Spaces:
Running
Running
# Copyright 2018 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tiny imagenet input.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
from absl import flags | |
import tensorflow as tf | |
FLAGS = flags.FLAGS | |
flags.DEFINE_string('tiny_imagenet_data_dir', None, | |
'Directory with Tiny Imagenet dataset in TFRecord format.') | |
def tiny_imagenet_parser(value, image_size, is_training): | |
"""Parses tiny imagenet example. | |
Args: | |
value: encoded example. | |
image_size: size of the image. | |
is_training: if True then do training preprocessing (which includes | |
random cropping), otherwise do eval preprocessing. | |
Returns: | |
image: tensor with the image. | |
label: true label of the image. | |
""" | |
keys_to_features = { | |
'image/encoded': tf.FixedLenFeature((), tf.string, ''), | |
'label/tiny_imagenet': tf.FixedLenFeature([], tf.int64, -1), | |
} | |
parsed = tf.parse_single_example(value, keys_to_features) | |
image_buffer = tf.reshape(parsed['image/encoded'], shape=[]) | |
image = tf.image.decode_image(image_buffer, channels=3) | |
image = tf.image.convert_image_dtype( | |
image, dtype=tf.float32) | |
# Crop image | |
if is_training: | |
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box( | |
tf.shape(image), | |
bounding_boxes=tf.constant([0.0, 0.0, 1.0, 1.0], | |
dtype=tf.float32, | |
shape=[1, 1, 4]), | |
min_object_covered=0.5, | |
aspect_ratio_range=[0.75, 1.33], | |
area_range=[0.5, 1.0], | |
max_attempts=20, | |
use_image_if_no_bounding_boxes=True) | |
image = tf.slice(image, bbox_begin, bbox_size) | |
# resize image | |
image = tf.image.resize_bicubic([image], [image_size, image_size])[0] | |
# Rescale image to [-1, 1] range. | |
image = tf.multiply(tf.subtract(image, 0.5), 2.0) | |
image = tf.reshape(image, [image_size, image_size, 3]) | |
# Labels are in [0, 199] range | |
label = tf.cast( | |
tf.reshape(parsed['label/tiny_imagenet'], shape=[]), dtype=tf.int32) | |
return image, label | |
def tiny_imagenet_input(split, batch_size, image_size, is_training): | |
"""Returns Tiny Imagenet Dataset. | |
Args: | |
split: name of the split, "train" or "validation". | |
batch_size: size of the minibatch. | |
image_size: size of the one side of the image. Output images will be | |
resized to square shape image_size*image_size. | |
is_training: if True then training preprocessing is done, otherwise eval | |
preprocessing is done.instance of tf.data.Dataset with the dataset. | |
Raises: | |
ValueError: if name of the split is incorrect. | |
Returns: | |
Instance of tf.data.Dataset with the dataset. | |
""" | |
if split.lower().startswith('train'): | |
filepath = os.path.join(FLAGS.tiny_imagenet_data_dir, 'train.tfrecord') | |
elif split.lower().startswith('validation'): | |
filepath = os.path.join(FLAGS.tiny_imagenet_data_dir, 'validation.tfrecord') | |
else: | |
raise ValueError('Invalid split: %s' % split) | |
dataset = tf.data.TFRecordDataset(filepath, buffer_size=8*1024*1024) | |
if is_training: | |
dataset = dataset.shuffle(10000) | |
dataset = dataset.repeat() | |
dataset = dataset.apply( | |
tf.data.experimental.map_and_batch( | |
lambda value: tiny_imagenet_parser(value, image_size, is_training), | |
batch_size=batch_size, | |
num_parallel_batches=4, | |
drop_remainder=True)) | |
def set_shapes(images, labels): | |
"""Statically set the batch_size dimension.""" | |
images.set_shape(images.get_shape().merge_with( | |
tf.TensorShape([batch_size, None, None, None]))) | |
labels.set_shape(labels.get_shape().merge_with( | |
tf.TensorShape([batch_size]))) | |
return images, labels | |
# Assign static batch size dimension | |
dataset = dataset.map(set_shapes) | |
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
return dataset | |
def num_examples_per_epoch(split): | |
"""Returns the number of examples in the data set. | |
Args: | |
split: name of the split, "train" or "validation". | |
Raises: | |
ValueError: if split name is incorrect. | |
Returns: | |
Number of example in the split. | |
""" | |
if split.lower().startswith('train'): | |
return 100000 | |
elif split.lower().startswith('validation'): | |
return 10000 | |
else: | |
raise ValueError('Invalid split: %s' % split) | |