# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Objectives for full-episode. Implementations of UREX & REINFORCE. Note that these implementations use a non-parametric baseline to reduce variance. Thus, multiple samples with the same seed must be taken from the environment. """ import tensorflow as tf import objective class Reinforce(objective.Objective): def __init__(self, learning_rate, clip_norm, num_samples, tau=0.1, bonus_weight=1.0): super(Reinforce, self).__init__(learning_rate, clip_norm=clip_norm) self.num_samples = num_samples assert self.num_samples > 1 self.tau = tau self.bonus_weight = bonus_weight self.eps_lambda = 0.0 def get_bonus(self, total_rewards, total_log_probs): """Exploration bonus.""" return -self.tau * total_log_probs def get(self, rewards, pads, values, final_values, log_probs, prev_log_probs, target_log_probs, entropies, logits, target_values, final_target_values): seq_length = tf.shape(rewards)[0] not_pad = tf.reshape(1 - pads, [seq_length, -1, self.num_samples]) rewards = not_pad * tf.reshape(rewards, [seq_length, -1, self.num_samples]) log_probs = not_pad * tf.reshape(sum(log_probs), [seq_length, -1, self.num_samples]) total_rewards = tf.reduce_sum(rewards, 0) total_log_probs = tf.reduce_sum(log_probs, 0) rewards_and_bonus = (total_rewards + self.bonus_weight * self.get_bonus(total_rewards, total_log_probs)) baseline = tf.reduce_mean(rewards_and_bonus, 1, keep_dims=True) loss = -tf.stop_gradient(rewards_and_bonus - baseline) * total_log_probs loss = tf.reduce_mean(loss) raw_loss = loss # TODO gradient_ops = self.training_ops( loss, learning_rate=self.learning_rate) tf.summary.histogram('log_probs', total_log_probs) tf.summary.histogram('rewards', total_rewards) tf.summary.scalar('avg_rewards', tf.reduce_mean(total_rewards)) tf.summary.scalar('loss', loss) return loss, raw_loss, baseline, gradient_ops, tf.summary.merge_all() class UREX(Reinforce): def get_bonus(self, total_rewards, total_log_probs): """Exploration bonus.""" discrepancy = total_rewards / self.tau - total_log_probs normalized_d = self.num_samples * tf.nn.softmax(discrepancy) return self.tau * normalized_d