from langchain_groq import ChatGroq from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.agents import Tool from langchain_experimental.utilities import PythonREPL # type: ignore from langchain_community.chat_models import ChatOllama import autopep8 # type: ignore import pandas as pd import os from dotenv import load_dotenv load_dotenv() groq_api_key = os.getenv("GROQ_API_KEY") class datachat(): def __init__(self,file_path): callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) self.llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768",callback_manager=callback_manager) self.instruction = """ As a python coder create a pythonic response for the query with reference to the columns in my pandas dataframe{columns}. Instruction: Do not write the whole script just give me a pythonic response for this query and do not extend more than asked. Assume a dataframe variable df_temp. Enclose the generated code in Markdown code embedding format. Do not generate sample output. Answer the question and provide a one-line explanation and stop. example: ```python output = df['region'].unique() ``` question: {input} answer: """ self.file_path=file_path def extract_code(self,response): start = 0 q = "" temp_block="" for line in response.splitlines(): if '```python' in line and start==0: start=1 if '```' == line.strip() and start==1: start =0 break if start ==1 and '```' not in line: q=q+'\n'+line return q def data_ops(self,query): if os.path.isfile('./data/output.csv'): df=pd.read_csv('./data/output.csv') else: df=pd.read_csv(self.file_path) query = query columns=df.columns.tolist() prompt = PromptTemplate.from_template(self.instruction) agent = LLMChain(llm=self.llm,prompt=prompt) response = agent.invoke(input={"columns":columns,"input":query}) response = self.extract_code(response['text']) gencode=autopep8.fix_code(response) df_temp=df exec(gencode) df_temp.to_csv('./data/output.csv',index=False) return df_temp