NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tiny imagenet input."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
import tensorflow as tf
FLAGS = flags.FLAGS
flags.DEFINE_string('tiny_imagenet_data_dir', None,
'Directory with Tiny Imagenet dataset in TFRecord format.')
def tiny_imagenet_parser(value, image_size, is_training):
"""Parses tiny imagenet example.
Args:
value: encoded example.
image_size: size of the image.
is_training: if True then do training preprocessing (which includes
random cropping), otherwise do eval preprocessing.
Returns:
image: tensor with the image.
label: true label of the image.
"""
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, ''),
'label/tiny_imagenet': tf.FixedLenFeature([], tf.int64, -1),
}
parsed = tf.parse_single_example(value, keys_to_features)
image_buffer = tf.reshape(parsed['image/encoded'], shape=[])
image = tf.image.decode_image(image_buffer, channels=3)
image = tf.image.convert_image_dtype(
image, dtype=tf.float32)
# Crop image
if is_training:
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
tf.shape(image),
bounding_boxes=tf.constant([0.0, 0.0, 1.0, 1.0],
dtype=tf.float32,
shape=[1, 1, 4]),
min_object_covered=0.5,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.5, 1.0],
max_attempts=20,
use_image_if_no_bounding_boxes=True)
image = tf.slice(image, bbox_begin, bbox_size)
# resize image
image = tf.image.resize_bicubic([image], [image_size, image_size])[0]
# Rescale image to [-1, 1] range.
image = tf.multiply(tf.subtract(image, 0.5), 2.0)
image = tf.reshape(image, [image_size, image_size, 3])
# Labels are in [0, 199] range
label = tf.cast(
tf.reshape(parsed['label/tiny_imagenet'], shape=[]), dtype=tf.int32)
return image, label
def tiny_imagenet_input(split, batch_size, image_size, is_training):
"""Returns Tiny Imagenet Dataset.
Args:
split: name of the split, "train" or "validation".
batch_size: size of the minibatch.
image_size: size of the one side of the image. Output images will be
resized to square shape image_size*image_size.
is_training: if True then training preprocessing is done, otherwise eval
preprocessing is done.instance of tf.data.Dataset with the dataset.
Raises:
ValueError: if name of the split is incorrect.
Returns:
Instance of tf.data.Dataset with the dataset.
"""
if split.lower().startswith('train'):
filepath = os.path.join(FLAGS.tiny_imagenet_data_dir, 'train.tfrecord')
elif split.lower().startswith('validation'):
filepath = os.path.join(FLAGS.tiny_imagenet_data_dir, 'validation.tfrecord')
else:
raise ValueError('Invalid split: %s' % split)
dataset = tf.data.TFRecordDataset(filepath, buffer_size=8*1024*1024)
if is_training:
dataset = dataset.shuffle(10000)
dataset = dataset.repeat()
dataset = dataset.apply(
tf.data.experimental.map_and_batch(
lambda value: tiny_imagenet_parser(value, image_size, is_training),
batch_size=batch_size,
num_parallel_batches=4,
drop_remainder=True))
def set_shapes(images, labels):
"""Statically set the batch_size dimension."""
images.set_shape(images.get_shape().merge_with(
tf.TensorShape([batch_size, None, None, None])))
labels.set_shape(labels.get_shape().merge_with(
tf.TensorShape([batch_size])))
return images, labels
# Assign static batch size dimension
dataset = dataset.map(set_shapes)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def num_examples_per_epoch(split):
"""Returns the number of examples in the data set.
Args:
split: name of the split, "train" or "validation".
Raises:
ValueError: if split name is incorrect.
Returns:
Number of example in the split.
"""
if split.lower().startswith('train'):
return 100000
elif split.lower().startswith('validation'):
return 10000
else:
raise ValueError('Invalid split: %s' % split)