/lama/saicinpainting/evaluation/losses/__pycache__/ssim.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..97ec60065a623f2a6924067c5493fc1259a8e743 Binary files /dev/null and b/lama/saicinpainting/evaluation/losses/__pycache__/ssim.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/losses/base_loss.py b/lama/saicinpainting/evaluation/losses/base_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..db1a86b75b5560a8e5a262a3bb46bb2c3a5033fb --- /dev/null +++ b/lama/saicinpainting/evaluation/losses/base_loss.py @@ -0,0 +1,528 @@ +import logging +from abc import abstractmethod, ABC + +import numpy as np +import sklearn +import sklearn.svm +import torch +import torch.nn as nn +import torch.nn.functional as F +from joblib import Parallel, delayed +from scipy import linalg + +from models.ade20k import SegmentationModule, NUM_CLASS, segm_options +from .fid.inception import InceptionV3 +from .lpips import PerceptualLoss +from .ssim import SSIM + +LOGGER = logging.getLogger(__name__) + + +def get_groupings(groups): + """ + :param groups: group numbers for respective elements + :return: dict of kind {group_idx: indices of the corresponding group elements} + """ + label_groups, count_groups = np.unique(groups, return_counts=True) + + indices = np.argsort(groups) + + grouping = dict() + cur_start = 0 + for label, count in zip(label_groups, count_groups): + cur_end = cur_start + count + cur_indices = indices[cur_start:cur_end] + grouping[label] = cur_indices + cur_start = cur_end + return grouping + + +class EvaluatorScore(nn.Module): + @abstractmethod + def forward(self, pred_batch, target_batch, mask): + pass + + @abstractmethod + def get_value(self, groups=None, states=None): + pass + + @abstractmethod + def reset(self): + pass + + +class PairwiseScore(EvaluatorScore, ABC): + def __init__(self): + super().__init__() + self.individual_values = None + + def get_value(self, groups=None, states=None): + """ + :param groups: + :return: + total_results: dict of kind {'mean': score mean, 'std': score std} + group_results: None, if groups is None; + else dict {group_idx: {'mean': score mean among group, 'std': score std among group}} + """ + individual_values = torch.cat(states, dim=-1).reshape(-1).cpu().numpy() if states is not None \ + else self.individual_values + + total_results = { + 'mean': individual_values.mean(), + 'std': individual_values.std() + } + + if groups is None: + return total_results, None + + group_results = dict() + grouping = get_groupings(groups) + for label, index in grouping.items(): + group_scores = individual_values[index] + group_results[label] = { + 'mean': group_scores.mean(), + 'std': group_scores.std() + } + return total_results, group_results + + def reset(self): + self.individual_values = [] + + +class SSIMScore(PairwiseScore): + def __init__(self, window_size=11): + super().__init__() + self.score = SSIM(window_size=window_size, size_average=False).eval() + self.reset() + + def forward(self, pred_batch, target_batch, mask=None): + batch_values = self.score(pred_batch, target_batch) + self.individual_values = np.hstack([ + self.individual_values, batch_values.detach().cpu().numpy() + ]) + return batch_values + + +class LPIPSScore(PairwiseScore): + def __init__(self, model='net-lin', net='vgg', model_path=None, use_gpu=True): + super().__init__() + self.score = PerceptualLoss(model=model, net=net, model_path=model_path, + use_gpu=use_gpu, spatial=False).eval() + self.reset() + + def forward(self, pred_batch, target_batch, mask=None): + batch_values = self.score(pred_batch, target_batch).flatten() + self.individual_values = np.hstack([ + self.individual_values, batch_values.detach().cpu().numpy() + ]) + return batch_values + + +def fid_calculate_activation_statistics(act): + mu = np.mean(act, axis=0) + sigma = np.cov(act, rowvar=False) + return mu, sigma + + +def calculate_frechet_distance(activations_pred, activations_target, eps=1e-6): + mu1, sigma1 = fid_calculate_activation_statistics(activations_pred) + mu2, sigma2 = fid_calculate_activation_statistics(activations_target) + + diff = mu1 - mu2 + + # Product might be almost singular + covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) + if not np.isfinite(covmean).all(): + msg = ('fid calculation produces singular product; ' + 'adding %s to diagonal of cov estimates') % eps + LOGGER.warning(msg) + offset = np.eye(sigma1.shape[0]) * eps + covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) + + # Numerical error might give slight imaginary component + if np.iscomplexobj(covmean): + # if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): + if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2): + m = np.max(np.abs(covmean.imag)) + raise ValueError('Imaginary component {}'.format(m)) + covmean = covmean.real + + tr_covmean = np.trace(covmean) + + return (diff.dot(diff) + np.trace(sigma1) + + np.trace(sigma2) - 2 * tr_covmean) + + +class FIDScore(EvaluatorScore): + def __init__(self, dims=2048, eps=1e-6): + LOGGER.info("FIDscore init called") + super().__init__() + if getattr(FIDScore, '_MODEL', None) is None: + block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] + FIDScore._MODEL = InceptionV3([block_idx]).eval() + self.model = FIDScore._MODEL + self.eps = eps + self.reset() + LOGGER.info("FIDscore init done") + + def forward(self, pred_batch, target_batch, mask=None): + activations_pred = self._get_activations(pred_batch) + activations_target = self._get_activations(target_batch) + + self.activations_pred.append(activations_pred.detach().cpu()) + self.activations_target.append(activations_target.detach().cpu()) + + return activations_pred, activations_target + + def get_value(self, groups=None, states=None): + LOGGER.info("FIDscore get_value called") + activations_pred, activations_target = zip(*states) if states is not None \ + else (self.activations_pred, self.activations_target) + activations_pred = torch.cat(activations_pred).cpu().numpy() + activations_target = torch.cat(activations_target).cpu().numpy() + + total_distance = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps) + total_results = dict(mean=total_distance) + + if groups is None: + group_results = None + else: + group_results = dict() + grouping = get_groupings(groups) + for label, index in grouping.items(): + if len(index) > 1: + group_distance = calculate_frechet_distance(activations_pred[index], activations_target[index], + eps=self.eps) + group_results[label] = dict(mean=group_distance) + + else: + group_results[label] = dict(mean=float('nan')) + + self.reset() + + LOGGER.info("FIDscore get_value done") + + return total_results, group_results + + def reset(self): + self.activations_pred = [] + self.activations_target = [] + + def _get_activations(self, batch): + activations = self.model(batch)[0] + if activations.shape[2] != 1 or activations.shape[3] != 1: + assert False, \ + 'We should not have got here, because Inception always scales inputs to 299x299' + # activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1)) + activations = activations.squeeze(-1).squeeze(-1) + return activations + + +class SegmentationAwareScore(EvaluatorScore): + def __init__(self, weights_path): + super().__init__() + self.segm_network = SegmentationModule(weights_path=weights_path, use_default_normalization=True).eval() + self.target_class_freq_by_image_total = [] + self.target_class_freq_by_image_mask = [] + self.pred_class_freq_by_image_mask = [] + + def forward(self, pred_batch, target_batch, mask): + pred_segm_flat = self.segm_network.predict(pred_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy() + target_segm_flat = self.segm_network.predict(target_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy() + mask_flat = (mask.view(mask.shape[0], -1) > 0.5).detach().cpu().numpy() + + batch_target_class_freq_total = [] + batch_target_class_freq_mask = [] + batch_pred_class_freq_mask = [] + + for cur_pred_segm, cur_target_segm, cur_mask in zip(pred_segm_flat, target_segm_flat, mask_flat): + cur_target_class_freq_total = np.bincount(cur_target_segm, minlength=NUM_CLASS)[None, ...] + cur_target_class_freq_mask = np.bincount(cur_target_segm[cur_mask], minlength=NUM_CLASS)[None, ...] + cur_pred_class_freq_mask = np.bincount(cur_pred_segm[cur_mask], minlength=NUM_CLASS)[None, ...] + + self.target_class_freq_by_image_total.append(cur_target_class_freq_total) + self.target_class_freq_by_image_mask.append(cur_target_class_freq_mask) + self.pred_class_freq_by_image_mask.append(cur_pred_class_freq_mask) + + batch_target_class_freq_total.append(cur_target_class_freq_total) + batch_target_class_freq_mask.append(cur_target_class_freq_mask) + batch_pred_class_freq_mask.append(cur_pred_class_freq_mask) + + batch_target_class_freq_total = np.concatenate(batch_target_class_freq_total, axis=0) + batch_target_class_freq_mask = np.concatenate(batch_target_class_freq_mask, axis=0) + batch_pred_class_freq_mask = np.concatenate(batch_pred_class_freq_mask, axis=0) + return batch_target_class_freq_total, batch_target_class_freq_mask, batch_pred_class_freq_mask + + def reset(self): + super().reset() + self.target_class_freq_by_image_total = [] + self.target_class_freq_by_image_mask = [] + self.pred_class_freq_by_image_mask = [] + + +def distribute_values_to_classes(target_class_freq_by_image_mask, values, idx2name): + assert target_class_freq_by_image_mask.ndim == 2 and target_class_freq_by_image_mask.shape[0] == values.shape[0] + total_class_freq = target_class_freq_by_image_mask.sum(0) + distr_values = (target_class_freq_by_image_mask * values[..., None]).sum(0) + result = distr_values / (total_class_freq + 1e-3) + return {idx2name[i]: val for i, val in enumerate(result) if total_class_freq[i] > 0} + + +def get_segmentation_idx2name(): + return {i - 1: name for i, name in segm_options['classes'].set_index('Idx', drop=True)['Name'].to_dict().items()} + + +class SegmentationAwarePairwiseScore(SegmentationAwareScore): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.individual_values = [] + self.segm_idx2name = get_segmentation_idx2name() + + def forward(self, pred_batch, target_batch, mask): + cur_class_stats = super().forward(pred_batch, target_batch, mask) + score_values = self.calc_score(pred_batch, target_batch, mask) + self.individual_values.append(score_values) + return cur_class_stats + (score_values,) + + @abstractmethod + def calc_score(self, pred_batch, target_batch, mask): + raise NotImplementedError() + + def get_value(self, groups=None, states=None): + """ + :param groups: + :return: + total_results: dict of kind {'mean': score mean, 'std': score std} + group_results: None, if groups is None; + else dict {group_idx: {'mean': score mean among group, 'std': score std among group}} + """ + if states is not None: + (target_class_freq_by_image_total, + target_class_freq_by_image_mask, + pred_class_freq_by_image_mask, + individual_values) = states + else: + target_class_freq_by_image_total = self.target_class_freq_by_image_total + target_class_freq_by_image_mask = self.target_class_freq_by_image_mask + pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask + individual_values = self.individual_values + + target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0) + target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0) + pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0) + individual_values = np.concatenate(individual_values, axis=0) + + total_results = { + 'mean': individual_values.mean(), + 'std': individual_values.std(), + **distribute_values_to_classes(target_class_freq_by_image_mask, individual_values, self.segm_idx2name) + } + + if groups is None: + return total_results, None + + group_results = dict() + grouping = get_groupings(groups) + for label, index in grouping.items(): + group_class_freq = target_class_freq_by_image_mask[index] + group_scores = individual_values[index] + group_results[label] = { + 'mean': group_scores.mean(), + 'std': group_scores.std(), + ** distribute_values_to_classes(group_class_freq, group_scores, self.segm_idx2name) + } + return total_results, group_results + + def reset(self): + super().reset() + self.individual_values = [] + + +class SegmentationClassStats(SegmentationAwarePairwiseScore): + def calc_score(self, pred_batch, target_batch, mask): + return 0 + + def get_value(self, groups=None, states=None): + """ + :param groups: + :return: + total_results: dict of kind {'mean': score mean, 'std': score std} + group_results: None, if groups is None; + else dict {group_idx: {'mean': score mean among group, 'std': score std among group}} + """ + if states is not None: + (target_class_freq_by_image_total, + target_class_freq_by_image_mask, + pred_class_freq_by_image_mask, + _) = states + else: + target_class_freq_by_image_total = self.target_class_freq_by_image_total + target_class_freq_by_image_mask = self.target_class_freq_by_image_mask + pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask + + target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0) + target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0) + pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0) + + target_class_freq_by_image_total_marginal = target_class_freq_by_image_total.sum(0).astype('float32') + target_class_freq_by_image_total_marginal /= target_class_freq_by_image_total_marginal.sum() + + target_class_freq_by_image_mask_marginal = target_class_freq_by_image_mask.sum(0).astype('float32') + target_class_freq_by_image_mask_marginal /= target_class_freq_by_image_mask_marginal.sum() + + pred_class_freq_diff = (pred_class_freq_by_image_mask - target_class_freq_by_image_mask).sum(0) / (target_class_freq_by_image_mask.sum(0) + 1e-3) + + total_results = dict() + total_results.update({f'total_freq/{self.segm_idx2name[i]}': v + for i, v in enumerate(target_class_freq_by_image_total_marginal) + if v > 0}) + total_results.update({f'mask_freq/{self.segm_idx2name[i]}': v + for i, v in enumerate(target_class_freq_by_image_mask_marginal) + if v > 0}) + total_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v + for i, v in enumerate(pred_class_freq_diff) + if target_class_freq_by_image_total_marginal[i] > 0}) + + if groups is None: + return total_results, None + + group_results = dict() + grouping = get_groupings(groups) + for label, index in grouping.items(): + group_target_class_freq_by_image_total = target_class_freq_by_image_total[index] + group_target_class_freq_by_image_mask = target_class_freq_by_image_mask[index] + group_pred_class_freq_by_image_mask = pred_class_freq_by_image_mask[index] + + group_target_class_freq_by_image_total_marginal = group_target_class_freq_by_image_total.sum(0).astype('float32') + group_target_class_freq_by_image_total_marginal /= group_target_class_freq_by_image_total_marginal.sum() + + group_target_class_freq_by_image_mask_marginal = group_target_class_freq_by_image_mask.sum(0).astype('float32') + group_target_class_freq_by_image_mask_marginal /= group_target_class_freq_by_image_mask_marginal.sum() + + group_pred_class_freq_diff = (group_pred_class_freq_by_image_mask - group_target_class_freq_by_image_mask).sum(0) / ( + group_target_class_freq_by_image_mask.sum(0) + 1e-3) + + cur_group_results = dict() + cur_group_results.update({f'total_freq/{self.segm_idx2name[i]}': v + for i, v in enumerate(group_target_class_freq_by_image_total_marginal) + if v > 0}) + cur_group_results.update({f'mask_freq/{self.segm_idx2name[i]}': v + for i, v in enumerate(group_target_class_freq_by_image_mask_marginal) + if v > 0}) + cur_group_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v + for i, v in enumerate(group_pred_class_freq_diff) + if group_target_class_freq_by_image_total_marginal[i] > 0}) + + group_results[label] = cur_group_results + return total_results, group_results + + +class SegmentationAwareSSIM(SegmentationAwarePairwiseScore): + def __init__(self, *args, window_size=11, **kwargs): + super().__init__(*args, **kwargs) + self.score_impl = SSIM(window_size=window_size, size_average=False).eval() + + def calc_score(self, pred_batch, target_batch, mask): + return self.score_impl(pred_batch, target_batch).detach().cpu().numpy() + + +class SegmentationAwareLPIPS(SegmentationAwarePairwiseScore): + def __init__(self, *args, model='net-lin', net='vgg', model_path=None, use_gpu=True, **kwargs): + super().__init__(*args, **kwargs) + self.score_impl = PerceptualLoss(model=model, net=net, model_path=model_path, + use_gpu=use_gpu, spatial=False).eval() + + def calc_score(self, pred_batch, target_batch, mask): + return self.score_impl(pred_batch, target_batch).flatten().detach().cpu().numpy() + + +def calculade_fid_no_img(img_i, activations_pred, activations_target, eps=1e-6): + activations_pred = activations_pred.copy() + activations_pred[img_i] = activations_target[img_i] + return calculate_frechet_distance(activations_pred, activations_target, eps=eps) + + +class SegmentationAwareFID(SegmentationAwarePairwiseScore): + def __init__(self, *args, dims=2048, eps=1e-6, n_jobs=-1, **kwargs): + super().__init__(*args, **kwargs) + if getattr(FIDScore, '_MODEL', None) is None: + block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] + FIDScore._MODEL = InceptionV3([block_idx]).eval() + self.model = FIDScore._MODEL + self.eps = eps + self.n_jobs = n_jobs + + def calc_score(self, pred_batch, target_batch, mask): + activations_pred = self._get_activations(pred_batch) + activations_target = self._get_activations(target_batch) + return activations_pred, activations_target + + def get_value(self, groups=None, states=None): + """ + :param groups: + :return: + total_results: dict of kind {'mean': score mean, 'std': score std} + group_results: None, if groups is None; + else dict {group_idx: {'mean': score mean among group, 'std': score std among group}} + """ + if states is not None: + (target_class_freq_by_image_total, + target_class_freq_by_image_mask, + pred_class_freq_by_image_mask, + activation_pairs) = states + else: + target_class_freq_by_image_total = self.target_class_freq_by_image_total + target_class_freq_by_image_mask = self.target_class_freq_by_image_mask + pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask + activation_pairs = self.individual_values + + target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0) + target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0) + pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0) + activations_pred, activations_target = zip(*activation_pairs) + activations_pred = np.concatenate(activations_pred, axis=0) + activations_target = np.concatenate(activations_target, axis=0) + + total_results = { + 'mean': calculate_frechet_distance(activations_pred, activations_target, eps=self.eps), + 'std': 0, + **self.distribute_fid_to_classes(target_class_freq_by_image_mask, activations_pred, activations_target) + } + + if groups is None: + return total_results, None + + group_results = dict() + grouping = get_groupings(groups) + for label, index in grouping.items(): + if len(index) > 1: + group_activations_pred = activations_pred[index] + group_activations_target = activations_target[index] + group_class_freq = target_class_freq_by_image_mask[index] + group_results[label] = { + 'mean': calculate_frechet_distance(group_activations_pred, group_activations_target, eps=self.eps), + 'std': 0, + **self.distribute_fid_to_classes(group_class_freq, + group_activations_pred, + group_activations_target) + } + else: + group_results[label] = dict(mean=float('nan'), std=0) + return total_results, group_results + + def distribute_fid_to_classes(self, class_freq, activations_pred, activations_target): + real_fid = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps) + + fid_no_images = Parallel(n_jobs=self.n_jobs)( + delayed(calculade_fid_no_img)(img_i, activations_pred, activations_target, eps=self.eps) + for img_i in range(activations_pred.shape[0]) + ) + errors = real_fid - fid_no_images + return distribute_values_to_classes(class_freq, errors, self.segm_idx2name) + + def _get_activations(self, batch): + activations = self.model(batch)[0] + if activations.shape[2] != 1 or activations.shape[3] != 1: + activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1)) + activations = activations.squeeze(-1).squeeze(-1).detach().cpu().numpy() + return activations diff --git a/lama/saicinpainting/evaluation/losses/fid/__init__.py b/lama/saicinpainting/evaluation/losses/fid/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/evaluation/losses/fid/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/evaluation/losses/fid/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75f18bcbd5464c1f3d7083e4fe6471599d12dff8 Binary files /dev/null and b/lama/saicinpainting/evaluation/losses/fid/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/losses/fid/__pycache__/inception.cpython-310.pyc b/lama/saicinpainting/evaluation/losses/fid/__pycache__/inception.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1fb828cc8632ae4b1dfab65991bc8c47fdb64b7c Binary files /dev/null and b/lama/saicinpainting/evaluation/losses/fid/__pycache__/inception.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/losses/fid/fid_score.py b/lama/saicinpainting/evaluation/losses/fid/fid_score.py new file mode 100644 index 0000000000000000000000000000000000000000..d66845b1e2708361484b8e0e14ff5a7019cd37fa --- /dev/null +++ b/lama/saicinpainting/evaluation/losses/fid/fid_score.py @@ -0,0 +1,328 @@ +#!/usr/bin/env python3 +"""Calculates the Frechet Inception Distance (FID) to evalulate GANs + +The FID metric calculates the distance between two distributions of images. +Typically, we have summary statistics (mean & covariance matrix) of one +of these distributions, while the 2nd distribution is given by a GAN. + +When run as a stand-alone program, it compares the distribution of +images that are stored as PNG/JPEG at a specified location with a +distribution given by summary statistics (in pickle format). + +The FID is calculated by assuming that X_1 and X_2 are the activations of +the pool_3 layer of the inception net for generated samples and real world +samples respectively. + +See --help to see further details. + +Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead +of Tensorflow + +Copyright 2018 Institute of Bioinformatics, JKU Linz + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +""" +import os +import pathlib +from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser + +import numpy as np +import torch +# from scipy.misc import imread +from imageio import imread +from PIL import Image, JpegImagePlugin +from scipy import linalg +from torch.nn.functional import adaptive_avg_pool2d +from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor + +try: + from tqdm import tqdm +except ImportError: + # If not tqdm is not available, provide a mock version of it + def tqdm(x): return x + +try: + from .inception import InceptionV3 +except ModuleNotFoundError: + from inception import InceptionV3 + +parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) +parser.add_argument('path', type=str, nargs=2, + help=('Path to the generated images or ' + 'to .npz statistic files')) +parser.add_argument('--batch-size', type=int, default=50, + help='Batch size to use') +parser.add_argument('--dims', type=int, default=2048, + choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), + help=('Dimensionality of Inception features to use. ' + 'By default, uses pool3 features')) +parser.add_argument('-c', '--gpu', default='', type=str, + help='GPU to use (leave blank for CPU only)') +parser.add_argument('--resize', default=256) + +transform = Compose([Resize(256), CenterCrop(256), ToTensor()]) + + +def get_activations(files, model, batch_size=50, dims=2048, + cuda=False, verbose=False, keep_size=False): + """Calculates the activations of the pool_3 layer for all images. + + Params: + -- files : List of image files paths + -- model : Instance of inception model + -- batch_size : Batch size of images for the model to process at once. + Make sure that the number of samples is a multiple of + the batch size, otherwise some samples are ignored. This + behavior is retained to match the original FID score + implementation. + -- dims : Dimensionality of features returned by Inception + -- cuda : If set to True, use GPU + -- verbose : If set to True and parameter out_step is given, the number + of calculated batches is reported. + Returns: + -- A numpy array of dimension (num images, dims) that contains the + activations of the given tensor when feeding inception with the + query tensor. + """ + model.eval() + + if len(files) % batch_size != 0: + print(('Warning: number of images is not a multiple of the ' + 'batch size. Some samples are going to be ignored.')) + if batch_size > len(files): + print(('Warning: batch size is bigger than the data size. ' + 'Setting batch size to data size')) + batch_size = len(files) + + n_batches = len(files) // batch_size + n_used_imgs = n_batches * batch_size + + pred_arr = np.empty((n_used_imgs, dims)) + + for i in tqdm(range(n_batches)): + if verbose: + print('\rPropagating batch %d/%d' % (i + 1, n_batches), + end='', flush=True) + start = i * batch_size + end = start + batch_size + + # # Official code goes below + # images = np.array([imread(str(f)).astype(np.float32) + # for f in files[start:end]]) + + # # Reshape to (n_images, 3, height, width) + # images = images.transpose((0, 3, 1, 2)) + # images /= 255 + # batch = torch.from_numpy(images).type(torch.FloatTensor) + # # + + t = transform if not keep_size else ToTensor() + + if isinstance(files[0], pathlib.PosixPath): + images = [t(Image.open(str(f))) for f in files[start:end]] + + elif isinstance(files[0], Image.Image): + images = [t(f) for f in files[start:end]] + + else: + raise ValueError(f"Unknown data type for image: {type(files[0])}") + + batch = torch.stack(images) + + if cuda: + batch = batch.cuda() + + pred = model(batch)[0] + + # If model output is not scalar, apply global spatial average pooling. + # This happens if you choose a dimensionality not equal 2048. + if pred.shape[2] != 1 or pred.shape[3] != 1: + pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) + + pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) + + if verbose: + print(' done') + + return pred_arr + + +def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): + """Numpy implementation of the Frechet Distance. + The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) + and X_2 ~ N(mu_2, C_2) is + d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). + + Stable version by Dougal J. Sutherland. + + Params: + -- mu1 : Numpy array containing the activations of a layer of the + inception net (like returned by the function 'get_predictions') + for generated samples. + -- mu2 : The sample mean over activations, precalculated on an + representative data set. + -- sigma1: The covariance matrix over activations for generated samples. + -- sigma2: The covariance matrix over activations, precalculated on an + representative data set. + + Returns: + -- : The Frechet Distance. + """ + + mu1 = np.atleast_1d(mu1) + mu2 = np.atleast_1d(mu2) + + sigma1 = np.atleast_2d(sigma1) + sigma2 = np.atleast_2d(sigma2) + + assert mu1.shape == mu2.shape, \ + 'Training and test mean vectors have different lengths' + assert sigma1.shape == sigma2.shape, \ + 'Training and test covariances have different dimensions' + + diff = mu1 - mu2 + + # Product might be almost singular + covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) + if not np.isfinite(covmean).all(): + msg = ('fid calculation produces singular product; ' + 'adding %s to diagonal of cov estimates') % eps + print(msg) + offset = np.eye(sigma1.shape[0]) * eps + covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) + + # Numerical error might give slight imaginary component + if np.iscomplexobj(covmean): + # if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): + if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2): + m = np.max(np.abs(covmean.imag)) + raise ValueError('Imaginary component {}'.format(m)) + covmean = covmean.real + + tr_covmean = np.trace(covmean) + + return (diff.dot(diff) + np.trace(sigma1) + + np.trace(sigma2) - 2 * tr_covmean) + + +def calculate_activation_statistics(files, model, batch_size=50, + dims=2048, cuda=False, verbose=False, keep_size=False): + """Calculation of the statistics used by the FID. + Params: + -- files : List of image files paths + -- model : Instance of inception model + -- batch_size : The images numpy array is split into batches with + batch size batch_size. A reasonable batch size + depends on the hardware. + -- dims : Dimensionality of features returned by Inception + -- cuda : If set to True, use GPU + -- verbose : If set to True and parameter out_step is given, the + number of calculated batches is reported. + Returns: + -- mu : The mean over samples of the activations of the pool_3 layer of + the inception model. + -- sigma : The covariance matrix of the activations of the pool_3 layer of + the inception model. + """ + act = get_activations(files, model, batch_size, dims, cuda, verbose, keep_size=keep_size) + mu = np.mean(act, axis=0) + sigma = np.cov(act, rowvar=False) + return mu, sigma + + +def _compute_statistics_of_path(path, model, batch_size, dims, cuda): + if path.endswith('.npz'): + f = np.load(path) + m, s = f['mu'][:], f['sigma'][:] + f.close() + else: + path = pathlib.Path(path) + files = list(path.glob('*.jpg')) + list(path.glob('*.png')) + m, s = calculate_activation_statistics(files, model, batch_size, + dims, cuda) + + return m, s + + +def _compute_statistics_of_images(images, model, batch_size, dims, cuda, keep_size=False): + if isinstance(images, list): # exact paths to files are provided + m, s = calculate_activation_statistics(images, model, batch_size, + dims, cuda, keep_size=keep_size) + + return m, s + + else: + raise ValueError + + +def calculate_fid_given_paths(paths, batch_size, cuda, dims): + """Calculates the FID of two paths""" + for p in paths: + if not os.path.exists(p): + raise RuntimeError('Invalid path: %s' % p) + + block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] + + model = InceptionV3([block_idx]) + if cuda: + model.cuda() + + m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, + dims, cuda) + m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, + dims, cuda) + fid_value = calculate_frechet_distance(m1, s1, m2, s2) + + return fid_value + + +def calculate_fid_given_images(images, batch_size, cuda, dims, use_globals=False, keep_size=False): + if use_globals: + global FID_MODEL # for multiprocessing + + for imgs in images: + if isinstance(imgs, list) and isinstance(imgs[0], (Image.Image, JpegImagePlugin.JpegImageFile)): + pass + else: + raise RuntimeError('Invalid images') + + block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] + + if 'FID_MODEL' not in globals() or not use_globals: + model = InceptionV3([block_idx]) + if cuda: + model.cuda() + + if use_globals: + FID_MODEL = model + + else: + model = FID_MODEL + + m1, s1 = _compute_statistics_of_images(images[0], model, batch_size, + dims, cuda, keep_size=False) + m2, s2 = _compute_statistics_of_images(images[1], model, batch_size, + dims, cuda, keep_size=False) + fid_value = calculate_frechet_distance(m1, s1, m2, s2) + return fid_value + + +if __name__ == '__main__': + args = parser.parse_args() + os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu + + fid_value = calculate_fid_given_paths(args.path, + args.batch_size, + args.gpu != '', + args.dims) + print('FID: ', fid_value) diff --git a/lama/saicinpainting/evaluation/losses/fid/inception.py b/lama/saicinpainting/evaluation/losses/fid/inception.py new file mode 100644 index 0000000000000000000000000000000000000000..f26c42e639e1738ed045ce5b423f11be5874b036 --- /dev/null +++ b/lama/saicinpainting/evaluation/losses/fid/inception.py @@ -0,0 +1,323 @@ +import logging + +import torch +import torch.nn as nn +import torch.nn.functional as F +from torchvision import models + +try: + from torchvision.models.utils import load_state_dict_from_url +except ImportError: + from torch.utils.model_zoo import load_url as load_state_dict_from_url + +# Inception weights ported to Pytorch from +# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz +FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' + + +LOGGER = logging.getLogger(__name__) + + +class InceptionV3(nn.Module): + """Pretrained InceptionV3 network returning feature maps""" + + # Index of default block of inception to return, + # corresponds to output of final average pooling + DEFAULT_BLOCK_INDEX = 3 + + # Maps feature dimensionality to their output blocks indices + BLOCK_INDEX_BY_DIM = { + 64: 0, # First max pooling features + 192: 1, # Second max pooling featurs + 768: 2, # Pre-aux classifier features + 2048: 3 # Final average pooling features + } + + def __init__(self, + output_blocks=[DEFAULT_BLOCK_INDEX], + resize_input=True, + normalize_input=True, + requires_grad=False, + use_fid_inception=True): + """Build pretrained InceptionV3 + + Parameters + ---------- + output_blocks : list of int + Indices of blocks to return features of. Possible values are: + - 0: corresponds to output of first max pooling + - 1: corresponds to output of second max pooling + - 2: corresponds to output which is fed to aux classifier + - 3: corresponds to output of final average pooling + resize_input : bool + If true, bilinearly resizes input to width and height 299 before + feeding input to model. As the network without fully connected + layers is fully convolutional, it should be able to handle inputs + of arbitrary size, so resizing might not be strictly needed + normalize_input : bool + If true, scales the input from range (0, 1) to the range the + pretrained Inception network expects, namely (-1, 1) + requires_grad : bool + If true, parameters of the model require gradients. Possibly useful + for finetuning the network + use_fid_inception : bool + If true, uses the pretrained Inception model used in Tensorflow's + FID implementation. If false, uses the pretrained Inception model + available in torchvision. The FID Inception model has different + weights and a slightly different structure from torchvision's + Inception model. If you want to compute FID scores, you are + strongly advised to set this parameter to true to get comparable + results. + """ + super(InceptionV3, self).__init__() + + self.resize_input = resize_input + self.normalize_input = normalize_input + self.output_blocks = sorted(output_blocks) + self.last_needed_block = max(output_blocks) + + assert self.last_needed_block <= 3, \ + 'Last possible output block index is 3' + + self.blocks = nn.ModuleList() + + if use_fid_inception: + inception = fid_inception_v3() + else: + inception = models.inception_v3(pretrained=True) + + # Block 0: input to maxpool1 + block0 = [ + inception.Conv2d_1a_3x3, + inception.Conv2d_2a_3x3, + inception.Conv2d_2b_3x3, + nn.MaxPool2d(kernel_size=3, stride=2) + ] + self.blocks.append(nn.Sequential(*block0)) + + # Block 1: maxpool1 to maxpool2 + if self.last_needed_block >= 1: + block1 = [ + inception.Conv2d_3b_1x1, + inception.Conv2d_4a_3x3, + nn.MaxPool2d(kernel_size=3, stride=2) + ] + self.blocks.append(nn.Sequential(*block1)) + + # Block 2: maxpool2 to aux classifier + if self.last_needed_block >= 2: + block2 = [ + inception.Mixed_5b, + inception.Mixed_5c, + inception.Mixed_5d, + inception.Mixed_6a, + inception.Mixed_6b, + inception.Mixed_6c, + inception.Mixed_6d, + inception.Mixed_6e, + ] + self.blocks.append(nn.Sequential(*block2)) + + # Block 3: aux classifier to final avgpool + if self.last_needed_block >= 3: + block3 = [ + inception.Mixed_7a, + inception.Mixed_7b, + inception.Mixed_7c, + nn.AdaptiveAvgPool2d(output_size=(1, 1)) + ] + self.blocks.append(nn.Sequential(*block3)) + + for param in self.parameters(): + param.requires_grad = requires_grad + + def forward(self, inp): + """Get Inception feature maps + + Parameters + ---------- + inp : torch.autograd.Variable + Input tensor of shape Bx3xHxW. Values are expected to be in + range (0, 1) + + Returns + ------- + List of torch.autograd.Variable, corresponding to the selected output + block, sorted ascending by index + """ + outp = [] + x = inp + + if self.resize_input: + x = F.interpolate(x, + size=(299, 299), + mode='bilinear', + align_corners=False) + + if self.normalize_input: + x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) + + for idx, block in enumerate(self.blocks): + x = block(x) + if idx in self.output_blocks: + outp.append(x) + + if idx == self.last_needed_block: + break + + return outp + + +def fid_inception_v3(): + """Build pretrained Inception model for FID computation + + The Inception model for FID computation uses a different set of weights + and has a slightly different structure than torchvision's Inception. + + This method first constructs torchvision's Inception and then patches the + necessary parts that are different in the FID Inception model. + """ + LOGGER.info('fid_inception_v3 called') + inception = models.inception_v3(num_classes=1008, + aux_logits=False, + pretrained=False) + LOGGER.info('models.inception_v3 done') + inception.Mixed_5b = FIDInceptionA(192, pool_features=32) + inception.Mixed_5c = FIDInceptionA(256, pool_features=64) + inception.Mixed_5d = FIDInceptionA(288, pool_features=64) + inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) + inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) + inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) + inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) + inception.Mixed_7b = FIDInceptionE_1(1280) + inception.Mixed_7c = FIDInceptionE_2(2048) + + LOGGER.info('fid_inception_v3 patching done') + + state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) + LOGGER.info('fid_inception_v3 weights downloaded') + + inception.load_state_dict(state_dict) + LOGGER.info('fid_inception_v3 weights loaded into model') + + return inception + + +class FIDInceptionA(models.inception.InceptionA): + """InceptionA block patched for FID computation""" + def __init__(self, in_channels, pool_features): + super(FIDInceptionA, self).__init__(in_channels, pool_features) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch5x5 = self.branch5x5_1(x) + branch5x5 = self.branch5x5_2(branch5x5) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) + + # Patch: Tensorflow's average pool does not use the padded zero's in + # its average calculation + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, + count_include_pad=False) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] + return torch.cat(outputs, 1) + + +class FIDInceptionC(models.inception.InceptionC): + """InceptionC block patched for FID computation""" + def __init__(self, in_channels, channels_7x7): + super(FIDInceptionC, self).__init__(in_channels, channels_7x7) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch7x7 = self.branch7x7_1(x) + branch7x7 = self.branch7x7_2(branch7x7) + branch7x7 = self.branch7x7_3(branch7x7) + + branch7x7dbl = self.branch7x7dbl_1(x) + branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) + branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) + + # Patch: Tensorflow's average pool does not use the padded zero's in + # its average calculation + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, + count_include_pad=False) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] + return torch.cat(outputs, 1) + + +class FIDInceptionE_1(models.inception.InceptionE): + """First InceptionE block patched for FID computation""" + def __init__(self, in_channels): + super(FIDInceptionE_1, self).__init__(in_channels) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch3x3 = self.branch3x3_1(x) + branch3x3 = [ + self.branch3x3_2a(branch3x3), + self.branch3x3_2b(branch3x3), + ] + branch3x3 = torch.cat(branch3x3, 1) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [ + self.branch3x3dbl_3a(branch3x3dbl), + self.branch3x3dbl_3b(branch3x3dbl), + ] + branch3x3dbl = torch.cat(branch3x3dbl, 1) + + # Patch: Tensorflow's average pool does not use the padded zero's in + # its average calculation + branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, + count_include_pad=False) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] + return torch.cat(outputs, 1) + + +class FIDInceptionE_2(models.inception.InceptionE): + """Second InceptionE block patched for FID computation""" + def __init__(self, in_channels): + super(FIDInceptionE_2, self).__init__(in_channels) + + def forward(self, x): + branch1x1 = self.branch1x1(x) + + branch3x3 = self.branch3x3_1(x) + branch3x3 = [ + self.branch3x3_2a(branch3x3), + self.branch3x3_2b(branch3x3), + ] + branch3x3 = torch.cat(branch3x3, 1) + + branch3x3dbl = self.branch3x3dbl_1(x) + branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) + branch3x3dbl = [ + self.branch3x3dbl_3a(branch3x3dbl), + self.branch3x3dbl_3b(branch3x3dbl), + ] + branch3x3dbl = torch.cat(branch3x3dbl, 1) + + # Patch: The FID Inception model uses max pooling instead of average + # pooling. This is likely an error in this specific Inception + # implementation, as other Inception models use average pooling here + # (which matches the description in the paper). + branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) + branch_pool = self.branch_pool(branch_pool) + + outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] + return torch.cat(outputs, 1) diff --git a/lama/saicinpainting/evaluation/losses/lpips.py b/lama/saicinpainting/evaluation/losses/lpips.py new file mode 100644 index 0000000000000000000000000000000000000000..c2e7a92c63982b94a919660b5f5590301461f208 --- /dev/null +++ b/lama/saicinpainting/evaluation/losses/lpips.py @@ -0,0 +1,891 @@ +############################################################ +# The contents below have been combined using files in the # +# following repository: # +# https://github.com/richzhang/PerceptualSimilarity # +############################################################ + +############################################################ +# __init__.py # +############################################################ + +import numpy as np +from skimage.metrics import structural_similarity +import torch + +from saicinpainting.utils import get_shape + + +class PerceptualLoss(torch.nn.Module): + def __init__(self, model='net-lin', net='alex', colorspace='rgb', model_path=None, spatial=False, use_gpu=True): + # VGG using our perceptually-learned weights (LPIPS metric) + # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss + super(PerceptualLoss, self).__init__() + self.use_gpu = use_gpu + self.spatial = spatial + self.model = DistModel() + self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, + model_path=model_path, spatial=self.spatial) + + def forward(self, pred, target, normalize=True): + """ + Pred and target are Variables. + If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1] + If normalize is False, assumes the images are already between [-1,+1] + Inputs pred and target are Nx3xHxW + Output pytorch Variable N long + """ + + if normalize: + target = 2 * target - 1 + pred = 2 * pred - 1 + + return self.model(target, pred) + + +def normalize_tensor(in_feat, eps=1e-10): + norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True)) + return in_feat / (norm_factor + eps) + + +def l2(p0, p1, range=255.): + return .5 * np.mean((p0 / range - p1 / range) ** 2) + + +def psnr(p0, p1, peak=255.): + return 10 * np.log10(peak ** 2 / np.mean((1. * p0 - 1. * p1) ** 2)) + + +def dssim(p0, p1, range=255.): + return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2. + + +def rgb2lab(in_img, mean_cent=False): + from skimage import color + img_lab = color.rgb2lab(in_img) + if (mean_cent): + img_lab[:, :, 0] = img_lab[:, :, 0] - 50 + return img_lab + + +def tensor2np(tensor_obj): + # change dimension of a tensor object into a numpy array + return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0)) + + +def np2tensor(np_obj): + # change dimenion of np array into tensor array + return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1))) + + +def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False): + # image tensor to lab tensor + from skimage import color + + img = tensor2im(image_tensor) + img_lab = color.rgb2lab(img) + if (mc_only): + img_lab[:, :, 0] = img_lab[:, :, 0] - 50 + if (to_norm and not mc_only): + img_lab[:, :, 0] = img_lab[:, :, 0] - 50 + img_lab = img_lab / 100. + + return np2tensor(img_lab) + + +def tensorlab2tensor(lab_tensor, return_inbnd=False): + from skimage import color + import warnings + warnings.filterwarnings("ignore") + + lab = tensor2np(lab_tensor) * 100. + lab[:, :, 0] = lab[:, :, 0] + 50 + + rgb_back = 255. * np.clip(color.lab2rgb(lab.astype('float')), 0, 1) + if (return_inbnd): + # convert back to lab, see if we match + lab_back = color.rgb2lab(rgb_back.astype('uint8')) + mask = 1. * np.isclose(lab_back, lab, atol=2.) + mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis]) + return (im2tensor(rgb_back), mask) + else: + return im2tensor(rgb_back) + + +def rgb2lab(input): + from skimage import color + return color.rgb2lab(input / 255.) + + +def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.): + image_numpy = image_tensor[0].cpu().float().numpy() + image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor + return image_numpy.astype(imtype) + + +def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.): + return torch.Tensor((image / factor - cent) + [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) + + +def tensor2vec(vector_tensor): + return vector_tensor.data.cpu().numpy()[:, :, 0, 0] + + +def voc_ap(rec, prec, use_07_metric=False): + """ ap = voc_ap(rec, prec, [use_07_metric]) + Compute VOC AP given precision and recall. + If use_07_metric is true, uses the + VOC 07 11 point method (default:False). + """ + if use_07_metric: + # 11 point metric + ap = 0. + for t in np.arange(0., 1.1, 0.1): + if np.sum(rec >= t) == 0: + p = 0 + else: + p = np.max(prec[rec >= t]) + ap = ap + p / 11. + else: + # correct AP calculation + # first append sentinel values at the end + mrec = np.concatenate(([0.], rec, [1.])) + mpre = np.concatenate(([0.], prec, [0.])) + + # compute the precision envelope + for i in range(mpre.size - 1, 0, -1): + mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) + + # to calculate area under PR curve, look for points + # where X axis (recall) changes value + i = np.where(mrec[1:] != mrec[:-1])[0] + + # and sum (\Delta recall) * prec + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) + return ap + + +def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.): + # def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.): + image_numpy = image_tensor[0].cpu().float().numpy() + image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor + return image_numpy.astype(imtype) + + +def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.): + # def im2tensor(image, imtype=np.uint8, cent=1., factor=1.): + return torch.Tensor((image / factor - cent) + [:, :, :, np.newaxis].transpose((3, 2, 0, 1))) + + +############################################################ +# base_model.py # +############################################################ + + +class BaseModel(torch.nn.Module): + def __init__(self): + super().__init__() + + def name(self): + return 'BaseModel' + + def initialize(self, use_gpu=True): + self.use_gpu = use_gpu + + def forward(self): + pass + + def get_image_paths(self): + pass + + def optimize_parameters(self): + pass + + def get_current_visuals(self): + return self.input + + def get_current_errors(self): + return {} + + def save(self, label): + pass + + # helper saving function that can be used by subclasses + def save_network(self, network, path, network_label, epoch_label): + save_filename = '%s_net_%s.pth' % (epoch_label, network_label) + save_path = os.path.join(path, save_filename) + torch.save(network.state_dict(), save_path) + + # helper loading function that can be used by subclasses + def load_network(self, network, network_label, epoch_label): + save_filename = '%s_net_%s.pth' % (epoch_label, network_label) + save_path = os.path.join(self.save_dir, save_filename) + print('Loading network from %s' % save_path) + network.load_state_dict(torch.load(save_path, map_location='cpu')) + + def update_learning_rate(): + pass + + def get_image_paths(self): + return self.image_paths + + def save_done(self, flag=False): + np.save(os.path.join(self.save_dir, 'done_flag'), flag) + np.savetxt(os.path.join(self.save_dir, 'done_flag'), [flag, ], fmt='%i') + + +############################################################ +# dist_model.py # +############################################################ + +import os +from collections import OrderedDict +from scipy.ndimage import zoom +from tqdm import tqdm + + +class DistModel(BaseModel): + def name(self): + return self.model_name + + def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False, + model_path=None, + use_gpu=True, printNet=False, spatial=False, + is_train=False, lr=.0001, beta1=0.5, version='0.1'): + ''' + INPUTS + model - ['net-lin'] for linearly calibrated network + ['net'] for off-the-shelf network + ['L2'] for L2 distance in Lab colorspace + ['SSIM'] for ssim in RGB colorspace + net - ['squeeze','alex','vgg'] + model_path - if None, will look in weights/[NET_NAME].pth + colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM + use_gpu - bool - whether or not to use a GPU + printNet - bool - whether or not to print network architecture out + spatial - bool - whether to output an array containing varying distances across spatial dimensions + spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below). + spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images. + spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear). + is_train - bool - [True] for training mode + lr - float - initial learning rate + beta1 - float - initial momentum term for adam + version - 0.1 for latest, 0.0 was original (with a bug) + ''' + BaseModel.initialize(self, use_gpu=use_gpu) + + self.model = model + self.net = net + self.is_train = is_train + self.spatial = spatial + self.model_name = '%s [%s]' % (model, net) + + if (self.model == 'net-lin'): # pretrained net + linear layer + self.net = PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net, + use_dropout=True, spatial=spatial, version=version, lpips=True) + kw = dict(map_location='cpu') + if (model_path is None): + import inspect + model_path = os.path.abspath( + os.path.join(os.path.dirname(__file__), '..', '..', '..', 'models', 'lpips_models', f'{net}.pth')) + + if (not is_train): + self.net.load_state_dict(torch.load(model_path, **kw), strict=False) + + elif (self.model == 'net'): # pretrained network + self.net = PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False) + elif (self.model in ['L2', 'l2']): + self.net = L2(use_gpu=use_gpu, colorspace=colorspace) # not really a network, only for testing + self.model_name = 'L2' + elif (self.model in ['DSSIM', 'dssim', 'SSIM', 'ssim']): + self.net = DSSIM(use_gpu=use_gpu, colorspace=colorspace) + self.model_name = 'SSIM' + else: + raise ValueError("Model [%s] not recognized." % self.model) + + self.trainable_parameters = list(self.net.parameters()) + + if self.is_train: # training mode + # extra network on top to go from distances (d0,d1) => predicted human judgment (h*) + self.rankLoss = BCERankingLoss() + self.trainable_parameters += list(self.rankLoss.net.parameters()) + self.lr = lr + self.old_lr = lr + self.optimizer_net = torch.optim.Adam(self.trainable_parameters, lr=lr, betas=(beta1, 0.999)) + else: # test mode + self.net.eval() + + # if (use_gpu): + # self.net.to(gpu_ids[0]) + # self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids) + # if (self.is_train): + # self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0 + + if (printNet): + print('---------- Networks initialized -------------') + print_network(self.net) + print('-----------------------------------------------') + + def forward(self, in0, in1, retPerLayer=False): + ''' Function computes the distance between image patches in0 and in1 + INPUTS + in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1] + OUTPUT + computed distances between in0 and in1 + ''' + + return self.net(in0, in1, retPerLayer=retPerLayer) + + # ***** TRAINING FUNCTIONS ***** + def optimize_parameters(self): + self.forward_train() + self.optimizer_net.zero_grad() + self.backward_train() + self.optimizer_net.step() + self.clamp_weights() + + def clamp_weights(self): + for module in self.net.modules(): + if (hasattr(module, 'weight') and module.kernel_size == (1, 1)): + module.weight.data = torch.clamp(module.weight.data, min=0) + + def set_input(self, data): + self.input_ref = data['ref'] + self.input_p0 = data['p0'] + self.input_p1 = data['p1'] + self.input_judge = data['judge'] + + # if (self.use_gpu): + # self.input_ref = self.input_ref.to(device=self.gpu_ids[0]) + # self.input_p0 = self.input_p0.to(device=self.gpu_ids[0]) + # self.input_p1 = self.input_p1.to(device=self.gpu_ids[0]) + # self.input_judge = self.input_judge.to(device=self.gpu_ids[0]) + + # self.var_ref = Variable(self.input_ref, requires_grad=True) + # self.var_p0 = Variable(self.input_p0, requires_grad=True) + # self.var_p1 = Variable(self.input_p1, requires_grad=True) + + def forward_train(self): # run forward pass + # print(self.net.module.scaling_layer.shift) + # print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item()) + + assert False, "We shoud've not get here when using LPIPS as a metric" + + self.d0 = self(self.var_ref, self.var_p0) + self.d1 = self(self.var_ref, self.var_p1) + self.acc_r = self.compute_accuracy(self.d0, self.d1, self.input_judge) + + self.var_judge = Variable(1. * self.input_judge).view(self.d0.size()) + + self.loss_total = self.rankLoss(self.d0, self.d1, self.var_judge * 2. - 1.) + + return self.loss_total + + def backward_train(self): + torch.mean(self.loss_total).backward() + + def compute_accuracy(self, d0, d1, judge): + ''' d0, d1 are Variables, judge is a Tensor ''' + d1_lt_d0 = (d1 < d0).cpu().data.numpy().flatten() + judge_per = judge.cpu().numpy().flatten() + return d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per) + + def get_current_errors(self): + retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()), + ('acc_r', self.acc_r)]) + + for key in retDict.keys(): + retDict[key] = np.mean(retDict[key]) + + return retDict + + def get_current_visuals(self): + zoom_factor = 256 / self.var_ref.data.size()[2] + + ref_img = tensor2im(self.var_ref.data) + p0_img = tensor2im(self.var_p0.data) + p1_img = tensor2im(self.var_p1.data) + + ref_img_vis = zoom(ref_img, [zoom_factor, zoom_factor, 1], order=0) + p0_img_vis = zoom(p0_img, [zoom_factor, zoom_factor, 1], order=0) + p1_img_vis = zoom(p1_img, [zoom_factor, zoom_factor, 1], order=0) + + return OrderedDict([('ref', ref_img_vis), + ('p0', p0_img_vis), + ('p1', p1_img_vis)]) + + def save(self, path, label): + if (self.use_gpu): + self.save_network(self.net.module, path, '', label) + else: + self.save_network(self.net, path, '', label) + self.save_network(self.rankLoss.net, path, 'rank', label) + + def update_learning_rate(self, nepoch_decay): + lrd = self.lr / nepoch_decay + lr = self.old_lr - lrd + + for param_group in self.optimizer_net.param_groups: + param_group['lr'] = lr + + print('update lr [%s] decay: %f -> %f' % (type, self.old_lr, lr)) + self.old_lr = lr + + +def score_2afc_dataset(data_loader, func, name=''): + ''' Function computes Two Alternative Forced Choice (2AFC) score using + distance function 'func' in dataset 'data_loader' + INPUTS + data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside + func - callable distance function - calling d=func(in0,in1) should take 2 + pytorch tensors with shape Nx3xXxY, and return numpy array of length N + OUTPUTS + [0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators + [1] - dictionary with following elements + d0s,d1s - N arrays containing distances between reference patch to perturbed patches + gts - N array in [0,1], preferred patch selected by human evaluators + (closer to "0" for left patch p0, "1" for right patch p1, + "0.6" means 60pct people preferred right patch, 40pct preferred left) + scores - N array in [0,1], corresponding to what percentage function agreed with humans + CONSTS + N - number of test triplets in data_loader + ''' + + d0s = [] + d1s = [] + gts = [] + + for data in tqdm(data_loader.load_data(), desc=name): + d0s += func(data['ref'], data['p0']).data.cpu().numpy().flatten().tolist() + d1s += func(data['ref'], data['p1']).data.cpu().numpy().flatten().tolist() + gts += data['judge'].cpu().numpy().flatten().tolist() + + d0s = np.array(d0s) + d1s = np.array(d1s) + gts = np.array(gts) + scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5 + + return (np.mean(scores), dict(d0s=d0s, d1s=d1s, gts=gts, scores=scores)) + + +def score_jnd_dataset(data_loader, func, name=''): + ''' Function computes JND score using distance function 'func' in dataset 'data_loader' + INPUTS + data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside + func - callable distance function - calling d=func(in0,in1) should take 2 + pytorch tensors with shape Nx3xXxY, and return pytorch array of length N + OUTPUTS + [0] - JND score in [0,1], mAP score (area under precision-recall curve) + [1] - dictionary with following elements + ds - N array containing distances between two patches shown to human evaluator + sames - N array containing fraction of people who thought the two patches were identical + CONSTS + N - number of test triplets in data_loader + ''' + + ds = [] + gts = [] + + for data in tqdm(data_loader.load_data(), desc=name): + ds += func(data['p0'], data['p1']).data.cpu().numpy().tolist() + gts += data['same'].cpu().numpy().flatten().tolist() + + sames = np.array(gts) + ds = np.array(ds) + + sorted_inds = np.argsort(ds) + ds_sorted = ds[sorted_inds] + sames_sorted = sames[sorted_inds] + + TPs = np.cumsum(sames_sorted) + FPs = np.cumsum(1 - sames_sorted) + FNs = np.sum(sames_sorted) - TPs + + precs = TPs / (TPs + FPs) + recs = TPs / (TPs + FNs) + score = voc_ap(recs, precs) + + return (score, dict(ds=ds, sames=sames)) + + +############################################################ +# networks_basic.py # +############################################################ + +import torch.nn as nn +from torch.autograd import Variable +import numpy as np + + +def spatial_average(in_tens, keepdim=True): + return in_tens.mean([2, 3], keepdim=keepdim) + + +def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W + in_H = in_tens.shape[2] + scale_factor = 1. * out_H / in_H + + return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens) + + +# Learned perceptual metric +class PNetLin(nn.Module): + def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False, + version='0.1', lpips=True): + super(PNetLin, self).__init__() + + self.pnet_type = pnet_type + self.pnet_tune = pnet_tune + self.pnet_rand = pnet_rand + self.spatial = spatial + self.lpips = lpips + self.version = version + self.scaling_layer = ScalingLayer() + + if (self.pnet_type in ['vgg', 'vgg16']): + net_type = vgg16 + self.chns = [64, 128, 256, 512, 512] + elif (self.pnet_type == 'alex'): + net_type = alexnet + self.chns = [64, 192, 384, 256, 256] + elif (self.pnet_type == 'squeeze'): + net_type = squeezenet + self.chns = [64, 128, 256, 384, 384, 512, 512] + self.L = len(self.chns) + + self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune) + + if (lpips): + self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) + self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) + self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) + self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) + self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) + self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] + if (self.pnet_type == 'squeeze'): # 7 layers for squeezenet + self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout) + self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout) + self.lins += [self.lin5, self.lin6] + + def forward(self, in0, in1, retPerLayer=False): + # v0.0 - original release had a bug, where input was not scaled + in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version == '0.1' else ( + in0, in1) + outs0, outs1 = self.net(in0_input), self.net(in1_input) + feats0, feats1, diffs = {}, {}, {} + + for kk in range(self.L): + feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) + diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 + + if (self.lpips): + if (self.spatial): + res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)] + else: + res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)] + else: + if (self.spatial): + res = [upsample(diffs[kk].sum(dim=1, keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)] + else: + res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)] + + val = res[0] + for l in range(1, self.L): + val += res[l] + + if (retPerLayer): + return (val, res) + else: + return val + + +class ScalingLayer(nn.Module): + def __init__(self): + super(ScalingLayer, self).__init__() + self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) + self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) + + def forward(self, inp): + return (inp - self.shift) / self.scale + + +class NetLinLayer(nn.Module): + ''' A single linear layer which does a 1x1 conv ''' + + def __init__(self, chn_in, chn_out=1, use_dropout=False): + super(NetLinLayer, self).__init__() + + layers = [nn.Dropout(), ] if (use_dropout) else [] + layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] + self.model = nn.Sequential(*layers) + + +class Dist2LogitLayer(nn.Module): + ''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) ''' + + def __init__(self, chn_mid=32, use_sigmoid=True): + super(Dist2LogitLayer, self).__init__() + + layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True), ] + layers += [nn.LeakyReLU(0.2, True), ] + layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True), ] + layers += [nn.LeakyReLU(0.2, True), ] + layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True), ] + if (use_sigmoid): + layers += [nn.Sigmoid(), ] + self.model = nn.Sequential(*layers) + + def forward(self, d0, d1, eps=0.1): + return self.model(torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1)) + + +class BCERankingLoss(nn.Module): + def __init__(self, chn_mid=32): + super(BCERankingLoss, self).__init__() + self.net = Dist2LogitLayer(chn_mid=chn_mid) + # self.parameters = list(self.net.parameters()) + self.loss = torch.nn.BCELoss() + + def forward(self, d0, d1, judge): + per = (judge + 1.) / 2. + self.logit = self.net(d0, d1) + return self.loss(self.logit, per) + + +# L2, DSSIM metrics +class FakeNet(nn.Module): + def __init__(self, use_gpu=True, colorspace='Lab'): + super(FakeNet, self).__init__() + self.use_gpu = use_gpu + self.colorspace = colorspace + + +class L2(FakeNet): + + def forward(self, in0, in1, retPerLayer=None): + assert (in0.size()[0] == 1) # currently only supports batchSize 1 + + if (self.colorspace == 'RGB'): + (N, C, X, Y) = in0.size() + value = torch.mean(torch.mean(torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2).view(N, 1, 1, Y), + dim=3).view(N) + return value + elif (self.colorspace == 'Lab'): + value = l2(tensor2np(tensor2tensorlab(in0.data, to_norm=False)), + tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float') + ret_var = Variable(torch.Tensor((value,))) + # if (self.use_gpu): + # ret_var = ret_var.cuda() + return ret_var + + +class DSSIM(FakeNet): + + def forward(self, in0, in1, retPerLayer=None): + assert (in0.size()[0] == 1) # currently only supports batchSize 1 + + if (self.colorspace == 'RGB'): + value = dssim(1. * tensor2im(in0.data), 1. * tensor2im(in1.data), range=255.).astype('float') + elif (self.colorspace == 'Lab'): + value = dssim(tensor2np(tensor2tensorlab(in0.data, to_norm=False)), + tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float') + ret_var = Variable(torch.Tensor((value,))) + # if (self.use_gpu): + # ret_var = ret_var.cuda() + return ret_var + + +def print_network(net): + num_params = 0 + for param in net.parameters(): + num_params += param.numel() + print('Network', net) + print('Total number of parameters: %d' % num_params) + + +############################################################ +# pretrained_networks.py # +############################################################ + +from collections import namedtuple +import torch +from torchvision import models as tv + + +class squeezenet(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(squeezenet, self).__init__() + pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.slice6 = torch.nn.Sequential() + self.slice7 = torch.nn.Sequential() + self.N_slices = 7 + for x in range(2): + self.slice1.add_module(str(x), pretrained_features[x]) + for x in range(2, 5): + self.slice2.add_module(str(x), pretrained_features[x]) + for x in range(5, 8): + self.slice3.add_module(str(x), pretrained_features[x]) + for x in range(8, 10): + self.slice4.add_module(str(x), pretrained_features[x]) + for x in range(10, 11): + self.slice5.add_module(str(x), pretrained_features[x]) + for x in range(11, 12): + self.slice6.add_module(str(x), pretrained_features[x]) + for x in range(12, 13): + self.slice7.add_module(str(x), pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1 = h + h = self.slice2(h) + h_relu2 = h + h = self.slice3(h) + h_relu3 = h + h = self.slice4(h) + h_relu4 = h + h = self.slice5(h) + h_relu5 = h + h = self.slice6(h) + h_relu6 = h + h = self.slice7(h) + h_relu7 = h + vgg_outputs = namedtuple("SqueezeOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5', 'relu6', 'relu7']) + out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7) + + return out + + +class alexnet(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(alexnet, self).__init__() + alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.N_slices = 5 + for x in range(2): + self.slice1.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(2, 5): + self.slice2.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(5, 8): + self.slice3.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(8, 10): + self.slice4.add_module(str(x), alexnet_pretrained_features[x]) + for x in range(10, 12): + self.slice5.add_module(str(x), alexnet_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1 = h + h = self.slice2(h) + h_relu2 = h + h = self.slice3(h) + h_relu3 = h + h = self.slice4(h) + h_relu4 = h + h = self.slice5(h) + h_relu5 = h + alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5']) + out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5) + + return out + + +class vgg16(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True): + super(vgg16, self).__init__() + vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + self.slice5 = torch.nn.Sequential() + self.N_slices = 5 + for x in range(4): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(4, 9): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(9, 16): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(16, 23): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + for x in range(23, 30): + self.slice5.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1_2 = h + h = self.slice2(h) + h_relu2_2 = h + h = self.slice3(h) + h_relu3_3 = h + h = self.slice4(h) + h_relu4_3 = h + h = self.slice5(h) + h_relu5_3 = h + vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) + out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) + + return out + + +class resnet(torch.nn.Module): + def __init__(self, requires_grad=False, pretrained=True, num=18): + super(resnet, self).__init__() + if (num == 18): + self.net = tv.resnet18(pretrained=pretrained) + elif (num == 34): + self.net = tv.resnet34(pretrained=pretrained) + elif (num == 50): + self.net = tv.resnet50(pretrained=pretrained) + elif (num == 101): + self.net = tv.resnet101(pretrained=pretrained) + elif (num == 152): + self.net = tv.resnet152(pretrained=pretrained) + self.N_slices = 5 + + self.conv1 = self.net.conv1 + self.bn1 = self.net.bn1 + self.relu = self.net.relu + self.maxpool = self.net.maxpool + self.layer1 = self.net.layer1 + self.layer2 = self.net.layer2 + self.layer3 = self.net.layer3 + self.layer4 = self.net.layer4 + + def forward(self, X): + h = self.conv1(X) + h = self.bn1(h) + h = self.relu(h) + h_relu1 = h + h = self.maxpool(h) + h = self.layer1(h) + h_conv2 = h + h = self.layer2(h) + h_conv3 = h + h = self.layer3(h) + h_conv4 = h + h = self.layer4(h) + h_conv5 = h + + outputs = namedtuple("Outputs", ['relu1', 'conv2', 'conv3', 'conv4', 'conv5']) + out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5) + + return out diff --git a/lama/saicinpainting/evaluation/losses/ssim.py b/lama/saicinpainting/evaluation/losses/ssim.py new file mode 100644 index 0000000000000000000000000000000000000000..cf46c2e5778aca6a8dd9a0f76379656d6067fe60 --- /dev/null +++ b/lama/saicinpainting/evaluation/losses/ssim.py @@ -0,0 +1,74 @@ +import numpy as np +import torch +import torch.nn.functional as F + + +class SSIM(torch.nn.Module): + """SSIM. Modified from: + https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py + """ + + def __init__(self, window_size=11, size_average=True): + super().__init__() + self.window_size = window_size + self.size_average = size_average + self.channel = 1 + self.register_buffer('window', self._create_window(window_size, self.channel)) + + def forward(self, img1, img2): + assert len(img1.shape) == 4 + + channel = img1.size()[1] + + if channel == self.channel and self.window.data.type() == img1.data.type(): + window = self.window + else: + window = self._create_window(self.window_size, channel) + + # window = window.to(img1.get_device()) + window = window.type_as(img1) + + self.window = window + self.channel = channel + + return self._ssim(img1, img2, window, self.window_size, channel, self.size_average) + + def _gaussian(self, window_size, sigma): + gauss = torch.Tensor([ + np.exp(-(x - (window_size // 2)) ** 2 / float(2 * sigma ** 2)) for x in range(window_size) + ]) + return gauss / gauss.sum() + + def _create_window(self, window_size, channel): + _1D_window = self._gaussian(window_size, 1.5).unsqueeze(1) + _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) + return _2D_window.expand(channel, 1, window_size, window_size).contiguous() + + def _ssim(self, img1, img2, window, window_size, channel, size_average=True): + mu1 = F.conv2d(img1, window, padding=(window_size // 2), groups=channel) + mu2 = F.conv2d(img2, window, padding=(window_size // 2), groups=channel) + + mu1_sq = mu1.pow(2) + mu2_sq = mu2.pow(2) + mu1_mu2 = mu1 * mu2 + + sigma1_sq = F.conv2d( + img1 * img1, window, padding=(window_size // 2), groups=channel) - mu1_sq + sigma2_sq = F.conv2d( + img2 * img2, window, padding=(window_size // 2), groups=channel) - mu2_sq + sigma12 = F.conv2d( + img1 * img2, window, padding=(window_size // 2), groups=channel) - mu1_mu2 + + C1 = 0.01 ** 2 + C2 = 0.03 ** 2 + + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / \ + ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) + + if size_average: + return ssim_map.mean() + + return ssim_map.mean(1).mean(1).mean(1) + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): + return diff --git a/lama/saicinpainting/evaluation/masks/README.md b/lama/saicinpainting/evaluation/masks/README.md new file mode 100644 index 0000000000000000000000000000000000000000..320702e64dcb942555d001b26cee1511d5b16609 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/README.md @@ -0,0 +1,27 @@ +# Current algorithm + +## Choice of mask objects + +For identification of the objects which are suitable for mask obtaining, panoptic segmentation model +from [detectron2](https://github.com/facebookresearch/detectron2) trained on COCO. Categories of the detected instances +belong either to "stuff" or "things" types. We consider that instances of objects should have category belong +to "things". Besides, we set upper bound on area which is taken by the object — we consider that too big +area indicates either of the instance being a background or a main object which should not be removed. + +## Choice of position for mask + +We consider that input image has size 2^n x 2^m. We downsample it using +[COUNTLESS](https://github.com/william-silversmith/countless) algorithm so the width is equal to +64 = 2^8 = 2^{downsample_levels}. + +### Augmentation + +There are several parameters for augmentation: +- Scaling factor. We limit scaling to the case when a mask after scaling with pivot point in its center fits inside the + image completely. +- + +### Shift + + +## Select diff --git a/lama/saicinpainting/evaluation/masks/__init__.py b/lama/saicinpainting/evaluation/masks/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/evaluation/masks/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/evaluation/masks/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6287d6564fdcca5655a0f9db64fbe4d14b57c7c8 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/masks/__pycache__/mask.cpython-310.pyc b/lama/saicinpainting/evaluation/masks/__pycache__/mask.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5902e15de4f6e4dbfb4af4be957814f8469933c0 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/__pycache__/mask.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/masks/countless/.gitignore b/lama/saicinpainting/evaluation/masks/countless/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..872aa273a4e3ec99d362cefa1c67550f21f3c366 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/.gitignore @@ -0,0 +1 @@ +results \ No newline at end of file diff --git a/lama/saicinpainting/evaluation/masks/countless/README.md b/lama/saicinpainting/evaluation/masks/countless/README.md new file mode 100644 index 0000000000000000000000000000000000000000..837a8e043d3a33fd9f526ddb69c8a3b255aee7b5 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/README.md @@ -0,0 +1,25 @@ +[![Build Status](https://travis-ci.org/william-silversmith/countless.svg?branch=master)](https://travis-ci.org/william-silversmith/countless) + +Python COUNTLESS Downsampling +============================= + +To install: + +`pip install -r requirements.txt` + +To test: + +`python test.py` + +To benchmark countless2d: + +`python python/countless2d.py python/images/gray_segmentation.png` + +To benchmark countless3d: + +`python python/countless3d.py` + +Adjust N and the list of algorithms inside each script to modify the run parameters. + + +Python3 is slightly faster than Python2. \ No newline at end of file diff --git a/lama/saicinpainting/evaluation/masks/countless/__init__.py b/lama/saicinpainting/evaluation/masks/countless/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/evaluation/masks/countless/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/evaluation/masks/countless/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..203d5fb691a243dd796072f597317fab78ae4ef2 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/masks/countless/__pycache__/countless2d.cpython-310.pyc b/lama/saicinpainting/evaluation/masks/countless/__pycache__/countless2d.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..941da7892f3a6c99f32886875569f78e4021863f Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/__pycache__/countless2d.cpython-310.pyc differ diff --git a/lama/saicinpainting/evaluation/masks/countless/countless2d.py b/lama/saicinpainting/evaluation/masks/countless/countless2d.py new file mode 100644 index 0000000000000000000000000000000000000000..9916293dc244f4fde1ecda4c575c392d48158ee6 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/countless2d.py @@ -0,0 +1,529 @@ +from __future__ import print_function, division + +""" +COUNTLESS performance test in Python. + +python countless2d.py ./images/NAMEOFIMAGE +""" + +import six +from six.moves import range +from collections import defaultdict +from functools import reduce +import operator +import io +import os +from PIL import Image +import math +import numpy as np +import random +import sys +import time +from tqdm import tqdm +from scipy import ndimage + +def simplest_countless(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm. + + data is a 2D numpy array with even dimensions. + """ + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab = a * (a == b) # PICK(A,B) + ac = a * (a == c) # PICK(A,C) + bc = b * (b == c) # PICK(B,C) + + a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed + + return a + (a == 0) * d # AB || AC || BC || D + +def quick_countless(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm. + + data is a 2D numpy array with even dimensions. + """ + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization + bc = b * (b == c) # PICK(B,C) + + a = ab_ac | bc # (PICK(A,B) || PICK(A,C)) or PICK(B,C) + return a + (a == 0) * d # AB || AC || BC || D + +def quickest_countless(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm. + + data is a 2D numpy array with even dimensions. + """ + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization + ab_ac |= b * (b == c) # PICK(B,C) + return ab_ac + (ab_ac == 0) * d # AB || AC || BC || D + +def quick_countless_xor(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm. + + data is a 2D numpy array with even dimensions. + """ + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab = a ^ (a ^ b) # a or b + ab += (ab != a) * ((ab ^ (ab ^ c)) - b) # b or c + ab += (ab == c) * ((ab ^ (ab ^ d)) - c) # c or d + return ab + +def stippled_countless(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm + that treats zero as "background" and inflates lone + pixels. + + data is a 2D numpy array with even dimensions. + """ + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization + ab_ac |= b * (b == c) # PICK(B,C) + + nonzero = a + (a == 0) * (b + (b == 0) * c) + return ab_ac + (ab_ac == 0) * (d + (d == 0) * nonzero) # AB || AC || BC || D + +def zero_corrected_countless(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm. + + data is a 2D numpy array with even dimensions. + """ + # allows us to prevent losing 1/2 a bit of information + # at the top end by using a bigger type. Without this 255 is handled incorrectly. + data, upgraded = upgrade_type(data) + + # offset from zero, raw countless doesn't handle 0 correctly + # we'll remove the extra 1 at the end. + data += 1 + + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab = a * (a == b) # PICK(A,B) + ac = a * (a == c) # PICK(A,C) + bc = b * (b == c) # PICK(B,C) + + a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed + + result = a + (a == 0) * d - 1 # a or d - 1 + + if upgraded: + return downgrade_type(result) + + # only need to reset data if we weren't upgraded + # b/c no copy was made in that case + data -= 1 + + return result + +def countless_extreme(data): + nonzeros = np.count_nonzero(data) + # print("nonzeros", nonzeros) + + N = reduce(operator.mul, data.shape) + + if nonzeros == N: + print("quick") + return quick_countless(data) + elif np.count_nonzero(data + 1) == N: + print("quick") + # print("upper", nonzeros) + return quick_countless(data) + else: + return countless(data) + + +def countless(data): + """ + Vectorized implementation of downsampling a 2D + image by 2 on each side using the COUNTLESS algorithm. + + data is a 2D numpy array with even dimensions. + """ + # allows us to prevent losing 1/2 a bit of information + # at the top end by using a bigger type. Without this 255 is handled incorrectly. + data, upgraded = upgrade_type(data) + + # offset from zero, raw countless doesn't handle 0 correctly + # we'll remove the extra 1 at the end. + data += 1 + + sections = [] + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + a, b, c, d = sections + + ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization + ab_ac |= b * (b == c) # PICK(B,C) + result = ab_ac + (ab_ac == 0) * d - 1 # (matches or d) - 1 + + if upgraded: + return downgrade_type(result) + + # only need to reset data if we weren't upgraded + # b/c no copy was made in that case + data -= 1 + + return result + +def upgrade_type(arr): + dtype = arr.dtype + + if dtype == np.uint8: + return arr.astype(np.uint16), True + elif dtype == np.uint16: + return arr.astype(np.uint32), True + elif dtype == np.uint32: + return arr.astype(np.uint64), True + + return arr, False + +def downgrade_type(arr): + dtype = arr.dtype + + if dtype == np.uint64: + return arr.astype(np.uint32) + elif dtype == np.uint32: + return arr.astype(np.uint16) + elif dtype == np.uint16: + return arr.astype(np.uint8) + + return arr + +def odd_to_even(image): + """ + To facilitate 2x2 downsampling segmentation, change an odd sized image into an even sized one. + Works by mirroring the starting 1 pixel edge of the image on odd shaped sides. + + e.g. turn a 3x3x5 image into a 4x4x5 (the x and y are what are getting downsampled) + + For example: [ 3, 2, 4 ] => [ 3, 3, 2, 4 ] which is now easy to downsample. + + """ + shape = np.array(image.shape) + + offset = (shape % 2)[:2] # x,y offset + + # detect if we're dealing with an even + # image. if so it's fine, just return. + if not np.any(offset): + return image + + oddshape = image.shape[:2] + offset + oddshape = np.append(oddshape, shape[2:]) + oddshape = oddshape.astype(int) + + newimg = np.empty(shape=oddshape, dtype=image.dtype) + + ox,oy = offset + sx,sy = oddshape + + newimg[0,0] = image[0,0] # corner + newimg[ox:sx,0] = image[:,0] # x axis line + newimg[0,oy:sy] = image[0,:] # y axis line + + return newimg + +def counting(array): + factor = (2, 2, 1) + shape = array.shape + + while len(shape) < 4: + array = np.expand_dims(array, axis=-1) + shape = array.shape + + output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor)) + output = np.zeros(output_shape, dtype=array.dtype) + + for chan in range(0, shape[3]): + for z in range(0, shape[2]): + for x in range(0, shape[0], 2): + for y in range(0, shape[1], 2): + block = array[ x:x+2, y:y+2, z, chan ] # 2x2 block + + hashtable = defaultdict(int) + for subx, suby in np.ndindex(block.shape[0], block.shape[1]): + hashtable[block[subx, suby]] += 1 + + best = (0, 0) + for segid, val in six.iteritems(hashtable): + if best[1] < val: + best = (segid, val) + + output[ x // 2, y // 2, chan ] = best[0] + + return output + +def ndzoom(array): + if len(array.shape) == 3: + ratio = ( 1 / 2.0, 1 / 2.0, 1.0 ) + else: + ratio = ( 1 / 2.0, 1 / 2.0) + return ndimage.interpolation.zoom(array, ratio, order=1) + +def countless_if(array): + factor = (2, 2, 1) + shape = array.shape + + if len(shape) < 3: + array = array[ :,:, np.newaxis ] + shape = array.shape + + output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor)) + output = np.zeros(output_shape, dtype=array.dtype) + + for chan in range(0, shape[2]): + for x in range(0, shape[0], 2): + for y in range(0, shape[1], 2): + block = array[ x:x+2, y:y+2, chan ] # 2x2 block + + if block[0,0] == block[1,0]: + pick = block[0,0] + elif block[0,0] == block[0,1]: + pick = block[0,0] + elif block[1,0] == block[0,1]: + pick = block[1,0] + else: + pick = block[1,1] + + output[ x // 2, y // 2, chan ] = pick + + return np.squeeze(output) + +def downsample_with_averaging(array): + """ + Downsample x by factor using averaging. + + @return: The downsampled array, of the same type as x. + """ + + if len(array.shape) == 3: + factor = (2,2,1) + else: + factor = (2,2) + + if np.array_equal(factor[:3], np.array([1,1,1])): + return array + + output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor)) + temp = np.zeros(output_shape, float) + counts = np.zeros(output_shape, np.int) + for offset in np.ndindex(factor): + part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + indexing_expr = tuple(np.s_[:s] for s in part.shape) + temp[indexing_expr] += part + counts[indexing_expr] += 1 + return np.cast[array.dtype](temp / counts) + +def downsample_with_max_pooling(array): + + factor = (2,2) + + if np.all(np.array(factor, int) == 1): + return array + + sections = [] + + for offset in np.ndindex(factor): + part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + output = sections[0].copy() + + for section in sections[1:]: + np.maximum(output, section, output) + + return output + +def striding(array): + """Downsample x by factor using striding. + + @return: The downsampled array, of the same type as x. + """ + factor = (2,2) + if np.all(np.array(factor, int) == 1): + return array + return array[tuple(np.s_[::f] for f in factor)] + +def benchmark(): + filename = sys.argv[1] + img = Image.open(filename) + data = np.array(img.getdata(), dtype=np.uint8) + + if len(data.shape) == 1: + n_channels = 1 + reshape = (img.height, img.width) + else: + n_channels = min(data.shape[1], 3) + data = data[:, :n_channels] + reshape = (img.height, img.width, n_channels) + + data = data.reshape(reshape).astype(np.uint8) + + methods = [ + simplest_countless, + quick_countless, + quick_countless_xor, + quickest_countless, + stippled_countless, + zero_corrected_countless, + countless, + downsample_with_averaging, + downsample_with_max_pooling, + ndzoom, + striding, + # countless_if, + # counting, + ] + + formats = { + 1: 'L', + 3: 'RGB', + 4: 'RGBA' + } + + if not os.path.exists('./results'): + os.mkdir('./results') + + N = 500 + img_size = float(img.width * img.height) / 1024.0 / 1024.0 + print("N = %d, %dx%d (%.2f MPx) %d chan, %s" % (N, img.width, img.height, img_size, n_channels, filename)) + print("Algorithm\tMPx/sec\tMB/sec\tSec") + for fn in methods: + print(fn.__name__, end='') + sys.stdout.flush() + + start = time.time() + # tqdm is here to show you what's going on the first time you run it. + # Feel free to remove it to get slightly more accurate timing results. + for _ in tqdm(range(N), desc=fn.__name__, disable=True): + result = fn(data) + end = time.time() + print("\r", end='') + + total_time = (end - start) + mpx = N * img_size / total_time + mbytes = N * img_size * n_channels / total_time + # Output in tab separated format to enable copy-paste into excel/numbers + print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time)) + outimg = Image.fromarray(np.squeeze(result), formats[n_channels]) + outimg.save('./results/{}.png'.format(fn.__name__, "PNG")) + +if __name__ == '__main__': + benchmark() + + +# Example results: +# N = 5, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png +# Function MPx/sec MB/sec Sec +# simplest_countless 752.855 752.855 0.01 +# quick_countless 920.328 920.328 0.01 +# zero_corrected_countless 534.143 534.143 0.01 +# countless 644.247 644.247 0.01 +# downsample_with_averaging 372.575 372.575 0.01 +# downsample_with_max_pooling 974.060 974.060 0.01 +# ndzoom 137.517 137.517 0.04 +# striding 38550.588 38550.588 0.00 +# countless_if 4.377 4.377 1.14 +# counting 0.117 0.117 42.85 + +# Run without non-numpy implementations: +# N = 2000, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png +# Algorithm MPx/sec MB/sec Sec +# simplest_countless 800.522 800.522 2.50 +# quick_countless 945.420 945.420 2.12 +# quickest_countless 947.256 947.256 2.11 +# stippled_countless 544.049 544.049 3.68 +# zero_corrected_countless 575.310 575.310 3.48 +# countless 646.684 646.684 3.09 +# downsample_with_averaging 385.132 385.132 5.19 +# downsample_with_max_poolin 988.361 988.361 2.02 +# ndzoom 163.104 163.104 12.26 +# striding 81589.340 81589.340 0.02 + + + + diff --git a/lama/saicinpainting/evaluation/masks/countless/countless3d.py b/lama/saicinpainting/evaluation/masks/countless/countless3d.py new file mode 100644 index 0000000000000000000000000000000000000000..631a80c1fa84f6f6c33929753b99bbd702fd2940 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/countless3d.py @@ -0,0 +1,356 @@ +from six.moves import range +from PIL import Image +import numpy as np +import io +import time +import math +import random +import sys +from collections import defaultdict +from copy import deepcopy +from itertools import combinations +from functools import reduce +from tqdm import tqdm + +from memory_profiler import profile + +def countless5(a,b,c,d,e): + """First stage of generalizing from countless2d. + + You have five slots: A, B, C, D, E + + You can decide if something is the winner by first checking for + matches of three, then matches of two, then picking just one if + the other two tries fail. In countless2d, you just check for matches + of two and then pick one of them otherwise. + + Unfortunately, you need to check ABC, ABD, ABE, BCD, BDE, & CDE. + Then you need to check AB, AC, AD, BC, BD + We skip checking E because if none of these match, we pick E. We can + skip checking AE, BE, CE, DE since if any of those match, E is our boy + so it's redundant. + + So countless grows cominatorially in complexity. + """ + sections = [ a,b,c,d,e ] + + p2 = lambda q,r: q * (q == r) # q if p == q else 0 + p3 = lambda q,r,s: q * ( (q == r) & (r == s) ) # q if q == r == s else 0 + + lor = lambda x,y: x + (x == 0) * y + + results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) ) + results3 = reduce(lor, results3) + + results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) ) + results2 = reduce(lor, results2) + + return reduce(lor, (results3, results2, e)) + +def countless8(a,b,c,d,e,f,g,h): + """Extend countless5 to countless8. Same deal, except we also + need to check for matches of length 4.""" + sections = [ a, b, c, d, e, f, g, h ] + + p2 = lambda q,r: q * (q == r) + p3 = lambda q,r,s: q * ( (q == r) & (r == s) ) + p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) ) + + lor = lambda x,y: x + (x == 0) * y + + results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) ) + results4 = reduce(lor, results4) + + results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) ) + results3 = reduce(lor, results3) + + # We can always use our shortcut of omitting the last element + # for N choose 2 + results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) ) + results2 = reduce(lor, results2) + + return reduce(lor, [ results4, results3, results2, h ]) + +def dynamic_countless3d(data): + """countless8 + dynamic programming. ~2x faster""" + sections = [] + + # shift zeros up one so they don't interfere with bitwise operators + # we'll shift down at the end + data += 1 + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + pick = lambda a,b: a * (a == b) + lor = lambda x,y: x + (x == 0) * y + + subproblems2 = {} + + results2 = None + for x,y in combinations(range(7), 2): + res = pick(sections[x], sections[y]) + subproblems2[(x,y)] = res + if results2 is not None: + results2 += (results2 == 0) * res + else: + results2 = res + + subproblems3 = {} + + results3 = None + for x,y,z in combinations(range(8), 3): + res = pick(subproblems2[(x,y)], sections[z]) + + if z != 7: + subproblems3[(x,y,z)] = res + + if results3 is not None: + results3 += (results3 == 0) * res + else: + results3 = res + + results3 = reduce(lor, (results3, results2, sections[-1])) + + # free memory + results2 = None + subproblems2 = None + res = None + + results4 = ( pick(subproblems3[(x,y,z)], sections[w]) for x,y,z,w in combinations(range(8), 4) ) + results4 = reduce(lor, results4) + subproblems3 = None # free memory + + final_result = lor(results4, results3) - 1 + data -= 1 + return final_result + +def countless3d(data): + """Now write countless8 in such a way that it could be used + to process an image.""" + sections = [] + + # shift zeros up one so they don't interfere with bitwise operators + # we'll shift down at the end + data += 1 + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + factor = (2,2,2) + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + p2 = lambda q,r: q * (q == r) + p3 = lambda q,r,s: q * ( (q == r) & (r == s) ) + p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) ) + + lor = lambda x,y: x + (x == 0) * y + + results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) ) + results4 = reduce(lor, results4) + + results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) ) + results3 = reduce(lor, results3) + + results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) ) + results2 = reduce(lor, results2) + + final_result = reduce(lor, (results4, results3, results2, sections[-1])) - 1 + data -= 1 + return final_result + +def countless_generalized(data, factor): + assert len(data.shape) == len(factor) + + sections = [] + + mode_of = reduce(lambda x,y: x * y, factor) + majority = int(math.ceil(float(mode_of) / 2)) + + data += 1 + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + def pick(elements): + eq = ( elements[i] == elements[i+1] for i in range(len(elements) - 1) ) + anded = reduce(lambda p,q: p & q, eq) + return elements[0] * anded + + def logical_or(x,y): + return x + (x == 0) * y + + result = ( pick(combo) for combo in combinations(sections, majority) ) + result = reduce(logical_or, result) + for i in range(majority - 1, 3-1, -1): # 3-1 b/c of exclusive bounds + partial_result = ( pick(combo) for combo in combinations(sections, i) ) + partial_result = reduce(logical_or, partial_result) + result = logical_or(result, partial_result) + + partial_result = ( pick(combo) for combo in combinations(sections[:-1], 2) ) + partial_result = reduce(logical_or, partial_result) + result = logical_or(result, partial_result) + + result = logical_or(result, sections[-1]) - 1 + data -= 1 + return result + +def dynamic_countless_generalized(data, factor): + assert len(data.shape) == len(factor) + + sections = [] + + mode_of = reduce(lambda x,y: x * y, factor) + majority = int(math.ceil(float(mode_of) / 2)) + + data += 1 # offset from zero + + # This loop splits the 2D array apart into four arrays that are + # all the result of striding by 2 and offset by (0,0), (0,1), (1,0), + # and (1,1) representing the A, B, C, and D positions from Figure 1. + for offset in np.ndindex(factor): + part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + pick = lambda a,b: a * (a == b) + lor = lambda x,y: x + (x == 0) * y # logical or + + subproblems = [ {}, {} ] + results2 = None + for x,y in combinations(range(len(sections) - 1), 2): + res = pick(sections[x], sections[y]) + subproblems[0][(x,y)] = res + if results2 is not None: + results2 = lor(results2, res) + else: + results2 = res + + results = [ results2 ] + for r in range(3, majority+1): + r_results = None + for combo in combinations(range(len(sections)), r): + res = pick(subproblems[0][combo[:-1]], sections[combo[-1]]) + + if combo[-1] != len(sections) - 1: + subproblems[1][combo] = res + + if r_results is not None: + r_results = lor(r_results, res) + else: + r_results = res + results.append(r_results) + subproblems[0] = subproblems[1] + subproblems[1] = {} + + results.reverse() + final_result = lor(reduce(lor, results), sections[-1]) - 1 + data -= 1 + return final_result + +def downsample_with_averaging(array): + """ + Downsample x by factor using averaging. + + @return: The downsampled array, of the same type as x. + """ + factor = (2,2,2) + + if np.array_equal(factor[:3], np.array([1,1,1])): + return array + + output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor)) + temp = np.zeros(output_shape, float) + counts = np.zeros(output_shape, np.int) + for offset in np.ndindex(factor): + part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + indexing_expr = tuple(np.s_[:s] for s in part.shape) + temp[indexing_expr] += part + counts[indexing_expr] += 1 + return np.cast[array.dtype](temp / counts) + +def downsample_with_max_pooling(array): + + factor = (2,2,2) + + sections = [] + + for offset in np.ndindex(factor): + part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))] + sections.append(part) + + output = sections[0].copy() + + for section in sections[1:]: + np.maximum(output, section, output) + + return output + +def striding(array): + """Downsample x by factor using striding. + + @return: The downsampled array, of the same type as x. + """ + factor = (2,2,2) + if np.all(np.array(factor, int) == 1): + return array + return array[tuple(np.s_[::f] for f in factor)] + +def benchmark(): + def countless3d_generalized(img): + return countless_generalized(img, (2,8,1)) + def countless3d_dynamic_generalized(img): + return dynamic_countless_generalized(img, (8,8,1)) + + methods = [ + # countless3d, + # dynamic_countless3d, + countless3d_generalized, + # countless3d_dynamic_generalized, + # striding, + # downsample_with_averaging, + # downsample_with_max_pooling + ] + + data = np.zeros(shape=(16**2, 16**2, 16**2), dtype=np.uint8) + 1 + + N = 5 + + print('Algorithm\tMPx\tMB/sec\tSec\tN=%d' % N) + + for fn in methods: + start = time.time() + for _ in range(N): + result = fn(data) + end = time.time() + + total_time = (end - start) + mpx = N * float(data.shape[0] * data.shape[1] * data.shape[2]) / total_time / 1024.0 / 1024.0 + mbytes = mpx * np.dtype(data.dtype).itemsize + # Output in tab separated format to enable copy-paste into excel/numbers + print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time)) + +if __name__ == '__main__': + benchmark() + +# Algorithm MPx MB/sec Sec N=5 +# countless3d 10.564 10.564 60.58 +# dynamic_countless3d 22.717 22.717 28.17 +# countless3d_generalized 9.702 9.702 65.96 +# countless3d_dynamic_generalized 22.720 22.720 28.17 +# striding 253360.506 253360.506 0.00 +# downsample_with_averaging 224.098 224.098 2.86 +# downsample_with_max_pooling 690.474 690.474 0.93 + + + diff --git a/lama/saicinpainting/evaluation/masks/countless/images/gcim.jpg b/lama/saicinpainting/evaluation/masks/countless/images/gcim.jpg new file mode 100644 index 0000000000000000000000000000000000000000..610d9212eb0ba1cc970ea467104dea8f68a7a839 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/images/gcim.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2b1ade0a290a0a79aceb49a170d085e28e5d2ea1face4fcd522d39a279d3fb4d +size 2582487 diff --git a/lama/saicinpainting/evaluation/masks/countless/images/gray_segmentation.png b/lama/saicinpainting/evaluation/masks/countless/images/gray_segmentation.png new file mode 100644 index 0000000000000000000000000000000000000000..5995bfb41b65bb503e0b2cd99da3dfce41b619b9 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/images/gray_segmentation.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/images/segmentation.png b/lama/saicinpainting/evaluation/masks/countless/images/segmentation.png new file mode 100644 index 0000000000000000000000000000000000000000..b8744331d17f2085bb1d9dc73f26c6d11ccab0a0 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/images/segmentation.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/images/sparse.png b/lama/saicinpainting/evaluation/masks/countless/images/sparse.png new file mode 100644 index 0000000000000000000000000000000000000000..401f043b0850a7c3fb7e289abce386b145e6fe32 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/images/sparse.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/memprof/countless2d_gcim_N_1000.png b/lama/saicinpainting/evaluation/masks/countless/memprof/countless2d_gcim_N_1000.png new file mode 100644 index 0000000000000000000000000000000000000000..557eca7295f50ac9398165b5da873eeb06d10e5c Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/memprof/countless2d_gcim_N_1000.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/memprof/countless2d_quick_gcim_N_1000.png b/lama/saicinpainting/evaluation/masks/countless/memprof/countless2d_quick_gcim_N_1000.png new file mode 100644 index 0000000000000000000000000000000000000000..2121cef5c7376a47fda376a22832d3e8b9e6ff91 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/memprof/countless2d_quick_gcim_N_1000.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d.png b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d.png new file mode 100644 index 0000000000000000000000000000000000000000..5b4bf5d5fc400ce25388cc189fd18d61b82a5fd5 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic.png b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic.png new file mode 100644 index 0000000000000000000000000000000000000000..91bcb420c88e1cad2c9a3152495211e018585aa4 Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic_generalized.png b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic_generalized.png new file mode 100644 index 0000000000000000000000000000000000000000..5c6137442d6027a99ee7e3d1ba92a7bfbd49dffc Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic_generalized.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_generalized.png b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_generalized.png new file mode 100644 index 0000000000000000000000000000000000000000..9193f641f493ae085d226aa3f3468089e1f686ea Binary files /dev/null and b/lama/saicinpainting/evaluation/masks/countless/memprof/countless3d_generalized.png differ diff --git a/lama/saicinpainting/evaluation/masks/countless/requirements.txt b/lama/saicinpainting/evaluation/masks/countless/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..76d9a6881c5a81eb7610a1003d27825b8548264a --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/requirements.txt @@ -0,0 +1,7 @@ +Pillow>=6.2.0 +numpy>=1.16 +scipy +tqdm +memory_profiler +six +pytest \ No newline at end of file diff --git a/lama/saicinpainting/evaluation/masks/countless/test.py b/lama/saicinpainting/evaluation/masks/countless/test.py new file mode 100644 index 0000000000000000000000000000000000000000..8f70d6b0e52391cfcbf01e6d88c30939594992b4 --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/countless/test.py @@ -0,0 +1,195 @@ +from copy import deepcopy + +import numpy as np + +import countless2d +import countless3d + +def test_countless2d(): + def test_all_cases(fn, test_zero): + case1 = np.array([ [ 1, 2 ], [ 3, 4 ] ]).reshape((2,2,1,1)) # all different + case2 = np.array([ [ 1, 1 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # two are same + case1z = np.array([ [ 0, 1 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # all different + case2z = np.array([ [ 0, 0 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # two are same + case3 = np.array([ [ 1, 1 ], [ 2, 2 ] ]).reshape((2,2,1,1)) # two groups are same + case4 = np.array([ [ 1, 2 ], [ 2, 2 ] ]).reshape((2,2,1,1)) # 3 are the same + case5 = np.array([ [ 5, 5 ], [ 5, 5 ] ]).reshape((2,2,1,1)) # all are the same + + is_255_handled = np.array([ [ 255, 255 ], [ 1, 2 ] ], dtype=np.uint8).reshape((2,2,1,1)) + + test = lambda case: fn(case) + + if test_zero: + assert test(case1z) == [[[[3]]]] # d + assert test(case2z) == [[[[0]]]] # a==b + else: + assert test(case1) == [[[[4]]]] # d + assert test(case2) == [[[[1]]]] # a==b + + assert test(case3) == [[[[1]]]] # a==b + assert test(case4) == [[[[2]]]] # b==c + assert test(case5) == [[[[5]]]] # a==b + + assert test(is_255_handled) == [[[[255]]]] + + assert fn(case1).dtype == case1.dtype + + test_all_cases(countless2d.simplest_countless, False) + test_all_cases(countless2d.quick_countless, False) + test_all_cases(countless2d.quickest_countless, False) + test_all_cases(countless2d.stippled_countless, False) + + + + methods = [ + countless2d.zero_corrected_countless, + countless2d.countless, + countless2d.countless_if, + # countless2d.counting, # counting doesn't respect order so harder to write a test + ] + + for fn in methods: + print(fn.__name__) + test_all_cases(fn, True) + +def test_stippled_countless2d(): + a = np.array([ [ 1, 2 ], [ 3, 4 ] ]).reshape((2,2,1,1)) + b = np.array([ [ 0, 2 ], [ 3, 4 ] ]).reshape((2,2,1,1)) + c = np.array([ [ 1, 0 ], [ 3, 4 ] ]).reshape((2,2,1,1)) + d = np.array([ [ 1, 2 ], [ 0, 4 ] ]).reshape((2,2,1,1)) + e = np.array([ [ 1, 2 ], [ 3, 0 ] ]).reshape((2,2,1,1)) + f = np.array([ [ 0, 0 ], [ 3, 4 ] ]).reshape((2,2,1,1)) + g = np.array([ [ 0, 2 ], [ 0, 4 ] ]).reshape((2,2,1,1)) + h = np.array([ [ 0, 2 ], [ 3, 0 ] ]).reshape((2,2,1,1)) + i = np.array([ [ 1, 0 ], [ 0, 4 ] ]).reshape((2,2,1,1)) + j = np.array([ [ 1, 2 ], [ 0, 0 ] ]).reshape((2,2,1,1)) + k = np.array([ [ 1, 0 ], [ 3, 0 ] ]).reshape((2,2,1,1)) + l = np.array([ [ 1, 0 ], [ 0, 0 ] ]).reshape((2,2,1,1)) + m = np.array([ [ 0, 2 ], [ 0, 0 ] ]).reshape((2,2,1,1)) + n = np.array([ [ 0, 0 ], [ 3, 0 ] ]).reshape((2,2,1,1)) + o = np.array([ [ 0, 0 ], [ 0, 4 ] ]).reshape((2,2,1,1)) + z = np.array([ [ 0, 0 ], [ 0, 0 ] ]).reshape((2,2,1,1)) + + test = countless2d.stippled_countless + + # Note: We only tested non-matching cases above, + # cases f,g,h,i,j,k prove their duals work as well + # b/c if two pixels are black, either one can be chosen + # if they are different or the same. + + assert test(a) == [[[[4]]]] + assert test(b) == [[[[4]]]] + assert test(c) == [[[[4]]]] + assert test(d) == [[[[4]]]] + assert test(e) == [[[[1]]]] + assert test(f) == [[[[4]]]] + assert test(g) == [[[[4]]]] + assert test(h) == [[[[2]]]] + assert test(i) == [[[[4]]]] + assert test(j) == [[[[1]]]] + assert test(k) == [[[[1]]]] + assert test(l) == [[[[1]]]] + assert test(m) == [[[[2]]]] + assert test(n) == [[[[3]]]] + assert test(o) == [[[[4]]]] + assert test(z) == [[[[0]]]] + + bc = np.array([ [ 0, 2 ], [ 2, 4 ] ]).reshape((2,2,1,1)) + bd = np.array([ [ 0, 2 ], [ 3, 2 ] ]).reshape((2,2,1,1)) + cd = np.array([ [ 0, 2 ], [ 3, 3 ] ]).reshape((2,2,1,1)) + + assert test(bc) == [[[[2]]]] + assert test(bd) == [[[[2]]]] + assert test(cd) == [[[[3]]]] + + ab = np.array([ [ 1, 1 ], [ 0, 4 ] ]).reshape((2,2,1,1)) + ac = np.array([ [ 1, 2 ], [ 1, 0 ] ]).reshape((2,2,1,1)) + ad = np.array([ [ 1, 0 ], [ 3, 1 ] ]).reshape((2,2,1,1)) + + assert test(ab) == [[[[1]]]] + assert test(ac) == [[[[1]]]] + assert test(ad) == [[[[1]]]] + +def test_countless3d(): + def test_all_cases(fn): + alldifferent = [ + [ + [1,2], + [3,4], + ], + [ + [5,6], + [7,8] + ] + ] + allsame = [ + [ + [1,1], + [1,1], + ], + [ + [1,1], + [1,1] + ] + ] + + assert fn(np.array(alldifferent)) == [[[8]]] + assert fn(np.array(allsame)) == [[[1]]] + + twosame = deepcopy(alldifferent) + twosame[1][1][0] = 2 + + assert fn(np.array(twosame)) == [[[2]]] + + threemixed = [ + [ + [3,3], + [1,2], + ], + [ + [2,4], + [4,3] + ] + ] + assert fn(np.array(threemixed)) == [[[3]]] + + foursame = [ + [ + [4,4], + [1,2], + ], + [ + [2,4], + [4,3] + ] + ] + + assert fn(np.array(foursame)) == [[[4]]] + + fivesame = [ + [ + [5,4], + [5,5], + ], + [ + [2,4], + [5,5] + ] + ] + + assert fn(np.array(fivesame)) == [[[5]]] + + def countless3d_generalized(img): + return countless3d.countless_generalized(img, (2,2,2)) + def countless3d_dynamic_generalized(img): + return countless3d.dynamic_countless_generalized(img, (2,2,2)) + + methods = [ + countless3d.countless3d, + countless3d.dynamic_countless3d, + countless3d_generalized, + countless3d_dynamic_generalized, + ] + + for fn in methods: + test_all_cases(fn) \ No newline at end of file diff --git a/lama/saicinpainting/evaluation/masks/mask.py b/lama/saicinpainting/evaluation/masks/mask.py new file mode 100644 index 0000000000000000000000000000000000000000..c935b73279ea31a23ac7fcd2be6c204b30b9019b --- /dev/null +++ b/lama/saicinpainting/evaluation/masks/mask.py @@ -0,0 +1,429 @@ +import enum +from copy import deepcopy + +import numpy as np +from skimage import img_as_ubyte +from skimage.transform import rescale, resize +try: + from detectron2 import model_zoo + from detectron2.config import get_cfg + from detectron2.engine import DefaultPredictor + DETECTRON_INSTALLED = True +except: + print("Detectron v2 is not installed") + DETECTRON_INSTALLED = False + +from .countless.countless2d import zero_corrected_countless + + +class ObjectMask(): + def __init__(self, mask): + self.height, self.width = mask.shape + (self.up, self.down), (self.left, self.right) = self._get_limits(mask) + self.mask = mask[self.up:self.down, self.left:self.right].copy() + + @staticmethod + def _get_limits(mask): + def indicator_limits(indicator): + lower = indicator.argmax() + upper = len(indicator) - indicator[::-1].argmax() + return lower, upper + + vertical_indicator = mask.any(axis=1) + vertical_limits = indicator_limits(vertical_indicator) + + horizontal_indicator = mask.any(axis=0) + horizontal_limits = indicator_limits(horizontal_indicator) + + return vertical_limits, horizontal_limits + + def _clean(self): + self.up, self.down, self.left, self.right = 0, 0, 0, 0 + self.mask = np.empty((0, 0)) + + def horizontal_flip(self, inplace=False): + if not inplace: + flipped = deepcopy(self) + return flipped.horizontal_flip(inplace=True) + + self.mask = self.mask[:, ::-1] + return self + + def vertical_flip(self, inplace=False): + if not inplace: + flipped = deepcopy(self) + return flipped.vertical_flip(inplace=True) + + self.mask = self.mask[::-1, :] + return self + + def image_center(self): + y_center = self.up + (self.down - self.up) / 2 + x_center = self.left + (self.right - self.left) / 2 + return y_center, x_center + + def rescale(self, scaling_factor, inplace=False): + if not inplace: + scaled = deepcopy(self) + return scaled.rescale(scaling_factor, inplace=True) + + scaled_mask = rescale(self.mask.astype(float), scaling_factor, order=0) > 0.5 + (up, down), (left, right) = self._get_limits(scaled_mask) + self.mask = scaled_mask[up:down, left:right] + + y_center, x_center = self.image_center() + mask_height, mask_width = self.mask.shape + self.up = int(round(y_center - mask_height / 2)) + self.down = self.up + mask_height + self.left = int(round(x_center - mask_width / 2)) + self.right = self.left + mask_width + return self + + def crop_to_canvas(self, vertical=True, horizontal=True, inplace=False): + if not inplace: + cropped = deepcopy(self) + cropped.crop_to_canvas(vertical=vertical, horizontal=horizontal, inplace=True) + return cropped + + if vertical: + if self.up >= self.height or self.down <= 0: + self._clean() + else: + cut_up, cut_down = max(-self.up, 0), max(self.down - self.height, 0) + if cut_up != 0: + self.mask = self.mask[cut_up:] + self.up = 0 + if cut_down != 0: + self.mask = self.mask[:-cut_down] + self.down = self.height + + if horizontal: + if self.left >= self.width or self.right <= 0: + self._clean() + else: + cut_left, cut_right = max(-self.left, 0), max(self.right - self.width, 0) + if cut_left != 0: + self.mask = self.mask[:, cut_left:] + self.left = 0 + if cut_right != 0: + self.mask = self.mask[:, :-cut_right] + self.right = self.width + + return self + + def restore_full_mask(self, allow_crop=False): + cropped = self.crop_to_canvas(inplace=allow_crop) + mask = np.zeros((cropped.height, cropped.width), dtype=bool) + mask[cropped.up:cropped.down, cropped.left:cropped.right] = cropped.mask + return mask + + def shift(self, vertical=0, horizontal=0, inplace=False): + if not inplace: + shifted = deepcopy(self) + return shifted.shift(vertical=vertical, horizontal=horizontal, inplace=True) + + self.up += vertical + self.down += vertical + self.left += horizontal + self.right += horizontal + return self + + def area(self): + return self.mask.sum() + + +class RigidnessMode(enum.Enum): + soft = 0 + rigid = 1 + + +class SegmentationMask: + def __init__(self, confidence_threshold=0.5, rigidness_mode=RigidnessMode.rigid, + max_object_area=0.3, min_mask_area=0.02, downsample_levels=6, num_variants_per_mask=4, + max_mask_intersection=0.5, max_foreground_coverage=0.5, max_foreground_intersection=0.5, + max_hidden_area=0.2, max_scale_change=0.25, horizontal_flip=True, + max_vertical_shift=0.1, position_shuffle=True): + """ + :param confidence_threshold: float; threshold for confidence of the panoptic segmentator to allow for + the instance. + :param rigidness_mode: RigidnessMode object + when soft, checks intersection only with the object from which the mask_object was produced + when rigid, checks intersection with any foreground class object + :param max_object_area: float; allowed upper bound for to be considered as mask_object. + :param min_mask_area: float; lower bound for mask to be considered valid + :param downsample_levels: int; defines width of the resized segmentation to obtain shifted masks; + :param num_variants_per_mask: int; maximal number of the masks for the same object; + :param max_mask_intersection: float; maximum allowed area fraction of intersection for 2 masks + produced by horizontal shift of the same mask_object; higher value -> more diversity + :param max_foreground_coverage: float; maximum allowed area fraction of intersection for foreground object to be + covered by mask; lower value -> less the objects are covered + :param max_foreground_intersection: float; maximum allowed area of intersection for the mask with foreground + object; lower value -> mask is more on the background than on the objects + :param max_hidden_area: upper bound on part of the object hidden by shifting object outside the screen area; + :param max_scale_change: allowed scale change for the mask_object; + :param horizontal_flip: if horizontal flips are allowed; + :param max_vertical_shift: amount of vertical movement allowed; + :param position_shuffle: shuffle + """ + + assert DETECTRON_INSTALLED, 'Cannot use SegmentationMask without detectron2' + self.cfg = get_cfg() + self.cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")) + self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml") + self.cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = confidence_threshold + self.predictor = DefaultPredictor(self.cfg) + + self.rigidness_mode = RigidnessMode(rigidness_mode) + self.max_object_area = max_object_area + self.min_mask_area = min_mask_area + self.downsample_levels = downsample_levels + self.num_variants_per_mask = num_variants_per_mask + self.max_mask_intersection = max_mask_intersection + self.max_foreground_coverage = max_foreground_coverage + self.max_foreground_intersection = max_foreground_intersection + self.max_hidden_area = max_hidden_area + self.position_shuffle = position_shuffle + + self.max_scale_change = max_scale_change + self.horizontal_flip = horizontal_flip + self.max_vertical_shift = max_vertical_shift + + def get_segmentation(self, img): + im = img_as_ubyte(img) + panoptic_seg, segment_info = self.predictor(im)["panoptic_seg"] + return panoptic_seg, segment_info + + @staticmethod + def _is_power_of_two(n): + return (n != 0) and (n & (n-1) == 0) + + def identify_candidates(self, panoptic_seg, segments_info): + potential_mask_ids = [] + for segment in segments_info: + if not segment["isthing"]: + continue + mask = (panoptic_seg == segment["id"]).int().detach().cpu().numpy() + area = mask.sum().item() / np.prod(panoptic_seg.shape) + if area >= self.max_object_area: + continue + potential_mask_ids.append(segment["id"]) + return potential_mask_ids + + def downsample_mask(self, mask): + height, width = mask.shape + if not (self._is_power_of_two(height) and self._is_power_of_two(width)): + raise ValueError("Image sides are not power of 2.") + + num_iterations = width.bit_length() - 1 - self.downsample_levels + if num_iterations < 0: + raise ValueError(f"Width is lower than 2^{self.downsample_levels}.") + + if height.bit_length() - 1 < num_iterations: + raise ValueError("Height is too low to perform downsampling") + + downsampled = mask + for _ in range(num_iterations): + downsampled = zero_corrected_countless(downsampled) + + return downsampled + + def _augmentation_params(self): + scaling_factor = np.random.uniform(1 - self.max_scale_change, 1 + self.max_scale_change) + if self.horizontal_flip: + horizontal_flip = bool(np.random.choice(2)) + else: + horizontal_flip = False + vertical_shift = np.random.uniform(-self.max_vertical_shift, self.max_vertical_shift) + + return { + "scaling_factor": scaling_factor, + "horizontal_flip": horizontal_flip, + "vertical_shift": vertical_shift + } + + def _get_intersection(self, mask_array, mask_object): + intersection = mask_array[ + mask_object.up:mask_object.down, mask_object.left:mask_object.right + ] & mask_object.mask + return intersection + + def _check_masks_intersection(self, aug_mask, total_mask_area, prev_masks): + for existing_mask in prev_masks: + intersection_area = self._get_intersection(existing_mask, aug_mask).sum() + intersection_existing = intersection_area / existing_mask.sum() + intersection_current = 1 - (aug_mask.area() - intersection_area) / total_mask_area + if (intersection_existing > self.max_mask_intersection) or \ + (intersection_current > self.max_mask_intersection): + return False + return True + + def _check_foreground_intersection(self, aug_mask, foreground): + for existing_mask in foreground: + intersection_area = self._get_intersection(existing_mask, aug_mask).sum() + intersection_existing = intersection_area / existing_mask.sum() + if intersection_existing > self.max_foreground_coverage: + return False + intersection_mask = intersection_area / aug_mask.area() + if intersection_mask > self.max_foreground_intersection: + return False + return True + + def _move_mask(self, mask, foreground): + # Obtaining properties of the original mask_object: + orig_mask = ObjectMask(mask) + + chosen_masks = [] + chosen_parameters = [] + # to fix the case when resizing gives mask_object consisting only of False + scaling_factor_lower_bound = 0. + + for var_idx in range(self.num_variants_per_mask): + # Obtaining augmentation parameters and applying them to the downscaled mask_object + augmentation_params = self._augmentation_params() + augmentation_params["scaling_factor"] = min([ + augmentation_params["scaling_factor"], + 2 * min(orig_mask.up, orig_mask.height - orig_mask.down) / orig_mask.height + 1., + 2 * min(orig_mask.left, orig_mask.width - orig_mask.right) / orig_mask.width + 1. + ]) + augmentation_params["scaling_factor"] = max([ + augmentation_params["scaling_factor"], scaling_factor_lower_bound + ]) + + aug_mask = deepcopy(orig_mask) + aug_mask.rescale(augmentation_params["scaling_factor"], inplace=True) + if augmentation_params["horizontal_flip"]: + aug_mask.horizontal_flip(inplace=True) + total_aug_area = aug_mask.area() + if total_aug_area == 0: + scaling_factor_lower_bound = 1. + continue + + # Fix if the element vertical shift is too strong and shown area is too small: + vertical_area = aug_mask.mask.sum(axis=1) / total_aug_area # share of area taken by rows + # number of rows which are allowed to be hidden from upper and lower parts of image respectively + max_hidden_up = np.searchsorted(vertical_area.cumsum(), self.max_hidden_area) + max_hidden_down = np.searchsorted(vertical_area[::-1].cumsum(), self.max_hidden_area) + # correcting vertical shift, so not too much area will be hidden + augmentation_params["vertical_shift"] = np.clip( + augmentation_params["vertical_shift"], + -(aug_mask.up + max_hidden_up) / aug_mask.height, + (aug_mask.height - aug_mask.down + max_hidden_down) / aug_mask.height + ) + # Applying vertical shift: + vertical_shift = int(round(aug_mask.height * augmentation_params["vertical_shift"])) + aug_mask.shift(vertical=vertical_shift, inplace=True) + aug_mask.crop_to_canvas(vertical=True, horizontal=False, inplace=True) + + # Choosing horizontal shift: + max_hidden_area = self.max_hidden_area - (1 - aug_mask.area() / total_aug_area) + horizontal_area = aug_mask.mask.sum(axis=0) / total_aug_area + max_hidden_left = np.searchsorted(horizontal_area.cumsum(), max_hidden_area) + max_hidden_right = np.searchsorted(horizontal_area[::-1].cumsum(), max_hidden_area) + allowed_shifts = np.arange(-max_hidden_left, aug_mask.width - + (aug_mask.right - aug_mask.left) + max_hidden_right + 1) + allowed_shifts = - (aug_mask.left - allowed_shifts) + + if self.position_shuffle: + np.random.shuffle(allowed_shifts) + + mask_is_found = False + for horizontal_shift in allowed_shifts: + aug_mask_left = deepcopy(aug_mask) + aug_mask_left.shift(horizontal=horizontal_shift, inplace=True) + aug_mask_left.crop_to_canvas(inplace=True) + + prev_masks = [mask] + chosen_masks + is_mask_suitable = self._check_masks_intersection(aug_mask_left, total_aug_area, prev_masks) & \ + self._check_foreground_intersection(aug_mask_left, foreground) + if is_mask_suitable: + aug_draw = aug_mask_left.restore_full_mask() + chosen_masks.append(aug_draw) + augmentation_params["horizontal_shift"] = horizontal_shift / aug_mask_left.width + chosen_parameters.append(augmentation_params) + mask_is_found = True + break + + if not mask_is_found: + break + + return chosen_parameters + + def _prepare_mask(self, mask): + height, width = mask.shape + target_width = width if self._is_power_of_two(width) else (1 << width.bit_length()) + target_height = height if self._is_power_of_two(height) else (1 << height.bit_length()) + + return resize(mask.astype('float32'), (target_height, target_width), order=0, mode='edge').round().astype('int32') + + def get_masks(self, im, return_panoptic=False): + panoptic_seg, segments_info = self.get_segmentation(im) + potential_mask_ids = self.identify_candidates(panoptic_seg, segments_info) + + panoptic_seg_scaled = self._prepare_mask(panoptic_seg.detach().cpu().numpy()) + downsampled = self.downsample_mask(panoptic_seg_scaled) + scene_objects = [] + for segment in segments_info: + if not segment["isthing"]: + continue + mask = downsampled == segment["id"] + if not np.any(mask): + continue + scene_objects.append(mask) + + mask_set = [] + for mask_id in potential_mask_ids: + mask = downsampled == mask_id + if not np.any(mask): + continue + + if self.rigidness_mode is RigidnessMode.soft: + foreground = [mask] + elif self.rigidness_mode is RigidnessMode.rigid: + foreground = scene_objects + else: + raise ValueError(f'Unexpected rigidness_mode: {rigidness_mode}') + + masks_params = self._move_mask(mask, foreground) + + full_mask = ObjectMask((panoptic_seg == mask_id).detach().cpu().numpy()) + + for params in masks_params: + aug_mask = deepcopy(full_mask) + aug_mask.rescale(params["scaling_factor"], inplace=True) + if params["horizontal_flip"]: + aug_mask.horizontal_flip(inplace=True) + + vertical_shift = int(round(aug_mask.height * params["vertical_shift"])) + horizontal_shift = int(round(aug_mask.width * params["horizontal_shift"])) + aug_mask.shift(vertical=vertical_shift, horizontal=horizontal_shift, inplace=True) + aug_mask = aug_mask.restore_full_mask().astype('uint8') + if aug_mask.mean() <= self.min_mask_area: + continue + mask_set.append(aug_mask) + + if return_panoptic: + return mask_set, panoptic_seg.detach().cpu().numpy() + else: + return mask_set + + +def propose_random_square_crop(mask, min_overlap=0.5): + height, width = mask.shape + mask_ys, mask_xs = np.where(mask > 0.5) # mask==0 is known fragment and mask==1 is missing + + if height < width: + crop_size = height + obj_left, obj_right = mask_xs.min(), mask_xs.max() + obj_width = obj_right - obj_left + left_border = max(0, min(width - crop_size - 1, obj_left + obj_width * min_overlap - crop_size)) + right_border = max(left_border + 1, min(width - crop_size, obj_left + obj_width * min_overlap)) + start_x = np.random.randint(left_border, right_border) + return start_x, 0, start_x + crop_size, height + else: + crop_size = width + obj_top, obj_bottom = mask_ys.min(), mask_ys.max() + obj_height = obj_bottom - obj_top + top_border = max(0, min(height - crop_size - 1, obj_top + obj_height * min_overlap - crop_size)) + bottom_border = max(top_border + 1, min(height - crop_size, obj_top + obj_height * min_overlap)) + start_y = np.random.randint(top_border, bottom_border) + return 0, start_y, width, start_y + crop_size diff --git a/lama/saicinpainting/evaluation/refinement.py b/lama/saicinpainting/evaluation/refinement.py new file mode 100644 index 0000000000000000000000000000000000000000..a6d210e46b7a2e96cf0bc20f3e241a1f6ed2355b --- /dev/null +++ b/lama/saicinpainting/evaluation/refinement.py @@ -0,0 +1,314 @@ +import torch +import torch.nn as nn +from torch.optim import Adam, SGD +from kornia.filters import gaussian_blur2d +from kornia.geometry.transform import resize +from kornia.morphology import erosion +from torch.nn import functional as F +import numpy as np +import cv2 + +from saicinpainting.evaluation.data import pad_tensor_to_modulo +from saicinpainting.evaluation.utils import move_to_device +from saicinpainting.training.modules.ffc import FFCResnetBlock +from saicinpainting.training.modules.pix2pixhd import ResnetBlock + +from tqdm import tqdm + + +def _pyrdown(im : torch.Tensor, downsize : tuple=None): + """downscale the image""" + if downsize is None: + downsize = (im.shape[2]//2, im.shape[3]//2) + assert im.shape[1] == 3, "Expected shape for the input to be (n,3,height,width)" + im = gaussian_blur2d(im, kernel_size=(5,5), sigma=(1.0,1.0)) + im = F.interpolate(im, size=downsize, mode='bilinear', align_corners=False) + return im + +def _pyrdown_mask(mask : torch.Tensor, downsize : tuple=None, eps : float=1e-8, blur_mask : bool=True, round_up : bool=True): + """downscale the mask tensor + + Parameters + ---------- + mask : torch.Tensor + mask of size (B, 1, H, W) + downsize : tuple, optional + size to downscale to. If None, image is downscaled to half, by default None + eps : float, optional + threshold value for binarizing the mask, by default 1e-8 + blur_mask : bool, optional + if True, apply gaussian filter before downscaling, by default True + round_up : bool, optional + if True, values above eps are marked 1, else, values below 1-eps are marked 0, by default True + + Returns + ------- + torch.Tensor + downscaled mask + """ + + if downsize is None: + downsize = (mask.shape[2]//2, mask.shape[3]//2) + assert mask.shape[1] == 1, "Expected shape for the input to be (n,1,height,width)" + if blur_mask == True: + mask = gaussian_blur2d(mask, kernel_size=(5,5), sigma=(1.0,1.0)) + mask = F.interpolate(mask, size=downsize, mode='bilinear', align_corners=False) + else: + mask = F.interpolate(mask, size=downsize, mode='bilinear', align_corners=False) + if round_up: + mask[mask>=eps] = 1 + mask[mask<eps] = 0 + else: + mask[mask>=1.0-eps] = 1 + mask[mask<1.0-eps] = 0 + return mask + +def _erode_mask(mask : torch.Tensor, ekernel : torch.Tensor=None, eps : float=1e-8): + """erode the mask, and set gray pixels to 0""" + if ekernel is not None: + mask = erosion(mask, ekernel) + mask[mask>=1.0-eps] = 1 + mask[mask<1.0-eps] = 0 + return mask + + +def _l1_loss( + pred : torch.Tensor, pred_downscaled : torch.Tensor, ref : torch.Tensor, + mask : torch.Tensor, mask_downscaled : torch.Tensor, + image : torch.Tensor, on_pred : bool=True + ): + """l1 loss on src pixels, and downscaled predictions if on_pred=True""" + loss = torch.mean(torch.abs(pred[mask<1e-8] - image[mask<1e-8])) + if on_pred: + loss += torch.mean(torch.abs(pred_downscaled[mask_downscaled>=1e-8] - ref[mask_downscaled>=1e-8])) + return loss + +def _infer( + image : torch.Tensor, mask : torch.Tensor, + forward_front : nn.Module, forward_rears : nn.Module, + ref_lower_res : torch.Tensor, orig_shape : tuple, devices : list, + scale_ind : int, n_iters : int=15, lr : float=0.002): + """Performs inference with refinement at a given scale. + + Parameters + ---------- + image : torch.Tensor + input image to be inpainted, of size (1,3,H,W) + mask : torch.Tensor + input inpainting mask, of size (1,1,H,W) + forward_front : nn.Module + the front part of the inpainting network + forward_rears : nn.Module + the rear part of the inpainting network + ref_lower_res : torch.Tensor + the inpainting at previous scale, used as reference image + orig_shape : tuple + shape of the original input image before padding + devices : list + list of available devices + scale_ind : int + the scale index + n_iters : int, optional + number of iterations of refinement, by default 15 + lr : float, optional + learning rate, by default 0.002 + + Returns + ------- + torch.Tensor + inpainted image + """ + masked_image = image * (1 - mask) + masked_image = torch.cat([masked_image, mask], dim=1) + + mask = mask.repeat(1,3,1,1) + if ref_lower_res is not None: + ref_lower_res = ref_lower_res.detach() + with torch.no_grad(): + z1,z2 = forward_front(masked_image) + # Inference + mask = mask.to(devices[-1]) + ekernel = torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(15,15)).astype(bool)).float() + ekernel = ekernel.to(devices[-1]) + image = image.to(devices[-1]) + z1, z2 = z1.detach().to(devices[0]), z2.detach().to(devices[0]) + z1.requires_grad, z2.requires_grad = True, True + + optimizer = Adam([z1,z2], lr=lr) + + pbar = tqdm(range(n_iters), leave=False) + for idi in pbar: + optimizer.zero_grad() + input_feat = (z1,z2) + for idd, forward_rear in enumerate(forward_rears): + output_feat = forward_rear(input_feat) + if idd < len(devices) - 1: + midz1, midz2 = output_feat + midz1, midz2 = midz1.to(devices[idd+1]), midz2.to(devices[idd+1]) + input_feat = (midz1, midz2) + else: + pred = output_feat + + if ref_lower_res is None: + break + losses = {} + ######################### multi-scale ############################# + # scaled loss with downsampler + pred_downscaled = _pyrdown(pred[:,:,:orig_shape[0],:orig_shape[1]]) + mask_downscaled = _pyrdown_mask(mask[:,:1,:orig_shape[0],:orig_shape[1]], blur_mask=False, round_up=False) + mask_downscaled = _erode_mask(mask_downscaled, ekernel=ekernel) + mask_downscaled = mask_downscaled.repeat(1,3,1,1) + losses["ms_l1"] = _l1_loss(pred, pred_downscaled, ref_lower_res, mask, mask_downscaled, image, on_pred=True) + + loss = sum(losses.values()) + pbar.set_description("Refining scale {} using scale {} ...current loss: {:.4f}".format(scale_ind+1, scale_ind, loss.item())) + if idi < n_iters - 1: + loss.backward() + optimizer.step() + del pred_downscaled + del loss + del pred + # "pred" is the prediction after Plug-n-Play module + inpainted = mask * pred + (1 - mask) * image + inpainted = inpainted.detach().cpu() + return inpainted + +def _get_image_mask_pyramid(batch : dict, min_side : int, max_scales : int, px_budget : int): + """Build the image mask pyramid + + Parameters + ---------- + batch : dict + batch containing image, mask, etc + min_side : int + minimum side length to limit the number of scales of the pyramid + max_scales : int + maximum number of scales allowed + px_budget : int + the product H*W cannot exceed this budget, because of resource constraints + + Returns + ------- + tuple + image-mask pyramid in the form of list of images and list of masks + """ + + assert batch['image'].shape[0] == 1, "refiner works on only batches of size 1!" + + h, w = batch['unpad_to_size'] + h, w = h[0].item(), w[0].item() + + image = batch['image'][...,:h,:w] + mask = batch['mask'][...,:h,:w] + if h*w > px_budget: + #resize + ratio = np.sqrt(px_budget / float(h*w)) + h_orig, w_orig = h, w + h,w = int(h*ratio), int(w*ratio) + print(f"Original image too large for refinement! Resizing {(h_orig,w_orig)} to {(h,w)}...") + image = resize(image, (h,w),interpolation='bilinear', align_corners=False) + mask = resize(mask, (h,w),interpolation='bilinear', align_corners=False) + mask[mask>1e-8] = 1 + breadth = min(h,w) + n_scales = min(1 + int(round(max(0,np.log2(breadth / min_side)))), max_scales) + ls_images = [] + ls_masks = [] + + ls_images.append(image) + ls_masks.append(mask) + + for _ in range(n_scales - 1): + image_p = _pyrdown(ls_images[-1]) + mask_p = _pyrdown_mask(ls_masks[-1]) + ls_images.append(image_p) + ls_masks.append(mask_p) + # reverse the lists because we want the lowest resolution image as index 0 + return ls_images[::-1], ls_masks[::-1] + +def refine_predict( + batch : dict, inpainter : nn.Module, gpu_ids : str, + modulo : int, n_iters : int, lr : float, min_side : int, + max_scales : int, px_budget : int + ): + """Refines the inpainting of the network + + Parameters + ---------- + batch : dict + image-mask batch, currently we assume the batchsize to be 1 + inpainter : nn.Module + the inpainting neural network + gpu_ids : str + the GPU ids of the machine to use. If only single GPU, use: "0," + modulo : int + pad the image to ensure dimension % modulo == 0 + n_iters : int + number of iterations of refinement for each scale + lr : float + learning rate + min_side : int + all sides of image on all scales should be >= min_side / sqrt(2) + max_scales : int + max number of downscaling scales for the image-mask pyramid + px_budget : int + pixels budget. Any image will be resized to satisfy height*width <= px_budget + + Returns + ------- + torch.Tensor + inpainted image of size (1,3,H,W) + """ + + assert not inpainter.training + assert not inpainter.add_noise_kwargs + assert inpainter.concat_mask + + gpu_ids = [f'cuda:{gpuid}' for gpuid in gpu_ids.replace(" ","").split(",") if gpuid.isdigit()] + n_resnet_blocks = 0 + first_resblock_ind = 0 + found_first_resblock = False + for idl in range(len(inpainter.generator.model)): + if isinstance(inpainter.generator.model[idl], FFCResnetBlock) or isinstance(inpainter.generator.model[idl], ResnetBlock): + n_resnet_blocks += 1 + found_first_resblock = True + elif not found_first_resblock: + first_resblock_ind += 1 + resblocks_per_gpu = n_resnet_blocks // len(gpu_ids) + + devices = [torch.device(gpu_id) for gpu_id in gpu_ids] + + # split the model into front, and rear parts + forward_front = inpainter.generator.model[0:first_resblock_ind] + forward_front.to(devices[0]) + forward_rears = [] + for idd in range(len(gpu_ids)): + if idd < len(gpu_ids) - 1: + forward_rears.append(inpainter.generator.model[first_resblock_ind + resblocks_per_gpu*(idd):first_resblock_ind+resblocks_per_gpu*(idd+1)]) + else: + forward_rears.append(inpainter.generator.model[first_resblock_ind + resblocks_per_gpu*(idd):]) + forward_rears[idd].to(devices[idd]) + + ls_images, ls_masks = _get_image_mask_pyramid( + batch, + min_side, + max_scales, + px_budget + ) + image_inpainted = None + + for ids, (image, mask) in enumerate(zip(ls_images, ls_masks)): + orig_shape = image.shape[2:] + image = pad_tensor_to_modulo(image, modulo) + mask = pad_tensor_to_modulo(mask, modulo) + mask[mask >= 1e-8] = 1.0 + mask[mask < 1e-8] = 0.0 + image, mask = move_to_device(image, devices[0]), move_to_device(mask, devices[0]) + if image_inpainted is not None: + image_inpainted = move_to_device(image_inpainted, devices[-1]) + image_inpainted = _infer(image, mask, forward_front, forward_rears, image_inpainted, orig_shape, devices, ids, n_iters, lr) + image_inpainted = image_inpainted[:,:,:orig_shape[0], :orig_shape[1]] + # detach everything to save resources + image = image.detach().cpu() + mask = mask.detach().cpu() + + return image_inpainted diff --git a/lama/saicinpainting/evaluation/utils.py b/lama/saicinpainting/evaluation/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e678d123e1138d512ab47223dc98c99458addf4b --- /dev/null +++ b/lama/saicinpainting/evaluation/utils.py @@ -0,0 +1,28 @@ +from enum import Enum + +import yaml +from easydict import EasyDict as edict +import torch.nn as nn +import torch + + +def load_yaml(path): + with open(path, 'r') as f: + return edict(yaml.safe_load(f)) + + +def move_to_device(obj, device): + if isinstance(obj, nn.Module): + return obj.to(device) + if torch.is_tensor(obj): + return obj.to(device) + if isinstance(obj, (tuple, list)): + return [move_to_device(el, device) for el in obj] + if isinstance(obj, dict): + return {name: move_to_device(val, device) for name, val in obj.items()} + raise ValueError(f'Unexpected type {type(obj)}') + + +class SmallMode(Enum): + DROP = "drop" + UPSCALE = "upscale" diff --git a/lama/saicinpainting/evaluation/vis.py b/lama/saicinpainting/evaluation/vis.py new file mode 100644 index 0000000000000000000000000000000000000000..d07d49ecffc67a2d448a2003c61be480502ec788 --- /dev/null +++ b/lama/saicinpainting/evaluation/vis.py @@ -0,0 +1,37 @@ +import numpy as np +from skimage import io +from skimage.segmentation import mark_boundaries + + +def save_item_for_vis(item, out_file): + mask = item['mask'] > 0.5 + if mask.ndim == 3: + mask = mask[0] + img = mark_boundaries(np.transpose(item['image'], (1, 2, 0)), + mask, + color=(1., 0., 0.), + outline_color=(1., 1., 1.), + mode='thick') + + if 'inpainted' in item: + inp_img = mark_boundaries(np.transpose(item['inpainted'], (1, 2, 0)), + mask, + color=(1., 0., 0.), + mode='outer') + img = np.concatenate((img, inp_img), axis=1) + + img = np.clip(img * 255, 0, 255).astype('uint8') + io.imsave(out_file, img) + + +def save_mask_for_sidebyside(item, out_file): + mask = item['mask']# > 0.5 + if mask.ndim == 3: + mask = mask[0] + mask = np.clip(mask * 255, 0, 255).astype('uint8') + io.imsave(out_file, mask) + +def save_img_for_sidebyside(item, out_file): + img = np.transpose(item['image'], (1, 2, 0)) + img = np.clip(img * 255, 0, 255).astype('uint8') + io.imsave(out_file, img) \ No newline at end of file diff --git a/lama/saicinpainting/training/__init__.py b/lama/saicinpainting/training/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/training/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/training/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e6b292d5ef8d8d175c219fb834f8ee1cbea0869f Binary files /dev/null and b/lama/saicinpainting/training/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/data/__init__.py b/lama/saicinpainting/training/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/training/data/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/training/data/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..632caf7f16be13b97b647a2d39b97a2e5f7eb934 Binary files /dev/null and b/lama/saicinpainting/training/data/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/data/__pycache__/aug.cpython-310.pyc b/lama/saicinpainting/training/data/__pycache__/aug.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b557abb739ba5cb45ffb1a5156a3eee7b3655a3 Binary files /dev/null and b/lama/saicinpainting/training/data/__pycache__/aug.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/data/__pycache__/datasets.cpython-310.pyc b/lama/saicinpainting/training/data/__pycache__/datasets.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea8c89d80ae3cd46719807de7e48b15fdb0ab372 Binary files /dev/null and b/lama/saicinpainting/training/data/__pycache__/datasets.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/data/__pycache__/masks.cpython-310.pyc b/lama/saicinpainting/training/data/__pycache__/masks.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a22100d193ef14fb6cd1941a1ba5ffbf46ff62ad Binary files /dev/null and b/lama/saicinpainting/training/data/__pycache__/masks.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/data/aug.py b/lama/saicinpainting/training/data/aug.py new file mode 100644 index 0000000000000000000000000000000000000000..561c881cb3dba691e8eaddcd89f2aa88b58cd06b --- /dev/null +++ b/lama/saicinpainting/training/data/aug.py @@ -0,0 +1,84 @@ +from albumentations import DualIAATransform, to_tuple +import imgaug.augmenters as iaa + +class IAAAffine2(DualIAATransform): + """Place a regular grid of points on the input and randomly move the neighbourhood of these point around + via affine transformations. + + Note: This class introduce interpolation artifacts to mask if it has values other than {0;1} + + Args: + p (float): probability of applying the transform. Default: 0.5. + + Targets: + image, mask + """ + + def __init__( + self, + scale=(0.7, 1.3), + translate_percent=None, + translate_px=None, + rotate=0.0, + shear=(-0.1, 0.1), + order=1, + cval=0, + mode="reflect", + always_apply=False, + p=0.5, + ): + super(IAAAffine2, self).__init__(always_apply, p) + self.scale = dict(x=scale, y=scale) + self.translate_percent = to_tuple(translate_percent, 0) + self.translate_px = to_tuple(translate_px, 0) + self.rotate = to_tuple(rotate) + self.shear = dict(x=shear, y=shear) + self.order = order + self.cval = cval + self.mode = mode + + @property + def processor(self): + return iaa.Affine( + self.scale, + self.translate_percent, + self.translate_px, + self.rotate, + self.shear, + self.order, + self.cval, + self.mode, + ) + + def get_transform_init_args_names(self): + return ("scale", "translate_percent", "translate_px", "rotate", "shear", "order", "cval", "mode") + + +class IAAPerspective2(DualIAATransform): + """Perform a random four point perspective transform of the input. + + Note: This class introduce interpolation artifacts to mask if it has values other than {0;1} + + Args: + scale ((float, float): standard deviation of the normal distributions. These are used to sample + the random distances of the subimage's corners from the full image's corners. Default: (0.05, 0.1). + p (float): probability of applying the transform. Default: 0.5. + + Targets: + image, mask + """ + + def __init__(self, scale=(0.05, 0.1), keep_size=True, always_apply=False, p=0.5, + order=1, cval=0, mode="replicate"): + super(IAAPerspective2, self).__init__(always_apply, p) + self.scale = to_tuple(scale, 1.0) + self.keep_size = keep_size + self.cval = cval + self.mode = mode + + @property + def processor(self): + return iaa.PerspectiveTransform(self.scale, keep_size=self.keep_size, mode=self.mode, cval=self.cval) + + def get_transform_init_args_names(self): + return ("scale", "keep_size") diff --git a/lama/saicinpainting/training/data/datasets.py b/lama/saicinpainting/training/data/datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..a374dbf9dc169266355bbfd19084a5305193047f --- /dev/null +++ b/lama/saicinpainting/training/data/datasets.py @@ -0,0 +1,304 @@ +import glob +import logging +import os +import random + +import albumentations as A +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +import webdataset +from omegaconf import open_dict, OmegaConf +from skimage.feature import canny +from skimage.transform import rescale, resize +from torch.utils.data import Dataset, IterableDataset, DataLoader, DistributedSampler, ConcatDataset + +from saicinpainting.evaluation.data import InpaintingDataset as InpaintingEvaluationDataset, \ + OurInpaintingDataset as OurInpaintingEvaluationDataset, ceil_modulo, InpaintingEvalOnlineDataset +from saicinpainting.training.data.aug import IAAAffine2, IAAPerspective2 +from saicinpainting.training.data.masks import get_mask_generator + +LOGGER = logging.getLogger(__name__) + + +class InpaintingTrainDataset(Dataset): + def __init__(self, indir, mask_generator, transform): + self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True)) + self.mask_generator = mask_generator + self.transform = transform + self.iter_i = 0 + + def __len__(self): + return len(self.in_files) + + def __getitem__(self, item): + path = self.in_files[item] + img = cv2.imread(path) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = self.transform(image=img)['image'] + img = np.transpose(img, (2, 0, 1)) + # TODO: maybe generate mask before augmentations? slower, but better for segmentation-based masks + mask = self.mask_generator(img, iter_i=self.iter_i) + self.iter_i += 1 + return dict(image=img, + mask=mask) + + +class InpaintingTrainWebDataset(IterableDataset): + def __init__(self, indir, mask_generator, transform, shuffle_buffer=200): + self.impl = webdataset.Dataset(indir).shuffle(shuffle_buffer).decode('rgb').to_tuple('jpg') + self.mask_generator = mask_generator + self.transform = transform + + def __iter__(self): + for iter_i, (img,) in enumerate(self.impl): + img = np.clip(img * 255, 0, 255).astype('uint8') + img = self.transform(image=img)['image'] + img = np.transpose(img, (2, 0, 1)) + mask = self.mask_generator(img, iter_i=iter_i) + yield dict(image=img, + mask=mask) + + +class ImgSegmentationDataset(Dataset): + def __init__(self, indir, mask_generator, transform, out_size, segm_indir, semantic_seg_n_classes): + self.indir = indir + self.segm_indir = segm_indir + self.mask_generator = mask_generator + self.transform = transform + self.out_size = out_size + self.semantic_seg_n_classes = semantic_seg_n_classes + self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True)) + + def __len__(self): + return len(self.in_files) + + def __getitem__(self, item): + path = self.in_files[item] + img = cv2.imread(path) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = cv2.resize(img, (self.out_size, self.out_size)) + img = self.transform(image=img)['image'] + img = np.transpose(img, (2, 0, 1)) + mask = self.mask_generator(img) + segm, segm_classes= self.load_semantic_segm(path) + result = dict(image=img, + mask=mask, + segm=segm, + segm_classes=segm_classes) + return result + + def load_semantic_segm(self, img_path): + segm_path = img_path.replace(self.indir, self.segm_indir).replace(".jpg", ".png") + mask = cv2.imread(segm_path, cv2.IMREAD_GRAYSCALE) + mask = cv2.resize(mask, (self.out_size, self.out_size)) + tensor = torch.from_numpy(np.clip(mask.astype(int)-1, 0, None)) + ohe = F.one_hot(tensor.long(), num_classes=self.semantic_seg_n_classes) # w x h x n_classes + return ohe.permute(2, 0, 1).float(), tensor.unsqueeze(0) + + +def get_transforms(transform_variant, out_size): + if transform_variant == 'default': + transform = A.Compose([ + A.RandomScale(scale_limit=0.2), # +/- 20% + A.PadIfNeeded(min_height=out_size, min_width=out_size), + A.RandomCrop(height=out_size, width=out_size), + A.HorizontalFlip(), + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'distortions': + transform = A.Compose([ + IAAPerspective2(scale=(0.0, 0.06)), + IAAAffine2(scale=(0.7, 1.3), + rotate=(-40, 40), + shear=(-0.1, 0.1)), + A.PadIfNeeded(min_height=out_size, min_width=out_size), + A.OpticalDistortion(), + A.RandomCrop(height=out_size, width=out_size), + A.HorizontalFlip(), + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'distortions_scale05_1': + transform = A.Compose([ + IAAPerspective2(scale=(0.0, 0.06)), + IAAAffine2(scale=(0.5, 1.0), + rotate=(-40, 40), + shear=(-0.1, 0.1), + p=1), + A.PadIfNeeded(min_height=out_size, min_width=out_size), + A.OpticalDistortion(), + A.RandomCrop(height=out_size, width=out_size), + A.HorizontalFlip(), + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'distortions_scale03_12': + transform = A.Compose([ + IAAPerspective2(scale=(0.0, 0.06)), + IAAAffine2(scale=(0.3, 1.2), + rotate=(-40, 40), + shear=(-0.1, 0.1), + p=1), + A.PadIfNeeded(min_height=out_size, min_width=out_size), + A.OpticalDistortion(), + A.RandomCrop(height=out_size, width=out_size), + A.HorizontalFlip(), + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'distortions_scale03_07': + transform = A.Compose([ + IAAPerspective2(scale=(0.0, 0.06)), + IAAAffine2(scale=(0.3, 0.7), # scale 512 to 256 in average + rotate=(-40, 40), + shear=(-0.1, 0.1), + p=1), + A.PadIfNeeded(min_height=out_size, min_width=out_size), + A.OpticalDistortion(), + A.RandomCrop(height=out_size, width=out_size), + A.HorizontalFlip(), + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'distortions_light': + transform = A.Compose([ + IAAPerspective2(scale=(0.0, 0.02)), + IAAAffine2(scale=(0.8, 1.8), + rotate=(-20, 20), + shear=(-0.03, 0.03)), + A.PadIfNeeded(min_height=out_size, min_width=out_size), + A.RandomCrop(height=out_size, width=out_size), + A.HorizontalFlip(), + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'non_space_transform': + transform = A.Compose([ + A.CLAHE(), + A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2), + A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5), + A.ToFloat() + ]) + elif transform_variant == 'no_augs': + transform = A.Compose([ + A.ToFloat() + ]) + else: + raise ValueError(f'Unexpected transform_variant {transform_variant}') + return transform + + +def make_default_train_dataloader(indir, kind='default', out_size=512, mask_gen_kwargs=None, transform_variant='default', + mask_generator_kind="mixed", dataloader_kwargs=None, ddp_kwargs=None, **kwargs): + LOGGER.info(f'Make train dataloader {kind} from {indir}. Using mask generator={mask_generator_kind}') + + mask_generator = get_mask_generator(kind=mask_generator_kind, kwargs=mask_gen_kwargs) + transform = get_transforms(transform_variant, out_size) + + if kind == 'default': + dataset = InpaintingTrainDataset(indir=indir, + mask_generator=mask_generator, + transform=transform, + **kwargs) + elif kind == 'default_web': + dataset = InpaintingTrainWebDataset(indir=indir, + mask_generator=mask_generator, + transform=transform, + **kwargs) + elif kind == 'img_with_segm': + dataset = ImgSegmentationDataset(indir=indir, + mask_generator=mask_generator, + transform=transform, + out_size=out_size, + **kwargs) + else: + raise ValueError(f'Unknown train dataset kind {kind}') + + if dataloader_kwargs is None: + dataloader_kwargs = {} + + is_dataset_only_iterable = kind in ('default_web',) + + if ddp_kwargs is not None and not is_dataset_only_iterable: + dataloader_kwargs['shuffle'] = False + dataloader_kwargs['sampler'] = DistributedSampler(dataset, **ddp_kwargs) + + if is_dataset_only_iterable and 'shuffle' in dataloader_kwargs: + with open_dict(dataloader_kwargs): + del dataloader_kwargs['shuffle'] + + dataloader = DataLoader(dataset, **dataloader_kwargs) + return dataloader + + +def make_default_val_dataset(indir, kind='default', out_size=512, transform_variant='default', **kwargs): + if OmegaConf.is_list(indir) or isinstance(indir, (tuple, list)): + return ConcatDataset([ + make_default_val_dataset(idir, kind=kind, out_size=out_size, transform_variant=transform_variant, **kwargs) for idir in indir + ]) + + LOGGER.info(f'Make val dataloader {kind} from {indir}') + mask_generator = get_mask_generator(kind=kwargs.get("mask_generator_kind"), kwargs=kwargs.get("mask_gen_kwargs")) + + if transform_variant is not None: + transform = get_transforms(transform_variant, out_size) + + if kind == 'default': + dataset = InpaintingEvaluationDataset(indir, **kwargs) + elif kind == 'our_eval': + dataset = OurInpaintingEvaluationDataset(indir, **kwargs) + elif kind == 'img_with_segm': + dataset = ImgSegmentationDataset(indir=indir, + mask_generator=mask_generator, + transform=transform, + out_size=out_size, + **kwargs) + elif kind == 'online': + dataset = InpaintingEvalOnlineDataset(indir=indir, + mask_generator=mask_generator, + transform=transform, + out_size=out_size, + **kwargs) + else: + raise ValueError(f'Unknown val dataset kind {kind}') + + return dataset + + +def make_default_val_dataloader(*args, dataloader_kwargs=None, **kwargs): + dataset = make_default_val_dataset(*args, **kwargs) + + if dataloader_kwargs is None: + dataloader_kwargs = {} + dataloader = DataLoader(dataset, **dataloader_kwargs) + return dataloader + + +def make_constant_area_crop_params(img_height, img_width, min_size=128, max_size=512, area=256*256, round_to_mod=16): + min_size = min(img_height, img_width, min_size) + max_size = min(img_height, img_width, max_size) + if random.random() < 0.5: + out_height = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod)) + out_width = min(max_size, ceil_modulo(area // out_height, round_to_mod)) + else: + out_width = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod)) + out_height = min(max_size, ceil_modulo(area // out_width, round_to_mod)) + + start_y = random.randint(0, img_height - out_height) + start_x = random.randint(0, img_width - out_width) + return (start_y, start_x, out_height, out_width) diff --git a/lama/saicinpainting/training/data/masks.py b/lama/saicinpainting/training/data/masks.py new file mode 100644 index 0000000000000000000000000000000000000000..4673238f0ff40a9ae18890b9c295225d72c4e3e4 --- /dev/null +++ b/lama/saicinpainting/training/data/masks.py @@ -0,0 +1,332 @@ +import math +import random +import hashlib +import logging +from enum import Enum + +import cv2 +import numpy as np + +from saicinpainting.evaluation.masks.mask import SegmentationMask +from saicinpainting.utils import LinearRamp + +LOGGER = logging.getLogger(__name__) + + +class DrawMethod(Enum): + LINE = 'line' + CIRCLE = 'circle' + SQUARE = 'square' + + +def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, + draw_method=DrawMethod.LINE): + draw_method = DrawMethod(draw_method) + + height, width = shape + mask = np.zeros((height, width), np.float32) + times = np.random.randint(min_times, max_times + 1) + for i in range(times): + start_x = np.random.randint(width) + start_y = np.random.randint(height) + for j in range(1 + np.random.randint(5)): + angle = 0.01 + np.random.randint(max_angle) + if i % 2 == 0: + angle = 2 * 3.1415926 - angle + length = 10 + np.random.randint(max_len) + brush_w = 5 + np.random.randint(max_width) + end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width) + end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height) + if draw_method == DrawMethod.LINE: + cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w) + elif draw_method == DrawMethod.CIRCLE: + cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1) + elif draw_method == DrawMethod.SQUARE: + radius = brush_w // 2 + mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1 + start_x, start_y = end_x, end_y + return mask[None, ...] + + +class RandomIrregularMaskGenerator: + def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None, + draw_method=DrawMethod.LINE): + self.max_angle = max_angle + self.max_len = max_len + self.max_width = max_width + self.min_times = min_times + self.max_times = max_times + self.draw_method = draw_method + self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None + + def __call__(self, img, iter_i=None, raw_image=None): + coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 + cur_max_len = int(max(1, self.max_len * coef)) + cur_max_width = int(max(1, self.max_width * coef)) + cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef) + return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len, + max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times, + draw_method=self.draw_method) + + +def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3): + height, width = shape + mask = np.zeros((height, width), np.float32) + bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2) + times = np.random.randint(min_times, max_times + 1) + for i in range(times): + box_width = np.random.randint(bbox_min_size, bbox_max_size) + box_height = np.random.randint(bbox_min_size, bbox_max_size) + start_x = np.random.randint(margin, width - margin - box_width + 1) + start_y = np.random.randint(margin, height - margin - box_height + 1) + mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1 + return mask[None, ...] + + +class RandomRectangleMaskGenerator: + def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None): + self.margin = margin + self.bbox_min_size = bbox_min_size + self.bbox_max_size = bbox_max_size + self.min_times = min_times + self.max_times = max_times + self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None + + def __call__(self, img, iter_i=None, raw_image=None): + coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 + cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef) + cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef) + return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size, + bbox_max_size=cur_bbox_max_size, min_times=self.min_times, + max_times=cur_max_times) + + +class RandomSegmentationMaskGenerator: + def __init__(self, **kwargs): + self.impl = None # will be instantiated in first call (effectively in subprocess) + self.kwargs = kwargs + + def __call__(self, img, iter_i=None, raw_image=None): + if self.impl is None: + self.impl = SegmentationMask(**self.kwargs) + + masks = self.impl.get_masks(np.transpose(img, (1, 2, 0))) + masks = [m for m in masks if len(np.unique(m)) > 1] + return np.random.choice(masks) + + +def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3): + height, width = shape + mask = np.zeros((height, width), np.float32) + step_x = np.random.randint(min_step, max_step + 1) + width_x = np.random.randint(min_width, min(step_x, max_width + 1)) + offset_x = np.random.randint(0, step_x) + + step_y = np.random.randint(min_step, max_step + 1) + width_y = np.random.randint(min_width, min(step_y, max_width + 1)) + offset_y = np.random.randint(0, step_y) + + for dy in range(width_y): + mask[offset_y + dy::step_y] = 1 + for dx in range(width_x): + mask[:, offset_x + dx::step_x] = 1 + return mask[None, ...] + + +class RandomSuperresMaskGenerator: + def __init__(self, **kwargs): + self.kwargs = kwargs + + def __call__(self, img, iter_i=None): + return make_random_superres_mask(img.shape[1:], **self.kwargs) + + +class DumbAreaMaskGenerator: + min_ratio = 0.1 + max_ratio = 0.35 + default_ratio = 0.225 + + def __init__(self, is_training): + #Parameters: + # is_training(bool): If true - random rectangular mask, if false - central square mask + self.is_training = is_training + + def _random_vector(self, dimension): + if self.is_training: + lower_limit = math.sqrt(self.min_ratio) + upper_limit = math.sqrt(self.max_ratio) + mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension) + u = random.randint(0, dimension-mask_side-1) + v = u+mask_side + else: + margin = (math.sqrt(self.default_ratio) / 2) * dimension + u = round(dimension/2 - margin) + v = round(dimension/2 + margin) + return u, v + + def __call__(self, img, iter_i=None, raw_image=None): + c, height, width = img.shape + mask = np.zeros((height, width), np.float32) + x1, x2 = self._random_vector(width) + y1, y2 = self._random_vector(height) + mask[x1:x2, y1:y2] = 1 + return mask[None, ...] + + +class OutpaintingMaskGenerator: + def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5, + right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False): + """ + is_fixed_randomness - get identical paddings for the same image if args are the same + """ + self.min_padding_percent = min_padding_percent + self.max_padding_percent = max_padding_percent + self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob] + self.is_fixed_randomness = is_fixed_randomness + + assert self.min_padding_percent <= self.max_padding_percent + assert self.max_padding_percent > 0 + assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]" + assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}" + assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}" + if len([x for x in self.probs if x > 0]) == 1: + LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side") + + def apply_padding(self, mask, coord): + mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h), + int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1 + return mask + + def get_padding(self, size): + n1 = int(self.min_padding_percent*size) + n2 = int(self.max_padding_percent*size) + return self.rnd.randint(n1, n2) / size + + @staticmethod + def _img2rs(img): + arr = np.ascontiguousarray(img.astype(np.uint8)) + str_hash = hashlib.sha1(arr).hexdigest() + res = hash(str_hash)%(2**32) + return res + + def __call__(self, img, iter_i=None, raw_image=None): + c, self.img_h, self.img_w = img.shape + mask = np.zeros((self.img_h, self.img_w), np.float32) + at_least_one_mask_applied = False + + if self.is_fixed_randomness: + assert raw_image is not None, f"Cant calculate hash on raw_image=None" + rs = self._img2rs(raw_image) + self.rnd = np.random.RandomState(rs) + else: + self.rnd = np.random + + coords = [[ + (0,0), + (1,self.get_padding(size=self.img_h)) + ], + [ + (0,0), + (self.get_padding(size=self.img_w),1) + ], + [ + (0,1-self.get_padding(size=self.img_h)), + (1,1) + ], + [ + (1-self.get_padding(size=self.img_w),0), + (1,1) + ]] + + for pp, coord in zip(self.probs, coords): + if self.rnd.random() < pp: + at_least_one_mask_applied = True + mask = self.apply_padding(mask=mask, coord=coord) + + if not at_least_one_mask_applied: + idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs)) + mask = self.apply_padding(mask=mask, coord=coords[idx]) + return mask[None, ...] + + +class MixedMaskGenerator: + def __init__(self, irregular_proba=1/3, irregular_kwargs=None, + box_proba=1/3, box_kwargs=None, + segm_proba=1/3, segm_kwargs=None, + squares_proba=0, squares_kwargs=None, + superres_proba=0, superres_kwargs=None, + outpainting_proba=0, outpainting_kwargs=None, + invert_proba=0): + self.probas = [] + self.gens = [] + + if irregular_proba > 0: + self.probas.append(irregular_proba) + if irregular_kwargs is None: + irregular_kwargs = {} + else: + irregular_kwargs = dict(irregular_kwargs) + irregular_kwargs['draw_method'] = DrawMethod.LINE + self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs)) + + if box_proba > 0: + self.probas.append(box_proba) + if box_kwargs is None: + box_kwargs = {} + self.gens.append(RandomRectangleMaskGenerator(**box_kwargs)) + + if segm_proba > 0: + self.probas.append(segm_proba) + if segm_kwargs is None: + segm_kwargs = {} + self.gens.append(RandomSegmentationMaskGenerator(**segm_kwargs)) + + if squares_proba > 0: + self.probas.append(squares_proba) + if squares_kwargs is None: + squares_kwargs = {} + else: + squares_kwargs = dict(squares_kwargs) + squares_kwargs['draw_method'] = DrawMethod.SQUARE + self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs)) + + if superres_proba > 0: + self.probas.append(superres_proba) + if superres_kwargs is None: + superres_kwargs = {} + self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs)) + + if outpainting_proba > 0: + self.probas.append(outpainting_proba) + if outpainting_kwargs is None: + outpainting_kwargs = {} + self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs)) + + self.probas = np.array(self.probas, dtype='float32') + self.probas /= self.probas.sum() + self.invert_proba = invert_proba + + def __call__(self, img, iter_i=None, raw_image=None): + kind = np.random.choice(len(self.probas), p=self.probas) + gen = self.gens[kind] + result = gen(img, iter_i=iter_i, raw_image=raw_image) + if self.invert_proba > 0 and random.random() < self.invert_proba: + result = 1 - result + return result + + +def get_mask_generator(kind, kwargs): + if kind is None: + kind = "mixed" + if kwargs is None: + kwargs = {} + + if kind == "mixed": + cl = MixedMaskGenerator + elif kind == "outpainting": + cl = OutpaintingMaskGenerator + elif kind == "dumb": + cl = DumbAreaMaskGenerator + else: + raise NotImplementedError(f"No such generator kind = {kind}") + return cl(**kwargs) diff --git a/lama/saicinpainting/training/losses/__init__.py b/lama/saicinpainting/training/losses/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/lama/saicinpainting/training/losses/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/training/losses/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19d6f1f45f00b68d8f9ffb186e66242e74168993 Binary files /dev/null and b/lama/saicinpainting/training/losses/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/losses/__pycache__/adversarial.cpython-310.pyc b/lama/saicinpainting/training/losses/__pycache__/adversarial.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c5ee94aee4710b17cb074ec734f15e9cec305c9 Binary files /dev/null and b/lama/saicinpainting/training/losses/__pycache__/adversarial.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/losses/__pycache__/distance_weighting.cpython-310.pyc b/lama/saicinpainting/training/losses/__pycache__/distance_weighting.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..59d05e3486c63bd6a8e609c92e2c1f24af79a87c Binary files /dev/null and b/lama/saicinpainting/training/losses/__pycache__/distance_weighting.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/losses/__pycache__/feature_matching.cpython-310.pyc b/lama/saicinpainting/training/losses/__pycache__/feature_matching.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..157d954a60c4e20ed3f885b0b948ef45ec622836 Binary files /dev/null and b/lama/saicinpainting/training/losses/__pycache__/feature_matching.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/losses/__pycache__/perceptual.cpython-310.pyc b/lama/saicinpainting/training/losses/__pycache__/perceptual.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d742ae0f3bb35b1bd739b3146594491e01d4e341 Binary files /dev/null and b/lama/saicinpainting/training/losses/__pycache__/perceptual.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/losses/adversarial.py b/lama/saicinpainting/training/losses/adversarial.py new file mode 100644 index 0000000000000000000000000000000000000000..ced3e18231f5fd7a9bb94ecff24726da3163b9ee --- /dev/null +++ b/lama/saicinpainting/training/losses/adversarial.py @@ -0,0 +1,177 @@ +from typing import Tuple, Dict, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class BaseAdversarialLoss: + def pre_generator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + generator: nn.Module, discriminator: nn.Module): + """ + Prepare for generator step + :param real_batch: Tensor, a batch of real samples + :param fake_batch: Tensor, a batch of samples produced by generator + :param generator: + :param discriminator: + :return: None + """ + + def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + generator: nn.Module, discriminator: nn.Module): + """ + Prepare for discriminator step + :param real_batch: Tensor, a batch of real samples + :param fake_batch: Tensor, a batch of samples produced by generator + :param generator: + :param discriminator: + :return: None + """ + + def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor, + mask: Optional[torch.Tensor] = None) \ + -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + """ + Calculate generator loss + :param real_batch: Tensor, a batch of real samples + :param fake_batch: Tensor, a batch of samples produced by generator + :param discr_real_pred: Tensor, discriminator output for real_batch + :param discr_fake_pred: Tensor, discriminator output for fake_batch + :param mask: Tensor, actual mask, which was at input of generator when making fake_batch + :return: total generator loss along with some values that might be interesting to log + """ + raise NotImplemented() + + def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor, + mask: Optional[torch.Tensor] = None) \ + -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + """ + Calculate discriminator loss and call .backward() on it + :param real_batch: Tensor, a batch of real samples + :param fake_batch: Tensor, a batch of samples produced by generator + :param discr_real_pred: Tensor, discriminator output for real_batch + :param discr_fake_pred: Tensor, discriminator output for fake_batch + :param mask: Tensor, actual mask, which was at input of generator when making fake_batch + :return: total discriminator loss along with some values that might be interesting to log + """ + raise NotImplemented() + + def interpolate_mask(self, mask, shape): + assert mask is not None + assert self.allow_scale_mask or shape == mask.shape[-2:] + if shape != mask.shape[-2:] and self.allow_scale_mask: + if self.mask_scale_mode == 'maxpool': + mask = F.adaptive_max_pool2d(mask, shape) + else: + mask = F.interpolate(mask, size=shape, mode=self.mask_scale_mode) + return mask + +def make_r1_gp(discr_real_pred, real_batch): + if torch.is_grad_enabled(): + grad_real = torch.autograd.grad(outputs=discr_real_pred.sum(), inputs=real_batch, create_graph=True)[0] + grad_penalty = (grad_real.view(grad_real.shape[0], -1).norm(2, dim=1) ** 2).mean() + else: + grad_penalty = 0 + real_batch.requires_grad = False + + return grad_penalty + +class NonSaturatingWithR1(BaseAdversarialLoss): + def __init__(self, gp_coef=5, weight=1, mask_as_fake_target=False, allow_scale_mask=False, + mask_scale_mode='nearest', extra_mask_weight_for_gen=0, + use_unmasked_for_gen=True, use_unmasked_for_discr=True): + self.gp_coef = gp_coef + self.weight = weight + # use for discr => use for gen; + # otherwise we teach only the discr to pay attention to very small difference + assert use_unmasked_for_gen or (not use_unmasked_for_discr) + # mask as target => use unmasked for discr: + # if we don't care about unmasked regions at all + # then it doesn't matter if the value of mask_as_fake_target is true or false + assert use_unmasked_for_discr or (not mask_as_fake_target) + self.use_unmasked_for_gen = use_unmasked_for_gen + self.use_unmasked_for_discr = use_unmasked_for_discr + self.mask_as_fake_target = mask_as_fake_target + self.allow_scale_mask = allow_scale_mask + self.mask_scale_mode = mask_scale_mode + self.extra_mask_weight_for_gen = extra_mask_weight_for_gen + + def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor, + mask=None) \ + -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + fake_loss = F.softplus(-discr_fake_pred) + if (self.mask_as_fake_target and self.extra_mask_weight_for_gen > 0) or \ + not self.use_unmasked_for_gen: # == if masked region should be treated differently + mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:]) + if not self.use_unmasked_for_gen: + fake_loss = fake_loss * mask + else: + pixel_weights = 1 + mask * self.extra_mask_weight_for_gen + fake_loss = fake_loss * pixel_weights + + return fake_loss.mean() * self.weight, dict() + + def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + generator: nn.Module, discriminator: nn.Module): + real_batch.requires_grad = True + + def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor, + mask=None) \ + -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + + real_loss = F.softplus(-discr_real_pred) + grad_penalty = make_r1_gp(discr_real_pred, real_batch) * self.gp_coef + fake_loss = F.softplus(discr_fake_pred) + + if not self.use_unmasked_for_discr or self.mask_as_fake_target: + # == if masked region should be treated differently + mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:]) + # use_unmasked_for_discr=False only makes sense for fakes; + # for reals there is no difference beetween two regions + fake_loss = fake_loss * mask + if self.mask_as_fake_target: + fake_loss = fake_loss + (1 - mask) * F.softplus(-discr_fake_pred) + + sum_discr_loss = real_loss + grad_penalty + fake_loss + metrics = dict(discr_real_out=discr_real_pred.mean(), + discr_fake_out=discr_fake_pred.mean(), + discr_real_gp=grad_penalty) + return sum_discr_loss.mean(), metrics + +class BCELoss(BaseAdversarialLoss): + def __init__(self, weight): + self.weight = weight + self.bce_loss = nn.BCEWithLogitsLoss() + + def generator_loss(self, discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + real_mask_gt = torch.zeros(discr_fake_pred.shape).to(discr_fake_pred.device) + fake_loss = self.bce_loss(discr_fake_pred, real_mask_gt) * self.weight + return fake_loss, dict() + + def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor, + generator: nn.Module, discriminator: nn.Module): + real_batch.requires_grad = True + + def discriminator_loss(self, + mask: torch.Tensor, + discr_real_pred: torch.Tensor, + discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + + real_mask_gt = torch.zeros(discr_real_pred.shape).to(discr_real_pred.device) + sum_discr_loss = (self.bce_loss(discr_real_pred, real_mask_gt) + self.bce_loss(discr_fake_pred, mask)) / 2 + metrics = dict(discr_real_out=discr_real_pred.mean(), + discr_fake_out=discr_fake_pred.mean(), + discr_real_gp=0) + return sum_discr_loss, metrics + + +def make_discrim_loss(kind, **kwargs): + if kind == 'r1': + return NonSaturatingWithR1(**kwargs) + elif kind == 'bce': + return BCELoss(**kwargs) + raise ValueError(f'Unknown adversarial loss kind {kind}') diff --git a/lama/saicinpainting/training/losses/constants.py b/lama/saicinpainting/training/losses/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..b299917e3a27f4636c0208d21682762da11f4b2d --- /dev/null +++ b/lama/saicinpainting/training/losses/constants.py @@ -0,0 +1,152 @@ +weights = {"ade20k": + [6.34517766497462, + 9.328358208955224, + 11.389521640091116, + 16.10305958132045, + 20.833333333333332, + 22.22222222222222, + 25.125628140703515, + 43.29004329004329, + 50.5050505050505, + 54.6448087431694, + 55.24861878453038, + 60.24096385542168, + 62.5, + 66.2251655629139, + 84.74576271186442, + 90.90909090909092, + 91.74311926605505, + 96.15384615384616, + 96.15384615384616, + 97.08737864077669, + 102.04081632653062, + 135.13513513513513, + 149.2537313432836, + 153.84615384615384, + 163.93442622950818, + 166.66666666666666, + 188.67924528301887, + 192.30769230769232, + 217.3913043478261, + 227.27272727272725, + 227.27272727272725, + 227.27272727272725, + 303.03030303030306, + 322.5806451612903, + 333.3333333333333, + 370.3703703703703, + 384.61538461538464, + 416.6666666666667, + 416.6666666666667, + 434.7826086956522, + 434.7826086956522, + 454.5454545454545, + 454.5454545454545, + 500.0, + 526.3157894736842, + 526.3157894736842, + 555.5555555555555, + 555.5555555555555, + 555.5555555555555, + 555.5555555555555, + 555.5555555555555, + 555.5555555555555, + 555.5555555555555, + 588.2352941176471, + 588.2352941176471, + 588.2352941176471, + 588.2352941176471, + 588.2352941176471, + 666.6666666666666, + 666.6666666666666, + 666.6666666666666, + 666.6666666666666, + 714.2857142857143, + 714.2857142857143, + 714.2857142857143, + 714.2857142857143, + 714.2857142857143, + 769.2307692307693, + 769.2307692307693, + 769.2307692307693, + 833.3333333333334, + 833.3333333333334, + 833.3333333333334, + 833.3333333333334, + 909.090909090909, + 1000.0, + 1111.111111111111, + 1111.111111111111, + 1111.111111111111, + 1111.111111111111, + 1111.111111111111, + 1250.0, + 1250.0, + 1250.0, + 1250.0, + 1250.0, + 1428.5714285714287, + 1428.5714285714287, + 1428.5714285714287, + 1428.5714285714287, + 1428.5714285714287, + 1428.5714285714287, + 1428.5714285714287, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 1666.6666666666667, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2000.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 2500.0, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 3333.3333333333335, + 5000.0, + 5000.0, + 5000.0] +} \ No newline at end of file diff --git a/lama/saicinpainting/training/losses/distance_weighting.py b/lama/saicinpainting/training/losses/distance_weighting.py new file mode 100644 index 0000000000000000000000000000000000000000..1fbb0deb664f08b4728df43cd0a61bbd7f5b3dfc --- /dev/null +++ b/lama/saicinpainting/training/losses/distance_weighting.py @@ -0,0 +1,126 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision + +from saicinpainting.training.losses.perceptual import IMAGENET_STD, IMAGENET_MEAN + + +def dummy_distance_weighter(real_img, pred_img, mask): + return mask + + +def get_gauss_kernel(kernel_size, width_factor=1): + coords = torch.stack(torch.meshgrid(torch.arange(kernel_size), + torch.arange(kernel_size)), + dim=0).float() + diff = torch.exp(-((coords - kernel_size // 2) ** 2).sum(0) / kernel_size / width_factor) + diff /= diff.sum() + return diff + + +class BlurMask(nn.Module): + def __init__(self, kernel_size=5, width_factor=1): + super().__init__() + self.filter = nn.Conv2d(1, 1, kernel_size, padding=kernel_size // 2, padding_mode='replicate', bias=False) + self.filter.weight.data.copy_(get_gauss_kernel(kernel_size, width_factor=width_factor)) + + def forward(self, real_img, pred_img, mask): + with torch.no_grad(): + result = self.filter(mask) * mask + return result + + +class EmulatedEDTMask(nn.Module): + def __init__(self, dilate_kernel_size=5, blur_kernel_size=5, width_factor=1): + super().__init__() + self.dilate_filter = nn.Conv2d(1, 1, dilate_kernel_size, padding=dilate_kernel_size// 2, padding_mode='replicate', + bias=False) + self.dilate_filter.weight.data.copy_(torch.ones(1, 1, dilate_kernel_size, dilate_kernel_size, dtype=torch.float)) + self.blur_filter = nn.Conv2d(1, 1, blur_kernel_size, padding=blur_kernel_size // 2, padding_mode='replicate', bias=False) + self.blur_filter.weight.data.copy_(get_gauss_kernel(blur_kernel_size, width_factor=width_factor)) + + def forward(self, real_img, pred_img, mask): + with torch.no_grad(): + known_mask = 1 - mask + dilated_known_mask = (self.dilate_filter(known_mask) > 1).float() + result = self.blur_filter(1 - dilated_known_mask) * mask + return result + + +class PropagatePerceptualSim(nn.Module): + def __init__(self, level=2, max_iters=10, temperature=500, erode_mask_size=3): + super().__init__() + vgg = torchvision.models.vgg19(pretrained=True).features + vgg_avg_pooling = [] + + for weights in vgg.parameters(): + weights.requires_grad = False + + cur_level_i = 0 + for module in vgg.modules(): + if module.__class__.__name__ == 'Sequential': + continue + elif module.__class__.__name__ == 'MaxPool2d': + vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0)) + else: + vgg_avg_pooling.append(module) + if module.__class__.__name__ == 'ReLU': + cur_level_i += 1 + if cur_level_i == level: + break + + self.features = nn.Sequential(*vgg_avg_pooling) + + self.max_iters = max_iters + self.temperature = temperature + self.do_erode = erode_mask_size > 0 + if self.do_erode: + self.erode_mask = nn.Conv2d(1, 1, erode_mask_size, padding=erode_mask_size // 2, bias=False) + self.erode_mask.weight.data.fill_(1) + + def forward(self, real_img, pred_img, mask): + with torch.no_grad(): + real_img = (real_img - IMAGENET_MEAN.to(real_img)) / IMAGENET_STD.to(real_img) + real_feats = self.features(real_img) + + vertical_sim = torch.exp(-(real_feats[:, :, 1:] - real_feats[:, :, :-1]).pow(2).sum(1, keepdim=True) + / self.temperature) + horizontal_sim = torch.exp(-(real_feats[:, :, :, 1:] - real_feats[:, :, :, :-1]).pow(2).sum(1, keepdim=True) + / self.temperature) + + mask_scaled = F.interpolate(mask, size=real_feats.shape[-2:], mode='bilinear', align_corners=False) + if self.do_erode: + mask_scaled = (self.erode_mask(mask_scaled) > 1).float() + + cur_knowness = 1 - mask_scaled + + for iter_i in range(self.max_iters): + new_top_knowness = F.pad(cur_knowness[:, :, :-1] * vertical_sim, (0, 0, 1, 0), mode='replicate') + new_bottom_knowness = F.pad(cur_knowness[:, :, 1:] * vertical_sim, (0, 0, 0, 1), mode='replicate') + + new_left_knowness = F.pad(cur_knowness[:, :, :, :-1] * horizontal_sim, (1, 0, 0, 0), mode='replicate') + new_right_knowness = F.pad(cur_knowness[:, :, :, 1:] * horizontal_sim, (0, 1, 0, 0), mode='replicate') + + new_knowness = torch.stack([new_top_knowness, new_bottom_knowness, + new_left_knowness, new_right_knowness], + dim=0).max(0).values + + cur_knowness = torch.max(cur_knowness, new_knowness) + + cur_knowness = F.interpolate(cur_knowness, size=mask.shape[-2:], mode='bilinear') + result = torch.min(mask, 1 - cur_knowness) + + return result + + +def make_mask_distance_weighter(kind='none', **kwargs): + if kind == 'none': + return dummy_distance_weighter + if kind == 'blur': + return BlurMask(**kwargs) + if kind == 'edt': + return EmulatedEDTMask(**kwargs) + if kind == 'pps': + return PropagatePerceptualSim(**kwargs) + raise ValueError(f'Unknown mask distance weighter kind {kind}') diff --git a/lama/saicinpainting/training/losses/feature_matching.py b/lama/saicinpainting/training/losses/feature_matching.py new file mode 100644 index 0000000000000000000000000000000000000000..2fc460dc06751bd3e72f7249aa545c95a74c8469 --- /dev/null +++ b/lama/saicinpainting/training/losses/feature_matching.py @@ -0,0 +1,33 @@ +from typing import List + +import torch +import torch.nn.functional as F + + +def masked_l2_loss(pred, target, mask, weight_known, weight_missing): + per_pixel_l2 = F.mse_loss(pred, target, reduction='none') + pixel_weights = mask * weight_missing + (1 - mask) * weight_known + return (pixel_weights * per_pixel_l2).mean() + + +def masked_l1_loss(pred, target, mask, weight_known, weight_missing): + per_pixel_l1 = F.l1_loss(pred, target, reduction='none') + pixel_weights = mask * weight_missing + (1 - mask) * weight_known + return (pixel_weights * per_pixel_l1).mean() + + +def feature_matching_loss(fake_features: List[torch.Tensor], target_features: List[torch.Tensor], mask=None): + if mask is None: + res = torch.stack([F.mse_loss(fake_feat, target_feat) + for fake_feat, target_feat in zip(fake_features, target_features)]).mean() + else: + res = 0 + norm = 0 + for fake_feat, target_feat in zip(fake_features, target_features): + cur_mask = F.interpolate(mask, size=fake_feat.shape[-2:], mode='bilinear', align_corners=False) + error_weights = 1 - cur_mask + cur_val = ((fake_feat - target_feat).pow(2) * error_weights).mean() + res = res + cur_val + norm += 1 + res = res / norm + return res diff --git a/lama/saicinpainting/training/losses/perceptual.py b/lama/saicinpainting/training/losses/perceptual.py new file mode 100644 index 0000000000000000000000000000000000000000..741044d1bef3d68a930ef2d840657c8c9eca5fdc --- /dev/null +++ b/lama/saicinpainting/training/losses/perceptual.py @@ -0,0 +1,113 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import torchvision + +from models.ade20k import ModelBuilder +from saicinpainting.utils import check_and_warn_input_range + + +IMAGENET_MEAN = torch.FloatTensor([0.485, 0.456, 0.406])[None, :, None, None] +IMAGENET_STD = torch.FloatTensor([0.229, 0.224, 0.225])[None, :, None, None] + + +class PerceptualLoss(nn.Module): + def __init__(self, normalize_inputs=True): + super(PerceptualLoss, self).__init__() + + self.normalize_inputs = normalize_inputs + self.mean_ = IMAGENET_MEAN + self.std_ = IMAGENET_STD + + vgg = torchvision.models.vgg19(pretrained=True).features + vgg_avg_pooling = [] + + for weights in vgg.parameters(): + weights.requires_grad = False + + for module in vgg.modules(): + if module.__class__.__name__ == 'Sequential': + continue + elif module.__class__.__name__ == 'MaxPool2d': + vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0)) + else: + vgg_avg_pooling.append(module) + + self.vgg = nn.Sequential(*vgg_avg_pooling) + + def do_normalize_inputs(self, x): + return (x - self.mean_.to(x.device)) / self.std_.to(x.device) + + def partial_losses(self, input, target, mask=None): + check_and_warn_input_range(target, 0, 1, 'PerceptualLoss target in partial_losses') + + # we expect input and target to be in [0, 1] range + losses = [] + + if self.normalize_inputs: + features_input = self.do_normalize_inputs(input) + features_target = self.do_normalize_inputs(target) + else: + features_input = input + features_target = target + + for layer in self.vgg[:30]: + + features_input = layer(features_input) + features_target = layer(features_target) + + if layer.__class__.__name__ == 'ReLU': + loss = F.mse_loss(features_input, features_target, reduction='none') + + if mask is not None: + cur_mask = F.interpolate(mask, size=features_input.shape[-2:], + mode='bilinear', align_corners=False) + loss = loss * (1 - cur_mask) + + loss = loss.mean(dim=tuple(range(1, len(loss.shape)))) + losses.append(loss) + + return losses + + def forward(self, input, target, mask=None): + losses = self.partial_losses(input, target, mask=mask) + return torch.stack(losses).sum(dim=0) + + def get_global_features(self, input): + check_and_warn_input_range(input, 0, 1, 'PerceptualLoss input in get_global_features') + + if self.normalize_inputs: + features_input = self.do_normalize_inputs(input) + else: + features_input = input + + features_input = self.vgg(features_input) + return features_input + + +class ResNetPL(nn.Module): + def __init__(self, weight=1, + weights_path=None, arch_encoder='resnet50dilated', segmentation=True): + super().__init__() + self.impl = ModelBuilder.get_encoder(weights_path=weights_path, + arch_encoder=arch_encoder, + arch_decoder='ppm_deepsup', + fc_dim=2048, + segmentation=segmentation) + self.impl.eval() + for w in self.impl.parameters(): + w.requires_grad_(False) + + self.weight = weight + + def forward(self, pred, target): + pred = (pred - IMAGENET_MEAN.to(pred)) / IMAGENET_STD.to(pred) + target = (target - IMAGENET_MEAN.to(target)) / IMAGENET_STD.to(target) + + pred_feats = self.impl(pred, return_feature_maps=True) + target_feats = self.impl(target, return_feature_maps=True) + + result = torch.stack([F.mse_loss(cur_pred, cur_target) + for cur_pred, cur_target + in zip(pred_feats, target_feats)]).sum() * self.weight + return result diff --git a/lama/saicinpainting/training/losses/segmentation.py b/lama/saicinpainting/training/losses/segmentation.py new file mode 100644 index 0000000000000000000000000000000000000000..08bd707c6328491c1e193bced2fa0d6cfcdadb5e --- /dev/null +++ b/lama/saicinpainting/training/losses/segmentation.py @@ -0,0 +1,43 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .constants import weights as constant_weights + + +class CrossEntropy2d(nn.Module): + def __init__(self, reduction="mean", ignore_label=255, weights=None, *args, **kwargs): + """ + weight (Tensor, optional): a manual rescaling weight given to each class. + If given, has to be a Tensor of size "nclasses" + """ + super(CrossEntropy2d, self).__init__() + self.reduction = reduction + self.ignore_label = ignore_label + self.weights = weights + if self.weights is not None: + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + self.weights = torch.FloatTensor(constant_weights[weights]).to(device) + + def forward(self, predict, target): + """ + Args: + predict:(n, c, h, w) + target:(n, 1, h, w) + """ + target = target.long() + assert not target.requires_grad + assert predict.dim() == 4, "{0}".format(predict.size()) + assert target.dim() == 4, "{0}".format(target.size()) + assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0)) + assert target.size(1) == 1, "{0}".format(target.size(1)) + assert predict.size(2) == target.size(2), "{0} vs {1} ".format(predict.size(2), target.size(2)) + assert predict.size(3) == target.size(3), "{0} vs {1} ".format(predict.size(3), target.size(3)) + target = target.squeeze(1) + n, c, h, w = predict.size() + target_mask = (target >= 0) * (target != self.ignore_label) + target = target[target_mask] + predict = predict.transpose(1, 2).transpose(2, 3).contiguous() + predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c) + loss = F.cross_entropy(predict, target, weight=self.weights, reduction=self.reduction) + return loss diff --git a/lama/saicinpainting/training/losses/style_loss.py b/lama/saicinpainting/training/losses/style_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..8f6ad8e139b52aea034d7ae2c91e2368c14baa54 --- /dev/null +++ b/lama/saicinpainting/training/losses/style_loss.py @@ -0,0 +1,155 @@ +import torch +import torch.nn as nn +import torchvision.models as models + + +class PerceptualLoss(nn.Module): + r""" + Perceptual loss, VGG-based + https://arxiv.org/abs/1603.08155 + https://github.com/dxyang/StyleTransfer/blob/master/utils.py + """ + + def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]): + super(PerceptualLoss, self).__init__() + self.add_module('vgg', VGG19()) + self.criterion = torch.nn.L1Loss() + self.weights = weights + + def __call__(self, x, y): + # Compute features + x_vgg, y_vgg = self.vgg(x), self.vgg(y) + + content_loss = 0.0 + content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1']) + content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1']) + content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1']) + content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1']) + content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) + + + return content_loss + + +class VGG19(torch.nn.Module): + def __init__(self): + super(VGG19, self).__init__() + features = models.vgg19(pretrained=True).features + self.relu1_1 = torch.nn.Sequential() + self.relu1_2 = torch.nn.Sequential() + + self.relu2_1 = torch.nn.Sequential() + self.relu2_2 = torch.nn.Sequential() + + self.relu3_1 = torch.nn.Sequential() + self.relu3_2 = torch.nn.Sequential() + self.relu3_3 = torch.nn.Sequential() + self.relu3_4 = torch.nn.Sequential() + + self.relu4_1 = torch.nn.Sequential() + self.relu4_2 = torch.nn.Sequential() + self.relu4_3 = torch.nn.Sequential() + self.relu4_4 = torch.nn.Sequential() + + self.relu5_1 = torch.nn.Sequential() + self.relu5_2 = torch.nn.Sequential() + self.relu5_3 = torch.nn.Sequential() + self.relu5_4 = torch.nn.Sequential() + + for x in range(2): + self.relu1_1.add_module(str(x), features[x]) + + for x in range(2, 4): + self.relu1_2.add_module(str(x), features[x]) + + for x in range(4, 7): + self.relu2_1.add_module(str(x), features[x]) + + for x in range(7, 9): + self.relu2_2.add_module(str(x), features[x]) + + for x in range(9, 12): + self.relu3_1.add_module(str(x), features[x]) + + for x in range(12, 14): + self.relu3_2.add_module(str(x), features[x]) + + for x in range(14, 16): + self.relu3_2.add_module(str(x), features[x]) + + for x in range(16, 18): + self.relu3_4.add_module(str(x), features[x]) + + for x in range(18, 21): + self.relu4_1.add_module(str(x), features[x]) + + for x in range(21, 23): + self.relu4_2.add_module(str(x), features[x]) + + for x in range(23, 25): + self.relu4_3.add_module(str(x), features[x]) + + for x in range(25, 27): + self.relu4_4.add_module(str(x), features[x]) + + for x in range(27, 30): + self.relu5_1.add_module(str(x), features[x]) + + for x in range(30, 32): + self.relu5_2.add_module(str(x), features[x]) + + for x in range(32, 34): + self.relu5_3.add_module(str(x), features[x]) + + for x in range(34, 36): + self.relu5_4.add_module(str(x), features[x]) + + # don't need the gradients, just want the features + for param in self.parameters(): + param.requires_grad = False + + def forward(self, x): + relu1_1 = self.relu1_1(x) + relu1_2 = self.relu1_2(relu1_1) + + relu2_1 = self.relu2_1(relu1_2) + relu2_2 = self.relu2_2(relu2_1) + + relu3_1 = self.relu3_1(relu2_2) + relu3_2 = self.relu3_2(relu3_1) + relu3_3 = self.relu3_3(relu3_2) + relu3_4 = self.relu3_4(relu3_3) + + relu4_1 = self.relu4_1(relu3_4) + relu4_2 = self.relu4_2(relu4_1) + relu4_3 = self.relu4_3(relu4_2) + relu4_4 = self.relu4_4(relu4_3) + + relu5_1 = self.relu5_1(relu4_4) + relu5_2 = self.relu5_2(relu5_1) + relu5_3 = self.relu5_3(relu5_2) + relu5_4 = self.relu5_4(relu5_3) + + out = { + 'relu1_1': relu1_1, + 'relu1_2': relu1_2, + + 'relu2_1': relu2_1, + 'relu2_2': relu2_2, + + 'relu3_1': relu3_1, + 'relu3_2': relu3_2, + 'relu3_3': relu3_3, + 'relu3_4': relu3_4, + + 'relu4_1': relu4_1, + 'relu4_2': relu4_2, + 'relu4_3': relu4_3, + 'relu4_4': relu4_4, + + 'relu5_1': relu5_1, + 'relu5_2': relu5_2, + 'relu5_3': relu5_3, + 'relu5_4': relu5_4, + } + return out diff --git a/lama/saicinpainting/training/modules/__init__.py b/lama/saicinpainting/training/modules/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4691ace0ed2d4d4cc5eeffeabdbda872599a80f4 --- /dev/null +++ b/lama/saicinpainting/training/modules/__init__.py @@ -0,0 +1,31 @@ +import logging + +from saicinpainting.training.modules.ffc import FFCResNetGenerator +from saicinpainting.training.modules.pix2pixhd import GlobalGenerator, MultiDilatedGlobalGenerator, \ + NLayerDiscriminator, MultidilatedNLayerDiscriminator + +def make_generator(config, kind, **kwargs): + logging.info(f'Make generator {kind}') + + if kind == 'pix2pixhd_multidilated': + return MultiDilatedGlobalGenerator(**kwargs) + + if kind == 'pix2pixhd_global': + return GlobalGenerator(**kwargs) + + if kind == 'ffc_resnet': + return FFCResNetGenerator(**kwargs) + + raise ValueError(f'Unknown generator kind {kind}') + + +def make_discriminator(kind, **kwargs): + logging.info(f'Make discriminator {kind}') + + if kind == 'pix2pixhd_nlayer_multidilated': + return MultidilatedNLayerDiscriminator(**kwargs) + + if kind == 'pix2pixhd_nlayer': + return NLayerDiscriminator(**kwargs) + + raise ValueError(f'Unknown discriminator kind {kind}') diff --git a/lama/saicinpainting/training/modules/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e10062769344f924750e1e609ac2e169eb7615b1 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/base.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3adbeab47919a1d77905edf210b3fa4db53dac4 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/base.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/depthwise_sep_conv.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/depthwise_sep_conv.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..73898867b8926763be25c576beb0c80a51f55bbe Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/depthwise_sep_conv.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/fake_fakes.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/fake_fakes.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f00f1ccb4a6c7890abe8f01b8054a055fdd5b586 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/fake_fakes.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/ffc.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/ffc.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9fefa296cdb97af4c83f2374afce1f40b35c7de8 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/ffc.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/multidilated_conv.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/multidilated_conv.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ee70335f81a823d3e7bf91be3b5c2dcbe239056 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/multidilated_conv.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/pix2pixhd.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/pix2pixhd.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..892a1737cb38a3531db7094191494235be661a9d Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/pix2pixhd.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/spatial_transform.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/spatial_transform.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..460d9e52cf2d654a0ff60fbc8aafd5ea7a1ba458 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/spatial_transform.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/__pycache__/squeeze_excitation.cpython-310.pyc b/lama/saicinpainting/training/modules/__pycache__/squeeze_excitation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f87925fc6921f0cc073909ac352d4699c26d7e92 Binary files /dev/null and b/lama/saicinpainting/training/modules/__pycache__/squeeze_excitation.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/modules/base.py b/lama/saicinpainting/training/modules/base.py new file mode 100644 index 0000000000000000000000000000000000000000..735f0b7a3c943c15ac7720c47226c1817ddc1cd7 --- /dev/null +++ b/lama/saicinpainting/training/modules/base.py @@ -0,0 +1,80 @@ +import abc +from typing import Tuple, List + +import torch +import torch.nn as nn + +from saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv +from saicinpainting.training.modules.multidilated_conv import MultidilatedConv + + +class BaseDiscriminator(nn.Module): + @abc.abstractmethod + def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: + """ + Predict scores and get intermediate activations. Useful for feature matching loss + :return tuple (scores, list of intermediate activations) + """ + raise NotImplemented() + + +def get_conv_block_ctor(kind='default'): + if not isinstance(kind, str): + return kind + if kind == 'default': + return nn.Conv2d + if kind == 'depthwise': + return DepthWiseSeperableConv + if kind == 'multidilated': + return MultidilatedConv + raise ValueError(f'Unknown convolutional block kind {kind}') + + +def get_norm_layer(kind='bn'): + if not isinstance(kind, str): + return kind + if kind == 'bn': + return nn.BatchNorm2d + if kind == 'in': + return nn.InstanceNorm2d + raise ValueError(f'Unknown norm block kind {kind}') + + +def get_activation(kind='tanh'): + if kind == 'tanh': + return nn.Tanh() + if kind == 'sigmoid': + return nn.Sigmoid() + if kind is False: + return nn.Identity() + raise ValueError(f'Unknown activation kind {kind}') + + +class SimpleMultiStepGenerator(nn.Module): + def __init__(self, steps: List[nn.Module]): + super().__init__() + self.steps = nn.ModuleList(steps) + + def forward(self, x): + cur_in = x + outs = [] + for step in self.steps: + cur_out = step(cur_in) + outs.append(cur_out) + cur_in = torch.cat((cur_in, cur_out), dim=1) + return torch.cat(outs[::-1], dim=1) + +def deconv_factory(kind, ngf, mult, norm_layer, activation, max_features): + if kind == 'convtranspose': + return [nn.ConvTranspose2d(min(max_features, ngf * mult), + min(max_features, int(ngf * mult / 2)), + kernel_size=3, stride=2, padding=1, output_padding=1), + norm_layer(min(max_features, int(ngf * mult / 2))), activation] + elif kind == 'bilinear': + return [nn.Upsample(scale_factor=2, mode='bilinear'), + DepthWiseSeperableConv(min(max_features, ngf * mult), + min(max_features, int(ngf * mult / 2)), + kernel_size=3, stride=1, padding=1), + norm_layer(min(max_features, int(ngf * mult / 2))), activation] + else: + raise Exception(f"Invalid deconv kind: {kind}") \ No newline at end of file diff --git a/lama/saicinpainting/training/modules/depthwise_sep_conv.py b/lama/saicinpainting/training/modules/depthwise_sep_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..e557714e4978e6cd43ddc805d204d280ef2011d6 --- /dev/null +++ b/lama/saicinpainting/training/modules/depthwise_sep_conv.py @@ -0,0 +1,17 @@ +import torch +import torch.nn as nn + +class DepthWiseSeperableConv(nn.Module): + def __init__(self, in_dim, out_dim, *args, **kwargs): + super().__init__() + if 'groups' in kwargs: + # ignoring groups for Depthwise Sep Conv + del kwargs['groups'] + + self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **kwargs) + self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1) + + def forward(self, x): + out = self.depthwise(x) + out = self.pointwise(out) + return out \ No newline at end of file diff --git a/lama/saicinpainting/training/modules/fake_fakes.py b/lama/saicinpainting/training/modules/fake_fakes.py new file mode 100644 index 0000000000000000000000000000000000000000..ca8ed1599a7f2317a4c8ef3bea7500c64a80b0aa --- /dev/null +++ b/lama/saicinpainting/training/modules/fake_fakes.py @@ -0,0 +1,47 @@ +import torch +from kornia.constants import SamplePadding +from kornia.augmentation import RandomAffine, CenterCrop + + +class FakeFakesGenerator: + def __init__(self, aug_proba=0.5, img_aug_degree=30, img_aug_translate=0.2): + self.grad_aug = RandomAffine(degrees=360, + translate=0.2, + padding_mode=SamplePadding.REFLECTION, + keepdim=False, + p=1) + self.img_aug = RandomAffine(degrees=img_aug_degree, + translate=img_aug_translate, + padding_mode=SamplePadding.REFLECTION, + keepdim=True, + p=1) + self.aug_proba = aug_proba + + def __call__(self, input_images, masks): + blend_masks = self._fill_masks_with_gradient(masks) + blend_target = self._make_blend_target(input_images) + result = input_images * (1 - blend_masks) + blend_target * blend_masks + return result, blend_masks + + def _make_blend_target(self, input_images): + batch_size = input_images.shape[0] + permuted = input_images[torch.randperm(batch_size)] + augmented = self.img_aug(input_images) + is_aug = (torch.rand(batch_size, device=input_images.device)[:, None, None, None] < self.aug_proba).float() + result = augmented * is_aug + permuted * (1 - is_aug) + return result + + def _fill_masks_with_gradient(self, masks): + batch_size, _, height, width = masks.shape + grad = torch.linspace(0, 1, steps=width * 2, device=masks.device, dtype=masks.dtype) \ + .view(1, 1, 1, -1).expand(batch_size, 1, height * 2, width * 2) + grad = self.grad_aug(grad) + grad = CenterCrop((height, width))(grad) + grad *= masks + + grad_for_min = grad + (1 - masks) * 10 + grad -= grad_for_min.view(batch_size, -1).min(-1).values[:, None, None, None] + grad /= grad.view(batch_size, -1).max(-1).values[:, None, None, None] + 1e-6 + grad.clamp_(min=0, max=1) + + return grad diff --git a/lama/saicinpainting/training/modules/ffc.py b/lama/saicinpainting/training/modules/ffc.py new file mode 100644 index 0000000000000000000000000000000000000000..d907b05206be034e960e43da4abe81a9afd79fab --- /dev/null +++ b/lama/saicinpainting/training/modules/ffc.py @@ -0,0 +1,433 @@ +# Fast Fourier Convolution NeurIPS 2020 +# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py +# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F + +from saicinpainting.training.modules.base import get_activation, BaseDiscriminator +from saicinpainting.training.modules.spatial_transform import LearnableSpatialTransformWrapper +from saicinpainting.training.modules.squeeze_excitation import SELayer +from saicinpainting.utils import get_shape + + +class FFCSE_block(nn.Module): + + def __init__(self, channels, ratio_g): + super(FFCSE_block, self).__init__() + in_cg = int(channels * ratio_g) + in_cl = channels - in_cg + r = 16 + + self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) + self.conv1 = nn.Conv2d(channels, channels // r, + kernel_size=1, bias=True) + self.relu1 = nn.ReLU(inplace=True) + self.conv_a2l = None if in_cl == 0 else nn.Conv2d( + channels // r, in_cl, kernel_size=1, bias=True) + self.conv_a2g = None if in_cg == 0 else nn.Conv2d( + channels // r, in_cg, kernel_size=1, bias=True) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + x = x if type(x) is tuple else (x, 0) + id_l, id_g = x + + x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1) + x = self.avgpool(x) + x = self.relu1(self.conv1(x)) + + x_l = 0 if self.conv_a2l is None else id_l * \ + self.sigmoid(self.conv_a2l(x)) + x_g = 0 if self.conv_a2g is None else id_g * \ + self.sigmoid(self.conv_a2g(x)) + return x_l, x_g + + +class FourierUnit(nn.Module): + + def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear', + spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'): + # bn_layer not used + super(FourierUnit, self).__init__() + self.groups = groups + + self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), + out_channels=out_channels * 2, + kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False) + self.bn = torch.nn.BatchNorm2d(out_channels * 2) + self.relu = torch.nn.ReLU(inplace=True) + + # squeeze and excitation block + self.use_se = use_se + if use_se: + if se_kwargs is None: + se_kwargs = {} + self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) + + self.spatial_scale_factor = spatial_scale_factor + self.spatial_scale_mode = spatial_scale_mode + self.spectral_pos_encoding = spectral_pos_encoding + self.ffc3d = ffc3d + self.fft_norm = fft_norm + + def forward(self, x): + batch = x.shape[0] + + if self.spatial_scale_factor is not None: + orig_size = x.shape[-2:] + x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False) + + r_size = x.size() + # (batch, c, h, w/2+1, 2) + fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) + ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) + ffted = torch.stack((ffted.real, ffted.imag), dim=-1) + ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1) + ffted = ffted.view((batch, -1,) + ffted.size()[3:]) + + if self.spectral_pos_encoding: + height, width = ffted.shape[-2:] + coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted) + coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted) + ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) + + if self.use_se: + ffted = self.se(ffted) + + ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1) + ffted = self.relu(self.bn(ffted)) + + ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute( + 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2) + ffted = torch.complex(ffted[..., 0], ffted[..., 1]) + + ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] + output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm) + + if self.spatial_scale_factor is not None: + output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False) + + return output + + +class SpectralTransform(nn.Module): + + def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs): + # bn_layer not used + super(SpectralTransform, self).__init__() + self.enable_lfu = enable_lfu + if stride == 2: + self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) + else: + self.downsample = nn.Identity() + + self.stride = stride + self.conv1 = nn.Sequential( + nn.Conv2d(in_channels, out_channels // + 2, kernel_size=1, groups=groups, bias=False), + nn.BatchNorm2d(out_channels // 2), + nn.ReLU(inplace=True) + ) + self.fu = FourierUnit( + out_channels // 2, out_channels // 2, groups, **fu_kwargs) + if self.enable_lfu: + self.lfu = FourierUnit( + out_channels // 2, out_channels // 2, groups) + self.conv2 = torch.nn.Conv2d( + out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False) + + def forward(self, x): + + x = self.downsample(x) + x = self.conv1(x) + output = self.fu(x) + + if self.enable_lfu: + n, c, h, w = x.shape + split_no = 2 + split_s = h // split_no + xs = torch.cat(torch.split( + x[:, :c // 4], split_s, dim=-2), dim=1).contiguous() + xs = torch.cat(torch.split(xs, split_s, dim=-1), + dim=1).contiguous() + xs = self.lfu(xs) + xs = xs.repeat(1, 1, split_no, split_no).contiguous() + else: + xs = 0 + + output = self.conv2(x + output + xs) + + return output + + +class FFC(nn.Module): + + def __init__(self, in_channels, out_channels, kernel_size, + ratio_gin, ratio_gout, stride=1, padding=0, + dilation=1, groups=1, bias=False, enable_lfu=True, + padding_type='reflect', gated=False, **spectral_kwargs): + super(FFC, self).__init__() + + assert stride == 1 or stride == 2, "Stride should be 1 or 2." + self.stride = stride + + in_cg = int(in_channels * ratio_gin) + in_cl = in_channels - in_cg + out_cg = int(out_channels * ratio_gout) + out_cl = out_channels - out_cg + #groups_g = 1 if groups == 1 else int(groups * ratio_gout) + #groups_l = 1 if groups == 1 else groups - groups_g + + self.ratio_gin = ratio_gin + self.ratio_gout = ratio_gout + self.global_in_num = in_cg + + module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d + self.convl2l = module(in_cl, out_cl, kernel_size, + stride, padding, dilation, groups, bias, padding_mode=padding_type) + module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d + self.convl2g = module(in_cl, out_cg, kernel_size, + stride, padding, dilation, groups, bias, padding_mode=padding_type) + module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d + self.convg2l = module(in_cg, out_cl, kernel_size, + stride, padding, dilation, groups, bias, padding_mode=padding_type) + module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform + self.convg2g = module( + in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs) + + self.gated = gated + module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d + self.gate = module(in_channels, 2, 1) + + def forward(self, x): + x_l, x_g = x if type(x) is tuple else (x, 0) + out_xl, out_xg = 0, 0 + + if self.gated: + total_input_parts = [x_l] + if torch.is_tensor(x_g): + total_input_parts.append(x_g) + total_input = torch.cat(total_input_parts, dim=1) + + gates = torch.sigmoid(self.gate(total_input)) + g2l_gate, l2g_gate = gates.chunk(2, dim=1) + else: + g2l_gate, l2g_gate = 1, 1 + + if self.ratio_gout != 1: + out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate + if self.ratio_gout != 0: + out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) + + return out_xl, out_xg + + +class FFC_BN_ACT(nn.Module): + + def __init__(self, in_channels, out_channels, + kernel_size, ratio_gin, ratio_gout, + stride=1, padding=0, dilation=1, groups=1, bias=False, + norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity, + padding_type='reflect', + enable_lfu=True, **kwargs): + super(FFC_BN_ACT, self).__init__() + self.ffc = FFC(in_channels, out_channels, kernel_size, + ratio_gin, ratio_gout, stride, padding, dilation, + groups, bias, enable_lfu, padding_type=padding_type, **kwargs) + lnorm = nn.Identity if ratio_gout == 1 else norm_layer + gnorm = nn.Identity if ratio_gout == 0 else norm_layer + global_channels = int(out_channels * ratio_gout) + self.bn_l = lnorm(out_channels - global_channels) + self.bn_g = gnorm(global_channels) + + lact = nn.Identity if ratio_gout == 1 else activation_layer + gact = nn.Identity if ratio_gout == 0 else activation_layer + self.act_l = lact(inplace=True) + self.act_g = gact(inplace=True) + + def forward(self, x): + x_l, x_g = self.ffc(x) + x_l = self.act_l(self.bn_l(x_l)) + x_g = self.act_g(self.bn_g(x_g)) + return x_l, x_g + + +class FFCResnetBlock(nn.Module): + def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1, + spatial_transform_kwargs=None, inline=False, **conv_kwargs): + super().__init__() + self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, + norm_layer=norm_layer, + activation_layer=activation_layer, + padding_type=padding_type, + **conv_kwargs) + self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation, + norm_layer=norm_layer, + activation_layer=activation_layer, + padding_type=padding_type, + **conv_kwargs) + if spatial_transform_kwargs is not None: + self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs) + self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs) + self.inline = inline + + def forward(self, x): + if self.inline: + x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:] + else: + x_l, x_g = x if type(x) is tuple else (x, 0) + + id_l, id_g = x_l, x_g + + x_l, x_g = self.conv1((x_l, x_g)) + x_l, x_g = self.conv2((x_l, x_g)) + + x_l, x_g = id_l + x_l, id_g + x_g + out = x_l, x_g + if self.inline: + out = torch.cat(out, dim=1) + return out + + +class ConcatTupleLayer(nn.Module): + def forward(self, x): + assert isinstance(x, tuple) + x_l, x_g = x + assert torch.is_tensor(x_l) or torch.is_tensor(x_g) + if not torch.is_tensor(x_g): + return x_l + return torch.cat(x, dim=1) + + +class FFCResNetGenerator(nn.Module): + def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, + padding_type='reflect', activation_layer=nn.ReLU, + up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), + init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={}, + spatial_transform_layers=None, spatial_transform_kwargs={}, + add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}): + assert (n_blocks >= 0) + super().__init__() + + model = [nn.ReflectionPad2d(3), + FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer, + activation_layer=activation_layer, **init_conv_kwargs)] + + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + if i == n_downsampling - 1: + cur_conv_kwargs = dict(downsample_conv_kwargs) + cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0) + else: + cur_conv_kwargs = downsample_conv_kwargs + model += [FFC_BN_ACT(min(max_features, ngf * mult), + min(max_features, ngf * mult * 2), + kernel_size=3, stride=2, padding=1, + norm_layer=norm_layer, + activation_layer=activation_layer, + **cur_conv_kwargs)] + + mult = 2 ** n_downsampling + feats_num_bottleneck = min(max_features, ngf * mult) + + ### resnet blocks + for i in range(n_blocks): + cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer, + norm_layer=norm_layer, **resnet_conv_kwargs) + if spatial_transform_layers is not None and i in spatial_transform_layers: + cur_resblock = LearnableSpatialTransformWrapper(cur_resblock, **spatial_transform_kwargs) + model += [cur_resblock] + + model += [ConcatTupleLayer()] + + ### upsample + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + model += [nn.ConvTranspose2d(min(max_features, ngf * mult), + min(max_features, int(ngf * mult / 2)), + kernel_size=3, stride=2, padding=1, output_padding=1), + up_norm_layer(min(max_features, int(ngf * mult / 2))), + up_activation] + + if out_ffc: + model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer, + norm_layer=norm_layer, inline=True, **out_ffc_kwargs)] + + model += [nn.ReflectionPad2d(3), + nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] + if add_out_act: + model.append(get_activation('tanh' if add_out_act is True else add_out_act)) + self.model = nn.Sequential(*model) + + def forward(self, input): + return self.model(input) + + +class FFCNLayerDiscriminator(BaseDiscriminator): + def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, max_features=512, + init_conv_kwargs={}, conv_kwargs={}): + super().__init__() + self.n_layers = n_layers + + def _act_ctor(inplace=True): + return nn.LeakyReLU(negative_slope=0.2, inplace=inplace) + + kw = 3 + padw = int(np.ceil((kw-1.0)/2)) + sequence = [[FFC_BN_ACT(input_nc, ndf, kernel_size=kw, padding=padw, norm_layer=norm_layer, + activation_layer=_act_ctor, **init_conv_kwargs)]] + + nf = ndf + for n in range(1, n_layers): + nf_prev = nf + nf = min(nf * 2, max_features) + + cur_model = [ + FFC_BN_ACT(nf_prev, nf, + kernel_size=kw, stride=2, padding=padw, + norm_layer=norm_layer, + activation_layer=_act_ctor, + **conv_kwargs) + ] + sequence.append(cur_model) + + nf_prev = nf + nf = min(nf * 2, 512) + + cur_model = [ + FFC_BN_ACT(nf_prev, nf, + kernel_size=kw, stride=1, padding=padw, + norm_layer=norm_layer, + activation_layer=lambda *args, **kwargs: nn.LeakyReLU(*args, negative_slope=0.2, **kwargs), + **conv_kwargs), + ConcatTupleLayer() + ] + sequence.append(cur_model) + + sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] + + for n in range(len(sequence)): + setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) + + def get_all_activations(self, x): + res = [x] + for n in range(self.n_layers + 2): + model = getattr(self, 'model' + str(n)) + res.append(model(res[-1])) + return res[1:] + + def forward(self, x): + act = self.get_all_activations(x) + feats = [] + for out in act[:-1]: + if isinstance(out, tuple): + if torch.is_tensor(out[1]): + out = torch.cat(out, dim=1) + else: + out = out[0] + feats.append(out) + return act[-1], feats diff --git a/lama/saicinpainting/training/modules/multidilated_conv.py b/lama/saicinpainting/training/modules/multidilated_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..84303839427784792e7c4abf027ce437bd569aa1 --- /dev/null +++ b/lama/saicinpainting/training/modules/multidilated_conv.py @@ -0,0 +1,98 @@ +import torch +import torch.nn as nn +import random +from saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv + +class MultidilatedConv(nn.Module): + def __init__(self, in_dim, out_dim, kernel_size, dilation_num=3, comb_mode='sum', equal_dim=True, + shared_weights=False, padding=1, min_dilation=1, shuffle_in_channels=False, use_depthwise=False, **kwargs): + super().__init__() + convs = [] + self.equal_dim = equal_dim + assert comb_mode in ('cat_out', 'sum', 'cat_in', 'cat_both'), comb_mode + if comb_mode in ('cat_out', 'cat_both'): + self.cat_out = True + if equal_dim: + assert out_dim % dilation_num == 0 + out_dims = [out_dim // dilation_num] * dilation_num + self.index = sum([[i + j * (out_dims[0]) for j in range(dilation_num)] for i in range(out_dims[0])], []) + else: + out_dims = [out_dim // 2 ** (i + 1) for i in range(dilation_num - 1)] + out_dims.append(out_dim - sum(out_dims)) + index = [] + starts = [0] + out_dims[:-1] + lengths = [out_dims[i] // out_dims[-1] for i in range(dilation_num)] + for i in range(out_dims[-1]): + for j in range(dilation_num): + index += list(range(starts[j], starts[j] + lengths[j])) + starts[j] += lengths[j] + self.index = index + assert(len(index) == out_dim) + self.out_dims = out_dims + else: + self.cat_out = False + self.out_dims = [out_dim] * dilation_num + + if comb_mode in ('cat_in', 'cat_both'): + if equal_dim: + assert in_dim % dilation_num == 0 + in_dims = [in_dim // dilation_num] * dilation_num + else: + in_dims = [in_dim // 2 ** (i + 1) for i in range(dilation_num - 1)] + in_dims.append(in_dim - sum(in_dims)) + self.in_dims = in_dims + self.cat_in = True + else: + self.cat_in = False + self.in_dims = [in_dim] * dilation_num + + conv_type = DepthWiseSeperableConv if use_depthwise else nn.Conv2d + dilation = min_dilation + for i in range(dilation_num): + if isinstance(padding, int): + cur_padding = padding * dilation + else: + cur_padding = padding[i] + convs.append(conv_type( + self.in_dims[i], self.out_dims[i], kernel_size, padding=cur_padding, dilation=dilation, **kwargs + )) + if i > 0 and shared_weights: + convs[-1].weight = convs[0].weight + convs[-1].bias = convs[0].bias + dilation *= 2 + self.convs = nn.ModuleList(convs) + + self.shuffle_in_channels = shuffle_in_channels + if self.shuffle_in_channels: + # shuffle list as shuffling of tensors is nondeterministic + in_channels_permute = list(range(in_dim)) + random.shuffle(in_channels_permute) + # save as buffer so it is saved and loaded with checkpoint + self.register_buffer('in_channels_permute', torch.tensor(in_channels_permute)) + + def forward(self, x): + if self.shuffle_in_channels: + x = x[:, self.in_channels_permute] + + outs = [] + if self.cat_in: + if self.equal_dim: + x = x.chunk(len(self.convs), dim=1) + else: + new_x = [] + start = 0 + for dim in self.in_dims: + new_x.append(x[:, start:start+dim]) + start += dim + x = new_x + for i, conv in enumerate(self.convs): + if self.cat_in: + input = x[i] + else: + input = x + outs.append(conv(input)) + if self.cat_out: + out = torch.cat(outs, dim=1)[:, self.index] + else: + out = sum(outs) + return out diff --git a/lama/saicinpainting/training/modules/multiscale.py b/lama/saicinpainting/training/modules/multiscale.py new file mode 100644 index 0000000000000000000000000000000000000000..a1d0cd030f90d499566dd37841ff7ceea2760109 --- /dev/null +++ b/lama/saicinpainting/training/modules/multiscale.py @@ -0,0 +1,244 @@ +from typing import List, Tuple, Union, Optional + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from saicinpainting.training.modules.base import get_conv_block_ctor, get_activation +from saicinpainting.training.modules.pix2pixhd import ResnetBlock + + +class ResNetHead(nn.Module): + def __init__(self, input_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, + padding_type='reflect', conv_kind='default', activation=nn.ReLU(True)): + assert (n_blocks >= 0) + super(ResNetHead, self).__init__() + + conv_layer = get_conv_block_ctor(conv_kind) + + model = [nn.ReflectionPad2d(3), + conv_layer(input_nc, ngf, kernel_size=7, padding=0), + norm_layer(ngf), + activation] + + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + model += [conv_layer(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), + norm_layer(ngf * mult * 2), + activation] + + mult = 2 ** n_downsampling + + ### resnet blocks + for i in range(n_blocks): + model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, + conv_kind=conv_kind)] + + self.model = nn.Sequential(*model) + + def forward(self, input): + return self.model(input) + + +class ResNetTail(nn.Module): + def __init__(self, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, + padding_type='reflect', conv_kind='default', activation=nn.ReLU(True), + up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0, + add_in_proj=None): + assert (n_blocks >= 0) + super(ResNetTail, self).__init__() + + mult = 2 ** n_downsampling + + model = [] + + if add_in_proj is not None: + model.append(nn.Conv2d(add_in_proj, ngf * mult, kernel_size=1)) + + ### resnet blocks + for i in range(n_blocks): + model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, + conv_kind=conv_kind)] + + ### upsample + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, + output_padding=1), + up_norm_layer(int(ngf * mult / 2)), + up_activation] + self.model = nn.Sequential(*model) + + out_layers = [] + for _ in range(out_extra_layers_n): + out_layers += [nn.Conv2d(ngf, ngf, kernel_size=1, padding=0), + up_norm_layer(ngf), + up_activation] + out_layers += [nn.ReflectionPad2d(3), + nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] + + if add_out_act: + out_layers.append(get_activation('tanh' if add_out_act is True else add_out_act)) + + self.out_proj = nn.Sequential(*out_layers) + + def forward(self, input, return_last_act=False): + features = self.model(input) + out = self.out_proj(features) + if return_last_act: + return out, features + else: + return out + + +class MultiscaleResNet(nn.Module): + def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=2, n_blocks_head=2, n_blocks_tail=6, n_scales=3, + norm_layer=nn.BatchNorm2d, padding_type='reflect', conv_kind='default', activation=nn.ReLU(True), + up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0, + out_cumulative=False, return_only_hr=False): + super().__init__() + + self.heads = nn.ModuleList([ResNetHead(input_nc, ngf=ngf, n_downsampling=n_downsampling, + n_blocks=n_blocks_head, norm_layer=norm_layer, padding_type=padding_type, + conv_kind=conv_kind, activation=activation) + for i in range(n_scales)]) + tail_in_feats = ngf * (2 ** n_downsampling) + ngf + self.tails = nn.ModuleList([ResNetTail(output_nc, + ngf=ngf, n_downsampling=n_downsampling, + n_blocks=n_blocks_tail, norm_layer=norm_layer, padding_type=padding_type, + conv_kind=conv_kind, activation=activation, up_norm_layer=up_norm_layer, + up_activation=up_activation, add_out_act=add_out_act, + out_extra_layers_n=out_extra_layers_n, + add_in_proj=None if (i == n_scales - 1) else tail_in_feats) + for i in range(n_scales)]) + + self.out_cumulative = out_cumulative + self.return_only_hr = return_only_hr + + @property + def num_scales(self): + return len(self.heads) + + def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \ + -> Union[torch.Tensor, List[torch.Tensor]]: + """ + :param ms_inputs: List of inputs of different resolutions from HR to LR + :param smallest_scales_num: int or None, number of smallest scales to take at input + :return: Depending on return_only_hr: + True: Only the most HR output + False: List of outputs of different resolutions from HR to LR + """ + if smallest_scales_num is None: + assert len(self.heads) == len(ms_inputs), (len(self.heads), len(ms_inputs), smallest_scales_num) + smallest_scales_num = len(self.heads) + else: + assert smallest_scales_num == len(ms_inputs) <= len(self.heads), (len(self.heads), len(ms_inputs), smallest_scales_num) + + cur_heads = self.heads[-smallest_scales_num:] + ms_features = [cur_head(cur_inp) for cur_head, cur_inp in zip(cur_heads, ms_inputs)] + + all_outputs = [] + prev_tail_features = None + for i in range(len(ms_features)): + scale_i = -i - 1 + + cur_tail_input = ms_features[-i - 1] + if prev_tail_features is not None: + if prev_tail_features.shape != cur_tail_input.shape: + prev_tail_features = F.interpolate(prev_tail_features, size=cur_tail_input.shape[2:], + mode='bilinear', align_corners=False) + cur_tail_input = torch.cat((cur_tail_input, prev_tail_features), dim=1) + + cur_out, cur_tail_feats = self.tails[scale_i](cur_tail_input, return_last_act=True) + + prev_tail_features = cur_tail_feats + all_outputs.append(cur_out) + + if self.out_cumulative: + all_outputs_cum = [all_outputs[0]] + for i in range(1, len(ms_features)): + cur_out = all_outputs[i] + cur_out_cum = cur_out + F.interpolate(all_outputs_cum[-1], size=cur_out.shape[2:], + mode='bilinear', align_corners=False) + all_outputs_cum.append(cur_out_cum) + all_outputs = all_outputs_cum + + if self.return_only_hr: + return all_outputs[-1] + else: + return all_outputs[::-1] + + +class MultiscaleDiscriminatorSimple(nn.Module): + def __init__(self, ms_impl): + super().__init__() + self.ms_impl = nn.ModuleList(ms_impl) + + @property + def num_scales(self): + return len(self.ms_impl) + + def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \ + -> List[Tuple[torch.Tensor, List[torch.Tensor]]]: + """ + :param ms_inputs: List of inputs of different resolutions from HR to LR + :param smallest_scales_num: int or None, number of smallest scales to take at input + :return: List of pairs (prediction, features) for different resolutions from HR to LR + """ + if smallest_scales_num is None: + assert len(self.ms_impl) == len(ms_inputs), (len(self.ms_impl), len(ms_inputs), smallest_scales_num) + smallest_scales_num = len(self.heads) + else: + assert smallest_scales_num == len(ms_inputs) <= len(self.ms_impl), \ + (len(self.ms_impl), len(ms_inputs), smallest_scales_num) + + return [cur_discr(cur_input) for cur_discr, cur_input in zip(self.ms_impl[-smallest_scales_num:], ms_inputs)] + + +class SingleToMultiScaleInputMixin: + def forward(self, x: torch.Tensor) -> List: + orig_height, orig_width = x.shape[2:] + factors = [2 ** i for i in range(self.num_scales)] + ms_inputs = [F.interpolate(x, size=(orig_height // f, orig_width // f), mode='bilinear', align_corners=False) + for f in factors] + return super().forward(ms_inputs) + + +class GeneratorMultiToSingleOutputMixin: + def forward(self, x): + return super().forward(x)[0] + + +class DiscriminatorMultiToSingleOutputMixin: + def forward(self, x): + out_feat_tuples = super().forward(x) + return out_feat_tuples[0][0], [f for _, flist in out_feat_tuples for f in flist] + + +class DiscriminatorMultiToSingleOutputStackedMixin: + def __init__(self, *args, return_feats_only_levels=None, **kwargs): + super().__init__(*args, **kwargs) + self.return_feats_only_levels = return_feats_only_levels + + def forward(self, x): + out_feat_tuples = super().forward(x) + outs = [out for out, _ in out_feat_tuples] + scaled_outs = [outs[0]] + [F.interpolate(cur_out, size=outs[0].shape[-2:], + mode='bilinear', align_corners=False) + for cur_out in outs[1:]] + out = torch.cat(scaled_outs, dim=1) + if self.return_feats_only_levels is not None: + feat_lists = [out_feat_tuples[i][1] for i in self.return_feats_only_levels] + else: + feat_lists = [flist for _, flist in out_feat_tuples] + feats = [f for flist in feat_lists for f in flist] + return out, feats + + +class MultiscaleDiscrSingleInput(SingleToMultiScaleInputMixin, DiscriminatorMultiToSingleOutputStackedMixin, MultiscaleDiscriminatorSimple): + pass + + +class MultiscaleResNetSingle(GeneratorMultiToSingleOutputMixin, SingleToMultiScaleInputMixin, MultiscaleResNet): + pass diff --git a/lama/saicinpainting/training/modules/pix2pixhd.py b/lama/saicinpainting/training/modules/pix2pixhd.py new file mode 100644 index 0000000000000000000000000000000000000000..7ff88fccf221dbd7a73ff740c4ba62c91762e8c0 --- /dev/null +++ b/lama/saicinpainting/training/modules/pix2pixhd.py @@ -0,0 +1,669 @@ +# original: https://github.com/NVIDIA/pix2pixHD/blob/master/models/networks.py +import collections +from functools import partial +import functools +import logging +from collections import defaultdict + +import numpy as np +import torch.nn as nn + +from saicinpainting.training.modules.base import BaseDiscriminator, deconv_factory, get_conv_block_ctor, get_norm_layer, get_activation +from saicinpainting.training.modules.ffc import FFCResnetBlock +from saicinpainting.training.modules.multidilated_conv import MultidilatedConv + +class DotDict(defaultdict): + # https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary + """dot.notation access to dictionary attributes""" + __getattr__ = defaultdict.get + __setattr__ = defaultdict.__setitem__ + __delattr__ = defaultdict.__delitem__ + +class Identity(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x): + return x + + +class ResnetBlock(nn.Module): + def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default', + dilation=1, in_dim=None, groups=1, second_dilation=None): + super(ResnetBlock, self).__init__() + self.in_dim = in_dim + self.dim = dim + if second_dilation is None: + second_dilation = dilation + self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout, + conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups, + second_dilation=second_dilation) + + if self.in_dim is not None: + self.input_conv = nn.Conv2d(in_dim, dim, 1) + + self.out_channnels = dim + + def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default', + dilation=1, in_dim=None, groups=1, second_dilation=1): + conv_layer = get_conv_block_ctor(conv_kind) + + conv_block = [] + p = 0 + if padding_type == 'reflect': + conv_block += [nn.ReflectionPad2d(dilation)] + elif padding_type == 'replicate': + conv_block += [nn.ReplicationPad2d(dilation)] + elif padding_type == 'zero': + p = dilation + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + + if in_dim is None: + in_dim = dim + + conv_block += [conv_layer(in_dim, dim, kernel_size=3, padding=p, dilation=dilation), + norm_layer(dim), + activation] + if use_dropout: + conv_block += [nn.Dropout(0.5)] + + p = 0 + if padding_type == 'reflect': + conv_block += [nn.ReflectionPad2d(second_dilation)] + elif padding_type == 'replicate': + conv_block += [nn.ReplicationPad2d(second_dilation)] + elif padding_type == 'zero': + p = second_dilation + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv_block += [conv_layer(dim, dim, kernel_size=3, padding=p, dilation=second_dilation, groups=groups), + norm_layer(dim)] + + return nn.Sequential(*conv_block) + + def forward(self, x): + x_before = x + if self.in_dim is not None: + x = self.input_conv(x) + out = x + self.conv_block(x_before) + return out + +class ResnetBlock5x5(nn.Module): + def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default', + dilation=1, in_dim=None, groups=1, second_dilation=None): + super(ResnetBlock5x5, self).__init__() + self.in_dim = in_dim + self.dim = dim + if second_dilation is None: + second_dilation = dilation + self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout, + conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups, + second_dilation=second_dilation) + + if self.in_dim is not None: + self.input_conv = nn.Conv2d(in_dim, dim, 1) + + self.out_channnels = dim + + def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default', + dilation=1, in_dim=None, groups=1, second_dilation=1): + conv_layer = get_conv_block_ctor(conv_kind) + + conv_block = [] + p = 0 + if padding_type == 'reflect': + conv_block += [nn.ReflectionPad2d(dilation * 2)] + elif padding_type == 'replicate': + conv_block += [nn.ReplicationPad2d(dilation * 2)] + elif padding_type == 'zero': + p = dilation * 2 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + + if in_dim is None: + in_dim = dim + + conv_block += [conv_layer(in_dim, dim, kernel_size=5, padding=p, dilation=dilation), + norm_layer(dim), + activation] + if use_dropout: + conv_block += [nn.Dropout(0.5)] + + p = 0 + if padding_type == 'reflect': + conv_block += [nn.ReflectionPad2d(second_dilation * 2)] + elif padding_type == 'replicate': + conv_block += [nn.ReplicationPad2d(second_dilation * 2)] + elif padding_type == 'zero': + p = second_dilation * 2 + else: + raise NotImplementedError('padding [%s] is not implemented' % padding_type) + conv_block += [conv_layer(dim, dim, kernel_size=5, padding=p, dilation=second_dilation, groups=groups), + norm_layer(dim)] + + return nn.Sequential(*conv_block) + + def forward(self, x): + x_before = x + if self.in_dim is not None: + x = self.input_conv(x) + out = x + self.conv_block(x_before) + return out + + +class MultidilatedResnetBlock(nn.Module): + def __init__(self, dim, padding_type, conv_layer, norm_layer, activation=nn.ReLU(True), use_dropout=False): + super().__init__() + self.conv_block = self.build_conv_block(dim, padding_type, conv_layer, norm_layer, activation, use_dropout) + + def build_conv_block(self, dim, padding_type, conv_layer, norm_layer, activation, use_dropout, dilation=1): + conv_block = [] + conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type), + norm_layer(dim), + activation] + if use_dropout: + conv_block += [nn.Dropout(0.5)] + + conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type), + norm_layer(dim)] + + return nn.Sequential(*conv_block) + + def forward(self, x): + out = x + self.conv_block(x) + return out + + +class MultiDilatedGlobalGenerator(nn.Module): + def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, + n_blocks=3, norm_layer=nn.BatchNorm2d, + padding_type='reflect', conv_kind='default', + deconv_kind='convtranspose', activation=nn.ReLU(True), + up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True), + add_out_act=True, max_features=1024, multidilation_kwargs={}, + ffc_positions=None, ffc_kwargs={}): + assert (n_blocks >= 0) + super().__init__() + + conv_layer = get_conv_block_ctor(conv_kind) + resnet_conv_layer = functools.partial(get_conv_block_ctor('multidilated'), **multidilation_kwargs) + norm_layer = get_norm_layer(norm_layer) + if affine is not None: + norm_layer = partial(norm_layer, affine=affine) + up_norm_layer = get_norm_layer(up_norm_layer) + if affine is not None: + up_norm_layer = partial(up_norm_layer, affine=affine) + + model = [nn.ReflectionPad2d(3), + conv_layer(input_nc, ngf, kernel_size=7, padding=0), + norm_layer(ngf), + activation] + + identity = Identity() + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + + model += [conv_layer(min(max_features, ngf * mult), + min(max_features, ngf * mult * 2), + kernel_size=3, stride=2, padding=1), + norm_layer(min(max_features, ngf * mult * 2)), + activation] + + mult = 2 ** n_downsampling + feats_num_bottleneck = min(max_features, ngf * mult) + + ### resnet blocks + for i in range(n_blocks): + if ffc_positions is not None and i in ffc_positions: + model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU, + inline=True, **ffc_kwargs)] + model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type, + conv_layer=resnet_conv_layer, activation=activation, + norm_layer=norm_layer)] + + ### upsample + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features) + model += [nn.ReflectionPad2d(3), + nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] + if add_out_act: + model.append(get_activation('tanh' if add_out_act is True else add_out_act)) + self.model = nn.Sequential(*model) + + def forward(self, input): + return self.model(input) + +class ConfigGlobalGenerator(nn.Module): + def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, + n_blocks=3, norm_layer=nn.BatchNorm2d, + padding_type='reflect', conv_kind='default', + deconv_kind='convtranspose', activation=nn.ReLU(True), + up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True), + add_out_act=True, max_features=1024, + manual_block_spec=[], + resnet_block_kind='multidilatedresnetblock', + resnet_conv_kind='multidilated', + resnet_dilation=1, + multidilation_kwargs={}): + assert (n_blocks >= 0) + super().__init__() + + conv_layer = get_conv_block_ctor(conv_kind) + resnet_conv_layer = functools.partial(get_conv_block_ctor(resnet_conv_kind), **multidilation_kwargs) + norm_layer = get_norm_layer(norm_layer) + if affine is not None: + norm_layer = partial(norm_layer, affine=affine) + up_norm_layer = get_norm_layer(up_norm_layer) + if affine is not None: + up_norm_layer = partial(up_norm_layer, affine=affine) + + model = [nn.ReflectionPad2d(3), + conv_layer(input_nc, ngf, kernel_size=7, padding=0), + norm_layer(ngf), + activation] + + identity = Identity() + + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + model += [conv_layer(min(max_features, ngf * mult), + min(max_features, ngf * mult * 2), + kernel_size=3, stride=2, padding=1), + norm_layer(min(max_features, ngf * mult * 2)), + activation] + + mult = 2 ** n_downsampling + feats_num_bottleneck = min(max_features, ngf * mult) + + if len(manual_block_spec) == 0: + manual_block_spec = [ + DotDict(lambda : None, { + 'n_blocks': n_blocks, + 'use_default': True}) + ] + + ### resnet blocks + for block_spec in manual_block_spec: + def make_and_add_blocks(model, block_spec): + block_spec = DotDict(lambda : None, block_spec) + if not block_spec.use_default: + resnet_conv_layer = functools.partial(get_conv_block_ctor(block_spec.resnet_conv_kind), **block_spec.multidilation_kwargs) + resnet_conv_kind = block_spec.resnet_conv_kind + resnet_block_kind = block_spec.resnet_block_kind + if block_spec.resnet_dilation is not None: + resnet_dilation = block_spec.resnet_dilation + for i in range(block_spec.n_blocks): + if resnet_block_kind == "multidilatedresnetblock": + model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type, + conv_layer=resnet_conv_layer, activation=activation, + norm_layer=norm_layer)] + if resnet_block_kind == "resnetblock": + model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, + conv_kind=resnet_conv_kind)] + if resnet_block_kind == "resnetblock5x5": + model += [ResnetBlock5x5(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, + conv_kind=resnet_conv_kind)] + if resnet_block_kind == "resnetblockdwdil": + model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, + conv_kind=resnet_conv_kind, dilation=resnet_dilation, second_dilation=resnet_dilation)] + make_and_add_blocks(model, block_spec) + + ### upsample + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features) + model += [nn.ReflectionPad2d(3), + nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] + if add_out_act: + model.append(get_activation('tanh' if add_out_act is True else add_out_act)) + self.model = nn.Sequential(*model) + + def forward(self, input): + return self.model(input) + + +def make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs): + blocks = [] + for i in range(dilated_blocks_n): + if dilation_block_kind == 'simple': + blocks.append(ResnetBlock(**dilated_block_kwargs, dilation=2 ** (i + 1))) + elif dilation_block_kind == 'multi': + blocks.append(MultidilatedResnetBlock(**dilated_block_kwargs)) + else: + raise ValueError(f'dilation_block_kind could not be "{dilation_block_kind}"') + return blocks + + +class GlobalGenerator(nn.Module): + def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, + padding_type='reflect', conv_kind='default', activation=nn.ReLU(True), + up_norm_layer=nn.BatchNorm2d, affine=None, + up_activation=nn.ReLU(True), dilated_blocks_n=0, dilated_blocks_n_start=0, + dilated_blocks_n_middle=0, + add_out_act=True, + max_features=1024, is_resblock_depthwise=False, + ffc_positions=None, ffc_kwargs={}, dilation=1, second_dilation=None, + dilation_block_kind='simple', multidilation_kwargs={}): + assert (n_blocks >= 0) + super().__init__() + + conv_layer = get_conv_block_ctor(conv_kind) + norm_layer = get_norm_layer(norm_layer) + if affine is not None: + norm_layer = partial(norm_layer, affine=affine) + up_norm_layer = get_norm_layer(up_norm_layer) + if affine is not None: + up_norm_layer = partial(up_norm_layer, affine=affine) + + if ffc_positions is not None: + ffc_positions = collections.Counter(ffc_positions) + + model = [nn.ReflectionPad2d(3), + conv_layer(input_nc, ngf, kernel_size=7, padding=0), + norm_layer(ngf), + activation] + + identity = Identity() + ### downsample + for i in range(n_downsampling): + mult = 2 ** i + + model += [conv_layer(min(max_features, ngf * mult), + min(max_features, ngf * mult * 2), + kernel_size=3, stride=2, padding=1), + norm_layer(min(max_features, ngf * mult * 2)), + activation] + + mult = 2 ** n_downsampling + feats_num_bottleneck = min(max_features, ngf * mult) + + dilated_block_kwargs = dict(dim=feats_num_bottleneck, padding_type=padding_type, + activation=activation, norm_layer=norm_layer) + if dilation_block_kind == 'simple': + dilated_block_kwargs['conv_kind'] = conv_kind + elif dilation_block_kind == 'multi': + dilated_block_kwargs['conv_layer'] = functools.partial( + get_conv_block_ctor('multidilated'), **multidilation_kwargs) + + # dilated blocks at the start of the bottleneck sausage + if dilated_blocks_n_start is not None and dilated_blocks_n_start > 0: + model += make_dil_blocks(dilated_blocks_n_start, dilation_block_kind, dilated_block_kwargs) + + # resnet blocks + for i in range(n_blocks): + # dilated blocks at the middle of the bottleneck sausage + if i == n_blocks // 2 and dilated_blocks_n_middle is not None and dilated_blocks_n_middle > 0: + model += make_dil_blocks(dilated_blocks_n_middle, dilation_block_kind, dilated_block_kwargs) + + if ffc_positions is not None and i in ffc_positions: + for _ in range(ffc_positions[i]): # same position can occur more than once + model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU, + inline=True, **ffc_kwargs)] + + if is_resblock_depthwise: + resblock_groups = feats_num_bottleneck + else: + resblock_groups = 1 + + model += [ResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation=activation, + norm_layer=norm_layer, conv_kind=conv_kind, groups=resblock_groups, + dilation=dilation, second_dilation=second_dilation)] + + + # dilated blocks at the end of the bottleneck sausage + if dilated_blocks_n is not None and dilated_blocks_n > 0: + model += make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs) + + # upsample + for i in range(n_downsampling): + mult = 2 ** (n_downsampling - i) + model += [nn.ConvTranspose2d(min(max_features, ngf * mult), + min(max_features, int(ngf * mult / 2)), + kernel_size=3, stride=2, padding=1, output_padding=1), + up_norm_layer(min(max_features, int(ngf * mult / 2))), + up_activation] + model += [nn.ReflectionPad2d(3), + nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] + if add_out_act: + model.append(get_activation('tanh' if add_out_act is True else add_out_act)) + self.model = nn.Sequential(*model) + + def forward(self, input): + return self.model(input) + + +class GlobalGeneratorGated(GlobalGenerator): + def __init__(self, *args, **kwargs): + real_kwargs=dict( + conv_kind='gated_bn_relu', + activation=nn.Identity(), + norm_layer=nn.Identity + ) + real_kwargs.update(kwargs) + super().__init__(*args, **real_kwargs) + + +class GlobalGeneratorFromSuperChannels(nn.Module): + def __init__(self, input_nc, output_nc, n_downsampling, n_blocks, super_channels, norm_layer="bn", padding_type='reflect', add_out_act=True): + super().__init__() + self.n_downsampling = n_downsampling + norm_layer = get_norm_layer(norm_layer) + if type(norm_layer) == functools.partial: + use_bias = (norm_layer.func == nn.InstanceNorm2d) + else: + use_bias = (norm_layer == nn.InstanceNorm2d) + + channels = self.convert_super_channels(super_channels) + self.channels = channels + + model = [nn.ReflectionPad2d(3), + nn.Conv2d(input_nc, channels[0], kernel_size=7, padding=0, bias=use_bias), + norm_layer(channels[0]), + nn.ReLU(True)] + + for i in range(n_downsampling): # add downsampling layers + mult = 2 ** i + model += [nn.Conv2d(channels[0+i], channels[1+i], kernel_size=3, stride=2, padding=1, bias=use_bias), + norm_layer(channels[1+i]), + nn.ReLU(True)] + + mult = 2 ** n_downsampling + + n_blocks1 = n_blocks // 3 + n_blocks2 = n_blocks1 + n_blocks3 = n_blocks - n_blocks1 - n_blocks2 + + for i in range(n_blocks1): + c = n_downsampling + dim = channels[c] + model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer)] + + for i in range(n_blocks2): + c = n_downsampling+1 + dim = channels[c] + kwargs = {} + if i == 0: + kwargs = {"in_dim": channels[c-1]} + model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)] + + for i in range(n_blocks3): + c = n_downsampling+2 + dim = channels[c] + kwargs = {} + if i == 0: + kwargs = {"in_dim": channels[c-1]} + model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)] + + for i in range(n_downsampling): # add upsampling layers + mult = 2 ** (n_downsampling - i) + model += [nn.ConvTranspose2d(channels[n_downsampling+3+i], + channels[n_downsampling+3+i+1], + kernel_size=3, stride=2, + padding=1, output_padding=1, + bias=use_bias), + norm_layer(channels[n_downsampling+3+i+1]), + nn.ReLU(True)] + model += [nn.ReflectionPad2d(3)] + model += [nn.Conv2d(channels[2*n_downsampling+3], output_nc, kernel_size=7, padding=0)] + + if add_out_act: + model.append(get_activation('tanh' if add_out_act is True else add_out_act)) + self.model = nn.Sequential(*model) + + def convert_super_channels(self, super_channels): + n_downsampling = self.n_downsampling + result = [] + cnt = 0 + + if n_downsampling == 2: + N1 = 10 + elif n_downsampling == 3: + N1 = 13 + else: + raise NotImplementedError + + for i in range(0, N1): + if i in [1,4,7,10]: + channel = super_channels[cnt] * (2 ** cnt) + config = {'channel': channel} + result.append(channel) + logging.info(f"Downsample channels {result[-1]}") + cnt += 1 + + for i in range(3): + for counter, j in enumerate(range(N1 + i * 3, N1 + 3 + i * 3)): + if len(super_channels) == 6: + channel = super_channels[3] * 4 + else: + channel = super_channels[i + 3] * 4 + config = {'channel': channel} + if counter == 0: + result.append(channel) + logging.info(f"Bottleneck channels {result[-1]}") + cnt = 2 + + for i in range(N1+9, N1+21): + if i in [22, 25,28]: + cnt -= 1 + if len(super_channels) == 6: + channel = super_channels[5 - cnt] * (2 ** cnt) + else: + channel = super_channels[7 - cnt] * (2 ** cnt) + result.append(int(channel)) + logging.info(f"Upsample channels {result[-1]}") + return result + + def forward(self, input): + return self.model(input) + + +# Defines the PatchGAN discriminator with the specified arguments. +class NLayerDiscriminator(BaseDiscriminator): + def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,): + super().__init__() + self.n_layers = n_layers + + kw = 4 + padw = int(np.ceil((kw-1.0)/2)) + sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), + nn.LeakyReLU(0.2, True)]] + + nf = ndf + for n in range(1, n_layers): + nf_prev = nf + nf = min(nf * 2, 512) + + cur_model = [] + cur_model += [ + nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), + norm_layer(nf), + nn.LeakyReLU(0.2, True) + ] + sequence.append(cur_model) + + nf_prev = nf + nf = min(nf * 2, 512) + + cur_model = [] + cur_model += [ + nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), + norm_layer(nf), + nn.LeakyReLU(0.2, True) + ] + sequence.append(cur_model) + + sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] + + for n in range(len(sequence)): + setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) + + def get_all_activations(self, x): + res = [x] + for n in range(self.n_layers + 2): + model = getattr(self, 'model' + str(n)) + res.append(model(res[-1])) + return res[1:] + + def forward(self, x): + act = self.get_all_activations(x) + return act[-1], act[:-1] + + +class MultidilatedNLayerDiscriminator(BaseDiscriminator): + def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, multidilation_kwargs={}): + super().__init__() + self.n_layers = n_layers + + kw = 4 + padw = int(np.ceil((kw-1.0)/2)) + sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), + nn.LeakyReLU(0.2, True)]] + + nf = ndf + for n in range(1, n_layers): + nf_prev = nf + nf = min(nf * 2, 512) + + cur_model = [] + cur_model += [ + MultidilatedConv(nf_prev, nf, kernel_size=kw, stride=2, padding=[2, 3], **multidilation_kwargs), + norm_layer(nf), + nn.LeakyReLU(0.2, True) + ] + sequence.append(cur_model) + + nf_prev = nf + nf = min(nf * 2, 512) + + cur_model = [] + cur_model += [ + nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), + norm_layer(nf), + nn.LeakyReLU(0.2, True) + ] + sequence.append(cur_model) + + sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] + + for n in range(len(sequence)): + setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) + + def get_all_activations(self, x): + res = [x] + for n in range(self.n_layers + 2): + model = getattr(self, 'model' + str(n)) + res.append(model(res[-1])) + return res[1:] + + def forward(self, x): + act = self.get_all_activations(x) + return act[-1], act[:-1] + + +class NLayerDiscriminatorAsGen(NLayerDiscriminator): + def forward(self, x): + return super().forward(x)[0] diff --git a/lama/saicinpainting/training/modules/spatial_transform.py b/lama/saicinpainting/training/modules/spatial_transform.py new file mode 100644 index 0000000000000000000000000000000000000000..f910b08c4c11c895a0e79322d12be418fb165843 --- /dev/null +++ b/lama/saicinpainting/training/modules/spatial_transform.py @@ -0,0 +1,49 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from kornia.geometry.transform import rotate + + +class LearnableSpatialTransformWrapper(nn.Module): + def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True): + super().__init__() + self.impl = impl + self.angle = torch.rand(1) * angle_init_range + if train_angle: + self.angle = nn.Parameter(self.angle, requires_grad=True) + self.pad_coef = pad_coef + + def forward(self, x): + if torch.is_tensor(x): + return self.inverse_transform(self.impl(self.transform(x)), x) + elif isinstance(x, tuple): + x_trans = tuple(self.transform(elem) for elem in x) + y_trans = self.impl(x_trans) + return tuple(self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x)) + else: + raise ValueError(f'Unexpected input type {type(x)}') + + def transform(self, x): + height, width = x.shape[2:] + pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) + x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode='reflect') + x_padded_rotated = rotate(x_padded, angle=self.angle.to(x_padded)) + return x_padded_rotated + + def inverse_transform(self, y_padded_rotated, orig_x): + height, width = orig_x.shape[2:] + pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) + + y_padded = rotate(y_padded_rotated, angle=-self.angle.to(y_padded_rotated)) + y_height, y_width = y_padded.shape[2:] + y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w] + return y + + +if __name__ == '__main__': + layer = LearnableSpatialTransformWrapper(nn.Identity()) + x = torch.arange(2* 3 * 15 * 15).view(2, 3, 15, 15).float() + y = layer(x) + assert x.shape == y.shape + assert torch.allclose(x[:, :, 1:, 1:][:, :, :-1, :-1], y[:, :, 1:, 1:][:, :, :-1, :-1]) + print('all ok') diff --git a/lama/saicinpainting/training/modules/squeeze_excitation.py b/lama/saicinpainting/training/modules/squeeze_excitation.py new file mode 100644 index 0000000000000000000000000000000000000000..c5385818a0127b6afcef6c7b9416f211c6586c52 --- /dev/null +++ b/lama/saicinpainting/training/modules/squeeze_excitation.py @@ -0,0 +1,20 @@ +import torch.nn as nn + + +class SELayer(nn.Module): + def __init__(self, channel, reduction=16): + super(SELayer, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction, bias=False), + nn.ReLU(inplace=True), + nn.Linear(channel // reduction, channel, bias=False), + nn.Sigmoid() + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + res = x * y.expand_as(x) + return res diff --git a/lama/saicinpainting/training/trainers/__init__.py b/lama/saicinpainting/training/trainers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..71e2806e2f184fb62c044cbf48305f743e274809 --- /dev/null +++ b/lama/saicinpainting/training/trainers/__init__.py @@ -0,0 +1,30 @@ +import logging +import torch +from saicinpainting.training.trainers.default import DefaultInpaintingTrainingModule + + +def get_training_model_class(kind): + if kind == 'default': + return DefaultInpaintingTrainingModule + + raise ValueError(f'Unknown trainer module {kind}') + + +def make_training_model(config): + kind = config.training_model.kind + kwargs = dict(config.training_model) + kwargs.pop('kind') + kwargs['use_ddp'] = config.trainer.kwargs.get('accelerator', None) == 'ddp' + + logging.info(f'Make training model {kind}') + + cls = get_training_model_class(kind) + return cls(config, **kwargs) + + +def load_checkpoint(train_config, path, map_location='cuda', strict=True): + model: torch.nn.Module = make_training_model(train_config) + state = torch.load(path, map_location=map_location) + model.load_state_dict(state['state_dict'], strict=strict) + model.on_load_checkpoint(state) + return model diff --git a/lama/saicinpainting/training/trainers/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/training/trainers/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbd6cc3109b2c3d340ac95be4044029efb089234 Binary files /dev/null and b/lama/saicinpainting/training/trainers/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/trainers/__pycache__/base.cpython-310.pyc b/lama/saicinpainting/training/trainers/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..568ce09852d6560e63c267b83c57ee8da2b9e211 Binary files /dev/null and b/lama/saicinpainting/training/trainers/__pycache__/base.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/trainers/__pycache__/default.cpython-310.pyc b/lama/saicinpainting/training/trainers/__pycache__/default.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dff7d4058dc4d2adfe00e02b58206c72b835d6e1 Binary files /dev/null and b/lama/saicinpainting/training/trainers/__pycache__/default.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/trainers/base.py b/lama/saicinpainting/training/trainers/base.py new file mode 100644 index 0000000000000000000000000000000000000000..54bd0d71c6d3a1a0b1a4bb62172413f0ef7a0d8b --- /dev/null +++ b/lama/saicinpainting/training/trainers/base.py @@ -0,0 +1,291 @@ +import copy +import logging +from typing import Dict, Tuple + +import pandas as pd +import pytorch_lightning as ptl +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.utils.data import DistributedSampler + +from saicinpainting.evaluation import make_evaluator +from saicinpainting.training.data.datasets import make_default_train_dataloader, make_default_val_dataloader +from saicinpainting.training.losses.adversarial import make_discrim_loss +from saicinpainting.training.losses.perceptual import PerceptualLoss, ResNetPL +from saicinpainting.training.modules import make_generator, make_discriminator +from saicinpainting.training.visualizers import make_visualizer +from saicinpainting.utils import add_prefix_to_keys, average_dicts, set_requires_grad, flatten_dict, \ + get_has_ddp_rank + +LOGGER = logging.getLogger(__name__) + + +def make_optimizer(parameters, kind='adamw', **kwargs): + if kind == 'adam': + optimizer_class = torch.optim.Adam + elif kind == 'adamw': + optimizer_class = torch.optim.AdamW + else: + raise ValueError(f'Unknown optimizer kind {kind}') + return optimizer_class(parameters, **kwargs) + + +def update_running_average(result: nn.Module, new_iterate_model: nn.Module, decay=0.999): + with torch.no_grad(): + res_params = dict(result.named_parameters()) + new_params = dict(new_iterate_model.named_parameters()) + + for k in res_params.keys(): + res_params[k].data.mul_(decay).add_(new_params[k].data, alpha=1 - decay) + + +def make_multiscale_noise(base_tensor, scales=6, scale_mode='bilinear'): + batch_size, _, height, width = base_tensor.shape + cur_height, cur_width = height, width + result = [] + align_corners = False if scale_mode in ('bilinear', 'bicubic') else None + for _ in range(scales): + cur_sample = torch.randn(batch_size, 1, cur_height, cur_width, device=base_tensor.device) + cur_sample_scaled = F.interpolate(cur_sample, size=(height, width), mode=scale_mode, align_corners=align_corners) + result.append(cur_sample_scaled) + cur_height //= 2 + cur_width //= 2 + return torch.cat(result, dim=1) + + +class BaseInpaintingTrainingModule(ptl.LightningModule): + def __init__(self, config, use_ddp, *args, predict_only=False, visualize_each_iters=100, + average_generator=False, generator_avg_beta=0.999, average_generator_start_step=30000, + average_generator_period=10, store_discr_outputs_for_vis=False, + **kwargs): + super().__init__(*args, **kwargs) + LOGGER.info('BaseInpaintingTrainingModule init called') + + self.config = config + + self.generator = make_generator(config, **self.config.generator) + self.use_ddp = use_ddp + + if not get_has_ddp_rank(): + LOGGER.info(f'Generator\n{self.generator}') + + if not predict_only: + self.save_hyperparameters(self.config) + self.discriminator = make_discriminator(**self.config.discriminator) + self.adversarial_loss = make_discrim_loss(**self.config.losses.adversarial) + self.visualizer = make_visualizer(**self.config.visualizer) + self.val_evaluator = make_evaluator(**self.config.evaluator) + self.test_evaluator = make_evaluator(**self.config.evaluator) + + if not get_has_ddp_rank(): + LOGGER.info(f'Discriminator\n{self.discriminator}') + + extra_val = self.config.data.get('extra_val', ()) + if extra_val: + self.extra_val_titles = list(extra_val) + self.extra_evaluators = nn.ModuleDict({k: make_evaluator(**self.config.evaluator) + for k in extra_val}) + else: + self.extra_evaluators = {} + + self.average_generator = average_generator + self.generator_avg_beta = generator_avg_beta + self.average_generator_start_step = average_generator_start_step + self.average_generator_period = average_generator_period + self.generator_average = None + self.last_generator_averaging_step = -1 + self.store_discr_outputs_for_vis = store_discr_outputs_for_vis + + if self.config.losses.get("l1", {"weight_known": 0})['weight_known'] > 0: + self.loss_l1 = nn.L1Loss(reduction='none') + + if self.config.losses.get("mse", {"weight": 0})['weight'] > 0: + self.loss_mse = nn.MSELoss(reduction='none') + + if self.config.losses.perceptual.weight > 0: + self.loss_pl = PerceptualLoss() + + if self.config.losses.get("resnet_pl", {"weight": 0})['weight'] > 0: + self.loss_resnet_pl = ResNetPL(**self.config.losses.resnet_pl) + else: + self.loss_resnet_pl = None + + self.visualize_each_iters = visualize_each_iters + LOGGER.info('BaseInpaintingTrainingModule init done') + + def configure_optimizers(self): + discriminator_params = list(self.discriminator.parameters()) + return [ + dict(optimizer=make_optimizer(self.generator.parameters(), **self.config.optimizers.generator)), + dict(optimizer=make_optimizer(discriminator_params, **self.config.optimizers.discriminator)), + ] + + def train_dataloader(self): + kwargs = dict(self.config.data.train) + if self.use_ddp: + kwargs['ddp_kwargs'] = dict(num_replicas=self.trainer.num_nodes * self.trainer.num_processes, + rank=self.trainer.global_rank, + shuffle=True) + dataloader = make_default_train_dataloader(**self.config.data.train) + return dataloader + + def val_dataloader(self): + res = [make_default_val_dataloader(**self.config.data.val)] + + if self.config.data.visual_test is not None: + res = res + [make_default_val_dataloader(**self.config.data.visual_test)] + else: + res = res + res + + extra_val = self.config.data.get('extra_val', ()) + if extra_val: + res += [make_default_val_dataloader(**extra_val[k]) for k in self.extra_val_titles] + + return res + + def training_step(self, batch, batch_idx, optimizer_idx=None): + self._is_training_step = True + return self._do_step(batch, batch_idx, mode='train', optimizer_idx=optimizer_idx) + + def validation_step(self, batch, batch_idx, dataloader_idx): + extra_val_key = None + if dataloader_idx == 0: + mode = 'val' + elif dataloader_idx == 1: + mode = 'test' + else: + mode = 'extra_val' + extra_val_key = self.extra_val_titles[dataloader_idx - 2] + self._is_training_step = False + return self._do_step(batch, batch_idx, mode=mode, extra_val_key=extra_val_key) + + def training_step_end(self, batch_parts_outputs): + if self.training and self.average_generator \ + and self.global_step >= self.average_generator_start_step \ + and self.global_step >= self.last_generator_averaging_step + self.average_generator_period: + if self.generator_average is None: + self.generator_average = copy.deepcopy(self.generator) + else: + update_running_average(self.generator_average, self.generator, decay=self.generator_avg_beta) + self.last_generator_averaging_step = self.global_step + + full_loss = (batch_parts_outputs['loss'].mean() + if torch.is_tensor(batch_parts_outputs['loss']) # loss is not tensor when no discriminator used + else torch.tensor(batch_parts_outputs['loss']).float().requires_grad_(True)) + log_info = {k: v.mean() for k, v in batch_parts_outputs['log_info'].items()} + self.log_dict(log_info, on_step=True, on_epoch=False) + return full_loss + + def validation_epoch_end(self, outputs): + outputs = [step_out for out_group in outputs for step_out in out_group] + averaged_logs = average_dicts(step_out['log_info'] for step_out in outputs) + self.log_dict({k: v.mean() for k, v in averaged_logs.items()}) + + pd.set_option('display.max_columns', 500) + pd.set_option('display.width', 1000) + + # standard validation + val_evaluator_states = [s['val_evaluator_state'] for s in outputs if 'val_evaluator_state' in s] + val_evaluator_res = self.val_evaluator.evaluation_end(states=val_evaluator_states) + val_evaluator_res_df = pd.DataFrame(val_evaluator_res).stack(1).unstack(0) + val_evaluator_res_df.dropna(axis=1, how='all', inplace=True) + LOGGER.info(f'Validation metrics after epoch #{self.current_epoch}, ' + f'total {self.global_step} iterations:\n{val_evaluator_res_df}') + + for k, v in flatten_dict(val_evaluator_res).items(): + self.log(f'val_{k}', v) + + # standard visual test + test_evaluator_states = [s['test_evaluator_state'] for s in outputs + if 'test_evaluator_state' in s] + test_evaluator_res = self.test_evaluator.evaluation_end(states=test_evaluator_states) + test_evaluator_res_df = pd.DataFrame(test_evaluator_res).stack(1).unstack(0) + test_evaluator_res_df.dropna(axis=1, how='all', inplace=True) + LOGGER.info(f'Test metrics after epoch #{self.current_epoch}, ' + f'total {self.global_step} iterations:\n{test_evaluator_res_df}') + + for k, v in flatten_dict(test_evaluator_res).items(): + self.log(f'test_{k}', v) + + # extra validations + if self.extra_evaluators: + for cur_eval_title, cur_evaluator in self.extra_evaluators.items(): + cur_state_key = f'extra_val_{cur_eval_title}_evaluator_state' + cur_states = [s[cur_state_key] for s in outputs if cur_state_key in s] + cur_evaluator_res = cur_evaluator.evaluation_end(states=cur_states) + cur_evaluator_res_df = pd.DataFrame(cur_evaluator_res).stack(1).unstack(0) + cur_evaluator_res_df.dropna(axis=1, how='all', inplace=True) + LOGGER.info(f'Extra val {cur_eval_title} metrics after epoch #{self.current_epoch}, ' + f'total {self.global_step} iterations:\n{cur_evaluator_res_df}') + for k, v in flatten_dict(cur_evaluator_res).items(): + self.log(f'extra_val_{cur_eval_title}_{k}', v) + + def _do_step(self, batch, batch_idx, mode='train', optimizer_idx=None, extra_val_key=None): + if optimizer_idx == 0: # step for generator + set_requires_grad(self.generator, True) + set_requires_grad(self.discriminator, False) + elif optimizer_idx == 1: # step for discriminator + set_requires_grad(self.generator, False) + set_requires_grad(self.discriminator, True) + + batch = self(batch) + + total_loss = 0 + metrics = {} + + if optimizer_idx is None or optimizer_idx == 0: # step for generator + total_loss, metrics = self.generator_loss(batch) + + elif optimizer_idx is None or optimizer_idx == 1: # step for discriminator + if self.config.losses.adversarial.weight > 0: + total_loss, metrics = self.discriminator_loss(batch) + + if self.get_ddp_rank() in (None, 0) and (batch_idx % self.visualize_each_iters == 0 or mode == 'test'): + if self.config.losses.adversarial.weight > 0: + if self.store_discr_outputs_for_vis: + with torch.no_grad(): + self.store_discr_outputs(batch) + vis_suffix = f'_{mode}' + if mode == 'extra_val': + vis_suffix += f'_{extra_val_key}' + self.visualizer(self.current_epoch, batch_idx, batch, suffix=vis_suffix) + + metrics_prefix = f'{mode}_' + if mode == 'extra_val': + metrics_prefix += f'{extra_val_key}_' + result = dict(loss=total_loss, log_info=add_prefix_to_keys(metrics, metrics_prefix)) + if mode == 'val': + result['val_evaluator_state'] = self.val_evaluator.process_batch(batch) + elif mode == 'test': + result['test_evaluator_state'] = self.test_evaluator.process_batch(batch) + elif mode == 'extra_val': + result[f'extra_val_{extra_val_key}_evaluator_state'] = self.extra_evaluators[extra_val_key].process_batch(batch) + + return result + + def get_current_generator(self, no_average=False): + if not no_average and not self.training and self.average_generator and self.generator_average is not None: + return self.generator_average + return self.generator + + def forward(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: + """Pass data through generator and obtain at leas 'predicted_image' and 'inpainted' keys""" + raise NotImplementedError() + + def generator_loss(self, batch) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + raise NotImplementedError() + + def discriminator_loss(self, batch) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]: + raise NotImplementedError() + + def store_discr_outputs(self, batch): + out_size = batch['image'].shape[2:] + discr_real_out, _ = self.discriminator(batch['image']) + discr_fake_out, _ = self.discriminator(batch['predicted_image']) + batch['discr_output_real'] = F.interpolate(discr_real_out, size=out_size, mode='nearest') + batch['discr_output_fake'] = F.interpolate(discr_fake_out, size=out_size, mode='nearest') + batch['discr_output_diff'] = batch['discr_output_real'] - batch['discr_output_fake'] + + def get_ddp_rank(self): + return self.trainer.global_rank if (self.trainer.num_nodes * self.trainer.num_processes) > 1 else None diff --git a/lama/saicinpainting/training/trainers/default.py b/lama/saicinpainting/training/trainers/default.py new file mode 100644 index 0000000000000000000000000000000000000000..fcb2fda67762cabe0a9576abeb12593b773dfc1b --- /dev/null +++ b/lama/saicinpainting/training/trainers/default.py @@ -0,0 +1,175 @@ +import logging + +import torch +import torch.nn.functional as F +from omegaconf import OmegaConf + +from saicinpainting.training.data.datasets import make_constant_area_crop_params +from saicinpainting.training.losses.distance_weighting import make_mask_distance_weighter +from saicinpainting.training.losses.feature_matching import feature_matching_loss, masked_l1_loss +from saicinpainting.training.modules.fake_fakes import FakeFakesGenerator +from saicinpainting.training.trainers.base import BaseInpaintingTrainingModule, make_multiscale_noise +from saicinpainting.utils import add_prefix_to_keys, get_ramp + +LOGGER = logging.getLogger(__name__) + + +def make_constant_area_crop_batch(batch, **kwargs): + crop_y, crop_x, crop_height, crop_width = make_constant_area_crop_params(img_height=batch['image'].shape[2], + img_width=batch['image'].shape[3], + **kwargs) + batch['image'] = batch['image'][:, :, crop_y : crop_y + crop_height, crop_x : crop_x + crop_width] + batch['mask'] = batch['mask'][:, :, crop_y: crop_y + crop_height, crop_x: crop_x + crop_width] + return batch + + +class DefaultInpaintingTrainingModule(BaseInpaintingTrainingModule): + def __init__(self, *args, concat_mask=True, rescale_scheduler_kwargs=None, image_to_discriminator='predicted_image', + add_noise_kwargs=None, noise_fill_hole=False, const_area_crop_kwargs=None, + distance_weighter_kwargs=None, distance_weighted_mask_for_discr=False, + fake_fakes_proba=0, fake_fakes_generator_kwargs=None, + **kwargs): + super().__init__(*args, **kwargs) + self.concat_mask = concat_mask + self.rescale_size_getter = get_ramp(**rescale_scheduler_kwargs) if rescale_scheduler_kwargs is not None else None + self.image_to_discriminator = image_to_discriminator + self.add_noise_kwargs = add_noise_kwargs + self.noise_fill_hole = noise_fill_hole + self.const_area_crop_kwargs = const_area_crop_kwargs + self.refine_mask_for_losses = make_mask_distance_weighter(**distance_weighter_kwargs) \ + if distance_weighter_kwargs is not None else None + self.distance_weighted_mask_for_discr = distance_weighted_mask_for_discr + + self.fake_fakes_proba = fake_fakes_proba + if self.fake_fakes_proba > 1e-3: + self.fake_fakes_gen = FakeFakesGenerator(**(fake_fakes_generator_kwargs or {})) + + def forward(self, batch): + if self.training and self.rescale_size_getter is not None: + cur_size = self.rescale_size_getter(self.global_step) + batch['image'] = F.interpolate(batch['image'], size=cur_size, mode='bilinear', align_corners=False) + batch['mask'] = F.interpolate(batch['mask'], size=cur_size, mode='nearest') + + if self.training and self.const_area_crop_kwargs is not None: + batch = make_constant_area_crop_batch(batch, **self.const_area_crop_kwargs) + + img = batch['image'] + mask = batch['mask'] + + masked_img = img * (1 - mask) + + if self.add_noise_kwargs is not None: + noise = make_multiscale_noise(masked_img, **self.add_noise_kwargs) + if self.noise_fill_hole: + masked_img = masked_img + mask * noise[:, :masked_img.shape[1]] + masked_img = torch.cat([masked_img, noise], dim=1) + + if self.concat_mask: + masked_img = torch.cat([masked_img, mask], dim=1) + + batch['predicted_image'] = self.generator(masked_img) + batch['inpainted'] = mask * batch['predicted_image'] + (1 - mask) * batch['image'] + + if self.fake_fakes_proba > 1e-3: + if self.training and torch.rand(1).item() < self.fake_fakes_proba: + batch['fake_fakes'], batch['fake_fakes_masks'] = self.fake_fakes_gen(img, mask) + batch['use_fake_fakes'] = True + else: + batch['fake_fakes'] = torch.zeros_like(img) + batch['fake_fakes_masks'] = torch.zeros_like(mask) + batch['use_fake_fakes'] = False + + batch['mask_for_losses'] = self.refine_mask_for_losses(img, batch['predicted_image'], mask) \ + if self.refine_mask_for_losses is not None and self.training \ + else mask + + return batch + + def generator_loss(self, batch): + img = batch['image'] + predicted_img = batch[self.image_to_discriminator] + original_mask = batch['mask'] + supervised_mask = batch['mask_for_losses'] + + # L1 + l1_value = masked_l1_loss(predicted_img, img, supervised_mask, + self.config.losses.l1.weight_known, + self.config.losses.l1.weight_missing) + + total_loss = l1_value + metrics = dict(gen_l1=l1_value) + + # vgg-based perceptual loss + if self.config.losses.perceptual.weight > 0: + pl_value = self.loss_pl(predicted_img, img, mask=supervised_mask).sum() * self.config.losses.perceptual.weight + total_loss = total_loss + pl_value + metrics['gen_pl'] = pl_value + + # discriminator + # adversarial_loss calls backward by itself + mask_for_discr = supervised_mask if self.distance_weighted_mask_for_discr else original_mask + self.adversarial_loss.pre_generator_step(real_batch=img, fake_batch=predicted_img, + generator=self.generator, discriminator=self.discriminator) + discr_real_pred, discr_real_features = self.discriminator(img) + discr_fake_pred, discr_fake_features = self.discriminator(predicted_img) + adv_gen_loss, adv_metrics = self.adversarial_loss.generator_loss(real_batch=img, + fake_batch=predicted_img, + discr_real_pred=discr_real_pred, + discr_fake_pred=discr_fake_pred, + mask=mask_for_discr) + total_loss = total_loss + adv_gen_loss + metrics['gen_adv'] = adv_gen_loss + metrics.update(add_prefix_to_keys(adv_metrics, 'adv_')) + + # feature matching + if self.config.losses.feature_matching.weight > 0: + need_mask_in_fm = OmegaConf.to_container(self.config.losses.feature_matching).get('pass_mask', False) + mask_for_fm = supervised_mask if need_mask_in_fm else None + fm_value = feature_matching_loss(discr_fake_features, discr_real_features, + mask=mask_for_fm) * self.config.losses.feature_matching.weight + total_loss = total_loss + fm_value + metrics['gen_fm'] = fm_value + + if self.loss_resnet_pl is not None: + resnet_pl_value = self.loss_resnet_pl(predicted_img, img) + total_loss = total_loss + resnet_pl_value + metrics['gen_resnet_pl'] = resnet_pl_value + + return total_loss, metrics + + def discriminator_loss(self, batch): + total_loss = 0 + metrics = {} + + predicted_img = batch[self.image_to_discriminator].detach() + self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=predicted_img, + generator=self.generator, discriminator=self.discriminator) + discr_real_pred, discr_real_features = self.discriminator(batch['image']) + discr_fake_pred, discr_fake_features = self.discriminator(predicted_img) + adv_discr_loss, adv_metrics = self.adversarial_loss.discriminator_loss(real_batch=batch['image'], + fake_batch=predicted_img, + discr_real_pred=discr_real_pred, + discr_fake_pred=discr_fake_pred, + mask=batch['mask']) + total_loss = total_loss + adv_discr_loss + metrics['discr_adv'] = adv_discr_loss + metrics.update(add_prefix_to_keys(adv_metrics, 'adv_')) + + + if batch.get('use_fake_fakes', False): + fake_fakes = batch['fake_fakes'] + self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=fake_fakes, + generator=self.generator, discriminator=self.discriminator) + discr_fake_fakes_pred, _ = self.discriminator(fake_fakes) + fake_fakes_adv_discr_loss, fake_fakes_adv_metrics = self.adversarial_loss.discriminator_loss( + real_batch=batch['image'], + fake_batch=fake_fakes, + discr_real_pred=discr_real_pred, + discr_fake_pred=discr_fake_fakes_pred, + mask=batch['mask'] + ) + total_loss = total_loss + fake_fakes_adv_discr_loss + metrics['discr_adv_fake_fakes'] = fake_fakes_adv_discr_loss + metrics.update(add_prefix_to_keys(fake_fakes_adv_metrics, 'adv_')) + + return total_loss, metrics diff --git a/lama/saicinpainting/training/visualizers/__init__.py b/lama/saicinpainting/training/visualizers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..720a6314278410ff5a7801f85f8218c131883286 --- /dev/null +++ b/lama/saicinpainting/training/visualizers/__init__.py @@ -0,0 +1,15 @@ +import logging + +from saicinpainting.training.visualizers.directory import DirectoryVisualizer +from saicinpainting.training.visualizers.noop import NoopVisualizer + + +def make_visualizer(kind, **kwargs): + logging.info(f'Make visualizer {kind}') + + if kind == 'directory': + return DirectoryVisualizer(**kwargs) + if kind == 'noop': + return NoopVisualizer() + + raise ValueError(f'Unknown visualizer kind {kind}') diff --git a/lama/saicinpainting/training/visualizers/__pycache__/__init__.cpython-310.pyc b/lama/saicinpainting/training/visualizers/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..730473458cac0e9c99e3f874f1badf3a78b7b410 Binary files /dev/null and b/lama/saicinpainting/training/visualizers/__pycache__/__init__.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/visualizers/__pycache__/base.cpython-310.pyc b/lama/saicinpainting/training/visualizers/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e0102004d1ae88d6f2845b9aa132f1189cfa0f5 Binary files /dev/null and b/lama/saicinpainting/training/visualizers/__pycache__/base.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/visualizers/__pycache__/colors.cpython-310.pyc b/lama/saicinpainting/training/visualizers/__pycache__/colors.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6ef7b13b58e31c3170921349598aed7cd8a8752 Binary files /dev/null and b/lama/saicinpainting/training/visualizers/__pycache__/colors.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/visualizers/__pycache__/directory.cpython-310.pyc b/lama/saicinpainting/training/visualizers/__pycache__/directory.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..87602da6e8a91399447370547768d04b8cea0930 Binary files /dev/null and b/lama/saicinpainting/training/visualizers/__pycache__/directory.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/visualizers/__pycache__/noop.cpython-310.pyc b/lama/saicinpainting/training/visualizers/__pycache__/noop.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf350224cff8bf724ad6beeb266901ec9e221111 Binary files /dev/null and b/lama/saicinpainting/training/visualizers/__pycache__/noop.cpython-310.pyc differ diff --git a/lama/saicinpainting/training/visualizers/base.py b/lama/saicinpainting/training/visualizers/base.py new file mode 100644 index 0000000000000000000000000000000000000000..3edf9fae49e036bbbb90cb3a8d32e1e9bae7f97c --- /dev/null +++ b/lama/saicinpainting/training/visualizers/base.py @@ -0,0 +1,73 @@ +import abc +from typing import Dict, List + +import numpy as np +import torch +from skimage import color +from skimage.segmentation import mark_boundaries + +from . import colors + +COLORS, _ = colors.generate_colors(151) # 151 - max classes for semantic segmentation + + +class BaseVisualizer: + @abc.abstractmethod + def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None): + """ + Take a batch, make an image from it and visualize + """ + raise NotImplementedError() + + +def visualize_mask_and_images(images_dict: Dict[str, np.ndarray], keys: List[str], + last_without_mask=True, rescale_keys=None, mask_only_first=None, + black_mask=False) -> np.ndarray: + mask = images_dict['mask'] > 0.5 + result = [] + for i, k in enumerate(keys): + img = images_dict[k] + img = np.transpose(img, (1, 2, 0)) + + if rescale_keys is not None and k in rescale_keys: + img = img - img.min() + img /= img.max() + 1e-5 + if len(img.shape) == 2: + img = np.expand_dims(img, 2) + + if img.shape[2] == 1: + img = np.repeat(img, 3, axis=2) + elif (img.shape[2] > 3): + img_classes = img.argmax(2) + img = color.label2rgb(img_classes, colors=COLORS) + + if mask_only_first: + need_mark_boundaries = i == 0 + else: + need_mark_boundaries = i < len(keys) - 1 or not last_without_mask + + if need_mark_boundaries: + if black_mask: + img = img * (1 - mask[0][..., None]) + img = mark_boundaries(img, + mask[0], + color=(1., 0., 0.), + outline_color=(1., 1., 1.), + mode='thick') + result.append(img) + return np.concatenate(result, axis=1) + + +def visualize_mask_and_images_batch(batch: Dict[str, torch.Tensor], keys: List[str], max_items=10, + last_without_mask=True, rescale_keys=None) -> np.ndarray: + batch = {k: tens.detach().cpu().numpy() for k, tens in batch.items() + if k in keys or k == 'mask'} + + batch_size = next(iter(batch.values())).shape[0] + items_to_vis = min(batch_size, max_items) + result = [] + for i in range(items_to_vis): + cur_dct = {k: tens[i] for k, tens in batch.items()} + result.append(visualize_mask_and_images(cur_dct, keys, last_without_mask=last_without_mask, + rescale_keys=rescale_keys)) + return np.concatenate(result, axis=0) diff --git a/lama/saicinpainting/training/visualizers/colors.py b/lama/saicinpainting/training/visualizers/colors.py new file mode 100644 index 0000000000000000000000000000000000000000..c0421089f69cb67a117d3e3c0c4be42cc2ed1695 --- /dev/null +++ b/lama/saicinpainting/training/visualizers/colors.py @@ -0,0 +1,76 @@ +import random +import colorsys + +import numpy as np +import matplotlib +matplotlib.use('agg') +import matplotlib.pyplot as plt +from matplotlib.colors import LinearSegmentedColormap + + +def generate_colors(nlabels, type='bright', first_color_black=False, last_color_black=True, verbose=False): + # https://stackoverflow.com/questions/14720331/how-to-generate-random-colors-in-matplotlib + """ + Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks + :param nlabels: Number of labels (size of colormap) + :param type: 'bright' for strong colors, 'soft' for pastel colors + :param first_color_black: Option to use first color as black, True or False + :param last_color_black: Option to use last color as black, True or False + :param verbose: Prints the number of labels and shows the colormap. True or False + :return: colormap for matplotlib + """ + if type not in ('bright', 'soft'): + print ('Please choose "bright" or "soft" for type') + return + + if verbose: + print('Number of labels: ' + str(nlabels)) + + # Generate color map for bright colors, based on hsv + if type == 'bright': + randHSVcolors = [(np.random.uniform(low=0.0, high=1), + np.random.uniform(low=0.2, high=1), + np.random.uniform(low=0.9, high=1)) for i in range(nlabels)] + + # Convert HSV list to RGB + randRGBcolors = [] + for HSVcolor in randHSVcolors: + randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2])) + + if first_color_black: + randRGBcolors[0] = [0, 0, 0] + + if last_color_black: + randRGBcolors[-1] = [0, 0, 0] + + random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels) + + # Generate soft pastel colors, by limiting the RGB spectrum + if type == 'soft': + low = 0.6 + high = 0.95 + randRGBcolors = [(np.random.uniform(low=low, high=high), + np.random.uniform(low=low, high=high), + np.random.uniform(low=low, high=high)) for i in range(nlabels)] + + if first_color_black: + randRGBcolors[0] = [0, 0, 0] + + if last_color_black: + randRGBcolors[-1] = [0, 0, 0] + random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels) + + # Display colorbar + if verbose: + from matplotlib import colors, colorbar + from matplotlib import pyplot as plt + fig, ax = plt.subplots(1, 1, figsize=(15, 0.5)) + + bounds = np.linspace(0, nlabels, nlabels + 1) + norm = colors.BoundaryNorm(bounds, nlabels) + + cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None, + boundaries=bounds, format='%1i', orientation=u'horizontal') + + return randRGBcolors, random_colormap + diff --git a/lama/saicinpainting/training/visualizers/directory.py b/lama/saicinpainting/training/visualizers/directory.py new file mode 100644 index 0000000000000000000000000000000000000000..8e87882676f4c912c3d6f023b2ed1caa3c28ec22 --- /dev/null +++ b/lama/saicinpainting/training/visualizers/directory.py @@ -0,0 +1,36 @@ +import os + +import cv2 +import numpy as np + +from saicinpainting.training.visualizers.base import BaseVisualizer, visualize_mask_and_images_batch +from saicinpainting.utils import check_and_warn_input_range + + +class DirectoryVisualizer(BaseVisualizer): + DEFAULT_KEY_ORDER = 'image predicted_image inpainted'.split(' ') + + def __init__(self, outdir, key_order=DEFAULT_KEY_ORDER, max_items_in_batch=10, + last_without_mask=True, rescale_keys=None): + self.outdir = outdir + os.makedirs(self.outdir, exist_ok=True) + self.key_order = key_order + self.max_items_in_batch = max_items_in_batch + self.last_without_mask = last_without_mask + self.rescale_keys = rescale_keys + + def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None): + check_and_warn_input_range(batch['image'], 0, 1, 'DirectoryVisualizer target image') + vis_img = visualize_mask_and_images_batch(batch, self.key_order, max_items=self.max_items_in_batch, + last_without_mask=self.last_without_mask, + rescale_keys=self.rescale_keys) + + vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8') + + curoutdir = os.path.join(self.outdir, f'epoch{epoch_i:04d}{suffix}') + os.makedirs(curoutdir, exist_ok=True) + rank_suffix = f'_r{rank}' if rank is not None else '' + out_fname = os.path.join(curoutdir, f'batch{batch_i:07d}{rank_suffix}.jpg') + + vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR) + cv2.imwrite(out_fname, vis_img) diff --git a/lama/saicinpainting/training/visualizers/noop.py b/lama/saicinpainting/training/visualizers/noop.py new file mode 100644 index 0000000000000000000000000000000000000000..ecbdbb35245910e859021e398686cec57870a2b8 --- /dev/null +++ b/lama/saicinpainting/training/visualizers/noop.py @@ -0,0 +1,9 @@ +from saicinpainting.training.visualizers.base import BaseVisualizer + + +class NoopVisualizer(BaseVisualizer): + def __init__(self, *args, **kwargs): + pass + + def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None): + pass diff --git a/lama/saicinpainting/utils.py b/lama/saicinpainting/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..d5b85d1550ece67fd8cfe5db6b5ec1c2b331e435 --- /dev/null +++ b/lama/saicinpainting/utils.py @@ -0,0 +1,177 @@ +import bisect +import functools +import logging +import numbers +import os +import signal +import sys +import traceback +import warnings + +import torch +from pytorch_lightning import seed_everything + +LOGGER = logging.getLogger(__name__) + +import platform +if platform.system() != 'Linux': + signal.SIGUSR1 = 1 + +def check_and_warn_input_range(tensor, min_value, max_value, name): + actual_min = tensor.min() + actual_max = tensor.max() + if actual_min < min_value or actual_max > max_value: + warnings.warn(f"{name} must be in {min_value}..{max_value} range, but it ranges {actual_min}..{actual_max}") + + +def sum_dict_with_prefix(target, cur_dict, prefix, default=0): + for k, v in cur_dict.items(): + target_key = prefix + k + target[target_key] = target.get(target_key, default) + v + + +def average_dicts(dict_list): + result = {} + norm = 1e-3 + for dct in dict_list: + sum_dict_with_prefix(result, dct, '') + norm += 1 + for k in list(result): + result[k] /= norm + return result + + +def add_prefix_to_keys(dct, prefix): + return {prefix + k: v for k, v in dct.items()} + + +def set_requires_grad(module, value): + for param in module.parameters(): + param.requires_grad = value + + +def flatten_dict(dct): + result = {} + for k, v in dct.items(): + if isinstance(k, tuple): + k = '_'.join(k) + if isinstance(v, dict): + for sub_k, sub_v in flatten_dict(v).items(): + result[f'{k}_{sub_k}'] = sub_v + else: + result[k] = v + return result + + +class LinearRamp: + def __init__(self, start_value=0, end_value=1, start_iter=-1, end_iter=0): + self.start_value = start_value + self.end_value = end_value + self.start_iter = start_iter + self.end_iter = end_iter + + def __call__(self, i): + if i < self.start_iter: + return self.start_value + if i >= self.end_iter: + return self.end_value + part = (i - self.start_iter) / (self.end_iter - self.start_iter) + return self.start_value * (1 - part) + self.end_value * part + + +class LadderRamp: + def __init__(self, start_iters, values): + self.start_iters = start_iters + self.values = values + assert len(values) == len(start_iters) + 1, (len(values), len(start_iters)) + + def __call__(self, i): + segment_i = bisect.bisect_right(self.start_iters, i) + return self.values[segment_i] + + +def get_ramp(kind='ladder', **kwargs): + if kind == 'linear': + return LinearRamp(**kwargs) + if kind == 'ladder': + return LadderRamp(**kwargs) + raise ValueError(f'Unexpected ramp kind: {kind}') + + +def print_traceback_handler(sig, frame): + LOGGER.warning(f'Received signal {sig}') + bt = ''.join(traceback.format_stack()) + LOGGER.warning(f'Requested stack trace:\n{bt}') + + +def register_debug_signal_handlers(sig=signal.SIGUSR1, handler=print_traceback_handler): + LOGGER.warning(f'Setting signal {sig} handler {handler}') + signal.signal(sig, handler) + + +def handle_deterministic_config(config): + seed = dict(config).get('seed', None) + if seed is None: + return False + + seed_everything(seed) + return True + + +def get_shape(t): + if torch.is_tensor(t): + return tuple(t.shape) + elif isinstance(t, dict): + return {n: get_shape(q) for n, q in t.items()} + elif isinstance(t, (list, tuple)): + return [get_shape(q) for q in t] + elif isinstance(t, numbers.Number): + return type(t) + else: + raise ValueError('unexpected type {}'.format(type(t))) + + +def get_has_ddp_rank(): + master_port = os.environ.get('MASTER_PORT', None) + node_rank = os.environ.get('NODE_RANK', None) + local_rank = os.environ.get('LOCAL_RANK', None) + world_size = os.environ.get('WORLD_SIZE', None) + has_rank = master_port is not None or node_rank is not None or local_rank is not None or world_size is not None + return has_rank + + +def handle_ddp_subprocess(): + def main_decorator(main_func): + @functools.wraps(main_func) + def new_main(*args, **kwargs): + # Trainer sets MASTER_PORT, NODE_RANK, LOCAL_RANK, WORLD_SIZE + parent_cwd = os.environ.get('TRAINING_PARENT_WORK_DIR', None) + has_parent = parent_cwd is not None + has_rank = get_has_ddp_rank() + assert has_parent == has_rank, f'Inconsistent state: has_parent={has_parent}, has_rank={has_rank}' + + if has_parent: + # we are in the worker + sys.argv.extend([ + f'hydra.run.dir={parent_cwd}', + # 'hydra/hydra_logging=disabled', + # 'hydra/job_logging=disabled' + ]) + # do nothing if this is a top-level process + # TRAINING_PARENT_WORK_DIR is set in handle_ddp_parent_process after hydra initialization + + main_func(*args, **kwargs) + return new_main + return main_decorator + + +def handle_ddp_parent_process(): + parent_cwd = os.environ.get('TRAINING_PARENT_WORK_DIR', None) + has_parent = parent_cwd is not None + has_rank = get_has_ddp_rank() + assert has_parent == has_rank, f'Inconsistent state: has_parent={has_parent}, has_rank={has_rank}' + + if parent_cwd is None: + os.environ['TRAINING_PARENT_WORK_DIR'] = os.getcwd() + + return has_parent