# Copyright 2024 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for official.nlp.data.create_xlnet_pretraining_data.""" import os import tempfile from typing import List from absl import logging from absl.testing import parameterized import numpy as np import tensorflow as tf, tf_keras from official.nlp.data import create_xlnet_pretraining_data as cpd _VOCAB_WORDS = ["vocab_1", "vocab_2"] # pylint: disable=invalid-name def _create_files( temp_dir: str, file_contents: List[List[str]]) -> List[str]: """Writes arbitrary documents into files.""" root_dir = tempfile.mkdtemp(dir=temp_dir) files = [] for i, file_content in enumerate(file_contents): destination = os.path.join(root_dir, "%d.txt" % i) with open(destination, "wb") as f: for line in file_content: f.write(line.encode("utf-8")) files.append(destination) return files def _get_mock_tokenizer(): """Creates a mock tokenizer.""" class MockSpieceModel: """Mock Spiece model for testing.""" def __init__(self): self._special_piece_to_id = { "": 0, } for piece in set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~')): self._special_piece_to_id[piece] = 1 def EncodeAsPieces(self, inputs: str) -> List[str]: return inputs def SampleEncodeAsPieces(self, inputs: str, nbest_size: int, theta: float) -> List[str]: del nbest_size, theta return inputs def PieceToId(self, piece: str) -> int: return ord(piece[0]) def IdToPiece(self, id_: int) -> str: return chr(id_) * 3 class Tokenizer: """Mock Tokenizer for testing.""" def __init__(self): self.sp_model = MockSpieceModel() def convert_ids_to_tokens(self, ids: List[int]) -> List[str]: return [self.sp_model.IdToPiece(id_) for id_ in ids] return Tokenizer() class PreprocessDataTest(tf.test.TestCase): def test_remove_extraneous_space(self): line = " abc " output = cpd._preprocess_line(line) self.assertEqual(output, "abc") def test_symbol_replacements(self): self.assertEqual(cpd._preprocess_line("``abc``"), "\"abc\"") self.assertEqual(cpd._preprocess_line("''abc''"), "\"abc\"") def test_accent_replacements(self): self.assertEqual(cpd._preprocess_line("åbc"), "abc") def test_lower_case(self): self.assertEqual(cpd._preprocess_line("ABC", do_lower_case=True), "abc") def test_end_to_end(self): self.assertEqual( cpd._preprocess_line("HelLo ``wórLd``", do_lower_case=True), "hello \"world\"") class PreprocessAndTokenizeFilesTest(tf.test.TestCase): def test_basic_end_to_end(self): documents = [ [ "This is sentence 1.\n", "This is sentence 2.\n", "Sentence 3 is what this is.\n", ], [ "This is the second document.\n", "This is the second line of the second document.\n" ], ] input_files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents) all_data = cpd.preprocess_and_tokenize_input_files( input_files=input_files, tokenizer=_get_mock_tokenizer(), log_example_freq=1) self.assertEqual(len(all_data), len(documents)) for token_ids, sentence_ids in all_data: self.assertEqual(len(token_ids), len(sentence_ids)) def test_basic_correctness(self): documents = [["a\n", "b\n", "c\n"]] input_files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents) all_data = cpd.preprocess_and_tokenize_input_files( input_files=input_files, tokenizer=_get_mock_tokenizer(), log_example_freq=1) token_ids, sentence_ids = all_data[0] self.assertAllClose(token_ids, [97, 98, 99]) self.assertAllClose(sentence_ids, [True, False, True]) def test_correctness_with_spaces_and_accents(self): documents = [[ " å \n", "b \n", " c \n", ]] input_files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents) all_data = cpd.preprocess_and_tokenize_input_files( input_files=input_files, tokenizer=_get_mock_tokenizer(), log_example_freq=1) token_ids, sentence_ids = all_data[0] self.assertAllClose(token_ids, [97, 98, 99]) self.assertAllClose(sentence_ids, [True, False, True]) class BatchReshapeTests(tf.test.TestCase): def test_basic_functionality(self): per_host_batch_size = 3 mock_shape = (20,) # Should truncate and reshape. expected_result_shape = (3, 6) tokens = np.zeros(mock_shape) sentence_ids = np.zeros(mock_shape) reshaped_data = cpd._reshape_to_batch_dimensions( tokens=tokens, sentence_ids=sentence_ids, per_host_batch_size=per_host_batch_size) for values in reshaped_data: self.assertEqual(len(values.flatten()) % per_host_batch_size, 0) self.assertAllClose(values.shape, expected_result_shape) class CreateSegmentsTest(tf.test.TestCase): def test_basic_functionality(self): data_length = 10 tokens = np.arange(data_length) sentence_ids = np.concatenate([np.zeros(data_length // 2), np.ones(data_length // 2)]) begin_index = 0 total_length = 8 a_data, b_data, label = cpd._create_a_and_b_segments( tokens=tokens, sentence_ids=sentence_ids, begin_index=begin_index, total_length=total_length, no_cut_probability=0.) self.assertAllClose(a_data, [0, 1, 2, 3]) self.assertAllClose(b_data, [5, 6, 7, 8]) self.assertEqual(label, 1) def test_no_cut(self): data_length = 10 tokens = np.arange(data_length) sentence_ids = np.zeros(data_length) begin_index = 0 total_length = 8 a_data, b_data, label = cpd._create_a_and_b_segments( tokens=tokens, sentence_ids=sentence_ids, begin_index=begin_index, total_length=total_length, no_cut_probability=0.) self.assertGreater(len(a_data), 0) self.assertGreater(len(b_data), 0) self.assertEqual(label, 0) def test_no_cut_with_probability(self): data_length = 10 tokens = np.arange(data_length) sentence_ids = np.concatenate([np.zeros(data_length // 2), np.ones(data_length // 2)]) begin_index = 0 total_length = 8 a_data, b_data, label = cpd._create_a_and_b_segments( tokens=tokens, sentence_ids=sentence_ids, begin_index=begin_index, total_length=total_length, no_cut_probability=1.) self.assertGreater(len(a_data), 0) self.assertGreater(len(b_data), 0) self.assertEqual(label, 0) class CreateInstancesTest(tf.test.TestCase): """Tests conversions of Token/Sentence IDs to training instances.""" def test_basic(self): data_length = 12 tokens = np.arange(data_length) sentence_ids = np.zeros(data_length) seq_length = 8 instances = cpd._convert_tokens_to_instances( tokens=tokens, sentence_ids=sentence_ids, per_host_batch_size=2, seq_length=seq_length, reuse_length=4, tokenizer=_get_mock_tokenizer(), bi_data=False, num_cores_per_host=1, logging_frequency=1) for instance in instances: self.assertEqual(len(instance.data), seq_length) self.assertEqual(len(instance.segment_ids), seq_length) self.assertIsInstance(instance.label, int) self.assertIsInstance(instance.boundary_indices, list) class TFRecordPathTests(tf.test.TestCase): def test_basic(self): base_kwargs = dict( per_host_batch_size=1, num_cores_per_host=1, seq_length=2, reuse_length=1) config1 = dict( prefix="test", suffix="", bi_data=True, use_eod_token=False, do_lower_case=True) config1.update(base_kwargs) expectation1 = "test_seqlen-2_reuse-1_bs-1_cores-1_uncased_bi.tfrecord" self.assertEqual(cpd.get_tfrecord_name(**config1), expectation1) config2 = dict( prefix="", suffix="test", bi_data=False, use_eod_token=False, do_lower_case=False) config2.update(base_kwargs) expectation2 = "seqlen-2_reuse-1_bs-1_cores-1_cased_uni_test.tfrecord" self.assertEqual(cpd.get_tfrecord_name(**config2), expectation2) config3 = dict( prefix="", suffix="", use_eod_token=True, bi_data=False, do_lower_case=True) config3.update(base_kwargs) expectation3 = "seqlen-2_reuse-1_bs-1_cores-1_uncased_eod_uni.tfrecord" self.assertEqual(cpd.get_tfrecord_name(**config3), expectation3) class TestCreateTFRecords(parameterized.TestCase, tf.test.TestCase): @parameterized.named_parameters( ("bi_data_only", True, False, False), ("eod_token_only", False, True, True), ("lower_case_only", False, False, True), ("all_enabled", True, True, True), ) def test_end_to_end(self, bi_data: bool, use_eod_token: bool, do_lower_case: bool): tokenizer = _get_mock_tokenizer() num_documents = 5 sentences_per_document = 10 document_length = 50 documents = [ ["a " * document_length for _ in range(sentences_per_document)] for _ in range(num_documents)] save_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) files = _create_files(temp_dir=self.get_temp_dir(), file_contents=documents) cpd.create_tfrecords( tokenizer=tokenizer, input_file_or_files=",".join(files), use_eod_token=use_eod_token, do_lower_case=do_lower_case, per_host_batch_size=8, seq_length=8, reuse_length=4, bi_data=bi_data, num_cores_per_host=2, save_dir=save_dir) self.assertTrue(any(filter(lambda x: x.endswith(".json"), os.listdir(save_dir)))) self.assertTrue(any(filter(lambda x: x.endswith(".tfrecord"), os.listdir(save_dir)))) if __name__ == "__main__": np.random.seed(0) logging.set_verbosity(logging.INFO) tf.test.main()