# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Variational Dropout Wrapper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class VariationalDropoutWrapper(tf.contrib.rnn.RNNCell): """Add variational dropout to a RNN cell.""" def __init__(self, cell, batch_size, input_size, recurrent_keep_prob, input_keep_prob): self._cell = cell self._recurrent_keep_prob = recurrent_keep_prob self._input_keep_prob = input_keep_prob def make_mask(keep_prob, units): random_tensor = keep_prob # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob) random_tensor += tf.random_uniform(tf.stack([batch_size, units])) return tf.floor(random_tensor) / keep_prob self._recurrent_mask = make_mask(recurrent_keep_prob, self._cell.state_size[0]) self._input_mask = self._recurrent_mask @property def state_size(self): return self._cell.state_size @property def output_size(self): return self._cell.output_size def __call__(self, inputs, state, scope=None): dropped_inputs = inputs * self._input_mask dropped_state = (state[0], state[1] * self._recurrent_mask) new_h, new_state = self._cell(dropped_inputs, dropped_state, scope) return new_h, new_state