# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for deeplab.datasets.data_generator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from six.moves import range import tensorflow as tf from deeplab import common from deeplab.datasets import data_generator ImageAttributes = collections.namedtuple( 'ImageAttributes', ['image', 'label', 'height', 'width', 'image_name']) class DatasetTest(tf.test.TestCase): # Note: training dataset cannot be tested since there is shuffle operation. # When disabling the shuffle, training dataset is operated same as validation # dataset. Therefore it is not tested again. def testPascalVocSegTestData(self): dataset = data_generator.Dataset( dataset_name='pascal_voc_seg', split_name='val', dataset_dir= 'deeplab/testing/pascal_voc_seg', batch_size=1, crop_size=[3, 3], # Use small size for testing. min_resize_value=3, max_resize_value=3, resize_factor=None, min_scale_factor=0.01, max_scale_factor=2.0, scale_factor_step_size=0.25, is_training=False, model_variant='mobilenet_v2') self.assertAllEqual(dataset.num_of_classes, 21) self.assertAllEqual(dataset.ignore_label, 255) num_of_images = 3 with self.test_session() as sess: iterator = dataset.get_one_shot_iterator() for i in range(num_of_images): batch = iterator.get_next() batch, = sess.run([batch]) image_attributes = _get_attributes_of_image(i) self.assertEqual(batch[common.HEIGHT][0], image_attributes.height) self.assertEqual(batch[common.WIDTH][0], image_attributes.width) self.assertEqual(batch[common.IMAGE_NAME][0], image_attributes.image_name.encode()) # All data have been read. with self.assertRaisesRegexp(tf.errors.OutOfRangeError, ''): sess.run([iterator.get_next()]) def _get_attributes_of_image(index): """Gets the attributes of the image. Args: index: Index of image in all images. Returns: Attributes of the image in the format of ImageAttributes. Raises: ValueError: If index is of wrong value. """ if index == 0: return ImageAttributes( image=None, label=None, height=366, width=500, image_name='2007_000033') elif index == 1: return ImageAttributes( image=None, label=None, height=335, width=500, image_name='2007_000042') elif index == 2: return ImageAttributes( image=None, label=None, height=333, width=500, image_name='2007_000061') else: raise ValueError('Index can only be 0, 1 or 2.') if __name__ == '__main__': tf.test.main()