Spaces:
Configuration error
Configuration error
# This file is autogenerated by the command `make fix-copies`, do not edit. | |
from ..utils import DummyObject, requires_backends | |
class TensorFlowBenchmarkArguments(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TensorFlowBenchmark(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFForcedBOSTokenLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFForcedEOSTokenLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFForceTokensLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGenerationMixin(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLogitsProcessorList(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLogitsWarper(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMinLengthLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFNoBadWordsLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFNoRepeatNGramLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRepetitionPenaltyLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSuppressTokensLogitsProcessor(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTemperatureLogitsWarper(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTopKLogitsWarper(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTopPLogitsWarper(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def tf_top_k_top_p_filtering(*args, **kwargs): | |
requires_backends(tf_top_k_top_p_filtering, ["tf"]) | |
class KerasMetricCallback(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class PushToHubCallback(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSequenceSummary(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSharedEmbeddings(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def shape_list(*args, **kwargs): | |
requires_backends(shape_list, ["tf"]) | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFAlbertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAlbertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None | |
TF_MODEL_FOR_CAUSAL_LM_MAPPING = None | |
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = None | |
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None | |
TF_MODEL_FOR_MASK_GENERATION_MAPPING = None | |
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None | |
TF_MODEL_FOR_MASKED_LM_MAPPING = None | |
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None | |
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None | |
TF_MODEL_FOR_PRETRAINING_MAPPING = None | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None | |
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = None | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None | |
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None | |
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None | |
TF_MODEL_FOR_TEXT_ENCODING_MAPPING = None | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None | |
TF_MODEL_FOR_VISION_2_SEQ_MAPPING = None | |
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = None | |
TF_MODEL_MAPPING = None | |
TF_MODEL_WITH_LM_HEAD_MAPPING = None | |
class TFAutoModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForAudioClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForDocumentQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForMaskGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForSeq2SeqLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForSpeechSeq2Seq(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForTableQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForTextEncoding(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForVision2Seq(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelForZeroShotImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFAutoModelWithLMHead(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBartForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBartForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBartModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBartPretrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFBertEmbeddings(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlenderbotForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlenderbotModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlenderbotPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlenderbotSmallForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlenderbotSmallModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlenderbotSmallPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFBlipForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlipForImageTextRetrieval(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlipForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlipModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlipPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlipTextModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFBlipVisionModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFCamembertForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCamembertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFCLIPModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCLIPPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCLIPTextModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCLIPVisionModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFConvBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvNextForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvNextModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFConvNextPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFCTRLForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCTRLLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCTRLModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCTRLPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFCvtForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCvtModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFCvtPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFData2VecVisionForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFData2VecVisionForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFData2VecVisionModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFData2VecVisionPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDebertaForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDebertaV2ForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaV2ForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaV2ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaV2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaV2ForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaV2Model(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDebertaV2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDeiTForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDeiTForImageClassificationWithTeacher(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDeiTForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDeiTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDeiTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDistilBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDistilBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFDPRContextEncoder(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRPretrainedContextEncoder(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRPretrainedQuestionEncoder(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRPretrainedReader(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRQuestionEncoder(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFDPRReader(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFEfficientFormerForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEfficientFormerModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEfficientFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFElectraForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFElectraPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEncoderDecoderModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFEsmForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEsmForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEsmForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEsmModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFEsmPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFFlaubertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFlaubertForQuestionAnsweringSimple(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFlaubertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFlaubertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFlaubertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFlaubertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFlaubertWithLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFFunnelBaseModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFFunnelPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFGPT2DoubleHeadsModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPT2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPT2LMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPT2MainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPT2Model(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPT2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPTJForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPTJForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPTJForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPTJModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGPTJPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFGroupViTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGroupViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGroupViTTextModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFGroupViTVisionModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFHubertForCTC(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFHubertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFHubertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLayoutLMForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLayoutLMv3ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMv3ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMv3ForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMv3Model(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLayoutLMv3PreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLEDForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLEDModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLEDPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLongformerForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLongformerSelfAttention(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFLxmertForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLxmertMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLxmertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLxmertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFLxmertVisualFeatureEncoder(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMarianModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMarianMTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMarianPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMBartForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMBartModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMBartPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFMobileBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFMobileViTForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileViTForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileViTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMobileViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFMPNetForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMPNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMT5EncoderModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMT5ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFMT5Model(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFOpenAIGPTDoubleHeadsModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOpenAIGPTForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOpenAIGPTLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOpenAIGPTMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOpenAIGPTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOpenAIGPTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOPTForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOPTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFOPTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFPegasusForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFPegasusModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFPegasusPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRagModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRagPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRagSequenceForGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRagTokenForGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRegNetForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRegNetModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRegNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRemBertForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRemBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFResNetForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFResNetModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFResNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRobertaForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRobertaPreLayerNormForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRobertaPreLayerNormPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFRoFormerForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFRoFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFSamModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSamPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFSegformerDecodeHead(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSegformerForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSegformerForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSegformerModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSegformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFSpeech2TextForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSpeech2TextModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSpeech2TextPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFSwinForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSwinForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSwinModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFSwinPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFT5EncoderModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFT5ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFT5Model(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFT5PreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFTapasForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTapasForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTapasForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTapasModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTapasPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFAdaptiveEmbedding(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFTransfoXLPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFVisionEncoderDecoderModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFVisionTextDualEncoderModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFViTForImageClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFViTModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFViTMAEForPreTraining(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFViTMAEModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFViTMAEPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFWav2Vec2ForCTC(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFWav2Vec2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFWav2Vec2Model(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFWav2Vec2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFWhisperForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFWhisperModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFWhisperPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXGLMForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXGLMModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXGLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXLMForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMForQuestionAnsweringSimple(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMWithLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXLMRobertaForCausalLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaForMaskedLM(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLMRobertaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TFXLNetForMultipleChoice(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetForQuestionAnsweringSimple(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetForSequenceClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetForTokenClassification(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetLMHeadModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetMainLayer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class TFXLNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class AdamWeightDecay(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class GradientAccumulator(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
class WarmUp(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |
def create_optimizer(*args, **kwargs): | |
requires_backends(create_optimizer, ["tf"]) | |
class TFTrainer(metaclass=DummyObject): | |
_backends = ["tf"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["tf"]) | |