from skimage.transform import resize import struct import webrtcvad from scipy.ndimage.morphology import binary_dilation import librosa import numpy as np import pyloudnorm as pyln import warnings warnings.filterwarnings("ignore", message="Possible clipped samples in output") int16_max = (2 ** 15) - 1 def trim_long_silences(path, sr=None, return_raw_wav=False, norm=True, vad_max_silence_length=12): """ Ensures that segments without voice in the waveform remain no longer than a threshold determined by the VAD parameters in params.py. :param wav: the raw waveform as a numpy array of floats :param vad_max_silence_length: Maximum number of consecutive silent frames a segment can have. :return: the same waveform with silences trimmed away (length <= original wav length) """ ## Voice Activation Detection # Window size of the VAD. Must be either 10, 20 or 30 milliseconds. # This sets the granularity of the VAD. Should not need to be changed. sampling_rate = 16000 wav_raw, sr = librosa.core.load(path, sr=sr) if norm: meter = pyln.Meter(sr) # create BS.1770 meter loudness = meter.integrated_loudness(wav_raw) wav_raw = pyln.normalize.loudness(wav_raw, loudness, -20.0) if np.abs(wav_raw).max() > 1.0: wav_raw = wav_raw / np.abs(wav_raw).max() wav = librosa.resample(wav_raw, sr, sampling_rate, res_type='kaiser_best') vad_window_length = 30 # In milliseconds # Number of frames to average together when performing the moving average smoothing. # The larger this value, the larger the VAD variations must be to not get smoothed out. vad_moving_average_width = 8 # Compute the voice detection window size samples_per_window = (vad_window_length * sampling_rate) // 1000 # Trim the end of the audio to have a multiple of the window size wav = wav[:len(wav) - (len(wav) % samples_per_window)] # Convert the float waveform to 16-bit mono PCM pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16)) # Perform voice activation detection voice_flags = [] vad = webrtcvad.Vad(mode=3) for window_start in range(0, len(wav), samples_per_window): window_end = window_start + samples_per_window voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2], sample_rate=sampling_rate)) voice_flags = np.array(voice_flags) # Smooth the voice detection with a moving average def moving_average(array, width): array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2))) ret = np.cumsum(array_padded, dtype=float) ret[width:] = ret[width:] - ret[:-width] return ret[width - 1:] / width audio_mask = moving_average(voice_flags, vad_moving_average_width) audio_mask = np.round(audio_mask).astype(np.bool) # Dilate the voiced regions audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1)) audio_mask = np.repeat(audio_mask, samples_per_window) audio_mask = resize(audio_mask, (len(wav_raw),)) > 0 if return_raw_wav: return wav_raw, audio_mask, sr return wav_raw[audio_mask], audio_mask, sr