# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import ( Attention, AttentionProcessor, FluxAttnProcessor2_0, FusedFluxAttnProcessor2_0, ) from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed from diffusers.models.modeling_outputs import Transformer2DModelOutput from typing import List logger = logging.get_logger(__name__) # pylint: disable=invalid-name @maybe_allow_in_graph class FluxSingleTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) processor = FluxAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, joint_attention_kwargs=None, ): residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) joint_attention_kwargs = joint_attention_kwargs or {} if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: SR_residual_list = [] SR_norm_hidden_states_list = [] SR_gate_list = [] SR_mlp_hidden_states_list = [] for SR_hidden_states in joint_attention_kwargs["SR_hidden_states_list"]: SR_residual = SR_hidden_states SR_norm_hidden_states, SR_gate = self.norm(SR_hidden_states, emb=temb) SR_mlp_hidden_states = self.act_mlp(self.proj_mlp(SR_norm_hidden_states)) SR_residual_list.append(SR_residual) SR_norm_hidden_states_list.append(SR_norm_hidden_states) SR_gate_list.append(SR_gate) SR_mlp_hidden_states_list.append(SR_mlp_hidden_states) joint_attention_kwargs["SR_norm_hidden_states_list"] = SR_norm_hidden_states_list if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: attn_output, SR_attn_output_list = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs ) else: attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: SR_hidden_states_list = [] for SR_attn_output, SR_mlp_hidden_states, SR_gate,SR_residual in zip(SR_attn_output_list, SR_mlp_hidden_states_list, SR_gate_list, SR_residual_list): SR_hidden_states = torch.cat([SR_attn_output, SR_mlp_hidden_states], dim=2) SR_gate = SR_gate.unsqueeze(1) SR_hidden_states = SR_gate * self.proj_out(SR_hidden_states) SR_hidden_states = SR_residual + SR_hidden_states if SR_hidden_states.dtype == torch.float16: SR_hidden_states = SR_hidden_states.clip(-65504, 65504) SR_hidden_states_list.append(SR_hidden_states) return hidden_states,SR_hidden_states_list return hidden_states @maybe_allow_in_graph class FluxTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = FluxAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, joint_attention_kwargs=None, ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) joint_attention_kwargs = joint_attention_kwargs or {} if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: SR_norm_encoder_hidden_states_list = [] SR_c_gate_msa_list = [] SR_c_shift_mlp_list = [] SR_c_scale_mlp_list = [] SR_c_gate_mlp_list = [] SR_encoder_hidden_states_list = joint_attention_kwargs["SR_encoder_hidden_states_list"] for SR_encoder_hidden_states in SR_encoder_hidden_states_list: SR_norm_encoder_hidden_states, SR_c_gate_msa, SR_c_shift_mlp, SR_c_scale_mlp, SR_c_gate_mlp = self.norm1_context( SR_encoder_hidden_states, emb=temb ) SR_norm_encoder_hidden_states_list.append(SR_norm_encoder_hidden_states) SR_c_gate_msa_list.append(SR_c_gate_msa) SR_c_shift_mlp_list.append(SR_c_shift_mlp) SR_c_scale_mlp_list.append(SR_c_scale_mlp) SR_c_gate_mlp_list.append(SR_c_gate_mlp) joint_attention_kwargs["SR_norm_encoder_hidden_states_list"] = SR_norm_encoder_hidden_states_list # Attention. if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: attn_output, context_attn_output, SR_context_attn_output_list = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) else: attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: updated_SR_encoder_hidden_states_list = [] for SR_context_attn_output, SR_c_gate_msa, SR_encoder_hidden_states, SR_c_scale_mlp, SR_c_shift_mlp, SR_c_gate_mlp in zip(SR_context_attn_output_list, SR_c_gate_msa_list, SR_encoder_hidden_states_list, SR_c_scale_mlp_list, SR_c_shift_mlp_list, SR_c_gate_mlp_list): SR_context_attn_output = SR_c_gate_msa.unsqueeze(1) * SR_context_attn_output SR_encoder_hidden_states = SR_encoder_hidden_states + SR_context_attn_output SR_norm_encoder_hidden_states = self.norm2_context(SR_encoder_hidden_states) SR_norm_encoder_hidden_states = SR_norm_encoder_hidden_states * (1 + SR_c_scale_mlp[:, None]) + SR_c_shift_mlp[:, None] SR_context_ff_output = self.ff_context(SR_norm_encoder_hidden_states) SR_encoder_hidden_states = SR_encoder_hidden_states + SR_c_gate_mlp.unsqueeze(1) * SR_context_ff_output if SR_encoder_hidden_states.dtype == torch.float16: SR_encoder_hidden_states = SR_encoder_hidden_states.clip(-65504, 65504) updated_SR_encoder_hidden_states_list.append(SR_encoder_hidden_states) return encoder_hidden_states, hidden_states, updated_SR_encoder_hidden_states_list return encoder_hidden_states, hidden_states class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): """ The Transformer model introduced in Flux. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Parameters: patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. """ _supports_gradient_checkpointing = True _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"] @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: Tuple[int] = (16, 56, 56), ): super().__init__() self.out_channels = in_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) text_time_guidance_cls = ( CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings ) self.time_text_embed = text_time_guidance_cls( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim ) self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ FluxTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ FluxSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_single_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedFluxAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def HB_replace_hidden_states(self, hidden_states, HB_hidden_states_list_list, HB_m_offset_list,HB_n_offset_list,HB_m_scale_list,HB_n_scale_list, latent_h, latent_w, HB_idx): hidden_states=hidden_states.view(hidden_states.shape[0], latent_h,latent_w, hidden_states.shape[2]) for HB_hidden_states_list, HB_m_offset, HB_n_offset, HB_m_scale, HB_n_scale in zip(HB_hidden_states_list_list, HB_m_offset_list, HB_n_offset_list, HB_m_scale_list, HB_n_scale_list): HB_hidden_states = HB_hidden_states_list[HB_idx] HB_hidden_states = HB_hidden_states.view(HB_hidden_states.shape[0], HB_n_scale,HB_m_scale, HB_hidden_states.shape[2]) hidden_states[:,HB_n_offset:HB_n_offset+HB_n_scale,HB_m_offset:HB_m_offset+HB_m_scale,:] = HB_hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], latent_h*latent_w, hidden_states.shape[3]) HB_idx+=1 return hidden_states, HB_idx def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool = True, controlnet_blocks_repeat: bool = False, latent_h: int=None, latent_w: int=None, HB_hidden_states_list_list: List[List[torch.Tensor]] = None, HB_m_offset_list: List[int]=None, HB_n_offset_list: List[int]=None, HB_m_scale_list: List[int]=None, HB_n_scale_list: List[int]=None ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) if HB_hidden_states_list_list is not None: HB_idx=0 hidden_states, HB_idx = self.HB_replace_hidden_states(hidden_states, HB_hidden_states_list_list, HB_m_offset_list,HB_n_offset_list,HB_m_scale_list,HB_n_scale_list, latent_h, latent_w, HB_idx) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None temb = ( self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: joint_attention_kwargs["SR_encoder_hidden_states_list"] = [ self.context_embedder(SR_encoder_hidden_states) for SR_encoder_hidden_states in joint_attention_kwargs["SR_encoder_hidden_states_list"] ] if txt_ids.ndim == 3: logger.warning( "Passing `txt_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) txt_ids = txt_ids[0] if img_ids.ndim == 3: logger.warning( "Passing `img_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) img_ids = img_ids[0] ids = torch.cat((txt_ids, img_ids), dim=0) image_rotary_emb = self.pos_embed(ids) for index_block, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: encoder_hidden_states, hidden_states, joint_attention_kwargs["SR_encoder_hidden_states_list"] = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) if HB_hidden_states_list_list is not None: hidden_states, HB_idx = self.HB_replace_hidden_states(hidden_states, HB_hidden_states_list_list, HB_m_offset_list,HB_n_offset_list,HB_m_scale_list,HB_n_scale_list, latent_h, latent_w, HB_idx) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) interval_control = int(np.ceil(interval_control)) # For Xlabs ControlNet. if controlnet_blocks_repeat: hidden_states = ( hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] ) else: hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: joint_attention_kwargs["SR_hidden_states_list"] = [ torch.cat([SR_encoder_hidden_states, hidden_states], dim=1) for SR_encoder_hidden_states in joint_attention_kwargs["SR_encoder_hidden_states_list"] ] hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: if joint_attention_kwargs is not None and "SR_encoder_hidden_states_list" in joint_attention_kwargs: hidden_states,joint_attention_kwargs["SR_hidden_states_list"] = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) if HB_hidden_states_list_list is not None: hidden_states_clone = hidden_states.clone()[:, encoder_hidden_states.shape[1] :, ...].view(hidden_states.shape[0],latent_h,latent_w,hidden_states.shape[2]) for HB_hidden_states_list, HB_m_offset, HB_n_offset, HB_m_scale,HB_n_scale in zip(HB_hidden_states_list_list, HB_m_offset_list, HB_n_offset_list, HB_m_scale_list, HB_n_scale_list): HB_hidden_states = HB_hidden_states_list[HB_idx] HB_hidden_states = HB_hidden_states[:, encoder_hidden_states.shape[1] :, ...].view(HB_hidden_states.shape[0], HB_n_scale, HB_m_scale, HB_hidden_states.shape[2]) hidden_states_clone[:,HB_n_offset:HB_n_offset+HB_n_scale,HB_m_offset:HB_m_offset+HB_m_scale,:]=HB_hidden_states hidden_states_clone = hidden_states_clone.view(hidden_states.shape[0], latent_h*latent_w, hidden_states.shape[2]) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = hidden_states_clone HB_idx+=1 # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) if HB_hidden_states_list_list is not None: hidden_states, HB_idx = self.HB_replace_hidden_states(hidden_states, HB_hidden_states_list_list, HB_m_offset_list,HB_n_offset_list,HB_m_scale_list,HB_n_scale_list, latent_h, latent_w, HB_idx) output = self.proj_out(hidden_states) if HB_hidden_states_list_list is not None: hidden_states, HB_idx = self.HB_replace_hidden_states(hidden_states, HB_hidden_states_list_list, HB_m_offset_list,HB_n_offset_list,HB_m_scale_list,HB_n_scale_list, latent_h, latent_w, HB_idx) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) def forward_hidden_states_list( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ hidden_states_list=[] if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) hidden_states_list.append(hidden_states) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None temb = ( self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if txt_ids.ndim == 3: logger.warning( "Passing `txt_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) txt_ids = txt_ids[0] if img_ids.ndim == 3: logger.warning( "Passing `img_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) img_ids = img_ids[0] ids = torch.cat((txt_ids, img_ids), dim=0) image_rotary_emb = self.pos_embed(ids) for index_block, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) hidden_states_list.append(hidden_states) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) interval_control = int(np.ceil(interval_control)) hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) hidden_states_list.append(hidden_states) # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) hidden_states_list.append(hidden_states) output = self.proj_out(hidden_states) hidden_states_list.append(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,),hidden_states_list return Transformer2DModelOutput(sample=output)