NCTC / models /official /benchmark /bert_squad_benchmark.py
NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import time
# pylint: disable=g-bad-import-order
from absl import flags
from absl import logging
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order
from official.benchmark import bert_benchmark_utils as benchmark_utils
from official.benchmark import owner_utils
from official.nlp.bert import run_squad
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.benchmark import benchmark_wrappers
# pylint: disable=line-too-long
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
# pylint: enable=line-too-long
TMP_DIR = os.getenv('TMPDIR')
FLAGS = flags.FLAGS
class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
"""Base class to hold methods common to test classes in the module."""
def __init__(self, output_dir=None, tpu=None):
super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir, tpu=tpu)
def _read_training_summary_from_file(self):
"""Reads the training summary from a file."""
summary_path = os.path.join(FLAGS.model_dir,
'summaries/training_summary.txt')
with tf.io.gfile.GFile(summary_path, 'rb') as reader:
return json.loads(reader.read().decode('utf-8'))
def _read_input_meta_data_from_file(self):
"""Reads the input metadata from a file."""
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
return json.loads(reader.read().decode('utf-8'))
def _get_distribution_strategy(self, ds_type='mirrored'):
"""Gets the distribution strategy.
Args:
ds_type: String, the distribution strategy type to be used. Can be
'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.
Returns:
A `tf.distribute.DistibutionStrategy` object.
"""
if self.tpu or ds_type == 'tpu':
return distribution_utils.get_distribution_strategy(
distribution_strategy='tpu', tpu_address=self.tpu)
elif ds_type == 'multi_worker_mirrored':
# Configures cluster spec for multi-worker distribution strategy.
_ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
FLAGS.task_index)
return distribution_utils.get_distribution_strategy(
distribution_strategy=ds_type,
num_gpus=self.num_gpus,
all_reduce_alg=FLAGS.all_reduce_alg)
def _init_gpu_and_data_threads(self):
"""Set env variables before any TF calls."""
if FLAGS.tf_gpu_thread_mode:
keras_utils.set_gpu_thread_mode_and_count(
per_gpu_thread_count=FLAGS.per_gpu_thread_count,
gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
num_gpus=self.num_gpus,
datasets_num_private_threads=FLAGS.datasets_num_private_threads)
@flagsaver.flagsaver
def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
"""Runs BERT SQuAD training. Uses mirrored strategy by default."""
self._init_gpu_and_data_threads()
input_meta_data = self._read_input_meta_data_from_file()
strategy = self._get_distribution_strategy(ds_type)
run_squad.train_squad(
strategy=strategy,
input_meta_data=input_meta_data,
run_eagerly=run_eagerly,
custom_callbacks=[self.timer_callback])
@flagsaver.flagsaver
def _evaluate_squad(self, ds_type='mirrored'):
"""Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
self._init_gpu_and_data_threads()
input_meta_data = self._read_input_meta_data_from_file()
strategy = self._get_distribution_strategy(ds_type)
if input_meta_data.get('version_2_with_negative', False):
logging.error('In memory evaluation result for SQuAD v2 is not accurate')
eval_metrics = run_squad.eval_squad(strategy=strategy,
input_meta_data=input_meta_data)
# Use F1 score as reported evaluation metric.
self.eval_metrics = eval_metrics['final_f1']
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
"""Short benchmark performance tests for BERT SQuAD model.
Tests BERT SQuAD performance in different GPU configurations.
The naming convention of below test cases follow
`benchmark_(number of gpus)_gpu` format for GPUs and
`benchmark_(topology)_tpu` format for TPUs.
"""
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadBenchmarkReal, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.num_train_epochs = 1
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
run_eagerly=False,
ds_type='mirrored'):
"""Runs the benchmark and reports various metrics."""
if FLAGS.train_batch_size <= 4 or run_eagerly:
FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
else:
FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['start_time_sec'] = start_time_sec
super(BertSquadBenchmarkReal, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0,
max_accuracy=1)
def benchmark_1_gpu(self):
"""Tests BERT SQuAD model performance with 1 GPU."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark()
def benchmark_1_gpu_eager(self):
"""Tests BERT SQuAD model performance with 1 GPU."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
FLAGS.train_batch_size = 2
self._run_and_report_benchmark(run_eagerly=True)
def benchmark_1_gpu_xla(self):
"""Tests BERT SQuAD model performance with 1 GPU with XLA."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
# XLA runs out of memory when running with batch size 4.
FLAGS.train_batch_size = 3
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat(self):
"""Tests BERT SQuAD model performance with 1 GPU without DS."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark(ds_type='off')
def benchmark_1_gpu_eager_no_dist_strat(self):
"""Tests BERT SQuAD model performance with 1 GPU with eager execution."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir(
'benchmark_1_gpu_eager_no_dist_strat_squad')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
@owner_utils.Owner('tf-model-garden')
def benchmark_8_gpu(self):
"""Tests BERT SQuAD model performance with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
FLAGS.train_batch_size = 24
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_1_gpu_fp16_eager(self):
"""Tests BERT SQuAD model performance with 1 GPU and FP16."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
FLAGS.train_batch_size = 4
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark(run_eagerly=True)
def benchmark_1_gpu_fp16(self):
"""Tests BERT SQuAD model performance with 1 GPU and FP16."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
FLAGS.train_batch_size = 4
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark()
def benchmark_1_gpu_xla_fp16(self):
"""Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
FLAGS.train_batch_size = 4
FLAGS.enable_xla = True
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Tests BERT SQuAD model performance with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
FLAGS.train_batch_size = 32
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_xla_fp16(self):
"""Tests BERT SQuAD model performance with 8 GPUs with XLA."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
FLAGS.train_batch_size = 32
FLAGS.enable_xla = True
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark()
def benchmark_1_gpu_amp(self):
"""Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
FLAGS.train_batch_size = 4
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
def benchmark_8_gpu_amp(self):
"""Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
FLAGS.train_batch_size = 32
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
@owner_utils.Owner('tf-model-garden')
def benchmark_2x2_tpu(self):
"""Tests BERT SQuAD model performance with 2x2 TPU."""
self._setup()
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
FLAGS.train_batch_size = 48
FLAGS.predict_batch_size = 48
FLAGS.mode = 'train'
FLAGS.learning_rate = 8e-5
FLAGS.num_train_epochs = 1
FLAGS.steps_per_loop = 100
FLAGS.do_lower_case = True
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
self._run_and_report_benchmark()
class BertSquadAccuracy(BertSquadBenchmarkBase):
"""Short accuracy test for BERT SQuAD model.
Tests BERT SQuAD accuracy. The naming convention of below test cases follow
`benchmark_(number of gpus)_gpu` format for GPUs and
`benchmark_(topology)_tpu` format for TPUs.
"""
def __init__(self, output_dir=None, tpu=None, **kwargs):
super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadAccuracy, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
FLAGS.num_train_epochs = 2
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
run_eagerly=False,
ds_type='mirrored'):
"""Runs the benchmark and reports various metrics."""
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
self._evaluate_squad(ds_type=ds_type)
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['eval_metrics'] = self.eval_metrics
summary['start_time_sec'] = start_time_sec
super(BertSquadAccuracy, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0.900,
max_accuracy=0.920)
def benchmark_1_gpu_eager(self):
"""Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
@owner_utils.Owner('tf-model-garden')
def benchmark_8_gpu(self):
"""Tests BERT SQuAD model accuracy with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
FLAGS.train_batch_size = 24
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
FLAGS.train_batch_size = 32
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_xla(self):
"""Tests BERT SQuAD model accuracy with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
FLAGS.train_batch_size = 32
FLAGS.enable_xla = True
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
@owner_utils.Owner('tf-model-garden')
def benchmark_2x2_tpu(self):
"""Tests BERT SQuAD model accuracy with 2x2 TPU."""
self._setup()
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
FLAGS.train_batch_size = 48
self._run_and_report_benchmark()
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
"""BERT SQuAD distributed accuracy tests with multiple workers."""
def __init__(self, output_dir=None, tpu=None, **kwargs):
super(BertSquadMultiWorkerAccuracy, self).__init__(
output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadMultiWorkerAccuracy, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
FLAGS.num_train_epochs = 2
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
use_ds=True,
run_eagerly=False):
"""Runs the benchmark and reports various metrics."""
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly,
ds_type='multi_worker_mirrored')
self._evaluate_squad(ds_type='multi_worker_mirrored')
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['eval_metrics'] = self.eval_metrics
super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0.900,
max_accuracy=0.920)
def _benchmark_common(self, num_workers, all_reduce_alg):
"""Common to all benchmarks in this class."""
self._setup()
num_gpus = 8
FLAGS.num_gpus = num_gpus
FLAGS.dtype = 'fp16'
FLAGS.enable_xla = False
FLAGS.distribution_strategy = 'multi_worker_mirrored'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.datasets_num_private_threads = 32
FLAGS.model_dir = self._get_model_dir(
'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
num_workers, all_reduce_alg))
FLAGS.train_batch_size = 4 * num_gpus * num_workers
FLAGS.all_reduce_alg = all_reduce_alg
self._run_and_report_benchmark()
def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='ring')
def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='ring')
def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
"""BERT SQuAD distributed benchmark tests with multiple workers."""
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
super(BertSquadMultiWorkerBenchmark, self).__init__(
output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadMultiWorkerBenchmark, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.num_train_epochs = 1
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
use_ds=True,
run_eagerly=False):
"""Runs the benchmark and reports various metrics."""
if FLAGS.train_batch_size <= 4 * 8:
FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
else:
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly,
ds_type='multi_worker_mirrored')
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['start_time_sec'] = start_time_sec
super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0,
max_accuracy=1)
def _benchmark_common(self, num_workers, all_reduce_alg):
"""Common to all benchmarks in this class."""
self._setup()
num_gpus = 8
FLAGS.num_gpus = num_gpus
FLAGS.dtype = 'fp16'
FLAGS.enable_xla = False
FLAGS.distribution_strategy = 'multi_worker_mirrored'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.datasets_num_private_threads = 32
FLAGS.model_dir = self._get_model_dir(
'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
num_workers, all_reduce_alg))
FLAGS.train_batch_size = 4 * num_gpus * num_workers
FLAGS.all_reduce_alg = all_reduce_alg
self._run_and_report_benchmark()
def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
"""8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
self._benchmark_common(num_workers=1, all_reduce_alg='ring')
def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=1, all_reduce_alg='nccl')
def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='ring')
def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='ring')
def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
if __name__ == '__main__':
tf.test.main()