# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Zoneout Wrapper""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class ZoneoutWrapper(tf.contrib.rnn.RNNCell): """Add Zoneout to a RNN cell.""" def __init__(self, cell, zoneout_drop_prob, is_training=True): self._cell = cell self._zoneout_prob = zoneout_drop_prob self._is_training = is_training @property def state_size(self): return self._cell.state_size @property def output_size(self): return self._cell.output_size def __call__(self, inputs, state, scope=None): output, new_state = self._cell(inputs, state, scope) if not isinstance(self._cell.state_size, tuple): new_state = tf.split(value=new_state, num_or_size_splits=2, axis=1) state = tf.split(value=state, num_or_size_splits=2, axis=1) final_new_state = [new_state[0], new_state[1]] if self._is_training: for i, state_element in enumerate(state): random_tensor = 1 - self._zoneout_prob # keep probability random_tensor += tf.random_uniform(tf.shape(state_element)) # 0. if [zoneout_prob, 1.0) and 1. if [1.0, 1.0 + zoneout_prob) binary_tensor = tf.floor(random_tensor) final_new_state[ i] = (new_state[i] - state_element) * binary_tensor + state_element else: for i, state_element in enumerate(state): final_new_state[ i] = state_element * self._zoneout_prob + new_state[i] * ( 1 - self._zoneout_prob) if isinstance(self._cell.state_size, tuple): return output, tf.contrib.rnn.LSTMStateTuple( final_new_state[0], final_new_state[1]) return output, tf.concat([final_new_state[0], final_new_state[1]], 1)