# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for data_provider.""" import numpy as np import tensorflow as tf from tensorflow.contrib.slim import queues import datasets import data_provider class DataProviderTest(tf.test.TestCase): def setUp(self): tf.test.TestCase.setUp(self) def test_preprocessed_image_values_are_in_range(self): image_shape = (5, 4, 3) fake_image = np.random.randint(low=0, high=255, size=image_shape) image_tf = data_provider.preprocess_image(fake_image) with self.test_session() as sess: image_np = sess.run(image_tf) self.assertEqual(image_np.shape, image_shape) min_value, max_value = np.min(image_np), np.max(image_np) self.assertTrue((-1.28 < min_value) and (min_value < 1.27)) self.assertTrue((-1.28 < max_value) and (max_value < 1.27)) def test_provided_data_has_correct_shape(self): batch_size = 4 data = data_provider.get_data( dataset=datasets.fsns_test.get_test_split(), batch_size=batch_size, augment=True, central_crop_size=None) with self.test_session() as sess, queues.QueueRunners(sess): images_np, labels_np = sess.run([data.images, data.labels_one_hot]) self.assertEqual(images_np.shape, (batch_size, 150, 600, 3)) self.assertEqual(labels_np.shape, (batch_size, 37, 134)) def test_optionally_applies_central_crop(self): batch_size = 4 data = data_provider.get_data( dataset=datasets.fsns_test.get_test_split(), batch_size=batch_size, augment=True, central_crop_size=(500, 100)) with self.test_session() as sess, queues.QueueRunners(sess): images_np = sess.run(data.images) self.assertEqual(images_np.shape, (batch_size, 100, 500, 3)) if __name__ == '__main__': tf.test.main()