import torch from torch import nn import torch.nn.functional as F class PreNet(nn.Module): def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): super().__init__() self.fc1 = nn.Linear(in_dims, fc1_dims) self.fc2 = nn.Linear(fc1_dims, fc2_dims) self.p = dropout def forward(self, x): x = self.fc1(x) x = F.relu(x) x = F.dropout(x, self.p, training=self.training) x = self.fc2(x) x = F.relu(x) x = F.dropout(x, self.p, training=self.training) return x class HighwayNetwork(nn.Module): def __init__(self, size): super().__init__() self.W1 = nn.Linear(size, size) self.W2 = nn.Linear(size, size) self.W1.bias.data.fill_(0.) def forward(self, x): x1 = self.W1(x) x2 = self.W2(x) g = torch.sigmoid(x2) y = g * F.relu(x1) + (1. - g) * x return y class BatchNormConv(nn.Module): def __init__(self, in_channels, out_channels, kernel, relu=True): super().__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False) self.bnorm = nn.BatchNorm1d(out_channels) self.relu = relu def forward(self, x): x = self.conv(x) x = F.relu(x) if self.relu is True else x return self.bnorm(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert (kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal class CBHG(nn.Module): def __init__(self, K, in_channels, channels, proj_channels, num_highways): super().__init__() # List of all rnns to call `flatten_parameters()` on self._to_flatten = [] self.bank_kernels = [i for i in range(1, K + 1)] self.conv1d_bank = nn.ModuleList() for k in self.bank_kernels: conv = BatchNormConv(in_channels, channels, k) self.conv1d_bank.append(conv) self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1) self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3) self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False) # Fix the highway input if necessary if proj_channels[-1] != channels: self.highway_mismatch = True self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False) else: self.highway_mismatch = False self.highways = nn.ModuleList() for i in range(num_highways): hn = HighwayNetwork(channels) self.highways.append(hn) self.rnn = nn.GRU(channels, channels, batch_first=True, bidirectional=True) self._to_flatten.append(self.rnn) # Avoid fragmentation of RNN parameters and associated warning self._flatten_parameters() def forward(self, x): # Although we `_flatten_parameters()` on init, when using DataParallel # the model gets replicated, making it no longer guaranteed that the # weights are contiguous in GPU memory. Hence, we must call it again self._flatten_parameters() # Save these for later residual = x seq_len = x.size(-1) conv_bank = [] # Convolution Bank for conv in self.conv1d_bank: c = conv(x) # Convolution conv_bank.append(c[:, :, :seq_len]) # Stack along the channel axis conv_bank = torch.cat(conv_bank, dim=1) # dump the last padding to fit residual x = self.maxpool(conv_bank)[:, :, :seq_len] # Conv1d projections x = self.conv_project1(x) x = self.conv_project2(x) # Residual Connect x = x + residual # Through the highways x = x.transpose(1, 2) if self.highway_mismatch is True: x = self.pre_highway(x) for h in self.highways: x = h(x) # And then the RNN x, _ = self.rnn(x) return x def _flatten_parameters(self): """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used to improve efficiency and avoid PyTorch yelling at us.""" [m.flatten_parameters() for m in self._to_flatten] class TacotronEncoder(nn.Module): def __init__(self, embed_dims, num_chars, cbhg_channels, K, num_highways, dropout): super().__init__() self.embedding = nn.Embedding(num_chars, embed_dims) self.pre_net = PreNet(embed_dims, embed_dims, embed_dims, dropout=dropout) self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels, proj_channels=[cbhg_channels, cbhg_channels], num_highways=num_highways) self.proj_out = nn.Linear(cbhg_channels * 2, cbhg_channels) def forward(self, x): x = self.embedding(x) x = self.pre_net(x) x.transpose_(1, 2) x = self.cbhg(x) x = self.proj_out(x) return x class RNNEncoder(nn.Module): def __init__(self, num_chars, embedding_dim, n_convolutions=3, kernel_size=5): super(RNNEncoder, self).__init__() self.embedding = nn.Embedding(num_chars, embedding_dim, padding_idx=0) convolutions = [] for _ in range(n_convolutions): conv_layer = nn.Sequential( ConvNorm(embedding_dim, embedding_dim, kernel_size=kernel_size, stride=1, padding=int((kernel_size - 1) / 2), dilation=1, w_init_gain='relu'), nn.BatchNorm1d(embedding_dim)) convolutions.append(conv_layer) self.convolutions = nn.ModuleList(convolutions) self.lstm = nn.LSTM(embedding_dim, int(embedding_dim / 2), 1, batch_first=True, bidirectional=True) def forward(self, x): input_lengths = (x > 0).sum(-1) input_lengths = input_lengths.cpu().numpy() x = self.embedding(x) x = x.transpose(1, 2) # [B, H, T] for conv in self.convolutions: x = F.dropout(F.relu(conv(x)), 0.5, self.training) + x x = x.transpose(1, 2) # [B, T, H] # pytorch tensor are not reversible, hence the conversion x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True, enforce_sorted=False) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True) return outputs class DecoderRNN(torch.nn.Module): def __init__(self, hidden_size, decoder_rnn_dim, dropout): super(DecoderRNN, self).__init__() self.in_conv1d = nn.Sequential( torch.nn.Conv1d( in_channels=hidden_size, out_channels=hidden_size, kernel_size=9, padding=4, ), torch.nn.ReLU(), torch.nn.Conv1d( in_channels=hidden_size, out_channels=hidden_size, kernel_size=9, padding=4, ), ) self.ln = nn.LayerNorm(hidden_size) if decoder_rnn_dim == 0: decoder_rnn_dim = hidden_size * 2 self.rnn = torch.nn.LSTM( input_size=hidden_size, hidden_size=decoder_rnn_dim, num_layers=1, batch_first=True, bidirectional=True, dropout=dropout ) self.rnn.flatten_parameters() self.conv1d = torch.nn.Conv1d( in_channels=decoder_rnn_dim * 2, out_channels=hidden_size, kernel_size=3, padding=1, ) def forward(self, x): input_masks = x.abs().sum(-1).ne(0).data[:, :, None] input_lengths = input_masks.sum([-1, -2]) input_lengths = input_lengths.cpu().numpy() x = self.in_conv1d(x.transpose(1, 2)).transpose(1, 2) x = self.ln(x) x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True, enforce_sorted=False) self.rnn.flatten_parameters() x, _ = self.rnn(x) # [B, T, C] x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) x = x * input_masks pre_mel = self.conv1d(x.transpose(1, 2)).transpose(1, 2) # [B, T, C] pre_mel = pre_mel * input_masks return pre_mel