# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test a tflite model using random input data.""" from __future__ import print_function from absl import flags import numpy as np import tensorflow.compat.v1 as tf flags.DEFINE_string('model_path', None, 'Path to model.') FLAGS = flags.FLAGS def main(_): flags.mark_flag_as_required('model_path') # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.model_path) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() print('input_details:', input_details) output_details = interpreter.get_output_details() print('output_details:', output_details) # Test model on random input data. input_shape = input_details[0]['shape'] # change the following line to feed into your own data. input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) print(output_data) if __name__ == '__main__': tf.app.run()