import torch import torch.nn as nn from torch.nn import init as init import torch.nn.functional as F from torch.nn.modules.batchnorm import _BatchNorm class Decoder_Identity(nn.Module): def __init__(self): super(Decoder_Identity, self).__init__() self.conv_up_2 = nn.Sequential( nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2, padding=1, output_padding=1, dilation=1), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1, bias=True), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1, bias=True), nn.ReLU() ) self.conv_up_1 = nn.Sequential( nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=3, stride=2, padding=1, output_padding=1, dilation=1), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True), nn.ReLU() ) self.conv_last = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=3, kernel_size=1, bias=True), nn.ReLU() ) def forward(self, feat): featmap_2 = self.conv_up_2(feat) featmap_1 = self.conv_up_1(featmap_2) out = self.conv_last(featmap_1) return out class Decoder_SR(nn.Module): def __init__(self, scale=4): super(Decoder_SR, self).__init__() self.scale = scale self.conv_up_2 = nn.Sequential( nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2, padding=1, output_padding=1, dilation=1), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1, bias=True), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, padding=1, bias=True), nn.ReLU() ) self.conv_up_1 = nn.Sequential( nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=3, stride=2, padding=1, output_padding=1, dilation=1), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True), nn.ReLU() ) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) # upsampling self.upsample_1 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True) self.upsample_2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True) self.HR_conv = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, padding=1, bias=True) self.conv_last = nn.Conv2d(in_channels=16, out_channels=3, kernel_size=3, padding=1, bias=True) def forward(self, feat): featmap_2 = self.conv_up_2(feat) featmap_1 = self.conv_up_1(featmap_2) if self.scale == 4: featmap = self.lrelu(self.upsample_1(F.interpolate(featmap_1, scale_factor=2, mode='nearest'))) featmap = self.lrelu(self.upsample_2(F.interpolate(featmap, scale_factor=2, mode='nearest'))) elif self.scale == 2: featmap = self.lrelu(self.upsample_1(F.interpolate(featmap_1, scale_factor=2, mode='nearest'))) out = self.conv_last(self.lrelu(self.HR_conv(featmap))) return out def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) def make_layer(basic_block, num_basic_block, **kwarg): """Make layers by stacking the same blocks. Args: basic_block (nn.module): nn.module class for basic block. num_basic_block (int): number of blocks. Returns: nn.Sequential: Stacked blocks in nn.Sequential. """ layers = [] for _ in range(num_basic_block): layers.append(basic_block(**kwarg)) return nn.Sequential(*layers) class ResidualDenseBlock(nn.Module): """Residual Dense Block. Used in RRDB block in ESRGAN. Args: num_feat (int): Channel number of intermediate features. num_grow_ch (int): Channels for each growth. """ def __init__(self, num_feat=64, num_grow_ch=32): super(ResidualDenseBlock, self).__init__() self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) # initialization default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) # Emperically, we use 0.2 to scale the residual for better performance return x5 * 0.2 + x class RRDB(nn.Module): """Residual in Residual Dense Block. Used in RRDB-Net in ESRGAN. Args: num_feat (int): Channel number of intermediate features. num_grow_ch (int): Channels for each growth. """ def __init__(self, num_feat, num_grow_ch=32): super(RRDB, self).__init__() self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) def forward(self, x): out = self.rdb1(x) out = self.rdb2(out) out = self.rdb3(out) # Emperically, we use 0.2 to scale the residual for better performance return out * 0.2 + x class Decoder_Id_RRDB(nn.Module): def __init__(self, num_in_ch, num_out_ch=3, scale=4, num_feat=64, num_block=10, num_grow_ch=32): super(Decoder_Id_RRDB, self).__init__() self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch) self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): feat = self.conv_first(x) body_feat = self.conv_body(self.body(feat)) feat = feat + body_feat out = self.conv_last(self.lrelu(self.conv_hr(feat))) return out class Decoder_SR_RRDB(nn.Module): def __init__(self, num_in_ch, num_out_ch=3, scale=4, num_feat=64, num_block=23, num_grow_ch=32): super(Decoder_SR_RRDB, self).__init__() self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch) self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) # upsample self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): feat = self.conv_first(x) body_feat = self.conv_body(self.body(feat)) feat = feat + body_feat # upsample feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest'))) feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) out = self.conv_last(self.lrelu(self.conv_hr(feat))) return out