![TensorFlow Requirement: 1.x](https://img.shields.io/badge/TensorFlow%20Requirement-1.x-brightgreen) ![TensorFlow 2 Not Supported](https://img.shields.io/badge/TensorFlow%202%20Not%20Supported-%E2%9C%95-red.svg) Code for several RL algorithms used in the following papers: * "Improving Policy Gradient by Exploring Under-appreciated Rewards" by Ofir Nachum, Mohammad Norouzi, and Dale Schuurmans. * "Bridging the Gap Between Value and Policy Based Reinforcement Learning" by Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. * "Trust-PCL: An Off-Policy Trust Region Method for Continuous Control" by Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Available algorithms: * Actor Critic * TRPO * PCL * Unified PCL * Trust-PCL * PCL + Constraint Trust Region (un-published) * REINFORCE * UREX Requirements: * TensorFlow (see http://www.tensorflow.org for how to install/upgrade) * OpenAI Gym (see http://gym.openai.com/docs) * NumPy (see http://www.numpy.org/) * SciPy (see http://www.scipy.org/) Quick Start: Run UREX on a simple environment: ``` python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \ --validation_frequency=25 --tau=0.1 --clip_norm=50 \ --num_samples=10 --objective=urex ``` Run REINFORCE on a simple environment: ``` python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \ --validation_frequency=25 --tau=0.01 --clip_norm=50 \ --num_samples=10 --objective=reinforce ``` Run PCL on a simple environment: ``` python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \ --validation_frequency=25 --tau=0.025 --rollout=10 --critic_weight=1.0 \ --gamma=0.9 --clip_norm=10 --replay_buffer_freq=1 --objective=pcl ``` Run PCL with expert trajectories on a simple environment: ``` python trainer.py --logtostderr --batch_size=400 --env=DuplicatedInput-v0 \ --validation_frequency=25 --tau=0.025 --rollout=10 --critic_weight=1.0 \ --gamma=0.9 --clip_norm=10 --replay_buffer_freq=1 --objective=pcl \ --num_expert_paths=10 ``` Run Mujoco task with TRPO: ``` python trainer.py --logtostderr --batch_size=25 --env=HalfCheetah-v1 \ --validation_frequency=5 --rollout=10 --gamma=0.995 \ --max_step=1000 --cutoff_agent=1000 \ --objective=trpo --norecurrent --internal_dim=64 --trust_region_p \ --max_divergence=0.05 --value_opt=best_fit --critic_weight=0.0 \ ``` To run Mujoco task using Trust-PCL (off-policy) use the below command. It should work well across all environments, given that you search sufficiently among (1) max_divergence (0.001, 0.0005, 0.002 are good values), (2) rollout (1, 5, 10 are good values), (3) tf_seed (need to average over enough random seeds). ``` python trainer.py --logtostderr --batch_size=1 --env=HalfCheetah-v1 \ --validation_frequency=250 --rollout=1 --critic_weight=1.0 --gamma=0.995 \ --clip_norm=40 --learning_rate=0.0001 --replay_buffer_freq=1 \ --replay_buffer_size=5000 --replay_buffer_alpha=0.001 --norecurrent \ --objective=pcl --max_step=10 --cutoff_agent=1000 --tau=0.0 --eviction=fifo \ --max_divergence=0.001 --internal_dim=256 --replay_batch_size=64 \ --nouse_online_batch --batch_by_steps --value_hidden_layers=2 \ --update_eps_lambda --nounify_episodes --target_network_lag=0.99 \ --sample_from=online --clip_adv=1 --prioritize_by=step --num_steps=1000000 \ --noinput_prev_actions --use_target_values --tf_seed=57 ``` Run Mujoco task with PCL constraint trust region: ``` python trainer.py --logtostderr --batch_size=25 --env=HalfCheetah-v1 \ --validation_frequency=5 --tau=0.001 --rollout=50 --gamma=0.99 \ --max_step=1000 --cutoff_agent=1000 \ --objective=pcl --norecurrent --internal_dim=64 --trust_region_p \ --max_divergence=0.01 --value_opt=best_fit --critic_weight=0.0 \ --tau_decay=0.1 --tau_start=0.1 ``` Maintained by Ofir Nachum (ofirnachum).