from __future__ import absolute_import from __future__ import division from __future__ import print_function """Language model agent. Agent outputs code in a sequence just like a language model. Can be trained as a language model or using RL, or a combination of the two. """ from collections import namedtuple from math import exp from math import log import time from absl import logging import numpy as np from six.moves import xrange import tensorflow as tf from common import rollout as rollout_lib # brain coder from common import utils # brain coder from single_task import misc # brain coder # Experiments in the ICLR 2018 paper used reduce_sum instead of reduce_mean for # some losses. We make all loses be batch_size independent, and multiply the # changed losses by 64, which was the fixed batch_size when the experiments # where run. The loss hyperparameters still match what is reported in the paper. MAGIC_LOSS_MULTIPLIER = 64 def rshift_time(tensor_2d, fill=misc.BF_EOS_INT): """Right shifts a 2D tensor along the time dimension (axis-1).""" dim_0 = tf.shape(tensor_2d)[0] fill_tensor = tf.fill([dim_0, 1], fill) return tf.concat([fill_tensor, tensor_2d[:, :-1]], axis=1) def join(a, b): # Concat a and b along 0-th dim. if a is None or len(a) == 0: # pylint: disable=g-explicit-length-test return b if b is None or len(b) == 0: # pylint: disable=g-explicit-length-test return a return np.concatenate((a, b)) def make_optimizer(kind, lr): if kind == 'sgd': return tf.train.GradientDescentOptimizer(lr) elif kind == 'adam': return tf.train.AdamOptimizer(lr) elif kind == 'rmsprop': return tf.train.RMSPropOptimizer(learning_rate=lr, decay=0.99) else: raise ValueError('Optimizer type "%s" not recognized.' % kind) class LinearWrapper(tf.contrib.rnn.RNNCell): """RNNCell wrapper that adds a linear layer to the output.""" def __init__(self, cell, output_size, dtype=tf.float32, suppress_index=None): self.cell = cell self._output_size = output_size self._dtype = dtype self._suppress_index = suppress_index self.smallest_float = -2.4e38 def __call__(self, inputs, state, scope=None): with tf.variable_scope(type(self).__name__): outputs, state = self.cell(inputs, state, scope=scope) logits = tf.matmul( outputs, tf.get_variable('w_output', [self.cell.output_size, self.output_size], dtype=self._dtype)) if self._suppress_index is not None: # Replace the target index with -inf, so that it never gets selected. batch_size = tf.shape(logits)[0] logits = tf.concat( [logits[:, :self._suppress_index], tf.fill([batch_size, 1], self.smallest_float), logits[:, self._suppress_index + 1:]], axis=1) return logits, state @property def output_size(self): return self._output_size @property def state_size(self): return self.cell.state_size def zero_state(self, batch_size, dtype): return self.cell.zero_state(batch_size, dtype) UpdateStepResult = namedtuple( 'UpdateStepResult', ['global_step', 'global_npe', 'summaries_list', 'gradients_dict']) class AttrDict(dict): """Dict with attributes as keys. https://stackoverflow.com/a/14620633 """ def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class LMAgent(object): """Language model agent.""" action_space = misc.bf_num_tokens() observation_space = misc.bf_num_tokens() def __init__(self, global_config, task_id=0, logging_file=None, experience_replay_file=None, global_best_reward_fn=None, found_solution_op=None, assign_code_solution_fn=None, program_count=None, do_iw_summaries=False, stop_on_success=True, dtype=tf.float32, verbose_level=0, is_local=True): self.config = config = global_config.agent self.logging_file = logging_file self.experience_replay_file = experience_replay_file self.task_id = task_id self.verbose_level = verbose_level self.global_best_reward_fn = global_best_reward_fn self.found_solution_op = found_solution_op self.assign_code_solution_fn = assign_code_solution_fn self.parent_scope_name = tf.get_variable_scope().name self.dtype = dtype self.allow_eos_token = config.eos_token self.stop_on_success = stop_on_success self.pi_loss_hparam = config.pi_loss_hparam self.vf_loss_hparam = config.vf_loss_hparam self.is_local = is_local self.top_reward = 0.0 self.embeddings_trainable = True self.no_op = tf.no_op() self.learning_rate = tf.constant( config.lr, dtype=dtype, name='learning_rate') self.initializer = tf.contrib.layers.variance_scaling_initializer( factor=config.param_init_factor, mode='FAN_AVG', uniform=True, dtype=dtype) # TF's default initializer. tf.get_variable_scope().set_initializer(self.initializer) self.a2c = config.ema_baseline_decay == 0 if not self.a2c: logging.info('Using exponential moving average REINFORCE baselines.') self.ema_baseline_decay = config.ema_baseline_decay self.ema_by_len = [0.0] * global_config.timestep_limit else: logging.info('Using advantage (a2c) with learned value function.') self.ema_baseline_decay = 0.0 self.ema_by_len = None # Top-k if config.topk and config.topk_loss_hparam: self.topk_loss_hparam = config.topk_loss_hparam self.topk_batch_size = config.topk_batch_size if self.topk_batch_size <= 0: raise ValueError('topk_batch_size must be a positive integer. Got %s', self.topk_batch_size) self.top_episodes = utils.MaxUniquePriorityQueue(config.topk) logging.info('Made max-priorty-queue with capacity %d', self.top_episodes.capacity) else: self.top_episodes = None self.topk_loss_hparam = 0.0 logging.info('No max-priorty-queue') # Experience replay. self.replay_temperature = config.replay_temperature self.num_replay_per_batch = int(global_config.batch_size * config.alpha) self.num_on_policy_per_batch = ( global_config.batch_size - self.num_replay_per_batch) self.replay_alpha = ( self.num_replay_per_batch / float(global_config.batch_size)) logging.info('num_replay_per_batch: %d', self.num_replay_per_batch) logging.info('num_on_policy_per_batch: %d', self.num_on_policy_per_batch) logging.info('replay_alpha: %s', self.replay_alpha) if self.num_replay_per_batch > 0: # Train with off-policy episodes from replay buffer. start_time = time.time() self.experience_replay = utils.RouletteWheel( unique_mode=True, save_file=experience_replay_file) logging.info('Took %s sec to load replay buffer from disk.', int(time.time() - start_time)) logging.info('Replay buffer file location: "%s"', self.experience_replay.save_file) else: # Only train on-policy. self.experience_replay = None if program_count is not None: self.program_count = program_count self.program_count_add_ph = tf.placeholder( tf.int64, [], 'program_count_add_ph') self.program_count_add_op = self.program_count.assign_add( self.program_count_add_ph) ################################ # RL policy and value networks # ################################ batch_size = global_config.batch_size logging.info('batch_size: %d', batch_size) self.policy_cell = LinearWrapper( tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.BasicLSTMCell(cell_size) for cell_size in config.policy_lstm_sizes]), self.action_space, dtype=dtype, suppress_index=None if self.allow_eos_token else misc.BF_EOS_INT) self.value_cell = LinearWrapper( tf.contrib.rnn.MultiRNNCell( [tf.contrib.rnn.BasicLSTMCell(cell_size) for cell_size in config.value_lstm_sizes]), 1, dtype=dtype) obs_embedding_scope = 'obs_embed' with tf.variable_scope( obs_embedding_scope, initializer=tf.random_uniform_initializer(minval=-1.0, maxval=1.0)): obs_embeddings = tf.get_variable( 'embeddings', [self.observation_space, config.obs_embedding_size], dtype=dtype, trainable=self.embeddings_trainable) self.obs_embeddings = obs_embeddings ################################ # RL policy and value networks # ################################ initial_state = tf.fill([batch_size], misc.BF_EOS_INT) def loop_fn(loop_time, cell_output, cell_state, loop_state): """Function called by tf.nn.raw_rnn to instantiate body of the while_loop. See https://www.tensorflow.org/api_docs/python/tf/nn/raw_rnn for more information. When time is 0, and cell_output, cell_state, loop_state are all None, `loop_fn` will create the initial input, internal cell state, and loop state. When time > 0, `loop_fn` will operate on previous cell output, state, and loop state. Args: loop_time: A scalar tensor holding the current timestep (zero based counting). cell_output: Output of the raw_rnn cell at the current timestep. cell_state: Cell internal state at the current timestep. loop_state: Additional loop state. These tensors were returned by the previous call to `loop_fn`. Returns: elements_finished: Bool tensor of shape [batch_size] which marks each sequence in the batch as being finished or not finished. next_input: A tensor containing input to be fed into the cell at the next timestep. next_cell_state: Cell internal state to be fed into the cell at the next timestep. emit_output: Tensor to be added to the TensorArray returned by raw_rnn as output from the while_loop. next_loop_state: Additional loop state. These tensors will be fed back into the next call to `loop_fn` as `loop_state`. """ if cell_output is None: # 0th time step. next_cell_state = self.policy_cell.zero_state(batch_size, dtype) elements_finished = tf.zeros([batch_size], tf.bool) output_lengths = tf.ones([batch_size], dtype=tf.int32) next_input = tf.gather(obs_embeddings, initial_state) emit_output = None next_loop_state = ( tf.TensorArray(dtype=tf.int32, size=0, dynamic_size=True), output_lengths, elements_finished ) else: scaled_logits = cell_output * config.softmax_tr # Scale temperature. prev_chosen, prev_output_lengths, prev_elements_finished = loop_state next_cell_state = cell_state chosen_outputs = tf.to_int32(tf.where( tf.logical_not(prev_elements_finished), tf.multinomial(logits=scaled_logits, num_samples=1)[:, 0], tf.zeros([batch_size], dtype=tf.int64))) elements_finished = tf.logical_or( tf.equal(chosen_outputs, misc.BF_EOS_INT), loop_time >= global_config.timestep_limit) output_lengths = tf.where( elements_finished, prev_output_lengths, # length includes EOS token. empty seq has len 1. tf.tile(tf.expand_dims(loop_time + 1, 0), [batch_size]) ) next_input = tf.gather(obs_embeddings, chosen_outputs) emit_output = scaled_logits next_loop_state = (prev_chosen.write(loop_time - 1, chosen_outputs), output_lengths, tf.logical_or(prev_elements_finished, elements_finished)) return (elements_finished, next_input, next_cell_state, emit_output, next_loop_state) with tf.variable_scope('policy'): (decoder_outputs_ta, _, # decoder_state (sampled_output_ta, output_lengths, _)) = tf.nn.raw_rnn( cell=self.policy_cell, loop_fn=loop_fn) policy_logits = tf.transpose(decoder_outputs_ta.stack(), (1, 0, 2), name='policy_logits') sampled_tokens = tf.transpose(sampled_output_ta.stack(), (1, 0), name='sampled_tokens') # Add SOS to beginning of the sequence. rshift_sampled_tokens = rshift_time(sampled_tokens, fill=misc.BF_EOS_INT) # Initial state is 0, 2nd state is first token. # Note: If value of last state is computed, this will be used as bootstrap. if self.a2c: with tf.variable_scope('value'): value_output, _ = tf.nn.dynamic_rnn( self.value_cell, tf.gather(obs_embeddings, rshift_sampled_tokens), sequence_length=output_lengths, dtype=dtype) value = tf.squeeze(value_output, axis=[2]) else: value = tf.zeros([], dtype=dtype) # for sampling actions from the agent, and which told tensors for doing # gradient updates on the agent. self.sampled_batch = AttrDict( logits=policy_logits, value=value, tokens=sampled_tokens, episode_lengths=output_lengths, probs=tf.nn.softmax(policy_logits), log_probs=tf.nn.log_softmax(policy_logits)) # adjusted_lengths can be less than the full length of each episode. # Use this to train on only part of an episode (starting from t=0). self.adjusted_lengths = tf.placeholder( tf.int32, [None], name='adjusted_lengths') self.policy_multipliers = tf.placeholder( dtype, [None, None], name='policy_multipliers') # Empirical value, i.e. discounted sum of observed future rewards from each # time step in the episode. self.empirical_values = tf.placeholder( dtype, [None, None], name='empirical_values') # Off-policy training. Just add supervised loss to the RL loss. self.off_policy_targets = tf.placeholder( tf.int32, [None, None], name='off_policy_targets') self.off_policy_target_lengths = tf.placeholder( tf.int32, [None], name='off_policy_target_lengths') self.actions = tf.placeholder(tf.int32, [None, None], name='actions') # Add SOS to beginning of the sequence. inputs = rshift_time(self.actions, fill=misc.BF_EOS_INT) with tf.variable_scope('policy', reuse=True): logits, _ = tf.nn.dynamic_rnn( self.policy_cell, tf.gather(obs_embeddings, inputs), sequence_length=self.adjusted_lengths, dtype=dtype) if self.a2c: with tf.variable_scope('value', reuse=True): value_output, _ = tf.nn.dynamic_rnn( self.value_cell, tf.gather(obs_embeddings, inputs), sequence_length=self.adjusted_lengths, dtype=dtype) value2 = tf.squeeze(value_output, axis=[2]) else: value2 = tf.zeros([], dtype=dtype) self.given_batch = AttrDict( logits=logits, value=value2, tokens=sampled_tokens, episode_lengths=self.adjusted_lengths, probs=tf.nn.softmax(logits), log_probs=tf.nn.log_softmax(logits)) # Episode masks. max_episode_length = tf.shape(self.actions)[1] # range_row shape: [1, max_episode_length] range_row = tf.expand_dims(tf.range(max_episode_length), 0) episode_masks = tf.cast( tf.less(range_row, tf.expand_dims(self.given_batch.episode_lengths, 1)), dtype=dtype) episode_masks_3d = tf.expand_dims(episode_masks, 2) # Length adjusted episodes. self.a_probs = a_probs = self.given_batch.probs * episode_masks_3d self.a_log_probs = a_log_probs = ( self.given_batch.log_probs * episode_masks_3d) self.a_value = a_value = self.given_batch.value * episode_masks self.a_policy_multipliers = a_policy_multipliers = ( self.policy_multipliers * episode_masks) if self.a2c: self.a_empirical_values = a_empirical_values = ( self.empirical_values * episode_masks) # pi_loss is scalar acs_onehot = tf.one_hot(self.actions, self.action_space, dtype=dtype) self.acs_onehot = acs_onehot chosen_masked_log_probs = acs_onehot * a_log_probs pi_target = tf.expand_dims(a_policy_multipliers, -1) pi_loss_per_step = chosen_masked_log_probs * pi_target # Maximize. self.pi_loss = pi_loss = ( -tf.reduce_mean(tf.reduce_sum(pi_loss_per_step, axis=[1, 2]), axis=0) * MAGIC_LOSS_MULTIPLIER) # Minimize. assert len(self.pi_loss.shape) == 0 # pylint: disable=g-explicit-length-test # shape: [batch_size, time] self.chosen_log_probs = tf.reduce_sum(chosen_masked_log_probs, axis=2) self.chosen_probs = tf.reduce_sum(acs_onehot * a_probs, axis=2) # loss of value function if self.a2c: vf_loss_per_step = tf.square(a_value - a_empirical_values) self.vf_loss = vf_loss = ( tf.reduce_mean(tf.reduce_sum(vf_loss_per_step, axis=1), axis=0) * MAGIC_LOSS_MULTIPLIER) # Minimize. assert len(self.vf_loss.shape) == 0 # pylint: disable=g-explicit-length-test else: self.vf_loss = vf_loss = 0.0 # Maximize entropy regularizer self.entropy = entropy = ( -tf.reduce_mean( tf.reduce_sum(a_probs * a_log_probs, axis=[1, 2]), axis=0) * MAGIC_LOSS_MULTIPLIER) # Maximize self.negentropy = -entropy # Minimize negentropy. assert len(self.negentropy.shape) == 0 # pylint: disable=g-explicit-length-test # off-policy loss self.offp_switch = tf.placeholder(dtype, [], name='offp_switch') if self.top_episodes is not None: # Add SOS to beginning of the sequence. offp_inputs = tf.gather(obs_embeddings, rshift_time(self.off_policy_targets, fill=misc.BF_EOS_INT)) with tf.variable_scope('policy', reuse=True): offp_logits, _ = tf.nn.dynamic_rnn( self.policy_cell, offp_inputs, self.off_policy_target_lengths, dtype=dtype) # shape: [batch_size, time, action_space] topk_loss_per_step = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=self.off_policy_targets, logits=offp_logits, name='topk_loss_per_logit') # Take mean over batch dimension so that the loss multiplier strength is # independent of batch size. Sum over time dimension. topk_loss = tf.reduce_mean( tf.reduce_sum(topk_loss_per_step, axis=1), axis=0) assert len(topk_loss.shape) == 0 # pylint: disable=g-explicit-length-test self.topk_loss = topk_loss * self.offp_switch logging.info('Including off policy loss.') else: self.topk_loss = topk_loss = 0.0 self.entropy_hparam = tf.constant( config.entropy_beta, dtype=dtype, name='entropy_beta') self.pi_loss_term = pi_loss * self.pi_loss_hparam self.vf_loss_term = vf_loss * self.vf_loss_hparam self.entropy_loss_term = self.negentropy * self.entropy_hparam self.topk_loss_term = self.topk_loss_hparam * topk_loss self.loss = ( self.pi_loss_term + self.vf_loss_term + self.entropy_loss_term + self.topk_loss_term) params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name) self.trainable_variables = params self.sync_variables = self.trainable_variables non_embedding_params = [p for p in params if obs_embedding_scope not in p.name] self.non_embedding_params = non_embedding_params self.params = params if config.regularizer: logging.info('Adding L2 regularizer with scale %.2f.', config.regularizer) self.regularizer = config.regularizer * sum( tf.nn.l2_loss(w) for w in non_embedding_params) self.loss += self.regularizer else: logging.info('Skipping regularizer.') self.regularizer = 0.0 # Only build gradients graph for local model. if self.is_local: unclipped_grads = tf.gradients(self.loss, params) self.dense_unclipped_grads = [ tf.convert_to_tensor(g) for g in unclipped_grads] self.grads, self.global_grad_norm = tf.clip_by_global_norm( unclipped_grads, config.grad_clip_threshold) self.gradients_dict = dict(zip(params, self.grads)) self.optimizer = make_optimizer(config.optimizer, self.learning_rate) self.all_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, tf.get_variable_scope().name) self.do_iw_summaries = do_iw_summaries if self.do_iw_summaries: b = None self.log_iw_replay_ph = tf.placeholder(tf.float32, [b], 'log_iw_replay_ph') self.log_iw_policy_ph = tf.placeholder(tf.float32, [b], 'log_iw_policy_ph') self.log_prob_replay_ph = tf.placeholder(tf.float32, [b], 'log_prob_replay_ph') self.log_prob_policy_ph = tf.placeholder(tf.float32, [b], 'log_prob_policy_ph') self.log_norm_replay_weights_ph = tf.placeholder( tf.float32, [b], 'log_norm_replay_weights_ph') self.iw_summary_op = tf.summary.merge([ tf.summary.histogram('is/log_iw_replay', self.log_iw_replay_ph), tf.summary.histogram('is/log_iw_policy', self.log_iw_policy_ph), tf.summary.histogram('is/log_prob_replay', self.log_prob_replay_ph), tf.summary.histogram('is/log_prob_policy', self.log_prob_policy_ph), tf.summary.histogram( 'is/log_norm_replay_weights', self.log_norm_replay_weights_ph), ]) def make_summary_ops(self): """Construct summary ops for the model.""" # size = number of timesteps across entire batch. Number normalized by size # will not be affected by the amount of padding at the ends of sequences # in the batch. size = tf.cast( tf.reduce_sum(self.given_batch.episode_lengths), dtype=self.dtype) offp_size = tf.cast(tf.reduce_sum(self.off_policy_target_lengths), dtype=self.dtype) scope_prefix = self.parent_scope_name def _remove_prefix(prefix, name): assert name.startswith(prefix) return name[len(prefix):] # RL summaries. self.rl_summary_op = tf.summary.merge( [tf.summary.scalar('model/policy_loss', self.pi_loss / size), tf.summary.scalar('model/value_loss', self.vf_loss / size), tf.summary.scalar('model/topk_loss', self.topk_loss / offp_size), tf.summary.scalar('model/entropy', self.entropy / size), tf.summary.scalar('model/loss', self.loss / size), tf.summary.scalar('model/grad_norm', tf.global_norm(self.grads)), tf.summary.scalar('model/unclipped_grad_norm', self.global_grad_norm), tf.summary.scalar('model/non_embedding_var_norm', tf.global_norm(self.non_embedding_params)), tf.summary.scalar('hparams/entropy_beta', self.entropy_hparam), tf.summary.scalar('hparams/topk_loss_hparam', self.topk_loss_hparam), tf.summary.scalar('hparams/learning_rate', self.learning_rate), tf.summary.scalar('model/trainable_var_norm', tf.global_norm(self.trainable_variables)), tf.summary.scalar('loss/loss', self.loss), tf.summary.scalar('loss/entropy', self.entropy_loss_term), tf.summary.scalar('loss/vf', self.vf_loss_term), tf.summary.scalar('loss/policy', self.pi_loss_term), tf.summary.scalar('loss/offp', self.topk_loss_term)] + [tf.summary.scalar( 'param_norms/' + _remove_prefix(scope_prefix + '/', p.name), tf.norm(p)) for p in self.params] + [tf.summary.scalar( 'grad_norms/' + _remove_prefix(scope_prefix + '/', p.name), tf.norm(g)) for p, g in zip(self.params, self.grads)] + [tf.summary.scalar( 'unclipped_grad_norms/' + _remove_prefix(scope_prefix + '/', p.name), tf.norm(g)) for p, g in zip(self.params, self.dense_unclipped_grads)]) self.text_summary_placeholder = tf.placeholder(tf.string, shape=[]) self.rl_text_summary_op = tf.summary.text('rl', self.text_summary_placeholder) def _rl_text_summary(self, session, step, npe, tot_r, num_steps, input_case, code_output, code, reason): """Logs summary about a single episode and creates a text_summary for TB. Args: session: tf.Session instance. step: Global training step. npe: Number of programs executed so far. tot_r: Total reward. num_steps: Number of timesteps in the episode (i.e. code length). input_case: Inputs for test cases. code_output: Outputs produced by running the code on the inputs. code: String representation of the code. reason: Reason for the reward assigned by the task. Returns: Serialized text summary data for tensorboard. """ if not input_case: input_case = ' ' if not code_output: code_output = ' ' if not code: code = ' ' text = ( 'Tot R: **%.2f**; Len: **%d**; Reason: **%s**\n\n' 'Input: **`%s`**; Output: **`%s`**\n\nCode: **`%s`**' % (tot_r, num_steps, reason, input_case, code_output, code)) text_summary = session.run(self.rl_text_summary_op, {self.text_summary_placeholder: text}) logging.info( 'Step %d.\t NPE: %d\t Reason: %s.\t Tot R: %.2f.\t Length: %d. ' '\tInput: %s \tOutput: %s \tProgram: %s', step, npe, reason, tot_r, num_steps, input_case, code_output, code) return text_summary def _rl_reward_summary(self, total_rewards): """Create summary ops that report on episode rewards. Creates summaries for average, median, max, and min rewards in the batch. Args: total_rewards: Tensor of shape [batch_size] containing the total reward from each episode in the batch. Returns: tf.Summary op. """ tr = np.asarray(total_rewards) reward_summary = tf.Summary(value=[ tf.Summary.Value( tag='reward/avg', simple_value=np.mean(tr)), tf.Summary.Value( tag='reward/med', simple_value=np.median(tr)), tf.Summary.Value( tag='reward/max', simple_value=np.max(tr)), tf.Summary.Value( tag='reward/min', simple_value=np.min(tr))]) return reward_summary def _iw_summary(self, session, replay_iw, replay_log_probs, norm_replay_weights, on_policy_iw, on_policy_log_probs): """Compute summaries for importance weights at a given batch. Args: session: tf.Session instance. replay_iw: Importance weights for episodes from replay buffer. replay_log_probs: Total log probabilities of the replay episodes under the current policy. norm_replay_weights: Normalized replay weights, i.e. values in `replay_iw` divided by the total weight in the entire replay buffer. Note, this is also the probability of selecting each episode from the replay buffer (in a roulette wheel replay buffer). on_policy_iw: Importance weights for episodes sampled from the current policy. on_policy_log_probs: Total log probabilities of the on-policy episodes under the current policy. Returns: Serialized TF summaries. Use a summary writer to write these summaries to disk. """ return session.run( self.iw_summary_op, {self.log_iw_replay_ph: np.log(replay_iw), self.log_iw_policy_ph: np.log(on_policy_iw), self.log_norm_replay_weights_ph: np.log(norm_replay_weights), self.log_prob_replay_ph: replay_log_probs, self.log_prob_policy_ph: on_policy_log_probs}) def _compute_iw(self, policy_log_probs, replay_weights): """Compute importance weights for a batch of episodes. Arguments are iterables of length batch_size. Args: policy_log_probs: Log probability of each episode under the current policy. replay_weights: Weight of each episode in the replay buffer. 0 for episodes not sampled from the replay buffer (i.e. sampled from the policy). Returns: Numpy array of shape [batch_size] containing the importance weight for each episode in the batch. """ log_total_replay_weight = log(self.experience_replay.total_weight) # importance weight # = 1 / [(1 - a) + a * exp(log(replay_weight / total_weight / p))] # = 1 / ((1-a) + a*q/p) a = float(self.replay_alpha) a_com = 1.0 - a # compliment of a importance_weights = np.asarray( [1.0 / (a_com + a * exp((log(replay_weight) - log_total_replay_weight) - log_p)) if replay_weight > 0 else 1.0 / a_com for log_p, replay_weight in zip(policy_log_probs, replay_weights)]) return importance_weights def update_step(self, session, rl_batch, train_op, global_step_op, return_gradients=False): """Perform gradient update on the model. Args: session: tf.Session instance. rl_batch: RLBatch instance from data.py. Use DataManager to create a RLBatch for each call to update_step. RLBatch contains a batch of tasks. train_op: A TF op which will perform the gradient update. LMAgent does not own its training op, so that trainers can do distributed training and construct a specialized training op. global_step_op: A TF op which will return the current global step when run (should not increment it). return_gradients: If True, the gradients will be saved and returned from this method call. This is useful for testing. Returns: Results from the update step in a UpdateStepResult namedtuple, including global step, global NPE, serialized summaries, and optionally gradients. """ assert self.is_local # Do update for REINFORCE or REINFORCE + replay buffer. if self.experience_replay is None: # Train with on-policy REINFORCE. # Sample new programs from the policy. num_programs_from_policy = rl_batch.batch_size (batch_actions, batch_values, episode_lengths) = session.run( [self.sampled_batch.tokens, self.sampled_batch.value, self.sampled_batch.episode_lengths]) if episode_lengths.size == 0: # This should not happen. logging.warn( 'Shapes:\n' 'batch_actions.shape: %s\n' 'batch_values.shape: %s\n' 'episode_lengths.shape: %s\n', batch_actions.shape, batch_values.shape, episode_lengths.shape) # Compute rewards. code_scores = compute_rewards( rl_batch, batch_actions, episode_lengths) code_strings = code_scores.code_strings batch_tot_r = code_scores.total_rewards test_cases = code_scores.test_cases code_outputs = code_scores.code_outputs reasons = code_scores.reasons # Process on-policy samples. batch_targets, batch_returns = process_episodes( code_scores.batch_rewards, episode_lengths, a2c=self.a2c, baselines=self.ema_by_len, batch_values=batch_values) batch_policy_multipliers = batch_targets batch_emp_values = batch_returns if self.a2c else [[]] adjusted_lengths = episode_lengths if self.top_episodes: assert len(self.top_episodes) > 0 # pylint: disable=g-explicit-length-test off_policy_targets = [ item for item, _ in self.top_episodes.random_sample(self.topk_batch_size)] off_policy_target_lengths = [len(t) for t in off_policy_targets] off_policy_targets = utils.stack_pad(off_policy_targets, pad_axes=0, dtype=np.int32) offp_switch = 1 else: off_policy_targets = [[0]] off_policy_target_lengths = [1] offp_switch = 0 fetches = { 'global_step': global_step_op, 'program_count': self.program_count, 'summaries': self.rl_summary_op, 'train_op': train_op, 'gradients': self.gradients_dict if return_gradients else self.no_op} fetched = session.run( fetches, {self.actions: batch_actions, self.empirical_values: batch_emp_values, self.policy_multipliers: batch_policy_multipliers, self.adjusted_lengths: adjusted_lengths, self.off_policy_targets: off_policy_targets, self.off_policy_target_lengths: off_policy_target_lengths, self.offp_switch: offp_switch}) combined_adjusted_lengths = adjusted_lengths combined_returns = batch_returns else: # Train with REINFORCE + off-policy replay buffer by using importance # sampling. # Sample new programs from the policy. # Note: batch size is constant. A full batch will be sampled, but not all # programs will be executed and added to the replay buffer. Those which # are not executed will be discarded and not counted. batch_actions, batch_values, episode_lengths, log_probs = session.run( [self.sampled_batch.tokens, self.sampled_batch.value, self.sampled_batch.episode_lengths, self.sampled_batch.log_probs]) if episode_lengths.size == 0: # This should not happen. logging.warn( 'Shapes:\n' 'batch_actions.shape: %s\n' 'batch_values.shape: %s\n' 'episode_lengths.shape: %s\n', batch_actions.shape, batch_values.shape, episode_lengths.shape) # Sample from experince replay buffer empty_replay_buffer = ( self.experience_replay.is_empty() if self.experience_replay is not None else True) num_programs_from_replay_buff = ( self.num_replay_per_batch if not empty_replay_buffer else 0) num_programs_from_policy = ( rl_batch.batch_size - num_programs_from_replay_buff) if (not empty_replay_buffer) and num_programs_from_replay_buff: result = self.experience_replay.sample_many( num_programs_from_replay_buff) experience_samples, replay_weights = zip(*result) (replay_actions, replay_rewards, _, # log probs replay_adjusted_lengths) = zip(*experience_samples) replay_batch_actions = utils.stack_pad(replay_actions, pad_axes=0, dtype=np.int32) # compute log probs for replay samples under current policy all_replay_log_probs, = session.run( [self.given_batch.log_probs], {self.actions: replay_batch_actions, self.adjusted_lengths: replay_adjusted_lengths}) replay_log_probs = [ np.choose(replay_actions[i], all_replay_log_probs[i, :l].T).sum() for i, l in enumerate(replay_adjusted_lengths)] else: # Replay buffer is empty. Do not sample from it. replay_actions = None replay_policy_multipliers = None replay_adjusted_lengths = None replay_log_probs = None replay_weights = None replay_returns = None on_policy_weights = [0] * num_programs_from_replay_buff assert not self.a2c # TODO(danabo): Support A2C with importance sampling. # Compute rewards. code_scores = compute_rewards( rl_batch, batch_actions, episode_lengths, batch_size=num_programs_from_policy) code_strings = code_scores.code_strings batch_tot_r = code_scores.total_rewards test_cases = code_scores.test_cases code_outputs = code_scores.code_outputs reasons = code_scores.reasons # Process on-policy samples. p = num_programs_from_policy batch_targets, batch_returns = process_episodes( code_scores.batch_rewards, episode_lengths[:p], a2c=False, baselines=self.ema_by_len) batch_policy_multipliers = batch_targets batch_emp_values = [[]] on_policy_returns = batch_returns # Process off-policy samples. if (not empty_replay_buffer) and num_programs_from_replay_buff: offp_batch_rewards = [ [0.0] * (l - 1) + [r] for l, r in zip(replay_adjusted_lengths, replay_rewards)] assert len(offp_batch_rewards) == num_programs_from_replay_buff assert len(replay_adjusted_lengths) == num_programs_from_replay_buff replay_batch_targets, replay_returns = process_episodes( offp_batch_rewards, replay_adjusted_lengths, a2c=False, baselines=self.ema_by_len) # Convert 2D array back into ragged 2D list. replay_policy_multipliers = [ replay_batch_targets[i, :l] for i, l in enumerate( replay_adjusted_lengths[:num_programs_from_replay_buff])] adjusted_lengths = episode_lengths[:num_programs_from_policy] if self.top_episodes: assert len(self.top_episodes) > 0 # pylint: disable=g-explicit-length-test off_policy_targets = [ item for item, _ in self.top_episodes.random_sample(self.topk_batch_size)] off_policy_target_lengths = [len(t) for t in off_policy_targets] off_policy_targets = utils.stack_pad(off_policy_targets, pad_axes=0, dtype=np.int32) offp_switch = 1 else: off_policy_targets = [[0]] off_policy_target_lengths = [1] offp_switch = 0 # On-policy episodes. if num_programs_from_policy: separate_actions = [ batch_actions[i, :l] for i, l in enumerate(adjusted_lengths)] chosen_log_probs = [ np.choose(separate_actions[i], log_probs[i, :l].T) for i, l in enumerate(adjusted_lengths)] new_experiences = [ (separate_actions[i], batch_tot_r[i], chosen_log_probs[i].sum(), l) for i, l in enumerate(adjusted_lengths)] on_policy_policy_multipliers = [ batch_policy_multipliers[i, :l] for i, l in enumerate(adjusted_lengths)] (on_policy_actions, _, # rewards on_policy_log_probs, on_policy_adjusted_lengths) = zip(*new_experiences) else: new_experiences = [] on_policy_policy_multipliers = [] on_policy_actions = [] on_policy_log_probs = [] on_policy_adjusted_lengths = [] if (not empty_replay_buffer) and num_programs_from_replay_buff: # Look for new experiences in replay buffer. Assign weight if an episode # is in the buffer. on_policy_weights = [0] * num_programs_from_policy for i, cs in enumerate(code_strings): if self.experience_replay.has_key(cs): on_policy_weights[i] = self.experience_replay.get_weight(cs) # Randomly select on-policy or off policy episodes to train on. combined_actions = join(replay_actions, on_policy_actions) combined_policy_multipliers = join( replay_policy_multipliers, on_policy_policy_multipliers) combined_adjusted_lengths = join( replay_adjusted_lengths, on_policy_adjusted_lengths) combined_returns = join(replay_returns, on_policy_returns) combined_actions = utils.stack_pad(combined_actions, pad_axes=0) combined_policy_multipliers = utils.stack_pad(combined_policy_multipliers, pad_axes=0) # P combined_on_policy_log_probs = join(replay_log_probs, on_policy_log_probs) # Q # Assume weight is zero for all sequences sampled from the policy. combined_q_weights = join(replay_weights, on_policy_weights) # Importance adjustment. Naive formulation: # E_{x~p}[f(x)] ~= 1/N sum_{x~p}(f(x)) ~= 1/N sum_{x~q}(f(x) * p(x)/q(x)). # p(x) is the policy, and q(x) is the off-policy distribution, i.e. replay # buffer distribution. Importance weight w(x) = p(x) / q(x). # Instead of sampling from the replay buffer only, we sample from a # mixture distribution of the policy and replay buffer. # We are sampling from the mixture a*q(x) + (1-a)*p(x), where 0 <= a <= 1. # Thus the importance weight w(x) = p(x) / (a*q(x) + (1-a)*p(x)) # = 1 / ((1-a) + a*q(x)/p(x)) where q(x) is 0 for x sampled from the # policy. # Note: a = self.replay_alpha if empty_replay_buffer: # The replay buffer is empty. # Do no gradient update this step. The replay buffer will have stuff in # it next time. combined_policy_multipliers *= 0 elif not num_programs_from_replay_buff: combined_policy_multipliers = np.ones([len(combined_actions), 1], dtype=np.float32) else: # If a < 1 compute importance weights # importance weight # = 1 / [(1 - a) + a * exp(log(replay_weight / total_weight / p))] # = 1 / ((1-a) + a*q/p) importance_weights = self._compute_iw(combined_on_policy_log_probs, combined_q_weights) if self.config.iw_normalize: importance_weights *= ( float(rl_batch.batch_size) / importance_weights.sum()) combined_policy_multipliers *= importance_weights.reshape(-1, 1) # Train on replay batch, top-k MLE. assert self.program_count is not None fetches = { 'global_step': global_step_op, 'program_count': self.program_count, 'summaries': self.rl_summary_op, 'train_op': train_op, 'gradients': self.gradients_dict if return_gradients else self.no_op} fetched = session.run( fetches, {self.actions: combined_actions, self.empirical_values: [[]], # replay_emp_values, self.policy_multipliers: combined_policy_multipliers, self.adjusted_lengths: combined_adjusted_lengths, self.off_policy_targets: off_policy_targets, self.off_policy_target_lengths: off_policy_target_lengths, self.offp_switch: offp_switch}) # Add to experience replay buffer. self.experience_replay.add_many( objs=new_experiences, weights=[exp(r / self.replay_temperature) for r in batch_tot_r], keys=code_strings) # Update program count. session.run( [self.program_count_add_op], {self.program_count_add_ph: num_programs_from_policy}) # Update EMA baselines on the mini-batch which we just did traning on. if not self.a2c: for i in xrange(rl_batch.batch_size): episode_length = combined_adjusted_lengths[i] empirical_returns = combined_returns[i, :episode_length] for j in xrange(episode_length): # Update ema_baselines in place. self.ema_by_len[j] = ( self.ema_baseline_decay * self.ema_by_len[j] + (1 - self.ema_baseline_decay) * empirical_returns[j]) global_step = fetched['global_step'] global_npe = fetched['program_count'] core_summaries = fetched['summaries'] summaries_list = [core_summaries] if num_programs_from_policy: s_i = 0 text_summary = self._rl_text_summary( session, global_step, global_npe, batch_tot_r[s_i], episode_lengths[s_i], test_cases[s_i], code_outputs[s_i], code_strings[s_i], reasons[s_i]) reward_summary = self._rl_reward_summary(batch_tot_r) is_best = False if self.global_best_reward_fn: # Save best reward. best_reward = np.max(batch_tot_r) is_best = self.global_best_reward_fn(session, best_reward) if self.found_solution_op is not None and 'correct' in reasons: session.run(self.found_solution_op) # Save program to disk for record keeping. if self.stop_on_success: solutions = [ {'code': code_strings[i], 'reward': batch_tot_r[i], 'npe': global_npe} for i in xrange(len(reasons)) if reasons[i] == 'correct'] elif is_best: solutions = [ {'code': code_strings[np.argmax(batch_tot_r)], 'reward': np.max(batch_tot_r), 'npe': global_npe}] else: solutions = [] if solutions: if self.assign_code_solution_fn: self.assign_code_solution_fn(session, solutions[0]['code']) with tf.gfile.FastGFile(self.logging_file, 'a') as writer: for solution_dict in solutions: writer.write(str(solution_dict) + '\n') max_i = np.argmax(batch_tot_r) max_tot_r = batch_tot_r[max_i] if max_tot_r >= self.top_reward: if max_tot_r >= self.top_reward: self.top_reward = max_tot_r logging.info('Top code: r=%.2f, \t%s', max_tot_r, code_strings[max_i]) if self.top_episodes is not None: self.top_episodes.push( max_tot_r, tuple(batch_actions[max_i, :episode_lengths[max_i]])) summaries_list += [text_summary, reward_summary] if self.do_iw_summaries and not empty_replay_buffer: # prob of replay samples under replay buffer sampling. norm_replay_weights = [ w / self.experience_replay.total_weight for w in replay_weights] replay_iw = self._compute_iw(replay_log_probs, replay_weights) on_policy_iw = self._compute_iw(on_policy_log_probs, on_policy_weights) summaries_list.append( self._iw_summary( session, replay_iw, replay_log_probs, norm_replay_weights, on_policy_iw, on_policy_log_probs)) return UpdateStepResult( global_step=global_step, global_npe=global_npe, summaries_list=summaries_list, gradients_dict=fetched['gradients']) def io_to_text(io_case, io_type): if isinstance(io_case, misc.IOTuple): # If there are many strings, join them with ','. return ','.join([io_to_text(e, io_type) for e in io_case]) if io_type == misc.IOType.string: # There is one string. Return it. return misc.tokens_to_text(io_case) if (io_type == misc.IOType.integer or io_type == misc.IOType.boolean): if len(io_case) == 1: return str(io_case[0]) return str(io_case) CodeScoreInfo = namedtuple( 'CodeScoreInfo', ['code_strings', 'batch_rewards', 'total_rewards', 'test_cases', 'code_outputs', 'reasons']) def compute_rewards(rl_batch, batch_actions, episode_lengths, batch_size=None): """Compute rewards for each episode in the batch. Args: rl_batch: A data.RLBatch instance. This holds information about the task each episode is solving, and a reward function for each episode. batch_actions: Contains batch of episodes. Each sequence of actions will be converted into a BF program and then scored. A numpy array of shape [batch_size, max_sequence_length]. episode_lengths: The sequence length of each episode in the batch. Iterable of length batch_size. batch_size: (optional) number of programs to score. Use this to limit the number of programs executed from this batch. For example, when doing importance sampling some of the on-policy episodes will be discarded and they should not be executed. `batch_size` can be less than or equal to the size of the input batch. Returns: CodeScoreInfo namedtuple instance. This holds not just the computed rewards, but additional information computed during code execution which can be used for debugging and monitoring. this includes: BF code strings, test cases the code was executed on, code outputs from those test cases, and reasons for success or failure. """ code_strings = [ ''.join([misc.bf_int2char(a) for a in action_sequence[:l]]) for action_sequence, l in zip(batch_actions, episode_lengths)] if batch_size is None: batch_size = len(code_strings) else: assert batch_size <= len(code_strings) code_strings = code_strings[:batch_size] if isinstance(rl_batch.reward_fns, (list, tuple)): # reward_fns is a list of functions, same length as code_strings. assert len(rl_batch.reward_fns) >= batch_size r_fn_results = [ rl_batch.reward_fns[i](code_strings[i]) for i in xrange(batch_size)] else: # reward_fns is allowed to be one function which processes a batch of code # strings. This is useful for efficiency and batch level computation. r_fn_results = rl_batch.reward_fns(code_strings) # Expecting that r_fn returns a list of rewards. Length of list equals # length of the code string (including EOS char). batch_rewards = [r.episode_rewards for r in r_fn_results] total_rewards = [sum(b) for b in batch_rewards] test_cases = [io_to_text(r.input_case, r.input_type) for r in r_fn_results] code_outputs = [io_to_text(r.code_output, r.output_type) for r in r_fn_results] reasons = [r.reason for r in r_fn_results] return CodeScoreInfo( code_strings=code_strings, batch_rewards=batch_rewards, total_rewards=total_rewards, test_cases=test_cases, code_outputs=code_outputs, reasons=reasons) def process_episodes( batch_rewards, episode_lengths, a2c=False, baselines=None, batch_values=None): """Compute REINFORCE targets. REINFORCE here takes the form: grad_t = grad[log(pi(a_t|c_t))*target_t] where c_t is context: i.e. RNN state or environment state (or both). Two types of targets are supported: 1) Advantage actor critic (a2c). 2) Vanilla REINFORCE with baseline. Args: batch_rewards: Rewards received in each episode in the batch. A numpy array of shape [batch_size, max_sequence_length]. Note, these are per-timestep rewards, not total reward. episode_lengths: Length of each episode. An iterable of length batch_size. a2c: A bool. Whether to compute a2c targets (True) or vanilla targets (False). baselines: If a2c is False, provide baselines for each timestep. This is a list (or indexable container) of length max_time. Note: baselines are shared across all episodes, which is why there is no batch dimension. It is up to the caller to update baselines accordingly. batch_values: If a2c is True, provide values computed by a value estimator. A numpy array of shape [batch_size, max_sequence_length]. Returns: batch_targets: REINFORCE targets for each episode and timestep. A numpy array of shape [batch_size, max_sequence_length]. batch_returns: Returns computed for each episode and timestep. This is for reference, and is not used in the REINFORCE gradient update (but was used to compute the targets). A numpy array of shape [batch_size, max_sequence_length]. """ num_programs = len(batch_rewards) assert num_programs <= len(episode_lengths) batch_returns = [None] * num_programs batch_targets = [None] * num_programs for i in xrange(num_programs): episode_length = episode_lengths[i] assert len(batch_rewards[i]) == episode_length # Compute target for each timestep. # If we are computing A2C: # target_t = advantage_t = R_t - V(c_t) # where V(c_t) is a learned value function (provided as `values`). # Otherwise: # target_t = R_t - baselines[t] # where `baselines` are provided. # In practice we use a more generalized formulation of advantage. See docs # for `discounted_advantage_and_rewards`. if a2c: # Compute advantage. assert batch_values is not None episode_values = batch_values[i, :episode_length] episode_rewards = batch_rewards[i] emp_val, gen_adv = rollout_lib.discounted_advantage_and_rewards( episode_rewards, episode_values, gamma=1.0, lambda_=1.0) batch_returns[i] = emp_val batch_targets[i] = gen_adv else: # Compute return for each timestep. See section 3 of # https://arxiv.org/pdf/1602.01783.pdf assert baselines is not None empirical_returns = rollout_lib.discount(batch_rewards[i], gamma=1.0) targets = [None] * episode_length for j in xrange(episode_length): targets[j] = empirical_returns[j] - baselines[j] batch_returns[i] = empirical_returns batch_targets[i] = targets batch_returns = utils.stack_pad(batch_returns, 0) if num_programs: batch_targets = utils.stack_pad(batch_targets, 0) else: batch_targets = np.array([], dtype=np.float32) return (batch_targets, batch_returns)