import torch from torch import nn def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class WN(torch.nn.Module): def __init__(self, hidden_size, kernel_size, dilation_rate, n_layers, c_cond=0, p_dropout=0, share_cond_layers=False, is_BTC=False): super(WN, self).__init__() assert (kernel_size % 2 == 1) assert (hidden_size % 2 == 0) self.is_BTC = is_BTC self.hidden_size = hidden_size self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = c_cond self.p_dropout = p_dropout self.share_cond_layers = share_cond_layers self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.drop = nn.Dropout(p_dropout) if c_cond != 0 and not share_cond_layers: cond_layer = torch.nn.Conv1d(c_cond, 2 * hidden_size * n_layers, 1) self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') for i in range(n_layers): dilation = dilation_rate ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(hidden_size, 2 * hidden_size, kernel_size, dilation=dilation, padding=padding) in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * hidden_size else: res_skip_channels = hidden_size res_skip_layer = torch.nn.Conv1d(hidden_size, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, x, nonpadding=None, cond=None): if self.is_BTC: x = x.transpose(1, 2) cond = cond.transpose(1, 2) if cond is not None else None nonpadding = nonpadding.transpose(1, 2) if nonpadding is not None else None if nonpadding is None: nonpadding = 1 output = torch.zeros_like(x) n_channels_tensor = torch.IntTensor([self.hidden_size]) if cond is not None and not self.share_cond_layers: cond = self.cond_layer(cond) for i in range(self.n_layers): x_in = self.in_layers[i](x) x_in = self.drop(x_in) if cond is not None: cond_offset = i * 2 * self.hidden_size cond_l = cond[:, cond_offset:cond_offset + 2 * self.hidden_size, :] else: cond_l = torch.zeros_like(x_in) acts = fused_add_tanh_sigmoid_multiply(x_in, cond_l, n_channels_tensor) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: x = (x + res_skip_acts[:, :self.hidden_size, :]) * nonpadding output = output + res_skip_acts[:, self.hidden_size:, :] else: output = output + res_skip_acts output = output * nonpadding if self.is_BTC: output = output.transpose(1, 2) return output def remove_weight_norm(self): def remove_weight_norm(m): try: nn.utils.remove_weight_norm(m) except ValueError: # this module didn't have weight norm return self.apply(remove_weight_norm)