Spaces:
Running
Running
File size: 10,348 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Lint as: python2, python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for calibration_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from scipy import interpolate
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.builders import calibration_builder
from object_detection.protos import calibration_pb2
from object_detection.utils import test_case
class CalibrationBuilderTest(test_case.TestCase):
def test_tf_linear_interp1d_map(self):
"""Tests TF linear interpolation mapping to a single number."""
def graph_fn():
tf_x = tf.constant([0., 0.5, 1.])
tf_y = tf.constant([0.5, 0.5, 0.5])
new_x = tf.constant([0., 0.25, 0.5, 0.75, 1.])
tf_map_outputs = calibration_builder._tf_linear_interp1d(
new_x, tf_x, tf_y)
return tf_map_outputs
tf_map_outputs_np = self.execute(graph_fn, [])
self.assertAllClose(tf_map_outputs_np, [0.5, 0.5, 0.5, 0.5, 0.5])
def test_tf_linear_interp1d_interpolate(self):
"""Tests TF 1d linear interpolation not mapping to a single number."""
def graph_fn():
tf_x = tf.constant([0., 0.5, 1.])
tf_y = tf.constant([0.6, 0.7, 1.0])
new_x = tf.constant([0., 0.25, 0.5, 0.75, 1.])
tf_interpolate_outputs = calibration_builder._tf_linear_interp1d(
new_x, tf_x, tf_y)
return tf_interpolate_outputs
tf_interpolate_outputs_np = self.execute(graph_fn, [])
self.assertAllClose(tf_interpolate_outputs_np, [0.6, 0.65, 0.7, 0.85, 1.])
@staticmethod
def _get_scipy_interp1d(new_x, x, y):
"""Helper performing 1d linear interpolation using SciPy."""
interpolation1d_fn = interpolate.interp1d(x, y)
return interpolation1d_fn(new_x)
def _get_tf_interp1d(self, new_x, x, y):
"""Helper performing 1d linear interpolation using Tensorflow."""
def graph_fn():
tf_interp_outputs = calibration_builder._tf_linear_interp1d(
tf.convert_to_tensor(new_x, dtype=tf.float32),
tf.convert_to_tensor(x, dtype=tf.float32),
tf.convert_to_tensor(y, dtype=tf.float32))
return tf_interp_outputs
np_tf_interp_outputs = self.execute(graph_fn, [])
return np_tf_interp_outputs
def test_tf_linear_interp1d_against_scipy_map(self):
"""Tests parity of TF linear interpolation with SciPy for simple mapping."""
length = 10
np_x = np.linspace(0, 1, length)
# Mapping all numbers to 0.5
np_y_map = np.repeat(0.5, length)
# Scipy and TF interpolations
test_data_np = np.linspace(0, 1, length * 10)
scipy_map_outputs = self._get_scipy_interp1d(test_data_np, np_x, np_y_map)
np_tf_map_outputs = self._get_tf_interp1d(test_data_np, np_x, np_y_map)
self.assertAllClose(scipy_map_outputs, np_tf_map_outputs)
def test_tf_linear_interp1d_against_scipy_interpolate(self):
"""Tests parity of TF linear interpolation with SciPy."""
length = 10
np_x = np.linspace(0, 1, length)
# Requires interpolation over 0.5 to 1 domain
np_y_interp = np.linspace(0.5, 1, length)
# Scipy interpolation for comparison
test_data_np = np.linspace(0, 1, length * 10)
scipy_interp_outputs = self._get_scipy_interp1d(test_data_np, np_x,
np_y_interp)
np_tf_interp_outputs = self._get_tf_interp1d(test_data_np, np_x,
np_y_interp)
self.assertAllClose(scipy_interp_outputs, np_tf_interp_outputs)
@staticmethod
def _add_function_approximation_to_calibration_proto(calibration_proto,
x_array, y_array,
class_id):
"""Adds a function approximation to calibration proto for a class id."""
# Per-class calibration.
if class_id is not None:
function_approximation = (
calibration_proto.class_id_function_approximations
.class_id_xy_pairs_map[class_id])
# Class-agnostic calibration.
else:
function_approximation = (
calibration_proto.function_approximation.x_y_pairs)
for x, y in zip(x_array, y_array):
x_y_pair_message = function_approximation.x_y_pair.add()
x_y_pair_message.x = x
x_y_pair_message.y = y
def test_class_agnostic_function_approximation(self):
"""Tests that calibration produces correct class-agnostic values."""
# Generate fake calibration proto. For this interpolation, any input on
# [0.0, 0.5] should be divided by 2 and any input on (0.5, 1.0] should have
# 0.25 subtracted from it.
class_agnostic_x = np.asarray([0.0, 0.5, 1.0])
class_agnostic_y = np.asarray([0.0, 0.25, 0.75])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(
calibration_config, class_agnostic_x, class_agnostic_y, class_id=None)
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3],
[0.4, 0.5, 0.0]],
[[0.6, 0.7, 0.8],
[0.9, 1.0, 1.0]]], dtype=tf.float32)
# Everything should map to 0.5 if classes are ignored.
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np, [[[0.05, 0.1, 0.15],
[0.2, 0.25, 0.0]],
[[0.35, 0.45, 0.55],
[0.65, 0.75, 0.75]]])
def test_multiclass_function_approximations(self):
"""Tests that calibration produces correct multiclass values."""
# Background class (0-index) maps all predictions to 0.5.
class_0_x = np.asarray([0.0, 0.5, 1.0])
class_0_y = np.asarray([0.5, 0.5, 0.5])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(
calibration_config, class_0_x, class_0_y, class_id=0)
# Class id 1 will interpolate using these values.
class_1_x = np.asarray([0.0, 0.2, 1.0])
class_1_y = np.asarray([0.0, 0.6, 1.0])
self._add_function_approximation_to_calibration_proto(
calibration_config, class_1_x, class_1_y, class_id=1)
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2], [0.9, 0.1]],
[[0.6, 0.4], [0.08, 0.92]]],
dtype=tf.float32)
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np, [[[0.5, 0.6], [0.5, 0.3]],
[[0.5, 0.7], [0.5, 0.96]]])
def test_temperature_scaling(self):
"""Tests that calibration produces correct temperature scaling values."""
calibration_config = calibration_pb2.CalibrationConfig()
calibration_config.temperature_scaling_calibration.scaler = 2.0
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.0]],
[[0.6, 0.7, 0.8], [0.9, 1.0, 1.0]]],
dtype=tf.float32)
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np,
[[[0.05, 0.1, 0.15], [0.2, 0.25, 0.0]],
[[0.3, 0.35, 0.4], [0.45, 0.5, 0.5]]])
def test_temperature_scaling_incorrect_value_error(self):
calibration_config = calibration_pb2.CalibrationConfig()
calibration_config.temperature_scaling_calibration.scaler = 0
calibration_fn = calibration_builder.build(calibration_config)
class_predictions_with_background = tf.constant(
[[[0.1, 0.2, 0.3]]], dtype=tf.float32)
with self.assertRaises(ValueError):
calibration_fn(class_predictions_with_background)
def test_skips_class_when_calibration_parameters_not_present(self):
"""Tests that graph fails when parameters not present for all classes."""
# Only adding calibration parameters for class id = 0, even though class id
# 1 is present in the data.
class_0_x = np.asarray([0.0, 0.5, 1.0])
class_0_y = np.asarray([0.5, 0.5, 0.5])
calibration_config = calibration_pb2.CalibrationConfig()
self._add_function_approximation_to_calibration_proto(
calibration_config, class_0_x, class_0_y, class_id=0)
def graph_fn():
calibration_fn = calibration_builder.build(calibration_config)
# batch_size = 2, num_classes = 2, num_anchors = 2.
class_predictions_with_background = tf.constant(
[[[0.1, 0.2], [0.9, 0.1]],
[[0.6, 0.4], [0.08, 0.92]]],
dtype=tf.float32)
calibrated_scores = calibration_fn(class_predictions_with_background)
return calibrated_scores
calibrated_scores_np = self.execute(graph_fn, [])
self.assertAllClose(calibrated_scores_np, [[[0.5, 0.2], [0.5, 0.1]],
[[0.5, 0.4], [0.5, 0.92]]])
if __name__ == '__main__':
tf.test.main()
|