# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """KeypointNet!! A reimplementation of 'Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning' keypoint network. Given a single 2D image of a known class, this network can predict a set of 3D keypoints that are consistent across viewing angles of the same object and across object instances. These keypoints and their detectors are discovered and learned automatically without keypoint location supervision. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import matplotlib.pyplot as plt import numpy as np import os from scipy import misc import sys import tensorflow as tf import tensorflow.contrib.slim as slim import utils FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_boolean("predict", False, "Running inference if true") tf.app.flags.DEFINE_string( "input", "", "Input folder containing images") tf.app.flags.DEFINE_string("model_dir", None, "Estimator model_dir") tf.app.flags.DEFINE_string( "dset", "", "Path to the directory containing the dataset.") tf.app.flags.DEFINE_integer("steps", 200000, "Training steps") tf.app.flags.DEFINE_integer("batch_size", 8, "Size of mini-batch.") tf.app.flags.DEFINE_string( "hparams", "", "A comma-separated list of `name=value` hyperparameter values. This flag " "is used to override hyperparameter settings either when manually " "selecting hyperparameters or when using Vizier.") tf.app.flags.DEFINE_integer( "sync_replicas", -1, "If > 0, use SyncReplicasOptimizer and use this many replicas per sync.") # Fixed input size 128 x 128. vw = vh = 128 def create_input_fn(split, batch_size): """Returns input_fn for tf.estimator.Estimator. Reads tfrecords and construts input_fn for either training or eval. All tfrecords not in test.txt or dev.txt will be assigned to training set. Args: split: A string indicating the split. Can be either 'train' or 'validation'. batch_size: The batch size! Returns: input_fn for tf.estimator.Estimator. Raises: IOError: If test.txt or dev.txt are not found. """ if (not os.path.exists(os.path.join(FLAGS.dset, "test.txt")) or not os.path.exists(os.path.join(FLAGS.dset, "dev.txt"))): raise IOError("test.txt or dev.txt not found") with open(os.path.join(FLAGS.dset, "test.txt"), "r") as f: testset = [x.strip() for x in f.readlines()] with open(os.path.join(FLAGS.dset, "dev.txt"), "r") as f: validset = [x.strip() for x in f.readlines()] files = os.listdir(FLAGS.dset) filenames = [] for f in files: sp = os.path.splitext(f) if sp[1] != ".tfrecord" or sp[0] in testset: continue if ((split == "validation" and sp[0] in validset) or (split == "train" and sp[0] not in validset)): filenames.append(os.path.join(FLAGS.dset, f)) def input_fn(): """input_fn for tf.estimator.Estimator.""" def parser(serialized_example): """Parses a single tf.Example into image and label tensors.""" fs = tf.parse_single_example( serialized_example, features={ "img0": tf.FixedLenFeature([], tf.string), "img1": tf.FixedLenFeature([], tf.string), "mv0": tf.FixedLenFeature([16], tf.float32), "mvi0": tf.FixedLenFeature([16], tf.float32), "mv1": tf.FixedLenFeature([16], tf.float32), "mvi1": tf.FixedLenFeature([16], tf.float32), }) fs["img0"] = tf.div(tf.to_float(tf.image.decode_png(fs["img0"], 4)), 255) fs["img1"] = tf.div(tf.to_float(tf.image.decode_png(fs["img1"], 4)), 255) fs["img0"].set_shape([vh, vw, 4]) fs["img1"].set_shape([vh, vw, 4]) # fs["lr0"] = [fs["mv0"][0]] # fs["lr1"] = [fs["mv1"][0]] fs["lr0"] = tf.convert_to_tensor([fs["mv0"][0]]) fs["lr1"] = tf.convert_to_tensor([fs["mv1"][0]]) return fs np.random.shuffle(filenames) dataset = tf.data.TFRecordDataset(filenames) dataset = dataset.map(parser, num_parallel_calls=4) dataset = dataset.shuffle(400).repeat().batch(batch_size) dataset = dataset.prefetch(buffer_size=256) return dataset.make_one_shot_iterator().get_next(), None return input_fn class Transformer(object): """A utility for projecting 3D points to 2D coordinates and vice versa. 3D points are represented in 4D-homogeneous world coordinates. The pixel coordinates are represented in normalized device coordinates [-1, 1]. See https://learnopengl.com/Getting-started/Coordinate-Systems. """ def __get_matrix(self, lines): return np.array([[float(y) for y in x.strip().split(" ")] for x in lines]) def __read_projection_matrix(self, filename): if not os.path.exists(filename): filename = "/cns/vz-d/home/supasorn/datasets/cars/projection.txt" with open(filename, "r") as f: lines = f.readlines() return self.__get_matrix(lines) def __init__(self, w, h, dataset_dir): self.w = w self.h = h p = self.__read_projection_matrix(dataset_dir + "projection.txt") # transposed of inversed projection matrix. self.pinv_t = tf.constant([[1.0 / p[0, 0], 0, 0, 0], [0, 1.0 / p[1, 1], 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) self.f = p[0, 0] def project(self, xyzw): """Projects homogeneous 3D coordinates to normalized device coordinates.""" z = xyzw[:, :, 2:3] + 1e-8 return tf.concat([-self.f * xyzw[:, :, :2] / z, z], axis=2) def unproject(self, xyz): """Unprojects normalized device coordinates with depth to 3D coordinates.""" z = xyz[:, :, 2:] xy = -xyz * z def batch_matmul(a, b): return tf.reshape( tf.matmul(tf.reshape(a, [-1, a.shape[2].value]), b), [-1, a.shape[1].value, a.shape[2].value]) return batch_matmul( tf.concat([xy[:, :, :2], z, tf.ones_like(z)], axis=2), self.pinv_t) def meshgrid(h): """Returns a meshgrid ranging from [-1, 1] in x, y axes.""" r = np.arange(0.5, h, 1) / (h / 2) - 1 ranx, rany = tf.meshgrid(r, -r) return tf.to_float(ranx), tf.to_float(rany) def estimate_rotation(xyz0, xyz1, pconf, noise): """Estimates the rotation between two sets of keypoints. The rotation is estimated by first subtracting mean from each set of keypoints and computing SVD of the covariance matrix. Args: xyz0: [batch, num_kp, 3] The first set of keypoints. xyz1: [batch, num_kp, 3] The second set of keypoints. pconf: [batch, num_kp] The weights used to compute the rotation estimate. noise: A number indicating the noise added to the keypoints. Returns: [batch, 3, 3] A batch of transposed 3 x 3 rotation matrices. """ xyz0 += tf.random_normal(tf.shape(xyz0), mean=0, stddev=noise) xyz1 += tf.random_normal(tf.shape(xyz1), mean=0, stddev=noise) pconf2 = tf.expand_dims(pconf, 2) cen0 = tf.reduce_sum(xyz0 * pconf2, 1, keepdims=True) cen1 = tf.reduce_sum(xyz1 * pconf2, 1, keepdims=True) x = xyz0 - cen0 y = xyz1 - cen1 cov = tf.matmul(tf.matmul(x, tf.matrix_diag(pconf), transpose_a=True), y) _, u, v = tf.svd(cov, full_matrices=True) d = tf.matrix_determinant(tf.matmul(v, u, transpose_b=True)) ud = tf.concat( [u[:, :, :-1], u[:, :, -1:] * tf.expand_dims(tf.expand_dims(d, 1), 1)], axis=2) return tf.matmul(ud, v, transpose_b=True) def relative_pose_loss(xyz0, xyz1, rot, pconf, noise): """Computes the relative pose loss (chordal, angular). Args: xyz0: [batch, num_kp, 3] The first set of keypoints. xyz1: [batch, num_kp, 3] The second set of keypoints. rot: [batch, 4, 4] The ground-truth rotation matrices. pconf: [batch, num_kp] The weights used to compute the rotation estimate. noise: A number indicating the noise added to the keypoints. Returns: A tuple (chordal loss, angular loss). """ r_transposed = estimate_rotation(xyz0, xyz1, pconf, noise) rotation = rot[:, :3, :3] frob_sqr = tf.reduce_sum(tf.square(r_transposed - rotation), axis=[1, 2]) frob = tf.sqrt(frob_sqr) return tf.reduce_mean(frob_sqr), \ 2.0 * tf.reduce_mean(tf.asin(tf.minimum(1.0, frob / (2 * math.sqrt(2))))) def separation_loss(xyz, delta): """Computes the separation loss. Args: xyz: [batch, num_kp, 3] Input keypoints. delta: A separation threshold. Incur 0 cost if the distance >= delta. Returns: The seperation loss. """ num_kp = tf.shape(xyz)[1] t1 = tf.tile(xyz, [1, num_kp, 1]) t2 = tf.reshape(tf.tile(xyz, [1, 1, num_kp]), tf.shape(t1)) diffsq = tf.square(t1 - t2) # -> [batch, num_kp ^ 2] lensqr = tf.reduce_sum(diffsq, axis=2) return (tf.reduce_sum(tf.maximum(-lensqr + delta, 0.0)) / tf.to_float( num_kp * FLAGS.batch_size * 2)) def consistency_loss(uv0, uv1, pconf): """Computes multi-view consistency loss between two sets of keypoints. Args: uv0: [batch, num_kp, 2] The first set of keypoint 2D coordinates. uv1: [batch, num_kp, 2] The second set of keypoint 2D coordinates. pconf: [batch, num_kp] The weights used to compute the rotation estimate. Returns: The consistency loss. """ # [batch, num_kp, 2] wd = tf.square(uv0 - uv1) * tf.expand_dims(pconf, 2) wd = tf.reduce_sum(wd, axis=[1, 2]) return tf.reduce_mean(wd) def variance_loss(probmap, ranx, rany, uv): """Computes the variance loss as part of Sillhouette consistency. Args: probmap: [batch, num_kp, h, w] The distribution map of keypoint locations. ranx: X-axis meshgrid. rany: Y-axis meshgrid. uv: [batch, num_kp, 2] Keypoint locations (in NDC). Returns: The variance loss. """ ran = tf.stack([ranx, rany], axis=2) sh = tf.shape(ran) # [batch, num_kp, vh, vw, 2] ran = tf.reshape(ran, [1, 1, sh[0], sh[1], 2]) sh = tf.shape(uv) uv = tf.reshape(uv, [sh[0], sh[1], 1, 1, 2]) diff = tf.reduce_sum(tf.square(uv - ran), axis=4) diff *= probmap return tf.reduce_mean(tf.reduce_sum(diff, axis=[2, 3])) def dilated_cnn(images, num_filters, is_training): """Constructs a base dilated convolutional network. Args: images: [batch, h, w, 3] Input RGB images. num_filters: The number of filters for all layers. is_training: True if this function is called during training. Returns: Output of this dilated CNN. """ net = images with slim.arg_scope( [slim.conv2d, slim.fully_connected], normalizer_fn=slim.batch_norm, activation_fn=lambda x: tf.nn.leaky_relu(x, alpha=0.1), normalizer_params={"is_training": is_training}): for i, r in enumerate([1, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1]): net = slim.conv2d(net, num_filters, [3, 3], rate=r, scope="dconv%d" % i) return net def orientation_network(images, num_filters, is_training): """Constructs a network that infers the orientation of an object. Args: images: [batch, h, w, 3] Input RGB images. num_filters: The number of filters for all layers. is_training: True if this function is called during training. Returns: Output of the orientation network. """ with tf.variable_scope("OrientationNetwork"): net = dilated_cnn(images, num_filters, is_training) modules = 2 prob = slim.conv2d(net, 2, [3, 3], rate=1, activation_fn=None) prob = tf.transpose(prob, [0, 3, 1, 2]) prob = tf.reshape(prob, [-1, modules, vh * vw]) prob = tf.nn.softmax(prob) ranx, rany = meshgrid(vh) prob = tf.reshape(prob, [-1, 2, vh, vw]) sx = tf.reduce_sum(prob * ranx, axis=[2, 3]) sy = tf.reduce_sum(prob * rany, axis=[2, 3]) # -> batch x modules out_xy = tf.reshape(tf.stack([sx, sy], -1), [-1, modules, 2]) return out_xy def keypoint_network(rgba, num_filters, num_kp, is_training, lr_gt=None, anneal=1): """Constructs our main keypoint network that predicts 3D keypoints. Args: rgba: [batch, h, w, 4] Input RGB images with alpha channel. num_filters: The number of filters for all layers. num_kp: The number of keypoints. is_training: True if this function is called during training. lr_gt: The groundtruth orientation flag used at the beginning of training. Then we linearly anneal in the prediction. anneal: A number between [0, 1] where 1 means using the ground-truth orientation and 0 means using our estimate. Returns: uv: [batch, num_kp, 2] 2D locations of keypoints. z: [batch, num_kp] The depth of keypoints. orient: [batch, 2, 2] Two 2D coordinates that correspond to [1, 0, 0] and [-1, 0, 0] in object space. sill: The Sillhouette loss. variance: The variance loss. prob_viz: A visualization of all predicted keypoints. prob_vizs: A list of visualizations of each keypoint. """ images = rgba[:, :, :, :3] # [batch, 1] orient = orientation_network(images, num_filters * 0.5, is_training) # [batch, 1] lr_estimated = tf.maximum(0.0, tf.sign(orient[:, 0, :1] - orient[:, 1, :1])) if lr_gt is None: lr = lr_estimated else: lr_gt = tf.maximum(0.0, tf.sign(lr_gt[:, :1])) lr = tf.round(lr_gt * anneal + lr_estimated * (1 - anneal)) lrtiled = tf.tile( tf.expand_dims(tf.expand_dims(lr, 1), 1), [1, images.shape[1], images.shape[2], 1]) images = tf.concat([images, lrtiled], axis=3) mask = rgba[:, :, :, 3] mask = tf.cast(tf.greater(mask, tf.zeros_like(mask)), dtype=tf.float32) net = dilated_cnn(images, num_filters, is_training) # The probability distribution map. prob = slim.conv2d( net, num_kp, [3, 3], rate=1, scope="conv_xy", activation_fn=None) # We added the fixed camera distance as a bias. z = -30 + slim.conv2d( net, num_kp, [3, 3], rate=1, scope="conv_z", activation_fn=None) prob = tf.transpose(prob, [0, 3, 1, 2]) z = tf.transpose(z, [0, 3, 1, 2]) prob = tf.reshape(prob, [-1, num_kp, vh * vw]) prob = tf.nn.softmax(prob, name="softmax") ranx, rany = meshgrid(vh) prob = tf.reshape(prob, [-1, num_kp, vh, vw]) # These are for visualizing the distribution maps. prob_viz = tf.expand_dims(tf.reduce_sum(prob, 1), 3) prob_vizs = [tf.expand_dims(prob[:, i, :, :], 3) for i in range(num_kp)] sx = tf.reduce_sum(prob * ranx, axis=[2, 3]) sy = tf.reduce_sum(prob * rany, axis=[2, 3]) # -> batch x num_kp # [batch, num_kp] sill = tf.reduce_sum(prob * tf.expand_dims(mask, 1), axis=[2, 3]) sill = tf.reduce_mean(-tf.log(sill + 1e-12)) z = tf.reduce_sum(prob * z, axis=[2, 3]) uv = tf.reshape(tf.stack([sx, sy], -1), [-1, num_kp, 2]) variance = variance_loss(prob, ranx, rany, uv) return uv, z, orient, sill, variance, prob_viz, prob_vizs def model_fn(features, labels, mode, hparams): """Returns model_fn for tf.estimator.Estimator.""" del labels is_training = (mode == tf.estimator.ModeKeys.TRAIN) t = Transformer(vw, vh, FLAGS.dset) def func1(x): return tf.transpose(tf.reshape(features[x], [-1, 4, 4]), [0, 2, 1]) mv = [func1("mv%d" % i) for i in range(2)] mvi = [func1("mvi%d" % i) for i in range(2)] uvz = [None] * 2 uvz_proj = [None] * 2 # uvz coordinates projected on to the other view. viz = [None] * 2 vizs = [None] * 2 loss_sill = 0 loss_variance = 0 loss_con = 0 loss_sep = 0 loss_lr = 0 for i in range(2): with tf.variable_scope("KeypointNetwork", reuse=i > 0): # anneal: 1 = using ground-truth, 0 = using our estimate orientation. anneal = tf.to_float(hparams.lr_anneal_end - tf.train.get_global_step()) anneal = tf.clip_by_value( anneal / (hparams.lr_anneal_end - hparams.lr_anneal_start), 0.0, 1.0) uv, z, orient, sill, variance, viz[i], vizs[i] = keypoint_network( features["img%d" % i], hparams.num_filters, hparams.num_kp, is_training, lr_gt=features["lr%d" % i], anneal=anneal) # x-positive/negative axes (dominant direction). xp_axis = tf.tile( tf.constant([[[1.0, 0, 0, 1], [-1.0, 0, 0, 1]]]), [tf.shape(orient)[0], 1, 1]) # [batch, 2, 4] = [batch, 2, 4] x [batch, 4, 4] xp = tf.matmul(xp_axis, mv[i]) # [batch, 2, 3] xp = t.project(xp) loss_lr += tf.losses.mean_squared_error(orient[:, :, :2], xp[:, :, :2]) loss_variance += variance loss_sill += sill uv = tf.reshape(uv, [-1, hparams.num_kp, 2]) z = tf.reshape(z, [-1, hparams.num_kp, 1]) # [batch, num_kp, 3] uvz[i] = tf.concat([uv, z], axis=2) world_coords = tf.matmul(t.unproject(uvz[i]), mvi[i]) # [batch, num_kp, 3] uvz_proj[i] = t.project(tf.matmul(world_coords, mv[1 - i])) pconf = tf.ones( [tf.shape(uv)[0], tf.shape(uv)[1]], dtype=tf.float32) / hparams.num_kp for i in range(2): loss_con += consistency_loss(uvz_proj[i][:, :, :2], uvz[1 - i][:, :, :2], pconf) loss_sep += separation_loss( t.unproject(uvz[i])[:, :, :3], hparams.sep_delta) chordal, angular = relative_pose_loss( t.unproject(uvz[0])[:, :, :3], t.unproject(uvz[1])[:, :, :3], tf.matmul(mvi[0], mv[1]), pconf, hparams.noise) loss = ( hparams.loss_pose * angular + hparams.loss_con * loss_con + hparams.loss_sep * loss_sep + hparams.loss_sill * loss_sill + hparams.loss_lr * loss_lr + hparams.loss_variance * loss_variance ) def touint8(img): return tf.cast(img * 255.0, tf.uint8) with tf.variable_scope("output"): tf.summary.image("0_img0", touint8(features["img0"][:, :, :, :3])) tf.summary.image("1_combined", viz[0]) for i in range(hparams.num_kp): tf.summary.image("2_f%02d" % i, vizs[0][i]) with tf.variable_scope("stats"): tf.summary.scalar("anneal", anneal) tf.summary.scalar("closs", loss_con) tf.summary.scalar("seploss", loss_sep) tf.summary.scalar("angular", angular) tf.summary.scalar("chordal", chordal) tf.summary.scalar("lrloss", loss_lr) tf.summary.scalar("sill", loss_sill) tf.summary.scalar("vloss", loss_variance) return { "loss": loss, "predictions": { "img0": features["img0"], "img1": features["img1"], "uvz0": uvz[0], "uvz1": uvz[1] }, "eval_metric_ops": { "closs": tf.metrics.mean(loss_con), "angular_loss": tf.metrics.mean(angular), "chordal_loss": tf.metrics.mean(chordal), } } def predict(input_folder, hparams): """Predicts keypoints on all images in input_folder.""" cols = plt.cm.get_cmap("rainbow")( np.linspace(0, 1.0, hparams.num_kp))[:, :4] img = tf.placeholder(tf.float32, shape=(1, 128, 128, 4)) with tf.variable_scope("KeypointNetwork"): ret = keypoint_network( img, hparams.num_filters, hparams.num_kp, False) uv = tf.reshape(ret[0], [-1, hparams.num_kp, 2]) z = tf.reshape(ret[1], [-1, hparams.num_kp, 1]) uvz = tf.concat([uv, z], axis=2) sess = tf.Session() saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(FLAGS.model_dir) print("loading model: ", ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) files = [x for x in os.listdir(input_folder) if x[-3:] in ["jpg", "png"]] output_folder = os.path.join(input_folder, "output") if not os.path.exists(output_folder): os.mkdir(output_folder) for f in files: orig = misc.imread(os.path.join(input_folder, f)).astype(float) / 255 if orig.shape[2] == 3: orig = np.concatenate((orig, np.ones_like(orig[:, :, :1])), axis=2) uv_ret = sess.run(uvz, feed_dict={img: np.expand_dims(orig, 0)}) utils.draw_ndc_points(orig, uv_ret.reshape(hparams.num_kp, 3), cols) misc.imsave(os.path.join(output_folder, f), orig) def _default_hparams(): """Returns default or overridden user-specified hyperparameters.""" hparams = tf.contrib.training.HParams( num_filters=64, # Number of filters. num_kp=10, # Numer of keypoints. loss_pose=0.2, # Pose Loss. loss_con=1.0, # Multiview consistency Loss. loss_sep=1.0, # Seperation Loss. loss_sill=1.0, # Sillhouette Loss. loss_lr=1.0, # Orientation Loss. loss_variance=0.5, # Variance Loss (part of Sillhouette loss). sep_delta=0.05, # Seperation threshold. noise=0.1, # Noise added during estimating rotation. learning_rate=1.0e-3, lr_anneal_start=30000, # When to anneal in the orientation prediction. lr_anneal_end=60000, # When to use the prediction completely. ) if FLAGS.hparams: hparams = hparams.parse(FLAGS.hparams) return hparams def main(argv): del argv hparams = _default_hparams() if FLAGS.predict: predict(FLAGS.input, hparams) else: utils.train_and_eval( model_dir=FLAGS.model_dir, model_fn=model_fn, input_fn=create_input_fn, hparams=hparams, steps=FLAGS.steps, batch_size=FLAGS.batch_size, save_checkpoints_secs=600, eval_throttle_secs=1800, eval_steps=5, sync_replicas=FLAGS.sync_replicas, ) if __name__ == "__main__": sys.excepthook = utils.colored_hook( os.path.dirname(os.path.realpath(__file__))) tf.app.run()