# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run training and evaluation for CVT text models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from base import configure from base import utils from training import trainer from training import training_progress FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('mode', 'train', '"train" or "eval') tf.app.flags.DEFINE_string('model_name', 'default_model', 'A name identifying the model being ' 'trained/evaluated') def main(): utils.heading('SETUP') config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name) config.write() with tf.Graph().as_default() as graph: model_trainer = trainer.Trainer(config) summary_writer = tf.summary.FileWriter(config.summaries_dir) checkpoints_saver = tf.train.Saver(max_to_keep=1) best_model_saver = tf.train.Saver(max_to_keep=1) init_op = tf.global_variables_initializer() graph.finalize() with tf.Session() as sess: sess.run(init_op) progress = training_progress.TrainingProgress( config, sess, checkpoints_saver, best_model_saver, config.mode == 'train') utils.log() if config.mode == 'train': utils.heading('START TRAINING ({:})'.format(config.model_name)) model_trainer.train(sess, progress, summary_writer) elif config.mode == 'eval': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None) else: raise ValueError('Mode must be "train" or "eval"') if __name__ == '__main__': main()